The Experimental Breeder Reactor II seismic probabilistic risk assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roglans, J; Hill, D J
1994-02-01
The Experimental Breeder Reactor II (EBR-II) is a US Department of Energy (DOE) Category A research reactor located at Argonne National Laboratory (ANL)-West in Idaho. EBR-II is a 62.5 MW-thermal Liquid Metal Reactor (LMR) that started operation in 1964 and it is currently being used as a testbed in the Integral Fast Reactor (IFR) Program. ANL has completed a Level 1 Probabilistic Risk Assessment (PRA) for EBR-II. The Level 1 PRA for internal events and most external events was completed in June 1991. The seismic PRA for EBR-H has recently been completed. The EBR-II reactor building contains the reactor, themore » primary system, and the decay heat removal systems. The reactor vessel, which contains the core, and the primary system, consisting of two primary pumps and an intermediate heat exchanger, are immersed in the sodium-filled primary tank, which is suspended by six hangers from a beam support structure. Three systems or functions in EBR-II were identified as the most significant from the standpoint of risk of seismic-induced fuel damage: (1) the reactor shutdown system, (2) the structural integrity of the passive decay heat removal systems, and (3) the integrity of major structures, like the primary tank containing the reactor that could threaten both the reactivity control and decay heat removal functions. As part of the seismic PRA, efforts were concentrated in studying these three functions or systems. The passive safety response of EBR-II reactor -- both passive reactivity shutdown and passive decay heat removal, demonstrated in a series of tests in 1986 -- was explicitly accounted for in the seismic PRA as it had been included in the internal events assessment.« less
Surveillance application using patten recognition software at the EBR-II Reactor Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, D.L.
1992-01-01
The System State Analyzer (SSA) is a software based pattern recognition system. For the past several year this system has been used at Argonne National Laboratory's Experimental Breeder Reactor 2 (EBR-2) reactor for detection of degradation and other abnormalities in plant systems. Currently there are two versions of the SSA being used at EBR-2. One version of SSA is used for daily surveillance and trending of the reactor delta-T and startups of the reactor. Another version of the SSA is the QSSA which is used to monitor individual systems of the reactor such as the Secondary Sodium System, Secondary Sodiummore » Pumps, and Steam Generator. This system has been able to detect problems such as signals being affected by temperature variations due to a failing temperature controller.« less
Surveillance application using patten recognition software at the EBR-II Reactor Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, D.L.
1992-05-01
The System State Analyzer (SSA) is a software based pattern recognition system. For the past several year this system has been used at Argonne National Laboratory`s Experimental Breeder Reactor 2 (EBR-2) reactor for detection of degradation and other abnormalities in plant systems. Currently there are two versions of the SSA being used at EBR-2. One version of SSA is used for daily surveillance and trending of the reactor delta-T and startups of the reactor. Another version of the SSA is the QSSA which is used to monitor individual systems of the reactor such as the Secondary Sodium System, Secondary Sodiummore » Pumps, and Steam Generator. This system has been able to detect problems such as signals being affected by temperature variations due to a failing temperature controller.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Su-Jong; Rabiti, Cristian; Sackett, John
2014-08-01
1. Objectives To produce a validation database out of those recorded signals it will be necessary also to identify the documents need to reconstruct the status of reactor at the time of the beginning of the recordings. This should comprehends the core loading specification (assemblies type and location and burn-up) along with this data the assemblies drawings and the core drawings will be identified. The first task of the project will be identify the location of the sensors, with respect the reactor plant layout, and the physical quantities recorded by the Experimental Breeder Reactor-II (EBR-II) data acquisition system. This firstmore » task will allow guiding and prioritizing the selection of drawings needed to numerically reproduce those signals. 1.1 Scopes and Deliverables The deliverables of this project are the list of sensors in EBR-II system, the identification of storing location of those sensors, identification of a core isotopic composition at the moment of the start of system recording. Information of the sensors in EBR-II reactor system was summarized from the EBR-II system design descriptions listed in Section 1.2.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, L.K.; Mohr, D.; Planchon, H.P.
This article discusses a series of successful loss-of-flow-without-scram tests conducted in Experimental Breeder Reactor-II (EBR-II), a metal-fueled, sodium-cooled fast reactor. These May 1985 tests demonstrated the capability of the EBR to reduce reactor power passively during a loss of flow and to maintain reactor temperatures within bounds without any reliance on an active safety system. The tests were run from reduced power to ensure that temperatures could be maintained well below the fuel-clad eutectic temperature. Good agreement was found between selected test data and pretest predictions made with the EBR-II system analysis code NATDEMO and the hot channel analysis codemore » HOTCHAN. The article also discusses safety assessments of the tests as well as modifications required on the EBR-II reactor safety system for conducting required on the EBR-II reactor safety system for the conducting the tests.« less
The Birth of Nuclear-Generated Electricity
DOE R&D Accomplishments Database
1999-09-01
The Experimental Breeder Reactor-I (EBR-I), built in Idaho in 1949, generated the first usable electricity from nuclear power on December 20, 1951. More importantly, the reactor was used to prove that it was possible to create more nuclear fuel in the reactor than it consumed during operation -- fuel breeding. The EBR-I facility is now a National Historic Landmark open to the public.
EBR-II high-ramp transients under computer control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forrester, R.J.; Larson, H.A.; Christensen, L.J.
1983-01-01
During reactor run 122, EBR-II was subjected to 13 computer-controlled overpower transients at ramps of 4 MWt/s to qualify the facility and fuel for transient testing of LMFBR oxide fuels as part of the EBR-II operational-reliability-testing (ORT) program. A computer-controlled automatic control-rod drive system (ACRDS), designed by EBR-II personnel, permitted automatic control on demand power during the transients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven R. Sherman; Collin J. Knight
Residual sodium is defined as sodium metal that remains behind in pipes, vessels, and tanks after the bulk sodium metal has been melted and drained from such components. The residual sodium has the same chemical properties as bulk sodium, and differs from bulk sodium only in the thickness of the sodium deposit. Typically, sodium is considered residual when the thickness of the deposit is less than 5-6 cm. This residual sodium must be removed or deactivated when a pipe, vessel, system, or entire reactor is permanently taken out of service, in order to make the component or system safer and/ormore » to comply with decontamination and decomissioning regulations. As an alternative to the established residual sodium deactivation techniques (steam-and-nitrogen, wet vapor nitrogen, etc.), a technique involving the use of moisture and carbon dioxide has been developed. With this technique, sodium metal is converted into sodium bicarbonate by reacting it with humid carbon dioxide. Hydrogen is emitted as a by-product. This technique was first developed in the laboratory by exposing sodium samples to humidifed carbon dioxide under controlled conditions, and then demonstrated on a larger scale by treating residual sodium within the Experimental Breeder Reactor II (EBR-II) secondary cooling system, followed by the primary cooling system, respectively. The EBR-II facility is located at the Idaho National Laboratory (INL) in southeastern Idaho, USA. This report is Part 2 of a two-part report. This second report provides a supplement to the first report and describes the application of the humdidified carbon dioxide technique ("carbonation") to the EBR-II primary tank, primary cover gas systems, and the intermediate heat exchanger. Future treatment plans are also provided.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magoulas, V. E.
Savannah River National Laboratory (SRNL) was requested to evaluate the potential to receive and process the Idaho National Laboratory (INL) uranium (U) recovered from the Experimental Breeder Reactor II (EBR-II) driver fuel through the Savannah River Site’s (SRS) H-Canyon as a way to disposition the material. INL recovers the uranium from the sodium bonded metallic fuel irradiated in the EBR-II reactor using an electrorefining process. There were two compositions of EBR-II driver fuel. The early generation fuel was U-5Fs, which consisted of 95% U metal alloyed with 5% noble metal elements “fissium” (2.5% molybdenum, 2.0% ruthenium, 0.3% rhodium, 0.1% palladium,more » and 0.1% zirconium), while the later generation was U-10Zr which was 90% U metal alloyed with 10% zirconium. A potential concern during the H-Canyon nitric acid dissolution process of the U metal containing zirconium (Zr) is the explosive behavior that has been reported for alloys of these materials. For this reason, this evaluation was focused on the ability to process the lower Zr content materials, the U-5Fs material.« less
Feasibility of Ground Testing a Moon and Mars Surface Power Reactor in EBR-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheryl Morton; Carl Baily; Tom Hill
Ground testing of a surface fission power system would be necessary to verify the design and validate reactor performance to support safe and sustained human exploration of the Moon and Mars. The Idaho National Laboratory (INL) has several facilities that could be adapted to support a ground test. This paper focuses on the feasibility of ground testing at the Experimental Breeder Reactor II (EBR-II) facility and using other INL existing infrastructure to support such a test. This brief study concludes that the INL EBR-II facility and supporting infrastructure are a viable option for ground testing the surface power system. Itmore » provides features and attributes that offer advantages to locating and performing ground testing at this site, and it could support the National Aeronautics and Space Administration schedules for human exploration of the Moon. This study used the initial concept examined by the U.S. Department of Energy Inter-laboratory Design and Analysis Support Team for surface power, a lowtemperature, liquid-metal, three-loop Brayton power system. With some facility modification, the EBR-II can safely house a test chamber and perform long-term testing of the space reactor power system. The INL infrastructure is available to receive and provide bonded storage for special nuclear materials. Facilities adjacent to EBR-II can provide the clean room environment needed to assemble and store the test article assembly, disassemble the power system at the conclusion of testing, and perform posttest examination. Capability for waste disposal is also available at the INL.« less
Feasibility of Ground Testing a Moon and Mars Surface Power Reactor in EBR-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morton, Sheryl L.; Baily, Carl E.; Hill, Thomas J.
Ground testing of a surface fission power system would be necessary to verify the design and validate reactor performance to support safe and sustained human exploration of the Moon and Mars. The Idaho National Laboratory (INL) has several facilities that could be adapted to support a ground test. This paper focuses on the feasibility of ground testing at the Experimental Breeder Reactor II (EBR-II) facility and using other INL existing infrastructure to support such a test. This brief study concludes that the INL EBR-II facility and supporting infrastructure are a viable option for ground testing the surface power system. Itmore » provides features and attributes that offer advantages to locating and performing ground testing at this site, and it could support the National Aeronautics and Space Administration schedules for human exploration of the Moon. This study used the initial concept examined by the U.S. Department of Energy Inter-laboratory Design and Analysis Support Team for surface power, a low-temperature, liquid-metal, three-loop Brayton power system. With some facility modification, the EBR-II can safely house a test chamber and perform long-term testing of the space reactor power system. The INL infrastructure is available to receive and provide bonded storage for special nuclear materials. Facilities adjacent to EBR-II can provide the clean room environment needed to assemble and store the test article assembly, disassemble the power system at the conclusion of testing, and perform posttest examination. Capability for waste disposal is also available at the INL.« less
Feasibility of Ground Testing a Moon and Mars Surface Power Reactor in EBR-II
NASA Astrophysics Data System (ADS)
Morton, Sheryl L.; Baily, Carl E.; Hill, Thomas J.; Werner, James E.
2006-01-01
Ground testing of a surface fission power system would be necessary to verify the design and validate reactor performance to support safe and sustained human exploration of the Moon and Mars. The Idaho National Laboratory (INL) has several facilities that could be adapted to support a ground test. This paper focuses on the feasibility of ground testing at the Experimental Breeder Reactor II (EBR-II) facility and using other INL existing infrastructure to support such a test. This brief study concludes that the INL EBR-II facility and supporting infrastructure are a viable option for ground testing the surface power system. It provides features and attributes that offer advantages to locating and performing ground testing at this site, and it could support the National Aeronautics and Space Administration schedules for human exploration of the Moon. This study used the initial concept examined by the U.S. Department of Energy Inter-laboratory Design and Analysis Support Team for surface power, a low-temperature, liquid-metal, three-loop Brayton power system. With some facility modification, the EBR-II can safely house a test chamber and perform long-term testing of the space reactor power system. The INL infrastructure is available to receive and provide bonded storage for special nuclear materials. Facilities adjacent to EBR-II can provide the clean room environment needed to assemble and store the test article assembly, disassemble the power system at the conclusion of testing, and perform posttest examination. Capability for waste disposal is also available at the INL.
EBR-II Reactor Physics Benchmark Evaluation Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, Chad L.; Lum, Edward S; Stewart, Ryan
This report provides a reactor physics benchmark evaluation with associated uncertainty quantification for the critical configuration of the April 1986 Experimental Breeder Reactor II Run 138B core configuration.
NASA Astrophysics Data System (ADS)
Carmack, W. J.; Chichester, H. M.; Porter, D. L.; Wootan, D. W.
2016-05-01
The Mechanistic Fuel Failure (MFF) series of metal fuel irradiations conducted in the Fast Flux Test Facility (FFTF) provides an important comparison between data generated in the Experimental Breeder Reactor (EBR-II) and that expected in a larger-scale fast reactor. The MFF fuel operated with a peak cladding temperature at the top of the fuel column, but developed peak burnup at the centerline of the core. This places the peak fuel temperature midway between the core center and the top of fuel, lower in the fuel column than in EBR-II experiments. Data from the MFF-3 and MFF-5 assemblies are most comparable to the data obtained from the EBR-II X447 experiment. The two X447 pin breaches were strongly influenced by fuel/cladding chemical interaction (FCCI) at the top of the fuel column. Post irradiation examination data from MFF-3 and MFF-5 are presented and compared to historical EBR-II data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven R. Sherman
Residual sodium is defined as sodium metal that remains behind in pipes, vessels, and tanks after the bulk sodium metal has been melted and drained from such components. The residual sodium has the same chemical properties as bulk sodium, and differs from bulk sodium only in the thickness of the sodium deposit. Typically, sodium is considered residual when the thickness of the deposit is less than 5-6 cm. This residual sodium must be removed or deactivated when a pipe, vessel, system, or entire reactor is permanently taken out of service, in order to make the component or system safer and/ormore » to comply with decommissioning regulations. As an alternative to the established residual sodium deactivation techniques (steam-and-nitrogen, wet vapor nitrogen, etc.), a technique involving the use of moisture and carbon dioxide has been developed. With this technique, sodium metal is converted into sodium bicarbonate by reacting it with humid carbon dioxide. Hydrogen is emitted as a by-product. This technique was first developed in the laboratory by exposing sodium samples to humidified carbon dioxide under controlled conditions, and then demonstrated on a larger scale by treating residual sodium within the Experimental Breeder Reactor II (EBR-II) secondary cooling system, followed by the primary cooling system, respectively. The EBR-II facility is located at the Idaho National Laboratory (INL) in southeastern Idaho, U.S.A. This report is Part 1 of a two-part report. It is divided into three sections. The first section describes the chemistry of carbon dioxide-water-sodium reactions. The second section covers the laboratory experiments that were conducted in order to develop the residual sodium deactivation process. The third section discusses the application of the deactivation process to the treatment of residual sodium within the EBR-II secondary sodium cooling system. Part 2 of the report, under separate cover, describes the application of the technique to residual sodium treatment within the EBR-II primary sodium cooling system and related systems.« less
EBR-II and TREAT Digitization Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffith, George W.; Rabiti, Cristian
2015-09-01
Digitizing the technical drawings for EBR-II and TREAT provides multiple benefits. Moving the scanned or hard copy drawings to modern 3-D CAD (Computer Aided Drawing) format saves data that could be lost over time. The 3-D drawings produce models that can interface with other drawings to make complex assemblies. The 3-D CAD format can also include detailed material properties and parametric coding that can tie critical dimensions together allowing easier modification. Creating the new files from the old drawings has found multiple inconsistencies that are being flagged or corrected improving understanding of the reactor(s).
Monte Carol-based validation of neutronic methodology for EBR-II analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liaw, J.R.; Finck, P.J.
1993-01-01
The continuous-energy Monte Carlo code VIM (Ref. 1) has been validated extensively over the years against fast critical experiments and other neutronic analysis codes. A high degree of confidence in VIM for predicting reactor physics parameters has been firmly established. This paper presents a numerical validation of two conventional multigroup neutronic analysis codes, DIF3D (Ref. 4) and VARIANT (Ref. 5), against VIM for two Experimental Breeder Reactor II (EBR-II) core loadings in detailed three-dimensional hexagonal-z geometry. The DIF3D code is based on nodal diffusion theory, and it is used in calculations for day-today reactor operations, whereas the VARIANT code ismore » based on nodal transport theory and is used with increasing frequency for specific applications. Both DIF3D and VARIANT rely on multigroup cross sections generated from ENDF/B-V by the ETOE-2/MC[sup 2]-II/SDX (Ref. 6) code package. Hence, this study also validates the multigroup cross-section processing methodology against the continuous-energy approach used in VIM.« less
EBR-II Static Neutronic Calculations by PHISICS / MCNP6 codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paolo Balestra; Carlo Parisi; Andrea Alfonsi
2016-02-01
The International Atomic Energy Agency (IAEA) launched a Coordinated Research Project (CRP) on the Shutdown Heat Removal Tests (SHRT) performed in the '80s at the Experimental fast Breeder Reactor EBR-II, USA. The scope of the CRP is to improve and validate the simulation tools for the study and the design of the liquid metal cooled fast reactors. Moreover, training of the next generation of fast reactor analysts is being also considered the other scope of the CRP. In this framework, a static neutronic model was developed, using state-of-the art neutron transport codes like SCALE/PHISICS (deterministic solution) and MCNP6 (stochastic solution).more » Comparison between both solutions is briefly illustrated in this summary.« less
CHEMICAL ENGINEERING DIVISION SUMMARY REPORT, OCTOBER, NOVEMBER, DECEMBER 1960
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1961-03-01
Chemical-metallurgical processing studies were made of pyrometallurgical development snd research, and fuel processing facilities for EBR-II. Fuel-cycle applications of fluidization and volatility techniques included laboratory investigations of fluoride volatility processes, engineeringscale development, and conversion of UF/sub 6/ to UO/sub 2/. Reactor safety studies consisted of metal oxidation and ignition kinetics, and metal-water reactions. Reactor chemistry investigations were conducted to determine nuclear constants and suitable reactor decontamination methods. Routine operations are summarized for the high-level gammairradiation facillty and waste processing. (B.O.G.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bucknor, Matthew; Brunett, Acacia J.; Grabaskas, David
In 2015, as part of a Regulatory Technology Development Plan (RTDP) effort for sodium-cooled fast reactors (SFRs), Argonne National Laboratory investigated the current state of knowledge of source term development for a metal-fueled, pool-type SFR. This paper provides a summary of past domestic metal-fueled SFR incidents and experiments and highlights information relevant to source term estimations that were gathered as part of the RTDP effort. The incidents described in this paper include fuel pin failures at the Sodium Reactor Experiment (SRE) facility in July of 1959, the Fermi I meltdown that occurred in October of 1966, and the repeated meltingmore » of a fuel element within an experimental capsule at the Experimental Breeder Reactor II (EBR-II) from November 1967 to May 1968. The experiments described in this paper include the Run-Beyond-Cladding-Breach tests that were performed at EBR-II in 1985 and a series of severe transient overpower tests conducted at the Transient Reactor Test Facility (TREAT) in the mid-1980s.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunbar, K.A.
1972-01-10
A safety survey covering the disciplines of Reactor Safety, Nuclear Criticality Safety, Health Protection and Industrial Safety and Fire Protection was conducted at the ANL-West EBR-II FEF Complex during the period January 10-18, 1972. In addition, the entire ANL-West site was surveyed for Health Protection and Industrial Safety and Fire Protection. The survey was conducted by members of the AEC Chicago Operations Office, a member of RDT-HQ and a member of the RDT-ID site office. Eighteen recommendations resulted from the survey, eleven in the area of Industrial Safety and Fire Protection, five in the area of Reactor Safety and twomore » in the area of Nuclear Criticality Safety.« less
METALLURGY DIVISION QUARTERLY REPORT FOR JULY, AUGUST, AND SEPTEMBER 1957
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1958-10-01
Advanced Water Reactor Program. Three firings were made of initial closed-porosity fuel pellet bodies. Each firing coatained pellets of the composition 90 wt.% ThO/sub 2/-10 wt.%fl U0/sub 2/ with various additives and firing variables. Fast Power Breeder Reactor Program. To determine the potential usefulness of a Zr-5 wt. % Pu alloy, the fabricability of the alloy was tested. The manufacture of rod stock from which fuel and blanket elements for the Mark III loading of the EBR-1 were prcduced has been completed. The effect of irradiation on extruded and heat-treated U-2 wt.% Zr alloy for the EBR- 1 is reported.more » Fabrication procedures for making graphite-U/sub 3/O/sub 8/ test specimens for the TREAT Reactor were investigated. Advanced Engineering and Development. Ultrasonic bond tests were conducted on 590 EBR-1 Mark III blanket fuel elemeats. The blanket rods and part of the fuel rcds for the EBR-1 Mark III loading are being checked for cladding thickness by an eddy current system. Investigations of corrosionresistant Zr-Nb alloy were coatinued. Corrosion of MR alloys is being studied Ln support of the Mighty Mouse reactor program. Dynamic corrosion tests were performed on aluminum alloys, and results are included. Prcduction, Treatment, and Properties of Materials. The progress of the program of preparing highpurity Pu by fused salt electrolysis is summarized. Velocities of ultrasonic waves propagated in directions suitable for determining the room- temperature elastic moduli C/sub 12/, C/sub 13/, and C/sub 23/ of alpha U were determined. investigation of recrystallization in heavily coldrolled alpha- uranium sheet without a texture change was essentially concluded during this quarter. Selfdiffasion runs in polycrystalline uranium in the gamma phase, using the sputtering technique, have yielded a tentative value for the diffusion coefficient between 10/sup -8/ and 10/sup -7/ cm/sup 2/second. The preparation of high-purity U-Pan alloys is reponted. The data for the alpha-tobeta transformation temperatures in high-purity U and U-C alloys were confirmed by experiments on new specimens. Microstructure, density, and thermal arrest data were obtained for several injection cast, nominal U-5 wt.%fl fissium and U-8 wt.%fl fissium alloys. Phase diagrams are preseated for U-Mo and U-Ru alloys. Alloy Theory and The Nature of Solids. Four new isomorphs of Ti/sub 2/Ni have been discovered. Effects of Irradiation on Materials. The experimental and analytical work on the radial distribution of thermal neutrons within cylindrically shaped fuel specimens during irradiation was completed. (For preceding period see ANL-5790.) (W.L.H.)« less
Installation of automatic control at experimental breeder reactor II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, H.A.; Booty, W.F.; Chick, D.R.
1985-08-01
The Experimental Breeder Reactor II (EBR-II) has been modified to permit automatic control capability. Necessary mechanical and electrical changes were made on a regular control rod position; motor, gears, and controller were replaced. A digital computer system was installed that has the programming capability for varied power profiles. The modifications permit transient testing at EBR-II. Experiments were run that increased power linearly as much as 4 MW/s (16% of initial power of 25 MW(thermal)/s), held power constant, and decreased power at a rate no slower than the increase rate. Thus the performance of the automatic control algorithm, the mechanical andmore » electrical control equipment, and the qualifications of the driver fuel for future power change experiments were all demonstrated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koch, Len; Agnew, Harold
Dr. Harold Agnew, retired director of Los Alamos National Laboratory and one of 49 people present on December 2, 1942 when the world’s first man-made controlled nuclear chain reaction was achieved with the CP-1 reactor, and Dr. Len Koch, one of Argonne’s earliest staff members and a designer of EBR-I, the first liquid metal-cooled fast reactor, spoke about their early work during “The Dawn of the Nuclear Age”, a Director’s Special Symposium held as one of the events to commemorate the 70th anniversary year of CP-1 achieving criticality. The symposium was moderated by Dr. Charles Till, a retired Argonne associatemore » laboratory director who led Argonne’s nuclear engineering programs throughout the 1980’s and ‘90’s. Dr. Agnew painted a vivid picture of the challenges and rewards of working in Enrico Fermi’s group under strict security conditions and the complete faith all in the group had in Fermi’s analyses. He stated that no one ever doubted that CP-1 would achieve criticality, and when the moment came, those present acknowledged the accomplishment with little more than a subdued toast of chianti from a bottle provided by reactor physicist Eugene Wigner. This experimental work on nuclear reactors was continued in the Chicago area and led first by Fermi and then Walter Zinn, another member of Fermi’s CP-1 group, resulting in the formal establishment of Argonne National Laboratory on July 1, 1946. Dr. Koch described how much he enjoyed working at Argonne through the 1950’s and ‘60’s and contributing to many of the research “firsts” that Argonne achieved in the nuclear energy field and led to the foundation of the commercial nuclear power generation industry. His reminiscences about all that was achieved with EBR-I and how that work then led into Argonne’s design, building, and operation of EBR-II as a full demonstration of a fast reactor power plant brought Argonne’s nuclear energy legacy to life for everyone in the auditorium. These engaging presentations prompted a number of questions from the audience, which showed its appreciation for both speakers by ending the symposium with a standing ovation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ronald Farris; David Gertman; Jacques Hugo
This report presents the results of the Work Domain Analysis for the Experimental Breeder Reactor (EBR-II). This is part of the phase of the research designed to incorporate Cognitive Work Analysis in the development of a framework for the formalization of an Operational Concept (OpsCon) for Advanced Small Modular Reactors (AdvSMRs). For a new AdvSMR design, information obtained through Cognitive Work Analysis, combined with human performance criteria, can and should be used in during the operational phase of a plant to assess the crew performance aspects associated with identified AdvSMR operational concepts. The main objective of this phase was tomore » develop an analytical and descriptive framework that will help systems and human factors engineers to understand the design and operational requirements of the emerging generation of small, advanced, multi-modular reactors. Using EBR-II as a predecessor to emerging sodium-cooled reactor designs required the application of a method suitable to the structured and systematic analysis of the plant to assist in identifying key features of the work associated with it and to clarify the operational and other constraints. The analysis included the identification and description of operating scenarios that were considered characteristic of this type of nuclear power plant. This is an invaluable aspect of Operational Concept development since it typically reveals aspects of future plant configurations that will have an impact on operations. These include, for example, the effect of core design, different coolants, reactor-to-power conversion unit ratios, modular plant layout, modular versus central control rooms, plant siting, and many more. Multi-modular plants in particular are expected to have a significant impact on overall OpsCon in general, and human performance in particular. To support unconventional modes of operation, the modern control room of a multi-module plant would typically require advanced HSIs that would provide sophisticated operational information visualization, coupled with adaptive automation schemes and operator support systems to reduce complexity. These all have to be mapped at some point to human performance requirements. The EBR-II results will be used as a baseline that will be extrapolated in the extended Cognitive Work Analysis phase to the analysis of a selected advanced sodium-cooled SMR design as a way to establish non-conventional operational concepts. The Work Domain Analysis results achieved during this phase have not only established an organizing and analytical framework for describing existing sociotechnical systems, but have also indicated that the method is particularly suited to the analysis of prospective and immature designs. The results of the EBR-II Work Domain Analysis have indicated that the methodology is scientifically sound and generalizable to any operating environment.« less
Real-time LMR control parameter generation using advanced adaptive synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, R.W.; Mott, J.E.
1990-01-01
The reactor delta T'', the difference between the average core inlet and outlet temperatures, for the liquid-sodium-cooled Experimental Breeder Reactor 2 is empirically synthesized in real time from, a multitude of examples of past reactor operation. The real-time empirical synthesis is based on reactor operation. The real-time empirical synthesis is based on system state analysis (SSA) technology embodied in software on the EBR 2 data acquisition computer. Before the real-time system is put into operation, a selection of reactor plant measurements is made which is predictable over long periods encompassing plant shutdowns, core reconfigurations, core load changes, and plant startups.more » A serial data link to a personal computer containing SSA software allows the rapid verification of the predictability of these plant measurements via graphical means. After the selection is made, the real-time synthesis provides a fault-tolerant estimate of the reactor delta T accurate to {plus}/{minus}1{percent}. 5 refs., 7 figs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harkness, A. L.
1977-09-01
Nine elements from each batch of fuel elements manufactured for the EBR-II reactor have been analyzed for /sup 235/U content by NDA methods. These values, together with those of the manufacturer, are used to estimate the product variance and the variances of the two measuring methods. These variances are compared with the variances computed from the stipulations of the contract. A method is derived for resolving the several variances into their within-batch and between-batch components. Some of these variance components have also been estimated by independent and more familiar conventional methods for comparison.
POST-OPERATIONAL TREATMENT OF RESIDUAL NA COOLLANT IN EBR-2 USING CARBONATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sherman, S.; Knight, C.
2011-03-08
At the end of 2002, the Experimental Breeder Reactor Two (EBR-II) facility became a U.S. Resource Conservation and Recovery Act (RCRA) permitted site, and the RCRA permit1 compelled further treatment of the residual sodium in order to convert it into a less reactive chemical form and remove the by-products from the facility, so that a state of RCRA 'closure' for the facility may be achieved (42 U.S.C. 6901-6992k, 2002). In response to this regulatory driver, and in recognition of project budgetary and safety constraints, it was decided to treat the residual sodium in the EBR-II primary and secondary sodium systemsmore » using a process known as 'carbonation.' In early EBR-II post-operation documentation, this process is also called 'passivation.' In the carbonation process (Sherman and Henslee, 2005), the system containing residual sodium is flushed with humidified carbon dioxide (CO{sub 2}). The water vapor in the flush gas reacts with residual sodium to form sodium hydroxide (NaOH), and the CO{sub 2} in the flush gas reacts with the newly formed NaOH to make sodium bicarbonate (NaHCO{sub 3}). Hydrogen gas (H{sub 2}) is produced as a by-product. The chemical reactions occur at the exposed surface of the residual sodium. The NaHCO{sub 3} layer that forms is porous, and humidified carbon dioxide can penetrate the NaHCO{sub 3} layer to continue reacting residual sodium underneath. The rate of reaction is controlled by the thickness of the NaHCO{sub 3} surface layer, the moisture input rate, and the residual sodium exposed surface area. At the end of carbonation, approximately 780 liters of residual sodium in the EBR-II primary tank ({approx}70% of original inventory), and just under 190 liters of residual sodium in the EBR-II secondary sodium system ({approx}50% of original inventory), were converted into NaHCO{sub 3}. No bare surfaces of residual sodium remained after treatment, and all remaining residual sodium deposits are covered by a layer of NaHCO{sub 3}. From a safety standpoint, the inventory of residual sodium in these systems was greatly reduced by using the carbonation process. From a regulatory standpoint, the process was not able to achieve deactivation of all residual sodium, and other more aggressive measures will be needed if the remaining residual sodium must also be deactivated to meet the requirements of the existing environmental permit. This chapter provides a project history and technical summary of the carbonation of EBR-II residual sodium. Options for future treatment are also discussed.« less
Performance of low smeared density sodium-cooled fast reactor metal fuel
NASA Astrophysics Data System (ADS)
Porter, D. L.; Chichester, H. J. M.; Medvedev, P. G.; Hayes, S. L.; Teague, M. C.
2015-10-01
An experiment was performed in the Experimental Breeder Rector-II (EBR-II) in the 1990s to show that metallic fast reactor fuel could be used in reactors with a single, once-through core. To prove the long duration, high burnup, high neutron exposure capability an experiment where the fuel pin was designed with a very large fission gas plenum and very low fuel smeared density (SD). The experiment, X496, operated to only 8.3 at.% burnup because the EBR-II reactor was scheduled for shut-down at that time. Many of the examinations of the fuel pins only funded recently with the resurgence of reactor designs using very high-burnup fuel. The results showed that, despite the low smeared density of 59% the fuel swelled radially to contact the cladding, fission gas release appeared to be slightly higher than demonstrated in conventional 75%SD fuel tests and axial growth was about the same as 75% SD fuel. There were axial positions in some of the fuel pins which showed evidence of fuel restructuring and an absence of fission products with low melting points and gaseous precursors (Cs and Rb). A model to investigate whether these areas may have overheated due to a loss of bond sodium indicates that it is a possible explanation for the fuel restructuring and something to be considered for fuel performance modeling of low SD fuel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. D. Herrmann; L. A. Wurth; N. J. Gese
An experimental study was conducted to assess pyrochemical treatment options for degraded EBR-II fuel. As oxidized material, the degraded fuel would need to be converted back to metal to enable electrorefining within an existing electrometallurgical treatment process. A lithium-based electrolytic reduction process was studied to assess the efficacy of converting oxide materials to metal with a particular focus on the impact of zirconium oxide and sodium oxide on this process. Bench-scale electrolytic reduction experiments were performed in LiCl-Li2O at 650 °C with combinations of manganese oxide (used as a surrogate for uranium oxide), zirconium oxide, and sodium oxide. The experimentalmore » study illustrated how zirconium oxide and sodium oxide present different challenges to a lithium-based electrolytic reduction system for conversion of select metal oxides to metal.« less
Wu, Wenli; Zhang, Qiang; Ervin, Erik. H.; Yang, Zhiping; Zhang, Xunzhong
2017-01-01
Brassinosteroids (BR) regulate plant tolerance to salt stress but the mechanisms underlying are not fully understood. This study was to investigate physiological mechanisms of 24-epibrassinolide (EBR)'s impact on salt stress tolerance in perennial ryegrass (Lolium perenne L.) The grass seedlings were treated with EBR at 0, 10, and 100 nM, and subjected to salt stress (250 mM NaCl). The grass irrigated with regular water without EBR served as the control. Salt stress increased leaf electrolyte leakage (EL), malondialdehyde (MDA), and reduced photosynthetic rate (Pn). Exogenous EBR reduced EL and MDA, increased Pn, chlorophyll content, and stomatal conductance (gs). The EBR applications also alleviated decline of superoxide dismutase (SOD) and catalase (CAT) and ascorbate peroxidase (APX) activity when compared to salt treatment alone. Salt stress increased leaf abscisic acid (ABA) and gibberellin A4 (GA4) content but reduced indole-3-acetic acid (IAA), zeatin riboside (ZR), isopentenyl adenosine (iPA), and salicylic acid (SA). Exogenous EBR at 10 nm and 100 nM increased ABA, and iPA content under salt stress. The EBR treatment at 100 nM also increased leaf IAA, ZR, JA, and SA. In addition, EBR treatments increased leaf proline and ions (K+, Mg2+, and Ca2+) content, and reduced Na+/K+ in leaf tissues. The results of this study suggest that EBR treatment may improve salt stress tolerance by increasing the level of selected hormones and antioxidant enzyme (SOD and CAT) activity, promoting accumulation of proline and ions (K+, Ca2+, and Mg2+) in perennial ryegrass. PMID:28674542
CP-1 70th Anniversary Symposium
Len Koch; Harold Agnew
2017-12-09
Dr. Harold Agnew, retired director of Los Alamos National Laboratory and one of 49 people present on December 2, 1942 when the worldâs first man-made controlled nuclear chain reaction was achieved with the CP-1 reactor, and Dr. Len Koch, one of Argonneâs earliest staff members and a designer of EBR-I, the first liquid metal-cooled fast reactor, spoke about their early work during âThe Dawn of the Nuclear Ageâ, a Directorâs Special Symposium held as one of the events to commemorate the 70th anniversary year of CP-1 achieving criticality. The symposium was moderated by Dr. Charles Till, a retired Argonne associate laboratory director who led Argonneâs nuclear engineering programs throughout the 1980âs and â90âs. Dr. Agnew painted a vivid picture of the challenges and rewards of working in Enrico Fermiâs group under strict security conditions and the complete faith all in the group had in Fermiâs analyses. He stated that no one ever doubted that CP-1 would achieve criticality, and when the moment came, those present acknowledged the accomplishment with little more than a subdued toast of chianti from a bottle provided by reactor physicist Eugene Wigner. This experimental work on nuclear reactors was continued in the Chicago area and led first by Fermi and then Walter Zinn, another member of Fermiâs CP-1 group, resulting in the formal establishment of Argonne National Laboratory on July 1, 1946. Dr. Koch described how much he enjoyed working at Argonne through the 1950âs and â60âs and contributing to many of the research âfirstsâ that Argonne achieved in the nuclear energy field and led to the foundation of the commercial nuclear power generation industry. His reminiscences about all that was achieved with EBR-I and how that work then led into Argonneâs design, building, and operation of EBR-II as a full demonstration of a fast reactor power plant brought Argonneâs nuclear energy legacy to life for everyone in the auditorium. These engaging presentations prompted a number of questions from the audience, which showed its appreciation for both speakers by ending the symposium with a standing ovation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel, G.; Rudisill, T.; Almond, P.
The Idaho National Laboratory (INL) is actively engaged in the development of electrochemical processing technology for the treatment of fast reactor fuels using irradiated fuel from the Experimental Breeder Reactor-II (EBR-II) as the primary test material. The research and development (R&D) activities generate a low enriched uranium (LEU) metal product from the electrorefining of the EBR-II fuel and the subsequent consolidation and removal of chloride salts by the cathode processor. The LEU metal ingots from past R&D activities are currently stored at INL awaiting disposition. One potential disposition pathway is the shipment of the ingots to the Savannah River Sitemore » (SRS) for dissolution in H-Canyon. Carbon steel cans containing the LEU metal would be loaded into reusable charging bundles in the H-Canyon Crane Maintenance Area and charged to the 6.4D or 6.1D dissolver. The LEU dissolution would be accomplished as the final charge in a dissolver batch (following the dissolution of multiple charges of spent nuclear fuel (SNF)). The solution would then be purified and the 235U enrichment downblended to allow use of the U in commercial reactor fuel. To support this potential disposition path, the Savannah River National Laboratory (SRNL) developed a dissolution flowsheet for the LEU using samples of the material received from INL.« less
Spontaneous eye blink rate as predictor of dopamine-related cognitive function-A review.
Jongkees, Bryant J; Colzato, Lorenza S
2016-12-01
An extensive body of research suggests the spontaneous eye blink rate (EBR) is a non-invasive indirect marker of central dopamine (DA) function, with higher EBR predicting higher DA function. In the present review we provide a comprehensive overview of this literature. We broadly divide the available research in studies that aim to disentangle the dopaminergic underpinnings of EBR, investigate its utility in diagnosis of DA-related disorders and responsivity to drug treatment, and, lastly, investigate EBR as predictor of individual differences in DA-related cognitive performance. We conclude (i) EBR can reflect both DA receptor subtype D1 and D2 activity, although baseline EBR might be most strongly related to the latter, (ii) EBR can predict hypo- and hyperdopaminergic activity as well as normalization of this activity following treatment, and (iii) EBR can reliably predict individual differences in performance on many cognitive tasks, in particular those related to reward-driven behavior and cognitive flexibility. In sum, this review establishes EBR as a useful predictor of DA in a wide variety of contexts. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dong, Y.; Sencer, B. H.; Garner, F. A.; Marquis, E. A.
2015-12-01
AISI 304 stainless steel was irradiated at 416 °C and 450 °C at a 4.4 × 10-9 and 3.05 × 10-7 dpa/s to ∼0.4 and ∼28 dpa, respectively, in the reflector of the EBR-II fast reactor. Both unirradiated and irradiated conditions were examined using standard and scanning transmission electron microscopy, energy dispersive spectroscopy, and atom probe tomography on very small specimens produced by focused ion beam milling. These results are compared with previous electron microscopy examination of 3 mm disks from essentially the same material. By comparing a very low dose specimen with a much higher dose specimen, both derived from a single reactor assembly, it has been demonstrated that the coupled microstructural and microchemical evolution of dislocation loops and other sinks begins very early, with elemental segregation producing at these sinks what appears to be measurable precursors to fully formed precipitates found at higher doses. The nature of these sinks and their possible precursors are examined in detail.
Endothelial bioreactor system ameliorates multiple organ dysfunction in septic rats.
Ma, Shuai; Lin, Yuli; Deng, Bo; Zheng, Yin; Hao, Chuanming; He, Rui; Ding, Feng
2016-12-01
The endothelium is a potentially valuable target for sepsis therapy. We have previously studied an extracorporeal endothelial cell therapy system, called the endothelial bioreactor (EBR), which prolonged the survival time of endotoxemia sepsis in swine. To further study of the therapeutic effects and possible mechanisms, we established a miniature EBR system for septic rats induced by cecal ligation and puncture (CLP). In the miniature EBR system, the extracorporeal circulation first passed through a mini-hemofilter, and the ultrafiltrate (UF) was separated, then the UF passed through an EBR (a 1-mL cartridge containing approximately 2 × 10(6) endothelial cells grown on microcarriers) and interact with endothelial cells. Eighteen hours after CLP, the rats were treated for 4 h with this extracorporeal system containing either endothelial cells (EBR group) or no cells (sham EBR group). Physiologic and biochemical parameters, cytokines, endothelial functions, and 7-day survival time were monitored. In vitro, the pulmonary endothelial cells of the septic rats were treated with the EBR system and the resulting changes in their functions were monitored. The EBR system ameliorated CLP-induced sepsis compared with the sham EBR system. After CLP, the 7-day survival rate of sham-treated rats was only 25.0 %, while in the EBR-treated group, it increased to 57.1 % (p = 0.04). The EBR system protected the liver and renal function and ameliorated the kidney and lung injury. Meanwhile, this therapy reduced pulmonary vascular leakage and alleviated the infiltration of inflammatory cells in the lungs, especially neutrophils. Furthermore, after the EBR treatment both in vivo and in vitro, the expression of intercellular adhesion molecule-1 and the secretion of CXCL1 and CXCL2 of pulmonary endothelium decreased, which helped to alleviate the adhesion and chemotaxis of neutrophils. In addition, the EBR system decreased CD11b expression and intracellular free calcium level of peripheral blood neutrophils, modulated the activation of these neutrophils. The EBR system significantly ameliorated CLP-induced sepsis and improved survival and organ functions. Compared with the sham EBR system, this extracorporeal endothelial therapy may be involved in modulating the function of pulmonary endothelial cells, reducing the adhesion and chemotaxis of neutrophil, and modulating the activation of peripheral blood neutrophils.
Idaho National Laboratory Cultural Resource Monitoring Report for Fiscal Year 2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, Hollie Kae; Holmer, Marie Pilkington; Olson, Christina Liegh
This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during fiscal year (FY) 2016. Overall monitoring included surveillance of the following 23 individual cultural resource localities: two locations with human remains, one of which is also a cave; seven additional caves; six prehistoric archaeological sites; four historic archaeological sites; one historic trail; Experimental Breeder Reactor I (EBR-I), a National Historic Landmark; Aircraft Nuclear Propulsion (ANP) objects located at EBR-I; and one Arco Naval Proving Ground (NPG) property, CF-633 and related objects and structures. Several INL work processes and projects weremore » also monitored to confirm compliance with original INL CRM recommendations and assess the effects of ongoing work. On one occasion, ground disturbing activities within the boundaries of the Critical Infrastructure Test Range Complex (CITRC) were observed by INL CRM staff prepared to respond to any additional finds of Native American human remains. Additionally, the CRM office was notified during two Trespass Investigations conducted by INL Security. Most of the cultural resources monitored in FY 2016 exhibited no adverse impacts, resulting in Type 1 impact assessments. However, Type 2 impacts were noted five times. Three previously reported Type 2 impacts were once again documented at the EBR-I National Historic Landmark, including spalling and deterioration of bricks due to inadequate drainage, minimal maintenance, and rodent infestation. The ANP engines and locomotive on display at the EBR-I Visitors Center also exhibited impacts related to long term exposure. Finally, most of the Arco NPG properties monitored at Central Facilities Area exhibited problems with lack of timely and appropriate maintenance as well as inadequate drainage. No new Type 3 or Type 4 impacts that adversely affected significant cultural resources and threatened National Register eligibility were documented in FY 2016.« less
Performance of low smeared density sodium-cooled fast reactor metal fuel
Porter, D. L.; H. J. M. Chichester; Medvedev, P. G.; ...
2015-06-17
An experiment was performed in the Experimental Breeder Rector-II (EBR-II) in the 1990s to show that metallic fast reactor fuel could be used in reactors with a single, once-through core. To prove the long duration, high burnup, high neutron exposure capability an experiment where the fuel pin was designed with a very large fission gas plenum and very low fuel smeared density (SD). The experiment, X496, operated to only 8.3 at. % burnup because the EBR-II reactor was scheduled for shut-down at that time. Many of the examinations of the fuel pins only funded recently with the resurgence of reactormore » designs using very high-burnup fuel. The results showed that, despite the low smeared density of 59% the fuel swelled radially to contact the cladding, fission gas release appeared to be slightly higher than demonstrated in conventional 75%SD fuel tests and axial growth was about the same as 75% SD fuel. There were axial positions in some of the fuel pins which showed evidence of fuel restructuring and an absence of fission products with low metaling points and gaseous precursors (Cs and Rb). Lastly, a model to investigate whether these areas may have overheated due to a loss of bond sodium indicates that it is a possible explanation for the fuel restructuring and something to be considered for fuel performance modeling of low SD fuel.« less
Radiation-induced swelling of stainless steel.
Shewmon, P G
1971-09-10
Significant swelling (1 to 10 percent due to small voids have been found in stainless steel when it is exposed to fast neutron doses less than expected in commercial fast breeder reactors. The main features of this new effect are: (i) the voids are formed by the precipitation of a small fraction of the radiation-produced vacancies; (ii) the voids form primarily in the temperature range 400 degrees to 600 degrees C (750 degrees to 1100 degrees F); and (iii) the volume increases with dose (fluence) at a rate between linear and parabolic. The limited temperature range of void formation can be explained, but the effects of fluence, microstructure, and composition are determined by a competition between several kinetic processes that are not well understood. This swelling does not affect the feasibility or safety of the breeder reactor,but will have a significant impact on the core design and economics of the breeder.Preliminary results indicate that one cannot eliminate the effect,but cold-working,heat treatment, or small changes in composition can reduce the swelling by a factor of 2 or more. Testing is hampered by the fact that several years in EBR-II are required to accumulate the fluence expected in demonstration plants. Heavyion accelerators,which allow damage rates corresponding to much higher fluxes than those found in EBR-II,hold great promise for short-term tests that will indicate the relative effect of the important variables.
Carmack, W. Jon; Chichester, Heather M.; Porter, Douglas L.; ...
2016-02-27
The Mechanistic Fuel Failure (MFF) series of metal fuel irradiations conducted in the Fast Flux Test Facility (FFTF) provides an important potential comparison between data generated in the Experimental Breeder Reactor (EBR-II) and that expected in a larger-scale fast reactor. The irradiations were the beginning tests to qualify U-10wt%Zr as a driver fuel for FFTF. The FFTF core, with a 91.4 cm tall fuel column and a chopped cosine neutron flux profile, operated with a peak cladding temperature at the top of the fuel column, but developed peak burnup at the centerline of the core. This then places the peakmore » fuel temperature midway between the core center and the top of fuel, lower in the fuel column than in previous EBR-II experiments that had a 32-cm height core. The MFF-3 and MFF-5 qualification assemblies operated in FFTF to >10 at% burnup, and performed very well with no cladding breaches. The MFF-3 assembly operated to 13.8 at% burnup with a peak inner cladding temperature of 643°C, and the MFF-5 assembly operated to 10.1 at% burnup with a peak inner cladding temperature of 651°C. Because of the very high operating temperatures for both the fuel and the cladding, data from the MFF assemblies are most comparable to the data obtained from the EBR-II X447 experiment, which experienced two pin breaches. The X447 breaches were strongly influenced by a large amount of fuel/cladding chemical interaction (FCCI). The MFF pins benefitted from different axial locations of high burnup and peak cladding temperature, which helped to reduce interdiffusion between rare earth fission products and stainless steel cladding. Post-irradiation examination evidence illustrates this advantage. After comparing other performance data of the long MFF pins to prior EBR-II test data, the MFF fuel inside the cladding grew less axially, and the gas release data did not reveal a definitive difference.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmack, W. J.; Chichester, H. M.; Porter, D. L.
2016-05-01
Abstract The Mechanistic Fuel Failure (MFF) series of metal fuel irradiations conducted in the Fast Flux Test Facility (FFTF) provides an important potential comparison between data generated in the Experimental Breeder Reactor (EBR-II) and that expected in a larger-scale fast reactor. The irradiations were the beginning tests to qualify U-10wt%Zr as a driver fuel for FFTF. The FFTF core, with a 91.4 cm tall fuel column and a chopped cosine neutron flux profile, operated with a peak cladding temperature at the top of the fuel column, but developed peak burnup at the centerline of the core. This places the peakmore » fuel temperature midway between the core center and the top of fuel, lower in the fuel column than in previous EBR-II experiments that had a 32-cm height core. The MFF-3 and MFF-5 qualification assemblies operated in FFTF to >10 at% burnup, and performed very well with no cladding breaches. The MFF-3 assembly operated to 13.8 at% burnup with a peak inner cladding temperature of 643°C, and the MFF-5 assembly operated to 10.1 at% burnup with a peak inner cladding temperature of 651°C. Because of the very high operating temperatures for both the fuel and the cladding, data from the MFF assemblies are most comparable to the data obtained from the EBR-II X447 experiment, which experienced two pin breaches. The X447 breaches were strongly influenced by a large amount of fuel/cladding chemical interaction (FCCI). The MFF pins benefitted from different axial locations of high burnup and peak cladding temperature, which helped to reduce interdiffusion between rare earth fission products and stainless steel cladding. Post-irradiation examination evidence illustrates this advantage. Comparing other performance data of the long MFF pins to prior EBR-II test data, the MFF fuel inside the cladding grew less axially, and the gas release data did not reveal a definitive difference.« less
Uranium nitride fuel fabrication for SP-100 reactors
NASA Technical Reports Server (NTRS)
Mason, Richard E.; Chidester, Kenneth M.; Hoth, Carl W.; Matthews, Bruce R.
1987-01-01
Fuel pins of uranium mononitride clad in Nb-1 percent Zr were fabricated for irradiation tests in EBR-II. Laboratory scale process parameters to synthesize UN powders and fabricate UN pellets were developed. Uranium mononitride was prepared by converting UO2 to UN. Fuel pellets were prepared by communition of UN briquettes, uniaxial pressing, and high temperature sintering. Techniques for machining, cleaning, and welding Nb-1 percent Zr cladding components were developed. End caps were electron beam welded to the tubing. Helium back-fill holes were sealed with a laser weld.
Uranium nitride fuel fabrication for SP-100 reactors
NASA Astrophysics Data System (ADS)
Mason, Richard E.; Chidester, Kenneth M.; Hoth, Carl W.; Matthews, Bruce R.
Fuel pins of uranium mononitride clad in Nb-1 percent Zr were fabricated for irradiation tests in EBR-II. Laboratory scale process parameters to synthesize UN powders and fabricate UN pellets were developed. Uranium mononitride was prepared by converting UO2 to UN. Fuel pellets were prepared by communition of UN briquettes, uniaxial pressing, and high temperature sintering. Techniques for machining, cleaning, and welding Nb-1 percent Zr cladding components were developed. End caps were electron beam welded to the tubing. Helium back-fill holes were sealed with a laser weld.
GAMSOR: Gamma Source Preparation and DIF3D Flux Solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, M. A.; Lee, C. H.; Hill, R. N.
2017-06-28
Nuclear reactors that rely upon the fission reaction have two modes of thermal energy deposition in the reactor system: neutron absorption and gamma absorption. The gamma rays are typically generated by neutron capture reactions or during the fission process which means the primary driver of energy production is of course the neutron interaction. In conventional reactor physics methods, the gamma heating component is ignored such that the gamma absorption is forced to occur at the gamma emission site. For experimental reactor systems like EBR-II and FFTF, the placement of structural pins and assemblies internal to the core leads to problemsmore » with power heating predictions because there is no fission power source internal to the assembly to dictate a spatial distribution of the power. As part of the EBR-II support work in the 1980s, the GAMSOR code was developed to assist analysts in calculating the gamma heating. The GAMSOR code is a modified version of DIF3D and actually functions within a sequence of DIF3D calculations. The gamma flux in a conventional fission reactor system does not perturb the neutron flux and thus the gamma flux calculation can be cast as a fixed source problem given a solution to the steady state neutron flux equation. This leads to a sequence of DIF3D calculations, called the GAMSOR sequence, which involves solving the neutron flux, then the gamma flux, and then combining the results to do a summary edit. In this manuscript, we go over the GAMSOR code and detail how it is put together and functions. We also discuss how to setup the GAMSOR sequence and input for each DIF3D calculation in the GAMSOR sequence.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Rui; Sumner, Tyler S.
2016-04-17
An advanced system analysis tool SAM is being developed for fast-running, improved-fidelity, and whole-plant transient analyses at Argonne National Laboratory under DOE-NE’s Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. As an important part of code development, companion validation activities are being conducted to ensure the performance and validity of the SAM code. This paper presents the benchmark simulations of two EBR-II tests, SHRT-45R and BOP-302R, whose data are available through the support of DOE-NE’s Advanced Reactor Technology (ART) program. The code predictions of major primary coolant system parameter are compared with the test results. Additionally, the SAS4A/SASSYS-1 code simulationmore » results are also included for a code-to-code comparison.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickerman, C. E.; Sowa, E. S.; Okrent, D.
1961-08-01
Meltdown tests on single metallic unirradiated fuel elements in TREAT are described. The fuel elements (EBRII Mark I fuel pins, EBR-II fuel pins with retractory Nb or Ta cladding, and Fermi-I fuel pins) are tested in an inert atmosphere, with no coolant. The fuel elements are exposed to reactor power bursts of 200 msec to 25 sec duration, under conditions simulating fast reactor operations. For these tests, the type of power burst, the integrated power, the fuel enrichment, the maximum cladding temperature, and the effects of the test on the fuel element are recorded. ( T.F.H.)
Ji, Yingchao; Luo, Wen; Zhang, Ganyu; Wen, Junbao
2017-08-22
Ailanthus altissima (Mill.) Swingle and its variant A. altissima var. Qiantouchun are notorious invasive weeds. Two weevils, Eucryptorrhynchus scrobiculatus (ESC) and E. brandti (EBR) are considered as candidates for biological control of A. altissima. The aim of this study was to model the potential distributions of ESC and EBR using CLIMEX 4.0. The projected potential distributions of ESC and EBR included almost all current distribution areas of A. altissima, except Southeast Asia. Under historical climate, potential distribution area of EBR is larger than that of ESC, 46.67 × 10 6 km 2 and 35.65 × 10 6 km 2 , respectively. For both ESC and EBR, climate change expanded the northern boundary of potential distributions northward approximately 600 km by the middle of 21st century, and 1000 km by the end of 21st century under RCP 8.5. However, the suitable range decreased to the south in the Southern Hemisphere because of heat stress. The modelled potential distributions of ESC and EBR in the United States demonstrated that the climate was suitable for both weevils. Therefore, considering only climate suitability, both ESC and EBR can be considered as potential biological control agents against A. altissima with some confidence that climatic conditions are likely suitable.
Cui, Lirong; Zou, Zhirong; Zhang, Jing; Zhao, Yanyan; Yan, Fei
2016-01-01
Brassinosteroids (Brs) are a newly recognized group of active steroidal hormones that occur at low concentrations in all plant parts and one of the active and stable forms is 24-epibrassinolide (EBR). We investigated the effect of EBR on tomato (Lycopersicon esculentum Mill.) and its mechanism when seedlings were exposed to low temperature and poor light stress conditions. Leaves of stress-tolerant 'Zhongza9' and stress-sensitive 'Zhongshu4' cultivars were pre-treated with spray solutions containing either 0.1 μM EBR or no EBR (control). The plants were then transferred to chambers where they were exposed to low temperatures of 12 °C/6 °C (day/night) under a low light (LL) level of 80 μmol · m(-2) · s(-1). Exogenous application of EBR significantly increased the antioxidant activity of superoxide dismutase, catalase and peroxidase, and decreased the rate of O2 · (-) formation and H2O2 and malondialdehyde contents. Additionally, the ATP synthase β subunit content was increased by exogenous hormone application. Based on these results, we conclude that exogenous EBR can elicit synergism between the antioxidant enzyme systems and the ATP synthase β subunit so that scavenging of reactive oxygen species becomes more efficient. These activities enable plants to cope better under combined low temperature and poor light stresses.
NASA Astrophysics Data System (ADS)
Zhigal'Skii, A. A.; Mukhachev, V. A.; Troyan, P. E.
1994-04-01
Breakdown delay times (tdel) for films of managanese-doped zinc sulfide (ZnS:Mn) were measured in the range 10-6-10-1 s. The maximum value was tdel=10-3-10-2 s. The electrical strength (Ebr) was found to increase as the voltage pulse duration was reduced, the more so the thinner the ZnS:Mn film. The temperature dependence of Ebr exhibited a weak reduction in Ebr as the temperature was raised to roughly 80°C and a sharp reduction in Ebr for T>130°C. A maximum in Ebr was observed at T≈130°C which is presumably explained by a structural modification of the ZnS:Mn film. The experimental results obtained are explained in terms of a combined electronic and thermal breakdown mechanism.
Depleted uranium startup of spent-fuel treatment operations at ANL-West
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goff, K.M.; Mariani, R.D.; Bonomo, N.L.
1995-12-31
At Argonne National Laboratory-West (ANL-West) there are several thousand kilograms of Experimental Breeder Reactor II (EBR-II) spent nuclear fuel. This fuel will be treated using an electrometallurgical process in the fuel conditioning facility (FCF) at ANL-West to produce stable waste forms for storage and disposal. The process equipment is undergoing testing with depleted uranium in preparation for irradiated fuel operations during the summer of 1995.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hermann, S.D.; Gese, N.J.; Wurth, L.A.
An experimental study was conducted to assess pyrochemical treatment options for degraded EBR-II fuel. As oxidized material, the degraded fuel would need to be converted back to metal to enable electrorefining within an existing electro-metallurgical treatment process. A lithium-based electrolytic reduction process was studied to assess the efficacy of converting oxide materials to metal with a particular focus on the impact of zirconium oxide and sodium oxide on this process. Bench-scale electrolytic reduction experiments were performed in LiCl-Li{sub 2}O at 650 C. degrees with combinations of manganese oxide (used as a surrogate for uranium oxide), zirconium oxide, and sodium oxide.more » In the absence of zirconium or sodium oxide, the electrolytic reduction of MnO showed nearly complete conversion to metal. The electrolytic reduction of a blend of MnO-ZrO{sub 2} in LiCl - 1 wt% Li{sub 2}O showed substantial reduction of manganese, but only 8.5% of the zirconium was found in the metal phase. The electrolytic reduction of the same blend of MnO-ZrO{sub 2} in LiCl - 1 wt% Li{sub 2}O - 6.2 wt% Na{sub 2}O showed substantial reduction of manganese, but zirconium reduction was even less at 2.4%. This study concluded that ZrO{sub 2} cannot be substantially reduced to metal in an electrolytic reduction system with LiCl - 1 wt% Li{sub 2}O at 650 C. degrees due to the perceived preferential formation of lithium zirconate. This study also identified a possible interference that sodium oxide may have on the same system by introducing a parasitic and cyclic reaction of dissolved sodium metal between oxidation at the anode and reduction at the cathode. When applied to oxidized sodium-bonded EBR-II fuel (e.g., U-10Zr), the prescribed electrolytic reduction system would not be expected to substantially reduce zirconium oxide, and the accumulation of sodium in the electrolyte could interfere with the reduction of uranium oxide, or at least render it less efficient.« less
Full-length U-xPu-10Zr (x = 0, 8, 19 wt.%) fast reactor fuel test in FFTF
NASA Astrophysics Data System (ADS)
Porter, D. L.; Tsai, Hanchung
2012-08-01
The Integral Fast Reactor-1 (IFR-1) experiment performed in the Fast Flux Test Facility (FFTF) was the only U-Pu-10Zr (Pu-0, 8 and 19 wt.%) metallic fast reactor test with commercial-length (91.4-cm active fuel-column length) conducted to date. With few remaining test reactors, there is little opportunity for performing another test with a long active fuel column. The assembly was irradiated to the goal burnup of 10 at.%. The beginning-of-life (BOL) peak cladding temperature of the hottest pin was 608 °C, cooling to 522 °C at end-of-life (EOL). Selected fuel pins were examined non-destructively using neutron radiography, precision axial gamma scanning, and both laser and spiral contact cladding profilometry. Destructive exams included plenum gas pressure, volume, and gas composition determinations on a number of pins followed by optical metallography, electron probe microanalysis (EPMA), and alpha and beta-gamma autoradiography on a single U-19Pu-10Zr pin. The post-irradiation examinations (PIEs) showed very few differences compared to the short-pin (34.3-cm fuel column) testing performed on fuels of similar composition in Experimental Breeder Reactor-II (EBR-II). The fuel column grew axially slightly less than observed in the short pins, but with the same pattern of decreasing growth with increasing Pu content. There was a difference in the fuel-cladding chemical interaction (FCCI) in that the maximum cladding penetration by interdiffusion with fuel/fission products did not occur at the top of the fuel column where the cladding temperature is highest, as observed in EBR-II tests. Instead, the more exaggerated fission-rate profile of the FFTF pins resulted in a peak FCCI at ˜0.7 X/L axial location along the fuel column. This resulted from a higher production of rare-earth fission products at this location and a higher ΔT between fuel center and cladding than at core center, together providing more rare earths at the cladding and more FCCI. This behavior could actually help extend the life of a fuel pin in a "long pin" reactor design to a higher peak fuel burnup.
Li, Xin; Ahammed, Golam J; Li, Zhi-Xin; Zhang, Lan; Wei, Ji-Peng; Shen, Chen; Yan, Peng; Zhang, Li-Ping; Han, Wen-Yan
2016-01-01
Summer grown green tea is less popular due to bitterness and high astringency, which are attributed to high levels of tea polyphenols (TP) and low levels of amino acids (AA) in tea leaves (Camellia sinensis L.). Brassinosteroids (BRs), a group of steroidal plant hormones can regulate primary and secondary metabolism in a range of plant species under both normal and stress conditions. However, specific effects of BRs on the photosynthesis of tea plants and the quality of summer green tea are largely unknown. Here we show that 24-epibrassinolide (EBR), a bioactive BR, promoted photosynthesis in tea plants in a concentration-dependent manner. Stimulation in photosynthesis by EBR resulted in an increased summer tea yield. Although all tested concentrations (0.01, 0.05, 0.1, 0.5, and 1.0 ppm) of EBR increased concentrations of TP and AA, a moderate concentration (0.5 ppm) caused the highest decrease in TP to AA ratio, an important feature of quality tea. Time-course analysis using 0.5 ppm EBR as foliar spray revealed that TP or AA concentration increased as early as 3 h after EBR application, reaching the highest peak at 24 h and that remained more or less stable. Importantly, such changes in TP and AA concentration by EBR resulted in a remarkably decreased but stable TP to AA ratio at 24 h and onward. Furthermore, concentrations of catechins and theanine increased, while that of caffeine remained unaltered following treatment with EBR. EBR improved activity of phenylalanine ammonia-lyase (PAL) and glutamine: 2-oxoglutarate aminotransferase (GOGAT) enzymes involved in catechins and theanine biosynthesis, respectively. Transcript analysis revealed that transcript levels of CsPAL and CsGS peaked as early as 6 h, while that of CsGOGAT peaked at 12 h following application of EBR, implying that EBR increased the concentration of TP and AA by inducing their biosynthesis. These results suggest a positive role of BR in enhancing green tea quality, which might have potential implication in improving quality of summer tea.
Li, Xin; Ahammed, Golam J.; Li, Zhi-Xin; Zhang, Lan; Wei, Ji-Peng; Shen, Chen; Yan, Peng; Zhang, Li-Ping; Han, Wen-Yan
2016-01-01
Summer grown green tea is less popular due to bitterness and high astringency, which are attributed to high levels of tea polyphenols (TP) and low levels of amino acids (AA) in tea leaves (Camellia sinensis L.). Brassinosteroids (BRs), a group of steroidal plant hormones can regulate primary and secondary metabolism in a range of plant species under both normal and stress conditions. However, specific effects of BRs on the photosynthesis of tea plants and the quality of summer green tea are largely unknown. Here we show that 24-epibrassinolide (EBR), a bioactive BR, promoted photosynthesis in tea plants in a concentration-dependent manner. Stimulation in photosynthesis by EBR resulted in an increased summer tea yield. Although all tested concentrations (0.01, 0.05, 0.1, 0.5, and 1.0 ppm) of EBR increased concentrations of TP and AA, a moderate concentration (0.5 ppm) caused the highest decrease in TP to AA ratio, an important feature of quality tea. Time-course analysis using 0.5 ppm EBR as foliar spray revealed that TP or AA concentration increased as early as 3 h after EBR application, reaching the highest peak at 24 h and that remained more or less stable. Importantly, such changes in TP and AA concentration by EBR resulted in a remarkably decreased but stable TP to AA ratio at 24 h and onward. Furthermore, concentrations of catechins and theanine increased, while that of caffeine remained unaltered following treatment with EBR. EBR improved activity of phenylalanine ammonia-lyase (PAL) and glutamine: 2-oxoglutarate aminotransferase (GOGAT) enzymes involved in catechins and theanine biosynthesis, respectively. Transcript analysis revealed that transcript levels of CsPAL and CsGS peaked as early as 6 h, while that of CsGOGAT peaked at 12 h following application of EBR, implying that EBR increased the concentration of TP and AA by inducing their biosynthesis. These results suggest a positive role of BR in enhancing green tea quality, which might have potential implication in improving quality of summer tea. PMID:27625668
GAMSOR: Gamma Source Preparation and DIF3D Flux Solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, M. A.; Lee, C. H.; Hill, R. N.
2016-12-15
Nuclear reactors that rely upon the fission reaction have two modes of thermal energy deposition in the reactor system: neutron absorption and gamma absorption. The gamma rays are typically generated by neutron absorption reactions or during the fission process which means the primary driver of energy production is of course the neutron interaction. In conventional reactor physics methods, the gamma heating component is ignored such that the gamma absorption is forced to occur at the gamma emission site. For experimental reactor systems like EBR-II and FFTF, the placement of structural pins and assemblies internal to the core leads to problemsmore » with power heating predictions because there is no fission power source internal to the assembly to dictate a spatial distribution of the power. As part of the EBR-II support work in the 1980s, the GAMSOR code was developed to assist analysts in calculating the gamma heating. The GAMSOR code is a modified version of DIF3D and actually functions within a sequence of DIF3D calculations. The gamma flux in a conventional fission reactor system does not perturb the neutron flux and thus the gamma flux calculation can be cast as a fixed source problem given a solution to the steady state neutron flux equation. This leads to a sequence of DIF3D calculations, called the GAMSOR sequence, which involves solving the neutron flux, then the gamma flux, then combining the results to do a summary edit. In this manuscript, we go over the GAMSOR code and detail how it is put together and functions. We also discuss how to setup the GAMSOR sequence and input for each DIF3D calculation in the GAMSOR sequence. With the GAMSOR capability, users can take any valid steady state DIF3D calculation and compute the power distribution due to neutron and gamma heating. The MC2-3 code is the preferable companion code to use for generating neutron and gamma cross section data, but the GAMSOR code can accept cross section data from other sources. To further this aspect, an additional utility code was created which demonstrates how to merge the neutron and gamma cross section data together to carry out a simultaneous solve of the two systems.« less
Sescousse, Guillaume; Ligneul, Romain; van Holst, Ruth J; Janssen, Lieneke K; de Boer, Femke; Janssen, Marcel; Berry, Anne S; Jagust, William J; Cools, Roshan
2018-05-01
Dopamine is central to a number of cognitive functions and brain disorders. Given the cost of neurochemical imaging in humans, behavioural proxy measures of dopamine have gained in popularity in the past decade, such as spontaneous eye blink rate (sEBR). Increased sEBR is commonly associated with increased dopamine function based on pharmacological evidence and patient studies. Yet, this hypothesis has not been validated using in vivo measures of dopamine function in humans. To fill this gap, we measured sEBR and striatal dopamine synthesis capacity using [ 18 F]DOPA PET in 20 participants (nine healthy individuals and 11 pathological gamblers). Our results, based on frequentist and Bayesian statistics, as well as region-of-interest and voxel-wise analyses, argue against a positive relationship between sEBR and striatal dopamine synthesis capacity. They show that, if anything, the evidence is in favour of a negative relationship. These results, which complement findings from a recent study that failed to observe a relationship between sEBR and dopamine D2 receptor availability, suggest that caution and nuance are warranted when interpreting sEBR in terms of a proxy measure of striatal dopamine. © 2018 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Interim waste storage for the Integral Fast Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benedict, R.W.; Phipps, R.D.; Condiff, D.W.
1991-01-01
The Integral Fast Reactor (IFR), which Argonne National Laboratory is developing, is an innovative liquid metal breeder reactor that uses metallic fuel and has a close coupled fuel recovery process. A pyrochemical process is used to separate the fission products from the actinide elements. These actinides are used to make new fuel for the reactor. As part of the overall IFR development program, Argonne has refurbished an existing Fuel Cycle Facility at ANL-West and is installing new equipment to demonstrate the remote reprocessing and fabrication of fuel for the Experimental Breeder Reactor II (EBR-II). During this demonstration the wastes thatmore » are produced will be treated and packaged to produce waste forms that would be typical of future commercial operations. These future waste forms would, assuming Argonne development goals are fulfilled, be essentially free of long half-life transuranic isotopes. Promising early results indicate that actinide extraction processes can be developed to strip these isotopes from waste stream and return them to the IFR type reactors for fissioning. 1 fig.« less
A Framework for Human Performance Criteria for Advanced Reactor Operational Concepts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacques V Hugo; David I Gertman; Jeffrey C Joe
2014-08-01
This report supports the determination of new Operational Concept models needed in support of the operational design of new reactors. The objective of this research is to establish the technical bases for human performance and human performance criteria frameworks, models, and guidance for operational concepts for advanced reactor designs. The report includes a discussion of operating principles for advanced reactors, the human performance issues and requirements for human performance based upon work domain analysis and current regulatory requirements, and a description of general human performance criteria. The major findings and key observations to date are that there is some operatingmore » experience that informs operational concepts for baseline designs for SFR and HGTRs, with the Experimental Breeder Reactor-II (EBR-II) as a best-case predecessor design. This report summarizes the theoretical and operational foundations for the development of a framework and model for human performance criteria that will influence the development of future Operational Concepts. The report also highlights issues associated with advanced reactor design and clarifies and codifies the identified aspects of technology and operating scenarios.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, S.R.
A comprehensive evaluation was conducted of the radiation protection practices and programs at prototype LMFBRs with long operational experience. Installations evaluated were the Fast Flux Test Facility (FFTF), Richland, Washington; Experimental Breeder Reactor II (EBR-II), Idaho Falls, Idaho; Prototype Fast Reactor (PFR) Dounreay, Scotland; Phenix, Marcoule, France; and Kompakte Natriumgekuhlte Kernreak Toranlange (KNK II), Karlsruhe, Federal Republic of Germany. The evaluation included external and internal exposure control, respiratory protection procedures, radiation surveillance practices, radioactive waste management, and engineering controls for confining radiation contamination. The theory, design, and operating experience at LMFBRs is described. Aspects of LMFBR health physics different frommore » the LWR experience in the United States are identified. Suggestions are made for modifications to the NRC Standard Review Plan based on the differences.« less
In-situ material-motion diagnostics and fuel radiography in experimental reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeVolpi, A.
1982-01-01
Material-motion monitoring has become a routine part of in-pile transient reactor-safety experiments. Diagnostic systems, such as the fast-neutron hodoscope, were developed for the purpose of providing direct time-resolved data on pre-failure fuel motion, cladding-breach time and location, and post-failure fuel relocation. Hodoscopes for this purpose have been installed at TREAT and CABRI; other types of imaging systems that have been tested are a coded-aperture at ACRR and a pinhole at TREAT. Diagnostic systems that use penetrating radiation emitted from the test section can non-invasively monitor fuel without damage to the measuring instrument during the radiographic images of test sections installedmore » in the reator. Studies have been made of applications of hodoscopes to other experimental reactors, including PBF, FARET, STF, ETR, EBR-II, SAREF-STF, and DMT.« less
INL Cultural Resource Monitoring Report for FY 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pace, Brenda Ringe; Olson, Christina Liegh; Gilbert, Hollie Kae
This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during fiscal year (FY) 2015. Throughout the year, 67 total monitoring visits were completed, with several especially sensitive resources visited on more than one occasion. Overall, FY 2015 monitoring included surveillance of the following 49 individual cultural resource localities: three locations with human remains, one of which is also a cave; nine additional caves; twenty prehistoric archaeological sites; five historic archaeological sites; two historic trails; Experimental Breeder Reactor I (EBR-I), a National Historic Landmark; Aircraft Nuclear Propulsion (ANP) objects located atmore » EBR-I; and eight Arco Naval Proving Ground (NPG) property types. Several INL work processes and projects were also monitored to confirm compliance with original INL CRM recommendations and assess the effects of ongoing work. On two occasions, ground disturbing activities within the boundaries of the Power Burst Facility/Critical Infrastructure Test Range Complex (PBF/CITRC) were observed by INL CRM staff prepared to respond to any additional finds of Native American human remains. Finally, the current location housing INL Archives and Special Collections was evaluated once. Most of the cultural resources monitored in FY 2015 exhibited no adverse impacts, resulting in Type 1 impact assessments. However, Type 2 impacts were noted 13 times. In one case, a portion of a historic trail was graded without prior review or coordination with the INL CRM Office, resulting in impacts to the surface of the trail and one archaeological site. Evidence of unauthorized artifact collection/ looting was also documented at three archaeological sites located along INL powerlines. Federal agents concluded a FY 2012 investigation by filing civil charges and levying fine under the Archaeological Resource Protection Act against one INL employee for this kind of illegal removal of artifacts from INL lands. Goodale‘s Cutoff of the Oregon Trail showed evidence of heavy use associated with grazing. A number of previously reported Type 2 impacts were also once again documented at the EBR-I National Historic Landmark, including spalling and deterioration of bricks due to inadequate drainage, minimal maintenance, and rodent infestation. The ANP engines and locomotive on display at the EBR-I Visitors Center also exhibited impacts related to long term exposure. Finally, most of the Arco NPG properties monitored at Central Facilities Area exhibited problems with lack of timely and appropriate maintenance as well as inadequate drainage. No new Type 3 or Type 4 impacts that adversely affected significant cultural resources and threatened National Register eligibility were documented in FY 2015.« less
Irradiation Testing Vehicles for Fast Reactors from Open Test Assemblies to Closed Loops
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sienicki, James J.; Grandy, Christopher
A review of irradiation testing vehicle approaches and designs that have been incorporated into past Sodium-Cooled Fast Reactors (SFRs) or envisioned for incorporation has been carried out. The objective is to understand the essential features of the approaches and designs so that they can inform test vehicle designs for a future U.S. Fast Test Reactor. Fast test reactor designs examined include EBR-II, FFTF, JOYO, BOR-60, PHÉNIX, JHR, and MBIR. Previous designers exhibited great ingenuity in overcoming design and operational challenges especially when the original reactor plant’s mission changed to an irradiation testing mission as in the EBRII reactor plant. Themore » various irradiation testing vehicles can be categorized as: Uninstrumented open assemblies that fit into core locations; Instrumented open test assemblies that fit into special core locations; Self-contained closed loops; and External closed loops. A special emphasis is devoted to closed loops as they are regarded as a very desirable feature of a future U.S. Fast Test Reactor. Closed loops are an important technology for irradiation of fuels and materials in separate controlled environments. The impact of closed loops on the design of fast reactors is also discussed in this report.« less
Roadmap for disposal of Electrorefiner Salt as Transuranic Waste.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rechard, Robert P.; Trone, Janis R.; Kalinina, Elena Arkadievna
The experimental breeder reactor (EBR-II) used fuel with a layer of sodium surrounding the uranium-zirconium fuel to improve heat transfer. Disposing of EBR-II fuel in a geologic repository without treatment is not prudent because of the potentially energetic reaction of the sodium with water. In 2000, the US Department of Energy (DOE) decided to treat the sodium-bonded fuel with an electrorefiner (ER), which produces metallic uranium product, a metallic waste, mostly from the cladding, and the salt waste in the ER, which contains most of the actinides and fission products. Two waste forms were proposed for disposal in a minedmore » repository; the metallic waste, which was to be cast into ingots, and the ER salt waste, which was to be further treated to produce a ceramic waste form. However, alternative disposal pathways for metallic and salt waste streams may reduce the complexity. For example, performance assessments show that geologic repositories can easily accommodate the ER salt waste without treating it to form a ceramic waste form. Because EBR-II was used for atomic energy defense activities, the treated waste likely meets the definition of transuranic waste. Hence, disposal at the Waste Isolation Pilot Plant (WIPP) in southern New Mexico, may be feasible. This report reviews the direct disposal pathway for ER salt waste and describes eleven tasks necessary for implementing disposal at WIPP, provided space is available, DOE decides to use this alternative disposal pathway in an updated environmental impact statement, and the State of New Mexico grants permission.« less
Ansari, Shaheryar F; Moore, Reilin J; Boaz, Joel C; Fulkerson, Daniel H
2016-04-01
OBJECT Radioactive phosphorus-32 (P32) has been used as brachytherapy for craniopharyngiomas with the hope of providing local control of enlarging tumor cysts. Brachytherapy has commonly been used as an adjunct to the standard treatment of surgery and external-beam radiation (EBR). Historically, multimodal treatment, including EBR, has shown tumor control rates as high as 70% at 10 years after treatment. However, EBR is associated with significant long-term risks, including visual deficits, endocrine dysfunction, and cognitive decline. Theoretically, brachytherapy may provide focused local radiation that controls or shrinks a symptomatic cyst without exposing the patient to the risks of EBR. For this study, the authors reviewed their experiences with craniopharyngioma patients treated with P32 brachytherapy as the primary treatment without EBR. The authors reviewed these patients' records to evaluate whether this strategy effectively controls tumor growth, thus avoiding the need for further surgery or EBR. METHODS The authors performed a retrospective review of pediatric patients treated for craniopharyngioma between 1997 and 2004. This was the time period during which the authors' institution had a relatively high use of P32 for treatment of cystic craniopharyngioma. All patients who had surgery and injection of P32 without EBR were identified. The patient records were analyzed for complications, cyst control, need for further surgery, and need for future EBR. RESULTS Thirty-eight patients were treated for craniopharyngioma during the study period. Nine patients (23.7%) were identified who had surgery (resection or biopsy) with P32 brachytherapy but without initial EBR. These 9 patients represented the study group. For 1 patient (11.1%), there was a complication with the brachytherapy procedure. Five patients (55.5%) required subsequent surgery. Seven patients (77.7%) required subsequent EBR for tumor growth. The mean time between the injection of P32 and subsequent treatment was 1.67 ± 1.50 years (mean ± SD). CONCLUSIONS In this small but focused population, P32 treatment provided limited local control for cyst growth. Brachytherapy alone did not reliably avert the need for subsequent surgery or EBR.
Lima, J V; Lobato, A K S
2017-01-01
Water deficit is considered the main abiotic stress that limits agricultural production worldwide. Brassinosteroids (BRs) are natural substances that play roles in plant tolerance against abiotic stresses, including water deficit. This research aims to determine whether BRs can mitigate the negative effects caused by water deficiency, revealing how BRs act and their possible contribution to increased tolerance of cowpea plants to water deficit. The experiment was a factorial design with the factors completely randomised, with two water conditions (control and water deficit) and three levels of brassinosteroids (0, 50 and 100 nM 24-epibrassinolide; EBR is an active BRs). Plants sprayed with 100 nM EBR under the water deficit presented significant increases in Φ PSII , q P and ETR compared with plants subjected to the water deficit without EBR. With respect to gas exchange, P N , E and g s exhibited significant reductions after water deficit, but application of 100 nM EBR caused increases in these variables of 96, 24 and 33%, respectively, compared to the water deficit + 0 nM EBR treatment. To antioxidant enzymes, EBR resulted in increases in SOD, CAT, APX and POX, indicating that EBR acts on the antioxidant system, reducing cell damage. The water deficit caused significant reductions in Chl a , Chl b and total Chl, while plants sprayed with 100 nM EBR showed significant increases of 26, 58 and 33% in Chl a , Chl b and total Chl, respectively. This study revealed that EBR improves photosystem II efficiency, inducing increases in Φ PSII , q P and ETR. This substance also mitigated the negative effects on gas exchange and growth induced by the water deficit. Increases in SOD, CAT, APX and POX of plants treated with EBR indicate that this steroid clearly increased the tolerance to the water deficit, reducing reactive oxygen species, cell damage, and maintaining the photosynthetic pigments. Additionally, 100 nM EBR resulted in a better dose-response of cowpea plants exposed to the water deficit.
NASA Astrophysics Data System (ADS)
Huang, Y.; Wiezorek, J. M. K.; Garner, F. A.; Freyer, P. D.; Okita, T.; Sagisaka, M.; Isobe, Y.; Allen, T. R.
2015-10-01
While thin reactor structural components such as cladding and ducts do not experience significant gradients in dpa rate, gamma heating rate, temperature or stress, thick components can develop strong local variations in void swelling and irradiation creep in response to gradients in these variables. In this study we conducted microstructural investigations by transmission electron microscopy of two 52 mm thick 304-type stainless steel hex-blocks irradiated for 12 years in the EBR-II reactor with accumulated doses ranging from ∼0.4 to 33 dpa. Spatial variations in the populations of voids, precipitates, Frank loops and dislocation lines have been determined for 304 stainless steel sections exposed to different temperatures, different dpa levels and at different dpa rates, demonstrating the existence of spatial gradients in the resulting void swelling. The microstructural measurements compare very well with complementary density change measurements regarding void swelling gradients in the 304 stainless steel hex-block components. The TEM studies revealed that the original cold-worked-state microstructure of the unirradiated blocks was completely erased by irradiation, replaced by high densities of interstitial Frank loops, voids and carbide precipitates at both the lowest and highest doses. At large dose levels the amount of volumetric void swelling correlated directly with the gamma heating gradient-related temperature increase (e.g. for 28 dpa, ∼2% swelling at 418 °C and ∼2.9% swelling at 448 °C). Under approximately iso-thermal local conditions, volumetric void swelling was found to increase with dose level (e.g. ∼0.2% swelling at 0.4 dpa, ∼0.5% swelling at 4 dpa and ∼2% swelling at 28 dpa). Carbide precipitate formation levels were found to be relatively independent of both dpa level and temperature and induced a measurable densification. Void swelling was dominant at the higher dose levels and caused measurable decreases in density. Void swelling at the lowest doses was larger than might be expected based on the dpa level, an observation in agreement with earlier studies showing that the onset of void swelling is accelerated by decreasing dpa rates.
Qualls, A. Louis; Betzler, Benjamin R.; Brown, Nicholas R.; ...
2016-12-21
Engineering demonstration reactors are nuclear reactors built to establish proof of concept for technology options that have never been built. Examples of engineering demonstration reactors include Peach Bottom 1 for high temperature gas-cooled reactors (HTGRs) and Experimental Breeder Reactor-II (EBR-II) for sodium-cooled fast reactors. Historically, engineering demonstrations have played a vital role in advancing the technology readiness level of reactor technologies. Our paper details a preconceptual design for a fluoride salt-cooled engineering demonstration reactor. The fluoride salt-cooled high-temperature reactor (FHR) demonstration reactor (DR) is a concept for a salt-cooled reactor with 100 megawatts of thermal output (MWt). It would usemore » tristructural-isotropic (TRISO) particle fuel within prismatic graphite blocks. FLiBe (2 7LiF-BeF2) is the reference primary coolant. The FHR DR is designed to be small, simple, and affordable. Development of the FHR DR is a necessary intermediate step to enable near-term commercial FHRs. The design philosophy of the FHR DR was focused on safety, near-term deployment, and flexibility. Lower risk technologies are purposely included in the initial FHR DR design to ensure that the reactor can be built, licensed, and operated as an engineering demonstration with minimal risk and cost. These technologies include TRISO particle fuel, replaceable core structures, and consistent structural material selection for core structures and the primary and intermediate loops, and tube-and-shell primary-to-intermediate heat exchangers. Important capabilities to be demonstrated by building and operating the FHR DR include fabrication and operation of high temperature reactors; heat exchanger performance (including passive decay heat removal); pump performance; and reactivity control; salt chemistry control to maximize vessel life; tritium management; core design methodologies; salt procurement, handling, maintenance and ultimate disposal. It is recognized that non-nuclear separate and integral test efforts (e.g., heated salt loops or loops using simulant fluids) are necessary to develop the technologies that will be demonstrated in the FHR DR.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qualls, A. Louis; Betzler, Benjamin R.; Brown, Nicholas R.
Engineering demonstration reactors are nuclear reactors built to establish proof of concept for technology options that have never been built. Examples of engineering demonstration reactors include Peach Bottom 1 for high temperature gas-cooled reactors (HTGRs) and Experimental Breeder Reactor-II (EBR-II) for sodium-cooled fast reactors. Historically, engineering demonstrations have played a vital role in advancing the technology readiness level of reactor technologies. Our paper details a preconceptual design for a fluoride salt-cooled engineering demonstration reactor. The fluoride salt-cooled high-temperature reactor (FHR) demonstration reactor (DR) is a concept for a salt-cooled reactor with 100 megawatts of thermal output (MWt). It would usemore » tristructural-isotropic (TRISO) particle fuel within prismatic graphite blocks. FLiBe (2 7LiF-BeF2) is the reference primary coolant. The FHR DR is designed to be small, simple, and affordable. Development of the FHR DR is a necessary intermediate step to enable near-term commercial FHRs. The design philosophy of the FHR DR was focused on safety, near-term deployment, and flexibility. Lower risk technologies are purposely included in the initial FHR DR design to ensure that the reactor can be built, licensed, and operated as an engineering demonstration with minimal risk and cost. These technologies include TRISO particle fuel, replaceable core structures, and consistent structural material selection for core structures and the primary and intermediate loops, and tube-and-shell primary-to-intermediate heat exchangers. Important capabilities to be demonstrated by building and operating the FHR DR include fabrication and operation of high temperature reactors; heat exchanger performance (including passive decay heat removal); pump performance; and reactivity control; salt chemistry control to maximize vessel life; tritium management; core design methodologies; salt procurement, handling, maintenance and ultimate disposal. It is recognized that non-nuclear separate and integral test efforts (e.g., heated salt loops or loops using simulant fluids) are necessary to develop the technologies that will be demonstrated in the FHR DR.« less
Hou, Jiayin; Zhang, Qihao; Zhou, Yue; Ahammed, Golam Jalal; Zhou, Yanhong; Yu, Jingquan; Fang, Hua; Xia, Xiaojian
2018-05-07
Brassinosteroids (BRs), a group of steroid phytohormones, are involved in multiple aspects of plant growth, development and stress responses. Despite recent studies on BRs-promoted pesticide metabolism in plants, the underlying mechanisms remain poorly understood. Here, we showed that 24-epibrassinolide (EBR) significantly enhanced the expression of RESPIRATORY BURST OXIDASE HOMOLOG1 (RBOH1) and H 2 O 2 accumulation in the apoplast of chlorothalonil (CHT, a broad spectrum nonsystemic fungicide)-treated tomato plants. Silencing of RBOH1 significantly decreased the efficiency of EBR-induced CHT metabolism. Moreover, the EBR-induced upregulation in the transcripts of glutaredoxin gene GRXS16 was suppressed in RBOH1-silenced plants. Further studies indicated that silencing of GRXS16 compromised EBR-induced increases in glutathione content, activity of glutathione S-transferase (GST) and transcript of GST1, leading to an increase in CHT residue. By contrast, overexpression of tomato GRXS16 enhanced the basal levels of glutathione content and GST activity that eventually decreased CHT residues in transgenic plants. Our results reveal that BR-mediated induction of a modest oxidative burst is essential for the acceleration of glutathione-dependent pesticide metabolism via redox modulators, such as GRXS16. These findings shed new light on the mechanisms of BR-induced pesticide metabolism and thus have important implication in reducing pesticide residues in agricultural products. Copyright © 2018 Elsevier Ltd. All rights reserved.
Foster, Graham R; Agarwal, Kosh; Cramp, Matthew E; Moreea, Sulleman; Barclay, Stephen; Collier, Jane; Brown, Ashley S; Ryder, Stephen D; Ustianowski, Andrew; Forton, Daniel M; Fox, Ray; Gordon, Fiona; Rosenberg, William M; Mutimer, David J; Du, Jiejun; Gilbert, Christopher L; Asante-Appiah, Ernest; Wahl, Janice; Robertson, Michael N; Barr, Eliav; Haber, Barbara
2018-06-01
Many direct-acting antiviral regimens have reduced activity in people with hepatitis C virus (HCV) genotype (GT) 3 infection and cirrhosis. The C-ISLE study assessed the efficacy and safety of elbasvir/grazoprevir (EBR/GZR) plus sofosbuvir (SOF) with and without ribavirin (RBV) in compensated cirrhotic participants with GT3 infection. This was a phase 2, randomized, open-label study. Treatment-naive participants received EBR/GZR + SOF + RBV for 8 weeks or EBR/GZR + SOF for 12 weeks, and peginterferon/RBV treatment-experienced participants received EBR/GZR + SOF ± RBV for 12 weeks or EBR/GZR + SOF for 16 weeks. The primary endpoint was HCV RNA <15 IU/mL 12 weeks after the end of treatment (sustained virologic response at 12 weeks [SVR12]). Among treatment-naive participants, SVR12 was 91% (21/23) in those treated with RBV for 8 weeks and 96% (23/24) in those treated for 12 weeks. Among treatment-experienced participants, SVR12 was 94% (17/18) and 100% (17/17) in the 12-week arm, with and without RBV, respectively, and 94% (17/18) in the 16-week arm. Five participants failed to achieve SVR: 2 relapsed (both in the 8-week arm), 1 discontinued due to vomiting/cellulitis (16-week arm), and 2 discontinued (consent withdrawn/lost to follow-up). SVR12 was not affected by the presence of resistance-associated substitutions (RASs). There was no consistent change in insulin resistance, and 5 participants reported serious adverse events (pneumonia, chest pain, opiate overdose, cellulitis, decreased creatinine). High efficacy was demonstrated in participants with HCV GT3 infection and cirrhosis. Treatment beyond 12 weeks was not required, and efficacy was maintained regardless of baseline RASs. Data from this study support the use of EBR/GZR plus SOF for 12 weeks without RBV for treatment-naive and peginterferon/RBV-experienced people with GT3 infection and cirrhosis (ClinicalTrials.gov NCT02601573). (Hepatology 2018;67:2113-2126). © 2018 by the American Association for the Study of Liver Diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellen M. Rabenberg; Brian J. Jaques; Bulent H. Sencer
The mechanical properties of AISI 304 stainless steel irradiated for over a decade in the Experimental Breeder Reactor (EBR-II) were measured using miniature mechanical testing methods. The shear punch method was used to evaluate the shear strengths of the neutron-irradiated steel and a correlation factor was empirically determined to predict its tensile strength. The strength of the stainless steel slightly decreased with increasing irradiation temperature, and significantly increased with increasing dose until it saturated above approximately 5 dpa. Ferromagnetic measurements were used to observe and deduce the effects of the stress-induced austenite to martensite transformation as a result of shearmore » punch testing.« less
Zhang, Ting; Mou, Di; Wang, Cuicui; Tan, Fengping; Jiang, Yan; Lijun, Zheng; Li, Hong
2015-06-01
The central dopamine system (DA) has a significant role in the executive function (EF). The spontaneous eye blink rate (EBR) is an effective clinical and non-invasive measure, which is strongly related to the activity of the central dopaminergic system. Previous studies show significant relationships between the two main dimensions of EF (i.e., shifting and inhibition) and the central DA system as measured by EBR. However, most of these studies involve only one EF task for shifting or inhibition; whether or not these relationships are replicated by other EF tasks remains unclear. Besides, the relationship between EBR and another important EF dimension-updating-also remains unknown. The present study examined the correlation between EBR and several EF tasks that captured all the three EF dimensions: shifting, inhibition, and updating. A total of 61 healthy participants were subjected to EBR testing and EF tasks. Results showed that EBR had a different relationship with each of the three tested EF dimensions. An increase in EBR levels was related to an increase in accuracy in shifting and inhibition tasks, a decrease in shifting and inhibition cost, and a decrease in accuracy in updating tasks. These results imply that the role of the central DA system in shifting and inhibition differs from its role in updating. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, R.J.
1976-11-01
The FFTF fuel pin design analysis is shown to be conservative through comparison with pin irradiation experience in EBR-II. This comparison shows that the actual lifetimes of EBR-II fuel pins are either greater than 80,000 MWd/MTM or greater than the calculated allowable lifetimes based on thermal creep strain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, T. R.; Tsai, H.; Cole, J. I.
2002-09-17
To assess the effects of long-term, low-dose-rate neutron exposure on mechanical strength and ductility, tensile properties were measured on 12% and 20% cold-worked Type 316 stainless steel. Samples were prepared from reactor core components retrieved from the EBR-II reactor following final shutdown. Sample locations were chosen to cover a dose range of 1-56 dpa at temperatures from 371-440 C and dose rates from 0.5-5.8 x10{sup -7} dpa/s. These dose rates are approximately an order of magnitude lower than those of typical EBR-II test sample locations. The tensile tests for the 12% CW material were performed at 380 C and 430more » C while those for the 20% CW samples were performed at 370 C. In each case, the tensile test temperature approximately matched the irradiation temperature. To help understand the tensile properties, microstructural samples with similar irradiation history were also examined. The strength and loss of work hardening increase the fastest as a function of irradiation dose for the 12% CW material irradiated at lower temperature. The decrease in ductility with increasing dose occurs more rapidly for the 12% CW material irradiated at lower temperature and the 20% cold-worked material. Post-tensile test fractography indicates that at higher dose, the 20% CW samples begin a shift in fracture mode from purely ductile to mainly small facets and slip bands, suggesting a transition toward channel fracture. The fracture for all of the 12% cold-worked samples was ductile. For both the 12% and 20% CW materials, the yield strength increases correlate with changes in void and loop density and size.« less
Radiological Characterization Methodology of INEEL Stored RH-TRU Waste from ANL-E
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajiv N. Bhatt
2003-02-01
An Acceptable Knowledge (AK)-based radiological characterization methodology is being developed for RH TRU waste generated from ANL-E hot cell operations performed on fuel elements irradiated in the EBR-II reactor. The methodology relies on AK for composition of the fresh fuel elements, their irradiation history, and the waste generation and collection processes. Radiological characterization of the waste involves the estimates of the quantities of significant fission products and transuranic isotopes in the waste. Methods based on reactor and physics principles are used to achieve these estimates. Because of the availability of AK and the robustness of the calculation methods, the AK-basedmore » characterization methodology offers a superior alternative to traditional waste assay techniques. Using this methodology, it is shown that the radiological parameters of a test batch of ANL-E waste is well within the proposed WIPP Waste Acceptance Criteria limits.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuan, P.; Bhatt, R.N.
2003-01-14
An Acceptable Knowledge (AK)-based radiological characterization methodology is being developed for RH TRU waste generated from ANL-E hot cell operations performed on fuel elements irradiated in the EBR-II reactor. The methodology relies on AK for composition of the fresh fuel elements, their irradiation history, and the waste generation and collection processes. Radiological characterization of the waste involves the estimates of the quantities of significant fission products and transuranic isotopes in the waste. Methods based on reactor and physics principles are used to achieve these estimates. Because of the availability of AK and the robustness of the calculation methods, the AK-basedmore » characterization methodology offers a superior alternative to traditional waste assay techniques. Using the methodology, it is shown that the radiological parameters of a test batch of ANL-E waste is well within the proposed WIPP Waste Acceptance Criteria limits.« less
Comparison of measured and calculated composition of irradiated EBR-II blanket assemblies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grimm, K. N.
1998-07-13
In anticipation of processing irradiated EBR-II depleted uranium blanket subassemblies in the Fuel Conditioning Facility (FCF) at ANL-West, it has been possible to obtain a limited set of destructive chemical analyses of samples from a single EBR-II blanket subassembly. Comparison of calculated values with these measurements is being used to validate a depletion methodology based on a limited number of generic models of EBR-II to simulate the irradiation history of these subassemblies. Initial comparisons indicate these methods are adequate to meet the operations and material control and accountancy (MC and A) requirements for the FCF, but also indicate several shortcomingsmore » which may be corrected or improved.« less
Trends of Breastfeeding Rate in Korea (1994-2012): Comparison with OECD and Other Countries
Chung, Sung-Hoon; Kim, Hye-Ryun; Choi, Yong-Sung
2013-01-01
Breastfeeding has numerous benefits both for infants and mothers. WHO, UNICEF, and OECD report the breastfeeding rate (BR) and exclusive breastfeeding rate (EBR) at 3, 4, and 6 months of age for the international comparison. This article investigates the nationwide changes in BR and EBR in Korea from 1994 to 2012. EBR declined from 1994 to 2000, however progressively increased untill 2012. The latest data in 2012 revealed EBRs at 3, 4, and 6 months were 50.0%, 40.5%, and 11.4% respectively. The exclusive formula feeding rate (EFR) was highest in 2000 and gradually declined thereafter. In 2012, the EFRs at 3, 4 and 6 months were 21.7%, 26.5%, and 10.1%. In 2009, the EBRs at 3 and 6 months in the United States were 36.0% and 16.3% compared to 50.0% and 11.4% in Korea. In England, the EBRs were 17% and 12% in 2010. Amongst OECD countries, Hungary ranked highest EBRwith 95%, and Iceland, Norway, Slovak Republic, Australia, New Zealand followed. In conclusion, BRs were lowest in 2000, and there have been remarkable increases in BRs over the past 10 yr in Korea. Although BRs have been increasing, further efforts to increase BRs should be made continuously. PMID:24265518
Marshall, William L; Feng, Hwa-Ping; Caro, Luzelena; Talaty, Jennifer; Guo, Zifang; Huang, Xiaobi; Panebianco, Deborah; Ma, Joanne; Mangin, Eric; O'Reilly, Terry E; Butterton, Joan R; Yeh, Wendy W
2017-05-01
Oral contraceptive pills (OCPs) are an important element of hepatitis C virus (HCV) treatment in women of childbearing potential. These studies evaluated the safety and pharmacokinetic interactions between elbasvir (EBR) and grazoprevir (GZR) and ethinyl estradiol/levonorgestrel (EE/LNG). Both studies were open-label, single-site, two-period, fixed-sequence, one-way interaction studies. In period 1, subjects received one tablet of EE/LNG (0.03 mg/0.15 mg). In period 2, subjects received EBR (50 mg once daily) for 13 days or GZR (200 mg once daily) for 10 days, with one tablet of EE/LNG on day 7 (GZR group) or 10 (EBR group). Each study enrolled 20 healthy, nonsmoking adult females. There was no clinically meaningful effect of multiple doses of EBR or GZR on the pharmacokinetics of EE or LNG. Geometric mean ratios (GMRs) for AUC 0-∞ and C max in the presence and absence of EBR were 1.01 and 1.10 for EE and 1.14 and 1.02 for LNG, with 90% confidence intervals (CIs) that were contained in the interval [0.80, 1.25]. Similarly, the AUC 0-∞ and C max GMRs in the presence and absence of GZR were 1.10 and 1.05 for EE and 1.23 and 0.93 for LNG, respectively. The 90% CIs for EE AUC 0-∞ and for EE and LNG C max were contained in the interval [0.80, 1.25]; however, the 90% CI for the LNG AUC 0-∞ [1.15, 1.32] slightly exceeded the upper bound. These results suggest that EBR/GZR can be co-administered to female patients with HCV of childbearing potential who are on OCPs to prevent pregnancy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McRobert, D.
1995-12-31
In February 1994, the Environmental Bill of Rights, 1993 (EBR) was proclaimed into law by the Ontario government. The EBR is intended to promote a new era in environmental decision-making one characterized by enhanced public participation, citizen empowerment and greater accountability of decision makers. A key challenge in the implementation of the EBR is the change it will force in government decision-making. Historically, Ontario environmental regulation focused on the development of appropriate pollution control instruments, techniques and standards to control harmful environmental activity. Often the knowledge of outsiders, (i.e. the public), was considered inadequate or irrelevant to the regulatory process.more » In contrast, the EBR recognizes the relevance and validity of public knowledge, and is intended to encourage decision-makers to mesh public and scientific knowledge through a new regulatory approval system based on notice of new developments, approvals and laws on a province-wide electronic bulletin board service. The positive potential of the EBR is in its ability to promote social understanding of the issues and risks in environmental management. The EBR mandates open dialogue and proactive interaction between government, industry, environmental groups, citizen groups, and employees to explore new mechanisms in environmental decision making. In addition, the EBR seeks to enlist the cooperation of all sectors of society in addressing the complex issues posed by the environment so that not only problem solving but problem identification and prevention activities are conducted in the context of greater shared responsibility and accountability.« less
Nogueira, Zeni Drubi; Boa-Sorte, Ney; Leite, Maria Efigênia de Queiroz; Kiya, Márcia Miyuki; Amorim, Tatiana; Fonseca, Silvana Fahel da
2015-01-01
To study breastfeeding history (BF) and the anthropometric status of children with Sickle Cell Disease (SCD). A cross-sectional study of 357 children with SS and SC hemoglobinopathies aged between 2 and 6 years old receiving regular follow-up at a Newborn Screening Reference Service (NSRS) between November 2007 and January 2009. The outcome was anthropometric status and the exposures were: BF pattern, type of hemoglobinopathy and child's age and sex. The average (SD) age was 3.7 (1.1) years, 52.9% were boys and 53.5% had SS hemoglobinopathy. The prevalence of exclusive breastfeeding (EBR) up to six months of age was 31.5%, the median EBR times (p25-p75) was 90.0 (24.0-180.0) days and the median weaning ages (p25-p75) was 360.0 (90.0-20.0) days respectively. Normal W/H children experienced EBR for an average duration almost four times longer than malnourished children (p=0.01), and were weaned later (p<0.05). Height deficit was found in 5.0% of children, while all the children with severe short stature had SS hemoglobinopathy and were over 4 years of age. EBR time and weaning age were greater than found in the literature, which is a possible effect of the multidisciplinary follow-up. Duration of EBR and later weaning were associated with improved anthropometric indicators. Copyright © 2014 Associação de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.
Signal Transduction Pathway in Maspin-induced Tumor Suppression of Prostate Cancer
2002-03-01
the zip Ebr allele is tested in similar assays with BR-C or Sb-sbd mutants. The zipEbr mutation is associated with a missense alteration in the myosin ...cytoskeletal dynamics in elongating legs via by inducing contraction of the apical actin- myosin belt. 8 Recent evidence has shown that mutations in...the RhoA mutations used in these studies have been characterized at a molecular level (Table 2). RhoAE3 °o is a CAAX box missense mutation (C to Y
Cost-Utility of Elbasvir/Grazoprevir in Patients with Chronic Hepatitis C Genotype 1 Infection.
Corman, Shelby; Elbasha, Elamin H; Michalopoulos, Steven N; Nwankwo, Chizoba
2017-09-01
To evaluate the cost-utility of treatment with elbasvir/grazoprevir (EBR/GZR) regimens compared with ledipasvir/sofosbuvir (LDV/SOF), ombitasvir/paritaprevir/ritonavir + dasabuvir ± ribavirin (3D ± RBV), and sofosbuvir/velpatasvir (SOF/VEL) in patients with chronic hepatitis C genotype (GT) 1 infection. A Markov cohort state-transition model was constructed to evaluate the cost-utility of EBR/GZR ± RBV over a lifetime time horizon from the payer perspective. The target population was patients infected with chronic hepatitis C GT1 subtypes a or b (GT1a or GT1b), stratified by treatment history (treatment-naive [TN] or treatment-experienced), presence of cirrhosis, baseline hepatitis C virus RNA (< or ≥6 million IU/mL), and presence of NS5A resistance-associated variants. The primary outcome was incremental cost-utility ratio for EBR/GZR ± RBV versus available oral direct-acting antiviral agents. One-way and probabilistic sensitivity analyses were performed to test the robustness of the model. EBR/GZR ± RBV was economically dominant versus LDV/SOF in all patient populations. EBR/GZR ± RBV was also less costly than SOF/VEL and 3D ± RBV, but produced fewer quality-adjusted life-years in select populations. In the remaining populations, EBR/GZR ± RBV was economically dominant. One-way sensitivity analyses showed varying sustained virologic response rates across EBR/GZR ± RBV regimens, commonly impacted model conclusions when lower bound values were inserted, and at the upper bound resulted in dominance over SOF/VEL in GT1a cirrhotic and GT1b TN noncirrhotic patients. Results of the probabilistic sensitivity analysis showed that EBR/GZR ± RBV was cost-effective in more than 99% of iterations in GT1a and GT1b noncirrhotic patients and more than 69% of iterations in GT1b cirrhotic patients. Compared with other oral direct-acting antiviral agents, EBR/GZR ± RBV was the economically dominant regimen for treating GT1a noncirrhotic and GT1b TN cirrhotic patients, and was cost saving in all other populations. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
Shakirova, Farida; Allagulova, Chulpan; Maslennikova, Dilara; Fedorova, Kristina; Yuldashev, Ruslan; Lubyanova, Alsu; Bezrukova, Marina; Avalbaev, Azamat
2016-11-01
In this study, we performed a comparative analysis of the physiological and biochemical parameters of wheat cultivars with contrasting drought resistance, drought-resistant Omskaya 35 (O-35) and less drought-resistant Salavat Yulaev (SYu), during 7-day germination under drought stress simulated by 5% mannitol. In addition, we evaluated the effectiveness of pre-sowing seed treatment with 0.4 μM 24-epibrassinolide (EBR) used to increase the resistance of plants of both cultivars to drought stress. It was revealed that mannitol has caused significant changes in the hormonal balance of the plants of both cultivars, associated with abscisic acid (ABA) accumulation and decrease in the contents of indoleacetic acid (IAA) and cytokinins (CKs). It should be noted that more dramatic changes in the content of phytohormones were characteristic for seedlings of SYu cultivar, which was reflected in a stronger growth inhibition of these plants. Pretreatment with EBR mitigated the negative effect of drought on the hormonal status and growth of seedlings during their germination. Furthermore, we found that drought caused accumulation of dehydrin (DHN) proteins, especially of low molecular weight DHNs, whose abundance was 2.5 times greater in O-35 cultivar than in SYu plants. EBR-pretreated plants of both cultivars were characterized by the additional accumulation of DHNs, indicating their involvement in the development of the EBR-induced wheat drought resistance. The use of fluridone allowed us to demonstrate ABA-dependent and ABA-independent pathways of regulation of low molecular mass dehydrins accumulation by EBR in wheat plants of both cultivars under drought conditions. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Miley, Don
2018-04-16
Sixty years ago, the first light bulb to be lit with nuclear energy got its juice right here in Idaho. Here's a virtual tour of the place where it all happened. To learn more visit http://www.inl.gov/ebr.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miley, Don
2011-06-01
Sixty years ago, the first light bulb to be lit with nuclear energy got its juice right here in Idaho. Here's a virtual tour of the place where it all happened. To learn more visit http://www.inl.gov/ebr.
Nondestructive assay of EBR-II blanket elements using resonance transmission analysis
NASA Astrophysics Data System (ADS)
Klann, Raymond Todd
1998-10-01
Resonance transmission analysis utilizing a filtered reactor beam was examined as a means of determining the 239Pu content in Experimental Breeder Reactor - II depleted uranium blanket elements. The technique uses cadmium and gadolinium filters along with a 239Pu fission chamber to isolate the 0.3 eV resonance in 239Pu. In the energy range of this resonance (0.1 eV to 0.5 eV), the total microscopic cross-section of 239Pu is significantly greater than the cross- sections of 238U and 235U. This large difference allows small changes in the 239Pu content of a sample to result in large changes in the mass signal response. Tests with small stacks of depleted uranium and 239Pu foils indicate a significant change in response based on the 239Pu content of the foil stack. In addition, the tests indicate good agreement between the measured and predicted values of 239Pu up to approximately two weight percent.
Gao, Hui; Chai, HongKang; Cheng, Ni; Cao, Wei
2017-02-15
Fresh-cut lotus root slices were treated with 80nM 24-epibrassinolide (EBR) and then stored at 4°C for 8days to investigate the effects on cut surface browning. The results showed that EBR treatment reduced cut surface browning in lotus root slices and alleviated membrane lipid peroxidation as reflected by low malondialdehyde content and lipoxygenase activity. EBR treatment inhibited the activity of phenylalanine ammonia lyase and polyphenol oxidase, and subsequently decreased phenolics accumulation and soluble quniones formation. The treatment also stimulated the activity of peroxidase, catalase and ascorbate peroxidase and delayed the loss of ascorbic acid, which would help prevent membrane lipid peroxidation, as a consequence, reducing decompartmentation of enzymes and substrates causing enzymatic browning. These results indicate that EBR treatment is a promising attempt to control browning at cut surface of fresh-cut lotus root slices. Copyright © 2016 Elsevier Ltd. All rights reserved.
Determining Pu-239 content by resonance transmission analysis using a filtered reactor beam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klann, R. T.
A novel technique has been developed at Argonne National Laboratory to determine the {sup 239}Pu content in EBR-II blanket elements using resonance transmission analysis (RTA) with a filtered reactor beam. The technique uses cadmium and gadolinium filters along with a {sup 239}Pu fission chamber to isolate the 0.3 eV resonance in {sup 239}Pu. In the energy range from 0.1 to 0.5 eV, the total microscopic cross-section of {sup 239}Pu is significantly larger than the cross-sections of {sup 238}U and {sup 235}U. This large difference in cross-section allows small amounts of {sup 239}Pu to be detected in uranium samples. Tests usingmore » a direct beam from a 250 kW TRIGA reactor have been performed with stacks of depleted uranium and {sup 239}Pu foils. Preliminary measurement results are in good agreement with the predicted results up to about two weight percent of {sup 239}Pu in the sample. In addition, measured {sup 239}Pu masses were in agreement with actual sample masses with uncertainties less than 3.8 percent.« less
Ahammed, Golam Jalal; Yu, Jingquan
2013-01-01
Heavy metal pollution often occurs together with organic contaminants. Brassinosteroids (BRs) induce plant tolerance to several abiotic stresses, including phenanthrene (PHE) and cadmium (Cd) stress. However, the role of BRs in PHE+Cd co-contamination-induced stress amelioration is unknown. Here, the interactive effects of PHE, Cd, and 24-epibrassinolide (EBR; a biologically active BR) were investigated in tomato plants. The application of Cd (100 µM) alone was more phytotoxic than PHE applied alone (100 µM); however, their combined application resulted in slightly improved photosynthetic activity and pigment content compared with Cd alone after a 40 d exposure. Accumulation of reactive oxygen species and membrane lipid peroxidation were induced by PHE and/or Cd; however, the differences in effect were insignificant between Cd and PHE+Cd. The foliar application of EBR (0.1 µM) to PHE- and/or Cd-stressed plants alleviated photosynthetic inhibition and oxidative stress by causing enhancement of the activity of the enzymes and related transcript levels of the antioxidant system, secondary metabolism, and the xenobiotic detoxification system. Additionally, PHE and/or Cd residues were significantly decreased in both the leaves and roots after application of EBR, more specifically in PHE+Cd-stressed plants when treated with EBR, indicating a possible improvement in detoxification of these pollutants. The findings thus suggest a potential interaction of EBR and PHE for Cd stress alleviation. These results advocate a positive role for EBR in reducing pollutant residues for food safety and also strengthening phytoremediation. PMID:23201830
Kramer, Jennifer R; Puenpatom, Amy; Erickson, Kevin; Cao, Yumei; Smith, Donna; El-Serag, Hashem; Kanwal, Fasiha
2018-05-31
Elbasvir/grazoprevir (EBR/GZR) is an all-oral direct-acting antiviral agent (DAA) with high sustained virologic response (SVR) in clinical trials. This study's primary objective was to evaluate effectiveness of EBR/GZR among HCV-infected patients in a real-world clinical setting. We conducted a nationwide retrospective observational cohort study of HCV-infected patients in the US Department of Veterans Affairs (VA) using the VA Corporate Data Warehouse. The study population included patients with positive HCV RNA who initiated EBR/GZR from February 1 to August 1, 2016. We calculated the 95% confidence interval for binomial proportions for SVR overall and by demographic subgroups. Clinical and demographic characteristics were also evaluated. We included 2,436 patients in the study cohort. Most were male (96.5%), African-American (57.5%), with mean age of 63.5 (SD=5.9), and 95.4% infected with genotype (GT) 1 [GT1a (34.7%), GT1b (58.6%)]. Other comorbidities included diabetes (53.2%), depression (57.2%), and HIV (3.0%). More than 50% had history of drug or alcohol abuse (53.9% and 60.5%, respectively). 33.2% of the cohort had cirrhosis. A total of 95.6% (2,328/2,436; 95% CI: 94.7%-96.4%) achieved SVR. The SVR rates by subgroups were: male, 95.5% (2245/2350); female, 96.5% (83/86); GT1a, 93.4%, GT1b, 96.6%, GT4, 96.9%, African-American, 95.9% (1,342/1,400); treatment-experienced, 96.3% (310/322); cirrhosis, 95.6% (732/766); stage 4-5 CKD, 96.3% (392/407); and HIV, 98.6% (73/74). SVR rates were high overall and across patient subgroups regardless of gender, race/ethnicity, cirrhosis, renal impairment, or HIV. This study provided important data regarding the effectiveness of EBR/GZR in a large clinical setting. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Tae-Sic; Vaden, DeeEarl; Westphal, Brian Robert
2016-01-01
The Experimental Breeder Reactor II (EBR-II) is a sodium cooled fast reactor developed at Argonne National Laboratory (ANL). The used fuels from the EBR-II are currently being treated in the Fuel Conditioning Facility (FCF) at the Idaho National Laboratory (INL). The Mark IV (Mk-IV) electrorefiner (ER) is a unit process in the FCF, which is primarily assigned to treating the used driver fuels. The stainless steel anode baskets hold the chopped spent driver fuel segments. During electrorefining, the anode baskets are immersed into the electrolyte and the used fuel is dissolved electrochemically. Perforated sides and bottoms allow the flow ofmore » the electrolyte into and out of the anode baskets. The steel cathode is also immersed into the electrolyte and collects the reduced products. The active metal contents in the used fuel (e.g., Cs, Sr, lanthanides, Pu, etc.) reacts with uranium cations in the electrolyte and progressively reports to the electrolyte. Noble metals are mostly retained in the cladding hulls. Varying quantities of zirconium are retained in the cladding hulls depending on the operational conditions of the Mk-IV ER. The undissolved anode materials are removed from the anode baskets and stored for subsequent metal waste form processing. These undissolved materials typically include undissolved fuels, stainless steel cladding, and adhering electrolyte. A couple of hulls are retrieved for chemical analysis and used for estimating the composition of the entire undissolved anode materials. The mass balance attempt based on this practice of estimating the undissolved anode materials has been a challenge due to inherently high sampling errors associated with heterogeneous undissolved material compositions. Responding to the prescribed challenge, this report investigates chemical analysis data as a whole and finds noticeable trends in the compositions of undissolved anode material samples with respect to the mass of the whole undissolved anode materials. Based upon this discovery, an empirical model is proposed.« less
Effectiveness of a Technology-Based Intervention to Teach Evidence-Based Practice: The EBR Tool.
Long, JoAnn D; Gannaway, Paula; Ford, Cindy; Doumit, Rita; Zeeni, Nadine; Sukkarieh-Haraty, Ola; Milane, Aline; Byers, Beverly; Harrison, LaNell; Hatch, Daniel; Brown, Justin; Proper, Sharlan; White, Patricia; Song, Huaxin
2016-02-01
As the world becomes increasingly digital, advances in technology have changed how students access evidence-based information. Research suggests that students overestimate their ability to locate quality online research and lack the skills needed to evaluate the scientific literature. Clinical nurses report relying on personal experience to answer clinical questions rather than searching evidence-based sources. To address the problem, a web-based, evidence-based research (EBR) tool that is usable from a computer, smartphone, or iPad was developed and tested. The purpose of the EBR tool is to guide students through the basic steps needed to locate and critically appraise the online scientific literature while linking users to quality electronic resources to support evidence-based practice (EBP). Testing of the tool took place in a mixed-method, quasi-experimental, and two-population randomized controlled trial (RCT) design in a U.S. and Middle East university. A statistically significant improvement in overall research skills was supported in the quasi-experimental nursing student group and RCT nutrition student group using the EBR tool. A statistically significant proportional difference was supported in the RCT nutrition and PharmD intervention groups in participants' ability to distinguish the credibility of online source materials compared with controls. The majority of participants could correctly apply PICOTS to a case study when using the tool. The data from this preliminary study suggests that the EBR tool enhanced student overall research skills and selected EBP skills while generating data for assessment of learning outcomes. The EBR tool places evidence-based resources at the fingertips of users by addressing some of the most commonly cited barriers to research utilization while exposing users to information and online literacy standards of practice, meeting a growing need within nursing curricula. © 2016 Sigma Theta Tau International.
Progress in Electron Beam Mastering of 100 Gbit/inch2 Density Disc
NASA Astrophysics Data System (ADS)
Takeda, Minoru; Furuki, Motohiro; Yamamoto, Masanobu; Shinoda, Masataka; Saito, Kimihiro; Aki, Yuichi; Kawase, Hiroshi; Koizumi, Mitsuru; Miyokawa, Toshiaki; Mutou, Masao; Handa, Nobuo
2004-07-01
We developed an electron beam recorder (EBR) capable of recording master discs under atmospheric conditions using a novel differential pumping head. Using the EBR and optimized fabrication process for Si-etched discs with reactive ion etching (RIE), a bottom signal jitter of 9.6% was obtained from a 36 Gbit/inch2 density disc, readout using a near-field optical pickup with an effective numerical aperture (NA) of 1.85 and a wavelength of 405 nm. We also obtained the eye patterns from a 70 Gbit/inch2 density disc readout using an optical pickup with a 2.05 NA and the same wavelength, and showed almost the same modulation ratio as the simulation value. Moreover, the capability of producing pit patterns corresponding to a 104 Gbit/inch2 density is demonstrated.
You, Quanyuan; Zhai, Keran; Yang, Donglei; Yang, Weibing; Wu, Jingni; Liu, Junzhong; Pan, Wenbo; Wang, Jianjun; Zhu, Xudong; Jian, Yikun; Liu, Jiyun; Zhang, Yingying; Deng, Yiwen; Li, Qun; Lou, Yonggen; Xie, Qi; He, Zuhua
2016-12-14
Programmed cell death (PCD) and immunity in plants are tightly controlled to promote antimicrobial defense while preventing autoimmunity. However, the mechanisms contributing to this immune homeostasis are poorly understood. Here, we isolated a rice mutant ebr1 (enhanced blight and blast resistance 1) that shows enhanced broad-spectrum bacterial and fungal disease resistance, but displays spontaneous PCD, autoimmunity, and stunted growth. EBR1 encodes an E3 ubiquitin ligase that interacts with OsBAG4, which belongs to the BAG (Bcl-2-associated athanogene) family that functions in cell death, growth arrest, and immune responses in mammals. EBR1 directly targets OsBAG4 for ubiquitination-mediated degradation. Elevated levels of OsBAG4 in rice are necessary and sufficient to trigger PCD and enhanced disease resistance to pathogenic infection, most likely by activating pathogen-associated molecular patterns-triggered immunity (PTI). Together, our study suggests that an E3-BAG module orchestrates innate immune homeostasis and coordinates the trade-off between defense and growth in plants. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Barr, Christopher M.; Felfer, Peter J.; Cole, James I.; Taheri, Mitra L.
2018-06-01
Radiation induced segregation in austenitic Fe-Ni-Cr stainless steels is a key detrimental microstructural modification experienced in the current generation of light water reactors. In particular, Cr depletion at grain boundaries can be a significant factor in irradiation-assisted stress corrosion cracking. Therefore, having a complete knowledge and mechanistic understanding of radiation induced segregation at high dose and after a long thermal history is desired for continued sustainability of existing reactors. Here, we examine a 12% cold worked AISI 316 stainless steel hexagonal duct exposed in the lower dose, outer blanket region of the EBR-II reactor, by using advanced characterization and analysis techniques including atom probe tomography and analytical scanning transmission electron microscopy. Contrary to existing literature, we observe an oscillatory w-shape Cr and M-shape Ni concentration profile at 31 dpa. The presence and characterization through advanced atom probe tomography analysis of the w-shape Cr RIS profile is discussed in the context of the localized GB plane interfacial excess of the other major and minor alloying elements. The key finding of a co-segregation phenomena coupling Cr, Mo, and C is discussed in the context of the existing solute segregation literature under irradiation with emphasis on improved spatial and chemical resolution of atom probe tomography.
Xi, Zhu-mei; Zhang, Zhen-wen; Huo, Shan-shan; Luan, Li-ying; Gao, Xiang; Ma, Li-na; Fang, Yu-lin
2013-12-01
The objective of this study is to investigate the influence of application of exogenous 24-epibrassinolide (EBR) on the antioxidant capacity, anthocyanins and phenolics content of Vitis vinifera grape berry (cvs. Yan 73 and Cabernet Sauvignon). The grapevine clusters were sprayed with 0 (control), 0.10, 0.40, or 0.80 mg/l of 24-epibrassinolide during veraison, respectively. The EBR application increased the activities of phenylalanine ammonia-lyase (PAL) and UDP-glucose: flavonoid 3-O-glucosyltransferase (UFGT), the content of total phenolics, tannins, flavonoids and anthocyanins, individual anthocyanins and the antioxidant capacity of matured grape skins in both varieties. The application also increased the content of flavonoids and anthocyanins in Yan73 pulp. Compared to the other treatments, the treatment of EBR at 0.40 mg/l had significantly higher level than the control in all above assays. Our results indicated that the exogenous EBR treatment can significantly promote grape ripening and enhance anthocyanins and other phenolics contents and antioxidant capacity in the grape skin. Copyright © 2013 Elsevier Ltd. All rights reserved.
Elbasha, E; Greaves, W; Roth, D; Nwankwo, C
2017-04-01
Among patients with chronic kidney disease (CKD) in the United States, HCV infection causes significant morbidity and mortality and results in substantial healthcare costs. A once-daily oral regimen of elbasvir/grazoprevir (EBR/GZR) for 12 weeks was found to be a safe and efficacious treatment for HCV in patients with CKD. We evaluated the cost-effectiveness of EBR/GZR in treatment-naïve and treatment-experienced CKD patients compared with no treatment (NoTx) and pegylated interferon plus ribavirin (peg-IFN/RBV) using a computer-based model of the natural history of chronic HCV genotype 1 infection, CKD and liver disease. Data on baseline characteristics of the simulated patients were obtained from NHANES, 2000-2010. Model inputs were estimated from published studies. Cost of treatment with EBR/GZR and peg-INF/RBV were based on wholesale acquisition cost. All costs were from a third-party payer perspective and were expressed in 2015 U.S. dollars. We estimated lifetime incidence of liver-related complications, liver transplantation, kidney transplantation, end-stage live disease mortality and end-stage renal disease mortality; lifetime quality-adjusted life years (QALY); and incremental cost-utility ratios (ICUR). The model predicted that EBR/GZR will significantly reduce the incidence of liver-related complications and prolong life in patients with chronic HCV genotype 1 infection and CKD compared with NoTx or use of peg-IFN/RBV. EBR/GZR-based regimens resulted in higher average remaining QALYs and higher costs (11.5716, $191 242) compared with NoTx (8.9199, $156 236) or peg-INF/RBV (10.2857, $186 701). Peg-IFN/RBV is not cost-effective, and the ICUR of EBR/GZR compared with NoTx was $13 200/QALY. Treatment of a patient on haemodialysis with EBR/GZR resulted in a higher ICUR ($217 000/QALY). Assuming a threshold of $100 000 per QALY gained for cost-effectiveness, use of elbasvir/grazoprevir to treat an average patient with CKD can be considered cost-effective in the United States. © 2016 Merck Sharp & Dohme Corp. Journal of Viral Hepatitis Published by John Wiley & Sons Ltd.
Posttest examination results of recent treat tests on metal fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holland, J.W.; Wright, A.E.; Bauer, T.H.
A series of in-reactor transient tests is underway to study the characteristics of metal-alloy fuel during transient-overpower-without-scam conditions. The initial tests focused on determining the margin to cladding breach and the axial fuel motions that would mitigate the power excursion. The tests were conducted in flowing-sodium loops with uranium - 5% fissium EBR-II Mark-II driver fuel elements in the TREAT facility. Posttest examination of the tests evaluated fuel elongation in intact pins and postfailure fuel motion. Microscopic examination of the intact pins studied the nature and extent of fuel/cladding interaction, fuel melt fraction and mass distribution, and distribution of porosity.more » Eutectic penetration and failure of the cladding were also examined in the failed pins.« less
Secure Retrieval of FFTF Testing, Design, and Operating Information
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butner, R. Scott; Wootan, David W.; Omberg, Ronald P.
One of the goals of the Advanced Fuel Cycle Initiative (AFCI) is to preserve the knowledge that has been gained in the United States on Liquid Metal Reactors (LMR). In addition, preserving LMR information and knowledge is part of a larger international collaborative activity conducted under the auspices of the International Atomic Energy Agency (IAEA). A similar program is being conducted for EBR-II at the Idaho Nuclear Laboratory (INL) and international programs are also in progress. Knowledge preservation at the FFTF is focused on the areas of design, construction, startup, and operation of the reactor. As the primary function ofmore » the FFTF was testing, the focus is also on preserving information obtained from irradiation testing of fuels and materials. This information will be invaluable when, at a later date, international decisions are made to pursue new LMRs. In the interim, this information may be of potential use for international exchanges with other LMR programs around the world. At least as important in the United States, which is emphasizing large-scale computer simulation and modeling, this information provides the basis for creating benchmarks for validating and testing these large scale computer programs. Although the preservation activity with respect to FFTF information as discussed below is still underway, the team of authors above is currently retrieving and providing experimental and design information to the LMR modeling and simulation efforts for use in validating their computer models. On the Hanford Site, the FFTF reactor plant is one of the facilities intended for decontamination and decommissioning consistent with the cleanup mission on this site. The reactor facility has been deactivated and is being maintained in a cold and dark minimal surveillance and maintenance mode until final decommissioning is pursued. In order to ensure protection of information at risk, the program to date has focused on sequestering and secure retrieval. Accomplishments include secure retrieval of: more than 400 boxes of FFTF information, several hundred microfilm reels including Clinch River Breeder Reactor (CRBR) information, and 40 boxes of information on the Fuels and Materials Examination Facility (FMEF). All information preserved to date is now being stored and categorized consistent with the IAEA international standardized taxonomy. Earlier information largely related to irradiation testing is likewise being categorized. The fuel test results information exists in several different formats depending upon the final stage of the test evaluation. In some cases there is information from both non-destructive and destructive examination while in other cases only non-destructive results are available. Non-destructive information would include disassembly records, dimensional profilometry, gamma spectrometry, and neutron radiography. Information from destructive examinations would include fission gas analysis, metallography, and photomicrographs. Archiving of FFTF data, including both the reactor plant and the fuel test information, is being performed in coordination with other data archiving efforts underway under the aegis of the AFCI program. In addition to the FFTF efforts, archiving of data from the EBR-II reactor is being carried out by INL. All material at risk associated with FFTF documentation has been secured in a timely manner consistent with the stated plan. This documentation is now being categorized consistent with internationally agreed upon IAEA standards. Documents are being converted to electronic format for transfer to a large searchable electronic database being developed by INL. In addition, selected FFTF information is being used to generate test cases for large-scale simulation modeling efforts and for providing Design Data Need (DDN) packages as requested by the AFCI program.« less
Effects of meditation practice on spontaneous eyeblink rate.
Kruis, Ayla; Slagter, Heleen A; Bachhuber, David R W; Davidson, Richard J; Lutz, Antoine
2016-05-01
A rapidly growing body of research suggests that meditation can change brain and cognitive functioning. Yet little is known about the neurochemical mechanisms underlying meditation-related changes in cognition. Here, we investigated the effects of meditation on spontaneous eyeblink rates (sEBR), a noninvasive peripheral correlate of striatal dopamine activity. Previous studies have shown a relationship between sEBR and cognitive functions such as mind wandering, cognitive flexibility, and attention-functions that are also affected by meditation. We therefore expected that long-term meditation practice would alter eyeblink activity. To test this, we recorded baseline sEBR and intereyeblink intervals (IEBI) in long-term meditators (LTM) and meditation-naive participants (MNP). We found that LTM not only blinked less frequently, but also showed a different eyeblink pattern than MNP. This pattern had good to high degree of consistency over three time points. Moreover, we examined the effects of an 8-week course of mindfulness-based stress reduction on sEBR and IEBI, compared to an active control group and a waitlist control group. No effect of short-term meditation practice was found. Finally, we investigated whether different types of meditation differentially alter eyeblink activity by measuring sEBR and IEBI after a full day of two kinds of meditation practices in the LTM. No effect of meditation type was found. Taken together, these findings may suggest either that individual difference in dopaminergic neurotransmission is a self-selection factor for meditation practice, or that long-term, but not short-term meditation practice induces stable changes in baseline striatal dopaminergic functioning. © 2016 Society for Psychophysiological Research.
Effects of Meditation Practice on Spontaneous Eye Blink Rate
Kruis, Ayla; Slagter, Heleen A.; Bachhuber, David R.W.; Davidson, Richard J.; Lutz, Antoine
2016-01-01
A rapidly growing body of research suggests that meditation can change brain and cognitive functioning. Yet little is known about the neurochemical mechanisms underlying meditation-related changes in cognition. Here we investigated the effects of meditation on spontaneous Eye Blink Rates (sEBR), a non-invasive peripheral correlate of striatal dopamine activity. Previous studies have shown a relationship between sEBR and cognitive functions such as mind-wandering, cognitive flexibility, and attention–functions that are also affected by meditation. We therefore expected that long-term meditation practice would alter eye-blink activity. To test this, we recorded baseline sEBR and Inter Eye-Blink Intervals (IEBI) in long-term meditators (LTM) and meditation naive participants (MNP). We found that LTM not only blinked less frequently, but also showed a different eye-blink pattern than MNP. This pattern had good to high degree of consistency over three time points. Moreover, we examined the effects of an 8 week-course of Mindfulness Based Stress Reduction (MBSR) on sEBR and IEBI, compared to an active control group and a waitlist-control group. No effect of short-term meditation practice was found. Finally, we investigated whether different types of meditation differentially alter eye blink activity by measuring sEBR and IEBI after a full day of two kinds of meditation practices in the LTM. No effect of meditation type was found. Taken together, these findings may suggest either that individual difference in dopaminergic neurotransmission is a self-selection factor for meditation practice, or that long-term, but not short-term meditation practice induces stable changes in baseline striatal dopaminergic functioning. PMID:26871460
Heilbrun, Marta E
2009-12-01
Introduce radiology residents to evidence-based radiology (EBR) using a journal club format based on the Radiology Alliance for Health Services Research/American Alliance of Academic Chief Residents in Radiology (RAHSR/A3CR2) Critical Thinking Skills sessions and EBR series of articles published in Radiology in 2007. The club began with a presentation outlining the process that would occur in an alternating format, with topics and articles chosen by residents. In session A, questions were rephrased in a Patient/Population, Intervention, Comparison, Outcome format, and a literature search was performed. Articles were discussed in session B, with residents assigned by year to the tasks of article summary, technology assessment, and comparison to checklists (Standards for Reporting of Diagnostic Accuracy, Consolidated Standards of Reporting Trials, or Quality of Reporting of Meta-analysis). The residents collectively assigned a level of evidence to each article, and a scribe provided a summary. Twenty-two residents participated, with 12/22 (55%) of residents submitting any question, 6/22 (27.3%) submitting more than one question, and 4 residents submitting questions in more than one session. Topics included radiation risk, emergency radiology, screening examinations, modality comparisons, and technology assessment. Of the 31 articles submitted for review, 15 were in radiology journals and 5 were published before 2000. For 2/9 topics searched, no single article that the residents selected was available through our library's subscription service. The maximum level of evidence assigned by residents was level III, "limited evidence." In each session, the residents concluded that they became less confident in the "right answer." They proposed that future reading recommendations come from attendings rather than literature searches. A journal club format is an effective tool to teach radiology residents EBR principles. Resistance comes from the difficulty in accessing good literature for review and in constructing good review questions.
Mosalaei, A; Mohammadianpanah, M; Omidvari, S; Ahmadloo, N
2006-01-01
This retrospective analysis aims to report results of patients with cancer of uterine cervix treated with external-beam radiotherapy (EBR) and high-dose rate (HDR) brachytherapy, using manual treatment planning. From 1975 to 1995, 237 patients with FIGO stages IIB-IVA and mean age of 54.31 years were treated. EBR dose to the whole pelvis was 50 Gy in 25 fractions. Brachytherapy with HDR after-loading cobalt source (Cathetron) was performed following EBR completion with a dose of 30 Gy in three weekly fractions of 10 Gy to point A. Survival, local control, and genitourinary and gastrointestinal complications were assessed. In a median follow-up of 60.2 months, the 10-year overall and disease-free survival rate was 62.4%. Local recurrence was seen in 12.2% of patients. Distant metastases to the lymph nodes, peritoneum, lung, liver, and bone occurred in 25.3% of patients. Less than 6% of patients experienced severe genitourinary and/or gastrointestinal toxicity that were relieved by surgical intervention. No treatment-related mortality was seen. This series suggests that 50 Gy to the whole pelvis together with three fractions of 10 Gy to point A with HDR brachytherapy is an effective fractionation schedule in the treatment of locally advanced cancer of cervix. To decrease the complications, newer devices and treatment planning may be beneficial.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mariani, R.D.; Benedict, R.W.; Lell, R.M.
1996-05-01
As part of the termination activities of Experimental Breeder Reactor II (EBR-II) at Argonne National Laboratory (ANL) West, the spent metallic fuel from EBR-II will be treated in the fuel cycle facility (FCF). A key component of the spent-fuel treatment process in the FCF is the electrorefiner (ER) in which the actinide metals are separated from the active metal fission products and the reactive bond sodium. In the electrorefining process, the metal fuel is anodically dissolved into a high-temperature molten salt, and refined uranium or uranium/plutonium products are deposited at cathodes. The criticality safety strategy and analysis for the ANLmore » West FCF ER is summarized. The FCF ER operations and processes formed the basis for evaluating criticality safety and control during actinide metal fuel refining. To show criticality safety for the FCF ER, the reference operating conditions for the ER had to be defined. Normal operating envelopes (NOEs) were then defined to bracket the important operating conditions. To keep the operating conditions within their NOEs, process controls were identified that can be used to regulate the actinide forms and content within the ER. A series of operational checks were developed for each operation that will verify the extent or success of an operation. The criticality analysis considered the ER operating conditions at their NOE values as the point of departure for credible and incredible failure modes. As a result of the analysis, FCF ER operations were found to be safe with respect to criticality.« less
Ellis, Amy E; Simiola, Vanessa; Brown, Laura; Courtois, Christine; Cook, Joan M
2018-01-01
The purpose of this paper was to systematically review and synthesize the empirical literature on the effects of evidence-based therapy relationship (EBR) variables in the psychological treatment for adults who experienced trauma-related distress. Studies were identified using comprehensive searches of PsycINFO, Medline, Published International Literature on Traumatic Stress, and Cumulative Index to Nursing and Allied Health Literature databases. Included in the review were articles published between 1980 and 2015, in English that reported on the impact of EBRs on treatment outcome in clinical samples of adult trauma survivors. Nineteen unique studies met inclusion criteria. The bulk of the studies were on therapeutic alliance and the vast majority found that alliance was predictive of or associated with a reduction in various symptomotology. Methodological concerns included the use of small sample sizes, little information on EBRs beyond alliance as well as variability in its measurement, and non-randomized assignment to treatment conditions or the lack of a comparison group. More research is needed on the roles of client feedback, managing countertransference, and other therapist characteristics on treatment outcome with trauma survivors. Understanding the role of EBRs in the treatment of trauma survivors may assist researchers, clinicians, and psychotherapy educators to improve therapist training as well as client engagement and retention in treatment.
Toyoda, Hidenori; Atsukawa, Masanori; Takaguchi, Koichi; Senoh, Tomonori; Michitaka, Kojiro; Hiraoka, Atsushi; Fujioka, Shinichi; Kondo, Chisa; Okubo, Tomomi; Uojima, Haruki; Tada, Toshifumi; Yoneyama, Hirohito; Watanabe, Tsunamasa; Asano, Toru; Ishikawa, Toru; Tamai, Hideyuki; Abe, Hiroshi; Kato, Keizo; Tsuji, Kunihiko; Ogawa, Chikara; Shimada, Noritomo; Iio, Etsuko; Deguchi, Akihiro; Itobayashi, Ei; Mikami, Shigeru; Moriya, Akio; Okubo, Hironao; Tani, Joji; Tsubota, Akihito; Tanaka, Yasuhito; Masaki, Tsutomu; Iwakiri, Katsuhiko; Kumada, Takashi
2018-05-08
The real-world virological efficacy and safety of an interferon (IFN)-free direct-acting antiviral (DAA) therapy with elbasvir (EBR) and grazoprevir (GZR) were evaluated in Japanese patients chronically infected with hepatitis C virus (HCV) genotype 1. The rate of sustained virologic response (SVR) and safety were analyzed in patients who started the EBR/GZR regimen between November 2016 and July 2017. SVR rates were compared based on patient baseline characteristics. Overall, 371 of 381 patients (97.4%) achieved SVR. Multivariate analysis identified a history of failure to IFN-free DAA therapy and the presence of double resistance-associated substitutions (RASs) in HCV non-structural protein 5A (NS5A) as factors significantly associated with failure to EBR/GZR treatment. The SVR rates of patients with a history of IFN-free DAA therapy and those with double RASs were 55.6 and 63.6%, respectively. In all other subpopulations, the SVR rates were more than 90%. There were no severe adverse events associated with the treatment. The EBR/GZR regimen yielded high virological efficacy with acceptable safety. Patients with a history of failure to IFN-free DAA therapy or with double RASs in HCV-NS5A remained difficult to treat with this regimen.
Use of freeze-casting in advanced burner reactor fuel design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lang, A. L.; Yablinsky, C. A.; Allen, T. R.
2012-07-01
This paper will detail the modeling of a fast reactor with fuel pins created using a freeze-casting process. Freeze-casting is a method of creating an inert scaffold within a fuel pin. The scaffold is created using a directional solidification process and results in open porosity for emplacement of fuel, with pores ranging in size from 300 microns to 500 microns in diameter. These pores allow multiple fuel types and enrichments to be loaded into one fuel pin. Also, each pore could be filled with varying amounts of fuel to allow for the specific volume of fission gases created by thatmore » fuel type. Currently fast reactors, including advanced burner reactors (ABR's), are not economically feasible due to the high cost of operating the reactors and of reprocessing the fuel. However, if the fuel could be very precisely placed, such as within a freeze-cast scaffold, this could increase fuel performance and result in a valid design with a much lower cost per megawatt. In addition to competitive costs, freeze-cast fuel would also allow for selective breeding or burning of actinides within specific locations in fast reactors. For example, fast flux peak locations could be utilized on a minute scale to target specific actinides for transmutation. Freeze-cast fuel is extremely flexible and has great potential in a variety of applications. This paper performs initial modeling of freeze-cast fuel, with the generic fast reactor parameters for this model based on EBR-II. The core has an assumed power of 62.5 MWt. The neutronics code used was Monte Carlo N-Particle (MCNP5) transport code. Uniform pore sizes were used in increments of 100 microns. Two different freeze-cast scaffold materials were used: ceramic (MgO-ZrO{sub 2}) and steel (SS316L). Separate models were needed for each material because the freeze-cast ceramic and metal scaffolds have different structural characteristics and overall porosities. Basic criticality results were compiled for the various models. Preliminary results show that criticality is achievable with freeze-cast fuel pins despite the significant amount of inert fuel matrix. Freeze casting is a promising method to achieve very precise fuel placement within fuel pins. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. Frank
The current method for the immobilization of fission products that accumulate in electrorefiner salt during the electrochemical processing of used metallic nuclear fuel is to encapsulate the electrorefiner salt in a glass-bonded sodalite ceramic waste form. This process was developed by Argonne National Laboratory in the USA and is currently performed at the Idaho National Laboratory for the treatment of Experimental Breeder Reactor-II (EBR-II) used fuel. This process utilizes a “once-through” option for the disposal of spent electrorefiner salt; where, after the treatment of the EBR-II fuel, the electrorefiner salt containing the active fission products will be disposed of inmore » the ceramic waste form (CWF). The CWF produced will have low fission product loading of approximately 2 to 5 weight percent due to the limited fuel inventory currently being processed. However; the design and implementation of advanced electrochemical processing facilities to treat used fuel would process much greater quantities fuel. With an advanced processing facility, it would be necessary to selectively remove fission products from the electrorefiner salt for salt recycle and to concentrate the fission products to reduce the volume of high-level waste from the treatment facility. The Korean Atomic Energy Research Institute and the Idaho National Laboratory have been collaborating on I-NERI research projects for a number of years to investigate both aspects of selective fission product separation from electrorefiner salt, and to develop advanced waste forms for the immobilization of the collected fission products. The first joint KAERI/INL I-NERI project titled: 2006-002-K, Separation of Fission Products from Molten LiCl-KCl Salt Used for Electrorefining of Metal Fuels, was successfully completed in 2009 by concentrating and isolating fission products from actual electrorefiner salt used for the treated used EBR-II fuel. Two separation methods were tested and from these tests were produced concentrated salt products that acted as the feed material for development of advanced waste forms investigated in this proposal. Accomplishments from the first year activities associated with this I-NERI project included the down selection of candidate waste forms to immobilize fission products separated from electrorefiner salt, and the design of equipment to fabricate actual waste forms in the Hot Fuels Examination Facility (HFEF) at the INL. Reported in this document are accomplishments from the second year (FY10) work performed at the INL, and includes the testing of waste form fabrication equipment, repeating the fission product precipitation experiment, and initial waste form fabrication efforts.« less
Liu, Chengyu; Zhao, Lina; Tang, Hong; Li, Qiao; Wei, Shoushui; Li, Jianqing
2016-08-01
False alarm (FA) rates as high as 86% have been reported in intensive care unit monitors. High FA rates decrease quality of care by slowing staff response times while increasing patient burdens and stresses. In this study, we proposed a rule-based and multi-channel information fusion method for accurately classifying the true or false alarms for five life-threatening arrhythmias: asystole (ASY), extreme bradycardia (EBR), extreme tachycardia (ETC), ventricular tachycardia (VTA) and ventricular flutter/fibrillation (VFB). The proposed method consisted of five steps: (1) signal pre-processing, (2) feature detection and validation, (3) true/false alarm determination for each channel, (4) 'real-time' true/false alarm determination and (5) 'retrospective' true/false alarm determination (if needed). Up to four signal channels, that is, two electrocardiogram signals, one arterial blood pressure and/or one photoplethysmogram signal were included in the analysis. Two events were set for the method validation: event 1 for 'real-time' and event 2 for 'retrospective' alarm classification. The results showed that 100% true positive ratio (i.e. sensitivity) on the training set were obtained for ASY, EBR, ETC and VFB types, and 94% for VTA type, accompanied by the corresponding true negative ratio (i.e. specificity) results of 93%, 81%, 78%, 85% and 50% respectively, resulting in the score values of 96.50, 90.70, 88.89, 92.31 and 64.90, as well as with a final score of 80.57 for event 1 and 79.12 for event 2. For the test set, the proposed method obtained the score of 88.73 for ASY, 77.78 for EBR, 89.92 for ETC, 67.74 for VFB and 61.04 for VTA types, with the final score of 71.68 for event 1 and 75.91 for event 2.
Durand, Christine M; Bowring, Mary G; Brown, Diane M; Chattergoon, Michael A; Massaccesi, Guido; Bair, Nichole; Wesson, Russell; Reyad, Ashraf; Naqvi, Fizza F; Ostrander, Darin; Sugarman, Jeremy; Segev, Dorry L; Sulkowski, Mark; Desai, Niraj M
2018-04-17
Given the high mortality rate for patients with end-stage kidney disease receiving dialysis and the efficacy and safety of hepatitis C virus (HCV) treatments, discarded kidneys from HCV-infected donors may be a neglected public health resource. To determine the tolerability and feasibility of using direct-acting antivirals (DAAs) as prophylaxis before and after kidney transplantation from HCV-infected donors to non-HCV-infected recipients (that is, HCV D+/R- transplantation). Open-label nonrandomized trial. (ClinicalTrials.gov: NCT02781649). Single center. 10 HCV D+/R- kidney transplant candidates older than 50 years with no available living donors. Transplantation of kidneys from deceased donors aged 13 to 50 years with positive HCV RNA and HCV antibody test results. All recipients received a dose of grazoprevir (GZR), 100 mg, and elbasvir (EBR), 50 mg, immediately before transplantation. Recipients of kidneys from donors with genotype 1 infection continued receiving GZR-EBR for 12 weeks after transplantation; those receiving organs from donors with genotype 2 or 3 infection had sofosbuvir, 400 mg, added to GZR-EBR for 12 weeks of triple therapy. The primary safety outcome was the incidence of adverse events related to GZR-EBR treatment. The primary efficacy outcome was the proportion of recipients with an HCV RNA level below the lower limit of quantification 12 weeks after prophylaxis. Among 10 HCV D+/R- transplant recipients, no treatment-related adverse events occurred, and HCV RNA was not detected in any recipient 12 weeks after treatment. Nonrandomized study design and a small number of patients. Pre- and posttransplantation HCV treatment was safe and prevented chronic HCV infection in HCV D+/R- kidney transplant recipients. If confirmed in larger studies, this strategy should markedly expand organ options and reduce mortality for kidney transplant candidates without HCV infection. Merck Sharp & Dohme.
Modeling of thermo-mechanical and irradiation behavior of mixed oxide fuel for sodium fast reactors
NASA Astrophysics Data System (ADS)
Karahan, Aydın; Buongiorno, Jacopo
2010-01-01
An engineering code to model the irradiation behavior of UO2-PuO2 mixed oxide fuel pins in sodium-cooled fast reactors was developed. The code was named fuel engineering and structural analysis tool (FEAST-OXIDE). FEAST-OXIDE has several modules working in coupled form with an explicit numerical algorithm. These modules describe: (1) fission gas release and swelling, (2) fuel chemistry and restructuring, (3) temperature distribution, (4) fuel-clad chemical interaction and (5) fuel-clad mechanical analysis. Given the fuel pin geometry, composition and irradiation history, FEAST-OXIDE can analyze fuel and cladding thermo-mechanical behavior at both steady-state and design-basis transient scenarios. The code was written in FORTRAN-90 program language. The mechanical analysis module implements the LIFE algorithm. Fission gas release and swelling behavior is described by the OGRES and NEFIG models. However, the original OGRES model has been extended to include the effects of joint oxide gain (JOG) formation on fission gas release and swelling. A detailed fuel chemistry model has been included to describe the cesium radial migration and JOG formation, oxygen and plutonium radial distribution and the axial migration of cesium. The fuel restructuring model includes the effects of as-fabricated porosity migration, irradiation-induced fuel densification, grain growth, hot pressing and fuel cracking and relocation. Finally, a kinetics model is included to predict the clad wastage formation. FEAST-OXIDE predictions have been compared to the available FFTF, EBR-II and JOYO databases, as well as the LIFE-4 code predictions. The agreement was found to be satisfactory for steady-state and slow-ramp over-power accidents.
Urry, R J; Clarke, D L; Bruce, J L; Laing, G L
2016-05-01
The purpose of this study is to provide a comprehensive overview of the incidence, spectrum and outcomes of traumatic bladder injury in Pietermaritzburg, South Africa, and to identify the current optimal investigation and management of patients with traumatic bladder injuries. The Pietermaritzburg Metropolitan Trauma Service (PMTS) trauma registry was interrogated retrospectively for all traumatic bladder injuries between 1 January 2012 and 31 October 2014. Of 8129 patients treated by the PMTS over the study period, 58 patients (0.7% or 6.5 cases per 1,000,000 population per year) had bladder injuries, 65% caused by penetrating trauma and 35% by blunt trauma. The majority (60%) were intraperitoneal bladder ruptures (IBRs), followed by 22% extraperitoneal bladder ruptures (EBRs). There was a high rate of associated injury, with blunt trauma being associated with pelvic fracture and penetrating trauma being associated with rectum and small intestine injuries. The mortality rate was 5%. Most bladder injuries were diagnosed at surgery or by computed tomography (CT) scan. All IBRs were managed operatively, as well as 38% of EBRs; the remaining EBRs were managed by catheter drainage and observation. In the majority of operative repairs, the bladder was closed in two layers, and was drained with only a urethral catheter. Most patients (91%) were managed definitively by the surgeons on the trauma service. Traumatic bladder rupture caused by blunt or penetrating trauma is rare and mortality is due to associated injuries. CT scan is the investigative modality of choice. In our environment IBR is more common than EBR and requires operative management. Most EBRs can be managed non-operatively, and then require routine follow-up cystography. Simple traumatic bladder injuries can be managed definitively by trauma surgeons. A dedicated urological surgeon should be consulted for complex injuries. Copyright © 2016 Elsevier Ltd. All rights reserved.
Can cyclist safety be improved with intelligent transport systems?
Silla, Anne; Leden, Lars; Rämä, Pirkko; Scholliers, Johan; Van Noort, Martijn; Bell, Daniel
2017-08-01
In recent years, Intelligent Transport Systems (ITS) have assisted in the decrease of road traffic fatalities, particularly amongst passenger car occupants. Vulnerable Road Users (VRUs) such as pedestrians, cyclists, moped riders and motorcyclists, however, have not been that much in focus when developing ITS. Therefore, there is a clear need for ITS which specifically address VRUs as an integrated element of the traffic system. This paper presents the results of a quantitative safety impact assessment of five systems that were estimated to have high potential to improve the safety of cyclists, namely: Blind Spot Detection (BSD), Bicycle to Vehicle communication (B2V), Intersection safety (INS), Pedestrian and Cyclist Detection System+Emergency Braking (PCDS+EBR) and VRU Beacon System (VBS). An ex-ante assessment method proposed by Kulmala (2010) targeted to assess the effects of ITS for cars was applied and further developed in this study to assess the safety impacts of ITS specifically designed for VRUs. The main results of the assessment showed that all investigated systems affect cyclist safety in a positive way by preventing fatalities and injuries. The estimates considering 2012 accident data and full penetration showed that the highest effects could be obtained by the implementation of PCDS+EBR and B2V, whereas VBS had the lowest effect. The estimated yearly reduction in cyclist fatalities in the EU-28 varied between 77 and 286 per system. A forecast for 2030, taking into accounts the estimated accident trends and penetration rates, showed the highest effects for PCDS+EBR and BSD. Copyright © 2016 Elsevier Ltd. All rights reserved.
Coignard-Biehler, H; Rapp, C; Chapplain, J M; Hoen, B; Che, D; Berthelot, P; Cazenave-Roblot, F; Rabaud, C; Brouqui, P; Leport, C
2018-03-01
In 2012, the French Infectious Diseases Society (French acronym SPILF) initiated the "Coordination of epidemic and biological risk" (SPILF-COREB - Emergences [SCE]) group to support the readiness and response of healthcare workers (HCWs) to new alerts. To present the SCE group, its functioning, and the main support it provided for frontline HCWs. A multidisciplinary group of heads of infectious disease departments from reference hospitals was created to build a network of clinical expertise for care, training, and research in the field of epidemic and biological risk (EBR). The network developed a set of standardized operational procedures (SOPs) to guide interventions to manage EBR-suspect patients. A working group created the SOP aimed at frontline HCWs taking care of patients. Priority was given to the development of a generic procedure, which was then adapted according to the current alert. Five key steps were identified and hierarchized: detecting, protecting, caring for, alerting, and referring the EBR patient. The interaction between clinicians and those responsible for the protection of the community was crucial. The SOPs validated by the SPILF and its affiliates were disseminated to a wide range of key stakeholders through various media including workshops and the SPILF's website. SPILF can easily adapt and timely mobilize the EBR expertise in case of an alert. The present work suggests that sharing and discussing this experience, initiated at the European level, can generate a new collective expertise and needs to be further developed and strengthened. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Therasse, Eric; Donath, David; Elkouri, Stéphane; Lespérance, Jacques; Giroux, Marie-France; Oliva, Vincent L; Guertin, Marie-Claude; Bouchard, Louis; Perreault, Pierre; Gilbert, Patrick; Soulez, Gilles
2016-06-01
The objective of this study was to evaluate the safety and efficacy of external beam radiation (EBR) in preventing restenosis after superficial femoral artery (SFA) stenting in comparison with a control group treated with SFA stenting only. In this Institutional Review Board-approved study, patients who provided written informed consent were randomly assigned to 0 Gy or 14 Gy of EBR to the stent site 24 hours after SFA stenting. The primary end point was the angiographic binary restenosis rate 2 years after stenting. Categorical and continuous end points were respectively analyzed using logistic regression models and Wilcoxon tests. End points expressed as time to event were analyzed using a log-rank test. The study included 155 patients, 46 women and 109 men (mean age, 66 years; range, 45-85 years). In the 0 and 14 Gy groups, binary restenosis was present, respectively, in 44% (34/77) and 68% (52/76; P = .003) 2 years after stenting. Stent thrombosis occurred in 13% (10/78) of the 0 Gy group and in 33% (25/77) of the 14 Gy group (P = .003). Target lesion revascularization at 2 years was 26% (25/78) in the 0 Gy group and 30% (23/77) in the 14 Gy group (P = .56). There were no significant differences in total walking distances change from baseline to 2 years (46 ± 100 and 26 ± 79 m, respectively, in the 0 Gy and 14 Gy group; P = .25). There were no procedure-related deaths and no major amputations. A single 14 Gy dose of EBR to the SFA stenting site did not prevent in-stent restenosis. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
DEVELOPMENT OF OPERATIONAL CONCEPTS FOR ADVANCED SMRs: THE ROLE OF COGNITIVE SYSTEMS ENGINEERING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacques Hugo; David Gertman
Advanced small modular reactors (AdvSMRs) will use advanced digital instrumentation and control systems, and make greater use of automation. These advances not only pose technical and operational challenges, but will inevitably have an effect on the operating and maintenance (O&M) cost of new plants. However, there is much uncertainty about the impact of AdvSMR designs on operational and human factors considerations, such as workload, situation awareness, human reliability, staffing levels, and the appropriate allocation of functions between the crew and various automated plant systems. Existing human factors and systems engineering design standards and methodologies are not current in terms ofmore » human interaction requirements for dynamic automated systems and are no longer suitable for the analysis of evolving operational concepts. New models and guidance for operational concepts for complex socio-technical systems need to adopt a state-of-the-art approach such as Cognitive Systems Engineering (CSE) that gives due consideration to the role of personnel. This approach we report on helps to identify and evaluate human challenges related to non-traditional concepts of operations. A framework - defining operational strategies was developed based on the operational analysis of Argonne National Laboratory’s Experimental Breeder Reactor-II (EBR-II), a small (20MWe) sodium-cooled reactor that was successfully operated for thirty years. Insights from the application of the systematic application of the methodology and its utility are reviewed and arguments for the formal adoption of CSE as a value-added part of the Systems Engineering process are presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bateman, K. J.; Capson, D. D.
2004-03-29
Argonne National Laboratory (ANL) has developed a process to immobilize waste salt containing fission products, uranium, and transuranic elements as chlorides in a glass-bonded ceramic waste form. This salt was generated in the electrorefining operation used in the electrometallurgical treatment of spent Experimental Breeder Reactor-II (EBR-II) fuel. The ceramic waste process culminates with an elevated temperature operation. The processing conditions used by the furnace, for demonstration scale and production scale operations, are to be developed at Argonne National Laboratory-West (ANL-West). To assist in selecting the processing conditions of the furnace and to reduce the number of costly experiments, a finitemore » difference model was developed to predict the consolidation of the ceramic waste. The model accurately predicted the heating as well as the bulk density of the ceramic waste form. The methodology used to develop the computer model and a comparison of the analysis to experimental data is presented.« less
A proposed intense slow positron source based on 58Co
NASA Astrophysics Data System (ADS)
Brown, Benjamin L.; Denison, Art; Makowitz, Henry; Gidley, Dave; Frieze, Bill; Griffin, Henry; Encarnación, Pedro
1994-06-01
Positron beams have proven very useful for condensed matter and surface research. The highest intensity of the current operating positron beams is ˜109 slow e+/second. The goal of our proposal is to build an Intense Slow Positron Source (ISPS) demonstration beam (Phase I) of unprecedented brightness at the Idaho National Engineering Laboratory, INEL (up to 1010 slow e+/s at 5 keV over a <0.03 cm. diameter). This Phase I beam will prove the principles necessary to build a larger facility scale ISPS Phase II beam which will have a potential of 1013 e+/s, or ≳1012 e+/s over 0.03 cm. The INEL is an ideal location for the ISPS because of the fast breeder reactor EBR-II, which is perfectly suited to creating the positron emitting isotope 58Co, and the excellent radioactive materials handling capability and expertise. Sufficient expertise is available at INEL for the construction and operation of a user facility (Phase II).
Eklund, Katie; Tanner, Nick; Stoll, Katie; Anway, Leslie
2015-06-01
The purpose of the current investigation was to compare 1,206 gifted and nongifted elementary students on the identification of emotional and behavioral risk (EBR) as rated by teachers and parents using a multigate, multi-informant approach to assessment. The Parent and Teacher Behavioral Assessment System for Children, Second Edition (BASC-2) and the Behavioral and Emotional Screening System were used to assess behavioral functioning as rated by teachers and parents. There were significant differences between the number of gifted and nongifted children demonstrating emotional and behavioral risk, with parents and teachers identifying a higher number of boys and nongifted children as at risk. Among children demonstrating EBR, gifted children demonstrated elevated internalizing behaviors as rated by parents. Gifted students demonstrated higher academic performance regardless of risk level, suggesting higher cognitive abilities may be one of several protective factors that serve to attenuate the development of other social, emotional, or behavioral concerns. Implications for practice and future research needs are discussed. (c) 2015 APA, all rights reserved).
Ramilo, Andrea; Carrasco, Noelia; Reece, Kimberly S; Valencia, José M; Grau, Amalia; Aceituno, Patricia; Rojas, Mauricio; Gairin, Ignasi; Furones, M Dolores; Abollo, Elvira; Villalba, Antonio
2015-02-01
This study addressed perkinsosis in commercially important mollusc species in the western Mediterranean area. Perkinsus olseni was found in Santa Gilla Lagoon (Sardinia) infecting Ruditapes decussatus, Cerastoderma glaucum and Venerupis aurea, in Balearic Islands infecting Venus verrucosa and in Delta de l'Ebre (NE Spain) parasitising Ruditapes philippinarum and R. decussatus. Perkinsus mediterraneus was detected infecting Ostrea edulis from the Gulf of Manfredonia (SE Italy) and Alacant (E Spain), V. verrucosa and Arca noae from Balearic Islands and Chlamys varia from Balearic Islands, Alacant and Delta de l'Ebre. Copyright © 2014 Elsevier Inc. All rights reserved.
Swelling and gas release in oxide fuels during fast temperature transients
NASA Astrophysics Data System (ADS)
Dollins, C. C.; Jursich, M.
1982-05-01
A previously reported intergranular swelling and gas release model for oxide fuels has been modified to predict fission gas behavior during fast temperature transients. Under steady state or slowly varying conditions it has been assumed in the previous model that the pressure caused by the fission gas within the gas bubbles is in equilibrium with the surface tension of the bubbles. During a fast transient, however, net vacancy migration to the bubbles may be insufficient to maintain this equilibrium. In order to ascertain the net vacancy flow, it is necessary to model the point defect behavior in the fuel. Knowing the net flow of vacancies to the bubble and the bubble size, the bubble diffusivity can be determined and the long range migration of the gas out of the fuel can be calculated. The model has also been modified to allow release of all the gas on the grain boundaries during a fast temperature transient. The gas release predicted by the revised model shows good agreement to fast transient gas release data from an EBR-II TREAT H-3 (Transient Reactor Test Facility) test. Agreement has also been obtained between predictions using the model and gas release data obtained by Argonne National Laboratory from out-of-reactor transient heating experiments on irradiated UO 2. It was found necessary to increase the gas bubble diffusivity used in the model by a factor of thirty during the transient to provide agreement between calculations and measurements. Other workers have also found that such an increase is necessary for agreement and attribute the increased diffusivity to yielding at the bubble surface due to the increased pressure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Y. Q.; Shemon, E. R.; Mahadevan, Vijay S.
SHARP, developed under the NEAMS Reactor Product Line, is an advanced modeling and simulation toolkit for the analysis of advanced nuclear reactors. SHARP is comprised of three physics modules currently including neutronics, thermal hydraulics, and structural mechanics. SHARP empowers designers to produce accurate results for modeling physical phenomena that have been identified as important for nuclear reactor analysis. SHARP can use existing physics codes and take advantage of existing infrastructure capabilities in the MOAB framework and the coupling driver/solver library, the Coupled Physics Environment (CouPE), which utilizes the widely used, scalable PETSc library. This report aims at identifying the coupled-physicsmore » simulation capability of SHARP by introducing the demonstration example called sahex in advance of the SHARP release expected by Mar 2016. sahex consists of 6 fuel pins with cladding, 1 control rod, sodium coolant and an outer duct wall that encloses all the other components. This example is carefully chosen to demonstrate the proof of concept for solving more complex demonstration examples such as EBR II assembly and ABTR full core. The workflow of preparing the input files, running the case and analyzing the results is demonstrated in this report. Moreover, an extension of the sahex model called sahex_core, which adds six homogenized neighboring assemblies to the full heterogeneous sahex model, is presented to test homogenization capabilities in both Nek5000 and PROTEUS. Some primary information on the configuration and build aspects for the SHARP toolkit, which includes capability to auto-download dependencies and configure/install with optimal flags in an architecture-aware fashion, is also covered by this report. A step-by-step instruction is provided to help users to create their cases. Details on these processes will be provided in the SHARP user manual that will accompany the first release.« less
Shahraki, Somaye; Mansouri-Torshizi, Hassan; Sori Nezami, Ziba; Ghahghaei, Arezou; Yaghoubi, Fatemeh; Divsalar, Adeleh; Saboury, Ali-Akbar; H. Shirazi, Farshad
2014-01-01
In depth interaction studies between calf thymus deoxyribonucleic acid (CT-DNA) and a series of four structurally relative palladium(II) complexes [Pd(en)(HB)](NO3)2 (a-d), where en is ethylenediamine and heterocyclic base (HB) is 2,2'-bipyridine (bpy, a); 1,10-phenanthroline (phen, b); dipyridoquinoxaline (dpq, c) and dipyridophenazine (dppz, d) (Figure 1), were performed. These studies have been investigated by utilizing the electronic absorption spectroscopy, fluorescence spectra and ethidium bromide (EBr) displacement and gel filtration techniques. a-d complexes cooperatively bind and denature the DNA at low concentrations. Their concentration at midpoint of transition, L1/2, follows the order a >> b > c > d. Also the g, the number of binding sites per 1000 nucleotides, follows the order a >> b ~ c > d. EBr and Scatchard experiments for a-d complexes suggest efficient intercalative binding affinity to CT-DNA giving the order: d > c > b > a. Several binding and thermodynamic parameters are also described. The biological activity of these cationic and water soluble palladium complexes were tested against chronic myelogenous leukemia cell line, K562. b, c and d complexes show cytotoxic concentration (Cc50) values much lower than cisplatin. PMID:25587317
NASA Astrophysics Data System (ADS)
Markwitz, Christian; Knohl, Alexander; Siebicke, Lukas
2017-04-01
The inclusion of trees into the agricultural landscape of Europe is gaining popularity as a source for energy production. Fast growing tree species such as poplar or willow are included as short rotation coppice or alley cropping systems, which consist of tree alleys interleaved by annual rotating crops or perennial grasslands. Estimating turbulent fluxes of those systems using the eddy-covariance- (ECEB) and bowen-ratio energy-balance (BREB) method is challenging due to the methods limitation to horizontally homogeneous terrain and steady state conditions. As the conditions are not fulfilled for those systems the energy-balance is commonly not fully closed, with the non-closure being site specific. An underestimation of measured heat fluxes leads to an overestimation of the latent heat fluxes inferred from the ECEB method. The aim of our study is to 1) quantify the site specific non-closure of the energy-balance and 2) characterize the performance of both methods, compared to direct eddy-covariance measurements using a high frequency infra-red gas analyzer (LI-7200, Licor Inc.). To assess continuous evapotranspiration (ET) rates on a 30-minute time scale we installed a combined ECEB and BREB system at five alley cropping and five agricultural reference sites across Germany. For time periods of four weeks we performed direct eddy covariance flux measurements for H2O and CO2 over one crop- and one grassland alley cropping- and their respective reference systems during the growing season of 2016. We found a non-closure between 21 and 26 % for all sites, considering all day- and night-time data. The residual energy was highest during the morning and lowest in the afternoon. Related to that the energy-balance ratio (EBR), i.e. the ratio between the turbulent heat fluxes and available energy, was below one in the morning hours and increased slightly during the day up to 1.8, until the EBR decreased sharply after sunset. The EBR correlated to the daily cycle of solar radiation, the main driver of turbulent fluxes. Corresponding, we found an increasing EBR with increasing friction velocity, indicating, that under turbulent condition the energy-balance closure improves. Further, we found that the turbulent fluxes estimated by the BREB method compared well with direct eddy-covariance measurements and that the accuracy improved with increasing sensor distance. We conclude, when calculating ET rates on a 30-minute time scale using the ECEB method the site specific non-closure should be assessed beforehand by eddy-covariance. In the current study, ignoring the non-closure would have lead to an overestimation of the latent heat flux of about 25 % for the ECEB method. For a longer averaging period of one day the overestimation was reduced to less than 5 %.
Neural, Hormonal, and Cognitive Correlates of Metabolic Dysfunction and Emotional Reactivity.
Wolf, Tovah; Tsenkova, Vera; Ryff, Carol D; Davidson, Richard J; Willette, Auriel A
2018-06-01
Prediabetes and type 2 diabetes (i.e., hyperglycemia) are characterized by insulin resistance. These problems with energy metabolism may exacerbate emotional reactivity to negatively valenced stimuli and related phenomena such as predisposition toward negative affect, as well as cognitive deficits. Higher emotional reactivity is seen with hyperglycemia and insulin resistance. However, it is largely unknown how metabolic dysfunction correlates with related neural, hormonal, and cognitive outcomes. Among 331 adults from the Midlife in the United States study, eye-blink response (EBR) we cross sectionally examined to gauge reactivity to negative, positive, or neutrally valenced pictures from international affect picture system stimuli proximal to an acoustic startle probe. Increased EBR to negative stimuli was considered an index of stress reactivity. Frontal alpha asymmetry, a biomarker of negative affect predisposition, was determined using resting electroencephalography. Baseline urinary cortisol output was collected. Cognitive performance was gauged using the Brief Test of Adult Cognition by telephone. Fasting glucose and insulin characterized hyperglycemia or the homeostatic model assessment of insulin resistance. Higher homeostatic model assessment of insulin resistance corresponded to an increased startle response, measured by EBR magnitude, for negative versus positive stimuli (R = 0.218, F(1,457) = 5.48, p = .020, euglycemia: M(SD) = .092(.776), hyperglycemia: M(SD) = .120(.881)). Participants with hyperglycemia versus euglycemia showed greater right frontal alpha asymmetry (F(1,307) = 6.62, p = .011, euglycemia: M(SD) = .018(.167), hyperglycemia: M(SD) = -.029(.160)), and worse Brief Test of Adult Cognition by telephone arithmetic performance (F(1,284) = 4.25, p = .040, euglycemia: M(SD) = 2.390(1.526), hyperglycemia: M(SD) = 1.920(1.462)). Baseline urinary cortisol (log10 μg/12 hours) was also dysregulated in individuals with hyperglycemia (F(1,324) = 5.09, p = .025, euglycemia: M(SD) = 1.052 ± .332, hyperglycemia: M(SD) = .961 (.362)). These results suggest that dysmetabolism is associated with increased emotional reactivity, predisposition toward negative affect, and specific cognitive deficits.
ERIC Educational Resources Information Center
Eklund, Katie; Tanner, Nick; Stoll, Katie; Anway, Leslie
2015-01-01
The purpose of the current investigation was to compare 1,206 gifted and nongifted elementary students on the identification of emotional and behavioral risk (EBR) as rated by teachers and parents using a multigate, multi-informant approach to assessment. The Parent and Teacher Behavioral Assessment System for Children, Second Edition (BASC-2) and…
SCALE UP OF CERAMIC WASTE FORMS FOR THE EBR-II SPENT FUEL TREATMENT PROCESS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthew C. Morrison; Kenneth J. Bateman; Michael F. Simpson
2010-11-01
ABSTRACT SCALE UP OF CERAMIC WASTE FORMS FOR THE EBR-II SPENT FUEL TREATMENT PROCESS Matthew C. Morrison, Kenneth J. Bateman, Michael F. Simpson Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415 The ceramic waste process is the intended method for disposing of waste salt electrolyte, which contains fission products from the fuel-processing electrorefiners (ER) at the INL. When mixed and processed with other materials, the waste salt can be stored in a durable ceramic waste form (CWF). The development of the CWF has recently progressed from small-scale testing and characterization to full-scale implementation and experimentation using surrogate materialsmore » in lieu of the ER electrolyte. Two full-scale (378 kg and 383 kg) CWF test runs have been successfully completed with final densities of 2.2 g/cm3 and 2.1 g/cm3, respectively. The purpose of the first CWF was to establish material preparation parameters. The emphasis of the second pre-qualification test run was to evaluate a preliminary multi-section CWF container design. Other considerations were to finalize material preparation parameters, measure the material height as it consolidates in the furnace, and identify when cracking occurs during the CWF cooldown process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zinkle, S.J.; Alexander, D.J.; Robertson, J.P.
1997-04-01
Tensile, Charpy impact and electrical resistivity measurements have been performed at ORNL on V-4Cr-4Ti and V-5Cr-5Ti specimens that were prepared at ANL and irradiated in the lithium-bonded X530 experiment in the EBR-II fast reactor. All of the specimens were irradiated to a damage level of about 4 dpa at a temperature of {approximately}400{degrees}C. A significant amount of radiation hardening was evident in both the tensile and Charpy impact tests. The irradiated V-4Cr-4Ti yield strength measured at {approximately}390{degrees}C was >800 MPa, which is more than three times as high as the unirradiated value. The uniform elongations of the irradiated tensile specimensmore » were typically {approximately}1%, with corresponding total elongations of 4-6%. The ductile to brittle transition temperature of the irradiated specimens was less than the unirradiated resistivity, which suggests that hardening associated with interstitial solute pickup was minimal.« less
NASA Astrophysics Data System (ADS)
Jones, P. L.; Schaffer, J. P.; Cocks, F. H.; Clinard, F. W.; Hurley, G. F.
1985-01-01
Radiation damage studies of oxides and ceramics have become of increasing importance due to the projected use of these materials in thermonuclear fusion reactors as electronic insulators and first wall materials. In addition these materials are important in RAD waste disposal. As part of a study of the defect structure in radiation damaged ceramics Doppler-broadened positron annihilation spectra have been obtained for a series of single crystal sapphire (α-Al 2O 3) and polycrystal (1:1) and (1:2) magnesium aluminate spinel (MgO·Al 2O 3 and MgO-2Al 2O 3) samples. These samples were irradiated in EBR-II to a fluence of 3 × 10 25 n/m 2 (E > 0.1 MeV) at 740°C, and 2 × 10 26 n/m 2 (E > 0.1 MeV) at ~ 550°C respectively. Positron annihilation spectra lineshapes for the irradiated, annealed, and as-received samples of both materials were compared using S parameter analysis. These calculations were made on deconvoluted gamma ray spectra that were free of any instrumental broadening effects. In this way, absolute S parameter changes could be calculated. The observed changes in the S parameter are consistent with independent volume swelling measurements for both the α-A1 2O 3 and the (1:2) MgAl 2O 4 samples. However, the change in S parameter measured for the (1:1) spinel is contrary to the measured volume change. This apparent anomaly indicates a predominence of interstitial as opposed to vacancy type defects in this material.
NASA Astrophysics Data System (ADS)
Karahan, Aydın; Buongiorno, Jacopo
2010-01-01
An engineering code to predict the irradiation behavior of U-Zr and U-Pu-Zr metallic alloy fuel pins and UO2-PuO2 mixed oxide fuel pins in sodium-cooled fast reactors was developed. The code was named Fuel Engineering and Structural analysis Tool (FEAST). FEAST has several modules working in coupled form with an explicit numerical algorithm. These modules describe fission gas release and fuel swelling, fuel chemistry and restructuring, temperature distribution, fuel-clad chemical interaction, and fuel and clad mechanical analysis including transient creep-fracture for the clad. Given the fuel pin geometry, composition and irradiation history, FEAST can analyze fuel and clad thermo-mechanical behavior at both steady-state and design-basis (non-disruptive) transient scenarios. FEAST was written in FORTRAN-90 and has a simple input file similar to that of the LWR fuel code FRAPCON. The metal-fuel version is called FEAST-METAL, and is described in this paper. The oxide-fuel version, FEAST-OXIDE is described in a companion paper. With respect to the old Argonne National Laboratory code LIFE-METAL and other same-generation codes, FEAST-METAL emphasizes more mechanistic, less empirical models, whenever available. Specifically, fission gas release and swelling are modeled with the GRSIS algorithm, which is based on detailed tracking of fission gas bubbles within the metal fuel. Migration of the fuel constituents is modeled by means of thermo-transport theory. Fuel-clad chemical interaction models based on precipitation kinetics were developed for steady-state operation and transients. Finally, a transient intergranular creep-fracture model for the clad, which tracks the nucleation and growth of the cavities at the grain boundaries, was developed for and implemented in the code. Reducing the empiricism in the constitutive models should make it more acceptable to extrapolate FEAST-METAL to new fuel compositions and higher burnup, as envisioned in advanced sodium reactors. FEAST-METAL was benchmarked against the open-literature EBR-II database for steady state and furnace tests (transients). The results show that the code is able to predict important phenomena such as clad strain, fission gas release, clad wastage, clad failure time, axial fuel slug deformation and fuel constituent redistribution, satisfactorily.
Individual differences in dopamine level modulate the ego depletion effect.
Dang, Junhua; Xiao, Shanshan; Liu, Ying; Jiang, Yumeng; Mao, Lihua
2016-01-01
Initial exertion of self-control impairs subsequent self-regulatory performance, which is referred to as the ego depletion effect. The current study examined how individual differences in dopamine level, as indexed by eye blink rate (EBR), would moderate ego depletion. An inverted-U-shaped relationship between EBR and subsequent self-regulatory performance was found when participants initially engaged in self-control but such relationship was absent in the control condition where there was no initial exertion, suggesting individuals with a medium dopamine level may be protected from the typical ego depletion effect. These findings are consistent with a cognitive explanation which considers ego depletion as a phenomenon similar to "switch costs" that would be neutralized by factors promoting flexible switching. Copyright © 2015 Elsevier B.V. All rights reserved.
Pinellas Plant Environmental Baseline Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Pinellas Plant has been part of the Department of Energy`s (DOE) nuclear weapons complex since the plant opened in 1957. In March 1995, the DOE sold the Pinellas Plant to the Pinellas County Industry Council (PCIC). DOE has leased back a large portion of the plant site to facilitate transition to alternate use and safe shutdown. The current mission is to achieve a safe transition of the facility from defense production and prepare the site for alternative uses as a community resource for economic development. Toward that effort, the Pinellas Plant Environmental Baseline Report (EBR) discusses the current andmore » past environmental conditions of the plant site. Information for the EBR is obtained from plant records. Historical process and chemical usage information for each area is reviewed during area characterizations.« less
Brown, Carl J; Boutros, Marylise; Morris, Andrew; Divino, Celia M
2014-06-01
The term “evidence-based medicine” was first coined by Sackett and colleagues as “the conscientious, explicit and judicious use of current best evidence in making decisions about the care of individual patients.”1 The key to practising evidencebased medicine is applying the best current knowledge to decisions in individual patients. Medical knowledge is continually and rapidly expanding. For clinicians to practise evidence-based medicine, they must have the skills to read and interpret the medical literature so that they can determine the validity, reliability, credibility and utility of individual articles. These skills are known as critical appraisal skills, and they require some knowledge of biostatistics, clinical epidemiology, decision analysis and economics, and clinical knowledge. Evidence Based Reviews in Surgery (EBRS) is a program jointly sponsored by the Canadian Association of General Surgeons (CAGS) and the American College of Surgeons (ACS). The primary objective of EBRS is to help practising surgeons improve their critical appraisal skills. During the academic year, 8 clinical articles are chosen for review and discussion. They are selected for their clinical relevance to general surgeons and because they cover a spectrum of issues im -port ant to surgeons, including causation or risk factors for disease, natural history or prognosis of disease, how to quantify disease, diagnostic tests, early diagnosis and the effectiveness of treatment. A methodological article guides the reader in critical appraisal of the clinical article. Methodological and clinical reviews of the article are performed by experts in the relevant areas and posted on the EBRS website, where they are archived indefinitely. In addition, a listserv allows participants to discuss the monthly article. Surgeons who participate in the monthly packages can obtain Royal College of Physicians and Surgeons of Canada Maintenance of Certification credits and/or continuing medical education credits for the current article only by reading the monthly articles, participating in the listserv discussion, reading the methodological and clinical reviews and completing the monthly online evaluation and multiple choice questions. We hope readers will find EBRS useful in improving their critical appraisal skills and in keeping abreast of new developments in general surgery. Four reviews are published in condensed versions in the Canadian Journal of Surgery, 4 are published in the Journal of the American College of Surgeons and 4 are published in Diseases of the Colon and Rectum. For further information about EBRS, please refer to the CAGS or ACS websites. Questions and comments can be directed to the program administrator, Marg McKenzie, at mmckenzie@mtsinai.on.ca.
NASA Astrophysics Data System (ADS)
Pisani, Bruno; Samper, Javier; García Vera, Miguel Angel
2014-05-01
Climate models predict an increase in temperature, T, and a decrease of precipitation, P, for the Mediterranean regions. These trends will decrease the available water resources, increase the water demand of crops and affect the water quality. The Ebre river basin is one of the largest basins in Spain. Preliminary evaluations of the potential impact of the climate change on its water resources pointed out that the sub-basins located in the Southeastern part of the basin are the most vulnerable. The Jalón river sub-basin is one of such sub-basins. It has a drainage area of 10187 km2 and shows a wide range of climatic, geologic, and land use conditions. The impact of climate change on the water resources of the Jalón River sub-basin has been evaluated for the period 2071-2100 for the A2 and B2 emission scenarios by using a semi-distributed water balance model. The results indicate that the mean annual temperature will rise from 2 to 4 ºC while the mean annual precipitation will decrease from 14% to 18%. Groundwater recharge will decrease dramatically (from 60% to 80%) while the total stream flow will decrease from 59% to 77%. The increase in crop water demand will range from 12% to 16% while the net crop water demand will increase from 25% to 33%. The concentration of a conservative chemical species such as Cl- in the runoff will increase by a factor ranging from 1.45 to 5. These predictions, which may contain uncertainties, have been taken into account in the program of measures of the Ebre river basin water plan. The main sources of uncertainty come from the historic hydrological data, the global and regional circulation models, the definition of the scenarios, the downscaling method and the hydrological model. Acknowledgements. The research leading to these results has received funding from the Ebre River Authority (Proyect 2010-PH-02.I) and a project from the Ministry of Economy and Competitiveness (Project CGL2012-36560). The work of Bruno Pisani was funded by the Galician Regional Government (Fund 2012/181 from "Consolidación e estruturación de unidades de investigación competitivas", Grupos de referencia competitiva).
Use of liquid metals in nuclear and thermonuclear engineering, and in other innovative technologies
NASA Astrophysics Data System (ADS)
Rachkov, V. I.; Arnol'dov, M. N.; Efanov, A. D.; Kalyakin, S. G.; Kozlov, F. A.; Loginov, N. I.; Orlov, Yu. I.; Sorokin, A. P.
2014-05-01
By now, a good deal of experience has been gained with using liquid metals as coolants in nuclear power installations; extensive knowledge has been gained about the physical, thermophysical, and physicochemical properties of these coolants; and the scientific principles and a set of methods and means for handling liquid metals as coolants for nuclear power installations have been elaborated. Prototype and commercialgrade sodium-cooled NPP power units have been developed, including the BOR-60, BN-350, and BN-600 power units (the Soviet Union); the Rapsodie, Phenix, and Superphenix power units (France), the EBR-II power unit (the United States); and the PFR power unit (the United Kingdom). In Russia, dedicated nuclear power installations have been constructed, including those with a lead-bismuth coolant for nuclear submarines and with sodium-potassium alloy for spacecraft (the Buk and Topol installations), which have no analogs around the world. Liquid metals (primarily lithium and its alloy with lead) hold promise for use in thermonuclear power engineering, where they can serve not only as a coolant, but also as tritium-producing medium. In this article, the physicochemical properties of liquid metal coolants, as well as practical experience gained from using them in nuclear and thermonuclear power engineering and in innovative technologies are considered, and the lines of further research works are formulated. New results obtained from investigations carried out on the Pb-Bi and Pb for the SVBR and BREST fast-neutron reactors (referred to henceforth as fast reactors) and for controlled accelerator systems are described.
The impact of binaural beats on creativity
Reedijk, Susan A.; Bolders, Anne; Hommel, Bernhard
2013-01-01
Human creativity relies on a multitude of cognitive processes, some of which are influenced by the neurotransmitter dopamine. This suggests that creativity could be enhanced by interventions that either modulate the production or transmission of dopamine directly, or affect dopamine-driven processes. In the current study we hypothesized that creativity can be influenced by means of binaural beats, an auditory illusion that is considered a form of cognitive entrainment that operates through stimulating neuronal phase locking. We aimed to investigate whether binaural beats affect creative performance at all, whether they affect divergent thinking, convergent thinking, or both, and whether possible effects may be mediated by the individual striatal dopamine level. Binaural beats were presented at alpha and gamma frequency. Participants completed a divergent and a convergent thinking task to assess two important functions of creativity, and filled out the Positive And Negative Affect Scale—mood State questionnaire (PANAS-S) and an affect grid to measure current mood. Dopamine levels in the striatum were estimated using spontaneous eye blink rates (EBRs). Results showed that binaural beats, regardless of the presented frequency, can affect divergent but not convergent thinking. Individuals with low EBRs mostly benefitted from alpha binaural beat stimulation, while individuals with high EBRs were unaffected or even impaired by both alpha and gamma binaural beats. This suggests that binaural beats, and possibly other forms of cognitive entrainment, are not suited for a one-size-fits-all approach, and that individual cognitive-control systems need to be taken into account when studying cognitive enhancement methods. PMID:24294202
The impact of binaural beats on creativity.
Reedijk, Susan A; Bolders, Anne; Hommel, Bernhard
2013-01-01
Human creativity relies on a multitude of cognitive processes, some of which are influenced by the neurotransmitter dopamine. This suggests that creativity could be enhanced by interventions that either modulate the production or transmission of dopamine directly, or affect dopamine-driven processes. In the current study we hypothesized that creativity can be influenced by means of binaural beats, an auditory illusion that is considered a form of cognitive entrainment that operates through stimulating neuronal phase locking. We aimed to investigate whether binaural beats affect creative performance at all, whether they affect divergent thinking, convergent thinking, or both, and whether possible effects may be mediated by the individual striatal dopamine level. Binaural beats were presented at alpha and gamma frequency. Participants completed a divergent and a convergent thinking task to assess two important functions of creativity, and filled out the Positive And Negative Affect Scale-mood State questionnaire (PANAS-S) and an affect grid to measure current mood. Dopamine levels in the striatum were estimated using spontaneous eye blink rates (EBRs). Results showed that binaural beats, regardless of the presented frequency, can affect divergent but not convergent thinking. Individuals with low EBRs mostly benefitted from alpha binaural beat stimulation, while individuals with high EBRs were unaffected or even impaired by both alpha and gamma binaural beats. This suggests that binaural beats, and possibly other forms of cognitive entrainment, are not suited for a one-size-fits-all approach, and that individual cognitive-control systems need to be taken into account when studying cognitive enhancement methods.
[The decolorization and biodegrading metabolism of azo dyes by Pseudomonas S-42].
Liu, Z P; Yang, H F
1989-12-01
Pseudomonas S-42 was capable of decolorizing azo dyes such as Diamira Brilliant Orange RR(DBO-RR), Direct Brown M (DBM), Eriochrome Brown R(EBR) and so on. The cell suspension, cell-free extract and purified enzyme of Pseud. S-42 could decolorize azo dyes under similar conditions: the optimum pH and temperature laid 7.0 and 37 degrees C respectively. The efficiencies of decolorizing of DBO-RR, DBM, EBR by intact cells stood more than 90%. When the cell concentration was 15 mg(wet)/ml and the reaction time was 5 hours, the decolorizing activity for above three azo dyes by intact cells were 1.75, 2.4, 0.95 micrograms dye/mg cell, respectively. Cell-free extract and purified enzyme could well express the decolorizing activity only under the anaerobic condition and added NADH. Purified enzyme belongs to azoreductase, its molecular weight is about 34,000-2000 daltons, and its Vmax and Km for DBO-RR are 13 mumol.mg protein-1.min-1 and 54 mumol/L. The results of the detection of the biodegrading products of DBO-RR by spectrophotometric and NaNO2 reactional methods showed that the biodegradation of azo dyes was initiated by the reduction cleavage of azo bonds. It was hypothesized that biodegrading metabolism pathway of DBO-RR by Pseudomonas S-42.
Constituent Redistribution in U-Zr Metallic Fuel Using the Advanced Fuel Performance Code BISON
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galloway, Jack D.; Unal, Cetin; Matthews, Christopher
2016-09-30
Previous work done by Galloway, et. al. on EBR-II ternary (U-Pu-Zr) fuel constituent redistribution yielded accurate simulation data for the limited data sets of Zr redistribution. The data sets included EPMA scans of two different irradiated rods. First, T179, which was irradiated to 1.9 at% burnup, was analyzed. Second, DP16, which was irradiated to 11 at% burnup, was analyzed. One set of parameters that most accurately represented the zirconium profiles for both experiments was determined. Since the binary fuel (U-Zr) has previously been used as the driver fuel for sodium fast reactors (SFR) as well as being the likely drivermore » fuel if a new SFR is constructed, this same process has been initiated on the binary fuel form. From limited binary EPMA scans as well as other fuel characterization techniques, it has been observed that zirconium redistribution also occurs in the binary fuel, albeit at a reduced rate compared to observation in the ternary fuel, as noted by Kim et. al. While the rate of redistribution has been observed to be slower, numerous metallographs of U-Zr fuel show distinct zone formations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mosby, W. R.; Jensen, B. A.
2002-05-31
In recent years there has been a trend towards storage of Irradiated Nuclear Fuel (INF) in dry conditions rather than in underwater environments. At the same time, the Department of Energy (DOE) has begun encouraging custodians of INF to perform measurements on INF for which no recent fissile contents measurement data exists. INF, in the form of spent fuel from Experimental Breeder Reactor 2 (EBR-II), has been stored in close-fitting, dry underground storage locations at the Radioactive Scrap and Waste Facility (RSWF) at Argonne National Laboratory-West (ANL-W) for many years. In Fiscal Year 2000, funding was obtained from the DOEmore » Office of Safeguards and Security Technology Development Program to develop and prepare for deployment a Shielded Measurement System (SMS) to perform fissile content measurements on INF stored in the RSWF. The SMS is equipped to lift an INF item out of its storage location, perform scanning neutron coincidence and high-resolution gamma-ray measurements, and restore the item to its storage location. The neutron and gamma-ray measurement results are compared to predictions based on isotope depletion and Monte Carlo neutral-particle transport models to provide confirmation of the accuracy of the models and hence of the fissile material contents of the item as calculated by the same models. This paper describes the SMS and discusses the results of the first calibration and validation measurements performed with the SMS.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aaltonen, T.; Maki, T.; Mehtala, P.
2009-02-01
This article presents the first measurement of the ratio of branching fractions B({lambda}{sub b}{sup 0}{yields}{lambda}{sub c}{sup +}{mu}{sup -}{nu}{sub {mu}})/B({lambda}{sub b}{sup 0}{yields}{lambda}{sub c}{sup +}{pi}{sup -}). Measurements in two control samples using the same technique B(B{sup 0}{yields}D{sup +}{mu}{sup -}{nu}{sub {mu}})/B(B{sup 0}{yields}D{sup +}{pi}{sup -}) and B(B{sup 0}{yields}D*(2010){sup +}{mu}{sup -}{nu}{sub {mu}})/B(B{sup 0}{yields}D*(2010){sup +}{pi}{sup -}) are also reported. The analysis uses data from an integrated luminosity of approximately 172 pb{sup -1} of pp collisions at {radical}(s)=1.96 TeV, collected with the CDF II detector at the Fermilab Tevatron. The relative branching fractions are measured to be (B({lambda}{sub b}{sup 0}{yields}{lambda}{sub c}{sup +}{mu}{sup -}{nu}{sub {mu}})/B({lambda}{sub b}{sup 0}{yields}{lambda}{sub c}{supmore » +}{pi}{sup -}))=16.6{+-}3.0(stat){+-}1.0(syst)(+2.6/-3.4)(PDG){+-}0.3 (EBR), (B(B{sup 0}{yields}D{sup +}{mu}{sup -}{nu}{sub {mu}})/B(B{sup 0}{yields}D{sup +}{pi}{sup -}))9.9{+-}1.0(stat){+-}0.6(syst){+-}0.4(PDG){+-}0.5(EBR), and (B(B{sup 0}{yields}D*(2010){sup +}{mu}{sup -}{nu}{sub {mu}})/B(B{sup 0}{yields}D*(2010){sup +}{pi}{sup -}))=16.5{+-}2.3(stat){+-} 0.6(syst){+-}0.5(PDG){+-}0.8(EBR). The uncertainties are from statistics (stat), internal systematics (syst), world averages of measurements published by the Particle Data Group or subsidiary measurements in this analysis (PDG), and unmeasured branching fractions estimated from theory (EBR), respectively. This article also presents measurements of the branching fractions of four new {lambda}{sub b}{sup 0} semileptonic decays: {lambda}{sub b}{sup 0}{yields}{lambda}{sub c}(2595){sup +}{mu}{sup -}{nu}{sub {mu}}, {lambda}{sub b}{sup 0}{yields}{lambda}{sub c}(2625){sup +}{mu}{sup -}{nu}{sub {mu}}, {lambda}{sub b}{sup 0}{yields}{sigma}{sub c}(2455){sup 0}{pi}{sup +}{mu}{sup -}{nu}{sub {mu}}, and {lambda}{sub b}{sup 0}{yields}{sigma}{sub c}(2455){sup ++}{pi}{sup -}{mu}{sup -}{nu}{sub {mu}}, relative to the branching fraction of the {lambda}{sub b}{sup 0}{yields}{lambda}{sub c}{sup +}{mu}{sup -}{nu}{sub {mu}} decay. Finally, the transverse-momentum distribution of {lambda}{sub b}{sup 0} baryons produced in pp collisions is measured and found to be significantly different from that of B{sup 0} mesons, which results in a modification in the production cross-section ratio {sigma}{sub {lambda}{sub b}{sup 0}}/{sigma}{sub B{sup 0}} with respect to the CDF I measurement.« less
NASA Astrophysics Data System (ADS)
Martínez-Eixarch, Maite; Ibàñez, Carles; Alcaraz, Carles; Viñas, Marc; Aranda, Xavier; Saldaña, J. Antonio
2017-04-01
Paddy rice fields are an important source of greenhouse gas emissions (GHG) as they contribute 5 to 20 % of the global anthropogenic CH4 emissions. The Ebre Delta (Catalonia, NE Spain) is one of the most important wetland complexes in the Western Mediterranean with 65 % of its area covered by rice fields. The results herein presented assess the annual pattern of CH4 emissions from paddy rice in Ebre Delta, including the growing and fallow seasons as well as the major environmental variables modulating such emissions. Fifteen rice fields covering the geo-physical variability of the Ebre Delta were selected for GHG monitoring. Common agronomic management was practiced: water direct-seeding, permanent flooding and moderate mineral fertilization during the growing season and straw incorporation, progressive drainage of the fields after the harvest. Fields are left fallow during the winter. GHG were monthly sampled, from May to December in 2015. In each field, three closed chambers were used; from each of these, four gas samples were taken over a 30-minute period. Simultaneously, hydrological regime, soil physic-chemical parameters and plant cover were measured. GHG were analysed by gas chromatography. A Generalized linear model analysis (GLM) was performed to assess the most important influencing factors on CH4 emissions. An information-theoretic approach was used to find the best approximating models. Overall, the CH4 emissions showed a bi-modal pattern, with peaks in July-August and in October. Emissions rates ranged from 2.1 ± 0.5 to 7.5 ± 1.4 mg C-CH4 m-2 h-1 in the growing season (May to September) and from 25.0 ± 5.7 to 20.1 ± 3.3 mg C-CH4 m-2 h-1 at post-harvest (October to December). In total, 314 kg C-CH4 ha-1 were emitted from Ebre Delta rice fields, of which 70 % during post-harvest. Larger off-season emissions were likely induced by straw incorporation. The results of the GLM-IT analysis revealed that during the growing season, soil Eh and water level were the most important factors influencing CH4 emissions, followed by soil temperature and plant cover, with similar degree of importance. During the fallow season, soil redox and water level were also the most important factors, along with air temperature. Throughout the growing and fallow seasons, soil Eh was negatively related to CH4 emissions whereas temperature and plant cover positively. Interestingly, water level showed a contrasting effect on CH4 emissions: positive during the growing season and negative the fallow. Traditionally, most of the research on GHG mitigation options in paddy rice has been focused on the rice growing period and less attention has been paid to the post-harvest season. The higher contribution of the fallow season to the total annual CH4 emissions evidenced in our study suggests that more effort should be made on this season when aiming at mitigating CH4 emissions, being water and straw management the key factors. Accordingly, we also recommend the inclusion of the fallow season for GHG inventories from paddy rice, usually neglected, to avoid CH4 emissions underestimations.
Kent, M; Scott, S; Lambert, S; Kirk, E; Terhune-Cotter, B; Thompson, B; Neal, S; Dozier, B; Bardi, M; Lambert, K
2018-06-19
Prior research with a rat model of behavioral therapy [i.e., effort-based reward (EBR) contingency training] suggests that strengthened associations between physical effort and desired outcomes enhance neurobiological indices of resilience. In the current study, male and female Long-Evans rats were exposed to either six weeks of EBR training or noncontingent training prior to 10 days of exposure to chronic unpredictable stress (CUS). Subsequently, all animals were exposed to a problem-solving task and then trained in a spatial learning/foraging task, the Dry Land Maze (DLM). Following habituation training and test trials, rats were assessed in a probe trial that generated a prediction error (cognitive uncertainty). Results indicated that, during CUS exposure, contingency-training enhanced dehydroepiandrosterone/corticosterone ratios (consistent with healthier stress responses), especially in male rats. Additionally, contingency training increased exploratory behaviors in the probe trial as well as differentially influenced on-task problem-solving performance in males and females. Following the probe trial, brains were exposed to histological analyses to determine the effects of sex and contingency training on various neurobiological markers. Contingency training decreased BDNF-immunoreactivity (ir) in the hippocampus CA1 and lateral habenula, implicating differential neuroplasticity responses in the training groups. Further, coordinated fos-ir activation in areas associated with emotional resilience (i.e., motivation-regulation) was observed in contingent-trained animals. In sum, the current findings confirm that behavioral training is associated with neurobiological markers of emotional resilience; however, further assessments are necessary to more accurately determine the therapeutic potential for the EBR contingency training model. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Occhipinti, Paola; Morguí, Josep Anton; Àgueda, Alba; Batet, Oscar; Borràs, Sílvia; Cañas, Lídia; Curcoll, Roger; Grossi, Claudia; Nofuentes, Manel; Vazquez, Eusebi; Rodó, Xavier
2015-04-01
In the framework of the ClimaDat project, IC3 has established a network of eight monitoring stations across the Iberian Peninsula and the Canarian Archipelago with the aim of studying climate processes. The monitoring station at the Ebre River Delta (DEC3) is located in the Ebre River Delta Natural Park (40° 44' N; 0° 47' E) and it is characterized by the typical North-Western Mediterranean climate. Since 2013, atmospheric greenhouse gases (GHG) and 222Rn tracer gas together with the meteorological parameters are continuously measured from a 10 m a.g.l. height tower. Atmospheric GHG (CO2, CH4, CO and N2O) concentrations are determined using a Picarro analyzer G2301 (CO2 and CH4) and a modified gas chromatograph (GC) Agilent 6890N (CO2, CH4, CO and N2O). Open data access is available from the www.climadat.es website. Data collected at the DEC3 station are also submitted to the InGOS platform since this station is part of the InGOS European infrastructure project. Researchers from the Laboratory of the Atmosphere and the Oceans (LAO) at IC3 have performed an intercomparison study at the DEC3 site between three different Picarro analyzers (two Picarro G2301 and one Picarro G2301M), a Los Gatos Research (LGR) analyzer and the GC system already installed at the station. The aim of this study is to compare and assess the measuring agreement between the four optical gas analyzers and the GC. In the first part of the experiment, all instruments have been calibrated using NOAA gases as primary standards analyzing five Praxair provided targets to evaluate the precision of the measuring instruments. Max Plank Institute (MPI) gases have been used as secondary standards for the GC whereas Praxair provided tanks are used as secondary standards for the Picarro and the LGR analyzers. In the second part of the experiment, atmospheric GHG were measured from natural atmospheric air taken from a 10 m a.g.l. inlet. Daily cycles of GHG measurements were carried out using different instruments simultaneously over a period of 24 hours, coupling the GC with a combination of two optical analyzers per time. Precision results together with the evaluation of the advantages and drawbacks of the use of these different GHG measuring instruments will be discussed. The intercomparison study here presented will be implemented by carrying it out at each of the eight ClimaDat monitoring stations in Spain, representing a quality control system for the analysis of GHG in the ClimaDat network.
Amoeba-inspired nanoarchitectonic computing implemented using electrical Brownian ratchets.
Aono, M; Kasai, S; Kim, S-J; Wakabayashi, M; Miwa, H; Naruse, M
2015-06-12
In this study, we extracted the essential spatiotemporal dynamics that allow an amoeboid organism to solve a computationally demanding problem and adapt to its environment, thereby proposing a nature-inspired nanoarchitectonic computing system, which we implemented using a network of nanowire devices called 'electrical Brownian ratchets (EBRs)'. By utilizing the fluctuations generated from thermal energy in nanowire devices, we used our system to solve the satisfiability problem, which is a highly complex combinatorial problem related to a wide variety of practical applications. We evaluated the dependency of the solution search speed on its exploration parameter, which characterizes the fluctuation intensity of EBRs, using a simulation model of our system called 'AmoebaSAT-Brownian'. We found that AmoebaSAT-Brownian enhanced the solution searching speed dramatically when we imposed some constraints on the fluctuations in its time series and it outperformed a well-known stochastic local search method. These results suggest a new computing paradigm, which may allow high-speed problem solving to be implemented by interacting nanoscale devices with low power consumption.
Reduced-order modeling for hyperthermia: an extended balanced-realization-based approach.
Mattingly, M; Bailey, E A; Dutton, A W; Roemer, R B; Devasia, S
1998-09-01
Accurate thermal models are needed in hyperthermia cancer treatments for such tasks as actuator and sensor placement design, parameter estimation, and feedback temperature control. The complexity of the human body produces full-order models which are too large for effective execution of these tasks, making use of reduced-order models necessary. However, standard balanced-realization (SBR)-based model reduction techniques require a priori knowledge of the particular placement of actuators and sensors for model reduction. Since placement design is intractable (computationally) on the full-order models, SBR techniques must use ad hoc placements. To alleviate this problem, an extended balanced-realization (EBR)-based model-order reduction approach is presented. The new technique allows model order reduction to be performed over all possible placement designs and does not require ad hoc placement designs. It is shown that models obtained using the EBR method are more robust to intratreatment changes in the placement of the applied power field than those models obtained using the SBR method.
2011-03-25
379 1317617 BG1320 (06415) NS pksR – Polyketide synthase BSU17720 (71.0) G:C C:S 1698/2574 1326096 BG1327 (06450) NS ebrB – multidrug resistance...frameshift mutation in the mmgD gene on the C-terminus of the 2-methylcitrate synthase homolog of B. atrophaeus strain Detrick-1. Arrow indicates the...lineage of BGwith a long history of use as a simulant for BW operations, focusing on classical bacteriological markers, metabolic profiling and whole
Strategic Minimization of High Level Waste from Pyroprocessing of Spent Nuclear Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, Michael F.; Benedict, Robert W.
The pyroprocessing of spent nuclear fuel results in two high-level waste streams--ceramic and metal waste. Ceramic waste contains active metal fission product-loaded salt from the electrorefining, while the metal waste contains cladding hulls and undissolved noble metals. While pyroprocessing was successfully demonstrated for treatment of spent fuel from Experimental Breeder Reactor-II in 1999, it was done so without a specific objective to minimize high-level waste generation. The ceramic waste process uses “throw-away” technology that is not optimized with respect to volume of waste generated. In looking past treatment of EBR-II fuel, it is critical to minimize waste generation for technologymore » developed under the Global Nuclear Energy Partnership (GNEP). While the metal waste cannot be readily reduced, there are viable routes towards minimizing the ceramic waste. Fission products that generate high amounts of heat, such as Cs and Sr, can be separated from other active metal fission products and placed into short-term, shallow disposal. The remaining active metal fission products can be concentrated into the ceramic waste form using an ion exchange process. It has been estimated that ion exchange can reduce ceramic high-level waste quantities by as much as a factor of 3 relative to throw-away technology.« less
EBR1 genomic expansion and its role in virulence of Fusarium species
USDA-ARS?s Scientific Manuscript database
Genome sequencing of Fusarium oxysporum revealed that pathogenic forms of this fungus harbor supernumerary chromosomes with a wide variety of genes, many of which likely encode traits required for pathogenicity or niche specialization. Specific transcription factor (TF) gene families are expanded on...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, L.K.; Mohr, D.; Feldman, E.E.
A series of eight loss-of-flow (LOF) tests have been conducted in EBR-II to study the transition between forced and natural convective flows following a variety of loss-of-primary-pumping power conditions from decay heat levels. Comparisons of measurements and pretest/posttest predictions were made on a selected test. Good agreements between measurements and predictions was found prior to and just after the flow reaching its minimum, but the agreement is not as good after that point. The temperatures are consistent with the flow response and the assumed decay power. The measured results indicate that the flows of driver and the instrumented subassemblies aremore » too much in the analytical model in the natural convective region. Although a parametric study on secondary flow, turbulent-laminar flow transition, heat transfer ability of the intermediate heat exchange at low flow and flow mixing in the primary tank has been performed to determine their effects on the flow, the cause of the discrepancy at very low flow level is still unknown.« less
Cohen, Hagit; Liu, Tianmin; Kozlovsky, Nitsan; Kaplan, Zeev; Zohar, Joseph; Mathé, Aleksander A
2012-01-01
Converging evidence implicates the regulatory neuropeptide Y (NPY) in anxiety- and depression-related behaviors. The present study sought to assess whether there is an association between the magnitude of behavioral responses to stress and patterns of NPY in selected brain areas, and subsequently, whether pharmacological manipulations of NPY levels affect behavior in an animal model of PTSD. Animals were exposed to predator-scent stress for 15 min. Behaviors were assessed with the elevated plus maze and acoustic startle response tests 7 days later. Preset cutoff criteria classified exposed animals according to their individual behavioral responses. NPY protein levels were assessed in specific brain regions 8 days after the exposure. The behavioral effects of NPY agonist, NPY-Y1-receptor antagonist, or placebo administered centrally 1 h post-exposure were evaluated in the same manner. Immunohistochemical technique was used to detect the expression of the NPY, NPY-Y1 receptor, brain-derived neurotrophic factor, and GR 1 day after the behavioral tests. Animals whose behavior was extremely disrupted (EBR) selectively displayed significant downregulation of NPY in the hippocampus, periaqueductal gray, and amygdala, compared with animals whose behavior was minimally (MBR) or partially (PBR) disrupted, and with unexposed controls. One-hour post-exposure treatment with NPY significantly reduced prevalence rates of EBR and reduced trauma-cue freezing responses, compared with vehicle controls. The distinctive pattern of NPY downregulation that correlated with EBR as well as the resounding behavioral effects of pharmacological manipulation of NPY indicates an intimate association between NPY and behavioral responses to stress, and potentially between molecular and psychopathological processes, which underlie the observed changes in behavior. The protective qualities attributed to NPY are supported by the extreme reduction of its expression in animals severely affected by the stressor and imply a role in promoting resilience and/or recovery. PMID:21976046
Application of the SHARP Toolkit to Sodium-Cooled Fast Reactor Challenge Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shemon, E. R.; Yu, Y.; Kim, T. K.
The Simulation-based High-efficiency Advanced Reactor Prototyping (SHARP) toolkit is under development by the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign of the U.S. Department of Energy, Office of Nuclear Energy. To better understand and exploit the benefits of advanced modeling simulations, the NEAMS Campaign initiated the “Sodium-Cooled Fast Reactor (SFR) Challenge Problems” task, which include the assessment of hot channel factors (HCFs) and the demonstration of zooming capability using the SHARP toolkit. If both challenge problems are resolved through advanced modeling and simulation using the SHARP toolkit, the economic competitiveness of a SFR can be significantly improved. The effortsmore » in the first year of this project focused on the development of computational models, meshes, and coupling procedures for multi-physics calculations using the neutronics (PROTEUS) and thermal-hydraulic (Nek5000) components of the SHARP toolkit, as well as demonstration of the HCF calculation capability for the 100 MWe Advanced Fast Reactor (AFR-100) design. Testing the feasibility of the SHARP zooming capability is planned in FY 2018. The HCFs developed for the earlier SFRs (FFTF, CRBR, and EBR-II) were reviewed, and a subset of these were identified as potential candidates for reduction or elimination through high-fidelity simulations. A one-way offline coupling method was used to evaluate the HCFs where the neutronics solver PROTEUS computes the power profile based on an assumed temperature, and the computational fluid dynamics solver Nek5000 evaluates the peak temperatures using the neutronics power profile. If the initial temperature profile used in the neutronics calculation is reasonably accurate, the one-way offline method is valid because the neutronics power profile has weak dependence on small temperature variation. In order to get more precise results, the proper temperature profile for initial neutronics calculations was obtained from the STAR-CCM+ calculations. The HCFs of the peak temperatures at cladding outer surface, cladding inner wall surface, and fuel centerline induced by cladding manufacturing tolerance and uncertainties on the cladding, coolant, and fuel properties were evaluated for the AFR-100. Some assessment on the effect of wire wrap configuration and size of the bundle shows that it is practical to use the 7-pin bare rod bundle to calculate the HCFs. The resulting HCFs obtained from the high-fidelity SHARP calculations are generally smaller than those developed for the earlier SFRs because the most uncertainties involved in the modeling and simulations were disappeared. For completeness, additional investigations are planned in FY 2018, which will use random sampling techniques.« less
Risk watershed analysis: a new approach to manage torrent control structures
NASA Astrophysics Data System (ADS)
Quefféléan, Yann; Carladous, Simon; Deymier, Christian; Marco, Olivier
2017-04-01
Torrential check dams have been built in French public forests since the 19th century, applying the Restoration and conservation of Mountainous Areas (RTM) laws (1860, 1864, 1882). The RTM department of the National Forestry Office (ONF) helps the government to decide on protective actions to implement within these areas. While more than 100 000 structures were registered in 1964, more than 14 000 check dams are currently registered and maintained within approximatively 380 000 ha of RTM public forests. The RTM department officers thus have a long experience in using check dams for soil restoration, but also in implementing other kinds of torrential protective structures such as sediment traps, embankments, bank protection, and so forth. As a part of the ONF, they are also experienced in forestry engineering. Nevertheless, some limits in torrent control management have been highlighted: - as existing protective structures are ageing, their effectiveness to protect elements at risk must be assessed but it is a difficult task ; - as available budget for maintenance is continuously decreasing, priorities have to be made but decisions are difficult : what are the existing check dams functions? what is their expected effect on torrential hazard? is maintenance cost too important given this expected effect to protect elements at risk? Given these questions, a new policy has been engaged by the RTM department since 2012. A technical overview at the torrential watershed scale is now needed to help better maintenance decisions: it has been called a Risk Watershed Analysis (Etude de Bassin de Risque in French, EBR) and is funded by the government. Its objectives are to: - recall initial objectives of protective structures : therefore, a detailed archive analysis is made ; - describe current elements at risk to protect ; - describe natural hazards at the torrential watershed scale and their evolution since protective structures implementation ; - describe civil engineering and forestry works that have been implemented within the watershed, including their cost ; - decide on current protective works to implement (maintenance and new investment). For each EBR, a multidisciplinary team is involved with specialists in geomorphology, hydrology, hydraulics, geology, civil engineering and forestry. Approximatively 1 100 EBRs should be implemented at the national scale, including other natural phenomena such as snow avalanches and rock falls. Since 2012, approximatively 10 % have been realized in areas with the most significant elements at risk. From a practical point of view, these studies have helped a better understanding of torrential watershed conditions and of torrent control expected effect over years. An analysis of these studies will be performed soon to have a first overview of torrent control effect. We claim that these EBRs could be a significant source of information to help a comprehensive evaluation of long-term effectiveness of torrent control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drummond, M.S.; Allison, D.T.; Tull, J.F.
1994-03-01
A span of 150 my of orogenic activity is recorded within the granitic rocks of the eastern Blue Ridge of Alabama (EBR). Four discrete episodes of plutonism can be differentiated, each event exhibiting distinct field relations and geochemical signatures. (1) Penobscotian stage: this initial stage of plutonic activity is represented by the Elkahatchee Quartz Diorite (EQD), a premetamorphic (495 Ma) batholith and the largest intrusive complex (880 km[sup 2]) exposed in the Blue Ridge. Calc-alkaline I-type tonalite-granodiorite are the principal lithologies, with subordinate cumulate hbl-bt diorite, metadacite, granite and trondhjemite. The parental tonalitic magmas are interpreted to have been derivedmore » from a subducted MORB source under eclogite to get amphibolite conditions. (2) Taconic stage: the Kowaliga augen gneiss (KAG) and the Zana granite gneiss (ZG) are 460 Ma granitic bodies that reside in the SE extremity and structurally highest portion of the EBR. Both of these bodies are pre-metamorphic with strongly elongate sill- and pod-like shapes concordant with S[sub 1] foliation. Granite and granodiorite comprise the bulk of the KAG. (3) Acadian stage: Rockford Granite (RG), Bluff springs Granite (BSG, 366 Ma), and Almond Trondhjemite represent a suite of pre- to syn-metamorphic granitic intrusions. (4) late-Acadian stage: The Blakes Ferry pluton (BFP) is a post-kinematic pluton displaying spectacular by schlieren igneous flow structures, but no metamorphic fabric. The pluton's age can be bracketed between a 366 Ma age on the BSG and a 324 Ma K-Ar muscovite age on the BFP. BFP's petrogenesis has involved partial melting a MORB source followed by assimilation of metasedimentary host rock.« less
Evidence-Based Practice and Research: A Challenge to the Development of Adapted Physical Activity
ERIC Educational Resources Information Center
Hutzler, Yeshayahu Shayke
2011-01-01
Evidence-based practice (EBP) is a growing movement in the health and educational disciplines that recommends emphasis on research outcomes during decision making in practice. EBP is made possible through evidence based research (EBR), which attempts to synthesize the volume and scientific rigor of intervention effectiveness. With the purpose of…
Power to the Edge: Command...Control...in the Information Age
2003-01-01
Major Findings. Dec 17-19, 2002. OSD(NII) in conjunction with RAND and EBR, Inc. 12 Plummer, Anne. “Expeditionary Test.” Air Force Magazine . Arlington...Command... Control... in the Information Age...to 00-00-2003 4. TITLE AND SUBTITLE Power to the Edge. Command...Control... in the Information Age 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c
Electrometallurgical treatment demonstration at ANL-West
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goff, K. M.; Benedict, R. W.; Johnson, S. G.
2000-03-20
Electrometallurgical treatment (EMT) was developed by Argonne National Laboratory (ANL) to ready sodium-bonded spent nuclear fuel for geological disposal. A demonstration of this technology was successfully completed in August 1999. EMT was used to condition irradiated EBR-II driver and blanket fuel at ANL-West. The results of this demonstration, including the production of radioactive high-level waste forms, are presented.
ERIC Educational Resources Information Center
Chermahini, Soghra Akbari; Hommel, Bernhard
2010-01-01
Human creativity has been claimed to rely on the neurotransmitter dopamine, but evidence is still sparse. We studied whether individual performance (N=117) in divergent thinking (alternative uses task) and convergent thinking (remote association task) can be predicted by the individual spontaneous eye blink rate (EBR), a clinical marker of…
NASA Astrophysics Data System (ADS)
Pérez-Zanón, Núria; Casas-Castillo, M. Carmen; Peña, Juan Carlos; Aran, Montserrat; Rodríguez-Solà, Raúl; Redaño, Angel; Solé, German
2018-03-01
The study has obtained a classification of the synoptic patterns associated with a selection of extreme rain episodes registered in the Ebre Observatory between 1905 and 2003, showing a return period of not less than 10 years for any duration from 5 min to 24 h. These episodes had been previously classified in four rainfall intensity groups attending to their meteorological time scale. The synoptic patterns related to every group have been obtained applying a multivariable analysis to three atmospheric levels: sea-level pressure, temperature, and geopotential at 500 hPa. Usually, the synoptic patterns associated with intense rain in southern Catalonia are featured by low-pressure systems advecting warm and wet air from the Mediterranean Sea at the low levels of the troposphere. The configuration in the middle levels of the troposphere is dominated by negative anomalies of geopotential, indicating the presence of a low or a cold front, and temperature anomalies, promoting the destabilization of the atmosphere. These configurations promote the occurrence of severe convective events due to the difference of temperature between the low and medium levels of troposphere and the contribution of humidity in the lowest levels of the atmosphere.
Hidalgo-Lopez, Esmeralda; Pletzer, Belinda
2017-01-01
Estradiol and progesterone levels vary along the menstrual cycle and have multiple neuroactive effects, including on the dopaminergic system. Dopamine relates to executive functions in an "inverted U-shaped" manner and its levels are increased by estradiol. Accordingly, dopamine dependent changes in executive functions along the menstrual cycle have been previously studied in the pre-ovulatory phase, when estradiol levels peak. Specifically it has been demonstrated that working memory is enhanced during the pre-ovulatory phase in women with low dopamine baseline levels, but impaired in women with high dopamine baseline levels. However, the role of progesterone, which peaks in the luteal cycle phase, has not been taken into account previously. Therefore, the main goals of the present study were to extend these findings (i) to the luteal cycle phase and (ii) to other executive functions. Furthermore, the usefulness of the eye blink rate (EBR) as an indicator of dopamine baseline levels in menstrual cycle research was explored. 36 naturally cycling women were tested during three cycle phases (menses-low sex hormones; pre-ovulatory-high estradiol; luteal-high progesterone and estradiol). During each session, women performed a verbal N-back task, as measure of working memory, and a single trial version of the Stroop task, as measure of response inhibition and cognitive flexibility. Hormone levels were assessed from saliva samples and spontaneous eye blink rate was recorded during menses. In the N-back task, women were faster during the luteal phase the higher their progesterone levels, irrespective of their dopamine baseline levels. In the Stroop task, we found a dopamine-cycle interaction, which was also driven by the luteal phase and progesterone levels. For women with higher EBR performance decreased during the luteal phase, whereas for women with lower EBR performance improved during the luteal phase. These findings suggest an important role of progesterone in modulating dopamine-cycle interactions. Additionally, we identified the eye blink rate as a non-invasive indicator of baseline dopamine function in menstrual cycle research.
NASA Astrophysics Data System (ADS)
Majozi, Nobuhle P.; Mannaerts, Chris M.; Ramoelo, Abel; Mathieu, Renaud; Nickless, Alecia; Verhoef, Wouter
2017-07-01
Flux towers provide essential terrestrial climate, water, and radiation budget information needed for environmental monitoring and evaluation of climate change impacts on ecosystems and society in general. They are also intended for calibration and validation of satellite-based Earth observation and monitoring efforts, such as assessment of evapotranspiration from land and vegetation surfaces using surface energy balance approaches. In this paper, 15 years of Skukuza eddy covariance data, i.e. from 2000 to 2014, were analysed for surface energy balance closure (EBC) and partitioning. The surface energy balance closure was evaluated using the ordinary least squares regression (OLS) of turbulent energy fluxes (sensible (H) and latent heat (LE)) against available energy (net radiation (Rn) less soil heat (G)), and the energy balance ratio (EBR). Partitioning of the surface energy during the wet and dry seasons was also investigated, as well as how it is affected by atmospheric vapour pressure deficit (VPD), and net radiation. After filtering years with low-quality data (2004-2008), our results show an overall mean EBR of 0.93. Seasonal variations of EBR also showed the wet season with 1.17 and spring (1.02) being closest to unity, with the dry season (0.70) having the highest imbalance. Nocturnal surface energy closure was very low at 0.26, and this was linked to low friction velocity during night-time, with results showing an increase in closure with increase in friction velocity. The energy partition analysis showed that sensible heat flux is the dominant portion of net radiation, especially between March and October, followed by latent heat flux, and lastly the soil heat flux, and during the wet season where latent heat flux dominated sensible heat flux. An increase in net radiation was characterized by an increase in both LE and H, with LE showing a higher rate of increase than H in the wet season, and the reverse happening during the dry season. An increase in VPD is correlated with a decrease in LE and increase in H during the wet season, and an increase in both fluxes during the dry season.
Hall, Allyson G; Lemak, Christy Harris; Landry, Amy Yarbrough; Duncan, R Paul
2013-04-01
Engaging individuals in their own health care proves challenging for policy makers, health plans, and providers. Florida Medicaid introduced the Enhanced Benefits Rewards (EBR) program in 2006, providing financial incentives as rewards to beneficiaries who engage in health care seeking and healthy behaviors. This study analyzed beneficiary survey data from 2009 to determine predictors associated with awareness of and participation in the EBR program. Non-English speakers, those in a racial and ethnic minority group, those with less than a high school education, and those with limited or no connection to a health care provider were associated with lower awareness of the program. Among those aware of the program, these factors were also associated with reduced likelihood of engaging in the program. Individuals in fair or poor health were also less likely to engage in an approved behavior. Individuals who speak Spanish at home and those without a high school diploma were more likely than other groups to spend their earned program credits. Findings underscore the fact that initial engagement in such a program can prove challenging as different groups are not equally likely to be aware of or participate in an approved activity or redeem a credit. Physicians may play important roles in encouraging participation in programs to incentivize healthy behaviors.
NASA Astrophysics Data System (ADS)
Karahan, Aydın
2011-07-01
Computational models in FEAST-METAL fuel behaviour code have been upgraded to simulate minor actinide bearing zirconium rich metallic fuels for use in sodium fast reactors. Increasing the zirconium content to 20-40 wt.% causes significant changes in fuel slug microstructure affecting thermal, mechanical, chemical, and fission gas behaviour. Inclusion of zirconium rich phase reduces the fission gas swelling rate significantly in early irradiation. Above the threshold fission gas swelling, formation of micro-cracks, and open pores increase material compliancy enhance diffusivity, leading to rapid fuel gas swelling, interconnected porosity development and release of the fission gases and helium. Production and release of helium was modelled empirically as a function of americium content and fission gas production, consistent with previous Idaho National Laboratory studies. Predicted fuel constituent redistribution is much smaller compared to typical U-Pu-10Zr fuel operated at EBR-II. Material properties such as fuel thermal conductivity, modulus of elasticity, and thermal expansion coefficient have been approximated using the available database. Creep rate and fission gas diffusivity of high zirconium fuel is lowered by an order of magnitude with respect to the reference low zirconium fuel based on limited database and in order to match experimental observations. The new code is benchmarked against the AFC-1F fuel assembly post irradiation examination results. Satisfactory match was obtained for fission gas release and swelling behaviour. Finally, the study considers a comparison of fuel behaviour between high zirconium content minor actinide bearing fuel and typical U-15Pu-6Zr fuel pins with 75% smear density. The new fuel has much higher fissile content, allowing for operating at lower neutron flux level compared to fuel with lower fissile density. This feature allows the designer to reach a much higher burnup before reaching the cladding dose limit. On the other hand, in order to accommodate solid fission product swelling and to control fuel clad mechanical interaction of the stiffer fuel, the fuel smear density is reduced to 70%. In addition, plenum height is increased to accommodate for fission gases.
Numerical modelling of CIGS/CdS solar cell
NASA Astrophysics Data System (ADS)
Devi, Nisha; Aziz, Anver; Datta, Shouvik
2018-05-01
In this work, we design and analyze the Cu(In,Ga)Se2 (CIGS) solar cell using simulation software "Solar Cell Capacitance Simulator in One Dimension (SCAPS-1D)". The conventional CIGS solar cell uses various layers, like intrinsic ZnO/Aluminium doped ZnO as transparent oxide, antireflection layer MgF2, and electron back reflection (EBR) layer at CIGS/Mo interface for good power conversion efficiency. We replace this conventional model by a simple model which is easy to fabricate and also reduces the cost of this cell because of use of lesser materials. The new designed model of CIGS solar cell is ITO/CIGS/OVC/CdS/Metal contact, where OVC is ordered vacancy compound. From this simple structure, even at very low illumination we are getting good results. We simulate this CIGS solar cell model by varying various physical parameters of CIGS like thickness, carrier density, band gap and temperature.
ERBS fuel addendum: Pollution reduction technology program small jet aircraft engines, phase 3
NASA Technical Reports Server (NTRS)
Bruce, T. W.; Davis, F. G.; Kuhn, T. E.; Mongia, H. C.
1982-01-01
A Model TFE731-2 engine with a low emission, variable geometry combustion system was tested to compare the effects of operating the engine on Commercial Jet-A aviation turbine fuel and experimental referee broad specification (ERBS) fuels. Low power emission levels were essentially identical while the high power NOx emission indexes were approximately 15% lower with the EBRS fuel. The exhaust smoke number was approximately 50% higher with ERBS at the takeoff thrust setting; however, both values were still below the EPA limit of 40 for the Model TFE731 engine. Primary zone liner wall temperature ran an average of 25 K higher with ERBS fuel than with Jet-A. The possible adoption of broadened proprties fuels for gas turbine applications is suggested.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shelly X. Li; Steven D. Herrmann; Michael F. Simpson
2009-09-01
Experimental Investigations into U/TRU Recovery using a Liquid Cadmium Cathode and Salt Containing High Rare Earth Concentrations Shelly X. Li, Steven D. Herrmann, and Michael F. Simpson Pyroprocessing Technology Department Idaho National Laboratory P.O. Box 1625, Idaho Falls, ID 83415 USA Abstract - A series of six bench-scale liquid cadmium cathode (LCC) tests was performed to obtain basic separation data with focus on the behavior of rare earth elements. The electrolyte used for the tests was a mixed salt from the Mk-IV and Mk-V electrorefiners, in which spent metal fuels from Experimental Breeder Reactor-II (EBR-II) had been processed. Rare earthmore » (RE) chlorides, such as NdCl3, CeCl3, LaCl3, PrCl3, SmCl3, and YCl3, were spiked into the salt prior to the first test to create an extreme case for investigating rare earth contamination of the actinides collected by a LCC. For the first two LCC tests, an alloy with the nominal composition of 41U-30Pu-5Am-3Np-20Zr-1RE was loaded into the anode baskets as the feed material. The anode feed material for Runs 3 to 6 was spent ternary fuel (U-19Pu-10Zr). The Pu/U ratio in the salt varied from 0.6 to 1.3. Chemical and radiochemical analytical results confirmed that U and transuranics can be collected into the LCC as a group under the given run conditions. The RE contamination level in the LCC product was up to 6.7 wt% of the total metal collected. The detailed data for partitioning of actinides and REs in the salt and Cd phases are reported in the paper.« less
1985-04-01
and all boldface procedures. In addition, include questions from AFR 60-16 and AFR 51-37. Document all such testing on memos to provide an audit trail...your contractor to use simi 1 ar forms. They will provide a clear audit trail for both you and the STAN/EVAL Inspection Team. 22 Supervisory Evaluations...OS m(Mal-j Bedil, 8 72- 3930) 190~e~br1 BJFCTFor-%at of AFForms 8 Acca -mplished by SAC Exaxiners T:AF PRO/F0 (Dot 47) 1. Certificate:- of .%ircrew
Kranzbühler, Benedikt; Nagel, Hannes; Becker, Anton S; Müller, Julian; Huellner, Martin; Stolzmann, Paul; Muehlematter, Urs; Guckenberger, Matthias; Kaufmann, Philipp A; Eberli, Daniel; Burger, Irene A
2018-01-01
Sensitive visualization of recurrent prostate cancer foci is a challenge in patients with early biochemical recurrence (EBR). The recently established 68 Ga-PSMA-11 PET/CT has significantly improved the detection rate with published values of up to 55% for patients with a serum PSA concentration between 0.2-0.5 ng/mL. The increased soft tissue contrast in the pelvis using simultaneous 68 Ga-PSMA-11 PET/MRI might further improve the detection rate in patients with EBR and low PSA values over PET/CT. We retrospectively analyzed a cohort of 56 consecutive patients who underwent a 68 Ga-PSMA-11 PET/MRI for biochemical recurrence in our institution between April and December 2016 with three readers. Median PSA level was 0.99 ng/mL (interquartile range: 3.1 ng/mL). Detection of PSMA-positive lesions within the prostate fossa, local and distant lymph nodes, bones, or visceral organs was recorded. Agreement among observers was evaluated with Fleiss's kappa (k). Overall, in 44 of 56 patients (78.6%) PSMA-positive lesions were detected. In four of nine patients (44.4%) with a PSA < 0.2 ng/mL, suspicious lesions were detected (two pelvic and one paraaortic lymph nodes, and two bone metastases). In eight of 11 patients (72.7%) with a PSA between 0.2 and < 0.5 ng/mL, suspicious lesions were detected (two local recurrences, six lymph nodes, and one bone metastasis). Five out of 20 patients with a PSA < 0.5 ng/mL had extrapelvic disease. In 12 of 15 patients (80.0%) with a PSA between 0.5 and < 2.0 ng/mL, suspicious lesions were detected (four local recurrences, nine lymph nodes, and four bone metastases). In 20 of 21 patients (95.2%) with a PSA >2.0 ng/mL, suspicious lesions were detected. The overall interreader agreement for cancer detection was excellent (κ = 0.796, CI 0.645-0.947). Our data show that 68 Ga-PSMA-11 PET/MRI has a high detection rate for recurrent prostate cancer even at very low PSA levels <0.5 ng/mL. Furthermore, even at those low levels extrapelvic disease can be localized in 25% of the cases and local recurrence alone is seen only in 10%.
Unmixed fuel processors and methods for using the same
Kulkarni, Parag Prakash; Cui, Zhe
2010-08-24
Disclosed herein are unmixed fuel processors and methods for using the same. In one embodiment, an unmixed fuel processor comprises: an oxidation reactor comprising an oxidation portion and a gasifier, a CO.sub.2 acceptor reactor, and a regeneration reactor. The oxidation portion comprises an air inlet, effluent outlet, and an oxygen transfer material. The gasifier comprises a solid hydrocarbon fuel inlet, a solids outlet, and a syngas outlet. The CO.sub.2 acceptor reactor comprises a water inlet, a hydrogen outlet, and a CO.sub.2 sorbent, and is configured to receive syngas from the gasifier. The regeneration reactor comprises a water inlet and a CO.sub.2 stream outlet. The regeneration reactor is configured to receive spent CO.sub.2 adsorption material from the gasification reactor and to return regenerated CO.sub.2 adsorption material to the gasification reactor, and configured to receive oxidized oxygen transfer material from the oxidation reactor and to return reduced oxygen transfer material to the oxidation reactor.
Biological hydrogen production by Clostridium acetobutylicum in an unsaturated flow reactor.
Zhang, Husen; Bruns, Mary Ann; Logan, Bruce E
2006-02-01
A mesophilic unsaturated flow (trickle bed) reactor was designed and tested for H2 production via fermentation of glucose. The reactor consisted of a column packed with glass beads and inoculated with a pure culture (Clostridium acetobutylicum ATCC 824). A defined medium containing glucose was fed at a flow rate of 1.6 mL/min (0.096 L/h) into the capped reactor, producing a hydraulic retention time of 2.1 min. Gas-phase H2 concentrations were constant, averaging 74 +/- 3% for all conditions tested. H2 production rates increased from 89 to 220 mL/hL of reactor when influent glucose concentrations were varied from 1.0 to 10.5 g/L. Specific H2 production rate ranged from 680 to 1270 mL/g glucose per liter of reactor (total volume). The H2 yield was 15-27%, based on a theoretical limit by fermentation of 4 moles of H2 from 1 mole of glucose. The major fermentation by-products in the liquid effluent were acetate and butyrate. The reactor rapidly (within 60-72 h) became clogged with biomass, requiring manual cleaning of the system. In order to make long-term operation of the reactor feasible, biofilm accumulation in the reactor will need to be controlled through some process such as backwashing. These tests using an unsaturated flow reactor demonstrate the feasibility of the process to produce high H2 gas concentrations in a trickle-bed type of reactor. A likely application of this reactor technology could be H2 gas recovery from pre-treatment of high carbohydrate-containing wastewaters.
Yamashita, Takahiro; Yamamoto-Ikemoto, Ryoko; Yokoyama, Hiroshi; Kawahara, Hirofumi; Ogino, Akifumi; Osada, Takashi
2015-03-01
Mitigation of nitrous oxide (N2 O) emission from swine wastewater treatment was demonstrated in an aerobic bioreactor packed with carbon fibers (CF reactor). The CF reactor had a demonstrated advantage in mitigating N2 O emission and avoiding NOx (NO3 + NO2 ) accumulation. The N2 O emission factor was 0.0003 g N2 O-N/gTN-load in the CF bioreactor compared to 0.03 gN2 O-N/gTN-load in an activated sludge reactor (AS reactor). N2 O and CH4 emissions from the CF reactor were 42 g-CO2 eq/m(3) /day, while those from the AS reactor were 725 g-CO2 eq/m(3) /day. The dissolved inorganic nitrogen (DIN) in the CF reactor removed an average of 156 mg/L of the NH4 -N, and accumulated an average of 14 mg/L of the NO3 -N. In contrast, the DIN in the AS reactor removed an average 144 mg/L of the NH4 -N and accumulated an average 183 mg/L of the NO3 -N. NO2 -N was almost undetectable in both reactors. © 2014 Japanese Society of Animal Science.
NASA Astrophysics Data System (ADS)
Marsal, S.; Torta, J. M.; Gaya-Piqué, L.; Curto, J. J.; Sanclement, E.; Solé, J. G.; Altadill, D.; Ugalde, A.; de Santis, A.; Apostolov, E. M.; Alberca, L. F.; García, A.
This CD-ROM presents the Livingston Island Geomagnetic Observatory Bulletin, edited by Observatori de l'Ebre, containing the data obtained during the years 2003 including the 2003-2004 Austral summer survey. edited in digital format, The structure of the CD-ROM consists of one file with the Bulletin contents in PDF and of a tree of directories and subdirectories with the data corresponding to the different years and months of the Bulletin. These data files and their names were built according to the IAGA-2002 data exchange format.
NASA Astrophysics Data System (ADS)
Marsal, S.; Torta, J. M.; Gaya-Piqué, L.; Curto, J. J.; Sanclement, E.; Solé, J. G.; Altadill, D.; Ugalde, A.; de Santis, A.; Apostolov, E. M.; Alberca, L. F.; Garcí, A.
This CD-ROM presents the Livingston Island Geomagnetic Observatory Bulletin, edited by Observatori de l'Ebre, containing the data obtained during the year 2002 and the first two months of the year 2003. The structure of the CD-ROM consists of one file with the Bulletin contents in PDF and of a tree of directories and subdirectories with the data corresponding to the different years and months of the Bulletin. These data files and their names were built according to the IAGA-2002 data exchange format.
10 CFR 140.11 - Amounts of financial protection for certain reactors.
Code of Federal Regulations, 2014 CFR
2014-01-01
...,000,000 for each nuclear reactor he is authorized to operate at a thermal power level not exceeding ten kilowatts; (2) In the amount of $1,500,000 for each nuclear reactor he is authorized to operate at... amount of $2,500,000 for each nuclear reactor other than a testing reactor or a reactor licensed under...
10 CFR 140.11 - Amounts of financial protection for certain reactors.
Code of Federal Regulations, 2012 CFR
2012-01-01
...,000,000 for each nuclear reactor he is authorized to operate at a thermal power level not exceeding ten kilowatts; (2) In the amount of $1,500,000 for each nuclear reactor he is authorized to operate at... amount of $2,500,000 for each nuclear reactor other than a testing reactor or a reactor licensed under...
10 CFR 140.11 - Amounts of financial protection for certain reactors.
Code of Federal Regulations, 2013 CFR
2013-01-01
...,000,000 for each nuclear reactor he is authorized to operate at a thermal power level not exceeding ten kilowatts; (2) In the amount of $1,500,000 for each nuclear reactor he is authorized to operate at... amount of $2,500,000 for each nuclear reactor other than a testing reactor or a reactor licensed under...
Loss-of-Flow and Loss-of-Pressure Simulations of the BR2 Research Reactor with HEU and LEU Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Licht, J.; Bergeron, A.; Dionne, B.
2016-01-01
Belgian Reactor 2 (BR2) is a research and test reactor located in Mol, Belgium and is primarily used for radioisotope production and materials testing. The Materials Management and Minimization (M3) Reactor Conversion Program of the National Nuclear Security Administration (NNSA) is supporting the conversion of the BR2 reactor from Highly Enriched Uranium (HEU) fuel to Low Enriched Uranium (LEU) fuel. The reactor core of BR2 is located inside a pressure vessel that contains 79 channels in a hyperboloid configuration. The core configuration is highly variable as each channel can contain a fuel assembly, a control or regulating rod, an experimentalmore » device, or a beryllium or aluminum plug. Because of this variability, a representative core configuration, based on current reactor use, has been defined for the fuel conversion analyses. The code RELAP5/Mod 3.3 was used to perform the transient thermal-hydraulic safety analyses of the BR2 reactor to support reactor conversion. The input model has been modernized relative to that historically used at BR2 taking into account the best modeling practices developed by Argonne National Laboratory (ANL) and BR2 engineers.« less
Code of Federal Regulations, 2011 CFR
2011-01-01
..., Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Federal and..., Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Nuclear... of this chapter, see § 2.106(d). (b) If the Director, Office of Nuclear Reactor Regulation, Director...
Code of Federal Regulations, 2012 CFR
2012-01-01
..., Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Federal and..., Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Nuclear... of this chapter, see § 2.106(d). (b) If the Director, Office of Nuclear Reactor Regulation, Director...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Illustrative List of Nuclear Reactor Equipment Under NRC... List of Nuclear Reactor Equipment Under NRC Export Licensing Authority Note: A nuclear reactor... core of a nuclear reactor and capable of withstanding the operating pressure of the primary coolant. (2...
A document review to characterize Atomic International SNAP fuels shipped to INEL 1966--1973
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wahnschaffe, S.D.; Lords, R.E.; Kneff, D.W.
1995-09-01
This report provides the results of a document search and review study to obtain information on the spent fuels for the following six Nuclear Auxiliary Power (SNAP) reactor cores now stored at the Idaho National Engineering Laboratory (INEL): SNAP-2 Experimental Reactor, SNAP-2 Development Reactor, SNAP-10A Ground Test Reactor, SNAP-8 Experimental Reactor, SNAP-8 Development Reactor, and Shield Test Reactor. The report also covers documentation on SNAP fuel materials from four in-pile materials tests: NAA-82-1, NAA-115-2, NAA-117-1, and NAA-121. Pieces of these fuel materials are also stored at INEL as part of the SNAP fuel shipments.
75 FR 11375 - Revision of Fee Schedules; Fee Recovery for FY 2010
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-10
... Spent Fuel Storage/Reactor Decommissioning..... 2.7 0.2 0.2 Test and Research Reactors 0.2 0.0 0.0 Fuel... categories of licenses. The FY 2009 fee is also shown for comparative purposes. Table V--Rebaselined Annual...) Spent Fuel Storage/Reactor 122,000 143,000 Decommissioning Test and Research Reactors (Non-power 87,600...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Illustrative List of Nuclear Reactor Equipment Under NRC... List of Nuclear Reactor Equipment Under NRC Export Licensing Authority Note—A nuclear reactor basically... nuclear reactor and capable of withstanding the operating pressure of the primary coolant. (2) On-line (e...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Illustrative List of Nuclear Reactor Equipment Under NRC... List of Nuclear Reactor Equipment Under NRC Export Licensing Authority Note—A nuclear reactor basically... nuclear reactor and capable of withstanding the operating pressure of the primary coolant. (2) On-line (e...
Innovative approach for benzene degradation using hybrid surface/packed-bed discharge plasmas.
Jiang, Nan; Lu, Na; Shang, Kefeng; Li, Jie; Wu, Yan
2013-09-03
An innovative plasma reactor, which generates hybrid surface/packed-bed discharge (HSPBD) plasmas, was employed for the degradation of benzene. The HSPBD reactor was found to display remarkably better benzene degradation, mineralization, and energy performance than surface or packed-bed discharge reactors alone. The degradation efficiency, CO2 selectivity, and energy yield in the HSPBD reactor were 21%, 11%, and 3.9 g kWh-1 higher, respectively, than in a surface discharge reactor and 30%, 21%, and 5.5 g kWh-1 higher, respectively, than in a packed-bed discharge reactor operated at 280 J L-1. Particularly, the benzene degradation in the HSPBD reactor exhibited an unambiguous synergistic enhancement rather than a simple additive effect using the surface discharge and packed-bed discharge reactors. Moreover, in the HSPBD reactor, the formation of byproducts, such as NO2, was suppressed, while O3 was promoted. The use of N2 as the carrier gas was found to be effective for benzene degradation because of the fast reaction rate of N2(A3∑u+) with benzene, and oxygen species derived from the dissociation of O2 were found to be significant in the mineralization process. Thus, the addition of O2 to N2 allows for efficient degradation of benzene, and the optimized amount of O2 was determined to be 3%.
Paul S Wills, PhD; Pfeiffer, Timothy; Baptiste, Richard; Watten, Barnaby J.
2016-01-01
Control of alkalinity, dissolved carbon dioxide (dCO2), and pH are critical in marine recirculating aquaculture systems (RAS) in order to maintain health and maximize growth. A small-scale prototype aragonite sand filled fluidized bed reactor was tested under varying conditions of alkalinity and dCO2 to develop and model the response of dCO2 across the reactor. A large-scale reactor was then incorporated into an operating marine recirculating aquaculture system to observe the reactor as the system moved toward equilibrium. The relationship between alkalinity dCO2, and pH across the reactor are described by multiple regression equations. The change in dCO2 across the small-scale reactor indicated a strong likelihood that an equilibrium alkalinity would be maintained by using a fluidized bed aragonite reactor. The large-scale reactor verified this observation and established equilibrium at an alkalinity of approximately 135 mg/L as CaCO3, dCO2 of 9 mg/L, and a pH of 7.0 within 4 days that was stable during a 14 day test period. The fluidized bed aragonite reactor has the potential to simplify alkalinity and pH control, and aid in dCO2 control in RAS design and operation. Aragonite sand, purchased in bulk, is less expensive than sodium bicarbonate and could reduce overall operating production costs.
10 CFR 2.337 - Evidence at a hearing.
Code of Federal Regulations, 2011 CFR
2011-01-01
... chapter by the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, or... the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, or Director... the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, or Director...
10 CFR 2.337 - Evidence at a hearing.
Code of Federal Regulations, 2012 CFR
2012-01-01
... chapter by the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, or... the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, or Director... the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, or Director...
78 FR 58575 - Review of Experiments for Research Reactors
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-24
... NUCLEAR REGULATORY COMMISSION [NRC-2013-0219] Review of Experiments for Research Reactors AGENCY... Commission (NRC) is withdrawing Regulatory Guide (RG) 2.4, ``Review of Experiments for Research Reactors... withdrawing RG 2.4, ``Review of Experiments for Research Reactors,'' (ADAMS Accession No. ML003740131) because...
Chen, Kai; Ding, Si-Jing; Luo, Zhi-Jun; Pan, Gui-Ming; Wang, Jia-Hong; Liu, Jia; Zhou, Li; Wang, Qu-Quan
2018-02-22
An antenna-reactor hybrid coupling plasmonic antenna with catalytic nanoparticles is a new strategy to optimize photocatalytic activity. Herein, we have rationally proposed a Au/XS 2 /Au (X = Re, Mo) antenna reactor, which has a large Au core as the antenna and small satellite Au nanoparticles as the reactor separated by an ultrathin two-dimensional transition-metal dichalcogenide XS 2 shell (∼2.6 nm). Due to efficient charge transfer across the XS 2 shell as well as energy transfer via coupling of the Au antenna and Au reactor, the photocatalytic activity has been largely enhanced: Au/ReS 2 /Au exhibits a 3.59-fold enhancement, whereas Au/MoS 2 /Au exhibits a 2.66-fold enhancement as compared to that of the sum of the three individual components. The different enhancement in the Au/ReS 2 /Au and Au/MoS 2 /Au antenna-reactor hybrid is related to the competition and cooperation of charge and energy transfer. These results indicate the great potential of the Au/XS 2 /Au antenna-reactor hybrid for the development of highly efficient plasmonic photocatalysts.
10 CFR 52.167 - Issuance of manufacturing license.
Code of Federal Regulations, 2010 CFR
2010-01-01
... proposed reactor(s) can be incorporated into a nuclear power plant and operated at sites having... design and manufacture the proposed nuclear power reactor(s); (5) The proposed inspections, tests... the construction of a nuclear power facility using the manufactured reactor(s). (2) A holder of a...
Neutron Fluence And DPA Rate Analysis In Pebble-Bed HTR Reactor Vessel Using MCNP
NASA Astrophysics Data System (ADS)
Hamzah, Amir; Suwoto; Rohanda, Anis; Adrial, Hery; Bakhri, Syaiful; Sunaryo, Geni Rina
2018-02-01
In the Pebble-bed HTR reactor, the distance between the core and the reactor vessel is very close and the media inside are carbon and He gas. Neutron moderation capability of graphite material is theoretically lower than that of water-moderated reactors. Thus, it is estimated much more the fast neutrons will reach the reactor vessel. The fast neutron collisions with the atoms in the reactor vessel will result in radiation damage and could be reducing the vessel life. The purpose of this study was to obtain the magnitude of neutron fluence in the Pebble-bed HTR reactor vessel. Neutron fluence calculations in the pebble-bed HTR reactor vessel were performed using the MCNP computer program. By determining the tally position, it can be calculated flux, spectrum and neutron fluence in the position of Pebble-bed HTR reactor vessel. The calculations results of total neutron flux and fast neutron flux in the reactor vessel of 1.82x108 n/cm2/s and 1.79x108 n/cm2/s respectively. The fast neutron fluence in the reactor vessel is 3.4x1017 n/cm2 for 60 years reactor operation. Radiation damage in stainless steel material caused by high-energy neutrons (> 1.0 MeV) will occur when it has reached the neutron flux level of 1.0x1024 n/cm2. The neutron fluence results show that there is no radiation damage in the Pebble-bed HTR reactor vessel, so it is predicted that it will be safe to operate at least for 60 years.
Chen, Zhihua; Chen, Shucheng; Siahrostami, Samira; ...
2017-03-01
The development of small-scale, decentralized reactors for H 2O 2 production that can couple to renewable energy sources would be of great benefit, particularly for water purification in the developing world. Herein, we describe our efforts to develop electrochemical reactors for H 2O 2 generation with high Faradaic efficiencies of >90%, requiring cell voltages of only ~1.6 V. The reactor employs a carbon-based catalyst that demonstrates excellent performance for H 2O 2 production under alkaline conditions, as demonstrated by fundamental studies involving rotating-ring disk electrode methods. Finally, the low-cost, membrane-free reactor design represents a step towards a continuous, modular-scale, de-centralizedmore » production of H 2O 2.« less
10 CFR 2.1115 - Designation of issues for adjudicatory hearing.
Code of Federal Regulations, 2010 CFR
2010-01-01
... at Civilian Nuclear Power Reactors § 2.1115 Designation of issues for adjudicatory hearing. (a) After... reactor already licensed to operate at the site, or any civilian nuclear power reactor for which a... the issuance of a construction permit or operating license for a civilian nuclear power reactor at...
Proceedings of the 1992 topical meeting on advances in reactor physics. Volume 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-04-01
This document, Volume 2, presents proceedings of the 1992 Topical Meeting on Advances in Reactor Physics on March 8--11, 1992 at Charleston, SC. Session topics were as follows: Transport Theory; Fast Reactors; Plant Analyzers; Integral Experiments/Measurements & Analysis; Core Computational Systems; Reactor Physics; Monte Carlo; Safety Aspects of Heavy Water Reactors; and Space-Time Core Kinetics. The individual reports have been cataloged separately. (FI)
Design options for a bunsen reactor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Robert Charles
2013-10-01
This work is being performed for Matt Channon Consulting as part of the Sandia National Laboratories New Mexico Small Business Assistance Program (NMSBA). Matt Channon Consulting has requested Sandia's assistance in the design of a chemical Bunsen reactor for the reaction of SO2, I2 and H2O to produce H2SO4 and HI with a SO2 feed rate to the reactor of 50 kg/hour. Based on this value, an assumed reactor efficiency of 33%, and kinetic data from the literature, a plug flow reactor approximately 1%E2%80%9D diameter and and 12 inches long would be needed to meet the specification of the project.more » Because the Bunsen reaction is exothermic, heat in the amount of approximately 128,000 kJ/hr would need to be removed using a cooling jacket placed around the tubular reactor. The available literature information on Bunsen reactor design and operation, certain support equipment needed for process operation and a design that meet the specification of Matt Channon Consulting are presented.« less
Liu, Yong-Qiang; Tay, Joo-Hwa
2015-09-01
The combined strong hydraulic selection pressure (HSP) with overstressed organic loading rate (OLR) as a fast granulation strategy was used to enhance aerobic granulation. To investigate the wide applicability of this strategy to different scenarios and its relevant mechanism, different settling times, different inoculums, different exchange ratios, different reactor configurations, and different shear force were used in this study. It was found that clear granules were formed within 24 h and steady state reached within three days when the fast granulation strategy was used in a lab-scale reactor seeded with well settled activated sludge (Reactor 2). However, granules appeared after 2-week operation and reached steady state after one month at the traditional step-wise decreased settling time from 20 to 2 min with OLR of 6 g COD/L·d (Reactor 1). With the fast granulation strategy, granules appeared within 24 h even with bulking sludge as seed to start up Reactor 3, but 6-day lag phase was observed compared with Reactor 2. Both Reactor 2 and Reactor 3 experienced sigmoidal growth curve in terms of biomass accumulation and granule size increase after granulation. In addition, the reproducible results in pilot-scale reactors (Reactor 5 and Reactor 6) with diameter of 20 cm and height/diameter ratio (H/D) of 4 further proved that reactor configuration and fluid flow pattern had no effect on the aerobic granulation when the fast granulation strategy was employed, but biomass accumulation experienced a short lag phase too in Reactor 5 and Reactor 6. Although overstressed OLR was favorable for fast granulation, it also led to the fluffy granules after around two-week operation. However, the stable 6-month operation of Reactor 3 demonstrated that the rapidly formed granules were able to maintain long-term stability by reducing OLR from 12 g COD/L·d to 6 g COD/L·d. A mechanism of fast granulation with the strategy of combined strong HSP and OLR was proposed to explain results and guide the operation with this fast strategy. Copyright © 2015 Elsevier Ltd. All rights reserved.
Research and proposal on selective catalytic reduction reactor optimization for industrial boiler.
Yang, Yiming; Li, Jian; He, Hong
2017-08-24
The advanced computational fluid dynamics (CFD) software STAR-CCM+ was used to simulate a denitrification (De-NOx) project for a boiler in this paper, and the simulation result was verified based on a physical model. Two selective catalytic reduction (SCR) reactors were developed: reactor 1 was optimized and reactor 2 was developed based on reactor 1. Various indicators, including gas flow field, ammonia concentration distribution, temperature distribution, gas incident angle, and system pressure drop were analyzed. The analysis indicated that reactor 2 was of outstanding performance and could simplify developing greatly. Ammonia injection grid (AIG), the core component of the reactor, was studied; three AIGs were developed and their performances were compared and analyzed. The result indicated that AIG 3 was of the best performance. The technical indicators were proposed for SCR reactor based on the study. Flow filed distribution, gas incident angle, and temperature distribution are subjected to SCR reactor shape to a great extent, and reactor 2 proposed in this paper was of outstanding performance; ammonia concentration distribution is subjected to ammonia injection grid (AIG) shape, and AIG 3 could meet the technical indicator of ammonia concentration without mounting ammonia mixer. The developments above on the reactor and the AIG are both of great application value and social efficiency.
Stegenta, Sylwia; Dębowski, Marcin; Bukowski, Przemysław; Randerson, Peter F; Białowiec, Andrzej
2018-02-01
The opinion, that the use of foil reactors for the aerobic biostabilization of municipal wastes is not a valid method, due to vulnerability to perforation, and risk of uncontrolled release of exhaust gasses, was verified. This study aimed to determine the intensity of greenhouse gas (GHG) emissions to the atmosphere from the surface of foil reactors in relation to the extent of foil surface perforation. Three scenarios were tested: intact (airtight) foil reactor, perforated foil reactor, and torn foil reactor. Each experimental variant was triplicated, and the duration of each experiment cycle was 5 weeks. Temperature measurements demonstrated a significant decrease in temperature of the biostabilization in the torn reactor. The highest emissions of CO 2 , CO and SO 2 were observed at the beginning of the process, and mostly in the torn reactor. During the whole experiment, observed emissions of CO, H 2 S, NO, NO 2 , and SO 2 were at a very low level which in extreme cases did not exceed 0.25 mg t -1 .h -1 (emission of gasses mass unit per waste mass unit per unit time). The lowest average emissions of greenhouse gases were determined in the case of the intact reactor, which shows that maintaining the foil reactors in an airtight condition during the process is extremely important. Copyright © 2017 Elsevier Ltd. All rights reserved.
Degradation of Acid Orange 7 Dye in Two Hybrid Plasma Discharge Reactors
NASA Astrophysics Data System (ADS)
Shen, Yongjun; Lei, Lecheng; Zhang, Xingwang; Ding, Jiandong
2014-11-01
To get an optimized pulsed electrical plasma discharge reactor and to increase the energy utilization efficiency in the removal of pollutants, two hybrid plasma discharge reactors were designed and optimized. The reactors were compared via the discharge characteristics, energy transfer efficiency, the yields of the active species and the energy utilization in dye wastewater degradation. The results showed that under the same AC input power, the characteristics of the discharge waveform of the point-to-plate reactor were better. Under the same AC input power, the two reactors both had almost the same peak voltage of 22 kV. The peak current of the point-to-plate reactor was 146 A, while that of the wire-to-cylinder reactor was only 48.8 A. The peak powers of the point-to-plate reactor and the wire-to-cylinder reactor were 1.38 MW and 1.01 MW, respectively. The energy per pulse of the point-to-plate reactor was 0.2221 J, which was about 29.4% higher than that of the wire-to-cylinder reactor (0.1716 J). To remove 50% Acid Orange 7 (AO7), the energy utilizations of the point-to-plate reactor and the wire-to-cylinder reactor were 1.02 × 10-9 mol/L and 0.61 × 10-9 mol/L, respectively. In the point-to-plate reactor, the concentration of hydrogen peroxide in pure water was 3.6 mmol/L after 40 min of discharge, which was higher than that of the wire-to-cylinder reactor (2.5 mmol/L). The concentration of liquid phase ozone in the point-to-plate reactor (5.7 × 10-2 mmol/L) was about 26.7% higher than that in the wire-to-cylinder reactor (4.5 × 10-2 mmol/L). The analysis results of the variance showed that the type of reactor and reaction time had significant impacts on the yields of the hydrogen peroxide and ozone. The main degradation intermediates of AO7 identified by gas chromatography and mass spectrometry (GCMS) were acetic acid, maleic anhydride, p-benzoquinone, phenol, benzoic acid, phthalic anhydride, coumarin and 2-naphthol. Proposed degradation pathways were elucidated in light of the analyzed degradation products.
10 CFR 2.101 - Filing of application.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Reactors, the Director, Office of Nuclear Reactor Regulation, the Director, Office of Nuclear Material... Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Federal and State... be requested to: (i) Submit to the Director, Office of Nuclear Reactor Regulation, Director, Office...
10 CFR 2.101 - Filing of application.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Reactors, the Director, Office of Nuclear Reactor Regulation, the Director, Office of Nuclear Material... Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Federal and State... be requested to: (i) Submit to the Director, Office of Nuclear Reactor Regulation, Director, Office...
Crew Earth Observations (CEO) taken during Expedition 9
2004-06-03
ISS009-E-09985 (3 June 2004) --- The Ebro River Delta, located along the eastern coast of Spain, is featured in this image photographed by an Expedition 9 crewmember on the International Space Station (ISS). Taken in partial sun glint, this view defines the Ebros fresh water lens the water density boundary between the upper layer of fresh water issuing from the Ebro River mouth and the saltier, denser Mediterranean Sea water. According to NASA geologists studying the ISS imagery, diversion and impoundment of the Ebro River upstream has led to a decrease in water and sediment delivery to the delta. This decrease has led to increased erosion in some areas to the northeast of El Fangar Bay and along the southwestern shoreline of the delta. The Ebro River Delta is one of the largest wetland areas in the western Mediterranean region. The Ebro delta has grown rapidlythe historical rate of growth of the delta is demonstrated by the city of Amposta. This city was a seaport in the 4th Century, and is now located well inland from the current Ebro river mouth. The rounded form of the delta attests to the balance between sediment deposition by the Ebro River and removal of this material by wave erosion. The modern delta is in intensive agricultural use for rice, fruit, and vegetables. White polygonal areas to the north and south of the Ebro River are paddy fields. The Ebro delta also hosts numerous beaches, marshes, and saltpans that provide habitat for over 300 species of birds. A large part of the delta was designated as Parc Natural del Delta de l'Ebre (Ebre Delta National Park) in 1983. A network of canals and irrigation ditches constructed by both agricultural and conservation groups are helping to maintain the ecologic and economic resources of the Ebro Delta.
Demonstration of Robustness and Integrated Operation of a Series-Bosch System
NASA Technical Reports Server (NTRS)
Abney, Morgan B.; Mansell, Matthew J.; Stanley, Christine; Barnett, Bill; Junaedi, Christian; Vilekar, Saurabh A.; Ryan, Kent
2016-01-01
Manned missions beyond low Earth orbit will require highly robust, reliable, and maintainable life support systems that maximize recycling of water and oxygen. Bosch technology is one option to maximize oxygen recovery, in the form of water, from metabolically-produced carbon dioxide (CO2). A two stage approach to Bosch, called Series-Bosch, reduces metabolic CO2 with hydrogen (H2) to produce water and solid carbon using two reactors: a Reverse Water-Gas Shift (RWGS) reactor and a carbon formation (CF) reactor. Previous development efforts demonstrated the stand-alone performance of a NASA-designed RWGS reactor designed for robustness against carbon formation, two membrane separators intended to maximize single pass conversion of reactants, and a batch CF reactor with both transit and surface catalysts. In the past year, Precision Combustion, Inc. (PCI) developed and delivered a RWGS reactor for testing at NASA. The reactor design was based on their patented Microlith® technology and was first evaluated under a Phase I Small Business Innovative Research (SBIR) effort in 2010. The RWGS reactor was recently evaluated at NASA to compare its performance and operating conditions with NASA's RWGS reactor. The test results will be provided in this paper. Separately, in 2015, a semi-continuous CF reactor was designed and fabricated at NASA based on the results from batch CF reactor testing. The batch CF reactor and the semi-continuous CF reactor were individually integrated with an upstream RWGS reactor to demonstrate the system operation and to evaluate performance. Here, we compare the performance and robustness to carbon formation of both RWGS reactors. We report the results of the integrated operation of a Series-Bosch system and we discuss the technology readiness level.
Tower Shielding Reactor II design and operation report: Vol. 2. Safety Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holland, L. B.; Kolb, J. O.
1970-01-01
Information on the Tower Shielding Reactor II is contained in the TSR-II Design and Operation Report and in the Tower Shielding Facility Manual. The TSR-II Design and Operating Report consists of three volumes. Volume 1 is Descriptions of the Tower Shielding Reactor II and Facility; Volume 2 is Safety analysis of the Tower Shielding Reactor II; and Volume 3 is the Assembly and Testing of the Tower Shielding Reactor II Control Mechanism Housing.
NASA Astrophysics Data System (ADS)
Kim, Kwangmin; Go, Byeong-Soo; Sung, Hae-Jin; Park, Hea-chul; Kim, Seokho; Lee, Sangjin; Jin, Yoon-Su; Oh, Yunsang; Park, Minwon; Yu, In-Keun
2014-09-01
This paper describes the design specifications and performance of a real toroid-type high temperature superconducting (HTS) DC reactor. The HTS DC reactor was designed using 2G HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The target inductance of the HTS DC reactor was 400 mH. The expected operating temperature was under 20 K. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. Performances of the toroid-type HTS DC reactor were analyzed through experiments conducted under the steady-state and charge conditions. The fundamental design specifications and the data obtained from this research will be applied to the design of a commercial-type HTS DC reactor.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, will inform the... Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, will accept for... New Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, that they...
Code of Federal Regulations, 2013 CFR
2013-01-01
... Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, will inform the... Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, will accept for... New Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, that they...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-28
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor; Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR) will hold a meeting on October 2, 2012, Room T-2B1, 11545 Rockville Pike, Rockville...
Comparative performance of fixed-film biological filters: Application of reactor theory
Watten, B.J.; Sibrell, P.L.
2006-01-01
Nitrification is classified as a two-step consecutive reaction where R1 represents the rate of formation of the intermediate product NO2-N and R2 represents the rate of formation of the final product NO3-N. The relative rates of R1 and R2 are influenced by reactor type characterized hydraulically as plug-flow, plug-flow with dispersion and mixed-flow. We develop substrate conversion models for fixed-film biofilters operating in the first-order kinetic regime based on application of chemical reactor theory. Reactor type, inlet conditions and the biofilm kinetic constants Ki (h-1) are used to predict changes in NH4-N, NO2-N, NO3-N and BOD5. The inhibiting effects of the latter on R1 and R2 were established based on the ?? relation, e.g.:{A formula is presented}where BOD5,max is the concentration that causes nitrification to cease and N is a variable relating Ki to increasing BOD5. Conversion models were incorporated in spreadsheet programs that provided steady-state concentrations of nitrogen and BOD5 at several points in a recirculating aquaculture system operating with input values for fish feed rate, reactor volume, microscreen performance, make-up and recirculating flow rates. When rate constants are standardized, spreadsheet use demonstrates plug-flow reactors provide higher rates of R1 and R2 than mixed-flow reactors thereby reducing volume requirements for target concentrations of NH4-N and NO2-N. The benefit provided by the plug-flow reactor varies with hydraulic residence time t as well as the effective vessel dispersion number, D/??L. Both reactor types are capable of providing net increases in NO2-N during treatment but the rate of decrease in the mixed-flow case falls well behind that predicted for plug-flow operation. We show the potential for a positive net change in NO2-N increases with decreases in the dimensionless ratios K2, (R2 )/K1,( R1 ) and [NO2-N]/[NH4-N] and when the product K1, (R1) t provides low to moderate NH4-N conversions. Maintaining high levels of the latter reduces the effective reactor utilization rate (%) defined here as (RNavg/RNmax)100 where RNavg is the mean reactive nitrogen concentration ([NH4-N] + [NO2-N]) within the reactor, and RNmax represents the feed concentration of the same. Low utilization rates provide a hedge against unexpected increases in substrate loading and reduce water pumping requirements but force use of elevated reactor volumes. Further ?? effects on R1 and R2 can be reduced through use of a tanks-in-series versus a single mixed-flow reactor configuration and by improving the solids removal efficiency of microscreen treatment.
Ryan, P; Forbes, C; McHugh, S; O'Reilly, C; Fleming, G T A; Colleran, E
2010-07-01
The objective of the current study was to expand the knowledge of the role of acetogenic Bacteria in high rate anaerobic digesters. To this end, acetogens were enriched by supplying a variety of acetogenic growth supportive substrates to two laboratory scale high rate upflow anaerobic sludge bed (UASB) reactors operated at 37 degrees C (R1) and 55 degrees C (R2). The reactors were initially fed a glucose/acetate influent. Having achieved high operational performance and granular sludge development and activity, both reactors were changed to homoacetogenic bacterial substrates on day 373 of the trial. The reactors were initially fed with sodium vanillate as a sole substrate. Although % COD removal indicated that the 55 degrees C reactor out performed the 37 degrees C reactor, effluent acetate levels from R2 were generally higher than from R1, reaching values as high as 5023 mg l(-1). Homoacetogenic activity in both reactors was confirmed on day 419 by specific acetogenic activity (SAA) measurement, with higher values obtained for R2 than R1. Sodium formate was introduced as sole substrate to both reactors on day 464. It was found that formate supported acetogenic activity at both temperatures. By the end of the trial, no specific methanogenic activity (SMA) was observed against acetate and propionate indicating that the methane produced was solely by hydrogenotrophic Archaea. Higher SMA and SAA values against H(2)/CO(2) suggested development of a formate utilising acetogenic population growing in syntrophy with hydrogenotrophic methanogens. Throughout the formate trial, the mesophilic reactor performed better overall than the thermophilic reactor. Copyright 2010 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Office of New Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, will... Office of New Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, will... Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, that they are...
Code of Federal Regulations, 2014 CFR
2014-01-01
... Office of New Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, will... Office of New Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, will... Reactors or the Director of the Office of Nuclear Reactor Regulation, as appropriate, that they are...
Isotopic evidence for nitrous oxide production pathways in a partial nitritation-anammox reactor.
Harris, Eliza; Joss, Adriano; Emmenegger, Lukas; Kipf, Marco; Wolf, Benjamin; Mohn, Joachim; Wunderlin, Pascal
2015-10-15
Nitrous oxide (N2O) production pathways in a single stage, continuously fed partial nitritation-anammox reactor were investigated using online isotopic analysis of offgas N2O with quantum cascade laser absorption spectroscopy (QCLAS). N2O emissions increased when reactor operating conditions were not optimal, for example, high dissolved oxygen concentration. SP measurements indicated that the increase in N2O was due to enhanced nitrifier denitrification, generally related to nitrite build-up in the reactor. The results of this study confirm that process control via online N2O monitoring is an ideal method to detect imbalances in reactor operation and regulate aeration, to ensure optimal reactor conditions and minimise N2O emissions. Under normal operating conditions, the N2O isotopic site preference (SP) was much higher than expected - up to 40‰ - which could not be explained within the current understanding of N2O production pathways. Various targeted experiments were conducted to investigate the characteristics of N2O formation in the reactor. The high SP measurements during both normal operating and experimental conditions could potentially be explained by a number of hypotheses: i) unexpectedly strong heterotrophic N2O reduction, ii) unknown inorganic or anammox-associated N2O production pathway, iii) previous underestimation of SP fractionation during N2O production from NH2OH, or strong variations in SP from this pathway depending on reactor conditions. The second hypothesis - an unknown or incompletely characterised production pathway - was most consistent with results, however the other possibilities cannot be discounted. Further experiments are needed to distinguish between these hypotheses and fully resolve N2O production pathways in PN-anammox systems. Copyright © 2015 Elsevier Ltd. All rights reserved.
10 CFR 2.809 - Participation by the Advisory Committee on Reactor Safeguards.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Participation by the Advisory Committee on Reactor Safeguards. 2.809 Section 2.809 Energy NUCLEAR REGULATORY COMMISSION RULES OF PRACTICE FOR DOMESTIC LICENSING PROCEEDINGS AND ISSUANCE OF ORDERS Rulemaking § 2.809 Participation by the Advisory Committee on Reactor...
Supplemental Thermal-Hydraulic Transient Analyses of BR2 in Support of Conversion to LEU Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Licht, J.; Dionne, B.; Sikik, E.
2016-01-01
Belgian Reactor 2 (BR2) is a research and test reactor located in Mol, Belgium and is primarily used for radioisotope production and materials testing. The Materials Management and Minimization (M3) Reactor Conversion Program of the National Nuclear Security Administration (NNSA) is supporting the conversion of the BR2 reactor from Highly Enriched Uranium (HEU) fuel to Low Enriched Uranium (LEU) fuel. The RELAP5/Mod 3.3 code has been used to perform transient thermal-hydraulic safety analyses of the BR2 reactor to support reactor conversion. A RELAP5 model of BR2 has been validated against select transient BR2 reactor experiments performed in 1963 by showingmore » agreement with measured cladding temperatures. Following the validation, the RELAP5 model was then updated to represent the current use of the reactor; taking into account core configuration, neutronic parameters, trip settings, component changes, etc. Simulations of the 1963 experiments were repeated with this updated model to re-evaluate the boiling risks associated with the currently allowed maximum heat flux limit of 470 W/cm 2 and temporary heat flux limit of 600 W/cm 2. This document provides analysis of additional transient simulations that are required as part of a modern BR2 safety analysis report (SAR). The additional simulations included in this report are effect of pool temperature, reduced steady-state flow rate, in-pool loss of coolant accidents, and loss of external cooling. The simulations described in this document have been performed for both an HEU- and LEU-fueled core.« less
ETR BUILDING, TRA642, INTERIOR. FIRST FLOOR. REACTOR IS IN CENTER ...
ETR BUILDING, TRA-642, INTERIOR. FIRST FLOOR. REACTOR IS IN CENTER OF VIEW. CAMERA FACES NORTHWEST. NOTE CRANE RAILS AND DANGLING ELECTRICAL CABLE AT UPPER PART OF VIEW FOR "MOFFETT 2 TON" CRANE. INL NEGATIVE NO. HD46-14-4. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Moghanloo, G M Mojarrad; Fatehifar, E; Saedy, S; Aghaeifar, Z; Abbasnezhad, H
2010-11-01
Hydrogen sulfide (H(2)S) removal in mineral media using Thiobacillus thioparus TK-1 in a biofilm airlift suspension reactor (BAS) was investigated to evaluate the relationship between biofilm formation and changes in inlet loading rates. Aqueous sodium sulfide was fed as the substrate into the continuous BAS-reactor. The reactor was operated at a constant temperature of 30 degrees C and a pH of 7, the optimal temperature and pH for biomass growth. The startup of the reactor was performed with basalt carrier material. Optimal treatment performance was obtained at a loading rate of 4.8 mol S(2-) m(-3) h(-1) at a conversion efficiency as high as 100%. The main product of H(2)S oxidation in the BAS-reactor was sulfate because of high oxygen concentrations in the airlift reactor. The maximum sulfide oxidation rate was 6.7 mol S(2-) m(-3) h(-1) at a hydraulic residence time of 3.3 h in the mineral medium. The data showed that the BAS-reactor with this microorganism can be used for sulfide removal from industrial effluent. Copyright 2010 Elsevier Ltd. All rights reserved.
Development concept for a small, split-core, heat-pipe-cooled nuclear reactor
NASA Technical Reports Server (NTRS)
Lantz, E.; Breitwieser, R.; Niederauer, G. F.
1974-01-01
There have been two main deterrents to the development of semiportable nuclear reactors. One is the high development costs; the other is the inability to satisfy with assurance the questions of operational safety. This report shows how a split-core, heat-pipe cooled reactor could conceptually eliminate these deterrents, and examines and summarizes recent work on split-core, heat-pipe reactors. A concept for a small reactor that could be developed at a comparatively low cost is presented. The concept would extend the technology of subcritical radioisotope thermoelectric generators using 238 PuO2 to the evolution of critical space power reactors using 239 PuO2.
Flow rate analysis of wastewater inside reactor tanks on tofu wastewater treatment plant
NASA Astrophysics Data System (ADS)
Mamat; Sintawardani, N.; Astuti, J. T.; Nilawati, D.; Wulan, D. R.; Muchlis; Sriwuryandari, L.; Sembiring, T.; Jern, N. W.
2017-03-01
The research aimed to analyse the flow rate of the wastewater inside reactor tanks which were placed a number of bamboo cutting. The resistance of wastewater flow inside reactor tanks might not be occurred and produce biogas fuel optimally. Wastewater from eleven tofu factories was treated by multi-stages anaerobic process to reduce its organic pollutant and produce biogas. Biogas plant has six reactor tanks of which its capacity for waste water and gas dome was 18 m3 and 4.5 m3, respectively. Wastewater was pumped from collecting ponds to reactors by either serial or parallel way. Maximum pump capacity, head, and electrical motor power was 5m3/h, 50m, and 0.75HP, consecutively. Maximum pressure of biogas inside the reactor tanks was 55 mbar higher than atmosphere pressure. A number of 1,400 pieces of cutting bamboo at 50-60 mm diameter and 100 mm length were used as bacteria growth media inside each reactor tank, covering around 14,287 m2 bamboo area, and cross section area of inner reactor was 4,9 m2. In each reactor, a 6 inches PVC pipe was installed vertically as channel. When channels inside reactor were opened, flow rate of wastewater was 6x10-1 L.sec-1. Contrary, when channels were closed on the upper part, wastewater flow inside the first reactor affected and increased gas dome. Initially, wastewater flowed into each reactor by a gravity mode with head difference between the second and third reactor was 15x10-2m. However, head loss at the second reactor was equal to the third reactor by 8,422 x 10-4m. As result, wastewater flow at the second and third reactors were stagnant. To overcome the problem pump in each reactor should be installed in serial mode. In order to reach the output from the first reactor and the others would be equal, and biogas space was not filled by wastewater, therefore biogas production will be optimum.
Study of carbon dioxide gas treatment based on equations of kinetics in plasma discharge reactor
NASA Astrophysics Data System (ADS)
Abedi-Varaki, Mehdi
2017-08-01
Carbon dioxide (CO2) as the primary greenhouse gas, is the main pollutant that is warming earth. CO2 is widely emitted through the cars, planes, power plants and other human activities that involve the burning of fossil fuels (coal, natural gas and oil). Thus, there is a need to develop some method to reduce CO2 emission. To this end, this study investigates the behavior of CO2 in dielectric barrier discharge (DBD) plasma reactor. The behavior of different species and their reaction rates are studied using a zero-dimensional model based on equations of kinetics inside plasma reactor. The results show that the plasma reactor has an effective reduction on the CO2 density inside the reactor. As a result of reduction in the temporal variations of reaction rate, the speed of chemical reactions for CO2 decreases and very low concentration of CO2 molecules inside the plasma reactor is generated. The obtained results are compared with the existing experimental and simulation findings in the literature.
CO2 Photoreduction by Formate Dehydrogenase and a Ru-Complex in a Nanoporous Glass Reactor.
Noji, Tomoyasu; Jin, Tetsuro; Nango, Mamoru; Kamiya, Nobuo; Amao, Yutaka
2017-02-01
In this study, we demonstrated the conversion of CO 2 to formic acid under ambient conditions in a photoreduction nanoporous reactor using a photosensitizer, methyl viologen (MV 2+ ), and formate dehydrogenase (FDH). The overall efficiency of this reactor was 14 times higher than that of the equivalent solution. The accumulation rate of formic acid in the nanopores of 50 nm is 83 times faster than that in the equivalent solution. Thus, this CO 2 photoreduction nanoporous glass reactor will be useful as an artificial photosynthesis system that converts CO 2 to fuel.
Jürgensen, Lars; Ehimen, Ehiaze Augustine; Born, Jens; Holm-Nielsen, Jens Bo
2015-02-01
This study aimed to investigate the feasibility of substitute natural gas (SNG) generation using biogas from anaerobic digestion and hydrogen from renewable energy systems. Using thermodynamic equilibrium analysis, kinetic reactor modeling and transient simulation, an integrated approach for the operation of a biogas-based Sabatier process was put forward, which was then verified using a lab scale heterogenous methanation reactor. The process simulation using a kinetic reactor model demonstrated the feasibility of the production of SNG at gas grid standards using a single reactor setup. The Wobbe index, CO2 content and calorific value were found to be controllable by the H2/CO2 ratio fed the methanation reactor. An optimal H2/CO2 ratio of 3.45-3.7 was seen to result in a product gas with high calorific value and Wobbe index. The dynamic reactor simulation verified that the process start-up was feasible within several minutes to facilitate surplus electricity use from renewable energy systems. Copyright © 2014 Elsevier Ltd. All rights reserved.
Generating Breathable Air Through Dissociation of N2O
NASA Technical Reports Server (NTRS)
Zubrin, Robert; Frankie, Brian
2006-01-01
A nitrous oxide-based oxygen-supply system (NOBOSS) is an apparatus in which a breathable mixture comprising 2/3 volume parts of N2 and 1/3 volume part of O2 is generated through dissociation of N2O. The NOBOSS concept can be adapted to a variety of applications in which there are requirements for relatively compact, lightweight systems to supply breathable air. These could include air-supply systems for firefighters, divers, astronauts, and workers who must be protected against biological and chemical hazards. A NOBOSS stands in contrast to compressed-gas and cryogenic air-supply systems. Compressed-gas systems necessarily include massive tanks that can hold only relatively small amounts of gases. Alternatively, gases can be stored compactly in greater quantities and at low pressures when they are liquefied, but then cryogenic equipment is needed to maintain them in liquid form. Overcoming the disadvantages of both compressed-gas and cryogenic systems, the NOBOSS exploits the fact that N2O can be stored in liquid form at room temperature and moderate pressure. The mass of N2O that can be stored in a tank of a given mass is about 20 times the mass of compressed air that can be stored in a tank of equal mass. In a NOBOSS, N2O is exothermically dissociated to N2 and O2 in a main catalytic reactor. In order to ensure the dissociation of N2O to the maximum possible extent, the temperature of the reactor must be kept above 400 C. At the same time, to minimize concentrations of nitrogen oxides (which are toxic), it is necessary to keep the reactor temperature at or below 540 C. To keep the temperature within the required range throughout the reactor and, in particular, to prevent the formation of hot spots that would be generated by local concentrations of the exothermic dissociation reaction, the N2O is introduced into the reactor through an injector tube that features carefully spaced holes to distribute the input flow of N2O widely throughout the reactor. A NOBOSS includes one or more "destroyer" subsystems for removing any nitrogen oxides that remain downstream of the main N2O-dissociation reactor. A destroyer includes a carbon bed in series with a catalytic reactor, and is in thermal contact with the main N2O-dissociation reactor. The gas mixture that leaves the main reactor first goes through a carbon bed, which adsorbs all of the trace NO and most of the trace NO2. The gas mixture then goes through the destroyer catalytic reactor, wherein most or all of the remaining NO2 is dissociated. A NOBOSS can be designed to regulate its reactor temperature across a range of flow rates. One such system includes three destroyer loops; these loops act, in combination with a heat sink, to remove heat from the main N2O-dissociation reactor. In this system, the N2O and product gases play an additional role as coolants; thus, as needed, the coolant flow increases in proportion to the rate of generation of heat, helping to keep the main-reactor temperature below 540 C.
Nuclear reactors built, being built, or planned, 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, B.
1992-07-01
This document contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1991. The book is divided into three major sections: Section 1 consists of a reactor locator map and reactor tables; Section 2 includes nuclear reactors that are operating, being built, or planned; and Section 3 includes reactors that have been shut down permanently or dismantled. Sections 2 and 3 contain the following classification of reactors: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor ismore » an American company -- working either independently or in cooperation with a foreign company (Part 4, in each section). Critical assembly refers to an assembly of fuel and assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5).« less
10 CFR 73.60 - Additional requirements for physical protection at nonpower reactors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... nonpower reactors. 73.60 Section 73.60 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... requirements for physical protection at nonpower reactors. Each nonpower reactor licensee who, pursuant to the... nonpower reactors licensed to operate at or above a power level of 2 megawatts thermal. [38 FR 35430, Dec...
10 CFR 73.60 - Additional requirements for physical protection at nonpower reactors.
Code of Federal Regulations, 2011 CFR
2011-01-01
... nonpower reactors. 73.60 Section 73.60 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... requirements for physical protection at nonpower reactors. Each nonpower reactor licensee who, pursuant to the... nonpower reactors licensed to operate at or above a power level of 2 megawatts thermal. [38 FR 35430, Dec...
10 CFR 140.12 - Amount of financial protection required for other reactors.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Amount of financial protection required for other reactors... reactors. (a) Each licensee is required to have and maintain financial protection for each nuclear reactor... of financial protection required for any nuclear reactor under this section be less than $4,500,000...
10 CFR 140.12 - Amount of financial protection required for other reactors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Amount of financial protection required for other reactors... reactors. (a) Each licensee is required to have and maintain financial protection for each nuclear reactor... of financial protection required for any nuclear reactor under this section be less than $4,500,000...
155. ARAIII Reactor building (ARA608) Details of reactor pit showing ...
155. ARA-III Reactor building (ARA-608) Details of reactor pit showing tray supports and fuel element storage rack. Aerojet-general 880-area/GCRE-608-MS-2. Date: November 1958. Ineel index code no. 063-0608-40-013-102625. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
Development of toroid-type HTS DC reactor series for HVDC system
NASA Astrophysics Data System (ADS)
Kim, Kwangmin; Go, Byeong-Soo; Park, Hea-chul; Kim, Sung-kyu; Kim, Seokho; Lee, Sangjin; Oh, Yunsang; Park, Minwon; Yu, In-Keun
2015-11-01
This paper describes design specifications and performance of a toroid-type high-temperature superconducting (HTS) DC reactor. The first phase operation targets of the HTS DC reactor were 400 mH and 400 A. The authors have developed a real HTS DC reactor system during the last three years. The HTS DC reactor was designed using 2G GdBCO HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. The total system has been successfully developed and tested in connection with LCC type HVDC system. Now, the authors are studying a 400 mH, kA class toroid-type HTS DC reactor for the next phase research. The 1500 A class DC reactor system was designed using layered 13 mm GdBCO 2G HTS wire. The expected operating temperature is under 30 K. These fundamental data obtained through both works will usefully be applied to design a real toroid-type HTS DC reactor for grid application.
10 CFR 2.337 - Evidence at a hearing.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of... the proceeding under subpart A of part 51 of this chapter by the Director, Office of Nuclear Reactor... 10 Energy 1 2014-01-01 2014-01-01 false Evidence at a hearing. 2.337 Section 2.337 Energy NUCLEAR...
10 CFR 2.337 - Evidence at a hearing.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of... the proceeding under subpart A of part 51 of this chapter by the Director, Office of Nuclear Reactor... 10 Energy 1 2013-01-01 2013-01-01 false Evidence at a hearing. 2.337 Section 2.337 Energy NUCLEAR...
Osuna, M Begoña; Sipma, Jan; Emanuelsson, Maria A E; Carvalho, M Fátima; Castro, Paula M L
2008-08-01
Two up-flow fixed-bed reactors (UFBRs), inoculated with activated sludge and operated for 162 days, were fed 1mmolL(-1)d(-1) with two model halogenated compounds, 2-fluorobenzoate (2-FB) and dichloromethane (DCM). Expanded clay (EC) and granular activated carbon (GAC) were used as biofilm carrier. EC did not have any adsorption capacity for both model compounds tested, whereas GAC could adsorb 1.3mmolg(-1) GAC for 2-FB and 4.5mmolg(-1) GAC for DCM. Both pollutants were degraded in both reactors under simultaneous feeding. However, biodegradation in the EC reactor was more pronounced, and re-inoculation of the GAC reactor was required to initiate 2-FB degradation. Imposing sequential alternating pollutant (SAP) feeding caused starvation periods in the EC reactor, requiring time-consuming recovery of 2-FB biodegradation after resuming its feeding, whereas DCM degradation recovered significantly faster. The SAP feeding did not affect performance in the GAC reactor as biodegradation of both pollutants was continuously observed during SAP feeding, indicating the absence of true starvation.
NASA Astrophysics Data System (ADS)
Engelbrecht, Nicolaas; Chiuta, Steven; Bessarabov, Dmitri G.
2018-05-01
The experimental evaluation of an autothermal microchannel reactor for H2 production from NH3 decomposition is described. The reactor design incorporates an autothermal approach, with added NH3 oxidation, for coupled heat supply to the endothermic decomposition reaction. An alternating catalytic plate arrangement is used to accomplish this thermal coupling in a cocurrent flow strategy. Detailed analysis of the transient operating regime associated with reactor start-up and steady-state results is presented. The effects of operating parameters on reactor performance are investigated, specifically, the NH3 decomposition flow rate, NH3 oxidation flow rate, and fuel-oxygen equivalence ratio. Overall, the reactor exhibits rapid response time during start-up; within 60 min, H2 production is approximately 95% of steady-state values. The recommended operating point for steady-state H2 production corresponds to an NH3 decomposition flow rate of 6 NL min-1, NH3 oxidation flow rate of 4 NL min-1, and fuel-oxygen equivalence ratio of 1.4. Under these flows, NH3 conversion of 99.8% and H2 equivalent fuel cell power output of 0.71 kWe is achieved. The reactor shows good heat utilization with a thermal efficiency of 75.9%. An efficient autothermal reactor design is therefore demonstrated, which may be upscaled to a multi-kW H2 production system for commercial implementation.
Two types of external lamp reactors were investigated for the titania catalyzed photodegradation of 1,2-dichlorobenzene (DCB) from a dilute water stream. The first one was a batch mixed slurry reactor and the second one was a semi-batch reactor with continuous feed recycle wit...
de Sousa, José Tavares; Lima, Jéssyca de Freitas; da Silva, Valquíria Cordeiro; Leite, Valderi Duarte; Lopes, Wilton Silva
2017-03-01
The aim of the present study was to evaluate the biological oxidation of sulphide in two different UASB reactors by assessing the occurrence of oxidized forms of sulphur in the effluents and the amount of S 0 that could be recovered in the process. The bioreactors employed were an anaerobic hybrid (AH) reactor employing porous polyurethane foam as support media and a micro-aerated UASB reactor equipped with an aeration device above the digestion zone. The AH reactor produced a final effluent containing low concentrations of S 2- (3.87% of total sulphur load). It was achieved due to a complete oxidation of 56.1% of total sulphur. The partial biological oxidation that occurred in the AH reactor allowed the recovery of 30% of the sulphur load as S 0 . The effluent from the micro-aerated UASB reactor contained 5% of the sulphur load in the form of S 2- , while 20.9% was present as dissolved SO 4 2- and 46% was precipitated as S 0 . It is concluded that the AH reactor or micro-aeration carried out above the digestion zone of the UASB reactor favoured the biological oxidation of S 2- and the release of odourless effluents. Both technologies represent feasible and low-cost alternatives for the anaerobic treatment of domestic sewage.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Illustrative List of Nuclear Reactor Equipment Under NRC... List of Nuclear Reactor Equipment Under NRC Export Licensing Authority Note—A nuclear reactor basically includes the items within or attached directly to the reactor vessel, the equipment which controls the...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Illustrative List of Nuclear Reactor Equipment Under NRC... List of Nuclear Reactor Equipment Under NRC Export Licensing Authority Note—A nuclear reactor basically includes the items within or attached directly to the reactor vessel, the equipment which controls the...
76 FR 70331 - List of Approved Spent Fuel Storage Casks: MAGNASTOR ® System, Revision 2
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-14
... various boron-10 areal densities for use with Pressurized Water Reactor and Boiling Water Reactor baskets... add various boron-10 areal densities for use with Pressurized Water Reactor and Boiling Water Reactor....1.1 to add various boron-10 areal densities for use with Pressurized Water Reactor and Boiling Water...
Code of Federal Regulations, 2010 CFR
2010-01-01
... Hearing Procedures for Expansion of Spent Nuclear Fuel Storage Capacity at Civilian Nuclear Power Reactors § 2.1105 Definitions. As used in this part: (a) Civilian nuclear power reactor means a civilian... reactor following irradiation, the constituent elements of which have not been separated by reprocessing. ...
10 CFR 2.102 - Administrative review of application.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of...) The Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office... Energy NUCLEAR REGULATORY COMMISSION AGENCY RULES OF PRACTICE AND PROCEDURE Procedure for Issuance...
10 CFR 2.102 - Administrative review of application.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of...) The Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office... Energy NUCLEAR REGULATORY COMMISSION AGENCY RULES OF PRACTICE AND PROCEDURE Procedure for Issuance...
Computer study of emergency shutdowns of a 60-kilowatt reactor Brayton space power system
NASA Technical Reports Server (NTRS)
Tew, R. C.; Jefferies, K. S.
1974-01-01
A digital computer study of emergency shutdowns of a 60-kWe reactor Brayton power system was conducted. Malfunctions considered were (1) loss of reactor coolant flow, (2) loss of Brayton system gas flow, (3)turbine overspeed, and (4) a reactivity insertion error. Loss of reactor coolant flow was the most serious malfunction for the reactor. Methods for moderating the reactor transients due to this malfunction are considered.
Qambrani, Naveed Ahmed; Oh, Sang-Eun
2013-01-01
The effect of dissolved oxygen (DO) and agitation rate in open and closed reactors was examined for sulfur-utilizing autotrophic denitrification. The reaction rate constants were determined based on a half-order kinetic model. Declining denitrification rate constants obtained for open reactors those of 8.46, 8.03, and 2.18 for 50 mg NO(3) (-)-N/L, while 11.12, 9.14, and 0.12 mg(1/2)/L(1/2) h were for 100 mg NO(3) (-)-N/L at agitation speeds of 0, 100, and 200 rpm. In closed reactors, the ever-increasing denitrification rates were 10.13, 22.56, and 37.03, whereas for the same nitrate concentrations and speeds the rates were 13.17, 15.63, and 26.67 mg(1/2)/L(1/2) h. The rate constants correlated well (r ( 2 ) = 0.89-0.99) with a half-order kinetic model. In open reactors, high SO(4) (2-)/N ratios (8.02-75.10) while in closed reactors comparatively low SO(4) (2-)/N ratios (6.10-13.39) were obtained. Sulfur oxidation occurred continuously in the presence of DO, resulting in mixed cultures acclimated to sulfur and nitrate. SO(4) (2-) was produced as an end product, which reduced alkalinity and lowered pH over time. Furthermore, DO inhibited sulfur denitrification in open reactors, while agitation in closed reactors increased the rate of denitrification.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Nuclear Fuel Storage Capacity at Civilian Nuclear Power Reactors § 2.1105 Definitions. As used in this part: (a) Civilian nuclear power reactor means a civilian nuclear power plant required to be licensed... nuclear fuel means fuel that has been withdrawn from a nuclear reactor following irradiation, the...
Code of Federal Regulations, 2013 CFR
2013-01-01
... Nuclear Fuel Storage Capacity at Civilian Nuclear Power Reactors § 2.1105 Definitions. As used in this part: (a) Civilian nuclear power reactor means a civilian nuclear power plant required to be licensed... nuclear fuel means fuel that has been withdrawn from a nuclear reactor following irradiation, the...
75 FR 34219 - Revision of Fee Schedules; Fee Recovery for FY 2010
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-16
....8 $6.3 $7.5 Spent Fuel Storage/Reactor Decommissioning..... -- -- 2.7 0.2 0.2 Test and Research... 2009 fee is also shown for comparative purposes. Table V--Rebaselined Annual Fees FY2009 Annual FY 2010... Decommissioning Test and Research Reactors (Non-power 87,600 81,700 Reactors) High Enriched Uranium Fuel Facility...
Code of Federal Regulations, 2012 CFR
2012-01-01
..., Office of New Reactors, or Director, Office of Nuclear Reactor Regulation, as appropriate shall publish... Nuclear Reactor Regulation, as appropriate shall publish in the Federal Register a determination as to... standard design approval or early review of site suitability issues. 2.110 Section 2.110 Energy NUCLEAR...
Code of Federal Regulations, 2013 CFR
2013-01-01
..., Office of Nuclear Reactor Regulation, as appropriate shall publish in the Federal Register a notice of... Director, Office of New Reactors or Director, Office of Nuclear Reactor Regulation, as appropriate shall... standard design approval or early review of site suitability issues. 2.110 Section 2.110 Energy NUCLEAR...
Code of Federal Regulations, 2014 CFR
2014-01-01
..., Office of Nuclear Reactor Regulation, as appropriate shall publish in the Federal Register a notice of... Director, Office of New Reactors or Director, Office of Nuclear Reactor Regulation, as appropriate shall... standard design approval or early review of site suitability issues. 2.110 Section 2.110 Energy NUCLEAR...
Torkaman, Mojtaba; Borghei, Seyed Mehdi; Tahmasebian, Sepehr; Andalibi, Mohammad Reza
2015-01-01
A moving bed biofilm reactor with pre-denitrification configuration was fed with a synthetic wastewater containing high chemical oxygen demand (COD) and ammonia. By changing different variables including ammonium and COD loading, nitrification rate in the aerobic reactor and denitrification rate in the anoxic reactor were monitored. Changing the influent loading was achieved via adjusting the inlet COD (956-2,096 mg/L), inlet ammonium (183-438 mg/L), and hydraulic retention time of the aerobic reactor (8, 12, and 18 hours). The overall organic loading rate was in the range of 3.60-17.37 gCOD/m2·day, of which 18.5-91% was removed in the anoxic reactor depending on the operational conditions. Considering the complementary role of the aerobic reactor, the overall COD removal was in the range 87.3-98.8%. In addition, nitrification rate increased with influent ammonium loading, the maximum rate reaching 3.05 gNH4/m2·day. One of the most important factors affecting nitrification rate was influent C:N entering the aerobic reactor, by increasing which nitrification rate decreased asymptotically. Nitrate removal efficiency in the anoxic reactor was also controlled by the inlet nitrate level entering the anoxic reactor. Furthermore, by increasing the nitrate loading rate from 0.91 to 3.49 gNO/m3·day, denitrification rate increased from 0.496 to 2.47 gNO/m3·day.
Benchmark tests of JENDL-3.2 for thermal and fast reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takano, Hideki; Akie, Hiroshi; Kikuchi, Yasuyuki
1994-12-31
Benchmark calculations for a variety of thermal and fast reactors have been performed by using the newly evaluated JENDL-3 Version-2 (JENDL-3.2) file. In the thermal reactor calculations for the uranium and plutonium fueled cores of TRX and TCA, the k{sub eff} and lattice parameters were well predicted. The fast reactor calculations for ZPPR-9 and FCA assemblies showed that the k{sub eff} reactivity worths of Doppler, sodium void and control rod, and reaction rate distribution were in a very good agreement with the experiments.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Director of the Office of New Reactors or the Director of the Office of Nuclear Reactor Regulation, as...) The Director of the Office of New Reactors or the Director of the Office of Nuclear Reactor Regulation... of Nuclear Reactor Regulation, as appropriate, that they are complete. (c) If part one of the...
Samani, Saeed; Abdoli, Mohammad Ali; Karbassi, Abdolreza; Amin, Mohammad Mehdi
Electrical current in the hydrolytic phase of the biogas process might affect biogas yield. In this study, four 1,150 mL single membrane-less chamber electrochemical bioreactors, containing two parallel titanium plates were connected to the electrical source with voltages of 0, -0.5, -1 and -1.5 V, respectively. Reactor 1 with 0 V was considered as a control reactor. The trend of biogas production was precisely checked against pH, oxidation reduction potential and electrical power at a temperature of 37 ± 0.5°C amid cattle manure as substrate for 120 days. Biogas production increased by voltage applied to Reactors 2 and 3 when compared with the control reactor. In addition, the electricity in Reactors 2 and 3 caused more biogas production than Reactor 4. Acetogenic phase occurred more quickly in Reactor 3 than in the other reactors. The obtained results from Reactor 4 were indicative of acidogenic domination and its continuous behavior under electrical stimulation. The results of the present investigation clearly revealed that phasic electrical current could enhance the efficiency of biogas production.
Li, Wenping; Zhu, Xuefeng; Chen, Shuguang; Yang, Weishen
2016-07-18
The synthesis of ammonia and liquid fuel are two important chemical processes in which most of the energy is consumed in the production of H2 /N2 and H2 /CO synthesis gases from natural gas (methane). Here, we report a membrane reactor with a mixed ionic-electronic conducting membrane, in which the nine steps for the production of the two types of synthesis gases are shortened to one step by using water, air, and methane as feeds. In the membrane reactor, there is no direct CO2 emission and no CO or H2 S present in the ammonia synthesis gas. The energy consumption for the production of the two synthesis gases can be reduced by 63 % by using this membrane reactor. This promising membrane reactor process has been successfully demonstrated by experiment. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
5 CFR 5801.102 - Prohibited securities.
Code of Federal Regulations, 2014 CFR
2014-01-01
... licenses for facilities which generate electric energy by means of a nuclear reactor; (2) State or local... reactor or a low-level waste facility; (3) Entities manufacturing or selling nuclear power or test reactors; (4) Architectural-engineering companies providing services relating to a nuclear power reactor...
10 CFR 2.101 - Filing of application.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Nuclear Reactor Regulation, the Director, Office of Nuclear Material Safety and Safeguards, or the... this chapter, see paragraph (g) of this section. (3) If the Director, Office of Nuclear Reactor...) Submit to the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director...
10 CFR 2.101 - Filing of application.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Nuclear Reactor Regulation, the Director, Office of Nuclear Material Safety and Safeguards, or the... this chapter, see paragraph (g) of this section. (3) If the Director, Office of Nuclear Reactor...) Submit to the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director...
5 CFR 5801.102 - Prohibited securities.
Code of Federal Regulations, 2010 CFR
2010-01-01
... licenses for facilities which generate electric energy by means of a nuclear reactor; (2) State or local... reactor or a low-level waste facility; (3) Entities manufacturing or selling nuclear power or test reactors; (4) Architectural-engineering companies providing services relating to a nuclear power reactor...
Deng, Liangwei; Chen, Huijuan; Chen, Ziai; Liu, Yi; Pu, Xiaodong; Song, Li
2009-12-01
The feasibility of a new flowchart describing simultaneous hydrogen sulfide removal from biogas and nitrogen removal from wastewater was investigated. It took 30 days for the reactor inoculated with aerobic sludge to attain a removal rate of 60% for H(2)S and NO(x)-N simultaneously. It took 34 and 48 days to attain the same removal rate for the reactor without inoculated sludge and the reactor inoculated with anaerobic sludge respectively. The reactor without inoculated sludge still operated successfully, despite requiring a slightly longer startup time. The packing material was capable of enhancing the removal efficiency of reactors. Based on the concentration of NO(x)-N and H(2)S in the effluent, the loading rate and the ability of the system to resist shock loading, the performance of the reactor filled with hollow plastic balls was greater than that of the reactor filled with elastic packing and the reactor filled with Pall rings.
Dong, Zhiyong; Lu, Mang; Huang, Wenhui; Xu, Xiaochun
2011-11-30
In this study, a novel suspended ceramic carrier was prepared, which has high strength, optimum density (close to water), and high porosity. Two different carriers, unmodified and sepiolite-modified suspended ceramic carriers were used to feed two moving bed biofilm reactors (MBBRs) with a filling fraction of 50% to treat oilfield produced water. The hydraulic retention time (HRT) was varied from 36 to 10h. The results, during a monitoring period of 190 days, showed that removal efficiency of chemical oxygen demand was the highest in reactor 3 filled with the sepiolite-modified carriers, followed by reactor 2 filled with the unmodified carriers, with the lowest in reactor 1 (activated sludge reactor), at an HRT of 10h. Similar trends were found in the removal efficiencies of ammonia nitrogen and polycyclic aromatic hydrocarbons. Reactor 3 was more shock resistant than reactors 2 and 1. The results indicate that the suspended ceramic carrier is an excellent MBBR carrier. Copyright © 2011 Elsevier B.V. All rights reserved.
Estrada-Arriaga, Edson B; Ramirez-Camperos, Esperanza; Moeller-Chavez, Gabriela E; García-Sanchez, Liliana
2012-01-01
An integrated fluidized bed reactor (FBR) has been employed as the treatment for petrochemical industry wastewaters with high organic matter and aromatic compounds, under anaerobic and aerobic conditions. The system was operated at hydraulic residence time (HRT) of 2.7 and 2.2 h in the anaerobic and aerobic reactor, respectively. The degree of fluidization in the beds was 30%. This system showed a high performance on the removal of organic matter and aromatic compounds. At different organic loading rates (OLR), the chemical oxygen demand (COD) removal in the anaerobic reactor was close to 85% and removals of the COD up to 94% were obtained in the aerobic reactor. High removals of benzene, toluene, ethylbenzene, xylenes, styrene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene and naphthalene were achieved in this study.
10 CFR 2.108 - Denial of application for failure to supply information.
Code of Federal Regulations, 2012 CFR
2012-01-01
... supply information. (a) The Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, or Director, Office of Nuclear Material Safety and Safeguards, as appropriate, may deny an... of Nuclear Reactor Regulation, Director, Office of New Reactors, or Director, Office of Nuclear...
10 CFR 2.108 - Denial of application for failure to supply information.
Code of Federal Regulations, 2011 CFR
2011-01-01
... supply information. (a) The Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, or Director, Office of Nuclear Material Safety and Safeguards, as appropriate, may deny an... of Nuclear Reactor Regulation, Director, Office of New Reactors, or Director, Office of Nuclear...
Code of Federal Regulations, 2011 CFR
2011-01-01
... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Provisions § 72.2 Scope. (a) Except..., packaging, and possession of: (1) Power reactor spent fuel to be stored in a complex that is designed and constructed specifically for storage of power reactor spent fuel aged for at least one year, other radioactive...
Code of Federal Regulations, 2010 CFR
2010-01-01
... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Provisions § 72.2 Scope. (a) Except..., packaging, and possession of: (1) Power reactor spent fuel to be stored in a complex that is designed and constructed specifically for storage of power reactor spent fuel aged for at least one year, other radioactive...
77 FR 41670 - Definition of Terms
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-16
... cryptography'', 2. On page 642, add the term ``Explosives'', 3. On page 650, add the term ``Nuclear reactor... ``Commerce Control List''. * * * * * Nuclear reactor. (Cat 0 and 2) includes the items within or attached directly to the reactor vessel, the equipment which controls the level of power in the core, and the...
Degradation of aqueous phenol solutions by coaxial DBD reactor
NASA Astrophysics Data System (ADS)
Dojcinovic, B. P.; Manojlovic, D.; Roglic, G. M.; Obradovic, B. M.; Kuraica, M. M.; Puric, J.
2008-07-01
Solutions of 2-chlorophenol, 4-chlorophenol and 2,6-dichlorophenol in bidistilled and water from the river Danube were treated in plasma reactor. In this reactor, based on coaxial dielectric barrier discharge at atmospheric pressure, plasma is formed over a thin layer of treated water. After one pass through the reactor, starting chlorophenols concentration of 20 mg/l was diminished up to 95 %. Kinetics of the chlorophenols degradation was monitored by High Pressure Liquid Chromatography method (HPLC).
An Analysis of Warfighter Sleep, Fatigue, and Performance on the USS Nimitz
2014-09-01
35 1. Chernobyl Reactor 4 .............................................................. 36 2...deprivation and fatigue can be disastrous, as demonstrated by the accidents at Chernobyl Reactor 4, Three Mile Island Unit 2, Bhopal Union Carbide, and the...deprivation and fatigue can be disastrous, as demonstrated by the accidents at Chernobyl Reactor 4, Three Mile Island Unit 2, Bhopal Union Carbide, and
Coal liquefaction process utilizing coal/CO.sub.2 slurry feedstream
Comolli, Alfred G.; McLean, Joseph B.
1989-01-01
A coal hydrogenation and liquefaction process in which particulate coal feed is pressurized to an intermediate pressure of at least 500 psig and slurried with CO.sub.2 liquid to provide a flowable coal/CO.sub.2 slurry feedstream, which is further pressurized to at least 1000 psig and fed into a catalytic reactor. The coal particle size is 50-375 mesh (U.S. Sieve Series) and provides 50-80 W % coal in the coal/CO.sub.2 slurry feedstream. Catalytic reaction conditions are maintained at 650.degree.-850.degree. F. temperature, 1000-4000 psig hydrogen partial pressure and coal feed rate of 10-100 lb coal/hr ft.sup.3 reactor volume to produce hydrocarbon gas and liquid products. The hydrogen and CO.sub.2 are recovered from the reactor effluent gaseous fraction, hydrogen is recycled to the catalytic reactor, and CO.sub.2 is liquefied and recycled to the coal slurrying step. If desired, two catalytic reaction stages close coupled together in series relation can be used. The process advantageously minimizes the recycle and processing of excess hydrocarbon liquid previously needed for slurrying the coal feed to the reactor(s).
Latest progress from the Daya Bay reactor neutrino experiment
NASA Astrophysics Data System (ADS)
Wang, Zhe;
2016-05-01
Recently the Daya Bay reactor neutrino experiment has presented several new results about neutrino and reactor physics after acquiring a large data sample and after gaining a more sophisticated understanding of the experiment. In this talk I will introduce the latest progress made by the experiment including a three-flavor neutrino oscillation analysis using neutron capture on gadolinium, which gave sin2 2θ 13 = 0.084 ± 0.005 and |Δm2 ee| = (2.42 ±0.11) × 10-3 eV2, an independent θ 13 measurement using neutron capture on hydrogen, a search for a light sterile neutrino, and a measurement of the reactor antineutrino flux and spectrum.
Development of a Novel Catalytic Membrane Reactor for Heterogeneous Catalysis in Supercritical CO2
Islam, Nazrul M.; Chatterjee, Maya; Ikushima, Yutaka; Yokoyama, Toshiro; Kawanami, Hajime
2010-01-01
A novel type of high-pressure membrane reactor has been developed for hydrogenation in supercritical carbon dioxide (scCO2). The main objectives of the design of the reactor are the separate feeding of hydrogen and substrate in scCO2 for safe reactions in a continuous flow process, and to reduce the reaction time. By using this new reactor, hydrogenation of cinnamaldehyde into hydrocinnamaldehyde has been successfully carried out with 100% selectivity at 50 °C in 10 MPa (H2: 1 MPa, CO2: 9 MPa) with a flow rate of substrate ranging from 0.05 to 1.0 mL/min. PMID:20162008
Experience of on-site disposal of production uranium-graphite nuclear reactor.
Pavliuk, Alexander O; Kotlyarevskiy, Sergey G; Bespala, Evgeny V; Zakharova, Elena V; Ermolaev, Vyacheslav M; Volkova, Anna G
2018-04-01
The paper reported the experience gained in the course of decommissioning EI-2 Production Uranium-Graphite Nuclear Reactor. EI-2 was a production Uranium-Graphite Nuclear Reactor located on the Production and Demonstration Center for Uranium-Graphite Reactors JSC (PDC UGR JSC) site of Seversk City, Tomsk Region, Russia. EI-2 commenced its operation in 1958, and was shut down on December 28, 1990, having operated for the period of 33 years all together. The extra pure grade graphite for the moderator, water for the coolant, and uranium metal for the fuel were used in the reactor. During the operation nitrogen gas was passed through the graphite stack of the reactor. In the process of decommissioning the PDC UGR JSC site the cavities in the reactor space were filled with clay-based materials. A specific composite barrier material based on clays and minerals of Siberian Region was developed for the purpose. Numerical modeling demonstrated the developed clay composite would make efficient geological barriers preventing release of radionuclides into the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.
Tanaka, Yasuo
2002-08-01
A wastewater treatment system employing a UASB reactor in temperate regions requires biogas as a heat source for the UASB reactor during low temperature seasons. In this case, removal of H2S in the biogas by means of a scrubber before burning is necessary in order to prevent the boilers from corroding. Heating of the UASB reactor is, however, unnecessary in a warm season, and the scrubber and biogas become useless. Methane-dependent water quality improvement using the scrubber and biogas would be one way to use them efficiently during the warm season. The possible dual-purpose use of a packed-bed reactor was examined, with one of its uses being the scrubbing of biogas during the cold season and the other being the methane-dependent improvement of effluent water quality during the warm season. A bench scale packed-bed filled with plastic latticed-ring media was installed in a livestock wastewater treatment plant consisting of a UASB reactor and a trickling filter for post-treatment. The packed-bed was operated with biogas flowing at a superficial velocity of 0.14-0.39 m h(-1) and the hydraulic loading of trickling filter effluent sprayed onto the media 9.4-26.1 m3 m2 day(-1). H2S in the biogas from the UASB reactor was reduced from 1,200-2,500 ppm to less than 2 ppm by the reactor. Methane-dependent water quality improvement was examined using a laboratory scale reactor to which methane and/or air was supplied from the bottom, while plant effluent was spread from the top of the reactor. When the mixture gas of methane and air (volume ratio 1:3) was added to the reactor, biofilm grew on the surface of the media. Accompanying this growth, ammonium and phosphate in the spread water decreased, probably due to assimilation by the methane-oxidizing bacteria. Though assimilation activity dropped after the accumulation of biomass, it could be reactivated by washing out the excess biomass. Periodical backwash at a rate of more than once a week seemed to efficiently maintain the removal activity. The dark brown color of the wastewater could be also reduced in concert with methane oxidation. It seemed that methane-oxidizing bacteria degraded color-causing compounds. These results suggest that the packed-bed reactor is useful for both H2S purification of biogas and methane-dependent effluent water quality improvement.
NASA Astrophysics Data System (ADS)
Budiastuti, H.; Ghozali, M.; Wicaksono, H. K.; Hadiansyah, R.
2018-01-01
Municipal solid waste has become a common challenged problem to be solved for developing countries including Indonesia. Municipal solid waste generating is always bigger than its treatment to reduce affect of environmental pollution. This research tries to contribute to provide an alternative solution to treat municipal solid waste to produce biogas. Vegetable waste was obtained from Gedebage Market, Bandung and starter as a source of anaerobic microorganisms was cow dung obtained from a cow farm in Lembang. A two stage anaerobic reactor was designed and built to treat the vegetable waste in a batch run. The capacity of each reactor is 20 liters but its active volume in each reactor is 15 liters. Reactor 1 (R1) was fed up with mixture of filtered blended vegetable waste and water at ratio of 1:1 whereas Reactor 2 (R2) was filled with filtered mixed liquor of cow dung and water at ratio of 1:1. Both mixtures were left overnight before use. Into R1 it was added EM-4 at concentration of 10%. pH in R1 was maintained at 5 - 6.5 whereas pH in R1 was maintained at 6.5 - 7.5. Temperature of reactors was not maintained to imitate the real environmental temperature. Parameters taken during experiment were pH, temperature, COD, MLVSS, and composition of biogas. The performance of reactor built was shown from COD efficiencies reduction obtained of about 60% both in R1 and R2, pH average in R1 of 4.5 ± 1 and R2 of 7 ± 0.6, average temperature in both reactors of 25 ± 2°C. About 1L gas produced was obtained during the last 6 days of experiment in which CH4 obtained was 8.951 ppm and CO2 of 1.087 ppm. The maximum increase of MLVSS in R1 reached 156% and R2 reached 89%.
NASA Astrophysics Data System (ADS)
Lambe, A. T.; Chhabra, P. S.; Onasch, T. B.; Brune, W. H.; Hunter, J. F.; Kroll, J. H.; Cummings, M. J.; Brogan, J. F.; Parmar, Y.; Worsnop, D. R.; Kolb, C. E.; Davidovits, P.
2014-12-01
We performed a systematic intercomparison study of the chemistry and yields of SOA generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous flow reactor and several environmental chambers. In the flow reactor, SOA precursors were oxidized using OH concentrations ranging from 2.0×108 to 2.2×1010 molec cm-3 over exposure times of 100 s. In the environmental chambers, precursors were oxidized using OH concentrations ranging from 2×106 to 2×107 molec cm-3 over exposure times of several hours. The OH concentration in the chamber experiments is close to that found in the atmosphere, but the integrated OH exposure in the flow reactor can simulate atmospheric exposure times of multiple days compared to chamber exposure times of only a day or so. A linear correlation analysis of the mass spectra (m=0.91-0.92, r2=0.93-0.94) and carbon oxidation state (m=1.1, r2=0.58) of SOA produced in the flow reactor and environmental chambers for OH exposures of approximately 1011 molec cm-3 s suggests that the composition of SOA produced in the flow reactor and chambers is the same within experimental accuracy as measured with an aerosol mass spectrometer. This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors, rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of sulfate seed particles on isoprene SOA yield measurements was examined in the flow reactor. The studies show that seed particles increase the yield of SOA produced in flow reactors by a factor of 3 to 5 and may also account in part for higher SOA yields obtained in the chambers, where seed particles are routinely used.
10 CFR 54.25 - Report of the Advisory Committee on Reactor Safeguards.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Report of the Advisory Committee on Reactor Safeguards. 54.25 Section 54.25 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) REQUIREMENTS FOR RENEWAL OF... Reactor Safeguards. Each renewal application will be referred to the Advisory Committee on Reactor...
10 CFR 54.25 - Report of the Advisory Committee on Reactor Safeguards.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Report of the Advisory Committee on Reactor Safeguards. 54.25 Section 54.25 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) REQUIREMENTS FOR RENEWAL OF... Reactor Safeguards. Each renewal application will be referred to the Advisory Committee on Reactor...
10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...
10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...
10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...
10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...
10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...
10 CFR 2.108 - Denial of application for failure to supply information.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of... other time as may be specified. (b) The Director, Office of Nuclear Reactor Regulation, Director, Office..., will rule whether an application should be denied by the Director, Office of Nuclear Reactor Regulation...
10 CFR 2.108 - Denial of application for failure to supply information.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of... other time as may be specified. (b) The Director, Office of Nuclear Reactor Regulation, Director, Office..., will rule whether an application should be denied by the Director, Office of Nuclear Reactor Regulation...
Cavity temperature and flow characteristics in a gas-core test reactor
NASA Technical Reports Server (NTRS)
Putre, H. A.
1973-01-01
A test reactor concept for conducting basic studies on a fissioning uranium plasma and for testing various gas-core reactor concepts is analyzed. The test reactor consists of a conventional fuel-element region surrounding a 61-cm-(2-ft-) diameter cavity region which contains the plasma experiment. The fuel elements provide the neutron flux for the cavity region. The design operating conditions include 60-MW reactor power, 2.7-MW cavity power, 200-atm cavity pressure, and an average uranium plasma temperature of 15,000 K. The analytical results are given for cavity radiant heat transfer, hydrogen transpiration cooling, and uranium wire or powder injection.
Status report on the fusion breeder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moir, R.W.
1980-12-12
The rationale for hybrid fusion-fission reactors is the production of fissile fuel for fission reactors. A new class of reactor, the fission-suppressed hybrid promises unusually good safety features as well as the ability to support 25 light-water reactors of the same nuclear power rating, or even more high-conversion-ratio reactors such as the heavy-water type. One 4000-MW nuclear hybrid can produce 7200 kg of /sup 233/U per year. To obtain good economics, injector efficiency times plasma gain (eta/sub i/Q) should be greater than 2, the wall load should be greater than 1 MW m/sup -2/, and the hybrid should cost lessmore » than 6 times the cost of a light-water reactor. Introduction rates for the fission-suppressed hybrid are unusually rapid.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. Kokkinos
2005-04-28
The purpose of this letter is to request Naval Reactors comments on the nuclear reactor high tier requirements for the PROMETHEUS space flight reactor design, pre-launch operations, launch, ascent, operation, and disposal, and to request Naval Reactors approval to transmit these requirements to Jet Propulsion Laboratory to ensure consistency between the reactor safety requirements and the spacecraft safety requirements. The proposed PROMETHEUS nuclear reactor high tier safety requirements are consistent with the long standing safety culture of the Naval Reactors Program and its commitment to protecting the health and safety of the public and the environment. In addition, the philosophymore » on which these requirements are based is consistent with the Nuclear Safety Policy Working Group recommendations on space nuclear propulsion safety (Reference 1), DOE Nuclear Safety Criteria and Specifications for Space Nuclear Reactors (Reference 2), the Nuclear Space Power Safety and Facility Guidelines Study of the Applied Physics Laboratory.« less
Code of Federal Regulations, 2011 CFR
2011-01-01
... part 52 for a license to manufacture nuclear power reactors. 2.501 Section 2.501 Energy NUCLEAR... Procedures Applicable to Proceedings for the Issuance of Licenses To Manufacture Nuclear Power Reactors To Be... power reactors. (a) In the case of an application under subpart F of part 52 of this chapter for a...
Code of Federal Regulations, 2010 CFR
2010-01-01
... part 52 for a license to manufacture nuclear power reactors. 2.501 Section 2.501 Energy NUCLEAR... Procedures Applicable to Proceedings for the Issuance of Licenses To Manufacture Nuclear Power Reactors To Be... power reactors. (a) In the case of an application under subpart F of part 52 of this chapter for a...
Pawar, Sudhanshu S; Vongkumpeang, Thitiwut; Grey, Carl; van Niel, Ed Wj
2015-01-01
Caldicellulosiruptor species have gained a reputation as being among the best microorganisms to produce hydrogen (H2) due to possession of a combination of appropriate features. However, due to their low volumetric H2 productivities (Q H2), Caldicellulosiruptor species cannot be considered for any viable biohydrogen production process yet. In this study, we evaluate biofilm forming potential of pure and co-cultures of Caldicellulosiruptor saccharolyticus and Caldicellulosiruptor owensensis in continuously stirred tank reactors (CSTR) and up-flow anaerobic (UA) reactors. We also evaluate biofilms as a means to retain biomass in the reactor and its influence on Q H2. Moreover, we explore the factors influencing the formation of biofilm. Co-cultures of C. saccharolyticus and C. owensensis form substantially more biofilm than formed by C. owensensis alone. Biofilms improved substrate conversion in both of the reactor systems, but improved the Q H2 only in the UA reactor. When grown in the presence of each other's culture supernatant, both C. saccharolyticus and C. owensensis were positively influenced on their individual growth and H2 production. Unlike the CSTR, UA reactors allowed retention of C. saccharolyticus and C. owensensis when subjected to very high substrate loading rates. In the UA reactor, maximum Q H2 (approximately 20 mmol · L(-1) · h(-1)) was obtained only with granular sludge as the carrier material. In the CSTR, stirring negatively affected biofilm formation. Whereas, a clear correlation was observed between elevated (>40 μM) intracellular levels of the secondary messenger bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) and biofilm formation. In co-cultures C. saccharolyticus fortified the trade of biofilm formation by C. owensensis, which was mediated by elevated levels of c-di-GMP in C. owensensis. These biofilms were effective in retaining biomass of both species in the reactor and improving Q H2 in a UA reactor using granular sludge as the carrier material. This concept forms a basis for further optimizing the Q H2 at laboratory scale and beyond.
10 CFR 140.52 - Indemnity agreements.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) authorizing the licensee to operate the nuclear reactor involved; or (2) The effective date of the license... material at the site of the nuclear reactor for use as fuel in operation of the nuclear reactor after... 10 Energy 2 2014-01-01 2014-01-01 false Indemnity agreements. 140.52 Section 140.52 Energy NUCLEAR...
10 CFR 140.52 - Indemnity agreements.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) authorizing the licensee to operate the nuclear reactor involved; or (2) The effective date of the license... material at the site of the nuclear reactor for use as fuel in operation of the nuclear reactor after... 10 Energy 2 2010-01-01 2010-01-01 false Indemnity agreements. 140.52 Section 140.52 Energy NUCLEAR...
Composting of 4-nonylphenol-contaminated river sediment with inocula of Phanerochaete chrysosporium.
Huang, Danlian; Qin, Xingmeng; Xu, Piao; Zeng, Guangming; Peng, Zhiwei; Wang, Rongzhong; Wan, Jia; Gong, Xiaomin; Xue, Wenjing
2016-12-01
A composting study was performed to investigate the degradation of 4-nonylphenol (4-NP) in river sediment by inoculating Phanerochaete chrysosporium (Pc). Pc was inoculated into composting Reactor A, C and D, while Reactor B without inocula was used as control. The results showed that composting with Pc accelerated the degradation of 4-NP, increased the catalase and polyphenol oxidase enzyme activities in contaminated sediment. The dissipation half-life (t 1/2 ) of 4-NP in Reactor A, C and D with inocula of Pc were 2.079, 2.558, 2.424days, while in Reactor B without inocula of Pc it was 3.239days, respectively. Correlation analysis showed that the contents of 4-NP in sediment in Reactor A and D were negatively correlated with the actives of laccase, whereas no obvious correlation was observed in Reactor B and C. All these findings also indicated that Pc enhanced the maturity of compost, and the best composting C/N ratio was 25.46:1. Copyright © 2016 Elsevier Ltd. All rights reserved.
New results from RENO and future RENO-50 project
NASA Astrophysics Data System (ADS)
Kim, S. B.
2017-07-01
RENO (Reactor Experiment for Neutrino Oscillation) has obtained a more precise value of the smallest mixing angle θ_{13} and the first result on neutrino squared-mass difference \\vertΔ m_{ee}^2\\vert from an energy- and baseline-dependent disappearance of reactor electron antineutrinos (overline{ν}_e) using 500 days of data. Based on the ratio of inverse-beta-decay (IBD) prompt spectra measured between two identical far and near detectors, we obtain sin^2 2 θ_{13} = 0.082 ± 0.009({stat.}) ± 0.006({syst.}) and \\vertΔ m_{ee}^2\\vert =[2.62_{-0.23}^{+0.21}({stat.}) _{-0.13} ^{+0.12}({syst.})]× 10^{-3} eV2. An excess of reactor antineutrinos near 5MeV is observed in the measured prompt spectrum with respect to the most commonly used models. The excess is found to be consistent with coming from reactors. A future reactor experiment of RENO-50 is proposed to determine the neutrino mass hierarchy and to make highly precise measurements of θ_{12} , Δ m_{21}^2 , and \\vertΔ m_{ee}^2\\vert.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Nicholas R.; Mueller, Donald E.; Patton, Bruce W.
2016-08-31
Experiments are being planned at Research Centre Rež (RC Rež) to use the FLiBe (2 7LiF-BeF 2) salt from the Molten Salt Reactor Experiment (MSRE) to perform reactor physics measurements in the LR-0 low power nuclear reactor. These experiments are intended to inform on neutron spectral effects and nuclear data uncertainties for advanced reactor systems utilizing FLiBe salt in a thermal neutron energy spectrum. Oak Ridge National Laboratory (ORNL) is performing sensitivity/uncertainty (S/U) analysis of these planned experiments as part of the ongoing collaboration between the United States and the Czech Republic on civilian nuclear energy research and development. Themore » objective of these analyses is to produce the sensitivity of neutron multiplication to cross section data on an energy-dependent basis for specific nuclides. This report provides a status update on the S/U analyses of critical experiments at the LR-0 Reactor relevant to fluoride salt-cooled high temperature reactor (FHR) and liquid-fueled molten salt reactor (MSR) concepts. The S/U analyses will be used to inform design of FLiBe-based experiments using the salt from MSRE.« less
Ionescu, Danny; Buchmann, Bettina; Heim, Christine; Häusler, Stefan; de Beer, Dirk; Polerecky, Lubos
2014-01-01
If O2 is available at circumneutral pH, Fe2+ is rapidly oxidized to Fe3+, which precipitates as FeO(OH). Neutrophilic iron oxidizing bacteria have evolved mechanisms to prevent self-encrustation in iron. Hitherto, no mechanism has been proposed for cyanobacteria from Fe2+-rich environments; these produce O2 but are seldom found encrusted in iron. We used two sets of illuminated reactors connected to two groundwater aquifers with different Fe2+ concentrations (0.9 μM vs. 26 μM) in the Äspö Hard Rock Laboratory (HRL), Sweden. Cyanobacterial biofilms developed in all reactors and were phylogenetically different between the reactors. Unexpectedly, cyanobacteria growing in the Fe2+-poor reactors were encrusted in iron, whereas those in the Fe2+-rich reactors were not. In-situ microsensor measurements showed that O2 concentrations and pH near the surface of the cyanobacterial biofilms from the Fe2+-rich reactors were much higher than in the overlying water. This was not the case for the biofilms growing at low Fe2+ concentrations. Measurements with enrichment cultures showed that cyanobacteria from the Fe2+-rich environment increased their photosynthesis with increasing Fe2+ concentrations, whereas those from the low Fe2+ environment were inhibited at Fe2+ > 5 μM. Modeling based on in-situ O2 and pH profiles showed that cyanobacteria from the Fe2+-rich reactor were not exposed to significant Fe2+ concentrations. We propose that, due to limited mass transfer, high photosynthetic activity in Fe2+-rich environments forms a protective zone where Fe2+ precipitates abiotically at a non-lethal distance from the cyanobacteria. This mechanism sheds new light on the possible role of cyanobacteria in precipitation of banded iron formations. PMID:25228899
Damianovic, M H R Z; Moraes, E M; Zaiat, M; Foresti, E
2009-10-01
This study verifies the potential applicability of horizontal-flow anaerobic immobilized biomass (HAIB) reactors to pentachlorophenol (PCP) dechlorination. Two bench-scale HAIB reactors (R1 and R2) were filled with cubic polyurethane foam matrices containing immobilized anaerobic sludge. The reactors were then continuously fed with synthetic wastewater consisting of PCP, glucose, acetic acid, and formic acid as co-substrates for PCP anaerobic degradation. Before being immobilized in polyurethane foam matrices, the biomass was exposed to wastewater containing PCP in reactors fed at a semi-continuous rate of 2.0 microg PCP g(-1) VS. The applied PCP loading rate was increased from 0.05 to 2.59 mg PCP l(-1)day(-1) for R1, and from 0.06 to 4.15 mg PCP l(-1)day(-1) for R2. The organic loading rates (OLR) were 1.1 and 1.7 kg COD m(-3)day(-1) at hydraulic retention times (HRT) of 24h for R1 and 18 h for R2. Under such conditions, chemical oxygen demand (COD) removal efficiencies of up to 98% were achieved in the HAIB reactors. Both reactors exhibited the ability to remove 97% of the loaded PCP. Dichlorophenol (DCP) was the primary chlorophenol detected in the effluent. The adsorption of PCP and metabolites formed during PCP degradation in the packed bed was negligible for PCP removal efficiency.
Giustinianovich, Elisa A; Aspé, Estrella R; Huiliñir, César E; Roeckel, Marlene D
2014-01-01
Salmon processing generates saline effluents with high protein load. To treat these effluents, three compact tubular filter reactors were installed and an integrated anoxic/anaerobic/aerobic process was developed with recycling flow from the reactor's exit to the inlet stream in order to save organic matter (OM) for denitrification. The reactors were aerated in the upper section with recycle ratios (RR) of 0, 2, and 10, respectively, at 30°C. A tubular reactor behave as a plug flow reactor when RR = 0, and as a mixed flow reactor when recycle increases, thus, different RR values were used to evaluate how it affects the product distribution and the global performance. Diluted salmon process effluent was prepared as substrate. Using loads of 1.0 kg COD m(-3)d(-1) and 0.15 kg total Kjeldahl nitrogen (TKN) m(-3)d(-1) at HRT of 2 d, 100% removal efficiencies for nitrite and nitrate were achieved in the anoxic-denitrifying section without effect of the dissolved oxygen in the recycled flow on denitrification. Removals >98% for total organic carbon (TOC) was achieved in the three reactors. The RR had no effect on the TOC removal; nevertheless a higher efficiency in total nitrogen removal in the reactor with the highest recycle ratio was observed: 94.3% for RR = 10 and 46.6% for RR = 2. Results showed that the proposed layout with an alternative distribution in a compact reactor can efficiently treat high organic carbon and nitrogen concentrations from a saline fish effluent with OM savings in denitrification.
A study on using fireclay as a biomass carrier in an activated sludge system.
Tilaki, Ramazan Ali Dianati
2011-01-01
By adding a biomass carrier to an activated sludge system, the biomass concentration will increase, and subsequently the organic removal efficiency will be enhanced. In this study, the possibility of using excess sludge from ceramic and tile manufacturing plants as a biomass carrier was investigated. The aim of this study was to determine the effect of using fireclay as a biomass carrier on biomass concentration, organic removal and nitrification efficiency in an activated sludge system. Experiments were conducted by using a bench scale activated sludge system operating in batch and continuous modes. Artificial simulated wastewater was made by using recirculated water in a ceramic manufacturing plant. In the continuous mode, hydraulic detention time in the aeration reactor was 8 and 22 h. In the batch mode, aeration time was 8 and 16 h. Fireclay doses were 500, 1,400 and 2,250 mg l(-1), and were added to the reactors in each experiment separately. The reactor with added fireclay was called a Hybrid Biological Reactor (HBR). A reactor without added fireclay was used as a control. Efficiency parameters such as COD, MLVSS and nitrate were measured in the control and HBR reactors according to standard methods. The average concentration of biomass in the HBR reactor was greater than in the control reactor. The total biomass concentration in the HBR reactor (2.25 g l(-1) fireclay) in the continuous mode was 3,000 mg l(-1) and in the batch mode was 2,400 mg l(-1). The attached biomass concentration in the HBR reactor (2.25 g l(-1) fireclay) in the continuous mode was 1,500 mg l(-1) and in the batch mode was 980 mg l(-1). Efficiency for COD removal in the HBR and control reactor was 95 and 55%, respectively. In the HBR reactor, nitrification was enhanced, and the concentration of nitrate was increased by 80%. By increasing the fireclay dose, total and attached biomass was increased. By adding fireclay as a biomass carrier, the efficiency of an activated sludge system to treat wastewater from ceramic manufacturing plants was increased.
Development of a trickle bed reactor of electro-Fenton process for wastewater treatment.
Lei, Yangming; Liu, Hong; Shen, Zhemin; Wang, Wenhua
2013-10-15
To avoid electrolyte leakage and gas bubbles in the electro-Fenton (E-Fenton) reactors using a gas diffusion cathode, we developed a trickle bed cathode by coating a layer composed of carbon black and polytetrafluoroethylene (C-PTFE) onto graphite chips instead of carbon cloth. The trickle bed cathode was optimized by single-factor and orthogonal experiments, in which carbon black, PTFE, and a surfactant were considered as the determinant of the performance of graphite chips. In the reactor assembled by the trickle bed cathode, H2O2 was generated with a current of 0.3A and a current efficiency of 60%. This performance was attributed to the fine distribution of electrolyte and air, as well as the effective oxygen transfer from the gas phase to the electrolyte-cathode interface. In terms of H2O2 generation and current efficiency, the developed trickle bed reactor had a performance comparable to that of the conventional E-Fenton reactor using a gas diffusion cathode. Further, 123 mg L(-1) of reactive brilliant red X-3B in aqueous solution was decomposed in the optimized trickle bed reactor as E-Fenton reactor. The decolorization ratio reached 97% within 20 min, and the mineralization reached 87% within 3h. Copyright © 2013 Elsevier B.V. All rights reserved.
Modeling residence-time distribution in horizontal screw hydrolysis reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sievers, David A.; Stickel, Jonathan J.
The dilute-acid thermochemical hydrolysis step used in the production of liquid fuels from lignocellulosic biomass requires precise residence-time control to achieve high monomeric sugar yields. Difficulty has been encountered reproducing residence times and yields when small batch reaction conditions are scaled up to larger pilot-scale horizontal auger-tube type continuous reactors. A commonly used naive model estimated residence times of 6.2-16.7 min, but measured mean times were actually 1.4-2.2 the estimates. Here, this study investigated how reactor residence-time distribution (RTD) is affected by reactor characteristics and operational conditions, and developed a method to accurately predict the RTD based on key parameters.more » Screw speed, reactor physical dimensions, throughput rate, and process material density were identified as major factors affecting both the mean and standard deviation of RTDs. The general shape of RTDs was consistent with a constant value determined for skewness. The Peclet number quantified reactor plug-flow performance, which ranged between 20 and 357.« less
Circulating moving bed system for CO.sub.2 separation, and method of same
Elliott, Jeannine Elizabeth; Copeland, Robert James
2016-12-27
A circulating moving bed and process for separating a carbon dioxide from a gas stream is disclosed. The circulating moving bed can include an adsorption reactor and a desorption reactor, and a sorbent that moves through the two reactors. The sorbent can enter the adsorptive reactor and one end and move to an exit point distal to its entry point, while a CO.sub.2 feed stream can enter near the distal point and move countercurrently through the sorbent to exit at a position near the entry point of the sorbent. The sorbent can adsorb the CO.sub.2 by concentration swing adsorption and adsorptive displacement. The sorbent can then transfer to a regeneration reactor and can move countercurrently against a flow of steam through the regeneration reactor. The sorbent can be regenerated and the carbon dioxide recaptured by desorbing the carbon dioxide from the sorbent using concentration swing desorption and desorptive displacement with steam.
Modeling residence-time distribution in horizontal screw hydrolysis reactors
Sievers, David A.; Stickel, Jonathan J.
2017-10-12
The dilute-acid thermochemical hydrolysis step used in the production of liquid fuels from lignocellulosic biomass requires precise residence-time control to achieve high monomeric sugar yields. Difficulty has been encountered reproducing residence times and yields when small batch reaction conditions are scaled up to larger pilot-scale horizontal auger-tube type continuous reactors. A commonly used naive model estimated residence times of 6.2-16.7 min, but measured mean times were actually 1.4-2.2 the estimates. Here, this study investigated how reactor residence-time distribution (RTD) is affected by reactor characteristics and operational conditions, and developed a method to accurately predict the RTD based on key parameters.more » Screw speed, reactor physical dimensions, throughput rate, and process material density were identified as major factors affecting both the mean and standard deviation of RTDs. The general shape of RTDs was consistent with a constant value determined for skewness. The Peclet number quantified reactor plug-flow performance, which ranged between 20 and 357.« less
Nitrous oxide from moving bed based integrated fixed film activated sludge membrane bioreactors.
Mannina, Giorgio; Capodici, Marco; Cosenza, Alida; Di Trapani, Daniele; Laudicina, Vito Armando; Ødegaard, Hallvard
2017-02-01
The present paper reports the results of a nitrous oxide (N 2 O) production investigation in a moving bed based integrated fixed film activated sludge (IFAS) membrane bioreactor (MBR) pilot plant designed in accordance with the University of Cape Town layout for biological phosphorous removal. Gaseous and liquid samples were collected in order to measure the gaseous as well as the dissolved concentration of N 2 O. Furthermore, the gas flow rate from each reactor was measured and the gas flux was estimated. The results confirmed that the anoxic reactor represents the main source of nitrous oxide production. A significant production of N 2 O was, however, also found in the anaerobic reactor, thus indicating a probable occurrence of the denitrifying phosphate accumulating organism activity. The highest N 2 O fluxes were emitted from the aerated reactors (3.09 g N 2 ON m -2 h -1 and 9.87 g N 2 ON m -2 h -1 , aerobic and MBR tank, respectively). The emission factor highlighted that only 1% of the total treated nitrogen was emitted from the pilot plant. Furthermore, the measured N 2 O concentrations in the permeate flow were comparable with other reactors. Nitrous oxide mass balances outlined a moderate production also in the MBR reactor despite the low hydraulic retention time. On the other hand, the mass balance showed that in the aerobic reactor a constant consumption of nitrous oxide (up to almost 15 mg N 2 O h -1 ) took place, due to the high amount of stripped gas. Copyright © 2016 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-28
... NUCLEAR REGULATORY COMMISSION Advisory Committee On Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels will hold a meeting on June 4, 2013, Room T-2B1, 11545 Rockville Pike, Rockville...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-14
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels will hold a meeting on June 23, 2011, Room T-2B3, 11545 Rockville Pike, Rockville...
75 FR 66168 - Seeks Qualified Candidates for the Advisory Committee on Reactor Safeguards
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-27
... NUCLEAR REGULATORY COMMISSION Seeks Qualified Candidates for the Advisory Committee on Reactor... Reactor Safeguards (ACRS). Submit r[eacute]sum[eacute]s to Ms. Brandi Hamilton, ACRS, Mail Stop T2E-26, U... of existing and proposed nuclear power plants and on the adequacy of proposed reactor safety...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-16
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels will hold a meeting on February 6, 2013, Room T-2B1, 11545 Rockville Pike...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-23
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels will hold a meeting on December 15, 2011, Room T-2B1, 11545 Rockville Pike...
10 CFR 171.15 - Annual fees: Reactor licenses and independent spent fuel storage licenses.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Annual fees: Reactor licenses and independent spent fuel... REACTOR LICENSES AND FUEL CYCLE LICENSES AND MATERIALS LICENSES, INCLUDING HOLDERS OF CERTIFICATES OF... NRC § 171.15 Annual fees: Reactor licenses and independent spent fuel storage licenses. (a) Each...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-26
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor; Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR) will hold a meeting on January 16, 2013, Room T-2B3, 11545 Rockville Pike...
10 CFR 171.15 - Annual fees: Reactor licenses and independent spent fuel storage licenses.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Annual fees: Reactor licenses and independent spent fuel... REACTOR LICENSES AND FUEL CYCLE LICENSES AND MATERIALS LICENSES, INCLUDING HOLDERS OF CERTIFICATES OF... NRC § 171.15 Annual fees: Reactor licenses and independent spent fuel storage licenses. (a) Each...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-17
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels will hold a meeting on May 22, 2013, Room T-2B1, 11545 Rockville Pike, Rockville...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-07
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Economic Simplified Boiling Water Reactor; Notice of Meeting The ACRS Subcommittee on Economic Simplified Boiling Water Reactor (ESBWR) will hold a meeting on November 30, 2011, Room T-2B1, 11545...
10 CFR 73.37 - Requirements for physical protection of irradiated reactor fuel in transit.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Requirements for physical protection of irradiated reactor... Requirements for physical protection of irradiated reactor fuel in transit. (a) Performance objectives. (1... of irradiated reactor fuel in excess of 100 grams in net weight of irradiated fuel, exclusive of...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-10
... NUCLEAR REGULATORY COMMISSION Advisory Committee On Reactor Safeguards (ACRS); Meeting of the Acrs Subcommittee on Materials, Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels will hold a meeting on June 17, 2013, Room T-2B1, 11545 Rockville Pike, Rockville...
10 CFR 73.37 - Requirements for physical protection of irradiated reactor fuel in transit.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Requirements for physical protection of irradiated reactor... Requirements for physical protection of irradiated reactor fuel in transit. (a) Performance objectives. (1... of irradiated reactor fuel in excess of 100 grams in net weight of irradiated fuel, exclusive of...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-17
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels will hold a meeting on January 16, 2013, Room T-2B3, 11545 Rockville Pike...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-13
... NUCLEAR REGULATORY COMMISSION Advisory Committee On Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels will hold a meeting on September 19, 2013, Room T-2B3, 11545 Rockville Pike...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-27
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels will hold a meeting on January 14, 2014, Room T-2B1, 11545 Rockville Pike...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-26
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels will hold a meeting on December 4, 2013, Room T-2B1, 11545 Rockville Pike...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-02
... Nuclear Regulatory Commission Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels will hold a meeting on May 10, 2011, Room T-2B1, 11545 Rockville Pike, Rockville...
Issues relating to spent nuclear fuel storage on the Oak Ridge Reservation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, J.A.; Turner, D.W.
1994-12-31
Currently, about 2,800 metric tons of spent nuclear fuel (SNF) is stored in the US, 1,000 kg of SNF (or about 0.03% of the nation`s total) are stored at the US Department of Energy (DOE) complex in Oak Ridge, Tennessee. However small the total quantity of material stored at Oak Ridge, some of the material is quite singular in character and, thus, poses unique management concerns. The various types of SNF stored at Oak Ridge will be discussed including: (1) High-Flux Isotope Reactor (HFIR) and future Advanced Neutron Source (ANS) fuels; (2) Material Testing Reactor (MTR) fuels, including Bulk Shieldingmore » Reactor (BSR) and Oak Ridge Research Reactor (ORR) fuels; (3) Molten Salt Reactor Experiment (MSRE) fuel; (4) Homogeneous Reactor Experiment (HRE) fuel; (5) Miscellaneous SNF stored in Oak Ridge National Laboratory`s (ORNL`s) Solid Waste Storage Areas (SWSAs); (6) SNF stored in the Y-12 Plant 9720-5 Warehouse including Health. Physics Reactor (HPRR), Space Nuclear Auxiliary Power (SNAP-) 10A, and DOE Demonstration Reactor fuels.« less
Pre-Combustion Carbon Dioxide Capture by a New Dual Phase Ceramic-Carbonate Membrane Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Jerry Y. S.
2015-01-31
This report documents synthesis, characterization and carbon dioxide permeation and separation properties of a new group of ceramic-carbonate dual-phase membranes and results of a laboratory study on their application for water gas shift reaction with carbon dioxide separation. A series of ceramic-carbonate dual phase membranes with various oxygen ionic or mixed ionic and electronic conducting metal oxide materials in disk, tube, symmetric, and asymmetric geometric configurations was developed. These membranes, with the thickness of 10 μm to 1.5 mm, show CO 2 permeance in the range of 0.5-5×10 -7 mol·m -2·s -1·Pa -1 in 500-900°C and measured CO 2/N 2more » selectivity of up to 3000. CO 2 permeation mechanism and factors that affect CO 2 permeation through the dual-phase membranes have been identified. A reliable CO 2 permeation model was developed. A robust method was established for the optimization of the microstructures of ceramic-carbonate membranes. The ceramic-carbonate membranes exhibit high stability for high temperature CO 2 separations and water gas shift reaction. Water gas shift reaction in the dual-phase membrane reactors was studied by both modeling and experiments. It is found that high temperature syngas water gas shift reaction in tubular ceramic-carbonate dual phase membrane reactor is feasible even without catalyst. The membrane reactor exhibits good CO 2 permeation flux, high thermal and chemical stability and high thermal shock resistance. Reaction and separation conditions in the membrane reactor to produce hydrogen of 93% purity and CO 2 stream of >95% purity, with 90% CO 2 capture have been identified. Integration of the ceramic-carbonate dual-phase membrane reactor with IGCC process for carbon dioxide capture was analyzed. A methodology was developed to identify optimum operation conditions for a membrane tube of given dimensions that would treat coal syngas with targeted performance. The calculation results show that the dual-phase membrane reactor could improve IGCC process efficiency but the cost of the membrane reactor with membranes having current CO 2 permeance is high. Further research should be directed towards improving the performance of the membranes and developing cost-effective, scalable methods for fabrication of dual-phase membranes and membrane reactors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fitzpatrick, F.C.; Gray, D.D.; Hyndman, J.R.
The thermal, ecological, and social impacts of a 40-reactor NEC are compared to impacts from four 10-reactor NECs and ten 4-reactor power plants. The comparison was made for surrogate sites in western Tennessee. The surrogate site for the 40-reactor NEC is located on Kentucky Lake. A layout is postulated for ten clusters of four reactors each with 2.5-mile spacing between clusters. The plants use natural-draft cooling towers. A transmission system is proposed for delivering the power (48,000 MW) to five load centers. Comparable transmission systems are proposed for the 10-reactor NECs and the 4-reactor dispersed sites delivering power to themore » same load centers. (auth)« less
NASA Technical Reports Server (NTRS)
Jefferies, K. S.; Tew, R. C.
1974-01-01
A digital computer study was made of reactor thermal transients during startup of the Brayton power conversion loop of a 60-kWe reactor Brayton power system. A startup procedure requiring the least Brayton system complication was tried first; this procedure caused violations of design limits on key reactor variables. Several modifications of this procedure were then found which caused no design limit violations. These modifications involved: (1) using a slower rate of increase in gas flow; (2) increasing the initial reactor power level to make the reactor respond faster; and (3) appropriate reactor control drum manipulation during the startup transient.
Impact of thorium based molten salt reactor on the closure of the nuclear fuel cycle
NASA Astrophysics Data System (ADS)
Jaradat, Safwan Qasim Mohammad
Molten salt reactor (MSR) is one of six reactors selected by the Generation IV International Forum (GIF). The liquid fluoride thorium reactor (LFTR) is a MSR concept based on thorium fuel cycle. LFTR uses liquid fluoride salts as a nuclear fuel. It uses 232Th and 233U as the fertile and fissile materials, respectively. Fluoride salt of these nuclides is dissolved in a mixed carrier salt of lithium and beryllium (FLiBe). The objective of this research was to complete feasibility studies of a small commercial thermal LFTR. The focus was on neutronic calculations in order to prescribe core design parameter such as core size, fuel block pitch (p), fuel channel radius, fuel path, reflector thickness, fuel salt composition, and power. In order to achieve this objective, the applicability of Monte Carlo N-Particle Transport Code (MCNP) to MSR modeling was verified. Then, a prescription for conceptual small thermal reactor LFTR and relevant calculations were performed using MCNP to determine the main neutronic parameters of the core reactor. The MCNP code was used to study the reactor physics characteristics for the FUJI-U3 reactor. The results were then compared with the results obtained from the original FUJI-U3 using the reactor physics code SRAC95 and the burnup analysis code ORIPHY2. The results were comparable with each other. Based on the results, MCNP was found to be a reliable code to model a small thermal LFTR and study all the related reactor physics characteristics. The results of this study were promising and successful in demonstrating a prefatory small commercial LFTR design. The outcome of using a small core reactor with a diameter/height of 280/260 cm that would operate for more than five years at a power level of 150 MWth was studied. The fuel system 7LiF - BeF2 - ThF4 - UF4 with a (233U/ 232Th) = 2.01 % was the candidate fuel for this reactor core.
Bioconversion of waste office paper to hydrogen using pretreated rumen fluid inoculum.
Botta, Lívia Silva; Ratti, Regiane Priscila; Sakamoto, Isabel Kimiko; Ramos, Lucas Rodrigues; Silva, Edson Luiz; Varesche, Maria Bernadete Amâncio
2016-12-01
In this study, a microbial consortium from an acid-treated rumen fluid was used to improve the yields of H 2 production from paper residues in batch reactors. The anaerobic batch reactors, which contained paper and cellulose, were operated under three conditions: (1) 0.5 g paper/L, (2) 2 g paper/L, and (3) 4 g paper/L. Cellulase was added to promote the hydrolysis of paper to soluble sugars. The H 2 yields were 5.51, 4.65, and 3.96 mmol H 2 /g COD, respectively, with substrate degradation ranging from 56 to 65.4 %. Butyric acid was the primary soluble metabolite in the three reactors, but pronounced solventogenesis was detected in the reactors incubated with increased paper concentrations (2.0 and 4.0 g/L). A substantial prevalence of Clostridium acetobutylicum (99 % similarity) was observed in the acid-treated rumen fluid, which has been recognized as an efficient H 2 -producing strain in addition to ethanol and n-butanol which were also detected in the reactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballagny, A.
1997-08-01
The status of French reactors is reviewed. The ORPHEE and RHF reactors can not be operated with a LEU fuel which would be limited to 4.8 g U/cm{sup 3}. The OSIRIS reactor has already been converted to LEU. It will use U{sub 3}Si{sub 2} as soon as its present stock of UO{sub 2} fuel is used up, at the end of 1994. The decision to close down the SILOE reactor in the near future is not propitious for the start of a conversion process. The REX 2000 reactor, which is expected to be commissioned in 2005, will use LEU (exceptmore » if the fast neutrons core option is selected). Concerning the end of the HEU fuel cycle, the best option is reprocessing followed by conversion of the reprocessed uranium to LEU.« less
Development of the cascade inertial-confinement-fusion reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pitts, J.H.
Caqscade, originally conceived as a football-shaped, steel-walled reactor containing a Li/sub 2/O granule blanket, is now envisaged as a double-cone-shaped reactor containing a two-layered (three-zone) flowing blanket of BeO and LiAlO/sub 2/ granules. Average blanket exit temperature is 1670 K and gross plant efficiency (net thermal conversion efficiency) using a Brayton cycle is 55%. The reactor has a low-activation SiC-tiled wall. It rotates at 50 rpm, and the granules are transported to the top of the heat exchanger using their peripheral speed; no conveyors or lifts are required. The granules return to the reactor by gravity. After considerable analysis andmore » experimentation, we continue to regard Cascade as a promising reactor concept with the advantages of safety, efficiency, and low activation.« less
Development of the cascade inertial-confinement-fusion reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pitts, J.H.
Cascade, originally conceived as a football-shaped, steel-walled reactor containing a Li/sub 2/O granule blanket, is now envisaged as a double-cone-shaped reactor containing a two-layered (three-zone) flowing blanket of BeO and LiAlO/sub 2/ granules. Average blanket exit temperature is 1670/sup 0/K and gross plant efficiency (net thermal conversion efficiency) using a Brayton cycle is 55%. The reactor has a low-activation SiC-tiled wall. It rotates at 50 rpm, and the granules are transported to the top of the heat exchanger using their peripheral speed; no conveyors or lifts are required. The granules return to the reactor by gravity. After considerable analysis andmore » experimentation, we continue to regard Cascade as a promising reactor concept with the advantages of safety, efficiency, and low activation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Nicholas R.; Powers, Jeffrey J.; Mueller, Don
In September 2016, reactor physics measurements were conducted at Research Centre Rez (RC Rez) using the FLiBe (2 7LiF + BeF 2) salt from the Molten Salt Reactor Experiment (MSRE) in the LR-0 low power nuclear reactor. These experiments were intended to inform on neutron spectral effects and nuclear data uncertainties for advanced reactor systems using FLiBe salt in a thermal neutron energy spectrum. Oak Ridge National Laboratory (ORNL), in collaboration with RC Rez, performed sensitivity/uncertainty (S/U) analyses of these experiments as part of the ongoing collaboration between the United States and the Czech Republic on civilian nuclear energy researchmore » and development. The objectives of these analyses were (1) to identify potential sources of bias in fluoride salt-cooled and salt-fueled reactor simulations resulting from cross section uncertainties, and (2) to produce the sensitivity of neutron multiplication to cross section data on an energy-dependent basis for specific nuclides. This report provides a final report on the S/U analyses of critical experiments at the LR-0 Reactor relevant to fluoride salt-cooled high temperature reactor (FHR) and liquid-fueled molten salt reactor (MSR) concepts. In the future, these S/U analyses could be used to inform the design of additional FLiBe-based experiments using the salt from MSRE. The key finding of this work is that, for both solid and liquid fueled fluoride salt reactors, radiative capture in 7Li is the most significant contributor to potential bias in neutronics calculations within the FLiBe salt.« less
International Research Reactor Decommissioning Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leopando, Leonardo; Warnecke, Ernst
2008-01-15
Many research reactors have been or will be shut down and are candidates for decommissioning. Most of the respective countries neither have a decommissioning policy nor the required expertise and funds to effectively implement a decommissioning project. The IAEA established the Research Reactor Decommissioning Demonstration Project (R{sup 2}D{sup 2}P) to help answer this need. It was agreed to involve the Philippine Research Reactor (PRR-1) as model reactor to demonstrate 'hands-on' experience as it is just starting the decommissioning process. Other facilities may be included in the project as they fit into the scope of R{sup 2}D{sup 2}P and complement tomore » the PRR-1 decommissioning activities. The key outcome of the R{sup 2}D{sup 2}P will be the decommissioning of the PRR-1 reactor. On the way to this final goal the preparation of safety related documents (i.e., decommissioning plan, environmental impact assessment, safety analysis report, health and safety plan, cost estimate, etc.) and the licensing process as well as the actual dismantling activities could provide a model to other countries involved in the project. It is expected that the R{sup 2}D{sup 2}P would initiate activities related to planning and funding of decommissioning activities in the participating countries if that has not yet been done.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dean, E. M.; Shin, Y. W.
1999-02-24
The Experimental Breeder Reactor II (EBR-II) at Argonne National Laboratory (ANL) West in Idaho is currently undergoing a plant closing operation, and a number of technical issues need to be addressed. This paper is related to the heat transfer analysis support effort performed for the upcoming draining operation of the primary sodium from the primary system tank. The issue addressed was how much of heat input would be required to the sodium if it were to be maintained in the liquid state during the prolonged period of the draining operation. The fluid dynamics analysis package FIDAP Code of Fluent Incorporatedmore » was used to model the primary tank system. It was possible to obtain solutions to the model in most of the cases considered, which provided the needed information for the project. However, certain appropriate choices of the solution algorithms were necessary in certain cases and in addition certain special measures had to be followed in order to successfully utilize the solution. In certain other instances, only some entirely different algorithm was the only successful choice, while in some other limited instances none of the algorithms or the special measures that were satisfactory for the earlier cases proved successful. Several configurations of the model with varying sodium levels to represent the quasi-steady state draining operation are considered. The reference configuration of the model was first calculated and the results are compared with measurement data. The model thus benchmarked to the reference case then was calculated for other model configurations. This paper discusses details of the experiences we gained, including successes, the difficulties we had to overcome, and in some instances the eventual failures. The results of the successful calculations are first presented. For each of the model configurations calculated, various computational aspects are then discussed in view of the numerical stability, convergence, and robustness of the solution algorithms in use. Finally, effects of certain model simplifications on the solutions and performance of the solution algorithms are discussed.« less
Synthesis and cure kinetics of liquefied wood/phenol/formaldehyde resins
Hui Pan; Todd F. Shupe; Chung-Yun Hse
2008-01-01
Wood liquefaction was conducted at a 2/1 phenol/wood ratio in two different reactors: (1) an atmospheric three-necked flask reactor and (2) a sealed Parr reactor. The liquefied wood mixture (liquefied wood, unreacted phenol, and wood residue) was further condensed with formaldehyde under acidic conditions to synthesize two novolac-type liquefied wood/phenol/...
NASA Astrophysics Data System (ADS)
Ilham, Muhammad; Su'ud, Zaki
2017-01-01
Growing energy needed due to increasing of the world’s population encourages development of technology and science of nuclear power plant in its safety and security. In this research, it will be explained about design study of modular fast reactor with helium gas cooling (GCFR) small long life reactor, which can be operated over 20 years. It had been conducted about neutronic design GCFR with Mixed Oxide (UO2-PuO2) fuel in range of 100-200 MWth NPPs of power and 50-60% of fuel fraction variation with cylindrical pin cell and cylindrical balance of reactor core geometry. Calculation method used SRAC-CITATION code. The obtained results are the effective multiplication factor and density value of core reactor power (with geometry optimalization) to obtain optimum design core reactor power, whereas the obtained of optimum core reactor power is 200 MWth with 55% of fuel fraction and 9-13% of percentages.
Khanitchaidecha, W; Koshy, P; Kamei, T; Shakya, M; Kazama, F
2013-01-01
A drinking water supply system operates at Chyasal (in the Kathmandu Valley, Nepal) for purifying the groundwater that has high levels of ammonium nitrogen (NH4-N). However, high NO3-N concentrations were seen in the water after treatment. To further improve the quality of the drinking water, two types of attached growth reactors were developed for the purification system: (i) a hydrogenotrophic denitrification (HD reactor) and (ii) a concurrent reactor with anammox and hydrogenotrophic denitrification (AnHD reactor). For the HD reactor fed by water containing NO3-N, the denitrification efficiency was high (95-98%) for all NO3-N feed rates (20-40 mg/L). The nitrite-nitrogen (NO2-N) and nitrate-nitrogen (NO3-N) concentrations in the effluent were ∼0.5 mg/L. On the other hand, the AnHD reactor fed with water containing NH4-N and NO2-N was operated under varying flow rates of H2(30-70 mL/min) and intermittent supply periods (1-2 h). The efficiency of the anammox process was found to increase with decreasing H2flow rates or with increasing intermittency of the H2supply, while the efficiency of denitrification decreased under these conditions. For the optimal condition of 1.5 h intermittent H2supply, the anammox and denitrification efficiencies of the AnHD reactor reached 80% and 42%, respectively, while the concentrations of both NH4-N and NO2-N in the effluent were <1.0 mg/L, and no NO3-N was detected. From the experimental results, it is clear that both HD and AnHD reactors can function as efficient and critical units of the water purification system.
Preliminary study on aerobic granular biomass formation with aerobic continuous flow reactor
NASA Astrophysics Data System (ADS)
Yulianto, Andik; Soewondo, Prayatni; Handajani, Marissa; Ariesyady, Herto Dwi
2017-03-01
A paradigm shift in waste processing is done to obtain additional benefits from treated wastewater. By using the appropriate processing, wastewater can be turned into a resource. The use of aerobic granular biomass (AGB) can be used for such purposes, particularly for the processing of nutrients in wastewater. During this time, the use of AGB for processing nutrients more reactors based on a Sequencing Batch Reactor (SBR). Studies on the use of SBR Reactor for AGB demonstrate satisfactory performance in both formation and use. SBR reactor with AGB also has been applied on a full scale. However, the use use of SBR reactor still posses some problems, such as the need for additional buffer tank and the change of operation mode from conventional activated sludge to SBR. This gives room for further reactor research with the use of a different type, one of which is a continuous reactor. The purpose of this study is to compare AGB formation using continuous reactor and SBR with same operation parameter. Operation parameter are Organic Loading Rate (OLR) set to 2,5 Kg COD/m3.day with acetate as substrate, aeration rate 3 L/min, and microorganism from Hospital WWTP as microbial source. SBR use two column reactor with volumes 2 m3, and continuous reactor uses continuous airlift reactor, with two compartments and working volume of 5 L. Results from preliminary research shows that although the optimum results are not yet obtained, AGB can be formed on the continuous reactor. When compared with AGB generated by SBR, then the characteristics of granular diameter showed similarities, while the sedimentation rate and Sludge Volume Index (SVI) characteristics showed lower yields.
Preliminary analysis of loss-of-coolant accident in Fukushima nuclear accident
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su'ud, Zaki; Anshari, Rio
Loss-of-Coolant Accident (LOCA) in Boiling Water Reactor (BWR) especially on Fukushima Nuclear Accident will be discussed in this paper. The Tohoku earthquake triggered the shutdown of nuclear power reactors at Fukushima Nuclear Power station. Though shutdown process has been completely performed, cooling process, at much smaller level than in normal operation, is needed to remove decay heat from the reactor core until the reactor reach cold-shutdown condition. If LOCA happen at this condition, it will cause the increase of reactor fuel and other core temperatures and can lead to reactor core meltdown and exposure of radioactive material to the environmentmore » such as in the Fukushima Dai Ichi nuclear accident case. In this study numerical simulation has been performed to calculate pressure composition, water level and temperature distribution on reactor during this accident. There are two coolant regulating system that operational on reactor unit 1 at this accident, Isolation Condensers (IC) system and Safety Relief Valves (SRV) system. Average mass flow of steam to the IC system in this event is 10 kg/s and could keep reactor core from uncovered about 3,2 hours and fully uncovered in 4,7 hours later. There are two coolant regulating system at operational on reactor unit 2, Reactor Core Isolation Condenser (RCIC) System and Safety Relief Valves (SRV). Average mass flow of coolant that correspond this event is 20 kg/s and could keep reactor core from uncovered about 73 hours and fully uncovered in 75 hours later. There are three coolant regulating system at operational on reactor unit 3, Reactor Core Isolation Condenser (RCIC) system, High Pressure Coolant Injection (HPCI) system and Safety Relief Valves (SRV). Average mass flow of water that correspond this event is 15 kg/s and could keep reactor core from uncovered about 37 hours and fully uncovered in 40 hours later.« less
Preliminary analysis of loss-of-coolant accident in Fukushima nuclear accident
NASA Astrophysics Data System (ADS)
Su'ud, Zaki; Anshari, Rio
2012-06-01
Loss-of-Coolant Accident (LOCA) in Boiling Water Reactor (BWR) especially on Fukushima Nuclear Accident will be discussed in this paper. The Tohoku earthquake triggered the shutdown of nuclear power reactors at Fukushima Nuclear Power station. Though shutdown process has been completely performed, cooling process, at much smaller level than in normal operation, is needed to remove decay heat from the reactor core until the reactor reach cold-shutdown condition. If LOCA happen at this condition, it will cause the increase of reactor fuel and other core temperatures and can lead to reactor core meltdown and exposure of radioactive material to the environment such as in the Fukushima Dai Ichi nuclear accident case. In this study numerical simulation has been performed to calculate pressure composition, water level and temperature distribution on reactor during this accident. There are two coolant regulating system that operational on reactor unit 1 at this accident, Isolation Condensers (IC) system and Safety Relief Valves (SRV) system. Average mass flow of steam to the IC system in this event is 10 kg/s and could keep reactor core from uncovered about 3,2 hours and fully uncovered in 4,7 hours later. There are two coolant regulating system at operational on reactor unit 2, Reactor Core Isolation Condenser (RCIC) System and Safety Relief Valves (SRV). Average mass flow of coolant that correspond this event is 20 kg/s and could keep reactor core from uncovered about 73 hours and fully uncovered in 75 hours later. There are three coolant regulating system at operational on reactor unit 3, Reactor Core Isolation Condenser (RCIC) system, High Pressure Coolant Injection (HPCI) system and Safety Relief Valves (SRV). Average mass flow of water that correspond this event is 15 kg/s and could keep reactor core from uncovered about 37 hours and fully uncovered in 40 hours later.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-22
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of The ACRS Subcommittee on Materials, Metallurgy And Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy and Reactor Fuels will hold a meeting on April 6, 2011, Room T-2B3, 11545 Rockville Pike...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-13
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor; Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR) will hold a meeting on June 21, 2011, Room T-2B1, 11545 Rockville Pike, Rockville...
10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Advance notification of shipment of irradiated reactor... notification of shipment of irradiated reactor fuel and nuclear waste. (a) As specified in paragraphs (b), (c... required under this section for shipments of irradiated reactor fuel in quantities less than that subject...
10 CFR 140.11 - Amounts of financial protection for certain reactors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Amounts of financial protection for certain reactors. 140... reactors. (a) Each licensee is required to have and maintain financial protection: (1) In the amount of $1,000,000 for each nuclear reactor he is authorized to operate at a thermal power level not exceeding...
10 CFR 140.11 - Amounts of financial protection for certain reactors.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Amounts of financial protection for certain reactors. 140... reactors. (a) Each licensee is required to have and maintain financial protection: (1) In the amount of $1,000,000 for each nuclear reactor he is authorized to operate at a thermal power level not exceeding...
10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Advance notification of shipment of irradiated reactor... notification of shipment of irradiated reactor fuel and nuclear waste. (a) As specified in paragraphs (b), (c... required under this section for shipments of irradiated reactor fuel in quantities less than that subject...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-11
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Economic Simplified Boiling Water Reactor; Notice of Meeting The ACRS Subcommittee on Economic Simplified Boiling Water Reactor (ESBWR) will hold a meeting on October 21, 2011, Room T-2B1, 11545 Rockville...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-10
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Economic Simplified Boiling Water Reactor; Notice of Meeting The ACRS Subcommittee on Economic Simplified Boiling Water Reactor (ESBWR) will hold a meeting on May 26, 2011, Room T-2B1, 11545 Rockville...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-30
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Evolutionary Power Reactor; Notice of Meeting The ACRS Subcommittee on U.S. Evolutionary Power Reactor (U.S. EPR) will hold a meeting on November 6, 2013, Room T-2B1, 11545 Rockville Pike, Rockville...
10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.
Code of Federal Regulations, 2013 CFR
2013-01-01
... notification of shipment of irradiated reactor fuel and nuclear waste. (a)(1) As specified in paragraphs (b... shipment of irradiated reactor fuel or nuclear waste must contain the following information: (1) The name... nuclear waste shipment; (2) A description of the irradiated reactor fuel or nuclear waste contained in the...
10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.
Code of Federal Regulations, 2012 CFR
2012-01-01
... notification of shipment of irradiated reactor fuel and nuclear waste. (a) As specified in paragraphs (b), (c... of the shipper, carrier, and receiver of the irradiated reactor fuel or nuclear waste shipment; (2) A description of the irradiated reactor fuel or nuclear waste contained in the shipment, as specified in the...
10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.
Code of Federal Regulations, 2014 CFR
2014-01-01
... notification of shipment of irradiated reactor fuel and nuclear waste. (a)(1) As specified in paragraphs (b... shipment of irradiated reactor fuel or nuclear waste must contain the following information: (1) The name... nuclear waste shipment; (2) A description of the irradiated reactor fuel or nuclear waste contained in the...
Scott, C.D.; Davison, B.H.
1993-09-28
A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur. 2 figures.
Mao, Lingai; Chen, Zhizong; Wu, Xinyue; Tang, Xiujuan; Yao, Shuiliang; Zhang, Xuming; Jiang, Boqiong; Han, Jingyi; Wu, Zuliang; Lu, Hao; Nozaki, Tomohiro
2018-04-05
A dielectric barrier discharge (DBD) catalyst hybrid reactor with CeO 2 /γ-Al 2 O 3 catalyst balls was investigated for benzene decomposition at atmospheric pressure and 30 °C. At an energy density of 37-40 J/L, benzene decomposition was as high as 92.5% when using the hybrid reactor with 5.0wt%CeO 2 /γ-Al 2 O 3 ; while it was 10%-20% when using a normal DBD reactor without a catalyst. Benzene decomposition using the hybrid reactor was almost the same as that using an O 3 catalyst reactor with the same CeO 2 /γ-Al 2 O 3 catalyst, indicating that O 3 plays a key role in the benzene decomposition. Fourier transform infrared spectroscopy analysis showed that O 3 adsorption on CeO 2 /γ-Al 2 O 3 promotes the production of adsorbed O 2 - and O 2 2‒ , which contribute benzene decomposition over heterogeneous catalysts. Nano particles as by-products (phenol and 1,4-benzoquinone) from benzene decomposition can be significantly reduced using the CeO 2 /γ-Al 2 O 3 catalyst. H 2 O inhibits benzene decomposition; however, it improves CO 2 selectivity. The deactivated CeO 2 /γ-Al 2 O 3 catalyst can be regenerated by performing discharges at 100 °C and 192-204 J/L. The decomposition mechanism of benzene over CeO 2 /γ-Al 2 O 3 catalyst was proposed. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lambe, A. T.; Chhabra, P. S.; Onasch, T. B.; Brune, W. H.; Hunter, J. F.; Kroll, J. H.; Cummings, M. J.; Brogan, J. F.; Parmar, Y.; Worsnop, D. R.; Kolb, C. E.; Davidovits, P.
2015-03-01
We performed a systematic intercomparison study of the chemistry and yields of secondary organic aerosol (SOA) generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous flow reactor and several environmental chambers. In the flow reactor, SOA precursors were oxidized using OH concentrations ranging from 2.0 × 108 to 2.2 × 1010 molec cm-3 over exposure times of 100 s. In the environmental chambers, precursors were oxidized using OH concentrations ranging from 2 × 106 to 2 × 107 molec cm-3 over exposure times of several hours. The OH concentration in the chamber experiments is close to that found in the atmosphere, but the integrated OH exposure in the flow reactor can simulate atmospheric exposure times of multiple days compared to chamber exposure times of only a day or so. In most cases, for a specific SOA type the most-oxidized chamber SOA and the least-oxidized flow reactor SOA have similar mass spectra, oxygen-to-carbon and hydrogen-to-carbon ratios, and carbon oxidation states at integrated OH exposures between approximately 1 × 1011 and 2 × 1011 molec cm-3 s, or about 1-2 days of equivalent atmospheric oxidation. This observation suggests that in the range of available OH exposure overlap for the flow reactor and chambers, SOA elemental composition as measured by an aerosol mass spectrometer is similar whether the precursor is exposed to low OH concentrations over long exposure times or high OH concentrations over short exposure times. This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of sulfate seed particles on isoprene SOA yield measurements was examined in the flow reactor. The studies show that seed particles increase the yield of SOA produced in flow reactors by a factor of 3 to 5 and may also account in part for higher SOA yields obtained in the chambers, where seed particles are routinely used.
Onodera, Takashi; Sase, Shinya; Choeisai, Pairaya; Yoochatchaval, Wilasinee; Sumino, Haruhiko; Yamaguchi, Takashi; Ebie, Yoshitaka; Xu, Kaiqin; Tomioka, Noriko; Syutsubo, Kazuaki
2011-01-01
A combination of an acidification reactor and an up-flow staged sludge bed (USSB) reactor was applied for treatment of molasses wastewater containing a large amount of organic compounds and sulfate. The USSB reactor had three gas-solid separators (GSS) along the height of the reactor. The combined system was continuously operated at mesophilic temperature over 400 days. In the acidification reactor, acid formation and sulfate reduction were effectively carried out. The sugars contained in the influent wastewater were mostly acidified into acetate, propionate, and n-butyrate. In addition, 10-30% of influent sulfur was removed from the acidification reactor by means of sulfate reduction followed by stripping of hydrogen sulfide. The USSB achieved a high organic loading rate (OLR) of 30 kgCOD m(-3) day(-1) with 82% COD removal. Vigorous biogas production was observed at a rate of 15 Nm(3) biogas m(-3) reactor day(-1). The produced biogas, including hydrogen sulfide, was removed from the wastewater mostly via the GSS. The GSS provided a moderate superficial biogas flux and low sulfide concentration in the sludge bed, resulting in the prevention of sludge washout and sulfide inhibition of methanogens. By advantages of this feature, the USSB may have been responsible for achieving sufficient retention (approximately 60 gVSS L(-1)) of the granular sludge with high methanogenic activity (0.88 gCOD gVSS(-1) day(-1) for acetate and as high as 2.6 gCOD gVSS(-1) day(-1) for H(2)/CO(2)). Analysis of the microbial community revealed that sugar-degrading acid-forming bacteria proliferated in the sludge of the USSB as well as the acidification reactor at high OLR conditions.
Demonstration of Robustness and Integrated Operation of a Series-Bosch System
NASA Technical Reports Server (NTRS)
Abney, Morgan B.; Mansell, J. Matthew; Barnett, Bill; Stanley, Christine M.; Junaedi, Christian; Vilekar, Saurabh A.; Kent, Ryan
2016-01-01
Manned missions beyond low Earth orbit will require highly robust, reliable, and maintainable life support systems that maximize recycling of water and oxygen. Bosch technology is one option to maximize oxygen recovery, in the form of water, from metabolically-produced carbon dioxide (CO2). A two stage approach to Bosch, called Series-Bosch, reduces metabolic CO2 with hydrogen (H2) to produce water and solid carbon using two reactors: a Reverse Water-Gas Shift (RWGS) reactor and a carbon formation (CF) reactor. Previous development efforts demonstrated the stand-alone performance of a RWGS reactor containing Incofoam(TradeMark) catalyst and designed for robustness against carbon formation, two membrane separators intended to maximize single pass conversion of reactants, and a batch CF reactor with both transit and surface catalysts. In the past year, Precision Combustion, Inc. (PCI) developed and delivered a RWGS reactor for testing at NASA. The reactor design was based on their patented Microlith(TradeMark) technology and was first evaluated under a Phase I Small Business Innovative Research (SBIR) effort in 2010. The Microlith(TradeMark) RWGS reactor was recently evaluated at NASA to compare its performance and operating conditions with the Incofoam(TradeMark) RWGS reactor. Separately, in 2015, a fully integrated demonstration of an S-Bosch system was conducted. In an effort to mitigate risk, a second integrated test was conducted to evaluate the effect of membrane failure on a closed-loop Bosch system. Here, we report and discuss the performance and robustness to carbon formation of both RWGS reactors. We report the results of the integrated operation of a Series-Bosch system and we discuss the technology readiness level. 1
NASA Astrophysics Data System (ADS)
Kim, Soo-Bong
2016-07-01
RENO (Reactor Experiment for Neutrino Oscillation) made a definitive measurement of the smallest neutrino mixing angle θ13 in 2012, based on the disappearance of reactor electron antineutrinos. The experiment has obtained a more precise value of the mixing angle and the first result on neutrino mass difference Δ mee2 from an energy and baseline dependent reactor neutrino disappearance using ∼500 days of data. Based on the ratio of inverse-beta-decay (IBD) prompt spectra measured in two identical far and near detectors, we obtain sin2 (2θ13) = 0.082 ± 0.009 (stat .) ± 0.006 (syst .) and | Δ mee2 | = [2.62-0.23+0.21 (stat.)-0.13+0.12 (syst .) ] ×10-3 eV2. An excess of reactor antineutrinos near 5 MeV is observed in the measured prompt spectrum with respect to the most commonly used models. The excess is found to be consistent with coming from reactors. A successful measurement of θ13 is also made in an IBD event sample with a delayed signal of neutron capture on hydrogen. A precise value of θ13 would provide important information on determination of the leptonic CP phase if combined with a result of an accelerator neutrino beam experiment.
Pyrolysis of furan in a microreactor
NASA Astrophysics Data System (ADS)
Urness, Kimberly N.; Guan, Qi; Golan, Amir; Daily, John W.; Nimlos, Mark R.; Stanton, John F.; Ahmed, Musahid; Ellison, G. Barney
2013-09-01
A silicon carbide microtubular reactor has been used to measure branching ratios in the thermal decomposition of furan, C4H4O. The pyrolysis experiments are carried out by passing a dilute mixture of furan (approximately 0.01%) entrained in a stream of helium through the heated reactor. The SiC reactor (0.66 mm i.d., 2 mm o.d., 2.5 cm long) operates with continuous flow. Experiments were performed with a reactor inlet pressure of 100-300 Torr and a wall temperature between 1200 and 1600 K; characteristic residence times in the reactor are 60-150 μs. The unimolecular decomposition pathway of furan is confirmed to be: furan (+ M) rightleftharpoons α-carbene or β-carbene. The α-carbene fragments to CH2=C=O + HC≡CH while the β-carbene isomerizes to CH2=C=CHCHO. The formyl allene can isomerize to CO + CH3C≡CH or it can fragment to H + CO + HCCCH2. Tunable synchrotron radiation photoionization mass spectrometry is used to monitor the products and to measure the branching ratio of the two carbenes as well as the ratio of [HCCCH2]/[CH3C≡CH]. The results of these pyrolysis experiments demonstrate a preference for 80%-90% of furan decomposition to occur via the β-carbene. For reactor temperatures of 1200-1400 K, no propargyl radicals are formed. As the temperature rises to 1500-1600 K, at most 10% of the decomposition of CH2=C=CHCHO produces H + CO + HCCCH2 radicals. Thermodynamic conditions in the reactor have been modeled by computational fluid dynamics and the experimental results are compared to the predictions of three furan pyrolysis mechanisms. Uncertainty in the pressure-dependency of the initiation reaction rates is a possible a source of discrepancy between experimental results and theoretical predictions.
Enhanced photodegradation of phenolic compounds by adding TiO2 to soil in a rotary reactor.
Wang, Jing-xian; Chen, Shuo; Quan, Xie; Zhao, Hui-min; Zhao, Ya-zhi
2006-01-01
Photodegradation of pentachlorophenol (PCP) and p-nitrophenol (PNP) in soil was carried out in a designed rotary reactor, which can provide the soil particles with continually uniform irradiation, and on a series of thin soil layers. TiO2, as a kind of environmental friendly photocatalyst, was introduced to the soil to enhance the processes. Compared with that on the soil layers, photodegradation of PCP at initial concentration of 60 mg/kg was improved dramatically in the rotary reactor no matter whether TiO2 was added, with an increase of 3.0 times in the apparent first-order rate constants. The addition of 1 wt% TiO2 furthered the improvement by 1.4 times. Without addition of TiO2, PNP (initial concentration of 60 mg/kg) photodegradation rate in the rotary reactor was similar to that on the soil layers. When 1 wt% additional TiO2 was added, PNP photodegradation was enhanced obviously, and the enhancement in the rotary reactor was 2 times of that on the soil layers, which may be attributed to the higher frequency of the contact between PNP on soil particles and the photocatalyst. The effect of soil pH and initial concentrations of the target compounds on the photodegradation in the rotary reactor was investigated. The order of the degradation rate at different soil pH was relative to the aggregation of soil particles during mixing in the rotary reactor. Photodegradation of PCP and PNP at different initial concentrations showed that addition of TiO2 to enhance the photodegradation was more suitable for contaminated soil with higher concentration of PCP, while was effective for contaminated soil at each PNP concentration tested in our study.
NASA Astrophysics Data System (ADS)
Chino, Masamichi; Terada, Hiroaki; Nagai, Haruyasu; Katata, Genki; Mikami, Satoshi; Torii, Tatsuo; Saito, Kimiaki; Nishizawa, Yukiyasu
2016-08-01
The Fukushima Daiichi nuclear power reactor units that generated large amounts of airborne discharges during the period of March 12-21, 2011 were identified individually by analyzing the combination of measured 134Cs/137Cs depositions on ground surfaces and atmospheric transport and deposition simulations. Because the values of 134Cs/137Cs are different in reactor units owing to fuel burnup differences, the 134Cs/137Cs ratio measured in the environment was used to determine which reactor unit ultimately contaminated a specific area. Atmospheric dispersion model simulations were used for predicting specific areas contaminated by each dominant release. Finally, by comparing the results from both sources, the specific reactor units that yielded the most dominant atmospheric release quantities could be determined. The major source reactor units were Unit 1 in the afternoon of March 12, 2011, Unit 2 during the period from the late night of March 14 to the morning of March 15, 2011. These results corresponded to those assumed in our previous source term estimation studies. Furthermore, new findings suggested that the major source reactors from the evening of March 15, 2011 were Units 2 and 3 and that the dominant source reactor on March 20, 2011 temporally changed from Unit 3 to Unit 2.
Chino, Masamichi; Terada, Hiroaki; Nagai, Haruyasu; Katata, Genki; Mikami, Satoshi; Torii, Tatsuo; Saito, Kimiaki; Nishizawa, Yukiyasu
2016-08-22
The Fukushima Daiichi nuclear power reactor units that generated large amounts of airborne discharges during the period of March 12-21, 2011 were identified individually by analyzing the combination of measured (134)Cs/(137)Cs depositions on ground surfaces and atmospheric transport and deposition simulations. Because the values of (134)Cs/(137)Cs are different in reactor units owing to fuel burnup differences, the (134)Cs/(137)Cs ratio measured in the environment was used to determine which reactor unit ultimately contaminated a specific area. Atmospheric dispersion model simulations were used for predicting specific areas contaminated by each dominant release. Finally, by comparing the results from both sources, the specific reactor units that yielded the most dominant atmospheric release quantities could be determined. The major source reactor units were Unit 1 in the afternoon of March 12, 2011, Unit 2 during the period from the late night of March 14 to the morning of March 15, 2011. These results corresponded to those assumed in our previous source term estimation studies. Furthermore, new findings suggested that the major source reactors from the evening of March 15, 2011 were Units 2 and 3 and that the dominant source reactor on March 20, 2011 temporally changed from Unit 3 to Unit 2.
Kim, Saewon; Cho, Hyekyung; Joo, Hyunku; Her, Namguk; Han, Jonghun; Yi, Kwangbok; Kim, Jong-Oh; Yoon, Jaekyung
2017-08-15
In this study, the performances of photocatalytic reactors of the small and scale-up rotating and flat types were evaluated to investigate the treatment of new emerging contaminants such as bisphenol A (BPA), 17α-ethynyl estradiol (EE2), and 17β-estradiol (E2) that are known as endocrine disrupting compounds (EDCs). In the laboratory tests with the small-scale rotating and flat reactors, the degradation efficiencies of the mixed EDCs were significantly influenced by the change of the hydraulic retention time (HRT). In particular, considering the effective two-dimensional reaction area with light and nanotubular TiO 2 (NTT) on a Ti substrate, the rotating reactors showed the more effective performance than the flat reactor because the degradation efficiencies are similar in the small effective area. In addition, the major parameters affecting the photocatalytic activities of the NTT were evaluated for the rotating reactors according to the effects of single and mixed EDCs, the initial concentrations of the EDCs, the UV intensity, and dissolved oxygen. In the extended outdoor tests with the scale-up photocatalytic reactors and NTT, it was confirmed from the four representative demonstrations that an excellent rotating-reactor performance is consistently shown in terms of the degradation of the target pollutants under solar irradiation. Copyright © 2017 Elsevier B.V. All rights reserved.
Chino, Masamichi; Terada, Hiroaki; Nagai, Haruyasu; Katata, Genki; Mikami, Satoshi; Torii, Tatsuo; Saito, Kimiaki; Nishizawa, Yukiyasu
2016-01-01
The Fukushima Daiichi nuclear power reactor units that generated large amounts of airborne discharges during the period of March 12–21, 2011 were identified individually by analyzing the combination of measured 134Cs/137Cs depositions on ground surfaces and atmospheric transport and deposition simulations. Because the values of 134Cs/137Cs are different in reactor units owing to fuel burnup differences, the 134Cs/137Cs ratio measured in the environment was used to determine which reactor unit ultimately contaminated a specific area. Atmospheric dispersion model simulations were used for predicting specific areas contaminated by each dominant release. Finally, by comparing the results from both sources, the specific reactor units that yielded the most dominant atmospheric release quantities could be determined. The major source reactor units were Unit 1 in the afternoon of March 12, 2011, Unit 2 during the period from the late night of March 14 to the morning of March 15, 2011. These results corresponded to those assumed in our previous source term estimation studies. Furthermore, new findings suggested that the major source reactors from the evening of March 15, 2011 were Units 2 and 3 and that the dominant source reactor on March 20, 2011 temporally changed from Unit 3 to Unit 2. PMID:27546490
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwin A. Harvego; Michael G. McKellar
2011-11-01
There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO2) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550 C and 750 C. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550 C. The particular power cycle investigated in this paper is a supercritical CO2 Recompression Brayton Cycle. The CO2 Recompression Brayton Cycle can bemore » used as either a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton cycle is the lower required operating temperature; 550 C versus 850 C. However, the supercritical CO2 Recompression Brayton Cycle requires an operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle operating pressure of 8 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of both a direct and indirect supercritical CO2 Brayton Recompression cycle for different reactor outlet temperatures. The direct supercritical CO2 cycle transferred heat directly from a 600 MWt reactor to the supercritical CO2 working fluid supplied to the turbine generator at approximately 20 MPa. The indirect supercritical CO2 cycle assumed a helium-cooled Very High Temperature Reactor (VHTR), operating at a primary system pressure of approximately 7.0 MPa, delivered heat through an intermediate heat exchanger to the secondary indirect supercritical CO2 Brayton Recompression cycle, again operating at a pressure of about 20 MPa. For both the direct and indirect cycles, sensitivity calculations were performed for reactor outlet temperature between 550 C and 850 C. The UniSim models used realistic component parameters and operating conditions to model the complete reactor and power conversion systems. CO2 properties were evaluated, and the operating ranges of the cycles were adjusted to take advantage of the rapidly changing properties of CO2 near the critical point. The results of the analyses showed that, for the direct supercritical CO2 power cycle, thermal efficiencies in the range of 40 to 50% can be achieved. For the indirect supercritical CO2 power cycle, thermal efficiencies were approximately 10% lower than those obtained for the direct cycle over the same reactor outlet temperature range.« less
NASA Astrophysics Data System (ADS)
Bosch, Timo; Carré, Maxime; Heinzel, Angelika; Steffen, Michael; Lapicque, François
2017-12-01
A novel reactor of a natural gas (NG) fueled, 1 kW net power solid oxide fuel cell (SOFC) system with anode off-gas recirculation (AOGR) is experimentally investigated. The reactor operates as pre-reformer, is of the type radial reactor with centrifugal z-flow, has the shape of a hollow cylinder with a volume of approximately 1 L and is equipped with two different precious metal wire-mesh catalyst packages as well as with an internal electric heater. Reforming investigations of the reactor are done stand-alone but as if the reactor would operate within the total SOFC system with AOGR. For the tests presented here it is assumed that the SOFC system runs on pure CH4 instead of NG. The manuscript focuses on the various phases of reactor operation during the startup process of the SOFC system. Startup process reforming experiments cover reactor operation points at which it runs on an oxygen to carbon ratio at the reactor inlet (ϕRI) of 1.2 with air supplied, up to a ϕRI of 2.4 without air supplied. As confirmed by a Monte Carlo simulation, most of the measured outlet gas concentrations are in or close to equilibrium.
Upadhyaya, Giridhar; Clancy, Tara M; Snyder, Kathryn V; Brown, Jess; Hayes, Kim F; Raskin, Lutgarde
2012-03-15
Contaminant removal from drinking water sources under reducing conditions conducive for the growth of denitrifying, arsenate reducing, and sulfate reducing microbes using a fixed-bed bioreactor may require oxygen-free gas (e.g., N2 gas) during backwashing. However, the use of air-assisted backwashing has practical advantages, including simpler operation, improved safety, and lower cost. A study was conducted to evaluate whether replacing N2 gas with air during backwashing would impact performance in a nitrate and arsenic removing anaerobic bioreactor system that consisted of two biologically active carbon reactors in series. Gas-assisted backwashing, comprised of 2 min of gas injection to fluidize the bed and dislodge biomass and solid phase products, was performed in the first reactor (reactor A) every two days. The second reactor (reactor B) was subjected to N2 gas-assisted backwashing every 3-4 months. Complete removal of 50 mg/L NO3- was achieved in reactor A before and after the switch from N2-assisted backwashing (NAB) to air-assisted backwashing (AAB). Substantial sulfate removal was achieved with both backwashing strategies. Prolonged practice of AAB (more than two months), however, diminished sulfate reduction in reactor B somewhat. Arsenic removal in reactor A was impacted slightly by long-term use of AAB, but arsenic removals achieved by the entire system during NAB and AAB periods were not significantly different (p>0.05) and arsenic concentrations were reduced from approximately 200 μg/L to below 20 μg/L. These results indicate that AAB can be implemented in anaerobic nitrate and arsenic removal systems. Copyright © 2011 Elsevier Ltd. All rights reserved.
A Roadmap of Innovative Nuclear Energy System
NASA Astrophysics Data System (ADS)
Sekimoto, Hiroshi
2017-01-01
Nuclear is a dense energy without CO2 emission. It can be used for more than 100,000 years using fast breeder reactors with uranium from the sea. However, it raises difficult problems associated with severe accidents, spent fuel waste and nuclear threats, which should be solved with acceptable costs. Some innovative reactors have attracted interest, and many designs have been proposed for small reactors. These reactors are considered much safer than conventional large reactors and have fewer technical obstructions. Breed-and-burn reactors have high potential to solve all inherent problems for peaceful use of nuclear energy. However, they have some technical problems with materials. A roadmap for innovative reactors is presented herein.
Instability study for LOFT for L2-1, L2-2, and L2-3 pretest steady-state operating conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eide, S.A.
The results are presented of a thermal-hydrodynamic flow instability study of the LOFT reactor for the L2-1, L2-2, and L2-3 pretest steady-state operating conditions. Comparison is made between the LOFT reactor and a typical PWR, and the effects on stability of differences in operating parameters and geometry are discussed. Results indicate that the LOFT reactor will be thermal-hydrodynamically stable for nominal and worst case operating conditions. The study supports the LOFT Experimental Safety Analyses for the L2-1, L2-2, and L2-3 tests.
Solar photocatalytic disinfection with immobilised TiO(2) at pilot-plant scale.
Sordo, Carlos; Van Grieken, Rafael; Marugán, Javier; Fernández-Ibáñez, Pilar
2010-01-01
The photocatalytic disinfection efficiency has been investigated for two immobilized TiO(2) catalytic systems (wall reactor and fixed-bed reactor) in a solar pilot plant. Their performances have been compared with the use of a slurry reactor and the solar disinfection without catalyst. The use of photocatalytic TiO(2) wall reactors does no show clear benefits over the solar disinfection process in the absence of catalyst. The reason is that the efficiency of the solar disinfection is so high that the presence of titania in the reactor wall reduces the global efficiency due to the competition for the absorption of photons. As expected, the maximum efficiency was shown by the slurry TiO(2) reactor, due to the optimum contact between bacteria and catalyst. However, it is noticeable that the use of the fixed-bed reactor leads to inactivation rate quite close to that of the slurry, requiring comparable accumulated solar energy of about 6 kJ L(-1) to achieve a 6-log decrease in the concentration of viable bacteria and allowing a total disinfection of the water (below the detection limit of 1 CFU mL(-1)). Not only the high titania surface area of this configuration is responsible for the bacteria inactivation but the important contribution of the mechanical stress has to be considered. The main advantage of the fixed-bed TiO(2) catalyst is the outstanding stability, without deactivation effects after ten reaction cycles, being readily applicable for continuous water treatment systems.
Electrons to Reactors Multiscale Modeling: Catalytic CO Oxidation over RuO 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutton, Jonathan E.; Lorenzi, Juan M.; Krogel, Jaron T.
First-principles kinetic Monte Carlo (1p-kMC) simulations for CO oxidation on two RuO 2 facets, RuO 2(110) and RuO 2(111), were coupled to the computational fluid dynamics (CFD) simulations package MFIX, and reactor-scale simulations were then performed. 1p-kMC coupled with CFD has recently been shown as a feasible method for translating molecular scale mechanistic knowledge to the reactor scale, enabling comparisons to in situ and online experimental measurements. Only a few studies with such coupling have been published. This work incorporates multiple catalytic surface facets into the scale-coupled simulation, and three possibilities were investigated: the two possibilities of each facet individuallymore » being the dominant phase in the reactor, and also the possibility that both facets were present on the catalyst particles in the ratio predicted by an ab initio thermodynamics-based Wulff construction. When lateral interactions between adsorbates were included in the 1p-kMC simulations, the two surfaces, RuO 2(110) and RuO 2(111), were found to be of similar order-of-magnitude in activity for the pressure range of 1 × 10 –4 bar to 1 bar, with the RuO 2(110) surface-termination showing more simulated activity than the RuO 2(111) surface-termination. Coupling between the 1p-kMC and CFD was achieved with a lookup table generated by the error-based modified Shepard interpolation scheme. Isothermal reactor scale simulations were performed and compared to two separate experimental studies, conducted with reactant partial pressures of ≤0.1 bar. Simulations without an isothermality restriction were also conducted and showed that the simulated temperature gradient across the catalytic reactor bed is <0.5 K, which validated the use of the isothermality restriction for investigating the reactor-scale phenomenological temperature dependences. The approach with the Wulff construction based reactor simulations reproduced a trend similar to one experimental data set relatively well, with the (110) surface being more active at higher temperaures; in contrast, for the other experimental data set, our reactor simulations achieve surprisingly and perhaps fortuitously good agreement with the activity and phenomenological pressure dependence when it is assumed that the (111) facet is the only active facet present. Lastly, the active phase of catalytic CO oxidation over RuO 2 remains unsettled, but the present study presents proof of principle (and progress) toward more accurate multiscale modeling from electrons to reactors and new simulation results.« less
Electrons to Reactors Multiscale Modeling: Catalytic CO Oxidation over RuO 2
Sutton, Jonathan E.; Lorenzi, Juan M.; Krogel, Jaron T.; ...
2018-04-20
First-principles kinetic Monte Carlo (1p-kMC) simulations for CO oxidation on two RuO 2 facets, RuO 2(110) and RuO 2(111), were coupled to the computational fluid dynamics (CFD) simulations package MFIX, and reactor-scale simulations were then performed. 1p-kMC coupled with CFD has recently been shown as a feasible method for translating molecular scale mechanistic knowledge to the reactor scale, enabling comparisons to in situ and online experimental measurements. Only a few studies with such coupling have been published. This work incorporates multiple catalytic surface facets into the scale-coupled simulation, and three possibilities were investigated: the two possibilities of each facet individuallymore » being the dominant phase in the reactor, and also the possibility that both facets were present on the catalyst particles in the ratio predicted by an ab initio thermodynamics-based Wulff construction. When lateral interactions between adsorbates were included in the 1p-kMC simulations, the two surfaces, RuO 2(110) and RuO 2(111), were found to be of similar order-of-magnitude in activity for the pressure range of 1 × 10 –4 bar to 1 bar, with the RuO 2(110) surface-termination showing more simulated activity than the RuO 2(111) surface-termination. Coupling between the 1p-kMC and CFD was achieved with a lookup table generated by the error-based modified Shepard interpolation scheme. Isothermal reactor scale simulations were performed and compared to two separate experimental studies, conducted with reactant partial pressures of ≤0.1 bar. Simulations without an isothermality restriction were also conducted and showed that the simulated temperature gradient across the catalytic reactor bed is <0.5 K, which validated the use of the isothermality restriction for investigating the reactor-scale phenomenological temperature dependences. The approach with the Wulff construction based reactor simulations reproduced a trend similar to one experimental data set relatively well, with the (110) surface being more active at higher temperaures; in contrast, for the other experimental data set, our reactor simulations achieve surprisingly and perhaps fortuitously good agreement with the activity and phenomenological pressure dependence when it is assumed that the (111) facet is the only active facet present. Lastly, the active phase of catalytic CO oxidation over RuO 2 remains unsettled, but the present study presents proof of principle (and progress) toward more accurate multiscale modeling from electrons to reactors and new simulation results.« less
Martin, Stephen B.; Schauer, Elizabeth S.; Blum, David H.; Kremer, Paul A.; Bahnfleth, William P.; Freihaut, James D.
2017-01-01
We developed, characterized, and tested a new dual-collimation aqueous UV reactor to improve the accuracy and consistency of aqueous k-value determinations. This new system is unique because it collimates UV energy from a single lamp in two opposite directions. The design provides two distinct advantages over traditional single-collimation systems: 1) real-time UV dose (fluence) determination; and 2) simple actinometric determination of a reactor factor that relates measured irradiance levels to actual irradiance levels experienced by the microbial suspension. This reactor factor replaces three of the four typical correction factors required for single-collimation reactors. Using this dual-collimation reactor, Bacillus subtilis spores demonstrated inactivation following the classic multi-hit model with k = 0.1471 cm2/mJ (with 95% confidence bounds of 0.1426 to 0.1516). PMID:27498232
NASA Technical Reports Server (NTRS)
Sibille, Laurent; Dominques, Jesus A.
2012-01-01
The maturation of Molten Regolith Electrolysis (MRE) as a viable technology for oxygen and metals production on explored planets relies on the realization of the self-heating mode for the reactor. Joule heat generated during regolith electrolysis creates thermal energy that should be able to maintain the molten phase (similar to electrolytic Hall-Heroult process for aluminum production). Self-heating via Joule heating offers many advantages: (1) The regolith itself is the crucible material, it protects the vessel walls (2) Simplifies the engineering of the reactor (3) Reduces power consumption (no external heating) (4) Extends the longevity of the reactor. Predictive modeling is a tool chosen to perform dimensional analysis of a self-heating reactor: (1) Multiphysics modeling (COMSOL) was selected for Joule heat generation and heat transfer (2) Objective is to identify critical dimensions for first reactor prototype.
Fuel burnup analysis for IRIS reactor using MCNPX and WIMS-D5 codes
NASA Astrophysics Data System (ADS)
Amin, E. A.; Bashter, I. I.; Hassan, Nabil M.; Mustafa, S. S.
2017-02-01
International Reactor Innovative and Secure (IRIS) reactor is a compact power reactor designed with especial features. It contains Integral Fuel Burnable Absorber (IFBA). The core is heterogeneous both axially and radially. This work provides the full core burn up analysis for IRIS reactor using MCNPX and WIMDS-D5 codes. Criticality calculations, radial and axial power distributions and nuclear peaking factor at the different stages of burnup were studied. Effective multiplication factor values for the core were estimated by coupling MCNPX code with WIMS-D5 code and compared with SAS2H/KENO-V code values at different stages of burnup. The two calculation codes show good agreement and correlation. The values of radial and axial powers for the full core were also compared with published results given by SAS2H/KENO-V code (at the beginning and end of reactor operation). The behavior of both radial and axial power distribution is quiet similar to the other data published by SAS2H/KENO-V code. The peaking factor values estimated in the present work are close to its values calculated by SAS2H/KENO-V code.
Coupling a Supercritical Carbon Dioxide Brayton Cycle to a Helium-Cooled Reactor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Middleton, Bobby; Pasch, James Jay; Kruizenga, Alan Michael
2016-01-01
This report outlines the thermodynamics of a supercritical carbon dioxide (sCO 2) recompression closed Brayton cycle (RCBC) coupled to a Helium-cooled nuclear reactor. The baseline reactor design for the study is the AREVA High Temperature Gas-Cooled Reactor (HTGR). Using the AREVA HTGR nominal operating parameters, an initial thermodynamic study was performed using Sandia's deterministic RCBC analysis program. Utilizing the output of the RCBC thermodynamic analysis, preliminary values of reactor power and of Helium flow rate through the reactor were calculated in Sandia's HelCO 2 code. Some research regarding materials requirements was then conducted to determine aspects of corrosion related tomore » both Helium and to sCO 2 , as well as some mechanical considerations for pressures and temperatures that will be seen by the piping and other components. This analysis resulted in a list of materials-related research items that need to be conducted in the future. A short assessment of dry heat rejection advantages of sCO 2> Brayton cycles was also included. This assessment lists some items that should be investigated in the future to better understand how sCO 2 Brayton cycles and nuclear can maximally contribute to optimizing the water efficiency of carbon free power generation« less
Bioreactor design studies for a hydrogen-producing bacterium.
Wolfrum, Edward J; Watt, Andrew S
2002-01-01
Carbon monoxide (CO) can be metabolized by a number of microorganisms along with water to produce hydrogen (H2) and carbon dioxide. National Renewable Energy Laboratory researchers have isolated a number of bacteria that perform this so-called water-gas shift reaction at ambient temperatures. We performed experiments to measure the rate of CO conversion and H2 production in a trickle-bed reactor (TBR). The liquid recirculation rate and the reactor support material both affected the mass transfer coefficient, which controls the overall performance of the reactor. A simple reactor model taken from the literature was used to quantitatively compare the performance of the TBR geometry at two different size scales. Good agreement between the two reactor scales was obtained.
NASA Astrophysics Data System (ADS)
Kim, Keunjoo; Noh, Sam Kyu
2000-08-01
The thermal process of the growth of GaN-based semiconductors was analysed for two home-made horizontal reactors. The reactors were designed to make the ammonia gas flow in the opposite direction to the main gas flow. For two horizontal reactors different in dimension, the low Reynolds numbers of Re = 2.94 and 4.15 were chosen for stable laminar flow and the Rayleigh numbers governing the heat convection were optimized to the values of Ra = 6.0 and 76.2, respectively. The qualities of GaN and InGaN films were characterized by Hall effect measurement, x-ray diffraction and photoluminescence and compared with respect to the reactor dependency.
Pilot plant operation of a nonadiabatic methanation reactor. [15 refs. ; Raney nickel catalyst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schehl, R.R.; Pennline, H.W.; Strakey, J.P.
The design and operation of a pilot plant scale hybrid methanation reactor is discussed. The hybrid methanator, utilizing a finned, Raney nickel coated insert, consolidates features of the tube-wall and hot-gas-recycle methanation reactors. Data are presented from four tests lasting from 3/sup 1///sub 2/ weeks to three months. Topics discussed include conversion, product yields, catalyst properties, and reactor temperature profiles. A one-dimensional mathematical model capable of explaining reactor performance trends is employed.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-19
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on U.S. Advanced Pressurized Power Reactor; Notice of Meeting The ACRS Subcommittee on U.S. Advanced Pressurized Power Reactor (US-APWR) will hold a meeting on July 9-10, 2012, Room T-2B3, 11545...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Spent fuel, high-level radioactive waste, or reactor... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Siting Evaluation Factors § 72.108 Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste transportation. The...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Physical Protection of Irradiated Reactor Fuel in Transit... Irradiated Reactor Fuel in Transit, Training Program Subject Schedule Pursuant to the provision of § 73.37 of... reactor fuel is required to assure that individuals used as shipment escorts have completed a training...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-27
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on U.S. Evolutionary Power Reactor; Notice of Meeting The ACRS Subcommittee on U.S. Evolutionary Power Reactor (U.S. EPR) will hold a meeting on August 18, 2011, Room T-2B3, 11545 Rockville Pike...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Temporary storage of spent fuel after cessation of reactor... Procedures § 51.23 Temporary storage of spent fuel after cessation of reactor operation—generic determination... necessary, spent fuel generated in any reactor can be stored safely and without significant environmental...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-17
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS, Subcommittee on U.S. Evolutionary Power Reactor; Notice of Meeting The ACRS Subcommittee on U.S. Evolutionary Power Reactor (U.S. EPR) will hold a meeting on January 17, 2013, Room T-2B1, 11545 Rockville Pike...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Spent fuel, high-level radioactive waste, or reactor... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Siting Evaluation Factors § 72.108 Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste transportation. The...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Temporary storage of spent fuel after cessation of reactor... Procedures § 51.23 Temporary storage of spent fuel after cessation of reactor operation—generic determination... necessary, spent fuel generated in any reactor can be stored safely and without significant environmental...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Physical Protection of Irradiated Reactor Fuel in Transit... Irradiated Reactor Fuel in Transit, Training Program Subject Schedule Pursuant to the provision of § 73.37 of... reactor fuel is required to assure that individuals used as shipment escorts have completed a training...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-29
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on U.S. Evolutionary Power Reactor (U.S. EPR); Notice of Meeting The ACRS Subcommittee on U.S. Evolutionary Power Reactor (U.S. EPR) will hold a meeting on January 12, 2011, Room T-2B1, 11545 Rockville Pike...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-07
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor; Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR) will hold a meeting on November 22, 2013, Room T-2B1, 11545 Rockville Pike, Rockville, Maryland. The meeting will be...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-21
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor; Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR) will hold a meeting on July 9, 2013, Room T-2B3, 11545 Rockville Pike, Rockville, Maryland. The meeting will be open to...
REACTOR SERVICES BUILDING, TRA635, INTERIOR. ALSO KNOWN AS MATERIAL RECEIVING ...
REACTOR SERVICES BUILDING, TRA-635, INTERIOR. ALSO KNOWN AS MATERIAL RECEIVING AREA AND LABORATORY. CAMERA ON FIRST FLOOR FACING NORTH TOWARD MTR BUILDING. MOCK-UP AREA WAS TO THE RIGHT OF VIEW. INL NEGATIVE NO. HD46-10-1. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Catalytic wet oxidation of phenol in a trickle bed reactor over a Pt/TiO2 catalyst.
Maugans, Clayton B; Akgerman, Aydin
2003-01-01
Catalytic wet oxidation of phenol was studied in a batch and a trickle bed reactor using 4.45% Pt/TiO2 catalyst in the temperature range 150-205 degrees C. Kinetic data were obtained from batch reactor studies and used to model the reaction kinetics for phenol disappearance and for total organic carbon disappearance. Trickle bed experiments were then performed to generate data from a heterogeneous flow reactor. Catalyst deactivation was observed in the trickle bed reactor, although the exact cause was not determined. Deactivation was observed to linearly increase with the cumulative amount of phenol that had passed over the catalyst bed. Trickle bed reactor modeling was performed using a three-phase heterogeneous model. Model parameters were determined from literature correlations, batch derived kinetic data, and trickle bed derived catalyst deactivation data. The model equations were solved using orthogonal collocations on finite elements. Trickle bed performance was successfully predicted using the batch derived kinetic model and the three-phase reactor model. Thus, using the kinetics determined from limited data in the batch mode, it is possible to predict continuous flow multiphase reactor performance.
Advanced Power Conversion Efficiency in Inventive Plasma for Hybrid Toroidal Reactor
NASA Astrophysics Data System (ADS)
Hançerlioğullari, Aybaba; Cini, Mesut; Güdal, Murat
2013-08-01
Apex hybrid reactor has a good potential to utilize uranium and thorium fuels in the future. This toroidal reactor is a type of system that facilitates the occurrence of the nuclear fusion and fission events together. The most important feature of hybrid reactor is that the first wall surrounding the plasma is liquid. The advantages of utilizing a liquid wall are high power density capacity good power transformation productivity, the magnitude of the reactor's operational duration, low failure percentage, short maintenance time and the inclusion of the system's simple technology and material. The analysis has been made using the MCNP Monte Carlo code and ENDF/B-V-VI nuclear data. Around the fusion chamber, molten salts Flibe (LI2BeF4), lead-lithium (PbLi), Li-Sn, thin-lityum (Li20Sn80) have used as cooling materials. APEX reactor has modeled in the torus form by adding nuclear materials of low significance in the specified percentages between 0 and 12 % to the molten salts. In this study, the neutronic performance of the APEX fusion reactor using various molten salts has been investigated. The nuclear parameters of Apex reactor has been searched for Flibe (LI2BeF4) and Li-Sn, for blanket layers. In case of usage of the Flibe (LI2BeF4), PbLi, and thin-lityum (Li20Sn80) salt solutions at APEX toroidal reactors, fissile material production per source neutron, tritium production speed, total fission rate, energy reproduction factor has been calculated, the results obtained for both salt solutions are compared.
Gas phase oxidation downstream of a catalytic combustor
NASA Technical Reports Server (NTRS)
Tien, J. S.; Anderson, D. N.
1979-01-01
Effect of the length available for gas-phase reactions downstream of the catalytic reactor on the emission of CO and unburned hydrocarbons was investigated. A premixed, prevaporized propane/air feed to a 12/cm/diameter catalytic/reactor test section was used. The catalytic reactor was made of four 2.5 cm long monolithic catalyst elements. Four water cooled gas sampling probes were located at positions between 0 and 22 cm downstream of the catalytic reactor. Measurements of unburned hydrocarbon, CO, and CO2 were made. Tests were performed with an inlet air temperature of 800 K, a reference velocity of 10 m/s, pressures of 3 and 600,000 Pa, and fuel air equivalence ratios of 0.14 to 0.24. For very lean mixtures, hydrocarbon emissions were high and CO continued to be formed downstream of the catalytic reactor. At the highest equivalence ratios tested, hydrocarbon levels were much lower and CO was oxidized to CO2 in the gas phase downstream. To achieve acceptable emissions, a downstream region several times longer than the catalytic reactor could be required.
Piña-Salazar, E Z; Cervantes, F J; Meraz, M; Celis, L B
2011-01-01
In sulfate-reducing reactors, it has been reported that the sulfate removal efficiency increases when the COD/SO4(2-) ratio is increased. The start-up of a down-flow fluidized bed reactor constitutes an important step to establish a microbial community in the biofilm able to survive under the operational bioreactor conditions in order to achieve effective removal of both sulfate and organic matter. In this work the influence of COD/SO4(2-) ratio and HRT in the development of a biofilm during reactor start-up (35 days) was studied. The reactor was inoculated with 1.6 g VSS/L of granular sludge, ground low density polyethylene was used as support material; the feed consisted of mineral medium at pH 5.5 containing 1 g COD/L (acetate:lactate, 70:30) and sodium sulfate. Four experiments were conducted at HRT of 1 or 2 days and COD/SO4(2-) ratio of 0.67 or 2.5. The results obtained indicated that a COD/SO4(2-) ratio of 2.5 and HRT 2 days allowed high sulfate and COD removal (66.1 and 69.8%, respectively), whereas maximum amount of attached biomass (1.9 g SVI/L support) and highest sulfate reducing biofilm activity (10.1 g COD-H2S/g VSS-d) was achieved at HRT of 1 day and at COD/sulfate ratios of 0.67 and 2.5, respectively, which suggests that suspended biomass also played a key role in the performance of the reactors.
REACTOR PHYSICS MODELING OF SPENT RESEARCH REACTOR FUEL FOR TECHNICAL NUCLEAR FORENSICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nichols, T.; Beals, D.; Sternat, M.
2011-07-18
Technical nuclear forensics (TNF) refers to the collection, analysis and evaluation of pre- and post-detonation radiological or nuclear materials, devices, and/or debris. TNF is an integral component, complementing traditional forensics and investigative work, to help enable the attribution of discovered radiological or nuclear material. Research is needed to improve the capabilities of TNF. One research area of interest is determining the isotopic signatures of research reactors. Research reactors are a potential source of both radiological and nuclear material. Research reactors are often the least safeguarded type of reactor; they vary greatly in size, fuel type, enrichment, power, and burn-up. Manymore » research reactors are fueled with highly-enriched uranium (HEU), up to {approx}93% {sup 235}U, which could potentially be used as weapons material. All of them have significant amounts of radiological material with which a radioactive dispersal device (RDD) could be built. Therefore, the ability to attribute if material originated from or was produced in a specific research reactor is an important tool in providing for the security of the United States. Currently there are approximately 237 operating research reactors worldwide, another 12 are in temporary shutdown and 224 research reactors are reported as shut down. Little is currently known about the isotopic signatures of spent research reactor fuel. An effort is underway at Savannah River National Laboratory (SRNL) to analyze spent research reactor fuel to determine these signatures. Computer models, using reactor physics codes, are being compared to the measured analytes in the spent fuel. This allows for improving the reactor physics codes in modeling research reactors for the purpose of nuclear forensics. Currently the Oak Ridge Research reactor (ORR) is being modeled and fuel samples are being analyzed for comparison. Samples of an ORR spent fuel assembly were taken by SRNL for analytical and radiochemical analysis. The fuel assembly was modeled using MONTEBURNS(MCNP5/ ORIGEN2.2) and MCNPX/CINDER90. The results from the models have been compared to each other and to the measured data.« less
Safety and Regulatory Issues of the Thorium Fuel Cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ade, Brian; Worrall, Andrew; Powers, Jeffrey
2014-02-01
Thorium has been widely considered an alternative to uranium fuel because of its relatively large natural abundance and its ability to breed fissile fuel (233U) from natural thorium (232Th). Possible scenarios for using thorium in the nuclear fuel cycle include use in different nuclear reactor types (light water, high temperature gas cooled, fast spectrum sodium, molten salt, etc.), advanced accelerator-driven systems, or even fission-fusion hybrid systems. The most likely near-term application of thorium in the United States is in currently operating light water reactors (LWRs). This use is primarily based on concepts that mix thorium with uranium (UO2 + ThO2),more » add fertile thorium (ThO2) fuel pins to LWR fuel assemblies, or use mixed plutonium and thorium (PuO2 + ThO2) fuel assemblies. The addition of thorium to currently operating LWRs would result in a number of different phenomenological impacts on the nuclear fuel. Thorium and its irradiation products have nuclear characteristics that are different from those of uranium. In addition, ThO2, alone or mixed with UO2 fuel, leads to different chemical and physical properties of the fuel. These aspects are key to reactor safety-related issues. The primary objectives of this report are to summarize historical, current, and proposed uses of thorium in nuclear reactors; provide some important properties of thorium fuel; perform qualitative and quantitative evaluations of both in-reactor and out-of-reactor safety issues and requirements specific to a thorium-based fuel cycle for current LWR reactor designs; and identify key knowledge gaps and technical issues that need to be addressed for the licensing of thorium LWR fuel in the United States.« less
Design of a laboratory scale fluidized bed reactor
NASA Astrophysics Data System (ADS)
Wikström, E.; Andersson, P.; Marklund, S.
1998-04-01
The aim of this project was to construct a laboratory scale fluidized bed reactor that simulates the behavior of full scale municipal solid waste combustors. The design of this reactor is thoroughly described. The size of the laboratory scale fluidized bed reactor is 5 kW, which corresponds to a fuel-feeding rate of approximately 1 kg/h. The reactor system consists of four parts: a bed section, a freeboard section, a convector (postcombustion zone), and an air pollution control (APC) device system. The inside diameter of the reactor is 100 mm at the bed section and it widens to 200 mm in diameter in the freeboard section; the total height of the reactor is 1760 mm. The convector part consists of five identical sections; each section is 2700 mm long and has an inside diameter of 44.3 mm. The reactor is flexible regarding the placement and number of sampling ports. At the beginning of the first convector unit and at the end of each unit there are sampling ports for organic micropollutants (OMP). This makes it possible to study the composition of the flue gases at various residence times. Sampling ports for inorganic compounds and particulate matter are also placed in the convector section. All operating parameters, reactor temperatures, concentrations of CO, CO2, O2, SO2, NO, and NO2 are continuously measured and stored at selected intervals for further evaluation. These unique features enable full control over the fuel feed, air flows, and air distribution as well as over the temperature profile. Elaborate details are provided regarding the configuration of the fuel-feeding systems, the fluidized bed, the convector section, and the APC device. This laboratory reactor enables detailed studies of the formation mechanisms of OMP, such as polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), poly-chlorinated biphenyls (PCBs), and polychlorinated benzenes (PCBzs). With this system formation mechanisms of OMP occurring in both the combustion and postcombustion zones can be studied. Other advantages are memory effect minimization and the reduction of experimental costs compared to full scale combustors. Comparison of the combustion parameters and emission data from this 5 kW laboratory scale reactor with full scale combustors shows good agreement regarding emission levels and PCDD/PCDF congener patterns. This indicates that the important formation and degradation reactions of OMP in the reactor are the same formation mechanisms as in full scale combustors.
Barros, Aruana Rocha; Adorno, Maria Angela Tallarico; Sakamoto, Isabel Kimiko; Maintinguer, Sandra Imaculada; Varesche, Maria Bernadete Amâncio; Silva, Edson Luiz
2011-02-01
This study evaluated two different support materials (ground tire and polyethylene terephthalate [PET]) for biohydrogen production in an anaerobic fluidized bed reactor (AFBR) treating synthetic wastewater containing glucose (4000 mg L(-1)). The AFBR, which contained either ground tire (R1) or PET (R2) as support materials, were inoculated with thermally pretreated anaerobic sludge and operated at a temperature of 30°C. The AFBR were operated with a range of hydraulic retention times (HRT) between 1 and 8h. The reactor R1 operating with a HRT of 2h showed better performance than reactor R2, reaching a maximum hydrogen yield of 2.25 mol H(2)mol(-1) glucose with 1.3mg of biomass (as the total volatile solids) attached to each gram of ground tire. Subsequent 16S rRNA gene sequencing and phylogenetic analysis of particle samples revealed that reactor R1 favored the presence of hydrogen-producing bacteria such as Clostridium, Bacillus, and Enterobacter. Copyright © 2010 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-22
...). The Office of New Reactors and Office of Nuclear Reactor Regulation are revising SRP Section 19.1... of the Code of Federal Regulations (10 CFR), 50.71(h)(1), (h)(2), and (h)(3) for new reactors, (2... searching on http://www.regulations.gov under Docket ID NRC-2012-0113. You may submit comments by the...
Performance of intermittent aeration reactor on NH4-N removal from groundwater resources.
Khanitchaidecha, W; Nakamura, T; Sumino, T; Kazama, F
2010-01-01
To study the effect of intermittent aeration period on ammonium-nitrogen (NH4-N) removal from groundwater resources, synthetic groundwater was prepared and three reactors were operated under different conditions--"reactor A" under continuous aeration, "reactor B" under 6 h intermittent aeration, and "reactor C" under 2 h intermittent aeration. To facilitate denitrification simultaneously with nitrification, "acetate" was added as an external carbon source with step-wise increase from 0.5 to 1.5 C/N ratio, where C stands for total carbon content in the system, and N for NH4-N concentration in the synthetic groundwater. Results show that complete NH4-N removal was obtained in "reactor B" and "reactor C" at 1.3 and 1.5 C/N ratio respectively; and partial NH4-N removal in "reactor A". These results suggest that intermittent aeration at longer interval could enhance the reactor performance on NH4-N removal in terms of efficiency and low external carbon requirement. Because of consumption of internal carbon by the process, less amount of external carbon is required. Further increase in carbon in a form of acetate (1.5 to 2.5 C/N ratios) increases removal rate (represented by reaction rate coefficient (k) of kinetic equation) as well as occurrence of free cells. It suggests that the operating condition at reactor B with 1.3 C/N ratio is more appropriate for long-term operation at a pilot-scale.
Umaña, Oscar; Nikolaeva, Svetlana; Sánchez, Enrique; Borja, Rafael; Raposo, Francisco
2008-10-01
Two laboratory-scale anaerobic fixed bed reactors were evaluated while treating dairy manure at upflow mode and semicontinuous feeding. One reactor was packed with a combination of waste tyre rubber and zeolite (R1) while the other had only waste tyre rubber as a microorganism immobilization support (R2). Effluent quality improved when the hydraulic retention time (HRT) increased from 1.0 to 5.5 days. Higher COD, BOD5, total and volatile solids removal efficiencies were always achieved in the reactor R1. No clogging was observed during the operation period. Methane yield was also a function of the HRT and of the type of support used, and was 12.5% and 40% higher in reactor R1 than in R2 for HRTs of 5.5 and 1.0 days, respectively. The results obtained demonstrated that this type of reactor is capable of operating with dairy manure at a HRT 5 times lower than that used in a conventional reactor.
Orgill, James J; Atiyeh, Hasan K; Devarapalli, Mamatha; Phillips, John R; Lewis, Randy S; Huhnke, Raymond L
2013-04-01
Trickle-bed reactor (TBR), hollow fiber membrane reactor (HFR) and stirred tank reactor (STR) can be used in fermentation of sparingly soluble gasses such as CO and H2 to produce biofuels and bio-based chemicals. Gas fermenting reactors must provide high mass transfer capabilities that match the kinetic requirements of the microorganisms used. The present study compared the volumetric mass transfer coefficient (K(tot)A/V(L)) of three reactor types; the TBR with 3 mm and 6 mm beads, five different modules of HFRs, and the STR. The analysis was performed using O2 as the gaseous mass transfer agent. The non-porous polydimethylsiloxane (PDMS) HFR provided the highest K(tot)A/V(L) (1062 h(-1)), followed by the TBR with 6mm beads (421 h(-1)), and then the STR (114 h(-1)). The mass transfer characteristics in each reactor were affected by agitation speed, and gas and liquid flow rates. Furthermore, issues regarding the comparison of mass transfer coefficients are discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hamann, S.; Börner, K.; Burlacov, I.; Spies, H.-J.; Strämke, M.; Strämke, S.; Röpcke, J.
2015-12-01
A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH4, C2H2, HCN, and NH3). With the help of OES, the rotational temperature of the screen plasma could be determined.
NASA Astrophysics Data System (ADS)
Gaya-Piqué, L.; Torta, J. M.; Curto, J. J.; Sanclement, E.; Marsal, S.; Solé, J. G.; Altadill, D.; Ugalde, A.; de Santis, A.; Apostolov, E. M.; Alberca, L. F.; Garcí A.
This CD-ROM presents the Livingston Island Geomagnetic Observatory Bulletin, edited by Observatori de l'Ebre, containing the data obtained during the years 2000, 2001 and the first two months of the year 2002. For the first time this Bulletin is edited in digital format, being it the continuation of the paper-edited series as Misceláneas 41, 42 and 43 (ISSN 0211-4534). The structure of the CD-ROM consists of one file with the Bulletin contents in PDF and of a tree of directories and subdirectories with the data corresponding to the different years and months of the Bulletin. These data files and their names were built according to the IAGA-2000 data exchange format.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waris, Abdul, E-mail: awaris@fi.itb.ac.id; Novitrian,; Pramuditya, Syeilendra
High temperature engineering test reactor (HTTR) is one of high temperature gas cooled reactor (HTGR) types which has been developed by Japanese Atomic Energy Research Institute (JAERI). The HTTR is a graphite moderator, helium gas coolant, 30 MW thermal output and 950 °C outlet coolant temperature for high temperature test operation. Original HTTR uses UO{sub 2} fuel. In this study, we have evaluated the use of UO{sub 2} and PuO{sub 2} in form of mixed oxide (MOX) fuel in HTTR. The reactor cell calculation was performed by using SRAC 2002 code, with nuclear data library was derived from JENDL3.2. Themore » result shows that HTTR can obtain its criticality condition if the enrichment of {sup 235}U in loaded fuel is 18.0% or above.« less
Determination of the Sensitivity of the Antineutrino Probe for Reactor Core Monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cormon, S.; Fallot, M., E-mail: fallot@subatech.in2p3.fr; Bui, V.-M.
This paper presents a feasibility study of the use of the detection of reactor-antineutrinos (ν{sup ¯}{sub e}) for non proliferation purpose. To proceed, we have started to study different reactor designs with our simulation tools. We use a package called MCNP Utility for Reactor Evolution (MURE), initially developed by CNRS/IN2P3 labs to study Generation IV reactors. The MURE package has been coupled to fission product beta decay nuclear databases for studying reactor antineutrino emission. This method is the only one able to predict the antineutrino emission from future reactor cores, which don't use the thermal fission of {sup 235}U, {supmore » 239}Pu and {sup 241}Pu. It is also the only way to include off-equilibrium effects, due to neutron captures and time evolution of the fission product concentrations during a reactor cycle. We will present here the first predictions of antineutrino energy spectra from innovative reactor designs (Generation IV reactors). We will then discuss a summary of our results of non-proliferation scenarios involving the latter reactor designs, taking into account reactor physics constraints.« less
Bathe, Stephan; Schwarzenbeck, Norbert; Hausner, Martina
2009-06-01
A bioaugmentation approach combining several strategies was applied to achieve degradation of 3-chloroaniline (3CA) in semicontinuous activated sludge reactors. In a first step, a 3CA-degrading Comamonas testosteroni strain carrying the degradative plasmid pNB2 was added to a biofilm reactor, and complete 3CA degradation together with spread of the plasmid within the indigenous biofilm population was achieved. A second set of reactors was then bioaugmented with either a suspension of biofilm cells removed from the carrier material or with biofilm-containing carrier material. 3CA degradation was established rapidly in all bioaugmented reactors, followed by a slow adaptation of the non-bioaugmented control reactors. In response to variations in 3CA concentration, all reactors exhibited temporary performance breakdowns. Whereas duplicates of the control reactors deviated in their behaviour, the bioaugmented reactors appeared more reproducible in their performance and population dynamics. Finally, the carrier-bioaugmented reactors showed an improved performance in the presence of high 3CA influent concentrations over the suspension-bioaugmented reactors. In contrast, degradation in one control reactor failed completely, but was rapidly established in the remaining control reactor.
Code of Federal Regulations, 2012 CFR
2012-01-01
... processing, the Director of the Office of New Reactors or the Director of the Office of Nuclear Reactor... days. (b)(1) The Director of the Office of New Reactors or the Director of the Office of Nuclear... Nuclear Reactor Regulation, as appropriate, that they are complete. (c) If part one of the application is...
Saran, Sarangapany; Arunkumar, Patchaiyappan; Manjari, Gangarapu; Devipriya, Suja P
2018-05-05
Application of pilot-scale slurry-type tubular photocatalytic reactor was tested for the decentralized treatment of actual grey water. The reactors were fabricated by reusing the locally available materials at low cost, operated in batch recycle mode with 25 L of grey water. The influence of operational parameters such as catalysts' concentration, initial slurry pH and addition of H 2 O 2 on COD abatement were optimized. The results show that Ag-decorated TiO 2 showed a two-fold increase in COD abatement than did pure TiO 2 . Better COD abatement was observed under acidic conditions, and addition of H 2 O 2 significantly increases the rate of COD abatement. Within 2 h, 99% COD abatement was observed when the reactor was operated with optimum operational conditions. Silver ion lixiviate was also monitored during the experiment and is five times less than the permissible limits. The catalyst shows good stability even after five cycles without much loss in its photocatalytic activity. The results clearly reveal that pilot-scale slurry tubular solar photocatalytic reactors could be used as a cost-effective method to treat grey water and the resulting clean water could be reused for various non-potable purposes, thus conserving precious water resource. This study favours decentralized grey water treatment and possible scaling up of solar photocatalytic reactor using locally available materials for the potential reuse of treated water.
Evaluation of infrared thermography as a diagnostic tool in CVD applications
NASA Astrophysics Data System (ADS)
Johnson, E. J.; Hyer, P. V.; Culotta, P. W.; Clark, I. O.
1998-05-01
This research is focused on the feasibility of using infrared temperature measurements on the exterior of a chemical vapor deposition (CVD) reactor to ascertain both real-time information on the operating characteristics of a CVD system and provide data which could be post-processed to provide quantitative information for research and development on CVD processes. Infrared thermography techniques were used to measure temperatures on a horizontal CVD reactor of rectangular cross section which were correlated with the internal gas flow field, as measured with the laser velocimetry (LV) techniques. For the reactor tested, thermal profiles were well correlated with the gas flow field inside the reactor. Correlations are presented for nitrogen and hydrogen carrier gas flows. The infrared data were available to the operators in real time with sufficient sensitivity to the internal flow field so that small variations such as misalignment of the reactor inlet could be observed. The same data were post-processed to yield temperature measurements at known locations on the reactor surface. For the experiments described herein, temperatures associated with approximately 3.3 mm 2 areas on the reactor surface were obtained with a precision of ±2°C. These temperature measurements were well suited for monitoring a CVD production reactor, development of improved thermal boundary conditions for use in CFD models of reactors, and for verification of expected thermal conditions.
CHAP-2 heat-transfer analysis of the Fort St. Vrain reactor core
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotas, J.F.; Stroh, K.R.
1983-01-01
The Los Alamos National Laboratory is developing the Composite High-Temperature Gas-Cooled Reactor Analysis Program (CHAP) to provide advanced best-estimate predictions of postulated accidents in gas-cooled reactor plants. The CHAP-2 reactor-core model uses the finite-element method to initialize a two-dimensional temperature map of the Fort St. Vrain (FSV) core and its top and bottom reflectors. The code generates a finite-element mesh, initializes noding and boundary conditions, and solves the nonlinear Laplace heat equation using temperature-dependent thermal conductivities, variable coolant-channel-convection heat-transfer coefficients, and specified internal fuel and moderator heat-generation rates. This paper discusses this method and analyzes an FSV reactor-core accident thatmore » simulates a control-rod withdrawal at full power.« less
Characterizing the biotransformation of sulfur-containing wastes in simulated landfill reactors.
Sun, Wenjie; Sun, Mei; Barlaz, Morton A
2016-07-01
Landfills that accept municipal solid waste (MSW) in the U.S. may also accept a number of sulfur-containing wastes including residues from coal or MSW combustion, and construction and demolition (C&D) waste. Under anaerobic conditions that dominate landfills, microbially mediated processes can convert sulfate to hydrogen sulfide (H2S). The presence of H2S in landfill gas is problematic for several reasons including its low odor threshold, human toxicity, and corrosive nature. The objective of this study was to develop and demonstrate a laboratory-scale reactor method to measure the H2S production potential of a range of sulfur-containing wastes. The H2S production potential was measured in 8-L reactors that were filled with a mixture of the target waste, newsprint as a source of organic carbon required for microbial sulfate reduction, and leachate from decomposed residential MSW as an inoculum. Reactors were operated with and without N2 sparging through the reactors, which was designed to reduce H2S accumulation and toxicity. Both H2S and CH4 yields were consistently higher in reactors that were sparged with N2 although the magnitude of the effect varied. The laboratory-measured first order decay rate constants for H2S and CH4 production were used to estimate constants that were applicable in landfills. The estimated constants ranged from 0.11yr(-1) for C&D fines to 0.38yr(-1) for a mixed fly ash and bottom ash from MSW combustion. Copyright © 2016 Elsevier Ltd. All rights reserved.
Synfuels from fusion: using the tandem mirror reactor and a thermochemical cycle to produce hydrogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werner, R.W.
1982-11-01
This study is concerned with the following area: (1) the tandem mirror reactor and its physics; (2) energy balance; (3) the lithium oxide canister blanket system; (4) high-temperature blanket; (5) energy transport system-reactor to process; (6) thermochemical hydrogen processes; (7) interfacing the GA cycle; (8) matching power and temperature demands; (9) preliminary cost estimates; (10) synfuels beyond hydrogen; and (11) thermodynamics of the H/sub 2/SO/sub 4/-H/sub 2/O system. (MOW)
PRELIMINARY HAZARDS SUMMARY REPORT FOR THE VALLECITOS SUPERHEAT REACTOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, J.L.
1961-02-01
BS>The Vallecitos Superheat Reactor (VSR) is a light-watermoderated, thermal-spectrum reactor, cooled by a combination of moderator boiling and forced convection cooling with saturated steam. The reactor core consists of 32 fuel hurdles containing 5300 lb of UO/sub 2/ enriched in U/sub 235/ to 3.6%. The fuel elements are arranged in individual process tubes that direct the cooling steam flow and separate the steam from the water moderator. The reactor vessel is designed for 1250 psig and operates at 960 to 1000 psig. With the reactor operating at 12.5 Mw(t), the maximum fuel cladding temperature is 1250 deg F and themore » cooling steam is superheated to an average temperature of about 810 deg F at 905 psig. Nu clear operation of the reactor is controlled by 12 control rods, actuated by drives mounted on the bottom of the reactor vessel. The water moderator recirculates inside the reactor vessel and through the core region by natural convection. Inherent safety features of the reactor include the negative core reactivity effects upon heating the UO/sub 2/ fuel (Doppler effect), upon increasing the temperature or void content of the moderator in the operating condition, and upon unflooding the fuel process tubes in the hot condition. Snfety features designed into the reactor and plant systems include a system of sensors and devices to detect petentially unsafe operating conditions and to initiate automatically the appropriate countermeasures, a set of fast and reliable control rods for scramming the reactor if a potentially unsafe condition occurs, a manually-actuated liquid neutron poison system, and an emergency cooling system to provide continued steam flow through the reactor core in the event the reactor becomes isolated from either its normal source of steam supply or discharge. The release of radioactivity to unrestricted areas is maintained within permissible limits by monitoring the radioactivity of wastes and controlling their release. The reactor and many of its auxiliaries are housed within a high-integrity essentially leak-tight containment vessel. (auth)« less
10 CFR 100.4 - Communications.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Communications. 100.4 Section 100.4 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) REACTOR SITE CRITERIA § 100.4 Communications. Except where otherwise... Reactor Regulation or Director, Office of New Reactors, as appropriate, U.S. Nuclear Regulatory Commission...
10 CFR 100.4 - Communications.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Communications. 100.4 Section 100.4 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) REACTOR SITE CRITERIA § 100.4 Communications. Except where otherwise... Reactor Regulation or Director, Office of New Reactors, as appropriate, U.S. Nuclear Regulatory Commission...
NASA Technical Reports Server (NTRS)
Clement, J. D.
1973-01-01
Different types of nuclear fission reactors and fissionable materials are compared. Special emphasis is placed upon the environmental impact of such reactors. Graphs and charts comparing reactor facilities in the U. S. are presented.
24. ARAIII Reactor building ARA608 interior. Camera facing south. Chalk ...
24. ARA-III Reactor building ARA-608 interior. Camera facing south. Chalk marks on wall indicate presence or absence of spot contamination. Ineel photo no. 3-2. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
10 CFR 100.4 - Communications.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Reactor Regulation or Director, Office of New Reactors, as appropriate, U.S. Nuclear Regulatory Commission... 10 Energy 2 2012-01-01 2012-01-01 false Communications. 100.4 Section 100.4 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) REACTOR SITE CRITERIA § 100.4 Communications. Except where otherwise...
Management of fresh water weeds (macrophytes) by vermicomposting using Eisenia fetida.
Najar, Ishtiyaq Ahmed; Khan, Anisa B
2013-09-01
In the present study, potential of Eisenia fetida to recycle the different types of fresh water weeds (macrophytes) used as substrate in different reactors (Azolla pinnata reactor, Trapa natans reactor, Ceratophyllum demersum reactor, free-floating macrophytes mixture reactor, and submerged macrophytes mixture reactor) during 2 months experiment is investigated. E. fetida showed significant variation in number and weight among the reactors and during the different fortnights (P <0.05) with maximum in A. pinnata reactor (number 343.3 ± 10.23 %; weight 98.62 ± 4.23 % ) and minimum in submerged macrophytes mixture reactor (number 105 ± 5.77 %; weight 41.07 ± 3.97 % ). ANOVA showed significant variation in cocoon production (F4 = 15.67, P <0.05) and mean body weight (F4 = 13.49, P <0.05) among different reactors whereas growth rate (F3 = 23.62, P <0.05) and relative growth rate (F3 = 4.91, P <0.05) exhibited significant variation during different fortnights. Reactors showed significant variation (P <0.05) in pH, Electrical conductivity (EC), Organic carbon (OC), Organic nitrogen (ON), and C/N ratio during different fortnights with increase in pH, EC, N, and K whereas decrease in OC and C/N ratio. Hierarchical cluster analysis grouped five substrates (weeds) into three clusters-poor vermicompost substrates, moderate vermicompost substrate, and excellent vermicompost substrate. Two principal components (PCs) have been identified by factor analysis with a cumulative variance of 90.43 %. PC1 accounts for 47.17 % of the total variance represents "reproduction factor" and PC2 explaining 43.26 % variance representing "growth factor." Thus, the nature of macrophyte affects the growth and reproduction pattern of E. fetida among the different reactors, further the addition of A. pinnata in other macrophytes reactors can improve their recycling by E. fetida.
SoLid: Search for Oscillations with Lithium-6 Detector at the SCK-CEN BR2 reactor
NASA Astrophysics Data System (ADS)
Ban, G.; Beaumont, W.; Buhour, J. M.; Coupé, B.; Cucoanes, A. S.; D'Hondt, J.; Durand, D.; Fallot, M.; Fresneau, S.; Giot, L.; Guillon, B.; Guilloux, G.; Janssen, X.; Kalcheva, S.; Koonen, E.; Labare, M.; Moortgat, C.; Pronost, G.; Raes, L.; Ryckbosch, D.; Ryder, N.; Shitov, Y.; Vacheret, A.; Van Mulders, P.; Van Remortel, N.; Weber, A.; Yermia, F.
2016-04-01
Sterile neutrinos have been considered as a possible explanation for the recent reactor and Gallium anomalies arising from reanalysis of reactor flux and calibration data of previous neutrino experiments. A way to test this hypothesis is to look for distortions of the anti-neutrino energy caused by oscillation from active to sterile neutrino at close stand-off (˜ 6- 8m) of a compact reactor core. Due to the low rate of anti-neutrino interactions the main challenge in such measurement is to control the high level of gamma rays and neutron background. The SoLid experiment is a proposal to search for active-to-sterile anti-neutrino oscillation at very short baseline of the SCK•CEN BR2 research reactor. This experiment uses a novel approach to detect anti-neutrino with a highly segmented detector based on Lithium-6. With the combination of high granularity, high neutron-gamma discrimination using 6LiF:ZnS(Ag) and precise localization of the Inverse Beta Decay products, a better experimental sensitivity can be achieved compared to other state-of-the-art technology. This compact system requires minimum passive shielding allowing for very close stand off to the reactor. The experimental set up of the SoLid experiment and the BR2 reactor will be presented. The new principle of neutrino detection and the detector design with expected performance will be described. The expected sensitivity to new oscillations of the SoLid detector as well as the first measurements made with the 8 kg prototype detector deployed at the BR2 reactor in 2013-2014 will be reported.
2014-01-01
Background Lignocellulosic biomass is a renewable, naturally mass-produced form of stored solar energy. Thermochemical pretreatment processes have been developed to address the challenge of biomass recalcitrance, however the optimization, cost reduction, and scalability of these processes remain as obstacles to the adoption of biofuel production processes at the industrial scale. In this study, we demonstrate that the type of reactor in which pretreatment is carried out can profoundly alter the micro- and nanostructure of the pretreated materials and dramatically affect the subsequent efficiency, and thus cost, of enzymatic conversion of cellulose. Results Multi-scale microscopy and quantitative image analysis was used to investigate the impact of different biomass pretreatment reactor configurations on plant cell wall structure. We identify correlations between enzymatic digestibility and geometric descriptors derived from the image data. Corn stover feedstock was pretreated under the same nominal conditions for dilute acid pretreatment (2.0 wt% H2SO4, 160°C, 5 min) using three representative types of reactors: ZipperClave® (ZC), steam gun (SG), and horizontal screw (HS) reactors. After 96 h of enzymatic digestion, biomass treated in the SG and HS reactors achieved much higher cellulose conversions, 88% and 95%, respectively, compared to the conversion obtained using the ZC reactor (68%). Imaging at the micro- and nanoscales revealed that the superior performance of the SG and HS reactors could be explained by reduced particle size, cellular dislocation, increased surface roughness, delamination, and nanofibrillation generated within the biomass particles during pretreatment. Conclusions Increased cellular dislocation, surface roughness, delamination, and nanofibrillation revealed by direct observation of the micro- and nanoscale change in accessibility explains the superior performance of reactors that augment pretreatment with physical energy. PMID:24690534
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambe, A. T.; Chhabra, P. S.; Onasch, T. B.
We performed a systematic intercomparison study of the chemistry and yields of secondary organic aerosol (SOA) generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous flow reactor and several environmental chambers. In the flow reactor, SOA precursors were oxidized using OH concentrations ranging from 2.0 × 10 8 to 2.2 × 10 10 molec cm -3 over exposure times of 100 s. In the environmental chambers, precursors were oxidized using OH concentrations ranging from 2 × 10 6 to 2 × 10 7 molec cm -3 over exposure times of severalmore » hours. The OH concentration in the chamber experiments is close to that found in the atmosphere, but the integrated OH exposure in the flow reactor can simulate atmospheric exposure times of multiple days compared to chamber exposure times of only a day or so. In most cases, for a specific SOA type the most-oxidized chamber SOA and the least-oxidized flow reactor SOA have similar mass spectra, oxygen-to-carbon and hydrogen-to-carbon ratios, and carbon oxidation states at integrated OH exposures between approximately 1 × 10 11 and 2 × 10 11 molec cm -3 s, or about 1–2 days of equivalent atmospheric oxidation. This observation suggests that in the range of available OH exposure overlap for the flow reactor and chambers, SOA elemental composition as measured by an aerosol mass spectrometer is similar whether the precursor is exposed to low OH concentrations over long exposure times or high OH concentrations over short exposure times. This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of sulfate seed particles on isoprene SOA yield measurements was examined in the flow reactor. The studies show that seed particles increase the yield of SOA produced in flow reactors by a factor of 3 to 5 and may also account in part for higher SOA yields obtained in the chambers, where seed particles are routinely used.« less
Lambe, A. T.; Chhabra, P. S.; Onasch, T. B.; ...
2015-03-18
We performed a systematic intercomparison study of the chemistry and yields of secondary organic aerosol (SOA) generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous flow reactor and several environmental chambers. In the flow reactor, SOA precursors were oxidized using OH concentrations ranging from 2.0 × 10 8 to 2.2 × 10 10 molec cm -3 over exposure times of 100 s. In the environmental chambers, precursors were oxidized using OH concentrations ranging from 2 × 10 6 to 2 × 10 7 molec cm -3 over exposure times of severalmore » hours. The OH concentration in the chamber experiments is close to that found in the atmosphere, but the integrated OH exposure in the flow reactor can simulate atmospheric exposure times of multiple days compared to chamber exposure times of only a day or so. In most cases, for a specific SOA type the most-oxidized chamber SOA and the least-oxidized flow reactor SOA have similar mass spectra, oxygen-to-carbon and hydrogen-to-carbon ratios, and carbon oxidation states at integrated OH exposures between approximately 1 × 10 11 and 2 × 10 11 molec cm -3 s, or about 1–2 days of equivalent atmospheric oxidation. This observation suggests that in the range of available OH exposure overlap for the flow reactor and chambers, SOA elemental composition as measured by an aerosol mass spectrometer is similar whether the precursor is exposed to low OH concentrations over long exposure times or high OH concentrations over short exposure times. This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of sulfate seed particles on isoprene SOA yield measurements was examined in the flow reactor. The studies show that seed particles increase the yield of SOA produced in flow reactors by a factor of 3 to 5 and may also account in part for higher SOA yields obtained in the chambers, where seed particles are routinely used.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-02
...). Pilgrim is a boiling water nuclear reactor that is owned by Entergy Nuclear and operated by ENO. The... Generating Unit No. 1 (IP1). IP1 is a pressurized water nuclear reactor that is owned by ENIP2 and maintained... nuclear reactors that are owned by ENIP2 and ENIP3, respectively, and operated by ENO. The facilities are...
Calcio Gaudino, Emanuela; Carnaroglio, Diego; Boffa, Luisa; Cravotto, Giancarlo; Moreira, Elizabeth M; Nunes, Matheus A G; Dressler, Valderi L; Flores, Erico M M
2014-01-01
The oxidative desulfurization/denitrification of liquid fuels has been widely investigated as an alternative or complement to common catalytic hydrorefining. In this process, all oxidation reactions occur in the heterogeneous phase (the oil and the polar phase containing the oxidant) and therefore the optimization of mass and heat transfer is of crucial importance to enhancing the oxidation rate. This goal can be achieved by performing the reaction in suitable ultrasound (US) reactors. In fact, flow and loop US reactors stand out above classic batch US reactors thanks to their greater efficiency and flexibility as well as lower energy consumption. This paper describes an efficient sonochemical oxidation with H2O2/CH3COOH at flow rates ranging from 60 to 800 ml/min of both a model compound, dibenzotiophene (DBT), and of a mild hydro-treated diesel feedstock. Four different commercially available US loop reactors (single and multi-probe) were tested, two of which were developed in the authors' laboratory. Full DBT oxidation and efficient diesel feedstock desulfurization/denitrification were observed after the separation of the polar oxidized S/N-containing compounds (S≤5 ppmw, N≤1 ppmw). Our studies confirm that high-throughput US applications benefit greatly from flow-reactors. Copyright © 2013 Elsevier B.V. All rights reserved.
Wang, Ping; Li, Xiuting; Xiang, Mufei; Zhai, Qian
2007-06-01
By adopting two sequencing batch reactors (SBRs) A and B, nitrate as the substrate, and the intermittent aeration mode, activated sludge was domesticated to enrich aerobic denitrifiers. The pHs of reactor A were approximately 6.3 at DOs 2.2-6.1 mg/l for a carbon source of 720 mg/l COD; the pHs of reactor B were 6.8-7.8 at DOs 2.2-3.0 mg/l for a carbon source of 1500 mg/l COD. Both reactors maintained an influent nitrate concentration of 80 mg/l NO3- -N. When the total inorganic nitrogen (TIN) removal efficiency of both reactors reached 60%, aerobic denitrifier accumulation was regarded completed. By bromthymol blue (BTB) medium, 20 bacteria were isolated from the two SBRs and DNA samples of 8 of these 20 strains were amplified by PCR and processed for 16SrRNA sequencing. The obtained results were analysed by a Blast similarity search of the GenBank database, and constructing a phylogenetic tree for identification by comparison. The 8 bacteria were found to belong to the genera Pseudomonas, Delftia, Herbaspirillum and Comamonas. At present, no Delftia has been reported to be an aerobic denitrifier.
Reactor on-off antineutrino measurement with KamLAND
NASA Astrophysics Data System (ADS)
Gando, A.; Gando, Y.; Hanakago, H.; Ikeda, H.; Inoue, K.; Ishidoshiro, K.; Ishikawa, H.; Koga, M.; Matsuda, R.; Matsuda, S.; Mitsui, T.; Motoki, D.; Nakamura, K.; Obata, A.; Oki, A.; Oki, Y.; Otani, M.; Shimizu, I.; Shirai, J.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Ueshima, K.; Watanabe, H.; Xu, B. D.; Yamada, S.; Yamauchi, Y.; Yoshida, H.; Kozlov, A.; Yoshida, S.; Piepke, A.; Banks, T. I.; Fujikawa, B. K.; Han, K.; O'Donnell, T.; Berger, B. E.; Learned, J. G.; Matsuno, S.; Sakai, M.; Efremenko, Y.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Detwiler, J. A.; Enomoto, S.; Decowski, M. P.
2013-08-01
The recent long-term shutdown of Japanese nuclear reactors has resulted in a significantly reduced reactor ν¯e flux at KamLAND. This running condition provides a unique opportunity to confirm and constrain backgrounds for the reactor ν¯e oscillation analysis. The data set also has improved sensitivity for other ν¯e signals, in particular ν¯e’s produced in β-decays from U238 and Th232 within the Earth’s interior, whose energy spectrum overlaps with that of reactor ν¯e’s. Including constraints on θ13 from accelerator and short-baseline reactor neutrino experiments, a combined three-flavor analysis of solar and KamLAND data gives fit values for the oscillation parameters of tan2θ12=0.436-0.025+0.029, Δm212=7.53-0.18+0.18×10-5eV2, and sin2θ13=0.023-0.002+0.002. Assuming a chondritic Th/U mass ratio, we obtain 116-27+28 ν¯e events from U238 and Th232, corresponding to a geo ν¯e flux of 3.4-0.8+0.8×106cm-2s-1 at the KamLAND location. We evaluate various bulk silicate Earth composition models using the observed geo ν¯e rate.
Kobayashi, Tsutomu; Tang, Yueqin; Urakami, Toyoshi; Morimura, Shigeru; Kida, Kenji
2014-02-01
Sweet potato shochu is a traditional Japanese spirit produced mainly in the South Kyushu area in Japan. The amount of stillage reaches approximately 8 x 10(5) tons per year. Wastewater mainly containing stillage from the production of sweet potato-shochu was treated thermophilically in a full-scale treatment plant using fixed-bed reactors (8 reactors x 283 m3). Following the addition of Ni2+ and Co2+, the reactors have been stably operated for six years at a high chemical oxygen demand (COD) loading rate of 14 kg/(m3 x day). Analysis of coenzyme content and microbial communities indicated that similar microbial communities were present in the liquid phase and on the fiber carriers installed in reactors. Bacteria in the phyla Firmicutes as well as Bacteroidetes were dominant bacteria, and Methanosarcina thermophila as well as Methanothermobacter crinale were dominant methanogens in the reactors. This study reveals that stillage from sweet potato-shochu production can be treated effectively in a full-scale fixed-bed reactor under thermophilic conditions with the help of Ni2+ and Co2+. The high diversity of bacterial community and the coexistence of both aceticlastic and hydrogenotrophic methanogens contributed to the excellent fermentation performance.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Scope. 100.2 Section 100.2 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) REACTOR SITE CRITERIA § 100.2 Scope. The siting requirements contained in this part... and testing reactors pursuant to the provisions of part 50 or part 52 of this chapter. [61 FR 65175...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Scope. 100.2 Section 100.2 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) REACTOR SITE CRITERIA § 100.2 Scope. The siting requirements contained in this part... and testing reactors pursuant to the provisions of part 50 or part 52 of this chapter. [61 FR 65175...
Biogeochemical controls on interactions of microbial iron and sulfate reduction
NASA Astrophysics Data System (ADS)
Kirk, M. F.; Paper, J. M.; Haller, B. R.; Shodunke, G. O.; Marquart, K. A.; Jin, Q.
2016-12-01
Although iron and sulfate reduction are two of the most common microbial electron accepting processes in anoxic settings, the relative influences of environmental factors that guide interactions between each are poorly known. Identifying these factors is a key to predicting how those interactions will respond to future environmental changes. In this study, we used semi-continuous bioreactors to examine the influence of pH, electron donor flux, and sulfate availability. The reactors contained 100 mL of aqueous media and 1 g of marsh sediment amended with goethite (1 mmol). One set of reactors received acidic media (pH 6) while the other set received alkaline media (pH 7.5). Media for both sets of reactors included acetate (0.25 and 1 mM), which served as an electron donor, and sulfate (2.5 mM). We also included sets of sulfate-deficient and acetate-deficient control reactors. We maintained a fluid residence time of 35 days in the reactors by sampling and feeding them every seven days during the 91-day incubation. Our results show that, under the conditions tested, pH had a larger influence on the balance between each reaction than acetate concentration. In acidic reactors, the molar amount of iron reduced exceeded the amount of sulfate reduced by a factor of 3 in reactors receiving media with 0 and 0.25 mM acetate and a factor of 2 in reactors receiving 1 mM acetate. Under alkaline conditions, iron and sulfate were reduced in nearly equal proportions, regardless of influent acetate concentration. Results from sulfate-deficient control reactors show that the presence of sulfate reduction increased the extent of iron reduction in all reactors, but particularly those with alkaline pH. Under acidic conditions, the amount of iron reduced was greater by a factor of 1.2 if sulfate reduction occurred simultaneously than if it did not. Under alkaline conditions, that factor increased to 8.2. Hence, pH influenced the extent to which sulfate reduction promoted iron reduction.
Preliminary plan for testing a thermionic reactor in the Plum Brook Space Power Facility
NASA Technical Reports Server (NTRS)
Haley, F. A.
1972-01-01
A preliminary plan is presented for testing a thermionic reactor in the Plum Brook Space Power Facility (SPF). A technical approach, cost estimate, manpower estimate, and schedule are presented to cover a 2 year full power reactor test.
Code of Federal Regulations, 2014 CFR
2014-01-01
... no significant hazards consideration, the Commission, the Director, Office of Nuclear Reactor... determination of no significant hazards consideration, the Commission, the Director, Office of Nuclear Reactor... no significant hazards consideration, the Commission, the Director, Office of Nuclear Reactor...
Code of Federal Regulations, 2013 CFR
2013-01-01
... no significant hazards consideration, the Commission, the Director, Office of Nuclear Reactor... determination of no significant hazards consideration, the Commission, the Director, Office of Nuclear Reactor... no significant hazards consideration, the Commission, the Director, Office of Nuclear Reactor...
Analysis of the Gas Core Actinide Transmutation Reactor (GCATR)
NASA Technical Reports Server (NTRS)
Clement, J. D.; Rust, J. H.
1977-01-01
Design power plant studies were carried out for two applications of the plasma core reactor: (1) As a breeder reactor, (2) As a reactor able to transmute actinides effectively. In addition to the above applications the reactor produced electrical power with a high efficiency. A reactor subsystem was designed for each of the two applications. For the breeder reactor, neutronics calculations were carried out for a U-233 plasma core with a molten salt breeding blanket. A reactor was designed with a low critical mass (less than a few hundred kilograms U-233) and a breeding ratio of 1.01. The plasma core actinide transmutation reactor was designed to transmute the nuclear waste from conventional LWR's. The spent fuel is reprocessed during which 100% of Np, Am, Cm, and higher actinides are separated from the other components. These actinides are then manufactured as oxides into zirconium clad fuel rods and charged as fuel assemblies in the reflector region of the plasma core actinide transmutation reactor. In the equilibrium cycle, about 7% of the actinides are directly fissioned away, while about 31% are removed by reprocessing.
NASA Astrophysics Data System (ADS)
Myoga, Arata; Iwashita, Ryutaro; Unno, Noriyuki; Satake, Shin-ichi; Taniguchi, Jun; Yuki, Kazuhisa; Seki, Yohji
2018-03-01
Various water purification reactors were constructed using beads of TiO2-coated MEXFLON, which is a fluoropolymer exhibiting a refractive index identical to that of water. The performance of these reactors was evaluated in a recirculation experiment utilizing an aqueous solution of methylene blue. Reactor pipes (length = 150 mm, internal diameter = 10 mm) were made of a fluorinated ethylene polymer with a refractive index of 1.338 and contained 206-bead clusters. A UV lamp was used to irradiate eight reactor pipes surrounding it. The above-mentioned eight bead-packed pipes were connected both in series and in parallel, and the performances of these two reactor types were compared. A pseudo-first-order rate constant of 0.70 h- 1 was obtained for the series connection, whereas the corresponding value for the parallel connection was 1.5 times smaller, confirming the effectiveness of increasing the reaction surface by employing a larger number of beads.
NASA Technical Reports Server (NTRS)
Arevidson, A. N.; Sawyer, D. H.; Muller, D. M.
1983-01-01
Dichlorosilane (DCS) was used as the feedstock for an advanced decomposition reactor for silicon production. The advanced reactor had a cool bell jar wall temperature, 300 C, when compared to Siemen's reactors previously used for DCS decomposition. Previous reactors had bell jar wall temperatures of approximately 750 C. The cooler wall temperature allows higher DCS flow rates and concentrations. A silicon deposition rate of 2.28 gm/hr-cm was achieved with power consumption of 59 kWh/kg. Interpretation of data suggests that a 2.8 gm/hr-cm deposition rate is possible. Screening of lower cost materials of construction was done as a separate program segment. Stainless Steel (304 and 316), Hastalloy B, Monel 400 and 1010-Carbon Steel were placed individually in an experimental scale reactor. Silicon was deposited from trichlorosilane feedstock. The resultant silicon was analyzed for electrically active and metallic impurities as well as carbon. No material contributed significant amounts of electrically active or metallic impurities, but all contributed carbon.
NASA Astrophysics Data System (ADS)
Myoga, Arata; Iwashita, Ryutaro; Unno, Noriyuki; Satake, Shin-ichi; Taniguchi, Jun; Yuki, Kazuhisa; Seki, Yohji
2018-06-01
Various water purification reactors were constructed using beads of TiO2-coated MEXFLON, which is a fluoropolymer exhibiting a refractive index identical to that of water. The performance of these reactors was evaluated in a recirculation experiment utilizing an aqueous solution of methylene blue. Reactor pipes (length = 150 mm, internal diameter = 10 mm) were made of a fluorinated ethylene polymer with a refractive index of 1.338 and contained 206-bead clusters. A UV lamp was used to irradiate eight reactor pipes surrounding it. The above-mentioned eight bead-packed pipes were connected both in series and in parallel, and the performances of these two reactor types were compared. A pseudo-first-order rate constant of 0.70 h- 1 was obtained for the series connection, whereas the corresponding value for the parallel connection was 1.5 times smaller, confirming the effectiveness of increasing the reaction surface by employing a larger number of beads.
Steady-State Thermal-Hydraulics Analyses for the Conversion of the BR2 Reactor to LEU
DOE Office of Scientific and Technical Information (OSTI.GOV)
Licht, J. R.; Bergeron, A.; Dionne, B.
2015-12-01
BR2 is a research reactor used for radioisotope production and materials testing. It’s a tank-in-pool type reactor cooled by light water and moderated by beryllium and light water (Figure 1). The reactor core consists of a beryllium moderator forming a matrix of 79 hexagonal prisms in a hyperboloid configuration; each having a central bore that can contain a variety of different components such as a fuel assembly, a control or regulating rod, an experimental device, or a beryllium or aluminum plug. Based on a series of tests, the BR2 operation is currently limited to a maximum allowable heat flux ofmore » 470 W/cm2 to ensure fuel plate integrity during steady-state operation and after a loss-of-flow/loss-of-pressure accident.« less
Atanackovic, J; Matysiak, W; Hakmana Witharana, S S; Aslam, I; Dubeau, J; Waker, A J
2013-01-01
Neutron spectrometry and subsequent dosimetry measurements were undertaken at the McMaster Nuclear Reactor (MNR) and AECL Chalk River National Research Universal (NRU) Reactor. The instruments used were a Bonner sphere spectrometer (BSS), a cylindrical nested neutron spectrometer (NNS) and a commercially available rotational proton recoil spectrometer. The purposes of these measurements were to: (1) compare the results obtained by three different neutron measuring instruments and (2) quantify neutron fields of interest. The results showed vastly different neutron spectral shapes for the two different reactors. This is not surprising, considering the type of the reactors and the locations where the measurements were performed. MNR is a heavily shielded light water moderated reactor, while NRU is a heavy water moderated reactor. The measurements at MNR were taken at the base of the reactor pool, where a large amount of water and concrete shielding is present, while measurements at NRU were taken at the top of the reactor (TOR) plate, where there is only heavy water and steel between the reactor core and the measuring instrument. As a result, a large component of the thermal neutron fluence was measured at MNR, while a negligible amount of thermal neutrons was measured at NRU. The neutron ambient dose rates at NRU TOR were measured to be between 0.03 and 0.06 mSv h⁻¹, while at MNR, these values were between 0.07 and 2.8 mSv h⁻¹ inside the beam port and <0.2 mSv h⁻¹ between two operating beam ports. The conservative uncertainty of these values is 15 %. The conservative uncertainty of the measured integral neutron fluence is 5 %. It was also found that BSS over-responded slightly due to a non-calibrated response matrix.
Nuansawan, Nararatchporn; Boonnorat, Jarungwit; Chiemchaisri, Wilai; Chiemchaisri, Chart
2016-06-01
Methane (CH4) and nitrous oxide (N2O) emissions and responsible microorganisms during the treatment of municipal solid waste leachate in two-stage membrane bioreactor (MBR) was investigated. The MBR system, consisting of anaerobic and aerobic stages, were operated at hydraulic retention time (HRT) of 5 and 2.5days in each reactor under the presence and absence of sludge recirculation. Organic and nitrogen removals were more than 80% under all operating conditions during which CH4 emission were found highest under no sludge recirculation condition at HRT of 5days. An increase in hydraulic loading resulted in a reduction in CH4 emission from anaerobic reactor but an increase from the aerobic reactor. N2O emission rates were found relatively constant from anaerobic and aerobic reactors under different operating conditions. Diversity of CH4 and N2O producing microorganisms were found decreasing when hydraulic loading rate to the reactors was increased. Copyright © 2016 Elsevier Ltd. All rights reserved.
D-He-3 spherical torus fusion reactor system study
NASA Astrophysics Data System (ADS)
Macon, William A., Jr.
1992-04-01
This system study extrapolates present physics knowledge and technology to predict the anticipated characteristics of D-He3 spherical torus fusion reactors and their sensitivity to uncertainties in important parameters. Reference cases for steady-state 1000 MWe reactors operating in H-mode in both the 1st stability regime and the 2nd stability regime were developed and assessed quantitatively. These devices would a very small aspect ratio (A=1,2), a major radius of about 2.0 m, an on-axis magnetic field less than 2 T, a large plasma current (80-120 MA) dominated by the bootstrap effect, and high plasma beta (greater than O.6). The estimated cost of electricity is in the range of 60-90 mills/kW-hr, assuming the use of a direct energy conversion system. The inherent safety and environmental advantages of D-He3 fusion indicate that this reactor concept could be competitive with advanced fission breeder reactors and large-scale solar electric plants by the end of the 21st century if research and development can produce the anticipated physics and technology advances.
Target-fueled nuclear reactor for medical isotope production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coats, Richard L.; Parma, Edward J.
A small, low-enriched, passively safe, low-power nuclear reactor comprises a core of target and fuel pins that can be processed to produce the medical isotope .sup.99Mo and other fission product isotopes. The fuel for the reactor and the targets for the .sup.99Mo production are the same. The fuel can be low enriched uranium oxide, enriched to less than 20% .sup.235U. The reactor power level can be 1 to 2 MW. The reactor is passively safe and maintains negative reactivity coefficients. The total radionuclide inventory in the reactor core is minimized since the fuel/target pins are removed and processed after 7more » to 21 days.« less
Code of Federal Regulations, 2011 CFR
2011-01-01
... Hearing Procedures for Expansion of Spent Nuclear Fuel Storage Capacity at Civilian Nuclear Power Reactors § 2.1105 Definitions. As used in this part: (a) Civilian nuclear power reactor means a civilian... 10 Energy 1 2011-01-01 2011-01-01 false Definitions. 2.1105 Section 2.1105 Energy NUCLEAR...
Code of Federal Regulations, 2012 CFR
2012-01-01
... Hearing Procedures for Expansion of Spent Nuclear Fuel Storage Capacity at Civilian Nuclear Power Reactors § 2.1105 Definitions. As used in this part: (a) Civilian nuclear power reactor means a civilian... 10 Energy 1 2012-01-01 2012-01-01 false Definitions. 2.1105 Section 2.1105 Energy NUCLEAR...
Cultivation of aerobic granules in a novel configuration of sequencing batch airlift reactor.
Rezaei, Laya Siroos; Ayati, Bita; Ganjidoust, Hossein
2012-01-01
Aerobic granules can be formed in sequencing batch airlift reactors (SBAR) and sequencing batch reactors (SBR). Comparing these two systems, the SBAR has excellent mixing condition, but due to a high height-to-diameter ratio (H/D), there is no performance capability at full scale at the present time. This research examined a novel configuration of SBAR at laboratory scale (with a box structure) for industrial wastewater treatment. To evaluate chemical oxygen demand (COD) removal efficiency and granule formation of the novel reactor (R1), in comparison a conventional SBAR (R2) was operated under similar conditions during the experimental period. R1 and R2 with working volumes of 3.6 L and 4.5 L, respectively, were used to cultivate aerobic granules. Both reactors were operated for 4 h per cycle. Experiments were done at different organic loading rates (OLRs) ranging from 0.6-4.5 kg COD/m3.d for R1 and from 0.72-5.4 kg COD/m3.d for R2. After 150 days of operation, large-sized black filamentous granules with diameters of 0.5-2 mm and 2-11 mm were formed in R1 and R2, respectively. In the second part of the experiment, the efficiency of removal of a toxic substance by aerobic granules was investigated using aniline as a carbon source with a concentration in the range 1.2-6.6 kg COD/m3.d and 1.44-7.92 kg COD/m3.d in R1 and R2, respectively. It was found that COD removal efficiency of the novel airlift reactor was over 97% and 94.5% using glucose and aniline as carbon sources, respectively. Sludge volume index (SVI) was also decreased to 30 mL/g by granulation in the novel airlift reactor.
TiO2-photocatalyzed As(III) oxidation in a fixed-bed, flow-through reactor.
Ferguson, Megan A; Hering, Janet G
2006-07-01
Compliance with the U.S. drinking water standard for arsenic (As) of 10 microg L(-1) is required in January 2006. This will necessitate implementation of treatment technologies for As removal by thousands of water suppliers. Although a variety of such technologies is available, most require preoxidation of As(III) to As(V) for efficient performance. Previous batch studies with illuminated TiO2 slurries have demonstrated that TiO2-photocatalyzed AS(III) oxidation occurs rapidly. This study examined reaction efficiency in a flow-through, fixed-bed reactor that provides a better model for treatment in practice. Glass beads were coated with mixed P25/sol gel TiO2 and employed in an upflow reactor irradiated from above. The reactor residence time, influent As(III) concentration, number of TiO2 coatings on the beads, solution matrix, and light source were varied to characterize this reaction and determine its feasibility for water treatment. Repeated usage of the same beads in multiple experiments or extended use was found to affect effluent As(V) concentrations but not the steady-state effluent As(III) concentration, which suggests that As(III) oxidation at the TiO2 surface undergoes dynamic sorption equilibration. Catalyst poisoning was not observed either from As(V) or from competitively adsorbing anions, although the higher steady-state effluent As(III) concentrations in synthetic groundwater compared to 5 mM NaNO3 indicated that competitive sorbates in the matrix partially hinder the reaction. A reactive transport model with rate constants proportional to incident light at each bead layer fit the experimental data well despite simplifying assumptions. TiO2-photocatalyzed oxidation of As(III) was also effective under natural sunlight. Limitations to the efficiency of As(III) oxidation in the fixed-bed reactor were attributable to constraints of the reactor geometry, which could be overcome by improved design. The fixed-bed TiO2 reactor offers an environmentally benign method for As(III) oxidation.
Recycled and virgin plastic carriers in hybrid reactors for wastewater treatment.
Paul, Etienne; Wolff, Delmira Beatriz; Ochoa, Juan Carlos; da Costa, Rejane Helena Ribeiro
2007-07-01
The reduction of organic and nitrogen pollution of wastewater was investigated in two hybrid reactors and compared with the reduction obtained by using a conventional activated sludge reactor (ASR) run as a control. Both HR-1 and HR-2 were activated sludge systems where a low-density carrier, P1 (polyethylene) for HR-1 and P2 (recycled plastics) for HR-2, was added. Firstly, the three reactors were operated at 10 days Suspended Solid Retention Time (SRT(SS)), leading to a complete nitrification. Secondly, the SRT(SS) for each reactor was lowered to 3 days. Nitrification was lost for the ASR but remained complete for HR's. Respirometric techniques were used to measure fixed or suspended biomass activities for heterotrophic and autotrophic biomass. More than 90% of the autotrophic activity was found on the supports whatever the SRT(SS) used. The results may underline the role of the carrier geometry or surface characteristics on the autotrophic/heterotrophic microorganism distribution.
Cooling Performance Analysis of ThePrimary Cooling System ReactorTRIGA-2000Bandung
NASA Astrophysics Data System (ADS)
Irianto, I. D.; Dibyo, S.; Bakhri, S.; Sunaryo, G. R.
2018-02-01
The conversion of reactor fuel type will affect the heat transfer process resulting from the reactor core to the cooling system. This conversion resulted in changes to the cooling system performance and parameters of operation and design of key components of the reactor coolant system, especially the primary cooling system. The calculation of the operating parameters of the primary cooling system of the reactor TRIGA 2000 Bandung is done using ChemCad Package 6.1.4. The calculation of the operating parameters of the cooling system is based on mass and energy balance in each coolant flow path and unit components. Output calculation is the temperature, pressure and flow rate of the coolant used in the cooling process. The results of a simulation of the performance of the primary cooling system indicate that if the primary cooling system operates with a single pump or coolant mass flow rate of 60 kg/s, it will obtain the reactor inlet and outlet temperature respectively 32.2 °C and 40.2 °C. But if it operates with two pumps with a capacity of 75% or coolant mass flow rate of 90 kg/s, the obtained reactor inlet, and outlet temperature respectively 32.9 °C and 38.2 °C. Both models are qualified as a primary coolant for the primary coolant temperature is still below the permitted limit is 49.0 °C.
Briggiler Marcó, Mariángeles; Negro, Antonio Carlos; Alfano, Orlando Mario; Quiberoni, Andrea Del Luján
2017-04-12
The aims of this work were to design and build a photocatalytic reactor (UV-A/TiO 2 ) to study the inactivation of phages contained in bioaerosols, which constitute the main dissemination via phages in industrial environments. The reactor is a close system with recirculation that consists of a stainless steel camera (cubic form, side of 60 cm) in which air containing the phage particles circulates and an acrylic compartment with six borosilicate plates covered with TiO 2 . The reactor is externally illuminated by 20 UV-A lamps. Both compartments are connected by a fan to facilitate the sample circulation. Samples are injected into the camera using two piston nebulizers working in series whereas several methodologies for sampling (impinger/syringe, sampling on photocatalytic plates, and impact of air on slide) were assayed. The reactor setup was carried out using phage B1 (Lactobacillus plantarum), and assays demonstrated a decrease of phage counts of 2.7 log orders after 1 h of photocatalytic treatment. Photonic efficiencies of inactivation were assessed by phage sampling on the photocatalytic plates or by impact of air on a glass slide at the photocatalytic reactor exit. Efficiencies of the same order of magnitude were observed using both sampling methods. This study demonstrated that the designed photocatalytic reactor is effective to inactivate phage B1 (Lb. plantarum) contained in bioaerosols.
The effect of catalyst length and downstream reactor distance on catalytic combustor performance
NASA Technical Reports Server (NTRS)
Anderson, D.
1980-01-01
A study was made to determine the effects on catalytic combustor performance which resulted from independently varying the length of a catalytic reactor and the length available for gas-phase reactions downstream of the catalyst. Monolithic combustion catalysts from three manufacturers were tested in a combustion test rig with no. 2 diesel fuel. Catalytic reactor lengths of 2.5 and 5.4 cm, and downstream gas-phase reaction distances of 7.3, 12.4, 17.5, and 22.5 cm were evaluated. Measurements of carbon monoxide, unburned hydrocarbons, nitrogen oxides, and pressure drop were made. The catalytic-reactor pressure drop was less than 1 percent of the upstream total pressure for all test configurations and test conditions. Nitrogen oxides and unburned hydrocarbons emissions were less than 0.25 g NO2/kg fuel and 0.6 g HC/kg fuel, respectively. The minimum operating temperature (defined as the adiabatic combustion temperature required to obtain carbon monoxide emissions below a reference level of 13.6 g CO/kg fuel) ranged from 1230 K to 1500 K for the various conditions and configurations tested. The minimum operating temperature decreased with increasing total (catalytic-reactor-plus-downstream-gas-phase-reactor-zone) residence time but was independent of the relative times spent in each region when the catalytic-reactor residence time was greater than or equal to 1.4 ms.
Medrano, José-Antonio; Julián, Ignacio; Herguido, Javier; Menéndez, Miguel
2013-01-01
Several reactor configurations have been tested for catalytic propane dehydrogenation employing Pt-Sn/MgAl2O4 as a catalyst. Pd-Ag alloy membranes coupled to the multifunctional Two-Zone Fluidized Bed Reactor (TZFBR) provide an improvement in propane conversion by hydrogen removal from the reaction bed through the inorganic membrane in addition to in situ catalyst regeneration. Twofold process intensification is thereby achieved when compared to the use of traditional fluidized bed reactors (FBR), where coke formation and thermodynamic equilibrium represent important process limitations. Experiments were carried out at 500–575 °C and with catalyst mass to molar flow of fed propane ratios between 15.1 and 35.2 g min mmol−1, employing three different reactor configurations: FBR, TZFBR and TZFBR + Membrane (TZFBR + MB). The results in the FBR showed catalyst deactivation, which was faster at high temperatures. In contrast, by employing the TZFBR with the optimum regenerative agent flow (diluted oxygen), the process activity was sustained throughout the time on stream. The TZFBR + MB showed promising results in catalytic propane dehydrogenation, displacing the reaction towards higher propylene production and giving the best results among the different reactor configurations studied. Furthermore, the results obtained in this study were better than those reported on conventional reactors. PMID:24958620
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rempe, Joy L.; Knudson, Darrell L.
2015-02-01
The accidents at the Three Mile Island Unit 2 (TMI-2) Pressurized Water Reactor (PWR) and the Daiichi Units 1, 2, and 3 Boiling Water Reactors (BWRs) provide unique opportunities to evaluate instrumentation exposed to severe accident conditions. Conditions associated with the release of coolant and the hydrogen burn that occurred during the TMI-2 accident exposed instrumentation to harsh conditions, including direct radiation, radioactive contamination, and high humidity with elevated temperatures and pressures. Post-TMI-2 instrumentation evaluation programs focused on data required by TMI-2 operators to assess the condition of the reactor and containment and the effect of mitigating actions taken bymore » these operators. Prior efforts also focused on sensors providing data required for subsequent forensic evaluations and accident simulations. This paper provides additional details related to the formal process used to develop a qualified TMI-2 data base and presents data qualification details for three parameters: reactor coolant system (RCS) pressure; containment building temperature; and containment pressure. These selected examples illustrate the types of activities completed in the TMI-2 data qualification process and the importance of such a qualification effort. These details are described to facilitate implementation of a similar process using data and examinations at the Daiichi Units 1, 2, and 3 reactors so that BWR-specific benefits can be obtained.« less
VERA Core Simulator methodology for pressurized water reactor cycle depletion
Kochunas, Brendan; Collins, Benjamin; Stimpson, Shane; ...
2017-01-12
This paper describes the methodology developed and implemented in the Virtual Environment for Reactor Applications Core Simulator (VERA-CS) to perform high-fidelity, pressurized water reactor (PWR), multicycle, core physics calculations. Depletion of the core with pin-resolved power and nuclide detail is a significant advance in the state of the art for reactor analysis, providing the level of detail necessary to address the problems of the U.S. Department of Energy Nuclear Reactor Simulation Hub, the Consortium for Advanced Simulation of Light Water Reactors (CASL). VERA-CS has three main components: the neutronics solver MPACT, the thermal-hydraulic (T-H) solver COBRA-TF (CTF), and the nuclidemore » transmutation solver ORIGEN. This paper focuses on MPACT and provides an overview of the resonance self-shielding methods, macroscopic-cross-section calculation, two-dimensional/one-dimensional (2-D/1-D) transport, nuclide depletion, T-H feedback, and other supporting methods representing a minimal set of the capabilities needed to simulate high-fidelity models of a commercial nuclear reactor. Results are presented from the simulation of a model of the first cycle of Watts Bar Unit 1. The simulation is within 16 parts per million boron (ppmB) reactivity for all state points compared to cycle measurements, with an average reactivity bias of <5 ppmB for the entire cycle. Comparisons to cycle 1 flux map data are also provided, and the average 2-D root-mean-square (rms) error during cycle 1 is 1.07%. To demonstrate the multicycle capability, a state point at beginning of cycle (BOC) 2 was also simulated and compared to plant data. The comparison of the cycle 2 BOC state has a reactivity difference of +3 ppmB from measurement, and the 2-D rms of the comparison in the flux maps is 1.77%. Lastly, these results provide confidence in VERA-CS’s capability to perform high-fidelity calculations for practical PWR reactor problems.« less
Spallina, Vincenzo; Melchiori, Tommaso; Gallucci, Fausto; van Sint Annaland, Martin
2015-03-18
The integration of mixed ionic electronic conducting (MIEC) membranes for air separation in a small-to-medium scale unit for H2 production (in the range of 650-850 Nm3/h) via auto-thermal reforming of methane has been investigated in the present study. Membranes based on mixed ionic electronic conducting oxides such as Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) give sufficiently high oxygen fluxes at temperatures above 800 °C with high purity (higher than 99%). Experimental results of membrane permeation tests are presented and used for the reactor design with a detailed reactor model. The assessment of the H2 plant has been carried out for different operating conditions and reactor geometry and an energy analysis has been carried out with the flowsheeting software Aspen Plus, including also the turbomachines required for a proper thermal integration. A micro-gas turbine is integrated in the system in order to supply part of the electricity required in the system. The analysis of the system shows that the reforming efficiency is in the range of 62%-70% in the case where the temperature at the auto-thermal reforming membrane reactor (ATR-MR) is equal to 900 °C. When the electric consumption and the thermal export are included the efficiency of the plant approaches 74%-78%. The design of the reactor has been carried out using a reactor model linked to the Aspen flowsheet and the results show that with a larger reactor volume the performance of the system can be improved, especially because of the reduced electric consumption. From this analysis it has been found that for a production of about 790 Nm3/h pure H2, a reactor with a diameter of 1 m and length of 1.8 m with about 1500 membranes of 2 cm diameter is required.
9 CFR 309.14 - Brucellosis-reactor goats.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Brucellosis-reactor goats. 309.14 Section 309.14 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... INSPECTION AND CERTIFICATION ANTE-MORTEM INSPECTION § 309.14 Brucellosis-reactor goats. Goats which have...
9 CFR 309.14 - Brucellosis-reactor goats.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Brucellosis-reactor goats. 309.14 Section 309.14 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... INSPECTION AND CERTIFICATION ANTE-MORTEM INSPECTION § 309.14 Brucellosis-reactor goats. Goats which have...
9 CFR 309.14 - Brucellosis-reactor goats.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Brucellosis-reactor goats. 309.14... INSPECTION AND CERTIFICATION ANTE-MORTEM INSPECTION § 309.14 Brucellosis-reactor goats. Goats which have reacted to a test for brucellosis shall not be slaughtered in an official establishment. ...
9 CFR 309.14 - Brucellosis-reactor goats.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Brucellosis-reactor goats. 309.14... INSPECTION AND CERTIFICATION ANTE-MORTEM INSPECTION § 309.14 Brucellosis-reactor goats. Goats which have reacted to a test for brucellosis shall not be slaughtered in an official establishment. ...
9 CFR 309.14 - Brucellosis-reactor goats.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Brucellosis-reactor goats. 309.14... INSPECTION AND CERTIFICATION ANTE-MORTEM INSPECTION § 309.14 Brucellosis-reactor goats. Goats which have reacted to a test for brucellosis shall not be slaughtered in an official establishment. ...
Explosive demolition of K East Reactor Stack
None
2017-12-09
Using $420,000 in Recovery Act funds, the Department of Energy and contractor CH2M HILL Plateau Remediation Company topped off four months of preparations when they safely demolished the exhaust stack at the K East Reactor and equipment inside the reactor building on July 23, 2010.
Looking East at BottomHalf of Reactor Number One and TopHalf ...
Looking East at Bottom-Half of Reactor Number One and Top-Half of Reactor Number 2 Including Weigh Hopper on Third Floor of Oxide Building - Hematite Fuel Fabrication Facility, Oxide Building & Oxide Loading Dock, 3300 State Road P, Festus, Jefferson County, MO
Flat-plate collector research area: Silicon material task
NASA Technical Reports Server (NTRS)
Lutwack, R.
1982-01-01
Silane decomposition in a fluidized-bed reactor (FBR) process development unit (PDU) to make semiconductor-grade Si is reviewed. The PDU was modified by installation of a new heating system to provide the required temperature profile and better control, and testing was resumed. A process for making trichlorosilane by the hydrochlorination of metallurgical-grade Si and silicon tetrachloride is reported. Fabrication and installation of the test system employing a new 2-in.-dia reactor was completed. A process that converts trichlorosilane to dichlorosilane (DCS), which is reduced by hydrogen to make Si by a chemical vapor deposition step in a Siemens-type reactor is described. Testing of the DCS PDU integraled with Si deposition reactors continued. Experiments in a 2-in.-dia reactor to define the operating window and to investigate the Si deposition kinetics were completed.
Heat pipe nuclear reactor for space power
NASA Technical Reports Server (NTRS)
Koening, D. R.
1976-01-01
A heat-pipe-cooled nuclear reactor has been designed to provide 3.2 MWth to an out-of-core thermionic conversion system. The reactor is a fast reactor designed to operate at a nominal heat-pipe temperature of 1675 K. Each reactor fuel element consists of a hexagonal molybdenum block which is bonded along its axis to one end of a molybdenum/lithium-vapor heat pipe. The block is perforated with an array of longitudinal holes which are loaded with UO2 pellets. The heat pipe transfers heat directly to a string of six thermionic converters which are bonded along the other end of the heat pipe. An assembly of 90 such fuel elements forms a hexagonal core. The core is surrounded by a thermal radiation shield, a thin thermal neutron absorber, and a BeO reflector containing boron-loaded control drums.
NASA Astrophysics Data System (ADS)
Tóthová, Mária; Nagy, Arpád; Treindl, Ľudovít.
1999-01-01
The periodical reduction of permanganate by hydrogen peroxide or by ninhydrin with transient oscillations in a closed system has been observed and discussed in relation to the first two permanganate oscillators described earlier. The mixed-mode oscillations of the permanganate-H 2O 2 oscillating system in a continuous-flow stirred tank reactor have been described.
Li, Jin-hui; Sun, Xiao-fei; Yao, Zhi-tong; Zhao, Xiang-yang
2014-02-01
A combined thermal desorption (TD)-molten salt oxidation (MSO) reactor system was applied to remediate the 1,2,3-trichlorobenzene (1,2,3-TCB) contaminated soil. The TD reactor was used to enrich the contaminant from soil, and its dechlorination of the contaminant was achieved in the MSO reactor. The optimum operating conditions of TD, and the effects of MSO reactor temperatures, additive amounts of the TCB on destruction and removal efficiency (DRE) of TCB and chlorine retention efficiency (CRE) were investigated. The reaction mechanism and pathway were proposed as well. The combined system could remediate the contaminated soil at a large scale of concentration from 5 to 25gkg(-1), and the DRE and CRE reached more than 99% and 95%, respectively, at temperatures above 850°C. The reaction emissions included C6H6, CH4, CO and CO2, and chlorinated species were not detected. It was found that a little increase in the temperature can considerably reduce the emission of C6H6, CH4, and CO, while the CO2 level increased. Copyright © 2014. Published by Elsevier Ltd.
2017-01-01
We report the construction and use of a vortex reactor which uses a rapidly rotating cylinder to generate Taylor vortices for continuous flow thermal and photochemical reactions. The reactor is designed to operate under conditions required for vortex generation. The flow pattern of the vortices has been represented using computational fluid dynamics, and the presence of the vortices can be easily visualized by observing streams of bubbles within the reactor. This approach presents certain advantages for reactions with added gases. For reactions with oxygen, the reactor offers an alternative to traditional setups as it efficiently draws in air from the lab without the need specifically to pressurize with oxygen. The rapid mixing generated by the vortices enables rapid mass transfer between the gas and the liquid phases allowing for a high efficiency dissolution of gases. The reactor has been applied to several photochemical reactions involving singlet oxygen (1O2) including the photo-oxidations of α-terpinene and furfuryl alcohol and the photodeborylation of phenyl boronic acid. The rotation speed of the cylinder proved to be key for reaction efficiency, and in the operation we found that the uptake of air was highest at 4000 rpm. The reactor has also been successfully applied to the synthesis of artemisinin, a potent antimalarial compound; and this three-step synthesis involving a Schenk-ene reaction with 1O2, Hock cleavage with H+, and an oxidative cyclization cascade with triplet oxygen (3O2), from dihydroartemisinic acid was carried out as a single process in the vortex reactor. PMID:28781513
Design test request No. 1263 K Reactor graphite key and VSR channel sleeve test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kempf, F.J.
1964-12-10
The objectives of this test were: (1) Determine the coefficient of friction between two adjacent layers of K Reactor graphite at room temperature. (2) Determine the average load required to cause failure of an unirradiated K Reactor side reflector bar, when subjected to tensile loading applied through the reflector keys. (3) Determine the average load at failure and the average deflection at failure of a single VSR channel key when loaded in keyways with clearances equal to those used in original stack construction. (4) Determine the average load and deflection required to break the four K Reactor VSR keys whenmore » loaded simultaneously in both `3-layer` and `7-layer` mockups. Also determine the mode of key failure; i.e., shear, flexure or combined compression and bending. Following these key rupture tests, determine the strength and deflection characteristics of the proposed K Reactor VSR channel sleeve when loaded in a manner identical to that used to fracture the keys. (5) Determine the average load and deflection at failure of both the proposed K Reactor VSR channel sleeves and the proposed C Reactor sleeves when subjected to crushing loads. (6) Determine the extent of damage to the proposed K Reactor VSR channel sleeve when subjected to the following vertical rod loading conditions. (a) Full rod drop in a channel mockup which has been misaligned 2 1/2 inches. (b) Full rod drop in a channel which has been misaligned an amount equal to the maximum flexibility of a `universal` VSR.« less
Catalytic Reactor for Inerting of Aircraft Fuel Tanks
1974-06-01
Aluminum Panels After Triphase Corrosion Test 79 35 Inerting System Flows in Various Flight Modes 82 36 High Flow Reactor Parametric Data 84 37 System...AD/A-000 939 CATALYTIC REACTOR FOR INERTING OF AIRCRAFT FUEL TANKS George H. McDonald, et al AiResearch Manufacturing Company Prepared for: Air Force...190th Street 2b. GROUP Torrance, California .. REPORT TITLE CATALYTIC REACTOR FOR INERTING OF AIRCRAFT FUEL TANKS . OESCRIP TIVE NOTEs (Thpe of refpoft
Irradiation performance of (Th,Pu)O2 fuel under Pressurized Water Reactor conditions
NASA Astrophysics Data System (ADS)
Boer, B.; Lemehov, S.; Wéber, M.; Parthoens, Y.; Gysemans, M.; McGinley, J.; Somers, J.; Verwerft, M.
2016-04-01
This paper examines the in-pile safety performance of (Th,Pu)O2 fuel pins under simulated Pressurized Water Reactor (PWR) conditions. Both sol-gel and SOLMAS produced (Th,Pu)O2 fuels at enrichments of 7.9% and 12.8% in Pu/HM have been irradiated at SCK·CEN. The irradiation has been performed under PWR conditions (155 bar, 300 °C) in a dedicated loop of the BR-2 reactor. The loop is instrumented with flow and temperature monitors at inlet and outlet, which allow for an accurate measurement of the deposited enthalpy.
van Lier, J B; Lens, P N; Pol, L W
2001-01-01
Stringent environmental laws in Europe and Northern America lead to the development towards closure of the process water streams in pulp and paper mills. Application of a "zero-discharge" process is already a feasible option for the board and packaging paper industry, provided in-line treatment is applied. Concomitant energy conservation inside the mill results in process water temperatures of 50-60 degrees C. Thermophilic anaerobic treatment complemented with appropriate post-treatment is considered as the most cost-effective solution to meet re-use criteria of the process water and to keep its temperature. In the proposed closed-cycle, the anaerobic treatment step removes the largest fraction of the biodegradable COD and eliminates "S" as H2S from the process stream, without the use of additional chemicals. The anaerobic step is regarded as the only possible location to bleed "S" from the process water cycle. In laboratory experiments, the effect of upward liquid velocity (Vupw) and the specific gas loading rate (Vgas) on the S removal capacity of thermophilic anaerobic bio-reactors was investigated. Acidifying, sulphate reducing sludge bed reactors were fed with partly acidified synthetic paper mill wastewater and were operated at 55 degrees C and pH 6. The reactors were operated at organic loading rates up to 50 g COD.l-1.day-1 at COD/SO4(2-) ratios of 10. The effect of Vupw was researched by comparing the performance of a UASB reactor operated at 1.0 m.h-1 and an EGSB reactor, operated at 6.8 m.h-1. The Vupw had a strong effect on the fermentation patterns. In the UASB reactor, acidification yielded H2, acetate and propionate, leading to an accumulation of reducing equivalents. These were partly disposed of by the production of n-butyrate and n-valerate from propionate. In the EGSB reactor net acetate consumption was observed as well as high volumetric gas (CO2 and CH4) production rates. The higher gas production rates in the EGSB reactor resulted in higher S-stripping efficiencies. The effect of Vgas was further researched by comparing 2 UASB reactors which were sparged with N2 gas at a specific gas loading rate of 30 m3.m-2.day-1. In contrast to the regular UASB reactors, the gas-supplied UASB showed a more stable performance when the organic loading rates were increased. Also, the H2S stripping efficiency was 3-4 times higher in the gas-supplied UASB, reaching values of 67%. Higher values were not obtained owing to the relatively poor sulphate reduction efficiencies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamann, S., E-mail: hamann@inp-greifswald.de; Röpcke, J.; Börner, K.
2015-12-15
A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steelmore » samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH{sub 4}, C{sub 2}H{sub 2}, HCN, and NH{sub 3}). With the help of OES, the rotational temperature of the screen plasma could be determined.« less
High aspect ratio catalytic reactor and catalyst inserts therefor
Lin, Jiefeng; Kelly, Sean M.
2018-04-10
The present invention relates to high efficient tubular catalytic steam reforming reactor configured from about 0.2 inch to about 2 inch inside diameter high temperature metal alloy tube or pipe and loaded with a plurality of rolled catalyst inserts comprising metallic monoliths. The catalyst insert substrate is formed from a single metal foil without a central supporting structure in the form of a spiral monolith. The single metal foil is treated to have 3-dimensional surface features that provide mechanical support and establish open gas channels between each of the rolled layers. This unique geometry accelerates gas mixing and heat transfer and provides a high catalytic active surface area. The small diameter, high aspect ratio tubular catalytic steam reforming reactors loaded with rolled catalyst inserts can be arranged in a multi-pass non-vertical parallel configuration thermally coupled with a heat source to carry out steam reforming of hydrocarbon-containing feeds. The rolled catalyst inserts are self-supported on the reactor wall and enable efficient heat transfer from the reactor wall to the reactor interior, and lower pressure drop than known particulate catalysts. The heat source can be oxygen transport membrane reactors.
NASA Astrophysics Data System (ADS)
Wunderlin, P.; Harris, E. J.; Joss, A.; Emmenegger, L.; Kipf, M.; Mohn, J.; Siegrist, H.
2014-12-01
Nitrous oxide (N2O) is a strong greenhouse gas and a major sink for stratospheric ozone. In biological wastewater treatment N2O can be produced via several pathways. This study investigates the dynamics of N2O emissions from a nitritation-anammox reactor, and links its interpretation to the nitrogen and oxygen isotopic signature of the emitted N2O. A 400-litre single-stage nitritation-anammox reactor was operated and continuously fed with digester liquid. The isotopic composition of N2O emissions was monitored online with quantum cascade laser absorption spectroscopy (QCLAS; Aerodyne Research, Inc.; Waechter et al., 2008). Dissolved ammonium and nitrate were monitored online (ISEmax, Endress + Hauser), while nitrite was measured with test strips (Nitrite-test 0-24mgN/l, Merck). Table 1. Summary of experiments conducted to understand N2O emissions Experimental conditions O2[mgO2/L] NO2-[mgN/L] NH4+[mgN/L] N2O/NH4+[%] Normal operation <0.1 <0.5 10 0.6 Normal operation, high NH4+ <0.1 <0.5 100 6.1 High aeration 0.5 to 1.5 up to 50 10 and 50 4.9 NO2- addition (oxic) <0.1 <0.5 to 4 10 5.8 NO2- addition (anoxic) 0 <0.5 to 4 10 3.2 NH2OH addition <0.1 <0.5 10 2.5 Results showed that under normal operating conditions, the N2O isotopic site preference (SP = d15Nα - d15Nβ) was much higher than expected - up to 41‰ - strongly suggesting an unknown N2O production pathway, which is hypothesized to be mediated by anammox activity (Figure 1). A less likely explanation is that the SP of N2O was increased by partial N2O reduction by heterotrophic denitrification. Various experiments were conducted to further investigate N2O formation pathways in the reactor. Our data reveal that N2O emissions increased when reactor operation was not ideal, for example when dissolved oxygen was too high (Table 1). SP measurements confirmed that these N2O peaks were due to enhanced nitrifier denitrification, generally related to nitrite build-up in the reactor (Figure 1; Table 1). Overall, process control via online N2O monitoring was confirmed to be an ideal method to detect imbalances in reactor operation and regulate aeration, to ensure optimal reactor conditions and minimise N2O emissions. ReferencesWaechter H. et al. (2008) Optics Express, 16: 9239-9244. Wunderlin, P et al. (2013) Environmental Science & Technology 47: 1339-1348.
Dawahra, S; Khattab, K; Saba, G
2015-07-01
Comparative studies for the conversion of the fuel from HEU to LEU in the Miniature Neutron Source Reactor (MNSR) have been performed using the MCNP4C and GETERA codes. The precise calculations of (135)Xe and (149)Sm concentrations and reactivities were carried out and compared during the MNSR operation time and after shutdown for the existing HEU fuel (UAl4-Al, 90% enriched) and the potential LEU fuels (U3Si2-Al, U3Si-Al, U9Mo-Al, 19.75% enriched and UO2, 12.6% enriched) in this paper using the MCNP4C and GETERA codes. It was found that the (135)Xe and (149)Sm reactivities did not reach their equilibrium reactivities during the daily operating time of the reactor. The (149)Sm reactivities could be neglected compared to (135)Xe reactivities during the reactor operating time and after shutdown. The calculations for the UAl4-Al produced the highest (135)Xe reactivity in all the studied fuel group during the reactor operation (0.39 mk) and after the reactor shutdown (0.735 mk), It followed by U3Si-Al (0.34 mk, 0.653 mk), U3Si2-Al (0.33 mk, 0.634 mk), U9Mo-Al (0.3 mk, 0.568 mk) and UO2 (0.24 mk, 0.448 mk) fuels, respectively. Finally, the results showed that the UO2 was the best candidate for fuel conversion to LEU in the MNSR since it gave the lowest (135)Xe reactivity during the reactor operation and after shutdown. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, J.; Kucukboyaci, V. N.; Nguyen, L.
2012-07-01
The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (> 225 MWe) integral pressurized water reactor (iPWR) with all primary components, including the steam generator and the pressurizer located inside the reactor vessel. The reactor core is based on a partial-height 17x17 fuel assembly design used in the AP1000{sup R} reactor core. The Westinghouse SMR utilizes passive safety systems and proven components from the AP1000 plant design with a compact containment that houses the integral reactor vessel and the passive safety systems. A preliminary loss of coolant accident (LOCA) analysis of the Westinghouse SMR has been performed using themore » WCOBRA/TRAC-TF2 code, simulating a transient caused by a double ended guillotine (DEG) break in the direct vessel injection (DVI) line. WCOBRA/TRAC-TF2 is a new generation Westinghouse LOCA thermal-hydraulics code evolving from the US NRC licensed WCOBRA/TRAC code. It is designed to simulate PWR LOCA events from the smallest break size to the largest break size (DEG cold leg). A significant number of fluid dynamics models and heat transfer models were developed or improved in WCOBRA/TRAC-TF2. A large number of separate effects and integral effects tests were performed for a rigorous code assessment and validation. WCOBRA/TRAC-TF2 was introduced into the Westinghouse SMR design phase to assist a quick and robust passive cooling system design and to identify thermal-hydraulic phenomena for the development of the SMR Phenomena Identification Ranking Table (PIRT). The LOCA analysis of the Westinghouse SMR demonstrates that the DEG DVI break LOCA is mitigated by the injection and venting from the Westinghouse SMR passive safety systems without core heat up, achieving long term core cooling. (authors)« less
Abood, Alkhafaji R; Bao, Jianguo; Abudi, Zaidun N
2013-10-01
The removal of biological nutrient from mature landfill leachate with a high nitrogen load by an internal circulation upflow sludge blanket (ICUSB) reactor was studied. The reactor is a set of anaerobic-anoxic-aerobic (A2/O) bioreactors, developed on the basis of an expended granular sludge blanket (EGSB), granular sequencing batch reactor (GSBR) and intermittent cycle extended aeration system (ICEAS). Leachate was subjected to stripping by agitation process and poly ferric sulfate coagulation as a pretreatment process, in order to reduce both ammonia toxicity to microorganisms and the organic contents. The reactor was operated under three different operating systems, consisting of recycling sludge with air (A2/O), recycling sludge without air (low oxygen) and a combination of both (A2/O and low oxygen). The lowest effluent nutrient levels were realised by the combined system of A2/O and low oxygen, which resulted in effluent of chemical oxygen demand (COD), NH3-N and biological oxygen demand (BOD5) concentrations of 98.20, 13.50 and 22.50 mg/L. The optimal operating conditions for the efficient removal of biological nutrient using the ICUSB reactor were examined to evaluate the influence of the parameters on its performance. The results showed that average removal efficiencies of COD and NH3-N of 96.49% and 99.39%, respectively were achieved under the condition of a hydraulic retention time of 12 hr, including 4 hr of pumping air into the reactor, with dissolved oxygen at an rate of 4 mg/L and an upflow velocity 2 m/hr. These combined processes were successfully employed and effectively decreased pollutant loading.
10 CFR 2.106 - Notice of issuance.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Application-How Initiated § 2.106 Notice of issuance. (a) The Director, Office of New Reactors, Director, Office of Nuclear Reactor Regulation, or Director, Office of Nuclear Material Safety and Safeguards, as... 10 Energy 1 2011-01-01 2011-01-01 false Notice of issuance. 2.106 Section 2.106 Energy NUCLEAR...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarchalski, M.; Pytel, K.; Wroblewska, M.
2015-07-01
Precise computational determination of nuclear heating which consists predominantly of gamma heating (more than 80 %) is one of the challenges in material testing reactor exploitation. Due to sophisticated construction and conditions of experimental programs planned in JHR it became essential to use most accurate and precise gamma heating model. Before the JHR starts to operate, gamma heating evaluation methods need to be developed and qualified in other experimental reactor facilities. This is done inter alia using OSIRIS, MINERVE or EOLE research reactors in France. Furthermore, MARIA - Polish material testing reactor - has been chosen to contribute to themore » qualification of gamma heating calculation schemes/tools. This reactor has some characteristics close to those of JHR (beryllium usage, fuel element geometry). To evaluate gamma heating in JHR and MARIA reactors, both simulation tools and experimental program have been developed and performed. For gamma heating simulation, new calculation scheme and gamma heating model of MARIA have been carried out using TRIPOLI4 and APOLLO2 codes. Calculation outcome has been verified by comparison to experimental measurements in MARIA reactor. To have more precise calculation results, model of MARIA in TRIPOLI4 has been made using the whole geometry of the core. This has been done for the first time in the history of MARIA reactor and was complex due to cut cone shape of all its elements. Material composition of burnt fuel elements has been implemented from APOLLO2 calculations. An experiment for nuclear heating measurements and calculation verification has been done in September 2014. This involved neutron, photon and nuclear heating measurements at selected locations in MARIA reactor using in particular Rh SPND, Ag SPND, Ionization Chamber (all three from CEA), KAROLINA calorimeter (NCBJ) and Gamma Thermometer (CEA/SCK CEN). Measurements were done in forty points using four channels. Maximal nuclear heating evaluated from measurements is of the order of 2.5 W/g at half of the possible MARIA power - 15 MW. The approach and the detailed program for experimental verification of calculations will be presented. The following points will be discussed: - Development of a gamma heating model of MARIA reactor with TRIPOLI 4 (coupled neutron-photon mode) and APOLLO2 model taking into account the key parameters like: configuration of the core, experimental loading, control rod location, reactor power, fuel depletion); - Design of specific measurement tools for MARIA experiments including for instance a new single-cell calorimeter called KAROLINA calorimeter; - MARIA experimental program description and a preliminary analysis of results; - Comparison of calculations for JHR and MARIA cores with experimental verification analysis, calculation behavior and n-γ 'environments'. (authors)« less
Shehab, Noura; Li, Dong; Amy, Gary L; Logan, Bruce E; Saikaly, Pascal E
2013-11-01
A large percentage of organic fuel consumed in a microbial fuel cell (MFC) is lost as a result of oxygen transfer through the cathode. In order to understand how this oxygen transfer affects the microbial community structure, reactors were operated in duplicate using three configurations: closed circuit (CC; with current generation), open circuit (OC; no current generation), and sealed off cathodes (SO; no current, with a solid plate placed across the cathode). Most (98 %) of the chemical oxygen demand (COD) was removed during power production in the CC reactor (maximum of 640 ± 10 mW/m(2)), with a low percent of substrate converted to current (coulombic efficiency of 26.5 ± 2.1 %). Sealing the cathode reduced COD removal to 7 %, but with an open cathode, there was nearly as much COD removal by the OC reactor (94.5 %) as the CC reactor. Oxygen transfer into the reactor substantially affected the composition of the microbial communities. Based on analysis of the biofilms using 16S rRNA gene pyrosequencing, microbes most similar to Geobacter were predominant on the anodes in the CC MFC (72 % of sequences), but the most abundant bacteria were Azoarcus (42 to 47 %) in the OC reactor, and Dechloromonas (17 %) in the SO reactor. Hydrogenotrophic methanogens were most predominant, with sequences most similar to Methanobacterium in the CC and SO reactor, and Methanocorpusculum in the OC reactors. These results show that oxygen leakage through the cathode substantially alters the bacterial anode communities, and that hydrogenotrophic methanogens predominate despite high concentrations of acetate. The predominant methanogens in the CC reactor most closely resembled those in the SO reactor, demonstrating that oxygen leakage alters methanogenic as well as general bacterial communities.
Modeling of Gallium Nitride Hydride Vapor Phase Epitaxy
NASA Technical Reports Server (NTRS)
Meyyappan, Meyya; Arnold, James O. (Technical Monitor)
1997-01-01
A reactor model for the hydride vapor phase epitaxy of GaN is presented. The governing flow, energy, and species conservation equations are solved in two dimensions to examine the growth characteristics as a function of process variables and reactor geometry. The growth rate varies with GaCl composition but independent of NH3 and H2 flow rates. A change in carrier gas for Ga source from H2 to N2 affects the growth rate and uniformity for a fixed reactor configuration. The model predictions are in general agreement with observed experimental behavior.
Space power reactor in-core thermionic multicell evolutionary (S-prime) design
NASA Astrophysics Data System (ADS)
Determan, William R.; Van Hagan, Tom H.
1993-01-01
A 5- to 40-kWe moderated in-core thermionic space nuclear power system (TI-SNPS) concept was developed to address the TI-SNPS program requirements. The 40-kWe baseline design uses multicell Thermionic Fuel Elements (TFEs) in a zirconium hydride moderated reactor to achieve a specific mass of 18.2 We/kg and a net end-of-mission (EOM) efficiency of 8.2%. The reactor is cooled with a single NaK-78 pumped loop, which rejects the heat through a 24 m2 heat pipe space radiator.
40 CFR 60.705 - Reporting and recordkeeping requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Volatile Organic Compound Emissions From Synthetic Organic Chemical Manufacturing Industry (SOCMI) Reactor... used or where the reactor process vent stream is introduced as the primary fuel to any size boiler or... equipment or reactors; (2) Any recalculation of the TRE index value performed pursuant to § 60.704(f); and...
40 CFR 60.705 - Reporting and recordkeeping requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Volatile Organic Compound Emissions From Synthetic Organic Chemical Manufacturing Industry (SOCMI) Reactor... used or where the reactor process vent stream is introduced as the primary fuel to any size boiler or... equipment or reactors; (2) Any recalculation of the TRE index value performed pursuant to § 60.704(f); and...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-20
... Applications for Instrumentation and Control Upgrades for Non-Power Reactors AGENCY: Nuclear Regulatory...-Power Reactors: Format and Content,'' for instrumentation and control upgrades and NUREG-1537, Part 2, ``Guidelines for Preparing and Reviewing Applications for the Licensing of Non-Power Reactors: Standard Review...
10 CFR 140.96 - Appendix F-Indemnity locations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... construction area of the nuclear power reactor, as determined by the Commission. Such area will not necessarily... or combined license under 10 CFR part 52 is issued for such additional nuclear power reactors. (2) In... an existing nuclear power reactor, the geographical boundaries of the indemnity location shall...
154. ARAIII Reactor building (ARA608) Foundation sections and details. Shows ...
154. ARA-III Reactor building (ARA-608) Foundation sections and details. Shows profiles of pits. Aerojet-general 888-area/GCRE-608-S-2. Date: February 1958. Ineel index code no. 062-0608-60-013-102654. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-15
... INFORMATION CONTACT: Michael Mahoney, Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission... Licensing Branch III-2, Division of Operating Reactor Licensing, Office of Nuclear Reactor Regulation. [FR... NUCLEAR REGULATORY COMMISSION [Docket No. 50-346] FirstEnergy Nuclear Operating Company; Notice of...
NASA Astrophysics Data System (ADS)
Rom, Frank E.; Finnegan, Patrick M.
1994-07-01
The ``NEW'' solid-core fuel form is the old Vapor Transport (VT) fuel pin investigated at NASA about 30 years ago. It is simply a tube sealed at both ends partially filled with UO2. During operation the UO2 forms an annular layer on the inside of the tube by vaporization and condensation. This form is an ideal structure for overall strength and retention of fission products. All of the structural material lies between the fuel (including fission products) and the reactor coolant. The isothermal inside fuel surface temperature that results from the vaporization and condensation of fuel during operation eliminates hotspots, significantly increasing the design fuel pin surface temperature. For NTP, W-UO2 fuel pins yield higher operating temperatures than for other fuel forms, because W has about a ten-fold lower vaporization rate compared to any other known material. The use of perigee propulsion using W-UO2 fuel pins can result in a more than ten-fold reduction in reactor power. Lower reactor power, together with zero fission product release potential, and the simplicity of fabrication of VT fuel pins should greatly simplify and reduce the cost of development of NTP. For NEP, VT fuel pins can increase fast neutron spectrum reactor life with no fission product release. Thermal spectrum NEP reactors using W184 or Mo VT fuel pins, with only small amounts of high neutron absorbing additives, offer benefits because of much lower fissionable fuel requirements. The VT fuel pin has application to commercial power reactors with similar benefits.
Spatial Burnout in Water Reactors with Nonuniform Startup Distributions of Uranium and Boron
NASA Technical Reports Server (NTRS)
Fox, Thomas A.; Bogart, Donald
1955-01-01
Spatial burnout calculations have been made of two types of water moderated cylindrical reactor using boron as a burnable poison to increase reactor life. Specific reactors studied were a version of the Submarine Advanced Reactor (sAR) and a supercritical water reactor (SCW) . Burnout characteristics such as reactivity excursion, neutron-flux and heat-generation distributions, and uranium and boron distributions have been determined for core lives corresponding to a burnup of approximately 7 kilograms of fully enriched uranium. All reactivity calculations have been based on the actual nonuniform distribution of absorbers existing during intervals of core life. Spatial burnout of uranium and boron and spatial build-up of fission products and equilibrium xenon have been- considered. Calculations were performed on the NACA nuclear reactor simulator using two-group diff'usion theory. The following reactor burnout characteristics have been demonstrated: 1. A significantly lower excursion in reactivity during core life may be obtained by nonuniform rather than uniform startup distribution of uranium. Results for SCW with uranium distributed to provide constant radial heat generation and a core life corresponding to a uranium burnup of 7 kilograms indicated a maximum excursion in reactivity of 2.5 percent. This compared to a maximum excursion of 4.2 percent obtained for the same core life when w'anium was uniformly distributed at startup. Boron was incorporated uniformly in these cores at startup. 2. It is possible to approach constant radial heat generation during the life of a cylindrical core by means of startup nonuniform radial and axial distributions of uranium and boron. Results for SCW with nonuniform radial distribution of uranium to provide constant radial heat generation at startup and with boron for longevity indicate relatively small departures from the initially constant radial heat generation distribution during core life. Results for SAR with a sinusoidal distribution rather than uniform axial distributions of boron indicate significant improvements in axial heat generation distribution during the greater part of core life. 3. Uranium investments for cylindrical reactors with nonuniform radial uranium distributions which provide constant radial heat generation per unit core volume are somewhat higher than for reactors with uniform uranium concentration at startup. On the other hand, uranium investments for reactors with axial boron distributions which approach constant axial heat generation are somewhat smaller than for reactors with uniform boron distributions at startup.
Nacheva, P Mijaylova; Moeller Chávez, G; Bustos, C; Garzón Zúñiga, M A; Hornelas Orozco, Y
2008-01-01
The performance of aerobic submerged packed bed reactors was studied for the treatment of domestic wastewater using different kinds of packing materials with high specific areas (760-1,200 m(2)/m(3)). The tested materials were ceramic spheres, crushed tezontle, grains of high density polyethylene (HDPE), of low density polyethylene (LDPE) and of polypropylene (PP), cubes of polyurethane (PU) and polyethylene tape (SESSIL). The bioreactors were operated in continuous regime, applying organic loads in the range of 0.8-6.0 g COD.m(-2).d(-1). The obtained specific COD removal rates were very similar in all the reactors when they were operated at organic loads up to 2.0 g COD.m(-2).d(-1), after which differences in effectiveness appeared and the best results were determined in the reactors with SESSIL, LDPE and PU. Very low TSS, O&G and turbidity were obtained in all the effluents. The NH(3)-N and TN removals were dependent on the dissolved oxygen (DO) concentration and the removals at DO of 5 mg/l were 84-99% and 61-74% respectively. The best removals were determined in the reactors with PU, SESSIL and LDPE. The reactor with tezontle had also a good performance when operated with loads up to 1.0 g TN.m(-2).d(-1). The best phosphate removals (38-49%) were obtained in the reactors with PU, tezontle, ceramic sheres and SESSIL. (c) IWA Publishing 2008.
NASA Astrophysics Data System (ADS)
Marshalkin, V. E.; Povyshev, V. M.
2015-12-01
A method for joint utilization of non-weapons-grade plutonium and highly enriched uranium in the thorium-uranium—plutonium oxide fuel of a water-moderated reactor with a varying water composition (D2O, H2O) is proposed. The method is characterized by efficient breeding of the 233U isotope and safe reactor operation and is comparatively simple to implement.
Reactivity control assembly for nuclear reactor. [LMFBR
Bollinger, L.R.
1982-03-17
This invention, which resulted from a contact with the United States Department of Energy, relates to a control mechanism for a nuclear reactor and, more particularly, to an assembly for selectively shifting different numbers of reactivity modifying rods into and out of the core of a nuclear reactor. It has been proposed heretofore to control the reactivity of a breeder reactor by varying the depth of insertion of control rods (e.g., rods containing a fertile material such as ThO/sub 2/) in the core of the reactor, thereby varying the amount of neutron-thermalizing coolant and the amount of neutron-capturing material in the core. This invention relates to a mechanism which can advantageously be used in this type of reactor control system.
Passive air cooling of liquid metal-cooled reactor with double vessel leak accommodation capability
Hunsbedt, A.; Boardman, C.E.
1995-04-11
A passive and inherent shutdown heat removal method with a backup air flow path which allows decay heat removal following a postulated double vessel leak event in a liquid metal-cooled nuclear reactor is disclosed. The improved reactor design incorporates the following features: (1) isolation capability of the reactor cavity environment in the event that simultaneous leaks develop in both the reactor and containment vessels; (2) a reactor silo liner tank which insulates the concrete silo from the leaked sodium, thereby preserving the silo`s structural integrity; and (3) a second, independent air cooling flow path via tubes submerged in the leaked sodium which will maintain shutdown heat removal after the normal flow path has been isolated. 5 figures.