Science.gov

Sample records for ebr-ii blanket elements

  1. Comparison of measured and calculated composition of irradiated EBR-II blanket assemblies.

    SciTech Connect

    Grimm, K. N.

    1998-07-13

    In anticipation of processing irradiated EBR-II depleted uranium blanket subassemblies in the Fuel Conditioning Facility (FCF) at ANL-West, it has been possible to obtain a limited set of destructive chemical analyses of samples from a single EBR-II blanket subassembly. Comparison of calculated values with these measurements is being used to validate a depletion methodology based on a limited number of generic models of EBR-II to simulate the irradiation history of these subassemblies. Initial comparisons indicate these methods are adequate to meet the operations and material control and accountancy (MC and A) requirements for the FCF, but also indicate several shortcomings which may be corrected or improved.

  2. Review of behavior of mixed-oxide fuel elements in extended overpower transient tests in EBR-II

    SciTech Connect

    Tsai, H.; Neimark, L.A.; Nagai, S.; Nakae, N.

    1994-10-01

    From a series of five tests conducted in EBR-II, a substantial data base has been established on the performance of mixed-oxide fuel elements in a liquid-metal-cooled reactor under slow-ramp transient overpower conditions. Each test contained 19 preirradiated fuel elements with varying design and prior operating histories. Elements with aggressive design features, such as high fuel smear density and/or thin cladding, were included to accentuate transient effects. The ramp rates were either 0.1 or 10% {Delta}P/P/s and the overpowers ranged between {approx}60 and 100% of the elements` prior power ratings. Six elements breached during the tests, all with aggressive design parameters. The other elements, including all those with moderate design features for the reference or advanced long-life drivers for PNC`s prototype fast reactor Monju, maintained their cladding integrity during the tests. Posttest examination results indicated that fuel/cladding mechanical interaction (FCMI) was the most significant mechanism causing the cladding strain and breach. In contrast, pressure loading from the fission gas in the element plenum was less important, even in high-burnup elements. During an overpower transient, FCMI arises from fuel/cladding differential thermal expansion, transient fuel swelling, and, significantly, the gas pressure in the sealed central cavity of elements with substantial centerline fuel melting. Fuel performance data from these tests, including cladding breaching margin and transient cladding strain, are correlatable with fuel-element design and operating parameters. These correlations are being incorporated into fuel-element behavior codes. At the two tested ramp rates, fuel element behavior appears to be insensitive to transient ramp rate and there appears to be no particular vulnerability to slow ramp transients as previously perceived.

  3. EBR-II Data Digitization

    SciTech Connect

    Yoon, Su-Jong; Rabiti, Cristian; Sackett, John

    2014-08-01

    1. Objectives To produce a validation database out of those recorded signals it will be necessary also to identify the documents need to reconstruct the status of reactor at the time of the beginning of the recordings. This should comprehends the core loading specification (assemblies type and location and burn-up) along with this data the assemblies drawings and the core drawings will be identified. The first task of the project will be identify the location of the sensors, with respect the reactor plant layout, and the physical quantities recorded by the Experimental Breeder Reactor-II (EBR-II) data acquisition system. This first task will allow guiding and prioritizing the selection of drawings needed to numerically reproduce those signals. 1.1 Scopes and Deliverables The deliverables of this project are the list of sensors in EBR-II system, the identification of storing location of those sensors, identification of a core isotopic composition at the moment of the start of system recording. Information of the sensors in EBR-II reactor system was summarized from the EBR-II system design descriptions listed in Section 1.2.

  4. EBR-II fuel slug casting experience

    SciTech Connect

    Wilkes, C. W.; Batte`, G. L.; Tracy, D. B.; Griffiths, V.

    1987-07-01

    The following paper presents a chronology of EBR-II fuel slug casting experience. Starting with the early vendor campaigns, the paper explains how production of EBR-II fuel, as well as fuel for off-site reactors, has evolved. The production facilities (i.e., EFL, Room 20, FMF, etc.) and casting techniques are discussed in detail. The paper also presents how the original casting operations have improved and the problems encountered as the techniques were developed. Extensive descriptions and data are given on the major experimental programs currently ongoing at EBR-II. Major programs include the IFR lead subassemblies, large diameter slugs, IFR metal fuel RBCB, and the FFTF subassembly program. Concluding the paper is a brief description of future development projects being considered and a summation of how EBR-II Fuels and Materials has been able to overcome various administration obstacles (i.e., improved security and safeguards measures) to continue to meet the increasing demands of fuel production while maintaining an aggressive and active research and development program in fuel slug production.

  5. Deactivation of the EBR-II complex

    SciTech Connect

    Michelbacher, J.A.; Earle, O.K.; Henslee, S.P.

    1997-12-31

    In January of 1994, the Department of Energy mandated the termination of the Integral Fast Reactor (IFR) Program, effective October 1, 1994. To comply with this decision, Argonne National Laboratory-West (ANL-W) prepared a plan providing detailed requirements to place the Experimental Breeder Reactor-II (EBR-II) in a radiologically and industrially safe condition, including removal of all irradiated fuel assemblies from the reactor plant, and removal and stabilization of the primary and secondary sodium, a liquid metal used to transfer heat within the reactor plant. The ultimate goal of the deactivation process is to place the EBR-II complex in a stable condition until a decontamination and decommissioning (D&D) plan can be prepared, thereby minimizing requirements for maintenance and surveillance and maximizing the amount of time for radioactive decay. The final closure state will be achieved in full compliance with federal, state and local environmental, safety, and health regulations and requirements. The decision to delay the development of a detailed D&D plan has necessitated this current action. The EBR-II is a pool-type reactor. The primary system contains approximately 87,000 gallons of sodium, while the secondary system has 13,000 gallons. In order to properly dispose of the sodium in compliance with the Resource Conservation and Recovery Act (RCRA), a facility has been built to react the sodium to a dry carbonate powder in a two stage process. Deactivation of a liquid metal fast breeder reactor (LMFBR) presents unique concerns. Residual amounts of sodium remaining in the primary and secondary systems must be either reacted or inerted to preclude future concerns with sodium-air reactions that generate explosive mixtures of hydrogen and leave corrosive compounds. Residual amounts of sodium on components will effectively {open_quotes}solder{close_quotes} components in place, making future operation or removal unfeasible.

  6. EBR-II and TREAT Digitization Project

    SciTech Connect

    Griffith, George W.; Rabiti, Cristian

    2015-09-01

    Digitizing the technical drawings for EBR-II and TREAT provides multiple benefits. Moving the scanned or hard copy drawings to modern 3-D CAD (Computer Aided Drawing) format saves data that could be lost over time. The 3-D drawings produce models that can interface with other drawings to make complex assemblies. The 3-D CAD format can also include detailed material properties and parametric coding that can tie critical dimensions together allowing easier modification. Creating the new files from the old drawings has found multiple inconsistencies that are being flagged or corrected improving understanding of the reactor(s).

  7. EBR-II Primary Tank Wash-Water Alternatives Evaluation

    SciTech Connect

    Demmer, R. L.; Heintzelman, J. B.; Merservey, R. H.; Squires, L. N.

    2008-05-01

    The EBR-II reactor at Idaho National Laboratory was a liquid sodium metal cooled reactor that operated for 30 years. It was shut down in 1994; the fuel was removed by 1996; and the bulk of sodium metal coolant was removed from the reactor by 2001. Approximately 1100 kg of residual sodium remained in the primary system after draining the bulk sodium. To stabilize the remaining sodium, both the primary and secondary systems were treated with a purge of moist carbon dioxide. Most of the residual sodium reacted with the carbon dioxide and water vapor to form a passivation layer of primarily sodium bicarbonate. The passivation treatment was stopped in 2005 and the primary system is maintained under a blanket of dry carbon dioxide. Approximately 670 kg of sodium metal remains in the primary system in locations that were inaccessible to passivation treatment or in pools of sodium that were too deep for complete penetration of the passivation treatment. The EBR-II reactor was permitted by the Idaho Department of Environmental Quality (DEQ) in 2002 under a RCRA permit that requires removal of all remaining sodium in the primary and secondary systems by 2022. The proposed baseline closure method would remove the large components from the primary tank, fill the primary system with water, react the remaining sodium with the water and dissolve the reaction products in the wash water. This method would generate a minimum of 100,000 gallons of caustic, liquid, low level radioactive, hazardous waste water that must be disposed of in a permitted facility. On February 19-20, 2008, a workshop was held in Idaho Falls, Idaho, to look at alternatives that could meet the RCRA permit clean closure requirements and minimize the quantity of hazardous waste generated by the cleanup process. The workshop convened a panel of national and international sodium cleanup specialists, subject matter experts from the INL, and the EBR-II Wash Water Project team that organized the workshop. The

  8. Deactivation of the EBR-II complex

    SciTech Connect

    Michelbacher, J A; Earle, O K; Henslee, S P; Wells, P B; Zahn, T P

    1996-01-01

    In January of 1994, the Department of Energy mandated the termination of the Integral Fast Reactor (IFR) Program, effective October 1, 1994. To comply with this decision, Argonne National Laboratory-West (ANL-W) prepared a plan providing detailed requirements to place the Experimental Breeder Reactor-II (EBR-II) in a radiologically and industrially safe condition, including removal of all irradiated fuel assemblies from the reactor plant, and removal and stabilization of the primary and secondary sodium, a liquid metal used to transfer heat within the reactor plant. The ultimate goal of the deactivation process is to place the EBR-II complex in a stable condition until a decontamination and decommissioning (D and D) plan can be prepared, thereby minimizing requirements for maintenance and surveillance and maximizing the amount of time for radioactive decay. The final closure state will be achieved in full compliance with federal, state and local environmental, safety, and health regulations and requirements. The decision to delay the development of a detailed D and D plan has necessitated this current action.

  9. Current status of experimental breeder reactor-II [EBR-II] shutdown planning

    SciTech Connect

    McDermott, M. D.; Griffin, C. D.; Michelbacher, J. A.; Earle, O. K.

    2000-05-08

    The Experimental Breeder Reactor--II (EBR-II) at Argonne National Laboratory--West (ANL-W) in Idaho, was shutdown in September, 1994 as mandated by the US Department of Energy. This sodium cooled reactor had been in service since 1964, and was to be placed in an industrially and radiologically safe condition for ultimate decommissioning. The deactivation of a liquid metal reactor presents unique concerns. The first major task associated with the project was the removal of all fueled assemblies. In addition, sodium must be drained from systems and processed for ultimate disposal. Residual quantities of sodium remaining in systems must be deactivated or inerted to preclude future hazards associated with pyrophoricity and generation of potentially explosive hydrogen gas. A Sodium Process Facility was designed and constructed to react the elemental sodium from the EBR-II primary and secondary systems to sodium hydroxide for disposal. This facility has a design capacity to allow the reaction of the complete inventory of sodium at ANL-W in less than two years. Additional quantities of sodium from the Fermi-1 reactor are also being treated at the Sodium Process Facility. The sodium environment and the EBR-II configuration, combined with the radiation and contamination associated with thirty years of reactor operation, posed problems specific to liquid metal reactor deactivation. The methods being developed and implemented at EBR-II can be applied to other similar situations in the US and abroad.

  10. Experimental and calculational analyses of actinide samples irradiated in EBR-II

    SciTech Connect

    Gilai, D.; Williams, M.L.; Cooper, J.H.; Laing, W.R.; Walker, R.L.; Raman, S.; Stelson, P.H.

    1982-10-01

    Higher actinides influence the characteristics of spent and recycled fuel and dominate the long-term hazards of the reactor waste. Reactor irradiation experiments provide useful benchmarks for testing the evaluated nuclear data for these actinides. During 1967 to 1970, several actinide samples were irradiated in the Idaho EBR-II fast reactor. These samples have now been analyzed, employing mass and alpha spectrometry, to determine the heavy element products. A simple spherical model for the EBR-II core and a recent version of the ORIGEN code with ENDF/B-V data were employed to calculate the exposure products. A detailed comparison between the experimental and calculated results has been made. For samples irradiated at locations near the core center, agreement within 10% was obtained for the major isotopes and their first daughters, and within 20% for the nuclides up the chain. A sensitivity analysis showed that the assumed flux should be increased by 10%.

  11. The EBR-II X501 Minor Actinide Burning Experiment

    SciTech Connect

    Jon Carmack; S. L. Hayes; M. K. Meyer; H. Tsai

    2008-06-01

    The X501 experiment was conducted in EBR-II as part of the IFR (Integral Fast Reactor) program to demonstrate minor actinide burning through the use of a homogeneous recycle scheme. The X501 subassembly contained two metallic fuel elements loaded with relatively small quantities of americium and neptunium. Interest in the behavior of minor actinides (MA) during fuel irradiation has prompted further examination of existing X501 data, and generation of new data where needed in support of the U.S. waste transmutation effort. The X501 experiment is one of the few minor actinide-bearing fuel irradiation tests conducted worldwide and knowledge can be gained by understanding the changes in fuel behavior due to addition of MA’s. Of primary interest are the affect of the MA’s on fuel-cladding-chemical-interaction, and the redistribution behavior of americium. The quantity of helium gas release from the fuel and any effects of helium on fuel performance are also of interest. It must be stressed that information presented at this time is based on the limited PIE conducted in 1995-1996, and currently represents a set of observations rather than a complete understanding of fuel behavior.

  12. The EBR-II X501 Minor Actinide Burning Experiment

    SciTech Connect

    W. J. Carmack; M. K. Meyer; S. L. Hayes; H. Tsai

    2008-01-01

    The X501 experiment was conducted in EBR II as part of the Integral Fast Reactor program to demonstrate minor actinide burning through the use of a homogeneous recycle scheme. The X501 subassembly contained two metallic fuel elements loaded with relatively small quantities of americium and neptunium. Interest in the behavior of minor actinides (MA) during fuel irradiation has prompted further examination of existing X501 data and generation of new data where needed in support of the U.S. waste transmutation effort. The X501 experiment is one of the few MA bearing fuel irradiation tests conducted worldwide, and knowledge can be gained by understanding the changes in fuel behavior due to addition of MAs. Of primary interest are the effect of the MAs on fuel cladding chemical interaction and the redistribution behavior of americium. The quantity of helium gas release from the fuel and any effects of helium on fuel performance are also of interest. It must be stressed that information presented at this time is based on the limited PIE conducted in 1995–1996 and, currently, represents a set of observations rather than a complete understanding of fuel behavior. This report provides a summary of the X501 fabrication, characterization, irradiation, and post irradiation examination.

  13. Benchmark specifications for EBR-II shutdown heat removal tests

    SciTech Connect

    Sofu, T.; Briggs, L. L.

    2012-07-01

    Argonne National Laboratory (ANL) is hosting an IAEA-coordinated research project on benchmark analyses of sodium-cooled fast reactor passive safety tests performed at the Experimental Breeder Reactor-II (EBR-II). The benchmark project involves analysis of a protected and an unprotected loss of flow tests conducted during an extensive testing program within the framework of the U.S. Integral Fast Reactor program to demonstrate the inherently safety features of EBR-II as a pool-type, sodium-cooled fast reactor prototype. The project is intended to improve the participants' design and safety analysis capabilities for sodium-cooled fast reactors through validation and qualification of safety analysis codes and methods. This paper provides a description of the EBR-II tests included in the program, and outlines the benchmark specifications being prepared to support the IAEA-coordinated research project. (authors)

  14. Analysis of grid-assembly shielding of EBR-II

    SciTech Connect

    Meneghetti, D.; Franklin, F.C.; Kucera, D.A.

    1983-01-01

    Differing neutron exposure rates to the EBR-II lower grid plenum assembly resulting from the historical changes in reactor configuration and shielding are analyzed to obtain the fluences and the steel displacements-per-atom values in this irreplaceable component.

  15. Criticality safety requirements for transporting EBR-II fuel bottles stored at INTEC

    SciTech Connect

    Lell, R. M.; Pope, C. L.

    2000-03-14

    Two carrier/shipping cask options are being developed to transport bottles of EBR-II fuel elements stored at INTEC. Some fuel bottles are intact, but some have developed leaks. Reactivity control requirements to maintain subcriticality during the hypothetical transport accident have been examined for both transport options for intact and leaking bottles. Poison rods, poison sleeves, and dummy filler bottles were considered; several possible poison materials and several possible dummy filler materials were studied. The minimum number of poison rods or dummy filler bottles has been determined for each carrier for transport of intact and leaking bottles.

  16. PRD components of an EBR-II configuration

    SciTech Connect

    Meneghetti, D.; Kucera, D.A.

    1986-01-01

    The linear components of the power reactivity decrement (PRD) for a heterogeneous loading (run 93A) of Experimental Breeder Reactor II (EBR-II) have been calculated using the EBRPOCO program together with an addition to the program, RODCO, which accounts for effects of axial positionings of control rods. The program calculates detailed axially delineated contributions of the components of the PRD for every subassembly of the reactor configuration. The sum of these contributions is subtracted from the corresponding measured PRD value to give the nonlinear (subassembly-bowing) component.

  17. Metallic fuels: The EBR-II legacy and recent advances

    SciTech Connect

    Douglas L. Porter; Steven L. Hayes; J. Rory Kennedy

    2012-09-01

    Experimental Breeder Reactor – II (EBR-II) metallic fuel was qualified for high burnup to approximately 10 atomic per cent. Subsequently, the electrometallurgical treatment of this fuel was demonstrated. Advanced metallic fuels are now investigated for increased performance, including ultra-high burnup and actinide burning. Advances include additives to mitigate the fuel/cladding chemical interaction and uranium alloys that combine Mo, Ti and Zr to improve alloy performance. The impacts of the advances—on fabrication, waste streams, electrorefining, etc.—are found to be minimal and beneficial. Owing to extensive research literature and computational methods, only a modest effort is required to complete their development.

  18. Simplified modeling of the EBR-II control rods

    SciTech Connect

    Angelo, P.L.

    1995-06-25

    Simplified models of EBR-II control and safety rods have been developed for core modeling under various operational and shutdown conditions. A parametric study was performed on normal worth, high worth, and safety rod type control rods. A summary of worth changes due to individual modeling approximations is tabulated. Worth effects due to structural modeling simplification are negligible. Fuel region homogenization and burnup compression contributes more than any other factor. Reference case C/E values (ratio of calculated worth from detailed model to measured worth) of 1.072 and 1.142 for safety and normal worth rods indicate acceptable errors when the approximations are used. Fuel burnup effect illustrates rod worth sensitivity to the modeling approximation. Aggregate effects are calculated under a reduced mesh.

  19. Review process and quality assurance in the EBR-II probabilistic risk assessment

    SciTech Connect

    Roglans, J.; Hill, D.J.; Ragland, W.A.

    1992-12-01

    A Probabilistic Risk Assessment (PRA) of the Experimental Breeder Reactor II (EBR-II), a Department of Energy (DOE) Category A reactor, has recently been completed at Argonne National Laboratory (ANL). Within the scope of the ANL QA Programs, a QA Plan specifically for the EBR-II PRA was developed. The QA Plan covered all aspects of the PRA development, with emphasis on the procedures for document and software control, and the internal and external review process. The effort spent in the quality assurance tasks for the EBR-II PRA has reciprocated by providing acceptance of the work and confidence in the quality of the results.

  20. Review process and quality assurance in the EBR-II probabilistic risk assessment

    SciTech Connect

    Roglans, J.; Hill, D.J.; Ragland, W.A.

    1992-01-01

    A Probabilistic Risk Assessment (PRA) of the Experimental Breeder Reactor II (EBR-II), a Department of Energy (DOE) Category A reactor, has recently been completed at Argonne National Laboratory (ANL). Within the scope of the ANL QA Programs, a QA Plan specifically for the EBR-II PRA was developed. The QA Plan covered all aspects of the PRA development, with emphasis on the procedures for document and software control, and the internal and external review process. The effort spent in the quality assurance tasks for the EBR-II PRA has reciprocated by providing acceptance of the work and confidence in the quality of the results.

  1. An overview of the EBR-II PRA (Probabilistic Risk Assessment)

    SciTech Connect

    Hill, D.J.; Chang, Y.W.; Deitrich, L.W.; Ragland, W.A. ); Lehto, W.K.; Schaeffer, R.W. )

    1990-01-01

    Experimental Breeder Reactor-II, EBR-II, is a 60 MW(t) liquid sodium cooled, pool type fast reactor which has operated successfully as a power reactor and irradiation facility for over 25 years. Argonne National Laboratory is currently performing a Probabilistic Risk Assessment of EBR-II. An overview of the PRA is presented with special attention to those issues which are important to EBR-II such as the passive decay heat removal capabilities and the passive shut down capability provided by the reactivity feedbacks. 7 refs., 3 figs., 1 tab.

  2. Nuclear instrumentation system operating experience and nuclear instrument testing in the EBR-II

    SciTech Connect

    Yingling, G. E.; Curran, R. N.

    1980-01-01

    In March of 1972 three wide range nuclear channels were purchased from Gulf Atomics Corporation and installed in EBR-II as a test. The three channels were operated as a test until April 1975 when they became a permanent part of the reactor shutdown system. Also described are the activities involved in evaluating and qualifying neutron detectors for LMFBR applications. Included are descriptions of the ANL Components Technology Division Test Program and the EBR-II Nuclear Instrument Test Facilities (NITF) used for the in-reactor testing and a summary of program test results from EBR-II.

  3. Approximating axially dependent radial-displacement reactivities of EBR-II subassembly rows

    SciTech Connect

    Meneghetti, D.

    1994-12-31

    Reactivities resulting from radial displacement of the Experimental Breeder reactor II (EBR-II) subassembly rows are used in calculations of bowing components of reactivity and of grid-plate expansion reactivity. The method uses perturbation-quantity outputs from a modified R-Z geometry diffusion theory calculation to obtain axially delineated reactivity coefficients for an azimuthally homogenized approximation of an EBR-II configuration.

  4. A survey of recent EBR-II passive safety testing

    SciTech Connect

    Planchon, H.P.; Golden, G.H.; Sackett, J.I.; Singer, R.M.; Mohr, D.; Chang, L.K.; Feldman, E.E.; Sevy, R.H.

    1987-01-01

    During the last two years, the testing program at EBR-II has investigated the capabilities of liquid metal reactors (LMRs) to perform vital safety functions passively. In particular the tests have examined post shutdown decay heat removal by natural circulation and passive shutdown of the reactor after accidents which lead to undercooling. The undercooling accidents have been divided into two categories - the loss of flow without scram (LOFWS) (a family of events involving a loss of forced flow through the reactor), and the loss of heat sink without scram (LOHSWS) (a family of events involving a loss of the ability to transfer reactor heat to down stream components which generate steam and electricity.) The type of ''passive shutdown'' that has been examined is caused by natural processes - principally thermal expansion of the reactor structures, fuel and coolant. As used in this paper the term excludes automatic control of power, operator intervention or negative reactivity generated by special in-core devices. 18 refs., 7 figs., 1 tab.

  5. Flow dependence of the PRD in EBR-II

    SciTech Connect

    Meneghetti, D.

    1994-12-31

    The linear (and Doppler) feedback components of the power reactivity decrement (PRD) for various loading configurations of the Experimental Breeder Reactor II (EBR-II) have been reported. (The PRD at a power is here the negative of the reactivity required to bring the reactor from zero-power, hot-critical, to that power.) The delineation of the feedback components into power dependent and power-to-flow dependent parts have also been reported. The nonlinear feedback component, primarily due to bowings of the subassembly ducts, is deduced by subtraction of the calculated total linear (and small Doppler) component from the measured values of PRD as a function of reactor power. Furthermore, this component is generally assumed to be a function of the power-to-flow ratio of the reactor for purposes of estimating PRD values at differing flows. If the nonlinear reactivity component is indeed solely power-to-flow dependent, then the values of measured total PRDs for differing flows should lie for the respective power values, corresponding to equivalent power-to-flow values, on a straight line having a negative slope. (This slope would be the power rate of the solely power part of the linear component of the PRD). Evidence that this may not be a reasonable assumption is reported.

  6. Calculation of temperature coefficients of reactivity for EBR-II kinetic analyses

    SciTech Connect

    Meneghetti, D.; Kucera, D.A.

    1987-01-01

    Temperature coefficients of reactivity for use in coupled neutronics-thermohydraulics kinetics codes, as for example the EROS code used for Experimental Breeder Reactor-II (EBR-II) kinetic analyses, are both loading and problem-modeling sensitive. To enable appropriate temperature coefficients to be calculated for differing loading configurations and differing subassembly groupings in the kinetics analyses, an addition ((TEMCO) has been made to the EBRPOCO code. EBRPOCO calculates detailed axially-delineated contributions of the linear and Doppler components of the power-reactivity-decrement (PRD) for every subassembly and control rod location in an EBR-II configuration. This paper provides the results of the EBR-II kinetics analysis and lists the temperature coefficients of reactivity for varying subassembly types and conditions.

  7. Off-normal performance of EBR-II (Experimental Breeder Reactor) driver fuel

    SciTech Connect

    Seidel, B.R.; Batte, G.L.; Lahm, C.E.; Fryer, R.M.; Koenig, J.F.; Hofman, G.L.

    1986-09-01

    The off-normal performance of EBR-II Mark-II driver fuel has been more than satisfactory as demonstrated by robust reliability under repeated transient overpower and undercooled loss-of-flow tests, by benign run-beyond-cladding-breach behavior, and by forgiving response to fabrication defects including lack of bond. Test results have verified that the metallic driver fuel is very tolerant of off-normal events. This behavior has allowed EBR-II to operate in a combined steady-state and transient mode to provide test capability without limitation from the metallic driver fuel.

  8. Electrorefining Experience For Pyrochemical Reprocessing of Spent EBR-II Driver Fuel

    SciTech Connect

    S. X. Li; T. A. Johnson; B. R. Westphal; K. M. Goff; R. W. Benedict

    2005-10-01

    Pyrochemical processing has been implemented for the treatment of spent fuel from the Experimental Breeder Reactor-II (EBR-II) at Idaho National Laboratory since 1996. This report summarizes technical advancements made in electrorefining of spent EBR-II driver fuel in the Mk-IV electrorefiner since the pyrochemical processing was integrated into the AFCI program in 2002. The significant advancements include improving uranium dissolution and noble metal retention from chopped fuel segments, increasing cathode current efficiency, and achieving co-collection of zirconium along with uranium from the cadmium pool.

  9. Feedback-reactivity time-dependencies for a negative reactivity insertion in EBR-II

    SciTech Connect

    Grimm, K.N.; Meneghetti, D.

    1987-01-01

    Knowledge of time-dependencies (and magnitudes) of feedback components is necessary for interpretation and understanding of transient behaviors. Described herein is one analysis of negative insertion (approx. 36 cents) of a control rod from full power during Experimental Breeder Reactor-II (EBR-II) run 93a. The time-dependencies of the component feedbacks have been analyzed using 24 channels in the EROS computer code. Seventy distinct temperature coefficients of reactivity were used in conjunction with this 24-channel EBR-II model. These temperature coefficients of reactivity were obtained using an addition (TEMCO) to the EBRPOCO code.

  10. Fluence, dosimetry, and steel-dpa rates in EBR-II

    SciTech Connect

    Meneghetti, D.; Kucera, D.A.

    1984-01-01

    Sensitivities of steel displacements-per-atom (dpa) rates to fluence-rate spectra in regions of th Experimental Breeder Reactor II (EBR-II) are presented. Low sensitivities in EBR-II of ratios of dpa-to-fission rates assuming /sup 240/Pu as a dosimeter suggests its possible use for adjusting calculated dpa-rates for effects of errors in calculated fluence-spectra. Extension of the method to outer regions, having more degraded spectra, by use of /sup 10/B-shielded /sup 240/Pu dosimeters is also suggested.

  11. Calculation of temperature coefficients of reactivity for EBR-II kinetic analyses

    SciTech Connect

    Meneghetti, D.; Kucera, D.A.

    1987-01-01

    Temperature coefficients of reactivity for use in coupled neutronics-thermohydraulics kinetics codes, as for example the EROS code used for Experimental Breeder Reactor-II (EBR-II) kinetic analyses are both loading and problem-modeling sensitive. To enable appropriate temperature coefficients to be calculated for differing loading configurations and differing subassembly groupings in the kinetics analyses, an addition (TEMCO) has been made to the EBRPOCO code. EBRPOCO calculates detailed axially delineated contributions of the linear and Doppler components of the power-reactivity-decrement (PRD) for every subassembly and control rod location in an EBR-II configuration.

  12. Vanadium alloy irradiation experiment X530 in EBR-II{sup *}

    SciTech Connect

    Tsai, H.; Strain, R.V.; Hins, A.G.

    1995-04-01

    The objective of the X530 experiment in EBR-II was to obtain early irradiation performance data, particularly the fracture properties, on the new 500-kg production heat of V-4Cr-4Ti material before the scheduled reactor shutdown at the end of September 1994.

  13. Subtask 12H1: Vanadium alloy irradiation experiment X530 in EBR-II

    SciTech Connect

    Tsai, H.; Strain, R.V.; Hins, A.G.; Chung, H.M.; Nowicki, L.J.; Smith, D.L.

    1995-03-01

    The objective of the X530 experiment in EBR-II was to obtain early irradiation performance data, particularly the fracture properties, on the new 500-kg production heat of V-4Cr-4Ti material before the scheduled reactor shutdown at the end of September 1994. To obtain early irradiation performance data on the new 500-kg production heat of the V-4Cr-4Ti material before the scheduled EBR-II shutdown, an experiment, X530, was expeditiously designed and assembled. Charpy, compact tension, tensile and TEM specimens with different thermal mechanical treatments (TMTs), were enclosed in two capsules and irradiated in the last run of EBR-II, Run 170, from August 9 through September 27. For comparison, specimens from some of the previous heats were also included in the test. The accrued exposure was 35 effective full power days, yielding a peak damage of {approx}4 dpa in the specimens. The irradiation is now complete and the vehicle is awaiting to be discharged from EBR-II for postirradiation disassembly. 4 figs., 2 tabs.

  14. Technical Information on the Carbonation of the EBR-II Reactor, Summary Report Part 2: Application to EBR-II Primary Sodium System and Related Systems

    SciTech Connect

    Steven R. Sherman; Collin J. Knight

    2006-03-01

    Residual sodium is defined as sodium metal that remains behind in pipes, vessels, and tanks after the bulk sodium metal has been melted and drained from such components. The residual sodium has the same chemical properties as bulk sodium, and differs from bulk sodium only in the thickness of the sodium deposit. Typically, sodium is considered residual when the thickness of the deposit is less than 5-6 cm. This residual sodium must be removed or deactivated when a pipe, vessel, system, or entire reactor is permanently taken out of service, in order to make the component or system safer and/or to comply with decontamination and decomissioning regulations. As an alternative to the established residual sodium deactivation techniques (steam-and-nitrogen, wet vapor nitrogen, etc.), a technique involving the use of moisture and carbon dioxide has been developed. With this technique, sodium metal is converted into sodium bicarbonate by reacting it with humid carbon dioxide. Hydrogen is emitted as a by-product. This technique was first developed in the laboratory by exposing sodium samples to humidifed carbon dioxide under controlled conditions, and then demonstrated on a larger scale by treating residual sodium within the Experimental Breeder Reactor II (EBR-II) secondary cooling system, followed by the primary cooling system, respectively. The EBR-II facility is located at the Idaho National Laboratory (INL) in southeastern Idaho, USA. This report is Part 2 of a two-part report. This second report provides a supplement to the first report and describes the application of the humdidified carbon dioxide technique ("carbonation") to the EBR-II primary tank, primary cover gas systems, and the intermediate heat exchanger. Future treatment plans are also provided.

  15. Technical Information on the Carbonation of the EBR-II Reactor, Summary Report Part 1: Laboratory Experiments and Application to EBR-II Secondary Sodium System

    SciTech Connect

    Steven R. Sherman

    2005-04-01

    Residual sodium is defined as sodium metal that remains behind in pipes, vessels, and tanks after the bulk sodium metal has been melted and drained from such components. The residual sodium has the same chemical properties as bulk sodium, and differs from bulk sodium only in the thickness of the sodium deposit. Typically, sodium is considered residual when the thickness of the deposit is less than 5-6 cm. This residual sodium must be removed or deactivated when a pipe, vessel, system, or entire reactor is permanently taken out of service, in order to make the component or system safer and/or to comply with decommissioning regulations. As an alternative to the established residual sodium deactivation techniques (steam-and-nitrogen, wet vapor nitrogen, etc.), a technique involving the use of moisture and carbon dioxide has been developed. With this technique, sodium metal is converted into sodium bicarbonate by reacting it with humid carbon dioxide. Hydrogen is emitted as a by-product. This technique was first developed in the laboratory by exposing sodium samples to humidified carbon dioxide under controlled conditions, and then demonstrated on a larger scale by treating residual sodium within the Experimental Breeder Reactor II (EBR-II) secondary cooling system, followed by the primary cooling system, respectively. The EBR-II facility is located at the Idaho National Laboratory (INL) in southeastern Idaho, U.S.A. This report is Part 1 of a two-part report. It is divided into three sections. The first section describes the chemistry of carbon dioxide-water-sodium reactions. The second section covers the laboratory experiments that were conducted in order to develop the residual sodium deactivation process. The third section discusses the application of the deactivation process to the treatment of residual sodium within the EBR-II secondary sodium cooling system. Part 2 of the report, under separate cover, describes the application of the technique to residual sodium

  16. Unprotected loss-of-heat sink simulation in the EBR-II plant

    SciTech Connect

    Feldman, E.E.; Mohr, D.

    1984-01-01

    Two unprotected loss-of-heat sink transients initiated from near full power conditions in the Experimental Breeder Reactor-II (EBR-II) plant have been simulated. In one transient the secondary sodium flow is reduced to nearly zero (0.5% of its initial value) while in the other the flow simply coasts down to a natural-convective rate of about 8%. In spite of the large difference in primary heat removal rates, which the difference in secondary flow rates represents, both transients have very similar overall behavior. In addition, the large volume of sodium in the primary tank causes a slowly rising tank temperature in response to net heat addition. An important result is that the negative reactivity feedback characteristics of the reactor cause it to shut itself down in a benign manner in both cases. Experiments based on these simulations are planned for the EBR-II in 1985.

  17. Operational-safety advantages of LMFBR's: the EBR-II experience and testing program

    SciTech Connect

    Sackett, J.I.; Lindsay, R.W.; Golden, G.H.

    1982-01-01

    LMFBR's contain many inherent characteristics that simplify control and improve operating safety and reliability. The EBR-II design is such that good advantage was taken of these characteristics, resulting in a vary favorable operating history and allowing for a program of off-normal testing to further demonstrate the safe response of LMFBR's to upsets. The experience already gained, and that expected from the future testing program, will contribute to further development of design and safety criteria for LMFBR's. Inherently safe characteristics are emphasized and include natural convective flow for decay heat removal, minimal need for emergency power and a large negative reactivity feedback coefficient. These characteristics at EBR-II allow for ready application of computer diagnosis and control to demonstrate their effectiveness in response to simulated plant accidents. This latter testing objective is an important part in improvements in the man-machine interface. (MMI)

  18. Results and implications of the EBR-II inherent safety demonstration tests

    SciTech Connect

    Planchon, H.P.; Golden, G.H.; Sackett, J.I.; Mohr, D.; Chang, L.K.; Feldman, E.E.; Betten, P.R.

    1987-01-01

    On April 3, 1986 two milestone tests were conducted in Experimental Breeder Reactor-2 (EBR-II). The first test was a loss of flow without scram and the second was a loss of heat sink without scram. Both tests were initiated from 100% power and in both tests the reactor was shut down by natural processes, principally thermal expansion, without automatic scram, operator intervention or the help of special in-core devices. The temperature transients during the tests were mild, as predicted, and there was no damage to the core or reactor plant structures. In a general sense, therefore, the tests plus supporting analysis demonstrated the feasibility of inherent passive shutdown for undercooling accidents in metal-fueled LMRs. The results provide a technical basis for future experiments in EBR-II to demonstrate inherent safety for overpower accidents and provide data for validation of computer codes used for design and safety analysis of inherently safe reactor plants.

  19. Thermal-hydraulic-structural behavior of the EBR-II IHX for overpower transients

    SciTech Connect

    Mohr, D.; Chang, L.K.; Lee, M.J.; Feldman, E.E.

    1982-01-01

    A detailed study has been made of the effects of the Operational Reliability Testing (ORT) program on major plant components of the Experimental Breeder Reactor No. II (EBR-II). This paper describes the integrated thermal-hydraulic-structural analyses conducted for the intermediate heat exchanger (IHX) with the aid of the NATDEMO, THTB, and ANSYS codes. An extensive analysis revealed the stress limiting area to be the junction between the upper head and upper tube sheet. The analyses indicate, however, that the EBR-II IHX, the major plant component most affected by the ORT program, will be able to withstand the thermal stress and accumulated fatigue damage during the lifetime of the plant including the ORT program.

  20. Evidence of fast non-linear feedback in EBR-II rod-drop measurements

    SciTech Connect

    Grimm, K.N.; Meneghetti, D.

    1987-06-01

    Feedback reactivities determine the time dependence of a reactor during and after a transient initiating event. Recent analysis of control-rod drops in the Experimental Breeder Reactor II (EBR-II) Reactor has indicated that some relatively fast feedback may exist which cannot be accounted for by the linear feedback mechanisms. The linear and deduced non-linear feedback reactivities from a control-rod drop in EBR-II run 93A using detailed temperature coefficients of reactivity in the EROS kinetics code have been reported. The transient analyses have now been examined in more detail for times close to the drop to ascertain if additional positive reactivity is being built-in early in the drop which could be gradually released later in the drop.

  1. Feasibility of Ground Testing a Moon and Mars Surface Power Reactor in EBR-II

    NASA Astrophysics Data System (ADS)

    Morton, Sheryl L.; Baily, Carl E.; Hill, Thomas J.; Werner, James E.

    2006-01-01

    Ground testing of a surface fission power system would be necessary to verify the design and validate reactor performance to support safe and sustained human exploration of the Moon and Mars. The Idaho National Laboratory (INL) has several facilities that could be adapted to support a ground test. This paper focuses on the feasibility of ground testing at the Experimental Breeder Reactor II (EBR-II) facility and using other INL existing infrastructure to support such a test. This brief study concludes that the INL EBR-II facility and supporting infrastructure are a viable option for ground testing the surface power system. It provides features and attributes that offer advantages to locating and performing ground testing at this site, and it could support the National Aeronautics and Space Administration schedules for human exploration of the Moon. This study used the initial concept examined by the U.S. Department of Energy Inter-laboratory Design and Analysis Support Team for surface power, a low-temperature, liquid-metal, three-loop Brayton power system. With some facility modification, the EBR-II can safely house a test chamber and perform long-term testing of the space reactor power system. The INL infrastructure is available to receive and provide bonded storage for special nuclear materials. Facilities adjacent to EBR-II can provide the clean room environment needed to assemble and store the test article assembly, disassemble the power system at the conclusion of testing, and perform posttest examination. Capability for waste disposal is also available at the INL.

  2. Feasibility of Ground Testing a Moon and Mars Surface Power Reactor in EBR-II

    SciTech Connect

    Sheryl Morton; Carl Baily; Tom Hill; Jim Werner

    2006-02-01

    Ground testing of a surface fission power system would be necessary to verify the design and validate reactor performance to support safe and sustained human exploration of the Moon and Mars. The Idaho National Laboratory (INL) has several facilities that could be adapted to support a ground test. This paper focuses on the feasibility of ground testing at the Experimental Breeder Reactor II (EBR-II) facility and using other INL existing infrastructure to support such a test. This brief study concludes that the INL EBR-II facility and supporting infrastructure are a viable option for ground testing the surface power system. It provides features and attributes that offer advantages to locating and performing ground testing at this site, and it could support the National Aeronautics and Space Administration schedules for human exploration of the Moon. This study used the initial concept examined by the U.S. Department of Energy Inter-laboratory Design and Analysis Support Team for surface power, a lowtemperature, liquid-metal, three-loop Brayton power system. With some facility modification, the EBR-II can safely house a test chamber and perform long-term testing of the space reactor power system. The INL infrastructure is available to receive and provide bonded storage for special nuclear materials. Facilities adjacent to EBR-II can provide the clean room environment needed to assemble and store the test article assembly, disassemble the power system at the conclusion of testing, and perform posttest examination. Capability for waste disposal is also available at the INL.

  3. Time constants and feedback transfer functions of EBR-II (Experimental Breeder Reactor) subassembly types

    SciTech Connect

    Grimm, K.N.; Meneghetti, D.

    1986-09-01

    Time constants, feedback reactivity transfer functions and power coefficients are calculated for stereotypical subassemblies in the EBR-II reactor. These quantities are calculated from nodal reactivities obtained from a reactor kinetic code analysis for a step change in power. Due to the multiplicity of eigenvalues, there are several time constants for each nodal position in a subassembly. Compared with these calculated values are analytically derived values for the initial node of a given channel.

  4. Feasibility of Ground Testing a Moon and Mars Surface Power Reactor in EBR-II

    SciTech Connect

    Morton, Sheryl L.; Baily, Carl E.; Hill, Thomas J.; Werner, James E.

    2006-01-20

    Ground testing of a surface fission power system would be necessary to verify the design and validate reactor performance to support safe and sustained human exploration of the Moon and Mars. The Idaho National Laboratory (INL) has several facilities that could be adapted to support a ground test. This paper focuses on the feasibility of ground testing at the Experimental Breeder Reactor II (EBR-II) facility and using other INL existing infrastructure to support such a test. This brief study concludes that the INL EBR-II facility and supporting infrastructure are a viable option for ground testing the surface power system. It provides features and attributes that offer advantages to locating and performing ground testing at this site, and it could support the National Aeronautics and Space Administration schedules for human exploration of the Moon. This study used the initial concept examined by the U.S. Department of Energy Inter-laboratory Design and Analysis Support Team for surface power, a low-temperature, liquid-metal, three-loop Brayton power system. With some facility modification, the EBR-II can safely house a test chamber and perform long-term testing of the space reactor power system. The INL infrastructure is available to receive and provide bonded storage for special nuclear materials. Facilities adjacent to EBR-II can provide the clean room environment needed to assemble and store the test article assembly, disassemble the power system at the conclusion of testing, and perform posttest examination. Capability for waste disposal is also available at the INL.

  5. Evidence of fast nonlinear feedback in EBR-II rod-drop measurements

    SciTech Connect

    Grimm, K.N.; Meneghetti, D.

    1987-01-01

    Feedback reactivities determine the time dependence of a reactor during and after a transient initiating event. Recent analysis of control-rod drops in the Experimental Breeder Reactor II (EBR-II) has indicated that some relatively fast feedback may exist that cannot be accounted for by the linear feedback mechanisms. The magnitude of the positive insertion appears dependent on the amount of inserted reactivity and the run configuration. This phenomenon may be caused by a small, but rapid, change in core dimensions.

  6. Experimental Breeder Reactor II (EBR-II): Instrumentation for core surveillance

    SciTech Connect

    Christensen, L.J.

    1989-01-01

    EBR-II has operated for 25 years in support of several major programs. During this time period, several of the original, non-replaceable, flow sensors, RDT sensors and thermocouples have failed in the primary system. This has led to the development of new sensors and the use of calculated values using computer models of the plant. It is important for the next generation of LMR reactors to minimize or eliminate the use of non-replaceable sensors. EBR-II is perhaps the best modeled reactor in the world, thanks to a dedicated T-H analysis program. The success of this program relied on excellent measurements of temperature and flow in subassemblies in the core. The instrumented subassemblies of the XX series provided that measurement capability. From this test series, EBR-II calculations showed that the core could withstand a loss-of-flow without scram accident and a loss-of-heat sink without scram accident from full reactor power without core damage. From this, reactor designers can now design with confidence, inherently safe reactors. 11 refs., 8 figs.

  7. Delineations of power and power-to-flow feedback components of EBR-II

    SciTech Connect

    Meneghetti, D.; Kucera, D.A.

    1986-01-01

    The detailed contributions of feedback components by regions for various experimental breeder reactor-II (EBR-II) configurations have been reported assuming given values for the coolant flows. The separation of these components into power dependent and power-to-flow dependent parts if reported here for EBR-II run 93A. The power-reactivity-decrement (PRD) can then be expressed as the sum of parts which enables the PRD for other values of coolant flow to be estimated. The delineations of the components also enhance the understanding of the contributions of the various components and regions in the feedback process in EBR-II. Separation of the components into power and power-to-flow delineations were made by calculations of the components of the PRD assuming infinite coolant flow and comparing with results previously reported for finite flow. Subtractions of the infinite-flow feedback values from the corresponding finite-flow values give the power-to-flow portions. These linear and Doppler components of the PRDs were calculated using the EBRPOCO program together with an addition to the program (RODCO) which accounts for the effects of axial positionings of control rods.

  8. The EBR-II spent fuel treatment program

    SciTech Connect

    Lineberry, M.J.; McFarlane, H.F.

    1995-12-01

    Argonne National Laboratory has refurbished and equipped an existing hot cell facility for demonstrating a high-temperature electrometallurgical process for treating spent nuclear fuel from the Experimental Breeder Reactor-11. Two waste forms will be produced and qualified for geologic disposal of the fission and activation products. Relatively pure uranium will be separated for storage. Following additional development, transuranium elements will be blended into one of the high-level waste streams. The spent fuel treatment program will help assess the viability of electrometallurgical technology as a spent fuel management option.

  9. EBR-II facility for cleaning and maintenance of LMR components

    SciTech Connect

    Washburn, R.A.

    1986-01-01

    The cleaning and maintenance of EBR-II sodium wetted components is accomplished in a separate hands-on maintenance facility known as the Sodium Components Maintenance Shop (SCMS). Sodium removal is mostly done using alcohol but steam or water is used. The SCMS has three alcohol cleaning systems: one for small nonradioactive components, one for small radioactive components, and one for large radioactive components. The SCMS also has a water-wash station for the removal of sodium with steam or water. An Alcohol Recovery Facility removes radioactive contaminants from the alcohol and reclaims the alcohol for reuse. Associated with the large components cleaning system is a major component handling system.

  10. Bowing-reactivity trends in EBR-II assuming zero-swelling ducts

    SciTech Connect

    Meneghetti, D.

    1994-03-01

    Predicted trends of duct-bowing reactivities for the Experimental Breeder Reactor II (EBR-II) are correlated with predicted row-wise duct deflections assuming use of idealized zero-void-swelling subassembly ducts. These assume no irradiation induced swellings of ducts but include estimates of the effects of irradiation-creep relaxation of thermally induced bowing stresses. The results illustrate the manners in which at-power creeps may affect subsequent duct deflections at zero power and thereby the trends of the bowing component of a subsequent power reactivity decrement.

  11. EBR-II time constant calculation using the EROS kinetics code

    SciTech Connect

    Grimm, K.N.; Meneghetti, D.

    1986-01-01

    System time constants are important parameters in determining the dynamic behavior of reactors. One method of determining basic time constants is to apply a step change in power level and determine the resulting temperature change. This methodology can be done using any computer code that calculates temperature versus time given either a power input or a reactivity input. In the current analysis this is done using the reactor kinetics code EROS. As an example of this methodology, the time constant is calculated for an Experimental Breeder Reactor II (EBR-II) fuel pin.

  12. A probabilistic method for evaluating reactivity feedbacks and its application to EBR-II

    SciTech Connect

    Schaefer, R.W.

    1991-01-01

    The probability that reactivity feedbacks fail to prevent damage is computed by propagating data and modeling uncertainties through transient calculations, with these uncertainties being constrained by experimental evidence. Screening processes are used to identify the most important parameters and accident initiators. The response surface method is used to facilitate the error propagation and a Monte Carlo rejection technique is used to force the parameter variations to be consistent with the observed distribution of experimental quantities. The reliability of the failure probability estimates is evaluated. This process is applied to ATWS events in the PRA for the EBR-II reactor. The loss-of-normal-power (LONP), loss-of-flow and transient overpower accidents without scram were found to warrant detailed analysis and a complete analysis has been made for the first of these. Six parameters are primarily responsible for the LONP outcome variations. The conditional probability of minor core damage from LONP without scram is 1.2 {times} 10{sup {minus}2}. The uncertainty in this estimate is a factor of 2. This damage estimate would be an order of magnitude higher if experimental information about feedbacks in EBR-II was not used. the conditional probability of major core damage from LONP without scram is <10{sup {minus}6}. 20 refs., 1 fig., 3 tabs.

  13. The EBR-II materials-surveillance program. 4: Results of SURV-4 and SURV-6

    SciTech Connect

    Ruther, W.E.; Hayner, G.O.; Carlson, B.G.; Ebersole, E.R.; Allen, T.R.

    1998-01-01

    In March of 1965, a set of surveillance (SURV) samples was placed in the EBR-II reactor to determine the effect of irradiation, thermal aging, and sodium corrosion on reactor materials. Eight subassemblies were placed into row 12 positions of EBR-II to determine the effect of irradiation at 370 C. Two subassemblies were placed into the primary sodium basket to determine the effect of thermal aging at 370 C. For both the irradiated and thermally aged samples, one half of all samples were exposed to primary system sodium while one half were sealed in capsules with a helium atmosphere. Fifteen different structural materials were tested in the SURV program. In addition to the fifteen types of metal samples, graphite blocks were irradiated in the SURV subassemblies to determine the effect of irradiation on the graphite neutron shield. In this report, the properties of these materials irradiated at 370 C to a total fluence of 2.2 x 10{sup 22} n/cm{sup 2} (over 2,994 days) are compared with those of similar specimens thermally aged at 370 C for 2,994 days in the storage basket of the reactor. The properties analyzed were weight, density, microstructure, hardness, tensile and yield strength, impact strength, and creep.

  14. Power and power-to-flow reactivity transfer functions in EBR-II (Experimental Breeder Reactor II) fuel

    SciTech Connect

    Grimm, K.N.; Meneghetti, D. )

    1989-11-01

    Reactivity transfer functions are important in determining the reactivity history during a power transient. Overall nodal transfer functions have been calculated for different subassembly types in the Experimental Breeder Reactor II (EBR-II). Steady-state calculations for temperature changes and, hence, reactivities for power changes have been separated into power and power-to-flow-dependent terms. Axial nodal transfer functions separated into power and power-to-flow-dependent components are reported in this paper for a typical EBR-II fuel pin. This provides an improved understanding of the time dependence of these components in transient situations.

  15. Characterization of degraded EBR-II fuel from the ICPP-603 basin: National spent nuclear fuel program, FY 1999 final report

    SciTech Connect

    Pahl, R. G.

    2000-04-17

    Characterization data is reported for sodium bonded Experimental Breeder Reactor II (EBR-II) fuel which had been stored underwater in containers since the late 1970's. Sixteen stainless steel storage containers were retrieved from the ICPP-603 storage pool at the Idaho National Engineering and Environmental Laboratory (INEEL) in Idaho. Ten of the containers had leaked water due to improper sealing. In the container chosen for detailed destructive analysis, the stainless steel cladding on the uranium alloy fuel had ruptured and fuel oxide particulate formed and filled the bottom of the container. Headspace gas analysis determined that greater than 99% hydrogen was present. Cesium-137, which had leached out of the fuel during the aqueous corrosion process, dominated the radionuclide source term of the water. The metallic sodium from the fuel element bond had reacted with the water, forming a caustic solution of NaOH.

  16. Expert system applications in support of system diagnostics and prognostics at EBR-II

    SciTech Connect

    Lehto, W.K.; Gross, K.C.; Argonne National Lab., IL )

    1989-01-01

    Expert systems have been developed to aid in the monitoring and diagnostics of the Experimental Breeder Reactor-II (EBR-II) at the Idaho National Engineering Laboratory (INEL) in Idaho Falls, Idaho. Systems have been developed for failed fuel surveillance and diagnostics and reactor coolant pump monitoring and diagnostics. A third project is being done jointly by ANL-W and EG G Idaho to develop a transient analysis system to enhance overall plant diagnostic and prognostic capability. The failed fuel surveillance and diagnosis system monitors, processes, and interprets information from nine key plant sensors. It displays to the reactor operator diagnostic information needed to make proper decisions regarding technical specification conformance during reactor operation with failed fuel. 8 refs., 9 figs., 2 tabs.

  17. Comparisons of PRD (power-reactivity-decrements) components for various EBR-II configurations

    SciTech Connect

    Meneghetti, D.; Kucera, D.A.

    1986-09-19

    Comparison of detailed calculations of contributions by region and component of the power-reactivity-decrements (PRD) for four differing loading configurations of the Experimental Breeder Reactor-II (EBR-II) are given. The linear components and Doppler components are calculated. The non-linear (primarily subassembly bowing) components are deduced by differences relative to measured total PRD values. Variations in linear components range from about 10% to as much as about 100% depending upon the component. The deduced non-linear components differ both in magnitude and sign as functions of reactor power. Effects of differing assumptions of the nature of the fuel-to-clad interactions upon the PRD components are also calculated.

  18. EBR-II Static Neutronic Calculations by PHISICS / MCNP6 codes

    SciTech Connect

    Paolo Balestra; Carlo Parisi; Andrea Alfonsi

    2016-02-01

    The International Atomic Energy Agency (IAEA) launched a Coordinated Research Project (CRP) on the Shutdown Heat Removal Tests (SHRT) performed in the '80s at the Experimental fast Breeder Reactor EBR-II, USA. The scope of the CRP is to improve and validate the simulation tools for the study and the design of the liquid metal cooled fast reactors. Moreover, training of the next generation of fast reactor analysts is being also considered the other scope of the CRP. In this framework, a static neutronic model was developed, using state-of-the art neutron transport codes like SCALE/PHISICS (deterministic solution) and MCNP6 (stochastic solution). Comparison between both solutions is briefly illustrated in this summary.

  19. Final Safety Analysis Addenda to Hazards Summary Report, Experimental Breeder Reactor II (EBR-II): upgrading of plant protection system. Volume II

    SciTech Connect

    Allen, N. L.; Keeton, J. M.; Sackett, J. I.

    1980-06-01

    This report is the second in a series of compilations of the formal Final Safety Analysis Addenda (FSAA`s) to the EBR-II Hazard Summary Report and Addendum. Sections 2 and 3 are edited versions of the original FSAA`s prepared in support of certain modifications to the reactor-shutdown-system portion of the EBR-II plant-protection system. Section 4 is an edited version of the original FSAA prepared in support of certain modifications to a system classified as an engineered safety feature. These sections describe the pre- and postmodification system, the rationale for the modification, and required supporting safety analysis. Section 5 provides an updated description and analysis of the EBR-II emergency power system. Section 6 summarizes all significant modifications to the EBR-II plant-protection system to date.

  20. Experimental studies of U-Pu-Zr fast reactor fuel pins in EBR-II (Experimental Breeder Reactor)

    SciTech Connect

    Pahl, R.G.; Porter, D.L.; Lahm, C.E.; Hofman, G.L.

    1988-01-01

    The Integral Fast Reactor (IFR) is a generic reactor concept under development by Argonne National Laboratory. Much of the technology for the IFR is being demonstrated at the Experimental Breeder Reactor II (EBR-II) on the Department of Energy site near Idaho Falls, Idaho. The IFR concept relies on four technical features to achieve breakthroughs in nuclear power economics and safety: (1) a pool-type reactor configuration, (2) liquid sodium cooling, (3) metallic fuel, and (4) an integral fuel cycle with on-site reprocessing. The purpose of this paper will be to summarize our latest results of irradiation testing uranium-plutonium-zirconium (U-Pu-Zr) fuel in the EBR-II. 10 refs., 13 figs., 2 tabs.

  1. Tightly coupled'' simulation utilizing the EBR-II LMR: A real-time supercomputing and AI environment

    SciTech Connect

    Makowitz, H.; Barber, D.G.; Cordes, G.A.; Powers, A.K.; Scott, R. Jr.; Ward, L.W. ); Sackett, J.I.; King, R.W.; Lehto, W.K.; Lindsay, R.W.; Staffon, J.D. ); Gross, K.C. ); Doster, J.M. ); Edwards, R.M. (Pennsylvania State Univ., University P

    1990-01-01

    An integrated Supercomputing and AI environment utilizing a CRAY X-MP/216, a fiber-optic communications link, a distributed network of workstations and the Experimental Breeder Reactor II (EBR-II) Liquid Metal Reactor (LMR) and its associated instrumentation and control system is being developed at the Idaho National Engineering Laboratory (INEL). This paper summarizes various activities that make up this supercomputing and AI environment. 5 refs., 4 figs.

  2. Swelling and tensile properties of EBR-II-irradiated tantalum alloys for space reactor applications

    SciTech Connect

    Grossbeck, M.L.; Wiffen, F.W.

    1985-01-01

    The tantalum alloys T-111, ASTAR-811C, Ta-10 W, and unalloyed tantalum were examined following EBR-II irradiation to a fluence of 1.7 x 10/sup 26/ neutrons/m/sup 2/ (E > 0.1 MeV) at temperatures from 650 to 950 K. Swelling was found to be negligible for all alloys; only tantalum was found to exhibit swelling, 0.36%. Tensile testing revealed that irradiated T-111 and Ta-10 W are susceptible to plastic instability, but ASTAR-811C and tantalum were not. The tensile properties of ASTAR-811C appeared adequate for current SP-100 space nuclear reactor designs. Irradiated, oxygen-doped T-111 exhibited no plastic deformation, and the abrupt failure was intergranular in nature. The absence of plastic instability in ASTAR-811C is encouraging for alloys containing carbide precipitates. These fine precipitates might prevent dislocation channeling, which leads to plastic instability in many bcc metals after irradiation. 10 refs., 13 figs., 8 tabs.

  3. SCALE UP OF CERAMIC WASTE FORMS FOR THE EBR-II SPENT FUEL TREATMENT PROCESS

    SciTech Connect

    Matthew C. Morrison; Kenneth J. Bateman; Michael F. Simpson

    2010-11-01

    ABSTRACT SCALE UP OF CERAMIC WASTE FORMS FOR THE EBR-II SPENT FUEL TREATMENT PROCESS Matthew C. Morrison, Kenneth J. Bateman, Michael F. Simpson Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415 The ceramic waste process is the intended method for disposing of waste salt electrolyte, which contains fission products from the fuel-processing electrorefiners (ER) at the INL. When mixed and processed with other materials, the waste salt can be stored in a durable ceramic waste form (CWF). The development of the CWF has recently progressed from small-scale testing and characterization to full-scale implementation and experimentation using surrogate materials in lieu of the ER electrolyte. Two full-scale (378 kg and 383 kg) CWF test runs have been successfully completed with final densities of 2.2 g/cm3 and 2.1 g/cm3, respectively. The purpose of the first CWF was to establish material preparation parameters. The emphasis of the second pre-qualification test run was to evaluate a preliminary multi-section CWF container design. Other considerations were to finalize material preparation parameters, measure the material height as it consolidates in the furnace, and identify when cracking occurs during the CWF cooldown process.

  4. Irradiation and compatibility testing of Li/sub 2/O materials at EBR-II

    SciTech Connect

    Porter, D.L.; Krsul, J.R.; Laug, M.T.; Tetenbaum, M.; Walters, L.C.

    1982-12-01

    A study was made of the neutron-irradiation behavior of /sup 6/Li-enriched Li/sub 2/O material in EBR-II. In addition, a stress corrosion study was performed ex-reactor to test compatibility of Li/sub 2/O materials with a variety of stainless steels. Results of the irradiation testing showed that tritium and helium retention in the Li/sub 2/O (approx. 89% dense) lessened with neutron exposure. Helium tritium retention appeared to approach steady-state after approx. 1% /sup 6/Li burnup. The effect was likely caused by the formation of open porosity in the pellets. The stress corrosion studies, using a 316 stainless steel (Ti-modified) and a 35% Ni alloy, showed that stress does not enhance the corrosion, and that dry Li/sub 2/O is not significantly corrosive, the LiOH content producing the corrosive effects. Corrosion, in general, was not severe as a passivation in sealed capsules seemed to occur after a time greatly reducing corrosion rates.

  5. Visual imagery and the user model applied to fuel handling at EBR-II

    SciTech Connect

    Brown-VanHoozer, S.A.

    1995-06-01

    The material presented in this paper is based on two studies involving visual display designs and the user`s perspective model of a system. The studies involved a methodology known as Neuro-Linguistic Programming (NLP), and its use in expanding design choices which included the ``comfort parameters`` and ``perspective reality`` of the user`s model of the world. In developing visual displays for the EBR-II fuel handling system, the focus would be to incorporate the comfort parameters that overlap from each of the representation systems: visual, auditory and kinesthetic then incorporate the comfort parameters of the most prominent group of the population, and last, blend in the other two representational system comfort parameters. The focus of this informal study was to use the techniques of meta-modeling and synesthesia to develop a virtual environment that closely resembled the operator`s perspective of the fuel handling system of Argonne`s Experimental Breeder Reactor - II. An informal study was conducted using NLP as the behavioral model in a v reality (VR) setting.

  6. Initiating the D&D Project for the EBR-II

    SciTech Connect

    Rick Demmer

    2010-08-01

    A novel decommissioning project is underway to close the Experimental Breeder Reactor-II (EBR-II) “fast” reactor at the Idaho National Laboratory (INL), Materials and Fuels Complex (MFC) facility near Idaho Falls, ID. The facility was placed in cold shutdown in 1994 and work began on the removal of the metallic sodium coolant. The bulk of the sodium was drained and treated beginning in 2001. The residual sodium heel was chemically passivated to render it less reactive in 2005 using a novel carbon dioxide treatment. Approximately 700 kg of metallic sodium and 3500 kg of sodium bicarbonate remain in the facility. A RCRA Waste Treatment Permit, issued in 2002 by the State of Idaho Department of Environmental Quality, requires annual progress toward closure of the facility, and that all regulated materials be removed or deactivated, and the waste products removed by 2022. The baseline sodium removal technology would result in about 100,000 gallons of low-level waste solution requiring treatment along with separate handling of the large components (intermediate heat exchanger, rotating plug, etc) outside of the primary tank.

  7. Tensile properties of vanadium alloys irradiated at 390{degrees}C in EBR-II

    SciTech Connect

    Chung, H.M.; Tsai, H.C.; Nowicki, L.J.

    1997-08-01

    Vanadium alloys were irradiated in Li-bonded stainless steel capsules to {approx}390{degrees}C in the EBR-II X-530 experiment. This report presents results of postirradiation tests of tensile properties of two large-scale (100 and 500 kg) heats of V-4Cr-Ti and laboratory (15-30 kg) heats of boron-doped V-4Cr-4Ti, V-8Cr-6Ti, V-5Ti, and V-3Ti-1Si alloys. Tensile specimens, divided into two groups, were irradiated in two different capsules under nominally similar conditions. The 500-kg heat (No. 832665) and the 100-kg heat (VX-8) of V-4Cr-4Ti irradiated in one of the subcapsules exhibited complete loss of work-hardening capability, which was manifested by very low uniform plastic strain. In contrast, the 100-kg heat of V-4Cr-4Ti irradiated in another subcapsule exhibited good tensile properties (uniform plastic strain 2.8-4.0%). A laboratory heat of V-3Ti-1Si irradiated in the latter subcapsule also exhibited good tensile properties. These results indicate that work-hardening capability at low irradiation temperatures varies significantly from heat to heat and is influenced by nominally small differences in irradiation conditions.

  8. Midplane and off-midplane axial leakage simulation of heterogeneous subassemblies in EBR-II

    SciTech Connect

    Grimm, K.N.; Meneghetti, D.

    1984-01-01

    Generally EBR-II XY geometry and one-dimensional (1D) cylindrical neutron flux calculations using transport theory analysis assume energy independent DB/sup 2/-type absorptions to simulate effects of axial leakages. This assumption, while generally resulting in satisfactory eigenvalues and high- and intermediate-energy flux spectra, gives large errors in the low-energy flux spectra where the flux levels are smaller. These midplane errors, and more importantly the off-midplane errors, can be reduced by using a more realistic leakage model: space and energy dependent leakage absorption cross sections. Analyses have been reported in which transport theory methods using row-wise azimuthally-homogeneous RZ-geometry boundary angular fluxes to calculate space and energy dependent leakage absorptions which were then used in subsequent 1D cylindrical simulations of RZ calculations. The present paper extends the study to include heterogeneous core loading configurations. This study contains modeling of heterogeneous XYZ loadings using heterogeneous XY geometry and space and energy dependent leakage absorptions. Because of the complexities arising from the three-dimensional analysis, the results presented here use diffusion theory. Although the actual negative leakage absorption values can be used in the CITATION diffusion theory code, it was found that the ..sigma../sub s/(1..-->..g) method gave better results in the core region of these studies.

  9. Nonlinear PRD components of EBR-II compared with bowing analyses

    SciTech Connect

    Meneghetti, D.; Kucera, D.A.

    1987-01-01

    The nonlinear components of the power reactivity decrements (PRDs) for Experimental Breeder Reactor II (EBR-II) runs 85A, 93A, 99A, and 122A have been reported. These nonlinear components were deduced by subtraction of the calculated linear (and Doppler) components from the measured PRD curves. The linear (and Doppler) components of the PRDs were calculated using the EBRPOCO program together with an addition to the program (RODCO) that accounts for the effects of positionings of the control rods. Corresponding calculated bowing components of these runs have now been calculated assuming that the hex can ducts are unirradiated and thus have been assumed to have neither swelling nor bowing at the zero-power level in the analyses. Furthermore, the initial separations of the subassemblies at the contact-button levels are all assumed to be the unirradiated nominal 0.002 in. (0.051 mm). Comparison of these calculations with the bowing components deduced from the measurements enable the signs and magnitudes of the effects of the unknown initial conditions to be ascertained.

  10. Prediction of stainless steel activation in experimental breeder reactor 2 (EBR-II) reflector and blanket subassemblies

    SciTech Connect

    Bunde, K.A.

    1996-12-31

    Stainless steel structural components in nuclear reactors become radioactive wastes when no longer useful. Prior to disposal, certain physical attributes must be analyzed. These attributes include structural integrity, chemical stability, and the radioactive material content among others. The focus of this work is the estimation of the radioactive material content of stainless steel wastes from a research reactor operated by Argonne National Laboratory.

  11. Feedback components of a U20Pu10Zr-fueled compared to a U10Zr-fueled EBR-II

    SciTech Connect

    Meneghetti, D.; Kucera, D.A.

    1988-12-31

    Calculated feedback components of the regional contributions of the power reactivity decrements (PRDs) and of the temperature coefficients of reactivity of a U20Pu10Zr-fueled and of a U10Zr-fueled Experimental Breeder Reactor II (EBR-II) are compared. The PRD components are also separated into power-to-flow dependent and solely power dependent parts. The effects of these values upon quantities useful for indicating the comparative potential inherent safety characteristics of these EBR-II loadings are presented.

  12. Feedback components of a U20Pu10Zr-fueled compared to a U10Zr-fueled EBR-II

    SciTech Connect

    Meneghetti, D.; Kucera, D.A.

    1988-01-01

    Calculated feedback components of the regional contributions of the power reactivity decrements (PRDs) and of the temperature coefficients of reactivity of a U20Pu10Zr-fueled and of a U10Zr-fueled Experimental Breeder Reactor II (EBR-II) are compared. The PRD components are also separated into power-to-flow dependent and solely power dependent parts. The effects of these values upon quantities useful for indicating the comparative potential inherent safety characteristics of these EBR-II loadings are presented.

  13. Benchmark Simulations of the Thermal-Hydraulic Responses during EBR-II Inherent Safety Tests using SAM

    SciTech Connect

    Hu, Rui; Sumner, Tyler S.

    2016-01-01

    An advanced system analysis tool SAM is being developed for fast-running, improved-fidelity, and wholeplant transient analyses at Argonne National Laboratory under DOE-NE’s Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. As an important part of code development, companion validation activities are being conducted to ensure the performance and validity of the SAM code. This paper presents the benchmark simulations of two EBR-II tests, SHRT-45R and BOP- 302R, whose data are available through the support of DOE-NE’s Advanced Reactor Technology (ART) program. The code predictions of major primary coolant system parameter are compared with the test results. Additionally, the SAS4A/SASSYS-1 code simulation results are also included for a code-to-code comparison.

  14. Radiation Damage Calculations for the FUBR and BEATRIX Irradiations of Lithium Compounds in EBR-II and FFTF

    SciTech Connect

    LR Greenwood

    1999-06-17

    The Fusion Breeder Reactor (FUBR) and Breeder Exchange Matrix (BEATRIX) experiments were cooperative efforts by members of the International Energy Agency to investigate the irradiation behavior of solid breeder materials for tritium production to support future fusion reactors. Lithium ceramic materials including Li{sub 2}O, LiAlO{sub 2}, Li{sub 4}SiO{sub 4}, and Li{sub 2}ZrO{sub 3} with varying {sup 6}Li enrichments from 0 to 95% were irradiated in a series of experiments in the Experimental Breeder Reactor (EBR II) and in the Fast Flux Test Facility (FFTF) over a period of about 10 years from 1982 to 1992. These experiments were characterized in terms of the nominal fast neutron fluences and measured {sup 6}Li burnup factors, as determined by either mass spectrometry or helium measurements. Radiation damage in these compounds is caused by both the {sup 6}Li-burnup reaction and by all other possible neutron reactions with the atoms in the compound materials. In this report, displacements per atom (dpa) values have been calculated for each type of material in each of the various irradiations that were conducted. Values up to 11% {sup 6}Li-burnup and 130 dpa are predicted for the longest irradiations. The dpa cross sections were calculated for each compound using the SPECOMP computer code. Details of the dpa calculations are presented in the report. Total dpa factors were determined with the SPECTER computer code by averaging the dpa cross sections over the measured or calculated neutron flux spectra for each series of irradiations. Using these new calculations, previously measured radiation damage effects in these lithium compounds can be compared or correlated with other irradiation data on the basis of the dpa factor as well as {sup 6}Li-burnup.

  15. Development of a graphical user interface allowing use of the SASSYS LMR systems analysis code as an EBR-II interactive simulator

    SciTech Connect

    Garner, P.L.; Briggs, L.L.; Gross, K.C.; Ku, J.Y.; Staffon, J.D.

    1994-03-01

    The SASSYS computer program for safety analyses of liquid-metal- cooled fast reactors has been adapted for use as the simulation engine under the graphical user interface provided by the GRAFUN and HIST programs and the Data Views software package under the X Window System on UNIX-based computer workstations to provide a high fidelity, real-time, interactive simulator of the Experimental Breeder Reactor Number II (EBR-II) plant. In addition to providing analysts with an interactive way of performing safety case studies, the simulator can be used to investigate new control room technologies and to supplement current operator training.

  16. Microstructural characterization and density change of 304 stainless steel reflector blocks after long-term irradiation in EBR-II

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Wiezorek, J. M. K.; Garner, F. A.; Freyer, P. D.; Okita, T.; Sagisaka, M.; Isobe, Y.; Allen, T. R.

    2015-10-01

    While thin reactor structural components such as cladding and ducts do not experience significant gradients in dpa rate, gamma heating rate, temperature or stress, thick components can develop strong local variations in void swelling and irradiation creep in response to gradients in these variables. In this study we conducted microstructural investigations by transmission electron microscopy of two 52 mm thick 304-type stainless steel hex-blocks irradiated for 12 years in the EBR-II reactor with accumulated doses ranging from ∼0.4 to 33 dpa. Spatial variations in the populations of voids, precipitates, Frank loops and dislocation lines have been determined for 304 stainless steel sections exposed to different temperatures, different dpa levels and at different dpa rates, demonstrating the existence of spatial gradients in the resulting void swelling. The microstructural measurements compare very well with complementary density change measurements regarding void swelling gradients in the 304 stainless steel hex-block components. The TEM studies revealed that the original cold-worked-state microstructure of the unirradiated blocks was completely erased by irradiation, replaced by high densities of interstitial Frank loops, voids and carbide precipitates at both the lowest and highest doses. At large dose levels the amount of volumetric void swelling correlated directly with the gamma heating gradient-related temperature increase (e.g. for 28 dpa, ∼2% swelling at 418 °C and ∼2.9% swelling at 448 °C). Under approximately iso-thermal local conditions, volumetric void swelling was found to increase with dose level (e.g. ∼0.2% swelling at 0.4 dpa, ∼0.5% swelling at 4 dpa and ∼2% swelling at 28 dpa). Carbide precipitate formation levels were found to be relatively independent of both dpa level and temperature and induced a measurable densification. Void swelling was dominant at the higher dose levels and caused measurable decreases in density. Void swelling

  17. Pyroprocessing of Oxidized Sodium-Bonded Fast Reactor Fuel -- an Experimental Study of Treatment Options for Degraded EBR-II Fuel

    SciTech Connect

    S. D. Herrmann; L. A. Wurth; N. J. Gese

    2013-09-01

    An experimental study was conducted to assess pyrochemical treatment options for degraded EBR-II fuel. As oxidized material, the degraded fuel would need to be converted back to metal to enable electrorefining within an existing electrometallurgical treatment process. A lithium-based electrolytic reduction process was studied to assess the efficacy of converting oxide materials to metal with a particular focus on the impact of zirconium oxide and sodium oxide on this process. Bench-scale electrolytic reduction experiments were performed in LiCl-Li2O at 650 °C with combinations of manganese oxide (used as a surrogate for uranium oxide), zirconium oxide, and sodium oxide. The experimental study illustrated how zirconium oxide and sodium oxide present different challenges to a lithium-based electrolytic reduction system for conversion of select metal oxides to metal.

  18. Test program element II blanket and shield thermal-hydraulic and thermomechanical testing, experimental facility survey

    SciTech Connect

    Ware, A.G.; Longhurst, G.R.

    1981-12-01

    This report presents results of a survey conducted by EG and G Idaho to determine facilities available to conduct thermal-hydraulic and thermomechanical testing for the Department of Energy Office of Fusion Energy First Wall/Blanket/Shield Engineering Test Program. In response to EG and G queries, twelve organizations (in addition to EG and G and General Atomic) expressed interest in providing experimental facilities. A variety of methods of supplying heat is available.

  19. Pyroprocessing of oxidized sodium-bonded fast reactor fuel - An experimental study of treatment options for degraded EBR-II fuel

    SciTech Connect

    Hermann, S.D.; Gese, N.J.; Wurth, L.A.

    2013-07-01

    An experimental study was conducted to assess pyrochemical treatment options for degraded EBR-II fuel. As oxidized material, the degraded fuel would need to be converted back to metal to enable electrorefining within an existing electro-metallurgical treatment process. A lithium-based electrolytic reduction process was studied to assess the efficacy of converting oxide materials to metal with a particular focus on the impact of zirconium oxide and sodium oxide on this process. Bench-scale electrolytic reduction experiments were performed in LiCl-Li{sub 2}O at 650 C. degrees with combinations of manganese oxide (used as a surrogate for uranium oxide), zirconium oxide, and sodium oxide. In the absence of zirconium or sodium oxide, the electrolytic reduction of MnO showed nearly complete conversion to metal. The electrolytic reduction of a blend of MnO-ZrO{sub 2} in LiCl - 1 wt% Li{sub 2}O showed substantial reduction of manganese, but only 8.5% of the zirconium was found in the metal phase. The electrolytic reduction of the same blend of MnO-ZrO{sub 2} in LiCl - 1 wt% Li{sub 2}O - 6.2 wt% Na{sub 2}O showed substantial reduction of manganese, but zirconium reduction was even less at 2.4%. This study concluded that ZrO{sub 2} cannot be substantially reduced to metal in an electrolytic reduction system with LiCl - 1 wt% Li{sub 2}O at 650 C. degrees due to the perceived preferential formation of lithium zirconate. This study also identified a possible interference that sodium oxide may have on the same system by introducing a parasitic and cyclic reaction of dissolved sodium metal between oxidation at the anode and reduction at the cathode. When applied to oxidized sodium-bonded EBR-II fuel (e.g., U-10Zr), the prescribed electrolytic reduction system would not be expected to substantially reduce zirconium oxide, and the accumulation of sodium in the electrolyte could interfere with the reduction of uranium oxide, or at least render it less efficient.

  20. Validation of the integration of CFD and SAS4A/SASSYS-1: Analysis of EBR-II shutdown heat removal test 17

    SciTech Connect

    Thomas, J. W.; Fanning, T. H.; Vilim, R.; Briggs, L. L.

    2012-07-01

    Recent analyses have demonstrated the need to model multidimensional phenomena, particularly thermal stratification in outlet plena, during safety analyses of loss-of-flow transients of certain liquid-metal cooled reactor designs. Therefore, Argonne's reactor systems safety code SAS4A/SASSYS-1 is being enhanced by integrating 3D computational fluid dynamics models of the plena. A validation exercise of the new tool is being performed by analyzing the protected loss-of-flow event demonstrated by the EBR-II Shutdown Heat Removal Test 17. In this analysis, the behavior of the coolant in the cold pool is modeled using the CFD code STAR-CCM+, while the remainder of the cooling system and the reactor core are modeled with SAS4A/SASSYS-1. This paper summarizes the code integration strategy and provides the predicted 3D temperature and velocity distributions inside the cold pool during SHRT-17. The results of the coupled analysis should be considered preliminary at this stage, as the exercise pointed to the need to improve the CFD model of the cold pool tank. (authors)

  1. TRISO-Fuel Element Performance Modeling for the Hybrid LIFE Engine with Pu Fuel Blanket

    SciTech Connect

    DeMange, P; Marian, J; Caro, M; Caro, A

    2010-02-18

    A TRISO-coated fuel thermo-mechanical performance study is performed for the hybrid LIFE engine to test the viability of TRISO particles to achieve ultra-high burnup of a weapons-grade Pu blanket. Our methodology includes full elastic anisotropy, time and temperature varying material properties for all TRISO layers, and a procedure to remap the elastic solutions in order to achieve fast fluences up to 30 x 10{sup 25} n {center_dot} m{sup -2} (E > 0.18 MeV). In order to model fast fluences in the range of {approx} 7 {approx} 30 x 10{sup 25} n {center_dot} m{sup -2}, for which no data exist, careful scalings and extrapolations of the known TRISO material properties are carried out under a number of potential scenarios. A number of findings can be extracted from our study. First, failure of the internal pyrolytic carbon (PyC) layer occurs within the first two months of operation. Then, the particles behave as BISO-coated particles, with the internal pressure being withstood directly by the SiC layer. Later, after 1.6 years, the remaining PyC crumbles due to void swelling and the fuel particle becomes a single-SiC-layer particle. Unrestrained by the PyC layers, and at the temperatures and fluences in the LIFE engine, the SiC layer maintains reasonably-low tensile stresses until the end-of-life. Second, the PyC creep constant, K, has a striking influence on the fuel performance of TRISO-coated particles, whose stresses scale almost inversely proportional to K. Obtaining more reliable measurements, especially at higher fluences, is an imperative for the fidelity of our models. Finally, varying the geometry of the TRISO-coated fuel particles results in little differences in the scope of fuel performance. The mechanical integrity of 2-cm graphite pebbles that act as fuel matrix has also been studied and it is concluded that they can reliable serve the entire LIFE burnup cycle without failure.

  2. ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS

    SciTech Connect

    WONG, CPC; MALANG, S; NISHIO, S; RAFFRAY, R; SAGARA, S

    2002-04-01

    OAK A271 ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS. First wall and blanket (FW/blanket) design is a crucial element in the performance and acceptance of a fusion power plant. High temperature structural and breeding materials are needed for high thermal performance. A suitable combination of structural design with the selected materials is necessary for D-T fuel sufficiency. Whenever possible, low afterheat, low chemical reactivity and low activation materials are desired to achieve passive safety and minimize the amount of high-level waste. Of course the selected fusion FW/blanket design will have to match the operational scenarios of high performance plasma. The key characteristics of eight advanced high performance FW/blanket concepts are presented in this paper. Design configurations, performance characteristics, unique advantages and issues are summarized. All reviewed designs can satisfy most of the necessary design goals. For further development, in concert with the advancement in plasma control and scrape off layer physics, additional emphasis will be needed in the areas of first wall coating material selection, design of plasma stabilization coils, consideration of reactor startup and transient events. To validate the projected performance of the advanced FW/blanket concepts the critical element is the need for 14 MeV neutron irradiation facilities for the generation of necessary engineering design data and the prediction of FW/blanket components lifetime and availability.

  3. Composite flexible blanket insulation

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A. (Inventor); Lowe, David M. (Inventor)

    1994-01-01

    An improved composite flexible blanket insulation is presented comprising top silicon carbide having an interlock design, wherein the reflective shield is composed of single or double aluminized polyimide and wherein the polyimide film has a honeycomb pattern.

  4. Gauge Measures Thicknesses Of Blankets

    NASA Technical Reports Server (NTRS)

    Hagen, George R.; Yoshino, Stanley Y.

    1991-01-01

    Tool makes highly repeatable measurements of thickness of penetrable blanket insulation. Includes commercial holder for replaceable knife blades, which holds needle instead of knife. Needle penetrates blanket to establish reference plane. Ballasted slider applies fixed preload to blanket. Technician reads thickness value on scale.

  5. Thermal insulation blanket material

    NASA Technical Reports Server (NTRS)

    Pusch, R. H.

    1982-01-01

    A study was conducted to provide a tailorable advanced blanket insulation based on a woven design having an integrally woven core structure. A highly pure quartz yarn was selected for weaving and the cells formed were filled with a microquartz felt insulation.

  6. Thermal insulation blanket material

    NASA Astrophysics Data System (ADS)

    Pusch, R. H.

    1982-06-01

    A study was conducted to provide a tailorable advanced blanket insulation based on a woven design having an integrally woven core structure. A highly pure quartz yarn was selected for weaving and the cells formed were filled with a microquartz felt insulation.

  7. Tailorable Advanced Blanket Insulation (TABI)

    NASA Technical Reports Server (NTRS)

    Sawko, Paul M.; Goldstein, Howard E.

    1987-01-01

    Single layer and multilayer insulating blankets for high-temperature service fabricated without sewing. TABI woven fabric made of aluminoborosilicate. Triangular-cross-section flutes of core filled with silica batting. Flexible blanket formed into curved shapes, providing high-temperature and high-heat-flux insulation.

  8. Blanket comparison and selection study. Volume II

    SciTech Connect

    Not Available

    1983-10-01

    This volume contains extensive data for the following chapters: (1) solid breeder tritium recovery, (2) solid breeder blanket designs, (3) alternate blanket concept screening, and (4) safety analysis. The following appendices are also included: (1) blanket design guidelines, (2) power conversion systems, (3) helium-cooled, vanadium alloy structure blanket design, (4) high wall loading study, and (5) molten salt safety studies. (MOW)

  9. Thermal creep of granular breeder materials in fusion blankets

    NASA Astrophysics Data System (ADS)

    Bühler, L.; Reimann, J.

    2002-12-01

    Continuum models for granular materials in fusion blankets are efficient tools for modeling of the nonlinear elastic behavior of pebble beds, granular particle flow caused by shear, volume compaction and hardening. The present paper describes how the material models used in finite element analyses can be extended in order to account additionally for thermally activated creep. The derived material model gives results which are in reasonable accordance with experimental data for pebble beds.

  10. Packed fluidized bed blanket for fusion reactor

    DOEpatents

    Chi, John W. H.

    1984-01-01

    A packed fluidized bed blanket for a fusion reactor providing for efficient radiation absorption for energy recovery, efficient neutron absorption for nuclear transformations, ease of blanket removal, processing and replacement, and on-line fueling/refueling. The blanket of the reactor contains a bed of stationary particles during reactor operation, cooled by a radial flow of coolant. During fueling/refueling, an axial flow is introduced into the bed in stages at various axial locations to fluidize the bed. When desired, the fluidization flow can be used to remove particles from the blanket.

  11. GCFR radial blanket and shield experiment

    SciTech Connect

    Muckenthaler, F.J.; Hull, J.L.; Manning, J.J.

    1980-12-01

    This report presents integral neutron flux, energy spectra, and gamma-ray heating measurements made for the Radial Blanket and Shield Experiment at the ORNL Tower Shielding Facility as part of a continuing Gas Cooled Fast Breeder Reactor program. The experimental configurations were divided into four basic segments: a spectrum modifier inserted into the Tower Shielding Reactor II beam; blanket slabs consisting of either ThO/sub 2/ or UO/sub 2/ placed directly behind the spectrum modifier; an inner radial shield behind the blankets; and an outer radial shield to complete the mockup. The segments were added in sequence, with selected measurements made within and beyond each segment. The integral experiment was performed to provide verification of calculational methods and nuclear data used in designing a radial shield for the GCFR and determining the effectiveness of the design. The ThO/sub 2/ blanket measurements were needed to bracket the uncertainties in the nuclear cross sections for calculating both the neutron transmission through the blanket and the gamma-ray heating rates within the blanket. Measurements with a UO/sub 2/ blanket were included both as a reference for the ThO/sub 2/ analysis, neutron transmission through UO/sub 2/ having been successfully calculated in previous experiments, and to provide comparison information for other breeder reactor designs.

  12. Space environment durability of beta cloth in LDEF thermal blankets

    NASA Technical Reports Server (NTRS)

    Linton, Roger C.; Whitaker, Ann F.; Finckenor, Miria M.

    1993-01-01

    Beta cloth performance for use on long-term space vehicles such as Space Station Freedom (S.S. Freedom) requires resistance to the degrading effects of the space environment. The major issues are retention of thermal insulating properties through maintaining optical properties, preserving mechanical integrity, and generating minimal particulates for contamination-sensitive spacecraft surfaces and payloads. The longest in-flight test of beta cloth's durability was on the Long Duration Exposure Facility (LDEF), where it was exposed to the space environment for 68 months. The LDEF contained 57 experiments which further defined the space environment and its effects on spacecraft materials. It was deployed into low-Earth orbit (LEO) in Apr. 1984 and retrieved Jan. 1990 by the space shuttle. Among the 10,000 plus material constituents and samples onboard were thermal control blankets of multilayer insulation with a beta cloth outer cover and Velcro attachments. These blankets were exposed to hard vacuum, thermal cycling, charged particles, meteoroid/debris impacts, ultraviolet (UV) radiation, and atomic oxygen (AO). Of these space environmental exposure elements, AO appears to have had the greatest effect on the beta cloth. The beta cloth analyzed in this report came from the MSFC Experiment S1005 (Transverse Flat-Plate Heat Pipe) tray oriented approximately 22 deg from the leading edge vector of the LDEF satellite. The location of the tray on LDEF and the placement of the beta cloth thermal blankets are shown. The specific space environment exposure conditions for this material are listed.

  13. APT target-blanket fabrication development

    SciTech Connect

    Fisher, D.L.

    1997-06-13

    Concepts for producing tritium in an accelerator were translated into hardware for engineering studies of tritium generation, heat transfer, and effects of proton-neutron flux on materials. Small-scale target- blanket assemblies were fabricated and material samples prepared for these performance tests. Blanket assemblies utilize composite aluminum-lead modules, the two primary materials of the blanket. Several approaches are being investigated to produce large-scale assemblies, developing fabrication and assembly methods for their commercial manufacture. Small-scale target-blanket assemblies, designed and fabricated at the Savannah River Site, were place in Los Alamos Neutron Science Center (LANSCE) for irradiation. They were subjected to neutron flux for nine months during 1996-97. Coincident with this test was the development of production methods for large- scale modules. Increasing module size presented challenges that required new methods to be developed for fabrication and assembly. After development, these methods were demonstrated by fabricating and assembling two production-scale modules.

  14. Multifractal Framework Based on Blanket Method

    PubMed Central

    Paskaš, Milorad P.; Reljin, Irini S.; Reljin, Branimir D.

    2014-01-01

    This paper proposes two local multifractal measures motivated by blanket method for calculation of fractal dimension. They cover both fractal approaches familiar in image processing. The first two measures (proposed Methods 1 and 3) support model of image with embedded dimension three, while the other supports model of image embedded in space of dimension three (proposed Method 2). While the classical blanket method provides only one value for an image (fractal dimension) multifractal spectrum obtained by any of the proposed measures gives a whole range of dimensional values. This means that proposed multifractal blanket model generalizes classical (monofractal) blanket method and other versions of this monofractal approach implemented locally. Proposed measures are validated on Brodatz image database through texture classification. All proposed methods give similar classification results, while average computation time of Method 3 is substantially longer. PMID:24578664

  15. Method of fabricating a multilayer insulation blanket

    DOEpatents

    Gonczy, John D.; Niemann, Ralph C.; Boroski, William N.

    1993-01-01

    An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel.

  16. Multilayer insulation blanket, fabricating apparatus and method

    DOEpatents

    Gonczy, J.D.; Niemann, R.C.; Boroski, W.N.

    1992-09-01

    An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel. 7 figs.

  17. Method of fabricating a multilayer insulation blanket

    DOEpatents

    Gonczy, J.D.; Niemann, R.C.; Boroski, W.N.

    1993-07-06

    An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel.

  18. Multilayer insulation blanket, fabricating apparatus and method

    DOEpatents

    Gonczy, John D.; Niemann, Ralph C.; Boroski, William N.

    1992-01-01

    An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel.

  19. Axially staggered seed-blanket reactor fuel module construction

    DOEpatents

    Cowell, Gary K.; DiGuiseppe, Carl P.

    1985-01-01

    A heterogeneous nuclear reactor of the seed-blanket type is provided wher the fissile (seed) and fertile (blanket) nuclear fuels are segregated axially within each fuel element such that fissile and fertile regions occur in an alternating pattern along the length of the fuel element. Further, different axial stacking patterns are used for the fuel elements of at least two module types such that when modules of different types are positioned adjacent to one another, the fertile regions of the modules are offset or staggered. Thus, when a module of one type is surrounded by modules of the second type the fertile regions thereof will be surrounded on all sides by fissile material. This provides enhanced neutron communication both radially and axially, thereby resulting in greater power oscillation stability than other axial arrangements. The arrangements of the fissile and fertile regions in an alternating axial manner minimizes the radial power peaking factors and provides a more optional thermal-hydraulic design than is afforded by radial arrangements.

  20. Space or rescue blanket--a bluff?

    PubMed

    Renström, B

    1992-10-01

    A product which has been heavily promoted for a number of years is an aluminized plastic foil designed to reflect 80% of body heat. However, a large body of experience points to the following: 1. A minimal amount of heat is radiated by a clothed body. This can easily be demonstrated with a thermocamera. 2. The plastic foils is impermeable to both water and water vapour. Thus condensation is formed on the blanket's interior. This virtually eliminates the reflective properties of the aluminum foil, often after only 15-20 minutes. 3. The blanket usually works best when the wind velocity is less than 9 m/s, otherwise the wind tears it into pieces. The greater the wind velocity and amount of clothing worn, the less the effect of the blanket. 4. Water accumulation on the clothing inside the blanket rapidly conducts heat from the skin. The blanket and the aluminum then take over and conduct heat 9,300 times faster than air. 5. It is supposed to reflect radar waves. Theoretically yes, but practical tests made in lifeboats at sea have showed that it gives no help. 6. The plastic film is inflammable.

  1. Thermal-hydraulics design comparisons for the tandem mirror hybrid reactor blanket

    SciTech Connect

    Wong, C.P.C.; Yang, Y.S.; Schultz, K.R.

    1980-09-01

    The Tandem Mirror Hybrid Reactor (TMHR) is a cylindrical reactor, and the fertile materials and tritium breeding fuel elements can be arranged with radial or axial orientation in the blanket module. Thermal-hydraulics performance comparisons were made between plate, axial rod and radial rod fuel geometrices. The three configurations result in different coolant/void fractions and different clad/structure fractions. The higher void fraction in the two rod designs means that these blankets will have to be thicker than the plate design blanket in order to achieve the same level of nuclear interactions. Their higher structural fractions will degrade the uranium breeding ratio and energy multiplication factor of the design. One difficulty in the thermal-hydraulics analysis of the plate design was caused by the varying energy multiplication of the blanket during the lifetime of the plate which forced the use of designs that operated in the transition flow regime at some point during life. To account for this, an approach was adopted from Gas Cooled Fast Reactor (GCFR) experience for the pressure drop calculation and the corresponding heat transfer coefficient that was used for the film drop thermal calculation. Because of the superior nuclear performance, the acceptable thermal-hydraulic characteristics and the mechanical design feasibility, the plate geometry concept was chosen for the reference gas-cooled TMHR blanket design.

  2. Thermally distinct ejecta blankets from Martian craters

    NASA Astrophysics Data System (ADS)

    Betts, B. H.; Murray, B. C.

    1993-06-01

    A study of Martian ejecta blankets is carried out using the high-resolution thermal IR/visible data from the Termoskan instrument aboard Phobos '88 mission. It is found that approximately 100 craters within the Termoskan data have an ejecta blanket distinct in the thermal infrared (EDITH). These features are examined by (1) a systematic examination of all Termoskan data using high-resolution image processing; (2) a study of the systematics of the data by compiling and analyzing a data base consisting of geographic, geologic, and mormphologic parameters for a significant fraction of the EDITH and nearby non-EDITH; and (3) qualitative and quantitative analyses of localized regions of interest. It is noted that thermally distinct ejecta blankets are excellent locations for future landers and remote sensing because of relatively dust-free surface exposures of material excavated from depth.

  3. The requirements for processing tritium recovered from liquid lithium blankets: The blanket interface

    SciTech Connect

    Clemmer, R.G.; Finn, P.A.; Greenwood, L.R.; Grimm, T.L.; Sze, D.K.; Bartlit, J.R.; Anderson, J.L.; Yoshida, H.; Naruse

    1988-03-01

    We have initiated a study to define a blanket processing mockup for Tritium Systems Test Assembly. Initial evaluation of the requirements of the blanket processing system have been started. The first step of the work is to define the condition of the gaseous tritium stream from the blanket tritium recovery system. This report summarizes this part of the work for one particular blanket concept, i.e., a self-cooled lithium blanket. The total gas throughput, the hydrogen to tritium ratio, the corrosive chemicals, and the radionuclides are defined. The key discoveries are: the throughput of the blanket gas stream (including the helium carrier gas) is about two orders of magnitude higher than the plasma exhaust stream;the protium to tritium ratio is about 1, the deuterium to tritium ratio is about 0.003;the corrosion chemicals are dominated by halides;the radionuclides are dominated by C-14, P-32, and S-35;their is high level of nitrogen contamination in the blanket stream. 77 refs., 6 figs., 13 tabs.

  4. Annular seed-blanket thorium fuel core concepts for heavy water moderated reactors

    SciTech Connect

    Bromley, B.P.; Hyland, B.

    2013-07-01

    New reactor concepts to implement thorium-based fuel cycles have been explored to achieve maximum resource utilization. Pressure tube heavy water reactors (PT-HWR) are highly advantageous for implementing the use of thorium-based fuels because of their high neutron economy and on-line re-fuelling capability. The use of heterogeneous seed-blanket core concepts in a PT-HWR where higher-fissile-content seed fuel bundles are physically separate from lower-fissile-content blanket bundles allows more flexibility and control in fuel management to maximize the fissile utilization and conversion of fertile fuel. The lattice concept chosen is a 35-element bundle made with a homogeneous mixture of reactor grade Pu and Th, and with a central zirconia rod to help reduce coolant void reactivity. Several annular heterogeneous seed-blanket core concepts with plutonium-thorium-based fuels in a 700-MWe-class PT-HWR were analyzed, using a once-through thorium (OTT) cycle. Different combinations of seed and blanket fuel were tested to determine the impact on core-average burnup, fissile utilization, power distributions, and other performance parameters. It was found that the various core concepts can achieve a fissile utilization that is up to 30% higher than is currently achieved in a PT-HWR using conventional natural uranium fuel bundles. Up to 67% of the Pu is consumed; up to 43% of the energy is produced from thorium, and up to 363 kg/year of U-233 is produced. Seed-blanket cores with ∼50% content of low-power blanket bundles may require power de-rating (∼58% to 65%) to avoid exceeding maximum limits for peak channel power, bundle power and linear element ratings. (authors)

  5. Lightweight IMM PV Flexible Blanket Assembly

    NASA Technical Reports Server (NTRS)

    Spence, Brian

    2015-01-01

    Deployable Space Systems (DSS) has developed an inverted metamorphic multijunction (IMM) photovoltaic (PV) integrated modular blanket assembly (IMBA) that can be rolled or z-folded. This IMM PV IMBA technology enables a revolutionary flexible PV blanket assembly that provides high specific power, exceptional stowed packaging efficiency, and high-voltage operation capability. DSS's technology also accommodates standard third-generation triple junction (ZTJ) PV device technologies to provide significantly improved performance over the current state of the art. This SBIR project demonstrated prototype, flight-like IMM PV IMBA panel assemblies specifically developed, designed, and optimized for NASA's high-voltage solar array missions.

  6. Flute stabilization by a cold line-tied blanket

    SciTech Connect

    Segal, D.; Wickham, M.; Rynn, N.

    1982-09-01

    The curvature-driven flute instability in an axisymmetric mirror was stabilized by an annular line-tied plasma blanket. A significant temperature difference was maintained between core and blanket. Theoretical calculations support the experimental observations.

  7. 75 FR 51482 - Woven Electric Blankets From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-20

    ... COMMISSION Woven Electric Blankets From China Determination On the basis of the record \\1\\ developed in the... United States is materially injured by reason of imports from China of woven electric blankets, provided... woven electric blankets from China were being sold at LTFV within the meaning of section 733(b) of...

  8. Drugs: blanket ban or harm reduction?

    PubMed

    Gross, Michael

    2015-06-29

    As the commercial success of electronic cigarettes offers the opportunity to study harm reduction by replacement therapy, the UK government steers in the opposite direction and plans to expand the 'war on drugs' with a blanket ban on all psychoactive substances. Michael Gross reports.

  9. 18 CFR 157.203 - Blanket certification.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... issues a notice of the pipeline's filing. If you file a protest, you should include the docket number... ACT Interstate Pipeline Blanket Certificates and Authorization Under Section 7 of the Natural Gas Act... 20426. A copy of the protest should be mailed to the pipeline at . If you have any questions...

  10. 18 CFR 157.203 - Blanket certification.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... issues a notice of the pipeline's filing. If you file a protest, you should include the docket number... ACT Interstate Pipeline Blanket Certificates and Authorization Under Section 7 of the Natural Gas Act... 20426. A copy of the protest should be mailed to the pipeline at . If you have any questions...

  11. Aerogel Blanket Insulation Materials for Cryogenic Applications

    NASA Technical Reports Server (NTRS)

    Coffman, B. E.; Fesmire, J. E.; White, S.; Gould, G.; Augustynowicz, S.

    2009-01-01

    Aerogel blanket materials for use in thermal insulation systems are now commercially available and implemented by industry. Prototype aerogel blanket materials were presented at the Cryogenic Engineering Conference in 1997 and by 2004 had progressed to full commercial production by Aspen Aerogels. Today, this new technology material is providing superior energy efficiencies and enabling new design approaches for more cost effective cryogenic systems. Aerogel processing technology and methods are continuing to improve, offering a tailor-able array of product formulations for many different thermal and environmental requirements. Many different varieties and combinations of aerogel blankets have been characterized using insulation test cryostats at the Cryogenics Test Laboratory of NASA Kennedy Space Center. Detailed thermal conductivity data for a select group of materials are presented for engineering use. Heat transfer evaluations for the entire vacuum pressure range, including ambient conditions, are given. Examples of current cryogenic applications of aerogel blanket insulation are also given. KEYWORDS: Cryogenic tanks, thermal insulation, composite materials, aerogel, thermal conductivity, liquid nitrogen boil-off

  12. 47 CFR 22.353 - Blanketing interference.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... of responsibility is that area in the immediate vicinity of the transmitting antenna of stations... consideration of the antenna's vertical radiation pattern or height, must be used in the formula. (c) Licensees are not required to resolve blanketing interference to mobile receivers or non-RF devices...

  13. 47 CFR 22.353 - Blanketing interference.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... of responsibility is that area in the immediate vicinity of the transmitting antenna of stations... consideration of the antenna's vertical radiation pattern or height, must be used in the formula. (c) Licensees are not required to resolve blanketing interference to mobile receivers or non-RF devices...

  14. 47 CFR 22.353 - Blanketing interference.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... of responsibility is that area in the immediate vicinity of the transmitting antenna of stations... consideration of the antenna's vertical radiation pattern or height, must be used in the formula. (c) Licensees are not required to resolve blanketing interference to mobile receivers or non-RF devices...

  15. 47 CFR 22.353 - Blanketing interference.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... of responsibility is that area in the immediate vicinity of the transmitting antenna of stations... consideration of the antenna's vertical radiation pattern or height, must be used in the formula. (c) Licensees are not required to resolve blanketing interference to mobile receivers or non-RF devices...

  16. 47 CFR 22.353 - Blanketing interference.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of responsibility is that area in the immediate vicinity of the transmitting antenna of stations... consideration of the antenna's vertical radiation pattern or height, must be used in the formula. (c) Licensees are not required to resolve blanketing interference to mobile receivers or non-RF devices...

  17. The climatic impact of supervolcanic ash blankets

    NASA Astrophysics Data System (ADS)

    Jones, M. T.; Sparks, S. J.; Valdes, P. J.

    2006-12-01

    Supervolcanoes are capable of ejecting 1000's of cubic kilometres of magmatic material in a single eruption, far surpassing anything recorded in human history. It has been postulated that these eruptions have acted as catalysts for long-term climate change and are responsible for bottlenecks in human and animal populations. Tephra deposits from a super-eruption are capable of covering an area the size of USA (~10,000,000 sq. km) with ash, destroying vegetation and considerably raising the surface albedo. Ecological responses to smaller eruptions show that recovery of flora takes over 15 years, while previous studies of ash blankets demonstrate sustained surface residence times. This suggests that a supervolcanic ash blanket would instigate a decadal climate response that would dominate in the aftermath of the effects of aerosols in the stratosphere. We use a coupled atmosphere-ocean General Circulation Model (GCM) to simulate the effect of an ash blanket from Yellowstone volcano, USA, and show that it causes major disruptions to the climate, particularly to oscillatory systems such as the El Niño Southern Oscillation (ENSO). The regional disturbance instigates a global response, with significant variations in surface temperatures, pressures and precipitation patterns. The ocean remains largely unaffected, though a marked increase in sea ice is seen in the North Atlantic. While the response to a supervolcanic ash blanket is predicted to be severe, the isolated effects of the disturbance are not significant enough to instigate long-term climate change at present day boundary conditions.

  18. A blanket design, apparatus, and fabrication techniques for the mass production of multilayer insulation blankets for the Superconducting Super Collider

    SciTech Connect

    Gonczy, J.D.; Boroski, W.N.; Niemann, R.C.; Otavka, J.G.; Ruschman, M.K.; Schoo, C.J.

    1989-09-01

    The multilayer insulation (MLI) system for the Superconducting Super Collider (SSC) consists of full cryostat length assemblies of aluminized polyester film fabricated in the form of blankets and installed as blankets to the 4.5K cold mass and the 20K and 80K thermal radiation shields. Approximately 40,000 MLI blankets will be required in the 10,000 cryogenic devices comprising the SSC accelerator. Each blanket is nearly 17 meters long and 1.8 meters wide. This paper reports the blanket design, an apparatus, and the fabrication method used to mass produce pre-fabricated MLI blankets. Incorporated in the blanket design are techniques which automate quality control during installation of the MLI blankets in the SSC cryostat. The apparatus and blanket fabrication method insure consistency in the mass produced blankets by providing positive control of the dimensional parameters which contribute to the thermal performance of the MLI blanket. By virtue of the fabrication process, the MLI blankets have inherent features of dimensional stability three-dimensional uniformity, controlled layer density, layer-to-layer registration, interlayer cleanliness, and interlayer material to accommodate thermal contraction differences. 11 refs., 6 figs., 1 tab.

  19. Axially staggered seed-blanket reactor-fuel-module construction. [LWBR

    DOEpatents

    Cowell, G.K.; DiGuiseppe, C.P.

    1982-10-28

    A heterogeneous nuclear reactor of the seed-blanket type is provided wherein the fissile (seed) and fertile (blanket) nuclear fuels are segregated axially within each fuel element such that fissile and fertile regions occur in an alternating pattern along the length of the fuel element. Further, different axial stacking patterns are used for the fuel elements of at least two module types such that when modules of different types are positioned adjacent to one another, the fertile regions of the modules are offset or staggered. Thus, when a module of one type is surrounded by modules of the second type the fertile regions thereof will be surrounded on all sides by fissile material. This provides enhanced neutron communication both radially and axially, thereby resulting in greater power oscillation stability than other axial arrangements.

  20. Checkerboard seed-blanket thorium fuel core concepts for heavy water moderated reactors

    SciTech Connect

    Bromley, B.P.; Hyland, B.

    2013-07-01

    New reactor concepts to implement thorium-based fuel cycles have been explored to achieve maximum resource utilization. Pressure tube heavy water reactors (PT-HWR) are highly advantageous for implementing the use of thorium-based fuels because of their high neutron economy and on-line re-fuelling capability. The use of heterogeneous seed-blanket core concepts in a PT-HWR where higher-fissile-content seed fuel bundles are physically separate from lower-fissile-content blanket bundles allows more flexibility and control in fuel management to maximize the fissile utilization and conversion of fertile fuel. The lattice concept chosen was a 35-element bundle made with a homogeneous mixture of reactor grade Pu (about 67 wt% fissile) and Th, and with a central zirconia rod to help reduce coolant void reactivity. Several checkerboard heterogeneous seed-blanket core concepts with plutonium-thorium-based fuels in a 700-MWe-class PT-HWR were analyzed, using a once-through thorium (OTT) cycle. Different combinations of seed and blanket fuel were tested to determine the impact on core-average burnup, fissile utilization, power distributions, and other performance parameters. It was found that various checkerboard core concepts can achieve a fissile utilization that is up to 26% higher than that achieved in a PT-HWR using more conventional natural uranium fuel bundles. Up to 60% of the Pu is consumed; up to 43% of the energy is produced from thorium, and up to 303 kg/year of Pa-233/U-233/U-235 are produced. Checkerboard cores with about 50% of low-power blanket bundles may require power de-rating (65% to 74%) to avoid exceeding maximum limits for channel and bundle powers and linear element ratings. (authors)

  1. Detection of Breeding Blankets Using Antineutrinos

    NASA Astrophysics Data System (ADS)

    Cogswell, Bernadette; Huber, Patrick

    2016-03-01

    The Plutonium Management and Disposition Agreement between the United States and Russia makes arrangements for the disposal of 34 metric tons of excess weapon-grade plutonium. Under this agreement Russia plans to dispose of its excess stocks by processing the plutonium into fuel for fast breeder reactors. To meet the disposition requirements this fuel would be burned while the fast reactors are run as burners, i.e., without a natural uranium blanket that can be used to breed plutonium surrounding the core. This talk discusses the potential application of antineutrino monitoring to the verification of the presence or absence of a breeding blanket. It is found that a 36 kg antineutrino detector, exploiting coherent elastic neutrino-nucleus scattering and made of silicon, could determine the presence of a breeding blanket at a liquid sodium cooled fast reactor at the 95% confidence level within 90 days. Such a detector would be a novel non-intrusive verification tool and could present a first application of coherent elastic neutrino-nucleus scattering to a real-world challenge.

  2. Ceramic pebble bed development for fusion blankets

    SciTech Connect

    Gierszewski, P.; Kawamura, H.; Donne, M.D.

    1994-12-31

    Research on lithium ceramic breeders has been intensive since the late 1970`s. The bulk material properties of several candidate lithium ceramics are generally available, although there is still much work to be done on properties under irradiation and on overall behavior in blanket modules. Based on these results, lithium ceramic breeders have been selected in many fusion design studies. These lithium ceramics are incorporated into blankets typically as monolithic pellets of packed pebble beds. There is substantial industrial experience with pebble beds made from other ceramics, notably in chemical processes as catalyst supports and grinding media, and in advanced fission reactor fuels. In fusion blankets, the pebble bed form offers several attractive features, including simpler assembly into complex geometry, uniform pore network, and low sensitivity to cracking or irradiation damage. Ceramic breeder pebbles have been a focus for several research groups. In general, the database is similar to that of monolithic pellets for the materials studied: basic production and material property data are available, but the irradiation and engineering database remains sparse.

  3. Design of the APT Target/Blanket

    NASA Astrophysics Data System (ADS)

    Cappiello, M. W.

    1998-04-01

    The Accelerator Production of Tritium Target/Blanket system is composed of a separated tungsten spallation target surrounded by a lead moderator, as well as attendant heat removal systems. The system is housed in a building located at the end of a 1.3 km long linear accelerator, which can produce a 100 mA proton beam up to 1700 MeV (170MW). The beam is expanded by a rastering system to a 0.19m x 190.m shape before passing through an Inconel window and impacting the heavy-water cooled tungsten target. Neutrons produced in the tungsten by the spallation process are further multiplied and moderated in a surrounding light-water cooled lead blanket. Neutron capture in tubes of Helium-3 gas inserted in the blanket produce tritium which is removed on a continual basis in an adjacent Tritium Separation Facility (TSF). The APT T/B is a robust design based on existing technology. Where possible, proven materials and component designs are used. To accommodate uncertainties in predicted lifetimes, the design is modularized to allow for a straightforward replacement of spent components. The thermal hydraulic design is well within allowable limits and due to the low temperature and pressure systems, offers additional safety and reliability benefits. The safety by design process has incorporated passive design features, redundancy, and defense in depth to provide adequate protection of both the worker and the public.

  4. High power density self-cooled lithium-vanadium blanket.

    SciTech Connect

    Gohar, Y.; Majumdar, S.; Smith, D.

    1999-07-01

    A self-cooled lithium-vanadium blanket concept capable of operating with 2 MW/m{sup 2} surface heat flux and 10 MW/m{sup 2} neutron wall loading has been developed. The blanket has liquid lithium as the tritium breeder and the coolant to alleviate issues of coolant breeder compatibility and reactivity. Vanadium alloy (V-4Cr-4Ti) is used as the structural material because it can accommodate high heat loads. Also, it has good mechanical properties at high temperatures, high neutron fluence capability, low degradation under neutron irradiation, good compatibility with the blanket materials, low decay heat, low waste disposal rating, and adequate strength to accommodate the electromagnetic loads during plasma disruption events. Self-healing electrical insulator (CaO) is utilized to reduce the MHD pressure drop. A poloidal coolant flow with high velocity at the first wall is used to reduce the peak temperature of the vanadium structure and to accommodate high surface heat flux. The blanket has a simple blanket configuration and low coolant pressure to reduce the fabrication cost, to improve the blanket reliability, and to increase confidence in the blanket performance. Spectral shifter, moderator, and reflector are utilized to improve the blanket shielding capability and energy multiplication, and to reduce the radial blanket thickness. Natural lithium is used to avoid extra cost related to the lithium enrichment process.

  5. ITER solid breeder blanket materials database

    SciTech Connect

    Billone, M.C.; Dienst, W.; Flament, T.; Lorenzetto, P.; Noda, K.; Roux, N.

    1993-11-01

    The databases for solid breeder ceramics (Li{sub 2},O, Li{sub 4}SiO{sub 4}, Li{sub 2}ZrO{sub 3} and LiAlO{sub 2}) and beryllium multiplier material are critically reviewed and evaluated. Emphasis is placed on physical, thermal, mechanical, chemical stability/compatibility, tritium, and radiation stability properties which are needed to assess the performance of these materials in a fusion reactor environment. Correlations are selected for design analysis and compared to the database. Areas for future research and development in blanket materials technology are highlighted and prioritized.

  6. Isotope production in fast reactor blankets

    SciTech Connect

    Zvonarev, A.V.; Koloskov, B.V.; Kochetkov, L.A.

    1993-12-31

    At the BR-10 research reactor radioactive isotopes are produced that are required for the production of radiopharmaceuticals and phosphor 32 used for the synthesis of biochemical labelled compounds. A procedure has been developed of uranium target irradiation followed by radiochemical processing aimed at isotope isolation of molybdenum 99, xenon 133 and iodine 131,132,and 133 isotopes mixture. Irradiation is carried out in a special channel of the radial blanket. The production of cobalt 60 at the BN-600 reactor and facilities are also described.

  7. High temperature - low mass solar blanket

    NASA Technical Reports Server (NTRS)

    Mesch, H. G.

    1979-01-01

    Interconnect materials and designs for use with ultrathin silicon solar cells are discussed, as well as the results of an investigation of the applicability of parallel-gap resistance welding for interconnecting these cells. Data relating contact pull strength and cell electrical degradation to variations in welding parameters such as time, voltage and pressure are presented. Methods for bonding ultrathin cells to flexible substances and for bonding thin (75 micrometers) covers to these cells are described. Also, factors influencing fabrication yield and approaches for increasing yield are discussed. The results of vacuum thermal cycling and thermal soak tests on prototype ultrathin cell test coupons and one solar module blanket are presented.

  8. Development of blanket box structure fabrication technology

    SciTech Connect

    Mohri, K.; Sata, S.; Kawaguchi, I.

    1994-12-31

    Fabrication studies have been performed for first wall and blanket box structure in the Fusion Experimental Reactor designed in Japan. The first wall must have internal cooling channels to remove volumetric heat loading by neutron wall load and surface heat loading from the plasma. The blanket which is higher than 10 m and 1 m wide withstands enormous electromagnetic load (about 10 MN/m). And a fabrication accuracy is required in the order of 10 mm from the machine configuration and remote assembling standpoints. To make cooling channels inside the first wall and to reduce the deformation during fabrication, the authors adopted advance techniques Hot Isostatic Pressing method (HIP) and Electron Beam Welding (EBW) respectively. Evaluation studies for the bondability of the HIP bonding joint have been performed. To evaluate the bondability, the mechanical properties such as tensile strength, impact value, low cycle fatigue strength and creep strength of the bonded part were investigated using HIP bonded test specimens. And the detectability of ultrasonic detection tests were also studied on them.

  9. 75 FR 11557 - Woven Electric Blankets From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-11

    ... COMMISSION Woven Electric Blankets From China AGENCY: United States International Trade Commission. ACTION... industry in the United States is materially retarded, by reason of less-than-fair-value imports from China... Commerce that imports of woven electric blankets from the People's Republic of China are being sold in...

  10. An assessment of the base blanket for ITER

    SciTech Connect

    Raffray, A.R.; Abdou, M.A.; Ying, A.

    1991-12-31

    Ideally, the ITER base blanket would provide the necessary tritium for the reactor to be self-sufficient during operation, while having minimal impact on the overall reactor cost, reliability and safety. A solid breeder blanket has been developed in CDA phase in an attempt to achieve such objectives. The reference solid breeder base blanket configurations at the end of the CDA phase has many attractive features such as a tritium breeding ratio (TBR) of 0.8--0.9 and a reasonably low tritium inventory. However, some concerns regarding the risk, cost and benefit of the base blanket have been raised. These include uncertainties associated with the solid breeder thermal control and the potentially high cost of the amount of Be used to achieve high TBR and to provide the necessary thermal barrier between the high temperature solid breeder and low temperature coolant. This work addresses these concerns. The basis for the selection of a breeding blanket is first discussed in light of the incremental risk, cost and benefits relative to a non-breeding blanket. Key issues associated with the CDA breeding blanket configurations are then analyzed. Finally, alternative schemes that could enhance the attractiveness and flexibility of a breeding blanket are explored.

  11. An assessment of the base blanket for ITER

    SciTech Connect

    Raffray, A.R.; Abdou, M.A.; Ying, A.

    1991-01-01

    Ideally, the ITER base blanket would provide the necessary tritium for the reactor to be self-sufficient during operation, while having minimal impact on the overall reactor cost, reliability and safety. A solid breeder blanket has been developed in CDA phase in an attempt to achieve such objectives. The reference solid breeder base blanket configurations at the end of the CDA phase has many attractive features such as a tritium breeding ratio (TBR) of 0.8--0.9 and a reasonably low tritium inventory. However, some concerns regarding the risk, cost and benefit of the base blanket have been raised. These include uncertainties associated with the solid breeder thermal control and the potentially high cost of the amount of Be used to achieve high TBR and to provide the necessary thermal barrier between the high temperature solid breeder and low temperature coolant. This work addresses these concerns. The basis for the selection of a breeding blanket is first discussed in light of the incremental risk, cost and benefits relative to a non-breeding blanket. Key issues associated with the CDA breeding blanket configurations are then analyzed. Finally, alternative schemes that could enhance the attractiveness and flexibility of a breeding blanket are explored.

  12. US blanket technology programs. [Directory of current research

    SciTech Connect

    Nygren, R.E.

    1985-01-01

    Experimental research in US programs related to blanket technology is described through brief summaries of the objectives, facilities, recent experimental results and principal investigators for the Blanket Technology Program, TRIO-1 Experiment, TSTA, Fusion Hybrid Program and selected activities in the Fusion Materials and Fusion Safety Programs in neutronics research.

  13. 18 CFR 284.402 - Blanket marketing certificates.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Blanket marketing certificates. 284.402 Section 284.402 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... RELATED AUTHORITIES Certain Sales for Resale by Non-interstate Pipelines § 284.402 Blanket...

  14. 18 CFR 284.402 - Blanket marketing certificates.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Blanket marketing certificates. 284.402 Section 284.402 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... RELATED AUTHORITIES Certain Sales for Resale by Non-interstate Pipelines § 284.402 Blanket...

  15. 18 CFR 284.402 - Blanket marketing certificates.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Blanket marketing certificates. 284.402 Section 284.402 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... RELATED AUTHORITIES Certain Sales for Resale by Non-interstate Pipelines § 284.402 Blanket...

  16. 18 CFR 284.402 - Blanket marketing certificates.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Blanket marketing certificates. 284.402 Section 284.402 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... RELATED AUTHORITIES Certain Sales for Resale by Non-interstate Pipelines § 284.402 Blanket...

  17. Security Blanket or Mother: Which Benefits Linus during Pediatric Examinations?

    ERIC Educational Resources Information Center

    Ybarra, Gabriel; Passman, Richard H.; Eisenberg, Carl S. L.

    This study compared the degree to which young children were placated during a standard medical evaluation by the presence of their mother, blanket, mother plus blanket, or no supportive agent. Participating were 64 three-year-olds who underwent 4 routine medical procedures. Children were rated by their mothers as attached or nonattached to…

  18. 18 CFR 284.402 - Blanket marketing certificates.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Blanket marketing certificates. 284.402 Section 284.402 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... RELATED AUTHORITIES Certain Sales for Resale by Non-interstate Pipelines § 284.402 Blanket...

  19. Fullerene Type Multilayer Insulation Blanket on a Spherical Cold Surface

    NASA Astrophysics Data System (ADS)

    Ohmori, T.; Shinozaki, T.; Kaneko, H.

    2010-04-01

    Fullerene type multilayer insulation blanket is proposed for the insulation around a spherical cold surface, and has been applied to a 10 liter spherical tank of liquid nitrogen. As fullerene has 32 faces with 90 edges, 32 polygons of stacked insulation sheets must be connected each other to fabricate such a MLI blanket. The MLI blanket has 90 slots at connecting part between the polygons where thermal radiation heat transfer should be reduced. The size of the polygon made by the insulation films must be chosen so as to avoid excess compressive pressure between stacked insulation sheets. The design principle and the method to fabricate the blanket were studied, and the experimental results obtained by the fullerene type MLI blanket applied to the 10 liter spherical tank were measured.

  20. MIT LMFBR blanket research project. Final summary report

    SciTech Connect

    Driscoll, M.J.

    1983-08-01

    This is a final summary report on an experimental and analytical program for the investigation of LMFBR blanket characteristics carried out at MIT in the period 1969 to 1983. During this span of time, work was carried out on a wide range of subtasks, ranging from neutronic and photonic measurements in mockups of blankets using the Blanket Test Facility at the MIT Research Reactor, to analytic/numerical investigations of blanket design and economics. The main function of this report is to serve as a resource document which will permit ready reference to the more detailed topical reports and theses issued over the years on the various aspects of project activities. In addition, one aspect of work completed during the final year of the project, on doubly-heterogeneous blanket configurations, is documented for the record.

  1. Pulsed activation analyses of the ITER blanket design options considered in the blanket trade-off study

    SciTech Connect

    Wang, Q.; Henderson, D.L.

    1994-12-31

    The International Thermonuclear Experimental Reactor (ITER) project began a new design phase called the Engineering Design Activity (EDA) which started in July 1992. A variety of blanket designs options were analyzed as a part of the U.S. ITER home team blanket option trade-off study (BOTS) which began in May 1993. The options considered were a self-cooled Li/V blanket, a helium cooled Li/V blanket and a water cooled 316 SS nonbreeding shield option. Detailed activation, dose rate and waste disposal rating calculations have been performed for these different ITER blanket design options based on a fluence of 3.0 MWa/m{sup 2} and an average neutron wall loading of 2.0 MW/m{sup 2}. A continuous operation assumption was utilized in the analysis. The results of this work are presented in this conference.

  2. Aerosol Blanket Likely Thinned During 1990s

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Each day, a blanket of tiny particles drifting through the Earth's atmosphere filters out some of the sunlight headed for the planet's surface. These aerosols, including dust, smoke, and human-produced pollution, can reflect incoming light or absorb it, directly affecting the Earth's energy balance and climate. Aerosols also influence the climate indirectly, by affecting the brightness and amount of clouds. Research by NASA scientists on global aerosol patterns since the 1990s indicate the global aerosol blanket has likely thinned, allowing more sunlight to reach the Earth's surface over the past decade. The thinning of the blanket is shown by this trio of images based on satellite observations of aerosol optical thickness, a measurement that scientists use to describe how much the aerosols filter the incoming sunlight. Higher optical thickness (orange and red) means more sunlight blocking. The globes show average aerosol optical thickness for 1988-1991 (top), 2002-2005 (middle), and the change between the two time periods (bottom). Overall, the 1988-1991 image appears redder, a sign that aerosols were blocking more incoming sunlight; the 2002-2005 image has more light yellow areas. In the bottom image, small pockets of red (increased aerosol optical thickness), mostly near land masses in the Northern Hemisphere, are far outnumbered by blue areas (decreased aerosol optical thickness). Because they block incoming sunlight from reaching Earth's surface, aerosols may counterbalance greenhouse gas warming. The decline in the dimming power of aerosols over the past decade may have made the greenhouse warming trend more evident in the past decade than in previous decades. The scientists describe their results as a 'likely' trend because the National Oceanic and Atmospheric Administration satellite sensors they used in their analysis were not specifically designed to observe aerosols, and may contain some errors. However, specific, major aerosol events, such as large

  3. U.S. technical report for the ITER blanket/shield: A. blanket: Topical report, July 1990--November 1990

    SciTech Connect

    Not Available

    1995-01-01

    Three solid-breeder water-cooled blanket concepts have been developed for ITER based on a multilayer configuration. The primary difference among the concepts is in the fabricated form of breeder and multiplier. All the concepts have beryllium for neutron multiplication and solid-breeder temperature control. The blanket design does not use helium gaps or insulator material to control the solid breeder temperature. Lithium oxide (Li{sub 2}O) and lithium zirconate (Li{sub 2}ZrO{sub 3}) are the primary and the backup breeder materials, respectively. The lithium-6 enrichment is 95%. The use of high lithium-6 enrichment reduces the solid breeder volume required in the blanket and consequently the total tritium inventory in the solid breeder material. Also, it increases the blanket capability to accommodate power variation. The multilayer blanket configuration can accommodate up to a factor of two change in the neutron wall loading without violating the different design guidelines. The blanket material forms are sintered products and packed bed of small pebbles. The first concept has a sintered product material (blocks) for both the beryllium multiplier and the solid breeder. The second concept, the common ITER blanket, uses a packed bed breeder and beryllium blocks. The last concept is similar to the first except for the first and the last beryllium zones. Two small layers of beryllium pebbles are located behind the first wall and the back of the last beryllium zone to reduce the total inventory of the beryllium material and to improve the blanket performance. The design philosophy adopted for the blanket is to produce the necessary tritium required for the ITER operation and to operate at power reactor conditions as much as possible. Also, the reliability and the safety aspects of the blanket are enhanced by using low-pressure water coolant and the separation of the tritium purge flow from the coolant system by several barriers.

  4. Solid breeder blanket option for the ITER conceptual design

    SciTech Connect

    Gohar, Y.; Attaya, H.; Billone, M.C.; Finn, P.; Majumdar, S.; Turner, L.R.; Baker, C.C.; Nelson, B.E.; Raffray, R.; Oak Ridge National Lab., TN; California Univ., Los Angeles, CA )

    1989-10-01

    A solid-breeder water-cooled blanket option was developed for ITER based on a multilayer configuration. The blanket uses beryllium for neutron multiplication and lithium oxide for tritium breeding. The material forms are sintered products for both material with 0.8 density factor. The lithium-6 enrichment is 90%. This blanket has the capability to accommodate a factor of two change in the neutron wall loading without violating the different design guidelines. The design philosophy adopted for the blanket is to produce the necessary tritium required for the ITER operation and to operate at power reactor conditions as much as possible. At the same time, the reliability and the safety aspects of the blanket are enhanced by the use of a low-pressure coolant and the separation of the tritium purge lines from the coolant system. The blanket modules are made by hot vacuum forming and diffusion bonding a double wall structure with integral cooling channels. The different aspects of the blanket design including tritium breeding, nuclear heat deposition, activation analyses, thermal-hydraulics, tritium inventory, structural analyses, and water coolant conditions are summarized in this paper. 12 refs., 2 figs., 1 tab.

  5. Overview of EU activities on DEMO liquid metal breeder blanket

    SciTech Connect

    Giancarli, L.; Proust, E.

    1994-12-31

    The European test-blanket development programme, started in 1988, is aiming at the selection by 1995 of two DEMO-relevant blanket lines to be tested in ITER. At present, four lines of blanket are under development, two of them using solid and the other two liquid breeder materials. As far as liquid breeders are concerned, two lines of blankets have been selected within the European Union, the water-cooled lithium-lead (the eutectic Pb-17Li) blankets and the dual-coolant Pb-17Li blankets. Designs have been developed considering an agreed set of DEMO specifications, such as, for instance, a fusion power of 2,200 MW, a neutron wall-loading of 2MW/m{sup 2}, a life-time of 20,000 hours, and the use of martensitic steel as a structural material. Moreover, an experimental program has been set up in order to address the main critical issues for each line. The present paper gives an overview of both design and experimental activities within the European Union concerning these two lines of liquid breeder blankets.

  6. Spacecraft thermal blanket cleaning: Vacuum bake of gaseous flow purging

    NASA Technical Reports Server (NTRS)

    Scialdone, John J.

    1990-01-01

    The mass losses and the outgassing rates per unit area of three thermal blankets consisting of various combinations of Mylar and Kapton, with interposed Dacron nets, were measured with a microbalance using two methods. The blankets at 25 deg C were either outgassed in vacuum for 20 hours, or were purged with a dry nitrogen flow of 3 cu. ft. per hour at 25 deg C for 20 hours. The two methods were compared for their effectiveness in cleaning the blankets for their use in space applications. The measurements were carried out using blanket strips and rolled-up blanket samples fitting the microbalance cylindrical plenum. Also, temperature scanning tests were carried out to indicate the optimum temperature for purging and vacuum cleaning. The data indicate that the purging for 20 hours with the above N2 flow can accomplish the same level of cleaning provided by the vacuum with the blankets at 25 deg C for 20 hours, In both cases, the rate of outgassing after 20 hours is reduced by 3 orders of magnitude, and the weight losses are in the range of 10E-4 gr/sq cm. Equivalent mass loss time constants, regained mass in air as a function of time, and other parameters were obtained for those blankets.

  7. Spacecraft thermal blanket cleaning - Vacuum baking or gaseous flow purging

    NASA Technical Reports Server (NTRS)

    Scialdone, John J.

    1992-01-01

    The mass losses and the outgassing rates per unit area of three thermal blankets consisting of various combinations of Mylar and Kapton, with interposed Dacron nets, were measured with a microbalance using two methods. The blankets at 25 deg C were either outgassed in vacuum for 20 hours, or were purged with a dry nitrogen flow of 3 cu. ft. per hour at 25 deg C for 20 hours. The two methods were compared for their effectiveness in cleaning the blankets for their use in space applications. The measurements were carried out using blanket strips and rolled-up blanket samples fitting the microbalance cylindrical plenum. Also, temperature scanning tests were carried out to indicate the optimum temperature for purging and vacuum cleaning. The data indicate that the purging for 20 hours with the above N2 flow can accomplish the same level of cleaning provided by the vacuum with the blankets at 25 deg C for 20 hours. In both cases, the rate of outgassing after 20 hours is reduced by 3 orders of magnitude, and the weight losses are in the range of 10E-4 gr/sq cm. Equivalent mass loss time constants, regained mass in air as a function of time, and other parameters were obtained for those blankets.

  8. Analyses of Hubble Space Telescope Aluminized-Teflon Multilayer Insulation Blankets Retrieved After 19 Years of Space Exposure

    NASA Technical Reports Server (NTRS)

    de Groh, Kim K.; Perry, Bruce A.; Mohammed, Jelila S.; Banks, Bruce

    2015-01-01

    Since its launch in April 1990, the Hubble Space Telescope (HST) has made many important observations from its vantage point in low Earth orbit (LEO). However, as seen during five servicing missions, the outer layer of multilayer insulation (MLI) has become increasingly embrittled and has cracked in many areas. In May 2009, during the 5th servicing mission (called SM4), two MLI blankets were replaced with new insulation and the space-exposed MLI blankets were retrieved for degradation analyses by teams at NASA Glenn Research Center (GRC) and NASA Goddard Space Flight Center (GSFC). The retrieved MLI blankets were from Equipment Bay 8, which received direct sunlight, and Equipment Bay 5, which received grazing sunlight. Each blanket was divided into several regions based on environmental exposure and/or physical appearance. The aluminized-Teflon (DuPont, Wilmington, DE) fluorinated ethylene propylene (Al-FEP) outer layers of the retrieved MLI blankets have been analyzed for changes in optical, physical, and mechanical properties, along with chemical and morphological changes. Pristine and as-retrieved samples (materials) were heat treated to help understand degradation mechanisms. When compared to pristine material, the analyses have shown how the Al-FEP was severely affected by the space environment. Most notably, the Al-FEP was highly embrittled, fracturing like glass at strains of 1 to 8 percent. Across all measured properties, more significant degradation was observed for Bay 8 material as compared to Bay 5 material. This paper reviews the tensile and bend-test properties, density, thickness, solar absorptance, thermal emittance, x-ray photoelectron spectroscopy (XPS) and energy dispersive spectroscopy (EDS) elemental composition measurements, surface and crack morphologies, and atomic oxygen erosion yields of the Al-FEP outer layer of the retrieved HST blankets after 19 years of space exposure.

  9. Preflow stresses in Martian rampart ejecta blankets - A means of estimating the water content

    NASA Technical Reports Server (NTRS)

    Woronow, A.

    1981-01-01

    Measurements of extents of rampart ejecta deposits as a function of the size of the parent craters support models which, for craters larger than about 6 km diameter, constrain ejecta blankets to all have a similar maximum thickness regardless of the crater size. These volatile-rich ejecta blankets may have failed under their own weights, then flowed radially outward. Assuming this to be so, some of the physicomechanical properties of the ejecta deposits at the time of their emplacement can then be determined. Finite-element studies of the stress magnitudes, distributions, and directions in hypothetical Martian rampart ejecta blankets reveal that the material most likely failed when the shear stresses were less than 500 kPa and the angle of internal friction was between 26 and 36 deg. These figures imply that the ejecta has a water content between 16 and 72%. Whether the upper limit or the lower limit is more appropriate depends on the mode of failure which one presumes: namely, viscous flow of plastic deformation.

  10. Parametric Weight Comparison of Advanced Metallic, Ceramic Tile, and Ceramic Blanket Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Myers, David E.; Martin, Carl J.; Blosser, Max L.

    2000-01-01

    A parametric weight assessment of advanced metallic panel, ceramic blanket, and ceramic tile thermal protection systems (TPS) was conducted using an implicit, one-dimensional (I-D) finite element sizing code. This sizing code contained models to account for coatings fasteners, adhesives, and strain isolation pads. Atmospheric entry heating profiles for two vehicles, the Access to Space (ATS) vehicle and a proposed Reusable Launch Vehicle (RLV), were used to ensure that the trends were not unique to a certain trajectory. Ten TPS concepts were compared for a range of applied heat loads and substructural heat capacities to identify general trends. This study found the blanket TPS concepts have the lightest weights over the majority of their applicable ranges, and current technology ceramic tiles and metallic TPS concepts have similar weights. A proposed, state-of-the-art metallic system which uses a higher temperature alloy and efficient multilayer insulation was predicted to be significantly lighter than the ceramic tile stems and approaches blanket TPS weights for higher integrated heat loads.

  11. Hubble Space Telescope Thermal Blanket Repair Design and Implementation

    NASA Technical Reports Server (NTRS)

    Ousley, Wes; Skladany, Joseph; Dell, Lawrence

    2000-01-01

    Substantial damage to the outer layer of Hubble Space Telescope (HST) thermal blankets was observed during the February 1997 servicing mission. After six years in LEO, many areas of the aluminized Teflon(R) outer blanket layer had significant cracks, and some material was peeled away to expose inner layers to solar flux. After the mission, the failure mechanism was determined, and repair materials and priorities were selected for follow-on missions. This paper focuses on the thermal, mechanical, and EVA design requirements for the blanket repair, the creative solutions developed for these unique problems, hardware development, and testing.

  12. Cassini/Titan-4 Acoustic Blanket Development and Testing

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Anne M.

    1996-01-01

    NASA Lewis Research Center recently led a multi-organizational effort to develop and test verify new acoustic blankets. These blankets support NASA's goal in reducing the Titan-4 payload fairing internal acoustic environment to allowable levels for the Cassini spacecraft. To accomplish this goal a two phase acoustic test program was utilized. Phase One consisted of testing numerous blanket designs in a flat panel configuration. Phase Two consisted of testing the most promising designs out of Phase One in a full scale cylindrical payload fairing. This paper will summarize this highly successful test program by providing the rationale and results for each test phase, the impacts of this testing on the Cassini mission, as well as providing some general information on blanket designs.

  13. Testing needs and experiments for solid breeder blankets

    NASA Astrophysics Data System (ADS)

    Gierszewski, P.; Puigh, R.

    1986-11-01

    Most of the critical issues for solid breeder blankets are related to the tritium and thermomechanical behavior of the solid breeder and multiplier. A major contributor to this uncertainty is the lack of definition of a preferred material, microstructure and form. Material selection and development is particularly cost-effective at present since much of the important blanket behavior is driven by local conditions rather than the overall blanket design, and since the choice of material affects the nature of the later and larger experiments. This stage of testing is also the most appropriate time to consider basic material choices such as sphere-pac or sintered pellet, and the incorporation of multiplier material into the blanket. The major testing needs and experiments are characterized here.

  14. Performance of uncoated AFRSI blankets during multiple Space Shuttle flights

    NASA Astrophysics Data System (ADS)

    Sawko, Paul M.; Goldstein, Howard E.

    1992-04-01

    Uncoated Advanced Flexible Reusable Surface Insulation (AFRSI) blankets were successfully flown on seven consecutive flights of the Space Shuttle Orbiter OV-099 (Challenger). In six of the eight locations monitored (forward windshield, forward canopy, mid-fuselage, upper wing, rudder/speed brake, and vertical tail) the AFRSI blankets performed well during the ascent and reentry exposure to the thermal and aeroacoustic environments. Several of the uncoated AFRSI blankets that sustained minor damage, such as fraying or broken threads, could be repaired by sewing or by patching with a surface coating called C-9. The chief reasons for replacing or completely coating a blanket were fabric embrittlement and fabric abrasion caused by wind erosion. This occurred in the orbiter maneuvering system (OMS) pod sidewall and the forward mid-fuselage locations.

  15. Performance of uncoated AFRSI blankets during multiple Space Shuttle flights

    NASA Technical Reports Server (NTRS)

    Sawko, Paul M.; Goldstein, Howard E.

    1992-01-01

    Uncoated Advanced Flexible Reusable Surface Insulation (AFRSI) blankets were successfully flown on seven consecutive flights of the Space Shuttle Orbiter OV-099 (Challenger). In six of the eight locations monitored (forward windshield, forward canopy, mid-fuselage, upper wing, rudder/speed brake, and vertical tail) the AFRSI blankets performed well during the ascent and reentry exposure to the thermal and aeroacoustic environments. Several of the uncoated AFRSI blankets that sustained minor damage, such as fraying or broken threads, could be repaired by sewing or by patching with a surface coating called C-9. The chief reasons for replacing or completely coating a blanket were fabric embrittlement and fabric abrasion caused by wind erosion. This occurred in the orbiter maneuvering system (OMS) pod sidewall and the forward mid-fuselage locations.

  16. Applications of the Aqueous Self-Cooled Blanket concept

    SciTech Connect

    Steiner, D.; Embrechts, M.J.; Varsamis, G.; Wrisley, K.; Deutch, L.; Gierszewski, P.

    1986-11-01

    In this paper a novel water-cooled blanket concept is examined. This concept, designated the Aqueous Self-Cooled Blanket (ASCB), employs water with small amounts of dissolved fertile compounds as both the coolant and the breeding medium. The ASCB concept is reviewed and its application in three different contexts is examined: (1) power reactors; (2) near-term devices such as NET; and (3) fusion-fission hybrids.

  17. Thin Thermal-Insulation Blankets for Very High Temperatures

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2003-01-01

    Thermal-insulation blankets of a proposed type would be exceptionally thin and would endure temperatures up to 2,100 C. These blankets were originally intended to protect components of the NASA Solar Probe spacecraft against radiant heating at its planned closest approach to the Sun (a distance of 4 solar radii). These blankets could also be used on Earth to provide thermal protection in special applications (especially in vacuum chambers) for which conventional thermal-insulation blankets would be too thick or would not perform adequately. A blanket according to the proposal (see figure) would be made of molybdenum, titanium nitride, and carbon- carbon composite mesh, which melt at temperatures of 2,610, 2,930, and 2,130 C, respectively. The emittance of molybdenum is 0.24, while that of titanium nitride is 0.03. Carbon-carbon composite mesh is a thermal insulator. Typically, the blanket would include 0.25-mil (.0.00635-mm)-thick hot-side and cold-side cover layers of molybdenum. Titanium nitride would be vapor-deposited on both surfaces of each cover layer. Between the cover layers there would be 10 inner layers of 0.15-mil (.0.0038-mm)-thick molybdenum with vapor-deposited titanium nitride on both sides of each layer. The thickness of each titanium nitride coat would be about 1,000 A. The cover and inner layers would be interspersed with 0.25-mil (0.00635-mm)-thick layers of carbon-carbon composite mesh. The blanket would have total thickness of 4.75 mils (approximately equal to 0.121 mm) and an areal mass density of 0.7 kilograms per square meter. One could, of course, increase the thermal- insulation capability of the blanket by increasing number of inner layers (thereby unavoidably increasing the total thickness and mass density).

  18. Flow characteristics of the Cascade granular blanket

    SciTech Connect

    Pitts, J.H.; Walton, O.R.

    1985-07-01

    Analysis of a single granule on a rotating cone shows that for the 35/sup 0/ half-angle, double-cone-shaped Cascade chamber, blanket granules will stay against the chamber wall if the rotational speed is 50 rpm or greater. The granules move axially down the wall with a slight (5-mm or less) sinusoidal oscillation in the circumferential direction. Granule chute-flow experiments confirm that two-layered flow can be obtained when the chute is inclined slightly above the granular material angle of repose. The top surface layer is thin and fast moving (supercritical flow). A thick bottom layer moves more slowly (subcritical flow controlled at the exit) with a velocity that increases with distance from the bottom of the chute. This is a desirable velocity profile because in the Cascade chamber about one-third of the fusion energy is deposited in the form of x rays and fusion-fuel-pellet debris in the top surface (inner-radius) layer.

  19. Flow characteristics of the Cascade granular blanket

    SciTech Connect

    Pitts, J.H.; Walton, O.R.

    1985-04-15

    Analysis of a single granule on a rotating cone shows that for the 35/sup 0/ half-angle, double-cone-shaped Cascade chamber, blanket granules will stay against the chamber wall if the rotational speed is 50 rpm or greater. The granules move axially down the wall with a slight (5-mm or less) sinusoidal oscillation in the circumferential direction. Granule chute-flow experiments confirm that two-layered flow can be obtained when the chute is inclined slightly above the granular material angle of repose. The top surface layer is thin and fast moving (supercritical flow). A thick bottom layer moves more slowly (subcritical flow controlled at the exit) with a velocity that increases with distance from the bottom of the chute. This is a desirable velocity profile because in the Cascade chamber about one-third of the fusion energy is deposited in the form of x rays and fusion-fuel-pellet debris in the top surface (inner-radius) layer.

  20. Blanket of Snow Covers Salt Lake City

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On December 23, 2001, less than two months before the start of the 2002 Winter Olympics, snow blankets Salt Lake City and the surrounding area. The Great Salt Lake, on the left hand side of the image above, often contributes to the region's snowfall through the 'lake-effect.' As cold air passes over a large body of water it both warms and absorbs moisture. The warm air then rises (like a hot air balloon) and cools again. As it cools, the water vapor condenses out, resulting in snowfall. Just to the east (right) of the Great Salt Lake the mountains of the Wasatch Range lift air from the lake even higher, enhancing the lake-effect, resulting in an average snowfall of 64 inches a year in Salt Lake City and 140 inches in Park City, which is located at the foot of the Wasatch Front. For more information about the lake-effect, read Lake-Effect Snowfalls. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  1. APT Blanket System Loss-of-Helium-Gas Accident Based on Initial Conceptual Design - Helium Supply Rupture into Blanket Module

    SciTech Connect

    Hamm, L.L.

    1998-10-07

    The model results are used to determine if beam power shutdown is necessary (or not) as a result of the LOHGA accident to maintain the blanket system well below any of the thermal-hydraulic constraints imposed on the design. The results also provide boundary conditions to the detailed bin model to study the detailed temperature response of the hot blanket module structure. The results for these two cases are documented in the report.

  2. Surveillance application using patten recognition software at the EBR-II Reactor Facility

    SciTech Connect

    Olson, D.L.

    1992-05-01

    The System State Analyzer (SSA) is a software based pattern recognition system. For the past several year this system has been used at Argonne National Laboratory`s Experimental Breeder Reactor 2 (EBR-2) reactor for detection of degradation and other abnormalities in plant systems. Currently there are two versions of the SSA being used at EBR-2. One version of SSA is used for daily surveillance and trending of the reactor delta-T and startups of the reactor. Another version of the SSA is the QSSA which is used to monitor individual systems of the reactor such as the Secondary Sodium System, Secondary Sodium Pumps, and Steam Generator. This system has been able to detect problems such as signals being affected by temperature variations due to a failing temperature controller.

  3. Surveillance application using patten recognition software at the EBR-II Reactor Facility

    SciTech Connect

    Olson, D.L.

    1992-01-01

    The System State Analyzer (SSA) is a software based pattern recognition system. For the past several year this system has been used at Argonne National Laboratory's Experimental Breeder Reactor 2 (EBR-2) reactor for detection of degradation and other abnormalities in plant systems. Currently there are two versions of the SSA being used at EBR-2. One version of SSA is used for daily surveillance and trending of the reactor delta-T and startups of the reactor. Another version of the SSA is the QSSA which is used to monitor individual systems of the reactor such as the Secondary Sodium System, Secondary Sodium Pumps, and Steam Generator. This system has been able to detect problems such as signals being affected by temperature variations due to a failing temperature controller.

  4. EBR-II in-vessel natural circulation experiments on hot and cold pool stratification

    SciTech Connect

    Ragland, W.A.; Feldman, E.E.

    1990-01-01

    The Experimental Breeder Reactor II is located in a cylindrical pool of liquid sodium which is part of the cold-leg of the primary flow circuit. A vertical string of 32 thermocouples spans the 8 m tank height, at each of two diametrically opposed locations in the primary tank. Local temperatures were measured with these 64 thermocouples during dynamic tests. The instantaneous spacial temperature distribution obtained from a string of thermocouples can be viewed on a personal computer. The animation which results from displaying successive spacial distributions provide a very effective way to quickly obtain physical insights. The design of the two strings of thermocouples, the software used to create the animation, measured data from three different types of tests--two unprotected reactor transients, and one with the reactor at decay power levels and the reactor cover lifted, are discussed. 5 refs., 3 figs.

  5. Validation of the REBUS-3/RCT methodologies for EBR-II core-follow analysis

    SciTech Connect

    McKnight, R.D.

    1992-01-01

    One of the many tasks to be completed at EBR-2/FCF (Fuel Cycle Facility) regarding fuel cycle closure for the Integral Fast Reactor (IFR) is to develop and install the systems to be used for fissile material accountancy and control. The IFR fuel cycle and pyrometallurgical process scheme determine the degree of actinide of actinide buildup in the reload fuel assemblies. Inventories of curium, americium and neptunium in the fuel will affect the radiation and thermal environmental conditions at the fuel fabrication stations, the chemistry of reprocessing, and the neutronic performance of the core. Thus, it is important that validated calculational tools be put in place for accurately determining isotopic mass and neutronic inputs to FCF for both operational and material control and accountancy purposes. The primary goal of this work is to validate the REBUS-2/RCT codes as tools which can adequately compute the burnup and isotopic distribution in binary- and ternary-fueled Mark-3, Mark-4, and Mark-5 subassemblies. 6 refs.

  6. Characterization of Irradiated Metal Waste from the Pyrometallurgical Treatment of Used EBR-II Fuel

    SciTech Connect

    B.R. Westphal; K.C. Marsden; W.M. McCartin; S.M. Frank; D.D. Keiser, Jr.; T.S. Yoo; D. Vaden; D.G. Cummings; K.J. Bateman; J. J. Giglio; T. P. O'Holleran; P. A. Hahn; M. N. Patterson

    2013-03-01

    As part of the pyrometallurgical treatment of used Experimental Breeder Reactor-II fuel, a metal waste stream is generated consisting primarily of cladding hulls laden with fission products noble to the electrorefining process. Consolidation by melting at high temperature [1873 K (1600 degrees C)] has been developed to sequester the noble metal fission products (Zr, Mo, Tc, Ru, Rh, Te, and Pd) which remain in the iron-based cladding hulls. Zirconium from the uranium fuel alloy (U-10Zr) is also deposited on the hulls and forms Fe-Zr intermetallics which incorporate the noble metals as well as residual actinides during processing. Hence, Zr has been chosen as the primary indicator for consistency of the metal waste. Recently, the first production-scale metal waste ingot was generated and sampled to monitor Zr content for Fe-Zr intermetallic phase formation and validation of processing conditions. Chemical assay of the metal waste ingot revealed a homogeneous distribution of the noble metal fission products as well as the primary fuel constituents U and Zr. Microstructural characterization of the ingot confirmed the immobilization of the noble metals in the Fe-Zr intermetallic phase.

  7. Status of RBCB testing of LMR oxide fuel in EBR-II

    SciTech Connect

    Strain, R.V.; Bottcher, J.H.; Gross, K.C.; Lambert, J.D.B. ); Ukai, S.; Nomura, S.; Shikakura, S.; Katsuragawa, M. . Oarai Engineering Center)

    1991-01-01

    The status is given of the the American-Japanese collaborative program in Experimental Breeder Reactor 2 to determine the run-beyond-cladding-breach performance of (UPu)O{sub 2} fuel pins for liquid-metal cooled reactors. Phase 1 of the collaboration involved eighteen irradiation tests over 1981--86 with 5.84-mm pins in 316 or D9 stainless steel. Emphasis in Phase 2 tests from 1989 onwards is with larger diameter (7.5mm) pins in advanced claddings. Results include delayed neutron and fission gas release data from breached pins, the impact of fuel-sodium reaction product formation on pin performance, and fuel and fission product contamination from failures. 13 refs, 1 fig., 4 tabs.

  8. Studies of axial-leakage simulations for homogeneous and heterogeneous EBR-II core configurations

    SciTech Connect

    Grimm, K.N.; Meneghetti, D.

    1985-08-01

    When calculations of flux are done in less than three dimensions, leakage-absorption cross sections are normally used to model leakages (flows) in the dimensions for which the flux is not calculated. Since the neutron flux is axially dependent, the leakages, and hence the leakage-absorption cross sections, are also axially dependent. Therefore, to obtain axial flux profiles (or reaction rates) for individual subassemblies, an XY-geometry calculation delineating each subassembly has to be done at several axial heights with space- and energy-dependent leakage-absorption cross sections that are appropriate for each height. This report discusses homogeneous and heterogeneous XY-geometry calculations at various axial locations and using several differing assumptions for the calculation of the leakage-absorption cross section. The positive (outward) leakage-absorption cross sections are modeled as actual leakage absorptions, but the negative (inward) leakage-absorption cross sections are modeled as either negative leakage absorptions (+-B/sup 2/ method) or positive downscatter cross sections (the ..sigma../sub s/(1 ..-->.. g) method). 3 refs., 52 figs., 10 tabs.

  9. Comparisons of power transfer functions and flow transfer functions in EBR-II

    SciTech Connect

    Grimm, K.N.; Meneghetti, D.

    1987-01-01

    Transfer functions may be used to calculate component feedbacks or temperature increments by convolution of the transfer function with the appropriate fractional change in system quantity. Power-change transfer functions have been reported. The corresponding flow transfer functions for this case, and comparison with the power transfer functions, are reported here. Results of feedback simulation of ramped flow transients using flow transfer functions are also described.

  10. Thin blanket designs for the Elongated Tokamak Commercial Reactor

    SciTech Connect

    Wong, C.P.C.; Bourque, R.F.; Cheng, E.T.; Creedon, R.L.; Schultz, K.R.

    1986-11-01

    The Elongated Tokamak (ET)* is an innovative concept that uses as highly elongated plasma (plasma height-to-width ratio of 6-10) to allow high plasma current and high toroidal betas. ET has the potential for the development of small-size, high-power density, low-cost fusion reactors using normal conducting coils. The elongated plasma shape is achieved by use of a continuous stack of PF coils parallel to the plasma surface on both inbound and outbound sides. To achieve plasma stability, these coil stacks must be located no further than one plasma minor radius from the plasma edge, greatly restricting the space available for blankets. In order to assess the potential of a small reactor, the authors evaluated and designed blankets 30 to 40 cm thick. Three different thin blanket designs were found to be acceptable: FLiBe self-cooled, helium-cooled lithium, and helium-cooled 17Li83Pb blanket designs. A lithium-cooled integrated blanket-coil design (BLITZ-coil) was also found to be suitable for the ET commercial reactors.

  11. Direct LiT Electrolysis in a Metallic Fusion Blanket

    SciTech Connect

    Olson, Luke

    2016-09-30

    A process that simplifies the extraction of tritium from molten lithium-based breeding blankets was developed. The process is based on the direct electrolysis of lithium tritide using a ceramic Li ion conductor that replaces the molten salt extraction step. Extraction of tritium in the form of lithium tritide in the blankets/targets of fusion/fission reactors is critical in order to maintain low concentrations. This is needed to decrease the potential tritium permeation to the surroundings and large releases from unforeseen accident scenarios. Extraction is complicated due to required low tritium concentration limits and because of the high affinity of tritium for the blanket. This work identified, developed and tested the use of ceramic lithium ion conductors capable of recovering hydrogen and deuterium through an electrolysis step at high temperatures.

  12. Direct Lit Electrolysis In A Metallic Lithium Fusion Blanket

    SciTech Connect

    Colon-Mercado, H.; Babineau, D.; Elvington, M.; Garcia-Diaz, B.; Teprovich, J.; Vaquer, A.

    2015-10-13

    A process that simplifies the extraction of tritium from molten lithium based breeding blankets was developed.  The process is based on the direct electrolysis of lithium tritide using a ceramic Li ion conductor that replaces the molten salt extraction step. Extraction of tritium in the form of lithium tritide in the blankets/targets of fission/fusion reactors is critical in order to maintained low concentrations.  This is needed to decrease the potential tritium permeation to the surroundings and large releases from unforeseen accident scenarios. Because of the high affinity of tritium for the blanket, extraction is complicated at the required low levels. This work identified, developed and tested the use of ceramic lithium ion conductors capable of recovering the hydrogen and deuterium thru an electrolysis step at high temperatures. 

  13. Experimental impacts into Teflon targets and LDEF thermal blankets

    NASA Technical Reports Server (NTRS)

    Hoerz, F.; Cintala, M. J.; Zolensky, M. E.; Bernhard, R. P.; See, T. H.

    1994-01-01

    The Long Duration Exposure Facility (LDEF) exposed approximately 20 sq m of identical thermal protective blankets, predominantly on the Ultra-Heavy Cosmic Ray Experiment (UHCRE). Approximately 700 penetration holes greater than 300 micron in diameter were individually documented, while thousands of smaller penetrations and craters occurred in these blankets. As a result of their 5.7 year exposure and because they pointed into a variety of different directions relative to the orbital motion of the nonspinning LDEF platform, these blankets can reveal important dynamic aspects of the hypervelocity particle environment in near-earth orbit. The blankets were composed of an outer teflon layer (approximately 125 micron thick), followed by a vapor-deposited rear mirror of silver (less than 1000 A thick) that was backed with an organic binder and a thermal protective paint (approximately 50 to 75 micron thick), resulting in a cumulative thickness (T) of approximately 175 to 200 microns for the entire blanket. Many penetrations resulted in highly variable delaminations of the teflon/metal or metal/organic binder interfaces that manifest themselves as 'dark' halos or rings, because of subsequent oxidation of the exposed silver mirror. The variety of these dark albedo features is bewildering, ranging from totally absent, to broad halos, to sharp single or multiple rings. Over the past year experiments were conducted over a wide range of velocities (i.e., 1 to 7 km/s) to address velocity dependent aspects of cratering and penetrations of teflon targets. In addition, experiments were performed with real LDEF thermal blankets to duplicate the LDEF delaminations and to investigate a possible relationship of initial impact conditions on the wide variety of dark halo and ring features.

  14. Study of Automated Module Fabrication for Lightweight Solar Blanket Utilization

    NASA Technical Reports Server (NTRS)

    Gibson, C. E.

    1979-01-01

    Cost-effective automated techniques for accomplishing the titled purpose; based on existing in-house capability are described. As a measure of the considered automation, the production of a 50 kilowatt solar array blanket, exclusive of support and deployment structure, within an eight-month fabrication period was used. Solar cells considered for this blanket were 2 x 4 x .02 cm wrap-around cells, 2 x 2 x .005 cm and 3 x 3 x .005 cm standard bar contact thin cells, all welded contacts. Existing fabrication processes are described, the rationale for each process is discussed, and the capability for further automation is discussed.

  15. 77 FR 12281 - Williston Basin Interstate Pipeline Company; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... Energy Regulatory Commission Williston Basin Interstate Pipeline Company; Notice of Request Under Blanket Authorization Take notice that on February 15, 2012, Williston Basin Interstate Pipeline Company (Williston Basin), 1250 West Century Avenue, Bismarck, North Dakota 58503, pursuant to its blanket...

  16. Spray-on technique simplifies fabrication of complex thermal insulation blanket

    NASA Technical Reports Server (NTRS)

    Bond, W. E. G.; Raymond, R.

    1966-01-01

    Spray-on process constructs molds used in forming sections of thermal insulation blankets. The process simplifies the fabrication of blankets by eliminating much of the equipment formerly required and decreasing the time involved.

  17. 18 CFR 33.1 - Applicability, definitions, and blanket authorizations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 203 of the Federal Power Act (16 U.S.C. 824b). (1) Existing generation facility means a generation... electric power cooperative. (5) For purposes of this part, the term captive customers means any wholesale... an electric utility is granted a blanket authorization under section 203(a)(2) of the Federal...

  18. 18 CFR 33.1 - Applicability, definitions, and blanket authorizations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 203 of the Federal Power Act (16 U.S.C. 824b). (1) Existing generation facility means a generation... electric power cooperative. (5) For purposes of this part, the term captive customers means any wholesale... an electric utility is granted a blanket authorization under section 203(a)(2) of the Federal...

  19. 48 CFR 313.303 - Blanket purchase agreements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Blanket purchase agreements. 313.303 Section 313.303 Federal Acquisition Regulations System HEALTH AND HUMAN SERVICES CONTRACTING METHODS AND CONTRACT TYPES SIMPLIFIED ACQUISITION PROCEDURES Simplified Acquisition Methods...

  20. Unified first wall-blanket structure for plasma device applications

    DOEpatents

    Gruen, Dieter M.

    1987-01-01

    A plasma device for use in controlling nuclear reactions within the plasma including a first wall and blanket formed in a one-piece structure composed of a solid solution containing copper and lithium and melting above about 500.degree. C.

  1. Measuring High Temperatures In Ceramic-Fiber Blankets

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A.

    1996-01-01

    Thermocouple assemblies devised specifically for measuring temperatures at fixed locations within insulating blankets made of such ceramic fibers as alumina, silicon carbide, and/or aluminoborosilicate. Thermocouples measure temperatures from 100 to 3,200 degrees F in oxidizing atmospheres. Wires enclosed in alumina sheath for protection against hot oxidation and mechanical damage.

  2. 18 CFR 152.1 - Exemption applications and blanket certificates.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT APPLICATION FOR EXEMPTION FROM THE PROVISIONS OF THE NATURAL GAS ACT PURSUANT TO SECTION 1(C) THEREOF AND ISSUANCE OF BLANKET...) Application for exemption from the provisions of the Natural Gas Act and the rules and regulations of...

  3. Unified first wall - blanket structure for plasma device applications

    DOEpatents

    Gruen, D.M.

    A plasma device is described for use in controlling nuclear reactions within the plasma including a first wall and blanket formed in a one-piece structure composed of a solid solution containing copper and lithium and melting above about 500/sup 0/C.

  4. Technical issues for beryllium use in fusion blanket applications

    SciTech Connect

    McCarville, T.J.; Berwald, D.H.; Wolfer, W.; Fulton, F.J.; Lee, J.D.; Maninger, R.C.; Moir, R.W.; Beeston, J.M.; Miller, L.G.

    1985-01-01

    Beryllium is an excellent non-fissioning neutron multiplier for fusion breeder and fusion electric blanket applications. This report is a compilation of information related to the use of beryllium with primary emphasis on the fusion breeder application. Beryllium resources, production, fabrication, properties, radiation damage and activation are discussed. A new theoretical model for beryllium swelling is presented.

  5. 18 CFR 284.303 - OCS blanket certificates.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... open-access, nondiscriminatory transportation service pursuant to a blanket transportation certificate... COMMISSION, DEPARTMENT OF ENERGY OTHER REGULATIONS UNDER THE NATURAL GAS POLICY ACT OF 1978 AND RELATED AUTHORITIES CERTAIN SALES AND TRANSPORTATION OF NATURAL GAS UNDER THE NATURAL GAS POLICY ACT OF 1978...

  6. SEAL Studies of Variant Blanket Concepts and Materials

    NASA Astrophysics Data System (ADS)

    Cook, I.; Taylor, N. P.; Forty, C. B. A.; Han, W. E.

    1997-09-01

    Within the European SEAL ( Safety and Environmental Assessment of fusion power, Long-term) program, safety and environmental assessments have been performed which extend the results of the earlier SEAFP (Safety and Environmental Assessment of Fusion Power) program to a wider range of blanket designs and material choices. The four blanket designs analysed were those which had been developed within the Blanket program of the European Fusion Programme. All four are based on martensitic steel as structural material, and otherwise may be summarized as: water-cooled lithium-lead; dual-cooled lithium-lead; helium-cooled lithium silicate (BOT geometry); helium-cooled lithium aluminate (or zirconate) (BIT geometry). The results reveal that all the blankets show the favorable S&E characteristics of fusion, though there are interesting and significant differences between them. The key results are described. Assessments have also been performed of a wider range of materials than was considered in SEAFP. These were: an alternative vanadium alloy, an alternative low-activation martensitic steel, titanium-aluminum intermetallic, and SiC composite. Assessed impurities were included in the compositions, and these had very important effects upon some of the results. Key results impacting upon accident characteristics, recycling, and waste management are described.

  7. Assessment of alkali metal coolants for the ITER blanket

    SciTech Connect

    Natesan, K.; Reed, C.B.; Mattas, R.F.

    1994-06-01

    The blanket system is one of the most important components of a fusion reactor because it has a major impact on both the economics and safety of fusion energy. The primary functions of the blanket in a deuterium/tritium-fueled fusion reactor are to convert the fusion energy into sensible heat and to breed tritium for the fuel cycle. The Blanket Comparison and Selection Study, conducted earlier, described the overall comparative performance of different blanket concepts, including liquid metal, molten salt, water and helium. This paper will discuss the ITER requirements for a self-cooled blanket concept with liquid lithium and for indirectly cooled concepts that use other alkali metals such as NaK. The paper addresses the thermodynamics of interactions between the liquid metals (e.g., lithium and NaK) and structural materials (e.g., V-base alloys), together with associated corrosion/compatibility issues. Available experimental data are used to assess the long-term performance of the first wall in a liquid metal environment. Other key issues include development of electrical insulator coatings on the first-wall structural material to MHD pressure drop, and tritium permeation/inventory in self-cooled and indirectly cooled concepts. Acceptable types of coatings (based on their chemical compatibility and physical properties) are identified, and surface-modification avenues to achieve these coatings on the first wall are discussed. The assessment examines the extent of our knowledge on structural materials performance in liquid metals and identifies needed research and development in several of the areas in order to establish performance envelopes for the first wall in a liquid-metal environment.

  8. A computational investigation of the interstitial flow induced by a variably thick blanket of very fine sand covering a coarse sand bed

    NASA Astrophysics Data System (ADS)

    Bartzke, Gerhard; Huhn, Katrin; Bryan, Karin R.

    2017-03-01

    Blanketed sediment beds can have different bed mobility characteristics relative to those of beds composed of uniform grain-size distribution. Most of the processes that affect bed mobility act in the direct vicinity of the bed or even within the bed itself. To simulate the general conditions of analogue experiments, a high-resolution three-dimensional numerical `flume tank' model was developed using a coupled finite difference method flow model and a discrete element method particle model. The method was applied to investigate the physical processes within blanketed sediment beds under the influence of varying flow velocities. Four suites of simulations, in which a matrix of uniform large grains (600 μm) was blanketed by variably thick layers of small particles (80 μm; blanket layer thickness approx. 80, 350, 500 and 700 μm), were carried out. All beds were subjected to five predefined flow velocities (U 1-5=10-30 cm/s). The fluid profiles, relative particle distances and porosity changes within the bed were determined for each configuration. The data show that, as the thickness of the blanket layer increases, increasingly more small particles accumulate in the indentations between the larger particles closest to the surface. This results in decreased porosity and reduced flow into the bed. In addition, with increasing blanket layer thickness, an increasingly larger number of smaller particles are forced into the pore spaces between the larger particles, causing further reduction in porosity. This ultimately causes the interstitial flow, which would normally allow entrainment of particles in the deeper parts of the bed, to decrease to such an extent that the bed is stabilized.

  9. Neutronics and activation analysis of lithium-based ternary alloys in IFE blankets

    SciTech Connect

    Jolodosky, Alejandra; Kramer, Kevin; Meier, Wayne; DeMuth, James; Reyes, Susana; Fratoni, Massimiliano

    2016-04-09

    Here we report that an attractive feature of using liquid lithium as the breeder and coolant in fusion blankets is that it has very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and presents plant safety concerns. The Lawrence Livermore National Laboratory is carrying an effort to develop a lithium-based alloy that maintains the beneficial properties of lithium (e.g. high tritium breeding and solubility) and at the same time reduces overall flammability concerns. This study evaluates the neutronics performance of lithium-based alloys in the blanket of an inertial fusion energy chamber in order to inform such development. 3-D Monte Carlo calculations were performed to evaluate two main neutronics performance parameters for the blanket: tritium breeding ratio (TBR), and the fusion energy multiplication factor (EMF). It was found that elements that exhibit low absorption cross sections and higher q-values such as lead, tin, and strontium, perform well with those that have high neutron multiplication such as lead and bismuth. These elements meet TBR constrains ranging from 1.02 to 1.1. However, most alloys do not reach EMFs greater than 1.15. Additionally, it was found that enriching lithium significantly increases the TBR and decreases the minimum lithium concentration by more than 60%. The amount of enrichment depends on how much total lithium is in the alloy to begin with. Alloys that performed well in the TBR and EMF calculations were considered for activation analysis. Activation simulations were executed with 50 years of irradiation and 300 years of cooling. It was discovered that bismuth is a poor choice due to achieving the highest decay heat, contact dose rates, and accident doses. In addition, it does not meet the waste disposal ratings (WDR). Some of the activation results for alloys with tin, zinc, and gallium were in the higher

  10. Neutronics and activation analysis of lithium-based ternary alloys in IFE blankets

    DOE PAGES

    Jolodosky, Alejandra; Kramer, Kevin; Meier, Wayne; ...

    2016-04-09

    Here we report that an attractive feature of using liquid lithium as the breeder and coolant in fusion blankets is that it has very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and presents plant safety concerns. The Lawrence Livermore National Laboratory is carrying an effort to develop a lithium-based alloy that maintains the beneficial properties of lithium (e.g. high tritium breeding and solubility) and at the same time reduces overall flammability concerns. This study evaluates the neutronics performance of lithium-based alloys inmore » the blanket of an inertial fusion energy chamber in order to inform such development. 3-D Monte Carlo calculations were performed to evaluate two main neutronics performance parameters for the blanket: tritium breeding ratio (TBR), and the fusion energy multiplication factor (EMF). It was found that elements that exhibit low absorption cross sections and higher q-values such as lead, tin, and strontium, perform well with those that have high neutron multiplication such as lead and bismuth. These elements meet TBR constrains ranging from 1.02 to 1.1. However, most alloys do not reach EMFs greater than 1.15. Additionally, it was found that enriching lithium significantly increases the TBR and decreases the minimum lithium concentration by more than 60%. The amount of enrichment depends on how much total lithium is in the alloy to begin with. Alloys that performed well in the TBR and EMF calculations were considered for activation analysis. Activation simulations were executed with 50 years of irradiation and 300 years of cooling. It was discovered that bismuth is a poor choice due to achieving the highest decay heat, contact dose rates, and accident doses. In addition, it does not meet the waste disposal ratings (WDR). Some of the activation results for alloys with tin, zinc, and gallium were in

  11. APT target/blanket design and thermal hydraulics

    SciTech Connect

    Cappiello, M.; Pitcher, E.; Pasamehmetoglu, K.

    1999-04-01

    The Accelerator Production of Tritium (APT) Target/Blanket (T/B) system is comprised of an assembly of tritium producing modules supported by control, heat removal, shielding and retargeting systems. The T/B assembly produces tritium using a high-energy proton beam, a tungsten/lead spallation neutron source and {sup 3}He gas as the tritium producing feedstock. For the nominal production mode, protons are accelerated to an energy of 1030 MeV at a current of 100 mA and are directed onto the T/B assembly. The protons are expanded using a raster/expansion system to illuminate a 0.19m by 1.9m beam spot on the front face of a centrally located tungsten neutron source. A surrounding lead blanket produces additional neutrons from scattered high-energy particles. The tungsten neutron source consists of nested, Inconel-718 clad tungsten cylinders assembled in horizontal Inconel-718 tubes. Each tube contains up to 6 cylinders with annular flow channel gaps of 0.102 cm. These horizontal tubes are manifolded into larger diameter vertical inlet and outlet pipes, which provide coolant. The horizontal and vertical tubes make up a structure similar to that of rungs on a ladder. The entire tungsten neutron source consists of 11 such ladders separated into two modules, one containing five ladders and the other six. Ladders are separated by a 0.3 m void region to increase nucleon leakage. The peak thermal-hydraulic conditions in the tungsten neutron source occur in the second ladder from the front. Because tungsten neutron source design has a significant number of parallel flow channels, the limiting thermal-hydraulic parameter is the onset of significant void (OSV) rather than critical heat flux (CHF). A blanket region surrounds the tungsten neutron source. The lateral blanket region is approximately 120 cm thick and 400 cm high. Blanket material consists of lead, {sup 3}He gas, aluminum, and light-water coolant. The blanket region is subdivided into rows based on the local power

  12. Polonium aspects associated with the use of lead-lithium blankets in fusion applications

    SciTech Connect

    Hoffman, N.J.; Blink, J.A.; Meier, W.R.; Murray, K.A.; Vogelsang, W.F.

    1985-07-01

    Polonium, an alpha-emitting sulfur-like element, is formed by neutron irradiation of lead or bismuth impurity in lead. Design studies of both the Pulse*Star inertial confinement fusion (ICF) reactor and the MARS mirror fusion reactor postulated use of 83Pb-17Li melt as the tritium breeding blanket and coolant. Comparison of the amounts of polonium in the melt at plant shutdown indicated that Pulse*Star would have a far higher level of polonium in the melt. Neutronic considerations and the polonium distribution between the vacuum cleanup system and 83Pb-17Li melt for the two reactors are explored in this paper. Sample neutronics runs showed that the codes used by each design team were not the source of the difference in polonium content.

  13. ITER structural design criteria and their extension to advanced fusion reactor blankets.

    SciTech Connect

    Kalnin, G.; Majumdar, S.

    1999-09-03

    Application of the new low-temperature-design rules of the ITER Structural Design Criteria (ISDC) is illustrated by considering copper alloys that, according to recent data, are particularly prone to irradiation embrittlement at relatively low fluences at certain temperatures, Allowable stresses are derived and the impact of the embrittlement on allowable surface heat flux of a simple first-wall/limiter design is demonstrated. High-temperature-design rules of ISDC are applied to EVOLVE (Evaporation Of Lithium and Vapor Extraction), a blanket design concept currently being investigated under the U.S. APEX (Advanced Power Extraction) program. One version of this concept envisions the use of a series of parallel tungsten tubes (first-wall) that are cooled internally by lithium vapor, typically. at 1200 C. A single tungsten first-wall tube is considered for thermal and stress analyses by finite-element method.

  14. Free-vibration characteristics and correlation of a space station split-blanket solar array

    NASA Technical Reports Server (NTRS)

    Carney, Kelly S.; Shaker, Francis J.

    1989-01-01

    Two methods for studying the free-vibration characteristics of a large split-blanket solar array in a zero-g cantilevered configuration are presented. The zero-g configuration corrresponds to an on-orbit configuration of the Space Station solar array. The first method applies the equations of continuum mechanics to determine the natural frequencies of the array; the second uses the finite element method program, MSC/NASTRAN. The stiffness matrix from the NASTRAN solution was found to be erroneously grounded. The results from the two methods are compared. It is concluded that the grounding does not seriously compromise the solution to the elastic modes of the solar array. However, the correct rigid body modes need to be included to obtain the correct dynamic model.

  15. Free-vibration characteristics and correlation of a Space Station split-blanket solar array

    NASA Technical Reports Server (NTRS)

    Carney, Kelly S.; Shaker, Francis J.

    1989-01-01

    Two methods for studying the free-vibration characteristics of a large split-blanket solar array in a zero-g cantilevered configuration are presented. The zero-g configuration corresponds to an on-orbit configuration of the Space Station solar array. The first method applies the equations of continuum mechanics to determine the natural frequencies of the array; the second uses the finite element method program, MSC/NASTRAN. The stiffness matrix from the NASTRAN solution was found to be erroneously grounded. The results from the two methods are compared. It is concluded that the grounding does not seriously compromise the solution to the elastic modes of the solar array. However, the correct rigid body modes need to be icluded to obtain the correct dynamic model.

  16. Neutronic design of the APT Target/Blanket

    SciTech Connect

    Pitcher, E.J.; Russell, G.J.; Kidman, R.B.; Ferguson, P.D.

    1997-12-01

    The primary function of the Accelerator Production of Tritium Target/Blanket assembly is the safe and efficient production of tritium. The T/B accepts a 1.7-GeV, 100-mA proton beam and produces neutrons via the spallation process. These neutrons then react with {sup 3}He to produce tritium. Neutronic optimization of the T/B is achieved by efficiently using the proton beam to produce neutrons and then, once produced, assuring that they are captured mostly by {sup 3}He. This optimization must occur within the constraints imposed by engineering considerations such as heat flux limits, structural integrity, fabricability, and safe and reliable operation. The target/blanket achieves these goals with a neutron production rate that is 75% of that achievable with an ideal target, and a neutronic efficiency of 84%, leading to an overall tritium production rate that is 63% of the theoretical maximum.

  17. APT {sup 3}He target/blanket. Topical report

    SciTech Connect

    1995-03-01

    The {sup 3}He target/blanket (T/B) preconceptual design for the 3/8-Goal facility is based on a 1000-MeV, 200-mA accelerator to produce a high-intensity proton beam that is expanded and then strikes one of two T/B modules. Each module consists of a centralized neutron source made of tungsten and lead, a proton beam backstop region made of zirconium and lead, and a moderator made of D{sub 2}O. Helium-3 gas is circulated through the neutron source region and the blanket to create tritium through neutron capture. The gas is continually processed to extract the tritium with an online separation process.

  18. Line Blanketing in Vega and Sirus

    NASA Technical Reports Server (NTRS)

    Kurucz, R. L.

    1976-01-01

    A theoretical model and spectrum calculation for Vega is discussed. The abundance of carbon is approximately -3.8, which is 0.3 lower than the old solar value and supports Mount and Linsky's newer value. The oxygen abundance is approximately -3.5. Assuming that Vega has solar abundances, the solar oxygen abundance appears to have been overestimated by 0.3 in the log. Other abundances appear to be solar. For Sirius the calculations do not agree with the observed spectrum. Line opacity is considerably underestimated, notably in third-spectrum iron group lines. Carbon is underabundant relative to Vega by 0.2 in the log. Nitrogen is unchanged. Oxygen is enhanced by 0.3. Heavier elements are enhanced by 1.0 in the log. Calibration yields 1.3E-10 ergs/sq cm/s/nm for each U1 Copernicus count at 130 nm.

  19. Surface heating blanket for soil remediation

    SciTech Connect

    Van Egmond, C.F.; Carl, F.G. Jr.; Stegemeier, G.L.; Vinegar, H.J.

    1993-07-20

    A heater assembly is described for use in soil remediation comprising: a plurality of metallic support rods spaced parallel to each other; a continuous metallic strand spirally encircling adjacent ones of said support rods and forming rungs therearound, said rungs extending the length of said support rods, making low resistance contact therewith but being frictionally movable with respect thereto; an electric beater element located between and parallel to a selected pair of said support rods and between said rungs encircling said selected support rods, said heater being in low resistance frictional contact with said rungs along its length; a layer of insulation on top of said assembly; and an impermeable sheet placed on top of said insulation.

  20. Efficacy of the blizzard blanket or blizzard blanket plus thermal angel in preventing hypothermia in a hemorrhagic shock victim (Sus scrofa) under operational conditions.

    PubMed

    Bridges, Elizabeth; Schmelz, Joseph; Evers, Karen

    2007-01-01

    The prevention of hypothermia in military casualties under field conditions is challenging. The efficacy of a baffled reflective Blanket (Blizzard Blanket), a portable intravenous fluid warmer (Thermal Angel), and wool Blankets (control) in preventing hypothermia was tested under military field conditions in a swine hemorrhagic shock model. Fifteen pigs were bled at 10 degrees C. After 45 minutes, Hextend was administered (groups 1 and 3, at 10 degrees C; group 2, via Thermal Angel); groups 2 and 3 were encircled with a Blizzard Blanket. After 120 minutes, the pigs were moved to 21 degrees C to simulate a field hospital; group 1 was covered with Blankets. Blood was administered (groups 1 and 3, at 4 degrees C; group 2, via Thermal Angel) with 180 minutes of monitoring. The core temperature was <35 degrees C in five of five control pigs, four of five Blizzard-only pigs, and one of five Thermal Angel plus Blizzard Blanket pigs. The Blizzard Blanket limited but did not prevent hypothermia. The Thermal Angel plus Blizzard Blanket combination prevented hypothermia. The Thermal Angel is useful for bolus administration when electricity is limited; its military field use is constrained by battery weight and battery life.

  1. Blanket comparison and selection study. Final report. Volume 2

    SciTech Connect

    Not Available

    1984-09-01

    The study focused on: (1) Development of reference design guidelines, evaluation criteria, and a methodology for evaluating and ranking candidate blanket concepts. (2) Compilation of the required data base and development of a uniform systems analysis for comparison. (3) Development of conceptual designs for the comparative evaluation. (4) Evaluation of leading concepts for engineering feasibility, economic performance, and safety. (5) Identification and prioritization of R and D requirements for the leading blanket concepts. Sixteen concepts (nine TMR and seven tokamak) which were identified as leading candidates in the early phases of the study, were evaluated in detail. The overall evaluation concluded that the following concepts should provide the focus for the blanket R and D program: (Breeder/Coolant/Structure), Lithium/Lithium/Vanadium Alloy, Li/sub 2/O/Helium/Ferritic Steel, LiPb Alloy/LiPb Alloy/Vanadium Alloy, and Lithium/Helium/Ferritic Steel. The primary R and D issues for the Li/Li/V concept are the development of an advanced structural alloy, resolution of MHD and corrosion problems, provision for an inert atmosphere (e.g., N/sub 2/) in the reactor building, and the development of non-water cooled near-plasma components, particularly for the tokamak. The main issues for the LiPb/LiPb/V concepts are similar to the Li/Li/V blanket with the addition of resolving the tritium recovery issue. The R and D issues for Li/sub 2/O/He/FS concept include resolution of the tritium recovery/containment issue, achieving adequate tritium breeding and resolving other solid breeder issues such as swelling and fabrication concerns. Major concerns for the Li/He/FS concept are related to its rather poor economic performance. Improvement of its economic performance will be somewhat concept-dependent and will be more of a systems engineering issue.

  2. Blanket comparison and selection study. Final report. Volume 3

    SciTech Connect

    Not Available

    1984-09-01

    The study focused on: (1) Development of reference design guidelines, evaluation criteria, and a methodology for evaluating and ranking candidate blanket concepts. (2) Compilation of the required data base and development of a uniform systems analysis for comparison. (3) Development of conceptual designs for the comparative evaluation. (4) Evaluation of leading concepts for engineering feasibility, economic performance, and safety. (5) Identification and prioritization of R and D requirements for the leading blanket concepts. Sixteen concepts (nine TMR and seven tokamak) which were identified as leading candidates in the early phases of the study, were evaluated in detail. The overall evaluation concluded that the following concepts should provide the focus for the blanket R and D program: (Breeder/Coolant/Structure), Lithium/Lithium/Vanadium Alloy, Li/sub 2/O/Helium/Ferritic Steel, LiPb Alloy/LiPb Alloy/Vanadium Alloy, and Lithium/Helium/Ferritic Steel. The primary R and D issues for the Li/Li/V concept are the development of an advanced structural alloy, resolution of MHD and corrosion problems, provision for an inert atmosphere (e.g., N/sub 2/) in the reactor building, and the development of non-water cooled near-plasma components, particularly for the tokamak. The main issues for the LiPb/LiPb/V concept are similar to the Li/Li/V blanket with the addition of resolving the tritium recovery issue. The R and D issues for Li/sub 2/O/He/FS concept include resolution of the tritium recovery/containment issue, achieving adequate tritium breeding and resolving other solid breeder issues such as swelling and fabrication concerns. Major concerns for the Li/He/FS concepts are related to its rather poor economic performance. Improvement of its economic performance will be somewhat concept-dependent and will be more of a systems engineering issue.

  3. Blanket comparison and selection study. Final report. Volume 1

    SciTech Connect

    Not Available

    1984-09-01

    The study focused on: (1) Development of reference design guidelines, evaluation criteria, and a methodology for evaluating and ranking candidate blanket concepts. (2) Compilation of the required data base and development of a uniform systems analysis for comparison. (3) Development of conceptual designs for the comparative evaluation. (4) Evaluation of leading concepts for engineering feasibility, economic performance, and safety. (5) Identification and prioritization of R and D requirements for the leading blanket concepts. Sixteen concepts (nine TMR and seven tokamak) which were identified as leading candidates in the early phases of the study, were evaluated in detail. The overall evaluation concluded that the following concepts should provide the focus for the blanket R and D program: (Breeder/Coolant/Structure), Lithium/Lithium/Vanadium Alloy, Li/sub 2/O/Helium/Ferritic Steel, LiPb Alloy/LiPb Alloy/Vanadium Alloy, and Lithium/Helium/Ferritic Steel. The primary R and D issues for the Li/Li/V concept are the development of an advanced structural alloy, resolution of MHD and corrosion problems, provision for an inert atmosphere (e.g., N/sub 2/) in the reactor building, and the development of non-water cooled near-plasma components, particularly for the tokamak. The main issues for the LiPb/LiPb/V concept are similar to the Li/Li/V blanket with the addition of resolving the tritium recovery issue. The R and D issues for Li/sub 2/O/He/FS concept include resolution of the tritium recovery/containment issue, achieving adequate tritium breeding and resolving other solid breeder issues such as swelling and fabrication concerns. Major concerns for the Li/He/FS concept are related to its rather poor economic performance. Improvement of its economic performance will be somewhat concept-dependent and will be more of a systems engineering issue.

  4. Helium-3 blankets for tritium breeding in fusion reactors

    NASA Technical Reports Server (NTRS)

    Steiner, Don; Embrechts, Mark; Varsamis, Georgios; Vesey, Roger; Gierszewski, Paul

    1988-01-01

    It is concluded that He-3 blankets offers considerable promise for tritium breeding in fusion reactors: good breeding potential, low operational risk, and attractive safety features. The availability of He-3 resources is the key issue for this concept. There is sufficient He-3 from decay of military stockpiles to meet the International Thermonuclear Experimental Reactor needs. Extraterrestrial sources of He-3 would be required for a fusion power economy.

  5. Enhanced plasma current collection from weakly conducting solar array blankets

    NASA Technical Reports Server (NTRS)

    Hillard, G. Barry

    1993-01-01

    Among the solar cell technologies to be tested in space as part of the Solar Array Module Plasma Interactions Experiment (SAMPIE) will be the Advanced Photovoltaic Solar Array (APSA). Several prototype twelve cell coupons were built for NASA using different blanket materials and mounting techniques. The first conforms to the baseline design for APSA which calls for the cells to be mounted on a carbon loaded Kapton blanket to control charging in GEO. When deployed, this design has a flexible blanket supported around the edges. A second coupon was built with the cells mounted on Kapton-H, which was in turn cemented to a solid aluminum substrate. A final coupon was identical to the latter but used germanium coated Kapton to control atomic oxygen attack in LEO. Ground testing of these coupons in a plasma chamber showed considerable differences in plasma current collection. The Kapton-H coupon demonstrated current collection consistent with exposed interconnects and some degree of cell snapover. The other two coupons experienced anomalously large collection currents. This behavior is believed to be a consequence of enhanced plasma sheaths supported by the weakly conducting carbon and germanium used in these coupons. The results reported here are the first experimental evidence that the use of such materials can result in power losses to high voltage space power systems.

  6. Continuous fine pattern formation by screen-offset printing using a silicone blanket

    NASA Astrophysics Data System (ADS)

    Nomura, Ken-ichi; Kusaka, Yasuyuki; Ushijima, Hirobumi; Nagase, Kazuro; Ikedo, Hiroaki; Mitsui, Ryosuke; Takahashi, Seiya; Nakajima, Shin-ichiro; Iwata, Shiro

    2014-09-01

    Screen-offset printing combines screen-printing on a silicone blanket with transference of the print from the blanket to a substrate. The blanket absorbs organic solvents in the ink, and therefore, the ink does not disperse through the material. This prevents blurring and allows fine patterns with widths of a few tens of micrometres to be produced. However, continuous printing deteriorates the pattern’s shape, which may be a result of decay in the absorption abilities of the blanket. Thus, we have developed a new technique for refreshing the blanket by substituting high-boiling-point solvents present on the blanket surface with low-boiling-point solvents. We analyse the efficacy of this technique, and demonstrate continuous fine pattern formation for 100 screen-offset printing processes.

  7. Prevalence of enterobiasis and its incidence after blanket chemotherapy in a male orphanage.

    PubMed

    Sirivichayakul, C; Pojjaroen-anant, C; Wisetsing, P; Lalitphiphat, A; Chanthavanich, P; Kabkaew, K

    2000-03-01

    A prospective observational study was conducted in a male orphanage to find out the prevalence of enterobiasis and its incidence after blanket chemotherapy using mebendazole. We found that the prevalence of enterobiasis was 28.9%. The incidence density of enterobiasis after blanket chemotherapy was 379.82 per 1,000 person-years which was quite high. We suggest that blanket chemotherapy should be repeated at every 6 months interval to control enterobiasis in orphanages.

  8. TOKOPS: Tokamak Reactor Operations Study: The influence of reactor operations on the design and performance of tokamaks with solid-breeder blankets: Final report

    SciTech Connect

    Conn, R.W.; Ghoniem, N.M.; Firestone, M.A.

    1986-09-01

    Reactor system operation and procedures have a profound impact on the conception and design of power plants. These issues are studied here using a model tokamak system employing a solid-breeder blanket. The model blanket is one which has evolved from the STARFIRE and BCSS studies. The reactor parameters are similar to those characterizing near-term fusion engineering reactors such as INTOR or NET (Next European Tokamak). Plasma startup, burn analysis, and methods for operation at various levels of output power are studied. A critical, and complicating, element is found to be the self-consistent electromagnetic response of the system, including the presence of the blanket and the resulting forces and loadings. Fractional power operation, and the strategy for burn control, is found to vary depending on the scaling law for energy confinement, and an extensive study is reported. Full-power reactor operation is at a neutron wall loading pf 5 MW/m/sup 2/ and a surface heat flux of 1 MW/m/sup 2/. The blanket is a pressurized steel module with bare beryllium rods and low-activation HT-9-(9-C-) clad LiAlO/sub 2/ rods. The helium coolant pressure is 5 MPa, entering the module at 297/sup 0/C and exiting at 550/sup 0/C. The system power output is rated at 1000 MW(e). In this report, we present our findings on various operational scenarios and their impact on system design. We first start with the salient aspects of operational physics. Time-dependent analyses of the blanket and balance of plant are then presented. Separate abstracts are included for each chapter.

  9. Impact of prescribed burning on blanket peat hydrology

    NASA Astrophysics Data System (ADS)

    Holden, Joseph; Palmer, Sheila M.; Johnston, Kerrylyn; Wearing, Catherine; Irvine, Brian; Brown, Lee E.

    2015-08-01

    Fire is known to impact soil properties and hydrological flow paths. However, the impact of prescribed vegetation burning on blanket peatland hydrology is poorly understood. We studied 10 blanket peat headwater catchments. Five were subject to prescribed burning, while five were unburnt controls. Within the burnt catchments, we studied plots where the last burn occurred ˜2 (B2), 4 (B4), 7 (B7), or greater than 10 years (B10+) prior to the start of measurements. These were compared with plots at similar topographic wetness index locations in the control catchments. Plots subject to prescribed vegetation burning had significantly deeper water tables (difference in means = 5.3 cm) and greater water table variability than unburnt plots. Water table depths were significantly different between burn age classes (B2 > B4 > B7 > B10+) while B10+ water tables were not significantly different to the unburnt controls. Overland flow was less common on burnt peat than on unburnt peat, recorded in 9% and 17% of all runoff trap visits, respectively. Storm lag times and hydrograph recession limb periods were significantly greater (by ˜1 and 13 h on average, respectively) in the burnt catchments overall, but for the largest 20% of storms sampled, there was no significant difference in storm lag times between burnt and unburnt catchments. For the largest 20% of storms, the hydrograph intensity of burnt catchments was significantly greater than those of unburnt catchments (means of 4.2 × 10-5 and 3.4 × 10-5 s-1, respectively), thereby indicating a nonlinear streamflow response to prescribed burning. Together, these results from plots to whole river catchments indicate that prescribed vegetation burning has important effects on blanket peatland hydrology at a range of spatial scales.

  10. Recovery of tritium from a liquid lithium blanket

    SciTech Connect

    Talbot, J.B.

    1981-01-01

    The sorption of tritium on yttrium from liquid lithium and the subsequent release of tritium from yttrium by thermal regeneration of the metal sorbent were investigated to study such a tritium-recovery process for a fusion reactor blanket of liquid lithium. Recent static sorption experiments have shown the effects of lithium temperature and possible impurities on the sorption of tritium. Diffusivity data, obtained from previous tritium recovery experiments, were evaluated to show the importance of the yttrium surface condition in controlling the release of tritium.

  11. Initial progress in the first wall, blanket, and shield Engineering Test Program for magnetically confined fusion-power reactors

    SciTech Connect

    Herman, H.; Baker, C.C.; Maroni, V.A.

    1981-10-01

    The first wall/blanket/shield (FW/B/S) Engineering Test Program (ETP) progressed from the planning stage into implementation during July, 1981. The program, generic in nature, comprises four Test Program Elements (TPE's), the emphasis of which is on defining the performance parameters for the Fusion Engineering Device (FED) and the major fusion device to follow FED. These elements are: (1) nonnuclear thermal-hydraulic and thermomechanical testing of first wall and component facsimiles with emphasis on surface heat loads and heat transient (i.e., plasma disruption) effects; (2) nonnuclear and nuclear testing of FW/B/S components and assemblies with emphasis on bulk (nuclear) heating effects, integrated FW/B/S hydraulics and mechanics, blanket coolant system transients, and nuclear benchmarks; (3) FW/B/S electromagnetic and eddy current effects testing, including pulsed field penetration, torque and force restraint, electromagnetic materials, liquid metal MHD effects and the like; and (4) FW/B/S Assembly, Maintenance and Repair (AMR) studies focusing on generic AMR criteria, with the objective of preparing an AMR designers guidebook; also, development of rapid remote assembly/disassembly joint system technology, leak detection and remote handling methods.

  12. Nuclear breeder reactor fuel element with silicon carbide getter

    DOEpatents

    Christiansen, David W.; Karnesky, Richard A.

    1987-01-01

    An improved cesium getter 28 is provided in a breeder reactor fuel element or pin in the form of an extended surface area, low density element formed in one embodiment as a helically wound foil 30 located with silicon carbide, and located at the upper end of the fertile material upper blanket 20.

  13. Inhibition of Frying Oil Oxidation by Carbon Dioxide Blanketing.

    PubMed

    Totani, Nagao; Inoue, Ryota; Yawata, Miho

    2016-06-01

    The oxidation of oil starts, in general, from the penetration of atmospheric oxygen into oil. Inhibition of the vigorous oxidation of oil at deep-frying temperature under carbon dioxide flow, by disrupting the contact between oil and air, was first demonstrated using oil in a round bottom flask. Next, the minimum carbon dioxide flow rate necessary to blanket 4 L of frying oil in an electric fryer (surface area 690 cm(2)) installed with nonwoven fabric cover, was found to be 40 L/h. Then deep-frying of potato was done accordingly; immediately after deep-frying, an aluminum cover was placed on top of the nonwoven fabric cover to prevent the loss of carbon dioxide and the carbon dioxide flow was shut off. In conclusion, the oxidation of oil both at deep-frying temperature and during standing was remarkably inhibited by carbon dioxide blanketing at a practical flow rate and volume. Under the deep-frying conditions employed in this study, the increase in polar compound content was reduced to half of that of the control.

  14. Forced-air patient warming blankets disrupt unidirectional airflow.

    PubMed

    Legg, A J; Hamer, A J

    2013-03-01

    We have recently shown that waste heat from forced-air warming blankets can increase the temperature and concentration of airborne particles over the surgical site. The mechanism for the increased concentration of particles and their site of origin remained unclear. We therefore attempted to visualise the airflow in theatre over a simulated total knee replacement using neutral-buoyancy helium bubbles. Particles were created using a Rocket PS23 smoke machine positioned below the operating table, a potential area of contamination. The same theatre set-up, warming devices and controls were used as in our previous study. This demonstrated that waste heat from the poorly insulated forced-air warming blanket increased the air temperature on the surgical side of the drape by > 5°C. This created convection currents that rose against the downward unidirectional airflow, causing turbulence over the patient. The convection currents increased the particle concentration 1000-fold (2 174 000 particles/m(3) for forced-air warming vs 1000 particles/m(3) for radiant warming and 2000 particles/m(3) for the control) by drawing potentially contaminated particles from below the operating table into the surgical site. Cite this article: Bone Joint J 2013;95-B:407-10.

  15. 78 FR 13663 - Equitrans, L.P. Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-28

    ... Energy Regulatory Commission Equitrans, L.P. Notice of Request Under Blanket Authorization Take notice that on February 12, 2013, Equitrans, L.P. (Equitrans), pursuant to the blanket certificate... open to public inspection. \\1\\ Equitrans, L.P., 85 FERC ] 61,089 (1998). Equitrans proposes to...

  16. 78 FR 36770 - ANR Pipeline Company; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-19

    ... Energy Regulatory Commission ANR Pipeline Company; Notice of Request Under Blanket Authorization Take that on May 31, 2013, ANR Pipeline Company (ANR), 717 Texas Street, Houston, Texas 77002-2761, filed in... Commission's Regulations under the Natural Gas Act, and ANR's blanket certificate issued in Docket No....

  17. 77 FR 52713 - PetroLogistics Natural Gas Storage, LLC; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-30

    ... Energy Regulatory Commission PetroLogistics Natural Gas Storage, LLC; Notice of Request Under Blanket Authorization Take notice that on August 17, 2012, PetroLogistics Natural Gas Storage, LLC (PetroLogistics... Iberville Parish, Louisiana, under PetroLogistics' blanket certificate issued in Docket No. CP07-427-000,...

  18. 75 FR 60095 - Sempra LNG Marketing, LLC; Application for Blanket Authorization To Export Liquefied Natural Gas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-29

    ... LNG Marketing, LLC; Application for Blanket Authorization To Export Liquefied Natural Gas AGENCY..., by Sempra LNG Marketing, LLC (Sempra), requesting blanket authorization to export up to a total of..., Louisiana. Sempra is engaged in the business of purchasing and marketing supplies of LNG. Sempra is...

  19. 75 FR 19954 - Cheniere Marketing, LLC; Application for Blanket Authorization To Export Liquefied Natural Gas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-16

    ... Cheniere Marketing, LLC; Application for Blanket Authorization To Export Liquefied Natural Gas AGENCY... Cheniere Marketing, LLC (CMI), requesting blanket authorization to export liquefied natural gas (LNG) that... authorization was amended to reflect a name change from Cheniere Marketing, Inc to Cheniere Marketing,...

  20. 77 FR 38622 - Southern Star Central Gas Pipeline, Inc.; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ... Energy Regulatory Commission Southern Star Central Gas Pipeline, Inc.; Notice of Request Under Blanket Authorization Take notice that on June 4, 2012, Southern Star Central Gas Pipeline, Inc. (Southern Star), 4700...) regulations under the Natural Gas Act as amended and Southern Star's blanket certificate issued in Docket...

  1. 78 FR 35263 - Freeport LNG Development, L.P.; Application for Blanket Authorization To Export Previously...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-12

    ... Freeport LNG Development, L.P.; Application for Blanket Authorization To Export Previously Imported... receipt of an application (Application), filed on April 19, 2013, by Freeport LNG Development, L.P. (Freeport LNG), requesting blanket authorization to export liquefied natural gas (LNG) that previously...

  2. 77 FR 76013 - Sempra LNG Marketing, LLC; Application for Blanket Authorization To Export Previously Imported...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ... LNG Marketing, LLC; Application for Blanket Authorization To Export Previously Imported Liquefied... application (Application), filed on October 26, 2012, by Sempra LNG Marketing, LLC (Sempra LNG Marketing), requesting blanket authorization to export liquefied natural gas (LNG) that previously had been imported...

  3. 76 FR 58488 - Dominion Cove Point LNG, LP; Application for Blanket Authorization to Export Previously Imported...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-21

    ... Dominion Cove Point LNG, LP; Application for Blanket Authorization to Export Previously Imported Liquefied... (Application), filed on August 8, 2011, by Dominion Cove Point LNG, LP (DCP), requesting blanket authorization to export liquefied natural gas (LNG) that previously had been imported into the United States...

  4. 75 FR 38092 - The Dow Chemical Company; Application for Blanket Authorization To Export Liquefied Natural Gas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-01

    ... Chemical Company; Application for Blanket Authorization To Export Liquefied Natural Gas AGENCY: Office of... The Dow Chemical Company (Dow), requesting blanket authorization to export liquefied natural gas (LNG... equivalent of 390 billion cubic feet (Bcf) of natural gas on a short-term or spot market basis. The LNG...

  5. 77 FR 31004 - Southern Natural Gas Company; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-24

    ...] Southern Natural Gas Company; Notice of Request Under Blanket Authorization Take notice that on May 9, 2012, Southern Natural Gas Company (Southern), 569 Brookwood Village, Suite 501, Birmingham, Alabama 35209, filed... Commission's regulations under the Natural Gas Act (NGA), and Southern's blanket certificate issued in...

  6. Modelling of tritium transport in a pin-type solid breeder blanket

    SciTech Connect

    Martin, R.; Ghoniem, N.M.

    1986-02-01

    This study supplements a larger study of a solid breeder blanket design featuring lithium ceramic pins. This aspect of the study looks at tritium transport, release, and inventory within this blanket design. Li/sub 2/O and ..gamma..-LiAlO/sub 2/ are the two primary candidates for ceramic solid breeders. ..gamma..-LiAlO/sub 2/ was chosen for this blanket design due to its higher structural stability. Analysis of tritium behavior in solid breeder blankets is of great importance due to its impact on several critical issues: the generation of an adequate amount of fusion fuel, the safety-related issue of keeping radioactive blanket inventories as low as possible, and the release, purge, and economical processing of the bred tritium without undue contamination of the coolant and other reactor structures.

  7. Effective Thermal Conductivity of Lithium Ceramic Pebble Beds for Fusion Blankets: A Review

    SciTech Connect

    Abou-Sena, A.; Ying, A.; Abdou, M.

    2005-05-15

    The use of lithium ceramic pebble beds has been considered in many blanket designs for the fusion reactors. Lithium ceramics have received a significant interest as tritium breeders for the fusion blankets during the last three decades. The thermal performance of the lithium ceramic pebble beds plays a key role for the fusion blankets. In order to study the heat transfer in the blanket, the effective thermal conductivity of the lithium ceramics pebble beds has to be well measured and characterized. The data of effective thermal conductivity of lithium ceramic pebble beds is important for the blanket design. Several studies have been dedicated to investigate the effective conductivity of the lithium ceramics pebble beds. The objective of this work is to review and compare the available data, presented by various studies, of effective conductivity of lithium ceramic pebble beds in order to address the current status of these data.

  8. Current Trends of Blanket Research and Deveopment in Japan 2.Roles and Requirements of the Blanket System of Fusion Power Reactors

    NASA Astrophysics Data System (ADS)

    Asaoka, Yoshiyuki; Mohri, Kensuke; Hashizume, Hidetoshi; Tanaka, Satoru; Ueda, Yoshio

    Roles and requirements of the blanket system of the fusion power reactors are discussed from viewpoints of economics, fuel supply, generation system, maintenance, radioactive waste, and interaction with the plasma core. As the blanket system influences the cost of the fusion energy, the blanket system must be designed to minimize the fusion energy cost. Tritium breeding performance of the blanket is indispensable role to show the advantage of fusion energy on energy security. Material development for high temperature use under high neutron flux is one of the key issues of the generation system because the thermal efficiency depends on the coolant temperature of the blanket. Innovative maintenance technologies such as dividable superconducting coil system are very effective to make the fusion power reactor attractive. From viewpoints of natural resources and waste management, materials used in the fusion reactors should be recycled. Material selection is also of a large importance on the cost of radioactive waste disposal. Finally, it must be paid a careful attention that the design of the blanket system is inseparable from the achievement of a high performance plasma core.

  9. Proposed pyrometallurgical process for rapid recycle of discharged fuel materials from the integral fast reactor. [Metal fuel

    SciTech Connect

    Burris, L.; Steindler, M.; Miller, W.

    1984-01-01

    The pool-type Integral Fast Reactor (IFR) concept developed by Argonne National Laboratory includes on-site recycle of discharged core and blanket fuel materials. The process and fabrication steps will be demonstrated in the EBR-II Fuel Cycle Facility with IFR fuel irradiated in EBR-II and the Fast Flux Test Facility. The proposed process consists of two major steps: a halide slagging step and an electrorefining step. The fuel is maintained in the metallic form to yield directly a metal product sufficiently decontaminated to allow recycle to the reactor as new fuel. The process is further described and available information to support its feasibility is presented.

  10. Experimental Investigation of Ternary Alloys for Fusion Breeding Blankets

    SciTech Connect

    Choi, B. William; Chiu, Ing L.

    2015-10-26

    Future fusion power plants based on the deuterium-tritium (DT) fuel cycle will be required to breed the T fuel via neutron reactions with lithium, which will be incorporated in a breeding blanket that surrounds the fusion source. Recent work by LLNL proposed the used of liquid Li as the breeder in an inertial fusion energy (IFE) power plant. Subsequently, an LDRD was initiated to develop alternatives ternary alloy liquid metal breeders that have reduced chemical reactivity with water and air compared to pure Li. Part of the work plan was to experimentally investigate the phase diagrams of ternary alloys. Of particular interest was measurement of the melt temperature, which must be low enough to be compatible with the temperature limits of the steel used in the construction of the chamber and heat transfer system.

  11. Fusion Blanket Coolant Section Criteria, Methodology, and Results

    SciTech Connect

    DeMuth, J. A.; Meier, W. R.; Jolodosky, A.; Frantoni, M.; Reyes, S.

    2015-10-02

    The focus of this LDRD was to explore potential Li alloys that would meet the tritium breeding and blanket cooling requirements but with reduced chemical reactivity, while maintaining the other attractive features of pure Li breeder/coolant. In other fusion approaches (magnetic fusion energy or MFE), 17Li- 83Pb alloy is used leveraging Pb’s ability to maintain high TBR while lowering the levels of lithium in the system. Unfortunately this alloy has a number of potential draw-backs. Due to the high Pb content, this alloy suffers from very high average density, low tritium solubility, low system energy, and produces undesirable activation products in particular polonium. The criteria considered in the selection of a tritium breeding alloy are described in the following section.

  12. Heating performances of a IC in-blanket ring array

    NASA Astrophysics Data System (ADS)

    Bosia, G.; Ragona, R.

    2015-12-01

    An important limiting factor to the use of ICRF as candidate heating method in a commercial reactor is due to the evanescence of the fast wave in vacuum and in most of the SOL layer, imposing proximity of the launching structure to the plasma boundary and causing, at the highest power level, high RF standing and DC rectified voltages at the plasma periphery, with frequent voltage breakdowns and enhanced local wall loading. In a previous work [1] the concept for an Ion Cyclotron Heating & Current Drive array (and using a different wave guide technology, a Lower Hybrid array) based on the use of periodic ring structure, integrated in the reactor blanket first wall and operating at high input power and low power density, was introduced. Based on the above concept, the heating performance of such array operating on a commercial fusion reactor is estimated.

  13. Heating performances of a IC in-blanket ring array

    SciTech Connect

    Bosia, G.; Ragona, R.

    2015-12-10

    An important limiting factor to the use of ICRF as candidate heating method in a commercial reactor is due to the evanescence of the fast wave in vacuum and in most of the SOL layer, imposing proximity of the launching structure to the plasma boundary and causing, at the highest power level, high RF standing and DC rectified voltages at the plasma periphery, with frequent voltage breakdowns and enhanced local wall loading. In a previous work [1] the concept for an Ion Cyclotron Heating & Current Drive array (and using a different wave guide technology, a Lower Hybrid array) based on the use of periodic ring structure, integrated in the reactor blanket first wall and operating at high input power and low power density, was introduced. Based on the above concept, the heating performance of such array operating on a commercial fusion reactor is estimated.

  14. Tailorable advanced blanket insulation using aluminoborosilicate and alumina batting

    NASA Technical Reports Server (NTRS)

    Calamito, Dominic P.

    1989-01-01

    Two types of Tailorable Advanced Blanket Insulation (TABI) flat panels for Advanced Space Transportation Systems were produced. Both types consisted of integrally woven, 3-D fluted core having parallel faces and connecting ribs of Nicalon yarns. The triangular cross section flutes of one type was filled with mandrels of processed Ultrafiber (aluminoborosilicate) stitchbonded Nextel 440 fibrous felt, and the second type wall filled with Saffil alumina fibrous felt insulation. Weaving problems were minimal. Insertion of the fragile insulation mandrels into the fabric flutes was improved by using a special insertion tool. An attempt was made to weave fluted core fabrics from Nextel 440 yarns but was unsuccessful because of the yarn's fragility. A small sample was eventually produced by an unorthodox weaving process and then filled with Saffil insulation. The procedures for setting up and weaving the fabrics and preparing and inserting insulation mandrels are discussed. Characterizations of the panels produced are also presented.

  15. Management of super-grade plutonium in spent nuclear fuel

    SciTech Connect

    McFarlane, H. F.; Benedict, R. W.

    2000-03-20

    This paper examines the security and safeguards implications of potential management options for DOE's sodium-bonded blanket fuel from the EBR-II and the Fermi-1 fast reactors. The EBR-II fuel appears to be unsuitable for the packaging alternative because of DOE's current safeguards requirements for plutonium. Emerging DOE requirements, National Academy of Sciences recommendations, draft waste acceptance requirements for Yucca Mountain and IAEA requirements for similar fuel also emphasize the importance of safeguards in spent fuel management. Electrometallurgical treatment would be acceptable for both fuel types. Meeting the known requirements for safeguards and security could potentially add more than $200M in cost to the packaging option for the EBR-II fuel.

  16. Advanced methods comparisons of reaction rates in the Purdue Fast Breeder Blanket Facility

    SciTech Connect

    Hill, R.N.; Ott, K.O.

    1988-01-01

    A review of worldwide results revealed that reaction rates in the blanket region are generally underpredicted with the discrepancy increasing with penetration; however, these results vary widely. Experiments in the large uniform Purdue Fast Breeder Blanket Facility (FBBF) blanket yield an accurate quantification of this discrepancy. Using standard production code methods (diffusion theory with 50 group cross sections), a consistent Calculated/Experimental (C/E) drop-off was observed for various reaction rates. A 50% increase in the calculated results at the outer edge of the blanket is necessary for agreement with experiments. The usefulness of refined group constant generation utilizing specialized weighting spectra and transport theory methods in correcting this discrepancy was analyzed. Refined group constants reduce the discrepancy to half that observed using the standard method. The surprising result was that transport methods had no effect on the blanket deviations; thus, transport theory considerations do not constitute or even contribute to an explanation of the blanket discrepancies. The residual blanket C/E drop-off (about half the standard drop-off) using advanced methods must be caused by some approximations which are applied in all current methods. 27 refs., 3 figs., 1 tab.

  17. Thermal-hydraulic design of the target/blanket for the accelerator production of tritium conceptual design

    SciTech Connect

    Willcutt, G.J.E. Jr.; Kapernick, R.J.

    1997-11-01

    A conceptual design was developed for the target/blanket system of an accelerator-based system to produce tritium. The target/blanket system uses clad tungsten rods for a spallation target and clad lead rods as a neutron multiplier in a blanket surrounding the target. The neutrons produce tritium in {sup 3}He, which is contained in aluminum tubes located in the decoupler and blanket regions. This paper presents the thermal-hydraulic design of the target, decoupler, and blanket developed for the conceptual design of the Accelerator Production of Tritium Project, and demonstrates there is adequate margin in the design at full power operation.

  18. Development and trial manufacturing of 1/2-scale partial mock-up of blanket box structure for fusion experimental reactor

    NASA Astrophysics Data System (ADS)

    Hashimoto, Toshiyuki; Takatsu, Hideyuki; Sato, Satoshi

    1994-07-01

    Conceptual design of breeding blanket has been discussed during the CDA (Conceptual Design Activities) of ITER (International Thermonuclear Experimental Reactor). Structural concept of breeding blanket is based on box structure integrated with first wall and shield, which consists of three coolant manifolds for first wall, breeding and shield regions. The first wall must have cooling channels to remove surface heat flux and nuclear heating. The box structure includes plates to form the manifolds and stiffening ribs to withstand enormous electromagnetic load, coolant pressure and blanket internal (purge gas) pressure. A 1/2-scale partial model of the blanket box structure for the outboard side module near midplane is manufactured to estimate the fabrication technology, i.e. diffusion bonding by HIP (Hot Isostatic Pressing) and EBW (Electron Beam Welding) procedure. Fabrication accuracy is a key issue to manufacture first wall panel because bending deformation during HIP may not be small for a large size structure. Data on bending deformation during HIP was obtained by preliminary manufacturing of HIP elements. For the shield structure, it is necessary to reduce the welding strain and residual stress of the weldment to establish the fabrication procedure. Optimal shape of the parts forming the manifolds, welding locations and welding sequence have been investigated. In addition, preliminary EBW tests have been performed in order to select the EBW conditions, and fundamental data on built-up shield have been obtained. Especially, welding deformation by joining the first wall panel to the shield has been measured, and total deformation to build-up shield by EBW has been found to be smaller than 2 mm. Consequently, the feasibility of fabrication technologies has been successfully demonstrated for a 1m-scaled box structure including the first wall with cooling channels by means of HIP, EBW and TIG (Tungsten Inert Gas arc)-welding.

  19. In plain sight: the Chesapeake Bay crater ejecta blanket

    NASA Astrophysics Data System (ADS)

    Griscom, D. L.

    2012-02-01

    The discovery nearly two decades ago of a 90 km-diameter impact crater below the lower Chesapeake Bay has gone unnoted by the general public because to date all published literature on the subject has described it as "buried". To the contrary, evidence is presented here that the so-called "upland deposits" that blanket ∼5000 km2 of the U.S. Middle-Atlantic Coastal Plain (M-ACP) display morphologic, lithologic, and stratigraphic features consistent with their being ejecta from the 35.4 Ma Chesapeake Bay Impact Structure (CBIS) and absolutely inconsistent with the prevailing belief that they are of fluvial origin. Specifically supporting impact origin are the facts that (i) a 95 %-pure iron ore endemic to the upland deposits of southern Maryland, eastern Virginia, and the District of Columbia has previously been proven to be impactoclastic in origin, (ii) this iron ore welds together a small percentage of well-rounded quartzite pebbles and cobbles of the upland deposits into brittle sheets interpretable as "spall plates" created in the interference-zone of the CBIS impact, (iii) the predominantly non-welded upland gravels have long ago been shown to be size sorted with an extreme crater-centric gradient far too large to have been the work of rivers, but well explained as atmospheric size-sorted interference-zone ejecta, (iv) new evidence is provided here that ~60 % of the non-welded quartzite pebbles and cobbles of the (lower lying) gravel member of the upland deposits display planar fractures attributable to interference-zone tensile waves, (v) the (overlying) loam member of the upland deposits is attributable to base-surge-type deposition, (vi) several exotic clasts found in a debris flow topographically below the upland deposits can only be explained as jetting-phase crater ejecta, and (vii) an allogenic granite boulder found among the upland deposits is deduced to have been launched into space and sculpted by hypervelocity air friction during reentry. An

  20. Quantitative analysis of hydrogen gas formed by aqueous corrosion of metallic uranium

    SciTech Connect

    Fonnesbeck, J.

    2000-03-20

    Three unirradiated EBR-II blanket fuel samples containing depleted uranium metal were corrosion tested in simulated J-13 well water at 90 C. The corrosion rate of the blanket uranium metal was then determined relative to H{sub 2} formation. Corrosion of one of the samples was interrupted prior to complete oxidation of the uranium metal and the solid corrosion product was analyzed for UO{sub 2} and UH{sub 3}.

  1. An Analysis of Ripple and Error Fields Induced by a Blanket in the CFETR

    NASA Astrophysics Data System (ADS)

    Yu, Guanying; Liu, Xufeng; Liu, Songlin

    2016-10-01

    The Chinese Fusion Engineering Tokamak Reactor (CFETR) is an important intermediate device between ITER and DEMO. The Water Cooled Ceramic Breeder (WCCB) blanket whose structural material is mainly made of Reduced Activation Ferritic/Martensitic (RAFM) steel, is one of the candidate conceptual blanket design. An analysis of ripple and error field induced by RAFM steel in WCCB is evaluated with the method of static magnetic analysis in the ANSYS code. Significant additional magnetic field is produced by blanket and it leads to an increased ripple field. Maximum ripple along the separatrix line reaches 0.53% which is higher than 0.5% of the acceptable design value. Simultaneously, one blanket module is taken out for heating purpose and the resulting error field is calculated to be seriously against the requirement. supported by National Natural Science Foundation of China (No. 11175207) and the National Magnetic Confinement Fusion Program of China (No. 2013GB108004)

  2. Normal Operation (NO) of APT Blanket System and its Components Based on Initial Conceptual Design

    SciTech Connect

    Hamm, L.L.

    1998-10-07

    This report is one of a series of reports documenting accident scenario simulations for the Accelerator Production of Tritium (APT) blanket heat removal systems. The simulations were performed in support of the Preliminary Safety Analysis Report (PSAR) for the APT.

  3. Properties of Ejecta Blanket Deposits Surrounding Morasko Meteorite Impact Craters (Poland)

    NASA Astrophysics Data System (ADS)

    Szokaluk, M.; Muszyński, A.; Jagodziński, R.; Szczuciński, W.

    2016-08-01

    Morasko impact craters are a record of the fall of a meteorite into the soft sediments. The presented results illustrate the geological structure of the area around the crater as well as providing evidence of the occurrence of ejecta blanket.

  4. Nucleonics of a Be-Li-Th blanket for the fusion breeder

    SciTech Connect

    Lee, J.D.

    1983-03-28

    The nuclear performance of a candidate fission-suppressed, U233-producing blanket is assessed. It is predicted to have a breeding ratio (fusile + fissile) of 1.68 and produce U233 at a rate of 8030 kg/year from 3140 MW of DT fusion and a blanket coverage of 96%. Blanket energy multiplication is estimated to vary between 1.3 and 2.0 as the U233/Th232 ratio varies between 0 and 0.5%. Heterogeneous effects in the blanket's pebble-bed configuration were found to be important and more detailed analysis is needed to more accurately predict Li6 content required and U233 fission power versus U233 content.

  5. Climate-driven expansion of blanket bogs in Britain during the Holocene

    NASA Astrophysics Data System (ADS)

    Gallego-Sala, A. V.; Charman, D. J.; Harrison, S. P.; Li, G.; Prentice, I. C.

    2016-01-01

    Blanket bog occupies approximately 6 % of the area of the UK today. The Holocene expansion of this hyperoceanic biome has previously been explained as a consequence of Neolithic forest clearance. However, the present distribution of blanket bog in Great Britain can be predicted accurately with a simple model (PeatStash) based on summer temperature and moisture index thresholds, and the same model correctly predicts the highly disjunct distribution of blanket bog worldwide. This finding suggests that climate, rather than land-use history, controls blanket-bog distribution in the UK and everywhere else. We set out to test this hypothesis for blanket bogs in the UK using bioclimate envelope modelling compared with a database of peat initiation age estimates. We used both pollen-based reconstructions and climate model simulations of climate changes between the mid-Holocene (6000 yr BP, 6 ka) and modern climate to drive PeatStash and predict areas of blanket bog. We compiled data on the timing of blanket-bog initiation, based on 228 age determinations at sites where peat directly overlies mineral soil. The model predicts that large areas of northern Britain would have had blanket bog by 6000 yr BP, and the area suitable for peat growth extended to the south after this time. A similar pattern is shown by the basal peat ages and new blanket bog appeared over a larger area during the late Holocene, the greatest expansion being in Ireland, Wales, and southwest England, as the model predicts. The expansion was driven by a summer cooling of about 2 °C, shown by both pollen-based reconstructions and climate models. The data show early Holocene (pre-Neolithic) blanket-bog initiation at over half of the sites in the core areas of Scotland and northern England. The temporal patterns and concurrence of the bioclimate model predictions and initiation data suggest that climate change provides a parsimonious explanation for the early Holocene distribution and later expansion of

  6. Climate-driven expansion of blanket bogs in Britain during the Holocene

    NASA Astrophysics Data System (ADS)

    Gallego-Sala, A. V.; Charman, D. J.; Harrison, S. P.; Li, G.; Prentice, I. C.

    2015-10-01

    Blanket bog occupies approximately 6 % of the area of the UK today. The Holocene expansion of this hyperoceanic biome has previously been explained as a consequence of Neolithic forest clearance. However, the present distribution of blanket bog in Great Britain can be predicted accurately with a simple model (PeatStash) based on summer temperature and moisture index thresholds, and the same model correctly predicts the highly disjunct distribution of blanket bog worldwide. This finding suggests that climate, rather than land-use history, controls blanket-bog distribution in the UK and everywhere else. We set out to test this hypothesis for blanket bogs in the UK using bioclimate envelope modelling compared with a database of peat initiation age estimates. We used both pollen-based reconstructions and climate model simulations of climate changes between the mid-Holocene (6000 yr BP, 6 ka) and modern climate to drive PeatStash and predict areas of blanket bog. We compiled data on the timing of blanket-bog initiation, based on 228 age determinations at sites where peat directly overlies mineral soil. The model predicts large areas of northern Britain would have had blanket bog by 6000 yr BP, and the area suitable for peat growth extended to the south after this time. A similar pattern is shown by the basal peat ages and new blanket bog appeared over a larger area during the late Holocene, the greatest expansion being in Ireland, Wales and southwest England, as the model predicts. The expansion was driven by a summer cooling of about 2 °C, shown by both pollen-based reconstructions and climate models. The data show early Holocene (pre-Neolithic) blanket-bog initiation at over half of the sites in the core areas of Scotland, and northern England. The temporal patterns and concurrence of the bioclimate model predictions and initiation data suggest that climate change provides a parsimonious explanation for the early Holocene distribution and later expansion of blanket

  7. Preliminary Failure Modes and Effects Analysis of the US DCLL Test Blanket Module

    SciTech Connect

    Lee C. Cadwallader

    2007-08-01

    This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a small tritium-breeding test blanket module design for the International Thermonuclear Experimental Reactor. The FMEA was quantified with “generic” component failure rate data, and the failure events are binned into postulated initiating event families and frequency categories for safety assessment. An appendix to this report contains repair time data to support an occupational radiation exposure assessment for test blanket module maintenance.

  8. Preliminary Failure Modes and Effects Analysis of the US DCLL Test Blanket Module

    SciTech Connect

    Lee C. Cadwallader

    2010-06-01

    This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a small tritium-breeding test blanket module design for the International Thermonuclear Experimental Reactor. The FMEA was quantified with “generic” component failure rate data, and the failure events are binned into postulated initiating event families and frequency categories for safety assessment. An appendix to this report contains repair time data to support an occupational radiation exposure assessment for test blanket module maintenance.

  9. Immobilization effect of air-injected blanket (AIB) for abdomen fixation

    SciTech Connect

    Ko, Young Eun; Suh, Yelin; Ahn, Seung Do; Lee, Sang-wook; Shin, Seong Soo; Kim, Jong Hoon; Choi, Eun Kyung; Yi, Byong Yong

    2005-11-15

    A new device for reducing the amplitude of breathing motion by pressing a patient's abdomen using an air-injected blanket (AIB) for external beam radiation treatments has been designed and tested. The blanket has two layers sealed in all four sides similar to an empty pillow made of urethane. The blanket is spread over the patient's abdomen with both ends of the blanket fixed to the sides of the treatment couch or a baseboard. The inner side, or patient side, of the blanket is thinner and expands more than the outer side. When inflated, the blanket balloons and effectively puts an even pressure on the patient's abdomen. Fluoroscopic observation was performed to verify the usefulness of AIB for patients with lung, breast cancer, or abdominal cancers. Internal organ movement due to breathing was monitored and measured with and without AIB. With the help of AIB, the average range of diaphragm motion was reduced from 2.6 to 0.7 cm in the anterior-to-posterior direction and from 2.7 to 1.3 cm in the superior-to-inferior direction. The motion range in the right-to-left direction was negligible, for it was less than 0.5 cm. These initial testing demonstrated that AIB is useful for reducing patients' breathing motion in the thoracic and abdominal regions comfortably and consistently.

  10. Multiplier, moderator, and reflector materials for lithium-vanadium fusion blankets.

    SciTech Connect

    Gohar, Y.; Smith, D. L.

    1999-10-07

    The self-cooled lithium-vanadium fusion blanket concept has several attractive operational and environmental features. In this concept, liquid lithium works as the tritium breeder and coolant to alleviate issues of coolant breeder compatibility and reactivity. Vanadium alloy (V-4Cr-4Ti) is used as the structural material because of its superior performance relative to other alloys for this application. However, this concept has poor attenuation characteristics and energy multiplication for the DT neutrons. An advanced self-cooled lithium-vanadium fusion blanket concept has been developed to eliminate these drawbacks while maintaining all the attractive features of the conventional concept. An electrical insulator coating for the coolant channels, spectral shifter (multiplier, and moderator) and reflector were utilized in the blanket design to enhance the blanket performance. In addition, the blanket was designed to have the capability to operate at high loading conditions of 2 MW/m{sup 2} surface heat flux and 10 MW/m{sup 2} neutron wall loading. This paper assesses the spectral shifter and the reflector materials and it defines the technological requirements of this advanced blanket concept.

  11. Liquid immersion blanket design for use in a compact modular fusion reactor

    NASA Astrophysics Data System (ADS)

    Sorbom, Brandon; Ball, Justin; Barnard, Harold; Haakonsen, Christian; Hartwig, Zachary; Olynyk, Geoffrey; Sierchio, Jennifer; Whyte, Dennis

    2012-10-01

    Traditional tritium breeding blankets in fusion reactor designs include a large amount of structural material. This results in complex engineering requirements, complicated sector maintenance, and marginal tritium breeding ratios (TBR). We present a conceptual design of a fully liquid blanket. To maximize tritium breeding volume, the vacuum vessel is completely immersed in a continuously recycled FLiBe blanket, with the exception of small support posts. FLiBe has a wide liquid temperature window (459 C to 1430 C), low electrical conductivity to minimize MHD effects, similar thermal/fluid characteristics to water, and is chemically inert. While tritium breeding with FLiBe in traditional blankets is poor, we use MCNP neutronics analysis to show that the immersion blanket design coupled with a beryllium neutron multiplier results in TBR > 1. FLiBe is shown to be a sufficient radiation shield for the toroidal field magnets and can be used as a coolant for the vacuum vessel and divertor, allowing for a simplified single-phase, low-pressure, single-fluid cooling scheme. When coupled with a high-field compact reactor design, the immersion blanket eliminates the need for complex sector maintenance, allows the vacuum vessel to be a replaceable component, and reduces financial cost.

  12. 46 CFR 151.50-50 - Elemental phosphorus in water.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Elemental phosphorus in water. 151.50-50 Section 151.50... phosphorus in water. (a) Tanks shall be designed and tested for a head equivalent to the design lading of phosphorus and its water blanket extended to 8 feet above the tank top. In addition, tank design...

  13. 46 CFR 151.50-50 - Elemental phosphorus in water.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Elemental phosphorus in water. 151.50-50 Section 151.50... phosphorus in water. (a) Tanks shall be designed and tested for a head equivalent to the design lading of phosphorus and its water blanket extended to 8 feet above the tank top. In addition, tank design...

  14. 46 CFR 151.50-50 - Elemental phosphorus in water.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Elemental phosphorus in water. 151.50-50 Section 151.50... phosphorus in water. (a) Tanks shall be designed and tested for a head equivalent to the design lading of phosphorus and its water blanket extended to 8 feet above the tank top. In addition, tank design...

  15. 46 CFR 151.50-50 - Elemental phosphorus in water.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Elemental phosphorus in water. 151.50-50 Section 151.50... phosphorus in water. (a) Tanks shall be designed and tested for a head equivalent to the design lading of phosphorus and its water blanket extended to 8 feet above the tank top. In addition, tank design...

  16. Progress and critical issues for IFE blanket and chamber research

    SciTech Connect

    Abdou, M.; Kulcinski, G.L.; Latkowski, J.F.; Logan, B.G.; Meier, W.R.; Moir, R.W.; Nobile, A.; Peterson, P.F.; Petti, D.; Schultz, K.R.; Tillack, M.S.

    1999-06-23

    Advances in high gain target designs for Inertial Fusion Energy (IFE), and the initiation of construction of large megajoule-class laser facilities in the U.S. (National Ignition Facility) and France (Laser-Megajoule) capable of testing the requirements for inertial fusion ignition and propagating burn, have improved the prospects for IFE. Accordingly, there have recently been modest increases in the US fusion research program related to the feasibility of IFE. These research areas include heavy-ion accelerators, Krypton-Fluoride (KrF) gas lasers, diode-pumped, solid-state (DPSSL) lasers, IFE target designs for higher gains, feasibility of low cost IFE target fabrication and accurate injection, and long-lasting IFE fusion chambers and final optics. Since several studies of conceptual IFE power plant and driver designs were completed in 1992-1996 [1-5], U.S. research in the IFE blanket, chamber, and target technology areas has focused on the critical issues relating to the feasibility of IFE concepts towards the goal of achieving economically-competitive and environmentally-attractive fusion energy. This paper discusses the critical issues in these areas, and the approaches taken to address these issues. The U.S. research in these areas, called IFE Chamber and Target Technologies, is coordinated through the Virtual Laboratory for Technology (VLT) formed by the Department of Energy in December 1998.

  17. Helium-Cooled Refractory Alloys First Wall and Blanket Evaluation

    SciTech Connect

    Wong, C.P.C.; Nygren, R.E.; Baxi, C.B.; Fogarty, P.; Ghoniem, N.; Khater, H.; McCarthy, K.; Merrill, B.; Nelson, B.; Reis, E.E.; Sharafat, S.; Schleicher, R.; Sze, D.K.; Ulrickson, M.; Willms, S.; Youssef, M.; Zinkel, S.

    1999-08-01

    Under the APEX program the He-cooled system design task is to evaluate and recommend high power density refractory alloy first wall and blanket designs and to recommend and initiate tests to address critical issues. We completed the preliminary design of a helium-cooled, W-5Re alloy, lithium breeder design and the results are reported in this paper. Many areas of the design were assessed, including material selection, helium impurity control, and mechanical, nuclear and thermal hydraulics design, and waste disposal, tritium and safety design. System study results show that at a closed cycle gas turbine (CCGT) gross thermal efficiency of 57.5%, a superconducting coil tokamak reactor, with an aspect ratio of 4, and an output power of 2 GWe, can be projected to have a cost of electricity at 54.6 mill/kWh. Critical issues were identified and we plan to continue the design on some of the critical issues during the next phase of the APEX design study.

  18. Vacuum Permeator Analysis for Extraction of Tritium from DCLL Blankets

    SciTech Connect

    Humrickhouse, Paul Weston; Merrill, Brad Johnson

    2014-11-01

    It is envisioned that tritium will be extracted from DCLL blankets using a vacuum permeator. We derive here an analytical solution for the extraction efficiency of a permeator tube, which is a function of only two dimensionless numbers: one that indicates whether radial transport is limited in the PbLi or in the solid membrane, and another that is the ratio of axial and radial transport times in the PbLi. The permeator efficiency is maximized by decreasing the velocity and tube diameter, and increasing the tube length. This is true regardless of the mass transport correlation used; we review several here and find that they differ little, and the choice of correlation is not a source of significant uncertainty here. The PbLi solubility, on the other hand, is a large source of uncertainty, and we identify upper and lower bounds from the literature data. Under the most optimistic assumptions, we find that a ferritic steel permeator operating at 550 °C will need to be at least an order of magnitude larger in volume than previous conceptual designs using niobium and operating at higher temperatures.

  19. Uncertainties Quantification of Effective Thermal Conductivity for Ceramic Fiber Blanket

    NASA Astrophysics Data System (ADS)

    Zhao, Shu-yuan; Li, Jian-jun; He, Xiao-dong

    2014-01-01

    In the present paper, a probabilistic propagation model for assessing the uncertainty of the effective thermal conductivity was developed based on a combined conduction and radiation heat transfer model of a ceramic fiber blanket composite. The Monte Carlo technique was used to cope with the uncertainties in the material density, radiative properties, and boundary temperatures observed in experimental tests. The calculated effective thermal-conductivity distribution for the sample was compared with the experimental measurements performed on multiple samples, and the predicted mean values were in good agreement with the measured data. The result validates the thermal predictive model and demonstrates the suitability of the stochastic model containing statistical distributions in the input variables. Statistical information also indicates that the uncertainty effect can be enlarged at high temperatures. Response sensitivity analysis between the random inputs and the effective thermal conductivity demonstrates that the randomness in the hot-side temperature, the cold-side temperature, and extinction coefficient of the sample has a significant influence on the variability of thermal-conductivity properties. The extinction coefficient becomes more and more important with an increase of temperature due to the dominant radiative heat transfer contribution at high temperature. The analysis provides good insight into the scattering control in the experimental measurement and theoretical prediction of the effective thermal conductivity of a ceramic fiber composite.

  20. Smoke from Canadian Fires Blankets Eastern U.S.

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Smoke from multiple large wildfires in Quebec is blanketing the southern portion of the Canadian province and extending southward over the Great Lakes and eastern United States. This image was acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra satellite on July 7, 2002, and shows dozens of active fire detections (red dots) east of James Bay at upper left. The enormous smoke plume is almost 200 miles wide where it enters the United States over the New York and Vermont state lines. The thick pall is affecting air quality in places well to the south, including New York, Baltimore, and Washington, D.C. The image shows the smoke drifting out over the Atlantic Ocean, and then curling back in over North Carolina (bottom right). On Sunday, July 7, the Canadian Interagency Forest Fire Center reported 15 new fires in Quebec in the preceding 24 hours, bringing the total to more than 40 fires in the region, at least 7 which were burning out of control. Most of the fires are believed to have been caused by lightning, more of which is expected on Monday. According to news reports, several hundred people remain evacuated from their homes. Image by Jesse Allen, NASA Earth Observatory, based upon data provided by the MODIS Land Rapid Response Team at NASA GSFC

  1. Neutronics Evaluation of Lithium-Based Ternary Alloys in IFE Blankets

    SciTech Connect

    Jolodosky, A.; Fratoni, M.

    2015-09-22

    Lithium is often the preferred choice as breeder and coolant in fusion blankets as it offers excellent heat transfer and corrosion properties, and most importantly, it has a very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and exacerbates plant safety concerns. For this reason, over the years numerous blanket concepts have been proposed with the scope of reducing concerns associated with lithium. The European helium cooled pebble bed breeding blanket (HCPB) physically confines lithium within ceramic pebbles. The pebbles reside within a low activation martensitic ferritic steel structure and are cooled by helium. The blanket is composed of the tritium breeding lithium ceramic pebbles and neutron multiplying beryllium pebbles. Other blanket designs utilize lead to lower chemical reactivity; LiPb alone can serve as a breeder, coolant, neutron multiplier, and tritium carrier. Blankets employing LiPb coolants alongside silicon carbide structural components can achieve high plant efficiency, low afterheat, and low operation pressures. This alloy can also be used alongside of helium such as in the dual-coolant lead-lithium concept (DCLL); helium is utilized to cool the first wall and structural components made up of low-activation ferritic steel, whereas lithium-lead (LiPb) acts as a self-cooled breeder in the inner channels of the blanket. The helium-cooled steel and lead-lithium alloy are separated by flow channel inserts (usually made out of silicon carbide) which thermally insulate the self-cooled breeder region from the helium cooled steel walls. This creates a LiPb breeder with a much higher exit temperature than the steel which increases the power cycle efficiency and also lowers the magnetohydrodynamic (MHD) pressure drop [6]. Molten salt blankets with a mixture of lithium, beryllium, and fluorides (FLiBe) offer good tritium breeding

  2. Design criteria and mitigation options for thermal fatigue effects in ATW blankets.

    SciTech Connect

    Dunn, F. E.

    2000-12-07

    Thermal fatigue due to beam interruptions is an issue that must be addressed in the design of an ATW blanket. Two different approaches can be taken to address this issue. One approach is to analyze current ATW blanket designs in order to set interrupt frequency design limits for the accelerator. The other approach is to assume that accelerator reliability can not be guaranteed before design and construction of the blanket. In this approach the blanket must be designed so as to accommodate an accelerator with a beam interruption frequency significantly higher than current high power accelerators in order to provide a margin of error. Both approaches are considered in this paper. Both a sodium cooled blanket design and a lead-bismuth cooled blanket design are considered. Thermal hydraulic analysis of the blanket for beam interruption transients is carried out with the SASSYS-1 systems analysis code to obtain the time histories of the coolant temperatures in contact with structural components. These coolant temperatures are then used in a detailed structure temperature calculation to obtain structure surface and structure average temperatures. The difference between the average temperature and the surface temperature is used to obtain thermal strains. Low cycle fatigue curves from the American Society of Mechanical Engineers Boiler and Pressure Vessel Code are used to determine the number of cycles that the structural components can endure, based on these strains. Calculations are made for base case designs and for a number of mitigation options. The mitigation options include using two separate accelerators to provide the beam, reducing the thickness of the above core load pads in the subassemblies, increasing the coolant flow rate or reducing power in order to reduce the core temperature rise, and reducing the superheat in the once-through steam generator.

  3. A passively-safe fusion reactor blanket with helium coolant and steel structure

    SciTech Connect

    Crosswait, Kenneth Mitchell

    1994-04-01

    Helium is attractive for use as a fusion blanket coolant for a number of reasons. It is neutronically and chemically inert, nonmagnetic, and will not change phase during any off-normal or accident condition. A significant disadvantage of helium, however, is its low density and volumetric heat capacity. This disadvantage manifests itself most clearly during undercooling accident conditions such as a loss of coolant accident (LOCA) or a loss of flow accident (LOFA). This thesis describes a new helium-cooled tritium breeding blanket concept which performs significantly better during such accidents than current designs. The proposed blanket uses reduced-activation ferritic steel as a structural material and is designed for neutron wall loads exceeding 4 MW/m{sup 2}. The proposed geometry is based on the nested-shell concept developed by Wong, but some novel features are used to reduce the severity of the first wall temperature excursion. These features include the following: (1) A ``beryllium-joint`` concept is introduced, which allows solid beryllium slabs to be used as a thermal conduction path from the first wall to the cooler portions of the blanket. The joint concept allows for significant swelling of the beryllium (10 percent or more) without developing large stresses in the blanket structure. (2) Natural circulation of the coolant in the water-cooled shield is used to maintain shield temperatures below 100 degrees C, thus maintaining a heat sink close to the blanket during the accident. This ensures the long-term passive safety of the blanket.

  4. Neutronics and shielding results of the U.S. ITER blanket trade-off study

    SciTech Connect

    Sawan, M.E.; El-Guebaly, L.A.

    1994-12-31

    The first formal phase of the International Thermonuclear Experimental Reactor (ITER) project was the Conceptual Design Activity (CDA) which was conducted from May 1988 until December 1990. The CDA blanket utilized Li{sub 2}O solid breeder, beryllium neutron multiplier, 316 SS structure and low temperature water coolant. The ITER project embarked on a new phase called the Engineering Design Activity (EDA) which started in July 1992. A variety of blanket design options have been considered since the start of the EDA. The US ITER home team started a blanket option trade-off-study (BOTS) in May 1993. The options considered included a self-cooled Li/V option, ferritic steel designs with helium cooled first wall and liquid metal (Li or LiPb) cooled blanket, the CDA design option, and a water cooled 316/SS nonbreeding shield option. Detailed neutronics and shielding analysis have been performed for the different ITER blanket design options considered in this study. The shielding performance was determined for these options and inboard shielding space requirements were compared. Peak first wall (FW) nuclear performance parameters were calculated in addition to power density distribution in the blanket required for the thermal hydraulics calculations. Peak vacuum vessel (VV) nuclear performance parameters have also been determined. The overall tritium breeding ratio (TBR) was determined for each of the design options. A double wall Inconel 625 VV is used with water cooled 316 SS balls. For the design options with liquid metal in the blanket, the use of tungsten carbide balls cooled by NaK is considered. The minimum total thickness of FW/B/S/W is maintained at 1 m in the inboard region.

  5. Sensitivity of blanket peat vegetation and hydrochemistry to local disturbances.

    PubMed

    Robroek, Bjorn J M; Smart, Richard P; Holden, Joseph

    2010-10-01

    At the ecosystem scale, peatlands can be extremely resilient to perturbations. Yet, they are very sensitive to local disturbances, especially mechanical perturbations (e.g. trampling). The effects of these disturbances on vegetation, and potential effects on hydrochemical conditions along the peat surface, however, are largely unknown. We used three research tracks (paths researchers use to access their study sites) differing in time of abandonment to investigate the impact of local disturbance (trampling) on the vegetation and its short-term (< or = 2 year) recovery in a flagship research blanket peatland. Additionally, we examined the effects of local disturbance on fluvial runoff events and the concentrations of dissolved organic carbon (DOC) and particulate organic carbon (POC) in runoff water. Local disturbance heavily impacted peat vegetation, resulting in large areas of scarred and churned peat. Recovery of vascular plants along abandoned tracks was slow, but a functional Sphagnum layer re-established after just one year. The absence of vegetation elicited an increase in the number of runoff events along the tracks, by which POC runoff from the tracks increased. POC concentrations were highest in the surface water from the recently abandoned track, while they were low in the runoff water from the track abandoned longest and the undisturbed control track. We attribute this to the relatively fast recovery of the Sphagnum vegetation. DOC concentrations did not differ significantly either spatially or temporally in surface runoff or soil solution waters. While at an ecosystem scale local disturbances may be negligible in terms of carbon loss, our data points to the need for further research on the potential long-term effects of local disturbance on the vegetation, and significant effects on local scale carbon fluxes. Moreover, the effects of disturbances could be long-lasting and their role on ecosystem processes should not be underestimated.

  6. ITER Test Blanket Module Error Field Simulation Experiments

    NASA Astrophysics Data System (ADS)

    Schaffer, M. J.

    2010-11-01

    Recent experiments at DIII-D used an active-coil mock-up to investigate effects of magnetic error fields similar to those expected from two ferromagnetic Test Blanket Modules (TBMs) in one ITER equatorial port. The largest and most prevalent observed effect was plasma toroidal rotation slowing across the entire radial profile, up to 60% in H-mode when the mock-up local ripple at the plasma was ˜4 times the local ripple expected in front of ITER TBMs. Analysis showed the slowing to be consistent with non-resonant braking by the mock-up field. There was no evidence of strong electromagnetic braking by resonant harmonics. These results are consistent with the near absence of resonant helical harmonics in the TBM field. Global particle and energy confinement in H-mode decreased by <20% for the maximum mock-up ripple, but <5% at the local ripple expected in ITER. These confinement reductions may be linked with the large velocity reductions. TBM field effects were small in L-mode but increased with plasma beta. The L-H power threshold was unaffected within error bars. The mock-up field increased plasma sensitivity to mode locking by a known n=1 test field (n = toroidal harmonic number). In H-mode the increased locking sensitivity was from TBM torque slowing plasma rotation. At low beta, locked mode tolerance was fully recovered by re-optimizing the conventional DIII-D ``I-coils'' empirical compensation of n=1 errors in the presence of the TBM mock-up field. Empirical error compensation in H-mode should be addressed in future experiments. Global loss of injected neutral beam fast ions was within error bars, but 1 MeV fusion triton loss may have increased. The many DIII-D mock-up results provide important benchmarks for models needed to predict effects of TBMs in ITER.

  7. Electric blanket use and breast cancer in the Nurses' Health Study.

    PubMed

    Laden, F; Neas, L M; Tolbert, P E; Holmes, M D; Hankinson, S E; Spiegelman, D; Speizer, F E; Hunter, D J

    2000-07-01

    Electric and magnetic fields (EMFs) have been hypothesized to increase the risk of breast cancer, and electric blankets represent an important source of exposure to EMFs. The authors examined the relation between electric blanket use and invasive breast cancer in the Nurses' Health Study. On the biennial questionnaire in 1992, 87,497 women provided information on this exposure during three consecutive time periods. In a prospective analysis with 301,775 person-years of follow-up through 1996 (954 cases), the relative risk for any electric blanket use was not elevated (relative risk (RR) = 1.08, 95% confidence interval (CI): 0.95, 1.24) after controlling for breast cancer risk factors. There was a weak association between breast cancer and electric blanket use at least 16 years before diagnosis and long-term use in age-adjusted analyses but not in multivariate models. In a retrospective analysis of 1,318,683 person-years of follow-up (2,426 cases), the multivariate relative risk associated with use before disease follow-up began was null (RR = 1.05, 95% CI: 0.95, 1.16). Similar results were obtained in analyses stratified by menopause and restricted to estrogen receptor-positive breast cancers. While 95% confidence intervals for these estimates did not exclude small risks, overall, results did not support an association between breast cancer risk and exposure to EMFs from electric blankets.

  8. Modeling and Simulation of the ITER First Wall/Blanket Primary Heat Transfer System

    SciTech Connect

    Ying, Alice; Popov, Emilian L

    2011-01-01

    ITER inductive power operation is modeled and simulated using a thermal-hydraulics system code (RELAP5) integrated with a 3-D CFD (SC-Tetra) code. The Primary Heat Transfer System (PHTS) functions are predicted together with the main parameters operational ranges. The control algorithm strategy and derivation are summarized as well. The First Wall and Blanket modules are the primary components of PHTS, used to remove the major part of the thermal heat from the plasma. The modules represent a set of flow channels in solid metal structure that serve to absorb the radiation heat and nuclear heating from the fusion reactions and to provide shield for the vacuum vessel. The blanket modules are water cooled. The cooling is forced convective with constant blanket inlet temperature and mass flow rate. Three independent water loops supply coolant to the three blanket sectors. The main equipment of each loop consists of a pump, a steam pressurizer and a heat exchanger. A major feature of ITER is the pulsed operation. The plasma does not burn continuously, but on intervals with large periods of no power between them. This specific feature causes design challenges to accommodate the thermal expansion of the coolant during the pulse period and requires active temperature control to maintain a constant blanket inlet temperature.

  9. Neutronics analyses of tritium breeding blanket performance in a spherical torus based volumetric neutron source

    SciTech Connect

    Cerbone, R. J.; Cheng, E.T.; Peng, Yueng Kay Martin

    1998-01-01

    A spherical torus based volumetric neutron source (ST-VNS) concept has been developed in recent studies as a possible intermediate step to develop the necessary technology for reactor components of future fusion power plants. Such a VNS would complement ITER in testing, developing, and qualifying nuclear technology components. A recently developed design concept for a spherical torus based VNS permits the development capability to increase fusion power and wall loading. Results of neutronics calculations for such a ST-VNS with neutron wall loading ranging from 0.5 to 5 MW/m(2) have been competed. In this paper, we report the tritium breeding and neutronics performance of several power blanket compositions and configurations. These include, a helium cooled natural lithium in vanadium alloy structural material blanket; a helium cooled enriched lithium-lead, in a vanadium-alloy structure blanket; and a heterogeneous configured blanket consisting of a dual cooled blanket consisting of enriched lithium-lead enclosed in silicon carbide with ferritic steel for the structural material.

  10. Warm Ocean Temperatures Blanket the Far-Western Pacific

    NASA Technical Reports Server (NTRS)

    2001-01-01

    These data, taken during a 10-day collection cycle ending March 9, 2001, show that above-normal sea-surface heights and warmer ocean temperatures(indicated by the red and white areas) still blanket the far-western tropical Pacific and much of the north (and south) mid-Pacific. Red areas are about 10centimeters (4 inches) above normal; white areas show the sea-surface height is between 14 and 32 centimeters (6 to 13 inches) above normal.

    This build-up of heat dominating the Western Pacific was first noted by TOPEX/Poseidon oceanographers more than two years ago and has outlasted the El Nino and La Nina events of the past few years. See: http://www.jpl.nasa.gov/elnino/990127.html . This warmth contrasts with the Bering Sea, Gulf of Alaska and tropical Pacific where lower-than-normal sea levels and cool ocean temperatures continue (indicated by blue areas). The blue areas are between 5 and 13centimeters (2 and 5 inches) below normal, whereas the purple areas range from 14 to 18 centimeters (6 to 7 inches) below normal. Actually, the near-equatorial ocean cooled through the fall of 2000 and into mid-winter and continues almost La Nina-like.

    Looking at the entire Pacific basin, the Pacific Decadal Oscillation's warm horseshoe and cool wedge pattern still dominates this sea-level height image. Most recent National Oceanic and Atmospheric Administration (NOAA) sea-surface temperature data also clearly illustrate the persistence of this basin-wide pattern. They are available at http://psbsgi1.nesdis.noaa.gov:8080/PSB/EPS/SST/climo.html

    The U.S.-French TOPEX/Poseidon mission is managed by JPL for NASA's Earth Science Enterprise, Washington, D.C. JPL is a division of the California Institute of Technology in Pasadena. For more information on the TOPEX/Poseidon project, see: http://topex-www.jpl.nasa.gov

  11. Tritium processing for the European test blanket systems: current status of the design and development strategy

    SciTech Connect

    Ricapito, I.; Calderoni, P.; Poitevin, Y.; Aiello, A.; Utili, M.; Demange, D.

    2015-03-15

    Tritium processing technologies of the two European Test Blanket Systems (TBS), HCLL (Helium Cooled Lithium Lead) and HCPB (Helium Cooled Pebble Bed), play an essential role in meeting the main objectives of the TBS experimental campaign in ITER. The compliancy with the ITER interface requirements, in terms of space availability, service fluids, limits on tritium release, constraints on maintenance, is driving the design of the TBS tritium processing systems. Other requirements come from the characteristics of the relevant test blanket module and the scientific programme that has to be developed and implemented. This paper identifies the main requirements for the design of the TBS tritium systems and equipment and, at the same time, provides an updated overview on the current design status, mainly focusing onto the tritium extractor from Pb-16Li and TBS tritium accountancy. Considerations are also given on the possible extrapolation to DEMO breeding blanket. (authors)

  12. First wall structural analysis of the aqueous self-cooled blanket concept

    SciTech Connect

    O'Brien, D.A.; Steiner, D.; Embrechts, M.J.; Deutch, L.; Gierszewski, P.

    1986-11-01

    A recently proposed blanket concept using water coolant with dissolved lithium compounds for breeding employs water cooled first walls. Water cooled first walls for blankets have also been proposed for some solid breeder blankets. Design options for water cooled first walls are examined in this paper. Four geometries and three materials are analyzed for water coolant at 300/sup 0/C and 13.8 MPa (2000 psi). Maximum neutron wall loads (with surface heat loads being 25% of neutron wall load) are determined for each geometry and material combination. Of the materials studied, only vanadium alloy is found to be capable of withstanding high wall loads (>10MW/m/sup 2/ neutron and >2.5 MW/m/sup 2/ heat).

  13. Design of the helium cooled lithium lead breeding blanket in CEA: from TBM to DEMO

    NASA Astrophysics Data System (ADS)

    Aiello, G.; Aubert, J.; Forest, L.; Jaboulay, J.-C.; Li Puma, A.; Boccaccini, L. V.

    2017-04-01

    The helium cooled lithium lead (HCLL) blanket concept was originally developed in CEA at the beginning of 2000: it is one of the two European blanket concepts to be tested in ITER in the form of a test blanket module (TBM) and one of the four blanket concepts currently being considered for the DEMOnstration reactor that will follow ITER. The TBM is a highly optimized component for the ITER environment that will provide crucial information for the development of the DEMO blanket, but its design needs to be adapted to the DEMO reactor. With respect to the TBM design, reduction of the steel content in the breeding zone (BZ) is sought in order to maximize tritium breeding reactions. Different options are being studied, with the potential of reaching tritium breeding ratio (TBR) values up to 1.21. At the same time, the design of the back supporting structure (BSS), which is a DEMO specific component that has to support the blanket modules inside the vacuum vessel (VV), is ongoing with the aim of maximizing the shielding power and minimizing pumping power. This implies a re-engineering of the modules’ attachment system. Design changes however, will have an impact on the manufacturing and assembly sequences that are being developed for the HCLL-TBM. Due to the differences in joint configurations, thicknesses to be welded, heat dissipation and the various technical constraints related to the accessibility of the welding tools and implementation of non-destructive examination (NDE), the manufacturing procedure should be adapted and optimized for DEMO design. Laser welding instead of TIG could be an option to reduce distortions. The time-of-flight diffraction (TOFD) technique is being investigated for NDE. Finally, essential information expected from the HCLL-TBM program that will be needed to finalize the DEMO design is discussed.

  14. 75 FR 38093 - ConocoPhillips Alaska Natural Gas Corporation and Marathon Oil Company; Application for Blanket...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-01

    ...Phillips Alaska Natural Gas Corporation and Marathon Oil Company; Application for Blanket Authorization To... Marathon Oil Company (Marathon) (collectively Applicants), requesting blanket authorization to export a... publicly-traded Delaware corporation. Marathon is an Ohio corporation with its principal place of...

  15. 78 FR 2990 - Bear Creek Storage Company, L.L.C.; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-15

    ... Energy Regulatory Commission Bear Creek Storage Company, L.L.C.; Notice of Request Under Blanket Authorization Take notice that on December 21, 2012, Bear Creek Storage Company, L.L.C. (Bear Creek), 569... the Natural Gas Act, and Bear Creek's blanket certificate issued in Docket No. CP10-28-000 on...

  16. 76 FR 2093 - Eni USA Gas Marketing LLC; Application for Blanket Authorization To Export Liquefied Natural Gas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-12

    ... Gas Marketing LLC; Application for Blanket Authorization To Export Liquefied Natural Gas AGENCY... November 30, 2010, by Eni USA Gas Marketing LLC (Eni USA), requesting blanket authorization to export... purchasing and marketing supplies of natural gas and LNG. Eni USA is a customer of the Cameron Terminal...

  17. 75 FR 13755 - Freeport LNG Development, L.P.; Application To Amend Blanket Authorization To Export Liquefied...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-23

    ... Freeport LNG Development, L.P.; Application To Amend Blanket Authorization To Export Liquefied Natural Gas... application filed on March 4, 2010, by Freeport LNG Development, L.P. (Freeport LNG), requesting an amendment to its blanket authorization to export liquefied natural gas (LNG) granted by DOE/FE on May 28,...

  18. 76 FR 33746 - Freeport LNG Development, L.P.; Application for Blanket Authorization To Export Liquefied Natural...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-09

    ... Freeport LNG Development, L.P.; Application for Blanket Authorization To Export Liquefied Natural Gas..., 2011, by Freeport LNG Development, L.P. (Freeport LNG), requesting blanket authorization to export liquefied natural gas (LNG) that previously had been imported into the United States from foreign sources...

  19. 75 FR 62510 - Chevron U.S.A. Inc.; Application for Blanket Authorization To Export Liquefied Natural Gas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ... U.S.A. Inc.; Application for Blanket Authorization To Export Liquefied Natural Gas AGENCY: Office of..., 2010, by Chevron U.S.A. Inc. (Chevron), requesting blanket authorization to export liquefied natural... up to the equivalent of 72 billion cubic feet (Bcf) of natural gas on a short-term or spot...

  20. APT Blanket System Loss-of-Coolant Accident (LOCA) Based on Initial Conceptual Design - Case 1: External HR Break Near Inlet Header

    SciTech Connect

    Hamm, L.L.

    1998-10-07

    The APT blanket system has about 57 MW of thermal energy deposited within the blanket region under normal operating conditions from the release of neutrons and the interaction of the High energy particles with the blanket materials. This corresponds to about 48 percent of total thermal energy deposited in the APT target/blanket system. The deposited thermal energy under normal operation conditions is an important input parameter used in the thermal-hydraulic design and accident analysis.

  1. Non-LTE line-blanketed model atmospheres of hot stars. 2: Hot, metal-rich white dwarfs

    NASA Technical Reports Server (NTRS)

    Lanz, T.; Hubeny, I.

    1995-01-01

    We present several model atmospheres for a typical hot metal-rich DA white dwarf, T(sub eff) = 60,000 K, log g = 7.5. We consider pure hydrogen models, as well as models with various abundances of two typical 'trace' elements-carbon and iron. We calculte a number of Local Thermodynamic Equilibrium (LTE) and non-LTE models, taking into account the effect of numerous lines of these elements on the atmospheric structure. We demostrate that while the non-LTE effects are notvery significant for pure hydrogen models, except for describing correctly the central emission in H-alpha they are essential for predicting correctly the ionization balance of metals, such as carbon and iron. Previously reported discrepancies in LTE abundances determinations using C III and C IV lines are easily explained by non-LTE effects. We show that if the iron abundance is larger than 10(exp -5), the iron line opacity has to be considered not only for the spectrum synthesis, but also in the model construction itself. For such metal abundances, non-LTE metal line-blanketed models are needed for detailed abundance studies of hot, metal-rich white dwarfs. We also discuss the predicted Extreme Ultraviolet (EUV) spectrum and show that it is very sensitive to metal abundances, as well as to non-LTE effects.

  2. 76 FR 48854 - Williston Basin Interstate Pipeline Company; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-09

    ... Pipeline Company, 1250 West Century Avenue, Bismarck, North Dakota 58503, or telephone (701) 530-1560, or... Energy Regulatory Commission Williston Basin Interstate Pipeline Company; Notice of Request Under Blanket Authorization Take notice that on July 26, 2011, Williston Basin Interstate Pipeline Company (Williston...

  3. 76 FR 25331 - Williston Basin Interstate Pipeline Company; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-04

    ... Basin Interstate Pipeline Company, 1250 West Century Avenue, Bismarck, North Dakota 58503, or telephone... Energy Regulatory Commission Williston Basin Interstate Pipeline Company; Notice of Request Under Blanket Authorization Take notice that on April 15, 2011, Williston Basin Interstate Pipeline Company (Williston...

  4. 76 FR 64343 - Williston Basin Interstate Pipeline Company; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-18

    ... Interstate Pipeline Company, 1250 West Century Avenue, Bismark, North Dakota 58503, or call (701) 530-1560 or... Energy Regulatory Commission Williston Basin Interstate Pipeline Company; Notice of Request Under Blanket Authorization Take notice that on October 3, 2011 Williston Basin Interstate Pipeline Company (Williston...

  5. 76 FR 31957 - Williston Basin Interstate Pipeline Company; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-02

    ... Interstate Pipeline Company, 1250 West Century Avenue, Bismarck, North Dakota 58503, or telephone (701) 530... Energy Regulatory Commission Williston Basin Interstate Pipeline Company; Notice of Request Under Blanket Authorization Take notice that on May 18, 2011, Williston Basin Interstate Pipeline Company (Williston...

  6. 76 FR 5586 - Williston Basin Interstate Pipeline Company; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-01

    ... Basin Interstate Pipeline Company, 1250 West Century Avenue, Bismarck, North Dakota 58503, (701) 530... Energy Regulatory Commission Williston Basin Interstate Pipeline Company; Notice of Request Under Blanket Authorization January 24, 2011. Take notice that on January 19, 2011, Williston Basin Interstate...

  7. 77 FR 9916 - Williston Basin Interstate Pipeline Company; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-21

    ... Energy Regulatory Commission Williston Basin Interstate Pipeline Company; Notice of Request Under Blanket Authorization Take notice that on February 6, 2012, Williston Basin Interstate Pipeline Company (Williston Basin), 1250 West Century Avenue, Bismarck, North Dakota 58503, filed in Docket No. CP12-57-000, an...

  8. 29 CFR 2580.412-10 - Individual or schedule or blanket form of bonds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ADMINISTRATION, DEPARTMENT OF LABOR TEMPORARY BONDING RULES UNDER THE EMPLOYEE RETIREMENT INCOME SECURITY ACT OF 1974 TEMPORARY BONDING RULES Scope and Form of the Bond § 2580.412-10 Individual or schedule or blanket.... Bonding, to the extent required, of persons indirectly employed, or otherwise delegated, to...

  9. 75 FR 62533 - ANR Pipeline Company; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ... Energy Regulatory Commission ANR Pipeline Company; Notice of Request Under Blanket Authorization October 4, 2010. Take notice that on September 23, 2010, ANR Pipeline Company (ANR), 717 Texas Street, Suite... of the Federal Energy Regulatory Commission's regulations under the Natural Gas Act (NGA) and...

  10. 78 FR 14531 - ANR Storage Company; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-06

    ... Energy Regulatory Commission ANR Storage Company; Notice of Request Under Blanket Authorization Take notice that on February 21, 2013, ANR Storage Company (ANR Storage), 717 Texas Street, Suite 2400... 157.205 and 157.214 of the Commission's regulations under the Natural Gas Act (NGA). ANR Storage...

  11. 78 FR 6319 - ANR Pipeline Company; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-30

    ... Energy Regulatory Commission ANR Pipeline Company; Notice of Request Under Blanket Authorization Take notice that on January 18, 2013, ANR Pipeline Company (ANR), 717 Texas Street, Houston, Texas 77002-2761... 11,000 rated horsepower compressor unit and appurtenances, located on ] ANR's system at its...

  12. 76 FR 71014 - ANR Pipeline Company; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    ... Energy Regulatory Commission ANR Pipeline Company; Notice of Request Under Blanket Authorization Take notice that on November 1, 2011, ANR Pipeline Company (ANR), 717 Texas Street, Houston, Texas 77002... (CS1) storage field located in Kalkaska County, Michigan. Specifically, ANR proposes to increase...

  13. 76 FR 25686 - ANR Pipeline Company; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-05

    ... Energy Regulatory Commission ANR Pipeline Company; Notice of Request Under Blanket Authorization Take notice that on April 18, 2011, ANR Pipeline Company (ANR), 717 Texas Street, Suite 2400, Houston, TX... portions of its 24-inch natural gas pipeline located in Federal waters, offshore Louisiana, under...

  14. 76 FR 28972 - Eastern Shore Natural Gas Company; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-19

    ...\\ under Eastern Shore's maximum FT Zone One and Zone Two Tariff Rates on file with the Commission. Eastern... Federal Energy Regulatory Commission Eastern Shore Natural Gas Company; Notice of Request Under Blanket Authorization Take notice that on April 28, 2011, Eastern Shore Natural Gas Company (Eastern Shore),...

  15. 75 FR 21290 - Caledonia Energy Partners, L.L.C.; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-23

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Caledonia Energy Partners, L.L.C.; Notice of Request Under Blanket Authorization April 16, 2010. Take notice that on April 12, 2010, Caledonia Energy Partners, L.L.C....

  16. 78 FR 44558 - Stingray Pipeline Company, L.L.C.; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-24

    ... Energy Regulatory Commission Stingray Pipeline Company, L.L.C.; Notice of Request Under Blanket Authorization Take notice that on July 3, 2013, Stingray Pipeline Company, L.L.C. (Stingray), 1100 Louisiana... directed to Cynthia Hornstein Roney, Manager, Regulatory Compliance, Stingray Pipeline Company,...

  17. 76 FR 4651 - Venice Gathering System, L.L.C.; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-26

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Venice Gathering System, L.L.C.; Notice of Request Under Blanket Authorization January 19, 2010. Take notice that on January 7, 2011, Venice Gathering System, L.L.C....

  18. 75 FR 62533 - Destin Pipeline Company, L.L.C.; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Destin Pipeline Company, L.L.C.; Notice of Request Under Blanket Authorization October 1, 2010. Take notice that on September 20, 2010, Destin Pipeline Company, L.L.C....

  19. 77 FR 48149 - Columbia Gas Transmission, L.L.C.; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-13

    ... Energy Regulatory Commission Columbia Gas Transmission, L.L.C.; Notice of Request Under Blanket Authorization Take notice that on July 24, 2012 Columbia Gas Transmission, L.L.C. (Columbia), P.O. Box 1273... directed to Fredric J. George, Senior Counsel, Columbia Gas Transmission, L.L.C., P.O. Box 1273,...

  20. 48 CFR 313.303-5 - Purchases under blanket purchase agreements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... purchase agreements. 313.303-5 Section 313.303-5 Federal Acquisition Regulations System HEALTH AND HUMAN SERVICES CONTRACTING METHODS AND CONTRACT TYPES SIMPLIFIED ACQUISITION PROCEDURES Simplified Acquisition Methods 313.303-5 Purchases under blanket purchase agreements. (e)(5) HHS personnel that sign...

  1. 32 CFR Appendix D to Part 505 - Exemptions; Exceptions; and DoD Blanket Routine Uses

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 3 2013-07-01 2013-07-01 false Exemptions; Exceptions; and DoD Blanket Routine Uses D Appendix D to Part 505 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY AID OF CIVIL AUTHORITIES AND PUBLIC RELATIONS ARMY PRIVACY ACT PROGRAM Pt. 505, App. D Appendix D...

  2. Study of the effects of corrugated wall structures due to blanket modules around ICRH antennas

    SciTech Connect

    Dumortier, Pierre; Louche, Fabrice; Messiaen, André; Vervier, Michel

    2014-02-12

    In future fusion reactors, and in ITER, the first wall will be covered by blanket modules. These blanket modules, whose dimensions are of the order of the ICRF wavelengths, together with the clearance gaps between them will constitute a corrugated structure which will interact with the electromagnetic waves launched by ICRF antennas. The conditions in which the grooves constituted by the clearance gaps between the blanket modules can become resonant are studied. Simple analytical models and numerical simulations show that mushroom type structures (with larger gaps at the back than at the front) can bring down the resonance frequencies, which could lead to large voltages in the gaps between the blanket modules and perturb the RF properties of the antenna if they are in the ICRF operating range. The effect on the wave propagation along the wall structure, which is acting as a spatially periodic (toroidally and poloidally) corrugated structure, and hence constitutes a slow wave structure modifying the wall boundary condition, is examined.

  3. 77 FR 37036 - Williston Basin Interstate Pipeline Company; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-20

    ...] Williston Basin Interstate Pipeline Company; Notice of Request Under Blanket Authorization Take notice that on June 4, 2012, Williston Basin Interstate Pipeline Company (Wiliston Basin), 1250 West Century Avenue, Bismark, North Dakota, 58503, filed in Docket No. CP12-472-000, an application pursuant...

  4. Non-LTE Line Blanketing in Stars With Extended Outflowing Atmospheres.

    NASA Astrophysics Data System (ADS)

    Hillier, D. J.; Miller, D. L.

    1995-05-01

    With continuing advances in radiative transfer techniques, increases in computing power, and the availability of at least some of the necessary atomic data, it is now possible to consider the computation of detailed non-LTE model atmospheres in which the full effects of non-LTE line blanketing are taken into account. We discuss our own implementation of non-LTE line blanketing in a spherical non-LTE code developed for the investigation of objects with extended outflows. A partial linearization technique is used to simultaneously solve the radiative transfer equation in conjunction with the equations of statistical equilibrium. Convergence properties are similar to that obtained with an ``Optimal'' Approximate-Lambda Operator. CNO line blanketing has been incorporated without major difficulty, while Fe blanketing is currently being installed. Comparisons of model spectra with recent HST observations of an LMC WC star will be presented. When completed we anticipate the code will be applicable to the study of a wide range of phenomena exhibiting outflows including Luminous-Blue variables, Supernovae, Wold-Rayet stars and Novae. Partial support for this work was provided by NASA through grant Nos GO-5460.01-93A and GO-4550.01-92A from the Space Science Institute which is operated under the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support from NASA award NAGW-3828 is also gratefully acknowledged.

  5. 78 FR 76827 - Midwestern Gas Transmission Company; Prior Notice of Activity Under Blanket Certificate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-19

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Midwestern Gas Transmission Company; Prior Notice of Activity Under Blanket Certificate On December 4, 2013, Midwestern Gas Transmission Company (Midwestern) filed with the Federal Energy Regulatory Commission...

  6. 78 FR 4400 - Eni USA Gas Marketing LLC; Application for Blanket Authorization To Export Previously Imported...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... USA Gas Marketing LLC; Application for Blanket Authorization To Export Previously Imported Liquefied... application (Application), filed on November 8, 2012, by Eni USA Gas Marketing LLC (Eni USA Gas Marketing... carrier and with which trade is not prohibited by U.S. law or policy. Eni USA Gas Marketing is...

  7. European ceramic B.I.T. blanket for DEMO: Recent development for the zirconate version

    SciTech Connect

    Bielak, B.; Eid, M.; Fuetterer, M.

    1994-12-31

    Within the framework of the European test-blanket program, CEA and ENEA are jointly developing a DEMO-relevant, helium-cooled, Breeder-Inside-Tube (BIT) ceramic blanket. Two ceramics are possible breeder material candidate: LiAlO{sub 2} and Li{sub 2}ZrO{sub 3}. Despite the design has been originally developed for aluminate, the CEA has recently focused its work on zirconate. This concept blanket segments are made by a directly-cooled vacuum-tight steel box which contains banana-shaped poloidal breeder modules arranged in rows (6 rows in an outboard segment and 4 rows in an inboard one). A breeder module consists of a pressure vessel containing a bundle of breeder rods surrounded by baffles. Each one of the rods is made-up of a steel tube containing a stack of annular pellets of sintered lithium-zirconate, through which flows helium (the tritium purge gas). The thermo-mechanical analysis has shown that the thermal gradient in the ceramics can be kept at acceptable levels despite the poorer out-of-pile thermo-mechanical properties of zirconate compared to aluminate. Moreover, the neutronic analysis has shown that, besides the maintained tritium-breeding self-sufficiency capability of this blanket, the lower lithium burn-up could be an indication that the zirconate characteristics remains more stable after long term irradiation (i.e., close to the end-of-life fluence of 5 MWa/m{sup 2}).

  8. Materials data base and design equations for the UCLA solid breeder blanket

    SciTech Connect

    Sharafat, S.; Amodeo, R.; Ghoniem, N.M.

    1986-02-01

    The materials and properties investigated for this blanket study are listed. The phenomenological equations and mathematical fits for all materials and properties considered are given. Efforts to develop a swelling equation based on the few experimental data points available for breeder materials are described. The sintering phenomena for ceramics is investigated.

  9. 77 FR 5790 - Mississippi Canyon Gas Pipeline, LLC; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-06

    ... Energy Regulatory Commission Mississippi Canyon Gas Pipeline, LLC; Notice of Request Under Blanket Authorization Take notice that on January 17, 2012, Mississippi Canyon Gas Pipeline, LLC (MCGP), 1100 Louisiana... waters offshore Louisiana in West Delta Block 143, all as more fully set forth in the application,...

  10. Effects of an electric blanket on sleep stages and body temperature in young men.

    PubMed

    Okamoto-Mizuno, Kazue; Tsuzuki, Kazuyo; Ohshiro, Yasushi; Mizuno, Koh

    2005-06-10

    The aim of this study was to investigate any effects of electric blanket on sleep stages and body temperature. Nine male subjects slept under two conditions: using the electric blanket (HB); and not using the electric blanket (C). The ambient condition was controlled at 3 degrees C relative humidity 50-80%. Electroencephalography, electrooculography (EOG) and electromyography, rectal temperature, skin temperature and microclimate temperature and humidity were recorded continuously through the night. Body weight was measured before and after sleep. The amount of stage 1 and number of stage 1 and rapid eye movement sleep decreased in HB compared to C. No significant difference was observed in other sleep stages. Rectal temperature was higher in HB compared to C. The thigh, leg and foot skin temperature was higher in HB than C. The microclimate temperature of the foot area was higher in HB compared to C. No significant difference was observed in whole body sweat loss between the conditions. These results suggest that use of an electric blanket under low ambient temperature may decrease cold stress to support sleep stability and thermoregulation during sleep.

  11. Security Blanket or Crutch? Crib Card Usage Depends on Students' Abilities

    ERIC Educational Resources Information Center

    Burns, Kathleen C.

    2014-01-01

    This study investigated whether students use crib cards as a security blanket or a crutch by asking students to tally the number of times they used them during exams in a statistics class. There was a negative correlation between the number of times students used their crib cards and exam performance. High-achieving students did not utilize their…

  12. 78 FR 30911 - Texas Eastern Transmission, LP; Prior Notice Activity Under Blanket Certificate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-23

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Texas Eastern Transmission, LP; Prior Notice Activity Under Blanket Certificate On May 8, 2013, Texas Eastern Transmission, LP (Texas Eastern), filed a prior notice request pursuant to Sections 157.205, 157.213,...

  13. Acoustic contributions of a sound absorbing blanket placed in a double panel structure: absorption versus transmission.

    PubMed

    Doutres, Olivier; Atalla, Noureddine

    2010-08-01

    The objective of this paper is to propose a simple tool to estimate the absorption vs. transmission loss contributions of a multilayered blanket unbounded in a double panel structure and thus guide its optimization. The normal incidence airborne sound transmission loss of the double panel structure, without structure-borne connections, is written in terms of three main contributions; (i) sound transmission loss of the panels, (ii) sound transmission loss of the blanket and (iii) sound absorption due to multiple reflections inside the cavity. The method is applied to four different blankets frequently used in automotive and aeronautic applications: a non-symmetric multilayer made of a screen in sandwich between two porous layers and three symmetric porous layers having different pore geometries. It is shown that the absorption behavior of the blanket controls the acoustic behavior of the treatment at low and medium frequencies and its transmission loss at high frequencies. Acoustic treatment having poor sound absorption behavior can affect the performance of the double panel structure.

  14. 78 FR 68835 - Southern Star Central Gas Pipeline, Inc.; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ... Energy Regulatory Commission Southern Star Central Gas Pipeline, Inc.; Notice of Request Under Blanket Authorization Take notice that on October 31, 2013, Southern Star Central Gas Pipeline, Inc. (Southern Star...). Southern Star seeks authorization to increase the Maximum Operating Pressure (MOP) of its Waynoka...

  15. 77 FR 14517 - Southern Star Central Gas Pipeline, Inc.; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-12

    ... Energy Regulatory Commission Southern Star Central Gas Pipeline, Inc.; Notice of Request Under Blanket Authorization Take notice that on February 21, 2012 Southern Star Central Gas Pipeline, Inc. (Southern Star... City, Missouri. Specifically, Southern Star proposes to replace 3 miles of 12-inch diameter XT...

  16. 75 FR 8053 - Southern Star Central Gas Pipeline, Inc.; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... Energy Regulatory Commission Southern Star Central Gas Pipeline, Inc.; Notice of Request Under Blanket Authorization February 16, 2010. Take notice that on January 29, 2010, Southern Star Central Gas Pipeline, Inc. (Southern Star), 4700 State Highway 56, Owensboro, Kentucky 42301, filed in Docket No. CP10-48-000, a...

  17. 78 FR 25264 - Southern Star Central Gas Pipeline, Inc.; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-30

    ... Energy Regulatory Commission Southern Star Central Gas Pipeline, Inc.; Notice of Request Under Blanket Authorization Take notice that on April 16, 2013, Southern Star Central Gas Pipeline, Inc. (Southern Star), 4700...) 208-3676 (toll free). For TTY, call (202) 502-8659. Specifically, Southern Star proposes to abandon...

  18. 78 FR 66915 - Notice of Request Under Blanket Authorization; Southern Star Central Gas Pipeline, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ... Energy Regulatory Commission Notice of Request Under Blanket Authorization; Southern Star Central Gas Pipeline, Inc. Take notice that on October 21, 2013 Southern Star Central Gas Pipeline, Inc. (Southern Star... in Johnson and Pettis Counties, Missouri, under authorization issued to Southern Star in Docket...

  19. 78 FR 53746 - Southern Star Central Gas Pipeline, Inc.; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-30

    ... Energy Regulatory Commission Southern Star Central Gas Pipeline, Inc.; Notice of Request Under Blanket Authorization Take notice that on August 13, 2013, Southern Star Central Gas Pipeline, Inc. (Southern Star..., Chautauqua and Montgomery Counties, Kansas. Southern Star's prior notice request is more fully set forth...

  20. 78 FR 13663 - Southern Star Central Gas Pipeline, Inc.; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-28

    ... Energy Regulatory Commission Southern Star Central Gas Pipeline, Inc.; Notice of Request Under Blanket Authorization Take notice that on February 11, 2013, Southern Star Central Gas Pipeline, Inc. (Southern Star... is on file with the Commission and open for public inspection. Specifically, Southern Star...

  1. Analysis of Time-Dependent Tritium Breeding Capability of Water Cooled Ceramic Breeder Blanket for CFETR

    NASA Astrophysics Data System (ADS)

    Gao, Fangfang; Zhang, Xiaokang; Pu, Yong; Zhu, Qingjun; Liu, Songlin

    2016-08-01

    Attaining tritium self-sufficiency is an important mission for the Chinese Fusion Engineering Testing Reactor (CFETR) operating on a Deuterium-Tritium (D-T) fuel cycle. It is necessary to study the tritium breeding ratio (TBR) and breeding tritium inventory variation with operation time so as to provide an accurate data for dynamic modeling and analysis of the tritium fuel cycle. A water cooled ceramic breeder (WCCB) blanket is one candidate of blanket concepts for the CFETR. Based on the detailed 3D neutronics model of CFETR with the WCCB blanket, the time-dependent TBR and tritium surplus were evaluated by a coupling calculation of the Monte Carlo N-Particle Transport Code (MCNP) and the fusion activation code FISPACT-2007. The results indicated that the TBR and tritium surplus of the WCCB blanket were a function of operation time and fusion power due to the Li consumption in breeder and material activation. In addition, by comparison with the results calculated by using the 3D neutronics model and employing the transfer factor constant from 1D to 3D, it is noted that 1D analysis leads to an over-estimation for the time-dependent tritium breeding capability when fusion power is larger than 1000 MW. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB108004, 2015GB108002, and 2014GB119000), and by National Natural Science Foundation of China (No. 11175207)

  2. 77 FR 42302 - Texas Gas Transmission, LLC; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-18

    ... Energy Regulatory Commission Texas Gas Transmission, LLC; Notice of Request Under Blanket Authorization Take notice that on July 2, 2012 Texas Gas Transmission, LLC (Texas Gas), 3800 Frederica Street....205 and 157.208 of the Commission's Regulations under the Natural Gas Act for authorization to...

  3. 75 FR 8327 - Golden Pass Pipeline LLC; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Golden Pass Pipeline LLC; Notice of Request Under Blanket Authorization February 17, 2010. Take notice that on October 29, 2009, Golden Pass Pipeline, LLC (GPPL), filed in...

  4. 78 FR 51182 - Sea Robin Pipeline Company, LLC; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-20

    ... Energy Regulatory Commission Sea Robin Pipeline Company, LLC; Notice of Request Under Blanket Authorization Take notice that on July 31, 2013, Sea Robin Pipeline Company, LLC (Sea Robin), P. O. Box 4967....205(b) and 157.216 of the Commission's Regulations under the Natural Gas Act (NGA), and Sea...

  5. 77 FR 9233 - Southwest Gas Storage Company; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-16

    ... Federal Energy Regulatory Commission Southwest Gas Storage Company; Notice of Request Under Blanket Authorization Take notice that on January 31, 2012, Southwest Gas Storage Company (Southwest), P.O. Box 4967... directed to Stephen Veatch, Senior Director of Certificates and Tariffs, Southwest Gas Storage Company,...

  6. 78 FR 63179 - Notice of Request Under Blanket Authorization; Petal Gas Storage, LLC.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ... Energy Regulatory Commission Notice of Request Under Blanket Authorization; Petal Gas Storage, LLC. Take notice that on October 9, 2013, Petal Gas Storage, L.L.C. (Petal), 9 Greenway Plaza, Suite 2800, Houston....214 of the Commission's Regulations under the Natural Gas Act (NGA) as amended,...

  7. 76 FR 20659 - Eastern Shore Natural Gas Company; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Eastern Shore Natural Gas Company; Notice of Request Under Blanket Authorization Take notice that on April 1, 2011, Eastern Shore Natural Gas Company (Eastern Shore), 1110...

  8. 75 FR 11167 - Questar Pipeline Company; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ..., Utah, and Rio Blanco County, Colorado, under Questar's blanket certificate issued in Docket No. CP82..., pursuant to sections 157.205 and 157.210 of the Commission's Regulations under the Natural Gas Act (NGA) as... psig via gas- pressure testing. Questar states that the proposed changes would result in an...

  9. 32 CFR Appendix C to Part 327 - DeCA Blanket Routine Uses

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 2 2014-07-01 2014-07-01 false DeCA Blanket Routine Uses C Appendix C to Part 327 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) PRIVACY PROGRAM DEFENSE COMMISSARY AGENCY PRIVACY ACT PROGRAM Pt. 327, App. C Appendix C to Part...

  10. 32 CFR Appendix C to Part 327 - DeCA Blanket Routine Uses

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 2 2012-07-01 2012-07-01 false DeCA Blanket Routine Uses C Appendix C to Part 327 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) PRIVACY PROGRAM DEFENSE COMMISSARY AGENCY PRIVACY ACT PROGRAM Pt. 327, App. C Appendix C to Part...

  11. Copyright Center Will Let Colleges Pay Blanket Fees to Reuse Print Material

    ERIC Educational Resources Information Center

    Read, Brock

    2007-01-01

    This article reports on an annual copyright license for colleges created by the Copyright Clearance Center, a nonprofit group that manages licenses for the reuse of published material, that will allow institutions to pay a blanket fee to use copyrighted material instead of securing the rights to such content on a case-by-case basis. The blanket…

  12. Depth of Blanket. Operational Control Tests for Wastewater Treatment Facilities. Instructor's Manual [and] Student Workbook.

    ERIC Educational Resources Information Center

    Arasmith, E. E.

    The determination of the thickness of a sludge blanket in primary and secondary clarifiers and in gravity thickness is important in making operational control decisions. Knowing the thickness and concentration will allow the operator to determine sludge volume and detention time. Designed for individuals who have completed National Pollutant…

  13. 76 FR 62048 - ConocoPhillips Company; Application for Blanket Authorization To Export Previously Imported...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-06

    ... blanket authorization to export liquefied natural gas (LNG) that previously had been imported into the.... ConocoPhillips further requests that such authorization extend to LNG supplies imported from foreign sources to which ConocoPhillips holds title, as well as to LNG supplies imported from foreign sources...

  14. 76 FR 31326 - Gulf LNG Pipeline, LLC; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-31

    ... Energy Regulatory Commission Gulf LNG Pipeline, LLC; Notice of Request Under Blanket Authorization Take notice that on May 18, 2011, Gulf LNG Pipeline, LLC (GLNG Pipeline), Colonial Brookwood Center, 569... to Margaret G. Coffman, Counsel, Gulf LNG Pipeline Company, LLC, Colonial Brookwood Center,...

  15. 18 CFR 284.284 - Blanket certificates for unbundled sales services.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY OTHER REGULATIONS UNDER THE NATURAL GAS POLICY ACT OF 1978 AND RELATED AUTHORITIES CERTAIN SALES AND TRANSPORTATION OF NATURAL GAS UNDER THE NATURAL GAS POLICY ACT OF 1978 AND RELATED AUTHORITIES Blanket Certificates Authorizing Certain Natural...

  16. 76 FR 18216 - Southern Natural Gas Company; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-01

    ... Federal Energy Regulatory Commission Southern Natural Gas Company; Notice of Request Under Blanket Authorization Take notice that on March 16, 2011, Southern Natural Gas Company (Southern), Post Office Box 2563... and 157.216 of the Commission's Regulations under the Natural Gas Act (NGA) as amended, to abandon...

  17. 18 CFR 284.284 - Blanket certificates for unbundled sales services.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY OTHER REGULATIONS UNDER THE NATURAL GAS POLICY ACT OF 1978 AND RELATED AUTHORITIES CERTAIN SALES AND TRANSPORTATION OF NATURAL GAS UNDER THE NATURAL GAS POLICY ACT OF 1978 AND RELATED AUTHORITIES Blanket Certificates Authorizing Certain Natural...

  18. 75 FR 3232 - Northern Natural Gas Company; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-20

    ... Energy Regulatory Commission Northern Natural Gas Company; Notice of Request Under Blanket Authorization January 8, 2010. Take notice that on December 30, 2009, Northern Natural Gas Company (Northern), 1111... sections 157.205 and 157.214 of the Commission's regulations under the Natural Gas Act for authorization...

  19. 75 FR 13535 - Northern Natural Gas Company; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ... Energy Regulatory Commission Northern Natural Gas Company; Notice of Request Under Blanket Authorization March 16, 2010. Take notice that on March 12, 2010, Northern Natural Gas Company (Northern), 1111 South... External Affairs, Northern Natural Gas Company, 1111 South 103rd Street, Omaha, Nebraska 68124, at...

  20. Upflow anaerobic sludge blanket reduces COD 75-85%, produces methane gas

    SciTech Connect

    Ruppel, W.; Biedron, M.; Thornton, B.; Swientek, R.J.

    1982-01-01

    The wastewater from a brewery at 3 million gallons/day is treated in an upflow anaerobic sludge blanket process with a COD removal efficiency of 75% and the CH/sub 4/ gas content of the 400 cubic metres/day biogas produced 74%.

  1. Chromospheric Line Blanketing and the Hydrogen Spectrum of dM Stars

    NASA Astrophysics Data System (ADS)

    Short, C. I.; Doyle, J. G.

    1996-12-01

    We present non-LTE calculations of the Hi spectrum in a grid of chromospheric models that represents a dM0 star in which the activity level ranges from quiescent to very active. We investigate three different treatments of the background opacity: 1) continuous opacity only, 2) blanketing due to lines that form in the photosphere below Tmin, and 3) blanketing by lines that form throughout the entire outer atmosphere. We show that the predicted W_lambda of Lyalpha in all models, and of Hα in very active (dMe) stars, is reduced by as much as a factor of ~ 4 by the inclusion of background line opacity. A consistent treatment of line blanketing that includes the effect of the chromospheric and transition region temperature structure in the calculation of background line opacity is necessary for the accurate calculation of Lyalpha , and in some cases Hα , in thes e stars. The Hα line in less active models, and the Pabeta line in all models, is negligibly affected by the treatment of background opacity. We also show that the broad-band continuum flux in regions where lambda < 2000 A is increased by as much as a factor of ~ 3 in some models by the inclusion of chromospheric line blanketing.

  2. 18 CFR 284.403 - Code of conduct for persons holding blanket marketing certificates.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Code of conduct for persons holding blanket marketing certificates. 284.403 Section 284.403 Conservation of Power and Water... Seller engages in reporting of transactions to publishers of electricity or natural gas indices,...

  3. 18 CFR 284.403 - Code of conduct for persons holding blanket marketing certificates.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Code of conduct for persons holding blanket marketing certificates. 284.403 Section 284.403 Conservation of Power and Water... Seller engages in reporting of transactions to publishers of electricity or natural gas indices,...

  4. 18 CFR 284.403 - Code of conduct for persons holding blanket marketing certificates.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Code of conduct for persons holding blanket marketing certificates. 284.403 Section 284.403 Conservation of Power and Water... Seller engages in reporting of transactions to publishers of electricity or natural gas indices,...

  5. 18 CFR 284.403 - Code of conduct for persons holding blanket marketing certificates.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Code of conduct for persons holding blanket marketing certificates. 284.403 Section 284.403 Conservation of Power and Water... Seller engages in reporting of transactions to publishers of electricity or natural gas indices,...

  6. 78 FR 34093 - WBI Energy Transmission; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-06

    ... Regulatory Commission's regulations under the Natural Gas Act (NGA), and WBI's blanket certificate issued in Docket No. CP82-487-000, to abandon natural gas storage facilities located at the Baker Storage Reservoir in Fallon County, Montana. Specifically, WBI proposes to plug and abandon two natural gas...

  7. 78 FR 13657 - Southwest Gas Storage Company; Prior Notice of Activity Under Blanket Certificate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-28

    .... Southwest seeks authorization to construct, modify and abandon certain natural gas storage facilities at the... Energy Regulatory Commission Southwest Gas Storage Company; Prior Notice of Activity Under Blanket Certificate On February 8, 2013, Southwest Gas Storage Company (Southwest) filed a prior notice...

  8. 77 FR 50101 - Cadeville Gas Storage LLC; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-20

    ... to construct an additional natural gas storage and injection well at Cadeville's natural gas storage... Energy Regulatory Commission Cadeville Gas Storage LLC; Notice of Request Under Blanket Authorization On July 27, 2012, Cadeville Gas Storage LLC (Cadeville) filed with the Federal Energy...

  9. 76 FR 58263 - Notice of Request Under Blanket Authorization; Columbia Gas Transmission, LLC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-20

    ... Natural Gas Act and Columbia's authorization in Docket CP83-76-000, to abandon two underperforming natural gas storage wells and their associated well lines and appurtenances situated in Hocking County, Ohio... Energy Regulatory Commission Notice of Request Under Blanket Authorization; Columbia Gas...

  10. 78 FR 30918 - Perryville Gas Storage LLC; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-23

    ... feet of base gas as working gas in Cavern PGS-1 at Perryville's natural gas storage facility in... Energy Regulatory Commission Perryville Gas Storage LLC; Notice of Request Under Blanket Authorization Take notice that on May 3, 2013, Perryville Gas Storage LLC (Perryville), Three Riverway, Suite...

  11. 76 FR 48854 - Monroe Gas Storage Company, LLC; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-09

    ... Energy Regulatory Commission Monroe Gas Storage Company, LLC; Notice of Request Under Blanket Authorization Take notice that on July 29, 2011 Monroe Gas Storage Company, LLC (Monroe), Three Riverway, Suite... Commission's Regulations under the Natural Gas Act for authorization to modify a previously approved...

  12. 77 FR 58125 - Trunkline Gas Company, L.L.C.; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-19

    ... Energy Regulatory Commission Trunkline Gas Company, L.L.C.; Notice of Request Under Blanket Authorization Take notice that on August 30, 2012, Trunkline Gas Company, L.L.C. (Trunkline), P.O. Box 4967, Houston... Gas Company, L.L.C., 5051 Westheimer Road, Houston, Texas 77056, or call (713) 989-2024, or fax...

  13. 32 CFR Appendix D to Part 505 - Exemptions; Exceptions; and DoD Blanket Routine Uses

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Exemptions; Exceptions; and DoD Blanket Routine Uses D Appendix D to Part 505 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY AID OF CIVIL AUTHORITIES AND PUBLIC RELATIONS ARMY PRIVACY ACT PROGRAM Pt. 505, App. D Appendix D...

  14. Equalization characteristics of an upflow sludge blanket-aerated biofilter (USB-AF) system.

    PubMed

    Jun, H B; Park, S M; Park, J K; Lee, S H

    2005-01-01

    Equalization characteristics of the upflow sludge blanket-aerated bio-filter (USB-AF) were investigated with the fluctuated raw domestic sewage. Recycle of nitrified effluent from AF to USB triggered the equalization characteristics of the sludge blanket on both soluble and particulate organic matter. Increment of EPS in sludge blanket by nitrate recycle was detected and removal of turbidity and particulates increased at higher recycle ratios by bio-flocculation. Increased TCOD removal in the USB was due to both denitrification of recycled nitrate and entrapment of the particulate organic matter in sludge blanket. Capture of both soluble and particulate organic matter increased sludge blanket layer in the USB, which improved the reactor performances and reduced the organic load on the subsequent AF. Overall TCOD and SS removal efficiencies were about 98% and 96%, respectively in the USB-AF system. Turbidity in the USB effluent was about 44, 20 and 5.5 NTU, at recycle ratios of 0, 100 and 200%, respectively. Particle counts in the range 2-4 microm in the USB effluent were higher than those in influent without nitrate recycle, while particle counts in the range of 0.5-15 microm in the USB effluent decreased 70% at recycle ratio of 200%. The major constituent of EPS extracted from anaerobic sludge was protein and total EPS increased from 109.1 to 165.7 mg/g-VSS with nitrate recycle of 100%. Removal efficiency and concentration of T-N in the UBS-AF effluent was over 70% and below 16 mg/L, respectively.

  15. RELAP5 Model of the First Wall/Blanket Primary Heat Transfer System

    SciTech Connect

    Popov, Emilian L; Yoder Jr, Graydon L; Kim, Seokho H

    2010-06-01

    ITER inductive power operation is modeled and simulated using a system level computer code to evaluate the behavior of the Primary Heat Transfer System (PHTS) and predict parameter operational ranges. The control algorithm strategy and derivation are summarized in this report as well. A major feature of ITER is pulsed operation. The plasma does not burn continuously, but the power is pulsed with large periods of zero power between pulses. This feature requires active temperature control to maintain a constant blanket inlet temperature and requires accommodation of coolant thermal expansion during the pulse. In view of the transient nature of the power (plasma) operation state a transient system thermal-hydraulics code was selected: RELAP5. The code has a well-documented history for nuclear reactor transient analyses, it has been benchmarked against numerous experiments, and a large user database of commonly accepted modeling practices exists. The process of heat deposition and transfer in the blanket modules is multi-dimensional and cannot be accurately captured by a one-dimensional code such as RELAP5. To resolve this, a separate CFD calculation of blanket thermal power evolution was performed using the 3-D SC/Tetra thermofluid code. A 1D-3D co-simulation more realistically models FW/blanket internal time-dependent thermal inertia while eliminating uncertainties in the time constant assumed in a 1-D system code. Blanket water outlet temperature and heat release histories for any given ITER pulse operation scenario are calculated. These results provide the basis for developing time dependent power forcing functions which are used as input in the RELAP5 calculations.

  16. Neutronic evaluation of fissile fuel breeding blankets for the fission-suppressed Tandem-Mirror Hybrid Reactor

    SciTech Connect

    Johnson, J.O.; Burns, T.J.

    1984-06-01

    A computational study was performed on the blanket design of the Lawrence Livermore National Laboratory (LLNL) fission-suppressed Tandem Mirror Hybrid Reactor (TMHR) to qualify the methods and data bases available at Oak Ridge National Laboratory (ORNL) for use in analyzing the neutronic performance of fissile fuel breeding blankets. The eventual goal of the study was to establish the capability for analysis and optimization of advanced fissile fuel production blanket designs. Discrete ordinates radiation transport calculations were performed in one-dimensional cylindrical geometry to obtain the blanket spatial distribution and energy spectra of the neutron and gamma-ray fluxes resulting from the monoenergetic (14.1 MeV) fusion first wall source. Key macroscopic cross sections of the blanket materials were then folded with the flux spectra to obtain reaction rates critical to evaluating blanket feasibility. Finally, a time-dependent depletion analysis was performed to evaluate the blanket performance during equilibrium cycle conditions. The results of the study are presented both as graphs and tables.

  17. Improving proliferation resistance of high breeding gain generation 4 reactors using blankets composed of light water reactor waste

    SciTech Connect

    Hellesen, C.; Grape, S.; Haakanson, A.; Jacobson Svaerd, S.; Jansson, P.

    2013-07-01

    Fertile blankets can be used in fast reactors to enhance the breeding gain as well as the passive safety characteristics. However, such blankets typically result in the production of weapons grade plutonium. For this reason they are often excluded from Generation IV reactor designs. In this paper we demonstrate that using blankets manufactured directly from spent light water (LWR) reactor fuel it is possible to produce a plutonium product with non-proliferation characteristics on a par with spent LWR fuel of 30-50 MWd/kg burnup. The beneficial breeding and safety characteristics are retained. (authors)

  18. Non-LTE, line-blanketed model atmospheres for late O- and early B-type stars

    NASA Technical Reports Server (NTRS)

    Grigsby, James A.; Morrison, Nancy D.; Anderson, Lawrence S.

    1992-01-01

    The use of non-LTE line-blanketed model atmospheres to analyze the spectra of hot stars is reported. The stars analyzed are members of clusters and associations, have spectral types in the range O9-B2 and luminosity classes in the range III-IV, have slow to moderate rotation, and are photometrically constant. Sampled line opacities of iron-group elements were incorporated in the radiative transfer solution; solar abundances were assumed. Good to excellent agreement is obtained between the computed profiles and essentially all the line profiles used to fix the model, and reliable stellar parameters are derived. The synthetic M II 5581 equivalent widths agree well with the observed ones at the low end of the temperature range studied, but, above 25,000 K, the synthetic line is generally stronger than the observed line. The behavior of the observed equivalent widths of N II, N III, C II and C III lines as a function of Teff is studied. Most of the lines show much scatter, with no consistent trend that could indicate abundance differences from star to star.

  19. Axial Neutron Flux Evaluation in a Tokamak System: a Possible Transmutation Blanket Position for a Fusion-Fission Transmutation System

    NASA Astrophysics Data System (ADS)

    Velasquez, Carlos E.; de P. Barros, Graiciany; Pereira, Claubia; Fortini Veloso, Maria A.; Costa, Antonella L.

    2012-08-01

    A sub-critical advanced reactor based on Tokamak technology with a D-T fusion neutron source is an innovative type of nuclear system. Due to the large number of neutrons produced by fusion reactions, such a system could be useful in the transmutation process of transuranic elements (Pu and minor actinides (MAs)). However, to enhance the MA transmutation efficiency, it is necessary to have a large neutron wall loading (high neutron fluence) with a broad energy spectrum in the fast neutron energy region. Therefore, it is necessary to know and define the neutron fluence along the radial axis and its characteristics. In this work, the neutron flux and the interaction frequency along the radial axis are evaluated for various materials used to build the first wall. W alloy, beryllium, and the combination of both were studied, and the regions more suitable to transmutation were determined. The results demonstrated that the best zone in which to place a transmutation blanket is limited by the heat sink and the shield block. Material arrangements of W alloy/W alloy and W alloy/beryllium would be able to meet the requirements of the high fluence and hard spectrum that are needed for transuranic transmutation. The system was simulated using the MCNP code, data from the ITER Final Design Report, 2001, and the Fusion Evaluated Nuclear Data Library/MC-2.1 nuclear data library.

  20. Exploring climatic controls on blanket bog litter decomposition across an altitudinal gradient

    NASA Astrophysics Data System (ADS)

    Bell, Michael; Ritson, Jonathan P.; Clark, Joanna M.; Verhoef, Anne; Brazier, Richard E.

    2016-04-01

    The hydrological and ecological functioning of blanket bogs is strongly coupled, involving multiple ecohydrological feedbacks which can affect carbon cycling. Cool and wet conditions inhibit decomposition, and favour the growth of Sphagnum mosses which produce highly recalcitrant litter. A small but persistent imbalance between production and decomposition has led to blanket bogs in the UK accumulating large amounts of carbon. Additionally, healthy bogs provide a suite of other ecosystems services including water regulation and drinking water provision. However, there is concern that climate change could increase rates of litter decomposition and disrupt this carbon sink. Furthermore, it has been argued that the response of these ecosystems in the warmer south west and west of the UK may provide an early analogue for later changes in the more extensive northern peatlands. In order to investigate the effects of climate change on blanket bog litter decomposition, we set-up a litter bag experiment across an altitudinal gradient spanning 200 m of elevation (including a transition from moorland to healthy blanket bog) on Dartmoor, an area of hitherto unstudied, climatically marginal blanket bog in the south west of the UK. At seven sites, water table depth and soil and surface temperature were recorded continuously. Litter bags filled with the litter of three vegetation species dominant on Dartmoor were incubated just below the bog surface and retrieved over a period of 12 months. We found significant differences in the rate of decomposition between species. At all sites, decomposition progressed in the order Calluna vulgaris (dwarf shrub) > Molinia caerulea (graminoid) > Sphagnum (bryophyte). However, while soil temperature did decrease along the altitudinal gradient, being warmer in the lower altitudes, a hypothesised accompanying decrease in decomposition rates did not occur. This could be explained by greater N deposition at the higher elevation sites (estimated

  1. Upflow anaerobic sludge blanket reactor--a review.

    PubMed

    Bal, A S; Dhagat, N N

    2001-04-01

    . Concentrated waste (usually sewage sludge) can be added continuously or periodically (semi-batch operation), where it is mixed with the contents of the reactor. Theoretically, the conventional digester is operated as a once-through, completely mixed, reactor. In this particular mode of operation the hydraulic retention time (HRT) is equal to the solids retention time (SRT). Basically, the required process efficiency is related to the sludge retention time (SRT), and hence longer SRT provided, results in satisfactory population (by reproduction) for further waste stabilization. By reducing the hydraulic retention time (HRT) in the conventional mode reactor, the quantity of biological solids within the reactor is also decreased as the solids escape with the effluent. The limiting HRT is reached when the bacteria are removed from the reactor faster than they can grow. Methanogenic bacteria are slow growers and are considered the rate-limiting component in the anaerobic digestion process. The first anaerobic process developed, which separated the SRT from the HRT was the anaerobic contact process. In 1963, Young and McCarty (1968) began work, which eventually led to the development of the anaerobic upflow filter (AF) process. The anaerobic filter represented a significant advance in anaerobic waste treatment, since the filter can trap and maintain a high concentration of biological solids. By trapping these solids, long SRT's could be obtained at large waste flows, necessary to anaerobically treat low strength wastes at nominal temperatures economically. Another anaerobic process which relies on the development of biomass on the surfaces of a media is an expanded bed upflow reactor. The primary concept of the process consists of passing wastewater up through a bed of inert sand sized particles at sufficient velocities to fluidize and partially expand the sand bed. One of the more interesting new processes is the upflow anaerobic sludge blanket process (UASB), which was developed

  2. A study on the enhancement of the reliability in gravure offset roll printing with blanket swelling control

    NASA Astrophysics Data System (ADS)

    Eul Kim, Ga; Woo, Kyoohee; Kang, Dongwoo; Jang, Yunseok; Choi, Young-Man; Lee, Moon G.; Lee, Taik-Min; Kwon, Sin

    2016-10-01

    In roll-offset printing (patterning) technology with a PDMS blanket as a transfer medium, one of the major reliability issues is the occurrence of swelling, which involves absorption of the ink solvent in the printing blanket with repeated printing. This study developed a method to resolve blanket swelling in gravure offset roll printing and performed experiments for performance verification. The physical phenomena of mass and heat transfer were applied to fabricate a device based on convection drying. The proposed device managed to effectively control blanket swelling through drying by blowing air and additional temperature control. The experiments verified that printing quality (in particular the variation of the width of printed patterns) was maintained over 500 continuous printing.

  3. 76 FR 57731 - Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket Section...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-16

    ... Request for Blanket Section 204 Authorization; Rockland Wind Farm, LLC This is a supplemental notice in the above-referenced proceeding of Rockland Wind Farm, LLC's application for market-based...

  4. A preliminary report on the study of the impact sites and particles of the solar maximum satellite thermal blanket

    NASA Technical Reports Server (NTRS)

    Zook, H. A.

    1985-01-01

    A preliminary study of the work on examination of the impact pits in, or penetrations through, the thermal blankets of the Solar Maximum Satellite is presented. The three largest pieces of the thermal blanket were optically scanned with a total surface area of about one half square meter. Over 1500 impact sites of all sizes, including 432 impacts larger than 40 microns in diameter, have been documented. Craters larger in diameter than about 100 microns found on the 75 micron thick Kapton first sheet of the main electronics box blanket are actually holes and constitute perforations through the blanket. A summary of the impact pit population that were found is given. The chemical study of these craters is only in the initial stages, with only about 250 chemical spectra of particles observed in or around impact pits or in the debris pattern being recorded.

  5. Annular core liquid-salt cooled reactor with multiple fuel and blanket zones

    DOEpatents

    Peterson, Per F.

    2013-05-14

    A liquid fluoride salt cooled, high temperature reactor having a reactor vessel with a pebble-bed reactor core. The reactor core comprises a pebble injection inlet located at a bottom end of the reactor core and a pebble defueling outlet located at a top end of the reactor core, an inner reflector, outer reflector, and an annular pebble-bed region disposed in between the inner reflector and outer reflector. The annular pebble-bed region comprises an annular channel configured for receiving pebble fuel at the pebble injection inlet, the pebble fuel comprising a combination of seed and blanket pebbles having a density lower than the coolant such that the pebbles have positive buoyancy and migrate upward in said annular pebble-bed region toward the defueling outlet. The annular pebble-bed region comprises alternating radial layers of seed pebbles and blanket pebbles.

  6. Electromagnetic Launch Vehicle Fairing and Acoustic Blanket Model of Received Power Using FEKO

    NASA Technical Reports Server (NTRS)

    Trout, Dawn H.; Stanley, James E.; Wahid, Parveen F.

    2011-01-01

    Evaluating the impact of radio frequency transmission in vehicle fairings is important to electromagnetically sensitive spacecraft. This study employs the multilevel fast multipole method (MLFMM) from a commercial electromagnetic tool, FEKO, to model the fairing electromagnetic environment in the presence of an internal transmitter with improved accuracy over industry applied techniques. This fairing model includes material properties representative of acoustic blanketing commonly used in vehicles. Equivalent surface material models within FEKO were successfully applied to simulate the test case. Finally, a simplified model is presented using Nicholson Ross Weir derived blanket material properties. These properties are implemented with the coated metal option to reduce the model to one layer within the accuracy of the original three layer simulation.

  7. ITER (International Thermonuclear Experimental Reactor) shield and blanket work package report

    SciTech Connect

    Not Available

    1988-06-01

    This report summarizes nuclear-related work in support of the US effort for the International Thermonuclear Experimental Reactor (ITER) Study. The purpose of this work was to prepare for the first international ITER workshop devoted to defining a basic ITER concept that will serve as a basis for an indepth conceptual design activity over the next 2-1/2 years. Primary tasks carried out during the past year included: design improvements of the inboard shield developed for the TIBER concept, scoping studies of a variety of tritium breeding blanket options, development of necessary design guidelines and evaluation criteria for the blanket options, further safety considerations related to nuclear components and issues regarding structural materials for an ITER device. 44 refs., 31 figs., 29 tabs.

  8. Efficient COD removal and nitrification in an upflow microaerobic sludge blanket reactor for domestic wastewater.

    PubMed

    Zheng, Shaokui; Cui, Cancan

    2012-03-01

    The treatment performance of an upflow microaerobic sludge blanket reactor (UMSB) for synthetic domestic wastewater was investigated at two dissolved oxygen (DO) levels, 0.3-0.5 and 0.7-0.9 mg l(-1), focusing on nitrification performance. The higher DO level induced complete nitrification of ammonia nitrogen (NH(3)-N), achieving chemical oxygen demand and NH(3)-N removals of 97 and 92%, respectively. There were consistently significantly higher nitrate nitrogen (NO(3)-N) and nitrite nitrogen (NO(2)-N) levels in the effluent, with ~66% of newly-produced oxidised nitrogen as NO(2)-N. Despite the high nitrification efficiency, only about 23% of the removed NH(3)-N amount from the influent was ultimately transformed into oxidised nitrogen due to the simultaneous nitrification-denitrification. Sludge blanket development and granulation occurred simultaneously in the UMSB.

  9. Measurements of breakaway reaction between beryllium and water vapor for ITER blanket design

    NASA Astrophysics Data System (ADS)

    Yoshida, Hiroshi; Enoeda, Mikio; Ashibe, Kusuo; Ono, Kiyoshi

    1992-06-01

    Beryllium will be utilized as the neutron multiplier in the ITER breeding blanket. As part of Japanese contribution of the water-cooled blanket design, preliminary study was performed to investigate beryllium breakaway reaction, which is one of safety issues of ITER under high temperature conditions. Thermogravimetric measurements in the temperature range 550 - 750 C were carried out under helium gas flow containing water vapor of 7.6 and 0.76 Torr. The test samples were prepared from commercially available hot-pressed and hot-rolled beryllium plates. Characterization of the surface reaction product was performed by macro and microscopic observations, and x-ray diffraction analysis. Linear and parabolic rate laws were found for the dominant reaction steps in the preceding period of the breakaway reaction. Microstructure of the surface reaction layer formed in all exposure conditions revealed brittle structure, which was composed of blister and microcracks. The rate equations were obtained for the preceding step of breakaway reaction.

  10. Experimental investigations of MHD flow tailoring for first wall coolant channels of self-cooled blankets

    SciTech Connect

    Picologlou, B.F.; Reed, C.B.; Hua, T.Q.; Barleon, L.; Kreuzinger, H.; Walker, J.S.

    1989-03-01

    Results of experiments on the concept of flow tailoring, the use of salient features of MHD flows in strong magnetic fields to create desirable velocity profiles in the coolant ducts of the first wall and the blanket, are reported. Proof-of-principle testing of flow tailoring has been chosen as the first joint activity on liquid metal MHD between Argonne National Laboratory (ANL) and Kernforschungszentrum Karlsruhe (KfK) because flow tailoring offers the possibility of significant improvement in blanket design and performance. The joint tests are conducted at ANL's ALEX facility on a test article fabricated at KfK. A 3-D MHD thermal hydraulic code developed at ANL is used to demonstrate the increased thermal performance of first wall coolant channels with flow tailoring. Sample results of detailed measurements of velocity and voltage distributions are compared to theoretical predictions provided by analytical tools developed at ANL with the collaboration of the University of Illinois.

  11. Integrated application of upflow anaerobic sludge blanket reactor for the treatment of wastewaters.

    PubMed

    Latif, Muhammad Asif; Ghufran, Rumana; Wahid, Zularisam Abdul; Ahmad, Anwar

    2011-10-15

    The UASB process among other treatment methods has been recognized as a core method of an advanced technology for environmental protection. This paper highlights the treatment of seven types of wastewaters i.e. palm oil mill effluent (POME), distillery wastewater, slaughterhouse wastewater, piggery wastewater, dairy wastewater, fishery wastewater and municipal wastewater (black and gray) by UASB process. The purpose of this study is to explore the pollution load of these wastewaters and their treatment potential use in upflow anaerobic sludge blanket process. The general characterization of wastewater, treatment in UASB reactor with operational parameters and reactor performance in terms of COD removal and biogas production are thoroughly discussed in the paper. The concrete data illustrates the reactor configuration, thus giving maximum awareness about upflow anaerobic sludge blanket reactor for further research. The future aspects for research needs are also outlined.

  12. Preliminary lifetime predictions for 304 stainless steel as the LANL ABC blanket material

    SciTech Connect

    Park, J.J.; Buksa, J.J.; Houts, M.G.; Arthur, E.D.

    1997-11-01

    The prediction of materials lifetime in the preconceptual Los Alamos National Laboratory (LANL) Accelerator-Based Conversion of Plutonium (ABC) is of utmost interest. Because Hastelloy N showed good corrosion resistance to the Oak Ridge National Laboratory Molten Salt Reactor Experiment fuel salt that is similar to the LANL ABC fuel salt, Hastelloy N was originally proposed for the LANL ABC blanket material. In this paper, the possibility of using 304 stainless steel as a replacement for the Hastelloy N is investigated in terms of corrosion issues and fluence-limit considerations. An attempt is made, based on the previous Fast Flux Test Facility design data, to predict the preliminary lifetime estimate of the 304 stainless steel used in the blanket region of the LANL ABC.

  13. Oxygen plasma damage to blanket and patterned ultralow-{kappa} surfaces

    SciTech Connect

    Bao, J.; Shi, H.; Huang, H.; Ho, P. S.; McSwiney, M. L.; Goodner, M. D.; Moinpour, M.; Kloster, G. M.

    2010-03-15

    Oxygen plasma damage to blanket and patterned ultralow-{kappa} (ULK) dielectric surfaces was investigated by examining the effect of plasma species and dielectric materials. Blanket ULK films and patterned structures were treated by O{sub 2} plasma in a remote plasma chamber where the ions and radicals from the plasma source can be separately controlled to study their respective roles in the damage process. The plasma damage was characterized by angle resolved x-ray photoelectron spectroscopy, x-ray reflectivity, and Fourier transform infrared spectroscopy. Studies of the angle dependence of oxygen plasma damage to blanket ULK films indicated that damage by ions was anisotropic while that by radicals was isotropic. Ions were found to play an important role in assisting carbon depletion by oxygen radicals on the blanket film surface. More plasma damage was observed with increasing porosity in ultralow-{kappa} films. Probable reaction paths were proposed by analyzing the reaction by-products. Plasma damage to the sidewall of low-{kappa} trenches was examined by electron energy loss (EELS) analysis. The depletion depth of carbon was found to be related to the penetration of radical species into the porous dielectric and the distribution at the sidewall and trench bottom was affected by the trench pattern geometry, i.e., the aspect ratio, which can be correlated with the electron potential distribution and subsequent trajectory of ions. Vapor silylation was applied for dielectric recovery of trench structure and the result was examined by EELS. The trimethylchlorosilane was found to be effective for recovery of the sidewall carbon loss. The recovery was better for loss induced by radical O{sub 2} than by hybrid O{sub 2} and the difference was attributed to the surface densification by ions limiting the mass transport of vapor chemicals.

  14. Space Photovoltaic Research and Technology 1983. High Efficiency, Radiation Damage, and Blanket Technology

    NASA Technical Reports Server (NTRS)

    1984-01-01

    This three day conference, sixth in a series that began in 1974, was held at the NASA Lewis Research Center on October 18-20, 1983. The conference provided a forum for the discussion of space photovoltaic systems, their research status, and program goals. Papers were presented and workshops were held in a variety of technology areas, including basic cell research, advanced blanket technology, and radiation damage.

  15. Nuclear performance optimization of the Be/Li/Th blanket for the fusion breeder

    SciTech Connect

    Lee, J.D.; Bandini, B.R.

    1985-02-26

    More rigorous nuclear analysis, including treatment of resonance self-shielding effects coupled with an optimization procedure, has resulted in improved performance of the Be/Li/Th blanket. Net U-233 breeding ratio has increased 36% (to 0.84) while at an average U-233/Th ratio of 0.5 a/o average energy multiplication has increased only 12% (to 2.1) compared with earlier results.

  16. Neutron transport-burnup code MCORGS and its application in fusion fission hybrid blanket conceptual research

    NASA Astrophysics Data System (ADS)

    Shi, Xue-Ming; Peng, Xian-Jue

    2016-09-01

    Fusion science and technology has made progress in the last decades. However, commercialization of fusion reactors still faces challenges relating to higher fusion energy gain, irradiation-resistant material, and tritium self-sufficiency. Fusion Fission Hybrid Reactors (FFHR) can be introduced to accelerate the early application of fusion energy. Traditionally, FFHRs have been classified as either breeders or transmuters. Both need partition of plutonium from spent fuel, which will pose nuclear proliferation risks. A conceptual design of a Fusion Fission Hybrid Reactor for Energy (FFHR-E), which can make full use of natural uranium with lower nuclear proliferation risk, is presented. The fusion core parameters are similar to those of the International Thermonuclear Experimental Reactor. An alloy of natural uranium and zirconium is adopted in the fission blanket, which is cooled by light water. In order to model blanket burnup problems, a linkage code MCORGS, which couples MCNP4B and ORIGEN-S, is developed and validated through several typical benchmarks. The average blanket energy Multiplication and Tritium Breeding Ratio can be maintained at 10 and 1.15 respectively over tens of years of continuous irradiation. If simple reprocessing without separation of plutonium from uranium is adopted every few years, FFHR-E can achieve better neutronic performance. MCORGS has also been used to analyze the ultra-deep burnup model of Laser Inertial Confinement Fusion Fission Energy (LIFE) from LLNL, and a new blanket design that uses Pb instead of Be as the neutron multiplier is proposed. In addition, MCORGS has been used to simulate the fluid transmuter model of the In-Zinerater from Sandia. A brief comparison of LIFE, In-Zinerater, and FFHR-E will be given.

  17. Lightweight solar array blanket tooling, laser welding and cover process technology

    NASA Technical Reports Server (NTRS)

    Dillard, P. A.

    1983-01-01

    A two phase technology investigation was performed to demonstrate effective methods for integrating 50 micrometer thin solar cells into ultralightweight module designs. During the first phase, innovative tooling was developed which allows lightweight blankets to be fabricated in a manufacturing environment with acceptable yields. During the second phase, the tooling was improved and the feasibility of laser processing of lightweight arrays was confirmed. The development of the cell/interconnect registration tool and interconnect bonding by laser welding is described.

  18. Conceptual Design and Neutronics Analyses of a Fusion Reactor Blanket Simulation Facility

    DTIC Science & Technology

    1986-01-01

    of the source neutrons will be almost negligible, and will not contribute significantly to asymmetry of flux distributions in the blanket. Therefore...difference in angular distribution of source neutrons with respect to the radial direction. The angular flux at the first wall due to the central source...R. Alsmiller, " Multigroup Energy-Angle Distributions for Neutrons from the T(d,n) 4He Reaction (Ed = 100-400 KeV)," ORNL/TM-9251, July 1984

  19. Beta cloth durability assessment for Space Station Freedom (SSF) Multi-Layer Insulation (MLI) blanket covers

    SciTech Connect

    Koontz, S.L.; Jacobs, S.; Le, J.

    1993-03-01

    MLI blankets for the Space Station Freedom (SSF) must comply with general program requirements and recommendations for long life and durability in the low-Earth orbit (LEO) environment. Atomic oxygen and solar ultraviolet/vacuum ultraviolet are the most important factors in the SSF natural environment which affect materials life. Two types of Beta cloth (Teflon coated woven glass fabric), which had been proposed as MLI blanket covers, were tested for long-term durability in the LEO environment. General resistance to atomic oxygen attack and permeation were evaluated in the high velocity atomic oxygen beam system at Los Alamos National Laboratories. Long-term exposure to the LEO environment was simulated in the laboratory using a radio frequency oxygen plasma asher. The plasma asher treated Beta cloth specimens were tested for thermo-optical properties and mechanical durability. Space exposure data from the Long Duration Exposure Facility and the Intelsat Solar Array Coupon were also used in the durability assessment. Beta cloth fabricated to Rockwell specification MBO 135-027 (Chemglas 250) was shown to have acceptable durability for general use as an MLI blanket cover material in the LEO environment while Sheldahl G414500 should be used only in locations which are protected from direct Ram atomic oxygen.

  20. Beta cloth durability assessment for Space Station Freedom (SSF) Multi-Layer Insulation (MLI) blanket covers

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L.; Jacobs, Stephen; Le, Julie

    1993-01-01

    MLI blankets for the Space Station Freedom (SSF) must comply with general program requirements and recommendations for long life and durability in the low-Earth orbit (LEO) environment. Atomic oxygen and solar ultraviolet/vacuum ultraviolet are the most important factors in the SSF natural environment which affect materials life. Two types of Beta cloth (Teflon coated woven glass fabric), which had been proposed as MLI blanket covers, were tested for long-term durability in the LEO environment. General resistance to atomic oxygen attack and permeation were evaluated in the high velocity atomic oxygen beam system at Los Alamos National Laboratories. Long-term exposure to the LEO environment was simulated in the laboratory using a radio frequency oxygen plasma asher. The plasma asher treated Beta cloth specimens were tested for thermo-optical properties and mechanical durability. Space exposure data from the Long Duration Exposure Facility and the Intelsat Solar Array Coupon were also used in the durability assessment. Beta cloth fabricated to Rockwell specification MBO 135-027 (Chemglas 250) was shown to have acceptable durability for general use as an MLI blanket cover material in the LEO environment while Sheldahl G414500 should be used only in locations which are protected from direct Ram atomic oxygen.

  1. Tritium permeation through steam generator tubing of helium-cooled ceramic breeder blankets

    SciTech Connect

    Fuetterer, M.; Raepsaet, X.; Proust, E.

    1994-12-31

    The potential sources of tritium contamination of the helium-coolant of ceramic breeder blankets have been evaluated in a previous paper for the specific case of the European BIT DEMO blanket. This evaluation associated with a rough assessment of the permeability to tritium of the tubing of helium-heated steam generators confirmed that the control of tritium losses to the steam circuit is a critical issue for this class of blanket requiring developments in three areas: (1) permeation barriers, (2) tritium recovery processes maintaining a very low concentration in tritiated species in the coolant, and (3) methods for controlling the chemistry of the coolant. Consequently, in order to define the specifications of these developments, a detailed evaluation of the permeability to tritium of helium-heated steam generators (SGs) was performed, which will be reported in this paper. This study includes the definition of the thermal-hydraulic operating conditions of the SGs through thermodynamic cycle calculations, and its thermal-hydraulic design. The obtained geometry, area and temperature profiles along the tubes are then used to estimate, based on relevant permeability data, the tritium permeation through the SG as a function of the composition in tritiated species of the coolant. The implications of these results, in terms of requirements for the considered tritium control methods, will also be discussed on the basis of expected limits in tritium release to the steam circuit.

  2. Neutronics Comparison Analysis of the Water Cooled Ceramics Breeding Blanket for CFETR

    NASA Astrophysics Data System (ADS)

    Li, Jia; Zhang, Xiaokang; Gao, Fangfang; Pu, Yong

    2016-02-01

    China Fusion Engineering Test Reactor (CFETR) is an ITER-like fusion engineering test reactor that is intended to fill the scientific and technical gaps between ITER and DEMO. One of the main missions of CFETR is to achieve a tritium breeding ratio that is no less than 1.2 to ensure tritium self-sufficiency. A concept design for a water cooled ceramics breeding blanket (WCCB) is presented based on a scheme with the breeder and the multiplier located in separate panels for CFETR. Based on this concept, a one-dimensional (1D) radial built breeding blanket was first designed, and then several three-dimensional models were developed with various neutron source definitions and breeding blanket module arrangements based on the 1D radial build. A set of nuclear analyses have been carried out to compare the differences in neutronics characteristics given by different calculation models, addressing neutron wall loading (NWL), tritium breeding ratio (TBR), fast neutron flux on inboard side and nuclear heating deposition on main in-vessel components. The impact of differences in modeling on the nuclear performance has been analyzed and summarized regarding the WCCB concept design. supported by the National Special Project for Magnetic Confined Nuclear Fusion Energy (Nos. 2013GB108004, 2014GB122000, and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)

  3. Palladium-catalyzed oxidative diffusion for tritium extraction from breeder-blanket fluids at low concentrations

    NASA Astrophysics Data System (ADS)

    Hsu, Cheazone; Buxbaum, Robert E.

    1986-11-01

    Oxidative diffusion can extract hydrogen from metal solutions at extremely low partial pressures. The hydrogen diffuses through a metal membrane and is oxidized to water. The oxidation reaction produces the very low downstream pressures that drive the flux. This method is attractive because the flux can be proportional to the square-root of upstream pressure. For fusion reactors with liquid lithium or lithium-lead alloy breeder blankets, permeation windows provide a simple, cheap tritium extraction method. Interdiffusion rates, separation flux, window size, helium contents, tritium holdup costs, and overall costs are calculated for membranes of palladium-coated zirconium, niobium, vanadium, nickel and stainless-steel. For extracting tritium from liquid lithium using the cheapest windows, Zr-Pd, the material and labor cost is 8.0 M at 1 wppm, and is inversely proportional to tritium concentration in the lithium. The tritium holdup cost for the windows is 4.8 M, and for the blanket it is proportional to the blanket volume and concentration. An overall economic optimization suggests that 1 to 1.5 wppm in lithium is optimal. For extracting tritium from 17Li83Pb at 0.26 wppb, the cheapest window is V-Pd; the cost is 2.6 M$, and the tritium holdup is negligible.

  4. Multirecycling of Plutonium from LMFBR Blanket in Standard PWRs Loaded with MOX Fuel

    SciTech Connect

    Sonat Sen; Gilles Youinou

    2013-02-01

    It is now well-known that, from a physics standpoint, Pu, or even TRU (i.e. Pu+M.A.), originating from LEU fuel irradiated in PWRs can be multirecycled also in PWRs using MOX fuel. However, the degradation of the isotopic composition during irradiation necessitates using enriched U in conjunction with the MOX fuel either homogeneously or heterogeneously to maintain the Pu (or TRU) content at a level allowing safe operation of the reactor, i.e. below about 10%. The study is related to another possible utilization of the excess Pu produced in the blanket of a LMFBR, namely in a PWR(MOX). In this case the more Pu is bred in the LMFBR, the more PWR(MOX) it can sustain. The important difference between the Pu coming from the blanket of a LMFBR and that coming from a PWR(LEU) is its isotopic composition. The first one contains about 95% of fissile isotopes whereas the second one contains only about 65% of fissile isotopes. As it will be shown later, this difference allows the PWR fed by Pu from the LMFBR blanket to operate with natural U instead of enriched U when it is fed by Pu from PWR(LEU)

  5. Blanketing effect of expansion foam on liquefied natural gas (LNG) spillage pool.

    PubMed

    Zhang, Bin; Liu, Yi; Olewski, Tomasz; Vechot, Luc; Mannan, M Sam

    2014-09-15

    With increasing consumption of natural gas, the safety of liquefied natural gas (LNG) utilization has become an issue that requires a comprehensive study on the risk of LNG spillage in facilities with mitigation measures. The immediate hazard associated with an LNG spill is the vapor hazard, i.e., a flammable vapor cloud at the ground level, due to rapid vaporization and dense gas behavior. It was believed that high expansion foam mitigated LNG vapor hazard through warming effect (raising vapor buoyancy), but the boil-off effect increased vaporization rate due to the heat from water drainage of foam. This work reveals the existence of blocking effect (blocking convection and radiation to the pool) to reduce vaporization rate. The blanketing effect on source term (vaporization rate) is a combination of boil-off and blocking effect, which was quantitatively studied through seven tests conducted in a wind tunnel with liquid nitrogen. Since the blocking effect reduces more heat to the pool than the boil-off effect adds, the blanketing effect contributes to the net reduction of heat convection and radiation to the pool by 70%. Water drainage rate of high expansion foam is essential to determine the effectiveness of blanketing effect, since water provides the boil-off effect.

  6. Effect of thick blanket modules on neoclassical tearing mode locking in ITER

    NASA Astrophysics Data System (ADS)

    La Haye, R. J.; Paz-Soldan, C.; Liu, Y. Q.

    2017-01-01

    The rotation of m/n  =  2/1 tearing modes can be slowed and stopped (i.e. locked) by eddy currents induced in resistive walls in conjunction with residual error fields that provide a final ‘notch’ point. This is a particular issue in ITER with large inertia and low applied torque (m and n are poloidal and toroidal mode numbers respectively). Previous estimates of tolerable 2/1 island widths in ITER found that the ITER electron cyclotron current drive (ECCD) system could catch and subdue such islands before they persisted long enough and grew large enough to lock. These estimates were based on a forecast of initial island rotation using the n  =  1 resistive penetration time of the inner vacuum vessel wall and benchmarked to DIII-D high-rotation plasmas, However, rotating tearing modes in ITER will also induce eddy currents in the blanket as the effective first wall that can shield the inner vessel. The closer fitting blanket wall has a much shorter time constant and should allow several times smaller islands to lock several times faster in ITER than previously considered; this challenges the ECCD stabilization. Recent DIII-D ITER baseline scenario (IBS) plasmas with low rotation through small applied torque allow better modeling and scaling to ITER with the blanket as the first resistive wall.

  7. Emission of highly 13C-depleted methane from an upland blanket mire

    NASA Astrophysics Data System (ADS)

    Bowes, Helen L.; Hornibrook, Edward R. C.

    2006-02-01

    Rates and δ13C values of CH4 flux are reported from an upland blanket mire (Blaen Fign) situated in Wales UK. The δ13C values of CH4 flux were similar from Sphagnum and vascular flora dominated areas despite flux rates being an order of magnitude greater from the latter. Methane flux was 13C-depleted relative to belowground CH4, indicating that transport occurred predominately via passive diffusion through vascular flora and that pore water diffusion and ebullition contributed little to CH4 flux. The strong influence of vascular flora abundance on CH4 flux strength suggests that any factors altering vegetation assemblages in blanket mires will likely impact CH4 emission rates. Methane flux from Blaen Fign was highly 13C-depleted compared to emissions from minerotrophic wetlands, suggesting that δ13C values may be useful for tracing CH4 flux from blanket mires and other types of ombrogenous peatlands to the global CH4 budget.

  8. A table of semiempirical gf values. Part 1: Wavelengths: 5.2682 nm to 272.3380 nm. [to calculate line-blanketed model atmospheres for solar and stellar spectra

    NASA Technical Reports Server (NTRS)

    Kurucz, R. L.; Peytremann, E.

    1975-01-01

    The gf values for 265,587 atomic lines selected from the line data used to calculate line-blanketed model atmospheres are tabulated. These data are especially useful for line identification and spectral synthesis in solar and stellar spectra. The gf values are calculated semiempirically by using scaled Thomas-Fermi-Dirac radial wavefunctions and eigenvectors found through least-squares fits to observed energy levels. Included in the calculation are the first five or six stages of ionization for sequences up through nickel. Published gf values are included for elements heavier than nickel. The tabulation is restricted to lines with wavelengths less than 10 micrometers.

  9. Reflective Blankets Do Not Effect Cooling Rates after Running in Hot, Humid Conditions.

    PubMed

    Reynolds, Kory A; Evanich, John J; Eberman, Lindsey E

    Reflective blankets (RB) are often provided at the conclusion of endurance events, even in extreme environments. The implications could be dangerous if increased core body temperature (CBT) is exacerbated by RB. To evaluate the effect of RB on cooling rate for individuals walking or sitting after intense running. Pilot, randomized control trial experimental design. Environmental chamber. Recreational runners (age=25±5y; mass=76.8±16.7kg; height=177±9cm) completed an 8km (actual mean distance=7.5±1.1km). We randomly assigned participants into one of four groups: walking with blanket (WB=5), walking without blanket (WNB=5), sitting with blanket (SB=5), or sitting without blanket (SNB=4). Participants ran on a treadmill at their own pace until volitional exhaustion, achieving the 8km distance, or experiencing CBT=40°C. Every three minutes during the running (time determined by pace) and cooling protocol (62 min in chamber), we measured CBT, HR, and Borg scale, and environmental conditions. We evaluated cooling rate, peak physiological variables, pace, and environment by condition using a Kruskal-Wallis non-parametric one-way ANOVAs. We identified similar exercise sessions (df=3; CBT χ(2)=0.921, p=0.82; HR χ(2)=7.446, p=0.06; Borg χ(2)= 5.732, p=0.13; pace χ(2)=0.747, p=0.86) and similar environmental characteristics between conditions (df=3; Wet Bulb Globe Temperature=26.18±2.78°C, χ(2)=1.552, p=0.67). No significant differences between conditions on cooling rate (df=3, χ(2)=2.301, p=0.512) were found, suggesting RBs neither cool nor heat the body, whether seated (SB=0.021±0.011deg/min; SNB=0.029±0.002deg/min) or walking (WB=0.015±0.025deg/min; WNB=0.021±0.011deg/min) in a hot, humid environment. CBT in distance runners is not altered by the use of a RB during a seated or walking cool down after a strenuous run.

  10. Advanced Burner Reactor with Breed-and-Burn Thorium Blankets for Improved Economics and Resource Utilization

    SciTech Connect

    Greenspan, Ehud

    2015-11-04

    This study assesses the feasibility of designing Seed and Blanket (S&B) Sodium-cooled Fast Reactor (SFR) to generate a significant fraction of the core power from radial thorium fueled blankets that operate on the Breed-and-Burn (B&B) mode without exceeding the radiation damage constraint of presently verified cladding materials. The S&B core is designed to maximize the fraction of neutrons that radially leak from the seed (or “driver”) into the subcritical blanket and reduce neutron loss via axial leakage. The blanket in the S&B core makes beneficial use of the leaking neutrons for improved economics and resource utilization. A specific objective of this study is to maximize the fraction of core power that can be generated by the blanket without violating the thermal hydraulic and material constraints. Since the blanket fuel requires no reprocessing along with remote fuel fabrication, a larger fraction of power from the blanket will result in a smaller fuel recycling capacity and lower fuel cycle cost per unit of electricity generated. A unique synergism is found between a low conversion ratio (CR) seed and a B&B blanket fueled by thorium. Among several benefits, this synergism enables the very low leakage S&B cores to have small positive coolant voiding reactivity coefficient and large enough negative Doppler coefficient even when using inert matrix fuel for the seed. The benefits of this synergism are maximized when using an annular seed surrounded by an inner and outer thorium blankets. Among the high-performance S&B cores designed to benefit from this unique synergism are: (1) the ultra-long cycle core that features a cycle length of ~7 years; (2) the high-transmutation rate core where the seed fuel features a TRU CR of 0.0. Its TRU transmutation rate is comparable to that of the reference Advanced Burner Reactor (ABR) with CR of 0.5 and the thorium blanket can generate close to 60% of the core power; but requires only one sixth of the reprocessing and

  11. Preliminary Neutronics Design Studies for a Molten Salt Blanket LIFE Engine

    SciTech Connect

    Powers, J

    2008-10-23

    The Laser Inertial Confinement Fusion Fission Energy (LIFE) Program being developed at Lawrence Livermore National Laboratory (LLNL) aims to design a hybrid fission-fusion subcritical nuclear engine that uses a laser-driven Inertial Confinement Fusion (ICF) system to drive a subcritical fission blanket. This combined fusion-fission hybrid system could be used for generating electricity, material transmutation or incineration, or other applications. LIFE does not require enriched fuel since it is a sub-critical system and LIFE can sustain power operation beyond the burnup levels at which typical fission reactors need to be refueled. In light of these factors, numerous options have been suggested and are being investigated. Options being investigated include fueling LIFE engines with spent nuclear fuel to aid in disposal/incineration of commercial spent nuclear fuel or using depleted uranium or thorium fueled options to enhance proliferation resistance and utilize non-fissile materials [1]. LIFE engine blanket designs using a molten salt fuel system represent one area of investigation. Possible applications of a LIFE engine with a molten salt blanket include uses as a spent nuclear fuel burner, fissile fuel breeding platform, and providing a backup alternative to other LIFE engine blanket designs using TRISO fuel particles in case the TRISO particles are found to be unable to withstand the irradiation they will be subjected to. These molten salts consist of a mixture of LiF with UF{sub 4} or ThF{sub 4} or some combination thereof. Future systems could look at using PuF{sub 3} or PuF{sub 4} as well, though no work on such system with initial plutonium loadings has been performed for studies documented in this report. The purpose of this report is to document preliminary neutronics design studies performed to support the development of a molten salt blanket LIFE engine option, as part of the LIFE Program being performed at Lawrence Livermore National laboratory

  12. Opening Holes in the Blanket of Inhibition: Localized Lateral Disinhibition by VIP Interneurons

    PubMed Central

    Jackson, Jesse; Ayzenshtat, Inbal; Hamzehei Sichani, Azadeh; Manoocheri, Kasra; Kim, Samuel; Yuste, Rafael

    2016-01-01

    Inhibitory interneurons in the neocortex often connect in a promiscuous and extensive fashion, extending a “blanket of inhibition” on the circuit. This raises the problem of how can excitatory activity propagate in the midst of this widespread inhibition. One solution to this problem could be the vasoactive intestinal peptide (VIP) interneurons, which disinhibit other interneurons. To explore how VIP interneurons affect the local circuits, we use two-photon optogenetics to activate them individually in mouse visual cortex in vivo while measuring their output with two-photon calcium imaging. We find that VIP interneurons have narrow axons and inhibit nearby somatostatin interneurons, which themselves inhibit pyramidal cells. Moreover, via this lateral disinhibition, VIP cells in vivo make local and transient “holes” in the inhibitory blanket extended by SOM cells. VIP interneurons, themselves regulated by neuromodulators, may therefore enable selective patterns of activity to propagate through the cortex, by generating a “spotlight of attention”. SIGNIFICANCE STATEMENT Most inhibitory interneurons have axons restricted to a nearby area and target excitatory neighbors indiscriminately, raising the issue of how neuronal activity can propagate through cortical circuits. Vasoactive intestinal peptide-expressing interneurons (VIPs) disinhibit cortical pyramidal cells through inhibition of other inhibitory interneurons, and they have very focused, “narrow” axons. By optogenetically activating single VIPs in live mice while recording the activity of nearby neurons, we find that VIPs break open a hole in blanket inhibition with an effective range of ∼120 μm in lateral cortical space where excitatory activity can propagate. PMID:27013676

  13. Radar scattering mechanisms within the meteor crater ejecta blanket: Geologic implications and relevance to Venus

    NASA Technical Reports Server (NTRS)

    Garvin, J. B.; Campbell, B. A.; Zisk, S. H.; Schaber, Gerald G.; Evans, C.

    1989-01-01

    Simple impact craters are known to occur on all of the terrestrial planets and the morphologic expression of their ejecta blankets is a reliable indicator of their relative ages on the Moon, Mars, Mercury, and most recently for Venus. It will be crucial for the interpretation of the geology of Venus to develop a reliable means of distinguishing smaller impact landforms from volcanic collapse and explosion craters, and further to use the observed SAR characteristics of crater ejecta blankets (CEB) as a means of relative age estimation. With these concepts in mind, a study was initiated of the quantitative SAR textural characteristics of the ejecta blanket preserved at Meteor Crater, Arizona, the well studied 1.2 km diameter simple crater that formed approx. 49,000 years ago from the impact of an octahedrite bolide. While Meteor Crater was formed as the result of an impact into wind and water lain sediments and has undergone recognizable water and wind related erosion, it nonetheless represents the only well studied simple impact crater on Earth with a reasonably preserved CEB. Whether the scattering behavior of the CEB can provide an independent perspective on its preservation state and style of erosion is explored. Finally, airborne laser altimeter profiles of the microtopography of the Meteor Crater CEB were used to further quantify the subradar pizel scale topographic slopes and RMS height variations for comparisons with the scattering mechanisms computed from SAR polarimetry. A preliminary assessment was summarized of the L-band radar scattering mechanisms within the Meteor Crater CEB as derived from a NASA/JPL DC-8 SAR Polarimetry dataset acquired in 1988, and the dominant scattering behavior was compared with microtopographic data (laser altimeter profiles and 1:10,000 scale topographic maps).

  14. Current status of final design and R&D for ITER blanket shield blocks in Korea

    NASA Astrophysics Data System (ADS)

    Ha, M. S.; Kim, S. W.; Jung, H. C.; Hwang, H. S.; Heo, Y. G.; Kim, D. H.; Ahn, H. J.; Lee, H. G.; Jung, K. J.

    2015-07-01

    The main function of the ITER blanket shield block (SB) is to provide nuclear shielding and support the first wall (FW) panel. It needs to accommodate all the components located on the vacuum vessel (in particular the in-vessel coils, blanket manifolds and the diagnostics). The conceptual, preliminary and final design reviews have been completed in the framework of the Blanket Integrated Product Team. The Korean Domestic Agency has successfully completed not only the final design activities, including thermo-hydraulic and thermo-mechanical analyses for SBs #2, #6, #8 and #16, but also the SB full scale prototype (FSP) pre-qualification program prior to issuing of the procurement agreement. SBs #2 and #6 are located at the in-board region of the tokamak. The pressure drop was less than 0.3 MPa and fully satisfied the design criteria. The thermo-mechanical stresses were also allowable even though the peak stresses occurred at nearby radial slit end holes, and their fatigue lives were evaluated over many more than 30 000 cycles. SB #8 is one of the most difficult modules to design, since this module will endure severe thermal loading not only from nuclear heating but also from plasma heat flux at uncovered regions by the FW. In order to resolve this design issue, the neutral beam shine-through module concept was applied to the FW uncovered region and it has been successfully verified as a possible design solution. SB #16 is located at the out-board central region of the tokamak. This module is under much higher nuclear loading than other modules and is covered by an enhanced heat flux FW panel. In the early design stage, many cooling headers on the front region were inserted to mitigate peak stresses near the access hole and radial slit end hole. However, the cooling headers on the front region needed to be removed in order to reduce the risk from cover welding during manufacturing. A few cooling headers now remain after efforts through several iterations to remove

  15. Electromagnetic Launch Vehicle Fairing and Acoustic Blanket Model of Received Power Using FEKO

    NASA Technical Reports Server (NTRS)

    Trout, Dawn H.; Stanley, James E.; Wahid, Parveen F.

    2011-01-01

    Evaluating the impact of radio frequency transmission in vehicle fairings is important to sensitive spacecraft. This paper employees the Multilevel Fast Multipole Method (MLFMM) feature of a commercial electromagnetic tool to model the fairing electromagnetic environment in the presence of an internal transmitter. This work is an extension of the perfect electric conductor model that was used to represent the bare aluminum internal fairing cavity. This fairing model includes typical acoustic blanketing commonly used in vehicle fairings. Representative material models within FEKO were successfully used to simulate the test case.

  16. Thermal blanket metallic film groundstrap and second surface mirror vulnerability to arc discharges

    NASA Technical Reports Server (NTRS)

    Inouye, G. T.; Sanders, N. L.; Komatsu, G. K.; Valles, J. R.; Sellen, J. M., Jr.

    1979-01-01

    Available data on the geosynchronous orbit energetic plasma environment were examined, and a crude model was generated to permit an estimation to be made of the number of arc discharges per year to which a thermal blanket groundstrap would be subjected. Laboratory experiments and a survey of the literature on arc discharge characteristics were performed to define typical and worst case arc discharge current waveforms. In-air tests of different groundstrap configurations to a standardized test pulse were performed and a wide variability of durability values were found. A groundstrap technique, not used thus far, was found to be far superior than the others.

  17. Feasibility study of ITER vacuum vessel and blanket back plate assembly plan

    SciTech Connect

    Nakahira, Masataka; Koizumi, Kouichi; Itou, Yutaka; Tada, Eisuke; Kanamori, Naokazu

    1996-12-31

    Design efforts have been made to develop the assembly procedure of the Vacuum Vessel (VV) and the Blanket (BL) Back Plate (BP) of the International Thermonuclear Experimental Reactor (ITER). This procedure must mitigate accumulation of welding distortion of the thick wall structure, handle and assemble massive structures such as the BP within narrow space and certain accuracy, and minimize assembly schedule. As a result, candidate procedures have been developed which rely on symmetric welding, limited rotation and reasonable schedule. Based on these procedures, the detail design of jigs and tools has been started. 2 refs., 5 figs., 1 tab.

  18. An analysis of LDEF-exposed silvered FEP teflon thermal blanket material

    NASA Technical Reports Server (NTRS)

    Young, Philip R.; Slemp, Wayne S.

    1991-01-01

    The characterization of selected silvered fluorinated ethylene propylene (FEP) teflon thermal blanket material which received 5 years and 9 months of exposure to the LEO environment on the Long Duration Exposure Facility is reported. X-ray photoelectron spectroscopy, infrared, and thermal analyses did not detect a significant change at the molecular level as the result of this exposure. However, various microscopic analyses revealed a roughening of the coating surface due to atomic oxygen erosion which resulted in some materials changing from specular reflectors of visible radiation to diffuse reflectors. The potential effect of silicon-containing molecular contamination on these materials is addressed.

  19. Historical peat loss explains limited short-term response of drained blanket bogs to rewetting.

    PubMed

    Williamson, Jennifer; Rowe, Edwin; Reed, David; Ruffino, Lucia; Jones, Peter; Dolan, Rachel; Buckingham, Helen; Norris, David; Astbury, Shaun; Evans, Chris D

    2017-03-01

    This study assessed the short-term impacts of ditch blocking on water table depth and vegetation community structure in a historically drained blanket bog. A chronosequence approach was used to compare vegetation near ditches blocked 5 years, 4 years and 1 year prior to the study with vegetation near unblocked ditches. Plots adjacent to and 3 m away from 70 ditches within an area of blanket bog were assessed for floristic composition, aeration depth using steel bars, and topography using LiDAR data. No changes in aeration depth or vegetation parameters were detected as a function of ditch-blocking, time since blocking, or distance from the ditch, with the exception of non-Sphagnum bryophytes which had lower cover in quadrats adjacent to ditches that had been blocked for 5 years. Analysis of LiDAR data and the observed proximity of the water table to the peat surface led us to conclude that the subdued ecosystem responses to ditch-blocking were the result of historical peat subsidence within a 4-5 m zone either side of each ditch, which had effectively lowered the peat surface to the new, ditch-influenced water table. We estimate that this process led to the loss of around 500,000 m(3) peat within the 38 km(2) study area following drainage, due to a combination of oxidation and compaction. Assuming that 50% of the volume loss was due to oxidation, this amounts to a carbon loss of 11,000 Mg C over this area, i.e. 3 Mg C ha(-1). The apparent 'self-rewetting' of blanket bogs in the decades following drainage has implications for their restoration as it suggests that there may not be large quantities of dry peat left to rewet, and that there is a risk of inundation (potentially leading to high methane emissions) along subsided ditch lines. Many peatland processes are likely to be maintained in drained blanket bog, including support of typical peatland vegetation, but infilling of lost peat and recovery of original C stocks are likely to take longer than is

  20. Energy and mass distributions of impact ejecta blankets on the moon and Mercury

    NASA Technical Reports Server (NTRS)

    Ahrens, T. J.; Okeefe, J. D.

    1978-01-01

    The paper applies previously calculated impact-induced flow fields (O'Keefe and Ahrens, 1977) resulting from interaction of 5-cm radius gabbroic anorthosite impactor with a half-space of the same material, at various velocities, to obtain mass and energy ejecta distributions. Whereas earlier results described the ejecta distribution from a 15 km/s impact of an iron object on the moon in terms of mass vs. distance, the present results describe, at a given distance from the impact, the energy content as a function of depth, i.e., the thermal structure of ejecta blankets. Pertinent computational methods are included, and several tables and plots supplement the text.

  1. FELIX: an experimental facility to study electromagnetic effects for first wall, blanket, and shield systems

    SciTech Connect

    Praeg, W.F.; Turner, L.R.; Biggs, J.; Bywater, J.; Fuja, R.; Knott, M.; Lari, R.J.; McGhee, D.G.; Wehrle, R.B.

    1981-01-01

    As part of the DOE First Wall/Blanket/Shield (FW/B/S) Engineering Test Program, Argonne National Laboratory (ANL) is carrying out an experimental program to study electromagnetic effects. Electromagnetic effect in a FW/B/S system include time delay of equilibrium field penetration to the plasma, forces and torques, eddy current heating, and electrical arcing. Such effects can arise in a fusion reactor from plasma disruption and normal and abnormal charge and discharge of the magnets. The facility will consist primarily of a solenoid magnet, a surrounding pulsed dipole magnet, and associated power supplies and support structure.

  2. Flowsheet report for baseline actinide blanket processing for accelerator transmutation of waste

    SciTech Connect

    Walker, R.B.

    1992-04-08

    We provide a flowsheet analysis of the chemical processing of actinide and fission product materials form the actinide blanket of an accelerator-based transmutation concept. An initial liquid ion exchange step is employed to recover unburned plutonium and neptunium, so that it can be returned quickly to the transmitter. The remaining materials, consisting of fission products and trivalent actinides (americium, curium), is processed after a cooling period. A reverse Talspeak process is employed to separate these trivalent actinides from lanthanides and other fission products.

  3. Line-blanketed spherically extended model atmospheres of hot luminous stars with and without winds

    NASA Astrophysics Data System (ADS)

    Aufdenberg, Jason Paul

    2000-08-01

    Spherical, hydrostatic, non-local thermodynamic equilibrium (non-LTE) metal line-blanketed model atmospheres have been employed to reproduce the spectral energy distributions of the bright B-type giant stars Beta and Epsilon Canis Majoris, including the extreme ultraviolet where previous models have failed. The combination of spherical geometry and line-blanketing produces significantly different model temperature structures and synthetic extreme ultraviolet spectra relative to otherwise similar plane-parallel geometry models. The synthetic spectra are compared to the observed spectral energy distributions of these B stars in absolute units, a rarity in stellar atmosphere analyses. A full grid of O- and early B-type model stellar atmospheres has been constructed and comparisons with hydrostatic, plane-parallel, LTE line-blanketing models show that these models predict consistently higher ionizing fluxes, particularly at lower effective temperatures. Models for hot, luminous stars and their winds have been developed which unify the inner hydrostatic layers with the outer dynamic layers of the atmosphere into a single structure. These models include the effects of full non- LTE metal line-blanketing in both the computation of the model atmosphere plus wind and the synthetic spectrum. Models of this type have been developed for comparison with the spectral energy distribution and detailed spectrum of the A-type supergiant Alpha Cygni. A synthetic spectrum has been computed which is able to match the observed spectral energy distribution in absolute units from 120 nm to 3.6 cm reasonably well. These models predict that Alpha Cyg's expanding envelope is only partially ionized, which leads to a steeper spectral slope than predicted in the fully ionized case commonly applied to hotter O- and B-type stars. Non-LTE model structures and line formation in the ultraviolet suggest mass-loss rates 50 times larger than in the LTE studies. Using recently available observational

  4. Thermal Hydraulic Design and Analysis of a Water-Cooled Ceramic Breeder Blanket with Superheated Steam for CFETR

    NASA Astrophysics Data System (ADS)

    Cheng, Xiaoman; Ma, Xuebin; Jiang, Kecheng; Chen, Lei; Huang, Kai; Liu, Songlin

    2015-09-01

    The water-cooled ceramic breeder blanket (WCCB) is one of the blanket candidates for China fusion engineering test reactor (CFETR). In order to improve power generation efficiency and tritium breeding ratio, WCCB with superheated steam is under development. The thermal-hydraulic design is the key to achieve the purpose of safe heat removal and efficient power generation under normal and partial loading operation conditions. In this paper, the coolant flow scheme was designed and one self-developed analytical program was developed, based on a theoretical heat transfer model and empirical correlations. Employing this program, the design and analysis of related thermal-hydraulic parameters were performed under different fusion power conditions. The results indicated that the superheated steam water-cooled blanket is feasible. supported by the National Special Project for Magnetic Confined Nuclear Fusion Energy of China (Nos. 2013GB108004, 2014GB122000 and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)

  5. Test description for the Integral Fast Reactor subassemblies X419, X420, and X421

    SciTech Connect

    Pahl, R G; Lahm, C E; Hudman, G D

    1985-07-01

    The main purpose of the three lead IFR irradiation experiments in EBR-II is to demonstrate the acceptable performance and high-burnup capability of U-Pu-Zr metallic fuel. This report summarizes prior U-Pu-Zr experiments, outlines the scope and objectives of the current tests and provides a technical description of the fuel, element hardware and nominal operating conditions.

  6. Postirradiation examination of the HT9 clad fuel test X425 at 2.9% burnup

    SciTech Connect

    Pahl, R G; Beck, W N; Sanecki, J E

    1987-11-01

    The X425 experiment was the first EBR-II subassembly to be irradiated with U-Pu-Zr metallic fuel clad in the HT9 alloy. This report summarizes our initial postirradiation examination of selected elements from X425 at 2.9% peak burnup. Fuel microstructure, swelling behavior, fission gas release, and fuel/clad chemical interaction are discussed.

  7. Travel Blankets

    ERIC Educational Resources Information Center

    Coy, Mary

    2009-01-01

    Spry Middle School's annual eighth-grade trip to Washington, District of Columbia, coincided with the opening of the National Museum of the American Indian. The museum, with its distinctive curvilinear architecture covered in Kasota limestone, stands as a wonderful testament to the rich culture and history of the many and diverse Native American…

  8. Security Blanket

    NASA Technical Reports Server (NTRS)

    2006-01-01

    2 June 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows material on the floor of a crater in Noachis Terra, west of Hellas Planitia. Windblown features, both the large, dark-toned sand dunes and smaller, light-toned ripples, obscure and perhaps, protect portions of the crater floor from further modification by erosional processes.

    Location near: 45.4oS, 331.2oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  9. Nuclear-radiation-actuated valve. [Patent application; for increasing coolant flow to blanket

    DOEpatents

    Christiansen, D.W.; Schively, D.P.

    1982-01-19

    The present invention relates to a breeder reactor blanket fuel assembly coolant system valve which increases coolant flow to the blanket fuel assembly to minimize long-term temperature increases caused by fission of fissile fuel created from fertile fuel through operation of the breeder reactor. The valve has a valve first part (such as a valve rod with piston) and a valve second part (such as a valve tube surrounding the valve rod, with the valve tube having side slots surrounding the piston). Both valve parts have known nuclear radiation swelling characteristics. The valve's first part is positioned to receive nuclear radiation from the nuclear reactor's fuel region. The valve's second part is positioned so that its nuclear radiation induced swelling is different from that of the valve's first part. The valve's second part also is positioned so that the valve's first and second parts create a valve orifice which changes in size due to the different nuclear radiation caused swelling of the valve's first part compared to the valve's second part. The valve may be used in a nuclear reactor's core coolant system.

  10. Atomic Oxygen Exposure of Polyimide Foam for International Space Station Solar Array Wing Blanket Box

    NASA Technical Reports Server (NTRS)

    Finckenor, M. M.; Albyn, K. C.; Watts, E. W.

    2006-01-01

    Onorbit photos of the International Space Station (ISS) solar array blanket box foam pad assembly indicate degradation of the Kapton film covering the foam, leading to atomic oxygen (AO) exposure of the foam. The purpose of this test was to determine the magnitude of particulate generation caused by low-Earth orbital environment exposure of the foam and also by compression of the foam during solar array wing retraction. The polyimide foam used in the ISS solar array wing blanket box assembly is susceptible to significant AO erosion. The foam sample in this test lost one-third of its mass after exposure to the equivalent of 22 mo onorbit. Some particulate was generated by exposure to simulated orbital conditions and the simulated solar array retraction (compression test). However, onorbit, these particles would also be eroded by AO. The captured particles were generally <1 mm, and the particles shaken free of the sample had a maximum size of 4 mm. The foam sample maintained integrity after a compression load of 2.5 psi.

  11. Fluidized-bed design for ICF reactor blankets using solid-lithium compounds

    SciTech Connect

    Sucov, E.W.; Malick, F.S.; Green, L.; Hall, B.O.

    1983-01-01

    A fluidized-bed concept for blankets of dry or wetted first-wall ICF reactors using solid-lithium compounds is described. The reaction chamber is a right cylinder, 32 m high and 20 m in diameter; the blanket is composed of 36 steel tanks, 32 m high, which carry the sintered Li/sub 2/O particles in the fluidizing helium gas. Each tank has a radial thickness of 2 m which generates a tritium breeding ration (TBR) of 1.27 and absorbs over 98% of the neutron energy; reducing the thickness to 1.2 m produces a TBR of 1.2 and energy absorption of 97% which satisfy the design goals. Calculations of tritium diffusion through the grains and heat removal from the grains showed that neither could be removed by the carrier gas; tritium and heat are therefore removed by removing the grains themselves by varying the helium flow rate. The particles are continuously fed into the bottom of the tanks at 300/sup 0/C and removed at the top at 475/sup 0/C. Tritium and heat extraction are easily and conveniently done outside the reactor.

  12. Terra Flexible Blanket Solar Array Deployment, On-Orbit Performance and Future Applications

    NASA Technical Reports Server (NTRS)

    Kurland, Richard; Schurig, Hans; Rosenfeld, Mark; Herriage, Michael; Gaddy, Edward; Keys, Denney; Faust, Carl; Andiario, William; Kurtz, Michelle; Moyer, Eric; Day, John H. (Technical Monitor)

    2000-01-01

    The Terra spacecraft (formerly identified as EOS AM1) is the flagship in a planned series of NASA/GSFC (Goddard Space Flight Center) Earth observing system satellites designed to provide information on the health of the Earth's land, oceans, air, ice, and life as a total ecological global system. It has been successfully performing its mission since a late-December 1999 launch into a 705 km polar orbit. The spacecraft is powered by a single wing, flexible blanket array using single junction (SJ) gallium arsenide/germanium (GaAs/Ge) solar cells sized to provide five year end-of-life (EOL) power of greater than 5000 watts at 127 volts. It is currently the highest voltage and power operational flexible blanket array with GaAs/Ge cells. This paper briefly describes the wing design as a basis for discussing the operation of the electronics and mechanisms used to achieve successful on-orbit deployment. Its orbital electrical performance to date will be presented and compared to analytical predictions based on ground qualification testing. The paper concludes with a brief section on future applications and performance trends using advanced multi-junction cells and weight-efficient mechanical components.

  13. Terra Flexible Blanket Solar Array Deployment, On-Orbit Performance and Future Applications

    NASA Technical Reports Server (NTRS)

    Kurland, Richard; Schurig, Hans; Rosenfeld, Mark; Herriage, Michael; Gaddy, Edward; Keys, Denney; Faust, Carl; Andiario, William; Kurtz, Michelle; Moyer, Eric; Day, John H. (Technical Monitor)

    2000-01-01

    The Terra spacecraft (formerly identified as EOS AM1) is the flagship in a planned series of NASA/GSFC (Goddard Space Flight Center) Earth observing system satellites designed to provide information on the health of the Earth's land, oceans, air, ice, and life as a total ecological global system. It has been successfully performing its mission since a late-December 1999 launch into a 705 km polar orbit. The spacecraft is powered by a single wing, flexible blanket array using single junction (SJ) gallium arsenide/germanium (GaAs/Ge) solar cells sized to provide five year end-of-life (EOL) power of greater than 5000 watts at 127 volts. It is currently the highest voltage and power operational flexible blanket array with GaAs/Ge cells. This paper briefly describes the wing design as a basis for discussing the operation of the electronics and mechanisms used to achieve successful on-orbit deployment. Its orbital electrical performance to date will be presented and compared to analytical predictions based on ground qualification testing. The paper concludes with a brief section on future applications and performance trends using advanced multi-junction cells and weight-efficient mechanical components. A viewgraph presentation is attached that outlines the same information as the paper and includes more images of the Terra Spacecraft and its components.

  14. Summary report for ITER task - T68: MHD facility preparation for Li/V blanket option

    SciTech Connect

    Reed, C.B.; Haglund, R.C.; Miller, M.E.

    1995-08-01

    A key feasibility issue for the ITER Vanadium/Lithium breeding blanket is the question of insulator coatings. Design calculations show that an electrically insulating layer is necessary to maintain an acceptably low MHD pressure drop. To enable experimental investigations of the MHD performance of candidate insulator materials and the technology for putting them in place, the room-temperature ALEX (Argonne`s Liquid Metal EXperiment) NaK facility was upgraded to a 300{degrees}C lithium system. The objective of this upgrade was to modify the existing facility to the minimum extent necessary, consistent with providing a safe, flexible, and easy to operate MHD test facility which uses lithium at ITER-relevant temperatures, Hartmann numbers, and interaction parameters. The facility was designed to produce MHD pressure drop data, test section voltage distributions, and heat transfer data for mid-scale test sections and blanket mockups. The system design description for this lithium upgrade of the ALEX facility is given in this document.

  15. EOS AM-1 GaAs/Ge flexible blanket solar array verification test program results

    SciTech Connect

    Herriage, M.J.; Kurland, R.M.; Faust, C.D.; Gaddy, E.M.; Keys, D.J.

    1997-12-31

    Under subcontract to Lockheed Martin Missiles and Space (LMMS), TRW Space and Electronics Group is developing the first operational flexible blanket solar array to use thin gallium arsenide on germanium (GaAs/Ge) solar cells and to produce power at high voltage. This single wing array will be integrated to the EOS AM-1 spacecraft which is the first in a series of Goddard Space Flight Center remote sensing spacecraft. Spacecraft system level design issues dealing with package volume, attitude control, weight and array size dictated that a low aspect ratio (2:1), flexible blanket wing with GaAs/Ge cells be used. The array program is in its last phase of protoflight verification testing with delivery of the wing to LMMS in mid-1997 for launch into orbit in mid-1998. This paper continues the status reporting of the solar array development that was first presented at the 31st IECEC in Washington, DC. In the first paper (Herriage, et al, 1996) the focus was on the design requirements and evolving design details. This paper provides a brief review of the wing configuration and design as a point of reference for the ensuing principal discussion of the protoflight verification test program and key results.

  16. Simulations of blanketing sporadic E-layer over the Brazilian sector driven by tidal winds

    NASA Astrophysics Data System (ADS)

    Araujo Resende, Laysa Cristina; Batista, Inez Staciarini; Denardini, Clezio Marcos; Batista, Paulo Prado; Carrasco, Alexander José; Andrioli, Vânia de Fátima; Moro, Juliano

    2017-02-01

    This work presents new results about simulations of blanketing sporadic E-layers, Esb, using a modified version of a theoretical model for the E region (MIRE) for a Brazilian region: Cachoeira Paulista, a low latitude station. MIRE computes the densities of the metallic ions (Fe+ and Mg+) and of the main molecular ions (NO+, O2+, N2+) by solving the continuity and momentum equations for each one of them. Additionally, this model includes the physics of Es layer development driven by tidal winds. In this study, we extend MIRE adding a novel neutral wind model derived from the all-sky meteor radar measurements, which provides more trustworthy results related to the Es layer formation in the Brazilian sector. Afterwards, this new model is validated comparing the computed electron density for the Es layer with the electron density obtained using the blanketing frequency parameter (fbEs) deduced from ionograms in the analyzed region. The results show that the values computed by the extended MIRE are in good agreement with the observational data for the Es layers formed by the wind shear mechanism. Therefore, the extended MIRE presented in this work is the only available model that allows simulating Esb layers with a much higher confidence level for the low-latitude in the Brazilian sector.

  17. Neutronics Evaluation of Lithium-Based Ternary Alloys in IFE Blankets

    SciTech Connect

    Jolodosky, A.; Fratoni, M.

    2014-11-20

    Pre-conceptual fusion blanket designs require research and development to reflect important proposed changes in the design of essential systems, and the new challenges they impose on related fuel cycle systems. One attractive feature of using liquid lithium as the breeder and coolant is that it has very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and presents plant safety concerns. If the chemical reactivity of lithium could be overcome, the result would have a profound impact on fusion energy and associated safety basis. The overriding goal of this project is to develop a lithium-based alloy that maintains beneficial properties of lithium (e.g. high tritium breeding and solubility) while reducing overall flammability concerns. To minimize the number of alloy combinations that must be explored, only those alloys that meet certain nuclear performance metrics will be considered for subsequent thermodynamic study. The specific scope of this study is to evaluate the neutronics performance of lithium-based alloys in the blanket of an inertial confinement fusion (ICF) engine. The results of this study will inform the development of lithium alloys that would guarantee acceptable neutronics performance while mitigating the chemical reactivity issues of pure lithium.

  18. Status of fuel, blanket, and absorber testing in the Fast Flux Test Facility

    SciTech Connect

    Baker, R.B.; Bard, F.E.; Leggett, R.D.; Pitner, A.L.

    1992-11-01

    Over 67,000 fuel, blanket and absorber pins have been irradiated in the Fast Flux Test Facility (FFTF) during its first 12 years of operation. Tests are run in highly controlled and monitored environments with core components similar in size to those in commercial liquid metal reactor (LMR) designs. While primary emphasis was placed on mixed oxide fuels, significant development programs have included metallic fuels, UO[sub 2] blankets, B[sub 4]C absorbers, and other fuels and materials of interest. Irradiation programs for mixed oxides have included progressively lower swelling cladding and duct alloys (e.g., 316 SS, D9 SS, and the ferritic HT9), which also have application to other core components. In many instances the current exposure levels of the advanced FFTF tests are the highest attained and reported in the literature. This paper summarizes the status of irradiation experience at the facility, presents some general conclusions, and reviews the potential for obtaining additional significant data.

  19. Status of fuel, blanket, and absorber testing in the Fast Flux Test Facility

    SciTech Connect

    Baker, R.B.; Bard, F.E.; Leggett, R.D.; Pitner, A.L.

    1992-11-01

    Over 67,000 fuel, blanket and absorber pins have been irradiated in the Fast Flux Test Facility (FFTF) during its first 12 years of operation. Tests are run in highly controlled and monitored environments with core components similar in size to those in commercial liquid metal reactor (LMR) designs. While primary emphasis was placed on mixed oxide fuels, significant development programs have included metallic fuels, UO{sub 2} blankets, B{sub 4}C absorbers, and other fuels and materials of interest. Irradiation programs for mixed oxides have included progressively lower swelling cladding and duct alloys (e.g., 316 SS, D9 SS, and the ferritic HT9), which also have application to other core components. In many instances the current exposure levels of the advanced FFTF tests are the highest attained and reported in the literature. This paper summarizes the status of irradiation experience at the facility, presents some general conclusions, and reviews the potential for obtaining additional significant data.

  20. APT Blanket System Loss-of-Coolant Accident (LOCA) Based on Initial Conceptual Design - Case 2: with Beam Shutdown Only

    SciTech Connect

    Hamm, L.L.

    1998-10-07

    This report is one of a series of reports that document normal operation and accident simulations for the Accelerator Production of Tritium (APT) blanket heat removal system. These simulations were performed for the Preliminary Safety Analysis Report. This report documents the results of simulations of a Loss-of-Flow Accident (LOFA) where power is lost to all of the pumps that circulate water in the blanket region, the accelerator beam is shut off and neither the residual heat removal nor cavity flood systems operate.

  1. Effective Thermal Conductivity of a Li{sub 2}TiO{sub 3} Pebble Bed for a DEMO Blanket

    SciTech Connect

    Hatano, T.; Enoeda, M.; Suzuki, S.; Kosaku, Y.; Akiba, M.

    2003-07-15

    In development of the ceramic breeder blanket, the effective thermal conductivity of pebble beds is an important design parameter. For thermo-mechanical design of blanket, pebble beds were investigated used for Li{sub 2}TiO{sub 3} that was a candidate for tritium breeder. Li{sub 2}TiO{sub 3} pebble beds, whose size was 0.28-1.91 mm diameter, were measured on load under no neutron irradiation. The effective thermal conductivity was increased with load increasing was obtained.

  2. Normal operation and maintenance safety lessons from the ITER US PbLi test blanket module program for a US FNSF and DEMO

    SciTech Connect

    L. C. Cadwallader; C. P. C. Wong; M. Abdou; B. B. Morely; B.J Merrill

    2014-10-01

    A leading power reactor breeding blanket candidate for a fusion demonstration power plant (DEMO) being pursued by the US Fusion Community is the Dual Coolant Lead Lithium (DCLL) concept. The safety hazards associated with the DCLL concept as a reactor blanket have been examined in several US design studies. These studies identify the largest radiological hazards as those associated with the dust generation by plasma erosion of plasma blanket module first walls, oxidation of blanket structures at high temperature in air or steam, inventories of tritium bred in or permeating through the ferritic steel structures of the blanket module and blanket support systems, and the 210Po and 203Hg produced in the PbLi breeder/coolant. What these studies lack is the scrutiny associated with a licensing review of the DCLL concept. An insight into this process was gained during the US participation in the International Thermonuclear Experimental Reactor (ITER) Test Blanket Module (TBM) Program. In this paper we discuss the lessons learned during this activity and make safety proposals for the design of a Fusion Nuclear Science Facility (FNSF) or a DEMO that employs a lead lithium breeding blanket.

  3. Geomorphological control of water tables in a blanket peat landscape: implications for carbon cycling

    NASA Astrophysics Data System (ADS)

    Allott, Tim; Evans, Martin; Lindsay, John; Agnew, Clive; Freer, Jim

    2010-05-01

    Water tables are an important control on carbon cycling and rates of carbon sequestration in peatland systems, and water table depth is therefore a key parameter in carbon models for blanket peat systems. Although there is a wide literature on blanket peat hydrology, including studies which specifically evaluate water table conditions, detailed data on water table behaviour and variability at the landscape scale are sparse. In particular, many British blanket peats are affected by gully erosion and this has been generally assumed to influence water table conditions. However, there has been limited evaluation of this geomomorphological control on peatland water tables. This paper presents results from a project which evaluated water table conditions in the blanket peatlands of the Peak District National Park, UK. A key aim was to quantify the impact of gully erosion on peatland water tables. A detailed programme of water table monitoring was undertaken during 2008/09, involving regular measurements of water table depth in over 530 dipwells at 19 sites across the 47 km2 peatland landscape of the Kinder Scout / Bleaklow area. This included a campaign of regular, simultaneous water table measurements from clusters of dipwells at the main sites, supplemented by continuous (hourly) water table monitoring in selected dipwells. It also included studies to evaluate within-site variation in water table conditions and local water table drawdown effects associated with gully erosion. Results indicate that gully erosion causes water table drawdown through two distinct processes. The first is local water table drawdown immediately adjacent to erosion gullies. This effect is restricted to a zone within 2 m of gully edges, and water tables within the gully edge drawdown zone are approximately 200 mm lower than in the adjacent peatland. The second effect is a more general water table lowering at eroded sites, with median water table depths at heavily eroded sites up to 300 mm lower

  4. A hydrological study of Waen y Griafolen blanket bog, North Wales

    NASA Astrophysics Data System (ADS)

    Hall, G.

    2010-12-01

    Many mountain rivers in North Wales have their headwaters in peat blanket bogs. An example is Waen y Griafolen, source area for the Afon Mawddach, which formed the focus of a hydrological study by Bangor University over the period 2002-2004. Fieldwork has been supplemented by groundwater and surface water modelling. The blanket bog covers an area of approximately 6 km2 within a plateau basin in Lower Paleozoic shales. The structure of the blanket bog is complex. Erica and Trichophorum vegetation communities occupy the central area of the bog on deposits of old humified peat. Eroded into the old peat surface is a system of bifurcating channels occupied by actively accumulating Juncus and Sphagnum communities. River gravel and lake clay were found beneath the active peat channels at depths of several metres, indicative of an earlier and more extensive surface drainage system eroded into the bog surface. A palaeosoil occurs at the base of the old humified peat, with tree roots identified as Salix in growth position. A sample has been dated as 8905 ± 45 years before the reference year AD 1950. Waen y Griafolen has developed over the past 9000 years since the last ice sheets receded from upland Britain. Peat erosion represented by the buried river channels and lake bed may be linked to a period of increased rainfall across Europe at around 2600 years before the present. Groundwater levels have been continuously monitored at an instrumented borehole in the centre of the bog. It is found that the older humified peats have a surprisingly low water storage capacity and may become saturated during a single storm event. Storm flow occurs predominantly through fast surface runoff into the Juncus and Sphagnum infilled channels, where slow lateral movement takes place towards open stream courses at the basin outlet. There appears to be little vertical water movement into the underlying impermeable Ordovician shales. Climate change with an increase in winter rainfall may promote

  5. VAPORIZATION OF ELEMENTAL MERCURY FROM POOLS OF MOLTEN LEAD AT LOW CONCENTRATIONS.

    SciTech Connect

    GREENE,G.A.; FINFROCK,C.C.

    2000-10-01

    Should coolant accidentally be lost to the APT (Accelerator Production of Tritium) blanket and target, and the decay heat in the target be deposited in the surrounding blanket by thermal radiation, temperatures in the blanket modules could exceed structural limits and cause a physical collapse of the blanket modules into a non-coolable geometry. Such a sequence of unmitigated events could result in some melting of the APT blanket and create the potential for the release of mercury into the target-blanket cavity air space. Experiments were conducted which simulate such hypothetical accident conditions in order to measure the rate of vaporization of elemental mercury from pools of molten lead to quantify the possible severe accident source term for the APT blanket region. Molten pools of from 0.01% to 0.10% mercury in lead were prepared under inert conditions. Experiments were conducted, which varied in duration from several hours to as long as a month, to measure the mercury vaporization from the lead pools. The melt pools and gas atmospheres were held fixed at 340 C during the tests. Parameters which were varied in the tests included the mercury concentration, gas flow rate over the melt and agitation of the melt, gas atmosphere composition and the addition of aluminum to the melt. The vaporization of mercury was found to scale roughly linearly with the concentration of mercury in the pool. Variations in the gas flow rates were not found to have any effect on the mass transfer, however agitation of the melt by a submerged stirrer did enhance the mercury vaporization rate. The rate of mercury vaporization with an argon (inert) atmosphere was found to exceed that for an air (oxidizing) atmosphere by as much as a factor of from ten to 20; the causal factor in this variation was the formation of an oxide layer over the melt pool with the air atmosphere which served to retard mass transfer across the melt-atmosphere interface. Aluminum was introduced into the melt to

  6. Treatment of high-strength ethylene glycol waste water in an expanded granular sludge blanket reactor: use of PVA-gel beads as a biocarrier.

    PubMed

    Jin, Yue; Wang, Dunqiu; Zhang, Wenjie

    2016-01-01

    Industrial-scale use of polyvinyl alcohol (PVA)-gel beads as biocarriers is still not being implemented due to the lack of understanding regarding the optimal operational parameters. In this study, the parameters for organic loading rate (OLR), alkalinity, recycle rate, and addition of trace elements were investigated in an expanded granular sludge blanket reactor (EGSB) treating high-strength ethylene glycol wastewater (EG) with PVA-gel beads as biocarrier. Stable chemical oxygen demand (COD) removal efficiencies of 95 % or greater were achieved, and continuous treatment was demonstrated with appropriate parameters being an OLR of 15 kg COD/m(3)/day, NaHCO3 added at 400 mg/L, a recycle rate of 15 L/h, and no addition of trace elements addition. A biogas production yield rate of 0.24 m(3)/kg COD was achieved in this study. A large number of long rod-shaped bacteria (Methanosaeta), were found with low acetate concentration in the EGSB reactor.

  7. Three-dimensional neutronics optimization of helium-cooled blanket for multi-functional experimental fusion-fission hybrid reactor (FDS-MFX)

    SciTech Connect

    Jiang, J.; Yuan, B.; Jin, M.; Wang, M.; Long, P.; Hu, L.

    2012-07-01

    Three-dimensional neutronics optimization calculations were performed to analyse the parameters of Tritium Breeding Ratio (TBR) and maximum average Power Density (PDmax) in a helium-cooled multi-functional experimental fusion-fission hybrid reactor named FDS (Fusion-Driven hybrid System)-MFX (Multi-Functional experimental) blanket. Three-stage tests will be carried out successively, in which the tritium breeding blanket, uranium-fueled blanket and spent-fuel-fueled blanket will be utilized respectively. In this contribution, the most significant and main goal of the FDS-MFX blanket is to achieve the PDmax of about 100 MW/m3 with self-sustaining tritium (TBR {>=} 1.05) based on the second-stage test with uranium-fueled blanket to check and validate the demonstrator reactor blanket relevant technologies based on the viable fusion and fission technologies. Four different enriched uranium materials were taken into account to evaluate PDmax in subcritical blanket: (i) natural uranium, (ii) 3.2% enriched uranium, (iii) 19.75% enriched uranium, and (iv) 64.4% enriched uranium carbide. These calculations and analyses were performed using a home-developed code VisualBUS and Hybrid Evaluated Nuclear Data Library (HENDL). The results showed that the performance of the blanket loaded with 64.4% enriched uranium was the most attractive and it could be promising to effectively obtain tritium self-sufficiency (TBR-1.05) and a high maximum average power density ({approx}100 MW/m{sup 3}) when the blanket was loaded with the mass of {sup 235}U about 1 ton. (authors)

  8. Strain rate dependence of the tensile properties of V-(4--5%)Cr-(4--5%)Ti irradiated in EBR-II and HFBR

    SciTech Connect

    Zinkle, S.J.; Snead, L.L.; Robertson, J.P.; Rowcliffe, A.F.

    1998-03-01

    Elevated temperature tensile tests performed on V-(405)Cr-(4-5)Ti indicate that the yield stress increases with increasing strain rate for irradiation and test temperatures near 200 C, and decreases with increasing strain rate for irradiation and test temperatures near 400 C. This observation is in qualitative agreement with the temperature-dependent strain rate effects observed on unirradiated specimens, and implies that some interstitial solute remains free to migrate in irradiated specimens. Additional strain rate data at different temperatures are needed.

  9. Will blocking historical drainage ditches increase carbon sequestration in upland blanket mires of Southwest England?

    NASA Astrophysics Data System (ADS)

    Le Feuvre, N.; Hartley, I.; Anderson, K.; Luscombe, D.; Grand-Clement, E.; Smith, D.; Brazier, R.

    2012-04-01

    Peat soils in the United Kingdom are estimated to store a minimum of 3,121Mt C (Lindsay, 2010). Despite being such a large carbon store the annual imbalance between uptake and release is small and susceptible to change in response to land management, atmospheric deposition and climate change. The upland blanket mires of Southwest England have been subject to extensive drainage and are particularly vulnerable to climate change as they lie at the lower edge of the peatland climatic envelope. The Mires-on-the-Moors project, funded by South West Water will restore over 2000 hectares of drained mire by April 2015. Herein, we question whether this restoration, which will block historical drainage ditches will allow the blanket bogs of Exmoor and Dartmoor National Parks to recover their ecohydrological functionality. We hypothesise that such mire restoration will increase the resilience of these ecosystems to climate change and will return these upland mires to peat forming/carbon sequestering systems. A method is proposed which aims to understand the processes driving gaseous carbon exchange and peat formation in an upland blanket bog and quantifies the effect restoration has on these processes. We propose to measure the spatial variation in gas fluxes with respect to structural features of the mire; drainage ditches and nanotopes. The role of vegetation; the community composition, phenology and health will be explored as well as environmental variables such as water table depths, temperature and photosynthetically active radiation. Importantly, the experiment will partition below ground respiration to assess the environmental controls and effect of restoration on autotrophic and heterotrophic respiration separately. Unusually, it will be possible to collect both pre- and post-restoration data for two experimental sites with existing intensive hydrological monitoring (baseline monitoring of water table depths at 15 minute timesteps has been in place for > 1 year at ca

  10. Blanket Module Boil-Off Times during a Loss-of-Coolant Accident - Case 0: with Beam Shutdown only

    SciTech Connect

    Hamm, L.L.

    1998-10-07

    This report is one of a series of reports that document LBLOCA analyses for the Accelerator Production of Tritium primary blanket Heat Removal system. This report documents the analysis results of a LBLOCA where the accelerator beam is shut off without primary pump trips and neither the RHR nor the cavity flood systems operation.

  11. 77 FR 28875 - Gulfstream Natural Gas System, L.L.C.; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-16

    ... Federal Energy Regulatory Commission Gulfstream Natural Gas System, L.L.C.; Notice of Request Under Blanket Authorization Take notice that on April 30, 2012 Gulfstream Natural Gas System, L.L.C. (Gulfstream... Gas System, L.L.C., 5400 Westheimer Court, P.O. Box 1642, Houston, Texas, 77251-1642 at (713)...

  12. 78 FR 2991 - Southern Natural Gas Company, L.L.C.; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Southern Natural Gas Company, L.L.C.; Notice of Request Under Blanket Authorization Take notice that on December 21, 2012, Southern Natural Gas Company, L.L.C. (Southern), P.O....

  13. 76 FR 14654 - Gulfstream Natural Gas System, L.L.C. Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-17

    ... Energy Regulatory Commission Gulfstream Natural Gas System, L.L.C. Notice of Request Under Blanket Authorization Take notice that on March 1, 2011, Gulfstream Natural Gas System, L.L.C. (Gulfstream) filed a..., General Manager, Rates and Certificates, Gulfstream Natural Gas System, L.L.C., 5400 Westheimer Court,...

  14. Research and development of the tritium recovery system for the blanket of the fusion reactor in JAEA

    NASA Astrophysics Data System (ADS)

    Kawamura, Y.; Isobe, K.; Iwai, Y.; Kobayashi, K.; Nakamura, H.; Hayashi, T.; Yamanishi, T.

    2009-05-01

    A water-cooling solid breeder blanket is a prime candidate for the blanket of the fusion reactor in Japan. In this case, the blanket tritium recovery system will be composed of three processes: tritium recovery from helium sweep gas as hydrogen, that as water vapour and tritium recovery from coolant water. The authors have proposed a set of advanced systems. For tritium recovery as hydrogen, an electrochemical hydrogen pump with a ceramic proton conductor has been proposed. The correlation between the proton concentration in the ceramic and the hydrogen gas pressure has been investigated to describe the pumping performance specifically. A ceramic electrolysis cell has been proposed to process the tritiated water vapour. The authors have developed a new electrode containing cerium oxide, and it has shown fairly good electrolysis efficiency. For tritium recovery from coolant water, reduction in the processing water by tritium concentration is necessary. The authors have proposed to apply the fixed-bed adsorption process of synthetic zeolite, and have developed new zeolite. It showed unique characteristics for water adsorption and desorption. The authors have determined the potential of these systems for the blanket of the fusion DEMO reactor.

  15. 75 FR 38459 - Certain Woven Electric Blankets From the People's Republic of China: Final Determination of Sales...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-02

    ... ``POI''). FOR FURTHER INFORMATION CONTACT: Howard Smith or Drew Jackson, AD/CVD Operations, Office 4... woven electric blankets and throws consist of shells of woven fabric containing wire. Unassembled woven... when packaged together or ] in a kit: (1) wire; (2) controller(s). The shell of woven fabric...

  16. 48 CFR 18.105 - Federal Supply Schedules (FSSs), multi-agency blanket purchase agreements (BPAs), and multi...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Federal Supply Schedules (FSSs), multi-agency blanket purchase agreements (BPAs), and multi-agency indefinite delivery contracts. 18.105 Section 18.105 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACTING METHODS AND CONTRACT TYPES...

  17. Displacement damage in the first structural wall of an inertial confinement fusion reactor: dependence on blanket design

    SciTech Connect

    Meier, W.R.

    1984-07-13

    In this study we investigate how the design of the neutron blanket effects the displacement damage rate in the first structural wall (FSW) of an Inertial Confinement Fusion (ICF) reactor. Two generic configurations are examined; in the first, the steel wall is directly exposed to the fusion neutrons, whereas in the second, the steel wall is protected by inner blanket of lithium with an effective thickness of 1-m. The latter represents a HYLIFE-type design, which has been shown to have displacement damage rates an order of magnitude lower than unprotected wall designs. The two basic configurations were varied to show how the dpa rate changes as the result of (1) adding a Li blanket outside the FSW, (2) adding a neutron reflector (graphite) outside the FSW, and (3) changing the position of the inner lithium blanket relative to the FSW. The effects of neutron moderation in the compressed DT-target are also shown, and the unprotected and protected configurations compared.

  18. 75 FR 7474 - CenterPoint Energy Gas Transmission Company; Prior Notice of Activity Under Blanket Certificate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-19

    ... Energy Regulatory Commission CenterPoint Energy Gas Transmission Company; Prior Notice of Activity Under Blanket Certificate February 3, 2010. On January 26, 2010 CenterPoint Energy Gas Transmission Company... Energy Regulatory Commission's (Commission) regulations under the Natural Gas Act, and CEGT's...

  19. 78 FR 20912 - Southern Natural Gas Company, L.L.C.; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Southern Natural Gas Company, L.L.C.; Notice of Request Under Blanket Authorization Take notice that on March 25, 2013 Southern Natural Gas Company, L.L.C. (Southern), 569...

  20. 78 FR 11867 - CenterPoint Energy Gas Transmission Company, LLC; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-20

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission CenterPoint Energy Gas Transmission Company, LLC; Notice of Request Under Blanket Authorization Take notice that on January 31, 2013, CenterPoint Energy Gas Transmission Company, LLC (CenterPoint), P.O. Box...

  1. Elemental ZOO

    NASA Astrophysics Data System (ADS)

    Helser, Terry L.

    2003-04-01

    This puzzle uses the symbols of 39 elements to spell the names of 25 animals found in zoos. Underlined spaces and the names of the elements serve as clues. To solve the puzzle, students must find the symbols that correspond to the elemental names and rearrange them into the animals' names.

  2. Vacuum ultraviolet radiation and thermal cycling effects on atomic oxygen protective photovoltaic array blanket materials

    NASA Technical Reports Server (NTRS)

    Brady, J.; Banks, B.

    1990-01-01

    The importance of synergistic environmental exposure is demonstrated through the evaluation of DuPont 93-1 in simulated LEO environment. Changes in optical properties, surface condition, and mass loss data are described. The qualitative results indicate the necessity for exposure of materials to a series of simulated LEO environments in order to properly determine synergistic effects and demonstrate the overall LEO durability of candidate materials. It is shown that synergistic effects may occur with vacuum thermal cycling combined with VUV radiation followed by atomic oxygen exposure. Testing the durability of candidate solar array blanket materials in a test sequence with necessary synergistic effects makes it possible to determine the appropriate material for providing structural support and maintaining the proper operating temperature for solar cells in the SSF Photovaltaic Power System.

  3. Recent advances in the development of solid breeder-blanket materials

    SciTech Connect

    Johnson, C.E.; Hollenburg, G.W.

    1983-01-01

    Increasing attention in breeder-blanket development has been given to the lithium-containing ceramic materials. The most promising of these materials include Li/sub 2/O, Li/sub 8/ZrO/sub 6/, Li/sub 4/SiO/sub 4/, and ..gamma..-LiAlO/sub 2/. Recent studies have focused on Li/sub 2/O because of its high tritium breeding potential and good thermal characteristics. Tritium solubility in Li/sub 2/O is within acceptable ranges and this oxide displays excellent behavior under neutron irradiation. A broad scope of laboratory and in-reactor irradiation experiments are underway to further investigate these materials.

  4. Limb-darkening coefficients from line-blanketed non-LTE hot-star model atmospheres

    NASA Astrophysics Data System (ADS)

    Reeve, D. C.; Howarth, I. D.

    2016-02-01

    We present grids of limb-darkening coefficients computed from non-local thermodynamic equilibrium (non-LTE), line-blanketed TLUSTY model atmospheres, covering effective-temperature and surface-gravity ranges of 15-55 kK and 4.75 dex (cgs) down to the effective Eddington limit, at 2×, 1×, 0.5× (Large Magellanic Cloud), 0.2× (Small Magellanic Cloud), and 0.1× solar. Results are given for the Bessell UBVRICJKHL, Sloan ugriz, Strömgren ubvy, WFCAM ZYJHK, Hipparcos, Kepler, and Tycho passbands, in each case characterized by several different limb-darkening `laws'. We examine the sensitivity of limb darkening to temperature, gravity, metallicity, microturbulent velocity, and wavelength, and make a comparison with LTE models. The dependence on metallicity is very weak, but limb darkening is a moderately strong function of log g in this temperature regime.

  5. Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials.

    PubMed

    Zhao, Zhiqiang; Zhang, Yaobin; Woodard, T L; Nevin, K P; Lovley, D R

    2015-09-01

    Syntrophic metabolism of alcohols and fatty acids is a critical step in anaerobic digestion, which if enhanced can better stabilize the process and enable shorter retention times. Direct interspecies electron transfer (DIET) has recently been recognized as an alternative route to hydrogen interspecies transfer as a mechanism for interspecies syntrophic electron exchange. Therefore, the possibility of accelerating syntrophic metabolism of ethanol in up-flow anaerobic sludge blanket (UASB) reactors by incorporating conductive materials in reactor design was investigated. Graphite, biochar, and carbon cloth all immediately enhanced methane production and COD removal. As the hydraulic retention time was decreased the increased effectiveness of treatment in reactors with conductive materials increased versus the control reactor. When these conductive materials were removed from the reactors rates of syntrophic metabolism declined to rates comparable to the control reactor. These results suggest that incorporating conductive materials in the design of UASB reactors may enhance digester effectiveness.

  6. Integrated nanofiltration and upflow anaerobic sludge blanket treatment of textile wastewater for in-plant reuse.

    PubMed

    Gomes, Arlindo Canigo; Gonçalves, Isolina Cabral; de Pinho, Maria Norberta; Porter, John Jefferson

    2007-05-01

    The filtration characteristics of simulated dyeing effluents containing Acid Orange 7, sodium sulfate, and a pH buffer made of acetic acid and sodium acetate is described using a commercially available nanofiltration membrane. The original membrane filtration properties were characterized with deionized water to provide a baseline of membrane performance. At high volumetric concentration of the test solutions, greater than 98% rejection of dye and sodium sulfate were obtained. Rejection of buffering chemicals was approximately 50% in all experiments, giving a permeate water not suitable for reuse in most dyeing operations. The final composite concentrate had a chemical oxygen demand (COD) value > 2000 mg/L. No problems were encountered with anaerobic treatment of the concentrate obtained from the dyeing wastewater. Adjusting the sulfate concentration to give COD-to-sulfate ratios to 2.9, 5.4, and 18.2 in the reactor feed had no significant alterations in the performance of the upflow anaerobic sludge blanket reactor.

  7. Microbiological sampling of spacecraft cabling, antennas, solar panels and thermal blankets

    NASA Technical Reports Server (NTRS)

    Koukol, R. C.

    1973-01-01

    Sampling procedures and techniques described resulted from various flight project microbiological monitoring programs of unmanned planetary spacecraft. Concurrent with development of these procedures, compatibility evaluations were effected with the cognizant spacecraft subsystem engineers to assure that degradation factors would not be induced during the monitoring program. Of significance were those areas of the spacecraft configuration for which special handling precautions and/or nonstandard sample gathering techniques were evolved. These spacecraft component areas were: cabling, high gain antenna, solar panels, and thermal blankets. The compilation of these techniques provides a historical reference for both the qualification and quantification of sampling parameters as applied to the Mariner Spacecraft of the late 1960's and early 1970's.

  8. Treatment of phenol and cresols in upflow anaerobic sludge blanket (UASB) process: a review.

    PubMed

    Veeresh, Gali S; Kumar, Pradeep; Mehrotra, Indu

    2005-01-01

    Upflow anaerobic sludge blanket (UASB) process has been successfully applied in the treatment of municipal and industrial wastewaters. Several researchers have investigated the suitability of the process for the treatment of phenols and phenolic wastewaters. The anaerobic treatment of phenols is still at an investigative stage. With increasing recognition of the UASB process, feasibility studies on the treatment of wastewater containing phenol and cresols (o-, m- and p- isomers) in UASB have been reviewed. It is reported that phenol concentration up to a range of 500-750 mg/L is generally not inhibitory to the UASB process. Phenol concentrations greater than 500 mg/L can be effectively treated with acclimatization of inocula, recirculation of the treated effluent and/or supplementing with co-substrates such as glucose, VFA and dilute molasses. The degradability of phenol is more than p-cresol, which in turn is more than m- and o-cresol.

  9. Fracture toughness of irradiated candidate materials for ITER first wall/blanket structures: Summary report

    SciTech Connect

    Alexander, D.J.; Pawel, J.E.; Grossbeck, M.L.; Rowcliffe, A.F.

    1996-04-01

    Disk compact specimens of candidate materials for first wall/blanket structures in ITER have been irradiated to damage levels of about 3 dpa at nominal irradiation temperatures of either 90 250{degrees}C. These specimens have been tested over a temperature range from 20 to 250{degrees}C to determine J-integral values and tearing moduli. The results show that irradiation at these temperatures reduces the fracture toughness of austenic stainless steels, but the toughness remains quite high. The toughness decreases as the temperature increases. Irradiation at 250{degrees}C is more damaging that at 90{degrees}C, causing larger decreases in the fracture toughness. The ferritic-martensitic steels HT-9 and F82H show significantly greater reductions in fracture toughness that the austenitic stainless steels.

  10. Codevelopment of conceptual understanding and critical attitude: toward a systemic analysis of the survival blanket

    NASA Astrophysics Data System (ADS)

    Viennot, Laurence; Décamp, Nicolas

    2016-01-01

    One key objective of physics teaching is the promotion of conceptual understanding. Additionally, the critical faculty is universally seen as a central quality to be developed in students. In recent years, however, teaching objectives have placed stronger emphasis on skills than on concepts, and there is a risk that conceptual structuring may be disregarded. The question therefore arises as to whether it is possible for students to develop a critical stance without a conceptual basis, leading in turn to the issue of possible links between the development of conceptual understanding and critical attitude. In an in-depth study to address these questions, the participants were seven prospective physics and chemistry teachers. The methodology included a ‘teaching interview’, designed to observe participants’ responses to limited explanations of a given phenomenon and their ensuing intellectual satisfaction or frustration. The explanatory task related to the physics of how a survival blanket works, requiring a full and appropriate system analysis of the blanket. The analysis identified five recurrent lines of reasoning and linked these to judgments of adequacy of explanation, based on metacognitive/affective (MCA) factors, intellectual (dis)satisfaction and critical stance. Recurrent themes and MCA factors were used to map the intellectual dynamics that emerged during the interview process. Participants’ critical attitude was observed to develop in strong interaction with their comprehension of the topic. The results suggest that most students need to reach a certain level of conceptual mastery before they can begin to question an oversimplified explanation, although one student’s replies show that a different intellectual dynamics is also possible. The paper ends with a discussion of the implications of these findings for future research and for decisions concerning teaching objectives and the design of learning environments.

  11. Determining Pu-239 content by resonance transmission analysis using a filtered reactor beam.

    SciTech Connect

    Klann, R. T.

    1998-11-25

    A novel technique has been developed at Argonne National Laboratory to determine the {sup 239}Pu content in EBR-II blanket elements using resonance transmission analysis (RTA) with a filtered reactor beam. The technique uses cadmium and gadolinium filters along with a {sup 239}Pu fission chamber to isolate the 0.3 eV resonance in {sup 239}Pu. In the energy range from 0.1 to 0.5 eV, the total microscopic cross-section of {sup 239}Pu is significantly larger than the cross-sections of {sup 238}U and {sup 235}U. This large difference in cross-section allows small amounts of {sup 239}Pu to be detected in uranium samples. Tests using a direct beam from a 250 kW TRIGA reactor have been performed with stacks of depleted uranium and {sup 239}Pu foils. Preliminary measurement results are in good agreement with the predicted results up to about two weight percent of {sup 239}Pu in the sample. In addition, measured {sup 239}Pu masses were in agreement with actual sample masses with uncertainties less than 3.8 percent.

  12. Elemental health

    SciTech Connect

    Tonneson, L.C.

    1997-01-01

    Trace elements used in nutritional supplements and vitamins are discussed in the article. Relevant studies are briefly cited regarding the health effects of selenium, chromium, germanium, silicon, zinc, magnesium, silver, manganese, ruthenium, lithium, and vanadium. The toxicity and food sources are listed for some of the elements. A brief summary is also provided of the nutritional supplements market.

  13. Impact of prescribed and repeated vegetation burning on blanket peat hydrology

    NASA Astrophysics Data System (ADS)

    Holden, Joseph; Brown, Lee; Palmer, Sheila; Johnston, Kerrylyn; Wearing, Catherine; Irvine, Brian

    2013-04-01

    In some peatlands there has been a tradition over the past century of burning vegetation to manage the landscape for a range of purposes. These include producing an environment suitable for game birds used in the gun sports industry and reducing the biomass fuel load to reduce possible wildfire damage to the peat. However, there have been few studies that have interrogated the impacts of this activity on peatland hydrological processes both at the plot scale and at the catchment scale. The EMBER project measured water tables, overland flow, hydraulic conductivity, stream discharge, and a myriad of aquatic invertebrate and peat physical and water chemistry indicators (at plot and stream scale) in ten upland blanket peat catchments in the UK. Five catchments were subject to a history of prescribed rotational patch burning with burning taking place each year over a proportion of the catchment (typically 5-10 %) but where for an individual patch the interval was typically 10-20 years. The other five catchments acted as controls which were not subject to burning, nor confounded by other detrimental activities such as drainage or forestry. Stream flows were flashier in response to rainfall in the catchments with prescribed burning patches and had greater rainfall to runoff efficiencies. Water tables were found to be significantly shallower with a smaller interquartile range for unburnt catchments. In the burnt catchments, more recently burnt plots had significantly greater mean water table depths and water table residence times were much less frequent within the upper 10 cm of the peat profile compared to plots that been burned more than a decade before. The water table residence curves will be explored in the presentation. The occurrence of overland flow was significantly impacted by both burning and time since burn with significantly less overland flow recorded for more recently burnt sites. This ties in well with our water table data since blanket peat systems are

  14. An electrically conductive thermal control surface for spacecraft encountering Low-Earth Orbit (LEO) atomic oxygen indium tin oxide-coated thermal blankets

    NASA Technical Reports Server (NTRS)

    Bauer, J. L.

    1987-01-01

    An organic black thermal blanket material was coated with indium tin oxide (ITO) to prevent blanket degradation in the low Earth orbit (LEO) atomic oxygen environment. The blankets were designed for the Galileo spacecraft. Galileo was initially intended for space shuttle launch and would, therefore, have been exposed to atomic oxygen in LEO for between 10 and 25 hours. Two processes for depositing ITO are described. Thermooptical, electrical, and chemical properties of the ITO film are presented as a function of the deposition process. Results of exposure of the ITO film to atomic oxygen (from a shuttle flight) and radiation exposure (simulated Jovian environment) are also presented. It is shown that the ITO-protected thermal blankets would resist the anticipated LEO oxygen and Jovian radiation yet provide adequate thermooptical and electrical resistance. Reference is made to the ESA Ulysses spacecraft, which also used ITO protection on thermal control surfaces.

  15. APT Blanket System Loss-of-Coolant Accident Based on Initial Conceptual Design - Case 5: External RHR Break Near Inlet Header

    SciTech Connect

    Hamm, L.L.

    1998-10-07

    This report is one of a series of reports that document normal operation and accident simulations for the Accelerator Production of Tritium (APT) blanket heat removal system. These simulations were performed for the Preliminary Safety Analysis Report.

  16. APT Blanket System Loss-of-Coolant Accident (LOCA) Based on Initial Conceptual Design - Case 4: External Pressurizer Surge Line Break Near Inlet Header

    SciTech Connect

    Hamm, L.L.

    1998-10-07

    This report is one of a series of reports documenting accident scenario simulations for the Accelerator Production of Tritium (APT) blanket heat removal systems. The simulations were performed in support of the Preliminary Safety Analysis Report (PSAR) for the APT.

  17. APT Blanket System Loss-of-Coolant Analysis Based on Initial Conceptual Design - Case 2: External HR Break HR Break at Pump Outlet with Pump Trip

    SciTech Connect

    Hamm, L.L.

    1998-10-07

    This report is one of a series of reports that document normal operation and accident simulations for the Accelerator Production of Tritium (APT) blanket heat removal system. These simulations were performed for the Preliminary Safety Analysis Report.

  18. APT Blanket System Loss-of-Coolant Accident (LOCA) Analysis Based on Initial Conceptual Design - Case 3: External HR Break at Pump Outlet without Pump Trip

    SciTech Connect

    Hamm, L.L.

    1998-10-07

    This report is one of a series of reports that document normal operation and accident simulations for the Accelerator Production of Tritium (APT) blanket heat removal (HR) system. These simulations were performed for the Preliminary Safety Analysis Report.

  19. Mapping and Analysis of 'Dunes' in the Ejecta Blankets of Fresh Lunar Craters

    NASA Astrophysics Data System (ADS)

    Atwood-Stone, Corwin; Bray, Veronica; McEwen, Alfred

    2014-11-01

    Lunar concentric ‘dunes’ are ridge-like features that appear in the ejecta blankets of fresh craters on the Moon. These ‘dunes’ are oriented roughly perpendicular to ejecta flow, and are found between ~1.2 to several crater radii. We have been mapping and measuring these features using the high-resolution images from the Lunar Reconnaissance Orbiter Camera (LROC). In our survey of the Moon we have so far found fifty-seven craters where the facies of the Lunar concentric ‘dunes’ can be seen, ranging in diameter from one to eleven kilometers, in both the mare and the highlands. We have created mosaics from high-resolution LROC Narrow Angle Camera (NAC) images for fourteen of these craters which allow us to examine the morphology of these dunes in detail. We note a general progression in dune morphology as distance from the crater increases (the following measurements are not standard from crater to crater and reflect the mapping results for crater Piton B): ‘dunes’ are most distinct between 1.5 to 3 crater radii from the crater center. Between 3 and 6 crater radii, dunes are commonly accompanied by a trough on the crater-facing side of the dune. As distance from the crater increases, dune morphology subsides and troughs become the most notable feature within the ejecta blanket. Using Lunar Orbiter Laser Altimeter (LOLA) data we are able to examine how the ‘dunes’ form in the context of local pre-existing slopes. These ‘dunes’ are known to form predominantly on level and crater facing slopes, however we have found at some highlands craters, like Stevinus A, that they can form on slopes facing away from the crater. We have observed a number of morphological features of the ‘dunes’ that do not seem to support the previously proposed ballistic impact sedimentation and erosion hypothesis for the formation of this facies. Thus we will need to formulate and test new hypotheses for how this interesting lunar facies forms.

  20. Physical and chemical differences between natural and artificial pools in blanket peatlands

    NASA Astrophysics Data System (ADS)

    Turner, Ed; Baird, Andy; Billett, Mike; Chapman, Pippa; Dinsmore, Kerry; Holden, Joseph

    2014-05-01

    Natural pools are common features of many northern peatlands. Numerous artificial pools are being created behind dams installed during drain-blocking, a common peatland restoration technique, significantly increasing the area of open water. Natural pools are known to be major sources of GHGs (e.g. Hamilton et al. 1994), but the reasons they are such 'hotspots' is poorly understood. We hypothesize that pools act as 'biochemical reactors' of particulate and dissolved organic carbon (POC and DOC) transported from surrounding peat that is processed into a range of products including CH4 and CO2. Therefore, understanding the processes operating in both natural and artificial pool systems is fundamental to elucidating this hypothesis. Water levels and temperature have been continuously monitored at six natural and six artificial pools within the 'Flow Country' blanket peatland in northern Scotland since May 2013. Bi-weekly sampling of waters from pools, peat matrix through-flow (via piezometers) and surface flow has been conducted for analysis of DOC, POC, DIC, CH4diss and CO2diss, together with GHG flux measurements from pool surfaces and adjacent peat. We show that, to date, pool water levels rapidly respond to rainfall, although artificial pools appear to respond with greater magnitude. For example, over the course of same rainfall event (20-23 June 2013), natural and artificial pool levels increased between 5.3 and 9.8 cm, and 12.5 and 22.6 cm respectively. Temperature measured at c. 5 cm from the base of each pool shows distinct diurnal fluctuations, which are of greater magnitude in all but one of the natural pools compared to the artificial pools: over the same period (20-23 July 2013), the maximum diurnal variation at the artificial pool site was 5.1 °C compared to 9.2 °C within the natural pools. Vegetation cover is generally higher in artificial pools and may have a moderating effect on variations in pool temperature. Results of pool-water DOC analysis from

  1. Tephra Blanket Record of a Violent Strombolian Eruption, Sunset Crater, Arizona

    NASA Astrophysics Data System (ADS)

    Wagner, K. D.; Ort, M. H.

    2015-12-01

    New fieldwork provides a detailed description of the widespread tephra of the ~1085 CE Sunset Crater eruption in the San Francisco Volcanic Field, Arizona, and refines interpretation of the eruptive sequence. The basal fine-lapilli tephra-fall-units I-IV are considered in detail. Units I and II are massive, with Unit I composed of angular to spiny clasts and II composed of more equant, oxidized clasts. Units III and IV have inversely graded bases and massive tops and are composed of angular to spiny iridescent and mixed iridescent and oxidized angular clasts, respectively. Xenoliths are rare in all units (<0.1%): sedimentary xenoliths are consistent with the known shallow country rock (Moenkopi and Kaibab Fms); magmatic xenoliths are pumiceous rhyolite mingled with basalt. Unit II is less sideromelane rich (20%) than Units I, III, and IV (60-80%). Above these units are at least two more coarse tephra-fall units. Variably preserved ash and fine-lapilli laminae cap the tephra blanket. This deposit is highly susceptible to reworking, and likely experienced both syn- and post-eruptive aeolian redistribution. It appears as either well sorted, alternating planar-parallel beds of ash and fine lapilli with rare wavy beds, or as cross- or planar-bedded ash. The tephra blanket as a whole is stratigraphically underlain by a fissure-fed lava flow and lapilli-fall units are intercalated with two larger flows. Mean grain size is coarsest in Unit I but coarsens in Units II-IV. Units I, III, and IV are moderately to poorly sorted with no skew. Unit II is better sorted and more coarse-skewed. Units I and III are slightly more platykurtic than II and IV. Without considering possible spatial effects introduced by dispersion patterns, bootstrap ANOVA confidence intervals suggest at least Unit II sorting and skewness are from distinct populations. Isopachs indicate Units I and II were associated with a 10-km-long fissure source. After or during Unit II's deposition, activity localized

  2. Hybrid fusion-fission reactor with a thorium blanket: Its potential in the fuel cycle of nuclear reactors

    NASA Astrophysics Data System (ADS)

    Shmelev, A. N.; Kulikov, G. G.; Kurnaev, V. A.; Salahutdinov, G. H.; Kulikov, E. G.; Apse, V. A.

    2015-12-01

    Discussions are currently going on as to whether it is suitable to employ thorium in the nuclear fuel cycle. This work demonstrates that the 231Pa-232U-233U-Th composition to be produced in the thorium blanket of a hybrid thermonuclear reactor (HTR) as a fuel for light-water reactors opens up the possibility of achieving high, up to 30% of heavy metals (HM), or even ultrahigh fuel burnup. This is because the above fuel composition is able to stabilize its neutron-multiplying properties in the process of high fuel burnup. In addition, it allows the nuclear fuel cycle (NFC) to be better protected against unauthorized proliferation of fissile materials owing to an unprecedentedly large fraction of 232U (several percent!) in the uranium bred from the Th blanket, which will substantially hamper the use of fissile materials in a closed NFC for purposes other than power production.

  3. Hybrid fusion–fission reactor with a thorium blanket: Its potential in the fuel cycle of nuclear reactors

    SciTech Connect

    Shmelev, A. N. Kulikov, G. G. Kurnaev, V. A. Salahutdinov, G. H. Kulikov, E. G. Apse, V. A.

    2015-12-15

    Discussions are currently going on as to whether it is suitable to employ thorium in the nuclear fuel cycle. This work demonstrates that the {sup 231}Pa–{sup 232}U–{sup 233}U–Th composition to be produced in the thorium blanket of a hybrid thermonuclear reactor (HTR) as a fuel for light-water reactors opens up the possibility of achieving high, up to 30% of heavy metals (HM), or even ultrahigh fuel burnup. This is because the above fuel composition is able to stabilize its neutron-multiplying properties in the process of high fuel burnup. In addition, it allows the nuclear fuel cycle (NFC) to be better protected against unauthorized proliferation of fissile materials owing to an unprecedentedly large fraction of {sup 232}U (several percent!) in the uranium bred from the Th blanket, which will substantially hamper the use of fissile materials in a closed NFC for purposes other than power production.

  4. Fusion materials: Technical evaluation of the technology of vandium alloys for use as blanket structural materials in fusion power systems

    SciTech Connect

    Not Available

    1993-08-04

    The Committee`s evaluation of vanadium alloys as a structural material for fusion reactors was constrained by limited data and time. The design of the International Thermonuclear Experimental Reactor is still in the concept stage, so meaningful design requirements were not available. The data on the effect of environment and irradiation on vanadium alloys were sparse, and interpolation of these data were made to select the V-5Cr-5Ti alloy. With an aggressive, fully funded program it is possible to qualify a vanadium alloy as the principal structural material for the ITER blanket in the available 5 to 8-year window. However, the data base for V-5Cr-5Ti is United and will require an extensive development and test program. Because of the chemical reactivity of vanadium the alloy will be less tolerant of system failures, accidents, and off-normal events than most other candidate blanket structural materials and will require more careful handling during fabrication of hardware. Because of the cost of the material more stringent requirements on processes, and minimal historical worlding experience, it will cost an order of magnitude to qualify a vanadium alloy for ITER blanket structures than other candidate materials. The use of vanadium is difficult and uncertain; therefore, other options should be explored more thoroughly before a final selection of vanadium is confirmed. The Committee views the risk as being too high to rely solely on vanadium alloys. In viewing the state and nature of the design of the ITER blanket as presented to the Committee, h is obvious that there is a need to move toward integrating fabrication, welding, and materials engineers into the ITER design team. If the vanadium allay option is to be pursued, a large program needs to be started immediately. The commitment of funding and other resources needs to be firm and consistent with a realistic program plan.

  5. Lithium-vanadium advanced blanket development. ITER final report on U.S. contribution: Task T219/T220

    SciTech Connect

    Smith, D.L.; Mattas, R.F.

    1997-07-01

    The objective of this task is to develop the required data base and demonstrate the performance of a liquid lithium-vanadium advanced blanket design. The task has two main activities related to vanadium structural material and liquid lithium system developments. The vanadium alloy development activity included four subtasks: (1.1) baseline mechanical properties of non irradiated base metal and weld metal joints; (1.2) compatibility with liquid lithium; (1.3) material irradiation tests; and (1.4) development of material manufacturing and joining methods. The lithium blanket technology activity included four subtasks: (2.1) electrical insulation development and testing for liquid metal systems; (2.2) MHD pressure drop and heat transfer study for self-cooled liquid metal systems; (2.3) chemistry of liquid lithium; and (2.4) design, fabrication and testing of ITER relevant size blanket mockups. A summary of the progress and results obtained during the period 1995 and 1996 in each of the subtask areas is presented in this report.

  6. Low impact of dry conditions on the CO2 exchange of a Northern-Norwegian blanket bog

    NASA Astrophysics Data System (ADS)

    Lund, Magnus; Bjerke, J. W.; Drake, B. G.; Engelsen, O.; Hansen, G. H.; Parmentier, F. J. W.; Powell, T. L.; Silvennoinen, H.; Sottocornola, M.; Tømmervik, H.; Weldon, S.; Rasse, D. P.

    2015-02-01

    Northern peatlands hold large amounts of organic carbon (C) in their soils and are as such important in a climate change context. Blanket bogs, i.e. nutrient-poor peatlands restricted to maritime climates, may be extra vulnerable to global warming since they require a positive water balance to sustain their moss dominated vegetation and C sink functioning. This study presents a 4.5 year record of land-atmosphere carbon dioxide (CO2) exchange from the Andøya blanket bog in northern Norway. Compared with other peatlands, the Andøya peatland exhibited low flux rates, related to the low productivity of the dominating moss and lichen communities and the maritime settings that attenuated seasonal temperature variations. It was observed that under periods of high vapour pressure deficit, net ecosystem exchange was reduced, which was mainly caused by a decrease in gross primary production. However, no persistent effects of dry conditions on the CO2 exchange dynamics were observed, indicating that under present conditions and within the range of observed meteorological conditions the Andøya blanket bog retained its C uptake function. Continued monitoring of these ecosystem types is essential in order to detect possible effects of a changing climate.

  7. Physical Model Development and Benchmarking for MHD Flows in Blanket Design

    SciTech Connect

    Ramakanth Munipalli; P.-Y.Huang; C.Chandler; C.Rowell; M.-J.Ni; N.Morley; S.Smolentsev; M.Abdou

    2008-06-05

    An advanced simulation environment to model incompressible MHD flows relevant to blanket conditions in fusion reactors has been developed at HyPerComp in research collaboration with TEXCEL. The goals of this phase-II project are two-fold: The first is the incorporation of crucial physical phenomena such as induced magnetic field modeling, and extending the capabilities beyond fluid flow prediction to model heat transfer with natural convection and mass transfer including tritium transport and permeation. The second is the design of a sequence of benchmark tests to establish code competence for several classes of physical phenomena in isolation as well as in select (termed here as “canonical”,) combinations. No previous attempts to develop such a comprehensive MHD modeling capability exist in the literature, and this study represents essentially uncharted territory. During the course of this Phase-II project, a significant breakthrough was achieved in modeling liquid metal flows at high Hartmann numbers. We developed a unique mathematical technique to accurately compute the fluid flow in complex geometries at extremely high Hartmann numbers (10,000 and greater), thus extending the state of the art of liquid metal MHD modeling relevant to fusion reactors at the present time. These developments have been published in noted international journals. A sequence of theoretical and experimental results was used to verify and validate the results obtained. The code was applied to a complete DCLL module simulation study with promising results.

  8. Review of accidental safety studies for the European HCPB test blanket system

    NASA Astrophysics Data System (ADS)

    Boccaccini, L. V.; Ciattaglia, S.; Meyder, R.; Jin, X.

    2007-07-01

    This paper presents a review of safety studies for accidental sequences in the European solid breeder test blanket module (TBM) system. These studies are the starting point for the Preliminary Safety Analysis Report of ITER, under preparation to get the construction permit first and then later the operation licence. In general the reduced inventory of activation products and tritium associated with the TBM system makes the impact of this test system almost negligible on the overall safety risk of ITER. Nevertheless, the possibility of jeopardizing the ITER safety concept has been analysed in connection to the consequences of specific accident sequences, e.g. the pressurization of the vacuum vessel due to the He coolant blow-down, the hydrogen production from the Be-steam reaction, the possible interconnection between the port cell and the vacuum vessel causing air ingress and the necessity to assure heat removal in the short and long periods. In the frame of this assessment, three LOCA sequences have been selected as representative of accidents judged to cover all scenarios envisaged in Cat II to IV events involving the TBM, namely, in-vessel LOCA, ex-vessel LOCA and in-box LOCA.

  9. Feasibility studies on the treatment of dairy wastewaters with upflow anaerobic sludge blanket reactors.

    PubMed

    Ramasamy, E V; Gajalakshmi, S; Sanjeevi, R; Jithesh, M N; Abbasi, S A

    2004-06-01

    The feasibility of using upflow anaerobic sludge blanket (UASB) reactors for the treatment of dairy wastewaters was explored. Two types of UASBs were used--one operating on anaerobic sludge granules developed by us from digested cowdung slurry (DCDS) and the other on the granules obtained from the reactors of M/s EID Parry treating sugar industry wastewaters. The reactors were operated at HRT of 3 and 12 h and on COD loading rates ranging from 2.4 kg per m3 of digester volume, per day to 13.5 kg m(-3) d(-1). At the 3 h HRT, the maximum COD reduction in the DCDS-seeded and the industrial sludge-seeded reactors was 95.6% and 96.3%, respectively, better than at 12 h HRT (90% and 92%, respectively). In both the reactors, the maximum, the second best, and the third best COD reduction occurred at the loading rates of 10.8, 8.6 and 7.2 kg m3 d(-1), respectively. At loading rates higher than 10.8 kg, the reactor performance dropped precipitously. Whereas in the first few months the reactors operating on sludge from EID Parry achieved better biodegradation of the waste, compared to the reactors operated on DCDS, the performance of the latter gradually improved and matched with the performance of the former.

  10. A Single-Granule-Level Approach Reveals Ecological Heterogeneity in an Upflow Anaerobic Sludge Blanket Reactor

    PubMed Central

    Mei, Ran; Narihiro, Takashi; Bocher, Benjamin T. W.; Yamaguchi, Takashi; Liu, Wen-Tso

    2016-01-01

    Upflow anaerobic sludge blanket (UASB) reactor has served as an effective process to treat industrial wastewater such as purified terephthalic acid (PTA) wastewater. For optimal UASB performance, balanced ecological interactions between syntrophs, methanogens, and fermenters are critical. However, much of the interactions remain unclear because UASB have been studied at a “macro”-level perspective of the reactor ecosystem. In reality, such reactors are composed of a suite of granules, each forming individual micro-ecosystems treating wastewater. Thus, typical approaches may be oversimplifying the complexity of the microbial ecology and granular development. To identify critical microbial interactions at both macro- and micro- level ecosystem ecology, we perform community and network analyses on 300 PTA–degrading granules from a lab-scale UASB reactor and two full-scale reactors. Based on MiSeq-based 16S rRNA gene sequencing of individual granules, different granule-types co-exist in both full-scale reactors regardless of granule size and reactor sampling depth, suggesting that distinct microbial interactions occur in different granules throughout the reactor. In addition, we identify novel networks of syntrophic metabolic interactions in different granules, perhaps caused by distinct thermodynamic conditions. Moreover, unseen methanogenic relationships (e.g. “Candidatus Aminicenantes” and Methanosaeta) are observed in UASB reactors. In total, we discover unexpected microbial interactions in granular micro-ecosystems supporting UASB ecology and treatment through a unique single-granule level approach. PMID:27936088

  11. Comparative mesophilic and thermophilic anaerobic digestion of palm oil mill effluent using upflow anaerobic sludge blanket.

    PubMed

    Khemkhao, Maneerat; Nuntakumjorn, Boonyarit; Techkarnjanaruk, Somkiet; Phalakornkule, Chantaraporn

    2012-07-01

    The effects of organic loading rate and operating temperature on the microbial diversity and performances of upflow anaerobic sludge blanket (UASB) reactors treating palm oil mill effluent (POME) were investigated. The following two UASB reactors were run in parallel for comparison: (1) under a mesophilic condition (37 degrees C) and (2) under a mesophilic condition in transition to a thermophilic condition (57 degrees C). A polymerase chain reaction (PCR)-based denaturing gradient gel electrophoresis (DGGE) analysis showed that the microbial population profiles significantly changed with the organic loading rate (OLR) and the temperature transition from the mesophilic to the thermophilic condition. Significant biomass washout was observed for the mesophilic UASB when operating at a high organic loading rate (OLR) of 9.5 g chemical oxygen demand (COD)/L.d. In contrast, the thermophilic UASB can be operated at this OLR and at a temperature of 57 degrees C with satisfactory COD removal and biogas production. The PCR-based DGGE analysis suggested that the thermophilic temperature of 57 degrees C was suitable for a number of hydrolytic, acidogenic, and acetogenic bacteria.

  12. Target/Blanket Design for the Accelerator Production of Tritium Plant

    SciTech Connect

    Cappiello, M. W.

    1997-12-31

    The Accelerator Production of Tritium Target/Blanket (T/B) system is comprised of the T/B assembly and the attendant heat removal systems. The T/B assembly produces tritium using a high energy proton beam, and a spallation neutron source. The supporting heat removal systems safely remove the heat deposited by the proton beam during both normal and off-normal conditions. All systems reside within the T/B building, which is located at the end of a linear accelerator. Protons are accelerated to an energy of 1700 MeV at a current of 100 mA and are directed onto the T/B assembly. The protons interact with tungsten and lead nuclei to produce neutrons through the process of nuclear spallation. Neutron capture in {sup 3}He gas produces tritium which is removed on a continual basis in an adjacent Tritium Separation Facility (TSF). The T/B assembly is modular to allow for replacement of spent components and minimization of waste. Systems and components are designed with safety as a primary consideration to minimize risk to the workers and the public.

  13. Performance and granulation in an upflow anaerobic sludge blanket (UASB) reactor treating saline sulfate wastewater.

    PubMed

    Li, Jin; Yu, Lian; Yu, Deshuang; Wang, Dan; Zhang, Peiyu; Ji, Zhongguang

    2014-02-01

    An upflow anaerobic sludge blanket reactor was employed to treat saline sulfate wastewater. Mesophilic operation (35 ± 0.5 °C) was performed with hydraulic retention time fixed at 16 h. When the salinity was 28 g L(-1), the chemical oxygen demand and sulfate removal efficiencies were 52 and 67 %, respectively. The salinity effect on sulfate removal was less than that on organics removal. The methane productions were 887 and 329 cm(3) L(-1) corresponding to the NaCl concentrations of 12 and 28 g L(-1), respectively. High salinity could stimulate microbes to produce more extracellular polymeric substances (EPSs) and granulation could be performed better. Besides, with the high saline surroundings, a great deal of Na(+) compressed the colloidal electrical double-layer, neutralized the negative charge of the sludge particles and decreased their electrostatic repulsion. The repulsion barrier disappeared and coagulation took place. The maximum size of granules was 5 mm, which resulted from the coupled triggering forces of high EPSs and Na(+) contents. Sulfate-reducing bacteria (SRB) were dominant in the high saline surroundings while the methane-producing archaea dominated in the low saline surroundings. The SRB were affected least by the salinity.

  14. Simultaneous degradation of cyanide and phenol in upflow anaerobic sludge blanket reactor.

    PubMed

    Kumar, M Suresh; Mishra, Ram Sushil; Jadhav, Shilpa V; Vaidya, A N; Chakrabarti, T

    2011-07-01

    Coal coking, precious metals mining and nitrile polymer industries generate over several billion liters of cyanide-containing waste annually. Economic and environmental considerations make biological technologies attractive for treatment of wastes containing high organic content, in which the microbial cultures can remove concentrations of organics and cyanide simultaneously. For cyanide and phenol bearing waste treatment, an upflow anaerobic sludge blanket reactor has been developed, which successfully removed free cyanide 98% (with feed concentration of 20 mg 1(-1)) in presence of phenol. The effect of cyanide on phenol degradation was studied with varying concentrations of phenol as well as cyanide under anaerobic conditions. This study revealed that the methanogenic degradation of phenol can occur in the presence of cyanide concentration 30-38 mg 1(-1). Higher cyanide concentration inhibited the phenol degradation rate. The inhibition constant Ki was found to be 38 mg 1(-1) with phenol removal rate of 9.09 mg 1(-1.) x h.

  15. Hazardous Traffic Event Detection Using Markov Blanket and Sequential Minimal Optimization (MB-SMO)

    PubMed Central

    Yan, Lixin; Zhang, Yishi; He, Yi; Gao, Song; Zhu, Dunyao; Ran, Bin; Wu, Qing

    2016-01-01

    The ability to identify hazardous traffic events is already considered as one of the most effective solutions for reducing the occurrence of crashes. Only certain particular hazardous traffic events have been studied in previous studies, which were mainly based on dedicated video stream data and GPS data. The objective of this study is twofold: (1) the Markov blanket (MB) algorithm is employed to extract the main factors associated with hazardous traffic events; (2) a model is developed to identify hazardous traffic event using driving characteristics, vehicle trajectory, and vehicle position data. Twenty-two licensed drivers were recruited to carry out a natural driving experiment in Wuhan, China, and multi-sensor information data were collected for different types of traffic events. The results indicated that a vehicle’s speed, the standard deviation of speed, the standard deviation of skin conductance, the standard deviation of brake pressure, turn signal, the acceleration of steering, the standard deviation of acceleration, and the acceleration in Z (G) have significant influences on hazardous traffic events. The sequential minimal optimization (SMO) algorithm was adopted to build the identification model, and the accuracy of prediction was higher than 86%. Moreover, compared with other detection algorithms, the MB-SMO algorithm was ranked best in terms of the prediction accuracy. The conclusions can provide reference evidence for the development of dangerous situation warning products and the design of intelligent vehicles. PMID:27420073

  16. Al-based anti-corrosion and T-permeation barrier development for future DEMO blankets

    NASA Astrophysics Data System (ADS)

    Krauss, W.; Konys, J.; Holstein, N.; Zimmermann, H.

    2011-10-01

    In the Helium-Cooled-Liquid-Lead (HCLL) design of Test-Blanket-Modules (TBM's) for a future fusion power plant Pb-15.7Li is used as liquid breeder which is in direct contact with the structure material, e.g. EUROFER steel. Compatibility testing showed that high corrosion attack appears and that the dissolved steel components form precipitates with a high risk of system blockages. A reliable operation needs coatings as corrosion barriers. The earlier developed Hot-Dip Aluminisation (HDA) process has shown that Al-based scales can act as anti-corrosion as well as T-permeation barriers. Meanwhile two advanced electro-chemically based processes for deposition of Al-scales were successfully developed. The first (ECA = Electro-Chemical Al-deposition) is working with an organic electrolyte and the second one (ECX = Electro-Chemical-X-metal-deposition) is based on ionic liquids. Coatings in the μm-range were deposited homogeneously with exact controllable thicknesses. Metallurgical investigations showed the successful generation of protective scales and compatibility testing demonstrated the barrier function.

  17. Fast-ion effects during test blanket module simulation experiments in DIII-D

    NASA Astrophysics Data System (ADS)

    Kramer, G. J.; Budny, B. V.; Ellis, R.; Gorelenkova, M.; Heidbrink, W. W.; Kurki-Suonio, T.; Nazikian, R.; Salmi, A.; Schaffer, M. J.; Shinohara, K.; Snipes, J. A.; Spong, D. A.; Koskela, T.; Van Zeeland, M. A.

    2011-10-01

    Fast beam-ion losses were studied in DIII-D in the presence of a scaled mock-up of two test blanket modules (TBM) for ITER. Heating of the protective tiles on the front of the TBM surface was found when neutral beams were injected and the TBM fields were engaged. The fast-ion core confinement was not significantly affected. Different orbit-following codes predict the formation of a hot spot on the TBM surface arising from beam ions deposited near the edge of the plasma. The codes are in good agreement with each other on the total power deposited at the hot spot, predicting an increase in power with decreasing separation between the plasma edge and the TBM surface. A thermal analysis of the heat flow through the tiles shows that the simulated power can account for the measured tile temperature rise. The thermal analysis, however, is very sensitive to the details of the localization of the hot spot, which is predicted to be different among the various codes.

  18. Fast Ion Effects During Test Blanket Module Simulation Experiments in DIII-D

    NASA Astrophysics Data System (ADS)

    Kramer, G. J.; Budny, R.; Nazikian, R.; Heidbrink, W. W.; Kurki-Suonio, T.; Salmi, A.; Schaffer, M. J.; van Zeeland, M. A.; Shinohara, K.; Snipes, J. A.; Spong, D.

    2010-11-01

    The fast beam-ion confinement in the presence of a scaled mock-up of two Test Blanket Modules (TBM) for ITER was studied in DIII-D. The TBM on DIII-D has four vertically arranged protective carbon tiles with thermocouples placed at the back of each tile. Temperature increases of up to 200^oC were measured for the two tiles closest to the midplane when the TBM fields were present. These measurements agree qualitatively with results from the full orbit-following beam-ion code, SPIRAL, that predict beam-ion losses to be localized on the central two carbon tiles when the TBM fields present. Within the experimental uncertainties no significant change in the fast-ion population was found in the core of these plasmas which is consistent with SPIRAL analysis. These experiments indicate that the TBM fields do not affect the fast-ion confinement in a harmful way which is good news for ITER.

  19. Characteristics of denitrifying granular sludge grown on nitrite medium in an upflow sludge blanket (USB) reactor.

    PubMed

    Jin, Xibiao; Wang, Feng; Liu, Guohong; Liu, Yongdi

    2012-01-01

    While inoculating pre-acclimatized floccular sludge, nitrite-denitrifying granular sludge was obtained after approximately 40 days of cultivation in a 10 L upflow sludge blanket (USB) reactor. The nitrite removal efficiency was approximately 95% when the nitrite concentration was 50 mg L(-1)at an influent flow rate of 20 L h(-1). The nitrite granular sludge had several notable features including good settleability (110 m h(-1)), high ash content (79%), and high density (1.248 g cm(-3)). The mixed liquor suspended solids (MLSS) of the sludge bed remained at 130.04 g L(-1), at a hydraulic upflow velocity of 2 m h(-1). These interesting characteristics were attributed to a high effluent pH (9.7) caused by the release of alkalinity during the nitrite denitrification process. The surfaces of the granules were dominated by cocci bacteria with a diameter of approximately 3 μm, which could be classified as Nitrosomonas-like species based on our analysis of 16 S rDNA sequences.

  20. Nitrogen removal in an upflow sludge blanket (USB) reactor combined by aerobic biofiltration systems.

    PubMed

    Jun, H B; Park, S M; Park, J K; Choi, C O; Lee, J S

    2004-01-01

    A new nitrogen removal process (up-flow sludge blanket and aerobic filter, USB-AF) was proposed and tested with real sewage. In the USB reactor, the larger part of influent organic and nitrogen matters were removed, and ammonia was effectively oxidized in the subsequent aerobic filter. The role of the aerobic filter was to convert ammonia into nitrate, an electron acceptor that could convert soluble organic matters into volatile suspended solid (VSS) in the USB. The accumulated as well as influent VSS in the USB was finally degraded to fermented products that were another good carbon source for denitrification. Total COD, settleable COD and soluble COD in the raw sewage were 325, 80 and 140 mg/l, respectively. Most unsettleable COD as well as some SCOD in the influent was successfully removed in the USB. TCOD removal in the anoxic filter was by denitrification with the recycled nitrate. Low COD input to the aerobic filter could increase nitrification efficiency, reduce the start-up period and save the aeration energy in the USB-AF system. About 95% of ammonia was nitrified in the aerobic filter with no relation to the influent ammonia concentration. Denitrification efficiency of the recycled nitrate in the anoxic filter was about 85, 83, and 72% at recycle ratios of 100, 200, and 300%, respectively. T-N removal efficiency was 70% at recycle ratio of 300%.

  1. Anaerobic mesophilic treatment of cattle manure in an upflow anaerobic sludge blanket reactor with prior pasteurization.

    PubMed

    Marañón, Elena; Castrillón, Leonor; Fernández, Juan José; Fernández, Yolanda; Peláez, Ana Isabel; Sánchez, Jesús

    2006-02-01

    Different autonomous communities located in northern Spain have large populations of dairy cattle. In the case of Asturias, the greatest concentration of dairy farms is found in the areas near the coast, where the elimination of cattle manure by means of its use as a fertilizer may lead to environmental problems. The aim of the present research work was to study the anaerobic treatment of the liquid fraction of cattle manure at mesophilic temperature using an upflow anaerobic sludge blanket (UASB) reactor combined with a settler after a pasteurization process at 70 degrees C for 2 hr. The manure used in this study came from two different farms, with 40 and 200 cows, respectively. The manure from the smaller farm was pretreated in the laboratory by filtration through a 1-mm mesh, and the manure from the other farm was pretreated on the farm by filtration through a separator screw press (0.5-mm mesh). The pasteurization process removed the pathogenic microorganisms lacking spores, such as Enterococcus, Yersinia, Pseudomonas, and coliforms, but bacterial spores are only reduced by this treatment, not removed. The combination of a UASB reactor and a settler proved to be effective for the treatment of cattle manure. In spite of the variation in the organic loading rate and total solids in the influent during the experiment, the chemical oxygen demand (COD) of the effluent from the settler remained relatively constant, obtaining reductions in the COD of approximately 85%.

  2. New Holocene tephras and a proxy climate record from a blanket mire in northern Skye, Scotland

    NASA Astrophysics Data System (ADS)

    Langdon, P. G.; Barber, K. E.

    2001-12-01

    Four Holocene tephras of Icelandic origin have been identified and geochemically characterised from a water shedding blanket peat sequence on the Trotternish ridge, Isle of Skye, Scotland. Geochemical characterisation of the shards propose the Glen Garry tephra to be present, a tephra layer of Hekla origin incorporating shards from Hekla-4, as well as two new tephras dated by interpolation from a radiocarbon based chronology to ca. 830 cal. yr BP and ca. 2340 cal. yr BP. The new historic tephra has an ambiguous geochemistry and therefore has not been correlated with other known Icelandic historic tephras. The new prehistoric tephra is suggested as originating from the Snæfellsjökull volcano in northwest Iceland and forms an important stratigraphical marker in this Holocene sequence. A proxy climate record has been derived from humification analyses of the peat, which compares well with other regional palaeoclimatic reconstructions, as well as enabling correlations based on tephra geochemical linkages between sites and climatic records at precise times in the past.

  3. Assessment of active methanogenic archaea in a methanol-fed upflow anaerobic sludge blanket reactor.

    PubMed

    Cerrillo, Míriam; Morey, Lluís; Viñas, Marc; Bonmatí, August

    2016-12-01

    Methanogenic archaea enrichment of a granular sludge was undertaken in an upflow anaerobic sludge blanket (UASB) reactor fed with methanol in order to enrich methylotrophic and hydrogenotrophic methanogenic populations. A microbial community assessment, in terms of microbial composition and activity-throughout the different stages of the feeding process with methanol and acetate-was performed using specific methanogenic activity (SMA) assays, quantitative real-time polymerase chain reaction (qPCR), and high-throughput sequencing of 16S ribosomal RNA (rRNA) genes from DNA and complementary DNA (cDNA). Distinct methanogenic enrichment was revealed by qPCR of mcrA gene in the methanol-fed community, being two orders of magnitude higher with respect to the initial inoculum, achieving a final mcrA/16S rRNA ratio of 0.25. High-throughput sequencing analysis revealed that the resulting methanogenic population was mainly composed by methylotrophic archaea (Methanomethylovorans and Methanolobus genus), being also highly active according to the RNA-based assessment. SMA confirmed that the methylotrophic pathway, with a direct conversion of methanol to CH4, was the main step of methanol degradation in the UASB. The biomass from the UASB, enriched in methanogenic archaea, may bear great potential as additional inoculum for bioreactors to carry out biogas production and other related processes.

  4. Atomic oxygen interaction with solar array blankets at protective coating defect sites

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Auer, Bruce M.; Rutledge, Sharon K.; Hill, Carol M.

    1991-01-01

    Atomic oxygen in the low-Earth-orbital environment oxidizes SiOx protected polyimide Kapton solar array blankets at sites which are not protected such as pin windows or scratches in the protective coatings. The magnitude and shape of the atomic oxygen undercutting which occurs at these sites is dependent upon the exposure environment details such as arrival direction and reaction probability. The geometry of atomic oxygen undercutting at defect sites exposed to atomic oxygen in plasma asher was used to develop a Monte Carlo model to simulate atomic oxygen erosion processes at defect sites in protected Kapton. Comparisons of Monte Carlo predictions and experimental results are presented for plasma asher atomic oxygen exposures for large and small defects as well as for protective coatings on one or both sides of Kapton. The model is used to predict in-space exposure results at defect sites for both directed and sweeping atomic oxygen exposure. A comparison of surface textures predicted by the Monte Carlo model and those experimentally observed from both directed space ram and laboratory plasma asher atomic oxygen exposure indicate substantial agreement.

  5. Performance of the ANAMMOX process using multi- and single-fed upflow anaerobic sludge blanket reactors.

    PubMed

    Xing, Bao-Shan; Qin, Tian-Yue; Chen, Shen-Xing; Zhang, Jue; Guo, Li-Xin; Jin, Ren-Cun

    2013-12-01

    The performance of the ANAMMOX process was investigated in two identical laboratory-scale multi- and single-fed upflow anaerobic sludge blanket (UASB) reactors (denoted R1 and R0) at different hydraulic residence times (HRTs) varying from 2.06 to 1.52 h and NH4(+)-N inf concentrations ranging from 70 to 266 mg L(-1). The substrate removal efficiencies of both reactors decreased as HRT decreased and NH4(+)-N inf increased. The kinetics of these reactions were analyzed, and the Stover-Kincannon model was appropriate to describe the process kinetics of the reactors. In addition, an empirical model incorporating the influent substrate concentration and HRT adequately described R1. Shock experiments were conducted in which the reactors were subjected to transient shock loads. The results showed that the operation of R1 was more stable than that of R0, especially in response to the substrate shocks. Subsequently, the properties of the ANAMMOX granules and the effects of the feeding protocol on those properties were investigated.

  6. Tidal Volume Estimation Using the Blanket Fractal Dimension of the Tracheal Sounds Acquired by Smartphone

    PubMed Central

    Reljin, Natasa; Reyes, Bersain A.; Chon, Ki H.

    2015-01-01

    In this paper, we propose the use of blanket fractal dimension (BFD) to estimate the tidal volume from smartphone-acquired tracheal sounds. We collected tracheal sounds with a Samsung Galaxy S4 smartphone, from five (N = 5) healthy volunteers. Each volunteer performed the experiment six times; first to obtain linear and exponential fitting models, and then to fit new data onto the existing models. Thus, the total number of recordings was 30. The estimated volumes were compared to the true values, obtained with a Respitrace system, which was considered as a reference. Since Shannon entropy (SE) is frequently used as a feature in tracheal sound analyses, we estimated the tidal volume from the same sounds by using SE as well. The evaluation of the performed estimation, using BFD and SE methods, was quantified by the normalized root-mean-squared error (NRMSE). The results show that the BFD outperformed the SE (at least twice smaller NRMSE was obtained). The smallest NRMSE error of 15.877% ± 9.246% (mean ± standard deviation) was obtained with the BFD and exponential model. In addition, it was shown that the fitting curves calculated during the first day of experiments could be successfully used for at least the five following days. PMID:25923929

  7. A compact breed and burn fast reactor using spent nuclear fuel blanket

    SciTech Connect

    Hartanto, D.; Kim, Y.

    2012-07-01

    A long-life breed-and-burn (B and B) type fast reactor has been investigated from the neutronics points of view. The B and B reactor has the capability to breed the fissile fuels and use the bred fuel in situ in the same reactor. In this work, feasibility of a compact sodium-cooled B and B fast reactor using spent nuclear fuel as blanket material has been studied. In order to derive a compact B and B fast reactor, a tight fuel lattice and relatively large fuel pin are used to achieve high fuel volume fraction. The core is initially loaded with an LEU (Low Enriched Uranium) fuel and a metallic fuel is used in the core. The Monte Carlo depletion has been performed for the core to see the long-term behavior of the B and B reactor. Several important parameters such as reactivity coefficients, delayed neutron fraction, prompt neutron generation lifetime, fission power, and fast neutron fluence, are analyzed through Monte Carlo reactor analysis. Evolution of the core fuel composition is also analyzed as a function of burnup. Although the long-life small B and B fast reactor is found to be feasible from the neutronics point of view, it is characterized to have several challenging technical issues including a very high fast neutron fluence of the structural materials. (authors)

  8. Treatment of low strength domestic wastewater by using upflow anaerobic sludge blanket process

    SciTech Connect

    Tang, N.H.; Torres, C.L.; Speece, R.E.

    1996-11-01

    The tropical environment of Puerto Rico offers great potential for using anaerobic treatment in place of conventional, aerobic activated sludge processes in the treatment of its warm, dilute municipal wastewaters. It will minimize the troublesome problem of land disposal of municipal sludges, achieve secondary effluent standards and not be an energy intensive form of treatment. When the infrastructure of sewage treatment needs to be improved, anaerobic sewage treatment may serve as one of the better alternatives. Anaerobic sewage treatment is a totally enclosed process. It has very little environmental impact on the surrounding areas of the treatment site. However, sometimes its effluent may cause serious odor problems. There are many small communities in Puerto Rico where the anaerobic process can be an ideal form of treatment for their sewage. This study is focused on using the upflow anaerobic sludge blanket (UASB) process for treating raw domestic sewage. The objectives of this study were to evaluate the performance and stability of the UASB process for treating raw sewage and to ascertain the effect on efficiency of hydraulic detention time of the UASB reactor. A further key objective was to evaluate the impact on process performance of a packed bed solids removals device following the UASB reactor.

  9. Hazardous Traffic Event Detection Using Markov Blanket and Sequential Minimal Optimization (MB-SMO).

    PubMed

    Yan, Lixin; Zhang, Yishi; He, Yi; Gao, Song; Zhu, Dunyao; Ran, Bin; Wu, Qing

    2016-07-13

    The ability to identify hazardous traffic events is already considered as one of the most effective solutions for reducing the occurrence of crashes. Only certain particular hazardous traffic events have been studied in previous studies, which were mainly based on dedicated video stream data and GPS data. The objective of this study is twofold: (1) the Markov blanket (MB) algorithm is employed to extract the main factors associated with hazardous traffic events; (2) a model is developed to identify hazardous traffic event using driving characteristics, vehicle trajectory, and vehicle position data. Twenty-two licensed drivers were recruited to carry out a natural driving experiment in Wuhan, China, and multi-sensor information data were collected for different types of traffic events. The results indicated that a vehicle's speed, the standard deviation of speed, the standard deviation of skin conductance, the standard deviation of brake pressure, turn signal, the acceleration of steering, the standard deviation of acceleration, and the acceleration in Z (G) have significant influences on hazardous traffic events. The sequential minimal optimization (SMO) algorithm was adopted to build the identification model, and the accuracy of prediction was higher than 86%. Moreover, compared with other detection algorithms, the MB-SMO algorithm was ranked best in terms of the prediction accuracy. The conclusions can provide reference evidence for the development of dangerous situation warning products and the design of intelligent vehicles.

  10. Electric Blanket Use and Risk of Thyroid Cancer in the Women's Health Initiative Observational Cohort.

    PubMed

    Kato, Ikuko; Young, Alicia; Liu, Jingmin; Abrams, Judith; Bock, Cathryn; Simon, Michael

    2015-01-01

    Thyroid cancer disproportionally affects more women than men. The aim of this study was to assess whether exposure to extremely low frequency electric magnetic fields from electric blankets (EBs) was associated with the development of thyroid cancer. Data were analyzed from 89,527 women who participated in the Women's Health Initiative Observational Study and who responded to questions concerning prior use of EBs. During a mean follow-up of 12.2 years, 190 incident cases of thyroid cancer were identified. We estimated the hazard ratio (HR) and 95 percent confidence interval (CI) of incident thyroid cancer associated with EB use by Cox's proportional hazard model, adjusted for selected covariates. A majority, 57 percent, of the women in the cohort reported the use of EBs while sleeping and/or for warming the bed before sleep. No association was found between use of EBs and subsequent risk of thyroid cancer (HR = 0.98, 95 percent CI 0.72-1.32). Duration of EB use measured in years, months, or hours had no effect on risk. These results did not change when the cases were limited to papillary thyroid cancer, the most frequently occurring histologic type. The results of this study do not support possible health hazards of EBs in regards to thyroid cancer risk.

  11. Continuous detoxification, transformation, and degradation of nitrophenols in upflow anaerobic sludge blanket (UASB) reactors

    SciTech Connect

    Donlon, B.A.; Razo-Flores, E.; Lettinga, G.; Field, J.A.

    1996-08-20

    The anaerobic transformation and degradation of nitrophenols by granular sludge was investigated in upflow anaerobic sludge blanket (UASB) reactors continuously fed with a volatile fatty acid (VFA) mixture as the primary substrate. During the start-up, subtoxic concentrations of 2-nitrophenol (2-NP), 4-nitrophenol (4-NP), and 2, 4-dinitrophenol (2, 4-DNP) were utilized. 4-NP and 2, 4-DNP were readily converted to the corresponding aromatic amine; whereas 2-NP was converted to nonaromatic products via intermediate formation of 2-aminophenol (2-AP). These conversions led to a dramatic detoxification of the mononitrophenols because the reactors treated the nitrophenolics at the concentrations which were over 25 times higher than those that caused severe inhibition. VFA removal efficiencies greater than 99% were achieved in both reactors at loading rates greater than 11.4 g COD per liter of reactor volume per day even at volumetric loading of mononitrophenols up to 910 mg/L {center_dot} d. The sludges obtained from each of the reactors at the end of the continuous experiments were assayed for their specific nitrophenol reducing activity in the presence of different primary substrates. Reduction rates of 45 and 26 mg/g volatile suspended solids per day were observed for 2-NP and 4-NP, respectively, when utilizing the VFA mixture as primary substrate.

  12. Development of tailorable advanced blanket insulation for advanced space transportation systems

    NASA Technical Reports Server (NTRS)

    Calamito, Dominic P.

    1987-01-01

    Two items of Tailorable Advanced Blanket Insulation (TABI) for Advanced Space Transportation Systems were produced. The first consisted of flat panels made from integrally woven, 3-D fluted core having parallel fabric faces and connecting ribs of Nicalon silicon carbide yarns. The triangular cross section of the flutes were filled with mandrels of processed Q-Fiber Felt. Forty panels were prepared with only minimal problems, mostly resulting from the unavailability of insulation with the proper density. Rigidizing the fluted fabric prior to inserting the insulation reduced the production time. The procedures for producing the fabric, insulation mandrels, and TABI panels are described. The second item was an effort to determine the feasibility of producing contoured TABI shapes from gores cut from flat, insulated fluted core panels. Two gores of integrally woven fluted core and single ply fabric (ICAS) were insulated and joined into a large spherical shape employing a tadpole insulator at the mating edges. The fluted core segment of each ICAS consisted of an Astroquartz face fabric and Nicalon face and rib fabrics, while the single ply fabric segment was Nicalon. Further development will be required. The success of fabricating this assembly indicates that this concept may be feasible for certain types of space insulation requirements. The procedures developed for weaving the ICAS, joining the gores, and coating certain areas of the fabrics are presented.

  13. Formaldehyde and urea removal in a denitrifying granular sludge blanket reactor.

    PubMed

    Eiroa, M; Kennes, C; Veiga, M C

    2004-09-01

    Simultaneous formaldehyde biodegradation, urea hydrolysis and denitrification in anoxic batch assays and in a continuous laboratory anoxic reactor were investigated. In batch assays, the initial formaldehyde biodegradation rate was around 0.7 g CH(2)Og VSS(-1)d(-1) and independent of the urea concentration (90- 370 mg N-NH(2)CONH(2)l(-1)). Urea was completely hydrolyzed to ammonium in the presence of 430 mg l(-1) formaldehyde and complete denitrification took place in all cases (125 mg N-NO(-)(3)l(-1)). Formaldehyde removal efficiencies above 99.5% were obtained in a lab-scale denitrifying upflow sludge blanket reactor at organic loading rates between 0.37 and 2.96 kg CODm(-3)d(-1) (625-5000 mg CH(2)Ol(-1)). The urea loading rate was increased from 0.06 to 0.44 kg Nm(-3)d(-1) (100-800 mg N-NH(2)CONH(2)l(-1)) and hydrolysis to ammonium was around 77.5% at all loading rates. The denitrification process was always almost complete (100-800 mg N-NO(3)(-)l(-1)), due to the high COD/N ratio of 6.7 in the influent. A minimum value of 3.5 was found to be required for full denitrification. The composition of the biogas indicated that denitrification and methanogenesis occurred simultaneously in the same unit. A good granulation of the sludge was observed.

  14. Heat-transfer characteristics of flowing and stationary particle-bed-type fusion-reactor blankets

    SciTech Connect

    Nietert, R.E.

    1983-02-01

    The heat-transfer characteristics of flowing and stationary packed-particle beds have recently become of interest in connection with conceptual designs of fusion reactor blankets. A detailed literature survey has shown that the processes taking place in such beds are not fully understood despite their widespread use in the chemical industry and other engineering disciplines for more than five decades. In this study, two experimental investigations were pursued. In the first, a heat-transfer loop was constructed through which glass microspheres were allowed to flow by rgravity at controlled rates through an electrically heated stainless steel tubular test section. In the second, an annular packed bed was constructed in which heat was applied through the outer wall by electric heating of a stainless steel tube. Cooling occurred at the inner wall of the annular bed by flowing air through the central tube. A second air stream was allowed to flow through the voids of the packed bed. An error-minimization technique was utilized in order to obtain the two-dimensional one-parameter effective conductivity for the bed by comparing the experimental and theoretically predicted temperature profiles. Experiments were conducted for various modified Reynolds numbers less than ten.

  15. Thermal Performance of Composite Flexible Blanket Insulations for Hypersonic Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A.

    1993-01-01

    This paper describes the thermal performance of a Composite Flexible Blanket Insulation (C.F.B.I.) considered for potential use as a thermal protection system or thermal insulation for future hypersonic vehicles such as the National Aerospace Plane (N.A.S.P.). Thermophysical properties for these insulations were also measured including the thermal conductivity at various temperatures and pressures and the emissivity of the fabrics used in the flexible insulations. The thermal response of these materials subjected to aeroconvective heating from a plasma arc is also described. Materials tested included two surface variations of the insulations, and similar insulations coated with a Protective Ceramic Coating (P.C.C.). Surface and backface temperatures were measured in the flexible insulations and on Fibrous Refractory Composite Insulation (F.R.C.I.) used as a calibration model. The uncoated flexible insulations exhibited good thermal performance up to 35 W/sq cm. The use of a P.C.C. to protect these insulations at higher heating rates is described. The results from a computerized thermal analysis model describing thermal response of those materials subjected to the plasma arc conditions are included. Thermal and optical properties were determined including thermal conductivity for the rigid and flexible insulations and emissivity for the insulation fabrics. These properties were utilized to calculate the thermal performance of the rigid and flexible insulations at the maximum heating rate.

  16. Assessment of anti-fouling strategies for membrane coupled with upflow anaerobic sludge blanket (MUASB) process.

    PubMed

    Tran, Thao Minh; Ye, Yun; Chen, Vicki; Stuetz, Richard; Le-Clech, Pierre

    2013-01-01

    In this novel process, domestic wastewater was filtered by a hollow-fibre membrane coupled with an upflow anaerobic sludge blanket (MUASB) bioreactor. To improve the process sustainability and decrease energy costs, the membranes were operated under low fluxes with little, or no, shear. The efficiency of anti-fouling strategies, including relaxation, backwashing and supply of low aeration and stir rates, was assessed through detailed characterization of the fouling layers. Results indicated that backwashing was more efficient than relaxation, even when the systems were operated under the same flux productivity. In terms of shear supply, stir provided a better fouling limitation strategy compared to aeration, at similar shear stress values. Physical and chemical cleaning methods were applied to recover three fouling fractions (i.e. cake, residual and irreversible) for better characterization of the fouling layers. Under the sustainable operating conditions used in this study, most of the fouling was easily reversible by simple rinsing. In addition, permanent and irreversible fouling, resulting in the need for frequent chemical cleanings and potential membrane degradation, is limited once small shear stresses are applied. These outcomes are expected to form the basis for the future assessment of trade-off between operation, maintenance and replacement costs of membrane filtration processes used in wastewater treatment.

  17. Biodegradation of redox dye Methylene Blue by up-flow anaerobic sludge blanket reactor.

    PubMed

    Ong, Soon-An; Toorisaka, Eiichi; Hirata, Makoto; Hano, Tadashi

    2005-09-30

    The objective of this study is to evaluate the decolorization of Methylene Blue (MB) by an up-flow anaerobic sludge blanket (UASB) reactor. The UASB reactor was operated under batch condition with total treatment volume of 3l and operation time of 24 h per batch. It was found that the color of MB disappeared within a few minutes after entering into the UASB reactor due to reduction by anaerobic biomass. However, the reduced MB was re-oxidized again by air after discharged from the reactor and thus caused low color removal efficiency. The presence of suitable amount of organic content (sucrose and peptone) as an electron donor played an important factor for color removal. It was observed that more than 90% of color removal efficiency was achieved in the UASB reactor with 0.627 mmoll(-1) of MB concentration and the presence of low amount of organic content (<0.45 g COD/(ld)). Biological dye reduction kinetics depends on the concentration of dye and reducing equivalents. The kinetic behavior of MB biodegradation by microbes was also investigated to determine the model involved in the process.

  18. [Study on the denitrification of drinking water with upflow anaerobic sludge blanket reactor].

    PubMed

    Tan, Youming; Luo, Qifang

    2002-02-01

    The characteristics of denitrification was investigated with a pilot scale upflow anaerobic sludge blanket (UASB) reactor at room temperature. The results showed that when brewery waste degrading sludge was used as seed, the starting process was completed within 7 weeks, with hydraulic residence time shortened from 11.1 h to 4.7 h, COD/N/P = 200/5/1 and influent NO3-(-)N concentration increased from 5 mg/L to 100 mg/L. After the process starting, the most probable number [n(MPN)] of denitrifying bacteria was 60 folds and the maximum velocity of CH4 produced was 10 folds higher than before. The removal efficiency of No3-(-)N was 99%, C/N ratio and pH value were investigated as effect factors. When C/N > = or 1.0, the NO3(-)-N removal efficiencies were not different from those of C/N < 1.0 groups significantly. The pH value could meet the discharge standards.

  19. Elemental Education.

    ERIC Educational Resources Information Center

    Daniel, Esther Gnanamalar Sarojini; Saat, Rohaida Mohd.

    2001-01-01

    Introduces a learning module integrating three disciplines--physics, chemistry, and biology--and based on four elements: carbon, oxygen, hydrogen, and silicon. Includes atomic model and silicon-based life activities. (YDS)

  20. Superheavy Elements

    ERIC Educational Resources Information Center

    Tsang, Chin Fu

    1975-01-01

    Discusses the possibility of creating elements with an atomic number of around 114. Describes the underlying physics responsible for the limited extent of the periodic table and enumerates problems that must be overcome in creating a superheavy nucleus. (GS)