Science.gov

Sample records for ebr-ii inherent safety

  1. Results and implications of the EBR-II inherent safety demonstration tests

    SciTech Connect

    Planchon, H.P.; Golden, G.H.; Sackett, J.I.; Mohr, D.; Chang, L.K.; Feldman, E.E.; Betten, P.R.

    1987-01-01

    On April 3, 1986 two milestone tests were conducted in Experimental Breeder Reactor-2 (EBR-II). The first test was a loss of flow without scram and the second was a loss of heat sink without scram. Both tests were initiated from 100% power and in both tests the reactor was shut down by natural processes, principally thermal expansion, without automatic scram, operator intervention or the help of special in-core devices. The temperature transients during the tests were mild, as predicted, and there was no damage to the core or reactor plant structures. In a general sense, therefore, the tests plus supporting analysis demonstrated the feasibility of inherent passive shutdown for undercooling accidents in metal-fueled LMRs. The results provide a technical basis for future experiments in EBR-II to demonstrate inherent safety for overpower accidents and provide data for validation of computer codes used for design and safety analysis of inherently safe reactor plants.

  2. Benchmark Simulations of the Thermal-Hydraulic Responses during EBR-II Inherent Safety Tests using SAM

    SciTech Connect

    Hu, Rui; Sumner, Tyler S.

    2016-01-01

    An advanced system analysis tool SAM is being developed for fast-running, improved-fidelity, and wholeplant transient analyses at Argonne National Laboratory under DOE-NE’s Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. As an important part of code development, companion validation activities are being conducted to ensure the performance and validity of the SAM code. This paper presents the benchmark simulations of two EBR-II tests, SHRT-45R and BOP- 302R, whose data are available through the support of DOE-NE’s Advanced Reactor Technology (ART) program. The code predictions of major primary coolant system parameter are compared with the test results. Additionally, the SAS4A/SASSYS-1 code simulation results are also included for a code-to-code comparison.

  3. Benchmark Simulations of the Thermal-Hydraulic Responses during EBR-II Inherent Safety Tests using SAM

    SciTech Connect

    Hu, Rui; Sumner, Tyler S.

    2016-04-17

    An advanced system analysis tool SAM is being developed for fast-running, improved-fidelity, and whole-plant transient analyses at Argonne National Laboratory under DOE-NE’s Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. As an important part of code development, companion validation activities are being conducted to ensure the performance and validity of the SAM code. This paper presents the benchmark simulations of two EBR-II tests, SHRT-45R and BOP-302R, whose data are available through the support of DOE-NE’s Advanced Reactor Technology (ART) program. The code predictions of major primary coolant system parameter are compared with the test results. Additionally, the SAS4A/SASSYS-1 code simulation results are also included for a code-to-code comparison.

  4. Operational-safety advantages of LMFBR's: the EBR-II experience and testing program

    SciTech Connect

    Sackett, J.I.; Lindsay, R.W.; Golden, G.H.

    1982-01-01

    LMFBR's contain many inherent characteristics that simplify control and improve operating safety and reliability. The EBR-II design is such that good advantage was taken of these characteristics, resulting in a vary favorable operating history and allowing for a program of off-normal testing to further demonstrate the safe response of LMFBR's to upsets. The experience already gained, and that expected from the future testing program, will contribute to further development of design and safety criteria for LMFBR's. Inherently safe characteristics are emphasized and include natural convective flow for decay heat removal, minimal need for emergency power and a large negative reactivity feedback coefficient. These characteristics at EBR-II allow for ready application of computer diagnosis and control to demonstrate their effectiveness in response to simulated plant accidents. This latter testing objective is an important part in improvements in the man-machine interface. (MMI)

  5. A survey of recent EBR-II passive safety testing

    SciTech Connect

    Planchon, H.P.; Golden, G.H.; Sackett, J.I.; Singer, R.M.; Mohr, D.; Chang, L.K.; Feldman, E.E.; Sevy, R.H.

    1987-01-01

    During the last two years, the testing program at EBR-II has investigated the capabilities of liquid metal reactors (LMRs) to perform vital safety functions passively. In particular the tests have examined post shutdown decay heat removal by natural circulation and passive shutdown of the reactor after accidents which lead to undercooling. The undercooling accidents have been divided into two categories - the loss of flow without scram (LOFWS) (a family of events involving a loss of forced flow through the reactor), and the loss of heat sink without scram (LOHSWS) (a family of events involving a loss of the ability to transfer reactor heat to down stream components which generate steam and electricity.) The type of ''passive shutdown'' that has been examined is caused by natural processes - principally thermal expansion of the reactor structures, fuel and coolant. As used in this paper the term excludes automatic control of power, operator intervention or negative reactivity generated by special in-core devices. 18 refs., 7 figs., 1 tab.

  6. Final Safety Analysis Addenda to Hazards Summary Report, Experimental Breeder Reactor II (EBR-II): upgrading of plant protection system. Volume II

    SciTech Connect

    Allen, N. L.; Keeton, J. M.; Sackett, J. I.

    1980-06-01

    This report is the second in a series of compilations of the formal Final Safety Analysis Addenda (FSAA`s) to the EBR-II Hazard Summary Report and Addendum. Sections 2 and 3 are edited versions of the original FSAA`s prepared in support of certain modifications to the reactor-shutdown-system portion of the EBR-II plant-protection system. Section 4 is an edited version of the original FSAA prepared in support of certain modifications to a system classified as an engineered safety feature. These sections describe the pre- and postmodification system, the rationale for the modification, and required supporting safety analysis. Section 5 provides an updated description and analysis of the EBR-II emergency power system. Section 6 summarizes all significant modifications to the EBR-II plant-protection system to date.

  7. Benchmark specifications for EBR-II shutdown heat removal tests

    SciTech Connect

    Sofu, T.; Briggs, L. L.

    2012-07-01

    Argonne National Laboratory (ANL) is hosting an IAEA-coordinated research project on benchmark analyses of sodium-cooled fast reactor passive safety tests performed at the Experimental Breeder Reactor-II (EBR-II). The benchmark project involves analysis of a protected and an unprotected loss of flow tests conducted during an extensive testing program within the framework of the U.S. Integral Fast Reactor program to demonstrate the inherently safety features of EBR-II as a pool-type, sodium-cooled fast reactor prototype. The project is intended to improve the participants' design and safety analysis capabilities for sodium-cooled fast reactors through validation and qualification of safety analysis codes and methods. This paper provides a description of the EBR-II tests included in the program, and outlines the benchmark specifications being prepared to support the IAEA-coordinated research project. (authors)

  8. Criticality safety requirements for transporting EBR-II fuel bottles stored at INTEC

    SciTech Connect

    Lell, R. M.; Pope, C. L.

    2000-03-14

    Two carrier/shipping cask options are being developed to transport bottles of EBR-II fuel elements stored at INTEC. Some fuel bottles are intact, but some have developed leaks. Reactivity control requirements to maintain subcriticality during the hypothetical transport accident have been examined for both transport options for intact and leaking bottles. Poison rods, poison sleeves, and dummy filler bottles were considered; several possible poison materials and several possible dummy filler materials were studied. The minimum number of poison rods or dummy filler bottles has been determined for each carrier for transport of intact and leaking bottles.

  9. The EBR-II fuel cycle story

    SciTech Connect

    Stevenson, C.E.

    1987-01-01

    This volume on the history of the Experimental Breeder Reactor (EBR) program and the Fuel Cycle Facility (FCF) offers both the historical perspective and ''reasons why'' the project was so successful. The operation of the FCF in conjunction with the EBR-II was prepared because of the unique nature of the pyrmetallurgical processing system that was demonstrated at the time. Following brief descriptions and histories of the EBR-I and EBR-II reactors, the FCF and its process requirements are described. The seven principal process steps are presented, including for each one, the development, equipment used, operating procedures, results, problems and other data. Scrap and waste disposition, analytical control, safety, management, and cost of the FCF are also included.

  10. EBR-II Data Digitization

    SciTech Connect

    Yoon, Su-Jong; Rabiti, Cristian; Sackett, John

    2014-08-01

    1. Objectives To produce a validation database out of those recorded signals it will be necessary also to identify the documents need to reconstruct the status of reactor at the time of the beginning of the recordings. This should comprehends the core loading specification (assemblies type and location and burn-up) along with this data the assemblies drawings and the core drawings will be identified. The first task of the project will be identify the location of the sensors, with respect the reactor plant layout, and the physical quantities recorded by the Experimental Breeder Reactor-II (EBR-II) data acquisition system. This first task will allow guiding and prioritizing the selection of drawings needed to numerically reproduce those signals. 1.1 Scopes and Deliverables The deliverables of this project are the list of sensors in EBR-II system, the identification of storing location of those sensors, identification of a core isotopic composition at the moment of the start of system recording. Information of the sensors in EBR-II reactor system was summarized from the EBR-II system design descriptions listed in Section 1.2.

  11. Feedback components of a U20Pu10Zr-fueled compared to a U10Zr-fueled EBR-II

    SciTech Connect

    Meneghetti, D.; Kucera, D.A.

    1988-12-31

    Calculated feedback components of the regional contributions of the power reactivity decrements (PRDs) and of the temperature coefficients of reactivity of a U20Pu10Zr-fueled and of a U10Zr-fueled Experimental Breeder Reactor II (EBR-II) are compared. The PRD components are also separated into power-to-flow dependent and solely power dependent parts. The effects of these values upon quantities useful for indicating the comparative potential inherent safety characteristics of these EBR-II loadings are presented.

  12. Feedback components of a U20Pu10Zr-fueled compared to a U10Zr-fueled EBR-II

    SciTech Connect

    Meneghetti, D.; Kucera, D.A.

    1988-01-01

    Calculated feedback components of the regional contributions of the power reactivity decrements (PRDs) and of the temperature coefficients of reactivity of a U20Pu10Zr-fueled and of a U10Zr-fueled Experimental Breeder Reactor II (EBR-II) are compared. The PRD components are also separated into power-to-flow dependent and solely power dependent parts. The effects of these values upon quantities useful for indicating the comparative potential inherent safety characteristics of these EBR-II loadings are presented.

  13. Deactivation of the EBR-II complex

    SciTech Connect

    Michelbacher, J.A.; Earle, O.K.; Henslee, S.P.

    1997-12-31

    In January of 1994, the Department of Energy mandated the termination of the Integral Fast Reactor (IFR) Program, effective October 1, 1994. To comply with this decision, Argonne National Laboratory-West (ANL-W) prepared a plan providing detailed requirements to place the Experimental Breeder Reactor-II (EBR-II) in a radiologically and industrially safe condition, including removal of all irradiated fuel assemblies from the reactor plant, and removal and stabilization of the primary and secondary sodium, a liquid metal used to transfer heat within the reactor plant. The ultimate goal of the deactivation process is to place the EBR-II complex in a stable condition until a decontamination and decommissioning (D&D) plan can be prepared, thereby minimizing requirements for maintenance and surveillance and maximizing the amount of time for radioactive decay. The final closure state will be achieved in full compliance with federal, state and local environmental, safety, and health regulations and requirements. The decision to delay the development of a detailed D&D plan has necessitated this current action. The EBR-II is a pool-type reactor. The primary system contains approximately 87,000 gallons of sodium, while the secondary system has 13,000 gallons. In order to properly dispose of the sodium in compliance with the Resource Conservation and Recovery Act (RCRA), a facility has been built to react the sodium to a dry carbonate powder in a two stage process. Deactivation of a liquid metal fast breeder reactor (LMFBR) presents unique concerns. Residual amounts of sodium remaining in the primary and secondary systems must be either reacted or inerted to preclude future concerns with sodium-air reactions that generate explosive mixtures of hydrogen and leave corrosive compounds. Residual amounts of sodium on components will effectively {open_quotes}solder{close_quotes} components in place, making future operation or removal unfeasible.

  14. Deactivation of the EBR-II complex

    SciTech Connect

    Michelbacher, J A; Earle, O K; Henslee, S P; Wells, P B; Zahn, T P

    1996-01-01

    In January of 1994, the Department of Energy mandated the termination of the Integral Fast Reactor (IFR) Program, effective October 1, 1994. To comply with this decision, Argonne National Laboratory-West (ANL-W) prepared a plan providing detailed requirements to place the Experimental Breeder Reactor-II (EBR-II) in a radiologically and industrially safe condition, including removal of all irradiated fuel assemblies from the reactor plant, and removal and stabilization of the primary and secondary sodium, a liquid metal used to transfer heat within the reactor plant. The ultimate goal of the deactivation process is to place the EBR-II complex in a stable condition until a decontamination and decommissioning (D and D) plan can be prepared, thereby minimizing requirements for maintenance and surveillance and maximizing the amount of time for radioactive decay. The final closure state will be achieved in full compliance with federal, state and local environmental, safety, and health regulations and requirements. The decision to delay the development of a detailed D and D plan has necessitated this current action.

  15. EBR-II fuel slug casting experience

    SciTech Connect

    Wilkes, C. W.; Batte`, G. L.; Tracy, D. B.; Griffiths, V.

    1987-07-01

    The following paper presents a chronology of EBR-II fuel slug casting experience. Starting with the early vendor campaigns, the paper explains how production of EBR-II fuel, as well as fuel for off-site reactors, has evolved. The production facilities (i.e., EFL, Room 20, FMF, etc.) and casting techniques are discussed in detail. The paper also presents how the original casting operations have improved and the problems encountered as the techniques were developed. Extensive descriptions and data are given on the major experimental programs currently ongoing at EBR-II. Major programs include the IFR lead subassemblies, large diameter slugs, IFR metal fuel RBCB, and the FFTF subassembly program. Concluding the paper is a brief description of future development projects being considered and a summation of how EBR-II Fuels and Materials has been able to overcome various administration obstacles (i.e., improved security and safeguards measures) to continue to meet the increasing demands of fuel production while maintaining an aggressive and active research and development program in fuel slug production.

  16. Simplified modeling of the EBR-II control rods

    SciTech Connect

    Angelo, P.L.

    1995-06-25

    Simplified models of EBR-II control and safety rods have been developed for core modeling under various operational and shutdown conditions. A parametric study was performed on normal worth, high worth, and safety rod type control rods. A summary of worth changes due to individual modeling approximations is tabulated. Worth effects due to structural modeling simplification are negligible. Fuel region homogenization and burnup compression contributes more than any other factor. Reference case C/E values (ratio of calculated worth from detailed model to measured worth) of 1.072 and 1.142 for safety and normal worth rods indicate acceptable errors when the approximations are used. Fuel burnup effect illustrates rod worth sensitivity to the modeling approximation. Aggregate effects are calculated under a reduced mesh.

  17. EBR-II and TREAT Digitization Project

    SciTech Connect

    Griffith, George W.; Rabiti, Cristian

    2015-09-01

    Digitizing the technical drawings for EBR-II and TREAT provides multiple benefits. Moving the scanned or hard copy drawings to modern 3-D CAD (Computer Aided Drawing) format saves data that could be lost over time. The 3-D drawings produce models that can interface with other drawings to make complex assemblies. The 3-D CAD format can also include detailed material properties and parametric coding that can tie critical dimensions together allowing easier modification. Creating the new files from the old drawings has found multiple inconsistencies that are being flagged or corrected improving understanding of the reactor(s).

  18. Experimental Breeder Reactor II (EBR-II): Instrumentation for core surveillance

    SciTech Connect

    Christensen, L.J.

    1989-01-01

    EBR-II has operated for 25 years in support of several major programs. During this time period, several of the original, non-replaceable, flow sensors, RDT sensors and thermocouples have failed in the primary system. This has led to the development of new sensors and the use of calculated values using computer models of the plant. It is important for the next generation of LMR reactors to minimize or eliminate the use of non-replaceable sensors. EBR-II is perhaps the best modeled reactor in the world, thanks to a dedicated T-H analysis program. The success of this program relied on excellent measurements of temperature and flow in subassemblies in the core. The instrumented subassemblies of the XX series provided that measurement capability. From this test series, EBR-II calculations showed that the core could withstand a loss-of-flow without scram accident and a loss-of-heat sink without scram accident from full reactor power without core damage. From this, reactor designers can now design with confidence, inherently safe reactors. 11 refs., 8 figs.

  19. EBR-II metallic driver fuel - a live option

    SciTech Connect

    Seidel, B.R.; Walters, L.C.

    1981-10-01

    The exceptional performance of metallic driver fuel has been demonstrated by the irradiation of a large number of Experimental Breeder Reactor II (EBR-II) driver-fuel elements of uranium-5 wt percent fissium clad in austenitic stainless steel. High burnup with high reliability has been achieved by a close coupling of element design and materials selection. The irradiation performance has been improved by decreasing the fuel smear density, increasing the plenum volume, increasing the cladding thickness, and selecting a higher-strength, lower-swelling cladding alloy which exhibits less fuel-cladding chemical interaction. Quantification of reliability has allowed full utilization of the element lifetime. Lifetimes much greater than 10 at. percent could be achieved by a design change of the restrainer, which currently limits life. Use of U-Pu-Zr fuel alloy with current cladding material would provide higher-temperature capability. Metallic fuel systems with their inherently superior breeding and irradiation performance are a capable and attractive next-generation power systems. 19 refs.

  20. Analysis of grid-assembly shielding of EBR-II

    SciTech Connect

    Meneghetti, D.; Franklin, F.C.; Kucera, D.A.

    1983-01-01

    Differing neutron exposure rates to the EBR-II lower grid plenum assembly resulting from the historical changes in reactor configuration and shielding are analyzed to obtain the fluences and the steel displacements-per-atom values in this irreplaceable component.

  1. Experimental studies of U-Pu-Zr fast reactor fuel pins in EBR-II (Experimental Breeder Reactor)

    SciTech Connect

    Pahl, R.G.; Porter, D.L.; Lahm, C.E.; Hofman, G.L.

    1988-01-01

    The Integral Fast Reactor (IFR) is a generic reactor concept under development by Argonne National Laboratory. Much of the technology for the IFR is being demonstrated at the Experimental Breeder Reactor II (EBR-II) on the Department of Energy site near Idaho Falls, Idaho. The IFR concept relies on four technical features to achieve breakthroughs in nuclear power economics and safety: (1) a pool-type reactor configuration, (2) liquid sodium cooling, (3) metallic fuel, and (4) an integral fuel cycle with on-site reprocessing. The purpose of this paper will be to summarize our latest results of irradiation testing uranium-plutonium-zirconium (U-Pu-Zr) fuel in the EBR-II. 10 refs., 13 figs., 2 tabs.

  2. Designs that lacked inherent safety: case histories.

    PubMed

    Sanders, Roy E

    2003-11-14

    The fundamentals of Inherently Safer Design were not fully appreciated in the initial design (or re-design) in the following series of case histories. Two case histories involving the basic element of plant layout to minimize property damages and injury will be covered first. Simple physical separation could have reduced the losses. A case history that occurred in a bulk chemical terminal tank farm will highlight designs which allowed incompatible chemicals to react, create a fire and a lingering toxic gas release. The combination of these chemicals caused equipment damage in one case and a threat to the public in another case. This paper will conclude with case histories involving poor piping design or poorly identified piping systems, which needlessly resulted in expensive repairs. Exercising the principles of inherent safety would have reduced the severity and perhaps the opportunity of these events. We must employ the techniques of inherent safety to improve our performance.

  3. Data systems in FFTF and EBR-II

    SciTech Connect

    Warrick, R.P.; Ritter, W.M.

    1980-02-01

    This paper describes the Data System used to monitor operation and collect experimental data in FFTF. This data system has evolved since initial inception from a relatively simple, single computer system monitoring a relatively few (approx. 1000) instrument channels important for operation to one which has increased capability to support the long-range testing needs in FFTF. The system, while still relatively simple, now contains multiple computers which normally perform independent functions. The computers, however, provide backup processing for certain simple tasks. Operator interfacing is provided through CRT's. The output capabilities of the system are described. A description of the Data System in EBR-II is also included.

  4. Metallic fuels: The EBR-II legacy and recent advances

    SciTech Connect

    Douglas L. Porter; Steven L. Hayes; J. Rory Kennedy

    2012-09-01

    Experimental Breeder Reactor – II (EBR-II) metallic fuel was qualified for high burnup to approximately 10 atomic per cent. Subsequently, the electrometallurgical treatment of this fuel was demonstrated. Advanced metallic fuels are now investigated for increased performance, including ultra-high burnup and actinide burning. Advances include additives to mitigate the fuel/cladding chemical interaction and uranium alloys that combine Mo, Ti and Zr to improve alloy performance. The impacts of the advances—on fabrication, waste streams, electrorefining, etc.—are found to be minimal and beneficial. Owing to extensive research literature and computational methods, only a modest effort is required to complete their development.

  5. PRD components of an EBR-II configuration

    SciTech Connect

    Meneghetti, D.; Kucera, D.A.

    1986-01-01

    The linear components of the power reactivity decrement (PRD) for a heterogeneous loading (run 93A) of Experimental Breeder Reactor II (EBR-II) have been calculated using the EBRPOCO program together with an addition to the program, RODCO, which accounts for effects of axial positionings of control rods. The program calculates detailed axially delineated contributions of the components of the PRD for every subassembly of the reactor configuration. The sum of these contributions is subtracted from the corresponding measured PRD value to give the nonlinear (subassembly-bowing) component.

  6. Inherent Safety Characteristics of Advanced Fast Reactors

    NASA Astrophysics Data System (ADS)

    Bochkarev, A. S.; Korsun, A. S.; Kharitonov, V. S.; Alekseev, P. N.

    2017-01-01

    The study presents SFR transient performance for ULOF events initiated by pump trip and pump seizure with simultaneous failure of all shutdown systems in both cases. The most severe cases leading to the pin cladding rupture and possible sodium boiling are demonstrated. The impact of various features on SFR inherent safety performance for ULOF events was analysed. The decrease in hydraulic resistance of primary loop and increase in primary pump coast down time were investigated. Performing analysis resulted in a set of recommendations to varying parameters for the purpose of enhancing the inherent safety performance of SFR. In order to prevent the safety barrier rupture for ULOF events the set of thermal hydraulic criteria defining the ULOF transient processes dynamics and requirements to these criteria were recommended based on achieved results: primary sodium flow dip under the natural circulation asymptotic level and natural circulation rise time.

  7. Expert system determination of power level for EBR-II

    SciTech Connect

    Ballard, T.L.; Makowitz, H. )

    1992-01-01

    The Tightly Coupled Transient Analysis System (TCTAS) is under development for use at the Experimental Breeder Reactor II (EBR-II) at the Idaho National Engineering Laboratory (INEL). The premise is that during plant operation, it would be useful to compare plant conditions to values generated by a simulation. This capability could reveal inconsistent plant behavior such as temperatures or pressures that are different than expected. By using much faster than real-time simulation, it could help predict possible problems and allow running relevant operational scenarios. The system currently includes a data acquisition system (DAS) that reports plant parameters each second. Graphic displays for major plant subsystems are available for displaying DAS data, simulation data, and DAS data as interpreted by the expert system. The dynamic simulator for nuclear power plants (DSNP) is operational and has been tested. An expert system is currently used for interpreting DAS data before comparing it to DSNP data. Instrumentation difficulties have made some EBR-II data either suspect or unavailable. Other sensors are not connected to the DAS. These problems force either humans or the expert system to make assumptions in order to compute certain plant parameters. The expert system, like the experts, assumes steady-state conditions.

  8. EBR-II spent fuel treatment demonstration project status

    SciTech Connect

    Benedict, R.W.; Henslee, S.P.

    1998-07-01

    The application of electrometallurgical technology to spent nuclear fuel treatment is being demonstrated by treating 410 kg uranium spent driver fuel and 1,200 kg uranium spent blanket fuel from the Experimental Breeder Reactor-II (EBR-II) spent driver and blanket fuel. This fuel is a metallic uranium alloy and contains elemental sodium, which is a reactive material. Since reactive material is considered hazardous by US Environmental Protection Agency regulations, this fuel requires treatment before disposal in a geologic repository. The EBR-II spent fuel treatment demonstration conditions this fuel in an integrated process where the fuel is converted into three different products: low enriched uranium (LEU), ceramic waste and metallic waste. This demonstration was initiated in June 1996 and has treated approximately 50% of the driver fuel. The higher throughput equipment that will be used for blanket treatment processes has been installed in the hot cell facility and is being tested with depleted uranium. Metal waste forms have been produced from the irradiated metals from the driver fuel. Ceramic waste process equipment has been built and is being tested before installation in the hot cell facilities. This paper discusses the processes and the current results from the first 20 months of operation.

  9. Performance of advanced oxide fuel pins in EBR-II

    SciTech Connect

    Lawrence, L.A.; Jensen, S.M.; Hales, J.W.; Karnesky, R.A.; Makenas, B.J.

    1986-05-01

    The effects of design and operating parameters on mixed-oxide fuel pin irradiation performance were established for the Hanford Engineering Development Laboratory (HEDL) advanced oxide EBR-II test series. Fourteen fuel pins breached in-reactor with reference 316 SS cladding. Seven of the breaches are attributed to FCMI. Of the remaining seven breached pins, three are attributed to local cladding over-temperatures similar to the breach mechanism for the reference oxide pins irradiated in EBR-II. FCCI was found to be a contributing factor in two high burnup, i.e., 11.7 at. % breaches. The remaining two breaches were attributed to mechanical interaction of UO/sub 2/ fuel and fission products accumulated in the lower cladding insulator gap, and a loss of cladding ductility possibly due to liquid metal embrittlement. Fuel smear density appears to have the most significant impact on lifetime. Quantitative evaluations of cladding diameter increases attributed to FCMI, established fuel smear density, burnup, and cladding thickness-to-diameter ratio as the major parameters influencing the extent of cladding strain.

  10. Integral Fast Reactor concept inherent safety features

    SciTech Connect

    Marchaterre, J.F.; Sevy, R.H.; Cahalan, J.E.

    1986-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The two major goals of the IFR development effort are improved economics and enhanced safety. The design features that together fulfill these goals are: (1) a liquid metal (sodium) coolant, (2) a pool-type reactor primary system configuration, (3) an advanced ternary alloy metallic fuel, and (4) an integral fuel cycle. This paper reviews the design features that contribute to the safety margins inherent to the IFR concept. Special emphasis is placed on the ability of the IFR design to accommodate anticipated transients without scram (ATWS).

  11. Integral fast reactor concept inherent safety features

    SciTech Connect

    Marchaterre, J.F.; Sevy, R.H.; Cahalan, J.E.

    1987-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The two major goals of the IFT development effort are improved economics and enhanced safety. The design features that together fulfill these goals are: 1) a liquid metal (sodium) coolant, 2) a pool-type reactor primary system configuration, 3) an advanced ternary alloy metallic fuel, and 4) an integral fuel cycle. This paper reviews the design features that contribute to the safety margins inherent to the IFR concept. Special emphasis is placed on the ability of the IFR design to accommodate anticipated transients without scram (ATWS).

  12. Degradation of EBR-II driver fuel during wet storage

    SciTech Connect

    Pahl, R. G.

    2000-03-09

    Characterization data are reported for sodium bonded EBR-II reactor fuel which had been stored underwater in containers since the 1981--1982 timeframe. Ten stainless steel storage containers, which had leaked water during storage due to improper sealing, were retrieved from the ICPP-603 storage basin at the Idaho National Engineering and Environmental Laboratory (INEEL) in Idaho. In the container chosen for detailed destructive analysis, the stainless steel cladding on the uranium alloy fuel had ruptured and fuel oxide sludge filled the bottom of the container. Headspace gas sampling determined that greater than 99% hydrogen was present. Cesium 137, which had leached out of the fuel during the aqueous corrosion process, dominated the radionuclide source term of the water. The metallic sodium from the fuel element bond had reacted with the water, forming a concentrated caustic solution of NaOH.

  13. EBR-II Primary Tank Wash-Water Alternatives Evaluation

    SciTech Connect

    Demmer, R. L.; Heintzelman, J. B.; Merservey, R. H.; Squires, L. N.

    2008-05-01

    The EBR-II reactor at Idaho National Laboratory was a liquid sodium metal cooled reactor that operated for 30 years. It was shut down in 1994; the fuel was removed by 1996; and the bulk of sodium metal coolant was removed from the reactor by 2001. Approximately 1100 kg of residual sodium remained in the primary system after draining the bulk sodium. To stabilize the remaining sodium, both the primary and secondary systems were treated with a purge of moist carbon dioxide. Most of the residual sodium reacted with the carbon dioxide and water vapor to form a passivation layer of primarily sodium bicarbonate. The passivation treatment was stopped in 2005 and the primary system is maintained under a blanket of dry carbon dioxide. Approximately 670 kg of sodium metal remains in the primary system in locations that were inaccessible to passivation treatment or in pools of sodium that were too deep for complete penetration of the passivation treatment. The EBR-II reactor was permitted by the Idaho Department of Environmental Quality (DEQ) in 2002 under a RCRA permit that requires removal of all remaining sodium in the primary and secondary systems by 2022. The proposed baseline closure method would remove the large components from the primary tank, fill the primary system with water, react the remaining sodium with the water and dissolve the reaction products in the wash water. This method would generate a minimum of 100,000 gallons of caustic, liquid, low level radioactive, hazardous waste water that must be disposed of in a permitted facility. On February 19-20, 2008, a workshop was held in Idaho Falls, Idaho, to look at alternatives that could meet the RCRA permit clean closure requirements and minimize the quantity of hazardous waste generated by the cleanup process. The workshop convened a panel of national and international sodium cleanup specialists, subject matter experts from the INL, and the EBR-II Wash Water Project team that organized the workshop. The

  14. EBR-II fuel handling console digital upgrade

    SciTech Connect

    Peters, G.G.; Wiege, D.D.; Christensen, L.J.

    1995-06-01

    The main fuel handling console and control system at the Experimental Breeder Reactor II (EBR-II) are being upgraded to a computerized system using high-end workstations for the operator interface and a programmable logic controller (PLC) for the control system. Two-dimensional (2D) and three-dimensional (3D) computer graphics will be provided for the operator which will show the relative position of under-sodium fuel handling equipment. This equipment is operated remotely with no means of directly viewing the transfer. This paper describes various aspects of the modification including reasons for the upgrade, capabilities the new system provides over the old control system, philosophies and rationale behind the new design, testing and simulation work, diagnostic features, and the advanced graphics techniques used to display information to the operator.

  15. Review process and quality assurance in the EBR-II probabilistic risk assessment

    SciTech Connect

    Roglans, J.; Hill, D.J.; Ragland, W.A.

    1992-12-01

    A Probabilistic Risk Assessment (PRA) of the Experimental Breeder Reactor II (EBR-II), a Department of Energy (DOE) Category A reactor, has recently been completed at Argonne National Laboratory (ANL). Within the scope of the ANL QA Programs, a QA Plan specifically for the EBR-II PRA was developed. The QA Plan covered all aspects of the PRA development, with emphasis on the procedures for document and software control, and the internal and external review process. The effort spent in the quality assurance tasks for the EBR-II PRA has reciprocated by providing acceptance of the work and confidence in the quality of the results.

  16. Review process and quality assurance in the EBR-II probabilistic risk assessment

    SciTech Connect

    Roglans, J.; Hill, D.J.; Ragland, W.A.

    1992-01-01

    A Probabilistic Risk Assessment (PRA) of the Experimental Breeder Reactor II (EBR-II), a Department of Energy (DOE) Category A reactor, has recently been completed at Argonne National Laboratory (ANL). Within the scope of the ANL QA Programs, a QA Plan specifically for the EBR-II PRA was developed. The QA Plan covered all aspects of the PRA development, with emphasis on the procedures for document and software control, and the internal and external review process. The effort spent in the quality assurance tasks for the EBR-II PRA has reciprocated by providing acceptance of the work and confidence in the quality of the results.

  17. An overview of the EBR-II PRA (Probabilistic Risk Assessment)

    SciTech Connect

    Hill, D.J.; Chang, Y.W.; Deitrich, L.W.; Ragland, W.A. ); Lehto, W.K.; Schaeffer, R.W. )

    1990-01-01

    Experimental Breeder Reactor-II, EBR-II, is a 60 MW(t) liquid sodium cooled, pool type fast reactor which has operated successfully as a power reactor and irradiation facility for over 25 years. Argonne National Laboratory is currently performing a Probabilistic Risk Assessment of EBR-II. An overview of the PRA is presented with special attention to those issues which are important to EBR-II such as the passive decay heat removal capabilities and the passive shut down capability provided by the reactivity feedbacks. 7 refs., 3 figs., 1 tab.

  18. Nuclear instrumentation system operating experience and nuclear instrument testing in the EBR-II

    SciTech Connect

    Yingling, G. E.; Curran, R. N.

    1980-01-01

    In March of 1972 three wide range nuclear channels were purchased from Gulf Atomics Corporation and installed in EBR-II as a test. The three channels were operated as a test until April 1975 when they became a permanent part of the reactor shutdown system. Also described are the activities involved in evaluating and qualifying neutron detectors for LMFBR applications. Included are descriptions of the ANL Components Technology Division Test Program and the EBR-II Nuclear Instrument Test Facilities (NITF) used for the in-reactor testing and a summary of program test results from EBR-II.

  19. Approximating axially dependent radial-displacement reactivities of EBR-II subassembly rows

    SciTech Connect

    Meneghetti, D.

    1994-12-31

    Reactivities resulting from radial displacement of the Experimental Breeder reactor II (EBR-II) subassembly rows are used in calculations of bowing components of reactivity and of grid-plate expansion reactivity. The method uses perturbation-quantity outputs from a modified R-Z geometry diffusion theory calculation to obtain axially delineated reactivity coefficients for an azimuthally homogenized approximation of an EBR-II configuration.

  20. JAEA Fatigue Analysis of EBR-II Duplex Tubing

    SciTech Connect

    J. H. Jackson; D. L. Porter; W. R. Lloyd; N. Kisohara

    2011-03-01

    Small, notched three-point bend specimens machined from duplex tubes, which were extracted from an EBR-II superheater, were fatigued through the nickel interlayer to determine propensity for crack arrest within this interlayer. Several of these specimens were fatigued in the near threshold, and steady state regimes of Paris Law behavior. Additionally, two specimens were fatigued to the edge of the nickel interlayer and then monotonically loaded. Micro-hardness profiles of the nickel interlayer were also measured. Fatigue behavior was found to be similar to previous studies in that arrest was only noted in the near threshold Paris regime (attributed to the presence of voids) and in the steady state regime exhibited an acceleration of crack growth rate through the nickel interlayer followed by a slight retardation. Monotonic loading resulted in crack branching or delamination along the interlayer. Although archival material was not available for this study, the hardness of the nickel interlayer was determined to have been lowered slightly during service by comparison to the expected hardness of a similar nickel braze prepared as specified for fabrication of these tubes.

  1. The EBR-II X501 Minor Actinide Burning Experiment

    SciTech Connect

    Jon Carmack; S. L. Hayes; M. K. Meyer; H. Tsai

    2008-06-01

    The X501 experiment was conducted in EBR-II as part of the IFR (Integral Fast Reactor) program to demonstrate minor actinide burning through the use of a homogeneous recycle scheme. The X501 subassembly contained two metallic fuel elements loaded with relatively small quantities of americium and neptunium. Interest in the behavior of minor actinides (MA) during fuel irradiation has prompted further examination of existing X501 data, and generation of new data where needed in support of the U.S. waste transmutation effort. The X501 experiment is one of the few minor actinide-bearing fuel irradiation tests conducted worldwide and knowledge can be gained by understanding the changes in fuel behavior due to addition of MA’s. Of primary interest are the affect of the MA’s on fuel-cladding-chemical-interaction, and the redistribution behavior of americium. The quantity of helium gas release from the fuel and any effects of helium on fuel performance are also of interest. It must be stressed that information presented at this time is based on the limited PIE conducted in 1995-1996, and currently represents a set of observations rather than a complete understanding of fuel behavior.

  2. The EBR-II X501 Minor Actinide Burning Experiment

    SciTech Connect

    W. J. Carmack; M. K. Meyer; S. L. Hayes; H. Tsai

    2008-01-01

    The X501 experiment was conducted in EBR II as part of the Integral Fast Reactor program to demonstrate minor actinide burning through the use of a homogeneous recycle scheme. The X501 subassembly contained two metallic fuel elements loaded with relatively small quantities of americium and neptunium. Interest in the behavior of minor actinides (MA) during fuel irradiation has prompted further examination of existing X501 data and generation of new data where needed in support of the U.S. waste transmutation effort. The X501 experiment is one of the few MA bearing fuel irradiation tests conducted worldwide, and knowledge can be gained by understanding the changes in fuel behavior due to addition of MAs. Of primary interest are the effect of the MAs on fuel cladding chemical interaction and the redistribution behavior of americium. The quantity of helium gas release from the fuel and any effects of helium on fuel performance are also of interest. It must be stressed that information presented at this time is based on the limited PIE conducted in 1995–1996 and, currently, represents a set of observations rather than a complete understanding of fuel behavior. This report provides a summary of the X501 fabrication, characterization, irradiation, and post irradiation examination.

  3. Flow dependence of the PRD in EBR-II

    SciTech Connect

    Meneghetti, D.

    1994-12-31

    The linear (and Doppler) feedback components of the power reactivity decrement (PRD) for various loading configurations of the Experimental Breeder Reactor II (EBR-II) have been reported. (The PRD at a power is here the negative of the reactivity required to bring the reactor from zero-power, hot-critical, to that power.) The delineation of the feedback components into power dependent and power-to-flow dependent parts have also been reported. The nonlinear feedback component, primarily due to bowings of the subassembly ducts, is deduced by subtraction of the calculated total linear (and small Doppler) component from the measured values of PRD as a function of reactor power. Furthermore, this component is generally assumed to be a function of the power-to-flow ratio of the reactor for purposes of estimating PRD values at differing flows. If the nonlinear reactivity component is indeed solely power-to-flow dependent, then the values of measured total PRDs for differing flows should lie for the respective power values, corresponding to equivalent power-to-flow values, on a straight line having a negative slope. (This slope would be the power rate of the solely power part of the linear component of the PRD). Evidence that this may not be a reasonable assumption is reported.

  4. Behavior of EBR-II Mk-V-type fuel elements in simulated loss-of-flow tests

    SciTech Connect

    Liu, Y.Y.; Tsai, H.; Billone, M.C.; Kramer, J.M. )

    1992-01-01

    The next step in the development of metal fuels for the integral fast reactor (IFR) is the conversion of the Experimental Breeder Reactor II (EBR-II) core to one containing the ternary U-20 Pu-10 Zr alloy clad with HT-9 cladding, i.e., the Mk-V core. This paper presents results of three hot-cell furnace simulation tests on irradiated Mk-V-type fuel elements (U-19 Pu-10 Zr/HT-9), which were performed to support the safety case for the Mk-V core. These tests were designed to envelop an umbrella (bounding) unlikely loss-of-flow (LOF) event in EBR-II during which the calculated peak cladding temperature would reach 776[degree]C for < 2 min. The principal objectives of these tests were (a) demonstration of the safety margin of the fuel element, (b) investigation of cladding breaching behavior, and (c) provision of data for validation of the FPIN2 and LIFE-METAL codes.

  5. Disposition of Unirradiated Sodium Bonded EBR-II Driver Fuel Elements and HEU Scrap: Work Performed for FY 2007

    SciTech Connect

    Karen A Moore

    2007-04-01

    Specific surplus high enriched uranium (HEU) materials at the Idaho National Laboratory (INL) Materials and Fuels Complex (MFC) will be transferred to a designated off-site receiving facility. The DOE High Enriched Uranium Disposition Program Office (HDPO) will determine which materials, if any, will be prepared and transferred to an off-site facility for processing and eventual fabrication of fuel for nuclear reactors. These surplus HEU materials include approximately 7200 kg unirradiated sodium-bonded EBR-II driver fuel elements, and nearly 800 kg of HEU casting scrap from the process which formed various sodium-bonded fuels (including the EBR-II driver elements). Before the driver fuel can be packaged for shipment, the fuel elements will require removal of the sodium bond. The HEU scrap will also require repackaging in preparation for off-site transport. Preliminary work on this task was authorized by BWXT Y-12 on Nov 6, 2006 and performed in three areas: • Facility Modifications • Safety Documentation • Project Management

  6. Comparison of measured and calculated composition of irradiated EBR-II blanket assemblies.

    SciTech Connect

    Grimm, K. N.

    1998-07-13

    In anticipation of processing irradiated EBR-II depleted uranium blanket subassemblies in the Fuel Conditioning Facility (FCF) at ANL-West, it has been possible to obtain a limited set of destructive chemical analyses of samples from a single EBR-II blanket subassembly. Comparison of calculated values with these measurements is being used to validate a depletion methodology based on a limited number of generic models of EBR-II to simulate the irradiation history of these subassemblies. Initial comparisons indicate these methods are adequate to meet the operations and material control and accountancy (MC and A) requirements for the FCF, but also indicate several shortcomings which may be corrected or improved.

  7. Calculation of temperature coefficients of reactivity for EBR-II kinetic analyses

    SciTech Connect

    Meneghetti, D.; Kucera, D.A.

    1987-01-01

    Temperature coefficients of reactivity for use in coupled neutronics-thermohydraulics kinetics codes, as for example the EROS code used for Experimental Breeder Reactor-II (EBR-II) kinetic analyses, are both loading and problem-modeling sensitive. To enable appropriate temperature coefficients to be calculated for differing loading configurations and differing subassembly groupings in the kinetics analyses, an addition ((TEMCO) has been made to the EBRPOCO code. EBRPOCO calculates detailed axially-delineated contributions of the linear and Doppler components of the power-reactivity-decrement (PRD) for every subassembly and control rod location in an EBR-II configuration. This paper provides the results of the EBR-II kinetics analysis and lists the temperature coefficients of reactivity for varying subassembly types and conditions.

  8. Electrorefining Experience For Pyrochemical Reprocessing of Spent EBR-II Driver Fuel

    SciTech Connect

    S. X. Li; T. A. Johnson; B. R. Westphal; K. M. Goff; R. W. Benedict

    2005-10-01

    Pyrochemical processing has been implemented for the treatment of spent fuel from the Experimental Breeder Reactor-II (EBR-II) at Idaho National Laboratory since 1996. This report summarizes technical advancements made in electrorefining of spent EBR-II driver fuel in the Mk-IV electrorefiner since the pyrochemical processing was integrated into the AFCI program in 2002. The significant advancements include improving uranium dissolution and noble metal retention from chopped fuel segments, increasing cathode current efficiency, and achieving co-collection of zirconium along with uranium from the cadmium pool.

  9. Off-normal performance of EBR-II (Experimental Breeder Reactor) driver fuel

    SciTech Connect

    Seidel, B.R.; Batte, G.L.; Lahm, C.E.; Fryer, R.M.; Koenig, J.F.; Hofman, G.L.

    1986-09-01

    The off-normal performance of EBR-II Mark-II driver fuel has been more than satisfactory as demonstrated by robust reliability under repeated transient overpower and undercooled loss-of-flow tests, by benign run-beyond-cladding-breach behavior, and by forgiving response to fabrication defects including lack of bond. Test results have verified that the metallic driver fuel is very tolerant of off-normal events. This behavior has allowed EBR-II to operate in a combined steady-state and transient mode to provide test capability without limitation from the metallic driver fuel.

  10. Feedback-reactivity time-dependencies for a negative reactivity insertion in EBR-II

    SciTech Connect

    Grimm, K.N.; Meneghetti, D.

    1987-01-01

    Knowledge of time-dependencies (and magnitudes) of feedback components is necessary for interpretation and understanding of transient behaviors. Described herein is one analysis of negative insertion (approx. 36 cents) of a control rod from full power during Experimental Breeder Reactor-II (EBR-II) run 93a. The time-dependencies of the component feedbacks have been analyzed using 24 channels in the EROS computer code. Seventy distinct temperature coefficients of reactivity were used in conjunction with this 24-channel EBR-II model. These temperature coefficients of reactivity were obtained using an addition (TEMCO) to the EBRPOCO code.

  11. Fluence, dosimetry, and steel-dpa rates in EBR-II

    SciTech Connect

    Meneghetti, D.; Kucera, D.A.

    1984-01-01

    Sensitivities of steel displacements-per-atom (dpa) rates to fluence-rate spectra in regions of th Experimental Breeder Reactor II (EBR-II) are presented. Low sensitivities in EBR-II of ratios of dpa-to-fission rates assuming /sup 240/Pu as a dosimeter suggests its possible use for adjusting calculated dpa-rates for effects of errors in calculated fluence-spectra. Extension of the method to outer regions, having more degraded spectra, by use of /sup 10/B-shielded /sup 240/Pu dosimeters is also suggested.

  12. Calculation of temperature coefficients of reactivity for EBR-II kinetic analyses

    SciTech Connect

    Meneghetti, D.; Kucera, D.A.

    1987-01-01

    Temperature coefficients of reactivity for use in coupled neutronics-thermohydraulics kinetics codes, as for example the EROS code used for Experimental Breeder Reactor-II (EBR-II) kinetic analyses are both loading and problem-modeling sensitive. To enable appropriate temperature coefficients to be calculated for differing loading configurations and differing subassembly groupings in the kinetics analyses, an addition (TEMCO) has been made to the EBRPOCO code. EBRPOCO calculates detailed axially delineated contributions of the linear and Doppler components of the power-reactivity-decrement (PRD) for every subassembly and control rod location in an EBR-II configuration.

  13. Behavior of EBR-II Mk-V-type fuel elements in simulated loss-of-flow tests

    SciTech Connect

    Liu, Y.Y.; Tsai, H.; Billone, M.C.; Holland, J.W.; Kramer, J.M. )

    1992-11-01

    This report discusses three furnace heating tests which were conducted with irradiated, HT9-clad and U-19wt.%Pu-l0wt.%Zr-alloy fuel, Mk-V-type fuel elements in the Alpha-Gamma Hot Cell Facility at Argonne National Laboratory, Illinois. In general, very significant safety margins for fuel-element cladding breaching have been demonstrated in these tests, under conditions that would envelop a bounding unlikely loss-of-flow event in EBR-II. Highlights of the test results will be given, as well as discussions of the cladding breaching mechanisms, axial fuel motion, and fuel surface liquefaction found in high-temperature testing of irradiated metallic fuel elements.

  14. Development of a graphical user interface allowing use of the SASSYS LMR systems analysis code as an EBR-II interactive simulator

    SciTech Connect

    Garner, P.L.; Briggs, L.L.; Gross, K.C.; Ku, J.Y.; Staffon, J.D.

    1994-03-01

    The SASSYS computer program for safety analyses of liquid-metal- cooled fast reactors has been adapted for use as the simulation engine under the graphical user interface provided by the GRAFUN and HIST programs and the Data Views software package under the X Window System on UNIX-based computer workstations to provide a high fidelity, real-time, interactive simulator of the Experimental Breeder Reactor Number II (EBR-II) plant. In addition to providing analysts with an interactive way of performing safety case studies, the simulator can be used to investigate new control room technologies and to supplement current operator training.

  15. Current status of experimental breeder reactor-II [EBR-II] shutdown planning

    SciTech Connect

    McDermott, M. D.; Griffin, C. D.; Michelbacher, J. A.; Earle, O. K.

    2000-05-08

    The Experimental Breeder Reactor--II (EBR-II) at Argonne National Laboratory--West (ANL-W) in Idaho, was shutdown in September, 1994 as mandated by the US Department of Energy. This sodium cooled reactor had been in service since 1964, and was to be placed in an industrially and radiologically safe condition for ultimate decommissioning. The deactivation of a liquid metal reactor presents unique concerns. The first major task associated with the project was the removal of all fueled assemblies. In addition, sodium must be drained from systems and processed for ultimate disposal. Residual quantities of sodium remaining in systems must be deactivated or inerted to preclude future hazards associated with pyrophoricity and generation of potentially explosive hydrogen gas. A Sodium Process Facility was designed and constructed to react the elemental sodium from the EBR-II primary and secondary systems to sodium hydroxide for disposal. This facility has a design capacity to allow the reaction of the complete inventory of sodium at ANL-W in less than two years. Additional quantities of sodium from the Fermi-1 reactor are also being treated at the Sodium Process Facility. The sodium environment and the EBR-II configuration, combined with the radiation and contamination associated with thirty years of reactor operation, posed problems specific to liquid metal reactor deactivation. The methods being developed and implemented at EBR-II can be applied to other similar situations in the US and abroad.

  16. Subtask 12H1: Vanadium alloy irradiation experiment X530 in EBR-II

    SciTech Connect

    Tsai, H.; Strain, R.V.; Hins, A.G.; Chung, H.M.; Nowicki, L.J.; Smith, D.L.

    1995-03-01

    The objective of the X530 experiment in EBR-II was to obtain early irradiation performance data, particularly the fracture properties, on the new 500-kg production heat of V-4Cr-4Ti material before the scheduled reactor shutdown at the end of September 1994. To obtain early irradiation performance data on the new 500-kg production heat of the V-4Cr-4Ti material before the scheduled EBR-II shutdown, an experiment, X530, was expeditiously designed and assembled. Charpy, compact tension, tensile and TEM specimens with different thermal mechanical treatments (TMTs), were enclosed in two capsules and irradiated in the last run of EBR-II, Run 170, from August 9 through September 27. For comparison, specimens from some of the previous heats were also included in the test. The accrued exposure was 35 effective full power days, yielding a peak damage of {approx}4 dpa in the specimens. The irradiation is now complete and the vehicle is awaiting to be discharged from EBR-II for postirradiation disassembly. 4 figs., 2 tabs.

  17. Vanadium alloy irradiation experiment X530 in EBR-II{sup *}

    SciTech Connect

    Tsai, H.; Strain, R.V.; Hins, A.G.

    1995-04-01

    The objective of the X530 experiment in EBR-II was to obtain early irradiation performance data, particularly the fracture properties, on the new 500-kg production heat of V-4Cr-4Ti material before the scheduled reactor shutdown at the end of September 1994.

  18. Tritium Producing Burnable Absorber Rod and Its Inherent Safety Features

    SciTech Connect

    Reid, Bruce D.; Lanning, Donald D.

    2000-06-24

    Description of the Tritium-producing burnable absorber rods (TPBARs) used in the U.S. Department of Energy's Commercial Light Water Reactor (CLWR) Project and a discussion of their inherent safety features.

  19. Technical Information on the Carbonation of the EBR-II Reactor, Summary Report Part 2: Application to EBR-II Primary Sodium System and Related Systems

    SciTech Connect

    Steven R. Sherman; Collin J. Knight

    2006-03-01

    Residual sodium is defined as sodium metal that remains behind in pipes, vessels, and tanks after the bulk sodium metal has been melted and drained from such components. The residual sodium has the same chemical properties as bulk sodium, and differs from bulk sodium only in the thickness of the sodium deposit. Typically, sodium is considered residual when the thickness of the deposit is less than 5-6 cm. This residual sodium must be removed or deactivated when a pipe, vessel, system, or entire reactor is permanently taken out of service, in order to make the component or system safer and/or to comply with decontamination and decomissioning regulations. As an alternative to the established residual sodium deactivation techniques (steam-and-nitrogen, wet vapor nitrogen, etc.), a technique involving the use of moisture and carbon dioxide has been developed. With this technique, sodium metal is converted into sodium bicarbonate by reacting it with humid carbon dioxide. Hydrogen is emitted as a by-product. This technique was first developed in the laboratory by exposing sodium samples to humidifed carbon dioxide under controlled conditions, and then demonstrated on a larger scale by treating residual sodium within the Experimental Breeder Reactor II (EBR-II) secondary cooling system, followed by the primary cooling system, respectively. The EBR-II facility is located at the Idaho National Laboratory (INL) in southeastern Idaho, USA. This report is Part 2 of a two-part report. This second report provides a supplement to the first report and describes the application of the humdidified carbon dioxide technique ("carbonation") to the EBR-II primary tank, primary cover gas systems, and the intermediate heat exchanger. Future treatment plans are also provided.

  20. Technical Information on the Carbonation of the EBR-II Reactor, Summary Report Part 1: Laboratory Experiments and Application to EBR-II Secondary Sodium System

    SciTech Connect

    Steven R. Sherman

    2005-04-01

    Residual sodium is defined as sodium metal that remains behind in pipes, vessels, and tanks after the bulk sodium metal has been melted and drained from such components. The residual sodium has the same chemical properties as bulk sodium, and differs from bulk sodium only in the thickness of the sodium deposit. Typically, sodium is considered residual when the thickness of the deposit is less than 5-6 cm. This residual sodium must be removed or deactivated when a pipe, vessel, system, or entire reactor is permanently taken out of service, in order to make the component or system safer and/or to comply with decommissioning regulations. As an alternative to the established residual sodium deactivation techniques (steam-and-nitrogen, wet vapor nitrogen, etc.), a technique involving the use of moisture and carbon dioxide has been developed. With this technique, sodium metal is converted into sodium bicarbonate by reacting it with humid carbon dioxide. Hydrogen is emitted as a by-product. This technique was first developed in the laboratory by exposing sodium samples to humidified carbon dioxide under controlled conditions, and then demonstrated on a larger scale by treating residual sodium within the Experimental Breeder Reactor II (EBR-II) secondary cooling system, followed by the primary cooling system, respectively. The EBR-II facility is located at the Idaho National Laboratory (INL) in southeastern Idaho, U.S.A. This report is Part 1 of a two-part report. It is divided into three sections. The first section describes the chemistry of carbon dioxide-water-sodium reactions. The second section covers the laboratory experiments that were conducted in order to develop the residual sodium deactivation process. The third section discusses the application of the deactivation process to the treatment of residual sodium within the EBR-II secondary sodium cooling system. Part 2 of the report, under separate cover, describes the application of the technique to residual sodium

  1. Thermal-hydraulic-structural behavior of the EBR-II IHX for overpower transients

    SciTech Connect

    Mohr, D.; Chang, L.K.; Lee, M.J.; Feldman, E.E.

    1982-01-01

    A detailed study has been made of the effects of the Operational Reliability Testing (ORT) program on major plant components of the Experimental Breeder Reactor No. II (EBR-II). This paper describes the integrated thermal-hydraulic-structural analyses conducted for the intermediate heat exchanger (IHX) with the aid of the NATDEMO, THTB, and ANSYS codes. An extensive analysis revealed the stress limiting area to be the junction between the upper head and upper tube sheet. The analyses indicate, however, that the EBR-II IHX, the major plant component most affected by the ORT program, will be able to withstand the thermal stress and accumulated fatigue damage during the lifetime of the plant including the ORT program.

  2. Unprotected loss-of-heat sink simulation in the EBR-II plant

    SciTech Connect

    Feldman, E.E.; Mohr, D.

    1984-01-01

    Two unprotected loss-of-heat sink transients initiated from near full power conditions in the Experimental Breeder Reactor-II (EBR-II) plant have been simulated. In one transient the secondary sodium flow is reduced to nearly zero (0.5% of its initial value) while in the other the flow simply coasts down to a natural-convective rate of about 8%. In spite of the large difference in primary heat removal rates, which the difference in secondary flow rates represents, both transients have very similar overall behavior. In addition, the large volume of sodium in the primary tank causes a slowly rising tank temperature in response to net heat addition. An important result is that the negative reactivity feedback characteristics of the reactor cause it to shut itself down in a benign manner in both cases. Experiments based on these simulations are planned for the EBR-II in 1985.

  3. Analysis of EBR-II neutron and photon physics by multidimensional transport-theory techniques

    SciTech Connect

    Jacqmin, R.P.; Finck, P.J.; Palmiotti, G.

    1994-03-01

    This paper contains a review of the challenges specific to the EBR-II core physics, a description of the methods and techniques which have been developed for addressing these challenges, and the results of some validation studies relative to power-distribution calculations. Numerical tests have shown that the VARIANT nodal code yields eigenvalue and power predictions as accurate as finite difference and discrete ordinates transport codes, at a small fraction of the cost. Comparisons with continuous-energy Monte Carlo results have proven that the errors introduced by the use of the diffusion-theory approximation in the collapsing procedure to obtain broad-group cross sections, kerma factors, and photon-production matrices, have a small impact on the EBR-II neutron/photon power distribution.

  4. Electrochemical Dissolution of Spent EBR-II Driver Fuel in Molten Salt Electrolyte

    SciTech Connect

    S. X. Li; D. Vaden; R. W. Benedict; K. M. Goff

    2006-06-01

    Pyrochemical processing is a promising technology for closing the nuclear fuel cycle for next generation nuclear reactors. At Idaho National Laboratory (INL), such a pyrochemical process has been implemented for the treatment of spent fuel from the Experimental Breeder Reactor (EBR-II). A successful demonstration of the technology was performed from 1996 to 1999 for the Department of Energy (DOE). Since 2002, processing of the spent fuel and associated research and development activities have been carried out under DOE’s Advanced Fuel Cycle Initiative (AFCI) program. Electrorefining is considered to be the signature or central technology for pyrochemical processing. This paper summarizes recent experience and results in electrorefining, specifically focusing on electrochemical dissolution of spent EBR-II driver fuel in the Mark-IV (Mk-IV) electrorefiner (ER).

  5. Experimental and calculational analyses of actinide samples irradiated in EBR-II

    SciTech Connect

    Gilai, D.; Williams, M.L.; Cooper, J.H.; Laing, W.R.; Walker, R.L.; Raman, S.; Stelson, P.H.

    1982-10-01

    Higher actinides influence the characteristics of spent and recycled fuel and dominate the long-term hazards of the reactor waste. Reactor irradiation experiments provide useful benchmarks for testing the evaluated nuclear data for these actinides. During 1967 to 1970, several actinide samples were irradiated in the Idaho EBR-II fast reactor. These samples have now been analyzed, employing mass and alpha spectrometry, to determine the heavy element products. A simple spherical model for the EBR-II core and a recent version of the ORIGEN code with ENDF/B-V data were employed to calculate the exposure products. A detailed comparison between the experimental and calculated results has been made. For samples irradiated at locations near the core center, agreement within 10% was obtained for the major isotopes and their first daughters, and within 20% for the nuclides up the chain. A sensitivity analysis showed that the assumed flux should be increased by 10%.

  6. SASSYS-1 computer code verification with EBR-II test data

    SciTech Connect

    Warinner, D.K.; Dunn, F.E.

    1985-01-01

    The EBR-II natural circulation experiment, XX08 Test 8A, is simulated with the SASSYS-1 computer code and the results for the latter are compared with published data taken during the transient at selected points in the core. The SASSYS-1 results provide transient temperature and flow responses for all points of interest simultaneously during one run, once such basic parameters as pipe sizes, initial core flows, and elevations are specified. The SASSYS-1 simulation results for the EBR-II experiment XX08 Test 8A, conducted in March 1979, are within the published plant data uncertainties and, thereby, serve as a partial verification/validation of the SASSYS-1 code.

  7. Evidence of fast non-linear feedback in EBR-II rod-drop measurements

    SciTech Connect

    Grimm, K.N.; Meneghetti, D.

    1987-06-01

    Feedback reactivities determine the time dependence of a reactor during and after a transient initiating event. Recent analysis of control-rod drops in the Experimental Breeder Reactor II (EBR-II) Reactor has indicated that some relatively fast feedback may exist which cannot be accounted for by the linear feedback mechanisms. The linear and deduced non-linear feedback reactivities from a control-rod drop in EBR-II run 93A using detailed temperature coefficients of reactivity in the EROS kinetics code have been reported. The transient analyses have now been examined in more detail for times close to the drop to ascertain if additional positive reactivity is being built-in early in the drop which could be gradually released later in the drop.

  8. Time constants and feedback transfer functions of EBR-II (Experimental Breeder Reactor) subassembly types

    SciTech Connect

    Grimm, K.N.; Meneghetti, D.

    1986-09-01

    Time constants, feedback reactivity transfer functions and power coefficients are calculated for stereotypical subassemblies in the EBR-II reactor. These quantities are calculated from nodal reactivities obtained from a reactor kinetic code analysis for a step change in power. Due to the multiplicity of eigenvalues, there are several time constants for each nodal position in a subassembly. Compared with these calculated values are analytically derived values for the initial node of a given channel.

  9. EBR-II argon cooling system restricted fuel handling I and C upgrade

    SciTech Connect

    Start, S.E.; Carlson, R.B.; Gehrman, R.L.

    1995-06-01

    The instrumentation and control of the Argon Cooling System (ACS) restricted fuel handling control system at Experimental Breeder Reactor II (EBR-II) is being upgraded from a system comprised of many discrete components and controllers to a computerized system with a graphical user interface (GUI). This paper describes the aspects of the upgrade including reasons for the upgrade, the old control system, upgrade goals, design decisions, philosophies and rationale, and the new control system hardware and software.

  10. Feasibility of Ground Testing a Moon and Mars Surface Power Reactor in EBR-II

    SciTech Connect

    Sheryl Morton; Carl Baily; Tom Hill; Jim Werner

    2006-02-01

    Ground testing of a surface fission power system would be necessary to verify the design and validate reactor performance to support safe and sustained human exploration of the Moon and Mars. The Idaho National Laboratory (INL) has several facilities that could be adapted to support a ground test. This paper focuses on the feasibility of ground testing at the Experimental Breeder Reactor II (EBR-II) facility and using other INL existing infrastructure to support such a test. This brief study concludes that the INL EBR-II facility and supporting infrastructure are a viable option for ground testing the surface power system. It provides features and attributes that offer advantages to locating and performing ground testing at this site, and it could support the National Aeronautics and Space Administration schedules for human exploration of the Moon. This study used the initial concept examined by the U.S. Department of Energy Inter-laboratory Design and Analysis Support Team for surface power, a lowtemperature, liquid-metal, three-loop Brayton power system. With some facility modification, the EBR-II can safely house a test chamber and perform long-term testing of the space reactor power system. The INL infrastructure is available to receive and provide bonded storage for special nuclear materials. Facilities adjacent to EBR-II can provide the clean room environment needed to assemble and store the test article assembly, disassemble the power system at the conclusion of testing, and perform posttest examination. Capability for waste disposal is also available at the INL.

  11. Feasibility of Ground Testing a Moon and Mars Surface Power Reactor in EBR-II

    SciTech Connect

    Morton, Sheryl L.; Baily, Carl E.; Hill, Thomas J.; Werner, James E.

    2006-01-20

    Ground testing of a surface fission power system would be necessary to verify the design and validate reactor performance to support safe and sustained human exploration of the Moon and Mars. The Idaho National Laboratory (INL) has several facilities that could be adapted to support a ground test. This paper focuses on the feasibility of ground testing at the Experimental Breeder Reactor II (EBR-II) facility and using other INL existing infrastructure to support such a test. This brief study concludes that the INL EBR-II facility and supporting infrastructure are a viable option for ground testing the surface power system. It provides features and attributes that offer advantages to locating and performing ground testing at this site, and it could support the National Aeronautics and Space Administration schedules for human exploration of the Moon. This study used the initial concept examined by the U.S. Department of Energy Inter-laboratory Design and Analysis Support Team for surface power, a low-temperature, liquid-metal, three-loop Brayton power system. With some facility modification, the EBR-II can safely house a test chamber and perform long-term testing of the space reactor power system. The INL infrastructure is available to receive and provide bonded storage for special nuclear materials. Facilities adjacent to EBR-II can provide the clean room environment needed to assemble and store the test article assembly, disassemble the power system at the conclusion of testing, and perform posttest examination. Capability for waste disposal is also available at the INL.

  12. Feasibility of Ground Testing a Moon and Mars Surface Power Reactor in EBR-II

    NASA Astrophysics Data System (ADS)

    Morton, Sheryl L.; Baily, Carl E.; Hill, Thomas J.; Werner, James E.

    2006-01-01

    Ground testing of a surface fission power system would be necessary to verify the design and validate reactor performance to support safe and sustained human exploration of the Moon and Mars. The Idaho National Laboratory (INL) has several facilities that could be adapted to support a ground test. This paper focuses on the feasibility of ground testing at the Experimental Breeder Reactor II (EBR-II) facility and using other INL existing infrastructure to support such a test. This brief study concludes that the INL EBR-II facility and supporting infrastructure are a viable option for ground testing the surface power system. It provides features and attributes that offer advantages to locating and performing ground testing at this site, and it could support the National Aeronautics and Space Administration schedules for human exploration of the Moon. This study used the initial concept examined by the U.S. Department of Energy Inter-laboratory Design and Analysis Support Team for surface power, a low-temperature, liquid-metal, three-loop Brayton power system. With some facility modification, the EBR-II can safely house a test chamber and perform long-term testing of the space reactor power system. The INL infrastructure is available to receive and provide bonded storage for special nuclear materials. Facilities adjacent to EBR-II can provide the clean room environment needed to assemble and store the test article assembly, disassemble the power system at the conclusion of testing, and perform posttest examination. Capability for waste disposal is also available at the INL.

  13. Planning for closure and deactivation of the EBR-II complex

    SciTech Connect

    Michelbacher, J.A.; Henslee, S.P.; Poland, H.F.; Wells, P.B.

    1997-07-01

    In January 1994, DOE terminated the Integral Fast Reactor (IFR) Program. Argonne National Laboratory-West (ANL-W) prepared a detailed plan to put Experimental Breeder Reactor-II (EBR-II) in a safe condition, including removal of irradiated fueled subassemblies from the plant, transfer of subassemblies, and removal and stabilization of primary and secondary sodium liquid heat transfer metal. The goal of deactivation is to stabilize the EBR-II complex until decontamination and decommissioning (D&D) is implemented, thereby minimizing maintenance and surveillance. Deactivation of a sodium cooled reactor presents unique concerns. Residual sodium in the primary and secondary systems must be either reacted or inerted to preclude concerns with explosive sodium-air reactions. Also, residual sodium on components will effectively solder these items in place, making removal unfeasible. Several special cases reside in the primary system, including primary cold traps, a cesium trap, a cover gas condenser, and systems containing sodium-potassium alloy. The sodium or sodium-potassium alloy in these components must be reacted in place or the components removed. The Sodium Components Maintenance Shop at ANL-W provides the capability for washing primary components, removing residual quantities of sodium while providing some decontamination capacity. Considerations need to be given to component removal necessary for providing access to primary tank internals for D&D activities, removal of hazardous materials, and removal of stored energy sources. ANL-W`s plan for the deactivation of EBR-II addresses these issues, providing for an industrially and radiologically safe complex, requiring minimal surveillance during the interim period between deactivation and D&D. Throughout the deactivation and closure of the EBR-II complex, federal environmental concerns will be addressed, including obtaining the proper permits for facility condition and waste processing and disposal. 2 figs.

  14. Evidence of fast nonlinear feedback in EBR-II rod-drop measurements

    SciTech Connect

    Grimm, K.N.; Meneghetti, D.

    1987-01-01

    Feedback reactivities determine the time dependence of a reactor during and after a transient initiating event. Recent analysis of control-rod drops in the Experimental Breeder Reactor II (EBR-II) has indicated that some relatively fast feedback may exist that cannot be accounted for by the linear feedback mechanisms. The magnitude of the positive insertion appears dependent on the amount of inserted reactivity and the run configuration. This phenomenon may be caused by a small, but rapid, change in core dimensions.

  15. IFR fuel cycle demonstration in the EBR-II Fuel Cycle Facility

    SciTech Connect

    Lineberry, M.J.; Phipps, R.D.; Rigg, R.H.; Benedict, R.W.; Carnes, M.D. ); Herceg, J.E.; Holtz, R.E. )

    1991-01-01

    The next major milestone of the IFR program is engineering-scale demonstration of the pyroprocess fuel cycle. The EBR-II Fuel Cycle Facility has just entered a startup phase which includes completion of facility modifications, and installation and cold checkout of process equipment. This paper reviews the design and construction of the facility, the design and fabrication of the process equipment, and the schedule and initial plan for its operation. 5 refs., 4 figs.

  16. Delineations of power and power-to-flow feedback components of EBR-II

    SciTech Connect

    Meneghetti, D.; Kucera, D.A.

    1986-01-01

    The detailed contributions of feedback components by regions for various experimental breeder reactor-II (EBR-II) configurations have been reported assuming given values for the coolant flows. The separation of these components into power dependent and power-to-flow dependent parts if reported here for EBR-II run 93A. The power-reactivity-decrement (PRD) can then be expressed as the sum of parts which enables the PRD for other values of coolant flow to be estimated. The delineations of the components also enhance the understanding of the contributions of the various components and regions in the feedback process in EBR-II. Separation of the components into power and power-to-flow delineations were made by calculations of the components of the PRD assuming infinite coolant flow and comparing with results previously reported for finite flow. Subtractions of the infinite-flow feedback values from the corresponding finite-flow values give the power-to-flow portions. These linear and Doppler components of the PRDs were calculated using the EBRPOCO program together with an addition to the program (RODCO) which accounts for the effects of axial positionings of control rods.

  17. Inherent safety key performance indicators for hydrogen storage systems.

    PubMed

    Landucci, Gabriele; Tugnoli, Alessandro; Cozzani, Valerio

    2008-11-30

    The expected inherent safety performance of hydrogen storage technologies was investigated. Reference schemes were defined for alternative processes proposed for hydrogen storage, and several storage potentialities were considered. The expected safety performance of alternative process technologies was explored estimating key performance indicators based on consequence assessment and credit factors of possible loss of containment events. The results indicated that the potential hazard is always lower for the innovative technologies proposed for hydrogen storage, as metal or complex hydrides. This derived mainly from the application of the inherent safety principles of "substitution" and "moderation", since in these processes hydrogen is stored as a less hazardous hydride. However, the results also evidenced that in the perspective of an industrial implementation of these technologies, the reliability of the auxiliary equipment will be a critical issue to be addressed.

  18. EBR-II facility for cleaning and maintenance of LMR components

    SciTech Connect

    Washburn, R.A.

    1986-01-01

    The cleaning and maintenance of EBR-II sodium wetted components is accomplished in a separate hands-on maintenance facility known as the Sodium Components Maintenance Shop (SCMS). Sodium removal is mostly done using alcohol but steam or water is used. The SCMS has three alcohol cleaning systems: one for small nonradioactive components, one for small radioactive components, and one for large radioactive components. The SCMS also has a water-wash station for the removal of sodium with steam or water. An Alcohol Recovery Facility removes radioactive contaminants from the alcohol and reclaims the alcohol for reuse. Associated with the large components cleaning system is a major component handling system.

  19. Bowing-reactivity trends in EBR-II assuming zero-swelling ducts

    SciTech Connect

    Meneghetti, D.

    1994-03-01

    Predicted trends of duct-bowing reactivities for the Experimental Breeder Reactor II (EBR-II) are correlated with predicted row-wise duct deflections assuming use of idealized zero-void-swelling subassembly ducts. These assume no irradiation induced swellings of ducts but include estimates of the effects of irradiation-creep relaxation of thermally induced bowing stresses. The results illustrate the manners in which at-power creeps may affect subsequent duct deflections at zero power and thereby the trends of the bowing component of a subsequent power reactivity decrement.

  20. EBR-II time constant calculation using the EROS kinetics code

    SciTech Connect

    Grimm, K.N.; Meneghetti, D.

    1986-01-01

    System time constants are important parameters in determining the dynamic behavior of reactors. One method of determining basic time constants is to apply a step change in power level and determine the resulting temperature change. This methodology can be done using any computer code that calculates temperature versus time given either a power input or a reactivity input. In the current analysis this is done using the reactor kinetics code EROS. As an example of this methodology, the time constant is calculated for an Experimental Breeder Reactor II (EBR-II) fuel pin.

  1. A probabilistic method for evaluating reactivity feedbacks and its application to EBR-II

    SciTech Connect

    Schaefer, R.W.

    1991-01-01

    The probability that reactivity feedbacks fail to prevent damage is computed by propagating data and modeling uncertainties through transient calculations, with these uncertainties being constrained by experimental evidence. Screening processes are used to identify the most important parameters and accident initiators. The response surface method is used to facilitate the error propagation and a Monte Carlo rejection technique is used to force the parameter variations to be consistent with the observed distribution of experimental quantities. The reliability of the failure probability estimates is evaluated. This process is applied to ATWS events in the PRA for the EBR-II reactor. The loss-of-normal-power (LONP), loss-of-flow and transient overpower accidents without scram were found to warrant detailed analysis and a complete analysis has been made for the first of these. Six parameters are primarily responsible for the LONP outcome variations. The conditional probability of minor core damage from LONP without scram is 1.2 {times} 10{sup {minus}2}. The uncertainty in this estimate is a factor of 2. This damage estimate would be an order of magnitude higher if experimental information about feedbacks in EBR-II was not used. the conditional probability of major core damage from LONP without scram is <10{sup {minus}6}. 20 refs., 1 fig., 3 tabs.

  2. Breached fuel pin contamination from Run Beyond Cladding Breach (RBCB) tests in EBR-II

    SciTech Connect

    Colburn, R.P.; Strain, R.V.; Lambert, J.D.B.; Ukai, S.; Shibahara, I.

    1988-09-01

    Studies indicate there may be a large economic incentive to permit some continued reactor operation with breached fuel pin cladding. A major concern for this type of operation is the potential spread of contamination in the primary coolant system and its impact on plant maintenance. A study of the release and transport of contamination from naturally breached mixed oxide Liquid Metal Reactor (LMR) fuel pins was performed as part of the US Department of Energy/Power Reactor and Nuclear Fuel Development Corporation (DOE/PNC) Run Beyond Cladding Breach (RBCB) Program at EBR-II. The measurements were made using the Breached Fuel Test Facility (BFTF) at EBR-II with replaceable deposition samplers located approximately 1.5 meters from the breached fuel test assemblies. The effluent from the test assemblies containing the breached fuel pins was routed up through the samplers and past dedicated instrumentation in the BFTF before mixing with the main coolant flow stream. This paper discusses the first three contamination tests in this program. 2 refs., 5 figs., 2 tabs.

  3. The EBR-II materials-surveillance program. 4: Results of SURV-4 and SURV-6

    SciTech Connect

    Ruther, W.E.; Hayner, G.O.; Carlson, B.G.; Ebersole, E.R.; Allen, T.R.

    1998-01-01

    In March of 1965, a set of surveillance (SURV) samples was placed in the EBR-II reactor to determine the effect of irradiation, thermal aging, and sodium corrosion on reactor materials. Eight subassemblies were placed into row 12 positions of EBR-II to determine the effect of irradiation at 370 C. Two subassemblies were placed into the primary sodium basket to determine the effect of thermal aging at 370 C. For both the irradiated and thermally aged samples, one half of all samples were exposed to primary system sodium while one half were sealed in capsules with a helium atmosphere. Fifteen different structural materials were tested in the SURV program. In addition to the fifteen types of metal samples, graphite blocks were irradiated in the SURV subassemblies to determine the effect of irradiation on the graphite neutron shield. In this report, the properties of these materials irradiated at 370 C to a total fluence of 2.2 x 10{sup 22} n/cm{sup 2} (over 2,994 days) are compared with those of similar specimens thermally aged at 370 C for 2,994 days in the storage basket of the reactor. The properties analyzed were weight, density, microstructure, hardness, tensile and yield strength, impact strength, and creep.

  4. Power and power-to-flow reactivity transfer functions in EBR-II (Experimental Breeder Reactor II) fuel

    SciTech Connect

    Grimm, K.N.; Meneghetti, D. )

    1989-11-01

    Reactivity transfer functions are important in determining the reactivity history during a power transient. Overall nodal transfer functions have been calculated for different subassembly types in the Experimental Breeder Reactor II (EBR-II). Steady-state calculations for temperature changes and, hence, reactivities for power changes have been separated into power and power-to-flow-dependent terms. Axial nodal transfer functions separated into power and power-to-flow-dependent components are reported in this paper for a typical EBR-II fuel pin. This provides an improved understanding of the time dependence of these components in transient situations.

  5. A simple graphical method for measuring inherent safety.

    PubMed

    Gupta, J P; Edwards, David W

    2003-11-14

    Inherently safer design (ISD) concepts have been with us for over two decades since their elaboration by Kletz [Chem. Ind. 9 (1978) 124]. Interest has really taken off globally since the early nineties after several major mishaps occurred during the eighties (Bhopal, Mexico city, Piper-alfa, Philips Petroleum, to name a few). Academic and industrial research personnel have been actively involved into devising inherently safer ways of production. The regulatory bodies have also shown deep interest since ISD makes the production safer and hence their tasks easier. Research funding has also been forthcoming for new developments as well as for demonstration projects.A natural question that arises is as to how to measure ISD characteristics of a process? Several researchers have worked on this [Trans. IChemE, Process Safety Environ. Protect. B 71 (4) (1993) 252; Inherent safety in process plant design, Ph.D. Thesis, VTT Publication Number 384, Helsinki University of Technology, Espoo, Finland, 1999; Proceedings of the Mary Kay O'Connor Process Safety Center Symposium, 2001, p. 509]. Many of the proposed methods are very elegant, yet too involved for easy adoption by the industry which is scared of yet another safety analysis regime. In a recent survey [Trans. IChemE, Process Safety Environ. Prog. B 80 (2002) 115], companies desired a rather simple method to measure ISD. Simplification is also an important characteristic of ISD. It is therefore desirable to have a simple ISD measurement procedure. The ISD measurement procedure proposed in this paper can be used to differentiate between two or more processes for the same end product. The salient steps are: Consider each of the important parameters affecting the safety (e.g., temperature, pressure, toxicity, flammability, etc.) and the range of possible values these parameters can have for all the process routes under consideration for an end product. Plot these values for each step in each process route and compare. No

  6. Comparisons of PRD (power-reactivity-decrements) components for various EBR-II configurations

    SciTech Connect

    Meneghetti, D.; Kucera, D.A.

    1986-09-19

    Comparison of detailed calculations of contributions by region and component of the power-reactivity-decrements (PRD) for four differing loading configurations of the Experimental Breeder Reactor-II (EBR-II) are given. The linear components and Doppler components are calculated. The non-linear (primarily subassembly bowing) components are deduced by differences relative to measured total PRD values. Variations in linear components range from about 10% to as much as about 100% depending upon the component. The deduced non-linear components differ both in magnitude and sign as functions of reactor power. Effects of differing assumptions of the nature of the fuel-to-clad interactions upon the PRD components are also calculated.

  7. EBR-II secondary sodium loop Plugging Temperature Indicator control system upgrade

    SciTech Connect

    Carlson, R.B.; Gehrman, R.L.

    1995-06-01

    The Experimental Breeder Reactor II (EBR-II) secondary sodium coolant loop Plugging Temperature Indicator (PTI) control system was upgraded in 1993 to a real-time computer based system. This was done to improve control, to remove obsolete and high maintenance equipment, and to provide a graphical CRT based operator interface. A goal was to accomplish this inexpensively using small, reliable computer and display hardware with a minimum of purchased software. This paper describes the PTI system, the upgraded control system and its operator interface, and development methods and tools. The paper then assesses how well the system met its goals, discusses lessons learned and operational improvements noted, and provides some recommendations and suggestions on applying small real-time control systems of this type.

  8. EBR-II Static Neutronic Calculations by PHISICS / MCNP6 codes

    SciTech Connect

    Paolo Balestra; Carlo Parisi; Andrea Alfonsi

    2016-02-01

    The International Atomic Energy Agency (IAEA) launched a Coordinated Research Project (CRP) on the Shutdown Heat Removal Tests (SHRT) performed in the '80s at the Experimental fast Breeder Reactor EBR-II, USA. The scope of the CRP is to improve and validate the simulation tools for the study and the design of the liquid metal cooled fast reactors. Moreover, training of the next generation of fast reactor analysts is being also considered the other scope of the CRP. In this framework, a static neutronic model was developed, using state-of-the art neutron transport codes like SCALE/PHISICS (deterministic solution) and MCNP6 (stochastic solution). Comparison between both solutions is briefly illustrated in this summary.

  9. Expert system applications in support of system diagnostics and prognostics at EBR-II

    SciTech Connect

    Lehto, W.K.; Gross, K.C.; Argonne National Lab., IL )

    1989-01-01

    Expert systems have been developed to aid in the monitoring and diagnostics of the Experimental Breeder Reactor-II (EBR-II) at the Idaho National Engineering Laboratory (INEL) in Idaho Falls, Idaho. Systems have been developed for failed fuel surveillance and diagnostics and reactor coolant pump monitoring and diagnostics. A third project is being done jointly by ANL-W and EG G Idaho to develop a transient analysis system to enhance overall plant diagnostic and prognostic capability. The failed fuel surveillance and diagnosis system monitors, processes, and interprets information from nine key plant sensors. It displays to the reactor operator diagnostic information needed to make proper decisions regarding technical specification conformance during reactor operation with failed fuel. 8 refs., 9 figs., 2 tabs.

  10. Morphologies of uranium deposits produced during electrorefining of EBR-II spent nuclear fuel

    SciTech Connect

    Totemeier, T. C.

    2000-02-15

    The morphologies of U metal samples from deposits produced by electrorefining of Experimental Breeder Reactor-II (EBR-II) spent fuel were examined using scanning electron microscopy, energy- and wavelength-dispersive X-ray spectroscopy, and metallography. The morphologies were analyzed to find correlations with the chemistry of the samples, the ER run conditions, and the deposit performance. A rough correlation was observed between morphology and Zr concentration; samples with Zr contents greater than approximately 200 ppm showed fine-grained, polycrystalline dendritic morphologies, while samples with Zr contents less than approximately 100 ppm were comprised of agglomerations or linked chains of rhomboidal single crystals. There were few correlations found between morphology, run conditions, and deposit performance.

  11. Extended overpower transient testing of LMFBR oxide pins in EBR-II

    SciTech Connect

    Tsai, H.; Neimark, L.A.; Tani, S.; Shibahara, I.

    1985-01-01

    As part of a joint effort between the Power Reactor and Nuclear Fuel Development Corporation of Japan and the US Department of Energy, a series of five extended slow overpower transient tests are being conducted in the Experimental Breeder Reactor-II (EBR-II) on preirradiated mixed oxide fuel and blanket pins. In the first two tests conducted in the series, fuel and blanket pins were subjected to a 0.1%/s power ramp to approx. 60% overpower before the transient termination. None of the test pins breached during the transient. A significant cladding breaching margin over the normal PPS trip setting of approx. 12 to 15% was thus demonstrated for the 0.1%/s ramp. The transient-induced pin cladding strains, caused principally by fuel-cladding mechanical interaction, were small but measurable.

  12. Performance of commercially produced mixed-oxide fuels in EBR-II

    SciTech Connect

    Hales, J.W.; Lawrence, L.A.

    1980-11-01

    Commercially produced fuels for the Fast Flux Test Facility (FFTF) were irradiated in EBR-II under conditions of high cladding temperature (approx. 700/sup 0/C) and low power (approx. 200 W/cm) to verify that manufacturing processes did not introduce variables which significantly affect general fuel performance. Four interim examinations and a terminal examination were completed to a peak burnup of 5.2 at. % to provide irradiation data pertaining to fuel restructuring and dimensional stability at low fuel temperature, fuel-cladding reactions at high cladding temperature and general fuel behavior. The examinations indicate completely satisfactory irradiation performance for low heat rates and high cladding temperatures to 5.2 at. % burnup.

  13. Mitigation of Severe Accident Consequences Using Inherent Safety Principles

    SciTech Connect

    R. A. Wigeland; J. E. Cahalan

    2009-12-01

    Sodium-cooled fast reactors are designed to have a high level of safety. Events of high probability of occurrence are typically handled without consequence through reliable engineering systems and good design practices. For accidents of lower probability, the initiating events are characterized by larger and more numerous challenges to the reactor system, such as failure of one or more major engineered systems and can also include a failure to scram the reactor in response. As the initiating conditions become more severe, they have the potential for creating serious consequences of potential safety significance, including fuel melting, fuel pin disruption and recriticality. If the progression of such accidents is not mitigated by design features of the reactor, energetic events and dispersal of radioactive materials may result. For severe accidents, there are several approaches that can be used to mitigate the consequences of such severe accident initiators, which typically include fuel pin failures and core disruption. One approach is to increase the reliability of the reactor protection system so that the probability of an ATWS event is reduced to less than 1 x 10-6 per reactor year, where larger accident consequences are allowed, meeting the U.S. NRC goal of relegating such accident consequences as core disruption to these extremely low probabilities. The main difficulty with this approach is to convincingly test and guarantee such increased reliability. Another approach is to increase the redundancy of the reactor scram system, which can also reduce the probability of an ATWS event to a frequency of less than 1 x 10-6 per reactor year or lower. The issues with this approach are more related to reactor core design, with the need for a greater number of control rod positions in the reactor core and the associated increase in complexity of the reactor protection system. A third approach is to use the inherent reactivity feedback that occurs in a fast reactor to

  14. Tightly coupled'' simulation utilizing the EBR-II LMR: A real-time supercomputing and AI environment

    SciTech Connect

    Makowitz, H.; Barber, D.G.; Cordes, G.A.; Powers, A.K.; Scott, R. Jr.; Ward, L.W. ); Sackett, J.I.; King, R.W.; Lehto, W.K.; Lindsay, R.W.; Staffon, J.D. ); Gross, K.C. ); Doster, J.M. ); Edwards, R.M. (Pennsylvania State Univ., University P

    1990-01-01

    An integrated Supercomputing and AI environment utilizing a CRAY X-MP/216, a fiber-optic communications link, a distributed network of workstations and the Experimental Breeder Reactor II (EBR-II) Liquid Metal Reactor (LMR) and its associated instrumentation and control system is being developed at the Idaho National Engineering Laboratory (INEL). This paper summarizes various activities that make up this supercomputing and AI environment. 5 refs., 4 figs.

  15. Irradiation and compatibility testing of Li/sub 2/O materials at EBR-II

    SciTech Connect

    Porter, D.L.; Krsul, J.R.; Laug, M.T.; Tetenbaum, M.; Walters, L.C.

    1982-12-01

    A study was made of the neutron-irradiation behavior of /sup 6/Li-enriched Li/sub 2/O material in EBR-II. In addition, a stress corrosion study was performed ex-reactor to test compatibility of Li/sub 2/O materials with a variety of stainless steels. Results of the irradiation testing showed that tritium and helium retention in the Li/sub 2/O (approx. 89% dense) lessened with neutron exposure. Helium tritium retention appeared to approach steady-state after approx. 1% /sup 6/Li burnup. The effect was likely caused by the formation of open porosity in the pellets. The stress corrosion studies, using a 316 stainless steel (Ti-modified) and a 35% Ni alloy, showed that stress does not enhance the corrosion, and that dry Li/sub 2/O is not significantly corrosive, the LiOH content producing the corrosive effects. Corrosion, in general, was not severe as a passivation in sealed capsules seemed to occur after a time greatly reducing corrosion rates.

  16. Initiating the D&D Project for the EBR-II

    SciTech Connect

    Rick Demmer

    2010-08-01

    A novel decommissioning project is underway to close the Experimental Breeder Reactor-II (EBR-II) “fast” reactor at the Idaho National Laboratory (INL), Materials and Fuels Complex (MFC) facility near Idaho Falls, ID. The facility was placed in cold shutdown in 1994 and work began on the removal of the metallic sodium coolant. The bulk of the sodium was drained and treated beginning in 2001. The residual sodium heel was chemically passivated to render it less reactive in 2005 using a novel carbon dioxide treatment. Approximately 700 kg of metallic sodium and 3500 kg of sodium bicarbonate remain in the facility. A RCRA Waste Treatment Permit, issued in 2002 by the State of Idaho Department of Environmental Quality, requires annual progress toward closure of the facility, and that all regulated materials be removed or deactivated, and the waste products removed by 2022. The baseline sodium removal technology would result in about 100,000 gallons of low-level waste solution requiring treatment along with separate handling of the large components (intermediate heat exchanger, rotating plug, etc) outside of the primary tank.

  17. Visual imagery and the user model applied to fuel handling at EBR-II

    SciTech Connect

    Brown-VanHoozer, S.A.

    1995-06-01

    The material presented in this paper is based on two studies involving visual display designs and the user`s perspective model of a system. The studies involved a methodology known as Neuro-Linguistic Programming (NLP), and its use in expanding design choices which included the ``comfort parameters`` and ``perspective reality`` of the user`s model of the world. In developing visual displays for the EBR-II fuel handling system, the focus would be to incorporate the comfort parameters that overlap from each of the representation systems: visual, auditory and kinesthetic then incorporate the comfort parameters of the most prominent group of the population, and last, blend in the other two representational system comfort parameters. The focus of this informal study was to use the techniques of meta-modeling and synesthesia to develop a virtual environment that closely resembled the operator`s perspective of the fuel handling system of Argonne`s Experimental Breeder Reactor - II. An informal study was conducted using NLP as the behavioral model in a v reality (VR) setting.

  18. Tensile properties of vanadium alloys irradiated at 390{degrees}C in EBR-II

    SciTech Connect

    Chung, H.M.; Tsai, H.C.; Nowicki, L.J.

    1997-08-01

    Vanadium alloys were irradiated in Li-bonded stainless steel capsules to {approx}390{degrees}C in the EBR-II X-530 experiment. This report presents results of postirradiation tests of tensile properties of two large-scale (100 and 500 kg) heats of V-4Cr-Ti and laboratory (15-30 kg) heats of boron-doped V-4Cr-4Ti, V-8Cr-6Ti, V-5Ti, and V-3Ti-1Si alloys. Tensile specimens, divided into two groups, were irradiated in two different capsules under nominally similar conditions. The 500-kg heat (No. 832665) and the 100-kg heat (VX-8) of V-4Cr-4Ti irradiated in one of the subcapsules exhibited complete loss of work-hardening capability, which was manifested by very low uniform plastic strain. In contrast, the 100-kg heat of V-4Cr-4Ti irradiated in another subcapsule exhibited good tensile properties (uniform plastic strain 2.8-4.0%). A laboratory heat of V-3Ti-1Si irradiated in the latter subcapsule also exhibited good tensile properties. These results indicate that work-hardening capability at low irradiation temperatures varies significantly from heat to heat and is influenced by nominally small differences in irradiation conditions.

  19. Swelling and tensile properties of EBR-II-irradiated tantalum alloys for space reactor applications

    SciTech Connect

    Grossbeck, M.L.; Wiffen, F.W.

    1985-01-01

    The tantalum alloys T-111, ASTAR-811C, Ta-10 W, and unalloyed tantalum were examined following EBR-II irradiation to a fluence of 1.7 x 10/sup 26/ neutrons/m/sup 2/ (E > 0.1 MeV) at temperatures from 650 to 950 K. Swelling was found to be negligible for all alloys; only tantalum was found to exhibit swelling, 0.36%. Tensile testing revealed that irradiated T-111 and Ta-10 W are susceptible to plastic instability, but ASTAR-811C and tantalum were not. The tensile properties of ASTAR-811C appeared adequate for current SP-100 space nuclear reactor designs. Irradiated, oxygen-doped T-111 exhibited no plastic deformation, and the abrupt failure was intergranular in nature. The absence of plastic instability in ASTAR-811C is encouraging for alloys containing carbide precipitates. These fine precipitates might prevent dislocation channeling, which leads to plastic instability in many bcc metals after irradiation. 10 refs., 13 figs., 8 tabs.

  20. Fatigue Testing of Metallurgically-Bonded EBR-II Superheater Tubes

    SciTech Connect

    Terry C. Totemeier

    2006-12-01

    Fatigue crack growth tests were performed on 2¼Cr-1Mo steel specimens machined from ex-service Experimental Breeder Reactor – II (EBR-II) superheater duplex tubes. The tubes had been metallurgically bonded with a 100 µm thick Ni interlayer; the specimens incorporated this bond layer. Tests were performed at room temperature in air and at 400°C in air and humid Ar; cracks were grown at varied levels of constant ?K. Crack growth tests at a range of ?K were also performed on specimens machined from the shell of the superheater. In all conditions the presence of the Ni interlayer was found to result in a net retardation of growth as the crack passed through the interlayer. The mechanism of retardation was identified as a disruption of crack planarity and uniformity after passing through the porous interlayer. Full crack arrest was only observed in a single test performed at near-threshold ?K level (12 MPa?m) at 400°C. In this case the crack tip was blunted by oxidation of the base steel at the steel-interlayer interface.

  1. Midplane and off-midplane axial leakage simulation of heterogeneous subassemblies in EBR-II

    SciTech Connect

    Grimm, K.N.; Meneghetti, D.

    1984-01-01

    Generally EBR-II XY geometry and one-dimensional (1D) cylindrical neutron flux calculations using transport theory analysis assume energy independent DB/sup 2/-type absorptions to simulate effects of axial leakages. This assumption, while generally resulting in satisfactory eigenvalues and high- and intermediate-energy flux spectra, gives large errors in the low-energy flux spectra where the flux levels are smaller. These midplane errors, and more importantly the off-midplane errors, can be reduced by using a more realistic leakage model: space and energy dependent leakage absorption cross sections. Analyses have been reported in which transport theory methods using row-wise azimuthally-homogeneous RZ-geometry boundary angular fluxes to calculate space and energy dependent leakage absorptions which were then used in subsequent 1D cylindrical simulations of RZ calculations. The present paper extends the study to include heterogeneous core loading configurations. This study contains modeling of heterogeneous XYZ loadings using heterogeneous XY geometry and space and energy dependent leakage absorptions. Because of the complexities arising from the three-dimensional analysis, the results presented here use diffusion theory. Although the actual negative leakage absorption values can be used in the CITATION diffusion theory code, it was found that the ..sigma../sub s/(1..-->..g) method gave better results in the core region of these studies.

  2. Nonlinear PRD components of EBR-II compared with bowing analyses

    SciTech Connect

    Meneghetti, D.; Kucera, D.A.

    1987-01-01

    The nonlinear components of the power reactivity decrements (PRDs) for Experimental Breeder Reactor II (EBR-II) runs 85A, 93A, 99A, and 122A have been reported. These nonlinear components were deduced by subtraction of the calculated linear (and Doppler) components from the measured PRD curves. The linear (and Doppler) components of the PRDs were calculated using the EBRPOCO program together with an addition to the program (RODCO) that accounts for the effects of positionings of the control rods. Corresponding calculated bowing components of these runs have now been calculated assuming that the hex can ducts are unirradiated and thus have been assumed to have neither swelling nor bowing at the zero-power level in the analyses. Furthermore, the initial separations of the subassemblies at the contact-button levels are all assumed to be the unirradiated nominal 0.002 in. (0.051 mm). Comparison of these calculations with the bowing components deduced from the measurements enable the signs and magnitudes of the effects of the unknown initial conditions to be ascertained.

  3. SCALE UP OF CERAMIC WASTE FORMS FOR THE EBR-II SPENT FUEL TREATMENT PROCESS

    SciTech Connect

    Matthew C. Morrison; Kenneth J. Bateman; Michael F. Simpson

    2010-11-01

    ABSTRACT SCALE UP OF CERAMIC WASTE FORMS FOR THE EBR-II SPENT FUEL TREATMENT PROCESS Matthew C. Morrison, Kenneth J. Bateman, Michael F. Simpson Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415 The ceramic waste process is the intended method for disposing of waste salt electrolyte, which contains fission products from the fuel-processing electrorefiners (ER) at the INL. When mixed and processed with other materials, the waste salt can be stored in a durable ceramic waste form (CWF). The development of the CWF has recently progressed from small-scale testing and characterization to full-scale implementation and experimentation using surrogate materials in lieu of the ER electrolyte. Two full-scale (378 kg and 383 kg) CWF test runs have been successfully completed with final densities of 2.2 g/cm3 and 2.1 g/cm3, respectively. The purpose of the first CWF was to establish material preparation parameters. The emphasis of the second pre-qualification test run was to evaluate a preliminary multi-section CWF container design. Other considerations were to finalize material preparation parameters, measure the material height as it consolidates in the furnace, and identify when cracking occurs during the CWF cooldown process.

  4. Key asset - inherent safety of LMFBR Pool Plant

    SciTech Connect

    Marchaterre, J.F.; Sevy, R.H.; Lancet, R.T.; Mills, J.C.

    1984-04-01

    The safety approach used in the design of the Large Pool Plant emphasizes use of the intrinsic characteristics of Liquid Metal Fast Breeder Reactors to incorporate a high degree of safety in the design and reduce cost by providing simpler (more reliable) dedicated safety systems. Correspondingly, a goal was not to require the action of active systems to prevent significant core damage and/or provide large grace periods for all anticipated transients. The key safety features of the plant are presented and the analysis of representative flow and power transients are presented to show that the design goal has been satisfied.

  5. Safety assessment in plant layout design using indexing approach: implementing inherent safety perspective. Part 1 - guideword applicability and method description.

    PubMed

    Tugnoli, Alessandro; Khan, Faisal; Amyotte, Paul; Cozzani, Valerio

    2008-12-15

    Layout planning plays a key role in the inherent safety performance of process plants since this design feature controls the possibility of accidental chain-events and the magnitude of possible consequences. A lack of suitable methods to promote the effective implementation of inherent safety in layout design calls for the development of new techniques and methods. In the present paper, a safety assessment approach suitable for layout design in the critical early phase is proposed. The concept of inherent safety is implemented within this safety assessment; the approach is based on an integrated assessment of inherent safety guideword applicability within the constraints typically present in layout design. Application of these guidewords is evaluated along with unit hazards and control devices to quantitatively map the safety performance of different layout options. Moreover, the economic aspects related to safety and inherent safety are evaluated by the method. Specific sub-indices are developed within the integrated safety assessment system to analyze and quantify the hazard related to domino effects. The proposed approach is quick in application, auditable and shares a common framework applicable in other phases of the design lifecycle (e.g. process design). The present work is divided in two parts: Part 1 (current paper) presents the application of inherent safety guidelines in layout design and the index method for safety assessment; Part 2 (accompanying paper) describes the domino hazard sub-index and demonstrates the proposed approach with a case study, thus evidencing the introduction of inherent safety features in layout design.

  6. Validation of the integration of CFD and SAS4A/SASSYS-1: Analysis of EBR-II shutdown heat removal test 17

    SciTech Connect

    Thomas, J. W.; Fanning, T. H.; Vilim, R.; Briggs, L. L.

    2012-07-01

    Recent analyses have demonstrated the need to model multidimensional phenomena, particularly thermal stratification in outlet plena, during safety analyses of loss-of-flow transients of certain liquid-metal cooled reactor designs. Therefore, Argonne's reactor systems safety code SAS4A/SASSYS-1 is being enhanced by integrating 3D computational fluid dynamics models of the plena. A validation exercise of the new tool is being performed by analyzing the protected loss-of-flow event demonstrated by the EBR-II Shutdown Heat Removal Test 17. In this analysis, the behavior of the coolant in the cold pool is modeled using the CFD code STAR-CCM+, while the remainder of the cooling system and the reactor core are modeled with SAS4A/SASSYS-1. This paper summarizes the code integration strategy and provides the predicted 3D temperature and velocity distributions inside the cold pool during SHRT-17. The results of the coupled analysis should be considered preliminary at this stage, as the exercise pointed to the need to improve the CFD model of the cold pool tank. (authors)

  7. Identification and characterization of passive safety system and inherent safety feature building blocks for advanced light-water reactors

    SciTech Connect

    Forsberg, C.W.

    1989-01-01

    Oak Ridge National Laboratory (ORNL) is investigating passive and inherent safety options for Advanced Light-Water Reactors (ALWRs). A major activity in 1989 includes identification and characterization of passive safety system and inherent safety feature building blocks, both existing and proposed, for ALWRs. Preliminary results of this work are reported herein. This activity is part of a larger effort by the US Department of Energy, reactor vendors, utilities, and others in the United States to develop improved LWRs. The Advanced Boiling Water Reactor (ABWR) program and the Advanced Pressurized Water Reactor (APWR) program have as goals improved, commercially available LWRs in the early 1990s. The Advanced Simplified Boiling Water Reactor (ASBWR) program and the AP-600 program are developing more advanced reactors with increased use of passive safety systems. It is planned that these reactors will become commercially available in the mid 1990s. The ORNL program is an exploratory research program for LWRs beyond the year 2000. Desired long-term goals for such reactors include: (1) use of only passive and inherent safety, (2) foolproof against operator errors, (3) malevolence resistance against internal sabotage and external assault and (4) walkaway safety. The acronym ''PRIME'' (Passive safety, Resilient operation, Inherent safety, Malevolence resistance, and Extended (walkaway) safety) is used to summarize these desired characteristics. Existing passive and inherent safety options are discussed in this document.

  8. Passive and inherent safety technologies for light-water nuclear reactors

    SciTech Connect

    Forsberg, C.W.

    1990-07-01

    Passive/inherent safety implies a technical revolution in our approach to nuclear power safety. This direction is discussed herein for light-water reactors (LWRs) -- the predominant type of power reactor used in the world today. At Oak Ridge National Laboratory (ORNL) the approach to the development of passive/inherent safety for LWRs consists of four steps: identify and quantify safety requirements and goals; identify and quantify the technical functional requirements needed for safety; identify, invent, develop, and quantify technical options that meet both of the above requirements; and integrate safety systems into designs of economic and reliable nuclear power plants. Significant progress has been achieved in the first three steps of this program. The last step involves primarily the reactor vendors. These activities, as well as related activities worldwide, are described here. 27 refs., 7 tabs.

  9. Criticality Safety Evaluation of the LLNL Inherently Safe Subcritical Assembly (ISSA)

    SciTech Connect

    Percher, Catherine

    2012-06-19

    The LLNL Nuclear Criticality Safety Division has developed a training center to illustrate criticality safety and reactor physics concepts through hands-on experimental training. The experimental assembly, the Inherently Safe Subcritical Assembly (ISSA), uses surplus highly enriched research reactor fuel configured in a water tank. The training activities will be conducted by LLNL following the requirements of an Integration Work Sheet (IWS) and associated Safety Plan. Students will be allowed to handle the fissile material under the supervision of LLNL instructors. This report provides the technical criticality safety basis for instructional operations with the ISSA experimental assembly.

  10. A Review of Inherent Safety Characteristics of Metal-Alloy SFR Fuel Against Postulated Accidents

    SciTech Connect

    Sofu, Tanju

    2015-04-01

    The thermal, mechanical, and neutronic performance of the metal alloy fast reactor fuel design complements the safety advantages of the liquid metal cooling and the pool-type primary system. Together, these features provide large safety margins in both normal operating modes and for a wide range of postulated accidents. In particular, they maximize the measures of safety associated with inherent reactor response to unprotected, double-fault accidents, and to minimize risk to the public and plant investment. High thermal conductivity and high gap conductance play the most significant role in safety advantages of the metallic fuel, resulting in a flatter radial temperature profile within the pin and much lower normal operation and transient temperatures in comparison to oxide fuel. Despite the big difference in melting point, both oxide and metal fuels have a relatively similar margin to melting during postulated accidents. When the metal fuel cladding fails, it typically occurs below the coolant boiling point and the damaged fuel pins remain cool-able. Metal fuel is compatible with sodium coolant, eliminating the potential of energetic fuel coolant reactions and flow blockages. All these, and the low retained heat leading to a longer grace period for operator action, are significant contributing factors to the inherently benign response of metallic fuel to postulated accidents. This paper summarizes the past analytical and experimental results obtained in past sodium-cooled fast reactor safety programs in the United States, and presents an overview of fuel safety performance as observed in laboratory and in-pile tests.

  11. Zr-rich layers electrodeposited onto stainless steel cladding during the electrorefining of EBR-II fuel

    NASA Astrophysics Data System (ADS)

    Keiser, Dennis D., Jr.; Mariani, Robert D.

    Argonne National Laboratory is developing an electrometallurgical treatment for spent nuclear fuels. The initial demonstration of this process is being conducted on U-Zr alloy fuel elements irradiated in the Experimental Breeder Reactor II (EBR-II). We report the first metallographic characterization of cladding hull remains for the electrometallurgical treatment of spent metallic fuel. During the electrorefining process, Zr-rich layers, with some U, deposit on all exposed surfaces of irradiated cladding segments (hulls) that originally contained the fuel alloy that was being treated. In some cases, not only was residual Zr (and U) found inside the cladding hulls, but a Zr-rind was also observed near the interior cladding hull surface. The Zr-rind was originally formed during the fuel casting process on the fuel slug. The observation of Zr deposits on all exposed cladding surfaces is explained with thermodynamic principles, when two conditions are met. These conditions are partial oxidation of Zr and the presence of residual uranium in the hulls when the electrorefining experiment is terminated. Comparisons are made between the structure of the initial irradiated fuel before electrorefining and the morphology of the material remaining in the cladding hulls after electrorefining.

  12. Worldwide advanced nuclear power reactors with passive and inherent safety: What, why, how, and who

    SciTech Connect

    Forsberg, C.W.; Reich, W.J.

    1991-09-01

    The political controversy over nuclear power, the accidents at Three Mile Island (TMI) and Chernobyl, international competition, concerns about the carbon dioxide greenhouse effect and technical breakthroughs have resulted in a segment of the nuclear industry examining power reactor concepts with PRIME safety characteristics. PRIME is an acronym for Passive safety, Resilience, Inherent safety, Malevolence resistance, and Extended time after initiation of an accident for external help. The basic ideal of PRIME is to develop power reactors in which operator error, internal sabotage, or external assault do not cause a significant release of radioactivity to the environment. Several PRIME reactor concepts are being considered. In each case, an existing, proven power reactor technology is combined with radical innovations in selected plant components and in the safety philosophy. The Process Inherent Ultimate Safety (PIUS) reactor is a modified pressurized-water reactor, the Modular High Temperature Gas-Cooled Reactor (MHTGR) is a modified gas-cooled reactor, and the Advanced CANDU Project is a modified heavy-water reactor. In addition to the reactor concepts, there is parallel work on super containments. The objective is the development of a passive box'' that can contain radioactivity in the event of any type of accident. This report briefly examines: why a segment of the nuclear power community is taking this new direction, how it differs from earlier directions, and what technical options are being considered. A more detailed description of which countries and reactor vendors have undertaken activities follows. 41 refs.

  13. Summary of advanced LMR (Liquid Metal Reactor) evaluations: PRISM (Power Reactor Inherently Safe Module) and SAFR (Sodium Advanced Fast Reactor)

    SciTech Connect

    Van Tuyle, G.J.; Slovik, G.C.; Chan, B.C.; Kennett, R.J.; Cheng, H.S.; Kroeger, P.G. )

    1989-10-01

    In support of the US Nuclear Regulatory Commission (NRC), Brookhaven National Laboratory (BNL) has performed independent analyses of two advanced Liquid Metal Reactor (LMR) concepts. The designs, sponsored by the US Department of Energy (DOE), the Power Reactor Inherently Safe Module (PRISM) (Berglund, 1987) and the Sodium Advanced Fast Reactor (SAFR) (Baumeister, 1987), were developed primarily by General Electric (GE) and Rockwell International (RI), respectively. Technical support was provided to DOE, RI, and GE, by the Argonne National Laboratory (ANL), particularly with respect to the characteristics of the metal fuels. There are several examples in both PRISM and SAFR where inherent or passive systems provide for a safe response to off-normal conditions. This is in contrast to the engineered safety systems utilized on current US Light Water Reactor (LWR) designs. One important design inherency in the LMRs is the inherent shutdown'', which refers to the tendency of the reactor to transition to a much lower power level whenever temperatures rise significantly. This type of behavior was demonstrated in a series of unscrammed tests at EBR-II (NED, 1986). The second key design feature is the passive air cooling of the vessel to remove decay heat. These systems, designated RVACS in PRISM and RACS in SAFR, always operate and are believed to be able to prevent core damage in the event that no other means of heat removal is available. 27 refs., 78 figs., 3 tabs.

  14. Review of behavior of mixed-oxide fuel elements in extended overpower transient tests in EBR-II

    SciTech Connect

    Tsai, H.; Neimark, L.A.; Nagai, S.; Nakae, N.

    1994-10-01

    From a series of five tests conducted in EBR-II, a substantial data base has been established on the performance of mixed-oxide fuel elements in a liquid-metal-cooled reactor under slow-ramp transient overpower conditions. Each test contained 19 preirradiated fuel elements with varying design and prior operating histories. Elements with aggressive design features, such as high fuel smear density and/or thin cladding, were included to accentuate transient effects. The ramp rates were either 0.1 or 10% {Delta}P/P/s and the overpowers ranged between {approx}60 and 100% of the elements` prior power ratings. Six elements breached during the tests, all with aggressive design parameters. The other elements, including all those with moderate design features for the reference or advanced long-life drivers for PNC`s prototype fast reactor Monju, maintained their cladding integrity during the tests. Posttest examination results indicated that fuel/cladding mechanical interaction (FCMI) was the most significant mechanism causing the cladding strain and breach. In contrast, pressure loading from the fission gas in the element plenum was less important, even in high-burnup elements. During an overpower transient, FCMI arises from fuel/cladding differential thermal expansion, transient fuel swelling, and, significantly, the gas pressure in the sealed central cavity of elements with substantial centerline fuel melting. Fuel performance data from these tests, including cladding breaching margin and transient cladding strain, are correlatable with fuel-element design and operating parameters. These correlations are being incorporated into fuel-element behavior codes. At the two tested ramp rates, fuel element behavior appears to be insensitive to transient ramp rate and there appears to be no particular vulnerability to slow ramp transients as previously perceived.

  15. Radiation Damage Calculations for the FUBR and BEATRIX Irradiations of Lithium Compounds in EBR-II and FFTF

    SciTech Connect

    LR Greenwood

    1999-06-17

    The Fusion Breeder Reactor (FUBR) and Breeder Exchange Matrix (BEATRIX) experiments were cooperative efforts by members of the International Energy Agency to investigate the irradiation behavior of solid breeder materials for tritium production to support future fusion reactors. Lithium ceramic materials including Li{sub 2}O, LiAlO{sub 2}, Li{sub 4}SiO{sub 4}, and Li{sub 2}ZrO{sub 3} with varying {sup 6}Li enrichments from 0 to 95% were irradiated in a series of experiments in the Experimental Breeder Reactor (EBR II) and in the Fast Flux Test Facility (FFTF) over a period of about 10 years from 1982 to 1992. These experiments were characterized in terms of the nominal fast neutron fluences and measured {sup 6}Li burnup factors, as determined by either mass spectrometry or helium measurements. Radiation damage in these compounds is caused by both the {sup 6}Li-burnup reaction and by all other possible neutron reactions with the atoms in the compound materials. In this report, displacements per atom (dpa) values have been calculated for each type of material in each of the various irradiations that were conducted. Values up to 11% {sup 6}Li-burnup and 130 dpa are predicted for the longest irradiations. The dpa cross sections were calculated for each compound using the SPECOMP computer code. Details of the dpa calculations are presented in the report. Total dpa factors were determined with the SPECTER computer code by averaging the dpa cross sections over the measured or calculated neutron flux spectra for each series of irradiations. Using these new calculations, previously measured radiation damage effects in these lithium compounds can be compared or correlated with other irradiation data on the basis of the dpa factor as well as {sup 6}Li-burnup.

  16. Progress in reliability of fast reactor operation and new trends to increased inherent safety

    SciTech Connect

    Merk, Bruno; Stanculescu, Alexander; Chellapandi, Perumal; Hill, Robert

    2015-06-01

    The reasons for the renewed interest in fast reactors and an overview of the progress in sodium cooled fast reactor operation in the last ten years are given. The excellent operational performance of sodium cooled fast reactors in this period is highlighted as a sound basis for the development of new fast reactors. The operational performance of the BN-600 is compared and evaluated against the performance of German light water reactors to assess the reliability. The relevance of feedback effects for safe reactor design is described, and a new method for the enhancement of feedback effects in fast reactors is proposed. Experimental reactors demonstrating the inherent safety of advanced sodium cooled fast reactor designs are described and the potential safety improvements resulting from the use of fine distributed moderating material are discussed.

  17. Safety characteristics of the integral fast reactor concept

    SciTech Connect

    Marchaterre, J.F.; Cahalan, J.E.; Sevy, R.H.; Wright, A.E.

    1985-01-01

    The Integral Fast Reactor (IFR) concept is an innovative approach to liquid metal reactor design which is being studied by Argonne National Laboratory. Two of the key features of the IFR design are a metal fuel core design, based on the fuel technology developed at EBR-II, and an integral fuel cycle with a colocated fuel cycle facility based on the compact and simplified process steps made possible by the use of metal fuel. The paper presents the safety characteristics of the IFR concept which derive from the use of metal fuel. Liquid metal reactors, because of the low pressure coolant operating far below its boiling point, the natural circulation capability, and high system heat capacities, possess a high degree of inherent safety. The use of metallic fuel allows the reactor designer to further enhance the system capability for passive accommodation of postulated accidents.

  18. Safety characteristics of the integral fast reactor concept

    SciTech Connect

    Marchaterre, J.F.; Cahalan, J.E.; Sevy, R.H.; Wright, A.E.

    1985-01-01

    The Integral Fast Reactor (IFR) concept is an innovative approach to liquid metal reactor design which is being studied by Argonne National Laboratory. Two of the key features of the IFR design are a metal fuel core design, based on the fuel technology developed at EBR-II, and an integral fuel cycle with a co-located fuel cycle facility based on the compact and simplified process steps made possible by the use of the metal fuel. This paper presents the safety characteristics of the IFR concept which derive from the use of metal fuel. Liquid metal reactors, because of the low pressure coolant operating far below its boiling point, the natural circulation capability, and high system heat capacities possess a high degree of inherent safety. The use of metallic fuel allows the reactor designer to further enhance the system capability for passive accommodation of postulated accidents.

  19. Microstructural characterization and density change of 304 stainless steel reflector blocks after long-term irradiation in EBR-II

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Wiezorek, J. M. K.; Garner, F. A.; Freyer, P. D.; Okita, T.; Sagisaka, M.; Isobe, Y.; Allen, T. R.

    2015-10-01

    While thin reactor structural components such as cladding and ducts do not experience significant gradients in dpa rate, gamma heating rate, temperature or stress, thick components can develop strong local variations in void swelling and irradiation creep in response to gradients in these variables. In this study we conducted microstructural investigations by transmission electron microscopy of two 52 mm thick 304-type stainless steel hex-blocks irradiated for 12 years in the EBR-II reactor with accumulated doses ranging from ∼0.4 to 33 dpa. Spatial variations in the populations of voids, precipitates, Frank loops and dislocation lines have been determined for 304 stainless steel sections exposed to different temperatures, different dpa levels and at different dpa rates, demonstrating the existence of spatial gradients in the resulting void swelling. The microstructural measurements compare very well with complementary density change measurements regarding void swelling gradients in the 304 stainless steel hex-block components. The TEM studies revealed that the original cold-worked-state microstructure of the unirradiated blocks was completely erased by irradiation, replaced by high densities of interstitial Frank loops, voids and carbide precipitates at both the lowest and highest doses. At large dose levels the amount of volumetric void swelling correlated directly with the gamma heating gradient-related temperature increase (e.g. for 28 dpa, ∼2% swelling at 418 °C and ∼2.9% swelling at 448 °C). Under approximately iso-thermal local conditions, volumetric void swelling was found to increase with dose level (e.g. ∼0.2% swelling at 0.4 dpa, ∼0.5% swelling at 4 dpa and ∼2% swelling at 28 dpa). Carbide precipitate formation levels were found to be relatively independent of both dpa level and temperature and induced a measurable densification. Void swelling was dominant at the higher dose levels and caused measurable decreases in density. Void swelling

  20. Estimation of Inherent Safety Margins in Loaded Commercial Spent Nuclear Fuel Casks

    SciTech Connect

    Banerjee, Kaushik; Robb, Kevin R.; Radulescu, Georgeta; Scaglione, John M.

    2016-06-15

    We completed a novel assessment to determine the unquantified and uncredited safety margins (i.e., the difference between the licensing basis and as-loaded calculations) available in as-loaded spent nuclear fuel (SNF) casks. This assessment was performed as part of a broader effort to assess issues and uncertainties related to the continued safety of casks during extended storage and transportability following extended storage periods. Detailed analyses crediting the actual as-loaded cask inventory were performed for each of the casks at three decommissioned pressurized water reactor (PWR) sites to determine their characteristics relative to regulatory safety criteria for criticality, thermal, and shielding performance. These detailed analyses were performed in an automated fashion by employing a comprehensive and integrated data and analysis tool—Used Nuclear Fuel-Storage, Transportation & Disposal Analysis Resource and Data System (UNF-ST&DARDS). Calculated uncredited criticality margins from 0.07 to almost 0.30 Δkeff were observed; calculated decay heat margins ranged from 4 to almost 22 kW (as of 2014); and significant uncredited transportation dose rate margins were also observed. The results demonstrate that, at least for the casks analyzed here, significant uncredited safety margins are available that could potentially be used to compensate for SNF assembly and canister structural performance related uncertainties associated with long-term storage and subsequent transportation. The results also suggest that these inherent margins associated with how casks are loaded could support future changes in cask licensing to directly or indirectly credit the margins. Work continues to quantify the uncredited safety margins in the SNF casks loaded at other nuclear reactor sites.

  1. Estimation of Inherent Safety Margins in Loaded Commercial Spent Nuclear Fuel Casks

    SciTech Connect

    Banerjee, Kaushik; Robb, Kevin R.; Radulescu, Georgeta; Scaglione, John M.

    2016-06-15

    We completed a novel assessment to determine the unquantified and uncredited safety margins (i.e., the difference between the licensing basis and as-loaded calculations) available in as-loaded spent nuclear fuel (SNF) casks. This assessment was performed as part of a broader effort to assess issues and uncertainties related to the continued safety of casks during extended storage and transportability following extended storage periods. Detailed analyses crediting the actual as-loaded cask inventory were performed for each of the casks at three decommissioned pressurized water reactor (PWR) sites to determine their characteristics relative to regulatory safety criteria for criticality, thermal, and shielding performance. These detailed analyses were performed in an automated fashion by employing a comprehensive and integrated data and analysis tool—Used Nuclear Fuel-Storage, Transportation & Disposal Analysis Resource and Data System (UNF-ST&DARDS). Calculated uncredited criticality margins from 0.07 to almost 0.30 Δkeff were observed; calculated decay heat margins ranged from 4 to almost 22 kW (as of 2014); and significant uncredited transportation dose rate margins were also observed. The results demonstrate that, at least for the casks analyzed here, significant uncredited safety margins are available that could potentially be used to compensate for SNF assembly and canister structural performance related uncertainties associated with long-term storage and subsequent transportation. The results also suggest that these inherent margins associated with how casks are loaded could support future changes in cask licensing to directly or indirectly credit the margins. Work continues to quantify the uncredited safety margins in the SNF casks loaded at other nuclear reactor sites.

  2. Estimation of Inherent Safety Margins in Loaded Commercial Spent Nuclear Fuel Casks

    DOE PAGES

    Banerjee, Kaushik; Robb, Kevin R.; Radulescu, Georgeta; ...

    2016-06-15

    We completed a novel assessment to determine the unquantified and uncredited safety margins (i.e., the difference between the licensing basis and as-loaded calculations) available in as-loaded spent nuclear fuel (SNF) casks. This assessment was performed as part of a broader effort to assess issues and uncertainties related to the continued safety of casks during extended storage and transportability following extended storage periods. Detailed analyses crediting the actual as-loaded cask inventory were performed for each of the casks at three decommissioned pressurized water reactor (PWR) sites to determine their characteristics relative to regulatory safety criteria for criticality, thermal, and shielding performance.more » These detailed analyses were performed in an automated fashion by employing a comprehensive and integrated data and analysis tool—Used Nuclear Fuel-Storage, Transportation & Disposal Analysis Resource and Data System (UNF-ST&DARDS). Calculated uncredited criticality margins from 0.07 to almost 0.30 Δkeff were observed; calculated decay heat margins ranged from 4 to almost 22 kW (as of 2014); and significant uncredited transportation dose rate margins were also observed. The results demonstrate that, at least for the casks analyzed here, significant uncredited safety margins are available that could potentially be used to compensate for SNF assembly and canister structural performance related uncertainties associated with long-term storage and subsequent transportation. The results also suggest that these inherent margins associated with how casks are loaded could support future changes in cask licensing to directly or indirectly credit the margins. Work continues to quantify the uncredited safety margins in the SNF casks loaded at other nuclear reactor sites.« less

  3. Pyroprocessing of Oxidized Sodium-Bonded Fast Reactor Fuel -- an Experimental Study of Treatment Options for Degraded EBR-II Fuel

    SciTech Connect

    S. D. Herrmann; L. A. Wurth; N. J. Gese

    2013-09-01

    An experimental study was conducted to assess pyrochemical treatment options for degraded EBR-II fuel. As oxidized material, the degraded fuel would need to be converted back to metal to enable electrorefining within an existing electrometallurgical treatment process. A lithium-based electrolytic reduction process was studied to assess the efficacy of converting oxide materials to metal with a particular focus on the impact of zirconium oxide and sodium oxide on this process. Bench-scale electrolytic reduction experiments were performed in LiCl-Li2O at 650 °C with combinations of manganese oxide (used as a surrogate for uranium oxide), zirconium oxide, and sodium oxide. The experimental study illustrated how zirconium oxide and sodium oxide present different challenges to a lithium-based electrolytic reduction system for conversion of select metal oxides to metal.

  4. Characterization of degraded EBR-II fuel from the ICPP-603 basin: National spent nuclear fuel program, FY 1999 final report

    SciTech Connect

    Pahl, R. G.

    2000-04-17

    Characterization data is reported for sodium bonded Experimental Breeder Reactor II (EBR-II) fuel which had been stored underwater in containers since the late 1970's. Sixteen stainless steel storage containers were retrieved from the ICPP-603 storage pool at the Idaho National Engineering and Environmental Laboratory (INEEL) in Idaho. Ten of the containers had leaked water due to improper sealing. In the container chosen for detailed destructive analysis, the stainless steel cladding on the uranium alloy fuel had ruptured and fuel oxide particulate formed and filled the bottom of the container. Headspace gas analysis determined that greater than 99% hydrogen was present. Cesium-137, which had leached out of the fuel during the aqueous corrosion process, dominated the radionuclide source term of the water. The metallic sodium from the fuel element bond had reacted with the water, forming a caustic solution of NaOH.

  5. Pyroprocessing of oxidized sodium-bonded fast reactor fuel - An experimental study of treatment options for degraded EBR-II fuel

    SciTech Connect

    Hermann, S.D.; Gese, N.J.; Wurth, L.A.

    2013-07-01

    An experimental study was conducted to assess pyrochemical treatment options for degraded EBR-II fuel. As oxidized material, the degraded fuel would need to be converted back to metal to enable electrorefining within an existing electro-metallurgical treatment process. A lithium-based electrolytic reduction process was studied to assess the efficacy of converting oxide materials to metal with a particular focus on the impact of zirconium oxide and sodium oxide on this process. Bench-scale electrolytic reduction experiments were performed in LiCl-Li{sub 2}O at 650 C. degrees with combinations of manganese oxide (used as a surrogate for uranium oxide), zirconium oxide, and sodium oxide. In the absence of zirconium or sodium oxide, the electrolytic reduction of MnO showed nearly complete conversion to metal. The electrolytic reduction of a blend of MnO-ZrO{sub 2} in LiCl - 1 wt% Li{sub 2}O showed substantial reduction of manganese, but only 8.5% of the zirconium was found in the metal phase. The electrolytic reduction of the same blend of MnO-ZrO{sub 2} in LiCl - 1 wt% Li{sub 2}O - 6.2 wt% Na{sub 2}O showed substantial reduction of manganese, but zirconium reduction was even less at 2.4%. This study concluded that ZrO{sub 2} cannot be substantially reduced to metal in an electrolytic reduction system with LiCl - 1 wt% Li{sub 2}O at 650 C. degrees due to the perceived preferential formation of lithium zirconate. This study also identified a possible interference that sodium oxide may have on the same system by introducing a parasitic and cyclic reaction of dissolved sodium metal between oxidation at the anode and reduction at the cathode. When applied to oxidized sodium-bonded EBR-II fuel (e.g., U-10Zr), the prescribed electrolytic reduction system would not be expected to substantially reduce zirconium oxide, and the accumulation of sodium in the electrolyte could interfere with the reduction of uranium oxide, or at least render it less efficient.

  6. Inherent Risk or Risky Decision? Coach's Failure to Use Safety Device an Assumed Risk

    ERIC Educational Resources Information Center

    Dodds, Mark A.; Bochicchio, Kristi Schoepfer

    2013-01-01

    The court examined whether a coach's failure to implement a safety device during pitching practice enhanced the risk to the athlete or resulted in a suboptimal playing condition, in the context of the assumption of risk doctrine.

  7. Inherent Risk or Risky Decision? Coach's Failure to Use Safety Device an Assumed Risk

    ERIC Educational Resources Information Center

    Dodds, Mark A.; Bochicchio, Kristi Schoepfer

    2013-01-01

    The court examined whether a coach's failure to implement a safety device during pitching practice enhanced the risk to the athlete or resulted in a suboptimal playing condition, in the context of the assumption of risk doctrine.

  8. Safety assessment in plant layout design using indexing approach: implementing inherent safety perspective. Part 2-Domino Hazard Index and case study.

    PubMed

    Tugnoli, Alessandro; Khan, Faisal; Amyotte, Paul; Cozzani, Valerio

    2008-12-15

    The design of layout plans requires adequate assessment tools for the quantification of safety performance. The general focus of the present work is to introduce an inherent safety perspective at different points of the layout design process. In particular, index approaches for safety assessment and decision-making in the early stages of layout design are developed and discussed in this two-part contribution. Part 1 (accompanying paper) of the current work presents an integrated index approach for safety assessment of early plant layout. In the present paper (Part 2), an index for evaluation of the hazard related to the potential of domino effects is developed. The index considers the actual consequences of possible escalation scenarios and scores or ranks the subsequent accident propagation potential. The effects of inherent and passive protection measures are also assessed. The result is a rapid quantification of domino hazard potential that can provide substantial support for choices in the early stages of layout design. Additionally, a case study concerning selection among various layout options is presented and analyzed. The case study demonstrates the use and applicability of the indices developed in both parts of the current work and highlights the value of introducing inherent safety features early in layout design.

  9. A description of the ceramic waste form production process from the demonstration phase of the electrometallurical treatment of EBR-II spent fuel.

    SciTech Connect

    Simpson, M. F.; Goff, K. M.; Johnson, S. G.; Bateman, K. J.; Battisti, T. J.; Hirsche, K. L.; Frank, S. M.; Sinkler, W.; Moschetti, T. L.; O'Holleran, T. P.; Nuclear Technology

    2001-06-01

    The electrometallurgical treatment (EMT) process has been designed and developed for stabilizing sodium-bonded, metallic fuel into two high-level waste forms. This process has recently been successfully demonstrated with irradiated EBR-II fuel at Argonne National Laboratory-West. Part of the EMT process is to immobilize fission-product-bearing waste salt, which results from electrorefining, in a ceramic waste form-a glass-bonded sodalite. The sodalite is formed by hot isostatically pressing salt-loaded zeolite at temperatures up to 850 {sup o}C and pressures up to 100 MPa. The specific unit operations that comprise ceramic waste production include steps for salt grinding, zeolite drying, blending salt and zeolite and glass frit in a v-blender, and consolidating the powders in a hot isostatic press. The results of testing these unit operations with irradiated salt from the EMT demonstration are summarized and include some preliminary characterization of the final irradiated ceramic waste form created by this process.

  10. A Description of the Ceramic Waste Form Production Process from the Demonstration Phase of the Electrometallurgical Treatment of EBR-II Spent Fuel

    SciTech Connect

    Simpson, Michael F.; Goff, K. Michael; Johnson, Stephen G.; Bateman, Kenneth J.; Battisti, Terry J.; Toews, Karen L.; Frank, Steven M.; Moschetti, Tanya L.; O'Holleran, Tom P.; Sinkler, Wharton

    2001-06-15

    The electrometallurgical treatment (EMT) process has been designed and developed for stabilizing sodium-bonded, metallic fuel into two high-level waste forms. This process has recently been successfully demonstrated with irradiated EBR-II fuel at Argonne National Laboratory-West. Part of the EMT process is to immobilize fission-product-bearing waste salt, which results from electrorefining, in a ceramic waste form - a glass-bonded sodalite. The sodalite is formed by hot isostatically pressing salt-loaded zeolite at temperatures up to 850 deg. C and pressures up to 100 MPa. The specific unit operations that comprise ceramic waste production include steps for salt grinding, zeolite drying, blending salt and zeolite and glass frit in a v-blender, and consolidating the powders in a hot isostatic press. The results of testing these unit operations with irradiated salt from the EMT demonstration are summarized and include some preliminary characterization of the final irradiated ceramic waste form created by this process.

  11. A review of inherent safety characteristics of metal alloy sodium-cooled fast reactor fuel against postulated accidents

    DOE PAGES

    Sofu, Tanju

    2015-04-01

    The thermal, mechanical, and neutronic performance of the metal alloy fast reactor fuel design complements the safety advantages of the liquid metal cooling and the pool-type primary system. Together, these features provide large safety margins in both normal operating modes and for a wide range of postulated accidents. In particular, they maximize the measures of safety associated with inherent reactor response to unprotected, double-fault accidents, and to minimize risk to the public and plant investment. High thermal conductivity and high gap conductance play the most significant role in safety advantages of the metallic fuel, resulting in a flatter radial temperaturemore » profile within the pin and much lower normal operation and transient temperatures in comparison to oxide fuel. Despite the big difference in melting point, both oxide and metal fuels have a relatively similar margin to melting during postulated accidents. When the metal fuel cladding fails, it typically occurs below the coolant boiling point and the damaged fuel pins remain coolable. Metal fuel is compatible with sodium coolant, eliminating the potential of energetic fuel--coolant reactions and flow blockages. All these, and the low retained heat leading to a longer grace period for operator action, are significant contributing factors to the inherently benign response of metallic fuel to postulated accidents. This paper summarizes the past analytical and experimental results obtained in past sodium-cooled fast reactor safety programs in the United States, and presents an overview of fuel safety performance as observed in laboratory and in-pile tests.« less

  12. Safety and control of modular liquid-metal reactors

    SciTech Connect

    Sackett, J.I. ); Sevy, R.H.; Wei, T.Y.C. )

    1989-01-01

    As part of recent development efforts on advanced reactor designs Argonne National Laboratory has proposed the integral fast reactor (IFR) concept. The IFR concept is currently being applied to modular-sized reactors, which would be built in multiple power packs together with an integrated fuel-cycle facility. It has been amply demonstrated that the concept, as applied to modular designs, has significant advantages in regard to anticipated transients without scram (ATWS). Attention is now focused on whether or not those advantages derived from the IFR traits can be translated to the operational/design-basis-accident class of transients. Inherent operability, in which reactor power control is effected through the use of primary pumps and balance-of-plant (BOP) swings rather than through the active motion of control rods, is a proposal to utilize the enhanced inherent feedback response of the IFR to improve the operating characteristics of liquid-metal reactors (LMRs). The scheme has associated with it potential advantages in the areas of plant control and design simplification. This study on inherent operability in modular LMRs therefore has implications for both operational and ATWS events. Current intentions are to analytically explore possibilities of applying various schemes to advanced LMRs with the aid of the SASSYS system code and then to test viable alternatives in the Experimental Breeder Reactor II (EBR-II) plant under the auspices of the inherent safety operability testing program.

  13. Assuring safety of inherently unsafe medications: the FDA risk evaluation and mitigation strategies.

    PubMed

    Nelson, Lewis S; Loh, Meredith; Perrone, Jeanmarie

    2014-06-01

    The decision to approve a drug for clinical use is based on an understanding of its benefits versus the risks. Although efficacy is generally understood at the time of submission to the FDA for approval, the risks are more difficult to assess. Both PubMed (from 2000 to 2012) and the FDA website (www.fda.gov) were searched using the search terms "risk evaluation and mitigation strategy" (REMS). Articles for review were selected by relevance to topic, and their references were searched as well for additional relevant resources. Since the search results were not expected to contain research studies, formal quality assessment and inclusion and exclusion criteria were not utilized resulting in a narrative review. Few directly relevant research studies exist, although supporting documents such as government reports were available. For effective drugs with unclear or concerning safety records, the FDA has the option of requiring a risk evaluation and mitigation strategy, which allows a systematic approach to track and assure safe medication use. Over 100 different medications are currently covered by REMS, and each REMS is developed individually based on the needs of the specific drug or class. Although likely associated with improvements in medication safety, the potential benefit, limitations, and consequences of REMS are not yet fully understood.

  14. Accommodation of unprotected accidents by inherent safety design features in metallic and oxide-fueled LMFBRs

    SciTech Connect

    Su, S.F.; Cahalan, J.E.; Sevy, R.H.

    1985-01-01

    This paper presents the results of a systematic study of the effectiveness of intrinsic design features to mitigate the consequences of unprotected accidents in metallic and oxide-fueled LMFBRs. The accidents analyzed belong to the class generally considered to lead to core disruption; unprotected loss-of-flow (LOF) and transient over-power (TOP). The results of the study demonstrate the potential for design features to meliorate accident consequences, and in some cases to render them benign. Emphasis is placed on the relative performance of metallic and oxide-fueled core designs, and safety margins are quantified in sensitivity studies. All analyses were carried out using the SASSYS LMFBR systems analysis code (1).

  15. Experimental and design experience with passive safety features of liquid metal reactors

    SciTech Connect

    Lucoff, D.M.; Waltar, A.E.; Sackett, J.I.; Salvatores, M.; Aizawa, K.

    1992-10-01

    Liquid metal cooled reactors (LMRs) have already been demonstrated to be robust machines. Many reactor designers now believe that it is possible to include in this technology sufficient passive safety that LMRs would be able to survive loss of flow, loss of heat sink, and transient overpower events, even if the plant protective system fails completely and do so without damage to the core. Early whole-core testing in Rapsodie, EBR-II. and FFTF indicate such designs may be possible. The operational safety testing program in EBR-II is demonstrating benign response of the reactor to a full range of controls failures. But additional testing is needed if transient core structural response under major accident conditions is to be properly understood. The proposed international Phase IIB passive safety tests in FFTF, being designed with a particular emphasis on providing, data to understand core bowing extremes, and further tests planned in EBR-II with processed IFR fuel should provide a substantial and unique database for validating the computer codes being used to simulate postulated accident conditions.

  16. Proposed and existing passive and inherent safety-related structures, systems, and components (building blocks) for advanced light-water reactors

    SciTech Connect

    Forsberg, C.W.; Moses, D.L.; Lewis, E.B.; Gibson, R.; Pearson, R.; Reich, W.J.; Murphy, G.A.; Staunton, R.H.; Kohn, W.E.

    1989-10-01

    A nuclear power plant is composed of many structures, systems, and components (SSCs). Examples include emergency core cooling systems, feedwater systems, and electrical systems. The design of a reactor consists of combining various SSCs (building blocks) into an integrated plant design. A new reactor design is the result of combining old SSCs in new ways or use of new SSCs. This report identifies, describes, and characterizes SSCs with passive and inherent features that can be used to assure safety in light-water reactors. Existing, proposed, and speculative technologies are described. The following approaches were used to identify the technologies: world technical literature searches, world patent searches, and discussions with universities, national laboratories and industrial vendors. 214 refs., 105 figs., 26 tabs.

  17. Recent metal fuel safety tests in TREAT

    SciTech Connect

    Wright, A.E.; Bauer, T.H.; Lo, R.K.; Robinson, W.R.; Palm, R.G.

    1986-01-01

    In-reactor safety tests have been performed on metal-alloy reactor fuel to study its response to transient-overpower conditions, in particular, the margin to cladding breach and the axial self-extrusion of fuel within intact cladding. Uranium-fissium EBR-II driver fuel elements of several burnups were tested, some to cladding breach and others to incipient breach. Transient fuel motions were monitored, and time and location of breach were measured. The test results and computations of fuel extrusion and cladding failure in metal-alloy fuel are described.

  18. Is your plant inherently safer?

    SciTech Connect

    Snyder, P.G.

    1996-07-01

    Managing process risk begins at the conceptual design stage. Using these guidelines, engineers can explore how to make existing and future plants inherently safer. Despite progress made in process design tools and development of industry standards for design, procurement and construction, the hydrocarbon processing industry (HPI) struggles to improve the safety and operation of existing facilities. The paper discusses design standards and practices, plant design success stories, and achieving inherently safer plant designs.

  19. Safety issues of dry fuel storage at RSWF

    SciTech Connect

    Clarksean, R.L.; Zahn, T.P.

    1995-02-01

    Safety issues associated with the dry storage of EBR-II spent fuel are presented and discussed. The containers for the fuel have been designed to prevent a leak of fission gases to the environment. The storage system has four barriers for the fission gases. These barriers are the fuel cladding, an inner container, an outer container, and the liner at the RSWF. Analysis has shown that the probability of a leak to the environment is much less than 10{sup {minus}6} per year, indicating that such an event is not considered credible. A drop accident, excessive thermal loads, criticality, and possible failure modes of the containers are also addressed.

  20. Safety aspects of the IFR pyroprocess fuel cycle

    SciTech Connect

    Forrester, R.J.; Lineberry, M.J.; Charak, I.; Tessier, J.H.; Solbrig, C.W.; Gabor, J.D.

    1989-01-01

    This paper addresses the important safety considerations related to the unique Integral Fast Reactor (IFR) fuel cycle technology, the pyroprocess. Argonne has been developing the IFR since 1984. It is a liquid metal cooled reactor, with a unique metal alloy fuel, and it utilizes a radically new fuel cycle. An existing facility, the Hot Fuel Examination Facility-South (HFEF/S) is being modified and equipped to provide a complete demonstration of the fuel cycle. This paper will concentrate on safety aspects of the future HFEF/S operation, slated to begin late next year. HFEF/S is part of Argonne's complex of reactor test facilities located on the Idaho National Engineering Laboratory. HFEF/S was originally put into operation in 1964 as the EBR-II Fuel Cycle Facility (FCF) (Stevenson, 1987). From 1964--69 FCF operated to demonstrate an earlier and incomplete form of today's pyroprocess, recycling some 400 fuel assemblies back to EBR-II. The FCF mission was then changed to one of an irradiated fuels and materials examination facility, hence the name change to HFEF/S. The modifications consist of activities to bring the facility into conformance with today's much more stringent safety standards, and, of course, providing the new process equipment. The pyroprocess and the modifications themselves are described more fully elsewhere (Lineberry, 1987; Chang, 1987). 18 refs., 5 figs., 2 tabs.

  1. Operation Inherent Resolve

    DTIC Science & Technology

    2015-04-01

    model. OIR is a military mission included within a wider, complex, whole-of-government effort to counter ISIL and address the ongoing refugee crisis...DoS OIG made recom- mendations to improve the administration and monitoring of activi- ties with the Bureau of Population, Refugees and Migration (PRM...operations against ISIL in Iraq and Syria had been named Operation Inherent Resolve (OIR). OIR applied retroactively to all military airstrikes that had been

  2. Inherent weaknesses of cosmology

    NASA Technical Reports Server (NTRS)

    Chiu, H.-Y.

    1986-01-01

    Sources of astrophysical evidence necessary to verify a cosmological model are reviewed. Cosmological history of the universe is divided into four epochs, each unique in its physical conditions related to observability at present. The current epoch, started after recombination of hydrogen in the universe, offers the most in observability. In earlier epochs, verifiable astrophysical evidence gradually disappeared. It seems that no astrophysical evidence has been left behind from the singularity epoch of the Universe. The gradual disappearance of astrophysical evidence ascertainable at present is the result of physical conditions structured within the cosmological models, hence indicating certain inherent weaknesses of cosmology as a verifiable physical theory.

  3. Integral fast reactor concept. [Pool type; metal fuel; integral fuel cycle

    SciTech Connect

    Chang, Y.I.; Marchaterre, J.F.; Sevy, R.H.

    1984-01-01

    Key features of the IFR consist of a pool-type plant arrangement, a metal fuel-based core design, and an integral fuel cycle with colocated fuel cycle facility. Both the basic concept and the technology base have been demonstrated through actual integral cycle operation in EBR-II. This paper discusses the inherent safety characteristics of the IFR concept. (DLC)

  4. 16 CFR 1211.7 - Inherent entrapment protection requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Inherent entrapment protection requirements. 1211.7 Section 1211.7 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY... position in the event the inherent door operating “profile” of the door differs from the originally set...

  5. JAEA Fatigue Analysis of EBR-II Duplex Tubing

    SciTech Connect

    J. H. Jackson; D. L. Porter; W. R. Lloyd

    2009-07-01

    This work addresses questions brought up concerning the mechanisms associated with fatigue crack growth retardation and/or arrest within the nickel bond layer in duplex 2¼ Cr-1Mo steel superheater tubes. Previous work performed at the Idaho National Laboratory (INL) indicated that the nickel bond layer did not function as a crack arrestor during fatigue crack propagation with the exception of one, isolated case involving an exceptionally low fatigue load and a high temperature (400 0C) environment. Since it is atypical for a fatigue crack to propagate from a relatively soft material (the nickel bond layer) to a harder material (the 2¼ Cr-1Mo steel) there has been speculation that the nickel bond layer was hardened in service. Additionally, there are questions surrounding the nature of the fatigue crack propagation within the nickel bond layer; specifically with regard to the presence of voids seen on micrographs of the bond layer and oxidation within the steel along the edge of the nickel bond layer. There is uncertainty as to the effect of these voids and/or oxide barriers with respect to potential fatigue crack arrest.

  6. Multifrequency tests in the EBR-II reactor plant

    SciTech Connect

    Feldman, E.E.; Mohr, D.; Gross, K.C.

    1989-01-01

    A series of eight multifrequency tests was conducted on the Experimental Breeder Reactor II. In half of the tests a control rod was oscillated and in the other half the controller input voltage to the intermediate-loop-sodium pump was perturbed. In each test the input disturbance consisted of several superimposed single-frequency sinusoidal harmonics of the same fundamental. The tests are described along with the theoretical and practical aspects of their development and design. Samples of measured frequency responses are also provided for both the reactor and the power plant. 22 refs., 5 figs., 2 tabs.

  7. Time series analysis of nuclear instrumentation in EBR-II

    SciTech Connect

    Imel, G.R.

    1996-05-01

    Results of a time series analysis of the scaler count data from the 3 wide range nuclear detectors in the Experimental Breeder Reactor-II are presented. One of the channels was replaced, and it was desired to determine if there was any statistically significant change (ie, improvement) in the channel`s response after the replacement. Data were collected from all 3 channels for 16-day periods before and after detector replacement. Time series analysis and statistical tests showed that there was no significant change after the detector replacement. Also, there were no statistically significant differences among the 3 channels, either before or after the replacement. Finally, it was determined that errors in the reactivity change inferred from subcritical count monitoring during fuel handling would be on the other of 20-30 cents for single count intervals.

  8. The EBR-II spent fuel treatment program

    SciTech Connect

    Lineberry, M.J.; McFarlane, H.F.

    1995-12-01

    Argonne National Laboratory has refurbished and equipped an existing hot cell facility for demonstrating a high-temperature electrometallurgical process for treating spent nuclear fuel from the Experimental Breeder Reactor-11. Two waste forms will be produced and qualified for geologic disposal of the fission and activation products. Relatively pure uranium will be separated for storage. Following additional development, transuranium elements will be blended into one of the high-level waste streams. The spent fuel treatment program will help assess the viability of electrometallurgical technology as a spent fuel management option.

  9. Final report-passive safety optimization in liquid sodium-cooled reactors.

    SciTech Connect

    Cahalana, J. E.; Hahn, D.; Nuclear Engineering Division; Korea Atomic Energy Research Inst.

    2007-08-13

    This report summarizes the results of a three-year collaboration between Argonne National Laboratory (ANL) and the Korea Atomic Energy Research Institute (KAERI) to identify and quantify the performance of innovative design features in metallic-fueled, sodium-cooled fast reactor designs. The objective of the work was to establish the reliability and safety margin enhancements provided by design innovations offering significant potential for construction, maintenance, and operating cost reductions. The project goal was accomplished with a combination of advanced model development (Task 1), analysis of innovative design and safety features (Tasks 2 and 3), and planning of key safety experiments (Task 4). Task 1--Computational Methods for Analysis of Passive Safety Design Features: An advanced three-dimensional subassembly thermal-hydraulic model was developed jointly and implemented in ANL and KAERI computer codes. The objective of the model development effort was to provide a high-accuracy capability to predict fuel, cladding, coolant, and structural temperatures in reactor fuel subassemblies, and thereby reduce the uncertainties associated with lower fidelity models previously used for safety and design analysis. The project included model formulation, implementation, and verification by application to available reactor tests performed at EBR-II. Task 2--Comparative Analysis and Evaluation of Innovative Design Features: Integrated safety assessments of innovative liquid metal reactor designs were performed to quantify the performance of inherent safety features. The objective of the analysis effort was to identify the potential safety margin enhancements possible in a sodium-cooled, metal-fueled reactor design by use of passive safety mechanisms to mitigate low-probability accident consequences. The project included baseline analyses using state-of-the-art computational models and advanced analyses using the new model developed in Task 1. Task 3--Safety

  10. Can tasks be inherently boring?

    PubMed

    Charney, Evan

    2013-12-01

    Kurzban et al. argue that the experiences of "effort," "boredom," and "fatigue" are indications that the costs of a task outweigh its benefits. Reducing the costs of tasks to "opportunity costs" has the effect of rendering tasks costless and of denying that they can be inherently boring or tedious, something that "vigilance tasks" were intentionally designed to be.

  11. Concept of an inherently-safe high temperature gas-cooled reactor

    NASA Astrophysics Data System (ADS)

    Ohashi, Hirofumi; Sato, Hiroyuki; Tachibana, Yukio; Kunitomi, Kazuhiko; Ogawa, Masuro

    2012-06-01

    As the challenge to ensure no harmful release of radioactive materials at the accidents by deterministic approach instead to satisfy acceptance criteria or safety goal for risk by probabilistic approach, new concept of advanced reactor, an inherently-safe high temperature gas-cooled reactor, is proposed based on the experience of the operation of the actual High Temperature Gas-cooled Reactor (HTGR) in Japan, High Temperature Engineering Test Reactor (HTTR), and the design of the commercial plant (GTHTR300), utilizing the inherent safety features of the HTGR (i.e., safety features based on physical phenomena). The safety design philosophy of the inherently-safe HTGR for the safety analysis of the radiological consequences is determined as the confinement of radioactive materials is assured by only inherent safety features without engineered safety features, AC power or prompt actions by plant personnel if the design extension conditions occur. Inherent safety features to prevent the loss or degradation of the confinement function are identified. It is proposed not to apply the probabilistic approach for the evaluation of the radiological consequences of the accidents in the safety analysis because no inherent safety features fail for the mitigation of the consequences of the accidents. Consequently, there are no event sequences to harmful release of radioactive materials if the design extension conditions occur in the inherently-safe HTGR concept. The concept and future R&D items for the inherently-safe HTGR are described in this paper.

  12. Concept of an inherently-safe high temperature gas-cooled reactor

    SciTech Connect

    Ohashi, Hirofumi; Sato, Hiroyuki; Tachibana, Yukio; Kunitomi, Kazuhiko; Ogawa, Masuro

    2012-06-06

    As the challenge to ensure no harmful release of radioactive materials at the accidents by deterministic approach instead to satisfy acceptance criteria or safety goal for risk by probabilistic approach, new concept of advanced reactor, an inherently-safe high temperature gas-cooled reactor, is proposed based on the experience of the operation of the actual High Temperature Gas-cooled Reactor (HTGR) in Japan, High Temperature Engineering Test Reactor (HTTR), and the design of the commercial plant (GTHTR300), utilizing the inherent safety features of the HTGR (i.e., safety features based on physical phenomena). The safety design philosophy of the inherently-safe HTGR for the safety analysis of the radiological consequences is determined as the confinement of radioactive materials is assured by only inherent safety features without engineered safety features, AC power or prompt actions by plant personnel if the design extension conditions occur. Inherent safety features to prevent the loss or degradation of the confinement function are identified. It is proposed not to apply the probabilistic approach for the evaluation of the radiological consequences of the accidents in the safety analysis because no inherent safety features fail for the mitigation of the consequences of the accidents. Consequently, there are no event sequences to harmful release of radioactive materials if the design extension conditions occur in the inherently-safe HTGR concept. The concept and future R and D items for the inherently-safe HTGR are described in this paper.

  13. Prevention of domino effect: from active and passive strategies to inherently safer design.

    PubMed

    Cozzani, Valerio; Tugnoli, Alessandro; Salzano, Ernesto

    2007-01-10

    The possible application of an inherent safety approach to the prevention of domino accidents was explored. The application of the inherent safety guidewords to the definition of effective actions for the prevention of domino events was analyzed. Due to the constraints originated by the conventional approach to process design, the "limitation of effects" guideword resulted the more effective in the identification of inherent safety actions to avoid domino events. Detailed design criteria for the improvement of layout in the framework of inherent safety were identified and discussed. Simple rules of thumbs were obtained for the preliminary assessment of safety distances and of critical inventories with respect to the escalation of fires and explosions. The results evidenced that the integration of inherent safety criteria with conventional passive or active protections seems a promising route for the prevention of severe domino accidental scenarios in chemical and process plants.

  14. The inherent limits of predicting school violence.

    PubMed

    Mulvey, E P; Cauffman, E

    2001-10-01

    The recent media hype over school shootings has led to demands for methods of identifying school shooters before they act. Despite the fact that schools remain one of the safest places for youths to be, schools are beginning to adopt identification systems to determine which students could be future killers. The methods used to accomplish this not only are unproven but are inherently limited in usefulness and often do more harm than good for both the children and the school setting. The authors' goals in the present article are to place school shootings in perspective relative to other risks of violence that children face and to provide a reasonable and scientifically defensible approach to improving the safety of schools.

  15. Inherently Unstable Internal Gravity Waves

    NASA Astrophysics Data System (ADS)

    Alam, Reza

    2016-11-01

    Here we show that there exist internal gravity waves that are inherently unstable, that is, they cannot exist in nature for a long time. The instability mechanism is a one-way (irreversible) harmonic-generation resonance that permanently transfers the energy of an internal wave to its higher harmonics. We show that, in fact, there are countably infinite number of such unstable waves. For the harmonic-generation resonance to take place, nonlinear terms in the free surface boundary condition play a pivotal role, and the instability does not obtain for a linearly-stratified fluid if a simplified boundary condition such as rigid lid or linear form is employed. Harmonic-generation resonance discussed here also provides a mechanism for the transfer of the energy of the internal waves to the higher-frequency part of the spectrum where internal waves are more prone to breaking, hence losing energy to turbulence and heat and contributing to oceanic mixing. Yong Liang (yong.liang@berkeley.edu).

  16. Test Design Description (TDD). Volume 1A. Design description and safety analysis for IFR-1 metal fuels irradiation test in FFTF

    SciTech Connect

    Tsai, H.; Neimark, L. A.; Billone, M. C.; Fryer, R. M.; Koenig, J. F.; Lehto, W. K.; Malloy, D. J.

    1986-01-01

    A steady-state irradiation experiment on metal fuels, designated IFR-1, will be conducted in the FTR. The purpose of the experiment is to support the development of metal fuels for the Integral Fast Reactor (IFR) program. The main objective of the IFR-1 test is to generate integral fuel performance data for full-length metal fuels. The effect of fuel column length on the integral behavior of metal fuels will be evaluated by comparing the results of the IFR-1 test with those of the EBR-II tests conducted under similar power and temperature conditions. This document describes the IFR-1 metal fuel irradiation experiment and provides the test requirements and supporting steady-state, transient and safety analyses as required by the User`s Guide for the Irradiation of Experiments in the FTR [1] for Test Design Description Volume 1A. 40 refs.

  17. Inherent Conservatism in Deterministic Quasi-Static Structural Analysis

    NASA Technical Reports Server (NTRS)

    Verderaime, V.

    1997-01-01

    The cause of the long-suspected excessive conservatism in the prevailing structural deterministic safety factor has been identified as an inherent violation of the error propagation laws when reducing statistical data to deterministic values and then combining them algebraically through successive structural computational processes. These errors are restricted to the applied stress computations, and because mean and variations of the tolerance limit format are added, the errors are positive, serially cumulative, and excessively conservative. Reliability methods circumvent these errors and provide more efficient and uniform safe structures. The document is a tutorial on the deficiencies and nature of the current safety factor and of its improvement and transition to absolute reliability.

  18. Boiling water neutronic reactor incorporating a process inherent safety design

    DOEpatents

    Forsberg, C.W.

    1985-02-19

    A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (nonborated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two water volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.

  19. Boiling water neutronic reactor incorporating a process inherent safety design

    DOEpatents

    Forsberg, Charles W.

    1987-01-01

    A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (non-borated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.

  20. Nuclear energy with inherent safety: Change of outdated paradigm, criteria

    NASA Astrophysics Data System (ADS)

    Adamov, E. O.; Orlov, V. V.; Rachkov, V. I.; Slessarev, I. S.; Khomyakov, Yu. S.

    2015-12-01

    Modern nuclear power technology still has significant sources of risk, and, weak links, such as, a threat of severe accidents with catastrophic unpredictable consequences and damage to the population, proliferation of nuclear weapon-usable materials, risks of long-term storage of toxic radioactive waste, risks of loss of major investments in nuclear facilities and their construction, lack of fuel resources for the ambitious role of nuclear power in the competitive balance of energy. Each of these risks is important and almost independent, though the elimination of some of them does not significantly alter the overall assessment of nuclear power.

  1. Safety.

    ERIC Educational Resources Information Center

    Education in Science, 1996

    1996-01-01

    Discusses safety issues in science, including: allergic reactions to peanuts used in experiments; explosions in lead/acid batteries; and inspection of pressure vessels, such as pressure cookers or model steam engines. (MKR)

  2. Safety.

    ERIC Educational Resources Information Center

    Education in Science, 1996

    1996-01-01

    Discusses safety issues in science, including: allergic reactions to peanuts used in experiments; explosions in lead/acid batteries; and inspection of pressure vessels, such as pressure cookers or model steam engines. (MKR)

  3. Inherently safe nuclear-driven internal combustion engines

    SciTech Connect

    Alesso, P.; Chow, Tze-Show; Condit, R.; Heidrich, J.; Pettibone, J.; Streit, R.

    1991-06-14

    A family of nuclear driven engines is described in which nuclear energy released by fissioning of uranium or plutonium in a prompt critical assembly is used to heat a working gas. Engine performance is modeled using a code that calculates hydrodynamics, fission energy production, and neutron transport self-consistently. Results are given demonstrating a large negative temperature coefficient that produces self-shutoff of energy production. Reduced fission product inventory and the self-shutoff provide inherent nuclear safety. It is expected that nuclear engine reactor units could be scaled from 100 MW on up. 7 refs., 3 figs.

  4. Harnessing Collective Knowledge Inherent in Tag Clouds

    ERIC Educational Resources Information Center

    Cress, U.; Held, C.

    2013-01-01

    Tagging systems represent the conceptual knowledge of a community. We experimentally tested whether people harness this collective knowledge when navigating through the Web. As a within-factor we manipulated people's prior knowledge (no knowledge vs. prior knowledge that was congruent/incongruent to the collective knowledge inherent in the tags).…

  5. Dental resin cure monitoring by inherent fluorescence

    NASA Astrophysics Data System (ADS)

    Li, Qun; Zhou, Jack X.; Li, Qingxiong; Wang, Sean X.

    2008-02-01

    It is demonstrated that the inherent fluorescence of a dental composite resin can be utilized to monitor the curing status, i.e. degree of conversion of the resin. The method does not require any sample preparation and is potentially very fast for real time cure monitoring. The method is verified by Raman spectroscopy analysis.

  6. Students' Perception of Live Lectures' Inherent Disadvantages

    ERIC Educational Resources Information Center

    Petrovic, Juraj; Pale, Predrag

    2015-01-01

    This paper aims to provide insight into various properties of live lectures from the perspective of sophomore engineering students. In an anonymous online survey conducted at the Faculty of Electrical Engineering and Computing, University of Zagreb, we investigated students' opinions regarding lecture attendance, inherent disadvantages of live…

  7. Students' Perception of Live Lectures' Inherent Disadvantages

    ERIC Educational Resources Information Center

    Petrovic, Juraj; Pale, Predrag

    2015-01-01

    This paper aims to provide insight into various properties of live lectures from the perspective of sophomore engineering students. In an anonymous online survey conducted at the Faculty of Electrical Engineering and Computing, University of Zagreb, we investigated students' opinions regarding lecture attendance, inherent disadvantages of live…

  8. Critical Social Theory: Core Tenets, Inherent Issues

    ERIC Educational Resources Information Center

    Freeman, Melissa; Vasconcelos, Erika Franca S.

    2010-01-01

    This chapter outlines the core tenets of critical social theory and describes inherent issues facing evaluators conducting critical theory evaluation. Using critical pedagogy as an example, the authors describe the issues facing evaluators by developing four of the subtheories that comprise a critical social theory: (a) a theory of false…

  9. Critical Social Theory: Core Tenets, Inherent Issues

    ERIC Educational Resources Information Center

    Freeman, Melissa; Vasconcelos, Erika Franca S.

    2010-01-01

    This chapter outlines the core tenets of critical social theory and describes inherent issues facing evaluators conducting critical theory evaluation. Using critical pedagogy as an example, the authors describe the issues facing evaluators by developing four of the subtheories that comprise a critical social theory: (a) a theory of false…

  10. Harnessing Collective Knowledge Inherent in Tag Clouds

    ERIC Educational Resources Information Center

    Cress, U.; Held, C.

    2013-01-01

    Tagging systems represent the conceptual knowledge of a community. We experimentally tested whether people harness this collective knowledge when navigating through the Web. As a within-factor we manipulated people's prior knowledge (no knowledge vs. prior knowledge that was congruent/incongruent to the collective knowledge inherent in the tags).…

  11. Inherent emotional quality of human speech sounds.

    PubMed

    Myers-Schulz, Blake; Pujara, Maia; Wolf, Richard C; Koenigs, Michael

    2013-01-01

    During much of the past century, it was widely believed that phonemes-the human speech sounds that constitute words-have no inherent semantic meaning, and that the relationship between a combination of phonemes (a word) and its referent is simply arbitrary. Although recent work has challenged this picture by revealing psychological associations between certain phonemes and particular semantic contents, the precise mechanisms underlying these associations have not been fully elucidated. Here we provide novel evidence that certain phonemes have an inherent, non-arbitrary emotional quality. Moreover, we show that the perceived emotional valence of certain phoneme combinations depends on a specific acoustic feature-namely, the dynamic shift within the phonemes' first two frequency components. These data suggest a phoneme-relevant acoustic property influencing the communication of emotion in humans, and provide further evidence against previously held assumptions regarding the structure of human language. This finding has potential applications for a variety of social, educational, clinical, and marketing contexts.

  12. The INSIDE project integrating inherent SHE in chemical process development and plant design

    SciTech Connect

    Rogers, R.L.; Mansfield, D.P.; Malmen, Y.

    1995-12-31

    The concept of {open_quote}Inherently Safer{close_quote} plant has been with us now for many years, but despite its clear potential safety, health, environmental (SHE) and cost benefits, there have been few attempts to systematically consider or apply inherently safer approaches in process development and plant design. This is one of the findings of a pilot study commissioned by the United Kingdom (UK) Health and Safety Executive and carried out by AEA Technology to assess the current status of Inherent Safety in UK Industry. This pilot study has now been expanded into a major industry/CEC Industrial Safety co-sponsored project (The INSIDE Project) which is taking an European wide view on the current status of inherently SHE approaches. It will also develop tools for chemists and engineers to use to identify and evaluate safer options and to optimise processes and plant designs accordingly. This paper summarises the findings of the HSE pilot study and describes the results of Phase 1 of the CEC project which have given a valuable insight into the way SHE issues are addressed throughout the process development and design lifecycle and highlighted ways in which these can be improved to encourage the adoption of inherent SHE approaches. The overall framework being used for tool development is described and the early tool ideas and their underlying principles are also discussed. 19 refs., 1 fig., 4 tabs.

  13. Inherent accommodation of unprotected loss-of-flow accidents in LMFBRs

    SciTech Connect

    Su, S.F.; Sevy, R.H.

    1984-01-01

    Inherent safety is a major focus of attention in fast reactor design. Extensive efforts have been given to utilizing intrinsic characteristics of sodium-cooled reactors to enhance the plant's ability to accommodate even the most unlikely accidents, such as loss-of-flow (LOF) with failure to scram. The renewed interest in the pool concept partially reflects this new direction. The reintroduction of metal fuel also opens a new frontier for fast reactor safety technology. This study explores the potential of the metal fuel in achieving designs which are inherently safe against unprotected LOF accidents. The study is conducted using the SASSYS code and is based on an 1000 MWe pool design.

  14. An 'inherent' biodegradability test for oil products: description and results of an international ring test. CONCAWE Biodegradation Task Force.

    PubMed

    Battersby, N S; Ciccognani, D; Evans, M R; King, D; Painter, H A; Peterson, D R; Starkey, M

    1999-06-01

    Current test guidelines for assessing 'inherent' (potential) biodegradability were designed for water-soluble, organic compounds of low volatility and are unsuitable for most oil products. It was against this background, that CONCAWE (the oil companies' European organisation for environment, health and safety) formed a task force to develop a standard test protocol for assessing the 'inherent' biodegradability of oil products.

  15. Testing theories of vowel inherent spectral change.

    PubMed

    Morrison, Geoffrey Stewart; Nearey, Terrance M

    2007-07-01

    Three competing accounts of vowel inherent spectral change in English all agree on the importance of initial formant frequencies; however, they disagree about the nature of the perceptually relevant aspects of formant change. The onset+offset hypothesis claims that the final formant values themselves matter. The onset+slope hypothesis claims that only the rate of change counts. The onset+direction hypothesis claims that only the general direction of change in formant frequencies is important. A synthetic-vowel perception experiment was designed to differentiate among the three. Results provide support for the superiority of the onset+offset hypothesis.

  16. The inherent instability of leveed seafloor channels

    NASA Astrophysics Data System (ADS)

    Dorrell, Robert M.; Burns, Alan D.; McCaffrey, William D.

    2015-05-01

    New analytical models demonstrate that under aggradational flow conditions, seafloor channel-levee systems are inherently unstable; both channel area and stability necessarily decrease at long timescales. In time such systems must avulse purely through internal (autogenic) forcing. Although autogenic instabilities likely arise over long enough time for additional allogenic forcing to be expected, channel-levee sensitivity to variations in flow character depends on the prior degree of system evolution. Recalibrated modern Amazon Fan avulsion timings are consistent with this model, challenging accepted interpretations of avulsion triggering.

  17. Inherently tunable electrostatic assembly of membrane proteins.

    PubMed

    Liang, Hongjun; Whited, Gregg; Nguyen, Chi; Okerlund, Adam; Stucky, Galen D

    2008-01-01

    Membrane proteins are a class of nanoscopic entities that control the matter, energy, and information transport across cellular boundaries. Electrostatic interactions are shown to direct the rapid co-assembly of proteorhodopsin (PR) and lipids into long-range crystalline arrays. The roles of inherent charge variations on lipid membranes and PR variants with different compositions are examined by tuning recombinant PR variants with different extramembrane domain sizes and charged amino acid substitutions, lipid membrane compositions, and lipid-to-PR stoichiometric ratios. Rational control of this predominantly electrostatic assembly for PR crystallization is demonstrated, and the same principles should be applicable to the assembly and crystallization of other integral membrane proteins.

  18. Function and structure of inherently disordered proteins.

    PubMed

    Dunker, A Keith; Silman, Israel; Uversky, Vladimir N; Sussman, Joel L

    2008-12-01

    The application of bioinformatics methodologies to proteins inherently lacking 3D structure has brought increased attention to these macromolecules. Here topics concerning these proteins are discussed, including their prediction from amino acid sequence, their enrichment in eukaryotes compared to prokaryotes, their more rapid evolution compared to structured proteins, their organization into specific groups, their structural preferences, their half-lives in cells, their contributions to signaling diversity (via high contents of multiple-partner binding sites, post-translational modifications, and alternative splicing), their distinct functional repertoire compared to that of structured proteins, and their involvement in diseases.

  19. The inherent catastrophic traps in retrograde CTO PCI.

    PubMed

    Wu, Eugene B; Tsuchikane, Etsuo

    2017-05-04

    When we learn to drive, our driving instructor tells us how to check the side mirror and turn your head to check the blind spot before changing lanes. He tells us how to stop at stop signs, how to drive in slippery conditions, the safe stopping distances, and these all make our driving safe. Similarly, when we learn PCI, our mentors teach us to seat the guiding catheter co-axially, to wire the vessel safely, to deliver balloon and stents over the wire, to watch the pressure of the guiding, in order that we perform PCI safely and evade complications. In retrograde CTO PCI, there is no such published teaching. Also many individual mentors have not had the wide experience to see all the possible complications of retrograde CTO PCI and, therefore, may not be able to warn their apprentice. As the number of retrograde procedures increase worldwide, there is a corresponding increase in catastrophic complications, many of which, we as experts, can see are easily avoidable. To breach this gap in knowledge, this article describes 12 commonly met inherent traps in retrograde CTO PCI. They are inherent because by arranging our equipment in the manner to perform retrograde CTO PCI, these complications are either induced directly or happen easily. We hope this work will enhance safety of retrograde CTO PCI and avoid many catastrophic complications for our readers and operators. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Inherently safe in situ uranium recovery.

    SciTech Connect

    Krumhansl, James Lee; Beauheim, Richard Louis; Brady, Patrick Vane; Arnold, Bill Walter; Kanney, Joseph F.; McKenna, Sean Andrew

    2009-05-01

    Expansion of uranium mining in the United States is a concern to some environmental groups and sovereign Native American Nations. An approach which may alleviate some problems is to develop inherently safe in situ uranium recovery ('ISR') technologies. Current ISR technology relies on chemical extraction of trace levels of uranium from aquifers that, once mined, can still contain dissolved uranium and other trace metals that are a health concern. Existing ISR operations are few in number; however, high uranium prices are driving the industry to consider expanding operations nation-wide. Environmental concerns and enforcement of the new 30 ppb uranium drinking water standard may make opening new mining operations more difficult and costly. Here we propose a technological fix: the development of inherently safe in situ recovery (ISISR) methods. The four central features of an ISISR approach are: (1) New 'green' leachants that break down predictably in the subsurface, leaving uranium, and associated trace metals, in an immobile form; (2) Post-leachant uranium/metals-immobilizing washes that provide a backup decontamination process; (3) An optimized well-field design that increases uranium recovery efficiency and minimizes excursions of contaminated water; and (4) A combined hydrologic/geochemical protocol for designing low-cost post-extraction long-term monitoring. ISISR would bring larger amounts of uranium to the surface, leave fewer toxic metals in the aquifer, and cost less to monitor safely - thus providing a 'win-win-win' solution to all stakeholders.

  1. Scaling and universality of inherent structure simulations.

    PubMed

    Witkoskie, James B; Cao, Jianshu

    2004-06-01

    In this paper we explore the inherent structures (IS) approach to the dynamics of the East constrained kinetic Ising model. The inherent structures do not capture the nature of the dynamics of many quantities, including the spin autocorrelation function. Simply monitoring the quenched energy fluctuations, i.e., IS energy, results in an oversimplified single order-parameter description of the system's dynamics, but examining other features, such as domain dynamics or normal modes, may give a more complete and useful picture of the dynamics. The universality in the behavior of the IS energy of this model does not reveal nonuniversal features of the kinetics that determine long-time relaxation of the system. As a result, popular functional forms, such as the stretched exponential relaxation or Gaussian distribution of energies, may be a numerical fit to data with little physical justification. Filtering data can be shown to erase features of the system and the resulting quantities resemble more universal functional forms that lack physical insight. These results for the East model have implications for IS simulations of realistic systems and suggest careful analysis including the examination of other potential order parameters is necessary to evaluate the validity of applications of universal and scaling arguments to IS simulations.

  2. Magnetic latch trigger for inherent shutdown assembly

    DOEpatents

    Sowa, Edmund S.

    1976-01-01

    An inherent shutdown assembly for a nuclear reactor is provided. A neutron absorber is held ready to be inserted into the reactor core by a magnetic latch. The latch includes a magnet whose lines of force are linked by a yoke of material whose Curie point is at the critical temperature of the reactor at which the neutron absorber is to be inserted into the reactor core. The yoke is in contact with the core coolant or fissionable material so that when the coolant or the fissionable material increase in temperature above the Curie point the yoke loses its magnetic susceptibility and the magnetic link is broken, thereby causing the absorber to be released into the reactor core.

  3. Sensors and actuators inherent in biological species

    NASA Astrophysics Data System (ADS)

    Taya, Minoru; Stahlberg, Rainer; Li, Fanghong; Zhao, Ying Joyce

    2007-04-01

    This paper addresses examples of sensing and active mechanisms inherent in some biological species where both plants and animals cases are discussed: mechanosensors and actuators in Venus Fly Trap and cucumber tendrils, chemosensors in insects, two cases of interactions between different kingdoms, (i) cotton plant smart defense system and (ii) bird-of-paradise flower and hamming bird interaction. All these cases lead us to recognize how energy-efficient and flexible the biological sensors and actuators are. This review reveals the importance of integration of sensing and actuation functions into an autonomous system if we make biomimetic design of a set of new autonomous systems which can sense and actuate under a number of different stimuli and threats.

  4. Inherent properties of binary tetrahedral semiconductors

    NASA Astrophysics Data System (ADS)

    Verma, A. S.; Sarkar, B. K.; Jindal, V. K.

    2010-04-01

    A new approach utilising the concept of ionic charge theory has been used to explain the inherent properties such as lattice thermal conductivity and bulk modulus of A IIIB V and A IIB VI semiconductors. The lattice thermal conductivity ( K) of these semiconductors exhibit a linear relationship when plotted on a log-log scale against the nearest neighbour distance d (Å), but fall on two straight lines according to the product of the ionic charge of the compounds. On the basis of this result a simple lattice thermal conductivity-bulk modulus relationship is proposed and used to estimate the bulk modulus of these semiconductors. A fairly good agreement has been found between the experimental and calculated values of these parameters for zinc blende structured solids.

  5. Piezo1 Channels Are Inherently Mechanosensitive.

    PubMed

    Syeda, Ruhma; Florendo, Maria N; Cox, Charles D; Kefauver, Jennifer M; Santos, Jose S; Martinac, Boris; Patapoutian, Ardem

    2016-11-08

    The conversion of mechanical force to chemical signals is critical for many biological processes, including the senses of touch, pain, and hearing. Mechanosensitive ion channels play a key role in sensing the mechanical stimuli experienced by various cell types and are present in organisms from bacteria to mammals. Bacterial mechanosensitive channels are characterized thoroughly, but less is known about their counterparts in vertebrates. Piezos have been recently established as ion channels required for mechanotransduction in disparate cell types in vitro and in vivo. Overexpression of Piezos in heterologous cells gives rise to large mechanically activated currents; however, it is unclear whether Piezos are inherently mechanosensitive or rely on alternate cellular components to sense mechanical stimuli. Here, we show that mechanical perturbations of the lipid bilayer alone are sufficient to activate Piezo channels, illustrating their innate ability as molecular force transducers.

  6. Development of an inherently digital transducer

    NASA Technical Reports Server (NTRS)

    Richard, R. R.

    1972-01-01

    The term digital transducer normally implies the combination of conventional analog sensors with encoders or analog-to-digital converters. Because of the objectionable characteristics of most digital transducers, a program was instituted to investigate the possibility of producing a transducer that is inherently digital, instead of a transducer that is digital in the usual sense. Such a device would have improved accuracy and reliability and would have reduced power and bulk requirements because two processes, sensing and conditioning, would be combined into one processes. A Curie-point-temperature sensor is described that represents realization of the stated goal. Also, a metal-insulator semiconductor is described that does not conform precisely to the program goals but that appears to have applications as a new and interesting transduction device.

  7. Inherent error in interferometric surface plasmon microscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Bei; Yan, Peng; Gao, Feng; Liu, Yu; Zhang, Qiancheng; Wang, Le

    2016-11-01

    Surface plasmon microscopy (SPRM) usually employs high refractive index prism or high numerical aperture (NA) objective as coupling device to excite surface plasmon. Here we apply high NA oil-immersion objective considering k vector conditions of SPs and localization of SPs which provides better lateral resolution and less cross-talk between adjacent areas. However, performance of an objective based SPRM is often limited by the finite aperture of a physical objective which corresponds to sudden transition and limited bandwidth. Here we give a simplified model of the SPRM and numerically calculate how the sudden transition on the clear aperture edge causes inherent error. Notch filtering algorithm is designed to suppress the noisy ripples. Compared to the pupil function engineering technique, this technique makes both the sacrifice of NA and utilization of spatial light modulator unnecessary and provides a more compact system setup without decreasing the resolution and contrast.

  8. Inherently safe in situ uranium recovery

    DOEpatents

    Krumhansl, James L; Brady, Patrick V

    2014-04-29

    An in situ recovery of uranium operation involves circulating reactive fluids through an underground uranium deposit. These fluids contain chemicals that dissolve the uranium ore. Uranium is recovered from the fluids after they are pumped back to the surface. Chemicals used to accomplish this include complexing agents that are organic, readily degradable, and/or have a predictable lifetime in an aquifer. Efficiency is increased through development of organic agents targeted to complexing tetravalent uranium rather than hexavalent uranium. The operation provides for in situ immobilization of some oxy-anion pollutants under oxidizing conditions as well as reducing conditions. The operation also artificially reestablishes reducing conditions on the aquifer after uranium recovery is completed. With the ability to have the impacted aquifer reliably remediated, the uranium recovery operation can be considered inherently safe.

  9. Inherently Ducted Propfans and Bi-Props

    NASA Technical Reports Server (NTRS)

    Takallu, M. A.

    2009-01-01

    The terms inherently ducted propfan (IDP) and inherently ducted biprop (IDBP) denote members of a proposed class of propfan engines that would be quieter and would weigh less than do other propfan engines that generate equal amounts of thrust. The designs of these engines would be based on novel combinations of previously established aerodynamic-design concepts, including those of counter-rotating propfans, swept-back and swept-forward fixed wings, and ducted propfans. Heretofore, noise-reducing propfan designs have provided for installation of shrouds around the blades. A single propeller surrounded by such a shroud is denoted an advanced ducted propeller (ADP); a pair of counter-rotating propellers surrounded by such a shroud is denoted a counter-rotating integrated shrouded propeller (CRISP). In addition to adding weight, the shrouds engender additional undesired rotor/stator interactions and cascade effects, and contribute to susceptibility to choking. An IDP or IDBP would offer some shielding against outward propagation of noise, similar to shielding by a shroud, but without the weight and other undesired effects associated with shrouds. An IDP would include a pair of counter-rotating propellers. The blades of the upstream propeller would be swept back, while those of the downstream propeller would be swept forward (see figure). The downstream blades would have a geometric twist such that their forward-swept tips could act as winglets extending over the tips of the upstream blades. In principle, the resulting periodic coverage of the upstream-blade tips by the downstreamblade tips would suppress outward propagation of noise, as though a short noise-shielding duct were present. Furthermore, it is anticipated that an IDP would be less susceptible to some of the operational limitations of a CRISP during asymmetric flow conditions or reverse thrust operation.

  10. 16 CFR 1211.13 - Inherent force activated secondary door sensors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... sensors. 1211.13 Section 1211.13 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT... § 1211.13 Inherent force activated secondary door sensors. (a) Normal operation test. (1) A force activated door sensor of a door system installed according to the installation instructions shall...

  11. 16 CFR 1211.13 - Inherent force activated secondary door sensors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... sensors. 1211.13 Section 1211.13 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT... § 1211.13 Inherent force activated secondary door sensors. (a) Normal operation test. (1) A force activated door sensor of a door system installed according to the installation instructions shall...

  12. Metal-fuel modeling for inherently safe reactor designs

    SciTech Connect

    Miles, K.J. Jr.

    1987-01-01

    Current development of breeder reactor systems has led to the renewed interest in metal fuels. These fuels have properties that enhance the inherent safety of the system, such as high thermal conductivity, compatibility with liquid sodium, and low fuel/cladding mechanical interaction. While metal-fuel irradiation behavior is well understood, there are some areas where more information is needed to fully understand the various safety-related phenomena, such as fuel/cladding chemical interaction, eutectic melting and penetration, and axial relocation of molten fuel prior to cladding breach. Because many of these phenomena can cause changes in the reactivity state of the system, their effects on whole-core normal, anticipated, and hypothetical accident scenarios need to be studied. The metal-fuel behavior model DEFORM-5 is being developed to provide the necessary phenomenological basis for these studies. The first stage in the DEFORM-5 development has been completed. Presently, DEFORM-5 calculates the cladding strain, life fraction, and eutectic penetration thinning for Types D9, HT9, or 316 steels. This first stage of DEFORM-5 has been used to analyze the TREAT M2, M3, and M4 transients with irradiated Experimental Breeder Reactor-II driver fuel. The paper shows the DEFORM-5 and experimental results for failure times for the test pins. The results provide confidence and validation of the DEFORM-5 modeling of the cladding behavior.

  13. The Inherent Asymmetry of DNA Replication.

    PubMed

    Snedeker, Jonathan; Wooten, Matthew; Chen, Xin

    2017-08-11

    Semiconservative DNA replication has provided an elegant solution to the fundamental problem of how life is able to proliferate in a way that allows cells, organisms, and populations to survive and replicate many times over. Somewhat lost, however, in our admiration for this elegant mechanism is an appreciation for the asymmetries that occur in the process of DNA replication. As we discuss in this review, these asymmetries arise as a consequence of the structure of the DNA molecule and the enzymatic mechanism of DNA synthesis. Increasing evidence suggests that asymmetries inDNAreplication are able to play a central role in the processes of adaptation and evolution by shaping the mutagenic landscape of cells. Additionally, in eukaryotes, recent work has demonstrated that the inherent asymmetries in DNA replication may play an important role in the process of chromatin replication. As chromatin plays an essential role in defining cell identity, asymmetries generated during the process of DNA replication may play critical roles in cell fate dicisions related to patterning and development. Expected final online publication date for the Annual Review of Cell and Developmental Biology Volume 33 is October 6, 2017. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  14. Why electronic mail is inherently private

    SciTech Connect

    Granger, S.

    1994-12-31

    Electronic Mail originated in Large-Area Networks and computer Bulletin Board Systems. On LAN`s in offices, it served the purpose of replacing office memos to make work more efficient. On BBS`s, it became a personal way of sending notes back and forth between acquaintances and frields. From the beginning e-mail was private. The Arpanet formed as a way for researchers to discuss their work over long-distances. The Arpanet, solely in existence as a government venture to assist in furthering of research, enjoyed a certain secrecy for a while. Once the Internt formed, the system allowed others inside as it no longer existed merely for the government. Much of the work on the Arpanet/Internet was necessarily private due to its nature. This made it even more important for e-mail to be private. Today the Internet includes not only what was the Arpanet (NSFNet), but companies and several BBS`s as well. Privacy is mor eimportant today than ever and should not even be an option on e-mail systems. It should be considered inherent in all systems.

  15. Surveillance application using patten recognition software at the EBR-II Reactor Facility

    SciTech Connect

    Olson, D.L.

    1992-05-01

    The System State Analyzer (SSA) is a software based pattern recognition system. For the past several year this system has been used at Argonne National Laboratory`s Experimental Breeder Reactor 2 (EBR-2) reactor for detection of degradation and other abnormalities in plant systems. Currently there are two versions of the SSA being used at EBR-2. One version of SSA is used for daily surveillance and trending of the reactor delta-T and startups of the reactor. Another version of the SSA is the QSSA which is used to monitor individual systems of the reactor such as the Secondary Sodium System, Secondary Sodium Pumps, and Steam Generator. This system has been able to detect problems such as signals being affected by temperature variations due to a failing temperature controller.

  16. Surveillance application using patten recognition software at the EBR-II Reactor Facility

    SciTech Connect

    Olson, D.L.

    1992-01-01

    The System State Analyzer (SSA) is a software based pattern recognition system. For the past several year this system has been used at Argonne National Laboratory's Experimental Breeder Reactor 2 (EBR-2) reactor for detection of degradation and other abnormalities in plant systems. Currently there are two versions of the SSA being used at EBR-2. One version of SSA is used for daily surveillance and trending of the reactor delta-T and startups of the reactor. Another version of the SSA is the QSSA which is used to monitor individual systems of the reactor such as the Secondary Sodium System, Secondary Sodium Pumps, and Steam Generator. This system has been able to detect problems such as signals being affected by temperature variations due to a failing temperature controller.

  17. Characterization of Irradiated Metal Waste from the Pyrometallurgical Treatment of Used EBR-II Fuel

    SciTech Connect

    B.R. Westphal; K.C. Marsden; W.M. McCartin; S.M. Frank; D.D. Keiser, Jr.; T.S. Yoo; D. Vaden; D.G. Cummings; K.J. Bateman; J. J. Giglio; T. P. O'Holleran; P. A. Hahn; M. N. Patterson

    2013-03-01

    As part of the pyrometallurgical treatment of used Experimental Breeder Reactor-II fuel, a metal waste stream is generated consisting primarily of cladding hulls laden with fission products noble to the electrorefining process. Consolidation by melting at high temperature [1873 K (1600 degrees C)] has been developed to sequester the noble metal fission products (Zr, Mo, Tc, Ru, Rh, Te, and Pd) which remain in the iron-based cladding hulls. Zirconium from the uranium fuel alloy (U-10Zr) is also deposited on the hulls and forms Fe-Zr intermetallics which incorporate the noble metals as well as residual actinides during processing. Hence, Zr has been chosen as the primary indicator for consistency of the metal waste. Recently, the first production-scale metal waste ingot was generated and sampled to monitor Zr content for Fe-Zr intermetallic phase formation and validation of processing conditions. Chemical assay of the metal waste ingot revealed a homogeneous distribution of the noble metal fission products as well as the primary fuel constituents U and Zr. Microstructural characterization of the ingot confirmed the immobilization of the noble metals in the Fe-Zr intermetallic phase.

  18. Status of RBCB testing of LMR oxide fuel in EBR-II

    SciTech Connect

    Strain, R.V.; Bottcher, J.H.; Gross, K.C.; Lambert, J.D.B. ); Ukai, S.; Nomura, S.; Shikakura, S.; Katsuragawa, M. . Oarai Engineering Center)

    1991-01-01

    The status is given of the the American-Japanese collaborative program in Experimental Breeder Reactor 2 to determine the run-beyond-cladding-breach performance of (UPu)O{sub 2} fuel pins for liquid-metal cooled reactors. Phase 1 of the collaboration involved eighteen irradiation tests over 1981--86 with 5.84-mm pins in 316 or D9 stainless steel. Emphasis in Phase 2 tests from 1989 onwards is with larger diameter (7.5mm) pins in advanced claddings. Results include delayed neutron and fission gas release data from breached pins, the impact of fuel-sodium reaction product formation on pin performance, and fuel and fission product contamination from failures. 13 refs, 1 fig., 4 tabs.

  19. Validation of the REBUS-3/RCT methodologies for EBR-II core-follow analysis

    SciTech Connect

    McKnight, R. D.

    1991-09-01

    Operations and material control and accountancy requirements for the Fuel Cycle Facility will demand accurate prediction of the mass flow from EBR-2 into the facility. This will require validated calculational tools that can predict the burnup and isotopic distribution in irradiated binary- and ternary-fueled Mark-3, Mark-4, and Mark-5 assemblies. The present study demonstrates that the REBUS- 3/RCT methodologies can meet these requirements. Validation is achieved via a two-step procedure. First, a set of detailed core- follow depletion calculations using the REBUS-3/RCT codes is performed for an extensive series of EBR-2 runs. Second, the results of this analysis are compared with experimental determinations of burnup and U and Pu isotopic weight fractions that have been measured in IFR fueled test assemblies irradiated in EBR-2. The results of these comparisons are very good and indicate that mass flow predictions based on the methods and models used in this study are adequate for operational and MCA requirements in FCF. 26 refs., 6 figs., 11 tabs.

  20. Initial results for electrochemical dissolution of spent EBR-II fuel.

    SciTech Connect

    Li, S. X.

    1998-05-04

    Initial results are reported for the anode behavior of spent metallic nuclear fuel in an electrorefining process. The anode behavior has been characterized in terms of the initial spent fuel composition and the final composition of the residual cladding hulls. A variety of results have been obtained depending on the experimental conditions. Some of the process variables considered are average and maximum cell voltage, average and maximum anode voltage, amount of electrical charge passed (coulombs or amp-hours) during the experiment, and cell resistance. The main goal of the experiments has been the nearly complete dissolution of uranium with the retention of zirconium and noble metal fission products in the cladding hulls. Analysis has shown that the most indicative parameters for determining an endpoint to the process, recognizing the stated goal, are the maximum anode voltage and the amount of electrical charge passed. For the initial experiments reported here, the best result obtained is greater than 98% uranium dissolution with approximately 50% zirconium retention. Noble metal fission product retention appears to be correlated with zirconium retention.

  1. Recent advances during the treatment of spent EBR-II fuel

    SciTech Connect

    Westphal, B. R.; Mariani, R. D.; Vaden, D. E.; Sherman, S. R.; Li, S. X.; Keiser, D. D., Jr.

    2000-03-20

    Several recent advances have been achieved for the electrometallurgical treatment of spent nuclear fuel. In anticipation of production operations at Argonne National Laboratory-West, development of both electrorefining and metal processing has been ongoing in the post-demonstration phase in order to further optimize the process. These development activities show considerable promise. This paper discusses the results of recent experiments as well as plans for future investigations.

  2. Characterization of Irradiated Metal Waste from the Pyrometallurgical Treatment of Used EBR-II Fuel

    NASA Astrophysics Data System (ADS)

    Westphal, Brian R.; Frank, S. M.; McCartin, W. M.; Cummings, D. G.; Giglio, J. J.; O'Holleran, T. P.; Hahn, P. A.; Yoo, T. S.; Marsden, K. C.; Bateman, K. J.; Patterson, M. N.

    2015-01-01

    As part of the pyrometallurgical treatment of used Experimental Breeder Reactor-II fuel, a metal waste stream is generated consisting primarily of cladding hulls laden with fission products noble to the electrorefining process. Consolidation by melting at high temperature [1873 K (1600 °C)] has been developed to sequester the noble metal fission products (Zr, Mo, Tc, Ru, Rh, Te, and Pd) which remain in the iron-based cladding hulls. Zirconium from the uranium fuel alloy (U-10Zr) is also deposited on the hulls and forms Fe-Zr intermetallics which incorporate the noble metals as well as residual actinides during processing. Hence, Zr has been chosen as the primary indicator for consistency of the metal waste. Recently, the first production-scale metal waste ingot was generated and sampled to monitor Zr content for Fe-Zr intermetallic phase formation and validation of processing conditions. Chemical assay of the metal waste ingot revealed a homogeneous distribution of the noble metal fission products as well as the primary fuel constituents U and Zr. Microstructural characterization of the ingot confirmed the immobilization of the noble metals in the Fe-Zr intermetallic phase.

  3. Non-destructive assay of EBR-II blanket elements using resonance transmission analysis.

    SciTech Connect

    Klann, R.T.; Poenitz, W.P.

    1998-09-11

    Resonance transmission analysis utilizing a faltered reactor beam was examined as a means of determining the {sup 239}Pu content in Experimental Breeder Reactor-II depleted uranium blanket elements. The technique uses cadmium and gadolinium falters along with a {sup 239}Pu fission chamber to isolate the 0.3 eV resonance in {sup 239}Pu. In the energy range of this resonance (0.1 eV to 0.5 ev), the total microscopic cross-section of {sup 239}Pu is significantly greater than the cross-sections of {sup 238}U and {sup 235}U. This large difference allows small changes in the {sup 239}Pu content of a sample to result in large changes in the mass signal response. Tests with small stacks of depleted uranium and {sup 239}Pu foils indicate a significant change in response based on the {sup 239}Pu content of the foil stack. In addition, the tests indicate good agreement between the measured and predicted values of {sup 239}Pu up to approximately two weight percent.

  4. Validation of the REBUS-3/RCT methodologies for EBR-II core-follow analysis

    SciTech Connect

    McKnight, R.D.

    1992-01-01

    One of the many tasks to be completed at EBR-2/FCF (Fuel Cycle Facility) regarding fuel cycle closure for the Integral Fast Reactor (IFR) is to develop and install the systems to be used for fissile material accountancy and control. The IFR fuel cycle and pyrometallurgical process scheme determine the degree of actinide of actinide buildup in the reload fuel assemblies. Inventories of curium, americium and neptunium in the fuel will affect the radiation and thermal environmental conditions at the fuel fabrication stations, the chemistry of reprocessing, and the neutronic performance of the core. Thus, it is important that validated calculational tools be put in place for accurately determining isotopic mass and neutronic inputs to FCF for both operational and material control and accountancy purposes. The primary goal of this work is to validate the REBUS-2/RCT codes as tools which can adequately compute the burnup and isotopic distribution in binary- and ternary-fueled Mark-3, Mark-4, and Mark-5 subassemblies. 6 refs.

  5. EBR-II in-vessel natural circulation experiments on hot and cold pool stratification

    SciTech Connect

    Ragland, W.A.; Feldman, E.E.

    1990-01-01

    The Experimental Breeder Reactor II is located in a cylindrical pool of liquid sodium which is part of the cold-leg of the primary flow circuit. A vertical string of 32 thermocouples spans the 8 m tank height, at each of two diametrically opposed locations in the primary tank. Local temperatures were measured with these 64 thermocouples during dynamic tests. The instantaneous spacial temperature distribution obtained from a string of thermocouples can be viewed on a personal computer. The animation which results from displaying successive spacial distributions provide a very effective way to quickly obtain physical insights. The design of the two strings of thermocouples, the software used to create the animation, measured data from three different types of tests--two unprotected reactor transients, and one with the reactor at decay power levels and the reactor cover lifted, are discussed. 5 refs., 3 figs.

  6. Studies of axial-leakage simulations for homogeneous and heterogeneous EBR-II core configurations

    SciTech Connect

    Grimm, K.N.; Meneghetti, D.

    1985-08-01

    When calculations of flux are done in less than three dimensions, leakage-absorption cross sections are normally used to model leakages (flows) in the dimensions for which the flux is not calculated. Since the neutron flux is axially dependent, the leakages, and hence the leakage-absorption cross sections, are also axially dependent. Therefore, to obtain axial flux profiles (or reaction rates) for individual subassemblies, an XY-geometry calculation delineating each subassembly has to be done at several axial heights with space- and energy-dependent leakage-absorption cross sections that are appropriate for each height. This report discusses homogeneous and heterogeneous XY-geometry calculations at various axial locations and using several differing assumptions for the calculation of the leakage-absorption cross section. The positive (outward) leakage-absorption cross sections are modeled as actual leakage absorptions, but the negative (inward) leakage-absorption cross sections are modeled as either negative leakage absorptions (+-B/sup 2/ method) or positive downscatter cross sections (the ..sigma../sub s/(1 ..-->.. g) method). 3 refs., 52 figs., 10 tabs.

  7. Comparisons of power transfer functions and flow transfer functions in EBR-II

    SciTech Connect

    Grimm, K.N.; Meneghetti, D.

    1987-01-01

    Transfer functions may be used to calculate component feedbacks or temperature increments by convolution of the transfer function with the appropriate fractional change in system quantity. Power-change transfer functions have been reported. The corresponding flow transfer functions for this case, and comparison with the power transfer functions, are reported here. Results of feedback simulation of ramped flow transients using flow transfer functions are also described.

  8. Toxic release consequence analysis tool (TORCAT) for inherently safer design plant.

    PubMed

    Shariff, Azmi Mohd; Zaini, Dzulkarnain

    2010-10-15

    Many major accidents due to toxic release in the past have caused many fatalities such as the tragedy of MIC release in Bhopal, India (1984). One of the approaches is to use inherently safer design technique that utilizes inherent safety principle to eliminate or minimize accidents rather than to control the hazard. This technique is best implemented in preliminary design stage where the consequence of toxic release can be evaluated and necessary design improvements can be implemented to eliminate or minimize the accidents to as low as reasonably practicable (ALARP) without resorting to costly protective system. However, currently there is no commercial tool available that has such capability. This paper reports on the preliminary findings on the development of a prototype tool for consequence analysis and design improvement via inherent safety principle by utilizing an integrated process design simulator with toxic release consequence analysis model. The consequence analysis based on the worst-case scenarios during process flowsheeting stage were conducted as case studies. The preliminary finding shows that toxic release consequences analysis tool (TORCAT) has capability to eliminate or minimize the potential toxic release accidents by adopting the inherent safety principle early in preliminary design stage.

  9. Plurality of inherent states in equiatomic solid solutions

    NASA Astrophysics Data System (ADS)

    Demkowicz, M. J.

    2017-03-01

    We show that single-crystal, equiatomic solid solutions of Lennard-Jones particles have a plurality of inherent states: mechanically stable configurations with identical lattice site occupancies, yet distinct potential-energy minima. External loading triggers transitions between inherent states via localized shear transformations. A plurality of inherent states and mechanically activated transitions between them make equiatomic solid solutions an unusual form of matter: one that is crystalline like single-component metals, yet exhibits localized shear transformations like metallic glasses.

  10. Inherent Anticipation in the Pharmaceutical and Biotechnology Industries.

    PubMed

    Goldman, Michael; Evans, Georgia; Zappia, Andrew

    2015-04-15

    Pharmaceutical and biotech research often involves discovering new properties of, or new methods to use, existing compositions. The doctrine of inherent anticipation, however, prevents the issuance and/or validity of a patent for discoveries deemed to have been implicitly disclosed in the prior art. This can be a barrier to patent rights in these technologies. Inherent anticipation therefore creates uncertainty for patent protection in the pharmaceutical and biotech sciences. Despite this uncertainty, Federal Circuit jurisprudence provides guidance on the boundaries of the inherent anticipation doctrine. In view of the case law, certain strategies may be employed to protect inventions that may potentially be viewed as inherent in the prior art.

  11. Inherent Anticipation in the Pharmaceutical and Biotechnology Industries

    PubMed Central

    Goldman, Michael; Evans, Georgia; Zappia, Andrew

    2015-01-01

    Pharmaceutical and biotech research often involves discovering new properties of, or new methods to use, existing compositions. The doctrine of inherent anticipation, however, prevents the issuance and/or validity of a patent for discoveries deemed to have been implicitly disclosed in the prior art. This can be a barrier to patent rights in these technologies. Inherent anticipation therefore creates uncertainty for patent protection in the pharmaceutical and biotech sciences. Despite this uncertainty, Federal Circuit jurisprudence provides guidance on the boundaries of the inherent anticipation doctrine. In view of the case law, certain strategies may be employed to protect inventions that may potentially be viewed as inherent in the prior art. PMID:25877394

  12. Does the inherence heuristic take us to psychological essentialism?

    PubMed

    Marmodoro, Anna; Murphy, Robin A; Baker, A G

    2014-10-01

    We argue that the claim that essence-based causal explanations emerge, hydra-like, from an inherence heuristic is incomplete. No plausible mechanism for the transition from concrete properties, or cues, to essences is provided. Moreover, the fundamental shotgun and storytelling mechanisms of the inherence heuristic are not clearly enough specified to distinguish them, developmentally, from associative or causal networks.

  13. MEASUREMENT OF THE INHERENT GROWTH ENERGY OF TISSUES

    PubMed Central

    Carrel, Alexis

    1923-01-01

    1. The residual growth energy of fibroblasts is expressed by the extent of their migration and multiplication in a non-nutrient medium. 2. The residual energy of fibroblasts is related to their inherent energy and the variations of the inherent energy can be ascertained by the measurement of the residual energy. PMID:19868807

  14. Implementation of inherence calculus in the PowerLoom environment

    NASA Astrophysics Data System (ADS)

    Wachulski, Marcin F.; Mulawka, Jan J.; Nieznański, Edward

    The article describes an attempt to implement abstract and concrete inherence calculi in the PowerLoom technology. Issues in the field of artificial intelligence, ontology and philosophy have been addressed. The inherence calculus is a type of a formal logic system. The PowerLoom technology consists of a knowledge representation language and an inference engine. Six inherence calculi have been implemented and an appropriate testing environment has been developed. The inherence calculus has been also extended by categorical properties and a theoretical discussion of ontological Boolean algebra has been conducted. Carried out experiments showed properties of the inherence calculi and also verified capabilities of PowerLoom to construct such logic systems. It occurred that expert system operational mode of PowerLoom outperforms its abilities to work as a mathematical theorem prover.

  15. Substantial equivalence of antinutrients and inherent plant toxins in genetically modified novel foods.

    PubMed

    Novak, W K; Haslberger, A G

    2000-06-01

    For a safety evaluation of foodstuff derived from genetically modified crops, the concept of the substantial equivalence of modified organisms with their parental lines is used following an environmental safety evaluation. To assess the potential pleiotropic effect of genetic modifications on constituents of modified crops data from US and EC documents were investigated with regard to inherent plant toxins and antinutrients. Analysed were documents of rape (glucosinolates, phytate), maize (phytate), tomato (tomatine, solanine, chaconine, lectins, oxalate), potato (solanine, chaconine, protease-inhibitors, phenols) and soybean (protease-inhibitors, lectins, isoflavones, phytate). In several documents used for notifications no declarations even on essential inherent plant toxins and antinutrients could be found, for instance data on phytate in modified maize were provided only in one of four documents. Significant variations in the contents of these compounds in parental and modified plants especially due to environmental influences were observed: drought stress, for example, was made responsible for significantly increased glucosinolate levels of up to 72.6micromol/g meal in modified and parental rape plants in field trials compared to recommended standard concentrations of less than 30micromol/g. Taking into account these wide natural variations generally the concentrations of inherent plant toxins and antinutrients in modified products were in the range of the concentrations in parental organisms. The results presented indicate that the concept of the substantial equivalence is useful for the risk assessment of genetically modified organisms (GMOs) used for novel foods but possible environmental influences on constituents of modified crops need more attention. Consistent guidelines, specifying data of relevant compounds which have to be provided for notification documents of specific organisms have to be established. Because of the importance of inherent plant

  16. Development of physiotherapy inherent requirement statements - an Australian experience.

    PubMed

    Bialocerkowski, Andrea; Johnson, Amanda; Allan, Trevor; Phillips, Kirrilee

    2013-04-16

    The United Nations Convention on the Rights of People with Disabilities promotes equal rights of people with a disability in all aspects of their life including their education. In Australia, Disability Discrimination legislation underpins this Convention. It mandates that higher education providers must demonstrate that no discrimination has occurred and all reasonable accommodations have been considered and implemented, to facilitate access and inclusion for a student with a disability. The first step to meeting legislative requirements is to provide students with information on the inherent requirements of a course. This paper describes the steps which were taken to develop inherent requirement statements for a 4-year entry-level physiotherapy program at one Australian university. Inherent requirement statements were developed using an existing framework, which was endorsed and mandated by the University. Items which described inherencies were extracted from Australian physiotherapy professional standards and statutory regulatory requirements, and units contained in the physiotherapy program. Data were integrated into the 8 prescribed domains: ethical behaviour, behavioural stability, legal, communication, cognition, sensory abilities, strength and mobility, and sustainable performance. Statements for each domain were developed using a 5-level framework (introductory statement, description of the inherent requirement, justification for inherency, characteristics of reasonable adjustments and exemplars) and reviewed by a University Review Panel. Refinement of statements continued until no further changes were required. Fifteen physiotherapy inherent requirement statements were developed. The eight domains identified in the existing framework, developed for Nursing, were relevant to the study of physiotherapy. The inherent requirement statements developed in this study provide a transparent, defensible position on the current requirements of physiotherapy study at

  17. Development of physiotherapy inherent requirement statements – an Australian experience

    PubMed Central

    2013-01-01

    Background The United Nations Convention on the Rights of People with Disabilities promotes equal rights of people with a disability in all aspects of their life including their education. In Australia, Disability Discrimination legislation underpins this Convention. It mandates that higher education providers must demonstrate that no discrimination has occurred and all reasonable accommodations have been considered and implemented, to facilitate access and inclusion for a student with a disability. The first step to meeting legislative requirements is to provide students with information on the inherent requirements of a course. This paper describes the steps which were taken to develop inherent requirement statements for a 4-year entry-level physiotherapy program at one Australian university. Case presentation Inherent requirement statements were developed using an existing framework, which was endorsed and mandated by the University. Items which described inherencies were extracted from Australian physiotherapy professional standards and statutory regulatory requirements, and units contained in the physiotherapy program. Data were integrated into the 8 prescribed domains: ethical behaviour, behavioural stability, legal, communication, cognition, sensory abilities, strength and mobility, and sustainable performance. Statements for each domain were developed using a 5-level framework (introductory statement, description of the inherent requirement, justification for inherency, characteristics of reasonable adjustments and exemplars) and reviewed by a University Review Panel. Refinement of statements continued until no further changes were required. Fifteen physiotherapy inherent requirement statements were developed. The eight domains identified in the existing framework, developed for Nursing, were relevant to the study of physiotherapy. Conclusions The inherent requirement statements developed in this study provide a transparent, defensible position on the

  18. No inherent glassiness in a Penrose tiling quasicrystal

    SciTech Connect

    Strandburg, K.J.; Dressel, P.R.

    1988-11-01

    Consideration of the structure of the Penrose pattern has led to speculation that a system with a Penrose tiling ground state might be subject to inherent glassy behavior. Monte Carol simulations show, using a simple model of the energetics, that there is no inherent glassiness in the Penrose tiling. Thermodynamic quantities measured are completely reversible, displaying no observable hysterisis, and the system may be easily cooled from a highly disordered configuration into its lowest energy state. 11 refs., 7 figs.

  19. Evidence of inherent spontaneous polarization in the metazoan integument epithelia.

    PubMed Central

    Athenstaedt, H; Claussen, H

    1983-01-01

    The live integument epithelia of the metazoa have an inherent spontaneous polarization (an inherent permanent electric dipole moment) of corresponding direction perpendicular to the integument surface. The existence of the inherent polarization was proved by their temperature dependence, i.e., by the pyroelectric (PE) effect. Quantitative PE measurements were carried out on a number of integument epithelia of vertebrates (a) in vivo, (b) on fresh epidermis preparations, and (c) on dead, air-dried epidermis specimens of the same species. The demonstrated spontaneous polarization is not dependent on the living state and not caused by a potential difference between the outer and inner integument surface. Dead, dry epidermis samples (potential difference less than 0.01 mV) as well as dead, dry integument appendages (bristles, hairs), and dead cuticles (of arthropoda, annelida, nematoda) showed an inherent dipole moment of the same orientation as the live epidermis. The findings reveal a relationship between the direction (vector) of inherent spontaneous polarization and that of growth (morphogenesis) in the animal epidermis, their appendages, and cuticles. We conclude (a) that the inherent spontaneous polarization is present in live individual epithelial cells of the metazoan integument, and (b) that this physical property is related to the structural and functional cell polarity of integument epithelia and possibly of other epithelia. Images FIGURE 10 PMID:6838974

  20. Molybdenum disulfide (MoS2) nanoflakes as inherently electroactive labels for DNA hybridization detection.

    PubMed

    Loo, Adeline Huiling; Bonanni, Alessandra; Ambrosi, Adriano; Pumera, Martin

    2014-10-21

    The detection of specific DNA sequences plays a critical role in the areas of medical diagnostics, environmental monitoring, drug discovery and food safety. This has therefore become a strong driving force behind the ever-increasing demand for simple, cost-effective, highly sensitive and selective DNA biosensors. In this study, we report for the first time, a novel approach for the utilization of molybdenum disulfide nanoflakes, a member of the transition metal dichalcogenides family, in the detection of DNA hybridization. Herein, molybdenum disulfide nanoflakes serve as inherently electroactive labels, with the inherent oxidation peak exploited as the analytical signal. The principle of detection is based on the differential affinity of molybdenum disulfide nanoflakes towards single-stranded DNA and double-stranded DNA. The employment of transition metal dichalcogenide nanomaterials for sensing and biosensing purposes represents an upcoming research area which holds great promise. Hence, our findings are anticipated to have significant contributions towards the fabrication of future DNA biosensors.

  1. Advances in coupled safety modeling using systems analysis and high-fidelity methods.

    SciTech Connect

    Fanning, T. H.; Thomas, J. W.; Nuclear Engineering Division

    2010-05-31

    The potential for a sodium-cooled fast reactor to survive severe accident initiators with no damage has been demonstrated through whole-plant testing in EBR-II and FFTF. Analysis of the observed natural protective mechanisms suggests that they would be characteristic of a broad range of sodium-cooled fast reactors utilizing metal fuel. However, in order to demonstrate the degree to which new, advanced sodium-cooled fast reactor designs will possess these desired safety features, accurate, high-fidelity, whole-plant dynamics safety simulations will be required. One of the objectives of the advanced safety-modeling component of the Reactor IPSC is to develop a science-based advanced safety simulation capability by utilizing existing safety simulation tools coupled with emerging high-fidelity modeling capabilities in a multi-resolution approach. As part of this integration, an existing whole-plant systems analysis code has been coupled with a high-fidelity computational fluid dynamics code to assess the impact of high-fidelity simulations on safety-related performance. With the coupled capabilities, it is possible to identify critical safety-related phenomenon in advanced reactor designs that cannot be resolved with existing tools. In this report, the impact of coupling is demonstrated by evaluating the conditions of outlet plenum thermal stratification during a protected loss of flow transient. Outlet plenum stratification was anticipated to alter core temperatures and flows predicted during natural circulation conditions. This effect was observed during the simulations. What was not anticipated, however, is the far-reaching impact that resolving thermal stratification has on the whole plant. The high temperatures predicted at the IHX inlet due to thermal stratification in the outlet plenum forces heat into the intermediate system to the point that it eventually becomes a source of heat for the primary system. The results also suggest that flow stagnation in the

  2. Safety and IVHM

    NASA Technical Reports Server (NTRS)

    Goebel, Kai

    2012-01-01

    When we address safety in a book on the business case for IVHM, the question arises whether safety isn t inherently in conflict with the need of operators to run their systems as efficiently (and as cost effectively) as possible. The answer may be that the system needs to be just as safe as needed, but not significantly more. That begs the next question: How safe is safe enough? Several regulatory bodies provide guidelines for operational safety, but irrespective of that, operators do not want their systems to be known as lacking safety. We illuminate the role of safety within the context of IVHM.

  3. Assessing the inherent uncertainty of one-dimensional diffusions

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo; Cohen, Morrel H.

    2013-01-01

    In this paper we assess the inherent uncertainty of one-dimensional diffusion processes via a stochasticity classification which provides an à la Mandelbrot categorization into five states of uncertainty: infra-mild, mild, borderline, wild, and ultra-wild. Two settings are considered. (i) Stopped diffusions: the diffusion initiates from a high level and is stopped once it first reaches a low level; in this setting we analyze the inherent uncertainty of the diffusion's maximal exceedance above its initial high level. (ii) Stationary diffusions: the diffusion is in dynamical statistical equilibrium; in this setting we analyze the inherent uncertainty of the diffusion's equilibrium level. In both settings general closed-form analytic results are established, and their application is exemplified by stock prices in the stopped-diffusions setting, and by interest rates in the stationary-diffusions setting. These results provide a highly implementable decision-making tool for the classification of uncertainty in the context of one-dimensional diffusions.

  4. Thrombin aptasensing with inherently electroactive graphene oxide nanoplatelets as labels

    NASA Astrophysics Data System (ADS)

    Loo, Adeline Huiling; Bonanni, Alessandra; Pumera, Martin

    2013-05-01

    Graphene and its associated materials are commonly used as the transducing platform in biosensing. We propose a different approach for the application of graphene in biosensing. Here, we utilized graphene oxide nanoplatelets as the inherently electroactive labels for the aptasensing of thrombin. The basis of detection lies in the ability of graphene oxide to be electrochemically reduced, thereby providing a well-defined reduction wave; one graphene oxide nanoplatelet of dimension 50 × 50 nm can provide a reduction signal by accepting ~22 000 electrons. We demonstrate that by using graphene oxide nanoplatelets as an inherently electroactive label, we can detect thrombin in the concentration range of 3 pM-0.3 μM, with good selectivity of the aptamer towards interferences by bovine serum albumin, immunoglobulin G and avidin. Therefore, the inherently electroactive graphene oxide nanoplatelets are a material which can serve as an electroactive label, in a manner similar to metallic nanoparticles.

  5. Inherent limits on optimization and discovery in physical systems

    SciTech Connect

    Mlinar, Vladan

    2014-12-15

    Topological mapping of a large physical system on a graph, and its decomposition using universal measures are proposed. We find inherent limits to the potential for optimization of a given system and its approximate representations by motifs, and the ability to reconstruct the full system given approximate representations. The approximate representation of the system most suited for optimization may be different from that which most accurately describes the full system. - Highlights: • Graph-based approach to analyze full and partial representations of physical systems. • Direct link between a change in the physical system and complexity of the graph. • Inherent limits to the potential for optimization of a general system. • Inherent limits to the reconstruction of full system from partial representations.

  6. Is Chaotic Advection Inherent to Porous Media Flow?

    NASA Astrophysics Data System (ADS)

    Lester, Daniel; Metcalfe, Guy; Trefry, Mike

    2013-11-01

    All porous media, including granular and packed media, fractured and open networks, are typified by the inherent topological complexity of the pore-space. This topological complexity admits a large number density of stagnation points under steady Stokes flow, which in turn generates a 3D fluid mechanical analouge of the Bakers map, termed the Baker's flow. We demonstrate that via this mechanism, chaotic advection at the pore-scale is inherent to almost all porous media under reasonable conditions, and such dynamics have significant implications for a range of fluid-borne processes including transport and mixing, chemical reactions and biological activity.

  7. Integration of inherent and induced chirality into subphthalocyanine analogue

    NASA Astrophysics Data System (ADS)

    Zhao, Luyang; Qi, Dongdong; Wang, Kang; Wang, Tianyu; Han, Bing; Tang, Zhiyong; Jiang, Jianzhuang

    2016-06-01

    Conventional conjugated systems are characteristic of only either inherent or induced chirality because of synthetic challenge in combination of chiral segment into the main chromophore. In this work, chiral binaphthyl segment is directly fused into the central chromophore of a subphthalocyanine skeleton, resulting in a novel type of chiral subphthalocyanine analogue (R/S)-1 of integrated inherent and induced chirality. Impressively, an obviously enhanced optical activity is discerned for (R/S)-1 molecules, and corresponding enhancement mechanism is elucidated in detail. The synthesis strategy based on rational molecular design will open the door towards fabrication of chiral materials with giant optical activity, which will have great potential in chiroptical devices.

  8. 16 CFR 1211.7 - Inherent entrapment protection requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... 1211.7 Section 1211.7 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR AUTOMATIC RESIDENTIAL GARAGE DOOR OPERATORS The Standard § 1211.7... installation and at various heights under the edge of the door and located in line with the driving point of...

  9. Model development for the dynamic analysis of the OSU inherently safe reactor. Part 1

    SciTech Connect

    Aybar, Hikmet Selli

    1992-01-01

    Faculty and students in the Nuclear Engineering Program at the Ohio State University (OSU) have proposed a conceptual design for an inherently safe 340 MWe power reactor. The design is based on the state-of-the-art technology of LWRs and the High Temperature Gas- cooled Reactors (HTGRs). The OSU Inherently Safe Reactor (OSU-ISR) concept uses shorter than standard BWR fuel elements in the reactor core. All the fluid on the primary side is contained within a Prestressed Concrete Reactor Vessel (PCRV). This important feature significantly reduces the probability of a LOCA. A new feature of the OSU-ISR is an operator independent steam driven Emergency Core Cooling System (ECCS) housed within the PCRV. In accident conditions where the steam generators are incapacitated, steam from the core drives a jet injector, which takes water from the suppression pool and pumps it into the core cavity to maintain core coverability. The preliminary analysis of the concept was performed as a design project in the Nuclear Engineering Program at the OSU during the Spring of 1985, and published in ``Nuclear Technology.`` The use of a PCRV for ducting and containment and the replacement of forced recirculation with natural circulation on the primary side significantly improve the inherent safety of the plant. Currently, work is in progress for the refinement of the OSU-ISR concept, partially supported by a grant from the U.S. Department of Energy.

  10. Contracting for Independent Evaluation: Approaches to an Inherent Tension

    ERIC Educational Resources Information Center

    Klerman, Jacob Alex

    2010-01-01

    There has recently been discussion of whether independent contract evaluation is possible. This article acknowledges the inherent tension in contract evaluation and in response suggests a range of constructive approaches to improving the independence of contract evaluation. In particular, a clear separation between the official evaluation report…

  11. Measures Inherent to Treatments in Program Effectiveness Reviews

    ERIC Educational Resources Information Center

    Slavin, Robert; Madden, Nancy A.

    2011-01-01

    Program effectiveness reviews in education seek to provide educators with scientifically valid and useful summaries of evidence on achievement effects of various interventions. Different reviewers have different policies on measures of content taught in the experimental group but not the control group, called here "treatment-inherent"…

  12. Contracting for Independent Evaluation: Approaches to an Inherent Tension

    ERIC Educational Resources Information Center

    Klerman, Jacob Alex

    2010-01-01

    There has recently been discussion of whether independent contract evaluation is possible. This article acknowledges the inherent tension in contract evaluation and in response suggests a range of constructive approaches to improving the independence of contract evaluation. In particular, a clear separation between the official evaluation report…

  13. Research Challenges Inherent in Determining Improvement in University Teaching

    ERIC Educational Resources Information Center

    Devlin, Marcia

    2008-01-01

    Using a recent study that examined the effectiveness of a particular approach to improving individual university teaching as a case study, this paper examines some of the challenges inherent in educational research, particularly research examining the effects of interventions to improve teaching. Aspects of the research design and methodology and…

  14. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The results of the Panel's activities are presented in a set of findings and recommendations. Highlighted here are both improvements in NASA's safety and reliability activities and specific areas where additional gains might be realized. One area of particular concern involves the curtailment or elimination of Space Shuttle safety and reliability enhancements. Several findings and recommendations address this area of concern, reflecting the opinion that safety and reliability enhancements are essential to the continued successful operation of the Space Shuttle. It is recommended that a comprehensive and continuing program of safety and reliability improvements in all areas of Space Shuttle hardware/software be considered an inherent component of ongoing Space Shuttle operations.

  15. Determination of Inherent Stresses by Measuring Deformations of Drilled Holes

    NASA Technical Reports Server (NTRS)

    Mathar, Josef

    1933-01-01

    Various methods have been proposed for determining the inherent stresses in structural components by disturbing their stress equilibrium through a mechanical device and measuring the resulting deformations. The methods used have disadvantages because they can be used only with specially shaped pieces (those with round or rectangular cross sections), that every form of test piece requires another kind of injury and hence of calculation, and the tested parts are rendered useless. The new test method, which seeks to eliminate these disadvantages, is likewise based on a disturbance of the equilibrium of forces, and indeed by drilling a hole which, however, is so small that the part can be used again. This method serves, among other things, for determining the inherent stresses in castings, welded parts, rolled structural shapes and finished structures.

  16. Integration of inherent and induced chirality into subphthalocyanine analogue

    PubMed Central

    Zhao, Luyang; Qi, Dongdong; Wang, Kang; Wang, Tianyu; Han, Bing; Tang, Zhiyong; Jiang, Jianzhuang

    2016-01-01

    Conventional conjugated systems are characteristic of only either inherent or induced chirality because of synthetic challenge in combination of chiral segment into the main chromophore. In this work, chiral binaphthyl segment is directly fused into the central chromophore of a subphthalocyanine skeleton, resulting in a novel type of chiral subphthalocyanine analogue (R/S)-1 of integrated inherent and induced chirality. Impressively, an obviously enhanced optical activity is discerned for (R/S)-1 molecules, and corresponding enhancement mechanism is elucidated in detail. The synthesis strategy based on rational molecular design will open the door towards fabrication of chiral materials with giant optical activity, which will have great potential in chiroptical devices. PMID:27294871

  17. On the maximum entropy distributions of inherently positive nuclear data

    NASA Astrophysics Data System (ADS)

    Taavitsainen, A.; Vanhanen, R.

    2017-05-01

    The multivariate log-normal distribution is used by many authors and statistical uncertainty propagation programs for inherently positive quantities. Sometimes it is claimed that the log-normal distribution results from the maximum entropy principle, if only means, covariances and inherent positiveness of quantities are known or assumed to be known. In this article we show that this is not true. Assuming a constant prior distribution, the maximum entropy distribution is in fact a truncated multivariate normal distribution - whenever it exists. However, its practical application to multidimensional cases is hindered by lack of a method to compute its location and scale parameters from means and covariances. Therefore, regardless of its theoretical disadvantage, use of other distributions seems to be a practical necessity.

  18. Dynamic behavior of an inherently compensated air squeeze film damper

    NASA Technical Reports Server (NTRS)

    Cunningham, R. E.

    1975-01-01

    Experimental values of damping and stiffness were determined for an externally pressurized, inherently compensated, compressible squeeze-film damper up to excitation frequencies of 36,000 cycles/min. Experimental values of damping were higher than predicted by a small pressure perturbation theory at low squeeze numbers and less than predicted at high squeeze numbers. Experimental values of air film stiffness were less than the theory predicted at low squeeze numbers and much greater at higher squeeze numbers.

  19. Inherent features of wavelets and pulse coupled networks.

    PubMed

    Lindblad, T; Kinser, J M

    1999-01-01

    Biologically inspired image/signal processing like the pulse coupled neural network (PCNN) and the wavelet (packet) transforms are described. The two methods are applied to two-dimensional data in order to demonstrate the features of each method, pinpoint differences as well as similarities. The inherent properties (with respect to filtering, segmentation, etc.) of the two approaches with respect to detectors for physics experiments as well as remote sensing are discussed.

  20. Estimate of water inherent optical properties from Secchi depth

    NASA Astrophysics Data System (ADS)

    Levin, I. M.; Radomyslskaya, T. M.

    2012-04-01

    This paper suggests a new version of the Secchi disk theory which shows a connection between Secchi depth measurements and inherent optical properties (IOP) of water such as the extinction coefficient, the single scattering albedo, and the backscattering coefficient. Ways around Preisendorfer's objection to using measurements of the Secchi depth for determining the IOP are proposed. This theory is compared with a marine experiment and its accuracy under different conditions is estimated.

  1. Molybdenum disulfide (MoS2) nanoflakes as inherently electroactive labels for DNA hybridization detection

    NASA Astrophysics Data System (ADS)

    Loo, Adeline Huiling; Bonanni, Alessandra; Ambrosi, Adriano; Pumera, Martin

    2014-09-01

    The detection of specific DNA sequences plays a critical role in the areas of medical diagnostics, environmental monitoring, drug discovery and food safety. This has therefore become a strong driving force behind the ever-increasing demand for simple, cost-effective, highly sensitive and selective DNA biosensors. In this study, we report for the first time, a novel approach for the utilization of molybdenum disulfide nanoflakes, a member of the transition metal dichalcogenides family, in the detection of DNA hybridization. Herein, molybdenum disulfide nanoflakes serve as inherently electroactive labels, with the inherent oxidation peak exploited as the analytical signal. The principle of detection is based on the differential affinity of molybdenum disulfide nanoflakes towards single-stranded DNA and double-stranded DNA. The employment of transition metal dichalcogenide nanomaterials for sensing and biosensing purposes represents an upcoming research area which holds great promise. Hence, our findings are anticipated to have significant contributions towards the fabrication of future DNA biosensors.The detection of specific DNA sequences plays a critical role in the areas of medical diagnostics, environmental monitoring, drug discovery and food safety. This has therefore become a strong driving force behind the ever-increasing demand for simple, cost-effective, highly sensitive and selective DNA biosensors. In this study, we report for the first time, a novel approach for the utilization of molybdenum disulfide nanoflakes, a member of the transition metal dichalcogenides family, in the detection of DNA hybridization. Herein, molybdenum disulfide nanoflakes serve as inherently electroactive labels, with the inherent oxidation peak exploited as the analytical signal. The principle of detection is based on the differential affinity of molybdenum disulfide nanoflakes towards single-stranded DNA and double-stranded DNA. The employment of transition metal dichalcogenide

  2. Tritium-producing burnable absorber rod and its inherent safety features

    SciTech Connect

    Reid, B.D.; Lanning, D.D.

    2000-07-01

    Tritium-producing burnable absorber rods (TPBARs) used in the US Department of Energy's Commercial Light Water Reactor (CLWR) Project are designed to produce tritium when irradiated in a typical Westinghouse 17 x 17 pressurized water reactor (PWR). This paper provides an unclassified description of the design baseline for the TPBAR employed in the CLWR. TPBARs are similar in size and nuclear characteristics to standard, commercial PWR, stainless steel--clad burnable absorber rods. The exterior of the TPBAR is a stainless steel tube, {approximately}152 in. from tip to tip with a nominal outer diameter of 0.381 in. The internal components have been designed and selected to produce and retain tritium.

  3. Accommodation of unprotected accidents by inherent safety design features in metallic and oxide-fueled LMFBRs

    SciTech Connect

    Cahalan, J.E.; Sevy, R.H.; Su, S.F.

    1985-01-01

    This paper presents the results of a study of the effectivness of intrinsic design features to mitigate the consequences of unprotected accidents in metallic and oxide-fueled LMFBRs. The accidents analyzed belong to the class generally considered to lead to core disruption; unprotected loss-of-flow (LOF) and transient over-power (TOP). Results of the study demonstrate the potential for design features to meliorate accident consequences, and in some cases to render them benign. Emphasis is placed on the relative performance of metallic and oxide-fueled core designs.

  4. Inherent overload protection for the series resonant converter

    NASA Technical Reports Server (NTRS)

    King, R. J.; Stuart, T. A.

    1983-01-01

    The overload characteristics of the full bridge series resonant power converter are considered. This includes analyses of the two most common control methods presently in use. The first of these uses a current zero crossing detector to synchronize the control signals and is referred to as the alpha controller. The second is driven by a voltage controlled oscillator and is referred to as the gamma controller. It is shown that the gamma controller has certain reliability advantages in that it can be designed with inherent short circuit protection. Experimental results are included for an 86 kHz converter using power metal-oxide-semiconductor field-effect transistors (MOSFETs).

  5. Inherent uncertainties in meteorological parameters for wind turbine design

    NASA Technical Reports Server (NTRS)

    Doran, J. C.

    1982-01-01

    Major difficulties associated with meteorological measurments such as the inability to duplicate the experimental conditions from one day to the next are discussed. This lack of consistency is compounded by the stochastic nature of many of the meteorological variables of interest. Moreover, simple relationships derived in one location may be significantly altered by topographical or synoptic differences encountered at another. The effect of such factors is a degree of inherent uncertainty if an attempt is made to describe the atmosphere in terms of universal laws. Some of these uncertainties and their causes are examined, examples are presented and some implications for wind turbine design are suggested.

  6. Application of inherent fluorescence in the diagnosis of early cancer

    NASA Astrophysics Data System (ADS)

    Yu, Zhen-Fen

    1998-11-01

    There are differences in molecular structure between cancer, ulcer and normal tissue. They have their own specific absorb structures, which result in the highly specificity in the absorption of radiation. When laser light with specific wavelength irradiates on cancer or normal tissue, the inherent fluorescence of them can be stimulated. With the help of specific instrument, the curve of spectrum can be drawn. The various fluorescence peak value of cancerous and normal tissue can be used to differentiate between the two. The instruments used include some kinds of the most advanced technologies in nowadays, such as current laser, photoelectron, computer, microptic rapid spectrum analysis.

  7. Inherent Prevention and Mitigation of Severe Accident Consequences in Sodium-Cooled Fast Reactors

    SciTech Connect

    Roald A. Wigeland; James E. Cahalan

    2011-04-01

    Safety challenges for sodium-cooled fast reactors include maintaining core temperatures within design limits and assuring the geometry and integrity of the reactor core. Due to the high power density in the reactor core, heat removal requirements encourage the use of high-heat-transfer coolants such as liquid sodium. The variation of power across the core requires ducted assemblies to control fuel and coolant temperatures, which are also used to constrain core geometry. In a fast reactor, the fuel is not in the most neutronically reactive configuration during normal operation. Accidents leading to fuel melting, fuel pin failure, and fuel relocation can result in positive reactivity, increasing power, and possibly resulting in severe accident consequences including recriticalities that could threaten reactor and containment integrity. Inherent safety concepts, including favorable reactivity feedback, natural circulation cooling, and design choices resulting in favorable dispersive characteristics for failed fuel, can be used to increase the level of safety to the point where it is highly unlikely, or perhaps even not credible, for such severe accident consequences to occur.

  8. Prediction of stainless steel activation in experimental breeder reactor 2 (EBR-II) reflector and blanket subassemblies

    SciTech Connect

    Bunde, K.A.

    1996-12-31

    Stainless steel structural components in nuclear reactors become radioactive wastes when no longer useful. Prior to disposal, certain physical attributes must be analyzed. These attributes include structural integrity, chemical stability, and the radioactive material content among others. The focus of this work is the estimation of the radioactive material content of stainless steel wastes from a research reactor operated by Argonne National Laboratory.

  9. REDUCTION OF INHERENT MERCURY EMISSIONS IN PC COMBUSTION

    SciTech Connect

    John C. Kramlich; Rebecca N. Sliger; David J. Going

    1999-08-06

    Mercury emission compliance is one of the major potential challenges raised by the 1990 Clean Air Act Amendments. Simple ways of controlling emissions have not been identified. The variability in the field data suggests that inherent mercury emissions may be reduced if the source of this inherent capture can be identified and controlled. The key mechanisms appear to involve the oxidation of the mercury to Hg{sup 2}, generally producing the more reactive HgCl{sub 2} , followed by its capture by certain components of the fly ash or char. This research focuses on identifying the rate-limiting steps associated with the oxidation step. Work in this reporting period focused on the development and application of a kinetics model to the oxidation data developed in the present program and literature data under MSW conditions. The results indicate that the pathway Hg + Cl = HgCl followed by HgCl + HCl = HgCl{sub 2} + H predominates over Hg + Cl{sub 2} under high-temperature conditions. This primarily occurs because Cl{sub 2} concentrations are too low under the present conditions to contribute significantly.

  10. REDUCTION OF INHERENT MERCURY EMISSIONS IN PC COMBUSTION

    SciTech Connect

    John C. Kramlich; Rebecca N. Sliger; David J. Going

    1998-08-19

    Mercury emission compliance is one of the major potential challenges raised by the 1990 Clean Air Act Amendments. Simple ways of controlling emissions have not been identified. The variability in the field data suggests that inherent mercury emissions may be reduced if the source of this inherent capture can be identified and controlled. The key mechanisms appear to involve the oxidation of the mercury to Hg{sup 2}, generally producing the more reactive HgCl{sub 2}, followed by its capture by certain components of the fly ash or char. This research focuses on identifying the rate-limiting steps associated with the oxidation step. Work in this reporting period focused on the development of oxidation data as a function of temperature and HCl concentration. The temperature range was 800-1200 C. The results show a lower level of oxidation than indicated by the earlier data of Hall et al. (1991). One possible reason for this discrepancy was the preheating of the HCl stream in the Hall experiment, leading to the partial decomposition of the HCl into reactive species. In the present experiments, the HCl was injected as a cold stream. The measured oxidation at these conditions was substantially above that predicted by equilibrium, indicating the dominance of finite rate chemistry. This is to be explored in subsequent work.

  11. The inherent cellular radiosensitivity of epithelial ovarian carcinoma

    SciTech Connect

    Rotmensch, J.; Schwartz, J.L.; Atcher, R.W.; Grdina, D.J.; Toohill, M.; Weichselbaum, R.W. )

    1989-12-01

    Ovarian carcinomas of similar histology have variable responses to radiation therapy. It has been suggested that inherent cellular resistance to radiation may in part underlie radiotherapy failure. To determine in vitro radiobiological parameters of papillary serous adenocarcinoma of the ovary, we investigated the cellular responses of 16 early-passage ovarian carcinoma cell lines to radiation. The radiosensitivity, as measured by D0, ranged from 1.05 to 2.40 Gy (mean 1.70 Gy), and, as measured by D, ranged from 1.65 to 3.54 Gy (mean 2.38 Gy). The extrapolation number -n ranged from 1.1 to 2.0 (mean 1.5). The cells had a 1.3- to 5.4-fold (mean 2.8) ability to recover from potential lethal damage (PLDR) 24 hr after irradiation and subculture from plateau-phase cultures. Their inherent radioresistance may be one factor in the failure of some ovarian cancers to be sterilized by radiation.

  12. Drug policy in sport: hidden assumptions and inherent contradictions.

    PubMed

    Smith, Aaron C T; Stewart, Bob

    2008-03-01

    This paper considers the assumptions underpinning the current drugs-in-sport policy arrangements. We examine the assumptions and contradictions inherent in the policy approach, paying particular attention to the evidence that supports different policy arrangements. We find that the current anti-doping policy of the World Anti-Doping Agency (WADA) contains inconsistencies and ambiguities. WADA's policy position is predicated upon four fundamental principles; first, the need for sport to set a good example; secondly, the necessity of ensuring a level playing field; thirdly, the responsibility to protect the health of athletes; and fourthly, the importance of preserving the integrity of sport. A review of the evidence, however, suggests that sport is a problematic institution when it comes to setting a good example for the rest of society. Neither is it clear that sport has an inherent or essential integrity that can only be sustained through regulation. Furthermore, it is doubtful that WADA's anti-doping policy is effective in maintaining a level playing field, or is the best means of protecting the health of athletes. The WADA anti-doping policy is based too heavily on principals of minimising drug use, and gives insufficient weight to the minimisation of drug-related harms. As a result drug-related harms are being poorly managed in sport. We argue that anti-doping policy in sport would benefit from placing greater emphasis on a harm minimisation model.

  13. Inherently fluorescent polystyrene microspheres for coating, sensing and cellular imaging.

    PubMed

    Qu, Jian-Bo; Xu, Yu-Liang; Liu, Yu; Wang, Yanan; Sui, Yuanhong; Liu, Jian-Guo; Wang, Xiaojuan

    2017-04-01

    Commercially available polystyrene (PS) fluorescent microspheres are widely used in biological field for tracing, in vivo imaging and calibration of flow cytometry, among other applications. However, these particles do suffer from some drawbacks such as the leakage and photobleaching of organic dyes within them. In the present study, inherently fluorescent properties of PS based microspheres have been explored for the first time. Here we find that a simple chloromethylation reaction endows the polystyrene particles with inherent fluorescence without any subsequent conjugation of an external fluorophore. A possible mechanism for fluorescence is elucidated by synthesizing and investigating p-ethylbenzyl chloride, a compound with similar structure. Significantly, no photobleaching or leaking issues were observed owing to the stable structure of the microspheres. Chloromethylated PS (CMPS) microspheres can keep their perpetual blue fluorescence even in dry powder state making them attractive as a potential coating material. Furthermore, the chloromethyl groups on CMPS microspheres make them very convenient for further functionalization. Poly(ethylene glycol) (PEG) grafted microspheres showed good biocompatibility and negligible cytotoxicity, and could be used to image intracellular Fe(3+) due to the selective fluorescence quenching effect of aqueous Fe(3+) in cytoplasm.

  14. Inherent Problems in Designing Two-Failure Tolerant Electromechanical Actuators

    NASA Technical Reports Server (NTRS)

    Hornyak, S.

    1984-01-01

    An electromechanical ac-powered rotary actuated four-bar linkage system for rotating the Shuttle/Centaur deployment adapter is described. The essential features of the deployment adapter rotation system (DARS) are increased reliability for mission success and maximum practical hazard control for safety. The requirements, concept development, hardware configuration, quality assurance provisions, and techniques used to meet two-fault tolerance requirements are highlighted. The rationale used to achieve a degree of safety equivalent of that of two-failure tolerance is presented. Conditions that make this approach acceptable, including single failure point components with regard to redundancy versus credibility of failure modes, are also discussed.

  15. Inherent variability in lead and copper collected during standardized sampling.

    PubMed

    Masters, Sheldon; Parks, Jeffrey; Atassi, Amrou; Edwards, Marc A

    2016-03-01

    Variability in the concentration of lead and copper sampled at consumers' taps poses challenges to assessing consumer health threats and the effectiveness of corrosion control. To examine the minimum variability that is practically achievable, standardized rigs with three lead and copper containing plumbing materials (leaded brass, copper tube with lead solder, and a lead copper connection) were deployed at five utilities and sampled with regimented protocols. Variability represented by relative standard deviation (RSD) in lead release was high in all cases. The brass had the lowest variability in lead release (RSD = 31 %) followed by copper-solder (RSD = 49%) and lead-copper (RSD = 80%). This high inherent variability is due to semi-random detachment of particulate lead to water, and represents a modern reality of water lead problems that should be explicitly acknowledged and considered in all aspects of exposure, public education, and monitoring.

  16. Characterizing and controlling the inherent dynamics of cyclophilin-A

    SciTech Connect

    Schlegel, Jennifer; Armstrong, Geoffrey S.; Redzic, Jasmina S.; Zhang, Fengli; Eisenmesser, Elan Z.

    2009-02-12

    With the recent advances in NMR relaxation techniques, protein motions on functionally important timescales can be studied at atomic resolution. Here, we have used NMR-based relaxation experiments at several temperatures and both 600 and 900 MHz to characterize the inherent dynamics of the enzyme cyclophilin-A (CypA). We have discovered multiple chemical exchange processes within the enzyme that form a ‘‘dynamic continuum’’ that spans 20–30 A ° comprising active site residues and residues proximal to the active site. By combining mutagenesis with these NMR relaxation techniques, a simple method of counting the dynamically sampled conformations has been developed. Surprisingly, a combination of point mutations has allowed for the specific regulation of many of the exchange processes that occur within CypA, suggesting that the dynamics of an enzyme may be engineered.

  17. A novel hyperbolic grid generation procedure with inherent adaptive dissipation

    SciTech Connect

    Tai, C.H.; Yin, S.L.; Soong, C.Y.

    1995-01-01

    This paper reports a novel hyperbolic grid-generation with an inherent adaptive dissipation (HGAD), which is capable of improving the oscillation and overlapping of grid lines. In the present work upwinding differencing is applied to discretize the hyperbolic system and, thereby, to develop the adaptive dissipation coefficient. Complex configurations with the features of geometric discontinuity, exceptional concavity and convexity are used as the test cases for comparison of the present HGAD procedure with the conventional hyerbolic and elliptic ones. The results reveal that the HGAD method is superior in orthogonality and smoothness of the grid system. In addition, the computational efficiency of the flow solver may be improved by using the present HGAD procedure. 15 refs., 8 figs.

  18. Cylindrical invisibility cloak with simplified material parameters is inherently visible.

    PubMed

    Yan, Min; Ruan, Zhichao; Qiu, Min

    2007-12-07

    It was proposed that perfect invisibility cloaks can be constructed for hiding objects from electromagnetic illumination [J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006)10.1126/science.1125907]. The cylindrical cloaks experimentally demonstrated [D. Schurig, Science 314, 977 (2006)10.1126/science.1133628] and theoretically proposed [W. Cai, Nat. Photon. 1, 224 (2007)10.1038/nphoton.2007.28] have however simplified material parameters in order to facilitate easier realization as well as to avoid infinities in optical constants. Here we show that the cylindrical cloaks with simplified material parameters inherently allow the zeroth-order cylindrical wave to pass through the cloak as if the cloak is made of a homogeneous isotropic medium, and thus visible. To all high-order cylindrical waves, our numerical simulation suggests that the simplified cloak inherits some properties of the ideal cloak, but finite scatterings exist.

  19. Retrieval of Water Inherent Optical Properties by Optimal Estimation

    NASA Astrophysics Data System (ADS)

    Kritten, Lena Katharina; Preusker, Rene; Fischer, Jurgen

    2015-12-01

    Due to the variety of parameters and states in ocean colour retrievals on one hand and the limited number of channels with limited precision on the other hand, it is necessary and useful to apply prior knowledge to the retrieval of ocean colour products. However the available prior knowledge can be very variable. Within the project SIOCS (Sensor Independent Ocean Colour Service) we developed a generic innovative algorithm for the retrieval of water inherent optical properties with a flexible way of including prior knowledge in order to constrain the result. The method is based on the inversion of simulated water-leaving reflectances from a look-up table. The inversion is solved including prior knowledge in the form of an apriori state and an apriori covariance matrix.

  20. Inherently unstable internal gravity waves due to resonant harmonic generation

    NASA Astrophysics Data System (ADS)

    Liang, Yong; Zareei, Ahmad; Alam, Mohammad-Reza

    2017-01-01

    Here we show that there exist internal gravity waves that are inherently unstable, that is, they cannot exist in nature for a long time. The instability mechanism is a one-way (irreversible) harmonic-generation resonance that permanently transfers the energy of an internal wave to its higher harmonics. We show that, in fact, there are countably infinite number of such unstable waves. For the harmonic-generation resonance to take place, nonlinear terms in the free surface boundary condition play a pivotal role, and the instability does not obtain for a linearly-stratified fluid if a simplified boundary condition such as rigid lid or linear form is employed. Harmonic-generation resonance presented here also provides a mechanism for the transfer of the energy of the internal waves to the higher-frequency part of the spectrum where internal waves are more prone to breaking, hence losing energy to turbulence and heat and contributing to oceanic mixing.

  1. Contracting for independent evaluation: approaches to an inherent tension.

    PubMed

    Klerman, Jacob Alex

    2010-08-01

    There has recently been discussion of whether independent contract evaluation is possible. This article acknowledges the inherent tension in contract evaluation and in response suggests a range of constructive approaches to improving the independence of contract evaluation. In particular, a clear separation between the official evaluation report and a contractor's own publication of analysis from the underlying evaluation appears to be a promising approach. In this approach, the funder would retain almost unfettered rights to the official contract report (including the right never to publish but not the right to change the contractor's text while leaving the contractor's authorship) and the contractor would retain clearly defined rights to publish any findings from the evaluation (subject only to the limitations of human subjects and proprietary data and some minimal notice).

  2. Chirality as an inherent general property of matter.

    PubMed

    Davankov, Vadim

    2006-08-01

    A statement has been formulated that chirality is an indispensable inherent property of all material objects, at one level of organization of matter or another. The translation of chirality from one level of material objects to another deserves our attention. The parity violation of weak interactions can be discussed in terms of the homochirality of the pool of fundamental particles, as it translates into optical activity of metal vapors. Individual photons and energy quanta are considered to be chiral entities, too, since they can be separated into beams of circularly polarized radiation. The chiral structure of the universe has been proposed and a method of determining the orientation of the axis of rotation of the universe suggested.

  3. Core design and performance of small inherently safe LMRs

    SciTech Connect

    Orechwa, Y.; Khalil, H.; Turski, R.B.; Fujita, E.K.

    1986-01-01

    Oxide and metal-fueled core designs at the 900 MWt level and constrained by a requirement for interchangeability are described. The physics parameters of the two cores studied here indicate that metal-fueled cores display attractive economic and safety features and are more flexible than are oxide cores in adapting to currently-changing deployment scenarios.

  4. Communicating uncertainty: managing the inherent probabilistic character of hazard estimates

    NASA Astrophysics Data System (ADS)

    Albarello, Dario

    2013-04-01

    Science is much more fixing the limits of our knowledge about possible occurrences than the identification of any "truth". This is particularly true when scientific statements concern prediction of natural phenomena largely exceeding the laboratory scale as in the case of seismogenesis. In these cases, many scenarios about future occurrences result possible (plausible) and the contribution of scientific knowledge (based on the available knowledge about underlying processes or the phenomenological studies) mainly consists in attributing to each scenario a different level of likelihood (probability). In other terms, scientific predictions in the field of geosciences (hazard assessment) are inherently probabilistic. However, despite of this, many scientist (seismologists, etc.) in communicating their position in public debates tend to stress the " truth" of their statements against the fancy character of pseudo-scientific assertions: stronger is the opposition of science and pseudo-science, more hidden becomes the probabilistic character of scientific statements. The problem arises when this kind of "probabilistic" knowledge becomes the basis of any political action (e.g., to impose expensive form of risk reducing activities): in these cases the lack of any definitive "truth" requires a direct assumption of responsibility by the relevant decider (being the single citizen or the legitimate expression of a larger community) to choose among several possibilities (however characterized by different levels of likelihood). In many cases, this can be uncomfortable and strong is the attitude to delegate to the scientific counterpart the responsibility of these decisions. This "transfer" from the genuine political field to an improper scientific context is also facilitated by the lack of a diffuse culture of "probability" outside the scientific community (and in many cases inside also). This is partially the effect of the generalized adoption (by media and scientific

  5. Cyclic swelling as a phenomenon inherent to biodegradable polyesters.

    PubMed

    Dittrich, Milan; Snejdrova, Eva

    2014-11-01

    The aim of this study is to evaluate and describe the phenomenon and mechanism of the spontaneous cyclic swelling and deswelling of linear and branched aliphatic polyesters in the aqueous medium. The fluctuation of gel volume in one or several cycles as an inherent property of biodegradable and bioerodible materials has not yet been described. We have observed the process at linear and branched polyesters of aliphatic α-hydroxy acids. The period of duration of cycles was in order of hours to days, as influenced by the size of the bodies ranging from 25 to 1000 mg, the temperature in the range of 7°C-42°C, ionic strength, and pH value. The results demonstrated that swelling is accompanied by hydrolysis of ester bonds with the development of small water-soluble osmotically active molecules. After reaching a higher degree of swelling, the obstruction effect of the gel decreases and the diffusion of soluble degradation products from the body to the environment prevails. A decrease in osmotic pressure inside the body and a decrease in the hydrophilic character of the gel matrix result in deswelling by a collapse of the structure, probably due to hydrophobic interactions of nonpolar polyester chains.

  6. Energy storage inherent in large tidal turbine farms.

    PubMed

    Vennell, Ross; Adcock, Thomas A A

    2014-06-08

    While wind farms have no inherent storage to supply power in calm conditions, this paper demonstrates that large tidal turbine farms in channels have short-term energy storage. This storage lies in the inertia of the oscillating flow and can be used to exceed the previously published upper limit for power production by currents in a tidal channel, while simultaneously maintaining stronger currents. Inertial storage exploits the ability of large farms to manipulate the phase of the oscillating currents by varying the farm's drag coefficient. This work shows that by optimizing how a large farm's drag coefficient varies during the tidal cycle it is possible to have some flexibility about when power is produced. This flexibility can be used in many ways, e.g. producing more power, or to better meet short predictable peaks in demand. This flexibility also allows trading total power production off against meeting peak demand, or mitigating the flow speed reduction owing to power extraction. The effectiveness of inertial storage is governed by the frictional time scale relative to either the duration of a half tidal cycle or the duration of a peak in power demand, thus has greater benefits in larger channels.

  7. Energy storage inherent in large tidal turbine farms

    PubMed Central

    Vennell, Ross; Adcock, Thomas A. A.

    2014-01-01

    While wind farms have no inherent storage to supply power in calm conditions, this paper demonstrates that large tidal turbine farms in channels have short-term energy storage. This storage lies in the inertia of the oscillating flow and can be used to exceed the previously published upper limit for power production by currents in a tidal channel, while simultaneously maintaining stronger currents. Inertial storage exploits the ability of large farms to manipulate the phase of the oscillating currents by varying the farm's drag coefficient. This work shows that by optimizing how a large farm's drag coefficient varies during the tidal cycle it is possible to have some flexibility about when power is produced. This flexibility can be used in many ways, e.g. producing more power, or to better meet short predictable peaks in demand. This flexibility also allows trading total power production off against meeting peak demand, or mitigating the flow speed reduction owing to power extraction. The effectiveness of inertial storage is governed by the frictional time scale relative to either the duration of a half tidal cycle or the duration of a peak in power demand, thus has greater benefits in larger channels. PMID:24910516

  8. Managing inherent complexity for sustainable walleye fisheries in Lake Erie

    USGS Publications Warehouse

    Roseman, Edward F.; Drouin, Richard; Gaden, Marc; Knight, Roger; Tyson, Jeff; Zhao, Yingming; Taylor, William W.; Lynch, Abigail J.; Leonard, Nancy J.

    2012-01-01

    In Lake Erie, Walleye (Sander vitreus vitreus) is king. The naturally occurring species is the foundation of commercial fishing operations on the Canadian side of the lake and is a much-prized sport fish on the American side. Management of Lake Erie walleye fisheries is complex and takes place in an inter-jurisdictional setting composed of resource agencies from the states of Michigan (MDNR), Ohio (ODNR), Pennsylvania (PFBC), and New York (NYDEC) and the province of Ontario (OMNR). The complexity of walleye management is exacerbated by interactions among environmental and ecological changes in Lake Erie, complex life-history characteristics of the species, public demand for walleye, and cultural/governance differences among managing groups and their respective constituents. Success of future management strategies will largely hinge upon our ability to understand these inherent complexities and to employ tactics that successfully accommodate stock productivity and human demand in a highly dynamic environment. In this report, we review the history of Lake Erie walleye management, outline the multi-jurisdictional process for international management of walleye, and discuss strategies to address challenges facing managers.

  9. Inherently Analog Quantity Representations in Olive Baboons (Papio anubis)

    PubMed Central

    Barnard, Allison M.; Hughes, Kelly D.; Gerhardt, Regina R.; DiVincenti, Louis; Bovee, Jenna M.; Cantlon, Jessica F.

    2013-01-01

    Strong evidence indicates that non-human primates possess a numerical representation system, but the inherent nature of that system is still debated. Two cognitive mechanisms have been proposed to account for non-human primate numerical performance: (1) a discrete object-file system limited to quantities <4, and (2) an analog system which represents quantities comparatively but is limited by the ratio between two quantities. To test the underlying nature of non-human primate quantification, we asked eight experiment-naive olive baboons (Papio anubis) to discriminate between number pairs containing small (<4), large (>4), or span (small vs. large) numbers of food items presented simultaneously or sequentially. The prediction from the object-file hypothesis is that baboons will only accurately choose the larger quantity in small pairs, but not large or span pairs. Conversely, the analog system predicts that baboons will be successful with all numbers, and that success will be dependent on numerical ratio. We found that baboons successfully discriminated all pair types at above chance levels. In addition, performance significantly correlated with the ratio between the numerical values. Although performance was better for simultaneous trials than sequential trials, evidence favoring analog numerical representation emerged from both conditions, and was present even in the first exposure to number pairs. Together, these data favor the interpretation that a single, coherent analog representation system underlies spontaneous quantitative abilities in primates. PMID:23653619

  10. Characterization of bladder acellular matrix hydrogel with inherent bioactive factors.

    PubMed

    Jiang, Dan; Huang, Jianwen; Shao, Huili; Hu, Xuechao; Song, Lujie; Zhang, Yaopeng

    2017-08-01

    Bladder acellular matrix (BAM) hydrogel may have great potential in tissue engineering due to outstanding biocompatibility and the presence of inherent bioactive factors in BAM. In this study, we prepared the BAM hydrogel by the method of enzymatic solubilization with pepsin and characterize the microrheological properties of the BAM precursor solution. The structures of the BAM hydrogel were characterized by scanning electron microscope (SEM), Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). Furthermore, the growth factors including vascular endothelial growth factor (VEGF), platelet-derived growth factor B (PDGF-BB), keratinocyte growth factor (KGF) were quantified by ELISA. The biological performances of the hydrogels were evaluated by cultivating porcine iliac endothelial cells (PIECs) in vitro. Lyophilized BAM showed porous structure with pore diameter ranging from 50 to 100μm. BAM 4-G hydrogel (4mg/mL) with a short gelation time of 3.95±0.07min presents better thermal stability than BAM 6-G hydrogel (6mg/mL). Growth factors in the BAM hydrogel maintain valuable biological activity even after digestion process. The BAM hydrogel supported the adhesion and growth of PIECs well and has great potential for further tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Airborne LIDAR as a tool for estimating inherent optical properties

    NASA Astrophysics Data System (ADS)

    Trees, Charles; Arnone, Robert

    2012-06-01

    LIght Detection and Ranging (LIDAR) systems have been used most extensively to generate elevation maps of land, ice and coastal bathymetry. There has been space-, airborne- and land-based LIDAR systems. They have also been used in underwater communication. What have not been investigated are the capabilities of LIDARs to measure ocean temperature and optical properties vertically in the water column, individually or simultaneously. The practical use of bathymetric LIDAR as a tool for the estimation of inherent optical properties remains one of the most challenging problems in the field of optical oceanography. LIDARs can retrieve data as deep as 3-4 optical depths (e.g. optical properties can be measured through the thermocline for ~70% of the world's oceans). Similar to AUVs (gliders), UAV-based LIDAR systems will increase temporal and spatial measurements by several orders of magnitude. The LIDAR Observations of Optical and Physical Properties (LOOPP) Conference was held at NURC (2011) to review past, current and future LIDAR research efforts in retrieving water column optical/physical properties. This new observational platform/sensor system is ideally suited for ground truthing hyperspectral/geostationary satellite data in coastal regions and for model data assimilation.

  12. A gradient field defeats the inherent repulsion between magnetic nanorods

    PubMed Central

    Gu, Yu; Burtovyy, Ruslan; Custer, John; Luzinov, Igor; Kornev, Konstantin G.

    2014-01-01

    When controlling the assembly of magnetic nanorods and chains of magnetic nanoparticles, it is extremely challenging to bring them together side by side while keeping a desired spacing between their axes. We show that this challenge can be successfully resolved by using a non-uniform magnetic field that defeats an inherent repulsion between nanorods. Nickel nanorods were suspended in a viscous film and a non-uniform field was used to control their placement. The in-plane movement of nanorods was tracked with a high-speed camera and a detailed image analysis was conducted to quantitatively characterize the behaviour of the nanorods. The analysis focused on the behaviour of a pair of neighbour nanorods, and a corresponding dynamic model was formulated and investigated. The complex two-dimensional dynamics of a nanorod pair was analysed analytically and numerically, and a phase portrait was constructed. Using this phase portrait, we classified the nanorod behaviour and revealed the experimental conditions in which nanorods could be placed side by side. Dependence of the distance between a pair of neighbour nanorods on physical parameters was analysed. With the aid of the proposed theory, one can build different lattices and control their spacing by applying different field gradients. PMID:26064550

  13. Making appropriation 'stick': stabilizing politics in an 'inherently feminist' tool.

    PubMed

    Hasson, Katie Ann

    2012-10-01

    This article examines how feminist politics are made to 'stick' to appropriated technologies in the context of a contemporary feminist women's health clinic in the US. Feminist clinics such as 'FemHealth', founded as part of 1970s women's health movements, put medical tools and knowledge into lay women's hands, making the appropriation of medical technologies a centerpiece of their political project. In the process, they rejected the authority of physicians and gave new politicized meanings to the tools they claimed as their own. As lay healthworkers at FemHealth continued the project of appropriation, they also continued to negotiate their dependence on physicians to perform tasks that required a medical license. Drawing on participant observation and interviews with healthworkers, I argue that struggles over the role and authority of physicians in this clinic play out through debates over two similar and competing tools used in the abortion procedure: the single-tooth tenaculum and the cervical stabilizer. Many healthworkers invested in the stabilizer as 'inherently feminist' in hopes that it would maintain its politics even when passed into physicians' hands. While appropriation depends on the ability of users to alter a technology's meanings, actors may feel invested in the new politics taken on by appropriated tools and work towards making those meanings persist, or 'stick'.

  14. Oscillations and noise: inherent instability of pressure support ventilation?

    PubMed

    Hotchkiss, John R; Adams, Alexander B; Stone, Mary K; Dries, David J; Marini, John J; Crooke, Philip S

    2002-01-01

    Pressure support ventilation (PSV) is almost universally employed in the management of actively breathing ventilated patients with acute respiratory failure. In this partial support mode of ventilation, a fixed pressure is applied to the airway opening, and flow delivery is monitored by the ventilator. Inspiration is terminated when measured inspiratory flow falls below a set fraction of the peak flow rate (flow cutoff); the ventilator then cycles to a lower pressure and expiration commences. We used linear and nonlinear mathematical models to investigate the dynamic behavior of pressure support ventilation and confirmed the predicted behavior using a test lung. Our mathematical and laboratory analyses indicate that pressure support ventilation in the setting of airflow obstruction can be accompanied by marked variations in tidal volume and end-expiratory alveolar pressure, even when subject effort is unvarying. Unstable behavior was observed in the simplest plausible linear mathematical model and is an inherent consequence of the underlying dynamics of this mode of ventilation. The mechanism underlying the observed instability is "feed forward" behavior mediated by oscillatory elevation in end-expiratory pressure. In both mathematical and mechanical models, unstable behavior occurred at impedance values and ventilator settings that are clinically realistic.

  15. Tensions inherent in the evolving role of the infection preventionist

    PubMed Central

    Conway, Laurie J.; Raveis, Victoria H.; Pogorzelska-Maziarz, Monika; Uchida, May; Stone, Patricia W.; Larson, Elaine L.

    2014-01-01

    Background The role of infection preventionists (IPs) is expanding in response to demands for quality and transparency in health care. Practice analyses and survey research have demonstrated that IPs spend a majority of their time on surveillance and are increasingly responsible for prevention activities and management; however, deeper qualitative aspects of the IP role have rarely been explored. Methods We conducted a qualitative content analysis of in-depth interviews with 19 IPs at hospitals throughout the United States to describe the current IP role, specifically the ways that IPs effect improvements and the facilitators and barriers they face. Results The narratives document that the IP role is evolving in response to recent changes in the health care landscape and reveal that this progression is associated with friction and uncertainty. Tensions inherent in the evolving role of the IP emerged from the interviews as 4 broad themes: (1) expanding responsibilities outstrip resources, (2) shifting role boundaries create uncertainty, (3) evolving mechanisms of influence involve trade-offs, and (4) the stress of constant change is compounded by chronic recurring challenges. Conclusion Advances in implementation science, data standardization, and training in leadership skills are needed to support IPs in their evolving role. PMID:23880116

  16. Inherent Structure versus Geometric Metric for State Space Discretization

    PubMed Central

    Liu, Hanzhong; Li, Minghai; Fan, Jue; Huo, Shuanghong

    2016-01-01

    Inherent structure (IS) and geometry-based clustering methods are commonly used for analyzing molecular dynamics trajectories. ISs are obtained by minimizing the sampled conformations into local minima on potential/effective energy surface. The conformations that are minimized into the same energy basin belong to one cluster. We investigate the influence of the applications of these two methods of trajectory decomposition on our understanding of the thermodynamics and kinetics of alanine tetrapeptide. We find that at the micro cluster level, the IS approach and root-mean-square deviation (RMSD) based clustering method give totally different results. Depending on the local features of energy landscape, the conformations with close RMSDs can be minimized into different minima, while the conformations with large RMSDs could be minimized into the same basin. However, the relaxation timescales calculated based on the transition matrices built from the micro clusters are similar. The discrepancy at the micro cluster level leads to different macro clusters. Although the dynamic models established through both clustering methods are validated approximately Markovian, the IS approach seems to give a meaningful state space discretization at the macro cluster level. PMID:26915811

  17. Inherently flushing piston rod for a reciprocating pump

    SciTech Connect

    Besic, D.; Smith, W.C.

    1990-10-23

    This patent describes an inherently flushing piston rod for use in a reciprocating pump. It comprises: a piston portion having an axial bore formed therethrough, the axial bore having a first end and a second end, the first end of the axial bore lying in fluid contact with the external environment of the piston portion; a flexible diaphragm disposed within the axial bore through the piston portion whereby the flexible diaphragm and the piston portion define a reserve flushing zone; a pair of annular wiper elements extending radially from the piston portion, the annular wiper elements and the piston portion defining an annular flushing space therebetween; the piston portion having a radially-extending channel formed therethrough, the radially-extending channel fluidly connecting the axial bore through the piston portion and the annular flushing space; and a means for providing flushing fluid to the second end of the axial bore through the piston portion; a means for preventing flow from the axial bore through the piston portion to the means for supplying flushing fluid.

  18. Solving Optimal Control Problems by Exploiting Inherent Dynamical Systems Structures

    NASA Astrophysics Data System (ADS)

    Flaßkamp, Kathrin; Ober-Blöbaum, Sina; Kobilarov, Marin

    2012-08-01

    Computing globally efficient solutions is a major challenge in optimal control of nonlinear dynamical systems. This work proposes a method combining local optimization and motion planning techniques based on exploiting inherent dynamical systems structures, such as symmetries and invariant manifolds. Prior to the optimal control, the dynamical system is analyzed for structural properties that can be used to compute pieces of trajectories that are stored in a motion planning library. In the context of mechanical systems, these motion planning candidates, termed primitives, are given by relative equilibria induced by symmetries and motions on stable or unstable manifolds of e.g. fixed points in the natural dynamics. The existence of controlled relative equilibria is studied through Lagrangian mechanics and symmetry reduction techniques. The proposed framework can be used to solve boundary value problems by performing a search in the space of sequences of motion primitives connected using optimized maneuvers. The optimal sequence can be used as an admissible initial guess for a post-optimization. The approach is illustrated by two numerical examples, the single and the double spherical pendula, which demonstrates its benefit compared to standard local optimization techniques.

  19. Amine-functionalized polypyrrole: Inherently cell adhesive conducting polymer.

    PubMed

    Lee, Jae Y; Schmidt, Christine E

    2015-06-01

    Electrically conducting polymers (CPs) have been recognized as novel biomaterials that can electrically communicate with biological systems. For their tissue engineering applications, CPs have been modified to promote cell adhesion for improved interactions between biomaterials and cells/tissues. Conventional approaches to improve cell adhesion involve the surface modification of CPs with biomolecules, such as physical adsorption of cell adhesive proteins and polycationic polymers, or their chemical immobilization; however, these approaches require additional multiple modification steps with expensive biomolecules. In this study, as a simple and effective alternative to such additional biomolecule treatment, we synthesized amine-functionalized polypyrrole (APPy) that inherently presents cell adhesion-supporting positive charges under physiological conditions. The synthesized APPy provides electrical activity in a moderate range and a hydrophilic surface compared to regular polypyrrole (PPy) homopolymers. Under both serum and serum-free conditions, APPy exhibited superior attachment of human dermal fibroblasts and Schwann cells compared to PPy homopolymer controls. Moreover, Schwann cell adhesion onto the APPy copolymer was at least similar to that on poly-l-lysine treated PPy controls. Our results indicate that amine-functionalized CP substrates will be useful to achieve good cell adhesion and potentially electrically stimulate various cells. In addition, amine functionality present on CPs can further serve as a novel and flexible platform to chemically tether various bioactive molecules, such as growth factors, antibodies, and chemical drugs. © 2014 Wiley Periodicals, Inc.

  20. Amine-functionalized polypyrrole: inherently cell adhesive conducting polymer

    PubMed Central

    Lee, Jae Y.; Schmidt, Christine E.

    2014-01-01

    Electrically conducting polymers have been recognized as novel biomaterials that can electrically communicate with biological systems. For their tissue engineering applications, conducting polymers have been modified to promote cell adhesion for improved interactions between biomaterials and cells/tissues. Conventional approaches to improve cell adhesion involve the surface modification of conducting polymers with biomolecules, such as physical adsorption of cell adhesive proteins and polycationic polymers, or their chemical immobilization; however, these approaches require additional multiple modification steps with expensive biomolecules. In this study, as a simple and effective alternative to such additional biomolecule treatment, we synthesized amine-functionalized polypyrrole (APPy) that inherently presents cell adhesion-supporting positive charges under physiological conditions. The synthesized APPy provides electrical activity in a moderate range and a hydrophilic surface compared to regular polypyrrole (PPy) homopolymers. Under both serum and serum-free conditions, APPy exhibited superior attachment of human dermal fibroblasts and Schwann cells compared to PPy homopolymer controls. Moreover, Schwann cell adhesion onto the APPy copolymer was at least similar to that on poly-L-lysine treated PPy controls. Our results indicate that amine-functionalized conducting polymer substrates will be useful to achieve good cell adhesion and potentially electrically stimulate various cells. In addition, an amine functionality present on conducting polymers can further serve as a novel and flexible platform to chemically tether various bioactive molecules, such as growth factors, antibodies, and chemical drugs. PMID:25294089

  1. Inherently Analog Quantity Representations in Olive Baboons (Papio anubis).

    PubMed

    Barnard, Allison M; Hughes, Kelly D; Gerhardt, Regina R; Divincenti, Louis; Bovee, Jenna M; Cantlon, Jessica F

    2013-01-01

    Strong evidence indicates that non-human primates possess a numerical representation system, but the inherent nature of that system is still debated. Two cognitive mechanisms have been proposed to account for non-human primate numerical performance: (1) a discrete object-file system limited to quantities <4, and (2) an analog system which represents quantities comparatively but is limited by the ratio between two quantities. To test the underlying nature of non-human primate quantification, we asked eight experiment-naive olive baboons (Papio anubis) to discriminate between number pairs containing small (<4), large (>4), or span (small vs. large) numbers of food items presented simultaneously or sequentially. The prediction from the object-file hypothesis is that baboons will only accurately choose the larger quantity in small pairs, but not large or span pairs. Conversely, the analog system predicts that baboons will be successful with all numbers, and that success will be dependent on numerical ratio. We found that baboons successfully discriminated all pair types at above chance levels. In addition, performance significantly correlated with the ratio between the numerical values. Although performance was better for simultaneous trials than sequential trials, evidence favoring analog numerical representation emerged from both conditions, and was present even in the first exposure to number pairs. Together, these data favor the interpretation that a single, coherent analog representation system underlies spontaneous quantitative abilities in primates.

  2. Increase of inherent protection level in spent nuclear fuel

    SciTech Connect

    Krasnobaev, A.; Kryuchkov, E.; Glebov, V.

    2006-07-01

    The paper is devoted to upgrading inherent proliferation protection of fissionable nuclear materials (FNM). Some possibilities were investigated to form high radiation barrier inside spent fuel assemblies (SFA) discharged from power reactors of VVER-1000 type and research reactors of IRT type. The radiation barrier is estimated in the terms of rate of equivalent dose (RED) at 30-cm distance from SFA. The values of RED were calculated with application of the computer code package SCALE 4.3. The paper considers the criteria adopted for estimation of FNM proliferation resistance. The paper presents numerical results on a component-wise analysis of the radiation barrier in SFA from reactors of VVER-1000 and IRT type and on capability of various radionuclides to prolong action of the radiation barrier. Isotopic admixtures were selected and amounts of these admixtures were evaluated for significant prolongation of the radiation barrier action at the levels of the radiation standards used for estimation of FNM proliferation resistance. The paper considers vulnerability of the radiation barriers in respect to thermal processing of spent fuel. (authors)

  3. Nuclear safety

    NASA Technical Reports Server (NTRS)

    Buden, D.

    1991-01-01

    Topics dealing with nuclear safety are addressed which include the following: general safety requirements; safety design requirements; terrestrial safety; SP-100 Flight System key safety requirements; potential mission accidents and hazards; key safety features; ground operations; launch operations; flight operations; disposal; safety concerns; licensing; the nuclear engine for rocket vehicle application (NERVA) design philosophy; the NERVA flight safety program; and the NERVA safety plan.

  4. The Inherent Tracer Fingerprint of Captured CO2

    NASA Astrophysics Data System (ADS)

    Flude, Stephanie; Gyore, Domokos; Stuart, Finlay; Boyce, Adrian; Haszeldine, Stuart; Chalaturnyk, Rick; Gilfillan, Stuart

    2017-04-01

    Inherent tracers, the isotopic and trace gas composition of captured CO2 streams, are potentially powerful tracers for use in CCS technology [1,2]. Despite this potential, the inherent tracer fingerprint in captured CO2 streams has yet to be robustly investigated and documented [3]. Here, we will present the first high quality systematic measurements of the carbon and oxygen isotopic and noble gas fingerprints measured in anthropogenic CO2 captured from combustion power stations and fertiliser plants, using amine capture, oxyfuel and gasification processes, and derived from coal, biomass and natural gas feedstocks. We will show that δ13C values are mostly controlled by the feedstock composition, as expected. The majority of the CO2 samples exhibit δ18O values similar to atmospheric O2 although captured CO2 samples from biomass and gas feedstocks at one location in the UK are significantly higher. Our measured noble gas concentrations in captured CO2 are generally as expected [2], typically being two orders of magnitude lower in concentration than in atmospheric air. Relative noble gas elemental abundances are variable and often show an opposite trend to that of a water in contact with the atmosphere. Expected enrichments in radiogenic noble gases (4He and 40Ar) for fossil fuel derived CO2 were not always observed due to dilution with atmospheric noble gases during the CO2 generation and capture process. Many noble gas isotope ratios indicate that isotopic fractionation takes place during the CO2 generation and capture processes, resulting in isotope ratios similar to fractionated air. We conclude that phase changes associated with CO2 transport and sampling may induce noble gas elemental and isotopic fractionation, due to different noble gas solubilities between high (liquid or supercritical) and low (gaseous) density CO2. Data from the Australian CO2CRC Otway test site show that δ13C of CO2 will change once injected into the storage reservoir, but that this

  5. Defining the inherent stability of degenerative spondylolisthesis: a systematic review.

    PubMed

    Simmonds, Andrea M; Rampersaud, Y Raja; Dvorak, Marcel F; Dea, Nicolas; Melnyk, Angela D; Fisher, Charles G

    2015-08-01

    OBJECT A range of surgical options exists for the treatment of degenerative lumbar spondylolisthesis (DLS). The chosen technique inherently depends on the stability of the DLS. Despite a substantial body of literature dedicated to the outcome analysis of numerous DLS procedures, no consensus has been reached on defining or classifying the disorder with respect to stability or the role that instability should play in a treatment algorithm. The purpose of this study was to define grades of stability and to develop a guide for deciding on the optimal approach in surgically managing patients with DLS. METHODS The authors conducted a qualitative systematic review of clinical or biomechanical analyses evaluating the stability of and surgical outcomes for DLS for the period from 1990 to 2013. Research focused on nondegenerative forms of spondylolisthesis or spinal stenosis without associated DLS was excluded. The primary extracted results were clinical and radiographic parameters indicative of DLS instability. RESULTS The following preoperative parameters are predictors of stability in DLS: restabilization signs (disc height loss, osteophyte formation, vertebral endplate sclerosis, and ligament ossification), no disc angle change or less than 3 mm of translation on dynamic radiographs, and the absence of low-back pain. The validity and magnitude of each parameter's contribution can only be determined through appropriately powered prospective evaluation in the future. Identifying these parameters has allowed for the creation of a preliminary DLS instability classification (DSIC) scheme based on the preoperative assessment of DLS stability. CONCLUSIONS Spinal stability is an important factor to consider in the evaluation and treatment of patients with DLS. Qualitative assessment of the best available evidence revealed clinical and radiographic parameters for the creation of the DSIC, a decision aid to help surgeons develop a method of preoperative evaluation to better

  6. Inherent stability of central element coaxial liquid-liquid injectors

    NASA Technical Reports Server (NTRS)

    Stoddard, Frank J.

    1993-01-01

    Most TRW liquid bi-propellant rocket engines built over the past thirty-plus years have employed a central element coaxial pintle injector and have operated with liquid/liquid propellant injection. This injector is a patented design exclusive to TRW and has unique features that make the rocket engine combustion characteristics different from those of other types of injector engine designs. Its many benefits include excellent combustion performance, efficient deep throttling, adaptability to low cost manufacturing, and high reliability. Approximately 200 pintle injector engines of various sizes and operating on a variety of propellants have been flown without a single inflight failure. An especially important feature of the pintle injector engine is its apparent inherent combustion stability. In over thirty years of development, testing, and production, TRW has never experienced combustion instability in any of its pintle injector engine designs. This has been true of engines operating over a range of thrust from 5 to 250,000 lbs. on earth-storable hypergolic propellants and a large number of smaller engines operating on a variety of propellants (21 combinations) in long duration-firing, pulsing (down to 2 msec), and deep throttling (as much as 19:1) modes. Operating chamber pressures have ranged from 10 to 3,500 psia. This record is particularly impressive given that typical TRW design practice does not consider combustion instability as an issue and no pintle engine has ever employed stability-enhancing features, such as baffles or acoustically resonant chambers. In spite of this, TRW engines have operated stably in regimes not possible with other types of injectors. Various physical explanations and combustion process models for this favorable stability characteristic have been postulated. However, a definitive study that unequivocally establishes the important stabilizing mechanisms still remains to be conducted.

  7. Clinical practice guideline adherence during Operation Inherent Resolve.

    PubMed

    Plackett, Timothy P; Cherry, Darren C; Delk, Gerald; Satterly, Steven; Theler, Jared; McVay, Derek; Moore, Jacqueline; Shackelford, Stacy A

    2017-07-01

    The Joint Trauma System (JTS) clinical practice guidelines (CPGs) contributed to the decrease in battlefield mortality over the past 15 years. However, it is unknown to what degree the guidelines are being followed in current military operations. A retrospective review was performed of all patients treated at three separate US Army Role II facilities during the first 10 months of Operation Inherent Resolve in Iraq. Charts were reviewed for patient demographics, clinical care, and outcomes. Charts were also reviewed for compliance with JTS CPGs and Tactical Combat Casualty Care recommendations. A total of 114 trauma patients were treated during the time period. The mean age was 26.9 ± 10.1 years, 90% were males, and 96% were host nation patients. The most common mechanisms of injury were blast (49%) and gunshot (42%). Records were compliant with documenting a complete set of vitals in 58% and a pain score in 50% of patients. Recommendations for treatment of hypothermia were followed for 97% of patients. Tranexamic acid was given outside guidelines for 6% of patients, and for 40%, it was not determined if the guidelines were followed. Recommendations for initial resuscitative fluid were followed for 41% of patients. Recommendations for antibiotic prophylaxis were followed for 40% of intra-abdominal and 73% of soft tissue injuries. Recommendations for tetanus prophylaxis were followed for 90% of patients. Deep vein thrombosis prophylaxis was given to 32% of patients and contraindicated in 27%. The recommended transfusion ratio was followed for 56% of massive transfusion patients. Recommendations for calcium administration were followed for 40% of patients. When composite scores were created for individual surgeons, there was significant variability between surgeons with regard to adherence to guidelines. There is significant deviation in the adherence to the CPGs. Epidemiologic study, level IV.

  8. Inherent stability of central element coaxial liquid-liquid injectors

    NASA Astrophysics Data System (ADS)

    Stoddard, Frank J.

    1993-11-01

    Most TRW liquid bi-propellant rocket engines built over the past thirty-plus years have employed a central element coaxial pintle injector and have operated with liquid/liquid propellant injection. This injector is a patented design exclusive to TRW and has unique features that make the rocket engine combustion characteristics different from those of other types of injector engine designs. Its many benefits include excellent combustion performance, efficient deep throttling, adaptability to low cost manufacturing, and high reliability. Approximately 200 pintle injector engines of various sizes and operating on a variety of propellants have been flown without a single inflight failure. An especially important feature of the pintle injector engine is its apparent inherent combustion stability. In over thirty years of development, testing, and production, TRW has never experienced combustion instability in any of its pintle injector engine designs. This has been true of engines operating over a range of thrust from 5 to 250,000 lbs. on earth-storable hypergolic propellants and a large number of smaller engines operating on a variety of propellants (21 combinations) in long duration-firing, pulsing (down to 2 msec), and deep throttling (as much as 19:1) modes. Operating chamber pressures have ranged from 10 to 3,500 psia. This record is particularly impressive given that typical TRW design practice does not consider combustion instability as an issue and no pintle engine has ever employed stability-enhancing features, such as baffles or acoustically resonant chambers. In spite of this, TRW engines have operated stably in regimes not possible with other types of injectors. Various physical explanations and combustion process models for this favorable stability characteristic have been postulated. However, a definitive study that unequivocally establishes the important stabilizing mechanisms still remains to be conducted.

  9. On the inherent predictability of precipitation across the United States

    NASA Astrophysics Data System (ADS)

    Dhanya, C. T.; Villarini, Gabriele

    2017-08-01

    Predictability of climate variables is known to be limited to few days up to few weeks due to the inherent chaotic nature and resulting sensitivity to initial conditions. However, such generalization of limited predictability is cautioned because of the highly nonlinear nature and the known influence of localized causal factors on many climate variables. Additionally, even though an improvement in predictability is expected with coarsening in spatial and temporal resolutions, the extent and rate of this expected improvement is still unexplored. This study investigates the spatial distribution of predictability of daily precipitation across the USA. The emphasis is on determining the rate of increase in predictability with spatio-temporal averaging, by defining three predictability statistics (maximum predictability, predictive error, and predictive instability) based on the nonlinear finite-time Lyapunov exponent. From our analyses, we find that predictability increases monotonically with temporal averaging, while spatial averaging has minimal influence, pointing to the possible spatially invariant nature of precipitation dynamics. Modeling the precipitation dynamics at relatively coarser scales of 1° × 1° and higher temporal scales of 5-10 days could markedly improve the predictability statistics. Significant changes in the predictability characteristics of daily precipitation across large areas of the USA and associated non-stationarity are also identified over the 1948-2006 period. This is consistent with sudden changes in the overall nature of precipitation over time, which include a reduction in non-rainy days, an increase in signal-to-noise ratio, an increase in average precipitation events, and an increase in extremes.

  10. SSC Safety Review Document

    SciTech Connect

    Toohig, T.E.

    1988-11-01

    The safety strategy of the Superconducting Super Collider (SSC) Central Design Group (CDG) is to mitigate potential hazards to personnel, as far as possible, through appropriate measures in the design and engineering of the facility. The Safety Review Document identifies, on the basis of the Conceptual Design Report (CDR) and related studies, potential hazards inherent in the SSC project independent of its site. Mitigative measures in the design of facilities and in the structuring of laboratory operations are described for each of the hazards identified.

  11. PRD (power-reactivity-decrement) components of a homogeneous U10Zr-fueled 900 MWt LMR

    SciTech Connect

    Meneghetti, D.; Kucera, D.A.

    1988-01-01

    The linear and Doppler feedback components of the regional contributions of the power-reactivity-decrement (PRD) for a representative 900 MWt homogeneous U10Zr-fueled sodium-cooled reactor are calculated. The PRD is the reactivity required to bring the reactor from zero-power hot-critical condition to a given power level. These components are further separated into power dependent and power-to-flow dependent parts. The values are compared with corresponding quantities calculated for the Experimental Breeder Reactor II (EBR-II). The implications of these comparisons upon inherent safety characteristics of metal-fueled sodium-cooled reactors are discussed. The effects of fuel axial restraint on feedback, resulting from possible fuel-clad interactions due to burnup are also calculated. The possible enhancement of desirable feedbacks by use of appropriately designed subassembly-duct bowing feedback characteristics is estimated.

  12. Querying Safety Cases

    NASA Technical Reports Server (NTRS)

    Denney, Ewen W.; Naylor, Dwight; Pai, Ganesh

    2014-01-01

    Querying a safety case to show how the various stakeholders' concerns about system safety are addressed has been put forth as one of the benefits of argument-based assurance (in a recent study by the Health Foundation, UK, which reviewed the use of safety cases in safety-critical industries). However, neither the literature nor current practice offer much guidance on querying mechanisms appropriate for, or available within, a safety case paradigm. This paper presents a preliminary approach that uses a formal basis for querying safety cases, specifically Goal Structuring Notation (GSN) argument structures. Our approach semantically enriches GSN arguments with domain-specific metadata that the query language leverages, along with its inherent structure, to produce views. We have implemented the approach in our toolset AdvoCATE, and illustrate it by application to a fragment of the safety argument for an Unmanned Aircraft System (UAS) being developed at NASA Ames. We also discuss the potential practical utility of our query mechanism within the context of the existing framework for UAS safety assurance.

  13. Understanding the Spatiotemporal Variability of Inherent Water Use Efficiency

    NASA Astrophysics Data System (ADS)

    Boese, Sven; Jung, Martin; Carvalhais, Nuno; Reichstein, Markus

    2015-04-01

    The global carbon and water cycles are coupled via plant physiology. However, the resulting spatial and temporal covariability of both fluxes on a global scale lacks sufficient understanding. This is required to estimate the impact of atmospheric drought on photosynthesis in water-limited ecosystems. Water use efficiency (WUE) is an essential ecosystem diagnostic defined as the ratio between gross primary productivity (GPP) and transpiration (T). WUE is known to vary with vapour-pressure deficit (VPD) and therefore also in time. The inherent water use efficiency (iWUE) accounts for the VPD effect on WUE and aims at representing a largely time-invariant ecosystem property. However, different ways of describing the functional response of iWUE to VPD are found in the literature. One established iWUE definition was proposed by Beer et al. (2009) and takes the form of iWUE = GPP--VPD- . T (1) A similar definition can be derived from stomatal conductance theories such as Katul et al. (2010) and takes the form of √ -- GPP---VPD- iWUE = T . (2) Here, we use eddy covariance measurements from the FLUXNET database to evaluate both approaches for a globally representative set of biomes including tropical, temperate and semi-arid ecosystems. Testing both definitions in a model-data fusion setup indicated that (2) is more consistent with FLUXNET observations than (1). However, there still remains considerable temporal variability of iWUE which is linked to seasonal changes in VPD. To explore up to which extent the temporal variability of iWUE may be related to the prescribed functional responses to VPD, we treated the exponent of VPD as a global parameter, here termed γ. When γ = 1 the functional response is equivalent to (1), while when γ = 0.5 it corresponds to formulation of model (2)). The global estimate was found to be significantly lower than 0.5, which would have been expected from stomatal conductance theory at leaf level. We assessed whether adding γ as site

  14. Home Safety

    MedlinePlus

    ... Swimming and Water Apply Swimming and Water filter Toy Safety Apply Toy Safety filter TV and Furniture Tip-Overs Apply ... Laundry Packets Medication Poison Sleep Safety and Suffocation Toy Safety TV and Furniture Tip-Overs Water and ...

  15. 40 CFR 88.311-98 - Emissions standards for Inherently Low-Emission Vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Emissions standards for Inherently Low-Emission Vehicles. 88.311-98 Section 88.311-98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... standards for Inherently Low-Emission Vehicles. Section 88.311-98 includes text that specifies...

  16. A case for inherent geometric and geodetic accuracy in remotely sensed VNIR and SWIR imaging products

    NASA Technical Reports Server (NTRS)

    Driver, J. M.

    1982-01-01

    Significant aberrations can occur in acquired images which, unless compensated on board the spacecraft, can seriously impair throughput and timeliness for typical Earth observation missions. Conceptual compensations options are advanced to enable acquisition of images with inherent geometric and geodetic accuracy. Research needs are identified which, when implemented, can provide inherently accurate images. Agressive pursuit of these research needs is recommended.

  17. 16 CFR 1211.13 - Inherent force activated secondary door sensors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Inherent force activated secondary door... § 1211.13 Inherent force activated secondary door sensors. (a) Normal operation test. (1) A force... when the door applies a 15 pound (66.7 N) or less force in the down or closing direction and when the...

  18. 16 CFR § 1211.13 - Inherent force activated secondary door sensors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Inherent force activated secondary door... Standard § 1211.13 Inherent force activated secondary door sensors. (a) Normal operation test. (1) A force... when the door applies a 15 pound (66.7 N) or less force in the down or closing direction and when the...

  19. Effects of inherent alkali and alkaline earth metallic species on biomass pyrolysis at different temperatures.

    PubMed

    Hu, Song; Jiang, Long; Wang, Yi; Su, Sheng; Sun, Lushi; Xu, Boyang; He, Limo; Xiang, Jun

    2015-09-01

    This work aimed to investigate effects of inherent alkali and alkaline earth metallic species (AAEMs) on biomass pyrolysis at different temperatures. The yield of CO, H2 and C2H4 was increased and that of CO2 was suppressed with increasing temperature. Increasing temperature could also promote depolymerization and aromatization reactions of active tars, forming heavier polycyclic aromatic hydrocarbons, leading to decrease of tar yields and species diversity. Diverse performance of inherent AAEMs at different temperatures significantly affected the distribution of pyrolysis products. The presence of inherent AAEMs promoted water-gas shift reaction, and enhanced the yield of H2 and CO2. Additionally, inherent AAEMs not only promoted breakage and decarboxylation/decarbonylation reaction of thermally labile hetero atoms of the tar but also enhanced thermal decomposing of heavier aromatics. Inherent AAEMs could also significantly enhance the decomposition of levoglucosan, and alkaline earth metals showed greater effect than alkali metals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. The Sensitivity Analysis of Inherent Frequency of Roll Mill’s Main Drive System

    NASA Astrophysics Data System (ADS)

    Hou, Dongxiao

    2017-07-01

    In order to avoid the beat vibration of rolling mill, taking F1 rolling mill of 1780 tandem mill as an example, a twelve DOF branched torsional vibration model of main drive system of F1 rolling mill was constructed. Then the inherent frequency of the rolling mill and the corresponding vibration modes of every inherent frequency were calculated. Meanwhile, the sensitivity of first and second inherent frequency with the change of equivalent rotational inertias and torsional stiffness of rolling mill were analyzed, and the most sensitive parameters which influence on first and second inherent frequency were found out. The result shows that the equivalent inertias of upper and lower work rolls and equivalent stiffness of upper and lower joint shaft of drive system were most sensitive parameters, which are easier to change first and second inherent frequency of drive system. The research will provide theory reference for adopting proper mechanical parameters in equipment design.

  1. [The sorting of recyclable waste and the variables inherent to the process: a case study in a cooperative].

    PubMed

    de Souza, Renato Luvizoto Rodrigues; Fontes, Andréa Regina Martins; Salomão, Silvana

    2014-10-01

    Informal labor with recyclable materials is marked by social exclusion and discrimination, besides this activity being conducted in unsanitary conditions. The literature suggests that the problems associated with the sorting of recyclable waste are associated with lack of structure, contact with the "garbage", lack of government support, lack of training, lack of safety equipment, among others. The scope of this paper is to describe the process of sorting recyclable waste in a cooperative in França in the state of São Paulo. The specific objective was to identify the variables inherent to the process and investigate how workers adjust their work schedules to deal with these variables. The research method used is the case study with an operationalized ergonomic approach at some stages of the ergonomic analysis of work. Exploratory visits, indirect observations and semi-structured interviews were conducted. The results showed that the variables inherent to the process require that workers perform timely management sessions, which can be either collective or individual, though this invariably results in overload in the workplace, either by speeding up the work output or by demanding the increased concentration of those involved.

  2. Drug Safety

    MedlinePlus

    ... over-the-counter drug. The FDA evaluates the safety of a drug by looking at Side effects ... clinical trials The FDA also monitors a drug's safety after approval. For you, drug safety means buying ...

  3. Vaccine Safety

    MedlinePlus

    ... FAQs about Vaccine Safety Research Publications HDM Reports ISO Scientific Agenda Ensuring Safety History Understanding Side Effects ... Datalink Publications Emergency Preparedness Vaccine Safety Partners About ISO File Formats Help: How do I view different ...

  4. The Interactions and Inherent Relationships Between Alternative Health Care Providers and Their Patients

    DTIC Science & Technology

    1996-05-13

    entering as the researcher was leaving from the last interview, was seen during the researcher’s time at any of the three offices . Further demographics...Thesis Approval Form INTERACTIONS AND INHERENT RELATIONSHIPS BETWEEN ALTERNATIVE HEALTH CARE PROVIDERS AND THEIR PATIENTS P a t r i c i a Anne...copyrighted material in the thesis entitled: "INTERACTIONS AND INHERENT RELATIONSHIPS BETWEEN ALTERNATIVE HEALTH CARE PROVIDERS AND THEIR PATIENTS

  5. 40 CFR 88.312-93 - Inherently Low-Emission Vehicle labeling.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... stroke width not less than 0.5 inches (1.3 centimeters). In addition, the words “INHERENTLY LOW-EMISSION... inches (3.8 centimeters) wide with a stroke width not less than 0.4 inches (1.0 centimeter). In addition...) wide with a stroke width not less than 0.3 inches (0.8 centimeter). In addition, the words “INHERENTLY...

  6. A real-life example of choosing an inherently safer process option.

    PubMed

    Study, Karen

    2007-04-11

    While choosing an inherently safer alternative may seem straightforward, sometimes what seems to be the most obvious alternative may not provide the best risk reduction. The process designer must maintain a broad perspective to be able to recognize all potential hazards when evaluating design options. All aspects of operation such as start-up, shut-down, utility failure, as well as normal operation should be considered. Choosing the inherently safer option is best accomplished early in the option selection phase of a project; however, recycle back to the option selection phase may be needed if an option is not thoroughly evaluated early in the process. In this paper, a project to supply ammonia to a catalytic reactor will be reviewed. During the course of the project, an "inherently safer" alternative was selected and later discarded due to issues uncovered during the detail design phase. The final option chosen will be compared to (1) the original design and (2) the initial "inherently safer" alternative. The final option was inherently safer than both the original design and the initial "inherently safer" alternative even though the design team initially believed that it would not be.

  7. [THE CYTOMETRIC TECHNIQUE OF BINDING OF EOSIN-5-MALEIMIDE IN DIAGNOSTIC OF INHERENT SPHEROCYTOSIS].

    PubMed

    Kuzminova, J A; Plyasunova, S A; Jogov, V V; Smetanina, N S

    2016-03-01

    The laboratory diagnostic of inherent spherocytosis is based on detection of spherocytes in peripheral blood, decreasing of index of sphericity, decreasing of osmotic resistance of erythrocytes. The new test of diagnostic of hereditary spherocytosis build on molecular defect was developed on the basis of binding extracellular fragments of protein of band 3 with eosin-5-maleimide (EMA-test). The study was carried out to implement comparative analysis of sensitivity and specificity of techniques applied to diagnose inherent spherocytosis. The sampling of 94 patients with various forms of anemias was analyzed All patients were applied complex clinical laboratory examination including analysis of osmotic resistance of erythrocytes, erythrocytometry and EMA-test as specific techniques of diagnostic of inherent spherocytosis. In 51 out of 94 patients (54%) decreasing of values of EMA-test was detected and in 47 patients diagnosis of inherent spherocytosis was confirmed. The standard values of EMA-test were established in 43 patients (46%) and 12 patients out of them with established diagnosis of inherent spherocytosis. Therefore, sensitivity of EMA-test made up to 79% and specificity - 80%. The most sensitive techniques of diagnostic remain osmotic resistance of erythrocytes (91%) and index of sphericity (up to 96%). But the highest specificity in this respect has EMA-test (80%). Nowadays, none of implemented techniques of diagnostic of inherent spherocytosis can be applied as a universal one. The implementation of complex examination is needed for proper diagnostic of disease.

  8. IFR fuel cycle--pyroprocess development

    SciTech Connect

    Laidler, J.J.; Miller, W.E.; Johnson, T.R.; Ackerman, J.P.; Battles, J.E.

    1992-01-01

    The Integral Fast Reactor (IFR) fuel cycle is based on the use of a metallic fuel alloy, with nominal composition U-2OPu-lOZr. In its present state of development, this fuel system offers excellent high-burnup capabilities. Test fuel has been carried to burnups in excess of 20 atom % in EBR-II irradiations, and to peak burnups over 15 atom % in FFTF. The metallic fuel possesses physical characteristics, in particular very high thermal conductivity, that facilitate a high degree of passive inherent safety in the IFR design. The fuel has been shown to provide very large margins to failure in overpower transient events. Rapid overpower transient tests carried out in the TREAT reactor have shown the capability to withstand up to 400% overpower conditions before failing. An operational transient test conducted in EBR-II at a power ramp rate of 0.1% per second reached its termination point of 130% of normal power without any fuel failures. The IFR metallic fuel also exhibits superior compatibility with the liquid sodium coolant. Equally as important as the performance advantages offered by the use of metallic fuel is the fact that this fuel system permits the use of an innovative reprocessing method, known as pyroprocessing,'' featuring fused-salt electrorefining of the spent fuel. Development of the IFR pyroprocess has been underway at the Argonne National Laboratory for over five years, and great progress has been made toward establishing a commercially-viable process. Pyroprocessing offers a simple, compact means for closure of the fuel cycle, with anticipated significant savings in fuel cycle costs.

  9. IFR fuel cycle--pyroprocess development

    SciTech Connect

    Laidler, J.J.; Miller, W.E.; Johnson, T.R.; Ackerman, J.P.; Battles, J.E.

    1992-11-01

    The Integral Fast Reactor (IFR) fuel cycle is based on the use of a metallic fuel alloy, with nominal composition U-2OPu-lOZr. In its present state of development, this fuel system offers excellent high-burnup capabilities. Test fuel has been carried to burnups in excess of 20 atom % in EBR-II irradiations, and to peak burnups over 15 atom % in FFTF. The metallic fuel possesses physical characteristics, in particular very high thermal conductivity, that facilitate a high degree of passive inherent safety in the IFR design. The fuel has been shown to provide very large margins to failure in overpower transient events. Rapid overpower transient tests carried out in the TREAT reactor have shown the capability to withstand up to 400% overpower conditions before failing. An operational transient test conducted in EBR-II at a power ramp rate of 0.1% per second reached its termination point of 130% of normal power without any fuel failures. The IFR metallic fuel also exhibits superior compatibility with the liquid sodium coolant. Equally as important as the performance advantages offered by the use of metallic fuel is the fact that this fuel system permits the use of an innovative reprocessing method, known as ``pyroprocessing,`` featuring fused-salt electrorefining of the spent fuel. Development of the IFR pyroprocess has been underway at the Argonne National Laboratory for over five years, and great progress has been made toward establishing a commercially-viable process. Pyroprocessing offers a simple, compact means for closure of the fuel cycle, with anticipated significant savings in fuel cycle costs.

  10. Inherent work suit buoyancy distribution: effects on lifejacket self-righting performance.

    PubMed

    Barwood, Martin J; Long, Geoffrey M; Lunt, Heather; Tipton, Michael J

    2014-09-01

    Accidental immersion in cold water is an occupational risk. Work suits and life jackets (LJ) should work effectively in combination to keep the airway clear of the water (freeboard) and enable self-righting. We hypothesized that inherent buoyancy, in the suit or LJ, would be beneficial for enabling freeboard, but its distribution may influence LJ self-righting. Six participants consented to complete nine immersions. Suits and LJ tested were: flotation suit (FLOAT; 85 N inherent buoyancy); oilskins 1 (OS-1) and 2 (OS-2), both with no inherent buoyancy; LJs (inherent buoyancy/buoyancy after inflation/total buoyancy), LJ-1 50/150/200 N, LJ-2 0/290/290 N, LJ-3 80/190/270 N. Once dressed, the subject entered an immersion pool where uninflated freeboard, self-righting performance, and inflated freeboard were measured. Data were compared using Friedman's test to the 0.05 alpha level. All suits and LJs enabled uninflated and inflated freeboard, but differences were seen between the suits and LJs. Self-righting was achieved on 43 of 54 occasions, irrespective of suit or LJ. On all occasions that self-righting was not achieved, this occurred in an LJ that included inherent buoyancy (11/54 occasions). Of these 11 failures, 8 occurred (73% of occasions) when the FLOAT suit was being worn. LJs that included inherent buoyancy, that are certified as effective on their own, worked less effectively from the perspective of self-righting in combination with a work suit that also included inherent buoyancy. Equipment that is approved for use in the workplace should be tested in combination to ensure adequate performance in an emergency scenario.

  11. Laboratory safety handbook

    USGS Publications Warehouse

    Skinner, E.L.; Watterson, C.A.; Chemerys, J.C.

    1983-01-01

    Safety, defined as 'freedom from danger, risk, or injury,' is difficult to achieve in a laboratory environment. Inherent dangers, associated with water analysis and research laboratories where hazardous samples, materials, and equipment are used, must be minimized to protect workers, buildings, and equipment. Managers, supervisors, analysts, and laboratory support personnel each have specific responsibilities to reduce hazards by maintaining a safe work environment. General rules of conduct and safety practices that involve personal protection, laboratory practices, chemical handling, compressed gases handling, use of equipment, and overall security must be practiced by everyone at all levels. Routine and extensive inspections of all laboratories must be made regularly by qualified people. Personnel should be trained thoroughly and repetitively. Special hazards that may involve exposure to carcinogens, cryogenics, or radiation must be given special attention, and specific rules and operational procedures must be established to deal with them. Safety data, reference materials, and texts must be kept available if prudent safety is to be practiced and accidents prevented or minimized.

  12. Module Safety Issues (Presentation)

    SciTech Connect

    Wohlgemuth, J.

    2012-02-01

    Description of how to make PV modules so that they are less likely to turn into safety hazards. Making modules inherently safer with minimum additional cost is the preferred approach for PV. Safety starts with module design to ensure redundancy within the electrical circuitry to minimize open circuits and proper mounting instructions to prevent installation related ground faults. Module manufacturers must control the raw materials and processes to ensure that that every module is built like those qualified through the safety tests. This is the reason behind the QA task force effort to develop a 'Guideline for PV Module Manufacturing QA'. Periodic accelerated stress testing of production products is critical to validate the safety of the product. Combining safer PV modules with better systems designs is the ultimate goal. This should be especially true for PV arrays on buildings. Use of lower voltage dc circuits - AC modules, DC-DC converters. Use of arc detectors and interrupters to detect arcs and open the circuits to extinguish the arcs.

  13. Aerospace safety advisory panel

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Aerospace Safety Advisory Panel (ASAP) monitored NASA's activities and provided feedback to the NASA Administrator, other NASA officials and Congress throughout the year. Particular attention was paid to the Space Shuttle, its launch processing and planned and potential safety improvements. The Panel monitored Space Shuttle processing at the Kennedy Space Center (KSC) and will continue to follow it as personnel reductions are implemented. There is particular concern that upgrades in hardware, software, and operations with the potential for significant risk reduction not be overlooked due to the extraordinary budget pressures facing the agency. The authorization of all of the Space Shuttle Main Engine (SSME) Block II components portends future Space Shuttle operations at lower risk levels and with greater margins for handling unplanned ascent events. Throughout the year, the Panel attempted to monitor the safety activities related to the Russian involvement in both space and aeronautics programs. This proved difficult as the working relationships between NASA and the Russians were still being defined as the year unfolded. NASA's concern for the unique safety problems inherent in a multi-national endeavor appears appropriate. Actions are underway or contemplated which should be capable of identifying and rectifying problem areas. The balance of this report presents 'Findings and Recommendations' (Section 2), 'Information in Support of Findings and Recommendations' (Section 3) and Appendices describing Panel membership, the NASA response to the March 1994 ASAP report, and a chronology of the panel's activities during the reporting period (Section 4).

  14. Inherent variation in stable isotope values and discrimination factors in two life stages of green turtles.

    PubMed

    Vander Zanden, Hannah B; Bjorndal, Karen A; Mustin, Walter; Ponciano, José Miguel; Bolten, Alan B

    2012-01-01

    We examine inherent variation in carbon and nitrogen stable isotope values of multiple soft tissues from a population of captive green turtles Chelonia mydas to determine the extent of isotopic variation due to individual differences in physiology. We compare the measured inherent variation in the captive population with the isotopic variation observed in a wild population of juvenile green turtles. Additionally, we measure diet-tissue discrimination factors to determine the offset that occurs between isotope values of the food source and four green turtle tissues. Tissue samples (epidermis, dermis, serum, and red blood cells) were collected from captive green turtles in two life stages (40 large juveniles and 30 adults) at the Cayman Turtle Farm, Grand Cayman, and analyzed for carbon and nitrogen stable isotopes. Multivariate normal models were fit to the isotope data, and the Bayesian Information Criterion was used for model selection. Inherent variation and discrimination factors differed among tissues and life stages. Inherent variation was found to make up a small portion of the isotopic variation measured in a wild population. Discrimination factors not only are tissue and life stage dependent but also appear to vary with diet and sea turtle species, thus highlighting the need for appropriate discrimination factors in dietary reconstructions and trophic-level estimations. Our measures of inherent variation will also be informative in field studies employing stable isotope analysis so that differences in diet or habitat are more accurately identified.

  15. Is the Inherent Potential of Maize Roots Efficient for Soil Phosphorus Acquisition?

    PubMed Central

    Deng, Yan; Chen, Keru; Teng, Wan; Zhan, Ai; Tong, Yiping; Feng, Gu; Cui, Zhenling; Zhang, Fusuo; Chen, Xinping

    2014-01-01

    Sustainable agriculture requires improved phosphorus (P) management to reduce the overreliance on P fertilization. Despite intensive research of root adaptive mechanisms for improving P acquisition, the inherent potential of roots for efficient P acquisition remains unfulfilled, especially in intensive agriculture, while current P management generally focuses on agronomic and environmental concerns. Here, we investigated how levels of soil P affect the inherent potential of maize (Zea mays L.) roots to obtain P from soil. Responses of root morphology, arbuscular mycorrhizal colonization, and phosphate transporters were characterized and related to agronomic traits in pot and field experiments with soil P supply from deficiency to excess. Critical soil Olsen-P level for maize growth approximated 3.2 mg kg−1, and the threshold indicating a significant environmental risk was about 15 mg kg−1, which represented the lower and upper levels of soil P recommended in current P management. However, most root adaptations involved with P acquisition were triggered when soil Olsen-P was below 10 mg kg−1, indicating a threshold for maximum root inherent potential. Therefore, to maintain efficient inherent potential of roots for P acquisition, we suggest that the target upper level of soil P in intensive agriculture should be reduced from the environmental risk threshold to the point maximizing the inherent potential of roots. PMID:24594677

  16. Inherent amplitude demodulation of an AC-EWOD (electrowetting on dielectric) droplet.

    PubMed

    Yoon, Myung Gon; Byun, Sang Hyun; Cho, Sung Kwon

    2013-02-21

    Recently, it has been shown that amplitude modulation (AM) in a wireless EWOD (electrowetting on dielectric) via magnetic induction facilitates the transmission of a low frequency message signal and then the oscillation of droplets at a low frequency. This process requires demodulation to recover the message signal from the high-frequency AM signal. As a key contribution, this paper theoretically and experimentally shows that the EWOD-actuated droplet has the inherent functionality of demodulation. That is, the EWOD droplet itself demodulates a supplied AM driving voltage, and as a result the contact angle of the droplet directly follows the message signal without any artificial demodulation circuit. A theoretical explanation of this inherent demodulation property is developed using a time-varying Lippmann-Young (LY) equation. In addition, experimental results are presented to substantiate the inherent demodulation functionality of an EWOD droplet.

  17. Experimental evidence for inherent Lévy search behaviour in foraging animals

    PubMed Central

    Kölzsch, Andrea; Alzate, Adriana; Bartumeus, Frederic; de Jager, Monique; Weerman, Ellen J.; Hengeveld, Geerten M.; Naguib, Marc; Nolet, Bart A.; van de Koppel, Johan

    2015-01-01

    Recently, Lévy walks have been put forward as a new paradigm for animal search and many cases have been made for its presence in nature. However, it remains debated whether Lévy walks are an inherent behavioural strategy or emerge from the animal reacting to its habitat. Here, we demonstrate signatures of Lévy behaviour in the search movement of mud snails (Hydrobia ulvae) based on a novel, direct assessment of movement properties in an experimental set-up using different food distributions. Our experimental data uncovered clusters of small movement steps alternating with long moves independent of food encounter and landscape complexity. Moreover, size distributions of these clusters followed truncated power laws. These two findings are characteristic signatures of mechanisms underlying inherent Lévy-like movement. Thus, our study provides clear experimental evidence that such multi-scale movement is an inherent behaviour rather than resulting from the animal interacting with its environment. PMID:25904671

  18. Experimental evidence for inherent Lévy search behaviour in foraging animals.

    PubMed

    Kölzsch, Andrea; Alzate, Adriana; Bartumeus, Frederic; de Jager, Monique; Weerman, Ellen J; Hengeveld, Geerten M; Naguib, Marc; Nolet, Bart A; van de Koppel, Johan

    2015-05-22

    Recently, Lévy walks have been put forward as a new paradigm for animal search and many cases have been made for its presence in nature. However, it remains debated whether Lévy walks are an inherent behavioural strategy or emerge from the animal reacting to its habitat. Here, we demonstrate signatures of Lévy behaviour in the search movement of mud snails (Hydrobia ulvae) based on a novel, direct assessment of movement properties in an experimental set-up using different food distributions. Our experimental data uncovered clusters of small movement steps alternating with long moves independent of food encounter and landscape complexity. Moreover, size distributions of these clusters followed truncated power laws. These two findings are characteristic signatures of mechanisms underlying inherent Lévy-like movement. Thus, our study provides clear experimental evidence that such multi-scale movement is an inherent behaviour rather than resulting from the animal interacting with its environment.

  19. Dressed qubits: a new method for eliminating inherent gate errors in quantum computation

    NASA Astrophysics Data System (ADS)

    Wu, Lian-Ao; Lidar, Daniel A.

    2003-03-01

    Inherent gate errors can arise in quantum computation when the applied Hamiltonian deviates from the desired one. Two important examples are (1) Quantum computation using spin-coupled quantum dots in the presence of spin-orbit perturbations to the Heisenberg exchange interaction; (2) Off-resonant transitions induced by strong and fast pulses. Quantum error correcting codes cannot deal with such errors if they are too strong. In this talk we propose a new solution for dealing with such inherent errors: dressed qubits. Particularly important is the fact that the dressed qubits method does not require additional operations or encoding redundancy, can be applied in the presence of large errors, and is experimentally feasible. We present the general notion of dressed qubits and then focus on the two examples of inherent errors mentioned above.

  20. A literature review of safety culture.

    SciTech Connect

    Cole, Kerstan Suzanne; Stevens-Adams, Susan Marie; Wenner, Caren A.

    2013-03-01

    Workplace safety has been historically neglected by organizations in order to enhance profitability. Over the past 30 years, safety concerns and attention to safety have increased due to a series of disastrous events occurring across many different industries (e.g., Chernobyl, Upper Big-Branch Mine, Davis-Besse etc.). Many organizations have focused on promoting a healthy safety culture as a way to understand past incidents, and to prevent future disasters. There is an extensive academic literature devoted to safety culture, and the Department of Energy has also published a significant number of documents related to safety culture. The purpose of the current endeavor was to conduct a review of the safety culture literature in order to understand definitions, methodologies, models, and successful interventions for improving safety culture. After reviewing the literature, we observed four emerging themes. First, it was apparent that although safety culture is a valuable construct, it has some inherent weaknesses. For example, there is no common definition of safety culture and no standard way for assessing the construct. Second, it is apparent that researchers know how to measure particular components of safety culture, with specific focus on individual and organizational factors. Such existing methodologies can be leveraged for future assessments. Third, based on the published literature, the relationship between safety culture and performance is tenuous at best. There are few empirical studies that examine the relationship between safety culture and safety performance metrics. Further, most of these studies do not include a description of the implementation of interventions to improve safety culture, or do not measure the effect of these interventions on safety culture or performance. Fourth, safety culture is best viewed as a dynamic, multi-faceted overall system composed of individual, engineered and organizational models. By addressing all three components of

  1. The effects of inherent flaws on the time and rate dependent failure of adhesively bonded joints

    NASA Technical Reports Server (NTRS)

    Sancaktar, E.; Padgilwar, S.

    1982-01-01

    Inherent flaws, as well as the effects of rate and time, are shown by tests on viscoelastic adhesive-bonded single lap joints to be as critical in joint failure as environmental and stress concentration effects, with random inherent flaws and loading rate changes resulting in an up to 40% reduction in joint strength. It is also found that the asymptotic creep stress, below which no delayed failure may occur, may under creep loading be as much as 45% less than maximum adhesive strength. Attention is given to test results for the case of titanium-LARC-3 adhesive single-lap specimens.

  2. Government can regulate food advertising to children because cognitive research shows that it is inherently misleading.

    PubMed

    Graff, Samantha; Kunkel, Dale; Mermin, Seth E

    2012-02-01

    The childhood obesity crisis has prompted repeated calls for government action to curb the marketing of unhealthy food to children. Food and entertainment industry groups have asserted that the First Amendment prohibits such regulation. However, case law establishes that the First Amendment does not protect "inherently misleading" commercial speech. Cognitive research indicates that young children cannot effectively recognize the persuasive intent of advertising or apply the critical evaluation required to comprehend commercial messages. Given this combination--that government can prohibit "inherently misleading" advertising and that children cannot adequately understand commercial messages--advertising to children younger than age twelve should be considered beyond the scope of constitutional protection.

  3. Deliberate practice theory: perceived relevance, effort, and inherent enjoyment of music practice: study II.

    PubMed

    Hyllegard, Randy; Bories, Tamara L

    2009-10-01

    This study, based on the theory of deliberate practice, examined the practice relevance, effort, and inherent enjoyment aspects of the theory. 25 college undergraduates practiced playing a melody on an electronic keyboard for three 20-min. practice sessions. Following each session, the perceived relevance of the practice for improving performance of the melody, the effort needed to learn the melody, and the inherent enjoyment of the practice were each rated on 10-point scales. Findings were consistent with theory and similar to previous studies also involving music practice and other tasks.

  4. Synthesis and functionalization of inherently chiral tetraoxacalix[2]arene[2]pyridines.

    PubMed

    Pan, Shuai; Wang, De-Xian; Zhao, Liang; Wang, Mei-Xiang

    2012-12-21

    Inherently chiral tetraoxacalix[2]arene[2]pyridines containing C(2) symmetry were synthesized efficiently from a macrocyclic condensation reaction of resorcinol derivatives with 2,6-dichloro-3-nitropyridine in a one-pot reaction manner, while tetraoxacalix[2]arene[2]pyridine with an ABCD-substitution pattern was prepared in a good yield by means of a stepwise fragment coupling approach. Postmacrocyclization chemical manipulations led to functionalized tetraoxacalix[2]arene[2]pyridines. A racemic sample was resolved into enantiopure (+)- and (-)-inherently chiral compounds.

  5. Deformation of inherent structures to detect long-range correlations in supercooled liquids

    NASA Astrophysics Data System (ADS)

    Mosayebi, Majid; Del Gado, Emanuela; Ilg, Patrick; Öttinger, Hans Christian

    2012-07-01

    We propose deformations of inherent structures as a suitable tool for detecting structural changes underlying the onset of cooperativity in supercooled liquids. The non-affine displacement (NAD) field resulting from the applied deformation shows characteristic differences between the high temperature liquid and supercooled state, which are typically observed in dynamic quantities. The average magnitude of the NAD is very sensitive to temperature changes in the supercooled regime and is found to be strongly correlated with the inherent structure energy. In addition, the NAD field is characterized by a correlation length that increases upon lowering the temperature towards the supercooled regime.

  6. Environmental and safety issues of the fusion fuel cycle

    SciTech Connect

    Crocker, J.G.

    1980-01-01

    This paper discusses the environmental and safety concerns inherent in the development of fusion energy, and the current Department of Energy programs seeking to: (1) develop safe and reliable techniques for tritium control; (2) reduce the quantity of activation products produced; and (3) provide designs to limit the potential for accidents that could result in release of radioactive materials. Because of the inherent safety features of fusion and the early start that has been made in safety problem recognition and solution, fusion should be among the lower risk technologies for generation of commercial power.

  7. Food Safety

    MedlinePlus

    ... the safety of fish caught in your local lakes, rivers, and coastal areas. Advisories may recommend that ... Charts Picky Eating Physical Activity Food Safety Resources Kids Students Adults Families Professionals Multiple Languages MyPlate, MyWins ...

  8. Water Safety

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Water Safety KidsHealth > For Parents > Water Safety A A ... best measure of protection. previous continue Making Kids Water Wise It's important to teach your kids proper ...

  9. Water Safety

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Water Safety KidsHealth > For Teens > Water Safety A A ... tied to alcohol use. previous continue At the Water Park OK, so you do more splashing than ...

  10. Hand Safety

    MedlinePlus

    ... Gardening Safety Turkey Carving Removing a Ring Español Artritis de la base del pulgar Dedo en gatillo ... Gardening Safety Turkey Carving Removing a Ring Español Artritis de la base del pulgar Dedo en gatillo ...

  11. Fire safety

    Treesearch

    Robert H. White; Mark A. Dietenberger

    1999-01-01

    Fire safety is an important concern in all types of construction. The high level of national concern for fire safety is reflected in limitations and design requirements in building codes. These code requirements are discussed in the context of fire safety design and evaluation in the initial section of this chapter. Since basic data on fire behavior of wood products...

  12. Safety Handbook.

    ERIC Educational Resources Information Center

    Montgomery County Public Schools, Rockville, MD.

    Safety policies, procedures, and related information are presented in this manual to assist school personnel in a continuing program of accident prevention. Chapter 1 discusses safety education and accident prevention in general. Chapter 2 covers traffic regulations relating to school safety patrols, school bus transportation, bicycles, and…

  13. Child as Totem: Redressing the Myth of Inherent Creativity in Early Childhood

    ERIC Educational Resources Information Center

    McClure, Marissa

    2011-01-01

    In this article, I present a reexamination of the myth of inherent creativity in early childhood to elucidate how still-dominant discourses of optimization such as child development, individualism, expression, creativity, and visual realism exert limiting pressures on understandings of the art and visual culture that children consume and create.…

  14. 40 CFR 88.312-93 - Inherently Low-Emission Vehicle labeling.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Clean-Fuel Fleet Program § 88.312-93 Inherently Low-Emission Vehicle labeling. (a) Label design. (1) Label design shall consist of either of the following specifications: (i) The label shall consist of a white rectangular background, approximately 12 inches (30...

  15. 40 CFR 88.312-93 - Inherently Low-Emission Vehicle labeling.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Clean-Fuel Fleet Program § 88.312-93 Inherently Low-Emission Vehicle labeling. (a) Label design. (1) Label design shall consist of either of the following specifications: (i) The label shall consist of a white rectangular background, approximately 12 inches (30...

  16. 40 CFR 88.312-93 - Inherently Low-Emission Vehicle labeling.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Clean-Fuel Fleet Program § 88.312-93 Inherently Low-Emission Vehicle labeling. (a) Label design. (1) Label design shall consist of either of the following specifications: (i) The label shall consist of a white rectangular background, approximately 12 inches (30...

  17. The Market for Academic Knowledge: Its Historical Emergence and Inherent Tensions

    ERIC Educational Resources Information Center

    Weik, Elke

    2014-01-01

    This paper contributes to the discussion about the marketisation of universities by providing a historical perspective. Going back to the time when the market for academic knowledge emerged, I argue that it was created through incorporating a number of inherent tensions that have been, and still are, shaping its development. I show how these…

  18. [The concentration of growth factors in patients with inherent and acquired shortenings of limbs bones].

    PubMed

    Strogov, M V; Luneva, S N; Novikov, K I

    2013-04-01

    The article deals with the results of study of level of growth factors in blood serum of patients with inherent and post-traumatic shortenings of limbs' bones. The detection in blood serum the level of epidermal growth factor insulin-like growth factor I and angiopoetins is proposed to monitor in given patients the reparative bone formation.

  19. Improving an inherently stressful situation: the role of communication during wildfire evacuations

    Treesearch

    Melanie Stidham; Eric Toman; Sarah M. McCaffrey; Bruce. Schinder

    2011-01-01

    Wildfire evacuations are inherently stressful and homeowners have reported in previous studies that uncertainty over what is happening is perhaps one of the most stressful aspects. Although many difficult elements of evacuation cannot be mitigated and lives will certainly be disrupted, fire-management agencies can significantly reduce residents' uncertainty with...

  20. Land-use/land-cover drives variation in the specific inherent optical properties of estuaries

    EPA Science Inventory

    Changes in land-use/land-cover (LULC) can impact the exports of optically and biogeochemically active constituents to estuaries. Specific inherent optical properties (SIOPs) of estuarine optically active constituents (OACs) are directly related to the composition of the OACs, and...

  1. Making the Grade: Describing Inherent Requirements for the Initial Teacher Education Practicum

    ERIC Educational Resources Information Center

    Sharplin, Elaine; Peden, Sanna; Marais, Ida

    2016-01-01

    This study explores the development, description, and illustration of inherent requirement (IR) statements to make explicit the requirements for performance on an initial teacher education (ITE) practicum. Through consultative group processes with stakeholders involved in ITE, seven IR domains were identified. From interviews with academics,…

  2. Dynamic and Inherent B0 Correction for DTI Using Stimulated Echo Spiral Imaging

    PubMed Central

    Avram, Alexandru V.; Guidon, Arnaud; Truong, Trong-Kha; Liu, Chunlei; Song, Allen W.

    2013-01-01

    Purpose To present a novel technique for high-resolution stimulated echo (STE) diffusion tensor imaging (DTI) with self-navigated interleaved spirals (SNAILS) readout trajectories that can inherently and dynamically correct for image artifacts due to spatial and temporal variations in the static magnetic field (B0) resulting from eddy currents, tissue susceptibilities, subject/physiological motion, and hardware instabilities. Methods The Hahn spin echo formed by the first two 90° radio-frequency pulses is balanced to consecutively acquire two additional images with different echo times (TE) and generate an inherent field map, while the diffusion-prepared STE signal remains unaffected. For every diffusion-encoding direction, an intrinsically registered field map is estimated dynamically and used to effectively and inherently correct for off-resonance artifacts in the reconstruction of the corresponding diffusion-weighted image (DWI). Results After correction with the dynamically acquired field maps, local blurring artifacts are specifically removed from individual STE DWIs and the estimated diffusion tensors have significantly improved spatial accuracy and larger fractional anisotropy. Conclusion Combined with the SNAILS acquisition scheme, our new method provides an integrated high-resolution short-TE DTI solution with inherent and dynamic correction for both motion-induced phase errors and off-resonance effects. PMID:23630029

  3. Child as Totem: Redressing the Myth of Inherent Creativity in Early Childhood

    ERIC Educational Resources Information Center

    McClure, Marissa

    2011-01-01

    In this article, I present a reexamination of the myth of inherent creativity in early childhood to elucidate how still-dominant discourses of optimization such as child development, individualism, expression, creativity, and visual realism exert limiting pressures on understandings of the art and visual culture that children consume and create.…

  4. The Market for Academic Knowledge: Its Historical Emergence and Inherent Tensions

    ERIC Educational Resources Information Center

    Weik, Elke

    2014-01-01

    This paper contributes to the discussion about the marketisation of universities by providing a historical perspective. Going back to the time when the market for academic knowledge emerged, I argue that it was created through incorporating a number of inherent tensions that have been, and still are, shaping its development. I show how these…

  5. Incorporating Risk Assessment and Inherently Safer Design Practices into Chemical Engineering Education

    ERIC Educational Resources Information Center

    Seay, Jeffrey R.; Eden, Mario R.

    2008-01-01

    This paper introduces, via case study example, the benefit of including risk assessment methodology and inherently safer design practices into the curriculum for chemical engineering students. This work illustrates how these tools can be applied during the earliest stages of conceptual process design. The impacts of decisions made during…

  6. Incorporating Risk Assessment and Inherently Safer Design Practices into Chemical Engineering Education

    ERIC Educational Resources Information Center

    Seay, Jeffrey R.; Eden, Mario R.

    2008-01-01

    This paper introduces, via case study example, the benefit of including risk assessment methodology and inherently safer design practices into the curriculum for chemical engineering students. This work illustrates how these tools can be applied during the earliest stages of conceptual process design. The impacts of decisions made during…

  7. Legal Issues inherent in space shuttle operations. [reviewed by NASA Deputy General Counsel

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The legal issues inherent in NASA's proceeding into the day-to-day operations of the space shuttle and other elements of the Space Transportation System are considered in light of the National Aeronautics and Space Act of 1958. Based on this review, it was concluded that there is no immediate need for substantive amendments to that legislation.

  8. Evaluation of the role of inherent Ca(2+) in phosphorus removal from wastewater system.

    PubMed

    Han, Chong; Wang, Zhen; Wu, Qianqian; Yang, Wangjin; Yang, He; Xue, Xiangxin

    2016-01-01

    The role of inherent Ca(2+) in phosphorus removal from wastewater was evaluated by batch tests. Precipitates were characterized by an X-ray diffractometer (XRD), Fourier transform infrared spectrophotometer (FT-IR) and scanning electron microscope with an energy dispersive spectrometer (EDS) system. Effects of inherent Ca(2+) on phosphorus removal through basic oxygen furnace slag (BOFS) were also analyzed. The results show that upon adjusting the pH to higher than 7.0, inherent Ca(2+) can remove phosphorus from wastewater and form Ca-P precipitates. Residual phosphorus exhibited a linear decreasing trend with increasing the pH from 7.0 to 10.0 and then remained unchanged at higher pH than 10.0. EDS determined that the precipitates contained the elements Ca, P and O. FT-IR spectra demonstrated that the functional groups of precipitates involved PO4(3-), OH(-) and CO3(2-). XRD indicated that the precipitates may consist of CaCO3 and some Ca-P phosphates such as CaHPO4, Ca4H(PO4)3, Ca3(PO4)2, and Ca5(PO4)3(OH). During the removal process of phosphorus by BOFS, due to the presence of inherent Ca(2+) in wastewater, the removal efficiency and rate of phosphorus increased by 15.5% and by a factor of about 3.0, respectively.

  9. Land-use/land-cover drives variation in the specific inherent optical properties of estuaries

    EPA Science Inventory

    Changes in land-use/land-cover (LULC) can impact the exports of optically and biogeochemically active constituents to estuaries. Specific inherent optical properties (SIOPs) of estuarine optically active constituents (OACs) are directly related to the composition of the OACs, and...

  10. Legal Issues inherent in space shuttle operations. [reviewed by NASA Deputy General Counsel

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The legal issues inherent in NASA's proceeding into the day-to-day operations of the space shuttle and other elements of the Space Transportation System are considered in light of the National Aeronautics and Space Act of 1958. Based on this review, it was concluded that there is no immediate need for substantive amendments to that legislation.

  11. 40 CFR 88.311-98 - Emissions standards for Inherently Low-Emission Vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Emissions standards for Inherently Low-Emission Vehicles. 88.311-98 Section 88.311-98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Clean-Fuel Fleet Program § 88.311-98...

  12. Oceanic inherent optical properties: proposed single laser lidar and retrieval theory.

    PubMed

    Hoge, Frank E

    2005-12-01

    It is suggested that an economical airborne lidar having a single laser can retrieve the three principal inherent optical properties of the ocean. Only three time-resolved backscattering receiver channels are required: (i) elastic (on-wavelength), (ii) inelastic (water Raman), and (iii) inelastic [chromophoric dissolved organic matter (CDOM) fluorescence channel to remove the CDOM fluorescence interference from the Raman channel].

  13. Making the Grade: Describing Inherent Requirements for the Initial Teacher Education Practicum

    ERIC Educational Resources Information Center

    Sharplin, Elaine; Peden, Sanna; Marais, Ida

    2016-01-01

    This study explores the development, description, and illustration of inherent requirement (IR) statements to make explicit the requirements for performance on an initial teacher education (ITE) practicum. Through consultative group processes with stakeholders involved in ITE, seven IR domains were identified. From interviews with academics,…

  14. Strain rate dependence of the tensile properties of V-(4--5%)Cr-(4--5%)Ti irradiated in EBR-II and HFBR

    SciTech Connect

    Zinkle, S.J.; Snead, L.L.; Robertson, J.P.; Rowcliffe, A.F.

    1998-03-01

    Elevated temperature tensile tests performed on V-(405)Cr-(4-5)Ti indicate that the yield stress increases with increasing strain rate for irradiation and test temperatures near 200 C, and decreases with increasing strain rate for irradiation and test temperatures near 400 C. This observation is in qualitative agreement with the temperature-dependent strain rate effects observed on unirradiated specimens, and implies that some interstitial solute remains free to migrate in irradiated specimens. Additional strain rate data at different temperatures are needed.

  15. Functional safety of health information technology.

    PubMed

    Chadwick, Liam; Fallon, Enda F; van der Putten, Wil J; Kirrane, Frank

    2012-03-01

    In an effort to improve patient safety and reduce adverse events, there has been a rapid growth in the utilisation of health information technology (HIT). However, little work has examined the safety of the HIT systems themselves, the methods used in their development or the potential errors they may introduce into existing systems. This article introduces the conventional safety-related systems development standard IEC 61508 to the medical domain. It is proposed that the techniques used in conventional safety-related systems development should be utilised by regulation bodies, healthcare organisations and HIT developers to provide an assurance of safety for HIT systems. In adopting the IEC 61508 methodology for HIT development and integration, inherent problems in the new systems can be identified and corrected during their development. Also, IEC 61508 should be used to develop a healthcare-specific standard to allow stakeholders to provide an assurance of a system's safety.

  16. Location estimation of approaching objects is modulated by the observer's inherent and momentary action capabilities.

    PubMed

    Kandula, Manasa; Hofman, Dennis; Dijkerman, H Chris

    2016-08-01

    Action capability may be one of the factors that can influence our percept of the world. A distinction can be made between momentary action capability (action capability at that particular moment) and inherent action capability (representing a stable action capability). In the current study, we investigated whether there was a biasing effect of these two forms of action capability on visual perception of location. In a virtual reality room, subjects had to stop a moving ball from hitting a pillar. On some trials, the ball disappeared automatically during its motion. Subjects had to estimate the location of the ball's disappearance in these trials. We expected that if action is necessary but action capability (inherent or momentary) is limiting performance, the location of approaching objects with respect to the observer is underestimated. By judging the objects to be nearer than they really are, the need to select and execute the appropriate action increases, thereby facilitating quick action (Cole et al. in Psychol Sci 24(1):34-40, 2013. doi: 10.1177/0956797612446953 ). As a manipulation of inherent action capability in a virtual environment, two groups of participants (video game players vs. non-video game players) were entered into the study (high and low action capability). Momentary action capability was manipulated by using two difficulty levels in the experiment (Easy vs. Difficult). Results indicated that inherent and momentary action capabilities interacted together to influence online location judgments: Non-players underestimated locations when the task was Difficult. Taken together, our data suggest that both inherent and momentary action capabilities influence location judgments.

  17. Product Engineering Class in the Software Safety Risk Taxonomy for Building Safety-Critical Systems

    NASA Technical Reports Server (NTRS)

    Hill, Janice; Victor, Daniel

    2008-01-01

    When software safety requirements are imposed on legacy safety-critical systems, retrospective safety cases need to be formulated as part of recertifying the systems for further use and risks must be documented and managed to give confidence for reusing the systems. The SEJ Software Development Risk Taxonomy [4] focuses on general software development issues. It does not, however, cover all the safety risks. The Software Safety Risk Taxonomy [8] was developed which provides a construct for eliciting and categorizing software safety risks in a straightforward manner. In this paper, we present extended work on the taxonomy for safety that incorporates the additional issues inherent in the development and maintenance of safety-critical systems with software. An instrument called a Software Safety Risk Taxonomy Based Questionnaire (TBQ) is generated containing questions addressing each safety attribute in the Software Safety Risk Taxonomy. Software safety risks are surfaced using the new TBQ and then analyzed. In this paper we give the definitions for the specialized Product Engineering Class within the Software Safety Risk Taxonomy. At the end of the paper, we present the tool known as the 'Legacy Systems Risk Database Tool' that is used to collect and analyze the data required to show traceability to a particular safety standard

  18. Twenty years of improvements in LWR safety

    SciTech Connect

    Franks, S. III; Mulkey, J.P.; Deitrich, L.W.; Moonka, A.

    1996-05-01

    Substantial improvements have been made in the safety of light-water reactors in the US during the past two decades, making currently operating reactors safer than ever before. Safety improvements have resulted both from regulatory and operational changes and from new knowledge and technology. The US Nuclear Regulatory Commission, the US Department of Energy, and the American nuclear power industry have worked together and with the international community to enhance the safety of existing plants and to incorporate lessons learned from prior operation into designs for a new generation of advanced, inherently safer reactors.

  19. National Safety Council

    MedlinePlus

    ... Introduction Safety Management Systems Workplace Safety Consulting Employee Perception Surveys Research Journey to Safety Excellence Join the ... Safety Safety Management Systems Workplace Safety Consulting Employee Perception Surveys Research Journey to Safety Excellence Join the ...

  20. Maximum acceptable inherent buoyancy limit for aircrew/passenger helicopter immersion suit systems.

    PubMed

    Brooks, C J

    1988-12-01

    Helicopter crew and passengers flying over cold water wear immersion suits to provide hypothermic protection in case of ditching in cold water. The suits and linings have trapped air in the material to provide the necessary insulation and are thus very buoyant. By paradox, this buoyancy may be too much for a survivor to overcome in escaping from the cabin of a rapidly sinking inverted helicopter. The Canadian General Standard Board requested that research be conducted to investigate what should be the maximum inherent buoyancy in an immersion suit that would not inhibit escape, yet would provide adequate thermal insulation. This experiment reports on 12 subjects who safely escaped with 146N (33 lbf) of added buoyancy from a helicopter underwater escape trainer. It discusses the logic for and recommendation that the inherent buoyancy in a helicopter crew/passenger immersion suit system should not exceed this figure.

  1. A study of some inherent causes for non-uniform microwave heating

    NASA Astrophysics Data System (ADS)

    Tsai, Y. F.; Barnett, L. R.; Teng, H. H.; Ko, C. C.; Chu, K. R.

    2017-10-01

    Radio frequency and microwave heating of dielectric objects is often susceptible to an excessive temperature spread due to uneven energy deposition. The exposure to a non-uniform field is a well-studied cause for this difficulty encountered in numerous applications. There are, however, some less-understood causes, which are inherent in nature in that they persist even in a perfectly uniform field. We present an experimental study on three main inherent causes with rice grains as samples. Experiments are conducted in an applicator, in which samples are irradiated by a 24 GHz microwave. High radiation uniformity (˜99%) and polarization control allow a quantitative examination of each cause. Their individual and collective effects are found to be highly significant. In particular, polarization-charge shielding alone can result in a temperature spread of ˜18.2% for the samples examined. Physical interpretations are given and an effective method for its mitigation is demonstrated.

  2. "Inherently Chiral" Ionic-Liquid Media: Effective Chiral Electroanalysis on Achiral Electrodes.

    PubMed

    Rizzo, Simona; Arnaboldi, Serena; Mihali, Voichita; Cirilli, Roberto; Forni, Alessandra; Gennaro, Armando; Isse, Abdirisak Ahmed; Pierini, Marco; Mussini, Patrizia Romana; Sannicolò, Francesco

    2017-02-13

    To achieve enantioselective electroanalysis either chiral electrodes or chiral media are needed. High enantiodiscrimination properties can be granted by the "inherent chirality" strategy of developing molecular materials in which the stereogenic element responsible for chirality coincides with the molecular portion responsible for their specific properties, an approach recently yielding outstanding performances as electrode surfaces. Inherently chiral ionic liquids (ICILs) have now been prepared starting from atropisomeric 3,3'-bicollidine, synthesized from inexpensive reagents, resolved into antipodes without need of chiral HPLC and converted into long-chain dialkyl salts with melting points below room temperature. Both the new ICILs and shorter family terms, solid at room temperature, employed as low-concentration additives in achiral ILs, afford impressive enantioselection for the enantiomers of different probes on achiral electrodes, regularly increasing with additive concentration.

  3. Photoconduction efficiencies of metal oxide semiconductor nanowires: The material's inherent properties

    NASA Astrophysics Data System (ADS)

    Chen, R. S.; Wang, W. C.; Chan, C. H.; Lu, M. L.; Chen, Y. F.; Lin, H. C.; Chen, K. H.; Chen, L. C.

    2013-11-01

    The photoconduction (PC) efficiencies of various single-crystalline metal oxide semiconductor nanowires (NWs) have been investigated and compared based on the materials' inherent properties. The defined PC efficiency (normalized gain) of SnO2 NWs is over one to five orders of magnitude higher than that of its highly efficient counterparts such as ZnO, TiO2, WO3, and GaN. The inherent property of the material allowed the photoconductive gain of an SnO2 single-NW photodetector to easily reach 8 × 108 at a low bias of 3.0 V and a low light intensity of 0.05 Wm-2, which is the optimal reported value so far for the single-NW photodetectors. The probable physical origins, such as charged surface state density and surface band bending, that caused the differences in PC efficiencies and carrier lifetimes are also discussed.

  4. Achalasia familiar: report of a family with an autosomal dominant pattern of inherence.

    PubMed

    Gordillo-González, G; Guatibonza, Y P; Zarante, I; Roa, P; Jacome, L A; Hani, A

    2011-01-01

    Esophageal achalasia is a well-known pathology with an autosomal recessive pattern of inherence described in the familiar cases. Its principal symptom is dysphagia, secondary to the poor relaxation of the lower esophageal sphincter. Chagas disease is one of the many causes involved in the development of this disease, being of great importance in our country because of the high prevalence of the vector. Various syndromes include achalasia in their symptomatology, such as the triple A syndrome or Allgrove syndrome (Addisonianism, achalasia, and alacrimia). We reported a family with a classical autosomal pattern of inherence with six affected members, four men and two women, with achalasia diagnosis as well as esophagus cancer in two of them, secondary to the disease, and no other findings. © 2010 Copyright the Authors. Journal compilation © 2010, Wiley Periodicals, Inc. and the International Society for Diseases of the Esophagus.

  5. Evaluation of inherent performance of intelligent medical decision support systems: utilising neural networks as an example.

    PubMed

    Smith, A E; Nugent, C D; McClean, S I

    2003-01-01

    Researchers who design intelligent systems for medical decision support, are aware of the need for response to real clinical issues, in particular the need to address the specific ethical problems that the medical domain has in using black boxes. This means such intelligent systems have to be thoroughly evaluated, for acceptability. Attempts at compliance, however, are hampered by lack of guidelines. This paper addresses the issue of inherent performance evaluation, which researchers have addressed in part, but a Medline search, using neural networks as an example of intelligent systems, indicated that only about 12.5% evaluated inherent performance adequately. This paper aims to address this issue by concentrating on the possible evaluation methodology, giving a framework and specific suggestions for each type of classification problem. This should allow the developers of intelligent systems to produce evidence of a sufficiency of output performance evaluation.

  6. Guideline for the preparation of a contractor safety plan

    SciTech Connect

    Stinnett, L

    1982-04-01

    This document is only a guideline for contractors to use in formalizing a safety program or preparing a safety plan. It contains a format of a suggested safety plan as well as pertinent safety elements which should be considered for inclusion. However, consideration of only those items listed may not be sufficient. Each contractor should include in the safety plan particular reference to those elements peculiar to the inherent hazards of the contractor's specific type of construction services, whether the hazard is shown in the list of safety elements or not. Each safety plan should be reviewed annually by the contractor's management. Reissue of the safety plan is mandatory if safety requirements have changed, or if the contractor's address or management (approval signature) has changed.

  7. Quantification of the inherent uncertainty in the relaxation modulus and creep compliance of asphalt mixes

    NASA Astrophysics Data System (ADS)

    Kassem, Hussein A.; Chehab, Ghassan R.; Najjar, Shadi S.

    2017-08-01

    Advanced material characterization of asphalt concrete is essential for realistic and accurate performance prediction of flexible pavements. However, such characterization requires rigorous testing regimes that involve mechanical testing of a large number of laboratory samples at various conditions and set-ups. Advanced measurement instrumentation in addition to meticulous and accurate data analysis and analytical representation are also of high importance. Such steps as well as the heterogeneous nature of asphalt concrete (AC) constitute major factors of inherent variability. Thus, it is imperative to model and quantify the variability of the needed asphalt material's properties, mainly the linear viscoelastic response functions such as: relaxation modulus, E(t), and creep compliance, D(t). The objective of this paper is to characterize the inherent uncertainty of both E(t) and D(t) over the time domain of their master curves. This is achieved through a probabilistic framework using Monte Carlo simulations and First Order approximations, utilizing E^{*} data for six AC mixes with at least eight replicates per mix. The study shows that the inherent variability, presented by the coefficient of variation (COV), in E(t) and D(t) is low at small reduced times, and increases with the increase in reduced time. At small reduced times, the COV in E(t) and D(t) are similar in magnitude; however, differences become significant at large reduced times. Additionally, the probability distributions and COVs of E(t) and D(t) are mix dependent. Finally, a case study is considered in which the inherent uncertainty in D(t) is forward propagated to assess the effect of variability on the predicted number of cycles to fatigue failure of an asphalt mix.

  8. Unusually conductive carbon-inherently conducting polymer (ICP) composites: Synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Bourdo, Shawn Edward

    Two groups of materials that have recently come to the forefront of research initiatives are carbon allotropes, especially nanotubes, and conducting polymers-more specifically inherently conducting polymers. The terms conducting polymers and inherently conducting polymers sometimes are used interchangeably without fully acknowledging a major difference in these terms. Conducting polymers (CPs) and inherently conducting polymers (ICPs) are both polymeric materials that conduct electricity, but the difference lies in how each of these materials conducts electricity. For CPs of the past, an electrically conductive filler such as metal particles, carbon black, or graphite would be blended into a polymer (insulator) allowing for the CP to carry an electric current. An ICP conducts electricity due to the intrinsic nature of its chemical structure. The two materials at the center of this research are graphite and polyaniline. For the first time, a composite between carbon allotropes (graphite) and an inherently conducting polymer (PANI) has exhibited an electrical conductivity greater than either of the two components. Both components have a plethora of potential applications and therefore the further investigation could lead to use of these composites in any number of technologies. Touted applications that use either conductive carbons or ICPs exist in a wide range of fields, including electromagnetic interference (EMI) shielding, radar evasion, low power rechargeable batteries, electrostatic dissipation (ESD) for anti-static textiles, electronic devices, light emitting diodes (LEDs), corrosion prevention, gas sensors, super capacitors, photovoltaic cells, and resistive heating. The main motivation for this research has been to investigate the connection between an observed increase in conductivity and structure of composites. Two main findings have resulted from the research as related to the observed increase in conductivity. The first was the structural evidence from

  9. 40 CFR 88.312-93 - Inherently Low-Emission Vehicle labeling.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... stroke width not less than 0.5 inches (1.3 centimeters). In addition, the words “INHERENTLY LOW-EMISSION... inches (3.8 centimeters) wide with a stroke width not less than 0.4 inches (1.0 centimeter). In addition...) wide with a stroke width not less than 0.3 inches (0.8 centimeter). In addition, the words...

  10. Evaluation of transient fuel pin cladding failure criteria for application to inherently safe LMFBR designs

    SciTech Connect

    Kramer, J M; DiMelfi, R J

    1984-03-01

    Purpose of report is to evaluate the methods for determining time-temperature-stress limits for cladding failure under accident conditions for inherently safe LMFBR designs. The range of expected thermal-mechanical cladding loading conditions is outlined for generic accident events, and application of existing mechanistic and empirical cladding failure models to these conditions is evaluated. The study is restricted to reference oxide fuel pins with austenitic stainless steel cladding.

  11. Skateboard Safety.

    ERIC Educational Resources Information Center

    Della-Giustina, Daniel

    1979-01-01

    The growing number of skateboard injuries clearly indicates a need for both recreational facilities designed exclusively for skateboarders, and for accident- prevention-oriented safety education programs. (LH)

  12. Medication safety.

    PubMed

    Keohane, Carol A; Bates, David W

    2008-03-01

    Patient safety is a state of mind, not a technology. The technologies used in the medical setting represent tools that must be properly designed, used well, and assessed on an on-going basis. Moreover, in all settings, building a culture of safety is pivotal for improving safety, and many nontechnologic approaches, such as medication reconciliation and teaching patients about their medications, are also essential. This article addresses the topic of medication safety and examines specific strategies being used to decrease the incidence of medication errors across various clinical settings.

  13. The inherent metastasis of leukaemia and its exploitation by sonodynamic therapy.

    PubMed

    Trendowski, Matthew

    2015-05-01

    Nearly all cancers are linked by the inexorable phenotype of metastasis as malignant growths have the capability to spread from their place of origin to distant sites throughout the body. While different cancers may have various propensities to migrate towards specific locations, they are all linked by this unifying principal. Unlike most neoplasms, leukaemia has inherent cell motility as leukocytes are required to move throughout the vascular system, suggesting that no mutations are required for anchorage independent growth. As such, it seems likely that leukaemias are inherently metastatic, endowed with the deadliest phenotype of cancer simply due to cell of origin. This article presents the biology of metastasis development and how leukaemia cells are inherently provided these phenotypic characteristics. It is then proposed how clinicians may be able to exploit the motility of leukaemia and metastatic emboli of other cancer types through an approach known as sonodynamic therapy (SDT), a treatment modality that combines chemotherapeutic agents with ultrasound to preferentially damage malignant cells. As experimental evidence has indicated, SDT is a promising therapeutic approach in need of clinical testing for further validation. Copyright © 2014 The Author. Published by Elsevier Ireland Ltd.. All rights reserved.

  14. Controlling the Inherent Magnetoresistance in thin InSb epilayers on GaAs (001)

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Harris, J. J.; Clowes, S. K.; Brandford, W. R.; Cohen, L. F.; Solin, S. A.

    2006-03-01

    There is great advantage to controlling the magnetoresistance (MR) in high mobility semiconductors for a number of applications which require thin active surface layers. Previously we have produced n type thin epilayers of InSb with the highest reported mobility and we have used these epilayers to explore novel geometries that enhance the high field MR. Here we show that by virtue of the inherent inhomogeneity in the growth direction, thin InSb epilayers can be designed to have significant MR without external geometric manipulation. The observations can be explained using a transport model that describes the electrical properties of the layers including contributions from conduction and impurity bands. We will explore using the model, the possibility of maximizing or minimizing the inherent MR in these layers and we show experimentally how to create thin high mobility layers where the inherent MR is significantly reduced or enhanced without compromising the layer mobility. T. Zhang et al. Appl. Phys Lett. 84, 4463 (2004). W.R. Branford et al., Appl. Phys Lett. 86, 202116 (2005). J.J. Harris et al., Semicond. Sci. Tech. 19, 1406 (2004). T. Zhang et al., Semicond. Sci. Tech., in press.

  15. Influence of solar-probe inherent atmosphere on in-situ observations

    SciTech Connect

    Hassanein, A.; Konkashbaev, A.I.; Konkashbaev, I.K.; Nikandrov, L.B.

    1998-08-01

    The solar corona is the source of the solar wind, which is responsible for the heliosphere and plays a crucial role in solar/terrestrial phenomena. A comprehensive understanding of these phenomena can be established only by directly measuring ion and electron velocity distributions, plasma waves, and fluxes of energetic particles near the sun. The problem resulting from the inherent atmosphere of a spacecraft moving in the vicinity of the sun and the influence of this atmosphere on in-situ measurements of the solar corona plasma is key to the realization and success of any solar probe mission. To evaluate the influence of the probe-inherent atmosphere on in-situ observations, the authors have developed comprehensive radiation hydrodynamic models. The physics of plasma/probe/vapor interaction are also being developed in a self-consistent model to predict the effect of probe inherent atmosphere on in-situ measurements of corona parameters during solar flares. Interaction of the ionized atmosphere with the ambient natural plasma will create a turbulent shock wave that can affect in-situ measurements and must be taken into account in designing the spacecraft and its scientific components.

  16. Inherent directionality explains the lack of feedback loops in empirical networks

    PubMed Central

    Domínguez-García, Virginia; Pigolotti, Simone; Muñoz, Miguel A.

    2014-01-01

    We explore the hypothesis that the relative abundance of feedback loops in many empirical complex networks is severely reduced owing to the presence of an inherent global directionality. Aimed at quantifying this idea, we propose a simple probabilistic model in which a free parameter γ controls the degree of inherent directionality. Upon strengthening such directionality, the model predicts a drastic reduction in the fraction of loops which are also feedback loops. To test this prediction, we extensively enumerated loops and feedback loops in many empirical biological, ecological and socio-technological directed networks. We show that, in almost all cases, empirical networks have a much smaller fraction of feedback loops than network randomizations. Quite remarkably, this empirical finding is quantitatively reproduced, for all loop lengths, by our model by fitting its only parameter γ. Moreover, the fitted value of γ correlates quite well with another direct measurement of network directionality, performed by means of a novel algorithm. We conclude that the existence of an inherent network directionality provides a parsimonious quantitative explanation for the observed lack of feedback loops in empirical networks. PMID:25531727

  17. Inherent directionality explains the lack of feedback loops in empirical networks.

    PubMed

    Domínguez-García, Virginia; Pigolotti, Simone; Muñoz, Miguel A

    2014-12-22

    We explore the hypothesis that the relative abundance of feedback loops in many empirical complex networks is severely reduced owing to the presence of an inherent global directionality. Aimed at quantifying this idea, we propose a simple probabilistic model in which a free parameter γ controls the degree of inherent directionality. Upon strengthening such directionality, the model predicts a drastic reduction in the fraction of loops which are also feedback loops. To test this prediction, we extensively enumerated loops and feedback loops in many empirical biological, ecological and socio-technological directed networks. We show that, in almost all cases, empirical networks have a much smaller fraction of feedback loops than network randomizations. Quite remarkably, this empirical finding is quantitatively reproduced, for all loop lengths, by our model by fitting its only parameter γ. Moreover, the fitted value of γ correlates quite well with another direct measurement of network directionality, performed by means of a novel algorithm. We conclude that the existence of an inherent network directionality provides a parsimonious quantitative explanation for the observed lack of feedback loops in empirical networks.

  18. Disease resistance is related to inherent swimming performance in Atlantic salmon

    PubMed Central

    2013-01-01

    Background Like humans, fish can be classified according to their athletic performance. Sustained exercise training of fish can improve growth and physical capacity, and recent results have documented improved disease resistance in exercised Atlantic salmon. In this study we investigated the effects of inherent swimming performance and exercise training on disease resistance in Atlantic salmon. Atlantic salmon were first classified as either poor or good according to their swimming performance in a screening test and then exercise trained for 10 weeks using one of two constant-velocity or two interval-velocity training regimes for comparison against control trained fish (low speed continuously). Disease resistance was assessed by a viral disease challenge test (infectious pancreatic necrosis) and gene expression analyses of the host response in selected organs. Results An inherently good swimming performance was associated with improved disease resistance, as good swimmers showed significantly better survival compared to poor swimmers in the viral challenge test. Differences in mortalities between poor and good swimmers were correlated with cardiac mRNA expression of virus responsive genes reflecting the infection status. Although not significant, fish trained at constant-velocity showed a trend towards higher survival than fish trained at either short or long intervals. Finally, only constant training at high intensity had a significant positive effect on fish growth compared to control trained fish. Conclusions This is the first evidence suggesting that inherent swimming performance is associated with disease resistance in fish. PMID:23336751

  19. Inherent Structure Landscape Connection between Liquids, Granular Materials, and the Jamming Phase Diagram

    NASA Astrophysics Data System (ADS)

    Ashwin, S. S.; Zaeifi Yamchi, Mahdi; Bowles, Richard K.

    2013-04-01

    We provide a comprehensive picture of the jamming phase diagram by connecting the athermal, granular ensemble of jammed states and the equilibrium fluid through the inherent structure paradigm for a system of hard disks confined to a narrow channel. The J line is shown to be divided into packings that are either accessible or inaccessible from the equilibrium fluid. The J point itself is found to occur at the transition between these two sets of packings and is located at the maximum of the inherent structure distribution. We also present a general thermodynamic argument that suggests the density of the states at the maximum of the configurational entropy represents a lower bound on the J-point density in hard sphere systems. Finally, we show that the granular system, modeled using the Edwards ensemble, and the fluid sample the same set of thermodynamically accessible states over the full range of thermodynamic state points, but only occupy the same set of inherent structures, under the same thermodynamic conditions, at two points, corresponding to zero and infinite pressures, where they sample the J-point states and the most dense packing, respectively.

  20. Liver-inherent immune system: its role in blood-stage malaria.

    PubMed

    Wunderlich, Frank; Al-Quraishy, Saleh; Dkhil, Mohamed A

    2014-01-01

    The liver is well known as that organ which is obligately required for the intrahepatocyte development of the pre-erythrocytic stages of the malaria-causative agent Plasmodium. However, largely neglected is the fact that the liver is also a central player of the host defense against the morbidity- and mortality-causing blood stages of the malaria parasites. Indeed, the liver is equipped with a unique immune system that acts locally, however, with systemic impact. Its main "antipodal" functions are to recognize and to generate effective immunoreactivity against pathogens on the one hand, and to generate tolerance to avoid immunoreactivity with "self" and harmless substances as dietary compounds on the other hand. This review provides an introductory survey of the liver-inherent immune system: its pathogen recognition receptors including Toll-like receptors (TLRs) and its major cell constituents with their different facilities to fight and eliminate pathogens. Then, evidence is presented that the liver is also an essential organ to overcome blood-stage malaria. Finally, we discuss effector responses of the liver-inherent immune system directed against blood-stage malaria: activation of TLRs, acute phase response, phagocytic activity, cytokine-mediated pro- and anti-inflammatory responses, generation of "protective" autoimmunity by extrathymic T cells and B-1 cells, and T cell-mediated repair of liver injuries mainly produced by malaria-induced overreactions of the liver-inherent immune system.

  1. Temporal Masking Contributions of Inherent Envelope Fluctuations for Listeners with Normal and Impaired Hearing

    NASA Astrophysics Data System (ADS)

    Svec, Adam

    Gaussian noise (GN) simultaneous maskers yield higher masked thresholds for pure tones than low-fluctuation noise (LFN) simultaneous maskers for listeners with normal hearing. This increased residual masking is thought to be due to inherent fluctuations in the temporal envelope of Gaussian noise, but these masking effects using forward maskers have been previously unexamined. Because differences in forward masking due to age and hearing loss are known, the first study measured forward-masked detection thresholds for younger and older adults with normal hearing (NH) and older adults with hearing loss (HI) for a 4000 Hz pure-tone probe at a single masker-probe delay in narrowband noises with maximal (GN) or minimal (LFN) inherent envelope fluctuations. As predicted, results suggested that no effect of age was observed. Surprisingly, forward-masked threshold differences between GN and LFN, an estimate of the magnitude of the effect of inherent masker envelope fluctuations, were not significantly different for older HI listeners compared to younger or older NH listeners. Due to the surprising similarities between listeners with normal and impaired hearing, the second study was designed to assess effects of hearing loss on the slopes and magnitudes of recovery from forward maskers that varied in inherent envelope fluctuations for masker-probe delays of 25, 50, and 75 ms. In addition to measuring these effects centered at 4000 Hz, forward-masked thresholds were also measured at 2000 Hz, a region of better hearing for the HI listeners. As hypothesized, regardless of masker fluctuations, slopes of recovery from forward masking were shallower for HI than NH listeners in all conditions. At 4000 Hz, additional residual masking was greater in HI than NH listeners at the longest masker-probe delays; whereas, no differences in additional residual masking between HI and NH listeners were observed for 2000 Hz. These results suggest that the masking effects from inherent envelope

  2. Solidifying Safety

    NASA Technical Reports Server (NTRS)

    Covault, Craig

    2003-01-01

    Contents include the following: 1. Solidifying Safety: NASA s new safety organization spools up, as the 1SS program grapples with long-term risk. 2. Earth to Orbit O'Keefe telling skeptical lawmakers Orbital Space Plan (OSP) will cover exploration vision. China's rapid pace.

  3. Safety First

    ERIC Educational Resources Information Center

    Taft, Darryl

    2011-01-01

    Ned Miller does not take security lightly. As director of campus safety and emergency management at the Des Moines Area Community College (DMACC), any threat requires serious consideration. As community college administrators adopt a more proactive approach to campus safety, many institutions are experimenting with emerging technologies, including…

  4. Safety Systems

    ERIC Educational Resources Information Center

    Halligan, Tom

    2009-01-01

    Colleges across the country are rising to the task by implementing safety programs, response strategies, and technologies intended to create a secure environment for teachers and students. Whether it is preparing and responding to a natural disaster, health emergency, or act of violence, more schools are making campus safety a top priority. At…

  5. Lab Safety.

    ERIC Educational Resources Information Center

    West, Sandra S.

    1991-01-01

    In response to the Texas Hazardous Communication Act (THCA) of 1986 which raised many new health and liability issues regarding students in science laboratories, a laboratory safety survey was generated for use in evaluating laboratory safety. This article contains the easy-to-use survey. (ZWH)

  6. Safety Systems

    ERIC Educational Resources Information Center

    Halligan, Tom

    2009-01-01

    Colleges across the country are rising to the task by implementing safety programs, response strategies, and technologies intended to create a secure environment for teachers and students. Whether it is preparing and responding to a natural disaster, health emergency, or act of violence, more schools are making campus safety a top priority. At…

  7. Safety First

    ERIC Educational Resources Information Center

    Taft, Darryl

    2011-01-01

    Ned Miller does not take security lightly. As director of campus safety and emergency management at the Des Moines Area Community College (DMACC), any threat requires serious consideration. As community college administrators adopt a more proactive approach to campus safety, many institutions are experimenting with emerging technologies, including…

  8. The near boiling reactor: Conceptual design of a small inherently safe nuclear reactor to extend the operational capability of the Victoria Class submarine

    NASA Astrophysics Data System (ADS)

    Cole, Christopher J. P.

    Nuclear power has several unique advantages over other air independent energy sources for nuclear combat submarines. An inherently safe, small nuclear reactor, capable of supply the hotel load of the Victoria Class submarines, has been conceptually developed. The reactor is designed to complement the existing diesel electric power generation plant presently onboard the submarine. The reactor, rated at greater than 1 MW thermal, will supply electricity to the submarine's batteries through an organic Rankine cycle energy conversion plant at 200 kW. This load will increase the operational envelope of the submarine by providing up to 28 continuous days submerged, allowing for an enhanced indiscretion ratio (ratio of time spent on the surface versus time submerged) and a limited under ice capability. The power plant can be fitted into the existing submarine by inserting a 6 m hull plug. With its simplistic design and inherent safety features, the reactor plant will require a minimal addition to the crew. The reactor employs TRISO fuel particles for increased safety. The light water coolant remains at atmospheric pressure, exiting the core at 96°C. Burn-up control and limiting excess reactivity is achieved through movable reflector plates. Shut down and regulatory control is achieved through the thirteen hafnium control rods. Inherent safety is achieved through the negative prompt and delayed temperature coefficients, as well as the negative void coefficient. During a transient, the boiling of the moderator results in a sudden drop in reactivity, essentially shutting down the reactor. It is this characteristic after which the reactor has been named. The design of the reactor was achieved through modelling using computer codes such as MCNP5, WIMS-AECL, FEMLAB, and MicroShield5, in addition to specially written software for kinetics, heat transfer and fission product poisoning calculations. The work has covered a broad area of research and has highlighted additional areas

  9. Impact of exotic and inherent dissolved organic matter on sorption of phenanthrene by soils.

    PubMed

    Gao, Yanzheng; Xiong, Wei; Ling, Wanting; Wang, Xiaorong; Li, Qiuling

    2007-02-09

    The impacts of exotic and inherent dissolved organic matter (DOM) on phenanthrene sorption by six zonal soils of China, chosen so as to have different soil organic carbon (SOC) contents, were investigated using a batch technique. The exotic DOM was extracted from straw waste. In all cases, the sorption of phenanthrene by soils could be well described by the linear equation. The presence of inherent DOM in soils was found to impede phenanthrene sorption, since the apparent distribution coefficients (K(d)(*)) for phenanthrene sorption by deionized water-eluted soils were 3.13-21.5% larger than the distribution coefficients (K(d)) by control soils. Moreover, the enhanced sorption of phenanthrene by eluted versus control soils was in positive correlation with SOC contents. On the other hand, it was observed that the influence of exotic DOM on phenanthrene sorption was related to DOM concentrations. The K(d)(*) values for sorption of phenanthrene in the presence of exotic DOM increased first and decreased thereafter with increasing the added DOM concentrations (0-106mgDOC/L). The K(d)(*) values at a low exotic DOM concentration (< or =28mgDOC/L) were 14.7-48.4% larger than their control K(d) values. In contrast, higher concentrations (> or =52mgDOC/L) of added exotic DOM clearly impeded the distribution of phenanthrene between soil and water. The effects of exotic and inherent DOM on phenanthrene sorption by soils may primarily be described as 'cumulative sorption', association of phenanthene with DOM in solution, and modified surface nature of soil solids due to DOM binding.

  10. Investigating inherent functional differences between human cardiac fibroblasts cultured from nondiabetic and Type 2 diabetic donors.

    PubMed

    Sedgwick, Bryony; Riches, Kirsten; Bageghni, Sumia A; O'Regan, David J; Porter, Karen E; Turner, Neil A

    2014-01-01

    Type 2 diabetes mellitus (T2DM) promotes adverse myocardial remodeling and increased risk of heart failure; effects that can occur independently of hypertension or coronary artery disease. As cardiac fibroblasts (CFs) are key effectors of myocardial remodeling, we investigated whether inherent phenotypic differences exist in CF derived from T2DM donors compared with cells from nondiabetic (ND) donors. Cell morphology (cell area), proliferation (cell counting over 7-day period), insulin signaling [phospho-Akt and phospho-extracellular signal-regulated kinase (ERK) Western blotting], and mRNA expression of key remodeling genes [real-time reverse transcription-polymerase chain reaction (RT-PCR)] were compared in CF cultured from atrial tissue from 14 ND and 12 T2DM donors undergoing elective coronary artery bypass surgery. The major finding was that Type I collagen (COL1A1) mRNA levels were significantly elevated by twofold in cells derived from T2DM donors compared with those from ND donors; changes reflected at the protein level. T2DM cells had similar proliferation rates but a greater variation in cell size and a trend towards increased cell area compared with ND cells. Insulin-induced Akt and ERK phosphorylation were similar in the two cohorts of cells. CF from T2DM individuals possess an inherent profibrotic phenotype that may help to explain the augmented cardiac fibrosis observed in diabetic patients. We investigated whether inherent phenotypic differences exist between CF cultured from donors with or without Type 2 diabetes. Cell morphology, proliferation, insulin signaling, and gene expression were compared between multiple cell populations. The major finding was that Type I collagen levels were elevated in fibroblasts from diabetic donors, which may help explain the augmented cardiac fibrosis observed with diabetes. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Deliberate practice theory: relevance, effort, and inherent enjoyment of music practice.

    PubMed

    Hyllegard, Randy; Bories, Tamara L

    2008-10-01

    This study examined three assumptions of the theory of deliberate practice for practice playing music on an electronic keyboard. 40 undergraduate students, divided into two separate groups, practiced one of two music sequences and rated the relevance of practice for improving performance on the sequences, the amount of effort needed to learn the sequences, and the inherent enjoyment of practice sessions. Findings for each assumption were consistent with those suggested by theory but also showed that perceptions are affected by the amount of practice completed and performance of the skill.

  12. The vowel inherent spectral change of English vowels spoken by native and non-native speakers.

    PubMed

    Jin, Su-Hyun; Liu, Chang

    2013-05-01

    The current study examined Vowel Inherent Spectral Change (VISC) of English vowels spoken by English-, Chinese-, and Korean-native speakers. Two metrics, spectral distance (amount of spectral shift) and spectral angle (direction of spectral shift) of formant movement from the onset to the offset, were measured for 12 English monophthongs produced in a /hvd/ context. While Chinese speakers showed significantly greater spectral distances of vowels than English and Korean speakers, there was no significant speakers' native language effect on spectral angles. Comparisons to their native vowels for Chinese and Korean speakers suggest that VISC might be affected by language-specific phonological structure.

  13. Some relationships between Secchi depth and inherent optical properties of natural waters

    NASA Technical Reports Server (NTRS)

    Gordon, H. R.; Wouters, A. W.

    1978-01-01

    Relationships between the inherent and optical properties of the ocean (Gorden et al., 1975 and Preisendorfer, 1961) are combined with the Duntley-Preisendorfer equation to show the dependence of these properties on the depth at which a Secchi disk disappears from view. An expression relating the Secchi depth to the limiting contrast of the disk is derived in terms of the average beam attenuation coefficient, the average diffuse attenuation coefficient for downwelling irradiance, the albedo of the disk, and the reflectance functions at the Secchi depth and just below the surface. It is shown that combining Secchi depth observations with other optical properties yields significant information about the constituents of the medium.

  14. Experimentally determined stiffness and damping of an inherently compensated air squeeze-film damper

    NASA Technical Reports Server (NTRS)

    Cunningham, R. E.

    1975-01-01

    Values of damping and stiffness were determined experimentally for an externally pressurized, inherently compensated, compressible squeeze-film damper up to excitation frequencies of 36,000 cycles per minute. Experimental damping values were higher than theory predicted at low squeeze numbers and less than predicted at high squeeze numbers. Experimental values of air film stiffness were less than theory predicted at low squeeze numbers and much greater at higher squeeze numbers. Results also indicate sufficient damping to attenuate amplitudes and forces at the critical speed when using three dampers in the flexible support system of a small, lightweight turborotor.

  15. Inherently chiral calix[4]arenes via oxazoline directed ortholithiation: synthesis and probe of chiral space

    PubMed Central

    Herbert, Simon A; van Laeren, Laura J; Castell, Dominic C

    2014-01-01

    Summary The diastereoselective oxazoline-directed lithiation of calix[4]arenes is reported with diastereoselective ratios of greater than 100:1 in some instances. Notably, it has been found that the opposite diastereomer can be accessed via this approach merely through the choice of an alkyllithium reagent. The inherently chiral oxazoline calix[4]arenes have also been preliminarily examined as ligands in the palladium-catalyzed Tsuji–Trost allylation reaction, returning results comparable to their planar chiral ferrocene counterparts pointing towards future application of these types of compounds. PMID:25550740

  16. Inherently chiral calix[4]arenes via oxazoline directed ortholithiation: synthesis and probe of chiral space.

    PubMed

    Herbert, Simon A; van Laeren, Laura J; Castell, Dominic C; Arnott, Gareth E

    2014-01-01

    The diastereoselective oxazoline-directed lithiation of calix[4]arenes is reported with diastereoselective ratios of greater than 100:1 in some instances. Notably, it has been found that the opposite diastereomer can be accessed via this approach merely through the choice of an alkyllithium reagent. The inherently chiral oxazoline calix[4]arenes have also been preliminarily examined as ligands in the palladium-catalyzed Tsuji-Trost allylation reaction, returning results comparable to their planar chiral ferrocene counterparts pointing towards future application of these types of compounds.

  17. The Amount of Noise Inherent in Bandwidth Selection for a Kernel Density Estimator.

    DTIC Science & Technology

    1985-05-01

    KERNEL DENSITY ESTIMATOR by ’r Peter Hall anzd James Stephen MarronOC15W 0-Technical Report No.j" 6-J 85 10 11 173 . REP - U... .c- , =... a. REPORT...DENSIY’ ESTIMATOR 1.2 PERSCNAL AUTmORS) Peter Hall and James Stephen Marron F&~EREPOR. 13b. TIMS COVE RED 14. DATE OF REPORT fYr.. Ito., Day,p IS. PAGE...Toulujic: ! . :. Divi.ion THE AMOUNT OF NOISE INHERENT IN BANDWIDTH SELECTION FOR A KERNEL DENSITY ESTIMATOR by Peter Hall" 2 and James Stephen

  18. Infrared microspectroscopic identification of marker ingredients in the finished herbal products based on the inherent heterogeneity of natural medicines.

    PubMed

    Chen, Jian-Bo; Sun, Su-Qin; Zhou, Qun

    2014-07-01

    Finished herbal products (FHPs) are preparations made from one or more herbs. The first stage in assuring the quality, safety, and efficacy of FHPs is to identify the herbs in the products. A new simple and quick method is developed in this research to detect the marker ingredients in FHPs. The inherent chemical heterogeneity of herbs and FHPs makes it possible to resolve different ingredients, without any additional separation or labeling, by infrared microspectroscopic imaging. Therefore, multiple marker ingredients in FHPs can be recognized directly and simultaneously by the infrared microspectroscopic identification method. As an example, all six kinds of herbs in Liuwei Dihuang Wan are identified through the following steps: (1) Each herb is characterized by infrared spectroscopic imaging, then the spectra of the main ingredients are calculated by the combination of principal component analysis, independent component analysis, and alternating least squares. (2) One marker ingredient is chosen for each herb. Ten typical pixels, the spectra of which best match the calculated spectrum of the marker ingredient, are selected by partial least squares target. The average spectrum of the typical pixels is taken as the marker spectrum. (3) Correlation coefficients between the typical pixel spectra and the marker spectrum are calculated. The acceptance correlation threshold is determined through the beta distribution function and then validated by positive and negative samples. (4) Using the above marker spectra and correlation criteria, herbs in the model mixture and the commercial product are identified. Good recognition results reveal the potential of the infrared microspectroscopic identification method in the quality control of herbs and FHPs.

  19. Software safety

    NASA Technical Reports Server (NTRS)

    Leveson, Nancy

    1987-01-01

    Software safety and its relationship to other qualities are discussed. It is shown that standard reliability and fault tolerance techniques will not solve the safety problem for the present. A new attitude requires: looking at what you do NOT want software to do along with what you want it to do; and assuming things will go wrong. New procedures and changes to entire software development process are necessary: special software safety analysis techniques are needed; and design techniques, especially eliminating complexity, can be very helpful.

  20. Nuclear Safety

    SciTech Connect

    Silver, E G

    1989-01-01

    This document is a review journal that covers significant developments in the field of nuclear safety. Its scope includes the analysis and control of hazards associated with nuclear energy, operations involving fissionable materials, and the products of nuclear fission and their effects on the environment. Primary emphasis is on safety in reactor design, construction, and operation; however, the safety aspects of the entire fuel cycle, including fuel fabrication, spent-fuel processing, nuclear waste disposal, handling of radioisotopes, and environmental effects of these operations, are also treated.

  1. Safety Tips.

    ERIC Educational Resources Information Center

    Nagel, Miriam C., Ed.

    1984-01-01

    Outlines a cooperative effort in Iowa to eliminate dangerous or unwanted chemicals from school science storerooms. Also reviews the Council of State Science Supervisor's safety program and discusses how to prevent cuts and punctures from jagged glass tubing. (JN)

  2. Auto Safety

    MedlinePlus

    ... be sure to ask for a certified child passenger safety technician to assist you.) continue Guidelines for ... killed if they are riding in the front passenger seat when an air bag opens. Air bags ...

  3. Cellular heterogeneity mediates inherent sensitivity-specificity tradeoff in cancer targeting by synthetic circuits.

    PubMed

    Morel, Mathieu; Shtrahman, Roman; Rotter, Varda; Nissim, Lior; Bar-Ziv, Roy H

    2016-07-19

    Synthetic gene circuits are emerging as a versatile means to target cancer with enhanced specificity by combinatorial integration of multiple expression markers. Such circuits must also be tuned to be highly sensitive because escape of even a few cells might be detrimental. However, the error rates of decision-making circuits in light of cellular variability in gene expression have so far remained unexplored. Here, we measure the single-cell response function of a tunable logic AND gate acting on two promoters in heterogeneous cell populations. Our analysis reveals an inherent tradeoff between specificity and sensitivity that is controlled by the AND gate amplification gain and activation threshold. We implement a tumor-mimicking cell-culture model of cancer cells emerging in a background of normal ones, and show that molecular parameters of the synthetic circuits control specificity and sensitivity in a killing assay. This suggests that, beyond the inherent tradeoff, synthetic circuits operating in a heterogeneous environment could be optimized to efficiently target malignant state with minimal loss of specificity.

  4. A model for capillary rise in nano-channels with inherent surface roughness

    NASA Astrophysics Data System (ADS)

    Shen, Anqi; Liu, Yikun; Qiu, Xiaohui; Lu, Yongjun; Liang, Shuang

    2017-03-01

    This paper presents the results of an analytical model for the capillary rise in nano-channels considering the effect of inherent surface roughness. The model was derived using the classical Lucas-Washburn model and the momentum conservation equation, while considering the inherent surface roughness of an equivalent porous medium layer (PML). The calculated frictional resistance due to the PML reflects the friction of fluid flowing through nano-channels. The capillary imbibition in the nano-channels is in the range of low-Reynolds-number flow, and because of its low flow-rate, the inertia force can be ignored in this study. This analytical model was validated by comparing it with nano-capillary rise experiments and other simulated values such as the classical Lucas-Washburn (LW) model and the classical LW model with a 40% fluid viscosity increment. The analytical model produces the closest results to those obtained in the experiments, and it can explain the lower-than-expected (using the LW equation) height of capillary rise obtained in the experiments.

  5. Inherent noise appears as a Lévy walk in fish schools.

    PubMed

    Murakami, Hisashi; Niizato, Takayuki; Tomaru, Takenori; Nishiyama, Yuta; Gunji, Yukio-Pegio

    2015-06-03

    Recent experimental and observational data have revealed that the internal structures of collective animal groups are not fixed in time. Rather, individuals can produce noise continuously within their group. These individuals' movements on the inside of the group, which appear to collapse the global order and information transfer, can enable interactions with various neighbors. In this study, we show that noise generated inherently in a school of ayus (Plecoglossus altivelis) is characterized by various power-law behaviors. First, we show that individual fish move faster than Brownian walkers with respect to the center of the mass of the school as a super-diffusive behavior, as seen in starling flocks. Second, we assess neighbor shuffling by measuring the duration of pair-wise contact and find that this distribution obeys the power law. Finally, we show that an individual's movement in the center of a mass reference frame displays a Lévy walk pattern. Our findings suggest that inherent noise (i.e., movements and changes in the relations between neighbors in a directed group) is dynamically self-organized in both time and space. In particular, Lévy walk in schools can be regarded as a well-balanced movement to facilitate dynamic collective motion and information transfer throughout the group.

  6. The motivation for biological aggression is an inherent and common aspect of the human behavioural repertoire.

    PubMed

    Rózsa, Lajos

    2009-02-01

    According to a widespread opinion shared by the vast majority of historians, instances of aggression using pathogen weapons constitute extremely rare events in human history. Similarly, students of human behaviour tend to believe that their science plays no role in explaining this phenomenon, which is held to be exceptional and abnormal. Contrary to this dominant view, I argue that Hamiltonian spite - like Hamiltonian altruism - is an inherent part of the human behavioural repertoire and it includes the use of pathogens for spiteful purposes. This paradigm is supported by the following observations. The use of pathogens as weapons emerged far before the scientific understanding of the nature of infections and epidemics, though it has been underrepresented in written history ever since. It is also present in our expectations concerning the likely behaviour of an enemy and it is also a frequent component of threats. Several languages appear to bear linguistic references to our motivation for biological aggression in profanity. Finally, given that wartime epidemics kill people at a rate comparable to (or exceeding) that of mechanical weapons, all wars fought in recorded history incorporated an element of aggression through biological means. On the basis of these arguments, I claim that the motivation for biological aggression is an inherent and common aspect of past and present human behaviour.

  7. Registration of optical imagery and LiDAR data using an inherent geometrical constraint.

    PubMed

    Zhang, Wuming; Zhao, Jing; Chen, Mei; Chen, Yiming; Yan, Kai; Li, Linyuan; Qi, Jianbo; Wang, Xiaoyan; Luo, Jinghui; Chu, Qing

    2015-03-23

    A novel method for registering imagery with Light Detection And Ranging (LiDAR) data is proposed. It is based on the phenomenon that the back-projection of LiDAR point cloud of an object should be located within the object boundary in the image. Using this inherent geometrical constraint, the registration parameters computation of both data sets only requires LiDAR point clouds of several objects and their corresponding boundaries in the image. The proposed registration method comprises of four steps: point clouds extraction, boundary extraction, back-projection computation and registration parameters computation. There are not any limitations on the geometrical and spectral properties of the object. So it is suitable not only for structured scenes with man-made objects but also for natural scenes. Moreover, the proposed method based on the inherent geometrical constraint can register two data sets derived from different parts of an object. It can be used to co-register TLS (Terrestrial Laser Scanning) LiDAR point cloud and UAV (Unmanned aerial vehicle) image, which are obtaining more attention in the forest survey application. Using initial registration parameters comparable to POS (position and orientation system) accuracy, the performed experiments validated the feasibility of the proposed registration method.

  8. Cellular heterogeneity mediates inherent sensitivity–specificity tradeoff in cancer targeting by synthetic circuits

    PubMed Central

    Morel, Mathieu; Shtrahman, Roman; Rotter, Varda; Nissim, Lior; Bar-Ziv, Roy H.

    2016-01-01

    Synthetic gene circuits are emerging as a versatile means to target cancer with enhanced specificity by combinatorial integration of multiple expression markers. Such circuits must also be tuned to be highly sensitive because escape of even a few cells might be detrimental. However, the error rates of decision-making circuits in light of cellular variability in gene expression have so far remained unexplored. Here, we measure the single-cell response function of a tunable logic AND gate acting on two promoters in heterogeneous cell populations. Our analysis reveals an inherent tradeoff between specificity and sensitivity that is controlled by the AND gate amplification gain and activation threshold. We implement a tumor-mimicking cell-culture model of cancer cells emerging in a background of normal ones, and show that molecular parameters of the synthetic circuits control specificity and sensitivity in a killing assay. This suggests that, beyond the inherent tradeoff, synthetic circuits operating in a heterogeneous environment could be optimized to efficiently target malignant state with minimal loss of specificity. PMID:27385823

  9. Indispensable role of biochar-inherent mineral constituents in its environmental applications: A review.

    PubMed

    Xu, Xiaoyun; Zhao, Yinghao; Sima, Jingke; Zhao, Ling; Mašek, Ondřej; Cao, Xinde

    2017-10-01

    Biochar typically consists of both carbon and mineral fractions, and the carbon fraction has been generally considered to determine its properties and applications. Recently, an increasing body of research has demonstrated that mineral components inherent in biochar, such as alkali or alkaline earth metals in the form of carbonates, phosphates, or oxides, could also influence the properties and thus the applications. The review articles published thus far have mainly focused on multiple environmental and agronomic applications of biochar, including carbon sequestration, soil improvement, environmental remediation, etc. This review aims to highlight the indispensable role of the mineral fraction of biochar in these different applications, especially in environmental applications. Specifically, it provides a critical review of current research findings related to the mineral composition of biochar and the effect of the mineral fraction on the physicochemical properties, contaminant sorption, carbon retention and stability, and nutrient bioavailability of biochar. Furthermore, the role of minerals in the emerging applications of biochar, as a precursor for fuel cells, supercapacitors, and photoactive components, is also summarized. Overall, inherent minerals should be fully considered while determining the most appropriate application for any given biochar. A thorough understanding of the role of biochar-bound minerals in different applications will also allow the design or selection of the most suitable biochar for specific applications based on the consideration of feedstock composition, production parameters, and post-treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Neural network approach to retrieve the inherent optical properties of the ocean from observations of MODIS.

    PubMed

    Ioannou, Ioannis; Gilerson, Alexander; Gross, Barry; Moshary, Fred; Ahmed, Samir

    2011-07-01

    Retrieving the inherent optical properties of water from remote sensing multispectral reflectance measurements is difficult due to both the complex nature of the forward modeling and the inherent nonlinearity of the inverse problem. In such cases, neural network (NN) techniques have a long history in inverting complex nonlinear systems. The process we adopt utilizes two NNs in parallel. The first NN is used to relate the remote sensing reflectance at available MODIS-visible wavelengths (except the 678 nm fluorescence channel) to the absorption and backscatter coefficients at 442 nm (peak of chlorophyll absorption). The second NN separates algal and nonalgal absorption components, outputting the ratio of algal-to-nonalgal absorption. The resulting synthetically trained algorithm is tested using both the NASA Bio-Optical Marine Algorithm Data Set (NOMAD), as well as our own field datasets from the Chesapeake Bay and Long Island Sound, New York. Very good agreement is obtained, with R² values of 93.75%, 90.67%, and 86.43% for the total, algal, and nonalgal absorption, respectively, for the NOMAD. For our field data, which cover absorbing waters up to about 6 m⁻¹, R² is 91.87% for the total measured absorption.

  11. Influence of fiber orientation on the inherent acoustic nonlinearity in carbon fiber reinforced composites.

    PubMed

    Chakrapani, Sunil Kishore; Barnard, Daniel J; Dayal, Vinay

    2015-02-01

    This paper presents the study of non-classical nonlinear response of fiber-reinforced composites. Nonlinear elastic wave methods such as nonlinear resonant ultrasound spectroscopy (NRUS) and nonlinear wave modulation spectroscopy have been used earlier to detect damages in several materials. It was observed that applying these techniques to composites materials becomes difficult due to the significant inherent baseline nonlinearity. Understanding the non-classical nonlinear nature of the composites plays a vital role in implementing nonlinear acoustic techniques for material characterization as well as qualitative nondestructive testing of composites. Since fiber reinforced composites are orthotropic in nature, the baseline response variation with fiber orientation is very important. This work explores the nature of the inherent nonlinearity by performing nonlinear resonant spectroscopy (NRS) in intact unidirectional carbon/epoxy samples with different fiber orientations with respect to major axis of the sample. Factors such as frequency shifts, modal damping ratio, and higher harmonics were analyzed to explore the non-classical nonlinear nature of these materials. Conclusions were drawn based on the experimental observations.

  12. Are Autobiographical Memories Inherently Social? Evidence from an fMRI Study

    PubMed Central

    Wilbers, Linda; Deuker, Lorena; Fell, Juergen; Axmacher, Nikolai

    2012-01-01

    The story of our lifetime – our narrative self – is constructed from our autobiographical memories. A central claim of social psychology is that this narrative self is inherently social: When we construct our lives, we do so in a real or imagined interaction. This predicts that self-referential processes which are involved in recall of autobiographical memories overlap with processes involved in social interactions. Indeed, previous functional MRI studies indicate that regions in the medial prefrontal cortex (mPFC) are activated during autobiographical memory recall and virtual communication. However, no fMRI study has investigated recall of autobiographical memories in a real-life interaction. We developed a novel paradigm in which participants overtly reported self-related and other-related memories to an experimenter, whose non-verbal reactions were being filmed and online displayed to the participants in the scanner. We found that recall of autobiographical vs. non-autobiographical memories was associated with activation of the mPFC, as was recall in the social as compared to a non-social control condition; however, both contrasts involved different non-overlapping regions within the mPFC. These results indicate that self-referential processes involved in autobiographical memory recall are different from processes supporting social interactions, and argue against the hypothesis that autobiographical memories are inherently social. PMID:23028774

  13. Inherent structure energy is a good indicator of molecular mobility in glasses.

    PubMed

    Helfferich, Julian; Lyubimov, Ivan; Reid, Daniel; de Pablo, Juan J

    2016-07-06

    Glasses produced via physical vapor deposition can display greater kinetic stability and lower enthalpy than glasses prepared by liquid cooling. While the reduced enthalpy has often been used as a measure of the stability, it is not obvious whether dynamic measures of stability provide the same view. Here, we study dynamics in vapor-deposited and liquid-cooled glass films using molecular simulations of a bead-spring polymer model as well as a Lennard-Jones binary mixture in two and three dimensions. We confirm that the dynamics in vapor-deposited glasses is indeed slower than in ordinary glasses. We further show that the inherent structure energy is a good reporter of local dynamics, and that aged systems and glasses prepared by cooling at progressively slower rates exhibit the same behavior as vapor-deposited materials when they both have the same inherent structure energy. These findings suggest that the stability inferred from measurements of the energy is also manifested in dynamic observables, and they strengthen the view that vapor deposition processes provide an effective strategy for creation of stable glasses.

  14. Inherent structure energy is a good indicator of molecular mobility in glasses

    SciTech Connect

    Helfferich, Julian; Lyubimov, Ivan; Reid, Daniel; de Pablo, Juan J.

    2016-05-31

    Glasses produced via physical vapor deposition can display greater kinetic stability and lower enthalpy than glasses prepared by liquid cooling. While the reduced enthalpy has often been used as a measure of the stability, it is not obvious whether dynamic measures of stability provide the same view. Here, we study dynamics in vapor-deposited and liquid-cooled glass films using molecular simulations of a bead-spring polymer model as well as a Lennard-Jones binary mixture in two and three dimensions. We confirm that the dynamics in vapor-deposited glasses is indeed slower than in ordinary glasses. We further show that the inherent structure energy is a good reporter of local dynamics, and that aged systems and glasses prepared by cooling at progressively slower rates exhibit the same behavior as vapor-deposited materials when they both have the same inherent structure energy. These findings suggest that the stability inferred from measurements of the energy is also manifested in dynamic observables, and they strengthen the view that vapor deposition processes provide an effective strategy for creation of stable glasses.

  15. Safety and Mission Assurance: A NASA Perspective

    NASA Technical Reports Server (NTRS)

    Higginbotham, Scott A.

    2016-01-01

    Manned spaceflight is an incredibly complex and inherently risky human endeavor. As the result of the lessons learned through years of triumph and tragedy, the National Aeronautics and Space Administration (NASA) has embraced a comprehensive and integrated approach to the challenge of ensuring safety and mission success. This presentation will provide an overview of some of the techniques employed in this effort, with a focus on the processing operations performed at the Kennedy Space Center (KSC).

  16. Safe separation distance score: A new metric for evaluating wildland firefighter safety zones using lidar

    Treesearch

    Michael J. Campbell; Philip E. Dennison; Bret W. Butler

    2016-01-01

    Safety zones are areas where firefighters can retreat to in order to avoid bodily harm when threatened by burnover or entrapment from wildland fire. At present, safety zones are primarily designated by firefighting personnel as part of daily fire management activities. Though critical to safety zone assessment, the effectiveness of this approach is inherently limited...

  17. Fire safety. Explosion safety - Handbook

    NASA Astrophysics Data System (ADS)

    Baratov, Anatolii Nikolaevich

    The physicochemical principles underlying combustion and explosion processes are examined, and the main fire and explosion safety characteristics of materials are reviewed with particular reference to the ignition limits of combustible mixtures, the minimal oxygen content that constitutes an explosion hazard, and the flash point and ignition temperatures. Fire-fighting and explosion suppression methods and equipment are described. The discussion also covers the efficiency of fire prevention measures and safety engineering in fire fighting.

  18. System safety education focused on flight safety

    NASA Technical Reports Server (NTRS)

    Holt, E.

    1971-01-01

    The measures necessary for achieving higher levels of system safety are analyzed with an eye toward maintaining the combat capability of the Air Force. Several education courses were provided for personnel involved in safety management. Data include: (1) Flight Safety Officer Course, (2) Advanced Safety Program Management, (3) Fundamentals of System Safety, and (4) Quantitative Methods of Safety Analysis.

  19. The contribution of apparent and inherent usability to a user's satisfaction in a searching and browsing task on the Web.

    PubMed

    Fu, Limin; Salvendy, Gavriel

    2002-05-15

    Previous research found that apparent and inherent usability had big influences on user's acceptance of computer systems. This research extended these findings to the area of user's satisfaction. The study investigated the impact of inherent and apparent usability on user's satisfaction of Web page designs while the two main tasks on the World Wide Web, searching and browsing, were performed. The results indicated that inherent usability was the main factor contributing to user's satisfaction in both searching and browsing. General principles and specific recommendations for the design and evaluation of Web page designs are derived from these findings.

  20. Importance of the inherent and the relative surface energies in generating patterned layer in a solution process

    NASA Astrophysics Data System (ADS)

    Kim, Do-Kyung; Kwon, Hyeok Bin; Park, Hongsik; Choe, Eunji; Bae, Jin-Hyuk; Park, Jaehoon; Song, Seong-Ho

    2016-03-01

    We report the importance of the inherent and the relative surface energies in generating a patterned organic semiconductor layer through a solution process. The inherent and the relative surface energies of the substrate can be effectively controlled using polydimethylsiloxane in combination with an UV/ozone treatment. The controlled inherent surface energy in each region, as well as the high-order difference of relative surface energy, plays a significant role in generating the patterned layer. In addition, the patterned metal-semiconductor-metal (MSM) structure shows a lower lateral current than the non-patterned MSM structure because the current path is limited.

  1. NASA's aviation safety research and technology program

    NASA Technical Reports Server (NTRS)

    Fichtl, G. H.

    1977-01-01

    Aviation safety is challenged by the practical necessity of compromising inherent factors of design, environment, and operation. If accidents are to be avoided these factors must be controlled to a degree not often required by other transport modes. The operational problems which challenge safety seem to occur most often in the interfaces within and between the design, the environment, and operations where mismatches occur due to ignorance or lack of sufficient understanding of these interactions. Under this report the following topics are summarized: (1) The nature of operating problems, (2) NASA aviation safety research, (3) clear air turbulence characterization and prediction, (4) CAT detection, (5) Measurement of Atmospheric Turbulence (MAT) Program, (6) Lightning, (7) Thunderstorm gust fronts, (8) Aircraft ground operating problems, (9) Aircraft fire technology, (10) Crashworthiness research, (11) Aircraft wake vortex hazard research, and (12) Aviation safety reporting system.

  2. Systems pharmacology augments drug safety surveillance.

    PubMed

    Lorberbaum, T; Nasir, M; Keiser, M J; Vilar, S; Hripcsak, G; Tatonetti, N P

    2015-02-01

    Small molecule drugs are the foundation of modern medical practice, yet their use is limited by the onset of unexpected and severe adverse events (AEs). Regulatory agencies rely on postmarketing surveillance to monitor safety once drugs are approved for clinical use. Despite advances in pharmacovigilance methods that address issues of confounding bias, clinical data of AEs are inherently noisy. Systems pharmacology-the integration of systems biology and chemical genomics-can illuminate drug mechanisms of action. We hypothesize that these data can improve drug safety surveillance by highlighting drugs with a mechanistic connection to the target phenotype (enriching true positives) and filtering those that do not (depleting false positives). We present an algorithm, the modular assembly of drug safety subnetworks (MADSS), to combine systems pharmacology and pharmacovigilance data and significantly improve drug safety monitoring for four clinically relevant adverse drug reactions.

  3. Why infest the loved ones--inherent human behaviour indicates former mutualism with head lice.

    PubMed

    Rózsa, Lajos; Apari, Péter

    2012-05-01

    Head lice transmit to new hosts when people lean their heads together. Humans frequently touch their heads to express friendship or love, while this behaviour is absent in apes. We hypothesize that this behaviour was adaptive because it enabled people to acquire head lice infestations as early as possible to provoke an immune response effective against both head lice and body lice throughout the subsequent periods of their life. This cross-immunity could provide some defence against the body-louse-borne lethal diseases like epidemic typhus, trench fever, relapsing fever and the classical plague. Thus the human 'touching heads' behaviour probably acts as an inherent and unconscious 'vaccination' against body lice to reduce the threat exposed by the pathogens they may transmit. Recently, the eradication of body-louse-borne diseases rendered the transmission of head lice a maladaptive, though still widespread, behaviour in developed societies.

  4. Inherent surface roughening as a limiting factor in epitaxial cluster deposition

    NASA Astrophysics Data System (ADS)

    Meinander, K.; Nordlund, K.; Keinonen, J.

    2005-01-01

    Deposition of nanoclusters at thermal energies will result in an onset of roughening of the deposited surface. In order to grow epitaxial films using cluster deposition at soft landing conditions, the effect of this inherent surface roughness on the alignment of deposited clusters must be investigated. Using molecular dynamics computer simulations we have determined the maximum size of Cu clusters that will align epitaxially, upon deposition at thermal energies, on rough (1 0 0) Cu substrates with temperatures ranging from 0 K to 750 K. We have also shown that the likelihood of epitaxial alignment for the resulting structures is dependent on the point of impact of a cluster relative to previously deposited clusters.

  5. Approximants of icosahedral quasicrystals: Atomic structure, inherent defects, and superstructural ordering

    SciTech Connect

    Dmitrienko, V. E. Chizhikov, V. A.

    2006-07-15

    The structural features of approximants of icosahedral and decagonal quasicrystals and new unusual approximants (rhombohedral AlPd and cubic Al{sub 68}Pd{sub 20}Ru{sub 12}) are considered. It is shown that most approximants can be described in terms of universal local ordering of atoms, in which the nearest neighbors of each atom occupy the vertices of an almost ideal dodecahedron: the so-called dodecahedral local ordering. A set of general atomic motifs in the approximants of different orders is found for quasicrystals of different types. It is shown that the dodecahedral local ordering can be easily described by the project method, in which the basis vectors directed along icosahedral threefold axes are used. Different types of defects inherent in dodecahedral local ordering are analyzed.

  6. Realignment of Nanocrystal Aggregates into Single Crystals as a Result of Inherent Surface Stress

    SciTech Connect

    Liu, Zhaoming; Pan, Haihua; Zhu, Genxing; Li, Yaling; Tao, Jinhui; Jin, Biao; Tang, Ruikang

    2016-07-19

    Assembly of nanoparticles building blocks during single crystal growth is widely observed in both natural and synthetic environments. Although this form of non-classical crystallization is generally described by oriented attachment, random aggregation of building blocks leading to single crystal products is also observed, but the mechanism of crystallographic realignment is unknown. We herein reveal that random attachment during aggregation-based growth initially produces a non-oriented growth front. Subsequent evolution of the orientation is driven by the inherent surface stress applied by the disordered surface layer and results in single crystal formation via grain boundary migration. This mechanism is corroborated by measurements of orientation rate vs external stress, demonstrating a predictive relationship between the two. These findings advance our understanding of aggregation-based growth of natural minerals by nanocrystals, and suggest an approach to material synthesis that takes advantage of stress induced co-alignment.

  7. All-optical design for inherently energy-conserving reversible gates and circuits

    PubMed Central

    Cohen, Eyal; Dolev, Shlomi; Rosenblit, Michael

    2016-01-01

    As energy efficiency becomes a paramount issue in this day and age, reversible computing may serve as a critical step towards energy conservation in information technology. The inputs of reversible computing elements define the outputs and vice versa. Some reversible gates such as the Fredkin gate are also universal; that is, they may be used to produce any logic operation. It is possible to find physical representations for the information, so that when processed with reversible logic, the energy of the output is equal to the energy of the input. It is suggested that there may be devices that will do that without applying any additional power. Here, we present a formalism that may be used to produce any reversible logic gate. We implement this method over an optical design of the Fredkin gate, which utilizes only optical elements that inherently conserve energy. PMID:27113510

  8. All-optical design for inherently energy-conserving reversible gates and circuits.

    PubMed

    Cohen, Eyal; Dolev, Shlomi; Rosenblit, Michael

    2016-04-26

    As energy efficiency becomes a paramount issue in this day and age, reversible computing may serve as a critical step towards energy conservation in information technology. The inputs of reversible computing elements define the outputs and vice versa. Some reversible gates such as the Fredkin gate are also universal; that is, they may be used to produce any logic operation. It is possible to find physical representations for the information, so that when processed with reversible logic, the energy of the output is equal to the energy of the input. It is suggested that there may be devices that will do that without applying any additional power. Here, we present a formalism that may be used to produce any reversible logic gate. We implement this method over an optical design of the Fredkin gate, which utilizes only optical elements that inherently conserve energy.

  9. All-optical design for inherently energy-conserving reversible gates and circuits

    NASA Astrophysics Data System (ADS)

    Cohen, Eyal; Dolev, Shlomi; Rosenblit, Michael

    2016-04-01

    As energy efficiency becomes a paramount issue in this day and age, reversible computing may serve as a critical step towards energy conservation in information technology. The inputs of reversible computing elements define the outputs and vice versa. Some reversible gates such as the Fredkin gate are also universal; that is, they may be used to produce any logic operation. It is possible to find physical representations for the information, so that when processed with reversible logic, the energy of the output is equal to the energy of the input. It is suggested that there may be devices that will do that without applying any additional power. Here, we present a formalism that may be used to produce any reversible logic gate. We implement this method over an optical design of the Fredkin gate, which utilizes only optical elements that inherently conserve energy.

  10. Isoprostane nomenclature: inherent problems may cause setbacks for the development of the isoprostanoid field.

    PubMed

    Mueller, Martin J

    2010-01-01

    Do we have to bother about the isoprostane nomenclature? The widely accepted IUPAC isoprostane nomenclature provides an unambiguous and systematic terminology to name all theoretical possible isoprostanes. However, the currently accepted nomenclature system provides an unnatural framework which is not well suited to address certain biologically relevant questions. Artificial categorization of isoprostanoids into prostanoid families disrupts prostaglandin-ring core structures needed to describe biogenetic precursor-product relationships. In addition, the IUPAC system defines isoprostanoid families which comprise chemically heterogeneous isoprostanoids which largely differ in their physicochemical properties from those of the corresponding prostaglandins. As a result of this, alternative nomenclature systems such as the phytoprostane nomenclature system overcoming some inherent problems of the IUPAC nomenclature are still in use. However, different naming of isoprostanoids especially the classification of prostanoid family names has created considerable confusion. Therefore, a cautionary note on the current use of different nomenclature systems is necessary.

  11. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases.

    PubMed

    Bucciantini, Monica; Giannoni, Elisa; Chiti, Fabrizio; Baroni, Fabiana; Formigli, Lucia; Zurdo, Jesús; Taddei, Niccolò; Ramponi, Giampietro; Dobson, Christopher M; Stefani, Massimo

    2002-04-04

    A range of human degenerative conditions, including Alzheimer's disease, light-chain amyloidosis and the spongiform encephalopathies, is associated with the deposition in tissue of proteinaceous aggregates known as amyloid fibrils or plaques. It has been shown previously that fibrillar aggregates that are closely similar to those associated with clinical amyloidoses can be formed in vitro from proteins not connected with these diseases, including the SH3 domain from bovine phosphatidyl-inositol-3'-kinase and the amino-terminal domain of the Escherichia coli HypF protein. Here we show that species formed early in the aggregation of these non-disease-associated proteins can be inherently highly cytotoxic. This finding provides added evidence that avoidance of protein aggregation is crucial for the preservation of biological function and suggests common features in the origins of this family of protein deposition diseases.

  12. Design of a Single Motor Based Leg Structure with the Consideration of Inherent Mechanical Stability

    NASA Astrophysics Data System (ADS)

    Taha Manzoor, Muhammad; Sohail, Umer; Noor-e-Mustafa; Nizami, Muhammad Hamza Asif; Ayaz, Yasar

    2017-07-01

    The fundamental aspect of designing a legged robot is constructing a leg design that is robust and presents a simple control problem. In this paper, we have successfully designed a robotic leg based on a unique four bar mechanism with only one motor per leg. The leg design parameters used in our platform are extracted from design principles used in biological systems, multiple iterations and previous research findings. These principles guide a robotic leg to have minimal mechanical passive impedance, low leg mass and inertia, a suitable foot trajectory utilizing a practical balance between leg kinematics and robot usage, and the resultant inherent mechanical stability. The designed platform also exhibits the key feature of self-locking. Theoretical tools and software iterations were used to derive these practical features and yield an intuitive sense of the required leg design parameters.

  13. The optical fiber tip: an inherently light-coupled microscopic platform for micro- and nanotechnologies.

    PubMed

    Kostovski, Gorgi; Stoddart, Paul R; Mitchell, Arnan

    2014-06-18

    The flat tip of an optical fiber is a unique and unconventional platform for micro and nanotechnologies. The small cross-section and large aspect ratio of the fiber provide an inherently light-coupled substrate that is uniquely suited to remote, in vivo and in situ applications. However, these same characteristics challenge established fabrication technologies, which are best suited to large planar substrates. This review presents a broad overview of strategies for patterning the flat tip of an optical fiber. Techniques discussed include self-assembly, numerous lithographies, through-fiber patterning, hybrid techniques, and strategies for mass manufacture, while the diverse applications are discussed in context throughout. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Biomaterial Approaches to Enhancing Neurorestoration after Spinal Cord Injury: Strategies for Overcoming Inherent Biological Obstacles

    PubMed Central

    Siebert, Justin R.; Eade, Amber M.; Osterhout, Donna J.

    2015-01-01

    While advances in technology and medicine have improved both longevity and quality of life in patients living with a spinal cord injury, restoration of full motor function is not often achieved. This is due to the failure of repair and regeneration of neuronal connections in the spinal cord after injury. In this review, the complicated nature of spinal cord injury is described, noting the numerous cellular and molecular events that occur in the central nervous system following a traumatic lesion. In short, postinjury tissue changes create a complex and dynamic environment that is highly inhibitory to the process of neural regeneration. Strategies for repair are outlined with a particular focus on the important role of biomaterials in designing a therapeutic treatment that can overcome this inhibitory environment. The importance of considering the inherent biological response of the central nervous system to both injury and subsequent therapeutic interventions is highlighted as a key consideration for all attempts at improving functional recovery. PMID:26491685

  15. Remote-Sensing Reflectance and Inherent Optical Properties for Optically Deep Waters: A Revisit

    NASA Technical Reports Server (NTRS)

    Lee, Zhong-Ping; Carder, Kendall L.; Du, Ke-Ping

    2001-01-01

    Remote-sensing reflectance (r(rs)) is defined as the ratio of upwelling radiance to downwelling irradiance. Relationships between remote-sensing reflectance and inherent optical properties serve as the basis for ocean-color modeling, as well as for spectral deduction of oceanic constituents through analytical/semi-analytical models of ocean color. A decade ago, a simple and concise formula based on Monte Carlo simulations was developed by relating rrs to a property u, the ratio of backscattering (b(b)) to the sum of absorption (a) and backscattering (u = b(b)/(a+b(b))). This relationship generally ignored the shape differences in phase functions between molecular scattering and particle scattering. In this study, the relationship is updated with separate parameters for molecular and particle scattering, based on the Radiative Transfer Equation through use of Hydrolight numerical solutions. The new approach fits r(rs) better than an earlier traditional formula, for both clear and turbid waters.

  16. Second Generation Modifiers of Colistin Resistance Show Enhanced Activity and Lower Inherent Toxicity.

    PubMed

    Brackett, Christopher M; Furlani, Robert E; Anderson, Ryan G; Krishnamurthy, Aparna; Melander, Roberta J; Moskowitz, Samuel M; Ernst, Robert K; Melander, Christian

    2016-06-23

    We recently reported a 2-aminoimidazole-based antibiotic adjuvant that reverses colistin resistance in two species of Gram-negative bacteria. Mechanistic studies in Acinetobacter baumannii demonstrated that this compound downregulated the PmrAB two-component system and abolished a lipid A modification that is required for colistin resistance. We now report the synthesis and evaluation of two separate libraries of substituted 2-aminoimidazole analogues based on this parent compound. From these libraries, a new small molecule was identified that lowers the minimum inhibitory concentration of colistin by up to 32-fold greater than the parent compound while also displaying less inherent bacterial effect, thereby minimizing the likelihood of resistance evolution.

  17. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases

    NASA Astrophysics Data System (ADS)

    Bucciantini, Monica; Giannoni, Elisa; Chiti, Fabrizio; Baroni, Fabiana; Formigli, Lucia; Zurdo, Jesús; Taddei, Niccolò; Ramponi, Giampietro; Dobson, Christopher M.; Stefani, Massimo

    2002-04-01

    A range of human degenerative conditions, including Alzheimer's disease, light-chain amyloidosis and the spongiform encephalopathies, is associated with the deposition in tissue of proteinaceous aggregates known as amyloid fibrils or plaques. It has been shown previously that fibrillar aggregates that are closely similar to those associated with clinical amyloidoses can be formed in vitro from proteins not connected with these diseases, including the SH3 domain from bovine phosphatidyl-inositol-3'-kinase and the amino-terminal domain of the Escherichia coli HypF protein. Here we show that species formed early in the aggregation of these non-disease-associated proteins can be inherently highly cytotoxic. This finding provides added evidence that avoidance of protein aggregation is crucial for the preservation of biological function and suggests common features in the origins of this family of protein deposition diseases.

  18. Apparent and inherent optical properties of turbid estuarine waters: measurements, empirical quantification relationships, and modeling

    NASA Astrophysics Data System (ADS)

    Doxaran, David; Cherukuru, Nagur; Lavender, Samantha J.

    2006-04-01

    Spectral measurements of remote-sensing reflectance (Rrs) and absorption coefficients carried out in three European estuaries (Gironde and Loire in France, Tamar in the UK) are presented and analyzed. Typical Rrs and absorption spectra are compared with typical values measured in coastal waters. The respective contributions of the water constituents, i.e., suspended sediments, colored dissolved organic matter, and phytoplankton (characterized by chlorophyll-a), are determined. The Rrs spectra are then reproduced with an optical model from the measured absorption coefficients and fitted backscattering coefficients. From Rrs ratios, empirical quantification relationships are established, reproduced, and explained from theoretical calculations. These quantification relationships were established from numerous field measurements and a reflectance model integrating the mean values of the water constituents' inherent optical properties. The model's sensitivity to the biogeochemical constituents and to their nature and composition is assessed.

  19. Quick and Easy Measurements of the Inherent Optical Property of Water by Laser

    SciTech Connect

    Izadi, Dina; Hajiesmaeilbaigi, Fereshteh

    2009-04-19

    To generate realistic images of natural waters, one must consider in some detail the interaction of light with the water body. The reflectance and attenuation coefficient of the second harmonic of Nd:YAG laser light through distilled water and a sample of water from the Oman Sea were measured in a solid-state laser laboratory to estimate inherent optical properties of natural waters. These measurements determined the bottom conditions and the impurities of the water. The water's reflectivity varied depending on the angle of incidence, height of the laser from water surface, wavelength of laser light, radiant intensities, and depth of water. In these experiments laser light propagated through the water nonlinearly, and different reflectance showed different bottom slopes. The differences among various water samples were obtained taking into account the exponential equation in attenuation coefficient versus depth graphs.

  20. Inherent Relationships among Different Biophysical Prediction Methods for Intrinsically Disordered Proteins

    PubMed Central

    Jin, Fan; Liu, Zhirong

    2013-01-01

    Intrinsically disordered proteins do not have stable secondary and/or tertiary structures but still function. More than 50 prediction methods have been developed and inherent relationships may be expected to exist among them. To investigate this, we conducted molecular simulations and algorithmic analyses on a minimal coarse-grained polypeptide model and discovered a common basis for the charge-hydropathy plot and packing-density algorithms that was verified by correlation analysis. The correlation analysis approach was applied to realistic datasets, which revealed correlations among some physical-chemical properties (charge-hydropathy plot, packing density, pairwise energy). The correlations indicated that these biophysical methods find a projected direction to discriminate ordered and disordered proteins. The optimized projection was determined and the ultimate accuracy limit of the existing algorithms is discussed. PMID:23442871

  1. Tbx5 Buffers Inherent Left/Right Asymmetry Ensuring Symmetric Forelimb Formation

    PubMed Central

    Nishimoto, Satoko; Kucharska, Anna; Newbury-Ecob, Ruth; Logan, Malcolm P. O.

    2016-01-01

    The forelimbs and hindlimbs of vertebrates are bilaterally symmetric. The mechanisms that ensure symmetric limb formation are unknown but they can be disrupted in disease. In Holt-Oram Syndrome (HOS), caused by mutations in TBX5, affected individuals have left-biased upper/forelimb defects. We demonstrate a role for the transcription factor Tbx5 in ensuring the symmetric formation of the left and right forelimb. In our mouse model, bilateral hypomorphic levels of Tbx5 produces asymmetric forelimb defects that are consistently more severe in the left limb than the right, phenocopying the left-biased limb defects seen in HOS patients. In Tbx hypomorphic mutants maintained on an INV mutant background, with situs inversus, the laterality of defects is reversed. Our data demonstrate an early, inherent asymmetry in the left and right limb-forming regions and that threshold levels of Tbx5 are required to overcome this asymmetry to ensure symmetric forelimb formation. PMID:27992425

  2. Inherent temperature compensation of fiber-optic current sensors employing spun highly birefringent fiber.

    PubMed

    Müller, G M; Gu, X; Yang, L; Frank, A; Bohnert, K

    2016-05-16

    We investigate the various contributions to the temperature dependence of an interferometric fiber-optic current sensor employing spun highly-birefringent sensing fiber, in particular, the contributions from the fiber retarder at the fiber coil entrance, the spun fiber's birefringence, and the Faraday effect. We theoretically and experimentally demonstrate that an appropriately designed retarder inherently compensates the temperature dependence of the fiber birefringence and the Faraday effect. We demonstrate insensitivity to temperature to within ± 0.2% between -40 and + 85 °C. Furthermore, we analyze the influence of the retarder parameters on the linearity of the recovered magneto-optic phase shift vs. current and determine a set of parameters that results in a perfectly linear relationship.

  3. Are stylolitic surfaces inherently unstable surfaces? Insights from shape minimization considerations

    NASA Astrophysics Data System (ADS)

    Bonnetier, E.; Misbah, C.; Renard, F.; Toussaint, R.; Gratier, J.

    2004-12-01

    Non-planar solid-fluid-solid interfaces under stress are very common in many materials, and particularly in the rocks of the Earth's crust. Such patterns are observed in many rocks in a wide range of spatial scales, from undulate grain boundaries at the micrometer scale, to stylolite dissolution interface at the meter scale. It is proposed here that these initially flat rock-fluid interfaces become rough by a morphological instability triggered by elastic stress. A model for the formation of stylolitic patterns at all scales is thus presented. It is shown that such instability is inherently present due to the uniaxial stress that promotes them, owing to the gain in the total elastic energy: the intrinsic elastic energy plus the work of the external forces. This is shown explicitly by solving the elastic problem in a linear stability analysis, and proved more generally without having resort to the computation of the elastic field.

  4. Are stylolitic surfaces inherently unstable surfaces? Insights from shape minimization considerations

    NASA Astrophysics Data System (ADS)

    Bonnetier, E.; Misbah, C.; Renard, F.; Toussaint, R.; Gratier, J.

    2007-12-01

    Non-planar solid-fluid-solid interfaces under stress are very common in many materials, and particularly in the rocks of the Earth's crust. Such patterns are observed in many rocks in a wide range of spatial scales, from undulate grain boundaries at the micrometer scale, to stylolite dissolution interface at the meter scale. It is proposed here that these initially flat rock-fluid interfaces become rough by a morphological instability triggered by elastic stress. A model for the formation of stylolitic patterns at all scales is thus presented. It is shown that such instability is inherently present due to the uniaxial stress that promotes them, owing to the gain in the total elastic energy: the intrinsic elastic energy plus the work of the external forces. This is shown explicitly by solving the elastic problem in a linear stability analysis, and proved more generally without having resort to the computation of the elastic field.

  5. Inherently Chiral Macrocyclic Oligothiophenes: Easily Accessible Electrosensitive Cavities with Outstanding Enantioselection Performances

    PubMed Central

    Sannicolò, Francesco; Mussini, Patrizia R; Benincori, Tiziana; Cirilli, Roberto; Abbate, Sergio; Arnaboldi, Serena; Casolo, Simone; Castiglioni, Ettore; Longhi, Giovanna; Martinazzo, Rocco; Panigati, Monica; Pappini, Marco; Quartapelle Procopio, Elsa; Rizzo, Simona

    2014-01-01

    Linear conjugated oligothiophenes of variable length and different substitution pattern are ubiquitous in technologically advanced optoelectronic devices, though limitations in application derive from insolubility, scarce processability and chain-end effects. This study describes an easy access to chiral cyclic oligothiophenes constituted by 12 and 18 fully conjugated thiophene units. Chemical oxidation of an “inherently chiral” sexithiophene monomer, synthesized in two steps from commercially available materials, induces the formation of an elliptical dimer and a triangular trimer endowed with electrosensitive cavities of different tunable sizes. Combination of chirality with electroactivity makes these molecules unique in the current oligothiophenes literature. These macrocycles, which are stable and soluble in most organic solvents, show outstanding chiroptical properties, high circularly polarized luminescence effects and an exceptional enantiorecognition ability. PMID:25263106

  6. Evaluation of different in vitro assays of inherent sensitivity as predictors of radiotherapy response

    SciTech Connect

    Schwartz, J.L. Chicago Univ., IL . Medical Center); Beckett, M.A.; Mustafi, R.; Weichselbaum, R.R. . Medical Center); Vaughan, A.T.M. . Stritch School of Medicine)

    1991-01-01

    The inherent sensitivity of cells within a tumor plays an important role in the response of the tumor to radiotherapy. Clonogenic assays show that cells established from in-field radiotherapy failures are significantly more resistant to radiation than cell lines established from pre-treatment samples. Clonogenic assays fail to predict tumor response to radiotherapy, however. The failure might be due to the small sample size in this study, or the complicating factors of staging, surgery, and chemotherapy, and/or in vivo selection by radiotherapy for resistant tumor cells. In vitro selection for resistant cell lines does not appear to be a complicating factor. Nonclonogenic assays such as those that measure DNA strand break rejoining rates (filter elution, pulse-field gel electrophoresis) or chromosome structure (flow cytometric analysis) show promise as alternative rapid assays of radiation sensitivity and possibly tumor response. 16 refs., 2 figs.

  7. Remote-Sensing Reflectance and Inherent Optical Properties for Optically Deep Waters: A Revisit

    NASA Technical Reports Server (NTRS)

    Lee, Zhong-Ping; Carder, Kendall L.; Du, Ke-Ping

    2001-01-01

    Remote-sensing reflectance (r(rs)) is defined as the ratio of upwelling radiance to downwelling irradiance. Relationships between remote-sensing reflectance and inherent optical properties serve as the basis for ocean-color modeling, as well as for spectral deduction of oceanic constituents through analytical/semi-analytical models of ocean color. A decade ago, a simple and concise formula based on Monte Carlo simulations was developed by relating rrs to a property u, the ratio of backscattering (b(b)) to the sum of absorption (a) and backscattering (u = b(b)/(a+b(b))). This relationship generally ignored the shape differences in phase functions between molecular scattering and particle scattering. In this study, the relationship is updated with separate parameters for molecular and particle scattering, based on the Radiative Transfer Equation through use of Hydrolight numerical solutions. The new approach fits r(rs) better than an earlier traditional formula, for both clear and turbid waters.

  8. Nonaffine deformation of inherent structure as a static signature of cooperativity in supercooled liquids.

    PubMed

    Del Gado, Emanuela; Ilg, Patrick; Kröger, Martin; Ottinger, Hans Christian

    2008-08-29

    We unveil the existence of nonaffinely rearranging regions in the inherent structures (IS) of supercooled liquids by numerical simulations of model glass formers subject to static shear deformations combined with local energy minimizations. In the liquid state IS, we find a broad distribution of large rearrangements which are correlated only over small distances. At low temperatures, the onset of the cooperative dynamics corresponds to much smaller displacements correlated over larger distances. This finding indicates the presence of nonaffinely rearranging domains of relevant size in the IS deformation, which can be seen as the static counterpart of the cooperatively rearranging regions in the dynamics. This idea provides new insight into possible structural signatures of slow cooperative dynamics of supercooled liquids and supports the connections with elastic heterogeneities found in amorphous solids.

  9. Inherent Oxidative Stress in the Lewis Rat Is Associated with Resistance to Toxoplasmosis.

    PubMed

    Witola, William H; Kim, Chi Yong; Zhang, Xuejin

    2017-10-01

    The course of Toxoplasma gondii infection in rats closely resembles that in humans. However, compared to the Brown Norway (BN) rat, the Lewis (LEW) rat is extremely resistant to T. gondii infection. Thus, we performed RNA sequencing analysis of the LEW rat versus the BN rat, with or without T. gondii infection, in order to unravel molecular factors directing robust and rapid early T. gondii-killing mechanisms in the LEW rat. We found that compared to the uninfected BN rat, the uninfected LEW rat has inherently higher transcript levels of cytochrome enzymes (Cyp2d3, Cyp2d5, and Cybrd1, which catalyze generation of reactive oxygen species [ROS]), with concomitant higher levels of ROS. Interestingly, despite having higher levels of ROS, the LEW rat had lower transcript levels for antioxidant enzymes (lactoperoxidase, microsomal glutathione S-transferase 2 and 3, glutathione S-transferase peroxidase kappa 1, and glutathione peroxidase) than the BN rat, suggesting that the LEW rat maintains cellular oxidative stress that it tolerates. Corroboratively, we found that scavenging of superoxide anion by Mn(III) tetrakis (4-benzoic acid) porphyrin (MnTBAP) decreased the refractoriness of LEW rat peritoneal cells to T. gondii infection, resulting in proliferation of parasites in LEW rat peritoneal cells which, in turn, led to augmented cell death in the infected cells. Together, our results indicate that the LEW rat maintains inherent cellular oxidative stress that contributes to resistance to invading T. gondii, and they thus unveil new avenues for developing therapeutic agents targeting induction of host cell oxidative stress as a mechanism for killing T. gondii. Copyright © 2017 American Society for Microbiology.

  10. Thick Acellular Heart Extracellular Matrix with Inherent Vasculature: A Potential Platform for Myocardial Tissue Regeneration

    PubMed Central

    Sarig, Udi; Au-Yeung, Gigi C.T.; Wang, Yao; Bronshtein, Tomer; Dahan, Nitsan; Boey, Freddy Y.C.; Venkatraman, Subbu S.

    2012-01-01

    The decellularization of porcine heart tissue offers many opportunities for the production of physiologically relevant myocardial mimetic scaffolds. Earlier, we reported the successful isolation of a thin porcine cardiac extracellular matrix (pcECM) exhibiting relevant bio-mechanical properties for myocardial tissue engineering. Nevertheless, since native cardiac tissue is much thicker, such thin scaffolds may offer limited regeneration capacity. However, generation of thicker myocardial mimetic tissue constructs is hindered by diffusion limitations (∼100 μm), and the lack of a proper vascular-like network within these constructs. In our present work, we focused on optimizing the decellularization procedure for thicker tissue slabs (10–15 mm), while retaining their inherent vasculature, and on characterizing the resulting pcECM. The trypsin/Triton-based perfusion procedure that resulted in a nonimmunogenic and cell-supportive pcECM was found to be more effective in cell removal and in the preservation of fiber morphology and structural characteristics than stirring, sonication, or sodium dodecyl sulfate/Triton-based procedures. Mass spectroscopy revealed that the pcECM is mainly composed of ECM proteins with no apparent cellular protein remains. Mechanical testing indicated that the obtained pcECM is viscoelastic in nature and possesses the typical stress-strain profile of biological materials. It is stiffer than native tissue yet exhibits matched mechanical properties in terms of energy dissipation, toughness, and ultimate stress behavior. Vascular network functionality was maintained to the first three–four branches from the main coronary vessels. Taken together, these results reaffirm the efficiency of the decellularization procedure reported herein for yielding thick nonimmunogenic cell-supportive pcECM scaffolds, preserving both native tissue ultra-structural properties and an inherent vascular network. When reseeded with the appropriate progenitor

  11. Contrasting Inherent Optical Properties and Carbon Metabolism Between Five Northeastern (USA) Estuary-plume Systems

    NASA Technical Reports Server (NTRS)

    Vandemark, Doug; Salisbury, Joe; Hunt, Chris; McGillis, Wade R.

    2004-01-01

    We have recently developed the ability to rapidly assess Surface inherent optical properties (IOP), oxygen concentration and pCO2 in estuarine-plume systems using flow-through instrumentation. During the summer of 2004, several estuarine-plume systems were surveyed which include the Pleasant (ME), Penobscot (ME), Kennebec-Androscoggin (ME), Merrimack (NH-MA) and Hudson (NY). Continuous measurements of surface chlorophyll and colored dissolved organic carbon (CDOM) fluorescence, beam attenuation, temperature, salinity, oxygen and pC02 were taken at each system along a salinity gradient from fresh water to near oceanic endmembers. CTD and IOP profiles were also taken at predetermined surface salinity intervals. These were accompanied by discrete determinations of chlorophyll (HPLC and fluorometric), total suspended solids (TSS), dissolved organic carbon (DOC) and alkalinity. IOP data were calibrated using chlorophyll, DOC and TSS data to enable the retrieval of these constituents from IOP data. Considerable differences in the data sets were observed between systems. These ranged from the DOC-enriched, strongly heterotrophic Pleasant River System to the high-chlorophyll autotrophic Merrimack River System. Using pCO2 and oxygen saturation measurements as proxies for water column metabolism, distinct relationships were found between trophic status and inherent optical properties. The nature of these relationships varies between systems and is likely a function of watershed and estuarine attributes including carbon and nutrient loading, in-situ production and related autochthonous inputs of DOC and alkalinity. Our results suggest that IOP data may contain significant information about the trophic status of estuarine and plume systems.

  12. Inherent and Apparent Scattering Properties of Coated or Uncoated Spheres Embedded in an Absorbing Host Medium

    NASA Technical Reports Server (NTRS)

    Yang, P.; Gao, B.-C.; Wiscombe, W. J.; Mishchenko, M. I.; Platnick, S.; Huang, H.-L.; Baum, B. A.; Hu, Y. X.; Winkler, D,; Tsay, S.-C.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    The conventional Lorenz-Mie formalism is extended to the scattering process associated with a coated sphere embedded in an absorbing medium. It is shown that apparent and inherent scattering cross sections of a scattering particle, which are identical in the case of transparent host medium, are different if the host medium is absorptive. Here the inherent single-scattering properties are derived from the near-field information whereas the corresponding apparent counterparts are derived from the far-field asymptotic form of the scattered wave with scaling of host absorption that is assumed to be in an exponential form. The formality extinction and scattering efficiencies defined in the same manner as in the conventional sense can be unbounded. For a nonabsorptive particle embedded in an absorbing medium, the effect of host absorption on the phase matrix elements associated with polarization is significant. This effect, however, is largely reduced for strongly absorptive particles such as soot. For soot particles coated with water, the impurity can substantially reduce the single-scattering albedo of the particle if the size parameter is small. For water-coating soot and hollow ice spheres, it is shown that the phase matrix elements -P(sub 12)/P(sub 11) and P(sub 33)/P(sub 11) are unique if the shell is thin, as compared with the case for thick shell. Furthermore, the radiative transfer equation regarding a multidisperse particle system in an absorbing medium is discussed. It is illustrated that the conventional computation algorithms can be applied to solve the multiple scattering process if the scaled apparent single-scattering properties are applied.

  13. Anomalous diffusion on the servosphere: A potential tool for detecting inherent organismal movement patterns.

    PubMed

    Nagaya, Naohisa; Mizumoto, Nobuaki; Abe, Masato S; Dobata, Shigeto; Sato, Ryota; Fujisawa, Ryusuke

    2017-01-01

    Tracking animal movements such as walking is an essential task for understanding how and why animals move in an environment and respond to external stimuli. Different methods that implemented image analysis and a data logger such as GPS have been used in laboratory experiments and in field studies, respectively. Recently, animal movement patterns without stimuli have attracted an increasing attention in search for common innate characteristics underlying all of their movements. However, it is difficult to track the movements in a vast and homogeneous environment without stimuli because of space constraints in laboratories or environmental heterogeneity in the field, hindering our understanding of inherent movement patterns. Here, we applied an omnidirectional treadmill mechanism, or a servosphere, as a tool for tracking two-dimensional movements of small animals that can provide both a homogenous environment and a virtual infinite space for walking. To validate the use of our tracking system for assessment of the free-walking behavior, we compared walking patterns of individual pillbugs (Armadillidium vulgare) on the servosphere with that in two types of experimental flat arenas. Our results revealed that the walking patterns on the servosphere showed similar diffusive characteristics to those observed in the large arena simulating an open space, and we demonstrated that our mechanism provides more robust measurements of diffusive properties compared to a small arena with enclosure. Moreover, we showed that anomalous diffusion properties, including Lévy walk, can be detected from the free-walking behavior on our tracking system. Thus, our novel tracking system is useful to measure inherent movement patterns, which will contribute to the studies of movement ecology, ethology, and behavioral sciences.

  14. Anomalous diffusion on the servosphere: A potential tool for detecting inherent organismal movement patterns

    PubMed Central

    Abe, Masato S.; Dobata, Shigeto; Sato, Ryota; Fujisawa, Ryusuke

    2017-01-01

    Tracking animal movements such as walking is an essential task for understanding how and why animals move in an environment and respond to external stimuli. Different methods that implemented image analysis and a data logger such as GPS have been used in laboratory experiments and in field studies, respectively. Recently, animal movement patterns without stimuli have attracted an increasing attention in search for common innate characteristics underlying all of their movements. However, it is difficult to track the movements in a vast and homogeneous environment without stimuli because of space constraints in laboratories or environmental heterogeneity in the field, hindering our understanding of inherent movement patterns. Here, we applied an omnidirectional treadmill mechanism, or a servosphere, as a tool for tracking two-dimensional movements of small animals that can provide both a homogenous environment and a virtual infinite space for walking. To validate the use of our tracking system for assessment of the free-walking behavior, we compared walking patterns of individual pillbugs (Armadillidium vulgare) on the servosphere with that in two types of experimental flat arenas. Our results revealed that the walking patterns on the servosphere showed similar diffusive characteristics to those observed in the large arena simulating an open space, and we demonstrated that our mechanism provides more robust measurements of diffusive properties compared to a small arena with enclosure. Moreover, we showed that anomalous diffusion properties, including Lévy walk, can be detected from the free-walking behavior on our tracking system. Thus, our novel tracking system is useful to measure inherent movement patterns, which will contribute to the studies of movement ecology, ethology, and behavioral sciences. PMID:28570562

  15. Contrasting Inherent Optical Properties and Carbon Metabolism Between Five Northeastern (USA) Estuary-plume Systems

    NASA Technical Reports Server (NTRS)

    Vandemark, Doug; Salisbury, Joe; Hunt, Chris; McGillis, Wade R.

    2004-01-01

    We have recently developed the ability to rapidly assess Surface inherent optical properties (IOP), oxygen concentration and pCO2 in estuarine-plume systems using flow-through instrumentation. During the summer of 2004, several estuarine-plume systems were surveyed which include the Pleasant (ME), Penobscot (ME), Kennebec-Androscoggin (ME), Merrimack (NH-MA) and Hudson (NY). Continuous measurements of surface chlorophyll and colored dissolved organic carbon (CDOM) fluorescence, beam attenuation, temperature, salinity, oxygen and pC02 were taken at each system along a salinity gradient from fresh water to near oceanic endmembers. CTD and IOP profiles were also taken at predetermined surface salinity intervals. These were accompanied by discrete determinations of chlorophyll (HPLC and fluorometric), total suspended solids (TSS), dissolved organic carbon (DOC) and alkalinity. IOP data were calibrated using chlorophyll, DOC and TSS data to enable the retrieval of these constituents from IOP data. Considerable differences in the data sets were observed between systems. These ranged from the DOC-enriched, strongly heterotrophic Pleasant River System to the high-chlorophyll autotrophic Merrimack River System. Using pCO2 and oxygen saturation measurements as proxies for water column metabolism, distinct relationships were found between trophic status and inherent optical properties. The nature of these relationships varies between systems and is likely a function of watershed and estuarine attributes including carbon and nutrient loading, in-situ production and related autochthonous inputs of DOC and alkalinity. Our results suggest that IOP data may contain significant information about the trophic status of estuarine and plume systems.

  16. The inherent weaknesses in industrial control systems devices; hacking and defending SCADA systems

    NASA Astrophysics Data System (ADS)

    Bianco, Louis J.

    The North American Electric Reliability Corporation (NERC) is about to enforce their NERC Critical Infrastructure Protection (CIP) Version Five and Six requirements on July 1st 2016. The NERC CIP requirements are a set of cyber security standards designed to protect cyber assets essential the reliable operation of the electric grid. The new Version Five and Six requirements are a major revision to the Version Three (currently enforced) requirements. The new requirements also bring substations into scope alongside Energy Control Centers. When the Version Five requirements were originally drafted they were vague, causing in depth discussions throughout the industry. The ramifications of these requirements has made owners look at their systems in depth, questioning how much money it will take to meet these requirements. Some owners saw backing down from routable networks to non-routable as a means to save money as they would be held to less requirements within the standards. Some owners saw removing routable connections as a proper security move. The purpose of this research was to uncover the inherent weaknesses in Industrial Control Systems (ICS) devices; to show how ICS devices can be hacked and figure out potential protections for these Critical Infrastructure devices. In addition, this research also aimed to validate the decision to move from External Routable connectivity to Non-Routable connectivity, as a security measure and not as a means of savings. The results reveal in order to ultimately protect Industrial Control Systems they must be removed from the Internet and all bi-directional external routable connections must be removed. Furthermore; non-routable serial connections should be utilized, and these non-routable serial connections should be encrypted on different layers of the OSI model. The research concluded that most weaknesses in SCADA systems are due to the inherent weaknesses in ICS devices and because of these weaknesses, human intervention is

  17. EHS Open House: Learning Lab and Life Safety | Poster

    Cancer.gov

    Attendees of the Environment, Health, and Safety Program’s (EHS’) Open House had a chance to learn self-defense techniques, as well as visit with vendors demonstrating the latest trends in laboratory safety. “Working with sharps in labs is inherently dangerous, so EHS proactively focused on featuring equipment that would promote safer techniques,” said Siobhan Tierney, program manager, EHS.

  18. EHS Open House: Learning Lab and Life Safety | Poster

    Cancer.gov

    Attendees of the Environment, Health, and Safety Program’s (EHS’) Open House had a chance to learn self-defense techniques, as well as visit with vendors demonstrating the latest trends in laboratory safety. “Working with sharps in labs is inherently dangerous, so EHS proactively focused on featuring equipment that would promote safer techniques,” said Siobhan Tierney, program manager, EHS.

  19. ESTIMATION OF INHERENT OPTICAL PROPERTIES AND THE WATER QUALITY COMPONENTS IN THE NEUSE RIVER-PAMLICO SOUND ESTUARINE SYSTEM

    EPA Science Inventory

    Field observations carried out in the Neuse River-Pamlico Sound Estuarine System (NRE-PS), North Carolina, USA were used to develop optical algorithms for assessing inherent optical properties, IOPs (absorption and backscattering) associated with water quality components (WQC).

  20. ESTIMATION OF INHERENT OPTICAL PROPERTIES AND THE WATER QUALITY COMPONENTS IN THE NEUSE RIVER-PAMLICO SOUND ESTUARINE SYSTEM

    EPA Science Inventory

    Field observations carried out in the Neuse River-Pamlico Sound Estuarine System (NRE-PS), North Carolina, USA were used to develop optical algorithms for assessing inherent optical properties, IOPs (absorption and backscattering) associated with water quality components (WQC).

  1. Inherent envelope fluctuations in forward maskers: Effects of masker-probe delay for listeners with normal and impaired hearing.

    PubMed

    Svec, Adam; Dubno, Judy R; Nelson, Peggy B

    2016-03-01

    Forward-masked thresholds increase as the magnitude of inherent masker envelope fluctuations increase for both normal-hearing (NH) and hearing-impaired (HI) adults for a short masker-probe delay (25 ms). The slope of the recovery from forward masking is shallower for HI than for NH listeners due to reduced cochlear nonlinearities. However, effects of hearing loss on additional masking due to inherent envelope fluctuations across masker-probe delays remain unknown. The current study assessed effects of hearing loss on the slope and amount of recovery from forward maskers that varied in inherent envelope fluctuations. Forward-masked thresholds were measured at 2000 and 4000 Hz, for masker-probe delays of 25, 50, and 75 ms, for NH and HI adults. Four maskers at each center frequency varied in inherent envelope fluctuations: Gaussian noise (GN) or low-fluctuation noise (LFN), with 1 or 1/3 equivalent rectangular bandwidths (ERBs). Results suggested that slopes of recovery from forward masking were shallower for HI than for NH listeners regardless of masker fluctuations. Additional masking due to inherent envelope fluctuations was greater for HI than for NH listeners at longer masker-probe delays, suggesting that inherent envelope fluctuations are more disruptive for HI than for NH listeners for a longer time course.

  2. Power plant of high safety for underground nuclear power station

    SciTech Connect

    Dolgov, V.N.

    1993-12-31

    An ecologically pure, reliable, and economic nuclear power station is based on the use of nuclear power plants with the liquid-metal coolant. This plant with the inherent safety is protected from external influences due to the underground accommodations in geologically stable formations such as granites, cambrian clays, and salt deposits. The design features of this underground plant are described.

  3. Safety Resources.

    ERIC Educational Resources Information Center

    Hoot, James L.; Bartkowiak, Elaine T.

    1994-01-01

    Lists 72 organizations and programs that deal with child safety, grouped by the following categories: (1) general; (2) general violence; (3) gun violence; (4) media violence; (5) drugs and alcohol; (6) child abuse and at-risk children; (7) parenting programs; (8) community service programs; (9) leadership programs; (10) peer counseling; (11)…

  4. Online Safety.

    ERIC Educational Resources Information Center

    Levine, Elliott

    2001-01-01

    Describes provisions of Children's Internet Protection Act, which school districts are required to implement on or before October 31, 2001, involving the development and public dissemination of federally mandated Internet-safety policy to prevent minors from accessing inappropriate and harmful material. Provides suggestions to protect children…

  5. Art Safety.

    ERIC Educational Resources Information Center

    BCATA Journal for Art Teachers, 1991

    1991-01-01

    Advocating that Canadian art programs should use and model environmentally safe practices, the articles in this journal focus on issues of safe practices in art education. Articles are: (1) "What is WHMIS?"; (2) "Safety Precautions for Specific Art Processes"; (3) "Toxic Substances"; (4) "Using Clay, Glazes, and…

  6. Safety First!

    ERIC Educational Resources Information Center

    Longfield, Judith

    2006-01-01

    In this article, the author relates how a hands-on chemistry investigation provided her the inspiration to develop an effective safety lesson for her third grade chemistry class. She began the lesson by demonstrating the use of pH indicator paper to show that ordinary household (white) vinegar was an acid. With the students, she wondered aloud…

  7. Safety First!

    ERIC Educational Resources Information Center

    Longfield, Judith

    2006-01-01

    In this article, the author relates how a hands-on chemistry investigation provided her the inspiration to develop an effective safety lesson for her third grade chemistry class. She began the lesson by demonstrating the use of pH indicator paper to show that ordinary household (white) vinegar was an acid. With the students, she wondered aloud…

  8. Vaccine safety.

    PubMed

    Jacobson, Robert M

    2003-11-01

    Rates of reported adverse events are remarkably low. VAERS identifies an adverse event rate approximating 11.4 reports per 100,000 vaccine doses. Approximately 15% of these reports represent SAEs, but less than 2% involve death; in most cases, reviews have shown no causal relation between the events and the vaccine. Across the spectrum of vaccines in use (including those directed against influenza and hepatitis B virus), many claims of adverse events regarding vaccines represent typical reactions to vaccinations. These reactions can be thought of as foreign-body reactions and predominate among the inactivated vaccines. In controlled studies, the adverse event rates that occur with vaccination resemble those that occur with placebo injections. Typical reactions associated with live viral and bacterial vaccines, such as MMR and varicella vaccines, may resemble attenuated forms of the disease for which the vaccine is directed. Other claims against vaccines represent chance-coincidence or misunderstood data; further studies of claims have vindicated the overall safety of the vaccines in most cases. Two documented safety concerns with vaccines, however, have demonstrated that vaccines (like other biologics and pharmacologic) can result in harm (eg, rotavirus and OPV vaccines). The denouement with these vaccines indicates the broad postmarketing data collection and evaluation that extends efforts made with prelicensure study to balance the benefits from vaccination with the risk for harm. Overall, measures including prelicensure study and postlicensure surveillance, such as VAERS, the Vaccine Safety Datalink Project, and the Clinical Immunization Safety Assessment Centers, have resulted in an exceptional safety profile for the vaccines in use.

  9. Safer Systems: A NextGen Aviation Safety Strategic Goal

    NASA Technical Reports Server (NTRS)

    Darr, Stephen T.; Ricks, Wendell R.; Lemos, Katherine A.

    2008-01-01

    The Joint Planning and Development Office (JPDO), is charged by Congress with developing the concepts and plans for the Next Generation Air Transportation System (NextGen). The National Aviation Safety Strategic Plan (NASSP), developed by the Safety Working Group of the JPDO, focuses on establishing the goals, objectives, and strategies needed to realize the safety objectives of the NextGen Integrated Plan. The three goal areas of the NASSP are Safer Practices, Safer Systems, and Safer Worldwide. Safer Practices emphasizes an integrated, systematic approach to safety risk management through implementation of formalized Safety Management Systems (SMS) that incorporate safety data analysis processes, and the enhancement of methods for ensuring safety is an inherent characteristic of NextGen. Safer Systems emphasizes implementation of safety-enhancing technologies, which will improve safety for human-centered interfaces and enhance the safety of airborne and ground-based systems. Safer Worldwide encourages coordinating the adoption of the safer practices and safer systems technologies, policies and procedures worldwide, such that the maximum level of safety is achieved across air transportation system boundaries. This paper introduces the NASSP and its development, and focuses on the Safer Systems elements of the NASSP, which incorporates three objectives for NextGen systems: 1) provide risk reducing system interfaces, 2) provide safety enhancements for airborne systems, and 3) provide safety enhancements for ground-based systems. The goal of this paper is to expose avionics and air traffic management system developers to NASSP objectives and Safer Systems strategies.

  10. Seeds of Brassicaceae weeds have an inherent or inducible response to the germination stimulant karrikinolide

    PubMed Central

    Long, Rowena L.; Stevens, Jason C.; Griffiths, Erin M.; Adamek, Markus; Gorecki, Marta J.; Powles, Stephen B.; Merritt, David J.

    2011-01-01

    Background and Aims Karrikinolide (KAR1) is a smoke-derived chemical that can trigger seeds to germinate. A potential application for KAR1 is for synchronizing the germination of weed seeds, thereby enhancing the efficiency of weed control efforts. Yet not all species germinate readily with KAR1, and it is not known whether seemingly non-responsive species can be induced to respond. Here a major agronomic weed family, the Brassicaceae, is used to test the hypothesis that a stimulatory response to KAR1 may be present in physiologically dormant seeds but may not be expressed under all circumstances. Methods Seeds of eight Brassicaceae weed species (Brassica tournefortii, Raphanus raphanistrum, Sisymbrium orientale, S. erysimoides, Rapistrum rugosum, Lepidium africanum, Heliophila pusilla and Carrichtera annua) were tested for their response to 1 µm KAR1 when freshly collected and following simulated and natural dormancy alleviation, which included wet–dry cycling, dry after-ripening, cold and warm stratification and a 2 year seed burial trial. Key Results Seven of the eight Brassicaceae species tested were stimulated to germinate with KAR1 when the seeds were fresh, and the remaining species became responsive to KAR1 following wet–dry cycling and dry after-ripening. Light influenced the germination response of seeds to KAR1, with the majority of species germinating better in darkness. Germination with and without KAR1 fluctuated seasonally throughout the seed burial trial. Conclusions KAR1 responses are more complex than simply stating whether a species is responsive or non-responsive; light and temperature conditions, dormancy state and seed lot all influence the sensitivity of seeds to KAR1, and a response to KAR1 can be induced. Three response types for generalizing KAR1 responses are proposed, namely inherent, inducible and undetected. Given that responses to KAR1 were either inherent or inducible in all 15 seed lots included in this study, the Brassicaceae

  11. Dissociable Changes of Frontal and Parietal Cortices in Inherent Functional Flexibility across the Human Life Span.

    PubMed

    Yin, Dazhi; Liu, Wenjing; Zeljic, Kristina; Wang, Zhiwei; Lv, Qian; Fan, Mingxia; Cheng, Wenhong; Wang, Zheng

    2016-09-28

    Extensive evidence suggests that frontoparietal regions can dynamically update their pattern of functional connectivity, supporting cognitive control and adaptive implementation of task demands. However, it is largely unknown whether this flexibly functional reconfiguration is intrinsic and occurs even in the absence of overt tasks. Based on recent advances in dynamics of resting-state functional resonance imaging (fMRI), we propose a probabilistic framework in which dynamic reconfiguration of intrinsic functional connectivity between each brain region and others can be represented as a probability distribution. A complexity measurement (i.e., entropy) was used to quantify functional flexibility, which characterizes heterogeneous connectivity between a particular region and others over time. Following this framework, we identified both functionally flexible and specialized regions over the human life span (112 healthy subjects from 13 to 76 years old). Across brainwide regions, we found regions showing high flexibility mainly in the higher-order association cortex, such as the lateral prefrontal cortex (LPFC), lateral parietal cortex, and lateral temporal lobules. In contrast, visual, auditory, and sensory areas exhibited low flexibility. Furthermore, we observed that flexibility of the right LPFC improved during maturation and reduced due to normal aging, with the opposite occurring for the left lateral parietal cortex. Our findings reveal dissociable changes of frontal and parietal cortices over the life span in terms of inherent functional flexibility. This study not only provides a new framework to quantify the spatiotemporal behavior of spontaneous brain activity, but also sheds light on the organizational principle behind changes in brain function across the human life span. Recent neuroscientific research has demonstrated that the human capability of adaptive task control is primarily the result of the flexible operation of frontal brain networks. However

  12. No inherent left and right side in human 'mental number line': evidence from right brain damage.

    PubMed

    Aiello, Marilena; Jacquin-Courtois, Sophie; Merola, Sheila; Ottaviani, Teresa; Tomaiuolo, Francesco; Bueti, Domenica; Rossetti, Yves; Doricchi, Fabrizio

    2012-08-01

    Spatial reasoning has a relevant role in mathematics and helps daily computational activities. It is widely assumed that in cultures with left-to-right reading, numbers are organized along the mental equivalent of a ruler, the mental number line, with small magnitudes located to the left of larger ones. Patients with right brain damage can disregard smaller numbers while mentally setting the midpoint of number intervals. This has been interpreted as a sign of spatial neglect for numbers on the left side of the mental number line and taken as a strong argument for the intrinsic left-to-right organization of the mental number line. Here, we put forward the understanding of this cognitive disability by discovering that patients with right brain damage disregard smaller numbers both when these are mapped on the left side of the mental number line and on the right side of an imagined clock face. This shows that the right hemisphere supports the representation of small numerical magnitudes independently from their mapping on the left or the right side of a spatial-mental layout. In addition, the study of the anatomical correlates through voxel-based lesion-symptom mapping and the mapping of lesion peaks on the diffusion tensor imaging-based reconstruction of white matter pathways showed that the rightward bias in the imagined clock-face was correlated with lesions of high-level middle temporal visual areas that code stimuli in object-centred spatial coordinates, i.e. stimuli that, like a clock face, have an inherent left and right side. In contrast, bias towards higher numbers on the mental number line was linked to white matter damage in the frontal component of the parietal-frontal number network. These anatomical findings show that the human brain does not represent the mental number line as an object with an inherent left and right side. We conclude that the bias towards higher numbers in the mental bisection of number intervals does not depend on left side spatial

  13. The nature of inherent bactericidal activity: insights from the nanotopology of three species of dragonfly

    NASA Astrophysics Data System (ADS)

    Mainwaring, David E.; Nguyen, Song Ha; Webb, Hayden; Jakubov, Timur; Tobin, Mark; Lamb, Robert N.; Wu, Alex H.-F.; Marchant, Richard; Crawford, Russell J.; Ivanova, Elena P.

    2016-03-01

    While insect wings are widely recognised as multi-functional, recent work showed that this extends to extensive bactericidal activity brought about by cell deformation and lysis on the wing nanotopology. We now quantitatively show that subtle changes to this topography result in substantial changes in bactericidal activity that are able to span an order of magnitude. Notably, the chemical composition of the lipid nanopillars was seen by XPS and synchrotron FTIR microspectroscopy to be similar across these activity differences. Modelling the interaction between bacterial cells and the wing surface lipids of 3 species of dragonflies, that inhabit similar environments, but with distinctly different behavioural repertoires, provided the relationship between surface structure and antibacterial functionality. In doing so, these principal behavioural patterns correlated with the demands for antimicrobial efficiency dictated by differences in their foraging strategies. This work now reveals a new feature in the design elegance of natural multi-functional surfaces as well providing insights into the bactericidal mechanism underlying inherently antimicrobial materials, while suggesting that nanotopology is related to the evolutionary development of a species through the demands of its behavioural repertoire. The underlying relationship between the processes of wetting, adhesion and capillarity of the lipid nanopillars and bactericidal efficiency suggests new prospects for purely mechano-responsive antibacterial surfaces.While insect wings are widely recognised as multi-functional, recent work showed that this extends to extensive bactericidal activity brought about by cell deformation and lysis on the wing nanotopology. We now quantitatively show that subtle changes to this topography result in substantial changes in bactericidal activity that are able to span an order of magnitude. Notably, the chemical composition of the lipid nanopillars was seen by XPS and synchrotron

  14. ATM inhibitor KU-55933 increases the TMZ responsiveness of only inherently TMZ sensitive GBM cells.

    PubMed

    Nadkarni, Aditi; Shrivastav, Meena; Mladek, Ann C; Schwingler, Paul M; Grogan, Patrick T; Chen, Junjie; Sarkaria, Jann N

    2012-12-01

    Ataxia telangiectasia mutated (ATM) kinase is critical in sensing and repairing DNA double-stranded breaks (DSBs) such as those induced by temozolomide (TMZ). ATM deficiency increases TMZ sensitivity, which suggests that ATM inhibitors may be effective TMZ sensitizing agents. In this study, the TMZ sensitizing effects of 2 ATM specific inhibitors were studied in established and xenograft-derived glioblastoma (GBM) lines that are inherently sensitive to TMZ and derivative TMZ-resistant lines. In parental U251 and U87 glioma lines, the addition of KU-55933 to TMZ significantly increased cell killing compared to TMZ alone [U251 survival: 0.004 ± 0.0015 vs. 0.08 ± 0.01 (p < 0.001), respectively, and U87 survival: 0.02 ± 0.005 vs. 0.04 ± 0.002 (p < 0.001), respectively] and also elevated the fraction of cells arrested in G2/M [U251 G2/M fraction: 61.8 ± 1.1 % vs. 35 ± 0.8 % (p < 0.001), respectively, and U87 G2/M fraction 25 ± 0.2 % vs.18.6 ± 0.4 % (p < 0.001), respectively]. In contrast, KU-55933 did not sensitize the resistant lines to TMZ, and neither TMZ alone or combined with KU-55933 induced a G2/M arrest. While KU-55933 did not enhance TMZ induced Chk1/Chk2 activation, it increased TMZ-induced residual γ-H2AX foci in the parental cells but not in the TMZ resistant cells. Similar sensitization was observed with either KU-55933 or CP-466722 combined with TMZ in GBM12 xenograft line but not in GBM12TMZ, which is resistant to TMZ due to MGMT overexpression. These findings are consistent with a model where ATM inhibition suppresses the repair of TMZ-induced DSBs in inherently TMZ-sensitive tumor lines, which suggests an ATM inhibitor potentially could be deployed with an improvement in the therapeutic window when combined with TMZ.

  15. Low-order dynamic modeling of the Experimental Breeder Reactor II

    SciTech Connect

    Berkan, R.C. . Dept. of Nuclear Engineering); Upadhyaya, B.R.; Kisner, R.A. )

    1990-07-01

    This report describes the development of a low-order, linear model of the Experimental Breeder Reactor II (EBR-II), including the primary system, intermediate heat exchanger, and steam generator subsystems. The linear model is developed to represent full-power steady state dynamics for low-level perturbations. Transient simulations are performed using model building and simulation capabilities of the computer software Matrix{sub x}. The inherently safe characteristics of the EBR-II are verified through the simulation studies. The results presented in this report also indicate an agreement between the linear model and the actual dynamics of the plant for several transients. Such models play a major role in the learning and in the improvement of nuclear reactor dynamics for control and signal validation studies. This research and development is sponsored by the Advanced Controls Program in the Instrumentation and Controls Division of the Oak Ridge National Laboratory. 17 refs., 67 figs., 15 tabs.

  16. Rapid synthesis of inherently robust and stable superhydrophobic carbon soot coatings

    NASA Astrophysics Data System (ADS)

    Esmeryan, Karekin D.; Castano, Carlos E.; Bressler, Ashton H.; Abolghasemibizaki, Mehran; Mohammadi, Reza

    2016-04-01

    The fabrication of superhydrophobic coatings using a candle flame or rapeseed oil has become very attractive as a novel approach for synthesis of water repellent surfaces. Here, we report an improved, simplified and time-efficient method for the preparation of robust superhydrophobic carbon soot that does not require any additional stabilizers or chemical treatment. The soot's inherent stabilization is achieved using a specially-designed cone-shaped aluminum chimney, mounted over an ignited paper-based wick immersed in a rapeseed oil. Such configuration decreases the level of oxygen during the process of combustion; altering the ratio of chemical bonds in the soot. As a result, the fractal-like network of the carbon nanoparticles is converted into dense and fused carbon chains, rigidly coupled to the substrate surface. The modified carbon coating shows thermal sustainability and retains superhydrophobicity up to ∼300 °C. Furthermore, it demonstrates a low contact angle hysteresis of 0.7-1.2° accompanied by enhanced surface adhesion and mechanical durability under random water flows. In addition, the soot's deposition rate of ∼1.5 μm/s reduces the exposure time of the substrate to heat and consequently minimizes the thermal effects, allowing the creation of superhydrophobic coatings on materials with low thermal stability (e.g. wood or polyethylene).

  17. Improved Accuracy of the Inherent Shrinkage Method for Fast and More Reliable Welding Distortion Calculations

    NASA Astrophysics Data System (ADS)

    Mendizabal, A.; González-Díaz, J. B.; San Sebastián, M.; Echeverría, A.

    2016-07-01

    This paper describes the implementation of a simple strategy adopted for the inherent shrinkage method (ISM) to predict welding-induced distortion. This strategy not only makes it possible for the ISM to reach accuracy levels similar to the detailed transient analysis method (considered the most reliable technique for calculating welding distortion) but also significantly reduces the time required for these types of calculations. This strategy is based on the sequential activation of welding blocks to account for welding direction and transient movement of the heat source. As a result, a significant improvement in distortion prediction is achieved. This is demonstrated by experimentally measuring and numerically analyzing distortions in two case studies: a vane segment subassembly of an aero-engine, represented with 3D-solid elements, and a car body component, represented with 3D-shell elements. The proposed strategy proves to be a good alternative for quickly estimating the correct behaviors of large welded components and may have important practical applications in the manufacturing industry.

  18. Morphology inherence from hollow MOFs to hollow carbon polyhedrons in preparing carbon-based electrocatalysts

    DOE PAGES

    Pei, Yuchen; Qi, Zhiyuan; Li, Xinle; ...

    2017-02-21

    Hollow carbon nanostructures are emerging as advanced electrocatalysts for the oxygen reduction reaction (ORR) due to the effective usage of active sites and the reduced dependence on expensive noble metals. Conventional preparation of these hollow structures is achieved through templates (e.g. SiO2, CdS, and Ni3C), which serve to retain the void interiors during carbonization, leading to an essential template-removal procedure using hazardous chemical etchants. Herein, we demonstrate the direct carbonization of unique hollow zeolitic imidazolate frameworks (ZIFs) for the synthesis of hollow carbon polyhedrons (HCPs) with well-defined morphologies. The hollow ZIF particles behave bi-functionally as a carbon source and amore » morphology directing agent. This method evidences the strong morphology inherence from the hollow ZIFs during the carbonization, advancing the significant simplicity and environmental friendliness of this synthesis strategy. The as-prepared HCPs show a uniform polyhedral morphology and large void interiors, which enable their superior ORR activity. Iron can be doped into the HCPs (Fe/HCPs), providing the Fe/HCPs with enhanced ORR properties (E1/2 = 0.850 V) in comparison with those of HCPs. As a result, we highlight the efficient structural engineering to transform ZIFs into advanced carbon nanostructures accomplishing morphological control and high electrocatalytic activity.« less

  19. Retrieving marine inherent optical properties from satellites using temperature and salinity-dependent backscattering by seawater.

    PubMed

    Werdell, P Jeremy; Franz, Bryan A; Lefler, Jason T; Robinson, Wayne D; Boss, Emmanuel

    2013-12-30

    Time-series of marine inherent optical properties (IOPs) from ocean color satellite instruments provide valuable data records for studying long-term time changes in ocean ecosystems. Semi-analytical algorithms (SAAs) provide a common method for estimating IOPs from radiometric measurements of the marine light field. Most SAAs assign constant spectral values for seawater absorption and backscattering, assume spectral shape functions of the remaining constituent absorption and scattering components (e.g., phytoplankton, non-algal particles, and colored dissolved organic matter), and retrieve the magnitudes of each remaining constituent required to match the spectral distribution of measured radiances. Here, we explore the use of temperature- and salinity-dependent values for seawater backscattering in lieu of the constant spectrum currently employed by most SAAs. Our results suggest that use of temperature- and salinity-dependent seawater spectra elevate the SAA-derived particle backscattering, reduce the non-algal particles plus colored dissolved organic matter absorption, and leave the derived absorption by phytoplankton unchanged.

  20. Mixed variational potentials and inherent symmetries of the Cahn–Hilliard theory of diffusive phase separation

    PubMed Central

    Miehe, C.; Hildebrand, F. E.; Böger, L.

    2014-01-01

    This work shows that the Cahn–Hilliard theory of diffusive phase separation is related to an intrinsic mixed variational principle that determines the rate of concentration and the chemical potential. The principle characterizes a canonically compact model structure, where the two balances involved for the species content and microforce appear as the Euler equations of a variational statement. The existence of the variational principle underlines an inherent symmetry in the two-field representation of the Cahn–Hilliard theory. This can be exploited in the numerical implementation by the construction of time- and space-discrete incremental potentials, which fully determine the update problems of typical time-stepping procedures. The mixed variational principles provide the most fundamental approach to the finite-element solution of the Cahn–Hilliard equation based on low-order basis functions, leading to monolithic symmetric algebraic systems of iterative update procedures based on a linearization of the nonlinear problem. They induce in a natural format the choice of symmetric solvers for Newton-type iterative updates, providing a speed-up and reduction of data storage when compared with non-symmetric implementations. In this sense, the potentials developed are believed to be fundamental ingredients to a deeper understanding of the Cahn–Hilliard theory. PMID:24711722

  1. Computability, Gödel's incompleteness theorem, and an inherent limit on the predictability of evolution.

    PubMed

    Day, Troy

    2012-04-07

    The process of evolutionary diversification unfolds in a vast genotypic space of potential outcomes. During the past century, there have been remarkable advances in the development of theory for this diversification, and the theory's success rests, in part, on the scope of its applicability. A great deal of this theory focuses on a relatively small subset of the space of potential genotypes, chosen largely based on historical or contemporary patterns, and then predicts the evolutionary dynamics within this pre-defined set. To what extent can such an approach be pushed to a broader perspective that accounts for the potential open-endedness of evolutionary diversification? There have been a number of significant theoretical developments along these lines but the question of how far such theory can be pushed has not been addressed. Here a theorem is proven demonstrating that, because of the digital nature of inheritance, there are inherent limits on the kinds of questions that can be answered using such an approach. In particular, even in extremely simple evolutionary systems, a complete theory accounting for the potential open-endedness of evolution is unattainable unless evolution is progressive. The theorem is closely related to Gödel's incompleteness theorem, and to the halting problem from computability theory.

  2. Inherent size effects on XANES of nanometer metal clusters: Size-selected platinum clusters on silica

    SciTech Connect

    Dai, Yang; Gorey, Timothy J.; Anderson, Scott L.; Lee, Sungsik; Lee, Sungwon; Seifert, Soenke; Winans, Randall E.

    2016-12-12

    X-ray absorption near-edge structure (XANES) is commonly used to probe the oxidation state of metal-containing nanomaterials, however, as the particle size in the material drops below a few nanometers, it becomes important to consider inherent size effects on the electronic structure of the materials. In this paper, we analyze a series of size-selected Ptn/SiO2 samples, using X-ray photoelectron spectroscopy (XPS), low energy ion scattering, grazing-incidence small angle X-ray scattering, and XANES. The oxidation state and morphology are characterized both as-deposited in UHV, and after air/O2 exposure and annealing in H2. Here, the clusters are found to be stable during deposition and upon air exposure, but sinter if heated above ~150 °C. XANES shows shifts in the Pt L3 edge, relative to bulk Pt, that increase with decreasing cluster size, and the cluster samples show high white line intensity. Reference to bulk standards would suggest that the clusters are oxidized, however, XPS shows that they are not. Instead, the XANES effects are attributable to development of a band gap and localization of empty state wavefunctions in small clusters.

  3. Modeling the inherent optical properties of aquatic particles using an irregular hexahedral ensemble

    NASA Astrophysics Data System (ADS)

    Xu, Guanglang; Sun, Bingqiang; Brooks, Sarah D.; Yang, Ping; Kattawar, George W.; Zhang, Xiaodong

    2017-04-01

    A statistical approach in defining particle morphology in terms of an ensemble of hexahedra of distorted shapes is employed for modeling the Inherent Optical Properties (IOPs) of aquatic particles. The approach is inspired by the rich variability in shapes of real aquatic particles that cannot be represented by one particular shape. Two methods, the Invariant Imbedding T-matrix (II-TM) and Physical Geometric Optics Hybrid (PGOH) method, are combined to simulate the IOPs for aquatic particles of sizes ranging from the Rayleigh scattering to geometric optics regimes. Nonspherical effects on the IOPs are examined by comparing the results with predictions based on the Lorenz-Mie theory to explore the limitations of assuming the particles to be spherical. We pay special attention to backscattering-related and polarimetric scattering properties, particularly the backscattering ratio, Gordon parameter, backscattering volume scattering function and the degree of linear polarization. The simulated IOPs are compared with the in-situ measurements to assess the feasibility of using a hexahedral ensemble in modeling the IOPs of the aquatic particles.

  4. An analytic framework for developing inherently-manufacturable pop-up laminate devices

    NASA Astrophysics Data System (ADS)

    Aukes, Daniel M.; Goldberg, Benjamin; Cutkosky, Mark R.; Wood, Robert J.

    2014-09-01

    Spurred by advances in manufacturing technologies developed around layered manufacturing technologies such as PC-MEMS, SCM, and printable robotics, we propose a new analytic framework for capturing the geometry of folded composite laminate devices and the mechanical processes used to manufacture them. These processes can be represented by combining a small set of geometric operations which are general enough to encompass many different manufacturing paradigms. Furthermore, such a formulation permits one to construct a variety of geometric tools which can be used to analyze common manufacturability concepts, such as tool access, part removability, and device support. In order to increase the speed of development, reduce the occurrence of manufacturing problems inherent with current design methods, and reduce the level of expertise required to develop new devices, the framework has been implemented in a new design tool called popupCAD, which is suited for the design and development of complex folded laminate devices. We conclude with a demonstration of utility of the tools by creating a folded leg mechanism.

  5. Inherent Tracers for Carbon Capture and Storage in Sedimentary Formations: Composition and Applications.

    PubMed

    Flude, Stephanie; Johnson, Gareth; Gilfillan, Stuart M V; Haszeldine, R Stuart

    2016-08-02

    Inherent tracers-the "natural" isotopic and trace gas composition of captured CO2 streams-are potentially powerful tracers for use in CCS technology. This review outlines for the first time the expected carbon isotope and noble gas compositions of captured CO2 streams from a range of feedstocks, CO2-generating processes, and carbon capture techniques. The C-isotope composition of captured CO2 will be most strongly controlled by the feedstock, but significant isotope fractionation is possible during capture; noble gas concentrations will be controlled by the capture technique employed. Comparison with likely baseline data suggests that CO2 generated from fossil fuel feedstocks will often have δ(13)C distinguishable from storage reservoir CO2. Noble gases in amine-captured CO2 streams are likely to be low concentration, with isotopic ratios dependent on the feedstock, but CO2 captured from oxyfuel plants may be strongly enriched in Kr and Xe which are potentially valuable subsurface tracers. CO2 streams derived from fossil fuels will have noble gas isotope ratios reflecting a radiogenic component that will be difficult to distinguish in the storage reservoir, but inheritance of radiogenic components will provide an easily recognizable signature in the case of any unplanned migration into shallow aquifers or to the surface.

  6. Retrieving Marine Inherent Optical Properties from Satellites Using Temperature and Salinity-dependent Backscattering by Seawater

    NASA Technical Reports Server (NTRS)

    Werdell, Paul J.; Franz, Bryan Alden; Lefler, Jason Travis; Robinson, Wayne D.; Boss, Emmanuel

    2013-01-01

    Time-series of marine inherent optical properties (IOPs) from ocean color satellite instruments provide valuable data records for studying long-term time changes in ocean ecosystems. Semi-analytical algorithms (SAAs) provide a common method for estimating IOPs from radiometric measurements of the marine light field. Most SAAs assign constant spectral values for seawater absorption and backscattering, assume spectral shape functions of the remaining constituent absorption and scattering components (e.g., phytoplankton, non-algal particles, and colored dissolved organic matter), and retrieve the magnitudes of each remaining constituent required to match the spectral distribution of measured radiances. Here, we explore the use of temperature- and salinity-dependent values for seawater backscattering in lieu of the constant spectrum currently employed by most SAAs. Our results suggest that use of temperature- and salinity-dependent seawater spectra elevate the SAA-derived particle backscattering, reduce the non-algal particles plus colored dissolved organic matter absorption, and leave the derived absorption by phytoplankton unchanged.

  7. Personal utility is inherent to direct-to-consumer genomic testing.

    PubMed

    Chung, Matthew Wai Heng; Ng, Joseph Chi Fung

    2016-10-01

    People for and against direct-to-consumer (DTC) genomic tests are arguing around two issues: first, on whether an autonomy-based account can justify the tests; second, on whether the tests bring any personal utility. Bunnik et al, in an article published in this journal, were doubtful on the latter, especially in clinically irrelevant and uninterpretable sequences, and how far this claim could go in the justification. Here we argue that personal utility is inherent to DTC genomic tests and their results. We discuss Bunnik et al's account of personal utility and identify problems in its motivation and application. We then explore concepts like utility and entertainment which suggest that DTC genomic tests bring personal utility to their consumers, both in the motivation and the content of the tests. This points to an alternative account of personal utility which entails that entertainment value alone is adequate to justify DTC genomic tests, given appropriate strategies to communicate tests results with the consumers. It supports the autonomy-based justification of the test by showing that DTC genomic test itself stands as a valuable option and facilitates meaningful choice of the people. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  8. A random optimization approach for inherent optic properties of nearshore waters

    NASA Astrophysics Data System (ADS)

    Zhou, Aijun; Hao, Yongshuai; Xu, Kuo; Zhou, Heng

    2016-10-01

    Traditional method of water quality sampling is time-consuming and highly cost. It can not meet the needs of social development. Hyperspectral remote sensing technology has well time resolution, spatial coverage and more general segment information on spectrum. It has a good potential in water quality supervision. Via the method of semi-analytical, remote sensing information can be related with the water quality. The inherent optical properties are used to quantify the water quality, and an optical model inside the water is established to analysis the features of water. By stochastic optimization algorithm Threshold Acceptance, a global optimization of the unknown model parameters can be determined to obtain the distribution of chlorophyll, organic solution and suspended particles in water. Via the improvement of the optimization algorithm in the search step, the processing time will be obviously reduced, and it will create more opportunity for the increasing the number of parameter. For the innovation definition of the optimization steps and standard, the whole inversion process become more targeted, thus improving the accuracy of inversion. According to the application result for simulated data given by IOCCG and field date provided by NASA, the approach model get continuous improvement and enhancement. Finally, a low-cost, effective retrieval model of water quality from hyper-spectral remote sensing can be achieved.

  9. Generalized ocean color inversion model for retrieving marine inherent optical properties.

    PubMed

    Werdell, P Jeremy; Franz, Bryan A; Bailey, Sean W; Feldman, Gene C; Boss, Emmanuel; Brando, Vittorio E; Dowell, Mark; Hirata, Takafumi; Lavender, Samantha J; Lee, ZhongPing; Loisel, Hubert; Maritorena, Stéphane; Mélin, Fréderic; Moore, Timothy S; Smyth, Timothy J; Antoine, David; Devred, Emmanuel; d'Andon, Odile Hembise Fanton; Mangin, Antoine

    2013-04-01

    Ocean color measured from satellites provides daily, global estimates of marine inherent optical properties (IOPs). Semi-analytical algorithms (SAAs) provide one mechanism for inverting the color of the water observed by the satellite into IOPs. While numerous SAAs exist, most are similarly constructed and few are appropriately parameterized for all water masses for all seasons. To initiate community-wide discussion of these limitations, NASA organized two workshops that deconstructed SAAs to identify similarities and uniqueness and to progress toward consensus on a unified SAA. This effort resulted in the development of the generalized IOP (GIOP) model software that allows for the construction of different SAAs at runtime by selection from an assortment of model parameterizations. As such, GIOP permits isolation and evaluation of specific modeling assumptions, construction of SAAs, development of regionally tuned SAAs, and execution of ensemble inversion modeling. Working groups associated with the workshops proposed a preliminary default configuration for GIOP (GIOP-DC), with alternative model parameterizations and features defined for subsequent evaluation. In this paper, we: (1) describe the theoretical basis of GIOP; (2) present GIOP-DC and verify its comparable performance to other popular SAAs using both in situ and synthetic data sets; and, (3) quantify the sensitivities of their output to their parameterization. We use the latter to develop a hierarchical sensitivity of SAAs to various model parameterizations, to identify components of SAAs that merit focus in future research, and to provide material for discussion on algorithm uncertainties and future emsemble applications.

  10. Coke gasification: the influence and behavior of inherent catalytic mineral matter

    SciTech Connect

    Mihaela Grigore; Richard Sakurovs; David French; Veena Sahajwalla

    2009-04-15

    Gasification of coke contributes to its degradation in the blast furnace. In this study, the effect of gasification on the inherent catalytic minerals in cokes and their reciprocal influence on gasification are investigated. The catalytic mineral phases identified in the cokes used in this study were metallic iron, iron sulfides, and iron oxides. Metallic iron and pyrrhotite were rapidly oxidized during gasification to iron oxide. The catalysts had a strong influence on the apparent rates at the initial stages of reaction. As gasification proceeds, their effect on the reaction rate diminishes as a result of reducing the surface contact between catalyst and carbon matrix because of carbon consumption around the catalyst particles; with extended burnout the reactivity of the coke becomes increasingly dependent on surface area. The reaction rate in the initial stages was also influenced by the particle size of the catalytic minerals; for a given catalytic iron level, the cokes whose catalytic minerals were more finely dispersed had a higher apparent reaction rate than cokes containing larger catalytic particles. Iron, sodium, and potassium in the amorphous phase did not appear to affect the reaction rate. 40 refs., 16 figs., 6 tabs.

  11. "Free-floating" desmosomes in lipoid proteinosis: an inherent defect in keratinocyte adhesion?

    PubMed

    Dyer, Jon A; Yu, Qian-Chun; Paller, Amy S

    2006-01-01

    The classic features of lipoid proteinosis - beadlike papules and hoarseness - result from the accumulation of hyaline material in the mucocutaneous dermis. However, the characteristic manifestation in children - erosive, crusted lesions that lead to scarring - is rarely discussed and poorly understood. Lipoid proteinosis results from mutations in extracellular matrix protein 1, but the function of this protein is largely unknown. We performed ultrastructural studies on lesional epidermis, cultured monolayer keratinocytes, and raft keratinocyte cultures from blistering lesions of a child with lipoid proteinosis. All sections showed the dissociation of relatively intact desmosomes from keratinocytes, with desmosomes that were "free-floating" in the intercellular spaces or attached by thin strands to the cell membrane. These changes were present in serial sections of both tissue and cultured keratinocytes, suggesting this observation to be an inherent feature of keratinocytes devoid of extracellular matrix protein 1, rather than an artifact. Although additional patients should be studied, the diminished appearance of the inner dense plaque - the region of attachment of keratin intermediate filaments to desmosomal proteins - provides preliminary evidence that extracellular matrix protein 1 may participate in attaching keratin intermediate filaments to desmosomal region protein(s).

  12. Enhancement of the inherent self-protection of the fast sodium reactor cores with oxide fuel

    SciTech Connect

    Eliseev, V.A.; Malisheva, I.V.; Matveev, V.I.; Egorov, A.V.; Maslov, P.A.

    2013-07-01

    With the development and research into the generation IV fast sodium reactors, great attention is paid to the enhancement of the core inherent self-protection characteristics. One of the problems dealt here is connected with the reduction of the reactivity margin so that the control rods running should not result in the core overheating and melting. In this paper we consider the possibilities of improving the core of BN-1200 with oxide fuel by a known method of introducing an axial fertile layer into the core. But unlike earlier studies this paper looks at the possibility of using such a layer not only for improving breeding, but also for reducing sodium void reactivity effect (SVRE). This proposed improvement of the BN-1200 core does not solve the problem of strong interference in control and protection system (CPS) rods of BN-1200, but they reduce significantly the reactivity margin for burn-up compensation. This helps compensate all the reactivity balances in the improved core configurations without violating constraints on SVRE value.

  13. Bayesian estimation inherent in a Mexican-hat-type neural network.

    PubMed

    Takiyama, Ken

    2016-05-01

    Brain functions, such as perception, motor control and learning, and decision making, have been explained based on a Bayesian framework, i.e., to decrease the effects of noise inherent in the human nervous system or external environment, our brain integrates sensory and a priori information in a Bayesian optimal manner. However, it remains unclear how Bayesian computations are implemented in the brain. Herein, I address this issue by analyzing a Mexican-hat-type neural network, which was used as a model of the visual cortex, motor cortex, and prefrontal cortex. I analytically demonstrate that the dynamics of an order parameter in the model corresponds exactly to a variational inference of a linear Gaussian state-space model, a Bayesian estimation, when the strength of recurrent synaptic connectivity is appropriately stronger than that of an external stimulus, a plausible condition in the brain. This exact correspondence can reveal the relationship between the parameters in the Bayesian estimation and those in the neural network, providing insight for understanding brain functions.

  14. Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited.

    PubMed

    Thomas, Cibu; Ye, Frank Q; Irfanoglu, M Okan; Modi, Pooja; Saleem, Kadharbatcha S; Leopold, David A; Pierpaoli, Carlo

    2014-11-18

    Tractography based on diffusion-weighted MRI (DWI) is widely used for mapping the structural connections of the human brain. Its accuracy is known to be limited by technical factors affecting in vivo data acquisition, such as noise, artifacts, and data undersampling resulting from scan time constraints. It generally is assumed that improvements in data quality and implementation of sophisticated tractography methods will lead to increasingly accurate maps of human anatomical connections. However, assessing the anatomical accuracy of DWI tractography is difficult because of the lack of independent knowledge of the true anatomical connections in humans. Here we investigate the future prospects of DWI-based connectional imaging by applying advanced tractography methods to an ex vivo DWI dataset of the macaque brain. The results of different tractography methods were compared with maps of known axonal projections from previous tracer studies in the macaque. Despite the exceptional quality of the DWI data, none of the methods demonstrated high anatomical accuracy. The methods that showed the highest sensitivity showed the lowest specificity, and vice versa. Additionally, anatomical accuracy was highly dependent upon parameters of the tractography algorithm, with different optimal values for mapping different pathways. These results suggest that there is an inherent limitation in determining long-range anatomical projections based on voxel-averaged estimates of local fiber orientation obtained from DWI data that is unlikely to be overcome by improvements in data acquisition and analysis alone.

  15. Impact of operational model nesting approaches and inherent errors for coastal simulations

    NASA Astrophysics Data System (ADS)

    Brown, Jennifer M.; Norman, Danielle L.; Amoudry, Laurent O.; Souza, Alejandro J.

    2016-11-01

    A region of freshwater influence (ROFI) under hypertidal conditions is used to demonstrate inherent problems for nested operational modelling systems. Such problems can impact the accurate simulation of freshwater export within shelf seas, so must be considered in coastal ocean modelling studies. In Liverpool Bay (our UK study site), freshwater inflow from 3 large estuaries forms a coastal front that moves in response to tides and winds. The cyclic occurrence of stratification and remixing is important for the biogeochemical cycles, as nutrient and pollutant loaded freshwater is introduced into the coastal system. Validation methods, using coastal observations from fixed moorings and cruise transects, are used to assess the simulation of the ROFI, through improved spatial structure and temporal variability of the front, as guidance for best practise model setup. A structured modelling system using a 180 m grid nested within a 1.8 km grid demonstrates how compensation for error at the coarser resolution can have an adverse impact on the nested, high resolution application. Using 2008, a year of typical calm and stormy periods with variable river influence, the sensitivities of the ROFI dynamics to initial and boundary conditions are investigated. It is shown that accurate representation of the initial water column structure is important at the regional scale and that the boundary conditions are most important at the coastal scale. Although increased grid resolution captures the frontal structure, the accuracy in frontal position is determined by the offshore boundary conditions and therefore the accuracy of the coarser regional model.

  16. An inherently temperature insensitive fiber Bragg grating force sensor for in-vivo applications

    NASA Astrophysics Data System (ADS)

    Arkwright, John W.; Parkinson, Luke; Papageorgiou, Anthony

    2017-02-01

    We present a fiber Bragg grating sensor design that provides an inherently athermal response to a transverse applied load. The active element of the sensor is formed from two fibers helically wound around a common axis each containing an FBG element. The helical winding of the fibers is positioned within the transducer so that the FBG elements are coincident and located at the point where the axes of the fibers are in the orthogonal plane to the base of the sensor. An applied load acting on the sensor deflects the fibers sideways so that the upper FBG is compressed and the lower FBG is stretched causing a differential change in the Bragg wavelengths of each element. For small loads, the differential change in wavelength is linearly proportional to the applied force. A change in temperature causes identical change in Bragg wavelength on both FBG elements and therefore does not affect the differential change caused by the applied load. Using this design we have reduced the temperature dependence of our FBG sensors from 13 pm per °C to a variation of less than 0.25 pm over a temperature range of 20 - 60 °C, with the residual temperature dependence being largely made up of temperature variations in the solid state spectrometer used to acquire data. These sensors are ideally suited for forming sensing arrays for monitoring in-vivo pressures and forces where fluctuations in temperature are unavoidable, and have been used successfully for monitoring the pressure induced beneath compression bandages.

  17. Inherent size effects on XANES of nanometer metal clusters: Size-selected platinum clusters on silica

    DOE PAGES

    Dai, Yang; Gorey, Timothy J.; Anderson, Scott L.; ...

    2016-12-12

    X-ray absorption near-edge structure (XANES) is commonly used to probe the oxidation state of metal-containing nanomaterials, however, as the particle size in the material drops below a few nanometers, it becomes important to consider inherent size effects on the electronic structure of the materials. In this paper, we analyze a series of size-selected Ptn/SiO2 samples, using X-ray photoelectron spectroscopy (XPS), low energy ion scattering, grazing-incidence small angle X-ray scattering, and XANES. The oxidation state and morphology are characterized both as-deposited in UHV, and after air/O2 exposure and annealing in H2. Here, the clusters are found to be stable during depositionmore » and upon air exposure, but sinter if heated above ~150 °C. XANES shows shifts in the Pt L3 edge, relative to bulk Pt, that increase with decreasing cluster size, and the cluster samples show high white line intensity. Reference to bulk standards would suggest that the clusters are oxidized, however, XPS shows that they are not. Instead, the XANES effects are attributable to development of a band gap and localization of empty state wavefunctions in small clusters.« less

  18. Generalized Ocean Color Inversion Model for Retrieving Marine Inherent Optical Properties

    NASA Technical Reports Server (NTRS)

    Werdell, P. Jeremy; Franz, Bryan A.; Bailey, Sean W.; Feldman, Gene C.; Boss, Emmanuel; Brando, Vittorio E.; Dowell, Mark; Hirata, Takafumi; Lavender, Samantha J.; Lee, ZhongPing; hide

    2013-01-01

    Ocean color measured from satellites provides daily, global estimates of marine inherent optical properties (IOPs). Semi-analytical algorithms (SAAs) provide one mechanism for inverting the color of the water observed by the satellite into IOPs. While numerous SAAs exist, most are similarly constructed and few are appropriately parameterized for all water masses for all seasons. To initiate community-wide discussion of these limitations, NASA organized two workshops that deconstructed SAAs to identify similarities and uniqueness and to progress toward consensus on a unified SAA. This effort resulted in the development of the generalized IOP (GIOP) model software that allows for the construction of different SAAs at runtime by selection from an assortment of model parameterizations. As such, GIOP permits isolation and evaluation of specific modeling assumptions, construction of SAAs, development of regionally tuned SAAs, and execution of ensemble inversion modeling. Working groups associated with the workshops proposed a preliminary default configuration for GIOP (GIOP-DC), with alternative model parameterizations and features defined for subsequent evaluation. In this paper, we: (1) describe the theoretical basis of GIOP; (2) present GIOP-DC and verify its comparable performance to other popular SAAs using both in situ and synthetic data sets; and, (3) quantify the sensitivities of their output to their parameterization. We use the latter to develop a hierarchical sensitivity of SAAs to various model parameterizations, to identify components of SAAs that merit focus in future research, and to provide material for discussion on algorithm uncertainties and future ensemble applications.

  19. DC-conductivity and magnetoresistance of inherently conducting polymers. Polyacetylene and poly(3-alkylthiophenes)

    NASA Astrophysics Data System (ADS)

    Vaekiparta, K.

    Inherently conducting polymers with optimal charge transport properties lie in the vicinity of the M-I transition. The most powerful demonstration of this is potassium-doped highly conducting polyacetylene (room temperature dc-conductivity 3000-4000 S/cm), the dc-conductivity of which shows a temperature dependence (power law) in perfect accordance with the theory for a material in the critical intermediate regime of the M-I transition. As suggested by earlier research, iodine doped polyacetylene (doped to the maximum of room temperature conductivity, 1 to 100,000 S/cm) is on the metallic side of the M-I transition. Based on de-conductivity and magnetoresistance measurements, this work confirms the dominating role of weak localization effects on the charge transport in the temperature regime 2-60 K, and suggest that electron-electron interactions play an important role below 2 K. Ferric chloride doped poly(3-alkylthiophenes) (P3OT and P3HT, with room temperature conductivities 30-160 S/cm) show a temperature behavior of dc-conductivity due to localized charge carriers and are therefore on the insulating side of the M-I transition.

  20. Bayesian estimation inherent in a Mexican-hat-type neural network

    NASA Astrophysics Data System (ADS)

    Takiyama, Ken

    2016-05-01

    Brain functions, such as perception, motor control and learning, and decision making, have been explained based on a Bayesian framework, i.e., to decrease the effects of noise inherent in the human nervous system or external environment, our brain integrates sensory and a priori information in a Bayesian optimal manner. However, it remains unclear how Bayesian computations are implemented in the brain. Herein, I address this issue by analyzing a Mexican-hat-type neural network, which was used as a model of the visual cortex, motor cortex, and prefrontal cortex. I analytically demonstrate that the dynamics of an order parameter in the model corresponds exactly to a variational inference of a linear Gaussian state-space model, a Bayesian estimation, when the strength of recurrent synaptic connectivity is appropriately stronger than that of an external stimulus, a plausible condition in the brain. This exact correspondence can reveal the relationship between the parameters in the Bayesian estimation and those in the neural network, providing insight for understanding brain functions.