Stepp, Marcus W.; Vorst, Alan L.; Folz, Rodney J.
2011-01-01
Extracellular superoxide dismutase (EC-SOD) is the major antioxidant enzyme present in the vascular wall, and is responsible for both the protection of vessels from oxidative stress and for the modulation of vascular tone. Concentrations of EC-SOD in human pulmonary arteries are very high relative to other tissues, and the expression of EC-SOD appears highly restricted to smooth muscle. The molecular basis for this smooth muscle–specific expression of EC-SOD is not known. Here we assessed the role of epigenetic factors in regulating the cell-specific and IFN-γ–inducible expression of EC-SOD in human pulmonary artery cells. The analysis of CpG site methylation within the promoter and coding regions of the EC-SOD gene demonstrated higher levels of DNA methylation within the distal promoter region in endothelial cells compared with smooth muscle cells. Exposure of both cell types to DNA demethylation agents reactivated the transcription of EC-SOD in endothelial cells alone. However, exposure to the histone deacetylase inhibitor trichostatin A (TSA) significantly induced EC-SOD gene expression in both endothelial cells and smooth muscle cells. Concentrations of EC-SOD mRNA were also induced up to 45-fold by IFN-γ in smooth muscle cells, but not in endothelial cells. The IFN-γ–dependent expression of EC-SOD was regulated by the Janus tyrosine kinase/signal transducers and activators of transcription proteins signaling pathway. Simultaneous exposure to TSA and IFN-γ produced a synergistic effect on the induction of EC-SOD gene expression, but only in endothelial cells. These findings provide strong evidence that EC-SOD cell-specific and IFN-γ–inducible expression in pulmonary artery cells is regulated, to a major degree, by epigenetic mechanisms that include histone acetylation and DNA methylation. PMID:21493784
Wang, Kangkai; Zhelyabovska, Olga; Saad, Yasser; Kolattukudy, Pappachan E.
2013-01-01
Monocytic cells enhance neovascularization by releasing proangiogenic mediators and/or by transdifferentiating into endothelial-like cells. However, the mechanisms that govern this transdifferentiation process are largely unknown. Recently, monocyte chemotactic protein-1 (MCP-1)-induced protein (MCPIP) has been identified as a novel CCCH-type zinc-finger protein expressed primarily in monocytic cells. Here, we analyzed whether MCPIP might exert angiogenic effects by promoting differentiation of monocytic cells into endothelial cell (EC)-like phenotype. The expression of MCPIP increased during MCP-1-induced transdifferentiation in human bone marrow mononuclear cells (BMNCs). Knockdown of MCPIP with small interfering RNA (siRNA) abolished MCP-1-induced expression of EC markers Flk-1 and Tie-2 in human BMNCs. BMNCs transfected with MCPIP expression vector displayed EC-like morphology accompanied by downregulation of monocytic markers CD14 and CD11b, upregulation of EC markers Flk-1 and Tie-2, induction of cadherin (cdh)-12 and -19, activation of endoplasmic reticulum (ER) stress, and autophagy. Knockdown of cdh-12 or cdh-19 markedly inhibited MCPIP-induced enhancement of cell attachment and EC-marker expression. Inhibition of ER stress by tauroursodeoxycholate abolished MCPIP-induced expression of EC markers. Inhibition of autophagy by knockdown of Beclin-1 with siRNA or by an autophagy inhibitor 3′-methyladenine inhibited MCPIP-induced expression of EC markers. Expression of MCPIP in BMNCs enhanced uptake of acetylated low-density lipoprotein (acLDL), formation of EC-colony, incorporation of cells into capillary-like structure on Matrigel, and exhibited increased neovascularization in the ischemic hindlimb in mice. These results demonstrate that MCPIP may be an important regulator of inflammatory angiogenesis and provide novel mechanistic insights into the link between MCP-1 and cardiovascular diseases. PMID:24008336
Clayton, Zoe E; Yuen, Gloria S C; Sadeghipour, Sara; Hywood, Jack D; Wong, Jack W T; Huang, Ngan F; Ng, Martin K C; Cooke, John P; Patel, Sanjay
2017-05-01
Endothelial cells derived from human induced pluripotent stem cells (iPSC-ECs) promote angiogenesis, and more recently induced endothelial cells (iECs) have been generated via fibroblast trans-differentiation. These cell types have potential as treatments for peripheral arterial disease (PAD). However, it is unknown whether different reprogramming methods produce cells that are equivalent in terms of their pro-angiogenic capabilities. We aimed to directly compare iPSC-ECs and iECs in an animal model of PAD, in order to identify which cell type, if any, displays superior therapeutic potential. IPSC-ECs and iECs were generated from human fibroblasts, and transduced with a reporter construct encoding GFP and firefly luciferase for bioluminescence imaging (BLI). Endothelial phenotype was confirmed using in vitro assays. NOD-SCID mice underwent hindlimb ischaemia surgery and received an intramuscular injection of either 1×10 6 iPSC-ECs, 1×10 6 iECs or control vehicle only. Perfusion recovery was measured by laser Doppler. Hindlimb muscle samples were taken for histological analyses. Perfusion recovery was enhanced in iPSC-EC treated mice on day 14 (Control vs. iPSC-EC; 0.35±0.04 vs. 0.54±0.08, p<0.05) and in iEC treated mice on days 7 (Control vs. iEC; 0.23±0.02 vs. 0.44±0.06, p<0.05), 10 (0.31±0.04 vs. 0.64±0.07, p<0.001) and 14 (0.35±0.04 vs. 0.68±0.07, p<0.001) post-treatment. IEC-treated mice also had greater capillary density in the ischaemic gastrocnemius muscle (Control vs. iEC; 125±10 vs. 179±11 capillaries/image; p<0.05). BLI detected iPSC-EC and iEC presence in vivo for two weeks post-treatment. IPSC-ECs and iECs exhibit similar, but not identical, endothelial functionality and both cell types enhance perfusion recovery after hindlimb ischaemia. Copyright © 2017 Elsevier B.V. All rights reserved.
Birukova, Anna A; Arce, Fernando T; Moldobaeva, Nurgul; Dudek, Steven M; Garcia, Joe G N; Lal, Ratnesh; Birukov, Konstantin G
2009-03-01
Actomyosin contraction directly regulates endothelial cell (EC) permeability, but intracellular redistribution of cytoskeletal tension associated with EC permeability is poorly understood. We used atomic force microscopy (AFM), EC permeability assays, and fluorescence microscopy to link barrier regulation, cell remodeling, and cytoskeletal mechanical properties in EC treated with barrier-protective as well as barrier-disruptive agonists. Thrombin, vascular endothelial growth factor, and hydrogen peroxide increased EC permeability, disrupted cell junctions, and induced stress fiber formation. Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine, hepatocyte growth factor, and iloprost tightened EC barriers, enhanced peripheral actin cytoskeleton and adherens junctions, and abolished thrombin-induced permeability and EC remodeling. AFM force mapping and imaging showed differential distribution of cell stiffness: barrier-disruptive agonists increased stiffness in the central region, and barrier-protective agents decreased stiffness in the center and increased it at the periphery. Attenuation of thrombin-induced permeability correlates well with stiffness changes from the cell center to periphery. These results directly link for the first time the patterns of cell stiffness with specific EC permeability responses.
Xie, Xueping; Zhao, Ruozhi; Shen, Garry X.
2012-01-01
Elevated levels of glycated low density lipoprotein (glyLDL) are frequently detected in diabetic patients. Previous studies demonstrated that glyLDL increased the production of reactive oxygen species (ROS), activated NADPH oxidase (NOX) and suppressed mitochondrial electron transport chain (mETC) enzyme activities in vascular endothelial cells (EC). The present study examined the effects of cyanidin-3-glucoside (C3G), a type of anthocyanin abundant in dark-skinned berries, on glyLDL-induced ROS production, NOX activation and mETC enzyme activity in porcine aortic EC (PAEC). Co-treatment of C3G prevented glyLDL-induced upregulation of NOX4 and intracellular superoxide production in EC. C3G normalized glyLDL-induced inhibition on the enzyme activities of mETC Complex I and III, as well as the abundances of NADH dehydrogenase 1 in Complex I and cytochrome b in Complex III in EC. Blocking antibody for the receptor of advanced glycation end products (RAGE) prevented glyLDL-induced changes in NOX and mETC enzymes. Combination of C3G and RAGE antibody did not significantly enhance glyLDL-induced inhibition of NOX or mETC enzymes. C3G reduced glyLDL-induced RAGE expression with the presence of RAGE antibody. C3G prevented prolonged incubation with the glyLDL-induced decrease in cell viability and the imbalance between key regulators for cell viability (cleaved caspase 3 and B cell Lyphoma-2) in EC. The findings suggest that RAGE plays an important role in glyLDL-induced oxidative stress in vascular EC. C3G may prevent glyLDL-induced NOX activation, the impairment of mETC enzymes and cell viability in cultured vascular EC. PMID:23443099
Xie, Xueping; Zhao, Ruozhi; Shen, Garry X
2012-11-27
Elevated levels of glycated low density lipoprotein (glyLDL) are frequently detected in diabetic patients. Previous studies demonstrated that glyLDL increased the production of reactive oxygen species (ROS), activated NADPH oxidase (NOX) and suppressed mitochondrial electron transport chain (mETC) enzyme activities in vascular endothelial cells (EC). The present study examined the effects of cyanidin-3-glucoside (C3G), a type of anthocyanin abundant in dark-skinned berries, on glyLDL-induced ROS production, NOX activation and mETC enzyme activity in porcine aortic EC (PAEC). Co-treatment of C3G prevented glyLDL-induced upregulation of NOX4 and intracellular superoxide production in EC. C3G normalized glyLDL-induced inhibition on the enzyme activities of mETC Complex I and III, as well as the abundances of NADH dehydrogenase 1 in Complex I and cytochrome b in Complex III in EC. Blocking antibody for the receptor of advanced glycation end products (RAGE) prevented glyLDL-induced changes in NOX and mETC enzymes. Combination of C3G and RAGE antibody did not significantly enhance glyLDL-induced inhibition of NOX or mETC enzymes. C3G reduced glyLDL-induced RAGE expression with the presence of RAGE antibody. C3G prevented prolonged incubation with the glyLDL-induced decrease in cell viability and the imbalance between key regulators for cell viability (cleaved caspase 3 and B cell Lyphoma-2) in EC. The findings suggest that RAGE plays an important role in glyLDL-induced oxidative stress in vascular EC. C3G may prevent glyLDL-induced NOX activation, the impairment of mETC enzymes and cell viability in cultured vascular EC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, H.; Crowley, J.J.; Chan, J.C.
Our laboratory has previously shown that the administration of tumor necrosis factor (TNF), a cytokine produced by activated mononuclear cells, to guinea pigs produces a syndrome similar to gram-negative sepsis or ARDS. Pentoxifylline (PTX), a methylxanthine, protects against TNF-induced and sepsis-induced acute lung injury in vivo. We now report on in vitro cellular studies of PMN-mediated cellular injury and its attenuation. We studied TNF-induced bovine pulmonary artery endothelial cell (EC) cytotoxicity both with and without PMN. A 51Cr release assay was used to measure EC damage. Further, we investigated PMN function in response to TNF by measuring chemiluminescence. Agents thatmore » attenuate EC damage and PMN activation were evaluated in the above assays. Results revealed that TNF causes EC injury (p less than 0.05) and PMN increase TNF-induced EC injury. Furthermore, PTX, aminophylline (AMPH), caffeine, and forskolin attenuate TNF-induced EC cytotoxicity only in the presence of PMN (p less than 0.05). Of interest, dibutyryl cAMP (DBcAMP) protects EC from TNF-induced injury both with and without PMN. Agents that may increase cAMP levels in PMN (PTX, DBcAMP, forskolin, isobutyl methylxanthine, and terbutaline) significantly attenuate TNF-induced PMN chemiluminescence (p less than 0.05). We conclude that TNF causes EC damage and PMN increase this damage. Furthermore, PTX, AMPH, caffeine, and forskolin can attenuate TNF-induced EC injury in the presence of PMN, whereas DBcAMP attenuates TNF-induced EC injury with and without PMN. In addition, agents that may increase intracellular cAMP levels in PMN can attenuate TNF-induced PMN chemiluminescence. Thus, these agents likely attenuate TNF-induced PMN-mediated EC injury through their inhibitory effects on PMN.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Ping, E-mail: fanpinggoodluck@163.com; He, Lan; Pu, Dan
Research highlights: {yields} The proliferation of dramatic increased by co-cultured with Sertoli cells. {yields} VEGF receptor-2 expression of ECs was up-regulated by co-cultured with Sertoli cells. {yields} The MHC expression of ECs induced by INF-{gamma} and IL-6, IL-8 and sICAM induced by TNF-{alpha} decreased respectively after co-cultured with Sertoli cells. {yields} ECs co-cultured with Sertoli cells also didn't increase the stimulation index of spleen lymphocytes. -- Abstract: The major problem of the application of endothelial cells (ECs) in transplantation is the lack of proliferation and their immunogenicity. In this study, we co-cultured ECs with Sertoli cells to monitor whether Sertolimore » cells can influence the proliferation and immunogenicity of co-cultured ECs. Sertoli cells were isolated from adult testicular tissue. ECs were divided into the control group and the experimental group, which included three sub-groups co-cultured with 1 x 10{sup 3}, 1 x 10{sup 4} or 1 x 10{sup 5} cell/ml of Sertoli cells. The growth and proliferation of ECs were observed microscopically, and the expression of vascular endothelial growth factor (VEGF) receptor-2 (KDR) was examined by Western blotting. In another experiment, ECs were divided into the control group, the single culture group and the co-culture group with the optimal concentration of Sertoli cells. After INF-{gamma} and TNF-{alpha} were added to the culture medium, MHC II antigen expression was detected by immunofluorescence staining and western blotting; interleukin (IL)-6, IL-8 and soluble intercellular adhesion molecule (sICAM) were measured in the culture medium by ELISA. We demonstrated that 1 x 10{sup 4} cell/ml Sertoli cells promoted the proliferation of co-cultured ECs more dramatically than that in other groups (P < 0.05). Western blotting showed that 1 x 10{sup 4} cell/ml of the Sertoli cells was most effective in the up-regulation of KDR expression in the co-cultured ECs (P < 0.05). Sertoli cells can effectively suppress INF-{gamma}-induced MHC II antigen expression in co-cultured ECs compared with single culture group (P < 0.05). TNF-{alpha} induced the expression of IL-6, IL-8 and sICAM in ECs. When co-cultured with Sertoli cells, their expressions were significantly lower than in the EC single culture group (P < 0.05). ECs co-cultured with Sertoli cells also did not significantly increase the stimulation index of spleen lymphocytes compared to the single culture group (P < 0.05). Our results suggested that co-culturing with Sertoli cells can significantly promote the proliferation of ECs, accelerate post-transplant angiogenesis, while reduce EC immunogenicity and stimulus to lymphocytes.« less
Okamoto, Takayuki; Akita, Nobuyuki; Hayashi, Tatsuya; Shimaoka, Motomu; Suzuki, Koji
2014-10-01
Endothelial cell (EC) interacts with adjacent EC through gap junction, and abnormal expression or function of Cxs is associated with cardiovascular diseases. In patients with endothelial dysfunction, the up-regulation of tissue factor (TF) expression promotes the pathogenic activation of blood coagulation, however the relationship between gap junctions and TF expression in ECs remains uncharacterized. ECs express the gap junction (GJ) proteins connexin32 (Cx32), Cx37, Cx40 and Cx43. We investigated the role of endothelial gap junctions, particularly Cx32, in modulating TF expression during vascular inflammation. Human umbilical vein endothelial cells (HUVECs) were stimulated with tumor necrosis factor-α (TNF-α) and TF activity was assessed in the presence of GJ blockers and an inhibitory anti-Cx32 monoclonal antibody. Treatment with GJ blockers and anti-Cx32 monoclonal antibody enhanced the TNF-α-induced TF activity and mRNA expression in HUVECs. TNF-α-activated effector HUVECs or mouse MS-1 cells were co-cultured with non-stimulated acceptor HUVECs and TF expression in acceptor HUVECs was detected. Effector EC induced TF expression in adjacent acceptor HUVECs through direct cell-cell interaction. Cell-cell interaction induced TF expression was reduced by anti-intercellular adhesion molecule-1 (ICAM1) monoclonal antibody. Soluble ICAM1-Fc fusion protein promotes TF expression. GJ blockers and anti-Cx32 monoclonal antibody enhanced TF expression induced by cell-cell interaction and ICAM1-Fc treatment. Blockade of endothelial Cx32 increased TF expression induced by TNF-α stimulation and cell-cell interaction which was at least partly dependent upon ICAM1. These results suggest that direct Cx32-mediated interaction modulates TF expression in ECs during vascular inflammation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Quaking Is a Key Regulator of Endothelial Cell Differentiation, Neovascularization, and Angiogenesis
Cochrane, Amy; Kelaini, Sophia; Tsifaki, Marianna; Bojdo, James; Vilà‐González, Marta; Drehmer, Daiana; Caines, Rachel; Magee, Corey; Eleftheriadou, Magdalini; Hu, Yanhua; Grieve, David; Stitt, Alan W.; Zeng, Lingfang; Xu, Qingbo
2017-01-01
Abstract The capability to derive endothelial cell (ECs) from induced pluripotent stem cells (iPSCs) holds huge therapeutic potential for cardiovascular disease. This study elucidates the precise role of the RNA‐binding protein Quaking isoform 5 (QKI‐5) during EC differentiation from both mouse and human iPSCs (hiPSCs) and dissects how RNA‐binding proteins can improve differentiation efficiency toward cell therapy for important vascular diseases. iPSCs represent an attractive cellular approach for regenerative medicine today as they can be used to generate patient‐specific therapeutic cells toward autologous cell therapy. In this study, using the model of iPSCs differentiation toward ECs, the QKI‐5 was found to be an important regulator of STAT3 stabilization and vascular endothelial growth factor receptor 2 (VEGFR2) activation during the EC differentiation process. QKI‐5 was induced during EC differentiation, resulting in stabilization of STAT3 expression and modulation of VEGFR2 transcriptional activation as well as VEGF secretion through direct binding to the 3′ UTR of STAT3. Importantly, mouse iPS‐ECs overexpressing QKI‐5 significantly improved angiogenesis and neovascularization and blood flow recovery in experimental hind limb ischemia. Notably, hiPSCs overexpressing QKI‐5, induced angiogenesis on Matrigel plug assays in vivo only 7 days after subcutaneous injection in SCID mice. These results highlight a clear functional benefit of QKI‐5 in neovascularization, blood flow recovery, and angiogenesis. Thus, they provide support to the growing consensus that elucidation of the molecular mechanisms underlying EC differentiation will ultimately advance stem cell regenerative therapy and eventually make the treatment of cardiovascular disease a reality. The RNA binding protein QKI‐5 is induced during EC differentiation from iPSCs. RNA binding protein QKI‐5 was induced during EC differentiation in parallel with the EC marker CD144. Immunofluorescence staining showing that QKI‐5 is localized in the nucleus and stained in parallel with CD144 in differentiated ECs (scale bar = 50 µm). stem cells 2017 Stem Cells 2017;35:952–966 PMID:28207177
Enhanced endothelial cell senescence by lithium-induced matrix metalloproteinase-1 expression.
Struewing, Ian T; Durham, Samuel N; Barnett, Corey D; Mao, Catherine D
2009-06-26
Endothelial cell (EC) senescence and dysfunction occurring after chronic injury and inflammation are highly associated with the development and progression of cardiovascular diseases. However, the factors involved in the establishment of EC senescence remain poorly understood. We have previously shown that lithium, an inhibitor of glycogen synthase kinase (GSK)-3beta and activator of the Wnt/beta-catenin signaling pathway, induces an EC senescent-like phenotype. Herein, we show that lithium induces a rapid and pronounced up-regulation of the matrix metalloproteinase (MMP)-1, an inflammation and senescent cell marker, at the mRNA and protein levels, whereas the induction of two other senescent cell markers is either weak (interleukin-8) or delayed (plasminogen activator inhibitor-1). Lithium effect on MMP-1 expression is also specific among other MMPs and not mediated by GSK3beta inhibition. Lithium affects MMP-1 expression mainly at the transcriptional level but neither the AP1/Ets regulatory sites nor the redox sensitive (-1607/2G) site in MMP-1 promoter are involved in lithium-dependent MMP-1 regulation. However, down-regulation of p53, a target of lithium in EC, dampens both basal and lithium-induced MMP-1 expression, which further links MMP-1 up-regulation with the establishment of cell senescence. Although increased MMP-1 levels are usually associated with angiogenesis in enabled proliferative EC, the exogenous addition of activated MMP-1 on lithium- arrested EC increases the number of EC positive for the senescent-associated-beta-galactosidase marker. Conversely, down-regulation of MMP-1 expression by small interfering RNAs blunts the lithium-dependent increase in senescent-associated-beta-galactosidase positive cells. Altogether our data indicate that lithium-induced MMP-1 may participate in the reinforcement of EC senescence and reveal a novel mechanism for lithium-induced tissue remodeling.
Aspirin Inhibits Platelet-Derived Sphingosine-1-Phosphate Induced Endothelial Cell Migration.
Polzin, Amin; Knoop, Betül; Böhm, Andreas; Dannenberg, Lisa; Zurek, Mark; Zeus, Tobias; Kelm, Malte; Levkau, Bodo; Rauch, Bernhard H
2018-01-01
Aspirin plays a crucial role in the prevention of cardiovascular diseases. We previously described that aspirin has effects beyond inhibition of platelet aggregation, as it inhibited thrombin-mediated release of sphingosine-1-phosphate (S1P) from human platelets. S1P is a bioactive lipid with important functions on inflammation and apoptosis. In endothelial cells (EC), S1P is a key regulator of cell migration. In this study, we aimed to analyze the effects of aspirin on platelet-induced EC migration. Human umbilical EC migration was measured by Boyden chamber assay. EC migration was induced by platelet supernatants of thrombin receptor-activating peptide-1 (AP1) stimulated platelets. To investigate the S1P receptor subtype that promotes EC migration, specific inhibitors of S1P receptor subtypes were applied. S1P induced EC migration in a concentration-dependent manner. EC migration induced by AP1-stimulated platelet supernatants was reduced by aspirin. S1P1 receptor inhibition almost completely abolished EC migration induced by activated platelets. The inhibition of S1P2 or S1P3 receptor had no effect. Aspirin inhibits EC migration induced by activated platelets that is in part due to S1P and mediated by the endothelial S1P1 receptor. The clinical significance of this novel mechanism of aspirin action has to be investigated in future studies. © 2017 S. Karger AG, Basel.
Kelaini, Sophia; Vilà-González, Marta; Caines, Rachel; Campbell, David; Eleftheriadou, Magdalini; Tsifaki, Marianna; Magee, Corey; Cochrane, Amy; O'neill, Karla; Yang, Chunbo; Stitt, Alan W; Zeng, Lingfang; Grieve, David J; Margariti, Andriana
2018-03-23
The fight against vascular disease requires functional endothelial cells (ECs) which could be provided by differentiation of induced Pluripotent Stem Cells (iPS Cells) in great numbers for use in the clinic. However, the great promise of the generated ECs (iPS-ECs) in therapy is often restricted due to the challenge in iPS-ECs preserving their phenotype and function. We identified that Follistatin-Like 3 (FSTL3) is highly expressed in iPS-ECs, and, as such, we sought to clarify its possible role in retaining and improving iPS-ECs function and phenotype, which are crucial in increasing the cells' potential as a therapeutic tool. We overexpressed FSTL3 in iPS-ECs and found that FSTL3 could induce and enhance endothelial features by facilitating β-catenin nuclear translocation through inhibition of glycogen synthase kinase-3β activity and induction of Endothelin-1. The angiogenic potential of FSTL3 was also confirmed both in vitro and in vivo. When iPS-ECs overexpressing FSTL3 were subcutaneously injected in in vivo angiogenic model or intramuscularly injected in a hind limb ischemia NOD.CB17-Prkdcscid/NcrCrl SCID mice model, FSTL3 significantly induced angiogenesis and blood flow recovery, respectively. This study, for the first time, demonstrates that FSTL3 can greatly enhance the function and maturity of iPS-ECs. It advances our understanding of iPS-ECs and identifies a novel pathway that can be applied in cell therapy. These findings could therefore help improve efficiency and generation of therapeutically relevant numbers of ECs for use in patient-specific cell-based therapies. In addition, it can be particularly useful toward the treatment of vascular diseases instigated by EC dysfunction. Stem Cells 2018. © 2018 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
Vascular niche promotes hematopoietic multipotent progenitor formation from pluripotent stem cells
Gori, Jennifer L.; Butler, Jason M.; Chan, Yan-Yi; Chandrasekaran, Devikha; Poulos, Michael G.; Ginsberg, Michael; Nolan, Daniel J.; Elemento, Olivier; Wood, Brent L.; Adair, Jennifer E.; Rafii, Shahin; Kiem, Hans-Peter
2015-01-01
Pluripotent stem cells (PSCs) represent an alternative hematopoietic stem cell (HSC) source for treating hematopoietic disease. The limited engraftment of human PSC–derived (hPSC-derived) multipotent progenitor cells (MPP) has hampered the clinical application of these cells and suggests that MPP require additional cues for definitive hematopoiesis. We hypothesized that the presence of a vascular niche that produces Notch ligands jagged-1 (JAG1) and delta-like ligand-4 (DLL4) drives definitive hematopoiesis. We differentiated hes2 human embryonic stem cells (hESC) and Macaca nemestrina–induced PSC (iPSC) line-7 with cytokines in the presence or absence of endothelial cells (ECs) that express JAG1 and DLL4. Cells cocultured with ECs generated substantially more CD34+CD45+ hematopoietic progenitors compared with cells cocultured without ECs or with ECs lacking JAG1 or DLL4. EC-induced cells exhibited Notch activation and expressed HSC-specific Notch targets RUNX1 and GATA2. EC-induced PSC-MPP engrafted at a markedly higher level in NOD/SCID/IL-2 receptor γ chain–null (NSG) mice compared with cytokine-induced cells, and low-dose chemotherapy-based selection further increased engraftment. Long-term engraftment and the myeloid-to-lymphoid ratio achieved with vascular niche induction were similar to levels achieved for cord blood–derived MPP and up to 20-fold higher than those achieved with hPSC-derived MPP engraftment. Our findings indicate that endothelial Notch ligands promote PSC-definitive hematopoiesis and production of long-term engrafting CD34+ cells, suggesting these ligands are critical for HSC emergence. PMID:25664855
Zhao, Ming-Tao; Jahanbani, Fereshteh; Lee, Won Hee; Snyder, Michael P.
2016-01-01
Human induced pluripotent stem cells (iPSCs) can be derived from various types of somatic cells by transient overexpression of 4 Yamanaka factors (OCT4, SOX2, C-MYC, and KLF4). Patient-specific iPSC derivatives (e.g., neuronal, cardiac, hepatic, muscular, and endothelial cells [ECs]) hold great promise in drug discovery and regenerative medicine. In this study, we aimed to evaluate whether the cellular origin can affect the differentiation, in vivo behavior, and single-cell gene expression signatures of human iPSC–derived ECs. We derived human iPSCs from 3 types of somatic cells of the same individuals: fibroblasts (FB-iPSCs), ECs (EC-iPSCs), and cardiac progenitor cells (CPC-iPSCs). We then differentiated them into ECs by sequential administration of Activin, BMP4, bFGF, and VEGF. EC-iPSCs at early passage (10 < P < 20) showed higher EC differentiation propensity and gene expression of EC-specific markers (PECAM1 and NOS3) than FB-iPSCs and CPC-iPSCs. In vivo transplanted EC-iPSC–ECs were recovered with a higher percentage of CD31+ population and expressed higher EC-specific gene expression markers (PECAM1, KDR, and ICAM) as revealed by microfluidic single-cell quantitative PCR (qPCR). In vitro EC-iPSC–ECs maintained a higher CD31+ population than FB-iPSC–ECs and CPC-iPSC–ECs with long-term culturing and passaging. These results indicate that cellular origin may influence lineage differentiation propensity of human iPSCs; hence, the somatic memory carried by early passage iPSCs should be carefully considered before clinical translation. PMID:27398408
Parkes, Christina; Kamal, Areege; Valentijn, Anthony J; Alnafakh, Rafah; Gross, Stephane R; Barraclough, Roger; Moss, Diana; Kirwan, John; Hapangama, Dharani K
2018-01-01
Translational endometrial cancer (EC) research benefits from an in vitro experimental approach using EC cell lines. We demonstrated the steps that are required to examine estrogen-induced proliferative response, a simple yet important research question pertinent to EC, and devised a pragmatic methodological workflow for using EC cell lines in experimental models. Comprehensive review of all commercially available EC cell lines was carried out, and Ishikawa cell line was selected to study the estrogen responsiveness with HEC1A, RL95-2, and MFE280 cell lines as comparators where appropriate, examining relevant differential molecular (steroid receptors) and functional (phenotype, anchorage-independent growth, hormone responsiveness, migration, invasion, and chemosensitivity) characteristics in 2-dimensional and 3-dimensional cultures in vitro using immunocytochemistry, immunofluorescence, quantitative polymerase chain reaction, and Western blotting. In vivo tumor, formation, and chemosensitivity were also assessed in a chick chorioallantoic membrane model. Short tandem repeat analysis authenticated the purchased cell lines, whereas gifted cells deviated significantly from the published profile. We demonstrate the importance of prior assessment of the suitability of each cell line for the chosen in vitro experimental technique. Prior establishment of baseline, nonenriched conditions was required to induce a proliferative response to estrogen. The chorioallantoic membrane model was a suitable in vivo multicellular animal model for EC for producing rapid and reproducible data. We have developed a methodological guide for EC researchers when using endometrial cell lines to answer important translational research questions (exemplified by estrogen-responsive cell proliferation) to facilitate robust data, while saving time and resources.
An evolving new paradigm: endothelial cells – conditional innate immune cells
2013-01-01
Endothelial cells (ECs) are a heterogeneous population that fulfills many physiological processes. ECs also actively participate in both innate and adaptive immune responses. ECs are one of the first cell types to detect foreign pathogens and endogenous metabolite-related danger signals in the bloodstream, in which ECs function as danger signal sensors. Treatment with lipopolysaccharide activates ECs, causing the production of pro-inflammatory cytokines and chemokines, which amplify the immune response by recruiting immune cells. Thus, ECs function as immune/inflammation effectors and immune cell mobilizers. ECs also induce cytokine production by immune cells, in which ECs function as immune regulators either by activating or suppressing immune cell function. In addition, under certain conditions, ECs can serve as antigen presenting cells (antigen presenters) by expressing both MHC I and II molecules and presenting endothelial antigens to T cells. These facts along with the new concept of endothelial plasticity suggest that ECs are dynamic cells that respond to extracellular environmental changes and play a meaningful role in immune system function. Based on these novel EC functions, we propose a new paradigm that ECs are conditional innate immune cells. This paradigm provides a novel insight into the functions of ECs in inflammatory/immune pathologies. PMID:23965413
An evolving new paradigm: endothelial cells--conditional innate immune cells.
Mai, Jietang; Virtue, Anthony; Shen, Jerry; Wang, Hong; Yang, Xiao-Feng
2013-08-22
Endothelial cells (ECs) are a heterogeneous population that fulfills many physiological processes. ECs also actively participate in both innate and adaptive immune responses. ECs are one of the first cell types to detect foreign pathogens and endogenous metabolite-related danger signals in the bloodstream, in which ECs function as danger signal sensors. Treatment with lipopolysaccharide activates ECs, causing the production of pro-inflammatory cytokines and chemokines, which amplify the immune response by recruiting immune cells. Thus, ECs function as immune/inflammation effectors and immune cell mobilizers. ECs also induce cytokine production by immune cells, in which ECs function as immune regulators either by activating or suppressing immune cell function. In addition, under certain conditions, ECs can serve as antigen presenting cells (antigen presenters) by expressing both MHC I and II molecules and presenting endothelial antigens to T cells. These facts along with the new concept of endothelial plasticity suggest that ECs are dynamic cells that respond to extracellular environmental changes and play a meaningful role in immune system function. Based on these novel EC functions, we propose a new paradigm that ECs are conditional innate immune cells. This paradigm provides a novel insight into the functions of ECs in inflammatory/immune pathologies.
Jiang, Bin; Jen, Michele; Perrin, Louisiane; Wertheim, Jason A; Ameer, Guillermo A
2015-12-01
Endothelial cells (ECs) that are differentiated from induced pluripotent stem cells (iPSCs) can be used in establishing disease models for personalized drug discovery or developing patient-specific vascularized tissues or organoids. However, a number of technical challenges are often associated with iPSC-ECs in culture, including instability of the endothelial phenotype and limited cell proliferative capacity over time. Early senescence is believed to be the primary mechanism underlying these limitations. Sirtuin1 (SIRT1) is an NAD(+)-dependent deacetylase involved in the regulation of cell senescence, redox state, and inflammatory status. We hypothesize that overexpression of the SIRT1 gene in iPSC-ECs will maintain EC phenotype, function, and proliferative capacity by overcoming early cell senescence. SIRT1 gene was packaged into a lentiviral vector (LV-SIRT1) and transduced into iPSC-ECs at passage 4. Beginning with passage 5, iPSC-ECs exhibited a fibroblast-like morphology, whereas iPSC-ECs overexpressing SIRT1 maintained EC cobblestone morphology. SIRT1 overexpressing iPSC-ECs also exhibited a higher percentage of canonical markers of endothelia (LV-SIRT1 61.8% CD31(+) vs. LV-empty 31.7% CD31(+), P < 0.001; LV-SIRT1 46.3% CD144(+) vs. LV-empty 20.5% CD144(+), P < 0.02), with a higher nitric oxide synthesis, lower β-galactosidase production indicating decreased senescence (3.4% for LV-SIRT1 vs. 38.6% for LV-empty, P < 0.001), enhanced angiogenesis, increased deacetylation activity, and higher proliferation rate. SIRT1 overexpressing iPSC-ECs continued to proliferate through passage 9 with high purity of EC-like characteristics, while iPSC-ECs without SIRT1 overexpression became senescent after passage 5. Taken together, SIRT1 overexpression in iPSC-ECs maintains EC phenotype, improves EC function, and extends cell lifespan, overcoming critical hurdles associated with the use of iPSC-ECs in translational research.
Cervia, Davide; Garcia-Gil, Mercedes; Simonetti, Elisa; Di Giuseppe, Graziano; Guella, Graziano; Bagnoli, Paola; Dini, Fernando
2007-08-01
The metabolite euplotin C (EC), isolated from the marine ciliate Euplotes crassus, is a powerful cytotoxic and pro-apoptotic agent in tumour cell lines. For instance, EC induces the rapid depletion of ryanodine Ca(2+) stores, the release of cytochrome c from the mitochondria, and the activation of caspase-3, leading to apoptosis. The purpose of this study was to gain further insight into the mechanisms of EC-induced apoptosis in rat pheochromocytoma PC12 cells. We found that EC increases Bax/Bcl-2 ratio and that Bax is responsible of the EC-induced dissipation of the mitochondrial membrane potential (Deltapsi(m)). In addition, EC induces the generation of reactive oxygene species (ROS) without involvement of p53. The inhibition of ROS generation prevents, at least in part, the pro-apoptotic effects of EC as well as the effects of EC on Bax, Deltapsi(m) and intracellular free Ca(2+), indicating a cross-talk between different pathways. However, definition of the effector cascade turns out to be more complex than expected and caspase-independent mechanisms, acting in parallel with caspases, should also be considered. Among them, EC increases the expression/activity of calpains downstream of ROS generation, although calpains seem to exert protective effects.
Gu, Mingxia; Mordwinkin, Nicholas M.; Kooreman, Nigel G.; Lee, Jaecheol; Wu, Haodi; Hu, Shijun; Churko, Jared M.; Diecke, Sebastian; Burridge, Paul W.; He, Chunjiang; Barron, Frances E.; Ong, Sang-Ging; Gold, Joseph D.; Wu, Joseph C.
2015-01-01
Aims High-fat diet-induced obesity (DIO) is a major contributor to type II diabetes and micro- and macro-vascular complications leading to peripheral vascular disease (PVD). Metabolic abnormalities of induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) from obese individuals could potentially limit their therapeutic efficacy for PVD. The aim of this study was to compare the function of iPSC-ECs from normal and DIO mice using comprehensive in vitro and in vivo assays. Methods and results Six-week-old C57Bl/6 mice were fed with a normal or high-fat diet. At 24 weeks, iPSCs were generated from tail tip fibroblasts and differentiated into iPSC-ECs using a directed monolayer approach. In vitro functional analysis revealed that iPSC-ECs from DIO mice had significantly decreased capacity to form capillary-like networks, diminished migration, and lower proliferation. Microarray and ELISA confirmed elevated apoptotic, inflammatory, and oxidative stress pathways in DIO iPSC-ECs. Following hindlimb ischaemia, mice receiving intramuscular injections of DIO iPSC-ECs had significantly decreased reperfusion compared with mice injected with control healthy iPSC-ECs. Hindlimb sections revealed increased muscle atrophy and presence of inflammatory cells in mice receiving DIO iPSC-ECs. When pravastatin was co-administered to mice receiving DIO iPSC-ECs, a significant increase in reperfusion was observed; however, this beneficial effect was blunted by co-administration of the nitric oxide synthase inhibitor, Nω-nitro-l-arginine methyl ester. Conclusion This is the first study to provide evidence that iPSC-ECs from DIO mice exhibit signs of endothelial dysfunction and have suboptimal efficacy following transplantation in a hindlimb ischaemia model. These findings may have important implications for future treatment of PVD using iPSC-ECs in the obese population. PMID:25368203
Call, Jarrod A.; Chain, Kristopher H.; Martin, Kyle S.; Lira, Vitor A.; Okutsu, Mitsuharu; Zhang, Mei; Yan, Zhen
2015-01-01
Background Exercise training enhances extracellular superoxide dismutase (EcSOD) expression in skeletal muscle and elicits positive health outcomes in individuals with diabetes. The goal of this study was to determine if enhanced skeletal muscle expression of EcSOD is sufficient to mitigate streptozotocin (STZ)-induced diabetic cardiomyopathy (DCM). Methods and Results Exercise training promotes EcSOD expression in skeletal muscle and provides protection against DCM; however, it is not known if enhanced EcSOD expression in skeletal muscle plays a functional role in this protection. Here, we show that skeletal muscle-specific EcSOD transgenic mice (TG) are protected from cardiac hypertrophy, fibrosis and dysfunction under the condition of type-1 diabetes induced by STZ injection. We also show that both exercise training and muscle-specific transgenic expression of EcSOD result in elevated EcSOD protein in the blood and heart without increased transcription in the heart, suggesting enhanced expression of EcSOD from skeletal muscle redistributes to the heart. Importantly, cardiac tissue in TG mice displayed significantly reduced oxidative stress, aberrant cell signaling and inflammatory cytokine expression compared with wild type mice under the same diabetic condition. Conclusions Enhanced expression of EcSOD in skeletal muscle is sufficient to mitigate STZ-induced DCM through attenuation of oxidative stress, aberrant cell signaling and inflammation, suggesting a cross-organ mechanism by which exercise training improves cardiac function in diabetes. PMID:25504759
Jain, Surbhi; Gabunia, Khatuna; Kelemen, Sheri E.; Panetti, Tracee S.; Autieri, Michael V.
2010-01-01
OBJECTIVE The expression and effects of anti-inflammatory interleukins on endothelial cell (EC) activation and development of angiogenesis is uncharacterized. The purpose of this study is to characterize the expression and function of Interleukin-19 (IL-19), a recently described Th2 anti-inflammatory interleukin on EC pathophysiology. METHODS and RESULTS We demonstrate by immunohistochemistry and immunoblot that IL-19 is expressed in inflamed, but not normal human coronary endothelium, and can be induced in cultured human EC by serum and bFGF. IL-19 is mitogenic, chemotactic, and promotes cell EC spreading. IL-19 activates the signaling proteins STAT3, p44/42, and Rac1. In functional ex vivo studies, IL-19 promotes cord-like structure formation of cultured EC and also enhances microvessel sprouting in the mouse aortic ring assay. IL-19 induces tube formation in matrigel plugs in vivo. CONCLUSIONS These data are the first to report expression of the anti-inflammatory interleukin IL-19 in EC, and the first to indicate that IL-19 is mitogenic and chemotactic for EC, and can induce the angiogenic potential of EC. PMID:20966397
Cordero-Herrera, Isabel; Martín, María Angeles; Goya, Luis; Ramos, Sonia
2015-04-01
Oxidative stress plays a main role in the pathogenesis of type 2 diabetes mellitus. Cocoa and (-)-epicatechin (EC), a main cocoa flavanol, have been suggested to exert beneficial effects in type 2 diabetes mellitus because of their protective effects against oxidative stress and insulin-like properties. In this study, the protective effect of EC and a cocoa phenolic extract (CPE) against oxidative stress induced by a high-glucose challenge, which causes insulin resistance, was investigated on hepatic HepG2 cells. Oxidative status, phosphorylated mitogen-activated protein kinases (MAPKs), nuclear factor E2 related factor 2 (Nrf2) and p-(Ser)-IRS-1 expression, and glucose uptake were evaluated. EC and CPE regulated antioxidant enzymes and activated extracellular-regulated kinase and Nrf2. EC and CPE pre-treatment prevented high-glucose-induced antioxidant defences and p-MAPKs, and maintained Nrf2 stimulation. The presence of selective MAPK inhibitors induced changes in redox status, glucose uptake, p-(Ser)- and total IRS-1 levels that were observed in CPE-mediated protection. EC and CPE recovered redox status of insulin-resistant HepG2 cells, suggesting that the functionality in EC- and CPE-treated cells was protected against high-glucose-induced oxidative insult. CPE beneficial effects on redox balance and insulin resistance were mediated by targeting MAPKs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Halaidych, Oleh V; Freund, Christian; van den Hil, Francijna; Salvatori, Daniela C F; Riminucci, Mara; Mummery, Christine L; Orlova, Valeria V
2018-05-08
Several studies have reported endothelial cell (EC) derivation from human induced pluripotent stem cells (hiPSCs). However, few have explored their functional properties in depth with respect to line-to-line and batch-to-batch variability and how they relate to primary ECs. We therefore carried out accurate characterization of hiPSC-derived ECs (hiPSC-ECs) from multiple (non-integrating) hiPSC lines and compared them with primary ECs in various functional assays, which included barrier function using real-time impedance spectroscopy with an integrated assay of electric wound healing, endothelia-leukocyte interaction under physiological flow to mimic inflammation and angiogenic responses in in vitro and in vivo assays. Overall, we found many similarities but also some important differences between hiPSC-derived and primary ECs. Assessment of vasculogenic responses in vivo showed little difference between primary ECs and hiPSC-ECs with regard to functional blood vessel formation, which may be important in future regenerative medicine applications requiring vascularization. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Lin, Yang; Gil, Chang-Hyun; Yoder, Mervin C
2017-11-01
The emergence of induced pluripotent stem cell (iPSC) technology paves the way to generate large numbers of patient-specific endothelial cells (ECs) that can be potentially delivered for regenerative medicine in patients with cardiovascular disease. In the last decade, numerous protocols that differentiate EC from iPSC have been developed by many groups. In this review, we will discuss several common strategies that have been optimized for human iPSC-EC differentiation and subsequent studies that have evaluated the potential of human iPSC-EC as a cell therapy or as a tool in disease modeling. In addition, we will emphasize the importance of using in vivo vessel-forming ability and in vitro clonogenic colony-forming potential as a gold standard with which to evaluate the quality of human iPSC-EC derived from various protocols. © 2017 American Heart Association, Inc.
KOHLER, ERIN E.; BARUAH, JUGAJYOTI; URAO, NORIFUMI; USHIO-FUKAI, MASUKO; FUKAI, TOHRU; CHATTERJEE, ISHITA; WARY, KISHORE K.
2014-01-01
Endothelial cell (EC) dedifferentiation in relation to neovascularization is a poorly understood process. In this report we addressed the role of Wnt signaling in the mechanisms of neovascularization in adult tissues. Here, we show that a low-dose of 6-bromoindirubin-3′-oxime (BIO), a competitive inhibitor of Glycogen Synthase Kinase (GSK)-3β, induced the stabilization of β-catenin and its subsequent direct interaction with the transcription factor NANOG in the nucleus of ECs. This event induced loss of VE-cadherin from the adherens junctions, increased EC proliferation accompanied by asymmetric cell division (ACD), and formed cellular aggregates in a hanging drop assays indicating the acquisition of a dedifferentiated state. In a chromatin immunoprecipitation assay, nuclear NANOG protein bound to the NANOG- and VEGFR2-promoters in ECs, and the addition of BIO activated the NANOG-promoter-luciferase reporter system in a cell-based assay. Consequently, NANOG-knockdown decreased BIO-induced NOTCH-1 expression, thereby decreasing cell proliferation, ACD and neovascularization. In a Matrigel plug assay, BIO induced increased neovascularization, secondary to the presence of VEGF. Moreover, in a mouse model of hind limb ischemia, BIO augmented neovascularization that was coupled with increased expression of NOTCH-1 in ECs and increased smooth muscle α-actin (SMA)+ cell recruitment around the neovessels. Thus, these results show the ability of a low-dose of BIO to augment neovascularization secondary to VEGF, a process that was accompanied by a partial dedifferentiation of ECs via β-catenin and the NANOG signaling pathway. PMID:24496925
Vanetti, Claudia; Bifari, Francesco; Vicentini, Lucia M.
2017-01-01
Charcoal-stripped serum (CSS) is a well-accepted method to model effects of sex hormones in cell cultures. We have recently shown that human endothelial cells (ECs) fail to growth and to undergo in vitro angiogenesis when cultured in CSS. However, the mechanism(s) underlying the CSS-induced impairment of in vitro EC properties are still unknown. In addition, whether there is any sexual dimorphism in the CSS-induced EC phenotype remains to be determined. Here, by independently studying human male and female ECs, we found that CSS inhibited both male and female EC growth and in vitro angiogenesis, with a more pronounced effect on male EC sprouting. Reconstitution of CSS with 17-β estradiol, dihydrotestosterone, or the lipophilic thyroid hormone did not restore EC functions in both sexes. On the contrary, supplementation with palmitic acid or the acetyl-CoA precursor acetate significantly rescued the CSS-induced inhibition of growth and sprouting in both male and female ECs. We can conclude that the loss of metabolic precursors (e.g., fatty acids) rather than of hormones is involved in the impairment of in vitro proliferative and angiogenic properties of male and female ECs cultured with CSS. PMID:29232396
Ethyl carbamate induces cell death through its effects on multiple metabolic pathways.
Liu, Huichang; Cui, Bo; Xu, Yi; Hu, Chaoyang; Liu, Ying; Qu, Guorun; Li, Dawei; Wu, Yongning; Zhang, Dabing; Quan, Sheng; Shi, Jianxin
2017-11-01
Ethyl carbamate (EC), a multisite carcinogenic chemical causing tumors in various animal species, is probably carcinogenic to humans. However, information about the possible carcinogenic and toxicological effects of EC in humans is quite limited. Because EC is found in many dietary foods (such as fermented foods) and tobacco and its products, and exposure of humans to EC often occurs inevitably, its toxicological effects in humans need to be studied. This study was conducted to understand the metabolomic and transcriptomic changes in human hepatocellular carcinoma cells (HepG2) exposed to 100 mM EC for short term (4 h) and long term (12 h) period, respectively. The results revealed multiple influences of EC on the metabolome and transcriptome of HepG2 cells, which was exposure time-dependent and well correlated with the kinetic changes of cell viability and mortality. EC treatment affected multiple metabolic pathways, inducing oxidative stress, reducing detoxification capacity, depleting energy, decreasing reducing power, disrupting membrane integrity, and damaging DNA and protein. These metabolomic and transcriptomic biomarkers of EC on human cell metabolism identified in this study would facilitate further studies on the risk assessment and the mitigation of dietary EC. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Igarashi, Kaori; Sakimoto, Ippei; Kataoka, Keiko
The effects of ionizing radiation (IR) on tumor angiogenesis still remain largely unknown. In this study, we found that IR (8 Gy) induces a high-frequency (80-90%) senescence-like phenotype in vascular endothelial cells (ECs) undergoing exponential growth. This finding allowed us to characterize the IR-induced senescence-like (IRSL) phenotype by examining the gene expression profiles and in vitro angiogenic activities of these ECs. The expression levels of genes associated with cell cycle progression and DNA replication were remarkably reduced in the IRSL ECs. Additionally, the in vitro invasion and migration activities of these cells through Matrigel were significantly suppressed. We also foundmore » that confluent ECs exhibited a high-frequency IRSL phenotype when they were replated immediately after irradiation, whereas incubation in plateau-phase conditions reduced the induction of this phenotype and enhanced colony formation. The kinetics of DNA double-strand break repair, which showed a faster time course in confluent ECs than in growing ECs, may contribute to the protective mechanism associated with the IRSL phenotype. These results imply that the IRSL phenotype may be important for determining the angiogenic activity of ECs following irradiation. The present study should contribute to the understanding of the effects of IR on tumor angiogenesis.« less
Endothelial cells promote the proliferation of lymphocytes partly through the Wnt pathway via LEF-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shu-Hong; Nan, Ke-Jun, E-mail: nankj@163.com; Wang, Yao-Chun
The function of T cells and B cells is to recognize specific 'non-self' antigens, during a process known as antigen presentation. Once they have identified an invader, the cells generate specific responses that are tailored to maximally eliminate specific pathogens or pathogen-infected cells. Endothelial cells (ECs) can trigger the activation of T cells through their class I and class II MHC molecules. In this study, we examined the effect of ECs on the proliferation of lymphocytes. We report that the proliferation of T and B cells can be improved by interaction with ECs. LEF-1 is one of the main molecularmore » mediators in this process, and the inhibition of LEF-1 induces apoptosis. These results suggest that LEF-1 modulates positively the proliferation of lymphocytes induced by their interaction with ECs.« less
Chen, Wei; Xu, Yang; Zhang, Lingxia; Li, Ya; Zheng, Xiaodong
2016-01-01
Ethyl carbamate (EC), a probable human carcinogen, occurs widely in many fermented foods. Previous studies indicated that EC-induced cytotoxicity was associated with oxidative stress. Wild raspberries are rich in polyphenolic compounds, which possess potent antioxidant activity. This study was conducted to investigate the protective effect of wild raspberry extracts produced before (RE) and after in vitro simulated gastrointestinal digestion (RD) on EC-induced oxidative damage in Caco-2 cells. Our primary data showed that ethyl carbamate could result in cytotoxicity and genotoxicity in Caco-2 cells and raspberry extract after digestion (RD) may be more effective than that before digestion (RE) in attenuating toxicity caused by ethyl carbamate. Further investigation by fluorescence microscope revealed that RD may significantly ameliorate EC-induced oxidative damage by scavenging the overproduction of intracellular reactive oxygen species (ROS), maintaining mitochondrial function and preventing glutathione (GSH) depletion. In addition, HPLC-ESI-MS results showed that the contents of identified polyphenolic compounds (esculin, kaempferol O-hexoside, and pelargonidin O-hexoside) were remarkably increased after digestion, which might be related to the better protective effect of RD. Overall, our results demonstrated that raspberry extract undergoing simulated gastrointestinal digestion may improve the protective effect against EC-induced oxidative damage in Caco-2 cells. PMID:26788245
Belair, David G.; Whisler, Jordan A.; Valdez, Jorge; Velazquez, Jeremy; Molenda, James A.; Vickerman, Vernella; Lewis, Rachel; Daigh, Christine; Hansen, Tyler D.; Mann, David A.; Thomson, James A.; Griffith, Linda G.; Kamm, Roger D.; Schwartz, Michael P.; Murphy, William L.
2015-01-01
Here we describe a strategy to model blood vessel development using a well-defined iPSC-derived endothelial cell type (iPSC-EC) cultured within engineered platforms that mimic the 3D microenvironment. The iPSC-ECs used here were first characterized by expression of endothelial markers and functional properties that included VEGF responsiveness, TNF-α-induced upregulation of cell adhesion molecules (MCAM/CD146; ICAM1/CD54), thrombin-dependent barrier function, shear stress-induced alignment, and 2D and 3D capillary-like network formation in Matrigel. The iPSC-ECs also formed 3D vascular networks in a variety of engineering contexts, yielded perfusable, interconnected lumen when co-cultured with primary human fibroblasts, and aligned with flow in microfluidics devices. iPSC-EC function during tubule network formation, barrier formation, and sprouting was consistent with that of primary ECs, and the results suggest a VEGF-independent mechanism for sprouting, which is relevant to therapeutic anti-angiogenesis strategies. Our combined results demonstrate the feasibility of using a well-defined, stable source of iPSC-ECs to model blood vessel formation within a variety of contexts using standard in vitro formats. PMID:25190668
Kamalden, T A; Ji, D; Osborne, N N
2012-05-01
The aim of the present studies was to characterise cell death following inhibition of mitochondrial complex I with rotenone in a transformed cell line (RGC-5 cells) and to examine the neuroprotective properties of the flavonoids genistein, epigallocatechin gallate (EGCG), epicatechin (EC) and baicalin. Rotenone-induced cell death of RGC-5 cells results in a generation of reactive oxygen species, a breakdown of DNA, the translocation of membrane phosphatidylserine, an up-regulation of haemoxygenase-1 and is unaffected by necrostatin-1 (inhibitor of necroptosis), z-VAD-fmk (pan caspase inhibitor) or NU1025 (PARP inhibitor) but attenuated with SP600125 (JNK inhibitor). Rotenone-induced toxicity of RGC-5 cells also caused an activation of mitogen-activated kinases indicated by an up-regulation and translocation into mitochondria of p-c-Jun, pJNK and pp38. Exposure of RGC-5 cells to rotenone does not affect apoptosis inducing factor or significantly stimulate caspase-3 activity. EGCG and EC both significantly blunt rotenone toxicity of RGC-5 cells at concentrations of 50 μM while genistein and baicalin were without effect. Significantly, genistein is approximately 20 times less efficacious than EGCG (IC(50) 2.5 μM) and EC (IC(50) 1.5 μM) at inhibiting sodium nitroprusside-induced lipid peroxidation. These studies show that rotenone toxicity of RGC-5 cells is neither necroptosis nor caspase-dependent apoptosis but involves the activation of mitogen-activated kinases and is inhibited by a JNK inhibitor, EGCG and EC. Genistein attenuates lipid peroxidation less efficaciously than EC and EGCG and does not affect rotenone toxicity of RGC-5 cells.
Chen, Yanling; Reese, David H.
2016-01-01
Corexit-EC9500A and Corexit-EC9527A are two chemical dispersants that have been used to remediate the impact of the 2010 Deepwater Horizon oil spill. Both dispersants are composed primarily of organic solvents and surfactants and act by emulsifying the crude oil to facilitate biodegradation. The potential adverse effect of the Corexit chemicals on mammalian embryonic development remains largely unknown. Retinol (vitamin A) signaling, mediated by all-trans retinoic acid (RA), is essential for neural tube formation and the development of many organs in the embryo. The physiological levels of RA in cells and tissues are maintained by the retinol signaling pathway (RSP), which controls the biosynthesis of RA from dietary retinol and the catabolism of RA to polar metabolites for removal. RA is a potent activating ligand for the RAR/RXR nuclear receptors. Through RA and the receptors, the RSP modulates the expression of many developmental genes; interference with the RSP is potentially teratogenic. In this study the mouse P19 embryonal pluripotent cell, which contains a functional RSP, was used to evaluate the effects of the Corexit dispersants on retinol signaling and associated neuronal differentiation. The results showed that Corexit-EC9500A was more cytotoxic than Corexit-EC9527A to P19 cells. At non-cytotoxic doses, Corexit-EC9527A inhibited retinol-induced expression of the Hoxa1 gene, which encodes a transcription factor for the regulation of body patterning in the embryo. Such inhibition was seen in the retinol- and retinal- induced, but not RA-induced, Hoxa1 up-regulation, indicating that the Corexit chemicals primarily inhibit RA biosynthesis from retinal. In addition, Corexit-EC9527A suppressed retinol-induced P19 cell differentiation into neuronal cells, indicating potential neurotoxic effect of the chemicals under the tested conditions. The surfactant ingredient, dioctyl sodium sulfosuccinate (DOSS), may be a major contributor to the observed effect of Corexit-EC9527A in the cell. PMID:27684493
Simara, Pavel; Tesarova, Lenka; Rehakova, Daniela; Farkas, Simon; Salingova, Barbara; Kutalkova, Katerina; Vavreckova, Eva; Matula, Pavel; Matula, Petr; Veverkova, Lenka; Koutna, Irena
2018-01-01
New approaches in regenerative medicine and vasculogenesis have generated a demand for sufficient numbers of human endothelial cells (ECs). ECs and their progenitors reside on the interior surface of blood and lymphatic vessels or circulate in peripheral blood; however, their numbers are limited, and they are difficult to expand after isolation. Recent advances in human induced pluripotent stem cell (hiPSC) research have opened possible avenues to generate unlimited numbers of ECs from easily accessible cell sources, such as the peripheral blood. In this study, we reprogrammed peripheral blood mononuclear cells, human umbilical vein endothelial cells (HUVECs), and human saphenous vein endothelial cells (HSVECs) into hiPSCs and differentiated them into ECs. The phenotype profiles, functionality, and genome stability of all hiPSC-derived ECs were assessed and compared with HUVECs and HSVECs. hiPSC-derived ECs resembled their natural EC counterparts, as shown by the expression of the endothelial surface markers CD31 and CD144 and the results of the functional analysis. Higher expression of endothelial progenitor markers CD34 and kinase insert domain receptor (KDR) was measured in hiPSC-derived ECs. An analysis of phosphorylated histone H2AX (γH2AX) foci revealed that an increased number of DNA double-strand breaks upon reprogramming into pluripotent cells. However, differentiation into ECs restored a normal number of γH2AX foci. Our hiPSCs retained a normal karyotype, with the exception of the HSVEC-derived hiPSC line, which displayed mosaicism due to a gain of chromosome 1. Peripheral blood from adult donors is a suitable source for the unlimited production of patient-specific ECs through the hiPSC interstage. hiPSC-derived ECs are fully functional and comparable to natural ECs. The protocol is eligible for clinical applications in regenerative medicine, if the genomic stability of the pluripotent cell stage is closely monitored.
Chen, Wei; Xu, Yang; Zhang, Lingxia; Su, Hongming; Zheng, Xiaodong
2016-12-01
Ethyl Carbamate (EC) was detected in many fermented foods. Previous studies indicated that frequent exposure to ethyl carbamate may increase the risk to suffer from cancers. Blackberry is rich in polyphenols and possesses potent antioxidant activity. This study aims to investigate the protective effect of blackberry homogenates produced before (BH) and after in vitro simulated gastrointestinal digestion (BD) on EC-induced toxicity in Caco-2 cells. Our results showed that blackberry homogenates after digestion (BD) was more effective than that before digestion (BH) in ameliorating EC-induced toxicity in Caco-2 cells. Further investigation revealed that BD remarkably attenuated EC-induced toxicity through restoring mitochondrial function, inhibiting glutathione depletion and decreasing overproduction of intracellular reactive oxygen species. Additionally, LC-MS result implied that the better protective capacity of BD may be related to the increased content of two anthocyanins (cyanidin-3-glucoside and cyanidin-3-dioxalyglucoside). Overall, the present study may give implication to prevent EC-induced health problem. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhao, Lixing; Wu, Yeke; Tan, Lijun; Xu, Zhenrui; Wang, Jun; Zhao, Zhihe; Li, Xiaoyu; Li, Yu; Yang, Pu; Tang, Tian
2013-12-01
During periodontitis and orthodontic tooth movement, periodontal vasculature is severely impaired, leading to a hypoxic microenvironment of periodontal cells. However, the impact of hypoxia on periodontal cells is poorly defined. The present study investigates responses of cocultured endothelial cells (ECs) and periodontal ligament stem cells (PDLSCs) to hypoxia. Osteogenic differentiation, molecular characterization, and various behaviors of PDLSCs and human umbilical venous ECs under hypoxia were assessed by quantitative real-time reverse-transcription polymerase chain reaction, Western blot, and enzyme-linked immunosorbent assay. Moreover, the effect of ECs on PDLSC osteogenic differentiation was tested using NS398 (cyclooxygenase 2 blocker), SU5416 (vascular endothelial growth factor [VEGF] receptor inhibitor), AH6809, L-798106, and L-161982 (EP1/2/3/4 antagonists). First, hypoxia promoted osteogenic differentiation in PDLSCs and enhanced EC migration, whereas PD98059 (extracellular signal-regulated protein kinase [ERK] inhibitor) blocked, and cocultured ECs further enhanced, hypoxia-induced osteogenic differentiation. Second, NS398 impaired EC migration and prostaglandin E2 (PGE2)/VEGF release, whereas cocultured PDLSCs and exogenous PGE2 partially reversed it. Third, NS398 (pretreated ECs) decreased PGE2/VEGF concentrations. NS398-treated ECs and AH6809/SU5416-treated PDLSCs impaired cocultured EC-induced enhancement of PDLSC osteogenic differentiation. Hypoxia enhances ERK-mediated osteogenic differentiation in PDLSCs. Coculture with EC further augments PDLSC osteogenic differentiation via cyclooxygenase-2/PGE2/VEGF signaling.
Eun, So Young; Park, Sang Won; Lee, Jae Heun; Chang, Ki Churl; Kim, Hye Jung
2014-04-01
Lipoprotein oxidation, inflammation, and immune responses involving the vascular endothelium and immune cells contribute to the pathogenesis of atherosclerosis. In an atherosclerotic animal model, P2Y2 receptor (P2Y2R) upregulation and stimulation were previously shown to induce intimal hyperplasia and increased intimal monocyte infiltration. Thus, we investigated the role of P2Y2R in oxidized low-density lipoprotein (oxLDL)-mediated oxidative stress and the subsequent interaction between endothelial cells (ECs) and immune cells. The treatment of human ECs with oxLDL caused the rapid release of ATP (maximum after 5 min). ECs treated with oxLDL or the P2Y2R agonists ATP/UTP for 1h exhibited significant reactive oxygen species (ROS) production, but this effect was not observed in P2Y2R siRNA-transfected ECs. In addition, oxLDL and ATP/UTP both induced RAGE expression, which was P2Y2R dependent. Oxidized LDL- and ATP/UTP-mediated ROS production was diminished in RAGE siRNA-transfected ECs, suggesting that RAGE is an important mediator in P2Y2R-mediated ROS production. Treatment with oxLDL for 24h induced P2Y2R expression in the human monocyte cell line THP-1 and increased THP-1 cell migration toward ECs. The addition of apyrase, an enzyme that hydrolyzes nucleotides, or diphenyleneiodonium (DPI), a well-known inhibitor of NADPH oxidase, significantly inhibited the increase in cell migration caused by oxLDL. P2Y2R siRNA-transfected THP-1 cells did not migrate in response to oxLDL or ATP/UTP treatment, indicating a critical role for P2Y2R and nucleotide release in oxLDL-induced monocyte migration. Last, oxLDL and ATP/UTP effectively increased ICAM-1 and VCAM-1 expression and the subsequent binding of THP-1 cells to ECs, which was inhibited by pretreatment with DPI or by siRNA against P2Y2R or RAGE, suggesting that P2Y2R is an important mediator in oxLDL-mediated monocyte adhesion to ECs through the regulation of ROS-dependent adhesion molecule expression in ECs. Taken together, our findings suggest that P2Y2R could be a therapeutic target for the prevention of vascular disorders, including atherosclerosis. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakayama, Hironao; Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115; Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295
Class 3 semaphorins were discovered as a family of axon guidance molecules, but are now known to be involved in diverse biologic processes. In this study, we investigated the anti-angiogenic potential of SEMA3E and SEMA3F (SEMA3E&F) in infantile hemangioma (IH). IH is a common vascular tumor that involves both vasculogenesis and angiogenesis. Our lab has identified and isolated hemangioma stem cells (HemSC), glucose transporter 1 positive (GLUT1{sup +}) endothelial cells (designated as GLUT1{sup sel} cells) based on anti-GLUT1 magnetic beads selection and GLUT1-negative endothelial cells (named HemEC). We have shown that these types of cells play important roles in hemangiogenesis.more » We report here that SEMA3E inhibited HemEC migration and proliferation while SEMA3F was able to suppress the migration and proliferation in all three types of cells. Confocal microscopy showed that stress fibers in HemEC were reduced by SEMA3E&F and that stress fibers in HemSC were decreased by SEMA3F, which led to cytoskeletal collapse and loss of cell motility in both cell types. Additionally, SEMA3E&F were able to inhibit vascular endothelial growth factor (VEGF)-induced sprouts in all three types of cells. Further, SEMA3E&F reduced the level of p-VEGFR2 and its downstream p-ERK in HemEC. These results demonstrate that SEMA3E&F inhibit IH cell proliferation and suppress the angiogenic activities of migration and sprout formation. SEMA3E&F may have therapeutic potential to treat or prevent growth of highly proliferative IH. - Highlights: • SEMA3E&F reduce actin stress fibers and induce cytoskeletal collapse in HemEC. • SEMA3E&F inhibit angiogenic activities of HemEC. • SEMA3E&F can interrupt the VEGF-A-VEGFR2-ERK signaling pathway in HemEC. • Plexin D1 and NRP2 are induced during HemSC/GLUT1{sup sel}-to-EC differentiation.« less
Morris, John Henry; Nguyen, Tran; Nwadike, Abuoma; Geels, Mackenzie L; Kamp, Derrick L; Kim, Bo Ram; Boyer, Jean D; Shen, Anding
2017-02-01
In vitro, it is difficult to infect resting CD4 + T cells with human immunodeficiency virus type 1 (HIV), but infections readily occur in vivo. Endothelial cells (ECs) interact with resting CD4 + T cells in vivo, and we found previously that EC stimulation leads to productive and latent HIV infection of resting CD4 + T cells. In this study, we further characterize the interactions between EC and resting T cells. We found that resting CD4 + T cells did not require direct contact with EC for productive and/or latent infection to occur, indicating the involvement of soluble factors. Among 30 cytokines tested in a multiplex enzyme-linked immunosorbent assay (ELISA), we found that expressions for IL-6, IL-8, and CCL2 were much higher in EC-stimulated resting T cells than resting T cells cultured alone. IL-6 was found to be the soluble factor responsible for inducing productive infection of resting T cells, although direct contact with EC had an added effect. However, none of the cytokines tested, IL-6, IL-8, or CCL2, induced additional latent infection in resting T cells, suggesting that unidentified cytokines were involved. Intracellular molecules MURR1, c-Jun N-terminal kinase (JNK), and glucose transporter-1 (GLUT1) were previously shown in blocking HIV infection of resting CD4 + T cells. We found that the concentrations of these proteins were not significantly different in resting T cells before and after stimulation by EC; therefore, they are not likely involved in EC stimulation of resting CD4 + T cells, and a new mechanism is yet to be identified.
Morris, John Henry; Nguyen, Tran; Nwadike, Abuoma; Geels, Mackenzie L.; Kamp, Derrick L.; Kim, Bo Ram; Boyer, Jean D.
2017-01-01
Abstract In vitro, it is difficult to infect resting CD4+ T cells with human immunodeficiency virus type 1 (HIV), but infections readily occur in vivo. Endothelial cells (ECs) interact with resting CD4+ T cells in vivo, and we found previously that EC stimulation leads to productive and latent HIV infection of resting CD4+ T cells. In this study, we further characterize the interactions between EC and resting T cells. We found that resting CD4+ T cells did not require direct contact with EC for productive and/or latent infection to occur, indicating the involvement of soluble factors. Among 30 cytokines tested in a multiplex enzyme-linked immunosorbent assay (ELISA), we found that expressions for IL-6, IL-8, and CCL2 were much higher in EC-stimulated resting T cells than resting T cells cultured alone. IL-6 was found to be the soluble factor responsible for inducing productive infection of resting T cells, although direct contact with EC had an added effect. However, none of the cytokines tested, IL-6, IL-8, or CCL2, induced additional latent infection in resting T cells, suggesting that unidentified cytokines were involved. Intracellular molecules MURR1, c-Jun N-terminal kinase (JNK), and glucose transporter-1 (GLUT1) were previously shown in blocking HIV infection of resting CD4+ T cells. We found that the concentrations of these proteins were not significantly different in resting T cells before and after stimulation by EC; therefore, they are not likely involved in EC stimulation of resting CD4+ T cells, and a new mechanism is yet to be identified. PMID:27599784
Sivarapatna, Amogh; Ghaedi, Mahboobe; Le, Andrew V; Mendez, Julio J; Qyang, Yibing; Niklason, Laura E
2015-01-01
Endothelial cells (ECs) exist in different microenvironments in vivo, including under different levels of shear stress in arteries versus veins. Standard stem cell differentiation protocols to derive ECs and EC-subtypes from human induced pluripotent stem cells (hiPSCs) generally use growth factors or other soluble factors in an effort to specify cell fate. In this study, a biomimetic flow bioreactor was used to subject hiPSC-derived ECs (hiPSC-ECs) to shear stress to determine the impacts on phenotype and upregulation of markers associated with an anti-thrombotic, anti-inflammatory, arterial-like phenotype. The in vitro bioreactor system was able to efficiently mature hiPSC-ECs into arterial-like cells in 24 h, as demonstrated by qRT-PCR for arterial markers EphrinB2, CXCR4, Conexin40 and Notch1, as well protein-level expression of Notch1 intracellular domain (NICD). Furthermore, the exogenous addition of soluble factors was not able to fully recapitulate this phenotype that was imparted by shear stress exposure. The induction of these phenotypic changes was biomechanically mediated in the shear stress bioreactor. This biomimetic flow bioreactor is an effective means for the differentiation of hiPSC-ECs toward an arterial-like phenotype, and is amenable to scale-up for culturing large quantities of cells for tissue engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hossain, Monwar; Shimizu, Sakiko; Fujiwara, Haruhiko; Sakurai, Sho; Iwami, Masafumi
2006-08-01
The steroid hormone 20-hydroxyecdysone (20E) initiates insect molting and metamorphosis through binding with a heterodimer of two nuclear receptors, the ecdysone receptor (EcR) and ultraspiracle (USP). Expression of the specific isoforms EcR-A and EcR-B1 governs steroid-induced responses in the developing cells of the silkworm Bombyx mori. Here, analysis of EcR-A and EcR-B1 expression during larval-pupal development showed that both genes were up-regulated by 20E in the B. mori brain. Whole-mount in situ hybridization and immunohistochemistry revealed that EcR-A and EcR-B1 mRNAs and proteins were exclusively located in two pairs of lateral neurosecretory cells in the larval brain known as the prothoracicotropic hormone (PTTH)- producing cells (PTPCs). In the pupal brain, EcR-A and EcR-B1 expression was detected in tritocerebral cells and optic lobe cells in addition to PTPCs. As PTTH controls ecdysone secretion by the prothoracic gland, these results indicate that 20E-responsive PTPCs are the master cells of insect metamorphosis.
Ganapathy, Vengatesh; Manyanga, Jimmy; Brame, Lacy; McGuire, Dehra; Sadhasivam, Balaji; Floyd, Evan; Rubenstein, David A.; Ramachandran, Ilangovan; Wagener, Theodore
2017-01-01
Background Electronic cigarette (EC) aerosols contain unique compounds in addition to toxicants and carcinogens traditionally found in tobacco smoke. Studies are warranted to understand the public health risks of ECs. Objective The aim of this study was to determine the genotoxicity and the mechanisms induced by EC aerosol extracts on human oral and lung epithelial cells. Methods Cells were exposed to EC aerosol or mainstream smoke extracts and DNA damage was measured using the primer anchored DNA damage detection assay (q-PADDA) and 8-oxo-dG ELISA assay. Cell viability, reactive oxygen species (ROS) and total antioxidant capacity (TAC) were measured using standard methods. mRNA and protein expression were evaluated by RT-PCR and western blot, respectively. Results EC aerosol extracts induced DNA damage in a dose-dependent manner, but independently of nicotine concentration. Overall, EC aerosol extracts induced significantly less DNA damage than mainstream smoke extracts, as measured by q-PADDA. However, the levels of oxidative DNA damage, as indicated by the presence of 8-oxo-dG, a highly mutagenic DNA lesion, were similar or slightly higher after exposure to EC aerosol compared to mainstream smoke extracts. Mechanistically, while exposure to EC extracts significantly increased ROS, it decreased TAC as well as the expression of 8-oxoguanine DNA glycosylase (OGG1), an enzyme essential for the removal of oxidative DNA damage. Conclusions Exposure to EC aerosol extracts suppressed the cellular antioxidant defenses and led to significant DNA damage. These findings emphasize the urgent need to investigate the potential long-term cancer risk of exposure to EC aerosol for vapers and the general public. PMID:28542301
Qi, Jian Hua; Anand-Apte, Bela
2015-04-01
Tissue inhibitor of metalloproteinases-3 (TIMP3) is a tumor suppressor and a potent inhibitor of angiogenesis. TIMP3 exerts its anti-angiogenic effect via a direct interaction with vascular endothelial growth factor (VEGF) receptor-2 (KDR) and inhibition of proliferation, migration and tube formation of endothelial cells (ECs). TIMP3 has also been shown to induce apoptosis in some cancer cells and vascular smooth muscle cells via MMP inhibition and caspase-dependent mechanisms. In this study, we examined the molecular mechanisms of TIMP3-mediated apoptosis in endothelial cells. We have previously demonstrated that mice developed smaller tumors with decreased vascularity when injected with breast carcinoma cells overexpressing TIMP3, than with control breast carcinoma cells. TIMP3 overexpression resulted in increased apoptosis in human breast carcinoma (MDA-MB435) in vivo but not in vitro. However, TIMP3 could induce apoptosis in ECs in vitro. The apoptotic activity of TIMP3 in ECs appears to be independent of MMP inhibitory activity. Furthermore, the equivalent expression of functional TIMP3 promoted apoptosis and caspase activation in ECs expressing KDR (PAE/KDR), but not in ECs expressing PDGF beta-receptor (PAE/β-R). Surprisingly, the apoptotic activity of TIMP3 appears to be independent of caspases. TIMP3 inhibited matrix-induced focal adhesion kinase (FAK) tyrosine phosphorylation and association with paxillin and disrupted the incorporation of β3 integrin, FAK and paxillin into focal adhesion contacts on the matrix, which were not affected by caspase inhibitors. Thus, TIMP3 may induce apoptosis in ECs by triggering a caspase-independent cell death pathway and targeting a FAK-dependent survival pathway.
Defibrotide blunts the prothrombotic effect of thalidomide on endothelial cells.
Echart, C L; Somaini, S; Distaso, M; Palumbo, A; Richardson, P G; Fareed, J; Iacobelli, M
2012-01-01
Patients with multiple myeloma (MM) are at relatively high risk of developing thromboembolic events such deep venous thrombosis (DVT) where thalidomide therapy has been identified to increase this risk. Defibrotide (DF), a polydisperse oligonucleotide, showed previously to counteract the alterations in endothelial cells (ECs) induced by lipopolysaccharide. It prompts us to investigate the impact of thalidomide on ECs and whether DF modulates changes in fibrinolysis induced by thalidomide. In this in vitro study, MM by itself alters the profibrinolytic potential of ECs decreasing the tissue plasminogen activator (t-PA) and increasing the plasminogen activator inhibitor 1 (PAI-1) levels which is potentiated by thalidomide. Defibrotide was able to counteract these effects. Additionally, DF upregulated the t-PA and downregulated PAI-1 gene expression modulated by thalidomide. Defibrotide also protects ECs from thalidomide-mediated cell death without interfering with its antitumor effects. These findings support DF clinical use for the prevention of DVT induced by immunomodulatory drugs.
Giordano, Samantha; Zhao, Xiangmin; Chen, Yiu‐Fai; Litovsky, Silvio H.; Hage, Fadi G.; Townes, Tim M.; Sun, Chiao‐Wang; Wu, Li‐Chen; Oparil, Suzanne
2017-01-01
Abstract Recruitment of neutrophils and monocytes/macrophages to the site of vascular injury is mediated by binding of chemoattractants to interleukin (IL) 8 receptors RA and RB (IL8RA/B) C‐C chemokine receptors (CCR) 2 and 5 expressed on neutrophil and monocyte/macrophage membranes. Endothelial cells (ECs) derived from rat‐induced pluripotent stem cells (RiPS) were transduced with adenovirus containing cDNA of IL8RA/B and/or CCR2/5. We hypothesized that RiPS‐ECs overexpressing IL8RA/B (RiPS‐IL8RA/B‐ECs), CCR2/5 (RiPS‐CCR2/5‐ECs), or both receptors (RiPS‐IL8RA/B+CCR2/5‐ECs) will inhibit inflammatory responses and neointima formation in balloon‐injured rat carotid artery. Twelve‐week‐old male Sprague‐Dawley rats underwent balloon injury of the right carotid artery and intravenous infusion of (a) saline vehicle, (b) control RiPS‐Null‐ECs (ECs transduced with empty virus), (c) RiPS‐IL8RA/B‐ECs, (d) RiPS‐CCR2/5‐ECs, or (e) RiPS‐IL8RA/B+CCR2/5‐ECs. Inflammatory mediator expression and leukocyte infiltration were measured in injured and uninjured arteries at 24 hours postinjury by enzyme‐linked immunosorbent assay (ELISA) and immunohistochemistry, respectively. Neointima formation was assessed at 14 days postinjury. RiPS‐ECs expressing the IL8RA/B or CCR2/5 homing device targeted the injured arteries and decreased injury‐induced inflammatory cytokine expression, neutrophil/macrophage infiltration, and neointima formation. Transfused RiPS‐ECs overexpressing IL8RA/B and/or CCR2/5 prevented inflammatory responses and neointima formation after vascular injury. Targeted delivery of iPS‐ECs with a homing device to inflammatory mediators in injured arteries provides a novel strategy for the treatment of cardiovascular diseases. Stem Cells Translational Medicine 2017;6:1168–1177 PMID:28233474
Zomorrod, Mina Soufi; Kouhkan, Fatemeh; Soleimani, Masoud; Aliyan, Amir; Tasharrofi, Nooshin
2018-03-30
Angiogenesis is one of the essential hallmarks of cancer that is controlled by the balance between positive and negative regulators. FGFR1 signaling is crucial for the execution of bFGF-induced proliferation, migration, and tube formation of endothelial cells (ECs) and onset of angiogenesis on tumors. The purpose of this study is to identify whether or not miR-133 regulates FGFR1 expression and accordingly hypothesize if it plays a crucial role in modulating bFGF/FGFR1 activity in ECs and blocking tumor angiogenesis through targeting FGFR1. The influences of miR-133 overexpression on bFGF stimulated endothelial cells were assessed by cell growth curve, MTT assaying, tube formation, and migration assays. Forced expression of miR-133 caused significant reductions in bFGF-induced proliferation and migratory ability of ECs. MiR-133 Expression was negatively correlated with both mRNA and protein levels of FGFR1 in the transfected ECs isolated from peripheral blood. Moreover, overexpression of miR-133 drastically reduced the rate of cell division and disturbed capillary network formation of transfected ECs. These findings suggest that miR-133 plays an important function in bFGF-induced angiogenesis processes in ECs and provides a rationale for new therapeutic approaches to suppress tumor angiogenesis and cancer. Copyright © 2018. Published by Elsevier Inc.
Echeverría, Cesar; Montorfano, Ignacio; Hermosilla, Tamara; Armisén, Ricardo; Velásquez, Luis A; Cabello-Verrugio, Claudio; Varela, Diego; Simon, Felipe
2014-01-01
The pathogenesis of systemic inflammatory diseases, including endotoxemia-derived sepsis syndrome, is characterized by endothelial dysfunction. It has been demonstrated that the endotoxin lipopolysaccharide (LPS) induces the conversion of endothelial cells (ECs) into activated fibroblasts through endothelial-to-mesenchymal transition mechanism. Fibrogenesis is highly dependent on intracellular Ca2+ concentration increases through the participation of calcium channels. However, the specific molecular identity of the calcium channel that mediates the Ca2+ influx during endotoxin-induced endothelial fibrosis is still unknown. Transient receptor potential melastatin 7 (TRPM7) is a calcium channel that is expressed in many cell types, including ECs. TRPM7 is involved in a number of crucial processes such as the conversion of fibroblasts into activated fibroblasts, or myofibroblasts, being responsible for the development of several characteristics of them. However, the role of the TRPM7 ion channel in endotoxin-induced endothelial fibrosis is unknown. Thus, our aim was to study whether the TRPM7 calcium channel participates in endotoxin-induced endothelial fibrosis. Using primary cultures of ECs, we demonstrated that TRPM7 is a crucial protein involved in endotoxin-induced endothelial fibrosis. Suppression of TRPM7 expression protected ECs from the fibrogenic process stimulated by endotoxin. Downregulation of TRPM7 prevented the endotoxin-induced endothelial markers decrease and fibrotic genes increase in ECs. In addition, TRPM7 downregulation abolished the endotoxin-induced increase in ECM proteins in ECs. Furthermore, we showed that intracellular Ca2+ levels were greatly increased upon LPS challenge in a mechanism dependent on TRPM7 expression. These results demonstrate that TRPM7 is a key protein involved in the mechanism underlying endotoxin-induced endothelial fibrosis.
Teoh-Fitzgerald, ML; Fitzgerald, MP; Zhong, W; Askeland, RW; Domann, FE
2013-01-01
Expression of the antioxidant enzyme EcSOD in normal human mammary epithelial cells was not recognized until recently. Although expression of EcSOD was not detectable in non-malignant human mammary epithelial cells (HMEC) cultured in conventional two-dimensional (2D) culture conditions, EcSOD protein expression was observed in normal human breast tissues, suggesting that the 2D-cultured condition induces a repressive status of EcSOD gene expression in HMEC. With the use of laminin-enriched extracellular matrix (lrECM), we were able to detect expression of EcSOD when HMEC formed polarized acinar structures in a 3D-culture condition. Repression of the EcSOD-gene expression was again seen when the HMEC acini were sub-cultured as a monolayer, implying that lrECM-induced acinar morphogenesis is essential in EcSOD-gene activation. We have further shown the involvement of DNA methylation in regulating EcSOD expression in HMEC under these cell culture conditions. EcSOD mRNA expression was strongly induced in the 2D-cultured HMEC after treatment with a DNA methyltransferase inhibitor. In addition, epigenetic analyses showed a decrease in the degree of CpG methylation in the EcSOD promoter in the 3D versus 2D-cultured HMEC. More importantly, >80% of clinical mammary adenocarcinoma samples showed significantly decreased EcSOD mRNA and protein expression levels compared with normal mammary tissues and there is an inverse correlation between the expression levels of EcSOD and the clinical stages of breast cancer. Combined bisulfite restriction analysis analysis of some of the tumors also revealed an association of DNA methylation with the loss of EcSOD expression in vivo. Furthermore, overexpression of EcSOD inhibited breast cancer metastasis in both the experimental lung metastasis model and the syngeneic mouse model. This study suggests that epigenetic silencing of EcSOD may contribute to mammary tumorigenesis and that restoring the extracellular superoxide scavenging activity could be an effective strategy for breast cancer treatment. PMID:23318435
Caspase-1 Inflammasome Activation Mediates Homocysteine-Induced Pyrop-Apoptosis in Endothelial Cells
Xi, Hang; Zhang, Yuling; Xu, Yanjie; Yang, William Y; Jiang, Xiaohua; Sha, Xiaojin; Cheng, Xiaoshu; Wang, Jingfeng; Qin, Xuebin; Yu, Jun; Ji, Yong; Yang, Xiaofeng; Wang, Hong
2016-01-01
Rationale Endothelial injury is an initial mechanism mediating cardiovascular disease. Objective Here, we investigated the effect of hyperhomocysteinemia (HHcy) on programed cell death in endothelial cells (EC). Methods and Results We established a novel flow-cytometric gating method to define pyrotosis (Annexin V−/Propidium iodide+). In cultured human EC, we found that: 1). Hcy and Lipopolysaccharide (LPS) individually and synergistically induced inflammatory pyroptotic and non-inflammatory apoptotic cell death. 2). Hcy/LPS induced caspase-1 activation prior to caspase-8, -9, -3 activations. 3). Caspase-1/3 inhibitors rescued Hcy/LPS-induced pyroptosis/apoptosis, but caspase-8/9 inhibitors had differential rescue effect. 4). Hcy/LPS induced NLRP3 protein, caused NLRP3-containing inflammasome assembly, caspase-1 activation and IL-1β cleavage/activation. 5). Hcy/LPS elevated intracellular reactive oxidative species (ROS). 6). Intracellular oxidative gradient determined cell death destiny as intermediate intracellular ROS levels are associated with pyroptosis, whereas, high ROS corresponded to apoptosis. 7). Hcy/LPS induced mitochondrial membrane potential collapse and cytochrome-c release, and increased Bax/Bcl-2 ratio which were attenuated by antioxidants and caspase-1 inhibitor. 8). Antioxidants extracellular superoxide dismutase and catalase prevented Hcy/LPS-induced caspase-1 activation, mitochondrial dysfunction and pyroptosis/apoptosis. In cystathionine β-synthase deficient (Cbs−/−) mice, severe HHcy induced caspase-1 activation in isolated lung EC and caspase-1 expression in aortic endothelium, and elevated aortic caspase-1,9 protein/activity and Bax/Bcl-2 ratio in Cbs−/− aorta and HUVEC. Finally, Hcy-induced DNA fragmentation was reversed in caspase-1−/− EC. HHcy-induced aortic endothelial dysfunction was rescued in caspase-1−/− and NLRP3−/− mice. Conclusion HHcy preferentially induces EC pyroptosis via caspase-1-dependent inflammasome activation leading to endothelial dysfunction. We termed caspase-1 responsive pyroptosis and apoptosis as pyrop-apoptosis. PMID:27006445
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clarkin, Claire E.; Garonna, Elena; Pitsillides, Andrew A.
In bone, angiogenesis must be initiated appropriately, but limited once remodelling or repair is complete. Our recent findings have supported a role for prostaglandins (PG), known modulators of osteoblast (OB) and endothelial cell (EC) behaviour, in facilitating VEGF-mediated paracrine communication from OBs to 'remotely located' ECs, but the mechanism(s) regulating OB:EC crosstalk when these cells are closely opposed are undefined. In this study we have examined: (i) the effects of exogenous PGE{sub 2} on VEGF-driven events in ECs, and (ii) the role of endogenous COX-2-derived prostanoids in mediating communication between intimately opposed OBs and ECs in direct contact. Exposure ofmore » ECs to PGE{sub 2} increased ERK1/2 phosphorylation, COX-2 induction, 6-keto-PGF{sub 1{alpha}} release and EC proliferation. In contrast, PGE{sub 2} attenuated VEGF{sub 165}-induced VEGFR2/Flk1 phosphorylation, ERK1/2 activation and proliferation of ECs, suggesting that exogenous PGE{sub 2} restricts the actions of VEGF. However, the COX-2-selective inhibitor, NS398, also attenuated VEGF-induced proliferation, implying a distinct role for endogenous COX-2 activity in regulating EC behaviour. To examine the effect of OB:EC proximity and the role of COX-2 products further, we used a confrontational co-culture model. These studies showed that COX-2 blockade with NS398 enhanced EC-dependent increases in OB differentiation, that this effect was reversed by exogenous PGH{sub 2} (immediate COX-2 product), and that exogenous VEGF did not influence EC-dependent OB differentiation under these conditions. Our findings indicate that locally produced prostanoids may serve distinct roles depending on OB:EC proximity and negatively modulate VEGF-mediated changes in EC behaviour when these cells are closely opposed to control angiogenesis during bone (re)modelling.« less
Osawa, Masaki; Masuda, Michitaka; Kusano, Ken-ichi; Fujiwara, Keigi
2002-08-19
Fluid shear stress (FSS) induces many forms of responses, including phosphorylation of extracellular signal-regulated kinase (ERK) in endothelial cells (ECs). We have earlier reported rapid tyrosine phosphorylation of platelet endothelial cell adhesion molecule-1 (PECAM-1) in ECs exposed to FSS. Osmotic changes also induced similar PECAM-1 and ERK phosphorylation with nearly identical kinetics. Because both FSS and osmotic changes should mechanically perturb the cell membrane, they might activate the same mechanosignaling cascade. When PECAM-1 is tyrosine phosphorylated by FSS or osmotic changes, SHP-2 binds to it. Here we show that ERK phosphorylation by FSS or osmotic changes depends on PECAM-1 tyrosine phosphorylation, SHP-2 binding to phospho-PECAM-1, and SHP-2 phosphatase activity. In ECs under flow, detectable amounts of SHP-2 and Gab1 translocated from the cytoplasm to the EC junction. When magnetic beads coated with antibodies against the extracellular domain of PECAM-1 were attached to ECs and tugged by magnetic force for 10 min, PECAM-1 associated with the beads was tyrosine phosphorylated. ERK was also phosphorylated in these cells. Binding of the beads by itself or pulling on the cell surface using poly-l-coated beads did not induce phosphorylation of PECAM-1 and ERK. These results suggest that PECAM-1 is a mechanotransduction molecule.
Cerium oxide nanoparticles protect endothelial cells from apoptosis induced by oxidative stress.
Chen, Shizhu; Hou, Yingjian; Cheng, Gong; Zhang, Cuimiao; Wang, Shuxiang; Zhang, Jinchao
2013-07-01
Oxidative stress is well documented to cause injury to endothelial cells (ECs), which in turn trigger cardiovascular diseases. Previous studies revealed that cerium oxide nanoparticles (nanoceria) had antioxidant property, but the protective effect of nanoceria on ROS injury to ECs and cardiovascular diseases has not been reported. In the current study, we investigated the protective effect and underlying mechanisms of nanoceria on oxidative injury to ECs. The cell viability, lactate dehydrogenase release, cellular uptake, intracellular localization and reactive oxygen species (ROS) levels, endocytosis mechanism, cell apoptosis, and mitochondrial membrane potential were performed. The results indicated that nanoceria had no cytotoxicity on ECs but had the ability to prevent injury by H2O2. Nanoceria could be uptaken into ECs through caveolae- and clathrin-mediated endocytosis and distributed throughout the cytoplasma. The internalized nanoceria effectively attenuated ROS overproduction induced by H2O2. Apoptosis was also alleviated greatly by nanoceria pretreatment. These results may be helpful for more rational application of nanoceria in biomedical fields in the future.
Chen, Yanling; Reese, David H.; Kelly, Gregory M.
2016-09-29
Corexit-EC9500A and Corexit-EC9527A are two chemical dispersants that have been used to remediate the impact of the 2010 Deepwater Horizon oil spill. Both dispersants are composed primarily of organic solvents and surfactants and act by emulsifying the crude oil to facilitate biodegradation. The potential adverse effect of the Corexit chemicals on mammalian embryonic development remains largely unknown. Retinol (vitamin A) signaling, mediated by all-trans retinoic acid (RA), is essential for neural tube formation and the development of many organs in the embryo. The physiological levels of RA in cells and tissues are maintained by the retinol signaling pathway (RSP), whichmore » controls the biosynthesis of RA from dietary retinol and the catabolism of RA to polar metabolites for removal. RA is a potent activating ligand for the RAR/RXR nuclear receptors. Through RA and the receptors, the RSP modulates the expression of many developmental genes; interference with the RSP is potentially teratogenic. In this study the mouse P19 embryonal pluripotent cell, which contains a functional RSP, was used to evaluate the effects of the Corexit dispersants on retinol signaling and associated neuronal differentiation. The results showed that Corexit-EC9500A was more cytotoxic than Corexit-EC9527A to P19 cells. At non-cytotoxic doses, Corexit-EC9527A inhibited retinol-induced expression of the Hoxa1 gene, which encodes a transcription factor for the regulation of body patterning in the embryo. Such inhibition was seen in the retinol- and retinal- induced, but not RA-induced, Hoxa1 up-regulation, indicating that the Corexit chemicals primarily inhibit RA biosynthesis from retinal. In addition, Corexit-EC9527A suppressed retinol-induced P19 cell differentiation into neuronal cells, indicating potential neurotoxic effect of the chemicals under the tested conditions. In conclusion, the surfactant ingredient, dioctyl sodium sulfosuccinate (DOSS), may be a major contributor to the observed effect of Corexit-EC9527A in the cell.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yanling; Reese, David H.; Kelly, Gregory M.
Corexit-EC9500A and Corexit-EC9527A are two chemical dispersants that have been used to remediate the impact of the 2010 Deepwater Horizon oil spill. Both dispersants are composed primarily of organic solvents and surfactants and act by emulsifying the crude oil to facilitate biodegradation. The potential adverse effect of the Corexit chemicals on mammalian embryonic development remains largely unknown. Retinol (vitamin A) signaling, mediated by all-trans retinoic acid (RA), is essential for neural tube formation and the development of many organs in the embryo. The physiological levels of RA in cells and tissues are maintained by the retinol signaling pathway (RSP), whichmore » controls the biosynthesis of RA from dietary retinol and the catabolism of RA to polar metabolites for removal. RA is a potent activating ligand for the RAR/RXR nuclear receptors. Through RA and the receptors, the RSP modulates the expression of many developmental genes; interference with the RSP is potentially teratogenic. In this study the mouse P19 embryonal pluripotent cell, which contains a functional RSP, was used to evaluate the effects of the Corexit dispersants on retinol signaling and associated neuronal differentiation. The results showed that Corexit-EC9500A was more cytotoxic than Corexit-EC9527A to P19 cells. At non-cytotoxic doses, Corexit-EC9527A inhibited retinol-induced expression of the Hoxa1 gene, which encodes a transcription factor for the regulation of body patterning in the embryo. Such inhibition was seen in the retinol- and retinal- induced, but not RA-induced, Hoxa1 up-regulation, indicating that the Corexit chemicals primarily inhibit RA biosynthesis from retinal. In addition, Corexit-EC9527A suppressed retinol-induced P19 cell differentiation into neuronal cells, indicating potential neurotoxic effect of the chemicals under the tested conditions. In conclusion, the surfactant ingredient, dioctyl sodium sulfosuccinate (DOSS), may be a major contributor to the observed effect of Corexit-EC9527A in the cell.« less
Almomen, Aliyah; Jarboe, Elke A.; Dodson, Mark K.; Peterson, C. Matthew; Owen, Shawn C.; Janát-Amsbury, Margit M.
2016-01-01
Purpose The increasing incidence of endometrial cancer (EC), in younger age at diagnosis, calls for new tissue-sparing treatment options. This work aims to evaluate the potential of imiquimod (IQ) in the treatment of low-grade EC. Methods Effects of IQ on the viabilities of Ishikawa and HEC-1A cells were evaluated using MTT assay. The ability of IQ to induce apoptosis was evaluated by testing changes in caspase 3/7 levels and expression of cleaved caspase-3, using luminescence assay and western blot. Apoptosis was confirmed by flow cytometry and the expression of cleaved PARP. Western blot was used to evaluate the effect of IQ on expression levels of Bcl-2, Bcl-xL, and BAX. Finally, the in vivo efficacy of IQ was tested in an EC mouse model. Results There was a decrease in EC cell viability following IQ treatment as well as increased caspase 3/7 activities, cleaved caspase-3 expression, and Annexin-V/ 7AAD positive cell population. Western blot results showed the ability of IQ in cleaving PARP, decreasing Bcl-2 and Bcl-xL expressions, but not affecting BAX expression. In vivo study demonstrated IQ’s ability to inhibit EC tumor growth and progression without significant toxicity. Conclusions IQ induces apoptosis in low-grade EC cells in vitro, probably through its direct effect on Bcl-2 family protein expression. In, vivo, IQ attenuates EC tumor growth and progression, without an obvious toxicity. Our study provides the first building block for the potential role of IQ in the non-surgical management of low-grades EC and encouraging further investigations. PMID:27245465
Peng, Yudong; Meng, Kai; Jiang, Lili; Zhong, Yucheng; Yang, Yong; Lan, Yin
2017-01-01
Endothelial cells’ (EC) injury is a major step for the pathological progression of atherosclerosis. Recent study demonstrated that thymic stromal lymphopoietin (TSLP) exerts a protective role in atherosclerosis. However, the effect of TSLP and the exact molecular mechanism involved in EC remains unknown. In the present study, we found that long noncoding RNA (lncRNA) HOTAIR was much lower in EC from atherosclerotic plaque. Functional assays showed that HOTAIR facilitated cell proliferation and migration, and suppressed apoptosis in EC. Moreover, we demonstrated that TSLP functions upstream of HOTAIR. We found that serum level of TSLP was decreased in atherosclerosis patients and serum TSLP level positively correlated with HOTAIR expression in EC. Further investigation demonstrated that TSLP activated HOTAIR transcription through PI3K/AKT-IRF1 pathway and then regulates the EC proliferation and migration. TSLP-HOTAIR axis also plays a protective role in low-density lipoprotein (ox-LDL)-induced EC injury. Taken together, TSLP-HOTAIR may be a potential therapy for EC dysfunction in atherosclerosis. PMID:28615347
Mitsuuchi, Y; Powell, D R; Gallo, J M
2006-02-09
A second generation genetically-engineered cell-based drug delivery system, referred to as apoptotic-induced drug delivery (AIDD), was developed using endothelial cells (ECs) that undergo apoptosis upon binding of vascular endothelial growth factor (VEGF) to a Flk-1:Fas fusion protein (FF). This new AIDD was redesigned using mouse brain derived ECs, bEnd3 cells, and an adenovirus vector in order to enhance and control the expression of FF. The FF was tagged with a HA epitope (FFHA) and designed to be coexpressed with green fluorescence protein (GFP) by the regulation of cytomegalovirus promoters in the adenovirus vector. bEnd3 cells showed favorable coexpression of FFHA and GFP consistent with the multiplicity of infection of the adenovirus. Immunofluorescence analysis demonstrated that FFHA was localized at the plasma membrane, whereas GFP was predominantly located in the cytoplasm of ECs. Cell death was induced by VEGF, but not by platelet derived growth factor or fibroblast growth factor in a dose-dependent manner (range 2-20 ng/ml), and revealed caspase-dependent apoptotic profiles. The FFHA expressing bEnd3 cells underwent apoptosis when cocultured with a glioma cell (SF188V+) line able to overexpress VEGF. The combined data indicated that the FFHA adenovirus system can induce apoptotic signaling in ECs in response to VEGF, and thus, is an instrumental modification to the development of AIDD.
Patterson, C E; Stasek, J E; Schaphorst, K L; Davis, H W; Garcia, J G
1995-06-01
We have previously characterized several G proteins in endothelial cells (EC) as substrates for the ADP-ribosyltransferase activity of both pertussis (PT) and cholera toxin and described the modulation of key EC physiological responses, including gap formation and barrier function, by these toxins. In this study, we investigated the mechanisms involved in PT-mediated regulation of bovine pulmonary artery endothelial cells barrier function. PT caused a dose-dependent increase in albumin transfer, dependent upon action of the holotoxin, since neither the heat-inactivated PT, the isolated oligomer, nor the protomer induced EC permeability. PT-induced gap formation and barrier dysfunction were additive to either thrombin- or thrombin receptor-activating peptide-induced permeability, suggesting that thrombin and PT utilize distinct mechanisms. PT did not result in Ca2+ mobilization or alter either basal or thrombin-induced myosin light chain phosphorylation. However, PT stimulated protein kinase C (PKC) activation, and both PKC downregulation and PKC inhibition attenuated PT-induced permeability, indicating that PKC activity is involved in PT-induced barrier dysfunction. Like thrombin-induced permeability, the PT effect was blocked by prior increases in adenosine 3',5'-cyclic monophosphate. Thus PT-catalyzed ADP-ribosylation of a G protein (possibly other than Gi) may regulate cytoskeletal protein interactions, leading to EC barrier dysfunction.
Endoplasmic reticulum stress sensitizes human esophageal cancer cell to radiation.
Pang, Xue-Li; He, Gang; Liu, Yang-Bo; Wang, Yan; Zhang, Bo
2013-03-21
To investigate the role of endoplasmic reticulum (ER) stress in cancer radiotherapy and its molecular mechanism. Tunicamycin (TM) was applied to induce ER stress in human esophageal cancer cell line EC109, and the radiosensitization effects were detected by acute cell death and clonogenic survival assay. Cell cycle arrest induced by TM was determined by flow cytometric analysis after the cellular DNA content was labeled with propidium iodide. Apoptosis of EC109 cells induced by TM was detected by annexin V staining and Western blotting of caspase-3 and its substrate poly ADP-ribose polymerase. Autophagic response was determined by acridine orange (AO) staining and Western blotting of microtubule-associated protein-1 light chain-3 (LC3) and autophagy related gene 5 (ATG5). In order to test the biological function of autophagy, specific inhibitor or Beclin-1 knockdown was used to inhibit autophagy, and its effect on cell apoptosis was thus detected. Additionally, involvement of the phosphatidylinositol-3 kinase (PI3K)/Akt/mammalian target of the rapamycin (mTOR) pathway was also detected by Western blotting. Finally, male nude mice inoculated subcutaneously with EC109 cells were used to confirm cell model observations. Our results showed that TM treatment enhanced cell death and reduced the colony survival fraction induced by ionizing radiation (IR), which suggested an obvious radiosensitization effect of TM. Moreover, TM and IR combination treatment led to a significant increase of G2/M phase and apoptotic cells, compared with IR alone. We also observed an increase of AO positive cells, and the protein level of LC3-II and ATG5 was induced by TM treatment, which suggested an autophagic response in EC109 cells. However, inhibition of autophagy by using a chemical inhibitor or Beclin-1 silencing led to increased cell apoptosis and decreased cell viability, which suggested a cytoprotective role of autophagy in stressed EC109 cells. Furthermore, TM treatment also activated mTORC1, and in turn reduced Akt phosphorylation, which suggested the PI3K/Akt/mTOR signal pathway was involved in the TM-induced autophagic response in EC109 cells. Tumor xenograft results also showed synergistic retarded tumor growth by TM treatment and IR, as well as the involvement of the PI3K/Akt/mTOR pathway. Our data showed that TM treatment sensitized human esophageal cancer cells to radiation via apoptosis and autophagy both in vitro and in vivo.
Subramaniam, Kavita S; Omar, Intan Sofia; Kwong, Soke Chee; Mohamed, Zahurin; Woo, Yin Ling; Mat Adenan, Noor Azmi; Chung, Ivy
2016-01-01
Cancer-associated fibroblasts (CAFs) secrete various pro-tumorigenic cytokines, yet the role of these cytokines in the progression of endometrial cancer remains unclear. We found that CAFs isolated from human endometrial cancer (EC) tissues secreted high levels of interleukin-6 (IL-6), which promotes EC cell proliferation in vitro. Neutralizing IL-6 in CAF-conditioned media reduced (47% inhibition) while IL-6 recombinant protein increased cell proliferation (~2.4 fold) of both EC cell lines and primary cultures. IL-6 receptors (IL-6R and gp130) were expressed only in EC epithelial cells but not in CAF, indicating a one-way paracrine signaling. In the presence of CAF-conditioned media, Janus kinase/signal transducers and activators of transcription (JAK/STAT3) pathway was activated in EC cells. Treatment with JAK and STAT3 specific inhibitors, AD412 and STATTIC, respectively, significantly abrogated CAF-mediated cell proliferation, indicating the role of IL-6 activation in EC cell proliferation. We further showed that one of STAT-3 target genes, c-Myc, was highly induced in EC cells after exposure to CAF-conditioned medium at both mRNA (>105-fold vs. control) and protein level (>2-fold vs. control). EC cell proliferation was dependent on c-Myc expression, as RNAi-mediated c-Myc down-regulation led to a significant 46% reduction in cell viability when compared with scrambled control. Interestingly, CAF-conditioned media failed to promote proliferation in EC cells with reduced c-Myc expression, suggesting that CAF-mediated cell proliferation was also dependent on c-Myc expression. Subcutaneous tumor xenograft model showed that EC cells grew at least 1.4 times larger when co-injected with CAF, when compared to those injected with EC cells alone. Mice injected with EC cells with down-regulated c-Myc expression, however, showed at least 2.5 times smaller tumor compared to those in control group. Notably, there was no increase of tumor size when co-injected with CAFs. Further immunohistochemical staining on human tissues showed positive expression of IL-6 receptors, phosphorylated-STAT3 and c-Myc in human EC tissues with less signals in benign endometrium. Taken together, our data suggests that IL-6 secreted by CAF induces c-Myc expression to promote EC proliferation in vitro and in vivo. IL-6 pathway can be a potential target to disrupt tumor-stroma interaction in endometrial cancer progression.
MicroRNAs expression in ox-LDL treated HUVECs: MiR-365 modulates apoptosis and Bcl-2 expression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, Bing; Xiao, Bo; Liang, Desheng
Highlights: {yields} We evaluated the role of miRNAs in ox-LDL induced apoptosis in ECs. {yields} We found 4 up-regulated and 11 down-regulated miRNAs in apoptotic ECs. {yields} Target genes of the dysregulated miRNAs regulate ECs apoptosis and atherosclerosis. {yields} MiR-365 promotes ECs apoptosis via suppressing Bcl-2 expression. {yields} MiR-365 inhibitor alleviates ECs apoptosis induced by ox-LDL. -- Abstract: Endothelial cells (ECs) apoptosis induced by oxidized low-density lipoprotein (ox-LDL) is thought to play a critical role in atherosclerosis. MicroRNAs (miRNAs) are a class of noncoding RNAs that posttranscriptionally regulate the expression of genes involved in diverse cell functions, including differentiation, growth,more » proliferation, and apoptosis. However, whether miRNAs are associated with ox-LDL induced apoptosis and their effect on ECs is still unknown. Therefore, this study evaluated potential miRNAs and their involvement in ECs apoptosis in response to ox-LDL stimulation. Microarray and qRT-PCR analysis performed on human umbilical vein endothelial cells (HUVECs) exposed to ox-LDL identified 15 differentially expressed (4 up- and 11 down-regulated) miRNAs. Web-based query tools were utilized to predict the target genes of the differentially expressed miRNAs, and the potential target genes were classified into different function categories with the gene ontology (GO) term and KEGG pathway annotation. In particular, bioinformatics analysis suggested that anti-apoptotic protein B-cell CLL/lymphoma 2 (Bcl-2) is a target gene of miR-365, an apoptomir up-regulated by ox-LDL stimulation in HUVECs. We further showed that transfection of miR-365 inhibitor partly restored Bcl-2 expression at both mRNA and protein levels, leading to a reduction of ox-LDL-mediated apoptosis in HUVECs. Taken together, our findings indicate that miRNAs participate in ox-LDL-mediated apoptosis in HUVECs. MiR-365 potentiates ox-LDL-induced ECs apoptosis by regulating the expression of Bcl-2, suggesting potential novel therapeutic targets for atherosclerosis.« less
Okamoto, Takayuki; Akita, Nobuyuki; Nagai, Masashi; Hayashi, Tatsuya; Suzuki, Koji
2014-01-01
6-Methylsulfinylhexyl isothiocyanate (6-MSITC) is an active compound in wasabi (Wasabia japonica Matsum.), which is one of the most popular spices in Japan. 6-MSITC suppresses lipopolysaccharide-induced macrophage activation, arachidonic- or adenosine diphosphate-induced platelet activation, and tumor cell proliferation. These data indicate that 6-MSITC has several biological activities involving anti-inflammatory, anti-coagulant, and anti-apoptosis properties. Endothelial cells (ECs) maintain vascular homeostasis and play crucial roles in crosstalk between blood coagulation and vascular inflammation. In this study, we determined the anti-coagulant and anti-inflammatory effects of 6-MSITC on human umbilical vein endothelial cells (HUVECs). 6-MSITC slightly reduced tissue factor expression, but did not alter von Willebrand factor release in activated HUVECs. 6-MSITC modulated the generation of activated protein C, which is essential for negative regulation of blood coagulation, on normal ECs. In addition, 6-MSITC reduced tumor necrosis factor-α (TNF-α)-induced interleukin-6 and monocyte chemoattractant protein-1 expression. 6-MSITC markedly attenuated TNF-α-induced adhesion of human monoblast U937 cells to HUVECs and reduced vascular cell adhesion molecule-1 and E-selectin mRNA expression in activated ECs. These results showed that 6-MSITC modulates EC function and suppresses cell adhesion. This study provides new insight into the mechanism of the anti-inflammatory effect of 6-MSITC, suggesting that 6-MSITC has therapeutic potential as a treatment for vasculitis and vascular inflammation.
Chen, M; Zhang, Y; Yu, V C; Chong, Y-S; Yoshioka, T; Ge, R
2014-05-01
Isthmin (ISM) is a secreted 60-kDa protein that potently induces endothelial cell (EC) apoptosis. It suppresses tumor growth and angiogenesis in mice when stably overexpressed in cancer cells. Although αvβ5 integrin serves as a low-affinity receptor for ISM, the mechanism by which ISM mediates antiangiogenesis and apoptosis in ECs remain to be fully resolved. In this work, we report the identification of cell-surface glucose-regulated protein 78 kDa (GRP78) as a high-affinity receptor for ISM (Kd=8.6 nM). We demonstrated that ISM-GRP78 interaction triggers apoptosis not only in activated ECs but also in cancer cells expressing high level of cell-surface GRP78. Normal cells and benign tumor cells tend to express low level of cell-surface GRP78 and are resistant to ISM-induced apoptosis. Upon binding to GRP78, ISM is internalized into ECs through clathrin-dependent endocytosis that is essential for its proapoptotic activity. Once inside the cell, ISM co-targets with GRP78 to mitochondria where it interacts with ADP/ATP carriers on the inner membrane and blocks ATP transport from mitochondria to cytosol, thereby causing apoptosis. Hence, ISM is a novel proapoptotic ligand that targets cell-surface GRP78 to trigger apoptosis by inducing mitochondrial dysfunction. The restricted and high-level expression of cell-surface GRP78 on cancer cells and cancer ECs make them uniquely susceptible to ISM-targeted apoptosis. Indeed, systemic delivery of recombinant ISM potently suppressed subcutaneous 4T1 breast carcinoma and B16 melanoma growth in mice by eliciting apoptosis selectively in the cancer cells and cancer ECs. Together, this work reveals a novel ISM-GRP78 apoptosis pathway and demonstrates the potential of ISM as a cancer-specific and dual-targeting anticancer agent.
Isthmin targets cell-surface GRP78 and triggers apoptosis via induction of mitochondrial dysfunction
Chen, M; Zhang, Y; Yu, V C; Chong, Y-S; Yoshioka, T; Ge, R
2014-01-01
Isthmin (ISM) is a secreted 60-kDa protein that potently induces endothelial cell (EC) apoptosis. It suppresses tumor growth and angiogenesis in mice when stably overexpressed in cancer cells. Although αvβ5 integrin serves as a low-affinity receptor for ISM, the mechanism by which ISM mediates antiangiogenesis and apoptosis in ECs remain to be fully resolved. In this work, we report the identification of cell-surface glucose-regulated protein 78 kDa (GRP78) as a high-affinity receptor for ISM (Kd=8.6 nM). We demonstrated that ISM-GRP78 interaction triggers apoptosis not only in activated ECs but also in cancer cells expressing high level of cell-surface GRP78. Normal cells and benign tumor cells tend to express low level of cell-surface GRP78 and are resistant to ISM-induced apoptosis. Upon binding to GRP78, ISM is internalized into ECs through clathrin-dependent endocytosis that is essential for its proapoptotic activity. Once inside the cell, ISM co-targets with GRP78 to mitochondria where it interacts with ADP/ATP carriers on the inner membrane and blocks ATP transport from mitochondria to cytosol, thereby causing apoptosis. Hence, ISM is a novel proapoptotic ligand that targets cell-surface GRP78 to trigger apoptosis by inducing mitochondrial dysfunction. The restricted and high-level expression of cell-surface GRP78 on cancer cells and cancer ECs make them uniquely susceptible to ISM-targeted apoptosis. Indeed, systemic delivery of recombinant ISM potently suppressed subcutaneous 4T1 breast carcinoma and B16 melanoma growth in mice by eliciting apoptosis selectively in the cancer cells and cancer ECs. Together, this work reveals a novel ISM-GRP78 apoptosis pathway and demonstrates the potential of ISM as a cancer-specific and dual-targeting anticancer agent. PMID:24464222
Zhao, Ting; Ding, Xinchun; Du, Hong; Yan, Cong
2014-01-01
The underlying mechanisms that lysosomal acid lipase (LAL) deficiency causes infiltration of myeloid-derived suppressor cells (MDSCs) in multiple organs and subsequent inflammation remain incompletely understood. Endothelial cells (ECs), lining the inner layer of blood vessels, constitute barriers regulating leukocytes transmigration to the site of inflammation. Therefore, we hypothesized that ECs are dysfunctional in LAL-deficient (lal−/−) mice. We found that Ly6G+ cells transmigrated more efficiently across lal−/− ECs than wild-type (lal+/+) ECs, which was associated with increased level of platelet endothelial cell adhesion molecule-1 (PECAM-1) and monocyte chemoattractant protein-1 (MCP-1) in lal−/− ECs. In addition, lal−/−ECs showed enhanced migration and proliferation, decreased apoptosis, but impaired tube formation and angiogenesis. lal−/− ECs also suppressed T cell proliferation in vitro. Interestingly, lal−/− Ly6G+ cells promoted in vivo angiogenesis (including a tumor model), EC tube formation and proliferation. Finally, the mammalian target of rapamycin (mTOR) pathway was activated in lal−/− ECs, and inhibition of mTOR reversed EC dysfunctions, including decreasing Ly6G+ cell transmigration, delaying migration, and relieving suppression of T cell proliferation, which was mediated by decreasing production of reactive oxygen species (ROS). Our results indicate that LAL regulates EC functions through interaction with MDSCs and modulation of the mTOR pathway, which may provide a mechanistic basis for targeting MDSCs or mTOR to rejuvenate EC functions in LAL-deficiency related diseases. PMID:25000979
Involvement of Mst1 in tumor necrosis factor-{alpha}-induced apoptosis of endothelial cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohtsubo, Hideki; Ichiki, Toshihiro; Imayama, Ikuyo
2008-03-07
Mammalian sterile 20-kinase 1 (Mst1), a member of the sterile-20 family protein kinase, plays an important role in the induction of apoptosis. However, little is know about the physiological activator of Mst1 and the role of Mst1 in endothelial cells (ECs). We examined whether Mst1 is involved in the tumor necrosis factor (TNF)-{alpha}-induced apoptosis of ECs. Western blot analysis revealed that TNF-{alpha} induced activation of caspase 3 and Mst1 in a time- and dose-dependent manner. TNF-{alpha}-induced Mst1 activation is almost completely prevented by pretreatment with Z-DEVD-FMK, a caspase 3 inhibitor. Nuclear staining with Hoechst 33258 and fluorescence-activated cell sorting ofmore » propidium iodide-stained cells showed that TNF-{alpha} induced apoptosis of EC. Diphenyleneiodonium, an inhibitor of NADPH oxidase, and N-acetylcysteine, a potent antioxidant, also inhibited TNF-{alpha}-induced activation of Mst1 and caspase 3, as well as apoptosis. Knockdown of Mst1 expression by short interfering RNA attenuated TNF-{alpha}-induced apoptosis but not cleavage of caspase 3. These results suggest that Mst1 plays an important role in the induction of TNF-{alpha}-induced apoptosis of EC. However, positive feedback mechanism between Mst1 and caspase 3, which was shown in the previous studies, was not observed. Inhibition of Mst1 function may be beneficial for maintaining the endothelial integrity and inhibition of atherogenesis.« less
Shehata, Mohamed; Durner, Jürgen; Eldenez, Ayce; Van Landuyt, Kirsten; Styllou, Panorea; Rothmund, Lena; Hickel, Reinhard; Scherthan, Harry; Geurtsen, Werner; Kaina, Bernd; Carell, Thomas; Reichl, Franz X
2013-09-01
The public interest steadily increases in the biological adverse effects caused by components released from resin-based dental restorations. In this study, the cytotoxicity and the genotoxicity were investigated of following released components from dental resin restorations in human gingival fibroblasts (HGF): tetraethyleneglycol dimethacrylate (TEEGDMA), neopentylglycol dimethacrylate (Neopen), diphenyliodoniumchloride (DPIC), triphenyl-stibane (TPSB) and triphenylphosphane (TPP). XTT based cell viability assay was used for cytotoxicity screening of substances. γ-H2AX assay was used for genotoxicity screening. In the γ-H2AX assay, HGFs were exposed to the substances for 6h. Induced foci represent double DNA strand breaks (DSBs), which can induce ATM-dependent phosphorylation of the histone H2AX. Cell death effects (apoptosis and necrosis), induced by the substances were visually tested by the same investigator using the fluorescent microscope. All tested substances induced a dose-dependent loss of viability in HGFs. Following toxicity ranking among the substances at EC50-concentration were found in the XTT assay (mM, mean±SEM; n=5): DPIC>Neopen>TPSB>TPP>TEEGDMA. DSB-foci per HGF-cell were obtained, when HGFs were exposed to the EC50-concentration of each substance in the following order (mean±SEM; n=3): DPIC>Neopen>TPSB>TPP>TEEGDMA. Multi-foci cells (cells that contain more than 40 foci each) in 80 HGF-cells at EC50-concentration of each substance were found as follow (mean±SEM; n=3): DPIC>Neopen>TPP>TPSB>TEEGDMA. Cell apoptosis contained in each substance at EC50-concentration in the following order (mean±SEM; n=3): DPIC>Neopen>TPSB>TPP >TEEGDMA. Cell necrosis contained in each substance at EC50-concentration in the following order (mean±SEM; n=3): DPIC>Neopen>TPSB>TPP>TEEGDMA. Leached components from dental resin restorations can induce DNA DSBs and cell death effects in HGFs. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Ponce de León, Inés; Oliver, Juan Pablo; Castro, Alexandra; Gaggero, Carina; Bentancor, Marcel; Vidal, Sabina
2007-01-01
Background Vascular plants respond to pathogens by activating a diverse array of defense mechanisms. Studies with these plants have provided a wealth of information on pathogen recognition, signal transduction and the activation of defense responses. However, very little is known about the infection and defense responses of the bryophyte, Physcomitrella patens, to well-studied phytopathogens. The purpose of this study was to determine: i) whether two representative broad host range pathogens, Erwinia carotovora ssp. carotovora (E.c. carotovora) and Botrytis cinerea (B. cinerea), could infect Physcomitrella, and ii) whether B. cinerea, elicitors of a harpin (HrpN) producing E.c. carotovora strain (SCC1) or a HrpN-negative strain (SCC3193), could cause disease symptoms and induce defense responses in Physcomitrella. Results B. cinerea and E.c. carotovora were found to readily infect Physcomitrella gametophytic tissues and cause disease symptoms. Treatments with B. cinerea spores or cell-free culture filtrates from E.c. carotovoraSCC1 (CF(SCC1)), resulted in disease development with severe maceration of Physcomitrella tissues, while CF(SCC3193) produced only mild maceration. Although increased cell death was observed with either the CFs or B. cinerea, the occurrence of cytoplasmic shrinkage was only visible in Evans blue stained protonemal cells treated with CF(SCC1) or inoculated with B. cinerea. Most cells showing cytoplasmic shrinkage accumulated autofluorescent compounds and brown chloroplasts were evident in a high proportion of these cells. CF treatments and B. cinerea inoculation induced the expression of the defense-related genes: PR-1, PAL, CHS and LOX. Conclusion B. cinerea and E.c. carotovora elicitors induce a defense response in Physcomitrella, as evidenced by enhanced expression of conserved plant defense-related genes. Since cytoplasmic shrinkage is the most common morphological change observed in plant PCD, and that harpins and B. cinerea induce this type of cell death in vascular plants, our results suggest that E.c. carotovora CFSCC1 containing HrpN and B. cinerea could also induce this type of cell death in Physcomitrella. Our studies thus establish Physcomitrella as an experimental host for investigation of plant-pathogen interactions and B. cinerea and elicitors of E.c. carotovora as promising tools for understanding the mechanisms involved in defense responses and in pathogen-mediated cell death in this simple land plant. PMID:17922917
Zheng, Chunyu; Azcutia, Veronica; Aikawa, Elena; Figueiredo, Jose-Luiz; Croce, Kevin; Sonoki, Hiroyuki; Sacks, Frank M; Luscinskas, Francis W; Aikawa, Masanori
2013-02-01
Activation of vascular endothelial cells (ECs) contributes importantly to inflammation and atherogenesis. We previously reported that apolipoprotein CIII (apoCIII), found abundantly on circulating triglyceride-rich lipoproteins, enhances adhesion of human monocytes to ECs in vitro. Statins may exert lipid-independent anti-inflammatory effects. The present study examined whether statins suppress apoCIII-induced EC activation in vitro and in vivo. Physiologically relevant concentrations of purified human apoCIII enhanced attachment of the monocyte-like cell line THP-1 to human saphenous vein ECs (HSVECs) or human coronary artery ECs (HCAECs) under both static and laminar shear stress conditions. This process mainly depends on vascular cell adhesion molecule-1 (VCAM-1), as a blocking VCAM-1 antibody abolished apoCIII-induced monocyte adhesion. ApoCIII significantly increased VCAM-1 expression in HSVECs and HCAECs. Pre-treatment with statins suppressed apoCIII-induced VCAM-1 expression and monocyte adhesion, with two lipophilic statins (pitavastatin and atorvastatin) exhibiting inhibitory effects at lower concentration than those of hydrophilic pravastatin. Nuclear factor κB (NF-κB) mediated apoCIII-induced VCAM-1 expression, as demonstrated via loss-of-function experiments, and pitavastatin treatment suppressed NF-κB activation. Furthermore, in the aorta of hypercholesterolaemic Ldlr(-/-) mice, pitavastatin administration in vivo suppressed VCAM-1 mRNA and protein, induced by apoCIII bolus injection. Similarly, in a subcutaneous dorsal air pouch mouse model of leucocyte recruitment, apoCIII injection induced F4/80+ monocyte and macrophage accumulation, whereas pitavastatin administration reduced this effect. These findings further establish the direct role of apoCIII in atherogenesis and suggest that anti-inflammatory effects of statins could improve vascular disease in the population with elevated plasma apoCIII.
Svensson, Katrin J.; Kucharzewska, Paulina; Christianson, Helena C.; Sköld, Stefan; Löfstedt, Tobias; Johansson, Maria C.; Mörgelin, Matthias; Bengzon, Johan; Ruf, Wolfram; Belting, Mattias
2011-01-01
Highly malignant tumors, such as glioblastomas, are characterized by hypoxia, endothelial cell (EC) hyperplasia, and hypercoagulation. However, how these phenomena of the tumor microenvironment may be linked at the molecular level during tumor development remains ill-defined. Here, we provide evidence that hypoxia up-regulates protease-activated receptor 2 (PAR-2), i.e., a G-protein–coupled receptor of coagulation-dependent signaling, in ECs. Hypoxic induction of PAR-2 was found to elicit an angiogenic EC phenotype and to specifically up-regulate heparin-binding EGF-like growth factor (HB-EGF). Inhibition of HB-EGF by antibody neutralization or heparin treatment efficiently counteracted PAR-2–mediated activation of hypoxic ECs. We show that PAR-2–dependent HB-EGF induction was associated with increased phosphorylation of ERK1/2, and inhibition of ERK1/2 phosphorylation attenuated PAR-2–dependent HB-EGF induction as well as EC activation. Tissue factor (TF), i.e., the major initiator of coagulation-dependent PAR signaling, was substantially induced by hypoxia in several types of cancer cells, including glioblastoma; however, TF was undetectable in ECs even at prolonged hypoxia, which precludes cell-autonomous PAR-2 activation through TF. Interestingly, hypoxic cancer cells were shown to release substantial amounts of TF that was mainly associated with secreted microvesicles with exosome-like characteristics. Vesicles derived from glioblastoma cells were found to trigger TF/VIIa–dependent activation of hypoxic ECs in a paracrine manner. We provide evidence of a hypoxia-induced signaling axis that links coagulation activation in cancer cells to PAR-2–mediated activation of ECs. The identified pathway may constitute an interesting target for the development of additional strategies to treat aggressive brain tumors. PMID:21788507
Svensson, Katrin J; Kucharzewska, Paulina; Christianson, Helena C; Sköld, Stefan; Löfstedt, Tobias; Johansson, Maria C; Mörgelin, Matthias; Bengzon, Johan; Ruf, Wolfram; Belting, Mattias
2011-08-09
Highly malignant tumors, such as glioblastomas, are characterized by hypoxia, endothelial cell (EC) hyperplasia, and hypercoagulation. However, how these phenomena of the tumor microenvironment may be linked at the molecular level during tumor development remains ill-defined. Here, we provide evidence that hypoxia up-regulates protease-activated receptor 2 (PAR-2), i.e., a G-protein-coupled receptor of coagulation-dependent signaling, in ECs. Hypoxic induction of PAR-2 was found to elicit an angiogenic EC phenotype and to specifically up-regulate heparin-binding EGF-like growth factor (HB-EGF). Inhibition of HB-EGF by antibody neutralization or heparin treatment efficiently counteracted PAR-2-mediated activation of hypoxic ECs. We show that PAR-2-dependent HB-EGF induction was associated with increased phosphorylation of ERK1/2, and inhibition of ERK1/2 phosphorylation attenuated PAR-2-dependent HB-EGF induction as well as EC activation. Tissue factor (TF), i.e., the major initiator of coagulation-dependent PAR signaling, was substantially induced by hypoxia in several types of cancer cells, including glioblastoma; however, TF was undetectable in ECs even at prolonged hypoxia, which precludes cell-autonomous PAR-2 activation through TF. Interestingly, hypoxic cancer cells were shown to release substantial amounts of TF that was mainly associated with secreted microvesicles with exosome-like characteristics. Vesicles derived from glioblastoma cells were found to trigger TF/VIIa-dependent activation of hypoxic ECs in a paracrine manner. We provide evidence of a hypoxia-induced signaling axis that links coagulation activation in cancer cells to PAR-2-mediated activation of ECs. The identified pathway may constitute an interesting target for the development of additional strategies to treat aggressive brain tumors.
Clayton, Z E; Sadeghipour, S; Patel, S
2015-10-15
Standard therapy for atherosclerotic coronary and peripheral arterial disease is insufficient in a significant number of patients because extensive disease often precludes effective revascularization. Stem cell therapy holds promise as a supplementary treatment for these patients, as pre-clinical and clinical research has shown transplanted cells can promote angiogenesis via direct and paracrine mechanisms. Induced pluripotent stem cells (iPSCs) are a novel cell type obtained by reprogramming somatic cells using exogenous transcription factor cocktails, which have been introduced to somatic cells via viral or plasmid constructs, modified mRNA or small molecules. IPSCs are now being used in disease modelling and drug testing and are undergoing their first clinical trial, but despite recent advances, the inefficiency of the reprogramming process remains a major limitation, as does the lack of consensus regarding the optimum transcription factor combination and delivery method and the uncertainty surrounding the genetic and epigenetic stability of iPSCs. IPSCs have been successfully differentiated into vascular endothelial cells (iPSC-ECs) and, more recently, induced endothelial cells (iECs) have also been generated by direct differentiation, which bypasses the pluripotent intermediate. IPSC-ECs and iECs demonstrate endothelial functionality in vitro and have been shown to promote neovessel growth and enhance blood flow recovery in animal models of myocardial infarction and peripheral arterial disease. Challenges remain in optimising the efficiency, safety and fidelity of the reprogramming and endothelial differentiation processes and establishing protocols for large-scale production of clinical-grade, patient-derived cells. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Effect of streptavidin-biotin on endothelial vasoregulation and leukocyte adhesion.
Chan, Bernard P; Reichert, William M; Truskey, George A
2004-08-01
The current study examines whether the adhesion promoting arginine-glycine-aspartate-streptavidin mutant (RGD-SA) also affects two important endothelial cell (EC) functions in vitro: vasoregulation and leukocyte adhesion. EC adherent to surfaces via fibronectin (Fn) or Fn plus RGD-SA were subjected to laminar shear flow and media samples were collected over a period of 4h to measure the concentration of nitric oxide (NO), prostacyclin (PGI(2)), and endothelin-1 (ET-1). Western blot analysis was used to quantify the levels of endothelial-derived nitric oxide synthase (eNOS) and cyclooxygenase II (COX II). In a separate set of experiments, fluorescent polymorphonuclear leukocyte (PMN) adhesion to EC was quantified for EC with and without exposure to flow preconditioning. When cell adhesion was supplemented with the SA-biotin system, flow-induced production of NO and PGI(2) increased significantly relative to cells adherent on Fn alone. Previous exposure of EC to shear flow also significantly decreased PMN attachment to SA-biotin supplemented EC, but only after 2h of exposure to shear flow. The observed decrease in PMN-EC adhesion was negated by NG-nitro-L-arginine methyl ester (L-NAME), an antagonist of NO synthesis, but not by indomethacin, an inhibitor to PGI(2) synthesis, indicating the induced effect of PMN-EC interaction is primarily NO-dependent. Results from this study suggest that the use of SA-biotin to supplement EC adhesion encourages vasodilation and PMN adhesion in vitro under physiological shear-stress conditions. We postulate that the presence of SA-biotin more efficiently transmits the shear-stress signal and amplifies the downstream events including the NO and PGI(2) release and leukocyte-EC inhibition. These results may have ramifications for reducing thrombus-induced vascular graft failure.
Mach, François; Sauty, Alain; Iarossi, Albert S.; Sukhova, Galina K.; Neote, Kuldeep; Libby, Peter; Luster, Andrew D.
1999-01-01
Activated T lymphocytes accumulate early in atheroma formation and persist at sites of lesion growth and rupture, suggesting that they may play an important role in the pathogenesis of atherosclerosis. Moreover, atherosclerotic lesions contain the Th1-type cytokine IFN-γ, a potentiator of atherosclerosis. The present study demonstrates the differential expression of the 3 IFN-γ–inducible CXC chemokines — IFN-inducible protein 10 (IP-10), monokine induced by IFN-γ (Mig), and IFN-inducible T-cell α chemoattractant (I-TAC) — by atheroma-associated cells, as well as the expression of their receptor, CXCR3, by all T lymphocytes within human atherosclerotic lesions in situ. Atheroma-associated endothelial cells (ECs), smooth muscle cells (SMCs), and macrophages (MØ) all expressed IP-10, whereas Mig and I-TAC were mainly expressed in ECs and MØ, as detected by double immunofluorescence staining. ECs of microvessels within lesions also expressed abundant I-TAC. In vitro experiments supported these results and showed that IL-1β, TNF-α, and CD40 ligand potentiated IP-10 expression from IFN-γ–stimulated ECs. In addition, nitric oxide (NO) treatment decreased IFN-γ induction of IP-10. Our findings suggest that the differential expression of IP-10, Mig, and I-TAC by atheroma-associated cells plays a role in the recruitment and retention of activated T lymphocytes observed within vascular wall lesions during atherogenesis. PMID:10525042
Ohkawara, Hiroshi; Ishibashi, Toshiyuki; Sugimoto, Koichi; Ikeda, Kazuhiko; Ogawa, Kazuei; Takeishi, Yasuchika
2014-01-01
Membrane type 1–matrix metalloproteinase (MT1-MMP) functions as a signaling molecule in addition to a proteolytic enzyme. Our hypothesis was that MT1-MMP cooperates with protein kinase B (Akt) in tumor necrosis factor (TNF)-α-induced signaling pathways of vascular responses, including tissue factor (TF) procoagulant activity and endothelial apoptosis, in cultured human aortic endothelial cells (ECs). TNF-α (10 ng/mL) induced a decrease in Akt phosphorylation within 60 minutes in ECs. A chemical inhibitor of MMP, TIMP-2 and selective small interfering RNA (siRNA)-mediated suppression of MT1-MMP reversed TNF-α-triggered transient decrease of Akt phosphorylation within 60 minutes, suggesting that MT1-MMP may be a key regulator of Akt phosphorylation in TNF-α-stimulated ECs. In the downstream events, TNF-α increased TF antigen and activity, and suppressed the expression of thrombomodulin (TM) antigen. Inhibition of Akt markedly enhanced TNF-α-induced expression of TF antigen and activity, and further reduced the expression of TM antigen. Silencing of MT1-MMP by siRNA also reversed the changed expression of TF and TM induced by TNF-α. Moreover, TNF-α induced apoptosis of ECs through Akt- and forkhead box protein O1 (FoxO1)-dependent signaling pathway and nuclear factor-kB (NF-kB) activation. Knockdown of MT1-MMP by siRNA reversed apoptosis of ECs by inhibiting TNF-α-induced Akt-dependent regulation of FoxO1 in TNF-α-stimulated ECs. Immunoprecipitation demonstrated that TNF-α induced the changes in the associations between the cytoplasmic fraction of MT1-MMP and Akt in ECs. In conclusion, we show new evidence that MT1-MMP/Akt signaling axis is a key modifier for TNF-α-induced signaling pathways for modulation of procoagulant activity and apoptosis of ECs. PMID:25162582
Overexpression of SKP2 Inhibits the Radiation-Induced Bystander Effects of Esophageal Carcinoma.
Wang, Xiao-Chun; Zhang, Tie-Jun; Guo, Zi-Jian; Xiao, Chang-Yan; Ding, Xiao-Wen; Fang, Fang; Sheng, Wen-Tao; Shu, Xu; Li, Jue
2017-02-06
To investigate the effects of S-phase kinase protein 2 (SKP2) expression on the radiation induced bystander effect (RIBE) in esophageal cancer (EC) cells. Western blot was used to detect the levels of SKP2, Rad51, and Ku70 in EC cells. Positive transfection, RNAi, micronucleus (MN), and γ-H2AX focus formation assay were used to investigate the effects of SKP2 on RIBE induced by irradiated cells. We found a significant negative correlation between SKP2 expression and MN frequency ( p < 0.05) induced by RIBE. The results were further confirmed by positive transfection, RNAi, and rescue experiments.γ-H2AX focus formation assay results indicated that overexpression of SKP2 in the irradiated cells inhibited the DNA damage of RIBE cells. However, when SKP2 expression decreased in irradiated cells, the DNA damage of RIBE cells increased. Increased or decreased expression levels of SKP2 had effects on Rad51 expression under the conditions of RIBE. These results showed, for the first time, that SKP2 expression can inhibit RIBE of EC cells. The mechanism may function, at least partly, through the regulation of Rad51 in the ability to repair DNA damage.
Wang, Xintong; Zachman, Angela L.; Chun, Young Wook; Shen, Fang-Wen; Hwang, Yu-Shik; Sung, Hak-Joon
2014-01-01
Background Biodegradable polymers have been applied as bulk or coating materials for coronary artery stents. The degradation of polymers, however, could induce endothelial dysfunction and aggravate neointimal formation. Here we use polymeric microparticles to simulate and demonstrate the effects of degraded stent materials on phagocytic activity, cell death and dysfunction of macrophages and endothelial cells. Methods Microparticles made of low molecular weight polyesters were incubated with human macrophages and coronary artery endothelial cells (ECs). Microparticle-induced phagocytosis, cytotoxicity, apoptosis, cytokine release and surface marker expression were determined by immunostaining or ELISA. Elastase expression was analyzed by ELISA and the elastase-mediated polymer degradation was assessed by mass spectrometry. Results We demonstrated poly(D,L-lactic acid) (PLLA) and polycaprolactone (PCL) microparticles induced cytotoxicity in macrophages and ECs, partially through cell apoptosis. The particle treatment alleviated EC phagocytosis, as opposed to macrophages, but enhanced the expression of vascular cell adhesion molecule-1 (VCAM) along with decreased nitric oxide production, indicating ECs were activated and lost their capacity to maintain homeostasis. The activation of both cell types induced release of elastase or elastase-like protease, which further accelerated polymer degradation. Conclusions This study revealed that low molecule weight PLLA and PCL microparticles increased cytotoxicity and dysregulated endothelial cell function, which in turn enhanced elastase release and polymer degradation. These indicate polymer or polymer-coated stents impose a risk of endothelial dysfunction after deployment which can potentially lead to delayed endothelialization, neointimal hyperplasia and late thrombosis. PMID:24820736
Shen, Yang; Wang, Guixue; Huang, Xianliang; Zhang, Qin; Wu, Jiang; Tang, Chaojun; Yu, Qingsong; Liu, Xiaoheng
2012-01-01
Vascular endothelial cell (EC) adhesion and migration are essential processes in re-endothelialization of implanted biomaterials. There is no clear relationship and mechanism between EC adhesion and migration behaviour on surfaces with varying wettabilities. As model substrates, plasma SiOx:H nanocoatings with well-controlled surface wettability (with water contact angles in the range of 98.5 ± 2.3° to 26.3 ± 4.0°) were used in this study to investigate the effects of surface wettability on cell adhesion/migration and associated protein expressions in FAK-Rho GTPases signalling pathways. It was found that EC adhesion/migration showed opposite behaviour on the hydrophilic and hydrophobic surfaces (i.e. hydrophobic surfaces promoted EC migration but were anti-adhesions). The number of adherent ECs showed a maximum on hydrophilic surfaces, while cells adhered to hydrophobic surfaces exhibited a tendency for cell migration. The focal adhesion kinase (FAK) inhibitor targeting the Y-397 site of FAK could significantly inhibit cell adhesion/migration, suggesting that EC adhesion and migration on surfaces with different wettabilities involve (p)FAK and its downstream signalling pathways. Western blot results suggested that the FAK-Rho GTPases signalling pathways were correlative to EC migration on hydrophobic plasma SiOx:H surfaces, but uncertain to hydrophilic surfaces. This work demonstrated that surface wettability could induce cellular behaviours that were associated with different cellular signalling events. PMID:21715399
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nintasen, Rungrat; Multidisciplinary Cardiovascular Research Center; Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University
2012-04-20
Highlights: Black-Right-Pointing-Pointer TNF-{alpha} augments neointimal hyperplasia in human saphenous vein. Black-Right-Pointing-Pointer TNF-{alpha} induces detrimental effects on endothelial and smooth muscle cell function. Black-Right-Pointing-Pointer Estradiol exerts modulatory effects on TNF-induced vascular cell functions. Black-Right-Pointing-Pointer The modulatory effects of estradiol are discriminatory and cell-type specific. -- Abstract: Coronary heart disease (CHD) is a condition characterized by increased levels of proinflammatory cytokines, including tumor necrosis factor-{alpha} (TNF-{alpha}). TNF-{alpha} can induce vascular endothelial cell (EC) and smooth muscle cell (SMC) dysfunction, central events in development of neointimal lesions. The reduced incidence of CHD in young women is believed to be due to the protectivemore » effects of estradiol (E2). We therefore investigated the effects of TNF-{alpha} on human neointima formation and SMC/EC functions and any modulatory effects of E2. Saphenous vein (SV) segments were cultured in the presence of TNF-{alpha} (10 ng/ml), E2 (2.5 nM) or both in combination. Neointimal thickening was augmented by incubation with TNF-{alpha}, an effect that was abolished by co-culture with E2. TNF-{alpha} increased SV-SMC proliferation in a concentration-dependent manner that was optimal at 10 ng/ml (1.5-fold increase), and abolished by E2 at all concentrations studied (1-50 nM). Surprisingly, E2 itself at low concentrations (1 and 5 nM) stimulated SV-SMC proliferation to a level comparable to that of TNF-{alpha} alone. SV-EC migration was significantly impaired by TNF-{alpha} (42% of control), and co-culture with E2 partially restored the ability of SV-EC to migrate and repair the wound. In contrast, TNF-{alpha} increased SV-SMC migration by 1.7-fold, an effect that was completely reversed by co-incubation with E2. Finally, TNF-{alpha} potently induced ICAM-1 and VCAM-1 expression in both SV-EC and SV-SMC. However there was no modulation by E2 in either cell-type. In conclusion, TNF-{alpha} induced SV neointima formation, increased SMC proliferation and migration, impaired SV-EC migration and increased expression of adhesion molecules. E2 exerted distinct cell-type and function-specific modulation, the mechanisms underlying which are worthy of further detailed study.« less
Chen, Li-Jing; Chuang, Li; Huang, Yi-Hsuan; Zhou, Jing; Lim, Seh Hong; Lee, Chih-I; Lin, Wei-Wen; Lin, Ting-Er; Wang, Wei-Li; Chen, Linyi; Chien, Shu; Chiu, Jeng-Jiann
2015-01-01
Rationale In atherosclerotic lesions, synthetic smooth muscle cells (sSMCs) induce aberrant microRNA (miR) profiles in endothelial cells (ECs) under flow stagnation. Increase in shear stress induces favorable miR modulation to mitigate sSMC-induced inflammation. Objective To address the role of miRs in sSMC-induced EC inflammation and its inhibition by shear stress. Methods and Results Co-culturing ECs with sSMCs under static condition causes initial increases of four anti-inflammatory miRs (146a/708/451/98) in ECs followed by decreases below basal levels at 7 days; the increases for miR-146a/708 peaked at 24 h and those for miR-451/98 lasted for only 6-12 h. Shear stress (12 dynes/cm2) to co-cultured ECs for 24 h augments these four miR expressions. In vivo, these four miRs are highly expressed in neointimal ECs in injured arteries under physiological levels of flow, but not expressed under flow stagnation. MiR-146a, -708, -451, and -98 target interleukin (IL)-1 receptor-associated kinase, inhibitor of nuclear factor-κB (NF-κB) kinase subunit-γ, IL-6 receptor, and conserved helix-loop-helix ubiquitous kinase, respectively, to inhibit NF-κB signaling, which exerts negative feedback control on the biogenesis of these miRs. NF-E2-related factor-2 (Nrf-2) is critical for shear-induction of miR-146a in co-cultured ECs. Silencing either Nrf-2 or miR-146a led to increased neointima formation of injured rat carotid artery under physiological levels of flow. Overexpressing miR-146a inhibits neointima formation of rat or mouse carotid artery induced by injury or flow cessation. Conclusions Nrf-2-mediated miR-146a expression is augmented by atheroprotective shear stress in ECs adjacent to sSMCs to inhibit neointima formation of injured arteries. PMID:25623956
Zhao, Yidan D.; Huang, Xiaojia; Yi, Fan; Dai, Zhiyu; Qian, Zhijian; Tiruppathi, Chinnaswamy; Tran, Khiem; Zhao, You-Yang
2015-01-01
Adult stem cell treatment is a potential novel therapeutic approach for acute respiratory distress syndrome. Given the extremely low rate of cell engraftment, it is believed that these cells exert their beneficial effects via paracrine mechanisms. However, the endogenous mediator(s) in the pulmonary vasculature remains unclear. Employing the mouse model with endothelial cell (EC)-restricted disruption of FoxM1 (FoxM1 CKO), here we show that endothelial expression of the reparative transcriptional factor FoxM1 is required for the protective effects of bone marrow progenitor cells (BMPC) against LPS-induced inflammatory lung injury and mortality. BMPC treatment resulted in rapid induction of FoxM1 expression in WT but not FoxM1 CKO lungs. BMPC-induced inhibition of lung vascular injury, resolution of lung inflammation, and survival, as seen in WT mice, were abrogated in FoxM1 CKO mice following LPS challenge. Mechanistically, BMPC treatment failed to induce lung EC proliferation in FoxM1 CKO mice, which was associated with impaired expression of FoxM1 target genes essential for cell cycle progression. We also observed that BMPC treatment enhanced endothelial barrier function in WT, but not in FoxM1-deficient EC monolayers. Restoration of β-catenin expression in FoxM1-deficient ECs normalized endothelial barrier enhancement in response to BMPC treatment. These data demonstrate the requisite role of endothelial FoxM1 in the mechanism of BMPC-induced vascular repair to restore vascular integrity and accelerate resolution of inflammation, thereby promoting survival following inflammatory lung injury. PMID:24578354
Generation of a functional and durable vascular niche by the adenoviral E4ORF1 gene
Seandel, Marco; Butler, Jason M.; Kobayashi, Hideki; Hooper, Andrea T.; White, Ian A.; Zhang, Fan; Vertes, Eva L.; Kobayashi, Mariko; Zhang, Yan; Shmelkov, Sergey V.; Hackett, Neil R.; Rabbany, Sina; Boyer, Julie L.; Rafii, Shahin
2008-01-01
Vascular cells contribute to organogenesis and tumorigenesis by producing unknown factors. Primary endothelial cells (PECs) provide an instructive platform for identifying factors that support stem cell and tumor homeostasis. However, long-term maintenance of PECs requires stimulation with cytokines and serum, resulting in loss of their angiogenic properties. To circumvent this hurdle, we have discovered that the adenoviral E4ORF1 gene product maintains long-term survival and facilitates organ-specific purification of PECs, while preserving their vascular repertoire for months, in serum/cytokine-free cultures. Lentiviral introduction of E4ORF1 into human PECs (E4ORF1+ ECs) increased the long-term survival of these cells in serum/cytokine-free conditions, while preserving their in vivo angiogenic potential for tubulogenesis and sprouting. Although E4ORF1, in the absence of mitogenic signals, does not induce proliferation of ECs, stimulation with VEGF-A and/or FGF-2 induced expansion of E4ORF1+ ECs in a contact-inhibited manner. Indeed, VEGF-A-induced phospho MAPK activation of E4ORF1+ ECs is comparable with that of naive PECs, suggesting that the VEGF receptors remain functional upon E4ORF1 introduction. E4ORF1+ ECs inoculated in implanted Matrigel plugs formed functional, patent, humanized microvessels that connected to the murine circulation. E4ORF1+ ECs also incorporated into neo-vessels of human tumor xenotransplants and supported serum/cytokine-free expansion of leukemic and embryonal carcinoma cells. E4ORF1 augments survival of PECs in part by maintaining FGF-2/FGF-R1 signaling and through tonic Ser-473 phosphorylation of Akt, thereby activating the mTOR and NF-κB pathways. Therefore, E4ORF1+ ECs establish an Akt-dependent durable vascular niche not only for expanding stem and tumor cells but also for interrogating the roles of vascular cells in regulating organ-specific vascularization and tumor neo-angiogenesis. PMID:19036927
Generation of a functional and durable vascular niche by the adenoviral E4ORF1 gene.
Seandel, Marco; Butler, Jason M; Kobayashi, Hideki; Hooper, Andrea T; White, Ian A; Zhang, Fan; Vertes, Eva L; Kobayashi, Mariko; Zhang, Yan; Shmelkov, Sergey V; Hackett, Neil R; Rabbany, Sina; Boyer, Julie L; Rafii, Shahin
2008-12-09
Vascular cells contribute to organogenesis and tumorigenesis by producing unknown factors. Primary endothelial cells (PECs) provide an instructive platform for identifying factors that support stem cell and tumor homeostasis. However, long-term maintenance of PECs requires stimulation with cytokines and serum, resulting in loss of their angiogenic properties. To circumvent this hurdle, we have discovered that the adenoviral E4ORF1 gene product maintains long-term survival and facilitates organ-specific purification of PECs, while preserving their vascular repertoire for months, in serum/cytokine-free cultures. Lentiviral introduction of E4ORF1 into human PECs (E4ORF1(+) ECs) increased the long-term survival of these cells in serum/cytokine-free conditions, while preserving their in vivo angiogenic potential for tubulogenesis and sprouting. Although E4ORF1, in the absence of mitogenic signals, does not induce proliferation of ECs, stimulation with VEGF-A and/or FGF-2 induced expansion of E4ORF1(+) ECs in a contact-inhibited manner. Indeed, VEGF-A-induced phospho MAPK activation of E4ORF1(+) ECs is comparable with that of naive PECs, suggesting that the VEGF receptors remain functional upon E4ORF1 introduction. E4ORF1(+) ECs inoculated in implanted Matrigel plugs formed functional, patent, humanized microvessels that connected to the murine circulation. E4ORF1(+) ECs also incorporated into neo-vessels of human tumor xenotransplants and supported serum/cytokine-free expansion of leukemic and embryonal carcinoma cells. E4ORF1 augments survival of PECs in part by maintaining FGF-2/FGF-R1 signaling and through tonic Ser-473 phosphorylation of Akt, thereby activating the mTOR and NF-kappaB pathways. Therefore, E4ORF1(+) ECs establish an Akt-dependent durable vascular niche not only for expanding stem and tumor cells but also for interrogating the roles of vascular cells in regulating organ-specific vascularization and tumor neo-angiogenesis.
Mittal, Manish; Nepal, Saroj; Tsukasaki, Yoshikazu; Hecquet, Claudie M; Soni, Dheeraj; Rehman, Jalees; Tiruppathi, Chinnaswamy; Malik, Asrar B
2017-10-13
TRPM2 (transient receptor potential melastatin-2) expressed in endothelial cells (ECs) is a cation channel mediating Ca 2+ entry in response to intracellular generation of adenosine diphosphoribose-the TRPM2 ligand. Because polymorphonuclear neutrophils (PMN) interaction with ECs generates reactive oxygen species, we addressed the possible role of TRPM2 expressed in ECs in the mechanism of transendothelial migration of PMNs. We observed defective PMN transmigration in response to lipopolysaccharide challenge in adult mice in which the EC expressed TRPM2 is conditionally deleted ( Trpm2 iΔEC ). PMN interaction with ECs induced the entry of Ca 2+ in ECs via the EC-expressed TRPM2. Prevention of generation of adenosine diphosphoribose in ECs significantly reduced Ca 2+ entry in response to PMN activation of TRPM2 in ECs. PMNs isolated from gp91phox -/- mice significantly reduced Ca 2+ entry in ECs via TRPM2 as compared with wild-type PMNs and failed to induce PMN transmigration. Overexpression of the adenosine diphosphoribose insensitive TRPM2 mutant channel (C1008→A) in ECs suppressed the Ca 2+ entry response. Further, the forced expression of TRPM2 mutant channel (C1008→A) or silencing of poly ADP-ribose polymerase in ECs of mice prevented PMN transmigration. Thus, endotoxin-induced transmigration of PMNs was secondary to TRPM2-activated Ca 2+ signaling and VE-cadherin phosphorylation resulting in the disassembly of adherens junctions and opening of the paracellular pathways. These results suggest blocking TRPM2 activation in ECs is a potentially important means of therapeutically modifying PMN-mediated vascular inflammation. © 2017 American Heart Association, Inc.
Chandrasekharan, Unni M.; Siemionow, Maria; Unsal, Murat; Yang, Lin; Poptic, Earl; Bohn, Justin; Ozer, Kagan; Zhou, Zhongmin; Howe, Philip H.; Penn, Marc
2007-01-01
Tumor necrosis factor-α (TNF-α) binds to 2 distinct cell-surface receptors: TNF-α receptor-I (TNFR-I: p55) and TNF-α receptor-II (TNFR-II: p75). TNF-α induces leukocyte adhesion molecules on endothelial cells (ECs), which mediate 3 defined steps of the inflammatory response; namely, leukocyte rolling, firm adhesion, and transmigration. In this study, we have investigated the role of p75 in TNF-α–induced leukocyte adhesion molecules using cultured ECs derived from wild-type (WT), p75-null (p75−/−), or p55-null (p55−/−) mice. We observed that p75 was essential for TNF-α–induced E-selectin, vascular cell adhesion molecule 1 (VCAM-1), and intercellular adhesion molecule 1 (ICAM-1) expression. We also investigated the putative role of p75 in inflammation in vivo using an intravital microscopic approach with a mouse cremaster muscle model. TNF-α–stimulated leukocyte rolling, firm adhesion to ECs, and transmigration were dramatically reduced in p75−/− mice. Transplanted WT cremaster in p75−/− mice showed a robust leukocyte rolling and firm adhesion upon TNF-α activation, suggesting that the impairment in EC-leukocyte interaction in p75−/− mice is due to EC dysfunction. These results demonstrate, for the first time, that endothelial p75 is essential for TNF-α–induced leukocyte–endothelial-cell interaction. Our findings may contribute to the identification of novel p75-targeted therapeutic approaches for inflammatory diseases. PMID:17068152
Zanotelli, Matthew R.; Ardalani, Hamisha; Zhang, Jue; Hou, Zhonggang; Nguyen, Eric H.; Swanson, Scott; Nguyen, Bao Kim; Bolin, Jennifer; Elwell, Angela; Bischel, Lauren L.; Xie, Angela W.; Stewart, Ron; Beebe, David J.; Thomson, James A.; Schwartz, Michael P.; Murphy, William L.
2016-01-01
Here, we describe an in vitro strategy to model vascular morphogenesis where human induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) are encapsulated in peptide-functionalized poly(ethylene glycol) (PEG) hydrogels, either on standard well plates or within a passive pumping polydimethylsiloxane (PDMS) tri-channel microfluidic device. PEG hydrogels permissive towards cellular remodeling were fabricated using thiol-ene photopolymerization to incorporate matrix metalloproteinase (MMP)-degradable crosslinks and CRGDS cell adhesion peptide. Time lapse microscopy, immunofluorescence imaging, and RNA sequencing (RNA-Seq) demonstrated that iPSC-ECs formed vascular networks through mechanisms that were consistent with in vivo vasculogenesis and angiogenesis when cultured in PEG hydrogels. Migrating iPSC-ECs condensed into clusters, elongated into tubules, and formed polygonal networks through sprouting. Genes upregulated for iPSC-ECs cultured in PEG hydrogels relative to control cells on tissue culture polystyrene (TCP) surfaces included adhesion, matrix remodeling, and Notch signaling pathway genes relevant to in vivo vascular development. Vascular networks with lumens were stable for at least 14 days when iPSC-ECs were encapsulated in PEG hydrogels that were polymerized within the central channel of the microfluidic device. Therefore, iPSC-ECs cultured in peptide-functionalized PEG hydrogels offer a defined platform for investigating vascular morphogenesis in vitro using both standard and microfluidic formats. PMID:26945632
Involvement of {gamma}-secretase in postnatal angiogenesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayashi, Hiroki; Nakagami, Hironori; Takami, Yoichi
2007-11-23
{gamma}-Secretase cleaves the transmembrane domains of several integral membrane proteins involved in vasculogenesis. Here, we investigated the role of {gamma}-secretase in the regulation of postnatal angiogenesis using {gamma}-secretase inhibitors (GSI). In endothelial cell (EC), {gamma}-secretase activity was up-regulated under hypoxia or the treatment of vascular endothelial growth factor (VEGF). The treatment of GSI significantly attenuated growth factor-induced EC proliferation and migration as well as c-fos promoter activity in a dose-dependent manner. In vascular smooth muscle cell (VSMC), treatment of GSI significantly attenuated growth factor-induced VEGF and fibroblast growth factor-2 (FGF-2) expression. Indeed, GSI attenuated VEGF-induced tube formation and inhibited FGF-2-inducedmore » angiogenesis on matrigel in mice as quantified by FITC-lectin staining of EC. Overall, we demonstrated that {gamma}-secretase may be key molecule in postnatal angiogenesis which may be downstream molecule of growth factor-induced growth and migration in EC, and regulate the expression of angiogenic growth factors in VSMC.« less
Chen, Shih-Chung; Chang, Ying-Ling; Wang, Danny Ling; Cheng, Jing-Jy
2006-01-01
Magnolol (Mag), an active constituent isolated from the Chinese herb Hou p'u (Magnolia officinalis) has long been used to suppress inflammatory processes. Chronic inflammation is well known to be involved in vascular injuries such as atherosclerosis in which interleukin (IL)-6 may participate. Signal transducer and activator of transcription protein 3 (STAT3), a transcription factor involved in inflammation and the cell cycle, is activated by IL-6. In this study, we evaluated whether Mag can serve as an anti-inflammatory agent during endothelial injuries. The effects of Mag on IL-6-induced STAT3 activation and downstream target gene induction in endothelial cells (ECs) were examined. Pretreatment of ECs with Mag dose dependently inhibited IL-6-induced Tyr705 and Ser727 phosphorylation in STAT3 without affecting the phosphorylation of JAK1, JAK2, and ERK1/2. Mag pretreatment of these ECs dose dependently suppressed IL-6-induced promoter activity of intracellular cell adhesion molecule (ICAM)-1 that contains functional IL-6 response elements (IREs). An electrophoretic mobility shift assay (EMSA) revealed that Mag treatment significantly reduced STAT3 binding to the IRE region. Consistently, Mag treatment markedly inhibited ICAM-1 expression on the endothelial surface. As a result, reduced monocyte adhesion to IL-6-activated ECs was observed. Furthermore, Mag suppressed IL-6-induced promoter activity of cyclin D1 and monocyte chemotactic protein (MCP)-1 for which STAT3 activation plays a role. In conclusion, our results indicate that Mag inhibits IL-6-induced STAT3 activation and subsequently results in the suppression of downstream target gene expression in ECs. These results provide a therapeutic basis for the development of Mag as an anti-inflammatory agent for vascular disorders including atherosclerosis. PMID:16520748
Shu, G; Tang, Y; Zhou, Y; Wang, C; Song, J-G
2011-12-01
Histone deacetylase (HDAC) inhibitors are a class of promising anticancer reagents. They are able to induce apoptosis in embryonic carcinoma (EC) cells. However, the underlying mechanism remains poorly understood. Here we show that increased expression of zinc-finger protein regulator of apoptosis and cell-cycle arrest (Zac1) is implicated in HDAC inhibitor-induced apoptosis in F9 and P19 EC cells. By chromatin immunoprecipitation analysis we identified that increased Zac1 expression is mediated by histone acetylation of the Zac1 promoter region. Knockdown of Zac1 inhibited HDAC inhibitor-induced cell apoptosis. Moreover, HDAC inhibitors repressed nuclear factor-κB (NF-κB) activity, and this effect is abrogated by Zac1 knockdown. Consistently, Zac1 overexpression suppressed cellular NF-κB activity. Further investigation showed that Zac1 inhibits NF-κB activity by interacting with the C-terminus of the p65 subunit, which suppresses the phosphorylation of p65 at Ser468 and Ser536 residues. These results indicate that Zac1 is a histone acetylation-regulated suppressor of NF-κB, which is induced and implicated in HDAC inhibitor-mediated EC cell apoptosis.
Faruqi, R M; Poptic, E J; Faruqi, T R; De La Motte, C; DiCorleto, P E
1997-08-01
We have examined the effects of N-acetyl-L-cysteine (NAC), a well-characterized, thiol-containing antioxidant, on agonist-induced monocytic cell adhesion to endothelial cells (EC). NAC inhibited interleukin-1 (IL-1 beta)-induced, but not basal, adhesion with 50% inhibition at approximately 20 mM. Monocytic cell adhesion to EC in response to tumor necrosis factor-alpha (TNF-alpha), lipopolysaccharide (LPS), alpha-thrombin, or phorbol 12-myristate 13-acetate (PMA) was similarly inhibited by NAC. Unlike published studies with pyrrolidinedithiocarbamate, which specifically inhibited vascular cell adhesion molecule 1 (VCAM-1), NAC inhibited IL-1 beta-induced mRNA and cell surface expression of both E-selectin and VCAM-1. NAC had no effect on the half-life of E-selectin or VCAM-1 mRNA. Although NAC reduced nuclear factor-kappa B (NF-kappa B) activation in EC as measured by gel-shift assays using an oligonucleotide probe corresponding to the consensus NF-kappa B binding sites of the VCAM-1 gene (VCAM-NF-kappa B), the antioxidant had no appreciable effect when an oligomer corresponding to the consensus NF-kappa B binding site of the E-selectin gene (E-selectin-NF-kappa B) was used. Because NF-kappa B has been reported to be redox sensitive, we studied the effects of NAC on the EC redox environment. NAC caused an expected dramatic increase in the reduced glutathione (GSH) levels in EC. In vitro studies demonstrated that whereas the binding affinity of NF-kappa B to the VCAM-NF-kappa B oligomer peaked at a GSH-to-oxidized glutathione (GSSG) ratio of approximately 200 and decreased at higher ratios, the binding to the E-selectin-NF-kappa B oligomer appeared relatively unaffected even at ratios > 400, i.e., those achieved in EC treated with 40 mM NAC. These results suggest that NF-kappa B binding to its consensus sequences in the VCAM-1 and E-selectin gene exhibits marked differences in redox sensitivity, allowing for differential gene expression regulated by the same transcription factor. Our data also demonstrate that NAC increases the GSH-to-GSSG ratio within the EC suggesting one possible mechanism through which this antioxidant inhibits agonist-induced monocyte adhesion to EC.
Wang, Yan-Yang; Yang, Yin-Xue; Zhao, Ren; Pan, Shu-Ting; Zhe, Hong; He, Zhi-Xu; Duan, Wei; Zhang, Xueji; Yang, Tianxin; Qiu, Jia-Xuan; Zhou, Shu-Feng
2015-01-01
Natural and synthetic triterpenoids have been shown to kill cancer cells via multiple mechanisms. The therapeutic effect and underlying mechanism of the synthetic triterpenoid bardoxolone methyl (C-28 methyl ester of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid; CDDO-Me) on esophageal cancer are unclear. Herein, we aimed to investigate the anticancer effects and underlying mechanisms of CDDO-Me in human esophageal squamous cell carcinoma (ESCC) cells. Our study showed that CDDO-Me suppressed the proliferation and arrested cells in G2/M phase, and induced apoptosis in human ESCC Ec109 and KYSE70 cells. The G2/M arrest was accompanied with upregulated p21Waf1/Cip1 and p53 expression. CDDO-Me significantly decreased B-cell lymphoma-extra large (Bcl-xl), B-cell lymphoma 2 (Bcl-2), cleaved caspase-9, and cleaved poly ADP ribose polymerase (PARP) levels but increased the expression level of Bcl-2-associated X (Bax). Furthermore, CDDO-Me induced autophagy in both Ec109 and KYSE70 cells via suppression of the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway. There were interactions between the autophagic and apoptotic pathways in Ec109 and KYSE70 cells subject to CDDO-Me treatment. CDDO-Me also scavenged reactive oxygen species through activation of the nuclear factor (erythroid-derived 2)-related factor 2 (Nrf2) pathway in Ec109 and KYSE70 cells. CDDO-Me inhibited cell invasion, epithelial-mesenchymal transition, and stemness in Ec109 and KYSE70 cells. CDDO-Me significantly downregulated E-cadherin but upregulated Snail, Slug, and zinc finger E-box-binding homeobox 1 (TCF-8/ZEB1) in Ec109 and KYSE70 cells. CDDO-Me significantly decreased the expression of octamer-4, sex determining region Y-box 2 (Sox-2), Nanog, and B lymphoma Mo-MLV insertion region 1 homolog (Bmi-1), all markers of cancer cell stemness, in Ec109 and KYSE70 cells. Taken together, these results indicate that CDDO-Me is a promising anticancer agent against ESCC. Further studies are warranted to explore the molecular targets, efficacy and safety of CDDO-Me in the treatment of ESCC.
Wang, Yan-Yang; Yang, Yin-Xue; Zhao, Ren; Pan, Shu-Ting; Zhe, Hong; He, Zhi-Xu; Duan, Wei; Zhang, Xueji; Yang, Tianxin; Qiu, Jia-Xuan; Zhou, Shu-Feng
2015-01-01
Natural and synthetic triterpenoids have been shown to kill cancer cells via multiple mechanisms. The therapeutic effect and underlying mechanism of the synthetic triterpenoid bardoxolone methyl (C-28 methyl ester of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid; CDDO-Me) on esophageal cancer are unclear. Herein, we aimed to investigate the anticancer effects and underlying mechanisms of CDDO-Me in human esophageal squamous cell carcinoma (ESCC) cells. Our study showed that CDDO-Me suppressed the proliferation and arrested cells in G2/M phase, and induced apoptosis in human ESCC Ec109 and KYSE70 cells. The G2/M arrest was accompanied with upregulated p21Waf1/Cip1 and p53 expression. CDDO-Me significantly decreased B-cell lymphoma-extra large (Bcl-xl), B-cell lymphoma 2 (Bcl-2), cleaved caspase-9, and cleaved poly ADP ribose polymerase (PARP) levels but increased the expression level of Bcl-2-associated X (Bax). Furthermore, CDDO-Me induced autophagy in both Ec109 and KYSE70 cells via suppression of the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway. There were interactions between the autophagic and apoptotic pathways in Ec109 and KYSE70 cells subject to CDDO-Me treatment. CDDO-Me also scavenged reactive oxygen species through activation of the nuclear factor (erythroid-derived 2)-related factor 2 (Nrf2) pathway in Ec109 and KYSE70 cells. CDDO-Me inhibited cell invasion, epithelial–mesenchymal transition, and stemness in Ec109 and KYSE70 cells. CDDO-Me significantly downregulated E-cadherin but upregulated Snail, Slug, and zinc finger E-box-binding homeobox 1 (TCF-8/ZEB1) in Ec109 and KYSE70 cells. CDDO-Me significantly decreased the expression of octamer-4, sex determining region Y-box 2 (Sox-2), Nanog, and B lymphoma Mo-MLV insertion region 1 homolog (Bmi-1), all markers of cancer cell stemness, in Ec109 and KYSE70 cells. Taken together, these results indicate that CDDO-Me is a promising anticancer agent against ESCC. Further studies are warranted to explore the molecular targets, efficacy and safety of CDDO-Me in the treatment of ESCC. PMID:25733817
Biomaterials trigger endothelial cell activation when co-incubated with human whole blood.
Herklotz, Manuela; Hanke, Jasmin; Hänsel, Stefanie; Drichel, Juliane; Marx, Monique; Maitz, Manfred F; Werner, Carsten
2016-10-01
Endothelial cell activation resulting from biomaterial contact or biomaterial-induced blood activation may in turn also affect hemostasis and inflammatory processes in the blood. Current in vitro hemocompatibility assays typically ignore these modulating effects of the endothelium. This study describes a co-incubation system of human whole blood, biomaterial and endothelial cells (ECs) that was developed to overcome this limitation. First, human endothelial cells were characterized in terms of their expression of coagulation- and inflammation-relevant markers in response to various activators. Subsequently, their capacity to regulate hemostasis as well as complement and granulocyte activation was monitored in a hemocompatibility assay. After blood contact, quiescent ECs exhibited anticoagulant and anti-inflammatory properties. When they were co-incubated with surfaces exhibiting pro-coagulant or pro-inflammatory characteristics, the ECs down-regulated coagulation but not complement or leukocyte activation. Analysis of intracellular levels of the endothelial activation markers E-selectin and tissue factor showed that co-incubation with model surfaces and blood significantly increased the activation state of ECs. Finally, the coagulation- and inflammation-modulating properties of the ECs were tested after blood/biomaterial exposure. Pre-activation of ECs by biomaterials in the blood induced a pro-coagulant and pro-inflammatory state of the ECs, wherein the pro-coagulant response was higher for biomaterial/blood pre-activated ECs than for TNF-α-pre-activated cells. This work provides evidence that biomaterials, even without directly contacting the endothelium, affect the endothelial activation state with and have consequences for plasmatic and cellular reactions in the blood. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lacal, Pedro Miguel; Petrillo, Maria Grazia; Ruffini, Federica; Muzi, Alessia; Bianchini, Rodolfo; Ronchetti, Simona; Migliorati, Graziella; Riccardi, Carlo; Graziani, Grazia; Nocentini, Giuseppe
2013-10-01
The interaction of glucocorticoid-induced tumor necrosis factor receptor-family related (GITR) protein with its ligand (GITRL) modulates different functions, including immune/inflammatory response. These effects are consequent to intracellular signals activated by both GITR and GITRL. Previous results have suggested that lack of GITR expression in GITR(-/-) mice decreases the number of leukocytes within inflamed tissues. We performed experiments to analyze whether the GITRL/GITR system modulates leukocyte adhesion and extravasation. For that purpose, we first evaluated the capability of murine splenocytes to adhere to endothelial cells (EC). Our results indicated that adhesion of GITR(-/-) splenocytes to EC was reduced as compared with wild-type cells, suggesting that GITR plays a role in adhesion and that this effect may be due to GITRL-GITR interaction. Moreover, adhesion was increased when EC were pretreated with an agonist GITR-Fc fusion protein, thus indicating that triggering of GITRL plays a role in adhesion by EC regulation. In a human in vitro model, the adhesion to human EC of HL-60 cells differentiated toward the monocytic lineage was increased by EC pretreatment with agonist GITR-Fc. Conversely, antagonistic anti-GITR and anti-GITRL Ab decreased adhesion, thus further indicating that GITRL triggering increases the EC capability to support leukocyte adhesion. EC treatment with GITR-Fc favored extravasation, as demonstrated by a transmigration assay. Notably, GITRL triggering increased intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expression and anti-ICAM-1 and anti-VCAM-1 Abs reversed GITR-Fc effects. Our study demonstrates that GITRL triggering in EC increases leukocyte adhesion and transmigration, suggesting new anti-inflammatory therapeutic approaches based on inhibition of GITRL-GITR interaction.
Akhtar, Shamima; Hartmann, Petra; Karshovska, Ela; Rinderknecht, Fatuma-Ayaan; Subramanian, Pallavi; Gremse, Felix; Grommes, Jochen; Jacobs, Michael; Kiessling, Fabian; Weber, Christian; Steffens, Sabine; Schober, Andreas
2015-12-01
Chemokines mediate monocyte adhesion to dysfunctional endothelial cells (ECs) and promote arterial inflammation during atherosclerosis. Hypoxia-inducible factor (HIF)-1α is expressed in various cell types of atherosclerotic lesions and is associated with lesional inflammation. However, the impact of endothelial HIF-1α in atherosclerosis is unclear. HIF-1α was detectable in the nucleus of ECs covering murine and human atherosclerotic lesions. To study the role of endothelial HIF-1α in atherosclerosis, deletion of the Hif1a gene was induced in ECs from apolipoprotein E knockout mice (EC-Hif1a(-/-)) by Tamoxifen injection. The formation of atherosclerotic lesions, the lesional macrophage accumulation, and the expression of CXCL1 in ECs were reduced after partial carotid ligation in EC-Hif1a(-/-) compared with control mice. Moreover, the lesion area and the lesional macrophage accumulation were decreased in the aortas of EC-Hif1a(-/-) mice compared with control mice during diet-induced atherosclerosis. In vitro, mildly oxidized low-density lipoprotein or lysophosphatidic acid 20:4 increased endothelial CXCL1 expression and monocyte adhesion by inducing HIF-1α expression. Moreover, endothelial Hif1a deficiency resulted in downregulation of miR-19a in atherosclerotic arteries determined by microRNA profiling. In vitro, HIF-1α-induced miR-19a expression mediated the upregulation of CXCL1 in mildly oxidized low-density lipoprotein-stimulated ECs. These results indicate that hyperlipidemia upregulates HIF-1α expression in ECs by mildly oxidized low-density lipoprotein-derived unsaturated lysophosphatidic acid. Endothelial HIF-1α promoted atherosclerosis by triggering miR-19a-mediated CXCL1 expression and monocyte adhesion, indicating that inhibition of the endothelial HIF-1α/miR-19a pathway may be a therapeutic option against atherosclerosis. © 2015 American Heart Association, Inc.
Cathepsin L is required for endothelial progenitor cell-induced neovascularization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urbich, Carmen; Heeschen, Christopher; Aicher, Alexandra
Infusion of endothelial progenitor cells (EPCs), but not of mature endothelial cells (ECs), promotes neovascularization after ischemia. We performed a gene expression profiling of EPCs and ECs to identify genes, which might be important for the neovascularization capacity of EPCs. Intriguingly, the protease cathepsin L (CathL) was highly expressed in EPCs as opposed to ECs and is essential for matrix degradation and invasion by EPCs in vitro. CathL deficient mice showed impaired functional recovery after hind limb ischemia supporting the concept for an important role of CathL in postnatal neovascularization. Infused CathL deficient progenitor cells failed to home to sitesmore » of ischemia and to augment neovascularization. In contrast, over expression of CathL in mature ECs significantly enhanced their invasive activity and induced their neovascularization capacity in vivo. Taken together, CathL plays a crucial role for the integration of circulating EPCs into the ischemic tissue and is required for neovascularization mediated by EPCs.« less
Rohringer, Sabrina; Hofbauer, Pablo; Schneider, Karl H; Husa, Anna-Maria; Feichtinger, Georg; Peterbauer-Scherb, Anja; Redl, Heinz; Holnthoner, Wolfgang
2014-10-01
Vascularization of tissue-engineered constructs is essential to provide sufficient nutrient supply and hemostasis after implantation into target sites. Co-cultures of adipose-derived stem cells (ASC) with outgrowth endothelial cells (OEC) in fibrin gels were shown to provide an effective possibility to induce vasculogenesis in vitro. However, the mechanisms of the interaction between these two cell types remain unclear so far. The aim of this study was to evaluate differences of direct and indirect stimulation of ASC-induced vasculogenesis, the influence of ASC on network stabilization and molecular mechanisms involved in vascular structure formation. Endothelial cells (EC) were embedded in fibrin gels either containing non-coated or ASC-coated microcarrier beads as well as ASC alone. Moreover, EC-seeded constructs incubated with ASC-conditioned medium were used in addition to constructs with ASC seeded on top. Vascular network formation was visualized by green fluorescent protein expressing cells or immunostaining for CD31 and quantified. RT-qPCR of cells derived from co-cultures in fibrin was performed to evaluate changes in the expression of EC marker genes during the first week of culture. Moreover, angiogenesis-related protein levels were measured by performing angiogenesis proteome profiler arrays. The results demonstrate that proximity of endothelial cells and ASC is required for network formation and ASC stabilize EC networks by developing pericyte characteristics. We further showed that ASC induce controlled vessel growth by secreting pro-angiogenic and regulatory proteins. This study reveals angiogenic protein profiles involved in EC/ASC interactions in fibrin matrices and confirms the usability of OEC/ASC co-cultures for autologous vascular tissue engineering.
Abdi, Khadar; Lai, Chun-Hsiang; Paez-Gonzalez, Patricia; Lay, Mark; Pyun, Joon; Kuo, Chay T
2018-04-25
Specialized, differentiated cells often perform unique tasks that require them to maintain a stable phenotype. Multiciliated ependymal cells (ECs) are unique glial cells lining the brain ventricles, important for cerebral spinal fluid circulation. While functional ECs are needed to prevent hydrocephalus, they have also been reported to generate new neurons: whether ECs represent a stable cellular population remains unclear. Via a chemical screen we found that mature ECs are inherently plastic, with their multiciliated state needing constant maintenance by the Foxj1 transcription factor, which paradoxically is rapidly turned over by the ubiquitin-proteasome system leading to cellular de-differentiation. Mechanistic analyses revealed a novel NF-κB-independent IKK2 activity stabilizing Foxj1 in mature ECs, and we found that known IKK2 inhibitors including viruses and growth factors robustly induced Foxj1 degradation, EC de-differentiation, and hydrocephalus. Although mature ECs upon de-differentiation can divide and regenerate multiciliated ECs, we did not detect evidence supporting EC's neurogenic potential.
Wang, Yiqiang; Hedblom, Andreas; Koerner, Steffi K; Li, Mailin; Jernigan, Finith E; Wegiel, Barbara; Sun, Lijun
2016-12-01
A series of novel chalcones were synthesized by the Claisen-Schmidt condensation reaction of tetralones and 5-/6-indolecarboxaldehydes. Treatment of human lung cancer cell line harboring KRAS mutation (A549) with the chalcones induced dose-dependent apoptosis. Cell cycle analyses and Western blotting suggested the critical role of the chalcones in interrupting G2/M transition of cell cycle. SAR study demonstrated that substituent on the indole N atom significantly affects the anticancer activity of the chalcones, with methyl and ethyl providing the more active compounds (EC 50 : 110-200nM), Compound 1g was found to be >4-fold more active in the A549 cells (EC 50 : 110nM) than in prostate (PC3) or pancreatic cancer (CLR2119, PAN02) cells. Furthermore, compound 1l selectively induced apoptosis of lung cancer cells A549 (EC 50 : 0.55μM) but did not show measurable toxicity in the normal lung bronchial epithelial cells (hBEC) at doses as high as 10μM, indicating specificity towards cancer cells. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ohtani-Kaneko, Rsituko; Sato, Kenjiro; Tsutiya, Atsuhiro; Nakagawa, Yuka; Hashizume, Kazutoshi; Tazawa, Hidekatsu
2017-10-09
Induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) can contribute to elucidating the pathogenesis of heart and vascular diseases and developing their treatments. Their precise characteristics in fluid flow however remain unclear. Therefore, the aim of the present study is to characterise these features. We cultured three types of ECs in a microfluidic culture system: commercially available human iPS-ECs, human umbilical vein endothelial cells (HUVECs) and human umbilical artery endothelial cells (HUAECs). We then examined the mRNA expression levels of endothelial marker gene cluster of differentiation 31 (CD31), fit-related receptor tyrosine kinase (Flk-1), and the smooth muscle marker gene smooth muscle alpha-actin, and investigated changes in plasminogen activator inhibitor-1 (PAI-1) secretion and intracellular F-actin arrangement following heat stress. We also compared expressions of the arterial and venous marker genes ephrinB2 and EphB4, and the endothelial gap junction genes connexin (Cx) 37, 40, and 43 under fluidic shear stress to determine their arterial or venous characteristics. We found that iPS-ECs had similar endothelial marker gene expressions and exhibited similar increases in PAI-1 secretion under heat stress as HUVECs and HUAECs. In addition, F-actin arrangement in iPSC-ECs also responded to heat stress, as previously reported. However, they had different expression patterns of arterial and venous marker genes and Cx genes under different fluidic shear stress levels, showing that iPSC-ECs exhibit different characteristics from arterial and venous ECs. This microfluidic culture system equipped with variable shear stress control will provide an easy-to-use assay tool to examine characteristics of iPS-ECs generated by different protocols in various laboratories and contribute to basic and applied biomedical researches on iPS-ECs.
Human iPSC-Derived Endothelial Cell Sprouting Assay in ...
Activation of vascular endothelial cells (ECs) by growth factors initiates a cascade of events in vivo consisting of EC tip cell selection, sprout formation, EC stalk cell proliferation, and ultimately vascular stabilization by support cells. Although EC functional assays can recapitulate one or more aspects of angiogenesis in vitro, they are often limited by a lack of definition to the substratum and lack of dependence on key angiogenic signaling axes. Here, we designed and characterized a chemically-defined model of endothelial sprouting behavior in vitro using human induced pluripotent stem cell-derived endothelial cells (iPSC-ECs). Thiol-ene photopolymerization was used to rapidly encapsulate iPSC-ECs at high density in poly(ethylene glycol) (PEG) hydrogel spheres and subsequently to rapidly encapsulate iPSC-EC-containing hydrogel spheres in a cell-free over-layer. The hydrogel sprouting array here maintained pro-angiogenic phenotype of iPSC-ECs and supported growth factor-dependent proliferation and sprouting behavior. The sprouting model responded appropriately to several reference pharmacological angiogenesis inhibitors, which suggests the functional role of vascular endothelial growth factor, NF-κB, matrix metalloproteinase-2/9, protein kinase activity, and β-tubulin in endothelial sprouting. A blinded screen of 38 putative vascular disrupting compounds (pVDCs) from the US Environmental Protection Agency’s ToxCast library identified five compounds th
Autheman, Delphine; Wyder, Marianne; Popoff, Michel; D'Herde, Katharina; Christen, Stephan; Posthaus, Horst
2013-01-01
Clostridium perfringens β-toxin (CPB) is a β-barrel pore-forming toxin and an essential virulence factor of C. perfringens type C strains, which cause fatal hemorrhagic enteritis in animals and humans. We have previously shown that CPB is bound to endothelial cells within the intestine of affected pigs and humans, and that CPB is highly toxic to primary porcine endothelial cells (pEC) in vitro. The objective of the present study was to investigate the type of cell death induced by CPB in these cells, and to study potential host cell mechanisms involved in this process. CPB rapidly induced lactate dehydrogenase (LDH) release, propidium iodide uptake, ATP depletion, potassium efflux, a marked rise in intracellular calcium [Ca(2+)]i, release of high-mobility group protein B1 (HMGB1), and caused ultrastructural changes characteristic of necrotic cell death. Despite a certain level of caspase-3 activation, no appreciable DNA fragmentation was detected. CPB-induced LDH release and propidium iodide uptake were inhibited by necrostatin-1 and the two dissimilar calpain inhibitors PD150606 and calpeptin. Likewise, inhibition of potassium efflux, chelation of intracellular calcium and treatment of pEC with cyclosporin A also significantly inhibited CPB-induced LDH release. Our results demonstrate that rCPB primarily induces necrotic cell death in pEC, and that necrotic cell death is not merely a passive event caused by toxin-induced membrane disruption, but is propagated by host cell-dependent biochemical pathways activated by the rise in intracellular calcium and inhibitable by necrostatin-1, consistent with the emerging concept of programmed necrosis ("necroptosis").
Chamorro-Jorganes, Aránzazu; Lee, Monica Y.; Araldi, Elisa; Landskroner-Eiger, Shira; Fernández-Fuertes, Marta; Sahraei, Mahnaz; Quiles del Rey, Maria; van Solingen, Coen; Yu, Jun; Fernández-Hernando, Carlos; Sessa, William C.
2016-01-01
Rationale: Several lines of evidence indicate that the regulation of microRNA (miRNA) levels by different stimuli may contribute to the modulation of stimulus-induced responses. The miR-17–92 cluster has been linked to tumor development and angiogenesis, but its role in vascular endothelial growth factor–induced endothelial cell (EC) functions is unclear and its regulation is unknown. Objective: The purpose of this study was to elucidate the mechanism by which VEGF regulates the expression of miR-17–92 cluster in ECs and determine its contribution to the regulation of endothelial angiogenic functions, both in vitro and in vivo. This was done by analyzing the effect of postnatal inactivation of miR-17–92 cluster in the endothelium (miR-17–92 iEC-KO mice) on developmental retinal angiogenesis, VEGF-induced ear angiogenesis, and tumor angiogenesis. Methods and Results: Here, we show that Erk/Elk1 activation on VEGF stimulation of ECs is responsible for Elk-1-mediated transcription activation (chromatin immunoprecipitation analysis) of the miR-17–92 cluster. Furthermore, we demonstrate that VEGF-mediated upregulation of the miR-17–92 cluster in vitro is necessary for EC proliferation and angiogenic sprouting. Finally, we provide genetic evidence that miR-17–92 iEC-KO mice have blunted physiological retinal angiogenesis during development and diminished VEGF-induced ear angiogenesis and tumor angiogenesis. Computational analysis and rescue experiments show that PTEN (phosphatase and tensin homolog) is a target of the miR-17–92 cluster and is a crucial mediator of miR-17-92–induced EC proliferation. However, the angiogenic transcriptional program is reduced when miR-17–92 is inhibited. Conclusions: Taken together, our results indicate that VEGF-induced miR-17–92 cluster expression contributes to the angiogenic switch of ECs and participates in the regulation of angiogenesis. PMID:26472816
High-throughput identification of small molecules that affect human embryonic vascular development
Vazão, Helena; Rosa, Susana; Barata, Tânia; Costa, Ricardo; Pitrez, Patrícia R.; Honório, Inês; de Vries, Margreet R.; Papatsenko, Dimitri; Benedito, Rui; Saris, Daniel; Khademhosseini, Ali; Quax, Paul H. A.; Pereira, Carlos F.; Mercader, Nadia; Ferreira, Lino
2017-01-01
Birth defects, which are in part caused by exposure to environmental chemicals and pharmaceutical drugs, affect 1 in every 33 babies born in the United States each year. The current standard to screen drugs that affect embryonic development is based on prenatal animal testing; however, this approach yields low-throughput and limited mechanistic information regarding the biological pathways and potential adverse consequences in humans. To develop a screening platform for molecules that affect human embryonic development based on endothelial cells (ECs) derived from human pluripotent stem cells, we differentiated human pluripotent stem cells into embryonic ECs and induced their maturation under arterial flow conditions. These cells were then used to screen compounds that specifically affect embryonic vasculature. Using this platform, we have identified two compounds that have higher inhibitory effect in embryonic than postnatal ECs. One of them was fluphenazine (an antipsychotic), which inhibits calmodulin kinase II. The other compound was pyrrolopyrimidine (an antiinflammatory agent), which inhibits vascular endothelial growth factor receptor 2 (VEGFR2), decreases EC viability, induces an inflammatory response, and disrupts preformed vascular networks. The vascular effect of the pyrrolopyrimidine was further validated in prenatal vs. adult mouse ECs and in embryonic and adult zebrafish. We developed a platform based on human pluripotent stem cell-derived ECs for drug screening, which may open new avenues of research for the study and modulation of embryonic vasculature. PMID:28348206
High-throughput identification of small molecules that affect human embryonic vascular development.
Vazão, Helena; Rosa, Susana; Barata, Tânia; Costa, Ricardo; Pitrez, Patrícia R; Honório, Inês; de Vries, Margreet R; Papatsenko, Dimitri; Benedito, Rui; Saris, Daniel; Khademhosseini, Ali; Quax, Paul H A; Pereira, Carlos F; Mercader, Nadia; Fernandes, Hugo; Ferreira, Lino
2017-04-11
Birth defects, which are in part caused by exposure to environmental chemicals and pharmaceutical drugs, affect 1 in every 33 babies born in the United States each year. The current standard to screen drugs that affect embryonic development is based on prenatal animal testing; however, this approach yields low-throughput and limited mechanistic information regarding the biological pathways and potential adverse consequences in humans. To develop a screening platform for molecules that affect human embryonic development based on endothelial cells (ECs) derived from human pluripotent stem cells, we differentiated human pluripotent stem cells into embryonic ECs and induced their maturation under arterial flow conditions. These cells were then used to screen compounds that specifically affect embryonic vasculature. Using this platform, we have identified two compounds that have higher inhibitory effect in embryonic than postnatal ECs. One of them was fluphenazine (an antipsychotic), which inhibits calmodulin kinase II. The other compound was pyrrolopyrimidine (an antiinflammatory agent), which inhibits vascular endothelial growth factor receptor 2 (VEGFR2), decreases EC viability, induces an inflammatory response, and disrupts preformed vascular networks. The vascular effect of the pyrrolopyrimidine was further validated in prenatal vs. adult mouse ECs and in embryonic and adult zebrafish. We developed a platform based on human pluripotent stem cell-derived ECs for drug screening, which may open new avenues of research for the study and modulation of embryonic vasculature.
Park, Jin-Hee; Lee, Kuy-Sook; Lim, Hyun-Joung; Kim, Hanna; Kwak, Hyun-Jeong; Park, Hyun-Young
2012-06-01
Peroxisome proliferator-activated receptor (PPAR)δ is known to be expressed ubiquitously and involved in lipid and glucose metabolism. Recent studies have demonstrated that PPARδ is expressed in endothelial cells (ECs) and plays a potential role in endothelial survival and proliferation. Although PPARα and PPARγ are well recognized to play anti-inflammatory, antiproliferative, and antiangiogenic roles in ECs, the general effect of PPARδ on angiogenesis in ECs remains unclear. Thus, we investigated the effect of the PPARδ ligand L-165041 on vascular EC proliferation and angiogenesis in vitro as well as in vivo. Our data show that L-165041 inhibited VEGF-induced cell proliferation and migration in human umbilical vein ECs (HUVECs). L-165041 also inhibited angiogenesis in the Matrigel plug assay and aortic ring assay. Flow cytometric analysis indicated that L-165041 reduced the number of ECs in the S phase and the expression levels of cell cycle regulatory proteins such as cyclin A, cyclin E, CDK2, and CDK4; phosphorylation of the retinoblastoma protein was suppressed by pretreatment with L-165041. We confirmed whether these antiangiogenic effects of L-165041 were PPARδ-dependent using GW501516 and PPARδ siRNA. GW501516 treatment did not inhibit VEGF-induced angiogenesis, and transfection of PPARδ siRNA did not reverse this antiangiogenic effect of L-165041, suggesting that the antiangiogenic effect of L-165041 on ECs is PPARδ-independent. Together, these data indicate that the PPARδ ligand L-165041 inhibits VEGF-stimulated angiogenesis by suppressing the cell cycle progression independently of PPARδ. This study highlights the therapeutic potential of L-165041 in the treatment of many disorders related to pathological angiogenesis. Copyright © 2012 Wiley Periodicals, Inc.
Chan, Yau-Chi; Ng, Joyce H. L.; Au, Ka-Wing; Wong, Lai-Yung; Siu, Chung-Wah; Tse, Hung-Fat
2013-01-01
Functional endothelial-like cells (EC) have been successfully derived from different cell sources and potentially used for treatment of cardiovascular diseases; however, their relative therapeutic efficacy remains unclear. We differentiated functional EC from human bone marrow mononuclear cells (BM-EC), human embryonic stem cells (hESC-EC) and human induced pluripotent stem cells (hiPSC-EC), and compared their in-vitro tube formation, migration and cytokine expression profiles, and in-vivo capacity to attenuate hind-limb ischemia in mice. Successful differentiation of BM-EC was only achieved in 1/6 patient with severe coronary artery disease. Nevertheless, BM-EC, hESC-EC and hiPSC-EC exhibited typical cobblestone morphology, had the ability of uptaking DiI-labeled acetylated low-density-lipoprotein, and binding of Ulex europaeus lectin. In-vitro functional assay demonstrated that hiPSC-EC and hESC-EC had similar capacity for tube formation and migration as human umbilical cord endothelial cells (HUVEC) and BM-EC (P>0.05). While increased expression of major angiogenic factors including epidermal growth factor, hepatocyte growth factor, vascular endothelial growth factor, placental growth factor and stromal derived factor-1 were observed in all EC cultures during hypoxia compared with normoxia (P<0.05), the magnitudes of cytokine up-regulation upon hypoxic were more dramatic in hiPSC-EC and hESC-EC (P<0.05). Compared with medium, transplanting BM-EC (n = 6), HUVEC (n = 6), hESC-EC (n = 8) or hiPSC-EC (n = 8) significantly attenuated severe hind-limb ischemia in mice via enhancement of neovascularization. In conclusion, functional EC can be generated from hECS and hiPSC with similar therapeutic efficacy for attenuation of severe hind-limb ischemia. Differentiation of functional BM-EC was more difficult to achieve in patients with cardiovascular diseases, and hESC-EC or iPSC-EC are readily available as “off-the-shelf” format for the treatment of tissue ischemia. PMID:23472116
Chen, Joseph C; Johnson, Brittni A; Erikson, David W; Piltonen, Terhi T; Barragan, Fatima; Chu, Simon; Kohgadai, Nargis; Irwin, Juan C; Greene, Warner C; Giudice, Linda C; Roan, Nadia R
2014-06-01
How does seminal plasma (SP) affect the transcriptome of human primary endometrial epithelial cells (eEC) and stromal fibroblasts (eSF)? Exposure of eEC and eSF to SP in vitro increases expression of genes and secreted proteins associated with cellular migration, proliferation, viability and inhibition of cell death. Studies in both humans and animals suggest that SP can access and induce physiological changes in the upper female reproductive tract (FRT), which may participate in promoting reproductive success. This is a cross sectional study involving control samples versus treatment. SP (pooled from twenty donors) was first tested for dose- and time-dependent cytotoxic effects on eEC and eSF (n = 4). As exposure of eEC or eSF to 1% SP for 6 h proved to be non-toxic, a second set of eEC/eSF samples (n = 4) was treated under these conditions for transcriptome, protein and functional analysis. With a third set of samples (n = 3), we further compared the transcriptional response of the cells to SP versus fresh semen. eEC and eSF were isolated from endometrial biopsies from women of reproductive age undergoing benign gynecologic procedures and maintained in vitro. RNA was isolated and processed for microarray studies to analyze global transcriptomic changes. Secreted factors in conditioned media from SP-treated cells were analyzed by Luminex and for the ability to stimulate migration of CD14+ monocytes and CD4+ T cells. Pathway identifications were determined using the Z-scoring system in Ingenuity Pathways Analysis (Z scores ≥|1.5|). SP induced transcriptomic changes (P < 0.05) associated with promoting leukocyte and endothelial cell recruitment, and proliferation of eEC and eSF. Cell viability pathways were induced, while those associated with cell death were suppressed (P < 0.05). SP and fresh semen induced similar sets of pathways, suggesting that SP can model the signaling effects of semen in the endometrium. SP also induced secretion of pro-inflammatory and pro-chemotactic cytokines, as well as pro-angiogenic and proliferative growth factors (P < 0.05) in both eEC and eSF. Finally, functional assays revealed that conditioned media from SP-treated eEC and eSF significantly increased (P < 0.05) chemotaxis of CD14+ monocytes and CD4+ T cells. This study is limited to in vitro analyses of the effects of SP on endometrial cells. In addition, the measured response to SP was conducted in the absence of the ovarian hormones estradiol and progesterone, as well as epithelial-stromal paracrine signaling. While this study focused on establishing the baseline cellular response of endometrial cells to SP, future work should assess how hormone signaling in the presence of appropriate paracrine interactions affects SP-induced genes in these cells. The results of this study support previous findings that SP and semen contain bioactive factors capable of eliciting chemotactic responses in the uterus, which can lead to recruitment of leukocytes to the endometrium. Future directions will explore if similar changes in gene expression do indeed occur after coitus in vivo, and how the signaling cascades initiated by SP in the endometrium can affect reproductive success, female reproductive health and susceptibility to sexually transmitted diseases. The gene list provided by the transcriptome analysis reported here should prove a valuable resource for understanding the response of the upper FRT to SP exposure. This project was supported by NIH AI083050-04 (W.C.G./L.C.G.); NIH U54HD 055764 (L.C.G.); NIH 1F32HD074423-02 (J.C.C.); DOD W81XWH-11-1-0562 (W.C.G.); NIH 5K12-DK083021-04, NIH 1K99AI104262-01A1, The UCSF Hellman Award (N.R.R.). The authors have nothing to disclose.
Qi, Jian Hua; Anand-Apte, Bela
2015-01-01
Tissue Inhibitor of Metalloproteinases-3 (TIMP3) is a tumor suppressor and a potent inhibitor of angiogenesis. TIMP3 exerts its anti-angiogenic effect via a direct interaction with vascular endothelial growth factor (VEGF) receptor-2 (KDR) and inhibition of proliferation, migration and tube formation of endothelial cells (ECs). TIMP3 has also been shown to induce apoptosis in some cancer cells and vascular smooth muscle cells via MMP inhibition and caspase-dependent mechanisms. In this study, we examined the molecular mechanisms of TIMP3-mediated apoptosis in endothelial cells. We have previously demonstrated that mice developed smaller tumors with decreased vascularity when injected with breast carcinoma cells overexpressing TIMP3, than with control breast carcinoma cells. TIMP3 overexpression resulted in increased apoptosis in human breast carcinoma (MDA-MB435) in vivo but not in vitro. However, TIMP3 could induce apoptosis in endothelial cells (ECs) in vitro. The apoptotic activity of TIMP3 in ECs appears to be independent of MMP inhibitory activity. Furthermore, the equivalent expression of functional TIMP3 promoted apoptosis and caspase activation in endothelial cells expressing KDR (PAE/KDR), but not in endothelial cells expressing PDGF beta-receptor (PAE/β-R). Surprisingly, the apoptotic activity of TIMP3 appears to be independent of caspases. TIMP3 inhibited matrix-induced focal adhesion kinase (FAK) tyrosine phosphorylation and association with paxillin and disrupted the incorporation of β3 integrin, FAK and paxillin into focal adhesion contacts on the matrix, which were not affected by caspase inhibitors. Thus, TIMP3 may induce apoptosis in ECs by triggering a caspase-independent cell death pathway and targeting a FAK-dependent survival pathway. PMID:25558000
NASA Technical Reports Server (NTRS)
Segurola, R. J. Jr; Oluwole, B.; Mills, I.; Yokoyama, C.; Tanabe, T.; Kito, H.; Nakajima, N.; Sumpio, B. E.
1997-01-01
Recent studies indicate that hemodynamic forces such as cyclic strain and shear stress can increase prostacyclin (PGI2) secretion by endothelial cells (EC) but the effect of these forces on prostacyclin synthase (PGIS) gene expression remains unclear and is the focus of this study. Bovine aortic EC were seeded onto type I collagen coated flexible membranes and grown to confluence. The membranes and attached EC were subjected to 10% average strain at 60 cpm (0.5 sec deformation alternating with 0.5 sec relaxation) for up to 5 days. PGIS gene expression was determined by Northern blot analysis and protein level by Western blot analysis. The effect of cyclic strain on the PGIS promoter was determined by the transfection of a 1-kb human PGIS gene promoter construct coupled to a luciferase reporter gene into EC, followed by determination of luciferase activity. PGIS gene expression increased 1.7-fold in EC subjected to cyclic strain for 24 hr. Likewise, EC transfected with a pGL3B-PGIS (-1070/-10) construct showed an approximate 1.3-fold elevation in luciferase activity in EC subjected to cyclic strain for 3, 4, 8, and 12 hr. The weak stimulation of PGIS gene expression by cyclic strain was reflected in an inability to detect alterations in PGIS protein levels in EC subjected to cyclic strain for as long as 5 days. These data suggest that strain-induced stimulation of PGIS gene expression plays only a minor role in the ability of cyclic strain to stimulate PGI2 release in EC. These findings coupled with our earlier demonstration of a requisite addition of exogenous arachidonate in order to observe strain-induced PGI2 release, implicates a mechanism that more likely involves strain-induced stimulation of PGIS activity.
Shin, In-Sik; Shin, Na-Rae; Jeon, Chan-Mi; Kwon, Ok-Kyoung; Sohn, Ki-Young; Lee, Tae-Suk; Kim, Jae-Wha; Ahn, Kyung-Seop; Oh, Sei-Ryang
2014-01-01
EC-18 is a synthetic monoacetyldiaglyceride that is a major constituent in antlers of Sika deer (Cervus nippon Temmenick). In this study, we evaluated the protective effects of EC-18 on Th2-type cytokines, eosinophil infiltration, and other factors in an aluminum hydroxide/ovalbumin (OVA)-induced murine asthma model. Mice were sensitized on days 0 and 14 by intraperitoneal injection of OVA with aluminum hydroxide. On days 21, 22 and 23 after the initial sensitization, the mice received an airway challenge with OVA for 1h using an ultrasonic nebulizer. EC-18 was administered to mice by oral gavage at doses of 30mg/kg and 60mg/kg once daily from day 18 to 23. Methacholine responsiveness was measured 24h after the final OVA challenge, and the bronchoalveolar lavage fluid (BALF) was collected 48h after the final OVA challenge. EC-18 significantly reduced methacholine responsiveness, T helper type 2 (Th2) cytokines, eotaxin-1, immunoglobulin (Ig) E, IgG, and the number of inflammatory cells. In addition, EC-18-treated mice exhibited the reduction in the expression of inducible nitric oxide synthase (iNOS) in lung tissue. In the histological analysis using hematoxylin-eosin stain and periodic acid-Schiff stain, EC-18 attenuated the infiltration of inflammatory cells into the airway and reduced the level of mucus production. Our results showed that EC-18 effectively suppressed the asthmatic response induced by OVA challenge. These effects were considered to be associated with iNOS suppression. In conclusion, this study suggests that EC-18 may be a therapeutic agent for allergic asthma. Copyright © 2013 Elsevier B.V. All rights reserved.
Liu, Rebecca; Lauridsen, Holly M.; Amezquita, Robert A.; Pierce, Richard W.; Jane-wit, Dan; Fang, Caodi; Pellowe, Amanda S.; Kirkiles-Smith, Nancy C.; Gonzalez, Anjelica L.; Pober, Jordan S.
2016-01-01
A classical hallmark of acute inflammation is neutrophil infiltration of tissues, a multi-step process that involves sequential cell-cell interactions of circulating leukocytes with interleukin (IL)-1- or tumor necrosis factor-α (TNF)-activated microvascular endothelial cells (ECs) and pericytes (PCs) that form the wall of the postcapillary venules. The initial infiltrating cells accumulate perivascularly in close proximity to PCs. IL-17, a pro-inflammatory cytokine that acts on target cells via a heterodimeric receptor formed by IL-17RA and IL-17RC subunits, also promotes neutrophilic inflammation but its effects on vascular cells are less clear. We report that both cultured human ECs and PCs strongly express IL-17RC and, while neither cell type expresses much IL-17RA, PCs express significantly more than ECs. IL-17, alone or synergistically with TNF, significantly alters inflammatory gene expression in cultured human PCs but not ECs. RNA-seq analysis identifies many IL-17-induced transcripts in PCs encoding proteins known to stimulate neutrophil-mediated immunity. Conditioned media (CM) from IL-17-activated PCs, but not ECs, induce pertussis toxin-sensitive neutrophil polarization, likely mediated by PC-secreted chemokines, and also stimulate neutrophil production of pro-inflammatory molecules, including TNF, IL-1α, IL-1β, and IL-8. Furthermore, IL-17-activated PCs but not ECs can prolong neutrophil survival by producing G-CSF and GM-CSF, delaying the mitochondria outer membrane permeabilization and caspase 9 activation. Importantly, neutrophils exhibit enhanced phagocytic capacity after activation by CM from IL-17-treated PCs. We conclude that PCs, not ECs, are the major target of IL-17 within the microvessel wall and that IL-17-activated PCs can modulate neutrophil functions within the perivascular tissue space. PMID:27534549
Endothelial-to-Osteoblast Conversion Generates Osteoblastic Metastasis of Prostate Cancer.
Lin, Song-Chang; Lee, Yu-Chen; Yu, Guoyu; Cheng, Chien-Jui; Zhou, Xin; Chu, Khoi; Murshed, Monzur; Le, Nhat-Tu; Baseler, Laura; Abe, Jun-Ichi; Fujiwara, Keigi; deCrombrugghe, Benoit; Logothetis, Christopher J; Gallick, Gary E; Yu-Lee, Li-Yuan; Maity, Sankar N; Lin, Sue-Hwa
2017-06-05
Prostate cancer (PCa) bone metastasis is frequently associated with bone-forming lesions, but the source of the osteoblastic lesions remains unclear. We show that the tumor-induced bone derives partly from tumor-associated endothelial cells that have undergone endothelial-to-osteoblast (EC-to-OSB) conversion. The tumor-associated osteoblasts in PCa bone metastasis specimens and patient-derived xenografts (PDXs) were found to co-express endothelial marker Tie-2. BMP4, identified in PDX-conditioned medium, promoted EC-to-OSB conversion of 2H11 endothelial cells. BMP4 overexpression in non-osteogenic C4-2b PCa cells led to ectopic bone formation under subcutaneous implantation. Tumor-induced bone was reduced in trigenic mice (Tie2 cre /Osx f/f /SCID) with endothelial-specific deletion of osteoblast cell-fate determinant OSX compared with bigenic mice (Osx f/f /SCID). Thus, tumor-induced EC-to-OSB conversion is one mechanism that leads to osteoblastic bone metastasis of PCa. Copyright © 2017 Elsevier Inc. All rights reserved.
Retinal vascular injuries and intravitreal human embryonic stem cell-derived haemangioblasts.
Wang, Jin-Da; An, Ying; Zhang, Jing-Shang; Wan, Xiu-Hua; Zhang, Wei; Lanza, Robert; Lu, Shi-Jiang; Jonas, Jost B; Xu, Liang
2017-09-01
To investigate whether intravitreally applied haemangioblasts (HB) derived from human embryonic stem cells (hESCs) are helpful for the repair of vascular damage caused in animals by an oxygen-induced retinopathy (OIR), by an induced diabetic retinopathy (DR) or by an induced retinal ischaemia with subsequent reperfusion. Human embryonic stem cell-derived HBs were transplanted intravitreally into C57BL/6J mice (OIR model), into male Wistar rats with an induced DR and into male Wistar rats undergoing induced retinal ischaemia with subsequent reperfusion. Control groups of animals received an intravitreal injection of endothelial cells (ECs) or phosphate-buffered saline (PBS). We examined the vasculature integrity in the mice with OIR, the blood-retina barrier in the rats with induced DR, and retinal thickness and retinal ganglion cell density in retina flat mounts of the rats with the retinal ischaemic-reperfusion retinopathy. In the OIR model, the study group versus control groups showed a significantly (p < 0.001) smaller retinal avascular area [5.1 ± 2.7%;n = 18 animals versus 12.2 ± 2.8% (PBS group; n = 10 animals) and versus 11.8 ± 3.7% (EC group; n = 8 animals)] and less retinal neovascularization [6.3 ± 2.5%;n = 18 versus 15.2 ± 6.3% (n = 10; PBS group) and versus 15.8 ± 3.3% (n = 8; EC group)]. On retinal flat mounts, hESC-HBs were integrated into damaged retinal vessels and stained positive for PECAM (CD31) as EC marker. In the DR model, the study group versus the EC control group showed a significantly (p = 0.001) better blood-retina barrier function as measured at 2 days after the intravitreal injections [study group: 20.2 ± 12.8 μl/(g × hr); n = 6; versus EC control group: 52.9 ± 9.9 μl/(g × hr; n = 6)]. In the retinal ischaemia-reperfusion model, the groups did not differ significantly in retinal thickness and retinal ganglion cell density at 2, 5 and 7 days after baseline. By integrating into damaged retinal vessels and differentiating into ECs, intravitreally administered hESC-HBs may have partially repaired a retinal vascular injury caused by OIR model and DR. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Antony, Lizamma; van der Schoor, Freek; Dalrymple, Susan L.; Isaacs, John T.
2016-01-01
INTRODUCTION Physiologic testosterone continuously stimulates prostate stromal cell secretion of paracrine growth factors (PGFs), which if unopposed would induce hyperplastic overgrowth of normal prostate epithelial cells (PrECs). METHODS Lentiviral shRNA stable knock down of c-MYC, β-catenin, or TCF-4 completely inhibits normal (i.e., non-transformed) human PrECs growth. c-MYC enhancer driven reporter expression and growth is inhibited by two chemically distinct molecules, which prevent β-catenin signaling either by blocking TCF-4 binding (i.e., toxoflavin) or by stimulating degradation (i.e., AVX939). Recombinant DKK1 protein at a dose, which inhibits activation of canonical Wnt signaling does not inhibit PrEC growth. Nuclear β-catenin translocation and PrEC growth is prevented by both lack of PGFs or Akt inhibitor-I. Growth inhibition induced by lack of PGFs, toxoflavin, or Akt inhibitor-I is overcome by constitutive c-MYC transcription. RESULTS In the presence of continuous PGF signaling, PrEC hyperplasia is prevented by androgen binding to AR suppressing c-MYC transcription, resulting in G0 arrest/terminal differentiation independent of Rb, p21, p27, FoxP3, or down regulation of growth factors receptors and instead involves androgen-induced formation of AR/β-catenin/TCF-4 complexes, which suppress c-MYC transcription. Such suppression does not occur when AR is mutated in its zinc-finger binding domain. DISCUSSION Proliferation of non-transformed human PrECs is dependent upon c-MYC transcription via formation/binding of β-catenin/TCF-4 complexes at both 5′ and 3′ c-MYC enhancers stimulated by Wnt-independent, PGF induced Akt signaling. In the presence of continuous PGF signaling, PrEC hyperplasia is prevented by androgen-induced formation of AR/β-catenin/TCF-4 complexes, which retains binding to 3′ c-MYC enhancer, but now suppresses c-MYC transcription. PMID:24913829
DNA methylation enzyme inhibitor RG108 suppresses the radioresistance of esophageal cancer
Ou, Yao; Zhang, Quan; Tang, Yiting; Lu, Zhonghua; Lu, Xujing; Zhou, Xifa; Liu, Changmin
2018-01-01
Esophageal cancer (EC) is the eighth most common highly aggressive cancer worldwide. The purpose of this study was to investigate the effect of the DNA methyltransferase inhibitor RG108 on the radiosensitivity of EC cells. MTT and clonogenic assays were performed to assess the effect of RG108 on the proliferation and radiosensitivity of Eca-109 and TE-1 human EC cells. The cell cycle progression and alterations in apoptosis were analyzed by flow cytometry. For the in vivo analysis, the Eca-109 cells were inoculated into nude mice to establish tumors. Tissues from xenografts were obtained to detect changes to microvessels and tumor growth by immunohistochemistry (IHC). RNA-seq was used to identify differentially expressed genes. We found that RG108 increased the radiosensitivity of EC cells. Apoptosis and G2/M-phase arrest were induced by X-ray irradiation and were significantly enhanced by RG108. In addition, growth of tumor xenografts from the Eca-109 cells was significantly inhibited by irradiation in combination with RG108. The RNA-seq analysis revealed that, compared with radiation alone, X-ray irradiation in combination with RG108 altered the expression of 121 genes in multiple pathways, including the TGF-β signaling pathway and the Epstein-Barr virus infection pathway. In conclusion, RG108 induced radiosensitivity in EC cells both in vitro and in vivo. PMID:29328411
Zhang, Y; Chen, M; Venugopal, S; Zhou, Y; Xiang, W; Li, Y-H; Lin, Q; Kini, R M; Chong, Y-S; Ge, R
2011-05-05
Isthmin (ISM) is a 60 kDa secreted-angiogenesis inhibitor that suppresses tumor growth in mouse and disrupts vessel patterning in zebrafish embryos. It selectively binds to alphavbeta5 (αvβ5) integrin on the surface of endothelial cells (ECs), but the mechanism of its antiangiogenic action remains unknown. In this work, we establish that soluble ISM suppresses in vitro angiogenesis and induces EC apoptosis by interacting with its cell surface receptor αvβ5 integrin through a novel 'RKD' motif localized within its adhesion-associated domain in MUC4 and other proteins domain. ISM induces EC apoptosis through integrin-mediated death (IMD) by direct recruitment and activation of caspase-8 without causing anoikis. On the other hand, immobilized ISM loses its antiangiogenic function and instead promotes EC adhesion, survival and migration through αvβ5 integrin by activating focal adhesion kinase (FAK). ISM unexpectedly has both a pro-survival and death-promoting effect on ECs depending on its physical state. This dual function of a single antiangiogenic protein may impact its antiangiogenic efficacy in vivo.
Genís, Laura; Gonzalo, Pilar; Tutor, Antonio S.; Gálvez, Beatriz G.; Martínez-Ruiz, Antonio; Zaragoza, Carlos; Lamas, Santiago; Tryggvason, Karl; Apte, Suneel S.
2007-01-01
Nitric oxide (NO) is essential for vascular homeostasis and is also a critical modulator of angiogenesis; however, the molecular mechanisms of NO action during angiogenesis remain elusive. We have investigated the potential relationship between NO and membrane type 1–matrix metalloproteinase (MT1-MMP) during endothelial migration and capillary tube formation. Endothelial NO synthase (eNOS) colocalizes with MT1-MMP at motility-associated structures in migratory human endothelial cells (ECs); moreover, NO is produced at these structures and is released into the medium during EC migration. We have therefore addressed 2 questions: (1) the putative regulation of MT1-MMP by NO in migratory ECs; and (2) the requirement for MT1-MMP in NO-induced EC migration and tube formation. NO upregulates MT1-MMP membrane clustering on migratory human ECs, and this is accompanied by increased degradation of type I collagen substrate. MT1-MMP membrane expression and localization are impaired in lung ECs from eNOS-deficient mice, and these cells also show impaired migration and tube formation in vitro. Inhibition of MT1-MMP with a neutralizing antibody impairs NOinduced tube formation by human ECs, and NO-induced endothelial migration and tube formation are impaired in lung ECs from mice deficient in MT1-MMP. MT1-MMP thus appears to be a key molecular effector of NO during the EC migration and angiogenic processes, and is a potential therapeutic target for NO-associated vascular disorders. PMID:17606763
Rac1 mediates laminar shear stress-induced vascular endothelial cell migration
Huang, Xianliang; Shen, Yang; Zhang, Yi; Wei, Lin; Lai, Yi; Wu, Jiang; Liu, Xiaojing; Liu, Xiaoheng
2013-01-01
The migration of endothelial cells (ECs) plays an important role in vascular remodeling and regeneration. ECs are constantly subjected to shear stress resulting from blood flow and are able to convert mechanical stimuli into intracellular signals that affect cellular behaviors and functions. The aim of this study is to elucidate the effects of Rac1, which is the member of small G protein family, on EC migration under different laminar shear stress (5.56, 10.02, and 15.27 dyn/cm2). The cell migration distance under laminar shear stress increased significantly than that under the static culture condition. Especially, under relative high shear stress (15.27 dyn/cm2) there was a higher difference at 8 h (P < 0.01) and 2 h (P < 0.05) compared with static controls. RT-PCR results further showed increasing mRNA expression of Rac1 in ECs exposed to laminar shear stress than that exposed to static culture. Using plasmids encoding the wild-type (WT), an activated mutant (Q61L), and a dominant-negative mutant (T17N), plasmids encoding Rac1 were transfected into EA.hy 926 cells. The average net migration distance of Rac1Q61L group increased significantly, while Rac1T17N group decreased significantly in comparison with the static controls. These results indicated that Rac1 mediated shear stress-induced EC migration. Our findings conduce to elucidate the molecular mechanisms of EC migration induced by shear stress, which is expected to understand the pathophysiological basis of wound healing in health and diseases. PMID:24430179
Zhang, Cheng; Wang, Jinju; Ma, Xiaotang; Wang, Wenjun; Zhao, Bin; Chen, Yanfang; Chen, Can; Bihl, Ji C
2018-03-01
Oxidative stress is one of the mechanisms of ageing-associated vascular dysfunction. Angiotensin-converting enzyme 2 (ACE2) and microRNA (miR)-18a have shown to be down-regulated in ageing cells. Our previous study has shown that ACE2-primed endothelial progenitor cells (ACE2-EPCs) have protective effects on endothelial cells (ECs), which might be due to their released exosomes (EXs). Here, we aimed to investigate whether ACE2-EPC-EXs could attenuate hypoxia/reoxygenation (H/R)-induced injury in ageing ECs through their carried miR-18a. Young and angiotensin II-induced ageing ECs were subjected to H/R and co-cultured with vehicle (medium), EPC-EXs, ACE2-EPCs-EXs, ACE2-EPCs-EXs + DX600 or ACE2-EPCs-EXs with miR-18a deficiency (ACE2-EPCs-EXs anti-miR-18a ). Results showed (1) ageing ECs displayed increased senescence, apoptosis and ROS production, but decreased ACE2 and miR-18a expressions and tube formation ability; (2) under H/R condition, ageing ECs showed higher rate of apoptosis, ROS overproduction and nitric oxide reduction, up-regulation of Nox2, down-regulation of ACE2, miR-18a and eNOS, and compromised tube formation ability; (3) compared with EPC-EXs, ACE2-EPC-EXs had better efficiencies on protecting ECs from H/R-induced changes; (4) The protective effects were less seen in ACE2-EPCs-EXs + DX600 and ACE2-EPCs-EXs anti-miR-18a groups. These data suggest that ACE-EPCs-EXs have better protective effects on H/R injury in ageing ECs which could be through their carried miR-18a and subsequently down-regulating the Nox2/ROS pathway. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Theodoro-Júnior, Osmar Aparecido; Righetti, Renato Fraga; Almeida-Reis, Rafael; Martins-Oliveira, Bruno Tadeu; Oliva, Leandro Vilela; Prado, Carla Máximo; Saraiva-Romanholo, Beatriz Mangueira; Leick, Edna Aparecida; Pinheiro, Nathalia Montouro; Lobo, Yara Aparecida; Martins, Mílton de Arruda; Oliva, Maria Luiza Vilela; Tibério, Iolanda de Fátima Lopes Calvo
2017-01-01
Proteinase inhibitors have been associated with anti-inflammatory and antioxidant activities and may represent a potential therapeutic treatment for emphysema. Our aim was to evaluate the effects of a plant Kunitz proteinase inhibitor, Enterolobium contortisiliquum trypsin inhibitor (EcTI), on several aspects of experimental elastase-induced pulmonary inflammation in mice. C57/Bl6 mice were intratracheally administered elastase (ELA) or saline (SAL) and were treated intraperitoneally with EcTI (ELA-EcTI, SAL-EcTI) on days 1, 14 and 21. On day 28, pulmonary mechanics, exhaled nitric oxide (ENO) and number leucocytes in the bronchoalveolar lavage fluid (BALF) were evaluated. Subsequently, lung immunohistochemical staining was submitted to morphometry. EcTI treatment reduced responses of the mechanical respiratory system, number of cells in the BALF, and reduced tumor necrosis factor-α (TNF-α), matrix metalloproteinase-9 (MMP-9), matrix metalloproteinase-12 (MMP-12), tissue inhibitor of matrix metalloproteinase (TIMP-1), endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS)-positive cells and volume proportion of isoprostane, collagen and elastic fibers in the airways and alveolar walls compared with the ELA group. EcTI treatment reduced elastase induced pulmonary inflammation, remodeling, oxidative stress and mechanical alterations, suggesting that this inhibitor may be a potential therapeutic tool for chronic obstructive pulmonary disease (COPD) management. PMID:28216579
Graham, Mindy Kim; Principessa, Lorenzo; Antony, Lizamma; Meeker, Alan K; Isaacs, John T
2017-03-01
There are two principal senescence barriers that must be overcome to successfully immortalize primary human epithelial cells in culture, stress-induced senescence, and replicative senescence. The p16 INK4a /retinoblastoma protein (p16/Rb) pathway mediates stress-induced senescence, and is generally upregulated by primary epithelial cells in response to the artificial conditions from tissue culture. Replicative senescence is associated with telomere loss. Following each round of cell division, telomeres progressively shorten. Once telomeres shorten to a critical length, the DNA damage response pathway is activated, and the tumor suppressor p53 pathway triggers replicative senescence. Exogenous expression of telomerase in normal human epithelial cells extends the replicative capacity of cells, and in some cases, immortalizes cells. However reliable immortalization of epithelial cells usually requires telomerase activity coupled with inactivation of the p16/Rb pathway. A lentiviral vector, pLOX-TERT-iresTK (Addgene #12245), containing a CMV promoter upstream of a bicistronic coding cassette that includes loxP sites flanking the catalytic subunit of human telomerase gene (TERT) and herpes simplex virus type-1 thymidine kinase gene (HSV1-tk) was used to transduce normal prostate basal epithelial cells (PrECs) initiated in cell culture from prostate cancer patients undergoing radical prostatectomies. Transduction of early (i.e., <7) passage PrECs with TERT led to successful immortalization. However, attempts to immortalize late (i.e., >7) passage PrECs were unsuccessful. Late passage PrECs, which acquired elevated p16, were unable to overcome the senescence barrier. Immortalized PrECs (TERT-PrECs) retained a normal male karyotype and low p16 expression. Additionally, TERT-PrECs were non-tumorigenic when inoculated into intact male immunodeficient NSG mice. The present studies document that early passage human PrECs have sufficiently low p16 to permit immortalization by TERT expression alone. TERT-PrECs developed using this transduction approach provides an appropriate and experimentally facile model for clarifying the molecular mechanism(s) involved in both immortalization of human PrECs, as well as identifying genetic/epigenetic "drivers" for conversion of these immortalized non-tumorigenic cells into fully lethal prostate cancers. Notably, loxP sites flank the exogenous TERT gene in the TERT-PrECs. Cre recombinase can be used to excise TERT, and resolve whether TERT expression is required for these cells to be fully transformed into lethal cancer. Prostate 77: 374-384, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Slavin, Spencer A; Leonard, Antony; Grose, Valerie; Fazal, Fabeha; Rahman, Arshad
2018-03-01
Autophagy is an evolutionarily conserved cellular process that facilitates the continuous recycling of intracellular components (organelles and proteins) and provides an alternative source of energy when nutrients are scarce. Recent studies have implicated autophagy in many disorders, including pulmonary diseases. However, the role of autophagy in endothelial cell (EC) barrier dysfunction and its relevance in the context of acute lung injury (ALI) remain uncertain. Here, we provide evidence that autophagy is a critical component of EC barrier disruption in ALI. Using an aerosolized bacterial lipopolysaccharide (LPS) inhalation mouse model of ALI, we found that administration of the autophagy inhibitor 3-methyladenine (3-MA), either prophylactically or therapeutically, markedly reduced lung vascular leakage and tissue edema. 3-MA was also effective in reducing the levels of proinflammatory mediators and lung neutrophil sequestration induced by LPS. To test the possibility that autophagy in EC could contribute to lung vascular injury, we addressed its role in the mechanism of EC barrier disruption. Knockdown of ATG5, an essential regulator of autophagy, attenuated thrombin-induced EC barrier disruption, confirming the involvement of autophagy in the response. Similarly, exposure of cells to 3-MA, either before or after thrombin, protected against EC barrier dysfunction by inhibiting the cleavage and loss of vascular endothelial cadherin at adherens junctions, as well as formation of actin stress fibers. 3-MA also reversed LPS-induced EC barrier disruption. Together, these data imply a role of autophagy in lung vascular injury and reveal the protective and therapeutic utility of 3-MA against ALI.
Fukazawa, Yoshinori; Lum, Richard; Okoye, Afam A; Park, Haesun; Matsuda, Kenta; Bae, Jin Young; Hagen, Shoko I; Shoemaker, Rebecca; Deleage, Claire; Lucero, Carissa; Morcock, David; Swanson, Tonya; Legasse, Alfred W; Axthelm, Michael K; Hesselgesser, Joseph; Geleziunas, Romas; Hirsch, Vanessa M; Edlefsen, Paul T; Piatak, Michael; Estes, Jacob D; Lifson, Jeffrey D; Picker, Louis J
2015-02-01
Chronic-phase HIV and simian immunodeficiency virus (SIV) replication is reduced by as much as 10,000-fold in elite controllers (ECs) compared with typical progressors (TPs), but sufficient viral replication persists in EC tissues to allow viral sequence evolution and induce excess immune activation. Here we show that productive SIV infection in rhesus monkey ECs, but not TPs, is markedly restricted to CD4(+) follicular helper T (TFH) cells, suggesting that these EC monkeys' highly effective SIV-specific CD8(+) T cells can effectively clear productive SIV infection from extrafollicular sites, but their relative exclusion from B cell follicles prevents their elimination of productively infected TFH cells. CD8(+) lymphocyte depletion in EC monkeys resulted in a dramatic re-distribution of productive SIV infection to non-TFH cells, with restriction of productive infection to TFH cells resuming upon CD8(+) T cell recovery. Thus, B cell follicles constitute 'sanctuaries' for persistent SIV replication in the presence of potent anti-viral CD8(+) T cell responses, potentially complicating efforts to cure HIV infection with therapeutic vaccination or T cell immunotherapy.
Laminar shear stress promotes mitochondrial homeostasis in endothelial cells.
Wu, Li-Hong; Chang, Hao-Chun; Ting, Pei-Ching; Wang, Danny L
2018-06-01
Vascular endothelial cells (ECs) are constantly subjected to flow-induced shear stress that is crucial for endothelial functions. Laminar shear stress (LSS) exerts atheroprotection to ECs. Mitochondrial homeostasis is essential for cellular survival. However, the effects of LSS on mitochondrial homeostasis in ECs remain unclear. Mitochondrial homeostasis in ECs exposed to LSS was examined. Cultured human umbilical vein ECs were subjected to LSS (12 dynes/cm 2 ) generated by a parallel-plate flow chamber system. ECs subjected to LSS demonstrated an increment of mitochondria in tubular form coupled with the increase of fusion proteins (Mfn2, OPA1) and the decrease of fission protein (Fis1). An increase of both long- and short- OPA1 along with a higher protease YME1L level were observed. LSS triggered a rapid phosphorylation on S637 but a decrease on S616 of fission-controlled protein Drp1. Consistently, Drp1 translocation to mitochondria was decreased in sheared ECs, suggesting that LSS promotes mitochondrial fusion. Enhanced mitochondrial biogenesis in sheared ECs was shown by the increase of mitochondrial mass and its regulatory proeins (PGC1α, TFAM, Nrf1). LSS enhances the expression of mitochondrial antioxidant enzymes and improves mitochondrial functions indicated by the increase of mitochondrial membrane potential (ΔΨm) and ATP generation. TNFα treatment decreased mitochondrial tubular network and its functions in ECs. LSS mitigated TNFα-induced mitochondrial impairments in ECs. Our results clearly indicate that LSS promotes mitochondrial homeostasis and attenuates inflammation-induced mitochondrial impairments in ECs. Our results provide novel insights into the manner of mitochondrial dynamics and functions modulated by LSS that contribute to endothelial integrity. © 2017 Wiley Periodicals, Inc.
Tumor-induced loss of mural Connexin 43 gap junction activity promotes endothelial proliferation.
Choudhary, Mayur; Naczki, Christine; Chen, Wenhong; Barlow, Keith D; Case, L Douglas; Metheny-Barlow, Linda J
2015-05-23
Proper functional association between mural cells and endothelial cells (EC) causes EC of blood vessels to become quiescent. Mural cells on tumor vessels exhibit decreased attachment to EC, which allows vessels to be unstable and proliferative. The mechanisms by which tumors prevent proper association between mural cells and EC are not well understood. Since gap junctions (GJ) play an important role in cell-cell contact and communication, we investigated whether loss of GJ plays a role in tumor-induced mural cell dissociation. Mural cell regulation of endothelial proliferation was assessed by direct co-culture assays of fluorescently labeled cells quantified by flow cytometry or plate reader. Gap junction function was assessed by parachute assay. Connexin 43 (Cx43) protein in mural cells exposed to conditioned media from cancer cells was assessed by Western and confocal microscopy; mRNA levels were assessed by quantitative real-time PCR. Expression vectors or siRNA were utilized to overexpress or knock down Cx43. Tumor growth and angiogenesis was assessed in mouse hosts deficient for Cx43. Using parachute dye transfer assay, we demonstrate that media conditioned by MDA-MB-231 breast cancer cells diminishes GJ communication between mural cells (vascular smooth muscle cells, vSMC) and EC. Both protein and mRNA of the GJ component Connexin 43 (Cx43) are downregulated in mural cells by tumor-conditioned media; media from non-tumorigenic MCF10A cells had no effect. Loss of GJ communication by Cx43 siRNA knockdown, treatment with blocking peptide, or exposure to tumor-conditioned media diminishes the ability of mural cells to inhibit EC proliferation in co-culture assays, while overexpression of Cx43 in vSMC restores GJ and endothelial inhibition. Breast tumor cells implanted into mice heterozygous for Cx43 show no changes in tumor growth, but exhibit significantly increased tumor vascularization determined by CD31 staining, along with decreased mural cell support detected by NG2 staining. Our data indicate that i) functional Cx43 is required for mural cell-induced endothelial quiescence, and ii) downregulation of Cx43 GJ by tumors frees endothelium to respond to angiogenic cues. These data define a novel and important role for maintained Cx43 function in regulation of vessel quiescence, and suggest its loss may contribute to pathological tumor angiogenesis.
Waldman, W. J.; Knight, D. A.
1996-01-01
Cytomegalovirus (CMV) has been associated with allograft rejection and transplantation-associated arteriosclerosis. CMV infects endothelium, the interface between allograft tissue and the host immune system; however, mechanisms by which such interaction might exacerbate the rejection process remain unresolved. Here we test the hypothesis that host immune activity, triggered by CMV-infected graft endothelial cells (ECs), can result in the production of cytokines capable of enhancing the alloimmunogenicity of nearby uninfected endothelia. To model these phenomena in vitro, confluent monolayers of ECs derived from human umbilical vein or adult gonadal vein were incubated 5 days beneath trans-well culture inserts containing CMV-seropositive or CMV-seronegative donor-derived CD3+ or CD4+ T cells alone or in combination with CMV-infected or uninfected allogeneic ECs. The extent of T cell proliferation was determined by [3H]thymidine labeling of trans-well contents after transfer to microtiter plates. Endothelial responses to soluble factors elaborated by CMV-activated T cells were determined by immunohistochemical staining and immunofluorescence flow cytometric analysis of underlying EC monolayers. Results of experiments with CMV-seropositive donor-derived CD4+ T cells demonstrated enhancement of ICAM-1 and histocompatibility leukocyte antigen class I, as well as induction of histocompatibility leukocyte antigen DR on ECs incubated beneath T cell/EC/CMV trans-well co-cultures. Total (CD3+) T cells co-cultured with EC/CMV induced VCAM-1 as well. Furthermore, [3H]thymidine incorporation by these T cells indicated a strong proliferative response. Endothelial responses to T cells alone or in combination with uninfected ECs were minimal, and T cells cultured under these conditions showed little proliferative activity. Similarly, little or no endothelial responses were apparent in monolayers beneath trans-wells containing T cells isolated from CMV-seronegative individuals regardless of the CMV status of stimulator ECs. Finally, experiments employing blocking antibodies identified interferon-gamma and tumor necrosis factor-alpha as inducing agents in this co-culture system. These findings suggest that allograft endothelium harboring CMV has the potential to activate host T cells and that the consequent release of cytokines shows potential to raise surrounding endothelia to a fully activated, highly immunogenic state. Results of these studies thus provide insight into mechanisms that help elucidate the association between CMV and transplantation-associated arteriosclerosis and/or allograft rejection. Images Figure 1 Figure 5 PMID:8546198
Haugen, Martin; Dammen, Rikard; Svejda, Bernhard; Gustafsson, Bjorn I; Pfragner, Roswitha; Modlin, Irvin; Kidd, Mark
2012-11-15
The chemomechanosensory function of the gut enterochromaffin (EC) cell enables it to respond to dietary agents and mechanical stretch. We hypothesized that the EC cell, which also sensed alterations in luminal or mucosal oxygen level, was physiologically sensitive to fluctuations in O(2). Given that low oxygen levels induce 5-HT production and secretion through a hypoxia inducible factor 1α (HIF-1α)-dependent pathway, we also hypothesized that increasing O(2) would reduce 5-HT production and secretion. Isolated normal EC cells as well as the well-characterized EC cell model KRJ-I were used to examine HIF signaling (luciferase-assays), hypoxia transcriptional response element (HRE)-mediated transcription (PCR), signaling pathways (Western blot), and 5-HT release (ELISA) during exposure to different oxygen levels. Normal EC cells and KRJ-I cells express HIF-1α, and transient transfection with Renilla luciferase under HRE control identified a hypoxia-mediated pathway in these cells. PCR confirmed activation of HIF-downstream targets, GLUT1, IGF2, and VEGF under reduced O(2) levels (0.5%). Reducing O(2) also elevated 5-HT secretion (2-3.2-fold) as well as protein levels of HIF-1α (1.7-3-fold). Increasing O(2) to 100% inhibited HRE-mediated signaling, transcription, reduced 5-HT secretion, and significantly lowered HIF-1α levels (∼75% of control). NF-κB signaling was also elevated during hypoxia (1.2-1.6-fold), but no significant changes were noted in PKA/cAMP. We concluded that gut EC cells are oxygen responsive, and alterations in O(2) levels differentially activate HIF-1α and tryptophan hydroxylase 1, as well as NF-κB signaling. This results in alterations in 5-HT production and secretion and identifies that the chemomechanosensory role of EC cells extends to oxygen sensing.
Manavski, Yosif; Abel, Tobias; Hu, Junhao; Kleinlützum, Dina; Buchholz, Christian J.; Belz, Christina; Augustin, Hellmut G.; Dimmeler, Stefanie
2017-01-01
Endothelial cells (ECs) not only are important for oxygen delivery but also act as a paracrine source for signals that determine the balance between tissue regeneration and fibrosis. Here we show that genetic inactivation of flow-induced transcription factor Krüppel-like factor 2 (KLF2) in ECs results in reduced liver damage and augmentation of hepatocyte proliferation after chronic liver injury by treatment with carbon tetrachloride (CCl4). Serum levels of GLDH3 and ALT were significantly reduced in CCl4-treated EC-specific KLF2-deficient mice. In contrast, transgenic overexpression of KLF2 in liver sinusoidal ECs reduced hepatocyte proliferation. KLF2 induced activin A expression and secretion from endothelial cells in vitro and in vivo, which inhibited hepatocyte proliferation. However, loss or gain of KLF2 expression did not change capillary density and liver fibrosis, but significantly affected hepatocyte proliferation. Taken together, the data demonstrate that KLF2 induces an antiproliferative secretome, including activin A, which attenuates liver regeneration. PMID:28348240
Kaupisch, A; Kennedy, L; Stelmanis, V; Tye, B; Kane, N M; Mountford, J C; Courtney, A; Baker, A H
2012-10-01
Revascularisation of ischaemic tissue remains an area of substantial unmet clinical need in cardiovascular disease. Strategies to induce therapeutic angiogenesis are therefore attractive. Our recent focus has been on human embryonic stem cell (hESC) strategies since hESC can be maintained in a pluripotent state or differentiated into any desired cell type, including endothelial cells (EC), under defined differentiation culture conditions. We recently published a protocol for non-good manufacturing practice (GMP) feeder- and serum-free hESC-EC-directed monolayer differentiation to vascular EC demonstrating the potential to generate hESC-derived EC in a GMP-compliant manner suitable for use in clinical trials. In this study we modified that laboratory protocol to GMP compliance. EC production was confirmed by flow cytometry, qRT-PCR and production of vascular structures in Matrigel®, yielding approximately 30 % mature VE-cadherin(+)/PECAM-1(+) cells using the GMP-compliant hESC line RC13. In conclusion, we have successfully demonstrated the production of vascular EC under GMP-compliant conditions suitable for clinical evaluation.
Intermedin Enlarges the Vascular Lumen by Inducing the Quiescent Endothelial Cell Proliferation.
Wang, Li-Jun; Xiao, Fei; Kong, Ling-Miao; Wang, De-Nian; Li, Hong-Yu; Wei, Yong-Gang; Tan, Chun; Zhao, Huan; Zhang, Ting; Cao, Gui-Qun; Zhang, Kang; Wei, Yu-Quan; Yang, Han-Shuo; Zhang, Wei
2018-02-01
Intermedin plays an important role in vascular remodeling and significantly improves blood perfusion, but the precise mechanism remains unclear. Herein, we aimed to define whether vascular lumen enlargement is responsible for the intermedin-increased blood perfusion and explore the underlying cellular and molecular mechanisms. To study the role of intermedin, we generated the IMD-KO ( Adm2 -/- ) mice using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9) system. Intermedin significantly promoted vascular lumen enlargement in vitro (fibrin beads assay) and in vivo (murine retinas), which contributed to the improved blood perfusion in both physiological (retinal) and pathological (tumor) angiogenic models. We designed experiments to calculate the endothelial cell (EC) size and found that the lumen enlargement is because of EC proliferation but not because of a change in cell shape. ECs that construct vessel walls are considered quiescent cells because they are in a state of contact inhibition and show reduced responsiveness to VEGF (vascular endothelial growth factor). Using immunoprecipitation, Western blot assay, and fluorescent microscopy, we found that intermedin induced the formation of a signaling complex containing CRLR (calcitonin receptor-like receptor)/β-arr1 (β-arrestin1)/Src in ECs and promoted it internalizing into cytoplasm in a clathrin-dependent manner to activate downstream ERK1/2 (extracellular signal-regulated kinase 1/2). Importantly, this effect was not abrogated by cell-cell contacts of ECs. Through this mechanism, intermedin could reactivate the quiescent ECs to proliferate, resulting in continuous lumen expanding and a more effective blood perfusion. Our findings suggest a novel mechanism that may explain how quiescent ECs overcome the contact inhibition and regain the ability to proliferate for continuous vascular lumen enlargement. © 2017 American Heart Association, Inc.
Takimoto, Eiki; Zhang, Ailan; Weiner, Noah C.; Meuchel, Lucas W.; Berger, Alan E.; Cheadle, Chris; Johns, Roger A.
2014-01-01
Pulmonary hypertension (PH) is characterized by elevated pulmonary artery pressure that leads to progressive right heart failure and ultimately death. Injury to endothelium and consequent wound repair cascades have been suggested to trigger pulmonary vascular remodeling, such as that observed during PH. The relationship between injury to endothelium and disease pathogenesis in this disorder remains poorly understood. We and others have shown that, in mice, hypoxia-induced mitogenic factor (HIMF, also known as FIZZ1 or RELMα) plays a critical role in the pathogenesis of lung inflammation and the development of PH. In this study, we dissected the mechanism by which HIMF and its human homolog resistin (hRETN) induce pulmonary endothelial cell (EC) apoptosis and subsequent lung inflammation-mediated PH, which exhibits many of the hallmarks of the human disease. Systemic administration of HIMF caused increases in EC apoptosis and interleukin (IL)-4-dependent vascular inflammatory marker expression in mouse lung during the early inflammation phase. In vitro, HIMF, hRETN, and IL-4 activated pulmonary microvascular ECs (PMVECs) by increasing angiopoietin-2 expression and induced PMVEC apoptosis. In addition, the conditioned medium from hRETN-treated ECs had elevated levels of endothelin-1 and caused significant increases in pulmonary vascular smooth muscle cell proliferation. Last, HIMF treatment caused development of PH that was characterized by pulmonary vascular remodeling and right heart failure in wild-type mice but not in IL-4 knockout mice. These data suggest that HIMF contributes to activation of vascular inflammation at least in part by inducing EC apoptosis in the lung. These events lead to subsequent PH. PMID:24793164
Endocannabinoids participate in placental apoptosis induced by hypoxia inducible factor-1.
Abán, C; Martinez, N; Carou, C; Albamonte, I; Toro, A; Seyahian, A; Franchi, A; Leguizamón, G; Trigubo, D; Damiano, A; Farina, M
2016-10-01
During pregnancy, apoptosis is a physiological event critical in the remodeling and aging of the placenta. Increasing evidence has pointed towards the relevance of endocannabinoids (ECs) and hypoxia as modulators of trophoblast cell death. However, the relation between these factors is still unknown. In this report, we evaluated the participation of ECs in placental apoptosis induced by cobalt chloride (CoCl2), a hypoxia mimicking agent that stabilizes the expression of hypoxia inducible factor-1 alpha (HIF-1α). We found that HIF-1α stabilization decreased FAAH mRNA and protein levels, suggesting an increase in ECs tone. Additionally, CoCl2 incubation and Met-AEA treatment reduced cell viability and increased TUNEL-positive staining in syncytiotrophoblast layer. Immunohistochemical analysis demonstrated Bax and Bcl-2 protein expression in the cytoplasm of syncytiotrophoblast. Finally, HIF-1α stabilization produced an increase in Bax/Bcl-2 ratio, activation of caspase 3 and PARP cleavage. All these changes in apoptotic parameters were reversed with AM251, a CB1 antagonist. These results demonstrate that HIF-1α may induce apoptosis in human placenta via intrinsic pathway by a mechanism that involves activation of CB1 receptor suggesting a role of the ECs in this process.
Jambou, Ronan; Combes, Valery; Jambou, Marie-Jose; Weksler, Babeth B.; Couraud, Pierre-Olivier; Grau, Georges E.
2010-01-01
Cerebral malaria, a major cause of death during malaria infection, is characterised by the sequestration of infected red blood cells (IRBC) in brain microvessels. Most of the molecules implicated in the adhesion of IRBC on endothelial cells (EC) are already described; however, the structure of the IRBC/EC junction and the impact of this adhesion on the EC are poorly understood. We analysed this interaction using human brain microvascular EC monolayers co-cultured with IRBC. Our study demonstrates the transfer of material from the IRBC to the brain EC plasma membrane in a trogocytosis-like process, followed by a TNF-enhanced IRBC engulfing process. Upon IRBC/EC binding, parasite antigens are transferred to early endosomes in the EC, in a cytoskeleton-dependent process. This is associated with the opening of the intercellular junctions. The transfer of IRBC antigens can thus transform EC into a target for the immune response and contribute to the profound EC alterations, including peri-vascular oedema, associated with cerebral malaria. PMID:20686652
Removal of metals in leachate from sewage sludge using electrochemical technology.
Meunier, N; Drogui, P; Gourvenec, C; Mercier, G; Hausler, R; Blais, J F
2004-02-01
Heavy metals in acidic leachates from sewage sludge are usually removed by chemical precipitation, which often requires high concentration of chemicals and induces high metallic sludge production. Electrochemical technique has been explored as an alternative method in a laboratory pilot scale reactor for heavy metals (Cu and Zn) removal from sludge leachate. Three electrolytic cell arrangements using different electrodes materials were tested: mild steel or aluminium bipolar electrode (EC cell), Graphite/stainless steel monopolar electrodes (ER cell) and iron-monopolar electrodes (EC-ER cell). Results showed that the best performances of metal removal were obtained with EC and EC-ER cells using mild steel electrodes operated respectively at current intensities of 0.8 and 2.0 A through 30 and 60 min of treatment. The yields of Cu and Zn removal from leachate varied respectively from 92.4 to 98.9% and from 69.8 to 76.6%. The amounts of 55 and 44 kg tds(-1) of metallic sludge were respectively produced using EC and EC-ER cells. EC and EC-ER systems involved respectively a total cost of 21.2 and 13.1 CAN dollars per ton of dry sludge treated including only energy consumption and metallic sludge disposal. The treatment using EC-ER system was found to be effective and more economical than the traditional metal precipitation using either Ca(OH)2 and/or NaOH.
Hu, Xue; Ma, Jingjing; Vikash, Vikash; Li, Jiao; Wu, Dandan; Liu, Ya; Zhang, Jixiang; Dong, Weiguo
2018-01-01
Thymoquinone (TQ) is the major constituent of Nigella sativa seed and has shown biological activity in various human carcinomas. However, few studies have reported its effect on esophageal carcinoma (EC). To explore the chemosensitive effect and mechanism of TQ in augmentation of cisplatin (DDP)-induced apoptosis of EC, both in vitro and in vivo. The viability and apoptosis of esophageal carcinoma cells were detected by the Cell Counting Kit-8 assay, flow cytometry, and Hoechst 33258 staining. The expression levels of JAK2, p-JAK2, STAT3, p-STAT3, Bax, Bcl-2, Cyclin D1, Survivin, and caspase-3, 7, 9 were evaluated by western blot analysis. The histological changes were examined by TUNEL technique and immunohistochemical analysis. TQ enhanced the proapoptotic effect of DDP in human esophageal carcinoma cell line Eca-109, while blocking the activation of JAK2/STAT3 signaling pathway. The apoptosis of esophageal carcinoma cells was induced via blocking the activation of JAK2/STAT3 by using a molecular inhibitor (WP1066). Consistent with the in vivo and in vitro results, TQ increased cellular apoptosis and enriched the chemosensitivity of DDP. TQ along with DDP may regulate the progression of EC and has potential to be a chemotherapeutic agent in EC.
TNF induction of jagged-1 in endothelial cells is NFκB-dependent
Johnston, Douglas A.; Dong, Bamboo; Hughes, Christopher C.W.
2009-01-01
TNF-α is a potent proinflammatory cytokine that induces endothelial cell (EC) adhesion molecules. In addition, TNF promotes angiogenesis by inducing an EC tip cell phenotype and the expression of jagged-1, a ligand for the notch pathway. Notch signaling is critical for vascular patterning and helps to restrict the proliferation of tip cells. Here we demonstrate that TNF induction of jagged-1 in human EC is rapid and dependent upon signaling through TNFR1, but not TNFR2. A luciferase reporter construct carrying 3.7 kb of 5′ promoter sequence from the human gene was responsive to both TNF and overexpression of NFκB pathway components. TNF-induced promoter activation was blocked by treatment with an NFκB inhibitor or co-expression of dominant-negative IKKβ. Mutations in a putative NFκB-binding site at −3.0 kb, which is conserved across multiple species, resulted in a loss of responsiveness to TNF and NFκB. Electromobility shift and chromatin immunoprecipitation assays revealed binding of both p50 and p65 to the promoter in response to TNF treatment. Full promoter activity also depends on an AP-1 site at −2.0 kb. These results indicate that canonical NFκB signaling is required for TNF induction of the notch ligand jagged-1 in EC. PMID:19393188
van der Molen, R G; Out-Luiting, C; Claas, F H; Norval, M; Koerten, H K; Mommaas, A M
2001-06-01
Although ultraviolet (UV) B radiation is known to be immunosuppressive, there is little information regarding a relevant immunological endpoint to assess human subjects in vivo. Therefore, we have examined the effect of in vivo UV radiation on the ability of human epidermal cells (EC) to present herpes simplex virus (HSV) antigens to memory T cells. Human volunteers, who were seropositive for HSV, were exposed to one minimal erythemal dose (MED) for four consecutive days. EC, prepared from suction blister roofs, were co-cultured with autologous T cells in the presence of HSV. HSV antigen presentation by UV-exposed EC was increased compared with control, nonexposed EC. This up-regulation correlated with an influx of macrophages into the epidermis, which are considered to be associated with UV-induced tolerance. Altering the UV protocol to a sub-erythemal UV dose for four consecutive days or to a single high dose of 2 MED, resulted in suppressed HSV antigen presentation, without the influx of the UV-macrophages. One of the goals of the present study was to eventually use this HSV system to investigate sunscreen immunoprotection. A pilot study with a TiO2-containing sunscreen suggested that the endpoint for UV-induced immunosuppression presented here is promising to be used for human in vivo sunscreen immunoprotection studies.
Francischetti, Ivo MB; Seydel, Karl B; Monteiro, Robson Q; Whitten, Richard O; Erexson, Cindy R; Noronha, Almério LL; Ostera, Graciela R.; Kamiza, Steve B; Molyneux, Malcolm E; Ward, Jerrold M; Taylor, Terrie E
2010-01-01
Summary Background Plasmodium falciparum malaria infects 300–500 million people every year causing 1–2 million deaths annually. Evidence of a coagulation disorder, activation of endothelial cells (EC) and increase in inflammatory cytokines are often present in malaria. Objectives We have asked whether parasitized red blood cells (pRBC) interaction with EC induces Tissue Factor expression in vitro and in vivo. The potential of phosphatidylserine-containing pRBC to support the assembly of blood coagulation complexes was also investigated. Results We demonstrate that mature forms of pRBC induce functional expression of tissue factor (TF) by endothelial cells (EC) in vitro with productive assembly of the extrinsic Xnase complex and initiation of the coagulation cascade. Late stage pRBC also support the prothrombinase and intrinsic Xnase complex formation in vitro, and may function as activated platelets in the amplification phase of the blood coagulation. Notably, postmortem brain sections obtained from P. falciparum-infected children who died from Cerebral Malaria and other causes display a consistent staining for TF in the EC. Conclusions These findings place TF expression by endothelium and the amplification of the coagulation cascade by pRBC and/or activated platelets as potentially critical steps in the pathogenesis of malaria. Furthermore, it may allow investigators to test other therapeutic alternatives targeting TF or modulators of EC function in the treatment of malaria and/or its complications. PMID:17002660
Woller, Geske; Brandt, Ernst; Mittelstädt, Jessica; Rybakowski, Christian; Petersen, Frank
2008-04-01
The generation of reactive oxygen species (ROS) represents a pivotal element of phagocyte defense against microbial invaders. However, oxidative stress also participates in pathophysiological processes of vascular damage leading to cell death of endothelial cells (EC). Currently, ROS-producing cells involved in this process as well as the corresponding extracellular signals required for their activation are ill-defined. In this study, we investigate the impact of the platelet-derived CXC chemokine platelet factor 4 (PF4/CXCL4) on the interaction of human monocytes and EC. We can show for the first time that PF4-activated monocytes become cytotoxic for EC but not epithelial cells. Cytotoxicity was time- and dose-dependent, and earliest effects were seen after 15 h of culture and at a concentration from 0.125 microM PF4 up. By performing transwell experiments and by using specific inhibitory antibodies, we could show that direct cell contact between effector and target cells, mediated by beta(2)integrins as well as their corresponding ligand ICAM-1, is essential for the cytotoxic effect. Investigations of the cellular mechanisms of cytotoxicity revealed that in the presence of EC, PF4-activated monocytes are capable of releasing high amounts of ROS for more than 2 h following stimulation. This causes programmed cell death in EC, as inhibitors of the NADPH oxidase (diphenyleneiodonium and apocynin) effectively blocked PF4-induced monocyte oxidative burst and protected EC from undergoing apoptosis. Taken together, our data suggest a role for platelet-derived PF4 in oxidative stress-mediated vascular disorders, as observed during atherosclerosis or ischemia/reperfusion injury.
Chou, Chen-Pin; Jiang, Shih Sheng; Pan, Huay-Ben; Yen, Yi-Chen; Tseng, Hui-Hwa; Hung, Yu-Ting; Wang, Ssu-Han; Chen, Yu-Lin; Chen, Ya-Wen
2016-11-24
Mobilisation of endothelial progenitor cells (EPCs) from the bone marrow is a crucial step in the formation of de novo blood vessels, and levels of peripheral blood EPCs have been shown to be elevated in certain malignant states. Using flow cytometry and a Hill-based colony forming unit (CFU) assay, the present study indicated that higher levels of CD34 and vascular endothelial growth factor receptor 2 (VEGFR2) double-positive EPCs, as well as increased formation of endothelial cell colony-forming units (EC-CFUs) are associated with benign and malignant breast diseases, providing possible indicators for breast disease detection. Gene expression profiles revealed a genetic difference between CD34 + VEGFR2 + EPCs and EC-CFUs. Decreased expression of tumour necrosis factor receptor 2 (TNFR2) signalling-related genes and inhibition of tumour necrosis factor (TNF)-induced signalling were demonstrated in EC-CFUs derived from patients with malignant breast disease in comparison with those from healthy controls. Interestingly, our data provided the first evidence that EC-CFUs derived from patients with malignant breast disease were resistant to TNF-α-induced apoptosis, indicating a plausible target for future therapeutic interventions.
Developing ER Stress Inhibitors for Treating ALS
2015-11-01
the benzodiazepinone derivatives to protect SH-SY5Y neuroblastoma cells from thapsigargin (TG) induced cell death (Fig 1.2). Compound EC50 (µM...ability of the newly synthesized benzodiazepinone derivatives to protect SH- SY5Y neuroblastoma cells from thapsigargin (TG) induced cell death
CD146(+) cells are essential for kidney vasculature development.
Halt, Kimmo J; Pärssinen, Heikki E; Junttila, Sanna M; Saarela, Ulla; Sims-Lucas, Sunder; Koivunen, Peppi; Myllyharju, Johanna; Quaggin, Susan; Skovorodkin, Ilya N; Vainio, Seppo J
2016-08-01
The kidney vasculature is critical for renal function, but its developmental assembly mechanisms remain poorly understood and models for studying its assembly dynamics are limited. Here, we tested whether the embryonic kidney contains endothelial cells (ECs) that are heterogeneous with respect to VEGFR2/Flk1/KDR, CD31/PECAM, and CD146/MCAM markers. Tie1Cre;R26R(YFP)-based fate mapping with a time-lapse in embryonic kidney organ culture successfully depicted the dynamics of kidney vasculature development and the correlation of the process with the CD31(+) EC network. Depletion of Tie1(+) or CD31(+) ECs from embryonic kidneys, with either Tie1Cre-induced diphtheria toxin susceptibility or cell surface marker-based sorting in a novel dissociation and reaggregation technology, illustrated substantial EC network regeneration. Depletion of the CD146(+) cells abolished this EC regeneration. Fate mapping of green fluorescent protein (GFP)-marked CD146(+)/CD31(-) cells indicated that they became CD31(+) cells, which took part in EC structures with CD31(+) wild-type ECs. EC network development depends on VEGF signaling, and VEGF and erythropoietin are expressed in the embryonic kidney even in the absence of any external hypoxic stimulus. Thus, the ex vivo embryonic kidney culture models adopted here provided novel ways for targeting renal EC development and demonstrated that CD146(+) cells are critical for kidney vasculature development. Copyright © 2016 International Society of Nephrology. All rights reserved.
Labeling of neuronal differentiation and neuron cells with biocompatible fluorescent nanodiamonds
Hsu, Tzu-Chia; Liu, Kuang-Kai; Chang, Huan-Cheng; Hwang, Eric; Chao, Jui-I
2014-01-01
Nanodiamond is a promising carbon nanomaterial developed for biomedical applications. Here, we show fluorescent nanodiamond (FND) with the biocompatible properties that can be used for the labeling and tracking of neuronal differentiation and neuron cells derived from embryonal carcinoma stem (ECS) cells. The fluorescence intensities of FNDs were increased by treatment with FNDs in both the mouse P19 and human NT2/D1 ECS cells. FNDs were taken into ECS cells; however, FNDs did not alter the cellular morphology and growth ability. Moreover, FNDs did not change the protein expression of stem cell marker SSEA-1 of ECS cells. The neuronal differentiation of ECS cells could be induced by retinoic acid (RA). Interestingly, FNDs did not affect on the morphological alteration, cytotoxicity and apoptosis during the neuronal differentiation. Besides, FNDs did not alter the cell viability and the expression of neuron-specific marker β-III-tubulin in these differentiated neuron cells. The existence of FNDs in the neuron cells can be identified by confocal microscopy and flow cytometry. Together, FND is a biocompatible and readily detectable nanomaterial for the labeling and tracking of neuronal differentiation process and neuron cells from stem cells. PMID:24830447
Labeling of neuronal differentiation and neuron cells with biocompatible fluorescent nanodiamonds.
Hsu, Tzu-Chia; Liu, Kuang-Kai; Chang, Huan-Cheng; Hwang, Eric; Chao, Jui-I
2014-05-16
Nanodiamond is a promising carbon nanomaterial developed for biomedical applications. Here, we show fluorescent nanodiamond (FND) with the biocompatible properties that can be used for the labeling and tracking of neuronal differentiation and neuron cells derived from embryonal carcinoma stem (ECS) cells. The fluorescence intensities of FNDs were increased by treatment with FNDs in both the mouse P19 and human NT2/D1 ECS cells. FNDs were taken into ECS cells; however, FNDs did not alter the cellular morphology and growth ability. Moreover, FNDs did not change the protein expression of stem cell marker SSEA-1 of ECS cells. The neuronal differentiation of ECS cells could be induced by retinoic acid (RA). Interestingly, FNDs did not affect on the morphological alteration, cytotoxicity and apoptosis during the neuronal differentiation. Besides, FNDs did not alter the cell viability and the expression of neuron-specific marker β-III-tubulin in these differentiated neuron cells. The existence of FNDs in the neuron cells can be identified by confocal microscopy and flow cytometry. Together, FND is a biocompatible and readily detectable nanomaterial for the labeling and tracking of neuronal differentiation process and neuron cells from stem cells.
Loss of proteostasis induced by amyloid beta peptide in brain endothelial cells.
Fonseca, Ana Catarina; Oliveira, Catarina R; Pereira, Cláudia F; Cardoso, Sandra M
2014-06-01
Abnormal accumulation of amyloid-β (Aβ) peptide in the brain is a pathological hallmark of Alzheimer's disease (AD). In addition to neurotoxic effects, Aβ also damages brain endothelial cells (ECs) and may thus contribute to the degeneration of cerebral vasculature, which has been proposed as an early pathogenic event in the course of AD and is able to trigger and/or potentiate the neurodegenerative process and cognitive decline. However, the mechanisms underlying Aβ-induced endothelial dysfunction are not completely understood. Here we hypothesized that Aβ impairs protein quality control mechanisms both in the secretory pathway and in the cytosol in brain ECs, leading cells to death. In rat brain RBE4 cells, we demonstrated that Aβ1-40 induces the failure of the ER stress-adaptive unfolded protein response (UPR), deregulates the ubiquitin-proteasome system (UPS) decreasing overall proteasome activity with accumulation of ubiquitinated proteins and impairs the autophagic protein degradation pathway due to failure in the autophagic flux, which culminates in cell demise. In conclusion, Aβ deregulates proteostasis in brain ECs and, as a consequence, these cells die by apoptosis. Copyright © 2014 Elsevier B.V. All rights reserved.
Jiang, Zhi-Gen; Nuttall, Alfred L; Zhao, Hui; Dai, Chun-Fu; Guan, Bing-Cai; Si, Jun-Qiang; Yang, Yu-Qin
2005-01-01
The physiological basis of ACh-elicited hyperpolarization in guinea-pig in vitro cochlear spiral modiolar artery (SMA) was investigated by intracellular recording combined with dye labelling of recorded cells and immunocytochemistry. We found the following. (1) The ACh-hyperpolarization was prominent only in cells that had a low resting potential (less negative than −60 mV). ACh-hyperpolarization was reversibly blocked by 4-DAMP, charybdotoxin or BAPTA-AM, but not by Nω-nitro-l-arginine methyl ester, glipizide, indomethacin or 17-octadecynoic acid. (2) Ba2+ (100 μm) and ouabain (1 μm) each attenuated ACh-hyperpolarization by ∼ 30% in smooth muscle cells (SMCs) but had only slight or no inhibition in endothelial cells (ECs). A combination of Ba2+ and 18β-glycyrrhetinic acid near completely blocked the ACh-hyperpolarization in SMCs. (3) High K+ (10 mm) induced a smaller hyperpolarization in ECs than in SMCs, with an amplitude ratio of 0.49: 1. Ba2+ blocked the K+-induced hyperpolarization by ∼ 85% in both cell types, whereas ouabain inhibited K+-hyperpolarization differently in SMCs (19%) and ECs (35%) and increased input resistance. 18β-Glycyrrhetinic acid blocked the high K+-hyperpolarization in ECs only. (4) Weak myoendothelial dye coupling was detected by confocal microscopy in cells recorded with a propidium iodide-containing electrode for longer than 30 min. A sparse plexus of choline acetyltransferase-immunoreactive (ChAT) fibres was observed around the SMA and its up-stream arteries. (5) Evoked excitatory junction potentials (EJP) were partially blocked by 4-DAMP in half of the cells tested. We conclude that ACh-induced hyperpolarization originates from ECs via activation of Ca2+-activated potassium channels, and is independent of the release of NO, cyclo-oxygenase or cytochrome P450 products. ACh-induced hyperpolarization in smooth muscle cells involves two mechanisms: (a) electrical spread of the hyperpolarization from the endothelium, and (b) activation of inward rectifier K+ channels (Kir) and Na+–K+ pump current by elevated interstitial K+ released from the endothelial cells, these being responsible for about 60% and 40% of the hyperpolarization, respectively. The role ratio of Kir and pump current activation is at 8 : 1 or less. PMID:15731195
Jiang, Zhi-Gen; Nuttall, Alfred L; Zhao, Hui; Dai, Chun-Fu; Guan, Bing-Cai; Si, Jun-Qiang; Yang, Yu-Qin
2005-04-15
The physiological basis of ACh-elicited hyperpolarization in guinea-pig in vitro cochlear spiral modiolar artery (SMA) was investigated by intracellular recording combined with dye labelling of recorded cells and immunocytochemistry. We found the following. (1) The ACh-hyperpolarization was prominent only in cells that had a low resting potential (less negative than -60 mV). ACh-hyperpolarization was reversibly blocked by 4-DAMP, charybdotoxin or BAPTA-AM, but not by N(omega)-nitro-L-arginine methyl ester, glipizide, indomethacin or 17-octadecynoic acid. (2) Ba(2)(+) (100 microm) and ouabain (1 microm) each attenuated ACh-hyperpolarization by approximately 30% in smooth muscle cells (SMCs) but had only slight or no inhibition in endothelial cells (ECs). A combination of Ba(2)(+) and 18beta-glycyrrhetinic acid near completely blocked the ACh-hyperpolarization in SMCs. (3) High K(+) (10 mm) induced a smaller hyperpolarization in ECs than in SMCs, with an amplitude ratio of 0.49 : 1. Ba(2)(+) blocked the K(+)-induced hyperpolarization by approximately 85% in both cell types, whereas ouabain inhibited K(+)-hyperpolarization differently in SMCs (19%) and ECs (35%) and increased input resistance. 18beta-Glycyrrhetinic acid blocked the high K(+)-hyperpolarization in ECs only. (4) Weak myoendothelial dye coupling was detected by confocal microscopy in cells recorded with a propidium iodide-containing electrode for longer than 30 min. A sparse plexus of choline acetyltransferase-immunoreactive (ChAT) fibres was observed around the SMA and its up-stream arteries. (5) Evoked excitatory junction potentials (EJP) were partially blocked by 4-DAMP in half of the cells tested. We conclude that ACh-induced hyperpolarization originates from ECs via activation of Ca(2)(+)-activated potassium channels, and is independent of the release of NO, cyclo-oxygenase or cytochrome P450 products. ACh-induced hyperpolarization in smooth muscle cells involves two mechanisms: (a) electrical spread of the hyperpolarization from the endothelium, and (b) activation of inward rectifier K(+) channels (K(ir)) and Na(+)-K(+) pump current by elevated interstitial K(+) released from the endothelial cells, these being responsible for about 60% and 40% of the hyperpolarization, respectively. The role ratio of K(ir) and pump current activation is at 8 : 1 or less.
Zhang, Y; Chen, M; Venugopal, S; Zhou, Y; Xiang, W; Li, Y-H; Lin, Q; Kini, R M; Chong, Y-S; Ge, R
2011-01-01
Isthmin (ISM) is a 60 kDa secreted-angiogenesis inhibitor that suppresses tumor growth in mouse and disrupts vessel patterning in zebrafish embryos. It selectively binds to alphavbeta5 (αvβ5) integrin on the surface of endothelial cells (ECs), but the mechanism of its antiangiogenic action remains unknown. In this work, we establish that soluble ISM suppresses in vitro angiogenesis and induces EC apoptosis by interacting with its cell surface receptor αvβ5 integrin through a novel ‘RKD' motif localized within its adhesion-associated domain in MUC4 and other proteins domain. ISM induces EC apoptosis through integrin-mediated death (IMD) by direct recruitment and activation of caspase-8 without causing anoikis. On the other hand, immobilized ISM loses its antiangiogenic function and instead promotes EC adhesion, survival and migration through αvβ5 integrin by activating focal adhesion kinase (FAK). ISM unexpectedly has both a pro-survival and death-promoting effect on ECs depending on its physical state. This dual function of a single antiangiogenic protein may impact its antiangiogenic efficacy in vivo. PMID:21544092
Matin, Maryam M; Walsh, James R; Gokhale, Paul J; Draper, Jonathan S; Bahrami, Ahmad R; Morton, Ian; Moore, Harry D; Andrews, Peter W
2004-01-01
We have used RNA interference (RNAi) to downregulate beta2-microglobulin and Oct4 in human embryonal carcinoma (hEC) cells and embryonic stem (hES) cells, demonstrating that RNAi is an effective tool for regulating specific gene activity in these human stem cells. The knockdown of Oct4 but not beta2-microglobulin expression in both EC and ES cells resulted in their differentiation, as indicated by a marked change in morphology, growth rate, and surface antigen phenotype, with respect to SSEA1, SSEA3, and TRA-1-60 expression. Expression of hCG and Gcm1 was also induced following knockdown of Oct4 expression, in both 2102Ep hEC cells and in H7 and H14 hES cells, consistent with the conclusion that, as in the mouse, Oct4 is required to maintain the undifferentiated stem cell state, and that differentiation to trophectoderm occurs in its absence. NTERA2 hEC cells also differentiated, but not to trophectoderm, suggesting their equivalence to a later stage of embryogenesis than other hEC and hES cells.
Sun, Run-Lu; Huang, Can-Xia; Bao, Jin-Lan; Jiang, Jie-Yu; Zhang, Bo; Zhou, Shu-Xian; Cai, Wei-Bin; Wang, Hong; Wang, Jing-Feng; Zhang, Yu-Ling
2016-01-01
High density lipoprotein (HDL) has been proposed to be internalized and to promote reverse cholesterol transport in endothelial cells (ECs). However, the mechanism underlying these processes has not been studied. In this study, we aim to characterize HDL internalization and cholesterol efflux in ECs and regulatory mechanisms. We found mature HDL particles were reduced in patients with coronary artery disease (CAD), which was associated with an increase in CC-chemokine ligand 2 (CCL2). In cultured primary human coronary artery endothelial cells and human umbilical vein endothelial cells, we determined that CCL2 suppressed the binding (4 °C) and association (37 °C) of HDL to/with ECs and HDL cellular internalization. Furthermore, CCL2 inhibited [3H]cholesterol efflux to HDL/apoA1 in ECs. We further found that CCL2 induced CC-chemokine receptor 2 (CCR2) expression and siRNA-CCR2 reversed CCL2 suppression on HDL binding, association, internalization, and on cholesterol efflux in ECs. Moreover, CCL2 induced p42/44 mitogen-activated protein kinase (MAPK) phosphorylation via CCR2, and p42/44 MAPK inhibition reversed the suppression of CCL2 on HDL metabolism in ECs. Our study suggests that CCL2 was elevated in CAD patients. CCL2 suppressed HDL internalization and cholesterol efflux via CCR2 induction and p42/44 MAPK activation in ECs. CCL2 induction may contribute to impair HDL function and form atherosclerosis in CAD. PMID:27458015
Gray, Michael J; Mhawech-Fauceglia, Paulette; Yoo, Eunjeong; Yang, Wangrong; Wu, Eijean; Lee, Amy S; Lin, Yvonne G
2013-07-01
Overexpression of the unfolded protein response master regulator GRP78 is associated with poor prognosis and therapeutic resistance in numerous human cancers, yet its role in endometrial cancers (EC) is undefined. To better understand the contribution of GRP78 to EC, we examined its expression levels in EC patient samples and EC cell lines. We demonstrate that GRP78 overexpression occurs more frequently in EC tissues compared with that found in normal endometrium, and that GRP78 expression occurs in most EC cell lines examined. Functional analysis demonstrated that GRP78 is inducible by cisplatin in EC cells, and siRNA knockdown of GRP78 augments chemotherapy-mediated cell death. Examination of AKT and GRP78 expression demonstrated that inhibition of AKT activity by MK2206 blocks GRP78 expression in EC cells. SiRNA studies also revealed that knockdown of GRP78 reduces but does not abrogate AKT activity, demonstrating that GRP78 is required for optimal AKT activity. In the presence of MK2206, siRNA knockdown of GRP78 does not augment AKT mediated survival in response to cisplatin treatment, suggesting that GRP78's antiapoptosis functions are part of the AKT survival pathway. Targeted therapies that reduce GRP78 expression or activity in cancers may serve to increase the effectiveness of current therapies for EC patients. Copyright © 2012 UICC.
Gao, Shegan; Liang, Shuo; Ding, Kaili; Qu, Zhifeng; Wang, Ying; Feng, Xiaoshan
2016-06-01
Photodynamic therapy (PDT), which uses a light-sensitive compound and laser irradiation, is a light-based oncological treatment modality. PDT offers an alternative, less invasive treatment for various malignant tumors, such as esophageal cancer (EC), through a photochemical reaction induced by photofrin-II or other oncotropic photosensitizers without severe complications. Previous studies has shown that cancerous tissues accumulated more photosensitizers than paired normal tissues, however, whether it is cellular or vascular mechanisms remains unknown. Herein, in vivo and in vitro examinations were performed to study the mechanisms by which photofrin-II effectively and specifically killed EC cells. In this study, EC tissue of patients treated with photofrin-II, human ESCC cellline SHEEC and parental normal cellline SHEE, primary culture cells of EC tissue were used. The concentration of photofrin-II in cells were evaluated by high-performance liquid chromatography (HPLC). The results exhibited that accumulation of photofrin-II in cancerous cells were significantly higher than that in non-cancerous cells (p<0.05) under certain dose and time period of incubation of photofrin-II. In summary, our study showed that, photofrin-II specifically accumulated in EC cells in vivo and in vitro after controlling for vascular factors, which provided strong evidence that maybe the cellular factor is the main mechanism by which photofrin-II-mediated PDT selectively caused EC cells death. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakao, Atsunori; Thomas E Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15213; Kaczorowski, David J.
2008-03-14
Galantamine, a reversible inhibitor of acetylcholine esterase (AChE), is a novel drug treatment for mild to moderate Alzheimer's disease and vascular dementia. Interestingly, it has been suggested that galantamine treatment is associated with more clinical benefit in patients with mild-to-moderate Alzheimer disease compared to other AChE inhibitors. We hypothesized that the protective effects of galantamine would involve induction of the protective gene, heme oxygenase-1 (HO-1), in addition to enhancement of the cholinergic system. Brain microvascular endothelial cells (mvECs) were isolated from spontaneous hypertensive rats. Galantamine significantly reduced H{sub 2}O{sub 2}-induced cell death of mvECs in association with HO-1 induction. Thesemore » protective effects were completely reversed by nuclear factor-{kappa}B (NF-{kappa}B) inhibition or HO inhibition. Furthermore, galantamine failed to induce HO-1 in mvECs which lack inducible nitric oxide synthase (iNOS), supplementation of a nitric oxide (NO) donor or iNOS gene transfection on iNOS-deficient mvECs resulted in HO-1 induction with galantamine. These data suggest that the protective effects of galantamine require NF-{kappa}B activation and iNOS expression, in addition to HO-1. Likewise, carbon monoxide (CO), one of the byproducts of HO, up-regulated HO-1 and protected mvECs from oxidative stress in a similar manner. Our data demonstrate that galantamine mediates cytoprotective effects on mvECs through induction HO-1. This pharmacological action of galantamine may, at least in part, account for the superior clinical efficacy of galantamine in vascular dementia and Alzheimer disease.« less
Chen, Joseph C.; Johnson, Brittni A.; Erikson, David W.; Piltonen, Terhi T.; Barragan, Fatima; Chu, Simon; Kohgadai, Nargis; Irwin, Juan C.; Greene, Warner C.; Giudice, Linda C.; Roan, Nadia R.
2014-01-01
STUDY QUESTION How does seminal plasma (SP) affect the transcriptome of human primary endometrial epithelial cells (eEC) and stromal fibroblasts (eSF)? SUMMARY ANSWER Exposure of eEC and eSF to SP in vitro increases expression of genes and secreted proteins associated with cellular migration, proliferation, viability and inhibition of cell death. WHAT IS KNOWN ALREADY Studies in both humans and animals suggest that SP can access and induce physiological changes in the upper female reproductive tract (FRT), which may participate in promoting reproductive success. STUDY DESIGN, SIZE, DURATION This is a cross sectional study involving control samples versus treatment. SP (pooled from twenty donors) was first tested for dose- and time-dependent cytotoxic effects on eEC and eSF (n = 4). As exposure of eEC or eSF to 1% SP for 6 h proved to be non-toxic, a second set of eEC/eSF samples (n = 4) was treated under these conditions for transcriptome, protein and functional analysis. With a third set of samples (n = 3), we further compared the transcriptional response of the cells to SP versus fresh semen. PARTICIPANTS/MATERIALS, SETTING, METHODS eEC and eSF were isolated from endometrial biopsies from women of reproductive age undergoing benign gynecologic procedures and maintained in vitro. RNA was isolated and processed for microarray studies to analyze global transcriptomic changes. Secreted factors in conditioned media from SP-treated cells were analyzed by Luminex and for the ability to stimulate migration of CD14+ monocytes and CD4+ T cells. MAIN RESULTS AND THE ROLE OF CHANCE Pathway identifications were determined using the Z-scoring system in Ingenuity Pathways Analysis (Z scores ≥|1.5|). SP induced transcriptomic changes (P < 0.05) associated with promoting leukocyte and endothelial cell recruitment, and proliferation of eEC and eSF. Cell viability pathways were induced, while those associated with cell death were suppressed (P < 0.05). SP and fresh semen induced similar sets of pathways, suggesting that SP can model the signaling effects of semen in the endometrium. SP also induced secretion of pro-inflammatory and pro-chemotactic cytokines, as well as pro-angiogenic and proliferative growth factors (P < 0.05) in both eEC and eSF. Finally, functional assays revealed that conditioned media from SP-treated eEC and eSF significantly increased (P < 0.05) chemotaxis of CD14+ monocytes and CD4+ T cells. LIMITATIONS, REASONS FOR CAUTION This study is limited to in vitro analyses of the effects of SP on endometrial cells. In addition, the measured response to SP was conducted in the absence of the ovarian hormones estradiol and progesterone, as well as epithelial-stromal paracrine signaling. While this study focused on establishing the baseline cellular response of endometrial cells to SP, future work should assess how hormone signaling in the presence of appropriate paracrine interactions affects SP-induced genes in these cells. WIDER IMPLICATIONS OF THE FINDINGS The results of this study support previous findings that SP and semen contain bioactive factors capable of eliciting chemotactic responses in the uterus, which can lead to recruitment of leukocytes to the endometrium. Future directions will explore if similar changes in gene expression do indeed occur after coitus in vivo, and how the signaling cascades initiated by SP in the endometrium can affect reproductive success, female reproductive health and susceptibility to sexually transmitted diseases. The gene list provided by the transcriptome analysis reported here should prove a valuable resource for understanding the response of the upper FRT to SP exposure. STUDY FUNDING/COMPETING INTEREST(S) This project was supported by NIH AI083050-04 (W.C.G./L.C.G.); NIH U54HD 055764 (L.C.G.); NIH 1F32HD074423-02 (J.C.C.); DOD W81XWH-11-1-0562 (W.C.G.); NIH 5K12-DK083021-04, NIH 1K99AI104262-01A1, The UCSF Hellman Award (N.R.R.). The authors have nothing to disclose. PMID:24626806
Dong, Lixue; Krewson, Elizabeth A.; Yang, Li V.
2017-01-01
Acidosis commonly exists in the tissue microenvironment of various pathophysiological conditions such as tumors, inflammation, ischemia, metabolic disease, and respiratory disease. For instance, the tumor microenvironment is characterized by acidosis and hypoxia due to tumor heterogeneity, aerobic glycolysis (the “Warburg effect”), and the defective vasculature that cannot efficiently deliver oxygen and nutrients or remove metabolic acid byproduct. How the acidic microenvironment affects the function of blood vessels, however, is not well defined. GPR4 (G protein-coupled receptor 4) is a member of the proton-sensing G protein-coupled receptors and it has high expression in endothelial cells (ECs). We have previously reported that acidosis induces a broad inflammatory response in ECs. Acidosis also increases the expression of several endoplasmic reticulum (ER) stress response genes such as CHOP (C/EBP homologous protein) and ATF3 (activating transcription factor 3). In the current study, we have examined acidosis/GPR4-induced ER stress pathways in human umbilical vein endothelial cells (HUVEC) and other types of ECs. All three arms of the ER stress/unfolded protein response (UPR) pathways were activated by acidosis in ECs as an increased expression of phosphorylated eIF2α (eukaryotic initiation factor 2α), phosphorylated IRE1α (inositol-requiring enzyme 1α), and cleaved ATF6 upon acidic pH treatment was observed. The expression of other downstream mediators of the UPR, such as ATF4, ATF3, and spliced XBP-1 (X box-binding protein 1), was also induced by acidosis. Through genetic and pharmacological approaches to modulate the expression level or activity of GPR4 in HUVEC, we found that GPR4 plays an important role in mediating the ER stress response induced by acidosis. As ER stress/UPR can cause inflammation and cell apoptosis, acidosis/GPR4-induced ER stress pathways in ECs may regulate vascular growth and inflammatory response in the acidic microenvironment. PMID:28134810
Dong, Lixue; Krewson, Elizabeth A; Yang, Li V
2017-01-27
Acidosis commonly exists in the tissue microenvironment of various pathophysiological conditions such as tumors, inflammation, ischemia, metabolic disease, and respiratory disease. For instance, the tumor microenvironment is characterized by acidosis and hypoxia due to tumor heterogeneity, aerobic glycolysis (the "Warburg effect"), and the defective vasculature that cannot efficiently deliver oxygen and nutrients or remove metabolic acid byproduct. How the acidic microenvironment affects the function of blood vessels, however, is not well defined. GPR4 (G protein-coupled receptor 4) is a member of the proton-sensing G protein-coupled receptors and it has high expression in endothelial cells (ECs). We have previously reported that acidosis induces a broad inflammatory response in ECs. Acidosis also increases the expression of several endoplasmic reticulum (ER) stress response genes such as CHOP (C/EBP homologous protein) and ATF3 (activating transcription factor 3). In the current study, we have examined acidosis/GPR4- induced ER stress pathways in human umbilical vein endothelial cells (HUVEC) and other types of ECs. All three arms of the ER stress/unfolded protein response (UPR) pathways were activated by acidosis in ECs as an increased expression of phosphorylated eIF2α (eukaryotic initiation factor 2α), phosphorylated IRE1α (inositol-requiring enzyme 1α), and cleaved ATF6 upon acidic pH treatment was observed. The expression of other downstream mediators of the UPR, such as ATF4, ATF3, and spliced XBP-1 (X box-binding protein 1), was also induced by acidosis. Through genetic and pharmacological approaches to modulate the expression level or activity of GPR4 in HUVEC, we found that GPR4 plays an important role in mediating the ER stress response induced by acidosis. As ER stress/UPR can cause inflammation and cell apoptosis, acidosis/GPR4-induced ER stress pathways in ECs may regulate vascular growth and inflammatory response in the acidic microenvironment.
Chen, Xiaodong; Zhou, Huanjiao Jenny; Huang, Qunhua; Lu, Lin; Min, Wang
2014-01-01
Auranofin is a gold compound initially developed for the treatment of rheumatoid arthritis. Recent data suggest that auranofin has promise in the treatment of other inflammatory and proliferative diseases. However, the mechanisms of action of auranofin have not been well defined. In the present study, we identify vascular endothelial growth factor receptor-3 (VEGFR3), an endothelial cell (EC) surface receptor essential for angiogiogenesis and lymphangiogenesis, as a novel target of auranofin. In both primary EC and EC cell lines, auranofin induces downregulation of VEGFR3 in a dose-dependent manner. Auranofin at high doses (≥1 µM) decreases cellular survival protein thioredoxin reductase (TrxR2), TrxR2-dependent Trx2 and transcription factor NF-κB whereas increases stress signaling p38MAPK, leading to EC apoptosis. However, auranofin at low doses (≤0.5 µM) specifically induces downregulation of VEGFR3 and VEGFR3-mediated EC proliferation and migration, two critical steps required for in vivo lymphangiogenesis. Mechanistically, we show that auranofin-induced VEGFR3 downregulation is blocked by antioxidant N-acetyl-L-cysteine (NAC) and lysosome inhibitor chloroquine, but is promoted by proteasomal inhibitor MG132. These results suggest that auranofin induces VEGFR3 degradation through a lysosome-dependent pathway. Auranofin may be a potent therapeutic agent for the treatment of lymphangiogenesis-dependent diseases such as lymphedema and cancer metastasis.
A B cell follicle sanctuary permits persistent productive SIV infection in elite controllers
Fukazawa, Yoshinori; Lum, Richard; Okoye, Afam A.; Park, Haesun; Matsuda, Kenta; Bae, Jin Young; Hagen, Shoko I.; Shoemaker, Rebecca; Deleage, Claire; Lucero, Carissa; Morcock, David; Swanson, Tonya; Legasse, Alfred W.; Axthelm, Michael K.; Hesselgesser, Joseph; Geleziunas, Romas; Hirsch, Vanessa M.; Edlefsen, Paul T.; Piatak, Michael; Estes, Jacob D.; Lifson, Jeffrey D.; Picker, Louis J.
2014-01-01
Chronic phase HIV/SIV replication is reduced by as much as 10,000-fold in elite controllers (EC) compared to typical progressors, but sufficient viral replication persists in EC tissues to allow viral sequence evolution and induce excess immune activation. Here, we show that productive SIV infection in rhesus monkey EC is strikingly restricted to follicular helper CD4+ T cells (TFH), suggesting that while the potent SIV-specific CD8+ T cells of these monkeys can effectively clear productive infection from extra-follicular sites, their relative exclusion from B cell follicles limits elimination of infected TFH. Indeed, CD8+ lymphocyte depletion of EC monkeys resulted in a dramatic re-distribution of productive SIV infection to non-TFH, with TFH restriction resuming upon CD8+ T cell recovery. Thus, B cell follicles constitute sanctuaries for persistent SIV replication in the presence of potent anti-viral CD8+ T cell responses, potentially complicating efforts to cure HIV infection with therapeutic vaccination or T cell immunotherapy. PMID:25599132
Takahashi, Toshiaki; Friedmacher, Florian; Zimmer, Julia; Puri, Prem
2016-05-01
Persistent pulmonary hypertension(PPH) in congenital diaphragmatic hernia (CDH) is caused by increased vascular cell proliferation and endothelial cell (EC) dysfunction, thus leading to obstructive changes in the pulmonary vasculature. C-Kit and its ligand, stem cell factor(SCF), are expressed by ECs in the developing lung mesenchyme, suggesting an important role during lung vascular formation. Conversely, absence of c-Kit expression has been demonstrated in ECs of dysplastic alveolar capillaries. We hypothesized that c-Kit and SCF expression is increased in the pulmonary vasculature of nitrofen-induced CDH. Timed-pregnant rats received nitrofen or vehicle on gestational day 9(D9). Fetuses were sacrificed on D15, D18, and D21, and divided into control and CDH group. Pulmonary gene expression levels of c-Kit and SCF were analyzed by qRT-PCR. Immunofluorescence double staining for c-Kit and SCF was combined with CD34 to evaluate protein expression in ECs of the pulmonary vasculature. Relative mRNA levels of c-Kit and SCF were significantly increased in lungs of CDH fetuses on D15, D18, and D21 compared to controls. Confocal laser scanning microscopy confirmed markedly increased vascular c-Kit and SCF expression in mesenchymal ECs of CDH lungs on D15, D18, and D21 compared to controls. Increased expression of c-Kit and SCF in the pulmonary vasculature of nitrofen-induced CDH lungs suggest that increased c-Kit signaling during lung vascular formation may contribute to vascular remodeling and thus to PPH. Copyright © 2016 Elsevier Inc. All rights reserved.
Park, Joung-Sun; Jeon, Ho-Jun; Pyo, Jung-Hoon; Kim, Young-Shin; Yoo, Mi-Ae
2018-03-07
Stem cell dysfunction is closely linked to tissue and organismal aging and age-related diseases, and heavily influenced by the niche cells' environment. The DNA damage response (DDR) is a key pathway for tissue degeneration and organismal aging; however, the precise protective role of DDR in stem cell/niche aging is unclear. The Drosophila midgut is an excellent model to study the biology of stem cell/niche aging because of its easy genetic manipulation and its short lifespan. Here, we showed that deficiency of DDR in Drosophila enterocytes (ECs) accelerates intestinal stem cell (ISC) aging. We generated flies with knockdown of Mre11 , Rad50 , Nbs1 , ATM , ATR , Chk1 , and Chk2 , which decrease the DDR system in ECs. EC-specific DDR depletion induced EC death, accelerated the aging of ISCs, as evidenced by ISC hyperproliferation, DNA damage accumulation, and increased centrosome amplification, and affected the adult fly's survival. Our data indicated a distinct effect of DDR depletion in stem or niche cells on tissue-resident stem cell proliferation. Our findings provide evidence of the essential role of DDR in protecting EC against ISC aging, thus providing a better understanding of the molecular mechanisms of stem cell/niche aging.
Fu, Jinyan; Chen, Yiu-Fai; Zhao, Xiangmin; Creighton, Judy; Guo, Yuan-Yuan; Hage, Fadi G.; Oparil, Suzanne; Xing, Daisy D.
2014-01-01
Objective Interleukin-8 (IL8) receptors IL8RA and IL8RB (ILRA/B) on neutrophil membranes bind to IL8 with high affinity and play a critical role in neutrophil recruitment to sites of injury and/or inflammation. This study tested the hypothesis that administration of rat pulmonary arterial endothelial cells (ECs) overexpressing IL8RA/B can accelerate the adhesion of ECs to the injured lung and inhibit monocrotaline (MCT)-induced pulmonary inflammation, arterial thickening and hypertension, and right ventricular (RV) hypertrophy. Approach and Results The treatment groups included 10-wk-old ovariectomized Sprague-Dawley rats that received s.c. injection of phosphate-buffered-saline (Vehicle); a single injection of MCT (MCT alone, 60 mg/kg, s.c.); MCT followed by i.v. transfusion of ECs transduced with the empty adenoviral vector (Null-EC); and MCT followed by i.v. transfusion of ECs overexpressing IL8RA/B (IL8RA/B-EC, 1.5×106 cells/rat). Two days or 4 wks after MCT treatment, eNOS, iNOS, CINC-2β (IL8 equivalent in rat) and MCP-1 expression; neutrophil and macrophage infiltration into pulmonary arterioles, and arteriolar and alveolar morphology were measured by histological and immunohistochemical techniques. Pro-inflammatory cytokine/chemokine protein levels were measured by Multiplexed rat specific magnetic beads based sandwich immunoassay in total lung homogenates. Transfusion of IL8RA/B-ECs significantly reduced MCT-induced neutrophil infiltration and pro-inflammatory mediator (IL-8, MCP-1, iNOS, CINC and MIP-2) expression in lungs and pulmonary arterioles and alveoli, pulmonary artery pressure, and pulmonary arteriole and RV hypertrophy and remodeling. Conclusion These provocative findings suggest that targeted delivery of ECs overexpressing IL8RA/B is effective in repairing the injured pulmonary vasculature. PMID:24790141
Su, Weijun; Wang, Lina; Zhou, Manqian; Liu, Ze; Hu, Shijun; Tong, Lingling; Liu, Yanhua; Fan, Yan; Kong, Deling; Zheng, Yizhou; Han, Zhongchao; Wu, Joseph C; Xiang, Rong; Li, Zongjin
2013-01-01
Endothelial progenitor cells (EPCs) have shown tropism towards primary tumors or metastases and are thus potential vehicles for targeting tumor therapy. However, the source of adult EPCs is limited, which highlights the need for a consistent and renewable source of endothelial cells for clinical applications. Here, we investigated the potential of human embryonic stem cell-derived endothelial cells (hESC-ECs) as cellular delivery vehicles for therapy of metastatic breast cancer. In order to provide an initial assessment of the therapeutic potency of hESC-ECs, we treated human breast cancer MDA-MB-231 cells with hESC-EC conditioned medium (EC-CM) in vitro. The results showed that hESC-ECs could suppress the Wnt/β-catenin signaling pathway and thereby inhibit the proliferation and migration of MDA-MB-231 cells. To track and evaluate the possibility of hESC-EC-employed therapy, we employed the bioluminescence imaging (BLI) technology. To study the therapeutic potential of hESC-ECs, we established lung metastasis models by intravenous injection of MDA-MB-231 cells labeled with firefly luciferase (Fluc) and green fluorescent protein (GFP) to NOD/SCID mice. In mice with lung metastases, we injected hESC-ECs armed with herpes simplex virus truncated thymidine kinase (HSV-ttk) intravenously on days 11, 16, 21, and 26 after MDA-MB-231 cell injection. The NOD/SCID mice were subsequently treated with ganciclovir (GCV), and the growth status of tumor was monitored by Fluc imaging. We found that MDA-MB-231 tumors were significantly inhibited by intravenously injected hESC-ECs. The tumor-suppressive effects of the hESC-ECs, by inhibiting Wnt/β-catenin signaling pathway and inducing tumor cell death through bystander effect in human metastatic breast cancer model, provide previously unexplored therapeutic modalities for cancer treatment.
Wei, Jingguang; Guo, Minglan; Ji, Huasong; Yan, Yang; Ouyang, Zhengliang; Huang, Xiaohong; Hang, Youhua; Qin, Qiwei
2012-10-01
Translationally controlled tumor protein (TCTP) is an important molecule involved in multiple biological processes, such as cell growth, cell cycle progression, malignant transformation, and enhancement of the anti-apoptotic activity. In this study, the TCTP from orange-spotted grouper Epinephelus coioides (Ec-TCTP) was cloned and characterized. The full-length cDNA of Ec-TCTP was comprised of 1057 bp with a 510 bp open reading frame that encodes a putative protein of 170 amino acids. Recombinant Ec-TCTP (rEc-TCTP) was expressed in Escherichia BL21 (DE3) and purified for mouse anti-Ec-TCTP serum preparation. The rEc-TCTP fusion protein was demonstrated to possess antioxidant activity, which conferred resistance to H(2)O(2) damage. Quantitative real-time PCR analysis revealed that Ec-TCTP mRNA is predominately expressed in the liver, and the expression was up-regulated in the liver of grouper after viral challenge with Singapore grouper iridovirus (SGIV). Intracellular localization revealed that Ec-TCTP expression was distributed predominantly in the cytoplasm. Although human TCTP has a role in apoptosis regulation, it is not known if grouper TCTP has any role in apoptosis regulation. Strikingly, grouper TCTP, when overexpressed in fathead minnow (FHM) cells, protected them from cell death induced by cycloheximide (CHX). In addition, overexpressed Ec-TCTP in grouper spleen (GS) cells inhibited the replication of SGIV. These results suggest that Ec-TCTP may play a critical role in their response to SGIV infection, through regulation of a cell death pathway that is common to fish and humans. Copyright © 2012 Elsevier Ltd. All rights reserved.
miR-34a is a common link in both HIV- and antiretroviral therapy-induced vascular aging.
Zhan, Jiaxin; Qin, Shanshan; Lu, Lili; Hu, Xiamin; Zhou, Jun; Sun, Yeying; Yang, Jian; Liu, Ying; Wang, Zunzhe; Tan, Ning; Chen, Jiyan; Zhang, Chunxiang
2016-11-26
Both HIV and antiretroviral therapy could induce vascular aging with unclear mechanisms. In this study, via microarray analysis, we identified, for the first time, that miR-34a expression was significantly increased in both HIV-infected, and antiretroviral agents-treated vessels and vascular endothelial cells (ECs) from these vessels. In cultured ECs, miR-34a expression was significantly increased by HIV-Tat protein and by the antiretroviral agents, lopinavir/ritonavir. Both HIV-Tat protein and antiretroviral agents could induce EC senescence, which was inhibited by miR-34a inhibition. In contrast, EC senescence was exacerbated by miR-34a overexpression. In addition, the vascular ECs isolated from miR-34a knockout mice were resistant to HIV and antiretroviral agents-mediated senescence. In vivo, miR-34a expression in mouse vascular walls and their ECs was increased by antiretroviral therapy and by HIV-1 Tat transgenic approach. miR-34a inhibition could effectively inhibit both HIV-Tat protein and antiretroviral therapy-induced vascular aging in mice. The increased miR-34a was induced via p53, whereas Sirt1 was a downstream target gene of miR-34a in both HIV-Tat protein and antiretroviral agents-treated ECs and vessels. The study has demonstrated that miR-34a is a common link in both HIV and antiretroviral therapy-mediated vascular aging.
Shen, Yuan; Wang, Xiaoyu; Xu, Jianping; Lu, Lin
2017-07-04
The SerpinE2 pathway is evolutionarily conserved and plays an important role in tumorigenesis. SerpinE2 (a small ubiquitin-related modifier), like ubiquitin, conjugates SerpinE2 proteins onto lysine residues of target proteins. SerpinE2 over-expression has been found in several tumors. Here, we detected the level of SerpinE2 in 72 samples of EC tissue using immunohistochemistry to assess the role of SerpinE2 in EC prognosis. Meanwhile, we knocked down SerpinE2 by siRNA in the HTB-111 and Ishikawa EC cell lines and analyzed the viability and mobility change using an MTT assay, an annexin V/PI apoptosis assay, a wound scratch test and a transwell assay. A Kaplan-Meier analysis indicated a negative correlation between the level of SerpinE2 and the EC prognosis. Silencing SerpinE2 induced cell apoptosis and reduced the migration ability. Our data suggest SerpinE2 works as an oncogene in EC.
2013-01-01
Background Apoptosis is a critical process in endothelial cell (EC) biology and pathology, which has been extensively studied at protein level. Numerous gene expression studies of EC apoptosis have also been performed, however few attempts have been made to use gene expression data to identify the molecular relationships and master regulators that underlie EC apoptosis. Therefore, we sought to understand these relationships by generating a Bayesian gene regulatory network (GRN) model. Results ECs were induced to undergo apoptosis using serum withdrawal and followed over a time course in triplicate, using microarrays. When generating the GRN, this EC time course data was supplemented by a library of microarray data from EC treated with siRNAs targeting over 350 signalling molecules. The GRN model proposed Vasohibin-1 (VASH1) as one of the candidate master-regulators of EC apoptosis with numerous downstream mRNAs. To evaluate the role played by VASH1 in EC, we used siRNA to reduce the expression of VASH1. Of 10 mRNAs downstream of VASH1 in the GRN that were examined, 7 were significantly up- or down-regulated in the direction predicted by the GRN.Further supporting an important biological role of VASH1 in EC, targeted reduction of VASH1 mRNA abundance conferred resistance to serum withdrawal-induced EC death. Conclusion We have utilised Bayesian GRN modelling to identify a novel candidate master regulator of EC apoptosis. This study demonstrates how GRN technology can complement traditional methods to hypothesise the regulatory relationships that underlie important biological processes. PMID:23324451
Bosi, Giampaolo; Shinn, Andrew Paul; Giari, Luisa; Sayyaf Dezfuli, Bahram
2015-07-08
In vertebrates, the presence of enteric worms can induce structural changes to the alimentary canal impacting on the neuroendocrine system, altering the proper functioning of the gastrointestinal tract and affecting the occurrence and relative density of endocrine cells (ECs). This account represents the first immunohistochemistry and ultrastructure-based study which documents the intimate relationship between the intestinal mucous cells and ECs in a fish-helminth system, investigating the potential effects of enteric neuromodulators on gut mucus secretion/discharge. A modified dual immunohisto- and histochemical staining technique was applied on intestinal sections from both infected and uninfected fish. Sections were incubated in antisera to a range of neuromodulators (i.e. leu-enkephalin, met-enkephalin, galanin and serotonin) and the glycoconjugate histochemistry of the mucous cells was determined using a subsequent alcian blue - periodic acid Schiff staining step. Dual fluorescent staining on sections prepared for confocal laser scanning microscopy and transmission electron microscopy were also used to document the relationship between ECs and mucous cells. From a total of 26 specimens of Squalius cephalus sampled from the River Paglia, 16 (i.e. 62 %) specimens were found to harbour an infection of the acanthocephalan Pomphorhynchus laevis (average intensity of infection 9.2 ± 0.8 parasites host(-1), mean ± standard error). When acanthocephalans were present, the numbers of mucous cells (most notably those containing acidic or mixed glycoconjugates) and ECs secreting leu-enkephalin, met-enkephalin, galanin, serotonin were significantly higher than those seen on sections from uninfected fish. The relationship between met-enkephalin-like or serotonin-like ECs and lectin DBA positive mucous cells was demonstrated through a dual fluorescent staining. The presence of tight connections and desmosomes between mucous and ECs in transmission electron micrographs provides further evidence of this intimate relationship. The presence of P. laevis induces an increase in the number of enteric ECs that are immunoreactive to leu- and met-enkephalin, galanin, and serotonin anti-sera. The mucous cells hyperplasia and enhanced mucus secretion in the helminth-infected intestines could be elicited by the increase in the number of ECs which release these regulatory substances.
Chen, Wei; Li, Yuting; Bao, Tao; Gowd, Vemana
2017-01-01
Ethyl carbamate (EC) is a food and environmental toxicant and is a cause of concern for human exposure. Several studies indicated that EC-induced toxicity was associated with oxidative stress. Mulberry fruits are reported to have a wide range of bioactive compounds and pharmacological activities. The present study was therefore aimed to investigate the protective property of mulberry fruit extract (MFE) on EC-induced cytotoxicity and oxidative stress. Chemical composition analysis showed that total phenolic content and total flavonoid content in MFE were 502.43 ± 5.10 and 219.12 ± 4.45 mg QE/100 g FW. Cyanidin -3-O- glucoside and cyanidin -3-O- rutinoside were the major anthocyanins in MFE. In vitro antioxidant studies (DPPH, ABTS, and FRAP assays) jointly exhibited the potent antioxidant capacity of MFE. Further study indicated that MFE protected human liver HepG2 cells from EC-induced cytotoxicity by scavenging overproduced cellular ROS. EC treatment promoted intracellular glutathione (GSH) depletion and caused mitochondrial membrane potential (MMP) collapse, as well as mitochondrial membrane lipid peroxidation, whereas MFE pretreatment significantly inhibited GSH depletion and restored the mitochondrial membrane function. Overall, our study suggested that polyphenolic-rich MFE could afford a potent protection against EC-induced cytotoxicity and oxidative stress.
Li, Yuting; Bao, Tao; Gowd, Vemana
2017-01-01
Ethyl carbamate (EC) is a food and environmental toxicant and is a cause of concern for human exposure. Several studies indicated that EC-induced toxicity was associated with oxidative stress. Mulberry fruits are reported to have a wide range of bioactive compounds and pharmacological activities. The present study was therefore aimed to investigate the protective property of mulberry fruit extract (MFE) on EC-induced cytotoxicity and oxidative stress. Chemical composition analysis showed that total phenolic content and total flavonoid content in MFE were 502.43 ± 5.10 and 219.12 ± 4.45 mg QE/100 g FW. Cyanidin-3-O-glucoside and cyanidin-3-O-rutinoside were the major anthocyanins in MFE. In vitro antioxidant studies (DPPH, ABTS, and FRAP assays) jointly exhibited the potent antioxidant capacity of MFE. Further study indicated that MFE protected human liver HepG2 cells from EC-induced cytotoxicity by scavenging overproduced cellular ROS. EC treatment promoted intracellular glutathione (GSH) depletion and caused mitochondrial membrane potential (MMP) collapse, as well as mitochondrial membrane lipid peroxidation, whereas MFE pretreatment significantly inhibited GSH depletion and restored the mitochondrial membrane function. Overall, our study suggested that polyphenolic-rich MFE could afford a potent protection against EC-induced cytotoxicity and oxidative stress. PMID:28819542
Basso, Fernanda G; Pansani, Taisa N; Turrioni, Ana Paula S; Soares, Diana G; de Souza Costa, Carlos Alberto; Hebling, Josimeri
2016-08-01
Multiple factors affect oral mucosal healing, such as the persistence of an inflammatory reaction. The present study evaluates effects of tumor necrosis factor (TNF)-α and interleukin (IL)-1β, IL-6, and IL-8 on epithelial cells (ECs) and human gingival fibroblasts (GFs) in vitro. GFs and ECs were seeded in 96-well plates (1 × 10(4) cells/well) in plain culture medium (Dulbecco's modified Eagle's medium [DMEM]) containing 1% antibiotic/antimycotic solution and 10% fetal bovine serum, and incubated for 24 hours. Both cell lines were exposed for 24 hours to the following cytokines: 1) TNF-α (100 ng/mL); 2) IL-1β (1 ng/mL); 3) IL-6 (10 ng/mL); and 4) IL-8 (10 ng/mL). All cytokines were diluted in serum-free DMEM. Control cultures were exposed only to serum-free DMEM. Effects of exposure to inflammatory cytokines were determined by means of: 1) apoptosis (anexin V); 2) cell migration (wound healing assay); 3) inflammatory cytokine synthesis (enzyme-linked immunosorbent assay). Data were analyzed by Kruskal-Wallis and Mann-Whitney U tests (α = 0.05). Increased apoptosis rates were noted when cells were exposed to inflammatory cytokines, except ECs exposed to IL-1β. Cell migration was negatively affected by all inflammatory cytokines for both cell lines. ECs and GFs exposed to IL-6 and IL-8 significantly increased synthesis of TNF-α and IL-1β. Demonstrated results indicate negative effects of tested inflammatory cytokines on ECs and GFs, inducing apoptosis and impairing cell migration. These results can justify delayed oral mucosa healing in the presence of inflammatory reaction.
Long Noncoding RNA-GAS5: A Novel Regulator of Hypertension-Induced Vascular Remodeling.
Wang, Yang-Ning-Zhi; Shan, Kun; Yao, Mu-Di; Yao, Jin; Wang, Jia-Jian; Li, Xiang; Liu, Ban; Zhang, Yang-Yang; Ji, Yong; Jiang, Qin; Yan, Biao
2016-09-01
Vascular remodeling is an important pathological feature of hypertension, leading to increased vascular resistance and reduced compliance. Endothelial cell (EC) and vascular smooth muscle cell (VSMC) dysfunction is involved in vascular remodeling. Long noncoding RNAs are potential regulators of EC and VSMC function. Herein, we determined whether long noncoding RNA-growth arrest-specific 5 (GAS5) is involved in hypertension-related vascular remodeling. We revealed that GAS5 knockdown aggravated hypertension-induced microvascular dysfunction as shown by increased retinal neovascularization and capillary leakage. GAS5 regulated the remodeling of arteries, including caudal arteries, carotid arteries, renal arteries, and thoracic arteries. GAS5 was mainly expressed in ECs and VSMCs, and its expression was significantly downregulated in hypertension. GAS5 knockdown affected endothelial activation, endothelial proliferation, VSMC phenotypic conversion, and EC-VSMC communication in vivo and in vitro. Mechanistically, GAS5 regulated EC and VSMC function through β-catenin signaling. This study identified GAS5 as a critical regulator in hypertension and demonstrated the potential of gene therapy and drug development for treating hypertension. © 2016 American Heart Association, Inc.
TET1-GPER-PI3K/AKT pathway is involved in insulin-driven endometrial cancer cell proliferation.
Xie, Bing-Ying; Lv, Qiao-Ying; Ning, Cheng-Cheng; Yang, Bing-Yi; Shan, Wei-Wei; Cheng, Ya-Li; Gu, Chao; Luo, Xue-Zhen; Zhang, Zhen-Bo; Chen, Xiao-Jun; Xi, Xiao-Wei; Feng, You-Ji
2017-01-22
Large amount of clinical evidence has demonstrated that insulin resistance is closely related to oncogenesis of endometrial cancer (EC). Despite recent studies showed the up-regulatory role of insulin in G protein-coupled estrogen receptor (GPER/GPR30) expression, GPER expression was not decreased compared to control when insulin receptor was blocked even in insulin treatment. The purpose of this study was to explore the possible mechanism by which insulin up-regulates GPER that drives EC cell proliferation. For this purpose, we first investigated the GPER expression in tissues of endometrial lesions, further explored the effect of GPER on EC cell proliferation in insulin resistance context. Then we analyzed the role of Ten-Eleven Translocation 1 (TET1) in insulin-induced GEPR expression and EC cell proliferation. The results showed that GPER was highly expressed in endometrial atypical hyperplasia and EC tissues. Mechanistically, insulin up-regulated TET1 expression and the latter played an important role in up-regulating GPER expression and activating PI3K/AKT signaling pathway. TET1 mediated GPER up-regulation was another mechanism that insulin promotes EC cell proliferation. Copyright © 2016 Elsevier Inc. All rights reserved.
Mei, Yu; Thompson, Melissa D; Shiraishi, Yasunaga; Cohen, Richard A; Tong, Xiaoyong
2014-11-01
Ischemia is a complex phenomenon modulated by the concerted action of several cell types. We have identified that sarcoplasmic/endoplasmic reticulum Ca(2+) ATPase 2 (SERCA 2) cysteine 674 (C674) S-glutathiolation is essential for ischemic angiogenesis, vascular endothelial growth factor (VEGF)-mediated endothelial cell (EC) migration and network formation. A heterozygote SERCA 2 C674S knockin (SKI) mouse shows impaired ischemic blood flow recovery after femoral artery ligation, and its ECs show depleted endoplasmic reticulum (ER) Ca(2+) stores and impaired angiogenic behavior. Here we studied the role of SERCA 2 C674 in the interaction between ECs and macrophages in the context of ischemia and discovered the involvement of the ER stress response protein, ER oxidoreductin-1α (ERO1). In wild type (WT) mice, expression of ERO1 was increased in the ischemic hind limb in vivo, as well as in ECs and macrophages exposed to hypoxia in vitro. The increase in ERO1 to ischemia/hypoxia was less in SKI mice. In WT ECs, both vascular cell adhesion molecule 1 (VCAM1) expression and bone marrow-derived macrophage adhesion to ECs were increased by hypoxia, and both were attenuated in SKI ECs. In WT ECs, ERO1 siRNA blocked hypoxia-induced VCAM1 expression and macrophage adhesion. In WT macrophages, hypoxia also stimulated both ERO1 and VEGF expression, and both were less in SKI macrophages. Compared with conditioned media of hypoxic SKI macrophages, conditioned media from WT macrophages had a greater effect on EC angiogenic behavior, and were blocked by VEGF neutralizing antibody. Taken together, under hypoxic conditions, SERCA 2 C674 and ERO1 enable increased VCAM1 expression and macrophage adhesion to ECs, as well as macrophage VEGF production that, in turn, promote angiogenesis. This study highlights the hitherto unrecognized interaction of two ER proteins, SERCA 2 C674 and ERO1, which mediate the EC and macrophage angiogenic response to ischemia/hypoxia. Copyright © 2014 Elsevier Ltd. All rights reserved.
Shi, Xiao-Jing; Ding, Lina; Zhou, Wenjuan; Ji, Yage; Wang, Junwei; Wang, Huimin; Ma, Yongcheng; Jiang, Guozhong; Tang, Kai
2017-01-01
Abstract Aims: Esophageal cancer (EC) is an aggressive malignancy and the most common solid tumor of gastrointestinal tract all over the world, with high incidence in Asia. The current study was designed to investigate the anticancer efficacy and mechanism that is involved in the action of a natural ent-kaurene diterpenoid, JDA-202, targeting EC. Results: We found that an antioxidant protein peroxiredoxin I (Prx I) was upregulated in human EC tissues as well as in EC cell lines. JDA-202, a novel natural compound isolated from Isodon rubescens (Labiatae), was proved to possess strong anti-proliferative activities on those cell lines. Importantly, JDA-202 does not only bind to Prx I directly and markedly inhibit the activity of Prx I in vitro, but it also significantly induces hydrogen peroxide (H2O2)-related cell death. Furthermore, overexpression of Prx I significantly reversed EC109 cell apoptosis caused by JDA-202, whereas short interfering RNA (siRNA)-induced Prx I knockdown resulted in marked cell death even without JDA-202 pretreatment. On the other hand, the increased phosphorylation of mitogen-activated protein kinase (MAPK) proteins (c-Jun N-terminal kinase [JNK], p38, and extracellular signal-regulated kinase [ERK]) by JDA-202 was suppressed by N-acetylcysteine (NAC) or catalase, a known reactive oxygen species (ROS) or H2O2 scavenger. JDA-202 also significantly inhibited the growth of EC109 tumor xenograft, without significant body weight loss and multi-organ toxicities. Innovation and Conclusion: Our findings, for the first time, demonstrated that JDA-202 may serve as a lead compound, targeting the overexpressed Prx I in EC cell lines and ROS accumulation as well as inhibiting the activation of their downstream targets in MAPKs. Antioxid. Redox Signal. 27, 73–92. PMID:27650197
Sonveaux, Pierre; Copetti, Tamara; De Saedeleer, Christophe J; Végran, Frédérique; Verrax, Julien; Kennedy, Kelly M; Moon, Eui Jung; Dhup, Suveera; Danhier, Pierre; Frérart, Françoise; Gallez, Bernard; Ribeiro, Anthony; Michiels, Carine; Dewhirst, Mark W; Feron, Olivier
2012-01-01
Switching to a glycolytic metabolism is a rapid adaptation of tumor cells to hypoxia. Although this metabolic conversion may primarily represent a rescue pathway to meet the bioenergetic and biosynthetic demands of proliferating tumor cells, it also creates a gradient of lactate that mirrors the gradient of oxygen in tumors. More than a metabolic waste, the lactate anion is known to participate to cancer aggressiveness, in part through activation of the hypoxia-inducible factor-1 (HIF-1) pathway in tumor cells. Whether lactate may also directly favor HIF-1 activation in endothelial cells (ECs) thereby offering a new druggable option to block angiogenesis is however an unanswered question. In this study, we therefore focused on the role in ECs of monocarboxylate transporter 1 (MCT1) that we previously identified to be the main facilitator of lactate uptake in cancer cells. We found that blockade of lactate influx into ECs led to inhibition of HIF-1-dependent angiogenesis. Our demonstration is based on the unprecedented characterization of lactate-induced HIF-1 activation in normoxic ECs and the consecutive increase in vascular endothelial growth factor receptor 2 (VEGFR2) and basic fibroblast growth factor (bFGF) expression. Furthermore, using a variety of functional assays including endothelial cell migration and tubulogenesis together with in vivo imaging of tumor angiogenesis through intravital microscopy and immunohistochemistry, we documented that MCT1 blockers could act as bona fide HIF-1 inhibitors leading to anti-angiogenic effects. Together with the previous demonstration of MCT1 being a key regulator of lactate exchange between tumor cells, the current study identifies MCT1 inhibition as a therapeutic modality combining antimetabolic and anti-angiogenic activities.
Sonveaux, Pierre; Copetti, Tamara; De Saedeleer, Christophe J.; Végran, Frédérique; Verrax, Julien; Kennedy, Kelly M.; Moon, Eui Jung; Dhup, Suveera; Danhier, Pierre; Frérart, Françoise; Gallez, Bernard; Ribeiro, Anthony; Michiels, Carine
2012-01-01
Switching to a glycolytic metabolism is a rapid adaptation of tumor cells to hypoxia. Although this metabolic conversion may primarily represent a rescue pathway to meet the bioenergetic and biosynthetic demands of proliferating tumor cells, it also creates a gradient of lactate that mirrors the gradient of oxygen in tumors. More than a metabolic waste, the lactate anion is known to participate to cancer aggressiveness, in part through activation of the hypoxia-inducible factor-1 (HIF-1) pathway in tumor cells. Whether lactate may also directly favor HIF-1 activation in endothelial cells (ECs) thereby offering a new druggable option to block angiogenesis is however an unanswered question. In this study, we therefore focused on the role in ECs of monocarboxylate transporter 1 (MCT1) that we previously identified to be the main facilitator of lactate uptake in cancer cells. We found that blockade of lactate influx into ECs led to inhibition of HIF-1-dependent angiogenesis. Our demonstration is based on the unprecedented characterization of lactate-induced HIF-1 activation in normoxic ECs and the consecutive increase in vascular endothelial growth factor receptor 2 (VEGFR2) and basic fibroblast growth factor (bFGF) expression. Furthermore, using a variety of functional assays including endothelial cell migration and tubulogenesis together with in vivo imaging of tumor angiogenesis through intravital microscopy and immunohistochemistry, we documented that MCT1 blockers could act as bona fide HIF-1 inhibitors leading to anti-angiogenic effects. Together with the previous demonstration of MCT1 being a key regulator of lactate exchange between tumor cells, the current study identifies MCT1 inhibition as a therapeutic modality combining antimetabolic and anti-angiogenic activities. PMID:22428047
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, B.-C.; Hsieh, C.-W.; Liu, Y.-C.
The production of adhesion molecules and subsequent attachment of leukocytes to endothelial cells (ECs) are critical early events in atherogenesis. These adhesion molecules thus play an important role in the development of this disease. Recent studies have highlighted the chemoprotective and anti-inflammatory effects of cinnamaldehyde, a Cinnamomum cassia Presl-specific diterpene. In our current study, we have examined the effects of both cinnamaldehyde and extracts of C. cassia on cytokine-induced monocyte/human endothelial cell interactions. We find that these compounds inhibit the adhesion of TNF{alpha}-induced monocytes to endothelial cells and suppress the expression of the cell adhesion molecules, VCAM-1 and ICAM-1, atmore » the transcriptional level. Moreover, in TNF{alpha}-treated ECs, the principal downstream signal of VCAM-1 and ICAM-1, NF-{kappa}B, was also found to be abolished in a time-dependent manner. Interestingly, cinnamaldehyde exerts its anti-inflammatory effects by blocking the degradation of the inhibitory protein I{kappa}B-{alpha}, but only in short term pretreatments, whereas it does so via the induction of Nrf2-related genes, including heme-oxygenase-1 (HO-1), over long term pretreatments. Treating ECs with zinc protoporphyrin, a HO-1 inhibitor, partially blocks the anti-inflammatory effects of cinnamaldehyde. Elevated HO-1 protein levels were associated with the inhibition of TNF{alpha}-induced ICAM-1 expression. In addition to HO-1, we also found that cinnamaldehyde can upregulate Nrf2 in nuclear extracts, and can increase ARE-luciferase activity and upregulate thioredoxin reductase-1, another Nrf2-related gene. Moreover, cinnamaldehyde exposure rapidly reduces the cellular GSH levels in ECs over short term treatments but increases these levels after 9 h exposure. Hence, our present findings indicate that cinnamaldehyde suppresses TNF-induced singling pathways via two distinct mechanisms that are activated by different pretreatment periods.« less
Raasch, Martin; Rennert, Knut; Jahn, Tobias; Peters, Sven; Henkel, Thomas; Huber, Otmar; Schulz, Ingo; Becker, Holger; Lorkowski, Stefan; Funke, Harald; Mosig, Alexander
2015-03-02
Hemodynamic forces generated by the blood flow are of central importance for the function of endothelial cells (ECs), which form a biologically active cellular monolayer in blood vessels and serve as a selective barrier for macromolecular permeability. Mechanical stimulation of the endothelial monolayer induces morphological remodeling in its cytoskeleton. For in vitro studies on EC biology culture devices are desirable that simulate conditions of flow in blood vessels and allow flow-based adhesion/permeability assays under optimal perfusion conditions. With this aim we designed a biochip comprising a perfusable membrane that serves as cell culture platform multi-organ-tissue-flow (MOTiF biochip). This biochip allows an effective supply with nutrition medium, discharge of catabolic cell metabolites and defined application of shear stress to ECs under laminar flow conditions. To characterize EC layers cultured in the MOTiF biochip we investigated cell viability, expression of EC marker proteins and cell adhesion molecules of ECs dynamically cultured under low and high shear stress, and compared them with an endothelial culture in established two-dimensionally perfused flow chambers and under static conditions. We show that ECs cultured in the MOTiF biochip form a tight EC monolayer with increased cellular density, enhanced cell layer thickness, presumably as the result of a rapid and effective adaption to shear stress by remodeling of the cytoskeleton. Moreover, endothelial layers in the MOTiF biochip express higher amounts of EC marker proteins von-Willebrand-factor and PECAM-1. EC layers were highly responsive to stimulation with TNFα as detected at the level of ICAM-1, VCAM-1 and E-selectin expression and modulation of endothelial permeability in response to TNFα/IFNγ treatment under flow conditions. Compared to static and two-dimensionally perfused cell culture condition we consider MOTiF biochips as a valuable tool for studying EC biology in vitro under advanced culture conditions more closely resembling the in vivo situation.
Sun, Run-Lu; Huang, Can-Xia; Bao, Jin-Lan; Jiang, Jie-Yu; Zhang, Bo; Zhou, Shu-Xian; Cai, Wei-Bin; Wang, Hong; Wang, Jing-Feng; Zhang, Yu-Ling
2016-09-09
High density lipoprotein (HDL) has been proposed to be internalized and to promote reverse cholesterol transport in endothelial cells (ECs). However, the mechanism underlying these processes has not been studied. In this study, we aim to characterize HDL internalization and cholesterol efflux in ECs and regulatory mechanisms. We found mature HDL particles were reduced in patients with coronary artery disease (CAD), which was associated with an increase in CC-chemokine ligand 2 (CCL2). In cultured primary human coronary artery endothelial cells and human umbilical vein endothelial cells, we determined that CCL2 suppressed the binding (4 °C) and association (37 °C) of HDL to/with ECs and HDL cellular internalization. Furthermore, CCL2 inhibited [(3)H]cholesterol efflux to HDL/apoA1 in ECs. We further found that CCL2 induced CC-chemokine receptor 2 (CCR2) expression and siRNA-CCR2 reversed CCL2 suppression on HDL binding, association, internalization, and on cholesterol efflux in ECs. Moreover, CCL2 induced p42/44 mitogen-activated protein kinase (MAPK) phosphorylation via CCR2, and p42/44 MAPK inhibition reversed the suppression of CCL2 on HDL metabolism in ECs. Our study suggests that CCL2 was elevated in CAD patients. CCL2 suppressed HDL internalization and cholesterol efflux via CCR2 induction and p42/44 MAPK activation in ECs. CCL2 induction may contribute to impair HDL function and form atherosclerosis in CAD. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Autophagy orchestrates adaptive responses to targeted therapy in endometrial cancer.
Eritja, Núria; Chen, Bo-Juen; Rodríguez-Barrueco, Ruth; Santacana, Maria; Gatius, Sònia; Vidal, August; Martí, Maria Dolores; Ponce, Jordi; Bergadà, Laura; Yeramian, Andree; Encinas, Mario; Ribera, Joan; Reventós, Jaume; Boyd, Jeff; Villanueva, Alberto; Matias-Guiu, Xavier; Dolcet, Xavier; Llobet-Navàs, David
2017-03-04
Targeted therapies in endometrial cancer (EC) using kinase inhibitors rarely result in complete tumor remission and are frequently challenged by the appearance of refractory cell clones, eventually resulting in disease relapse. Dissecting adaptive mechanisms is of vital importance to circumvent clinical drug resistance and improve the efficacy of targeted agents in EC. Sorafenib is an FDA-approved multitarget tyrosine and serine/threonine kinase inhibitor currently used to treat hepatocellular carcinoma, advanced renal carcinoma and radioactive iodine-resistant thyroid carcinoma. Unfortunately, sorafenib showed very modest effects in a multi-institutional phase II trial in advanced uterine carcinoma patients. Here, by leveraging RNA-sequencing data from the Cancer Cell Line Encyclopedia and cell survival studies from compound-based high-throughput screenings we have identified the lysosomal pathway as a potential compartment involved in the resistance to sorafenib. By performing additional functional biology studies we have demonstrated that this resistance could be related to macroautophagy/autophagy. Specifically, our results indicate that sorafenib triggers a mechanistic MAPK/JNK-dependent early protective autophagic response in EC cells, providing an adaptive response to therapeutic stress. By generating in vivo subcutaneous EC cell line tumors, lung metastatic assays and primary EC orthoxenografts experiments, we demonstrate that targeting autophagy enhances sorafenib cytotoxicity and suppresses tumor growth and pulmonary metastasis progression. In conclusion, sorafenib induces the activation of a protective autophagic response in EC cells. These results provide insights into the unopposed resistance of advanced EC to sorafenib and highlight a new strategy for therapeutic intervention in recurrent EC.
Jennings, Matthew E.; Schaff, Cody W.; Horne, Alexandra J.; Lessner, Faith H.
2014-01-01
Haem-dependent catalase is an antioxidant enzyme that degrades H2O2, producing H2O and O2, and is common in aerobes. Catalase is present in some strictly anaerobic methane-producing archaea (methanogens), but the importance of catalase to the antioxidant system of methanogens is poorly understood. We report here that a survey of the sequenced genomes of methanogens revealed that the majority of species lack genes encoding catalase. Moreover, Methanosarcina acetivorans is a methanogen capable of synthesizing haem and encodes haem-dependent catalase in its genome; yet, Methanosarcina acetivorans cells lack detectable catalase activity. However, inducible expression of the haem-dependent catalase from Escherichia coli (EcKatG) in the chromosome of Methanosarcina acetivorans resulted in a 100-fold increase in the endogenous catalase activity compared with uninduced cells. The increased catalase activity conferred a 10-fold increase in the resistance of EcKatG-induced cells to H2O2 compared with uninduced cells. The EcKatG-induced cells were also able to grow when exposed to levels of H2O2 that inhibited or killed uninduced cells. However, despite the significant increase in catalase activity, growth studies revealed that EcKatG-induced cells did not exhibit increased tolerance to O2 compared with uninduced cells. These results support the lack of catalase in the majority of methanogens, since methanogens are more likely to encounter O2 rather than high concentrations of H2O2 in the natural environment. Catalase appears to be a minor component of the antioxidant system in methanogens, even those that are aerotolerant, including Methanosarcina acetivorans. Importantly, the experimental approach used here demonstrated the feasibility of engineering beneficial traits, such as H2O2 tolerance, in methanogens. PMID:24222618
Wang, Ruisi; Ding, Qian; Yaqoob, Usman; de Assuncao, Thiago M.; Verma, Vikas K.; Hirsova, Petra; Cao, Sheng; Mukhopadhyay, Debabrata; Huebert, Robert C.; Shah, Vijay H.
2015-01-01
Exosomes are cell-derived extracellular vesicles thought to promote intercellular communication by delivering specific content to target cells. The aim of this study was to determine whether endothelial cell (EC)-derived exosomes could regulate the phenotype of hepatic stellate cells (HSCs). Initial microarray studies showed that fibroblast growth factor 2 induced a 2.4-fold increase in mRNA levels of sphingosine kinase 1 (SK1). Exosomes derived from an SK1-overexpressing EC line increased HSC migration 3.2-fold. Migration was not conferred by the dominant negative SK1 exosome. Incubation of HSCs with exosomes was also associated with an 8.3-fold increase in phosphorylation of AKT and 2.5-fold increase in migration. Exosomes were found to express the matrix protein and integrin ligand fibronectin (FN) by Western blot analysis and transmission electron microscopy. Blockade of the FN-integrin interaction with a CD29 neutralizing antibody or the RGD peptide attenuated exosome-induced HSC AKT phosphorylation and migration. Inhibition of endocytosis with transfection of dynamin siRNA, the dominant negative dynamin GTPase construct Dyn2K44A, or the pharmacological inhibitor Dynasore significantly attenuated exosome-induced AKT phosphorylation. SK1 levels were increased in serum exosomes derived from mice with experimental liver fibrosis, and SK1 mRNA levels were up-regulated 2.5-fold in human liver cirrhosis patient samples. Finally, S1PR2 inhibition protected mice from CCl4-induced liver fibrosis. Therefore, EC-derived SK1-containing exosomes regulate HSC signaling and migration through FN-integrin-dependent exosome adherence and dynamin-dependent exosome internalization. These findings advance our understanding of EC/HSC cross-talk and identify exosomes as a potential target to attenuate pathobiology signals. PMID:26534962
Wang, Ruisi; Ding, Qian; Yaqoob, Usman; de Assuncao, Thiago M; Verma, Vikas K; Hirsova, Petra; Cao, Sheng; Mukhopadhyay, Debabrata; Huebert, Robert C; Shah, Vijay H
2015-12-25
Exosomes are cell-derived extracellular vesicles thought to promote intercellular communication by delivering specific content to target cells. The aim of this study was to determine whether endothelial cell (EC)-derived exosomes could regulate the phenotype of hepatic stellate cells (HSCs). Initial microarray studies showed that fibroblast growth factor 2 induced a 2.4-fold increase in mRNA levels of sphingosine kinase 1 (SK1). Exosomes derived from an SK1-overexpressing EC line increased HSC migration 3.2-fold. Migration was not conferred by the dominant negative SK1 exosome. Incubation of HSCs with exosomes was also associated with an 8.3-fold increase in phosphorylation of AKT and 2.5-fold increase in migration. Exosomes were found to express the matrix protein and integrin ligand fibronectin (FN) by Western blot analysis and transmission electron microscopy. Blockade of the FN-integrin interaction with a CD29 neutralizing antibody or the RGD peptide attenuated exosome-induced HSC AKT phosphorylation and migration. Inhibition of endocytosis with transfection of dynamin siRNA, the dominant negative dynamin GTPase construct Dyn2K44A, or the pharmacological inhibitor Dynasore significantly attenuated exosome-induced AKT phosphorylation. SK1 levels were increased in serum exosomes derived from mice with experimental liver fibrosis, and SK1 mRNA levels were up-regulated 2.5-fold in human liver cirrhosis patient samples. Finally, S1PR2 inhibition protected mice from CCl4-induced liver fibrosis. Therefore, EC-derived SK1-containing exosomes regulate HSC signaling and migration through FN-integrin-dependent exosome adherence and dynamin-dependent exosome internalization. These findings advance our understanding of EC/HSC cross-talk and identify exosomes as a potential target to attenuate pathobiology signals. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Abbas, Malak; Jesel, Laurence; Auger, Cyril; Amoura, Lamia; Messas, Nathan; Manin, Guillaume; Rumig, Cordula; León-González, Antonio J; Ribeiro, Thais P; Silva, Grazielle C; Abou-Merhi, Raghida; Hamade, Eva; Hecker, Markus; Georg, Yannick; Chakfe, Nabil; Ohlmann, Patrick; Schini-Kerth, Valérie B; Toti, Florence; Morel, Olivier
2017-01-17
Microparticles (MPs) have emerged as a surrogate marker of endothelial dysfunction and cardiovascular risk. This study examined the potential of MPs from senescent endothelial cells (ECs) or from patients with acute coronary syndrome (ACS) to promote premature EC aging and thrombogenicity. Primary porcine coronary ECs were isolated from the left circumflex coronary artery. MPs were prepared from ECs and venous blood from patients with ACS (n=30) and from healthy volunteers (n=4) by sequential centrifugation. The level of endothelial senescence was assessed as senescence-associated β-galactosidase activity using flow cytometry, oxidative stress using the redox-sensitive probe dihydroethidium, tissue factor activity using an enzymatic Tenase assay, the level of target protein expression by Western blot analysis, platelet aggregation using an aggregometer, and shear stress using a cone-and-plate viscometer. Senescence, as assessed by senescence-associated β-galactosidase activity, was induced by the passaging of porcine coronary artery ECs from passage P1 to P4, and was associated with a progressive shedding of procoagulant MPs. Exposure of P1 ECs to MPs shed from senescent P3 cells or circulating MPs from ACS patients induced increased senescence-associated β-galactosidase activity, oxidative stress, early phosphorylation of mitogen-activated protein kinases and Akt, and upregulation of p53, p21, and p16. Ex vivo, the prosenescent effect of circulating MPs from ACS patients was evidenced only under conditions of low shear stress. Depletion of endothelial-derived MPs from ACS patients reduced the induction of senescence. Prosenescent MPs promoted EC thrombogenicity through tissue factor upregulation, shedding of procoagulant MPs, endothelial nitric oxide synthase downregulation, and reduced nitric oxide-mediated inhibition of platelet aggregation. These MPs exhibited angiotensin-converting enzyme activity and upregulated AT1 receptors and angiotensin-converting enzyme in P1 ECs. Losartan, an AT1 receptor antagonist, and inhibitors of either mitogen-activated protein kinases or phosphoinositide 3-kinase prevented the MP-induced endothelial senescence. These findings indicate that endothelial-derived MPs from ACS patients induce premature endothelial senescence under atheroprone low shear stress and thrombogenicity through angiotensin II-induced redox-sensitive activation of mitogen-activated protein kinases and phosphoinositide 3-kinase/Akt. They further suggest that targeting endothelial-derived MP shedding and their bioactivity may be a promising therapeutic strategy to limit the development of an endothelial dysfunction post-ACS. © 2016 American Heart Association, Inc.
Sonkusare, Swapnil K; Dalsgaard, Thomas; Bonev, Adrian D; Nelson, Mark T
2016-06-15
Increase in endothelial cell (EC) calcium activates calcium-sensitive intermediate and small conductance potassium (IK and SK) channels, thereby causing hyperpolarization and endothelium-dependent vasodilatation. Endothelial cells express inward rectifier potassium (Kir) channels, but their role in endothelium-dependent vasodilatation is not clear. In the mesenteric arteries, only ECs, but not smooth muscle cells, displayed Kir currents that were predominantly mediated by the Kir2.1 isoform. Endothelium-dependent vasodilatations in response to muscarinic receptor, TRPV4 (transient receptor potential vanilloid 4) channel and IK/SK channel agonists were highly attenuated by Kir channel inhibitors and by Kir2.1 channel knockdown. These results point to EC Kir channels as amplifiers of vasodilatation in response to increases in EC calcium and IK/SK channel activation and suggest that EC Kir channels could be targeted to treat endothelial dysfunction, which is a hallmark of vascular disorders. Endothelium-dependent vasodilators, such as acetylcholine, increase intracellular Ca(2+) through activation of transient receptor potential vanilloid 4 (TRPV4) channels in the plasma membrane and inositol trisphosphate receptors in the endoplasmic reticulum, leading to stimulation of Ca(2+) -sensitive intermediate and small conductance K(+) (IK and SK, respectively) channels. Although strong inward rectifier K(+) (Kir) channels have been reported in the native endothelial cells (ECs) their role in EC-dependent vasodilatation is not clear. Here, we test the idea that Kir channels boost the EC-dependent vasodilatation of resistance-sized arteries. We show that ECs, but not smooth muscle cells, of small mesenteric arteries have Kir currents, which are substantially reduced in EC-specific Kir2.1 knockdown (EC-Kir2.1(-/-) ) mice. Elevation of extracellular K(+) to 14 mm caused vasodilatation of pressurized arteries, which was prevented by endothelial denudation and Kir channel inhibitors (Ba(2+) , ML-133) or in the arteries from EC-Kir2.1(-/-) mice. Potassium-induced dilatations were unaffected by inhibitors of TRPV4, IK and SK channels. The Kir channel blocker, Ba(2+) , did not affect currents through TRPV4, IK or SK channels. Endothelial cell-dependent vasodilatations in response to activation of muscarinic receptors, TRPV4 channels or IK/SK channels were reduced, but not eliminated, by Kir channel inhibitors or EC-Kir2.1(-/-) . In angiotensin II-induced hypertension, the Kir channel function was not altered, although the endothelium-dependent vasodilatation was severely impaired. Our results support the concept that EC Kir2 channels boost vasodilatory signals that are generated by Ca(2+) -dependent activation of IK and SK channels. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Lee, Shin-Jeong; Sohn, Young-Doug; Andukuri, Adinarayana; Kim, Sangsung; Byun, Jaemin; Han, Ji Woong; Park, In-Hyun; Jun, Ho-Wook; Yoon, Young-Sup
2017-11-14
Human pluripotent stem cell (hPSC)-derived endothelial cells (ECs) have limited clinical utility because of undefined components in the differentiation system and poor cell survival in vivo. Here, we aimed to develop a fully defined and clinically compatible system to differentiate hPSCs into ECs. Furthermore, we aimed to enhance cell survival, vessel formation, and therapeutic potential by encapsulating hPSC-ECs with a peptide amphiphile (PA) nanomatrix gel. We induced differentiation of hPSCs into the mesodermal lineage by culturing on collagen-coated plates with a glycogen synthase kinase 3β inhibitor. Next, vascular endothelial growth factor, endothelial growth factor, and basic fibroblast growth factor were added for endothelial lineage differentiation, followed by sorting for CDH5 (VE-cadherin). We constructed an extracellular matrix-mimicking PA nanomatrix gel (PA-RGDS) by incorporating the cell adhesive ligand Arg-Gly-Asp-Ser (RGDS) and a matrix metalloproteinase-2-degradable sequence. We then evaluated whether the encapsulation of hPSC-CDH5 + cells in PA-RGDS could enhance long-term cell survival and vascular regenerative effects in a hind-limb ischemia model with laser Doppler perfusion imaging, bioluminescence imaging, real-time reverse transcription-polymerase chain reaction, and histological analysis. The resultant hPSC-derived CDH5 + cells (hPSC-ECs) showed highly enriched and genuine EC characteristics and proangiogenic activities. When injected into ischemic hind limbs, hPSC-ECs showed better perfusion recovery and higher vessel-forming capacity compared with media-, PA-RGDS-, or human umbilical vein EC-injected groups. However, the group receiving the PA-RGDS-encapsulated hPSC-ECs showed better perfusion recovery, more robust and longer cell survival (> 10 months), and higher and prolonged angiogenic and vascular incorporation capabilities than the bare hPSC-EC-injected group. Surprisingly, the engrafted hPSC-ECs demonstrated previously unknown sustained and dynamic vessel-forming behavior: initial perivascular concentration, a guiding role for new vessel formation, and progressive incorporation into the vessels over 10 months. We generated highly enriched hPSC-ECs via a clinically compatible system. Furthermore, this study demonstrated that a biocompatible PA-RGDS nanomatrix gel substantially improved long-term survival of hPSC-ECs in an ischemic environment and improved neovascularization effects of hPSC-ECs via prolonged and unique angiogenic and vessel-forming properties. This PA-RGDS-mediated transplantation of hPSC-ECs can serve as a novel platform for cell-based therapy and investigation of long-term behavior of hPSC-ECs. © 2017 American Heart Association, Inc.
Interleukin-27 induces the endothelial differentiation in Sca-1+ cardiac resident stem cells.
Tanaka, Tomohiro; Obana, Masanori; Mohri, Tomomi; Ebara, Masaki; Otani, Yuta; Maeda, Makiko; Fujio, Yasushi
2015-10-01
Cytokines play important roles in cardiac repair and regeneration. Recently, we demonstrated that interleukin (IL)-6 family cytokines induce the endothelial differentiation of Sca-1+ cardiac resident stem cells through STAT3/Pim-1 signaling pathway. In contrast, the biological functions of IL-12 family cytokines in heart remain to be elucidated, though they show structural homology with IL-6. In the present study, we examined the effects of IL-12 family cytokines on the transdifferentiation of cardiac Sca-1+ cells into cardiac cells. RT-PCR analyses revealed that IL-27 receptor α (IL-27Rα), but not IL-12R or IL-23R, was expressed in cardiac Sca-1+ cells. The transcript expression of IL-27 was elevated in murine hearts in cardiac injury models. Intriguingly, IL-27 stimulation for 14 days induced the endothelial cell (EC) marker genes, such as CD-31 and VE-cadherin. Immunoblot analyses clarified that IL-27 treatment rapidly phosphorylated STAT3. IL-27 upregulated the expression of Pim-1, but the overexpression of dominant negative STAT3 abrogated the induction of Pim-1 by IL-27. Finally, adenoviral transfection of dominant negative Pim-1 inhibited IL-27-induced EC differentiation of cardiac Sca-1+ cells. These findings demonstrated that IL-27 promoted the commitment of cardiac stem cells into the EC lineage, possibly leading to neovascularization as a novel biological function. IL-27 could not only regulate the inflammation but also contribute to the maintenance of the tissue homeostasis through stem cell differentiation at inflammatory sites. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Phloretin induces apoptosis of human esophageal cancer via a mitochondria-dependent pathway.
Duan, Hongtao; Wang, Ruixuan; Yan, Xiaolong; Liu, Honggang; Zhang, Yong; Mu, Deguang; Han, Jing; Li, Xiaofei
2017-12-01
2,4,6-trihydroxy-3-(4-hydroxyphenyl)-propiophenone (phloretin) is found in apple tree leaves and the Manchurian apricot, and is a potent compound that exhibits anti-inflammatory, antioxidant and antitumor activities. However, the effect of phloretin on esophageal cancer cells is not well-defined. The present study aimed to examine whether and how phloretin induced apoptosis in human esophageal cancer cells. EC-109 cells were cultured in Dulbecco's modified Eagle's medium and incubated with 60, 70, 80, 90 and 100 µg/ml phloretin for 6, 12, 24 and 48 h. Cell proliferation was measured by an MTT assay. Cell apoptosis rate was measured using flow cytometric analysis subsequent to propidium iodide (PI) staining. The protein expression levels were determined by western blot analysis. It was found that phloretin significantly decreased viable cell numbers in a dose- and time-dependent manner and induced apoptosis in EC-109 cells. Additionally, phloretin exhibited potent anticancer activity in vitro , as evidenced by the downregulation of the anti-apoptosis-associated molecule B-cell lymphoma 2 (bcl-2) and an increase in the levels of the apoptosis-associated molecules bcl-2-like protein 4 and tumor protein p53. Phloretin treatment also affected the expression of apoptotic protease activating factor-1, the protein product of the direct binding of the inhibitor of apoptosis protein with low PI to the X-linked inhibitor of apoptosis protein. The present results indicated that phloretin may inhibit EC-109 cell growth by inducing apoptosis, which may be mediated through a mitochondria-dependent pathway.
Tsoyi, Konstantin; Jang, Hwa Jin; Nizamutdinova, Irina Tsoy; Park, Kyungok; Kim, Young Min; Kim, Hye Jung; Seo, Han Geuk; Lee, Jae Heun; Chang, Ki Churl
2010-11-01
Phosphotase and tensin homolog deleted on chromosome 10 (PTEN) is a potent negative regulator of PI3K/Akt pathway. Here, we tried to elucidate the role of PTEN in the regulation of endothelial adhesion molecules, vascular cell adhesion molecule (VCAM)-1 and intracellular adhesion molecule (ICAM)-1, induced by TNF-α in human endothelial cells (ECs). Transfection with PTEN overexpressing vector resulted in the significant decrease in phosphorylation of Akt in TNF-α-treated ECs. PTEN strongly inhibited VCAM-1 but not ICAM-1, however this inhibitory effect was reversed by co-transfection with constitutively active-Akt (CA-Akt-HA) in TNF-α-stimulated ECs. Additionally, silencing of PTEN with specific siRNA showed significant increase of phosphor-Akt compared with TNF-α alone treated ECs. siPTEN significantly upregulated VCAM-1 but was indifferent to ICAM-1 in TNF-α-treated cells. Further, chromatin immunoprecipitation (ChIP) assay showed that PTEN targets GATA-6 but not IRF-1 binding to VCAM-1 promoter. In addition, GATA-6 is associated with glycogen synthesis kinase-3beta (GSK-3β) which is in turn regulated by PTEN-dependent Akt activity. Finally, PTEN significantly prevented monocyte adhesion to TNF-α-induced ECs probably through VCAM-1 regulation. It is concluded that PTEN selectively inhibits expression of VCAM-1 but not ICAM-1 through modulation of PI3K/Akt/GSK-3β/GATA-6 signaling cascade in TNF-α-treated ECs. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Park, Keun Hyung; Lee, Tae Hoon; Kim, Chan Woo; Kim, Jiyoung
2013-06-15
CCL15, a member of the CC chemokine family, is a potent chemoattractant for leukocytes and endothelial cells (ECs). Given that chemokines play key roles in vascular inflammation, we investigated the effects of hypoxia/reoxygenation (H/R) on expression of human CCL15 and a role of CCL15 in upregulating ICAM-1 in ECs. We found that exposure of ECs to H/R increased expression of CCL15 and ICAM-1, which resulted in an increase in monocyte adhesivity to the ECs. Further studies revealed that knockdown of CCL15 or CCR1 attenuated expression of ICAM-1 in ECs after H/R, suggesting that expression of ICAM-1 is upregulated by CCL15. Stimulation of ECs with CCL15 significantly increased expression of ICAM-1 predominantly via the CCR1 receptor. We observed that phosphorylation of JAK2 and STAT3 was stimulated by CCL15 treatment of ECs. Results from reporter and chromatin immunoprecipitation assays revealed that CCL15 activates transcription from the IFN-γ activation site promoter and stimulates binding of STAT3 to the ICAM-1 promoter. Our data also showed that CCL15 increased cell adhesion of human monocytes to ECs under static and shear-stress conditions. Pretreatment of these cells with inhibitors for JAK, PI3K, and AKT prevented the CCL15-induced expression of ICAM-1 and monocyte adhesion to ECs, suggesting the involvement of those signaling molecules in ICAM-1 gene activation by CCL15. The results suggest that CCR1 and its ligands may be a potential target for treating inflammatory diseases involving upregulation of cell adhesion molecules.
Anastasia, Agustín; de Erausquin, Gabriel A; Wojnacki, José; Mascó, Daniel H
2007-11-01
Electroconvulsive shock (ECS) improves motor function in Parkinson's disease. In rats, ECS stimulates the expression of various factors some of which have been proposed to exert neuroprotective actions. We have investigated the effects of ECS on 6-hydroxydopamine (6-OHDA)-injected rats. Three weeks after a unilateral administration of 6-OHDA, 85-95% nigral dopaminergic neurons are lost. Chronic ECS prevented this cell loss, protect the nigrostriatal pathway (assessed by FloroGold retrograde labeling) and reduce motor impairment in 6-OHDA-treated animals. Injection of 6-OHDA caused loss of expression of glial cell-line derived neurotrophic factor (GDNF) in the substantia nigra. Chronic ECS completely prevented this loss of GDNF expression in 6-OHDA-treated animals. We also found that protected dopaminergic neurons co-express GDNF receptor proteins. These results strongly suggest that endogenous changes in GDNF expression may participate in the neuroprotective mechanism of ECS against 6-OHDA induced toxicity.
DeBernardo, Robert L; Littell, Ramey D; Luo, Hongwei; Duska, Linda R; Oliva, Esther; Kirley, Sandra D; Lynch, Maureen P; Zukerberg, Lawrence R; Rueda, Bo R
2005-01-01
Loss of Cables expression is associated with a high incidence of endometrial hyperplasia and endometrial adenocarcinoma in humans. The Cables mutant mouse develops endometrial hyperplasia and following exposure to chronic estrogen develops early endometrial adenocarcinoma. The objectives of the current study were to determine if: (1) loss of Cables expression occurred in high grade endometrioid adenocarcinoma, uterine serous and clear cell carcinoma as observed in endometrial hyperplasia and low grade endometrial adenocarcinoma; (2) overexpression of Cables inhibited cell proliferation in endometrial cancer (EC) cells in vitro and in vivo; and (3) progesterone could regulate the expression of Cables mRNA. Hyperplastic endometrium and low and high grade endometrioid adenocarcinoma showed loss of Cables expression when compared to benign control secretory endometrium. Loss of Cables expression in serous and clear cell tumors was similar to that observed in endometrioid adenocarcinomas with greater than 80% showing loss of protein expression. Treatment of EC lines with progesterone increased cables expression in low-grade EC whereas it had no effect on cables expression in cells derived from high-grade EC. The progesterone-induced increase in cables was abrogated in the presence of a progesterone receptor (PR) antagonist, suggesting the PR mediates the increase. Cables overexpression inhibited cell proliferation of well differentiated EC cells and had no effect on the poorly differentiated EC cells. The capacity to form tumors was dramatically reduced in the Cables overexpressing cell lines compared to those cells containing the control vector. Collectively these results suggest that Cables is an important regulator of cell proliferation and loss of Cables expression contributes to the development of all types of EC.
Induced phenylpropanoid metabolism during suberization and lignification: a comparative analysis
NASA Technical Reports Server (NTRS)
Bernards, M. A.; Susag, L. M.; Bedgar, D. L.; Anterola, A. M.; Lewis, N. G.
2000-01-01
Induction of the biosynthesis of phenylpropanoids was monitored at the enzyme level through measurement of the temporal change in the activity of two marker enzymes of phenylpropanoid metabolism, phenylalanine ammonia-lyase, (PAL, E.C. 4.1.3.5) and 4-coumaryl-CoA ligase (4-CL, E.C. 6.2.1.12) and two marker enzymes for hydroxycinnamyl alcohol biosynthesis, cinnamoyl-CoA:NADP+ oxidoreductase (CCR, E.C. 1.2.1.44) and cinnamyl alcohol dehydrogenase (CAD, E.C. 1.1.1.195) in both suberizing potato (Solanum tuberosum) tubers and lignifying loblolly pine (Pinus taeda) cell cultures. While measurable activities of PAL, 4-CL and CAD increased upon initiation of suberization in potato tubers, that of CCR did not. By contrast, all four enzymes were induced upon initiation of lignification in pine cell cultures. The lack of CCR induction in potato by wound treatment is consistent with the channelling of hydroxycinnamoyl-CoA derivatives away from monolignol formation and toward other hydroxycinnamoyl derivatives such as those that accumulate during suberization.
Gómez, Leonardo D.; Vanacker, Hélène; Buchner, Peter; Noctor, Graham; Foyer, Christine H.
2004-01-01
To investigate the intercellular control of glutathione synthesis and its influence on leaf redox state in response to short-term chilling, genes encoding γ-glutamylcysteine synthetase (γ-ECS) and glutathione synthetase (GSH-S) were cloned from maize (Zea mays) and specific antibodies produced. These tools were used to provide the first information on the intercellular distribution of γ-ECS and GSH-S transcript and protein in maize leaves, in both optimal conditions and chilling stress. A 2-d exposure to low growth temperatures (chill) had no effect on leaf phenotype, whereas return to optimal temperatures (recovery) caused extensive leaf bleaching. The chill did not affect total leaf GSH-S transcripts but strongly induced γ-ECS mRNA, an effect reversed during recovery. The chilling-induced increase in γ-ECS transcripts was not accompanied by enhanced total leaf γ-ECS protein or extractable activity. In situ hybridization and immunolocalization of leaf sections showed that γ-ECS and GSH-S transcripts and proteins were found in both the bundle sheath (BS) and the mesophyll cells under optimal conditions. Chilling increased γ-ECS transcript and protein in the BS but not in the mesophyll cells. Increased BS γ-ECS was correlated with a 2-fold increase in both leaf Cys and γ-glutamylcysteine, but leaf total glutathione significantly increased only in the recovery period, when the reduced glutathione to glutathione disulfide ratio decreased 3-fold. Thus, while there was a specific increase in the potential contribution of the BS cells to glutathione synthesis during chilling, it did not result in enhanced leaf glutathione accumulation at low temperatures. Return to optimal temperatures allowed glutathione to increase, particularly glutathione disulfide, and this was associated with leaf chlorosis. PMID:15047902
Popa, Miruna; Tahir, Sibgha; Elrod, Julia; Kim, Su Hwan; Leuschner, Florian; Kessler, Thorsten; Bugert, Peter; Pohl, Ulrich; Wagner, Andreas H; Hecker, Markus
2018-06-12
Monocyte extravasation into the vessel wall is a key step in atherogenesis. It is still elusive how monocytes transmigrate through the endothelial cell (EC) monolayer at atherosclerosis predilection sites. Platelets tethered to ultra-large von Willebrand factor (ULVWF) multimers deposited on the luminal EC surface following CD40 ligand (CD154) stimulation may facilitate monocyte diapedesis. Human ECs grown in a parallel plate flow chamber for live-cell imaging or Transwell permeable supports for transmigration assay were exposed to fluid or orbital shear stress and CD154. Human isolated platelets and/or monocytes were superfused over or added on top of the EC monolayer. Plasma levels and activity of the ULVWF multimer-cleaving protease ADAMTS13 were compared between coronary artery disease (CAD) patients and controls and were verified by the bioassay. Two-photon intravital microscopy was performed to monitor CD154-dependent leukocyte recruitment in the cremaster microcirculation of ADAMTS13-deficient versus wild-type mice. CD154-induced ULVWF multimer-platelet string formation on the EC surface trapped monocytes and facilitated transmigration through the EC monolayer despite high shear stress. Two-photon intravital microscopy revealed CD154-induced ULVWF multimer-platelet string formation preferentially in venules, due to strong EC expression of CD40, causing prominent downstream leukocyte extravasation. Plasma ADAMTS13 abundance and activity were significantly reduced in CAD patients and strongly facilitated both ULVWF multimer-platelet string formation and monocyte trapping in vitro. Moderate ADAMTS13 deficiency in CAD patients augments CD154-mediated deposition of platelet-decorated ULVWF multimers on the luminal EC surface, reinforcing the trapping of circulating monocytes at atherosclerosis predilection sites and promoting their diapedesis.
Importins α and β signaling mediates endothelial cell inflammation and barrier disruption.
Leonard, Antony; Rahman, Arshad; Fazal, Fabeha
2018-04-01
Nucleocytoplasmic shuttling via importins is central to the function of eukaryotic cells and an integral part of the processes that lead to many human diseases. In this study, we addressed the role of α and β importins in the mechanism of endothelial cell (EC) inflammation and permeability, important pathogenic features of many inflammatory diseases such as acute lung injury and atherosclerosis. RNAi-mediated knockdown of importin α4 or α3 each inhibited NF-κB activation, proinflammatory gene (ICAM-1, VCAM-1, and IL-6) expression, and thereby endothelial adhesivity towards HL-60 cells, upon thrombin challenge. The inhibitory effect of α4 and α3 knockdown was associated with impaired nuclear import and consequently, DNA binding of RelA/p65 subunit of NF-κB and occurred independently of IκBα degradation. Intriguingly, knockdown of importins α4 and α3 also inhibited thrombin-induced RelA/p65 phosphorylation at Ser 536 , showing a novel role of α importins in regulating transcriptional activity of RelA/p65. Similarly, knockdown of importin β1, but not β2, blocked thrombin-induced activation of RelA/p65 and its target genes. In parallel studies, TNFα-mediated inflammatory responses in EC were refractory to knockdown of importins α4, α3 or β1, indicating a stimulus-specific regulation of RelA/p65 and EC inflammation by these importins. Importantly, α4, α3, or β1 knockdown also protected against thrombin-induced EC barrier disruption by inhibiting the loss of VE-cadherin at adherens junctions and by regulating actin cytoskeletal rearrangement. These results identify α4, α3 and β1 as critical mediators of EC inflammation and permeability associated with intravascular coagulation. Copyright © 2018 Elsevier Inc. All rights reserved.
Xu, Xiaohui; Ma, Congmin; Liu, Chao; Duan, Zhihui; Zhang, Li
2018-06-14
Atherosclerosis remains to be one of the most common vascular disorders resulting in morbidity and mortality in the world. Recent studies suggested that endothelial cells (ECs) injury caused by oxidative low-density lipoprotein (ox-LDL) is an early marker for atherosclerosis. Nevertheless, the mechanisms of ox-LDL-induced ECs injury are complicated and largely unknown. Here, we found lncRNA XIST (X-inactive specific transcript) was upregulated in human umbilical vein endothelial cells (HUVECs) stimulated by ox-LDL. Knockdown of XIST boosted the cell viability and suppressed cell apoptosis under ox-LDL stimuli. Further experiments identified XIST regulated the expression of Nucleotide-Binding Oligomerization Domain 2 (NOD2) by sponging miR-320. XIST silencing exerted a protective effect on ox-LDL-induced HUVECs injury via miR-320/NOD2 regulatory network. Our data provide insight into the role of the lncRNA XIST in ox-LDL mediated ECs injury, which can aid in developing new therapeutic strategies for the treatment of atherosclerosis. Copyright © 2018 Elsevier Inc. All rights reserved.
Baselet, Bjorn; Azimzadeh, Omid; Erbeldinger, Nadine; Bakshi, Mayur V.; Dettmering, Till; Janssen, Ann; Ktitareva, Svetlana; Lowe, Donna J.; Michaux, Arlette; Quintens, Roel; Raj, Kenneth; Durante, Marco; Fournier, Claudia; Benotmane, Mohammed A.; Baatout, Sarah; Sonveaux, Pierre; Tapio, Soile; Aerts, An
2017-01-01
Background and Purpose: Radiotherapy is an essential tool for cancer treatment. In order to spare normal tissues and to reduce the risk of normal tissue complications, particle therapy is a method of choice. Although a large part of healthy tissues can be spared due to improved depth dose characteristics, little is known about the biological and molecular mechanisms altered after particle irradiation in healthy tissues. Elucidation of these effects is also required in the context of long term space flights, as particle radiation is the main contributor to the radiation effects observed in space. Endothelial cells (EC), forming the inner layer of all vascular structures, are especially sensitive to irradiation and, if damaged, contribute to radiation-induced cardiovascular disease. Materials and Methods: Transcriptomics, proteomics and cytokine analyses were used to compare the response of ECs irradiated or not with a single 2 Gy dose of X-rays or Fe ions measured one and 7 days post-irradiation. To support the observed inflammatory effects, monocyte adhesion on ECs was also assessed. Results: Experimental data indicate time- and radiation quality-dependent changes of the EC response to irradiation. The irradiation impact was more pronounced and longer lasting for Fe ions than for X-rays. Both radiation qualities decreased the expression of genes involved in cell-cell adhesion and enhanced the expression of proteins involved in caveolar mediated endocytosis signaling. Endothelial inflammation and adhesiveness were increased with X-rays, but decreased after Fe ion exposure. Conclusions: Fe ions induce pro-atherosclerotic processes in ECs that are different in nature and kinetics than those induced by X-rays, highlighting radiation quality-dependent differences which can be linked to the induction and progression of cardiovascular diseases (CVD). Our findings give a better understanding of the underlying processes triggered by particle irradiation in ECs, a crucial aspect for the development of protective measures for cancer patients undergoing particle therapy and for astronauts in space. PMID:28993729
Swanson, Phillip A.; Hart, Geoffrey T.; Russo, Matthew V.; Nayak, Debasis; Yazew, Takele; Peña, Mirna; Khan, Shahid M.; Pierce, Susan K.; McGavern, Dorian B.
2016-01-01
Cerebral malaria (CM) is a severe complication of Plasmodium falciparum infection that results in thousands of deaths each year, mostly in African children. The in vivo mechanisms underlying this fatal condition are not entirely understood. Using the animal model of experimental cerebral malaria (ECM), we sought mechanistic insights into the pathogenesis of CM. Fatal disease was associated with alterations in tight junction proteins, vascular breakdown in the meninges / parenchyma, edema, and ultimately neuronal cell death in the brainstem, which is consistent with cerebral herniation as a cause of death. At the peak of ECM, we revealed using intravital two-photon microscopy that myelomonocytic cells and parasite-specific CD8+ T cells associated primarily with the luminal surface of CNS blood vessels. Myelomonocytic cells participated in the removal of parasitized red blood cells (pRBCs) from cerebral blood vessels, but were not required for the disease. Interestingly, the majority of disease-inducing parasite-specific CD8+ T cells interacted with the lumen of brain vascular endothelial cells (ECs), where they were observed surveying, dividing, and arresting in a cognate peptide-MHC I dependent manner. These activities were critically dependent on IFN-γ, which was responsible for activating cerebrovascular ECs to upregulate adhesion and antigen-presenting molecules. Importantly, parasite-specific CD8+ T cell interactions with cerebral vessels were impaired in chimeric mice rendered unable to present EC antigens on MHC I, and these mice were in turn resistant to fatal brainstem pathology. Moreover, anti-adhesion molecule (LFA-1 / VLA-4) therapy prevented fatal disease by rapidly displacing luminal CD8+ T cells from cerebrovascular ECs without affecting extravascular T cells. These in vivo data demonstrate that parasite-specific CD8+ T cell-induced fatal vascular breakdown and subsequent neuronal death during ECM is associated with luminal, antigen-dependent interactions with cerebrovasculature. PMID:27907215
Ji, Weidong; Li, Yonghao; Wan, Ting; Wang, Jing; Zhang, Haifeng; Chen, Hong; Min, Wang
2012-09-01
The proinflammtory cytokine tumor necrosis factor (TNF), primarily via TNF receptor 1 (TNFR1), induces nuclear factor-κB (NF-κB)-dependent cell survival, and c-Jun N-terminal kinase (JNK) and caspase-dependent cell death, regulating vascular endothelial cell (EC) activation and apoptosis. However, signaling by the second receptor, TNFR2, is poorly understood. The goal of this study was to dissect how TNFR2 mediates NF-κB and JNK signaling in vascular EC, and its relevance to in vivo EC function. We show that TNFR2 contributes to TNF-induced NF-κB and JNK signaling in EC as TNFR2 deletion or knockdown reduces the TNF responses. To dissect the critical domains of TNFR2 that mediate the TNF responses, we examine the activity of TNFR2 mutant with a specific deletion of the TNFR2 intracellular region, which contains conserved domain I, domain II, domain III, and 2 TNFR-associated factor-2-binding sites. Deletion analyses indicate that different sequences on TNFR2 have distinct roles in NF-κB and JNK activation. Specifically, deletion of the TNFR-associated factor-2-binding sites (TNFR2-59) diminishes the TNFR2-mediated NF-κB, but not JNK activation; whereas, deletion of domain II or domain III blunts TNFR2-mediated JNK but not NF-κB activation. Interestingly, we find that the TNFR-associated factor-2-binding sites ensure TNFR2 on the plasma membrane, but the di-leucine LL motif within the domain II and aa338-355 within the domain III are required for TNFR2 internalization as well as TNFR2-dependent JNK signaling. Moreover, domain III of TNFR2 is responsible for association with ASK1-interacting protein-1, a signaling adaptor critical for TNF-induced JNK signaling. While TNFR2 containing the TNFR-associated factor-2-binding sites prevents EC cell death, a specific activation of JNK without NF-κB activation by TNFR2-59 strongly induces caspase activation and EC apoptosis. Our data reveal that both internalization and ASK1-interacting protein-1 association are required for TNFR2-dependent JNK and apoptotic signaling. Controlling TNFR2-mediated JNK and apoptotic signaling in EC may provide a novel strategy for the treatment of vascular diseases.
Lee, Hyeon-Ju; Byun, Catherine Jeonghae; Park, Jung-Hyun; Park, Jae Hoon; Cho, Ho-Seong; Cho, Sung-Jin; Jo, Sangmee Ahn; Jo, Inho
2015-01-01
The green tea component (-)-epigallocatechin-3-gallate (EGCG) has been shown to sensitize many different types of cancer cells to anticancer drug-induced apoptosis, although it protects against non-cancerous primary cells against toxicity from certain conditions such as exposure to arsenic (As) or ultraviolet irradiation. Here, we found that EGCG promotes As-induced toxicity of primary-cultured bovine aortic endothelial cells (BAEC) at doses in which treatment with each chemical alone had no such effect. Increased cell toxicity was accompanied by an increased condensed chromatin pattern and fragmented nuclei, cleaved poly(ADP-ribose) polymerase (PARP), activity of the pro-apoptotic enzymes caspases 3, 8 and 9, and Bax translocation into mitochondria, suggesting the involvement of an apoptotic signaling pathway. Fluorescence activated cell sorting analysis revealed that compared with EGCG or As alone, combined EGCG and As (EGCG/As) treatment significantly induced production of reactive oxygen species (ROS), which was accompanied by decreased catalase activity and increased lipid peroxidation. Pretreatment with N-acetyl-L-cysteine or catalase reversed EGCG/As-induced caspase activation and EC toxicity. EGCG/As also increased the phosphorylation of c-Jun N-terminal kinase (JNK), which was not reversed by catalase. However, pretreatment with the JNK inhibitor SP600125 reversed all of the observed effects of EGCG/As, suggesting that JNK may be the most upstream protein examined in this study. Finally, we also found that all the observed effects by EGCG/As are true for other types of EC tested. In conclusion, this is firstly to show that EGCG sensitizes non-cancerous EC to As-induced toxicity through ROS-mediated apoptosis, which was attributed at least in part to a JNK-activated decrease in catalase activity. PMID:26375285
Kim, Jee-Youn; Choi, Ji-Young; Lee, Hyeon-Ju; Byun, Catherine Jeonghae; Park, Jung-Hyun; Park, Jae Hoon; Cho, Ho-Seong; Cho, Sung-Jin; Jo, Sangmee Ahn; Jo, Inho
2015-01-01
The green tea component (-)-epigallocatechin-3-gallate (EGCG) has been shown to sensitize many different types of cancer cells to anticancer drug-induced apoptosis, although it protects against non-cancerous primary cells against toxicity from certain conditions such as exposure to arsenic (As) or ultraviolet irradiation. Here, we found that EGCG promotes As-induced toxicity of primary-cultured bovine aortic endothelial cells (BAEC) at doses in which treatment with each chemical alone had no such effect. Increased cell toxicity was accompanied by an increased condensed chromatin pattern and fragmented nuclei, cleaved poly(ADP-ribose) polymerase (PARP), activity of the pro-apoptotic enzymes caspases 3, 8 and 9, and Bax translocation into mitochondria, suggesting the involvement of an apoptotic signaling pathway. Fluorescence activated cell sorting analysis revealed that compared with EGCG or As alone, combined EGCG and As (EGCG/As) treatment significantly induced production of reactive oxygen species (ROS), which was accompanied by decreased catalase activity and increased lipid peroxidation. Pretreatment with N-acetyl-L-cysteine or catalase reversed EGCG/As-induced caspase activation and EC toxicity. EGCG/As also increased the phosphorylation of c-Jun N-terminal kinase (JNK), which was not reversed by catalase. However, pretreatment with the JNK inhibitor SP600125 reversed all of the observed effects of EGCG/As, suggesting that JNK may be the most upstream protein examined in this study. Finally, we also found that all the observed effects by EGCG/As are true for other types of EC tested. In conclusion, this is firstly to show that EGCG sensitizes non-cancerous EC to As-induced toxicity through ROS-mediated apoptosis, which was attributed at least in part to a JNK-activated decrease in catalase activity.
Vlasova, Anastasia N; Shao, Lulu; Kandasamy, Sukumar; Fischer, David D; Rauf, Abdul; Langel, Stephanie N; Chattha, Kuldeep S; Kumar, Anand; Huang, Huang-Chi; Rajashekara, Gireesh; Saif, Linda J
2016-10-01
Lactobacillus rhamnosus GG (LGG), a gram-positive lactic acid bacterium, is one of the most widely used probiotics; while fewer gram-negative probiotics including Escherichia coli Nissle 1917 (EcN) are characterized. A mechanistic understanding of their individual and interactive effects on human rotavirus (HRV) and immunity is lacking. In this study, noncolonized, EcN-, LGG-, and EcN + LGG-colonized neonatal gnotobiotic (Gn) pigs were challenged with HRV. EcN colonization is associated with a greater protection against HRV, and induces the highest frequencies of plasmacytoid dendritic cells (pDCs), significantly increased NK-cell function and decreased frequencies of apoptotic and TLR4 + mononuclear cells (MNCs). Consistent with the highest NK-cell activity, splenic CD172 + MNCs (DC enriched fraction) of EcN-colonized pigs produced the highest levels of IL-12 in vitro. LGG colonization has little effect on the above parameters, which are intermediate in EcN + LGG-colonized pigs, suggesting that probiotics modulate each other's effects. Additionally, in vitro EcN-treated splenic or intestinal MNCs produce higher levels of innate, immunoregulatory and immunostimulatory cytokines, IFN-α, IL-12, and IL-10, compared to MNCs of pigs treated with LGG. These results indicate that the EcN-mediated greater protection against HRV is associated with potent stimulation of the innate immune system and activation of the DC-IL-12-NK immune axis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xiong, Yan; Huo, Yingqing; Han, Jingyan; Yang, Xiao; Zhang, Rongli; Zhu, De-Sheng; Klein-Heßling, Stefan; Zhang, Xiaoyu; Han, Xiaofan; Li, Yanli; Shen, Bin; He, Yulong; Shibuya, Masabumi; Feng, Gen-Sheng; Luo, Jincai
2011-01-01
The intracellular signaling mechanisms underlying postnatal angiogenesis are incompletely understood. Herein we show that Grb-2–associated binder 1 (Gab1) plays a critical role in ischemic and VEGF-induced angiogenesis. Endothelium-specific Gab1 KO (EGKO) mice displayed impaired angiogenesis in the ischemic hindlimb despite normal induction of VEGF expression. Matrigel plugs with VEGF implanted in EGKO mice induced fewer capillaries than those in control mice. The vessels and endothelial cells (ECs) derived from EGKO mice were defective in vascular sprouting and tube formation induced by VEGF. Biochemical analyses revealed a substantial reduction of endothelial NOS (eNOS) activation in Gab1-deficient vessels and ECs following VEGF stimulation. Interestingly, the phosphorylation of Akt, an enzyme known to promote VEGF-induced eNOS activation, was increased in Gab1-deficient vessels and ECs whereas protein kinase A (PKA) activity was significantly decreased. Introduction of an active form of PKA rescued VEGF-induced eNOS activation and tube formation in EGKO ECs. Reexpression of WT or mutant Gab1 molecules in EGKO ECs revealed requirement of Gab1/Shp2 association for the activation of PKA and eNOS. Taken together, these results identify Gab1 as a critical upstream signaling component in VEGF-induced eNOS activation and tube formation, which is dependent on PKA. Of note, this pathway is conserved in primary human ECs for VEGF-induced eNOS activation and tube formation, suggesting considerable potential in treatment of human ischemic diseases. PMID:21282639
Erbeldinger, Nadine; Rapp, Felicitas; Ktitareva, Svetlana; Wendel, Philipp; Bothe, Anna S.; Dettmering, Till; Durante, Marco; Friedrich, Thomas; Bertulat, Bianca; Meyer, Stephanie; Cardoso, M. C.; Hehlgans, Stephanie; Rödel, Franz; Fournier, Claudia
2017-01-01
The vascular endothelium interacts with all types of blood cells and is a key modulator of local and systemic inflammatory processes, for example, in the adhesion of blood leukocytes to endothelial cells (EC) and the following extravasation into the injured tissue. The endothelium is constantly exposed to mechanical forces caused by blood flow, and the resulting shear stress is essential for the maintenance of endothelial function. Changes in local hemodynamics are sensed by EC, leading to acute or persistent changes. Therefore, in vitro assessment of EC functionality should include shear stress as an essential parameter. Parallel-plate flow chambers with adjustable shear stress can be used to study EC properties. However, commercially available systems are not suitable for radiation experiments, especially with charged particles, which are increasingly used in radiotherapy of tumors. Therefore, research on charged-particle-induced vascular side effects is needed. In addition, α-particle emitters (e.g., radon) are used to treat inflammatory diseases at low doses. In the present study, we established a flow chamber system, applicable for the investigation of radiation induced changes in the adhesion of lymphocytes to EC as readout for the onset of an inflammatory reaction or the modification of a pre-existing inflammatory state. In this system, primary human EC are cultured under physiological laminar shear stress, subjected to a proinflammatory treatment and/or irradiation with X-rays or charged particles, followed by a coincubation with primary human lymphocytes (peripheral blood lymphocytes (PBL)). Analysis is performed by semiautomated quantification of fluorescent staining in microscopic pictures. First results obtained after irradiation with X-rays or helium ions indicate decreased adhesion of PBL to EC under laminar conditions for both radiation qualities, whereas adhesion of PBL under static conditions is not clearly affected by irradiation. Under static conditions, no radiation-induced changes in surface expression of adhesion molecules and activation of nuclear factor kappa B (NF-κB) signaling were observed after single cell-based high-throughput analysis. In subsequent studies, these investigations will be extended to laminar conditions. PMID:28620384
He, Jinlong; Bao, Qiankun; Zhang, Yan; Liu, Mingming; Lv, Huizhen; Liu, Yajin; Yao, Liu; Li, Bochuan; Zhang, Chenghu; He, Shuang; Zhai, Guijin; Zhu, Yan; Liu, Xin; Zhang, Kai; Wang, Xiu-Jie; Zou, Ming-Hui; Zhu, Yi; Ai, Ding
2018-02-16
Angiogenesis is a complex process regulating endothelial cell (EC) functions. Emerging lines of evidence support that YAP (Yes-associated protein) plays an important role in regulating the angiogenic activity of ECs. The objective of this study was to specify the effect of EC YAP on angiogenesis and its underlying mechanisms. In ECs, vascular endothelial growth factor reduced YAP phosphorylation time and dose dependently and increased its nuclear accumulation. Using Tie2Cre-mediated YAP transgenic mice, we found that YAP promoted angiogenesis in the postnatal retina and tumor tissues. Mass spectrometry revealed signal transducer and activator of transcription 3 (STAT3) as a potential binding partner of YAP in ECs. Western blot and immunoprecipitation assays indicated that binding with YAP prolonged interleukin 6-induced STAT3 nuclear accumulation by blocking chromosomal maintenance 1-mediated STAT3 nuclear export without affecting its phosphorylation. Moreover, angiopoietin-2 expression induced by STAT3 was enhanced by YAP overexpression in ECs. Finally, a selective STAT3 inhibitor or angiopoietin-2 blockage partly attenuated retinal angiogenesis in Tie2Cre-mediated YAP transgenic mice. YAP binding sustained STAT3 in the nucleus to enhance the latter's transcriptional activity and promote angiogenesis via regulation of angiopoietin-2. © 2018 American Heart Association, Inc.
Sarmiento, Daniela; Montorfano, Ignacio; Cerda, Oscar; Cáceres, Mónica; Becerra, Alvaro; Cabello-Verrugio, Claudio; Elorza, Alvaro A; Riedel, Claudia; Tapia, Pablo; Velásquez, Luis A; Varela, Diego; Simon, Felipe
2015-03-01
A hallmark of severe inflammation is reactive oxygen species (ROS) overproduction induced by increased inflammatory mediators secretion. During systemic inflammation, inflammation mediators circulating in the bloodstream interact with endothelial cells (ECs) raising intracellular oxidative stress at the endothelial monolayer. Oxidative stress mediates several pathological functions, including an exacerbated EC migration. Because cell migration critically depends on calcium channel-mediated Ca(2+) influx, the molecular identification of the calcium channel involved in oxidative stress-modulated EC migration has been the subject of intense investigation. The transient receptor potential melastatin 4 (TRPM4) protein is a ROS-modulated non-selective cationic channel that performs several cell functions, including regulating intracellular Ca(2+) overload and Ca(2+) oscillation. This channel is expressed in multiple tissues, including ECs, and contributes to the migration of certain immune cells. However, whether the TRPM4 ion channel participates in oxidative stress-mediated EC migration is not known. Herein, we investigate whether oxidative stress initiates or enhances EC migration and study the role played by the ROS-modulated TRPM4 ion channel in oxidative stress-mediated EC migration. We demonstrate that oxidative stress enhances, but does not initiate, EC migration in a dose-dependent manner. Notably, we demonstrate that the TRPM4 ion channel is critical in promoting H2O2-enhanced EC migration. These results show that TRPM4 is a novel pharmacological target for the possible treatment of severe inflammation and other oxidative stress-mediated inflammatory diseases. Copyright © 2014 Elsevier Inc. All rights reserved.
Antiinflammatory Activity of a Novel Folic Acid Targeted Conjugate of the mTOR Inhibitor Everolimus
Lu, Yingjuan; Parker, Nikki; Kleindl, Paul J; Cross, Vicky A; Wollak, Kristin; Westrick, Elaine; Stinnette, Torian W; Gehrke, Mark A; Wang, Kevin; Santhapuram, Hari Krishna R; You, Fei; Hahn, Spencer J; Vaughn, Jeremy F; Klein, Patrick J; Vlahov, Iontcho R; Low, Philip S; Leamon, Christopher P
2015-01-01
Folate receptor (FR)-β has been identified as a promising target for antimacrophage and antiinflammatory therapies. In the present study, we investigated EC0565, a folic acid–derivative of everolimus, as a FR-specific inhibitor of the mammalian target of rapamycin (mTOR). Because of its amphiphilic nature, EC0565 was first evaluated for water solubility, critical micelle formation, stability in culture and FR-binding specificity. Using FR-expressing macrophages, the effect of EC0565 on mTOR signaling and cellular proliferation was studied. The pharmacokinetics, metabolism and bioavailability of EC0565 were studied in normal rats. The in vivo activity of EC0565 was assessed in rats with adjuvant arthritis, a “macrophage-rich” model with close resemblance to rheumatoid arthritis. EC0565 forms micellar aggregates in physiological buffers and demonstrates good water solubility as well as strong multivalent FR-binding capacity. EC0565 inhibited mTOR signaling in rat macrophages at nanomolar concentrations and induced G0/G1 cell cycle arrest in serum-starved RAW264.7 cells. Subcutaneously administered EC0565 in rats displayed good bioavailability and a relatively long half-life (~12 h). When given at 250 nmol/kg, EC0565 selectively inhibited proliferating cell nuclear antigen expression in thioglycollate-stimulated rat peritoneal cells. With limited dosing regimens, the antiarthritic activity of EC0565 was found superior to that of etanercept, everolimus and a nontargeted everolimus analog. The in vivo activity of EC0565 was also comparable to that of a folate-targeted aminopterin. Folate-targeted mTOR inhibition may be an effective way of suppressing activated macrophages in sites of inflammation, especially in nutrient-deprived conditions, such as in the arthritic joints. Further investigation and improvement upon the physical and biochemical properties of EC0565 are warranted. PMID:26181632
Albany, Costantine; Hever-Jardine, Mary P; von Herrmann, Katherine M; Yim, Christina Y; Tam, Janice; Warzecha, Joshua M; Shin, Leah; Bock, Sarah E; Curran, Brian S; Chaudhry, Aneeq S; Kim, Fred; Sandusky, George E; Taverna, Pietro; Freemantle, Sarah J; Christensen, Brock C; Einhorn, Lawrence H; Spinella, Michael J
2017-01-10
Testicular germ cell tumors (TGCTs) are the most common cancers of young males. A substantial portion of TGCT patients are refractory to cisplatin. There are no effective therapies for these patients, many of whom die from progressive disease. Embryonal carcinoma (EC) are the stem cells of TGCTs. In prior in vitro studies we found that EC cells were highly sensitive to the DNA methyltransferase inhibitor, 5-aza deoxycytidine (5-aza). Here, as an initial step in bringing demethylation therapy to the clinic for TGCT patients, we evaluated the effects of the clinically optimized, second generation demethylating agent guadecitabine (SGI-110) on EC cells in an animal model of cisplatin refractory testicular cancer. EC cells were exquisitely sensitive to guadecitabine and the hypersensitivity was dependent on high levels of DNA methyltransferase 3B. Guadecitabine mediated transcriptional reprogramming of EC cells included induction of p53 targets and repression of pluripotency genes. As a single agent, guadecitabine completely abolished progression and induced complete regression of cisplatin resistant EC xenografts even at doses well below those required to impact somatic solid tumors. Low dose guadecitabine also sensitized refractory EC cells to cisplatin in vivo. Genome-wide analysis indicated that in vivo antitumor activity was associated with activation of p53 and immune-related pathways and the antitumor effects of guadecitabine were dependent on p53, a gene rarely mutated in TGCTs. These preclinical findings suggest that guadecitabine alone or in combination with cisplatin is a promising strategy to treat refractory TGCT patients.
Yang, Tung-Lin; Lee, Pei-Ling; Lee, Ding-Yu; Wang, Wei-Li; Wei, Shu-Yi; Lee, Chih-I; Chiu, Jeng-Jiann
2018-01-02
Atherosclerosis occurs in arterial curvatures and branches, where the flow is disturbed with low and oscillatory shear stress (OSS). The remodeling and alterations of extracellular matrices (ECMs) and their composition is the critical step in atherogenesis. In this study, we investigated the effects of different ECM proteins on the regulation of mechanotransduction in vascular endothelial cells (ECs) in response to OSS. Through the experiments ranging from in vitro cell culture studies on effects of OSS on molecular signaling to in vivo examinations on clinical specimens from patients with coronary artery disease (CAD), we elucidated the roles of integrins and different ECMs, i.e., fibronectin (FN) and laminin (LM), in transforming growth factor (TGF)-β receptor (TβR)-mediated Smad2 activation and nuclear factor-κB (NF-κB) signaling in ECs in response to OSS and hence atherogenesis. OSS at 0.5±12 dynes/cm 2 induces sustained increases in the association of types I and II TβRs with β1 and β3 integrins in ECs grown on FN, but it only transient increases in ECs grown on LM. OSS induces a sustained activation of Smad2 in ECs on FN, but only a transient activation of Smad2 in ECs on LM. OSS-activation of Smad2 in ECs on FN regulates downstream NF-κB signaling and pro-inflammatory gene expression through the activation of β1 integrin and its association with TβRs. In contrast, OSS induces transient activations of β1 and β3 integrins in ECs on LM, which associate with type I TβR to regulate Smad2 phosphorylation, resulting in transient induction of NF-κB and pro-inflammatory gene expression. In vivo investigations on diseased human coronary arteries from CAD patients revealed that Smad2 is highly activated in ECs of atherosclerotic lesions, which is accompanied by the concomitant increase of FN rather than LM in the EC layer and neointimal region of atherosclerotic lesions. Our findings provide new insights into the mechanisms of how OSS regulates Smad2 signaling and pro-inflammatory genes through the complex signaling networks of integrins, TβRs, and ECMs, thus illustrating the molecular basis of regional pro-inflammatory activation within disturbed flow regions in the arterial tree.
Qi, Di; Wang, Daoxin; Zhang, Chunrong; Tang, Xumao; He, Jing; Zhao, Yan; Deng, Wang; Deng, Xinyu
2017-01-01
Acute respiratory distress syndrome (ARDS) is characterized by uncontrolled extravasation of protein-rich fluids, which is caused by disruption and dysfunction of the barrier of pulmonary endothelial cells (ECs). Visceral adipose tissue-derived serine protease inhibitor (vaspin) is a novel adipokine with pleiotropic properties, which has been reported to exert beneficial effects against obesity-associated systemic vascular diseases; however, its effects on ARDS remain unknown. In the present study, mice were subjected to systemic administration of adenoviral vector expressing vaspin (Ad-vaspin) to examine its effects on lipopolysaccharide (LPS)-induced ARDS in vivo. Histological analysis was then conducted, and cytokine [tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-10] levels, and intercellular cell adhesion molecule-1 (ICAM-1) and adherens junctions (AJs) expression were detected. In addition, human pulmonary microvascular ECs (HPMECs) were treated with recombinant human (rh)-vaspin to further investigate its molecular basis and underlying mechanism. The mRNA expression levels of inflammatory cytokines (TNF-α and IL-6) and endothelial-specific adhesion markers [vascular cell adhesion molecule-1 and E-selectin], activation of nuclear factor-κB, and cell viability and apoptosis were then examined. Furthermore, the expression of AJs and organization of the cytoskeleton, as well as expression and activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and generation of reactive oxygen species (ROS) were determined. The results indicated that Ad-vaspin protected against LPS-induced ARDS by alleviating the pulmonary inflammatory response and pulmonary EC barrier dysfunction in mice, which was accompanied by activation of the protein kinase B (Akt)/glycogen synthase kinase (GSK)-3β pathway. In addition, pretreatment of HPMECs with rh-vaspin attenuated inflammation, apoptosis and ROS generation without alterations in AJs and cytoskeletal organization following LPS insult, which was accompanied by activation of the Akt/GSK3β pathway. In conclusion, the present study demonstrated that vaspin protects against LPS-induced ARDS by reversing EC barrier dysfunction via the suppression of inflammation, apoptosis and ROS production in pulmonary ECs, at least partially via activation of the Akt/GSK3β pathway. These findings provide evidence of a causal link between vaspin and EC dysfunction in ARDS, and suggest a potential therapeutic intervention for patients with ARDS. PMID:29039444
Qi, Di; Wang, Daoxin; Zhang, Chunrong; Tang, Xumao; He, Jing; Zhao, Yan; Deng, Wang; Deng, Xinyu
2017-12-01
Acute respiratory distress syndrome (ARDS) is characterized by uncontrolled extravasation of protein‑rich fluids, which is caused by disruption and dysfunction of the barrier of pulmonary endothelial cells (ECs). Visceral adipose tissue‑derived serine protease inhibitor (vaspin) is a novel adipokine with pleiotropic properties, which has been reported to exert beneficial effects against obesity‑associated systemic vascular diseases; however, its effects on ARDS remain unknown. In the present study, mice were subjected to systemic administration of adenoviral vector expressing vaspin (Ad‑vaspin) to examine its effects on lipopolysaccharide (LPS)‑induced ARDS in vivo. Histological analysis was then conducted, and cytokine [tumor necrosis factor (TNF)‑α, interleukin (IL)‑6 and IL‑10] levels, and intercellular cell adhesion molecule‑1 (ICAM‑1) and adherens junctions (AJs) expression were detected. In addition, human pulmonary microvascular ECs (HPMECs) were treated with recombinant human (rh)‑vaspin to further investigate its molecular basis and underlying mechanism. The mRNA expression levels of inflammatory cytokines (TNF‑α and IL‑6) and endothelial‑specific adhesion markers [vascular cell adhesion molecule‑1 and E‑selectin], activation of nuclear factor‑κB, and cell viability and apoptosis were then examined. Furthermore, the expression of AJs and organization of the cytoskeleton, as well as expression and activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and generation of reactive oxygen species (ROS) were determined. The results indicated that Ad‑vaspin protected against LPS‑induced ARDS by alleviating the pulmonary inflammatory response and pulmonary EC barrier dysfunction in mice, which was accompanied by activation of the protein kinase B (Akt)/glycogen synthase kinase (GSK)‑3β pathway. In addition, pretreatment of HPMECs with rh‑vaspin attenuated inflammation, apoptosis and ROS generation without alterations in AJs and cytoskeletal organization following LPS insult, which was accompanied by activation of the Akt/GSK3β pathway. In conclusion, the present study demonstrated that vaspin protects against LPS‑induced ARDS by reversing EC barrier dysfunction via the suppression of inflammation, apoptosis and ROS production in pulmonary ECs, at least partially via activation of the Akt/GSK3β pathway. These findings provide evidence of a causal link between vaspin and EC dysfunction in ARDS, and suggest a potential therapeutic intervention for patients with ARDS.
Somabhai, Chaudhari Archana; Raghuvanshi, Ruma; Nareshkumar, G.
2016-01-01
Aims To assess protective efficacy of genetically modified Escherichia coli Nissle 1917 (EcN) on metabolic effects induced by chronic consumption of dietary fructose. Materials and Methods EcN was genetically modified with fructose dehydrogenase (fdh) gene for conversion of fructose to 5-keto-D-fructose and mannitol-2-dehydrogenase (mtlK) gene for conversion to mannitol, a prebiotic. Charles foster rats weighing 150–200 g were fed with 20% fructose in drinking water for two months. Probiotic treatment of EcN (pqq), EcN (pqq-glf-mtlK), EcN (pqq-fdh) was given once per week 109 cells for two months. Furthermore, blood and liver parameters for oxidative stress, dyslipidemia and hyperglycemia were estimated. Fecal samples were collected to determine the production of short chain fatty acids and pyrroloquinoline quinone (PQQ) production. Results EcN (pqq-glf-mtlK), EcN (pqq-fdh) transformants were confirmed by restriction digestion and functionality was checked by PQQ estimation and HPLC analysis. There was significant increase in body weight, serum glucose, liver injury markers, lipid profile in serum and liver, and decrease in antioxidant enzyme activity in high-fructose-fed rats. However the rats treated with EcN (pqq-glf-mtlK) and EcN (pqq-fdh) showed significant reduction in lipid peroxidation along with increase in serum and hepatic antioxidant enzyme activities. Restoration of liver injury marker enzymes was also seen. Increase in short chain fatty acids (SCFA) demonstrated the prebiotic effects of mannitol and gluconic acid. Conclusions Our study demonstrated the effectiveness of probiotic EcN producing PQQ and fructose metabolizing enzymes against the fructose induced hepatic steatosis suggesting that its potential for use in treating fructose induced metabolic syndrome. PMID:27760187
Bao, Wei; Qiu, Haifeng; Yang, Tingting; Luo, Xin; Zhang, Huijuan; Wan, Xiaoping
2013-01-01
Mechanisms governing the metastasis of endometrial carcinoma (EC) are poorly defined. Recent data support a role for the cell surface receptor tyrosine kinase TrkB in the progression of several human tumors. Here we present evidence for a direct role of TrkB in human EC. Immunohistochemical analysis revealed that TrkB and its secreted ligand, brain-derived neurotrophic factor (BDNF), are more highly expressed in EC than in normal endometrium. High TrkB levels correlated with lymph node metastasis (p<0.05) and lymphovascular space involvement (p<0.05) in EC. Depletion of TrkB by stable shRNA-mediated knockdown decreased the migratory and invasive capacity of cancer cell lines in vitro and resulted in anoikis in suspended cells. Conversely, exogenous expression of TrkB increased cell migration and invasion and promoted anoikis resistance in suspension culture. Furthermore, over-expression of TrkB or stimulation by BDNF resulted in altered the expression of molecular mediators of the epithelial-to-mesenchymal transition (EMT). RNA interference (RNAi)-mediated depletion of the downstream regulator, Twist, blocked TrkB-induced EMT-like transformation. The use of in vivo models revealed decreased peritoneal dissemination in TrkB-depleted EC cells. Additionally, TrkB-depleted EC cells underwent mesenchymal-to-epithelial transition and anoikis in vivo. Our data support a novel function for TrkB in promoting EMT and resistance to anoikis. Thus, TrkB may constitute a potential therapeutic target in human EC. PMID:23936232
Endothelial cell response to biomechanical forces under simulated vascular loading conditions.
Punchard, M A; Stenson-Cox, C; O'cearbhaill, E D; Lyons, E; Gundy, S; Murphy, L; Pandit, A; McHugh, P E; Barron, V
2007-01-01
In vivo, endothelial cells (EC) are constantly exposed to the haemodynamic forces (HF) of pressure, wall shear stress and hoop stress. The main aim of this study was to design, create and validate a novel perfusion bioreactor capable of delivering shear stress and intravascular pressure to EC in vitro and to characterise their morphology, orientation and gene expression. Here we report the creation and validation of such a simulator and the dual application of pressure (120/60 mmHg) and low shear stress (5 dyn/cm(2)) to a monolayer of EC established on a non-compliant silicone tube. Under these conditions, EC elongated and realigned obliquely to the direction of applied shear stress in a time-dependent manner. Furthermore, randomly distributed F-actin microfilaments reorganised into long, dense stress fibres crossing the cells in a direction perpendicular to that of flow. Finally, combinatorial biomechanical conditioning of EC induced the expression of the inflammatory-associated E-selectin gene.
SOX15 regulates proliferation and migration of endometrial cancer cells.
Rui, Xiaohui; Xu, Yun; Jiang, Xiping; Guo, Caixia; Jiang, Jingting
2017-10-31
The study aimed to investigate the effects of Sry-like high mobility group box 15 ( SOX15 ) on proliferation and migration of endometrial cancer (EC) cells. Immunohistochemistry (IHC) was applied to determine the expression of SOX15 in EC tissues and adjacent tissues. We used cell transfection method to construct the HEC-1-A and Ishikawa cell lines with stable overexpression and low expression SOX15 Reverse-transcription quantitative real-time PCR (RT-qPCR) and Western blot were performed to examine expression of SOX15 mRNA and SOX15 protein, respectively. By conducting a series of cell proliferation assay and migration assay, we analyzed the influence of SOX15 overexpression or low expression on EC cell proliferation and migration. The expression of SOX15 mRNA and protein in EC tissues was significantly lower than that in adjacent tissues. After lentivirus-transfecting SOX15 , the expression level of SOX15 mRNA and protein was significantly increased in cells of SOX15 group, and decreased in sh- SOX15 group. Overexpression of SOX15 could suppress cell proliferation, while down-regulation of SOX15 increased cell proliferation. Flow cytometry results indicated that overexpression of SOX15 induced the ratio of cell-cycle arrest in G 1 stage. In addition, Transwell migration assay results showed that SOX15 overexpression significantly inhibited cell migration, and also down-regulation of SOX15 promoted the migration. As a whole, SOX15 could regulate the proliferation and migration of EC cells and up- regulation of SOX15 could be valuable for EC treatment. © 2017 The Author(s).
Evaluation of the toxicity of graphene oxide exposure to the eye.
Wu, Wei; Yan, Liang; Wu, Qian; Li, Yijian; Li, Qiyou; Chen, Siyu; Yang, Yuli; Gu, Zhanjun; Xu, Haiwei; Yin, Zheng Qin
2016-11-01
Graphene and its derivatives are the new carbon nanomaterials with the prospect for great applications in electronics, energy storage, biosensors and medicine. However, little is known about the toxicity of graphene or its derivatives in the case of occasional or repeated ocular exposure. We performed in vitro and in vivo studies to evaluate the toxicity of graphene oxide (GO) exposure to the eye. Primary human corneal epithelium cells (hCorECs) and human conjunctiva epithelium cells (hConECs) were exposed to GO (12.5-100 μg/mL). Acute GO exposure (2 h) did not induce cytotoxicity to hCorECs. However, short-term GO exposure (24 h) exerted significant cytotoxicity to hCorECs and hConECs with increased intracellular reactive oxygen species (ROS). Glutathione (GSH) reduced the GO-induced cytotoxicity. We further performed acute eye irritation tests in albino rabbits according to the Organization for Economic Cooperation and Development (OECD) guidelines, and the rabbits did not exhibit corneal opacity, conjunctival redness, abnormality of the iris, or chemosis at any time point after the instillation of 100 μg/mL of GO. However, 5-day repeated GO exposure (50 and 100 μg/mL) caused reversible mild corneal opacity, conjunctival redness and corneal epithelium damage to Sprague-Dawley rats, which was also alleviated by GSH. Therefore, our study suggests that GO-induced time- and dose-dependent cytotoxicity to hCorECs and hConECs via oxidative stress. Occasional GO exposure did not cause acute eye irritation; short-term repeated GO exposure generally resulted in reversible damage to the eye via oxidative stress, which may be alleviated by the antioxidant GSH.
Echeverría, César; Montorfano, Ignacio; Tapia, Pablo; Riedel, Claudia; Cabello-Verrugio, Claudio
2014-01-01
During endotoxemia-induced inflammatory disease, bacterial endotoxins circulate in the bloodstream and interact with endothelial cells (ECs), inducing dysfunction of the ECs. We previously reported that endotoxins induce the conversion of ECs into activated fibroblasts. Through endotoxin-induced endothelial fibrosis, ECs change their morphology and their protein expression pattern, thereby suppressing endothelial markers and upregulating fibrotic proteins. The most commonly used fibrotic inducers are transforming growth factor β1 (TGF-β1) and TGF-β2. However, whether TGF-β1 and TGF-β2 participate in endotoxin-induced endothelial fibrosis remains unknown. We have shown that the endotoxin-induced endothelial fibrosis process is dependent on the TGF-β receptor, ALK5, and the activation of Smad3, a protein that is activated by ALK5 activation, thus suggesting that endotoxin elicits TGF-β production to mediate endotoxin-induced endothelial fibrosis. Therefore, we investigated the dependence of endotoxin-induced endothelial fibrosis on the expression of TGF-β1 and TGF-β2. Endotoxin-treated ECs induced the expression and secretion of TGF-β1 and TGF-β2. TGF-β1 and TGF-β2 downregulation inhibited the endotoxin-induced changes in the endothelial marker VE-cadherin and in the fibrotic proteins α-SMA and fibronectin. Thus, endotoxin induces the production of TGF-β1 and TGF-β2 as a mechanism to promote endotoxin-induced endothelial fibrosis. To the best of our knowledge, this is the first report showing that endotoxin induces endothelial fibrosis via TGF-β secretion, which represents an emerging source of vascular dysfunction. These findings contribute to understanding the molecular mechanism of endotoxin-induced endothelial fibrosis, which could be useful in the treatment of inflammatory diseases. PMID:24935972
Echeverría, César; Montorfano, Ignacio; Tapia, Pablo; Riedel, Claudia; Cabello-Verrugio, Claudio; Simon, Felipe
2014-09-01
During endotoxemia-induced inflammatory disease, bacterial endotoxins circulate in the bloodstream and interact with endothelial cells (ECs), inducing dysfunction of the ECs. We previously reported that endotoxins induce the conversion of ECs into activated fibroblasts. Through endotoxin-induced endothelial fibrosis, ECs change their morphology and their protein expression pattern, thereby suppressing endothelial markers and upregulating fibrotic proteins. The most commonly used fibrotic inducers are transforming growth factor β1 (TGF-β1) and TGF-β2. However, whether TGF-β1 and TGF-β2 participate in endotoxin-induced endothelial fibrosis remains unknown. We have shown that the endotoxin-induced endothelial fibrosis process is dependent on the TGF-β receptor, ALK5, and the activation of Smad3, a protein that is activated by ALK5 activation, thus suggesting that endotoxin elicits TGF-β production to mediate endotoxin-induced endothelial fibrosis. Therefore, we investigated the dependence of endotoxin-induced endothelial fibrosis on the expression of TGF-β1 and TGF-β2. Endotoxin-treated ECs induced the expression and secretion of TGF-β1 and TGF-β2. TGF-β1 and TGF-β2 downregulation inhibited the endotoxin-induced changes in the endothelial marker VE-cadherin and in the fibrotic proteins α-SMA and fibronectin. Thus, endotoxin induces the production of TGF-β1 and TGF-β2 as a mechanism to promote endotoxin-induced endothelial fibrosis. To the best of our knowledge, this is the first report showing that endotoxin induces endothelial fibrosis via TGF-β secretion, which represents an emerging source of vascular dysfunction. These findings contribute to understanding the molecular mechanism of endotoxin-induced endothelial fibrosis, which could be useful in the treatment of inflammatory diseases. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Antiviral function of grouper MDA5 against iridovirus and nodavirus.
Huang, Youhua; Yu, Yepin; Yang, Ying; Yang, Min; Zhou, Linli; Huang, Xiaohong; Qin, Qiwei
2016-07-01
Melanoma differentiation-associated gene 5 (MDA5) is a critical member of retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) family which can recognize viral RNA and enhances antiviral response in host cells. In this study, a MDA5 homolog from orange spotted grouper (Epinephelus coioides) (EcMDA5) was cloned, and its roles on grouper virus infection were characterized. The full-length EcMDA5 cDNA encoded a polypeptide of 982 amino acids with 74% identity with MDA5 homolog from rock bream (Oplegnathus fasciatus). Amino acid alignment analysis indicated that EcMDA5 contained three functional domains: two caspase activation and recruitment domain (CARDs), a DEAD box helicase-like (DExDc) domain, a helicase superfamily C-terminal domain (HELICc), and a C-terminal regulatory domain (RD). Upon challenge with Singapore grouper iridovirus (SGIV) or polyinosin-polycytidylic acid (poly I:C), the transcript of EcMDA5 was significantly up-regulated especially at the early stage post-injection. Under fluorescence microscopy, we observed that EcMDA5 mostly localized in the cytoplasm of grouper spleen (GS) cells. Interestingly, during virus infection, the distribution pattern of EcMDA5 was significantly altered in SGIV infected cells, but not in red spotted grouper nervous necrosis virus (RGNNV) infected cells, suggested that EcMDA5 might interact with viral proteins during SGIV infection. The ectopic expression of EcMDA5 in vitro obviously delayed virus infection induced cytopathic effect (CPE) progression and significantly inhibited viral gene transcription of RGNNV and SGIV. Moreover, overexpression of EcMDA5 not only significantly increased interferon (IFN) and IFN-stimulated response element (ISRE) promoter activities in a dose dependent manner, but also enhanced the expression of IRF3, IRF7 and TRAF6. In addition, the transcription level of the proinflammatory factors, including TNF-α, IL-6 and IL-8 were differently altered by EcMDA5 overexpression during SGIV or RGNNV infection, suggesting that the regulation on proinflammatory cytokines by EcMDA5 were also important for RGNNV infection. Together, our results demonstrated for the first time that the inhibitory effect of fish MDA5 on iridovirus replication might be mainly through the regulation of proinflammatory cytokines. Copyright © 2016 Elsevier Ltd. All rights reserved.
Proteases induce secretion of collagenase and plasminogen activator by fibroblasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werb, Z.; Aggeler, J.
1978-04-01
We have observed that treatment of rabbit synovial fibroblasts with proteolytic enzymes can induce secretion of collagenase (EC 3.4.24.7) and plasminogen activator (EC 3.4.21.-). Cells treated for 2 to 24 hr with plasmin, trypsin, chymotrypsin, pancreatic elastase, papain, bromelain, thermolysin, or ..cap alpha..-protease but not with thrombin or neuraminidase secreted detectable amounts of collagenase within 16 to 48 hr. Treatment of fibroblasts with trypsin also induced secretion of plasminogen activator. Proteases initiated secretion of collagenase (up to 20 units per 10/sup 6/ cells per 24 hr) only when treatment produced decreased cell adhesion. Collagenase production did not depend on continuedmore » presence of proteolytic activity or on subsequent cell adhesion, spreading, or proliferation. Routine subculturing with crude trypsin also induced collagenase secretion by cells. Secretion of collagenase was prevented and normal spreading was obtained if the trypsinized cells were placed into medium containing fetal calf serum. Soybean trypsin inhibitor, ..cap alpha../sub 1/-antitrypsin, bovine serum albumin, collagen, and fibronectin did not inhibit collagenase production. Although proteases that induced collagenase secretion also removed surface glycoprotein, the kinetics of induction of cell protease secretion were different from those for removal of fibronectin. Physiological inducers of secretion of collagenase and plasminogen activator by cells have not been identified. These results suggest that extracellular proteases in conjunction with plasma proteins may govern protease secretion by cells.« less
Fibrinogen-induced endothelin-1 production from endothelial cells.
Sen, Utpal; Tyagi, Neetu; Patibandla, Phani K; Dean, William L; Tyagi, Suresh C; Roberts, Andrew M; Lominadze, David
2009-04-01
We previously demonstrated that fibrinogen (Fg) binding to the vascular endothelial intercellular adhesion molecule-1 (ICAM-1) leads to microvascular constriction in vivo and in vitro. Although a role of endothelin-1 (ET-1) in this Fg-induced vasoconstriction was suggested, the mechanism of action was not clear. In the current study, we tested the hypothesis that Fg-induced vasoconstriction results from ET-1 production by vascular endothelial cells (EC) and is mediated by activation of extracellular signal-regulated kinase -1/2 (ERK-1/2). Confluent, rat heart microvascular endothelial cells (RHMECs) were treated with one of the following: Fg (2 or 4 mg/ml), Fg (4 mg/ml) with ERK-1/2 kinase inhibitors (PD-98059 or U-0126), Fg (4 mg/ml) with an antibody against ICAM-1, or medium alone for 45 min. The amount of ET-1 formed and the concentration of released von Willebrand factor (vWF) in the cell culture medium were measured by ELISAs. Fg-induced exocytosis of Weibel-Palade bodies (WPBs) was assessed by immunocytochemistry. Phosphorylation of ERK-1/2 was detected by Western blot analysis. Fg caused a dose-dependent increase in ET-1 formation and release of vWF from the RHMECs. This Fg-induced increase in ET-1 production was inhibited by specific ERK-1/2 kinase inhibitors and by anti-ICAM-1 antibody. Immunocytochemical staining showed that an increase in Fg concentration enhanced exocytosis of WPBs in ECs. A specific endothelin type B receptor blocker, BQ-788, attenuated the enhanced phosphorylation of ERK-1/2 in ECs caused by increased Fg content in the culture medium. The presence of an endothelin converting enzyme inhibitor, SM-19712, slightly decreased Fg-induced phosphorylation of ERK-1/2, but inhibited production of Fg-induced ET-1 production. These results suggest that Fg-induced vasoconstriction may be mediated, in part, by activation of ERK-1/2 signaling and increased production of ET-1 that further increases EC ERK-1/2 signaling. Thus, an increased content of Fg may enhance vasoconstriction through increased production of ET-1.
Jacobs, Evan S.; Abdel-Mohsen, Mohamed; Gibb, Stuart L.; Heitman, John W.; Inglis, Heather C.; Martin, Jeffrey N.; Zhang, Jinbing; Kaidarova, Zhanna; Deng, Xutao; Wu, Shiquan; Anastos, Kathryn; Crystal, Howard; Villacres, Maria C.; Young, Mary; Greenblatt, Ruth M.; Landay, Alan L.; Gange, Stephen J.; Deeks, Steven G.; Golub, Elizabeth T.; Pillai, Satish K.
2017-01-01
ABSTRACT A subset of HIV-infected individuals termed elite controllers (ECs) maintain CD4+ T cell counts and control viral replication in the absence of antiretroviral therapy (ART). Systemic cytokine responses may differentiate ECs from subjects with uncontrolled viral replication or from those who require ART to suppress viral replication. We measured 87 cytokines in four groups of women: 73 ECs, 42 with pharmacologically suppressed viremia (ART), 42 with uncontrolled viral replication (noncontrollers [NCs]), and 48 HIV-uninfected (NEG) subjects. Four cytokines were elevated in ECs but not NCs or ART subjects: CCL14, CCL21, CCL27, and XCL1. In addition, median stromal cell-derived factor-1 (SDF-1) levels were 43% higher in ECs than in NCs. The combination of the five cytokines suppressed R5 and X4 virus replication in resting CD4+ T cells, and individually SDF-1β, CCL14, and CCL27 suppressed R5 virus replication, while SDF-1β, CCL21, and CCL14 suppressed X4 virus replication. Functional studies revealed that the combination of the five cytokines upregulated CD69 and CCR5 and downregulated CXCR4 and CCR7 on CD4+ T cells. The CD69 and CXCR4 effects were driven by SDF-1, while CCL21 downregulated CCR7. The combination of the EC-associated cytokines induced expression of the anti-HIV host restriction factors IFITM1 and IFITM2 and suppressed expression of RNase L and SAMHD1. These results identify a set of cytokines that are elevated in ECs and define their effects on cellular activation, HIV coreceptor expression, and innate restriction factor expression. This cytokine pattern may be a signature characteristic of HIV-1 elite control, potentially important for HIV therapeutic and curative strategies. IMPORTANCE Approximately 1% of people infected with HIV control virus replication without taking antiviral medications. These subjects, termed elite controllers (ECs), are known to have stronger immune responses targeting HIV than the typical HIV-infected subject, but the exact mechanisms of how their immune responses control infection are not known. In this study, we identified five soluble immune signaling molecules (cytokines) in the blood that were higher in ECs than in subjects with typical chronic HIV infection. We demonstrated that these cytokines can activate CD4+ T cells, the target cells for HIV infection. Furthermore, these five EC-associated cytokines could change expression levels of intrinsic resistance factors, or molecules inside the target cell that fight HIV infection. This study is significant in that it identified cytokines elevated in subjects with a good immune response against HIV and defined potential mechanisms as to how these cytokines could induce resistance to the virus in target cells. PMID:28053103
Jacobs, Evan S; Keating, Sheila M; Abdel-Mohsen, Mohamed; Gibb, Stuart L; Heitman, John W; Inglis, Heather C; Martin, Jeffrey N; Zhang, Jinbing; Kaidarova, Zhanna; Deng, Xutao; Wu, Shiquan; Anastos, Kathryn; Crystal, Howard; Villacres, Maria C; Young, Mary; Greenblatt, Ruth M; Landay, Alan L; Gange, Stephen J; Deeks, Steven G; Golub, Elizabeth T; Pillai, Satish K; Norris, Philip J
2017-03-15
A subset of HIV-infected individuals termed elite controllers (ECs) maintain CD4 + T cell counts and control viral replication in the absence of antiretroviral therapy (ART). Systemic cytokine responses may differentiate ECs from subjects with uncontrolled viral replication or from those who require ART to suppress viral replication. We measured 87 cytokines in four groups of women: 73 ECs, 42 with pharmacologically suppressed viremia (ART), 42 with uncontrolled viral replication (noncontrollers [NCs]), and 48 HIV-uninfected (NEG) subjects. Four cytokines were elevated in ECs but not NCs or ART subjects: CCL14, CCL21, CCL27, and XCL1. In addition, median stromal cell-derived factor-1 (SDF-1) levels were 43% higher in ECs than in NCs. The combination of the five cytokines suppressed R5 and X4 virus replication in resting CD4 + T cells, and individually SDF-1β, CCL14, and CCL27 suppressed R5 virus replication, while SDF-1β, CCL21, and CCL14 suppressed X4 virus replication. Functional studies revealed that the combination of the five cytokines upregulated CD69 and CCR5 and downregulated CXCR4 and CCR7 on CD4 + T cells. The CD69 and CXCR4 effects were driven by SDF-1, while CCL21 downregulated CCR7. The combination of the EC-associated cytokines induced expression of the anti-HIV host restriction factors IFITM1 and IFITM2 and suppressed expression of RNase L and SAMHD1. These results identify a set of cytokines that are elevated in ECs and define their effects on cellular activation, HIV coreceptor expression, and innate restriction factor expression. This cytokine pattern may be a signature characteristic of HIV-1 elite control, potentially important for HIV therapeutic and curative strategies. IMPORTANCE Approximately 1% of people infected with HIV control virus replication without taking antiviral medications. These subjects, termed elite controllers (ECs), are known to have stronger immune responses targeting HIV than the typical HIV-infected subject, but the exact mechanisms of how their immune responses control infection are not known. In this study, we identified five soluble immune signaling molecules (cytokines) in the blood that were higher in ECs than in subjects with typical chronic HIV infection. We demonstrated that these cytokines can activate CD4 + T cells, the target cells for HIV infection. Furthermore, these five EC-associated cytokines could change expression levels of intrinsic resistance factors, or molecules inside the target cell that fight HIV infection. This study is significant in that it identified cytokines elevated in subjects with a good immune response against HIV and defined potential mechanisms as to how these cytokines could induce resistance to the virus in target cells. Copyright © 2017 American Society for Microbiology.
Apigenin induced apoptosis in esophageal carcinoma cells by destruction membrane structures.
Zhu, Haiyan; Jin, Hua; Pi, Jiang; Bai, Haihua; Yang, Fen; Wu, Chaomin; Jiang, Jinhuan; Cai, Jiye
2016-07-01
Apigenin has shown to have killing effects on some kinds of solid tumor cells. However, the changes in cell membrane induced by apigenin on subcellular- or nanometer-level were still unclear. In this work, human esophageal cancer cells (EC9706 and KYSE150 cells) were employed as cell model to detect the cytotoxicity of apigenin, including cell growth inhibition, apoptosis induction, membrane toxicity, etc. MTT assay showed that apigenin could remarkably inhibit the growth and proliferation in both types of cells. Annexin V/PI-based flow cytometry analysis showed that the cytotoxic effects of apigenin in KYSE150 cells were mainly through early apoptosis induction, while in EC9706 cells, necrosis, and apoptosis were both involved in cell death. The morphological and ultrastructural properties induced by apigenin were investigated at single cellular- or nanometer-level using atomic force microscopy (AFM). Additionally, lactate dehydrogenase (LDH) leakage was measured to assess the changes in membrane permeability. The results indicated that apigenin increased the membrane permeability and caused leakage of LDH, which was consistent with damages on membrane ultrastructure detected by AFM. Therefore, membrane toxicity, including membrane ultrastructure damages and enhanced membrane permeability, played vital roles in apigenin induced human esophageal cancer cell apoptosis. SCANNING 38:322-328, 2016. © 2015 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.
Yeasmin, Shamima; Ceccarelli, Jacob; Vigen, Marina; Carrion, Bita; Putnam, Andrew J; Tarle, Susan A; Kaigler, Darnell
2014-04-01
In regenerative medicine approaches involving cell therapy, selection of the appropriate cell type is important in that the cells must directly (differentiation) or indirectly (trophic effects) participate in the regenerative response. Regardless of the mode of action of the cells, angiogenesis underlies the success of these approaches. Stem cells derived from tooth tissues, specifically the periodontal ligament of teeth (periodontal ligament stem cells [PDLSCs]), have recently been identified as a good source of multipotent cells for cell therapies. PDLSCs have demonstrated properties similar to mesenchymal stem cells (MSCs), yet, unlike MSCs, their vascular potential has not been previously demonstrated. Thus, the aim of this study was to determine if PDLSCs could modulate angiogenesis. In comparison to MSCs and stem cells derived from tooth pulp tissues (SHEDs), we first determined if PDLSCs released soluble proangiogenic factors with the capacity to induce vessel formation by endothelial cells (ECs). Next, the ability of PDLSCs to modulate angiogenesis was examined through their cotransplantation with ECs in subcutaneous sites of immunocompromised mice. Finally, the stability of the PDLSC-mediated vasculature was determined through evaluation of the maturity and functionality of the vessels formed following PDLSC transplantation. It was determined that PDLSCs produced appreciable levels of vascular endothelial growth factor and basic fibroblast growth factor-2, and additionally, were able to initiate in vitro angiogenesis of ECs comparable to MSC- and SHED-mediated angiogenesis. In vivo cotransplantation of ECs with PDLSCs significantly (>50% increase) enhanced the number of blood vessels formed relative to transplantation of ECs alone. Finally, vessels formed following PDLSC cotransplantation were more mature and less permeable than those formed after transplantation of EC alone. These data demonstrate for the first time that PDLSCs have vascular potential, which could make them a very attractive cell population for utilization in regenerative cell therapies.
APOC3 induces endothelial dysfunction through TNF-α and JAM-1.
Tao, Yun; Xiong, Yisong; Wang, Huimin; Chu, Shaopeng; Zhong, Renqian; Wang, Jianxin; Wang, Guihua; Ren, Xiumei; Yu, Juan
2016-09-13
The fatality rate for cardiovascular disease (CVD) has increased in recent years and higher levels of triglyceride have been shown to be an independent risk factor for atherosclerotic CVD. Dysfunction of endothelial cells (ECs) is also a key factor of CVD. APOC3 is an important molecule in lipid metabolism that is closely associated with hyperlipidemia and an increased risk of developing CVD. But the direct effects of APOC3 on ECs were still unknown. This study was aimed at determining the effects of APOC3 on inflammation, chemotaxis and exudation in ECs. ELISA, qRT-PCR, immunofluorescence, flow cytometry and transwell assays were used to investigate the effects of APOC3 on human umbilical vein endothelial cells (HUVECs). SiRNA-induced TNF-α and JAM-1 silencing were used to observe how APOC3 influenced the inflammatory process in the ECs. Our results showed that APOC3 was closely associated with the inflammatory process in ECs, and that this process was characterized by the increased expression of TNF-α. Inflammatory processes further disrupted the tight junctions (TJs) between HUVECs by causing increased expression of JAM-1. JAM-1 was involved in maintaining the integrity of TJs, and it promoted the assembly of platelets and the exudation of leukocytes. Changes in its expression promoted chemotaxis and the exudation of ECs, which contributed to atherosclerosis. While the integrity of the TJs was disrupted, the adhesion of THP-1 cells to HUVECs was also increased by APOC3. In this study, we describe the mechanism by which APOC3 causes inflammation, chemotaxis and the exudation of ECs, and we suggest that controlling the inflammatory reactions that are caused by APOC3 may be a new method to treat CVD.
Endothelial ERK signaling controls lymphatic fate specification
Deng, Yong; Atri, Deepak; Eichmann, Anne; Simons, Michael
2013-01-01
Lymphatic vessels are thought to arise from PROX1-positive endothelial cells (ECs) in the cardinal vein in response to induction of SOX18 expression; however, the molecular event responsible for increased SOX18 expression has not been established. We generated mice with endothelial-specific, inducible expression of an RAF1 gene with a gain-of-function mutation (RAF1S259A) that is associated with Noonan syndrome. Expression of mutant RAF1S259A in ECs activated ERK and induced SOX18 and PROX1 expression, leading to increased commitment of venous ECs to the lymphatic fate. Excessive production of lymphatic ECs resulted in lymphangiectasia that was highly reminiscent of abnormal lymphatics seen in Noonan syndrome and similar “RASopathies.” Inhibition of ERK signaling during development abrogated the lymphatic differentiation program and rescued the lymphatic phenotypes induced by expression of RAF1S259A. These data suggest that ERK activation plays a key role in lymphatic EC fate specification and that excessive ERK activation is the basis of lymphatic abnormalities seen in Noonan syndrome and related diseases. PMID:23391722
MicroRNA-424/E2F6 feedback loop modulates cell invasion, migration and EMT in endometrial carcinoma
Lu, Zheng; Nian, Zhou; Jingjing, Zhang; Tao, Luo; Quan, Li
2017-01-01
Our previous study explored the roles of microRNA-424 (miR-424) in the development of endometrial carcinoma (EC) and analyzed the miR-424/E2F7 axis in EC cell growth. In this study, we investigated the status of miR-424 in human endometrial cancer tissues, which were collected from a cohort of Zunyi patients. We found that the expression level of miR-424 was associated with clinical tumor stage, cell differentiation, lymph node metastasis and cell migration ability. Cell function experiments demonstrated that miR-424 overexpression suppressed the invasion and migration abilities of endometrial carcinoma cells in vitro. Bioinformatic predictions and dual-luciferase reporter assays suggested E2F6 as a possible target of miR-424. RT-PCR and western blot assays demonstrated that miR-424 transfection reduced the expression level of E2F6, while inhibiting miR-424 with ASO-miR-424 (antisense oligonucleotides of miR-424) increased the expression level of E2F6. Cell function experiments indicated that E2F6 transfection rescued the EC cell phenotype induced by miR-424. In addition, we also found that E2F6 negatively regulated miR-424 expression in EC cells. In summary, our results demonstrated that the miR-424/E2F6 feedback loop modulates cell invasion, migration and EMT in EC and that the miR-424/E2Fs regulation network may serve as a new and potentially important therapeutic target in EC. PMID:29371986
Landoni, Verónica I.; Schierloh, Pablo; de Campos Nebel, Marcelo; Fernández, Gabriela C.; Calatayud, Cecilia; Lapponi, María J.; Isturiz, Martín A.
2012-01-01
The hemolytic uremic syndrome (HUS) is characterized by hemolytic anemia, thrombocytopenia and renal dysfunction. The typical form of HUS is generally associated with infections by Gram-negative Shiga toxin (Stx)-producing Escherichia coli (STEC). Endothelial dysfunction induced by Stx is central, but bacterial lipopolysaccharide (LPS) and neutrophils (PMN) contribute to the pathophysiology. Although renal failure is characteristic of this syndrome, neurological complications occur in severe cases and is usually associated with death. Impaired blood-brain barrier (BBB) is associated with damage to cerebral endothelial cells (ECs) that comprise the BBB. Astrocytes (ASTs) are inflammatory cells in the brain and determine the BBB function. ASTs are in close proximity to ECs, hence the study of the effects of Stx1 and LPS on ASTs, and the influence of their response on ECs is essential. We have previously demonstrated that Stx1 and LPS induced activation of rat ASTs and the release of inflammatory factors such as TNF-α, nitric oxide and chemokines. Here, we demonstrate that rat ASTs-derived factors alter permeability of ECs with brain properties (HUVECd); suggesting that functional properties of BBB could also be affected. Additionally, these factors activate HUVECd and render them into a proagregant state promoting PMN and platelets adhesion. Moreover, these effects were dependent on ASTs secreted-TNF-α. Stx1 and LPS-induced ASTs response could influence brain ECs integrity and BBB function once Stx and factors associated to the STEC infection reach the brain parenchyma and therefore contribute to the development of the neuropathology observed in HUS. PMID:22479186
Stromal deletion of the APC tumor suppressor in mice triggers development of endometrial cancer
Tanwar, Pradeep S.; Zhang, LiHua; Roberts, Drucilla J.; Teixeira, Jose M.
2011-01-01
The contribution of the stromal microenvironment to the progression of endometrial cancer (EC) has not been well explored. We have conditionally expressed a mutant allele of adenomatous polyposis coli (APCcKO) in murine uterine stroma cells to study its effect on uterine development and function. In addition to metrorrhagia, the mice develop complex atypical endometrial gland hyperplasia that progresses to endometrial carcinoma in situ and endometrial adenocarcinoma as evidenced by myometrial invasion. Stromal cells subjacent to the carcinoma cells express αSMA with fewer cells expressing PDGFR-α compared to normal stromal cells suggesting that the mutant stromal cells have acquired a more myofibroblastic phenotype, which have been described as cancer-associated fibroblasts and have been shown to induce carcinogenesis in other organ systems. Analyses of human EC specimens showed substantial αSMA expression in the stroma compared with normal endometrial stroma cells. We also show that APCcKO mutant uteri and human EC have decreased stromal levels of TGFβ and BMP activities and that the mutant uteri failed to respond to exogenous estradiol stimulation. The mutant stroma cells also had higher levels of VEGF and SDF signaling components and diminished expression of ERα and PR which is common in advanced stages of human EC and is an indicator of poor prognosis. Our results indicate that de novo mutation or loss of heterozygosity in stromal APC is sufficient to induce endometrial hyperplasia and endometrial carcinogenesis by mechanisms that are consistent with unopposed estrogen signaling in the endometrial epithelium. PMID:21363919
Chung, Jihwa; Kim, Kyoung Hwa; Lee, Seok Cheol; An, Shung Hyun; Kwon, Kihwan
2015-10-01
Disturbed blood flow with low-oscillatory shear stress (OSS) is a predominant atherogenic factor leading to dysfunctional endothelial cells (ECs). Recently, it was found that disturbed flow can directly induce endoplasmic reticulum (ER) stress in ECs, thereby playing a critical role in the development and progression of atherosclerosis. Ursodeoxycholic acid (UDCA), a naturally occurring bile acid, has long been used to treat chronic cholestatic liver disease and is known to alleviate endoplasmic reticulum (ER) stress at the cellular level. However, its role in atherosclerosis remains unexplored. In this study, we demonstrated the anti-atherogenic activity of UDCA via inhibition of disturbed flow-induced ER stress in atherosclerosis. UDCA effectively reduced ER stress, resulting in a reduction in expression of X-box binding protein-1 (XBP-1) and CEBP-homologous protein (CHOP) in ECs. UDCA also inhibits the disturbed flow-induced inflammatory responses such as increases in adhesion molecules, monocyte adhesion to ECs, and apoptosis of ECs. In a mouse model of disturbed flow-induced atherosclerosis, UDCA inhibits atheromatous plaque formation through the alleviation of ER stress and a decrease in adhesion molecules. Taken together, our results revealed that UDCA exerts anti-atherogenic activity in disturbed flow-induced atherosclerosis by inhibiting ER stress and the inflammatory response. This study suggests that UDCA may be a therapeutic agent for prevention or treatment of atherosclerosis.
Migueles, Stephen A; Mendoza, Daniel; Zimmerman, Matthew G; Martins, Kelly M; Toulmin, Sushila A; Kelly, Elizabeth P; Peterson, Bennett A; Johnson, Sarah A; Galson, Eric; Poropatich, Kate O; Patamawenu, Andy; Imamichi, Hiromi; Ober, Alexander; Rehm, Catherine A; Jones, Sara; Hallahan, Claire W; Follmann, Dean A; Connors, Mark
2015-01-01
Understanding natural immunologic control over Human Immunodeficiency Virus (HIV)-1 replication, as occurs in rare long-term nonprogressors/elite controllers (LTNP/EC), should inform the design of efficacious HIV vaccines and immunotherapies. Durable control in LTNP/EC is likely mediated by highly functional virus-specific CD8(+) T-cells. Protective Human Leukocyte Antigen (HLA) class I alleles, like B*27 and B*57, are present in most, but not all LTNP/EC, providing an opportunity to investigate features shared by their HIV-specific immune responses. To better understand the contribution of epitope targeting and conservation to immune control, we compared the CD8(+) T-cell specificity and function of B*27/57(neg) LTNP/EC (n = 23), B*27/57(pos) LTNP/EC (n = 23) and B*27/57(neg) progressors (n = 13). Fine mapping revealed 11 previously unreported immunodominant responses. Although B*27/57(neg) LTNP/EC did not target more highly conserved epitopes, their CD8(+) T-cell cytotoxic capacity was significantly higher than progressors. Similar to B*27/57(pos) LTNP/EC, this superior cytotoxicity was mediated by preferential expansion of immunodominant responses and lysis through the predicted HLA. These findings suggest that increased CD8(+) T-cell cytotoxic capacity is a common mechanism of control in most LTNP/EC regardless of HLA type. They also suggest that potent cytotoxicity can be mediated through various epitopes and HLA molecules and could, in theory, be induced in most people.
Migueles, Stephen A.; Mendoza, Daniel; Zimmerman, Matthew G.; Martins, Kelly M.; Toulmin, Sushila A.; Kelly, Elizabeth P.; Peterson, Bennett A.; Johnson, Sarah A.; Galson, Eric; Poropatich, Kate O.; Patamawenu, Andy; Imamichi, Hiromi; Ober, Alexander; Rehm, Catherine A.; Jones, Sara; Hallahan, Claire W.; Follmann, Dean A.; Connors, Mark
2014-01-01
Understanding natural immunologic control over Human Immunodeficiency Virus (HIV)-1 replication, as occurs in rare long-term nonprogressors/elite controllers (LTNP/EC), should inform the design of efficacious HIV vaccines and immunotherapies. Durable control in LTNP/EC is likely mediated by highly functional virus-specific CD8+ T-cells. Protective Human Leukocyte Antigen (HLA) class I alleles, like B*27 and B*57, are present in most, but not all LTNP/EC, providing an opportunity to investigate features shared by their HIV-specific immune responses. To better understand the contribution of epitope targeting and conservation to immune control, we compared the CD8+ T-cell specificity and function of B*27/57neg LTNP/EC (n = 23), B*27/57pos LTNP/EC (n = 23) and B*27/57neg progressors (n = 13). Fine mapping revealed 11 previously unreported immunodominant responses. Although B*27/57neg LTNP/EC did not target more highly conserved epitopes, their CD8+ T-cell cytotoxic capacity was significantly higher than progressors. Similar to B*27/57pos LTNP/EC, this superior cytotoxicity was mediated by preferential expansion of immunodominant responses and lysis through the predicted HLA. These findings suggest that increased CD8+ T-cell cytotoxic capacity is a common mechanism of control in most LTNP/EC regardless of HLA type. They also suggest that potent cytotoxicity can be mediated through various epitopes and HLA molecules and could, in theory, be induced in most people. PMID:26137533
Pasquier, Jennifer; Gupta, Renuka; Rioult, Damien; Hoarau-Véchot, Jessica; Courjaret, Raphael; Machaca, Khaled; Al Suwaidi, Jassim; Stanley, Edouard G; Rafii, Shahin; Elliott, David A; Abi Khalil, Charbel; Rafii, Arash
2017-06-01
Pluripotent human embryonic stem cells (hESC) are a promising source of repopulating cardiomyocytes. We hypothesized that we could improve maturation of cardiomyocytes and facilitate electrical interconnections by creating a model that more closely resembles heart tissue; that is, containing both endothelial cells (ECs) and cardiomyocytes. We induced cardiomyocyte differentiation in the coculture of an hESC line expressing the cardiac reporter NKX2.5-green fluorescent protein (GFP), and an Akt-activated EC line (E4 + ECs). We quantified spontaneous beating rates, synchrony, and coordination between different cardiomyocyte clusters using confocal imaging of Fura Red-detected calcium transients and computer-assisted image analysis. After 8 days in culture, 94% ± 6% of the NKX2-5GFP + cells were beating when hESCs embryonic bodies were plated on E4 + ECs compared with 34% ± 12.9% for controls consisting of hESCs cultured on BD Matrigel (BD Biosciences) without ECs at Day 11 in culture. The spatial organization of beating areas in cocultures was different. The GFP + cardiomyocytes were close to the E4 + ECs. The average beats/min of the cardiomyocytes in coculture was faster and closer to physiologic heart rates compared with controls (50 ± 14 [n = 13] vs 25 ± 9 [n = 8]; p < 0.05). The coculture with ECs led to synchronized beating relying on the endothelial network, as illustrated by the loss of synchronization upon the disruption of endothelial bridges. The coculturing of differentiating cardiomyocytes with Akt-activated ECs but not EC-conditioned media results in (1) improved efficiency of the cardiomyocyte differentiation protocol and (2) increased maturity leading to better intercellular coupling with improved chronotropy and synchrony. Copyright © 2017. Published by Elsevier Inc.
Fluid Mechanics, Arterial Disease, and Gene Expression.
Tarbell, John M; Shi, Zhong-Dong; Dunn, Jessilyn; Jo, Hanjoong
2014-01-01
This review places modern research developments in vascular mechanobiology in the context of hemodynamic phenomena in the cardiovascular system and the discrete localization of vascular disease. The modern origins of this field are traced, beginning in the 1960s when associations between flow characteristics, particularly blood flow-induced wall shear stress, and the localization of atherosclerotic plaques were uncovered, and continuing to fluid shear stress effects on the vascular lining endothelial) cells (ECs), including their effects on EC morphology, biochemical production, and gene expression. The earliest single-gene studies and genome-wide analyses are considered. The final section moves from the ECs lining the vessel wall to the smooth muscle cells and fibroblasts within the wall that are fluid me chanically activated by interstitial flow that imposes shear stresses on their surfaces comparable with those of flowing blood on EC surfaces. Interstitial flow stimulates biochemical production and gene expression, much like blood flow on ECs.
Kaul, D K; Koshkaryev, A; Artmann, G; Barshtein, G; Yedgar, S
2008-10-01
To explore the contribution of red blood cell (RBC) deformability and interaction with endothelial cells (ECs) to circulatory disorders, these RBC properties were modified by treatment with hydrogen peroxide (H(2)O(2)), and their effects on vascular resistance were monitored following their infusion into rat mesocecum vasculature. Treatment with 0.5 mM H(2)O(2) increased RBC/EC adherence without significant alteration of RBC deformability. At 5.0 mM H(2)O(2), RBC deformability was considerably reduced, inducing a threefold increase in the number of undeformable cells, whereas RBC/EC adherence was not further affected by the increased H(2)O(2) concentration. This enabled the selective manipulation of RBC adherence and deformability and the testing of their differential effect on vascular resistance. Perfusion of RBCs with enhanced adherence and unchanged deformability (treatment with 0.5 mM H(2)O(2)) increased vascular resistance by about 35% compared with untreated control RBCs. Perfusion of 5.0 mM H(2)O(2)-treated RBCs, with reduced deformability (without additional increase of adherence), further increased vascular resistance by about 60% compared with untreated control RBCs. These results demonstrate the specific effects of elevated adherence and reduced deformability of oxidized RBCs on vascular resistance. These effects can be additive, depending on the oxidation conditions. The oxidation-induced changes applied in this study are moderate compared with those observed in RBCs in pathological states. Yet, they caused a considerable increase in vascular resistance, thus demonstrating the potency of RBC/EC adherence and RBC deformability in determining resistance to blood flow in vivo.
Chaudhary, Neelkamal; Datta, Kausik; Askin, Frederic B; Staab, Janet F; Marr, Kieren A
2012-02-01
Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) alter epithelial cell (EC) interactions with multiple microbes, such that dysregulated inflammation and injury occur with airway colonization in people with cystic fibrosis (CF). Aspergillus fumigatus frequently colonizes CF airways, but it has been assumed to be an innocent saprophyte; its potential role as a cause of lung disease is controversial. To study the interactions between Aspergillus and EC, and the role of the fungus in evoking inflammatory responses. A. fumigatus expressing green fluorescent protein was developed for in vitro and in vivo models, which used cell lines and mouse tracheal EC. Fungal spores (conidia) are rapidly ingested by ECs derived from bronchial cell lines and murine tracheas, supporting a role for EC in early airway clearance. Bronchial ECs harboring CFTR mutations (ΔF508) or deletion demonstrate impaired uptake and killing of conidia, and ECs with CFTR mutation undergo more conidial-induced apoptosis. Germinated (hyphal) forms of the fungus evoke secretion of inflammatory mediators, with CFTR mutation resulting in increased airway levels of macrophage inflammatory protein 2 and KC, and higher lung monocyte chemotactic protein-1. After A. fumigatus inhalation, CFTR(-/-) mice develop exaggerated lymphocytic inflammation, mucin accumulation, and lung injury. Data demonstrate a critical role for CFTR in mediating EC responses to A. fumigatus. Results suggest that the fungus elicits aberrant pulmonary inflammation in the setting of CFTR mutation, supporting the potential role of antifungals to halt progressive CF lung disease.
Microgravity Effects on Transendothelial Transport
NASA Technical Reports Server (NTRS)
Tarbell, John M.
1996-01-01
The Endothelial Cell (EC) layer which lines blood vessels from the aorta to the capillaries provides the principal barrier to transport of water and solutes between blood and underlying tissue. Endothelial cells are continuously exposed to the mechanical shearing force (shear stress) and normal force (pressure) imposed by flowing blood on their surface, and they are adapted to this mechanical environment. When the cardiovascular system is exposed to microgravity, the mechanical environmental of endothelial cells is perturbed drastically and the transport properties of EC layers are altered in response. We have shown recently that step changes in shear stress have an acute effect on transport properties of EC layers in a cell culture model, and several recent studies in different vessels of live animals have confirmed the shear-dependent transport properties of the endothelium. We hypothesize that alterations in mechanical forces induced by microgravity and their resultant influence on transendothelial transport of water and solutes are, in large measure, responsible for the characteristic cephalad fluid shift observed in humans experiencing microgravity. To study the effects of altered mechanical forces on transendothelial transport and to test pharmacologic agents as counter measures to microgravity induced fluid shifts we have proposed ground-based studies using well defined cell culture models.
Mooren, Olivia L.; Li, Jinmei; Nawas, Julie; Cooper, John A.
2014-01-01
The vascular endothelium is a highly dynamic structure, and the integrity of its barrier function is tightly regulated. Normally impenetrable to cells, the endothelium actively assists lymphocytes to exit the bloodstream during inflammation. The actin cytoskeleton of the endothelial cell (EC) is known to facilitate transmigration, but the cellular and molecular mechanisms are not well understood. Here we report that actin assembly in the EC, induced by Arp2/3 complex under control of WAVE2, is important for several steps in the process of transmigration. To begin transmigration, ECs deploy actin-based membrane protrusions that create a cup-shaped docking structure for the lymphocyte. We found that docking structure formation involves the localization and activation of Arp2/3 complex by WAVE2. The next step in transmigration is creation of a migratory pore, and we found that endothelial WAVE2 is needed for lymphocytes to follow a transcellular route through an EC. Later, ECs use actin-based protrusions to close the gap behind the lymphocyte, which we discovered is also driven by WAVE2. Finally, we found that ECs in resting endothelial monolayers use lamellipodial protrusions dependent on WAVE2 to form and maintain contacts and junctions between cells. PMID:25355948
Ghilardi, Carmen; Silini, Antonietta; Figini, Sara; Anastasia, Alessia; Lupi, Monica; Fruscio, Robert; Giavazzi, Raffaella; Bani, Maria Rosa
2015-09-29
Proteases contribute to cancer in many ways, including tumor vascularization and metastasis, and their pharmacological inhibition is a potential anticancer strategy. We report that human endothelial cells (EC) express the trypsinogen 4 isoform of the serine protease 3 (PRSS3), and lack both PRSS2 and PRSS1. Trypsinogen 4 expression was upregulated by the combined action of VEGF-A, FGF-2 and EGF, angiogenic factors representative of the tumor microenvironment. Suppression of trypsinogen 4 expression by siRNA inhibited the angiogenic milieu-induced migration of EC from cancer specimens (tumor-EC), but did not affect EC from normal tissues. We identified tissue factor pathway inhibitor-2 (TFPI-2), a matrix associated inhibitor of cell motility, as the functional target of trypsinogen 4, which cleaved TFPI-2 and removed it from the matrix put down by tumor-EC. Silencing tumor-EC for trypsinogen 4 accumulated TFPI2 in the matrix. Showing that angiogenic factors stimulate trypsinogen 4 expression, which hydrolyses TFPI-2 favoring a pro-migratory situation, our study suggests a new pathway linking tumor microenvironment signals to endothelial cell migration, which is essential for angiogenesis and blood vessel remodeling. Abolishing trypsinogen 4 functions might be an exploitable strategy as anticancer, particularly anti-vascular, therapy.
Ghilardi, Carmen; Silini, Antonietta; Figini, Sara; Anastasia, Alessia; Lupi, Monica; Fruscio, Robert; Giavazzi, Raffaella; Bani, MariaRosa
2015-01-01
Proteasescontribute to cancer in many ways, including tumor vascularization and metastasis, and their pharmacological inhibition is a potential anticancer strategy. We report that human endothelial cells (EC) express the trypsinogen 4 isoform of the serine protease 3 (PRSS3), and lack both PRSS2 and PRSS1. Trypsinogen 4 expression was upregulated by the combined action of VEGF-A, FGF-2 and EGF, angiogenic factors representative of the tumor microenvironment. Suppression of trypsinogen 4 expression by siRNA inhibited the angiogenic milieu-induced migration of EC from cancer specimens (tumor-EC), but did not affect EC from normal tissues. We identified tissue factor pathway inhibitor-2 (TFPI-2), a matrix associated inhibitor of cell motility, as the functional target of trypsinogen 4, which cleaved TFPI-2 and removed it from the matrix put down by tumor-EC. Silencing tumor-EC for trypsinogen 4 accumulated TFPI2 in the matrix. Showing that angiogenic factors stimulate trypsinogen 4 expression, which hydrolyses TFPI-2 favoring a pro-migratory situation, our study suggests a new pathway linking tumor microenvironment signals to endothelial cell migration, which is essential for angiogenesis and blood vessel remodeling. Abolishing trypsinogen 4 functions might be an exploitable strategy as anticancer, particularly anti-vascular, therapy. PMID:26318044
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uraoka, Maki; Ikeda, Koji, E-mail: ikedak@koto.kpu-m.ac.jp; Nakagawa, Yusuke
Prorenin is an enzymatically inactive precursor of renin, and its biological function in endothelial cells (ECs) is unknown despite its relevance with the incidence of diabetic microvascular complications. Recently, (pro)renin receptor was identified, and the receptor-associated prorenin system has been discovered, whereas its expression as well as function in ECs remain unclear. In the present study, we found that ECs express the (pro)renin receptor, and that prorenin provoked ERK activation through (pro)renin receptor independently of the renin-angiotensin system (RAS). Prorenin stimulated the proliferation, migration and tube-formation of ECs, while it inhibited endothelial apoptosis induced by serum and growth factor depletion.more » MEK inhibitor abrogated these proangiogenic effects of prorenin, while AT1 receptor antagonist or angiotensin-converting enzyme inhibitor failed to block them. In vivo neovascularization in the Matrigel-plugs implanted into mouse flanks was significantly enhanced by prorenin, in which significant ERK activation was detected in ECs. Furthermore, tumor xenografts stably transfected with prorenin demonstrated the significantly accelerated growth rate concomitantly with enhanced intratumoral neovascularization. Our data demonstrated that the RAS-independent (pro)renin receptor-mediated signal transduction plays a pivotal role in the regulation of ECs function as well as in the neovascularization, and thus prorenin is potentially involved in the pathophysiology of diabetic microvascular complications as well as cancers.« less
Isthmin is a novel secreted angiogenesis inhibitor that inhibits tumour growth in mice
Xiang, Wei; Ke, Zhiyuan; Zhang, Yong; Ho-Yuet Cheng, Grace; Irwan, Ishak Darryl; Sulochana, K N; Potturi, Padma; Wang, Zhengyuan; Yang, He; Wang, Jingyu; Zhuo, Lang; Kini, R Manjunatha; Ge, Ruowen
2011-01-01
Abstract Anti-angiogenesis represents a promising therapeutic strategy for the treatment of various malignancies. Isthmin (ISM) is a gene highly expressed in the isthmus of the midbrain–hindbrain organizer in Xenopus with no known functions. It encodes a secreted 60 kD protein containing a thrombospondin type 1 repeat domain in the central region and an adhesion-associated domain in MUC4 and other proteins (AMOP) domain at the C-terminal. In this work, we demonstrate that ISM is a novel angiogenesis inhibitor. Recombinant mouse ISM inhibited endothelial cell (EC) capillary network formation on Matrigel through its C-terminal AMOP domain. It also suppressed vascular endothelial growth factor (VEGF)-basic fibroblast growth factor (bFGF) induced in vivo angiogenesis in mouse. It mitigated VEGF-stimulated EC proliferation without affecting EC migration. Furthermore, ISM induced EC apoptosis in the presence of VEGF through a caspase-dependent pathway. ISM binds to αvβ5 integrin on EC surface and supports EC adhesion. Overexpression of ISM significantly suppressed mouse B16 melanoma tumour growth through inhibition of tumour angiogenesis without affecting tumour cell proliferation. Knockdown of isthmin in zebrafish embryos using morpholino antisense oligonucleotides led to disorganized intersegmen-tal vessels in the trunk. Our results demonstrate that ISM is a novel endogenous angiogenesis inhibitor with functions likely in physiological as well as pathological angiogenesis. PMID:19874420
Characterization of the Endothelial Cell Cytoskeleton following HLA Class I Ligation
Ziegler, Mary E.; Souda, Puneet; Jin, Yi-Ping; Whitelegge, Julian P.; Reed, Elaine F.
2012-01-01
Background Vascular endothelial cells (ECs) are a target of antibody-mediated allograft rejection. In vitro, when the HLA class I molecules on the surface of ECs are ligated by anti-HLA class I antibodies, cell proliferation and survival pathways are activated and this is thought to contribute to the development of antibody-mediated rejection. Crosslinking of HLA class I molecules by anti-HLA antibodies also triggers reorganization of the cytoskeleton, which induces the formation of F-actin stress fibers. HLA class I induced stress fiber formation is not well understood. Methodology and Principal Findings The present study examines the protein composition of the cytoskeleton fraction of ECs treated with HLA class I antibodies and compares it to other agonists known to induce alterations of the cytoskeleton in endothelial cells. Analysis by tandem mass spectrometry revealed unique cytoskeleton proteomes for each treatment group. Using annotation tools a candidate list was created that revealed 12 proteins, which were unique to the HLA class I stimulated group. Eleven of the candidate proteins were phosphoproteins and exploration of their predicted kinases provided clues as to how these proteins may contribute to the understanding of HLA class I induced antibody-mediated rejection. Three of the candidates, eukaryotic initiation factor 4A1 (eIF4A1), Tropomyosin alpha 4-chain (TPM4) and DDX3X, were further characterized by Western blot and found to be associated with the cytoskeleton. Confocal microscopy analysis showed that class I ligation stimulated increased eIF4A1 co-localization with F-actin and paxillin. Conclusions/Significance Colocalization of eIF4A1 with F-actin and paxillin following HLA class I ligation suggests that this candidate protein could be a target for understanding the mechanism(s) of class I mediated antibody-mediated rejection. This proteomic approach for analyzing the cytoskeleton of ECs can be applied to other agonists and various cells types as a method for uncovering novel regulators of cytoskeleton changes. PMID:22247778
Wang, Jing; Liu, Yao; Wang, Lihua; Sun, Xiao; Wang, Yudong
2016-02-02
RANK/RANKL plays a key role in metastasis of certain malignant tumors, which makes it a promising target for developing novel therapeutic strategies for cancer. However, the prognostic value and pro-metastatic activity of RANK in endometrial cancer (EC) remain to be determined. Thus, the present study investigated the effect of RANK on the prognosis of EC patients, as well as the pro-metastatic activity of EC cells. The results indicated that those with high expression of RANK showed decreased overall survival and progression-free survival. Statistical analysis revealed the positive correlations between RANK/RANKL expression and metastasis-related factors. Additionally, RANK/RANKL significantly promoted cell migration/invasion via activating AKT/β-catenin/Snail pathway in vitro. However, RANK/RANKL-induced AKT activation could be suppressed after osteoprotegerin (OPG) treatment. Furthermore, the combination of medroxyprogesterone acetate (MPA) and RANKL could in turn attenuate the effect of RANKL alone. Similarly, MPA could partially inhibit the RANK-induced metastasis in an orthotopic mouse model via suppressing AKT/β-catenin/Snail pathway. Therefore, therapeutic inhibition of MPA in RANK/RANKL-induced metastasis was mediated by AKT/β-catenin/Snail pathway both in vitro and in vivo, suggesting a potential target of RANK for gene-based therapy for EC.
Jiao, Jiao; Tian, Weihua; Qiu, Ping; Norton, Elizabeth L; Wang, Michael M; Chen, Y Eugene; Yang, Bo
2018-03-12
The NOTCH1 gene mutation has been identified in bicuspid aortic valve patients. We developed an in vitro model with human induced pluripotent stem cells (iPSCs) to evaluate the role of NOTCH1 in smooth muscle and endothelial cell (EC) differentiation. The iPSCs were derived from a patient with a normal tricuspid aortic valve and aorta. The NOTCH1 gene was targeted in iPSCs with the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9 nuclease (Cas9) system. The NOTCH1 -/- (NOTCH1 homozygous knockout) and isogenic control iPSCs (wild type) were differentiated into neural crest stem cells (NCSCs) and into cardiovascular progenitor cells (CVPCs). The NCSCs were differentiated into smooth muscle cells (SMCs). The CVPCs were differentiated into ECs. The differentiations of SMCs and ECs were compared between NOTCH1 -/- and wild type cells. The expression of NCSC markers (SRY-related HMG-box 10 and transcription factor AP-2 alpha) was significantly lower in NOTCH1 -/- NCSCs than in wild type NCSCs. The SMCs derived from NOTCH1 -/- NCSCs showed immature morphology with smaller size and decreased expression of all SMC-specific contractile proteins. In NOTCH1 -/- CVPCs, the expression of ISL1, NKX2.5, and MYOCD was significantly lower than that in isogenic control CVPCs, indicating impaired differentiation from iPSCs to CVPCs. The NOTCH1 -/- ECs derived from CVPCs showed significantly lower expression of cluster of differentiation 105 and cluster of differentiation 31 mRNA and protein, indicating a defective differentiation process. NOTCH1 is critical in SMC and EC differentiation of iPSCs through NCSCs and CVPCs, respectively. NOTCH1 gene mutations might potentially contribute to the development of thoracic aortic aneurysms by affecting SMC differentiation in some patients with bicuspid aortic valve. Copyright © 2018 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
MiR-21 is induced in endothelial cells by shear stress and modulates apoptosis and eNOS activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, Martina; Baker, Meredith B.; Moore, Jeffrey P.
Mechanical forces associated with blood flow play an important role in regulating vascular signaling and gene expression in endothelial cells (ECs). MicroRNAs (miRNAs) are a class of noncoding RNAs that posttranscriptionally regulate the expression of genes involved in diverse cell functions, including differentiation, growth, proliferation, and apoptosis. miRNAs are known to have an important role in modulating EC biology, but their expression and functions in cells subjected to shear stress conditions are unknown. We sought to determine the miRNA expression profile in human ECs subjected to unidirectional shear stress and define the role of miR-21 in shear stress-induced changes inmore » EC function. TLDA array and qRT-PCR analysis performed on HUVECs exposed to prolonged unidirectional shear stress (USS, 24 h, 15 dynes/cm{sup 2}) identified 13 miRNAs whose expression was significantly upregulated (p < 0.05). The miRNA with the greatest change was miR-21; it was increased 5.2-fold (p = 0.002) in USS-treated versus control cells. Western analysis demonstrated that PTEN, a known target of miR-21, was downregulated in HUVECs exposed to USS or transfected with pre-miR-21. Importantly, HUVECs overexpressing miR-21 had decreased apoptosis and increased eNOS phosphorylation and nitric oxide (NO{sup {center_dot}}) production. These data demonstrate that shear stress forces regulate the expression of miRNAs in ECs, and that miR-21 influences endothelial biology by decreasing apoptosis and activating the NO{sup {center_dot}} pathway. These studies advance our understanding of the mechanisms by which shear stress forces modulate vascular homeostasis.« less
Hsu, Janet; Rappaport, Jeff; Muro, Silvia
2014-01-01
Purpose The blood-brain barrier (BBB) represents a target for therapeutic intervention and an obstacle for brain drug delivery. Targeting endocytic receptors on brain endothelial cells (ECs) helps transporting drugs and carriers into and across this barrier. While most receptors tested are associated with clathrin-mediated pathways, clathrin-independent routes are rather unexplored. We have examined the potential for one of these pathways, cell adhesion molecule (CAM)-mediated endocytosis induced by targeting intercellular adhesion molecule 1 (ICAM-1), to transport drug carriers into and across BBB models. Methods Model polymer nanocarriers (NCs) coated with control IgG or antibodies against ICAM-1 (IgG NCs vs. anti-ICAM NCs; ~250-nm) were incubated with human brain ECs, astrocytes (ACs), or pericytes (PCs) grown as monocultures or bilayered (endothelial+subendothelial) co-cultures. Results ICAM-1 was present and overexpressed in disease-like conditions on ECs and, at a lesser extent, on ACs and PCs which are BBB subendothelial components. Specific targeting and CAM-mediated uptake of anti-ICAM NCs occurred in these cells, although this was greater for ECs. Anti-ICAM NCs were transported across endothelial monolayers and endothelial+subendothelial co-cultures modeling the BBB. Conclusions CAM-mediated transport induced by ICAM-1 targeting operates in endothelial and subendothelial cellular components of the BBB, which may provide an avenue to overcome this barrier. PMID:24558007
Hsu, Janet; Rappaport, Jeff; Muro, Silvia
2014-07-01
The blood-brain barrier (BBB) represents a target for therapeutic intervention and an obstacle for brain drug delivery. Targeting endocytic receptors on brain endothelial cells (ECs) helps transport drugs and carriers into and across this barrier. While most receptors tested are associated with clathrin-mediated pathways, clathrin-independent routes are rather unexplored. We have examined the potential for one of these pathways, cell adhesion molecule (CAM)-mediated endocytosis induced by targeting intercellular adhesion molecule -1 (ICAM-1), to transport drug carriers into and across BBB models. Model polymer nanocarriers (NCs) coated with control IgG or antibodies against ICAM-1 (IgG NCs vs. anti-ICAM NCs; ~250-nm) were incubated with human brain ECs, astrocytes (ACs), or pericytes (PCs) grown as monocultures or bilayered (endothelial+subendothelial) co-cultures. ICAM-1 was present and overexpressed in disease-like conditions on ECs and, at a lesser extent, on ACs and PCs which are BBB subendothelial components. Specific targeting and CAM-mediated uptake of anti-ICAM NCs occurred in these cells, although this was greater for ECs. Anti-ICAM NCs were transported across endothelial monolayers and endothelial+subendothelial co-cultures modeling the BBB. CAM-mediated transport induced by ICAM-1 targeting operates in endothelial and subendothelial cellular components of the BBB, which may provide an avenue to overcome this barrier.
Huang, Menggui; Liu, Tianrun; Ma, Peihong; Mitteer, R. Alan; Zhang, Zhenting; Kim, Hyun Jun; Yeo, Eujin; Zhang, Duo; Cai, Peiqiang; Li, Chunsheng; Zhang, Lin; Zhao, Botao; Roccograndi, Laura; O’Rourke, Donald M.; Dahmane, Nadia; Gong, Yanqing; Koumenis, Constantinos
2016-01-01
Aberrant vascularization is a hallmark of cancer progression and treatment resistance. Here, we have shown that endothelial cell (EC) plasticity drives aberrant vascularization and chemoresistance in glioblastoma multiforme (GBM). By utilizing human patient specimens, as well as allograft and genetic murine GBM models, we revealed that a robust endothelial plasticity in GBM allows acquisition of fibroblast transformation (also known as endothelial mesenchymal transition [Endo-MT]), which is characterized by EC expression of fibroblast markers, and determined that a prominent population of GBM-associated fibroblast-like cells have EC origin. Tumor ECs acquired the mesenchymal gene signature without the loss of EC functions, leading to enhanced cell proliferation and migration, as well as vessel permeability. Furthermore, we identified a c-Met/ETS-1/matrix metalloproteinase–14 (MMP-14) axis that controls VE-cadherin degradation, Endo-MT, and vascular abnormality. Pharmacological c-Met inhibition induced vessel normalization in patient tumor–derived ECs. Finally, EC-specific KO of Met inhibited vascular transformation, normalized blood vessels, and reduced intratumoral hypoxia, culminating in suppressed tumor growth and prolonged survival in GBM-bearing mice after temozolomide treatment. Together, these findings illustrate a mechanism that controls aberrant tumor vascularization and suggest that targeting Endo-MT may offer selective and efficient strategies for antivascular and vessel normalization therapies in GBM, and possibly other malignant tumors. PMID:27043280
Liu, Rebecca; Manes, Thomas D.; Qin, Lingfeng; Tietjen, Gregory T.; Broecker, Verena; Fang, Caodi; Xie, Catherine; Chen, Ping-Min; Kirkiles-Smith, Nancy C.; Jane-Wit, Dan; Pober, Jordan S.
2018-01-01
Early acute rejection of human allografts is mediated by circulating alloreactive host effector memory T cells (TEM). TEM infiltration typically occurs across graft postcapillary venules and involves sequential interactions with graft-derived endothelial cells (ECs) and pericytes (PCs). While the role of ECs in allograft rejection has been extensively studied, contributions of PCs to this process are largely unknown. This study aimed to characterize the effects and mechanisms of interactions between human PCs and allogeneic TEM. We report that unstimulated PCs, like ECs, can directly present alloantigen to TEM, but while IFN-γ–activated ECs (γ-ECs) show increased ability to stimulate alloreactive T cells, IFN-γ–activated PCs (γ-PCs) instead suppress TEM proliferation but not cytokine production or signaling. RNA sequencing analysis of PCs, γ-PCs, ECs, and γ-ECs reveal induction of indoleamine 2,3-dioxygenase 1 (IDO1) in γ-PCs to significantly higher levels than in γ-ECs that correlates with tryptophan depletion in vitro. Consistently, shRNA knockdown of IDO1 markedly reduces γ-PC–mediated immunoregulatory effects. Furthermore, human PCs express IDO1 in a skin allograft rejection humanized mouse model and in human renal allografts with acute T cell–mediated rejection. We conclude that immunosuppressive properties of human PCs are not intrinsic but instead result from IFN-γ–induced IDO1-mediated tryptophan depletion. PMID:29515027
Cai, Qing; Brissova, Marcela; Reinert, Rachel B.; Pan, Fong Cheng; Brahmachary, Priyanka; Jeansson, Marie; Shostak, Alena; Radhika, Aramandla; Poffenberger, Greg; Quaggin, Susan E.; Jerome, W. Gray; Dumont, Daniel J.; Powers, Alvin C.
2012-01-01
There is a reciprocal interaction between pancreatic islet cells and vascular endothelial cells (EC) in which EC-derived signals promote islet cell differentiation and islet development while islet cell-derived angiogenic factors promote EC recruitment and extensive islet vascularization. To examine the role of angiogenic factors in the coordinated development of islets and their associated vessels, we used a “tet-on” inducible system (mice expressing rat insulin promoter-reverse tetracycline activator transgene and a tet-operon-angiogenic factor transgene) to increase the β cell production of vascular endothelial growth factor-A (VEGF-A), angiopoietin-1 (Ang1), or angiopoietin-2 (Ang2) during islet cell differentiation and islet development. In VEGF-A overexpressing embryos, ECs began to accumulate around epithelial tubes residing in the central region of the developing pancreas (associated with endocrine cells) as early as embryonic day 12.5 (E12.5) and increased dramatically by E16.5. While α and β cells formed islet cell clusters in control embryos at E16.5, the increased EC population perturbed endocrine cell differentiation and islet cell clustering in VEGF-A overexpressing embryos. With continued overexpression of VEGF-A, α and β cells became scattered, remained adjacent to ductal structures, and never coalesced into islets, resulting in a reduction in β cell proliferation and β cell mass at postnatal day 1. A similar impact on islet morphology was observed when VEGF-A was overexpressed in β cells during the postnatal period. In contrast, increased expression of Ang1 or Ang2 in β cells in developing or adult islets did not alter islet differentiation, development, or morphology, but altered islet EC ultrastructure. These data indicate that 1) increased EC number does not promote, but actually impairs β cell proliferation and islet formation; 2) the level of VEGF-A production by islet endocrine cells is critical for islet vascularization during development and postnatally; 3) Angiopoietin-Tie2 signaling in endothelial cells does not have a crucial role in the development or maintenance of islet vascularization. PMID:22546694
Ginsberg, Michael; James, Daylon; Ding, Bi-Sen; Nolan, Daniel; Geng, Fuqiang; Butler, Jason M; Schachterle, William; Pulijaal, Venkat R; Mathew, Susan; Chasen, Stephen T; Xiang, Jenny; Rosenwaks, Zev; Shido, Koji; Elemento, Olivier; Rabbany, Sina Y; Rafii, Shahin
2012-01-01
ETS transcription factors ETV2, FLI1 and ERG1 specify pluripotent stem cells into endothelial cells (ECs). However, these ECs are unstable and drift towards non-vascular cell fates. We show that human mid-gestation c-Kit− lineage-committed amniotic cells (ACs) can be readily reprogrammed into induced vascular endothelial cells (iVECs). Transient ETV2 expression in ACs generated proliferative but immature iVECs, while co-expression with FLI1/ERG1 endowed iVECs with a vascular repertoire and morphology matching mature stable ECs. Brief TGFβ-inhibition functionalized VEGFR2 signaling, augmenting specification of ACs to iVECs. Genome-wide transcriptional analyses showed that iVECs are similar to adult ECs in which vascular-specific genes are turned on and non-vascular genes are silenced. Functionally, iVECs form long-lasting patent vasculature in Matrigel plugs and regenerating livers. Thus, short-term ETV2 expression and TGFβ-inhibition along with constitutive ERG1/FLI1 co-expression reprogram mature ACs into durable and functional iVECs with clinical-scale expansion potential. Public banking of HLA-typed iVECs would establish a vascular inventory for treatment of genetically diverse disorders. PMID:23084400
Takahashi, Masao; Suzuki, Etsu; Oba, Shigeyoshi; Nishimatsu, Hiroaki; Kimura, Kenjiro; Nagano, Tetsuo; Nagai, Ryozo; Hirata, Yasunobu
2010-02-01
Subcutaneous adipose tissue contains a lot of stem cells [adipose-derived stem cells (ASCs)] that can differentiate into a variety of cell lineages. In this study, we isolated ASCs from Wistar rats and examined whether ASCs would efficiently differentiate into vascular endothelial cells (ECs) in vitro. We also administered ASCs in a wire injury model of rat femoral artery and examined their effects. ASCs expressed CD29 and CD90, but not CD34, suggesting that ASCs resemble bone marrow-derived mesenchymal stem cells. When induced to differentiate into ECs with endothelial growth medium (EGM), ASCs expressed Flt-1, but not Flk-1 or mature EC markers such as CD31 and vascular endothelial cadherin. ASCs produced angiopoietin-1 when they were cultured in EGM. ASCs stimulated the migration of EC, as assessed by chemotaxis assay. When ASCs that were cultured in EGM were injected in the femoral artery, the ASCs potently and significantly inhibited neointimal formation without being integrated in the endothelial layer. EGM-treated ASCs significantly suppressed neointimal formation even when they were administered from the adventitial side. ASC administration significantly promoted endothelial repair. These results suggested that although ASCs appear to have little capacity to differentiate into mature ECs, ASCs have the potential to secrete paracrine factors that stimulate endothelial repair. Our results also suggested that ASCs inhibited neointimal formation via their paracrine effect of stimulation of EC migration in situ rather than the direct integration into the endothelial layer.
Bannerman, Douglas D; Eiting, Kristine T; Winn, Robert K; Harlan, John M
2004-10-01
Bacterial lipopolysaccharide (LPS) via its activation of Toll-like receptor-4 contributes to much of the vascular injury/dysfunction associated with gram-negative sepsis. Inhibition of de novo gene expression has been shown to sensitize endothelial cells (EC) to LPS-induced apoptosis, the onset of which correlates with decreased expression of FLICE-like inhibitory protein (FLIP). We now have data that conclusively establish a role for FLIP in protecting EC against LPS-induced apoptosis. Overexpression of FLIP protected against LPS-induced apoptosis, whereas down-regulation of FLIP using antisense oligonucleotides sensitized EC to direct LPS killing. Interestingly, FLIP overexpression suppressed NF-kappaB activation induced by LPS, but not by phorbol ester, suggesting a specific role for FLIP in mediating LPS activation. Conversely, mouse embryo fibroblasts (MEF) obtained from FLIP -/- mice showed enhanced LPS-induced NF-kappaB activation relative to those obtained from wild-type mice. Reconstitution of FLIP-/- MEF with full-length FLIP reversed the enhanced NF-kappaB activity elicited by LPS in the FLIP -/- cells. Changes in the expression of FLIP had no demonstrable effect on other known LPS/Tlr-4-activated signaling pathways including the p38, Akt, and Jnk pathways. Together, these data support a dual role for FLIP in mediating LPS-induced apoptosis and NF-kappaB activation.
Gαq/11-mediated intracellular calcium responses to retrograde flow in endothelial cells.
Melchior, Benoît; Frangos, John A
2012-08-15
Disturbed flow patterns, including reversal in flow direction, are key factors in the development of dysfunctional endothelial cells (ECs) and atherosclerotic lesions. An almost immediate response of ECs to fluid shear stress is the increase in cytosolic calcium concentration ([Ca(2+)](i)). Whether the source of [Ca(2+)](i) is extracellular, released from Ca(2+) intracellular stores, or both is still undefined, though it is likely dependent on the nature of forces involved. We have previously shown that a change in flow direction (retrograde flow) on a flow-adapted endothelial monolayer induces the remodeling of the cell-cell junction along with a dramatic [Ca(2+)](i) burst compared with cells exposed to unidirectional or orthograde flow. The heterotrimeric G protein-α q and 11 subunit (Gα(q/11)) is a likely candidate in effecting shear-induced increases in [Ca(2+)](i) since its expression is enriched at the junction and has been previously shown to be activated within seconds after onset of flow. In flow-adapted human ECs, we have investigated to what extent the Gα(q/11) pathway mediates calcium dynamics after reversal in flow direction. We observed that the elapsed time to peak [Ca(2+)](i) response to a 10 dyn/cm(2) retrograde shear stress was increased by 11 s in cells silenced with small interfering RNA directed against Gα(q/11). A similar lag in [Ca(2+)](i) transient was observed after cells were treated with the phospholipase C (PLC)-βγ inhibitor, U-73122, or the phosphatidylinositol-specific PLC inhibitor, edelfosine, compared with controls. Lower levels of inositol 1,4,5-trisphosphate accumulation seconds after the onset of flow correlated with the increased lag in [Ca(2+)](i) responses observed with the different treatments. In addition, inhibition of the inositol 1,4,5-trisphosphate receptor entirely abrogated flow-induced [Ca(2+)](i). Taken together, our results identify the Gα(q/11)-PLC pathway as the initial trigger for retrograde flow-induced endoplasmic reticulum calcium store release, thereby offering a novel approach to regulating EC dysfunctions in regions subjected to the reversal of blood flow.
Endothelial protein kinase MAP4K4 promotes vascular inflammation and atherosclerosis
Roth Flach, Rachel J.; Skoura, Athanasia; Matevossian, Anouch; Danai, Laura V.; Zheng, Wei; Cortes, Christian; Bhattacharya, Samit K.; Aouadi, Myriam; Hagan, Nana; Yawe, Joseph C.; Vangala, Pranitha; Menendez, Lorena Garcia; Cooper, Marcus P.; Fitzgibbons, Timothy P.; Buckbinder, Leonard; Czech, Michael P.
2015-01-01
Signalling pathways that control endothelial cell (EC) permeability, leukocyte adhesion and inflammation are pivotal for atherosclerosis initiation and progression. Here we demonstrate that the Sterile-20-like mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4), which has been implicated in inflammation, is abundantly expressed in ECs and in atherosclerotic plaques from mice and humans. On the basis of endothelial-specific MAP4K4 gene silencing and gene ablation experiments in Apoe−/− mice, we show that MAP4K4 in ECs markedly promotes Western diet-induced aortic macrophage accumulation and atherosclerotic plaque development. Treatment of Apoe−/− and Ldlr−/− mice with a selective small-molecule MAP4K4 inhibitor also markedly reduces atherosclerotic lesion area. MAP4K4 silencing in cultured ECs attenuates cell surface adhesion molecule expression while reducing nuclear localization and activity of NFκB, which is critical for promoting EC activation and atherosclerosis. Taken together, these results reveal that MAP4K4 is a key signalling node that promotes immune cell recruitment in atherosclerosis. PMID:26688060
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nomura, Sayaka; Iwata, Satoshi; Hatano, Ryo
CD82 (also known as KAI1) belongs to the tetraspanin superfamily of type III transmembrane proteins, and is involved in regulating cell adhesion, migration and proliferation. In contrast to these well-established roles of CD82 in tumor biology, its function in endothelial cell (EC) activity and tumor angiogenesis is yet to be determined. In this study, we show that suppression of CD82 negatively regulates vascular endothelial growth factor (VEGF)-induced angiogenesis. Moreover, we demonstrate that the anti-CD82 mAb 4F9 effectively inhibits phosphorylation of VEGF receptor 2 (VEGFR2), which is the principal mediator of the VEGF-induced angiogenic signaling process in tumor angiogenesis, by regulatingmore » the organization of the lipid raft microdomain signaling platform in human EC. Our present work therefore suggests that CD82 on EC is a potential target for anti-angiogenic therapy in VEGFR2-dependent tumor angiogenesis. -- Highlights: •Knockdown of CD82 decreases EC migration, proliferation and angiogenesis. •Anti-CD82 mAb 4F9 inhibits EC migration, proliferation and angiogenesis. •4F9 inhibits VEGFR2 phosphorylation via control of CD82 distribution in lipid rafts.« less
Suzuki, Hideyuki; Reddy, M S Srinivasa; Naoumkina, Marina; Aziz, Naveed; May, Gregory D; Huhman, David V; Sumner, Lloyd W; Blount, Jack W; Mendes, Pedro; Dixon, Richard A
2005-03-01
Exposure of cell suspension cultures of Medicago truncatula Gaerth. to methyl jasmonate (MeJA) resulted in up to 50-fold induction of transcripts encoding the key triterpene biosynthetic enzyme beta-amyrin synthase (betaAS; EC 5.4.99.-). Transcripts reached maximum levels at 24 h post-elicitation with 0.5 mM MeJA. The entry point enzymes into the phenylpropanoid and flavonoid pathways, L: -phenylalanine ammonia-lyase (PAL; EC 4.3.1.5) and chalcone synthase (CHS; EC 2.3.1.74), respectively, were not induced by MeJA. In contrast, exposure of cells to yeast elicitor (YE) resulted in up to 45- and 14-fold induction of PAL and CHS transcripts, respectively, at only 2 h post-elicitation. betaAS transcripts were weakly induced at 12 h after exposure to YE. Over 30 different triterpene saponins were identified in the cultures, many of which were strongly induced by MeJA, but not by YE. In contrast, cinnamic acids, benzoic acids and isoflavone-derived compounds accumulated following exposure of cultures to YE, but few changes in phenylpropanoid levels were observed in response to MeJA. DNA microarray analysis confirmed the strong differential transcriptional re-programming of the cell cultures for multiple genes in the phenylpropanoid and triterpene pathways in response to MeJA and YE, and indicated different responses of individual members of gene families. This work establishes Medicago cell cultures as an excellent model for future genomics approaches to understand the regulation of legume secondary metabolism.
Sabharwal, Harshana; Cichon, Christoph; Ölschläger, Tobias A; Sonnenborn, Ulrich; Schmidt, M Alexander
2016-09-01
Bacterium-host interactions in the gut proceed via directly contacted epithelial cells, the host's immune system, and a plethora of bacterial factors. Here we characterized and compared exemplary cytokine and microRNA (miRNA) responses of human epithelial and THP-1 cells toward the prototype enteropathogenic Escherichia coli (EPEC) strain E2348/69 (O127:H6) and the probiotic strain Escherichia coli Nissle 1917 (EcN) (O6:K5:H1). Human T84 and THP-1 cells were used as cell culture-based model systems for epithelial and monocytic cells. Polarized T84 monolayers were infected apically or basolaterally. Bacterial challenges from the basolateral side resulted in more pronounced cytokine and miRNA responses than those observed for apical side infections. Interestingly, the probiotic EcN also caused a pronounced transcriptional increase of proinflammatory CXCL1 and interleukin-8 (IL-8) levels when human T84 epithelial cells were infected from the basolateral side. miR-146a, which is known to regulate adaptor molecules in Toll-like receptor (TLR)/NF-κB signaling, was found to be differentially regulated in THP-1 cells between probiotic and pathogenic bacteria. To assess the roles of flagella and flagellin, we employed several flagellin mutants of EcN. EcN flagellin mutants induced reduced IL-8 as well as CXCL1 responses in T84 cells, suggesting that flagellin is an inducer of this cytokine response. Following infection with an EPEC type 3 secretion system (T3SS) mutant, we observed increased IL-8 and CXCL1 transcription in T84 and THP-1 cells compared to that in wild-type EPEC. This study emphasizes the differential induction of miR-146a by pathogenic and probiotic E. coli strains in epithelial and immune cells as well as a loss of probiotic properties in EcN interacting with cells from the basolateral side. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Noels, Heidi; Zhou, Baixue; Tilstam, Pathricia V; Theelen, Wendy; Li, Xiaofeng; Pawig, Lukas; Schmitz, Corinna; Akhtar, Shamima; Simsekyilmaz, Sakine; Shagdarsuren, Erdenechimeg; Schober, Andreas; Adams, Ralf H; Bernhagen, Jürgen; Liehn, Elisa A; Döring, Yvonne; Weber, Christian
2014-06-01
The Cxcl12/Cxcr4 chemokine ligand/receptor axis mediates the mobilization of smooth muscle cell progenitors, driving injury-induced neointimal hyperplasia. This study aimed to investigate the role of endothelial Cxcr4 in neointima formation. β-Galactosidase staining using bone marrow x kinase (Bmx)-CreER(T2) reporter mice and double immunofluorescence revealed an efficient and endothelial-specific deletion of Cxcr4 in Bmx-CreER(T2+) compared with Bmx-CreER(T2-) Cxcr4-floxed apolipoprotein E-deficient (Apoe(-/-)) mice (referred to as Cxcr4(EC-KO)ApoE(-/-) and Cxcr4(EC-WT) ApoE(-/-), respectively). Endothelial Cxcr4 deficiency significantly increased wire injury-induced neointima formation in carotid arteries from Cxcr4(EC-KO)ApoE(-/-) mice. The lesions displayed a higher number of macrophages, whereas the smooth muscle cell and collagen content were reduced. This was associated with a significant reduction in reendothelialization and endothelial cell proliferation in injured Cxcr4(EC-KO)ApoE(-/-) carotids compared with Cxcr4(EC-WT)ApoE(-/-) controls. Furthermore, stimulation of human aortic endothelial cells with chemokine (C-X-C motif) ligand 12 (CXCL12) significantly enhanced their wound-healing capacity in an in vitro scratch assay, an effect that could be reversed with the CXCR4 antagonist AMD3100. Also, flow cytometric analysis showed a reduced mobilization of Sca1(+)Flk1(+)Cd31(+) and of Lin(-)Sca1(+) progenitors in Cxcr4(EC-KO) ApoE(-/-) mice after vascular injury, although Cxcr4 surface expression was unaltered. No differences could be detected in plasma concentrations of Cxcl12, vascular endothelial growth factor, sphingosine 1-phosphate, or Flt3 (fms-related tyrosine kinase 3) ligand, all cytokines with an established role in progenitor cell mobilization. Nonetheless, double immunofluorescence revealed a significant reduction in local endothelial Cxcl12 staining in injured carotids from Cxcr4(EC-KO)ApoE(-/-) mice. Endothelial Cxcr4 is crucial for efficient reendothelialization after vascular injury through endothelial wound healing and proliferation, and through the mobilization of Sca1(+)Flk1(+)Cd31(+) cells, often referred to as circulating endothelial progenitor cells. © 2014 American Heart Association, Inc.
Giordano, Samantha; Zhao, Xiangmin; Xing, Daisy; Hage, Fadi; Oparil, Suzanne; Cooke, John P; Lee, Jieun; Nakayama, Karina H; Huang, Ngan F; Chen, Yiu-Fai
2016-03-15
Interleukin-8 (IL8) is highly expressed by injured arteries in a variety of diseases and is a chemoattractant for neutrophils which express IL8 receptors IL8RA and RB (IL8RA/B) on their membranes. Neutrophils interact with the damaged endothelium and initiate an inflammatory cascade at the site of injury. We have generated a novel translational targeted cell therapy for acute vascular injury using adenoviral vectors to overexpress IL8RA/B and green fluorescent protein (GFP) on the surface of endothelial cells (ECs) derived from human induced pluripotent stem cells (HiPS-IL8RA/B-ECs). We hypothesize that HiPS-IL8RA/B-ECs transfused intravenously into rats with balloon injury of the carotid artery will target to the injured site and compete with neutrophils, thus inhibiting inflammation and neointima formation. Young adult male Sprague-Dawley rats underwent balloon injury of the right carotid artery and received intravenous transfusion of saline vehicle, 1.5 × 10(6) HiPS-ECs, 1.5 × 10(6) HiPS-Null-ECs, or 1.5 × 10(6) HiPS-IL8RA/B-ECs immediately after endoluminal injury. Tissue distribution of HiPS-IL8RA/B-ECs was analyzed by a novel GFP DNA qPCR method. Cytokine and chemokine expression and leukocyte infiltration were measured in injured and uninjured arteries at 24 h postinjury by ELISA and immunohistochemistry, respectively. Neointimal, medial areas, and reendothelialization were measured 14 days postinjury. HiPS-IL8RA/B-ECs homed to injured arteries, inhibited inflammatory mediator expression and inflammatory cell infiltration, accelerated reendothelialization, and attenuated neointima formation after endoluminal injury while control HiPS-ECs and HiPS-Null-ECs did not. HiPS-IL8RA/B-ECs transfused into rats with endoluminal carotid artery injury target to the injured artery and provide a novel strategy to treat vascular injury.
Giordano, Samantha; Zhao, Xiangmin; Xing, Daisy; Hage, Fadi; Oparil, Suzanne; Cooke, John P.; Lee, Jieun; Nakayama, Karina H.; Huang, Ngan F.
2016-01-01
Interleukin-8 (IL8) is highly expressed by injured arteries in a variety of diseases and is a chemoattractant for neutrophils which express IL8 receptors IL8RA and RB (IL8RA/B) on their membranes. Neutrophils interact with the damaged endothelium and initiate an inflammatory cascade at the site of injury. We have generated a novel translational targeted cell therapy for acute vascular injury using adenoviral vectors to overexpress IL8RA/B and green fluorescent protein (GFP) on the surface of endothelial cells (ECs) derived from human induced pluripotent stem cells (HiPS-IL8RA/B-ECs). We hypothesize that HiPS-IL8RA/B-ECs transfused intravenously into rats with balloon injury of the carotid artery will target to the injured site and compete with neutrophils, thus inhibiting inflammation and neointima formation. Young adult male Sprague-Dawley rats underwent balloon injury of the right carotid artery and received intravenous transfusion of saline vehicle, 1.5 × 106 HiPS-ECs, 1.5 × 106 HiPS-Null-ECs, or 1.5 × 106 HiPS-IL8RA/B-ECs immediately after endoluminal injury. Tissue distribution of HiPS-IL8RA/B-ECs was analyzed by a novel GFP DNA qPCR method. Cytokine and chemokine expression and leukocyte infiltration were measured in injured and uninjured arteries at 24 h postinjury by ELISA and immunohistochemistry, respectively. Neointimal, medial areas, and reendothelialization were measured 14 days postinjury. HiPS-IL8RA/B-ECs homed to injured arteries, inhibited inflammatory mediator expression and inflammatory cell infiltration, accelerated reendothelialization, and attenuated neointima formation after endoluminal injury while control HiPS-ECs and HiPS-Null-ECs did not. HiPS-IL8RA/B-ECs transfused into rats with endoluminal carotid artery injury target to the injured artery and provide a novel strategy to treat vascular injury. PMID:26801304
Angiotensin-(1-7) regulates Angiotensin II-induced VCAM-1 expression on vascular endothelial cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Feng; William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London; Ren, Jingyi
Highlights: Black-Right-Pointing-Pointer We for the first time found that Ang-(1-7) inhibits Ang II-induced VCAM-1 expression. Black-Right-Pointing-Pointer The inhibitory effect of Ang-(1-7) on VCAM-1 is mediated by MAS receptor. Black-Right-Pointing-Pointer The effect of Ang-(1-7) is due to the suppression of NF-kappaB translocation. -- Abstract: Angiotensin II (Ang II) and Angiotensin-(1-7) (Ang-(1-7)) are key effector peptides in the renin-angiotensin system. Increased circulatory Ang II level is associated with the development of hypertension and atherosclerosis, whereas Ang-(1-7) is a counter-regulatory mediator of Ang II which appears to be protective against cardiovascular disease. However, whether Ang-(1-7) regulates the action of Ang II on vascularmore » endothelial cells (EC) remains unclear. We investigated the effects of Ang II and Ang-(1-7) in the context of atherogenesis, specifically endothelial cell VCAM-1 expression that is implicated in early plaque formation. The results show that Ang II increased VCAM-1 mRNA expression and protein displayed on EC surface, while Ang-(1-7) alone exerted no effects. However, Ang-(1-7) significantly suppressed Ang II-induced VCAM-1 expression. Ang-(1-7) also inhibited the Ang II-induced VCAM-1 promoter activity driven by transcription factor NF-KappaB. Furthermore, immunofluorescence assay and ELISA showed that Ang II facilitated the nuclear translocation of NF-kappaB in ECs, and this was attenuated by the presence of Ang-(1-7). The inhibitory effects of Ang-(1-7) on Ang II-induced VCAM-1 promoter activity and NF-kappaB nuclear translocation were all reversed by the competitive antagonist of Ang-(1-7) at the Mas receptor. Our results suggest that Ang-(1-7) mediates its affects on ECs through the Mas receptor, and negatively regulates Ang II-induced VCAM-1 expression by attenuating nuclear translocation of NF-kappaB.« less
Kim, Jai-Hyun; Peacock, Matthew R.; George, Steven C.; Hughes, Christopher C.W.
2012-01-01
ALK1 (ACVRL1) is a member of the TGFβ receptor family and is expressed predominantly by arterial endothelial cells (EC). Mutations in ACVRL1 are responsible for Hereditary Hemorrhagic Telangiectasia Type 2 (HHT2), a disease manifesting as fragile vessels, capillary overgrowth, and numerous arterio-venous malformations (AVMs). Arterial EC also express EphrinB2, which has multiple roles in vascular development and angiogenesis and is known to be reduced in ACVRL1 knockout mice. Using an in vitro angiogenesis model we find that the Alk1 ligand BMP9 induces EphrinB2 in EC, and this is entirely dependent on expression of Alk1 and at least one of the co-receptors BMPRII or ActRII. BMP9 induces both ID1 and ID3, and both are necessary for full induction of EphrinB2. Loss of Alk1 or EphrinB2 results in increased arterial-venous anastomosis, while loss of Alk1 but not EphrinB2 results in increased VEGFR2 expression and enhanced capillary sprouting. Conversely, BMP9 blocks EC sprouting and this is dependent on Alk1, BMPRII/ActRII and ID1/ID3. Finally, notch signaling overcomes the loss of Alk1 – restoring EphrinB2 expression in EC, and curbing excess sprouting. Thus, in an in vitro model of HHT2, loss of Alk1 blocks BMP9 signaling, resulting in reduced EphrinB2 expression, enhanced VEGFR2 expression, and misregulated EC sprouting and anastomosis. PMID:22622516
La Maestra, Sebastiano; D’Agostini, Francesco; Izzotti, Alberto; Micale, Rosanna T.; Mastracci, Luca; Camoirano, Anna; Balansky, Roumen; Trosko, James E.; Steele, Vernon E.; De Flora, Silvio
2015-01-01
Chemoprevention provides an important strategy for cancer control in passive smokers. Due to the crucial role played by smoke-related chronic inflammation in lung carcinogenesis, of special interest are extensively used pharmacological agents, such as nonsteroidal anti-inflammatory drugs (NSAIDs). We evaluated the ability of aspirin and naproxen, inhibitors of both cyclooxygenase-1 and cyclooxygenase -2, to modulate environmental cigarette smoke (ECS)-induced lung carcinogenesis in A/J mice of both genders. Based on a subchronic toxicity study in 180 postweaning mice, we used 1600mg/kg diet aspirin and 320mg/kg diet naproxen. In the tumor chemoprevention study, using 320 mice, exposure to ECS started soon after birth and administration of NSAIDs started after weaning. At 10 weeks of life, the NSAIDs did not affect the presence of occult blood in feces. As assessed in a subset of 40 mice, bulky DNA adducts and 8-hydroxy-2′-deoxyguanosine levels were considerably increased in ECS-exposed mice and, irrespective of gender, both NSAIDs remarkably inhibited these nucleotide alterations. After exposure for 4 months followed by 5 months in filtered air, ECS induced a significant increase in the yield of surface lung tumors, the 43.7% of which were adenomas and the 56.3% were adenocarcinomas. Oct-4 (octamer-binding transcription factor 4), a marker of cell stemness, was detected in some adenocarcinoma cells. The NAIDs attenuated the yield of lung tumors, but prevention of ECS-induced lung adenomas was statistically significant only in female mice treated with aspirin, which supports a role for estrogens in ECS-related lung carcinogenesis and highlights the antiestrogenic properties of NSAIDs. PMID:26464196
Chen, Lan; Li, Wen; Qi, Di; Wang, Daoxin
2018-04-01
Acute respiratory distress syndrome (ARDS) is a heterogenous syndrome characterised by diffuse alveolar damage, with an increase in lung endothelial and epithelial permeability. Lycium barbarum polysaccharide (LBP), the most biologically active fraction of wolfberry, possesses antiapoptotic and antioxidative effects in distinct situations. In the present study, the protective effects and potential molecular mechanisms of LBP against lipopolysaccharide (LPS)-induced ARDS were investigated in the mice and in the human pulmonary microvascular endothelial cells (HPMECs). The data indicated that pretreatment with LBP significantly attenuated LPS-induced lung inflammation and pulmonary oedema in vivo. LBP significantly reversed LPS-induced decrease in cell viability, increase in apoptosis and oxidative stress via inhibiting caspase-3 activation and intracellular reactive oxygen species (ROS) production in vitro. Moreover, the scratch assay verified that LBP restored the dysfunction of endothelial cells (ECs) migration induced by LPS stimulation. Furthermore, LBP also significantly suppressed LPS-induced NF-κB activation, and subsequently reversed the release of cytochrome c. These results showed the antiapoptosis and antioxidant LBP could partially protect against LPS-induced ARDS through promoting the ECs survival and scavenging ROS via inhibition of NF-κB signalling pathway. Thus, LBP could be potentially used for ARDS against pulmonary inflammation and pulmonary oedema.
Han, Sungwon; Auger, Christopher; Thomas, Sean C; Beites, Crestina L; Appanna, Vasu D
2014-02-01
The significance of metabolic networks in guiding the fate of the stem cell differentiation is only beginning to emerge. Oxidative metabolism has been suggested to play a major role during this process. Therefore, it is critical to understand the underlying mechanisms of metabolic alterations occurring in stem cells to manipulate the ultimate outcome of these pluripotent cells. Here, using P19 murine embryonal carcinoma cells as a model system, the role of mitochondrial biogenesis and the modulation of metabolic networks during dimethyl sulfoxide (DMSO)-induced differentiation are revealed. Blue native polyacrylamide gel electrophoresis (BN-PAGE) technology aided in profiling key enzymes, such as hexokinase (HK) [EC 2.7.1.1], glucose-6-phosphate isomerase (GPI) [EC 5.3.1.9], pyruvate kinase (PK) [EC 2.7.1.40], Complex I [EC 1.6.5.3], and Complex IV [EC 1.9.3.1], that are involved in the energy budget of the differentiated cells. Mitochondrial adenosine triphosphate (ATP) production was shown to be increased in DMSO-treated cells upon exposure to the tricarboxylic acid (TCA) cycle substrates, such as succinate and malate. The increased mitochondrial activity and biogenesis were further confirmed by immunofluorescence microscopy. Collectively, the results indicate that oxidative energy metabolism and mitochondrial biogenesis were sharply upregulated in DMSO-differentiated P19 cells. This functional metabolic and proteomic study provides further evidence that modulation of mitochondrial energy metabolism is a pivotal component of the cellular differentiation process and may dictate the final destiny of stem cells.
Modulation of Gardos channel activity by cytokines in sickle erythrocytes.
Rivera, Alicia; Jarolim, Petr; Brugnara, Carlo
2002-01-01
It has recently been shown that the Gardos channel activity of mouse erythrocytes can be modified by endothelins, suggesting a functional linkage between endothelin receptors and the Gardos channel. Using (86)Rubidium ((86)Rb) influx, effects were estimated of proinflammatory molecules such as platelet activator factor (PAF), endothelin-1 (ET-1), interleukin-10 (IL-10), and regulated on activation normal T cells expressed and secreted (RANTES) on the Gardos channel activity in human normal and sickle red cells. It was found that PAF (EC(50): 15 +/- 7 nM), RANTES (EC(50), 9 +/- 6 ng/mL [1.2 +/- 0.8 nM]), IL-10 (EC(50), 11 +/- 8 ng/mL [204 +/- 148 nM]), and ET-1 (EC(50), 123 +/- 34 nM) induce a significant increase in Gardos channel activity-between 28% and 84%-over the control. In addition, these agents modify the Gardos channel affinity for internal Ca(++) (K(0.5)) by 2- to 6-fold. Biochemical evidence is provided for the presence of ET receptor subtype B in sickle and normal red cells. Furthermore, it was found that ET-1, PAF, RANTES, and IL-10 induce a significant increase in red cell density (P <.05). These data suggest that activation of the Gardos channel is functionally coupled to receptor motifs such as C-X-C (PAF), C-C (RANTES), and ET receptor subtype B. Thus, cell volume regulation or erythrocyte hydration states might be altered by activation of the Gardos channel by cytokines in vivo. The role of these mediators in promoting sickle cell dehydration in vivo is under investigation.
Wong, Andrew K.; LLanos, Pierre; Boroda, Nickolas; Rosenberg, Seth R.; Rabbany, Sina Y.
2017-01-01
Shear stresses induced by laminar fluid flow are essential to properly recapitulate the physiological microenvironment experienced by endothelial cells (ECs). ECs respond to these stresses via mechanotransduction by modulating their phenotype and biomechanical characteristics, which can be characterized by Atomic Force Microscopy (AFM). Parallel Plate Flow Chambers (PPFCs) apply unidirectional laminar fluid flow to EC monolayers in vitro. Since ECs in sealed PPFCs are inaccessible to AFM probes, cone-and-plate viscometers (CPs) are commonly used to apply shear stress. This paper presents a comparison of the efficacies of both methods. Computational Fluid Dynamic simulation and validation testing using EC responses as a metric have indicated limitations in the use of CPs to apply laminar shear stress. Monolayers subjected to laminar fluid flow in a PPFC respond by increasing cortical stiffness, elongating, and aligning filamentous actin in the direction of fluid flow to a greater extent than CP devices. Limitations using CP devices to provide laminar flow across an EC monolayer suggest they are better suited when studying EC response for disturbed flow conditions. PPFC platforms allow for exposure of ECs to laminar fluid flow conditions, recapitulating cellular biomechanical behaviors, whereas CP platforms allow for mechanical characterization of ECs under secondary flow. PMID:28989541
Davis, George E.; Stratman, Amber N.; Sacharidou, Anastasia; Koh, Wonshill
2013-01-01
Many studies reveal a fundamental role for extracellular matrix-mediated signaling through integrins and Rho GTPases as well as matrix metalloproteinases (MMPs) in the molecular control of vascular tube morphogenesis in three-dimensional (3D) tissue environments. Recent work has defined an EC lumen signaling complex of proteins that controls these vascular morphogenic events. These findings reveal a signaling interdependence between Cdc42 and MT1-MMP to control the 3D matrix-specific process of EC tubulogenesis. The EC tube formation process results in the creation of a network of proteolytically-generated vascular guidance tunnels in 3D matrices that are utilized to remodel EC-lined tubes through EC motility and could facilitate processes such as flow-induced remodeling and arteriovenous EC sorting and differentiation. Within vascular guidance tunnels, key dynamic interactions occur between endothelial cells (ECs) and pericytes to affect vessel remodeling, diameter, and vascular basement membrane matrix assembly, a fundamental process necessary for endothelial tube maturation and stabilization. Thus, the EC lumen and tube formation mechanism coordinates the concomitant establishment of a network of vascular tubes within tunnel spaces to allow for flow responsiveness, EC-mural cell interactions, and vascular extracellular matrix assembly to control the development of the functional microcirculation. PMID:21482411
Okutsu, Mitsuharu; Call, Jarrod A.; Lira, Vitor A.; Zhang, Mei; Donet, Jean A.; French, Brent A.; Martin, Kyle S.; Peirce-Cottler, Shayn M.; Rembold, Christopher M.; Annex, Brian H.; Yan, Zhen
2014-01-01
Background Congestive heart failure (CHF) is a leading cause of morbidity and mortality, and oxidative stress has been implicated in the pathogenesis of cachexia (muscle wasting) and the hallmark symptom, exercise intolerance. We have previously shown that a nitric oxide (NO)-dependent antioxidant defense renders oxidative skeletal muscle resistant to catabolic wasting. Here, we aimed to identify and determine the functional role of the NO-inducible antioxidant enzyme(s) in protection against cardiac cachexia and exercise intolerance in CHF. Methods and Results We demonstrated that systemic administration of endogenous nitric oxide donor S-Nitrosoglutathione in mice blocked the reduction of extracellular superoxide dismutase (EcSOD) protein expression, the induction of MAFbx/Atrogin-1 mRNA expression and muscle atrophy induced by glucocorticoid. We further showed that endogenous EcSOD, expressed primarily by type IId/x and IIa myofibers and enriched at endothelial cells, is induced by exercise training. Muscle-specific overexpression of EcSOD by somatic gene transfer or transgenesis [muscle creatine kinase (MCK)-EcSOD] in mice significantly attenuated muscle atrophy. Importantly, when crossbred into a mouse genetic model of CHF [α-myosin heavy chain (MHC)-calsequestrin] MCK-EcSOD transgenic mice had significant attenuation of cachexia with preserved whole body muscle strength and endurance capacity in the absence of reduced heart failure. Enhanced EcSOD expression significantly ameliorated CHF-induced oxidative stress, MAFbx/Atrogin-1 mRNA expression, loss of mitochondria and vascular rarefaction in skeletal muscle. Conclusions EcSOD plays an important antioxidant defense function in skeletal muscle against cardiac cachexia and exercise intolerance in CHF. PMID:24523418
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kabakov, Alexander E.; Makarova, Yulia M.; Malyutina, Yana V.
Purpose: In addition to invasive tumor cells, endothelial cells (ECs) of the tumor vasculature are an important target for anticancer radiotherapy. The purpose of the present work is to investigate how 17-N-allilamino-17-demethoxygeldanamycin (17AAG), known as an anticancer drug inhibiting heat shock protein 90 (Hsp90), modifies radiation responses of human vascular ECs. Methods and Materials: The ECs cultured from human umbilical veins were exposed to {gamma}-irradiation, whereas some EC samples were pretreated with growth factors and/or 17AAG. Postirradiation cell death/survival and morphogenesis were assessed by means of terminal deoxynucleotidyl transferase biotin-deoxyuridine triphosphate nick end labeling or annexin V staining and clonogenicmore » and tube-formation assays. The 17AAG-affected expression and phosphorylation of radioresistance-related proteins were probed by means of immunoblotting. Dominant negative or constitutively activated Akt was transiently expressed in ECs to manipulate Akt activity. Results: It was found that nanomolar concentrations of 17AAG sensitize ECs to relatively low doses (2-6 Gy) of {gamma}-irradiation and abolish the radioprotective effects of vascular endothelial growth factor and basic fibroblast growth factor. The drug-induced radiosensitization of ECs seems to be caused by prevention of Hsp90-dependent phosphorylation (activation) of Akt that results in blocking the radioprotective phosphatidylinositol 3-kinase/Akt pathway. Conclusions: Clinically achievable concentrations of 17AAG can decrease the radioresistance intrinsic to vascular ECs and minimize the radioprotection conferred upon them by tumor-derived growth factors. These findings characterize 17AAG as a promising radiosensitizer for the tumor vasculature.« less
Chaudhary, Neelkamal; Datta, Kausik; Askin, Frederic B.; Staab, Janet F.
2012-01-01
Rationale: Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) alter epithelial cell (EC) interactions with multiple microbes, such that dysregulated inflammation and injury occur with airway colonization in people with cystic fibrosis (CF). Aspergillus fumigatus frequently colonizes CF airways, but it has been assumed to be an innocent saprophyte; its potential role as a cause of lung disease is controversial. Objectives: To study the interactions between Aspergillus and EC, and the role of the fungus in evoking inflammatory responses. Methods: A. fumigatus expressing green fluorescent protein was developed for in vitro and in vivo models, which used cell lines and mouse tracheal EC. Measurements and Main Results: Fungal spores (conidia) are rapidly ingested by ECs derived from bronchial cell lines and murine tracheas, supporting a role for EC in early airway clearance. Bronchial ECs harboring CFTR mutations (ΔF508) or deletion demonstrate impaired uptake and killing of conidia, and ECs with CFTR mutation undergo more conidial-induced apoptosis. Germinated (hyphal) forms of the fungus evoke secretion of inflammatory mediators, with CFTR mutation resulting in increased airway levels of macrophage inflammatory protein 2 and KC, and higher lung monocyte chemotactic protein-1. After A. fumigatus inhalation, CFTR−/− mice develop exaggerated lymphocytic inflammation, mucin accumulation, and lung injury. Conclusions: Data demonstrate a critical role for CFTR in mediating EC responses to A. fumigatus. Results suggest that the fungus elicits aberrant pulmonary inflammation in the setting of CFTR mutation, supporting the potential role of antifungals to halt progressive CF lung disease. PMID:22135344
Itagaki, Kiyoshi; Zhang, Qin; Hauser, Carl J
2010-04-01
Inflammation and microvascular thrombosis are interrelated causes of acute lung injury in the systemic inflammatory response syndrome. Neutrophils (polymorphonuclear neutrophil [PMN]) and endothelial cells (EC) activated by systemic inflammatory response syndrome interact to increase pulmonary vascular permeability, but the interactions between PMN and EC are difficult to study. Recently, we reported that sphingosine 1-phosphate is a second messenger eliciting store-operated calcium entry (SOCE) in response to inflammatory agonists in both PMN and EC. Store-operated calcium entry is therefore a target mechanism for the therapeutic modulation of inflammatory PMN-EC interactions. Here, we isolated, modeled, and studied the effects of pharmacologic SOCE inhibition using real-time systems to monitor EC permeability after exposure to activated PMN. We created systems to continuously assess permeability of human pulmonary artery endothelial cells and human microvascular endothelial cells from lung. Endothelial cells show increased permeability after challenge by activated PMN. Such permeability increases can be attenuated by exposure of the cocultures to sphingosine kinase (SK) inhibitors (SKI-2, N,N-dimethylsphingosine [DMS]) or Ca2+ entry inhibitors (Gd3+, MRS-1845). Human microvascular endothelial cells from lung pretreated with SKI-2 or DMS showed decreased permeability when later exposed to activated PMN. Likewise, when PMNs were activated with thapsigargin (TG) in the presence of SKI-2, DMS, Gd, or MRS-1845, their ability to cause EC permeability subsequently was reduced. SKI-2 also inhibited the activation of human pulmonary artery ECs by thrombin. These studies will provide a firm mechanistic foundation for understanding how systemic SOCE inhibition may be used to prevent acute lung injury in vivo.
Hadjadj, Jérôme; Canaud, Guillaume; Mirault, Tristan; Samson, Maxime; Bruneval, Patrick; Régent, Alexis; Goulvestre, Claire; Witko-Sarsat, Véronique; Costedoat-Chalumeau, Nathalie; Guillevin, Loïc; Mouthon, Luc; Terrier, Benjamin
2018-06-01
Takayasu arteritis (TA) and GCA are large-vessel vasculitides characterized by vascular remodelling involving endothelial cells (ECs) and vascular smooth muscle cells. Mammalian target of rapamycin (mTOR) pathway has been involved in vascular remodelling. We hypothesized that the mTOR pathway was involved in the pathogenesis of large-vessel vasculitis. We used IF analysis on aortic and temporal artery biopsies from patients with TA and GCA to assess the involvement of the mTOR pathway and searched for antibodies targeting ECs in serum by IIF and cellular ELISA. We evaluated in vitro the effect of purified IgG from patients on mTOR pathway activation and cell proliferation. IF analyses on tissues revealed that both mTORC1 and mTORC2 are activated specifically in ECs from TA patients but not in ECs from GCA patients and healthy controls (HCs). Using IIF and ELISA, we observed higher levels of antibodies binding to ECs in TA patients compared with GCA patients and HCs. Using western blot, we demonstrated that purified IgG from TA patients caused mTORC1 activation in ECs, whereas this effect was not observed with purified IgG from GCA patients or HCs. Purified IgG from TA patients induced a significant EC proliferation compared with to GCA and HC IgG, and this effect was decreased after EC exposure with sirolimus, a specific mTOR inhibitor and PI3K inhibitor. Our results suggest that antibodies targeting ECs drive endothelial remodelling in TA through activation of the mTOR pathway, but not in GCA. Inhibition of the mTOR pathway could represent a therapeutic option in TA.
Interleukin-35 Inhibits Endothelial Cell Activation by Suppressing MAPK-AP-1 Pathway.
Sha, Xiaojin; Meng, Shu; Li, Xinyuan; Xi, Hang; Maddaloni, Massimo; Pascual, David W; Shan, Huimin; Jiang, Xiaohua; Wang, Hong; Yang, Xiao-feng
2015-07-31
Vascular response is an essential pathological mechanism underlying various inflammatory diseases. This study determines whether IL-35, a novel responsive anti-inflammatory cytokine, inhibits vascular response in acute inflammation. Using a mouse model of LPS-induced acute inflammation and plasma samples from sepsis patients, we found that IL-35 was induced in the plasma of mice after LPS injection as well as in the plasma of sepsis patients. In addition, IL-35 decreased LPS-induced proinflammatory cytokines and chemokines in the plasma of mice. Furthermore, IL-35 inhibited leukocyte adhesion to the endothelium in the vessels of lung and cremaster muscle and decreased the numbers of inflammatory cells in bronchoalveolar lavage fluid. Mechanistically, IL-35 inhibited the LPS-induced up-regulation of endothelial cell (EC) adhesion molecule VCAM-1 through IL-35 receptors gp130 and IL-12Rβ2 via inhibition of the MAPK-activator protein-1 (AP-1) signaling pathway. We also found that IL-27, which shares the EBI3 subunit with IL-35, promoted LPS-induced VCAM-1 in human aortic ECs and that EBI3-deficient mice had similar vascular response to LPS when compared with that of WT mice. These results demonstrated for the first time that inflammation-induced IL-35 inhibits LPS-induced EC activation by suppressing MAPK-AP1-mediated VCAM-1 expression and attenuates LPS-induced secretion of proinflammatory cytokines/chemokines. Our results provide insight into the control of vascular inflammation by IL-35 and suggest that IL-35 is an attractive novel therapeutic reagent for sepsis and cardiovascular diseases. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Vascular Repair by Circumferential Cell Therapy Using Magnetic Nanoparticles and Tailored Magnets.
Vosen, Sarah; Rieck, Sarah; Heidsieck, Alexandra; Mykhaylyk, Olga; Zimmermann, Katrin; Bloch, Wilhelm; Eberbeck, Dietmar; Plank, Christian; Gleich, Bernhard; Pfeifer, Alexander; Fleischmann, Bernd K; Wenzel, Daniela
2016-01-26
Cardiovascular disease is often caused by endothelial cell (EC) dysfunction and atherosclerotic plaque formation at predilection sites. Also surgical procedures of plaque removal cause irreversible damage to the EC layer, inducing impairment of vascular function and restenosis. In the current study we have examined a potentially curative approach by radially symmetric re-endothelialization of vessels after their mechanical denudation. For this purpose a combination of nanotechnology with gene and cell therapy was applied to site-specifically re-endothelialize and restore vascular function. We have used complexes of lentiviral vectors and magnetic nanoparticles (MNPs) to overexpress the vasoprotective gene endothelial nitric oxide synthase (eNOS) in ECs. The MNP-loaded and eNOS-overexpressing cells were magnetic, and by magnetic fields they could be positioned at the vascular wall in a radially symmetric fashion even under flow conditions. We demonstrate that the treated vessels displayed enhanced eNOS expression and activity. Moreover, isometric force measurements revealed that EC replacement with eNOS-overexpressing cells restored endothelial function after vascular injury in eNOS(-/-) mice ex and in vivo. Thus, the combination of MNP-based gene and cell therapy with custom-made magnetic fields enables circumferential re-endothelialization of vessels and improvement of vascular function.
Liñán-Rico, Andromeda; Ochoa-Cortes, Fernando; Zuleta-Alarcon, Alix; Alhaj, Mazin; Tili, Esmerina; Enneking, Josh; Harzman, Alan; Grants, Iveta; Bergese, Sergio; Christofi, Fievos L.
2017-01-01
Background: Enterochromaffin cells (EC) synthesize and release 5-HT and ATP to trigger or modulate gut neural reflexes and transmit information about visceral/pain sensation. Alterations in 5-HT signaling mechanisms may contribute to the pathogenesis of IBD or IBS, but the pharmacologic or molecular mechanisms modulating Ca2+-dependent 5-HT release are not understood. Previous studies indicated that purinergic signaling via ATP and ADP is an important mechanism in modulation of 5-HT release. However, EC cells also respond to UTP and UDP suggesting uridine triphosphate receptor and signaling pathways are involved as well. We tested the hypothesis that UTP is a regulator of 5-HT release in human EC cells. Methods: UTP signaling mechanisms were studied in BON cells, a human EC model, using Fluo-4/Ca2+imaging, patch-clamp, pharmacological analysis, immunohistochemistry, western blots and qPCR. 5-HT release was monitored in BON or EC isolated from human gut surgical specimens (hEC). Results: UTP, UTPγS, UDP or ATP induced Ca2+oscillations in BON. UTP evoked a biphasic concentration-dependent Ca2+response. Cells responded in the order of UTP, ATP > UTPγS > UDP >> MRS2768, BzATP, α,β-MeATP > MRS2365, MRS2690, and NF546. Different proportions of cells activated by UTP and ATP also responded to UTPγS (P2Y4, 50% cells), UDP (P2Y6, 30%), UTPγS and UDP (14%) or MRS2768 (<3%). UTP Ca2+responses were blocked with inhibitors of PLC, IP3R, SERCA Ca2+pump, La3+sensitive Ca2+channels or chelation of intracellular free Ca2+ by BAPTA/AM. Inhibitors of L-type, TRPC, ryanodine-Ca2+pools, PI3-Kinase, PKC or SRC-Kinase had no effect. UTP stimulated voltage-sensitive Ca2+currents (ICa), Vm-depolarization and inhibited IK (not IA) currents. An IKv7.2/7.3 K+ channel blocker XE-991 mimicked UTP-induced Vm-depolarization and blocked UTP-responses. XE-991 blocked IK and UTP caused further reduction. La3+ or PLC inhibitors blocked UTP depolarization; PKC inhibitors, thapsigargin or zero Ca2+buffer did not. UTP stimulated 5-HT release in hEC expressing TPH1, 5-HT, P2Y4/P2Y6R. Zero-Ca2+buffer augmented Ca2+responses and 5-HT release. Conclusion: UTP activates a predominant P2Y4R pathway to trigger Ca2+oscillations via internal Ca2+mobilization through a PLC/IP3/IP3R/SERCA Ca2+signaling pathway to stimulate 5-HT release; Ca2+influx is inhibitory. UTP-induced Vm-depolarization depends on PLC signaling and an unidentified K channel (which appears independent of Ca2+oscillations or Ica/VOCC). UTP-gated signaling pathways triggered by activation of P2Y4R stimulate 5-HT release. PMID:28751862
Liñán-Rico, Andromeda; Ochoa-Cortes, Fernando; Zuleta-Alarcon, Alix; Alhaj, Mazin; Tili, Esmerina; Enneking, Josh; Harzman, Alan; Grants, Iveta; Bergese, Sergio; Christofi, Fievos L
2017-01-01
Background: Enterochromaffin cells (EC) synthesize and release 5-HT and ATP to trigger or modulate gut neural reflexes and transmit information about visceral/pain sensation. Alterations in 5-HT signaling mechanisms may contribute to the pathogenesis of IBD or IBS, but the pharmacologic or molecular mechanisms modulating Ca 2+ -dependent 5-HT release are not understood. Previous studies indicated that purinergic signaling via ATP and ADP is an important mechanism in modulation of 5-HT release. However, EC cells also respond to UTP and UDP suggesting uridine triphosphate receptor and signaling pathways are involved as well. We tested the hypothesis that UTP is a regulator of 5-HT release in human EC cells. Methods: UTP signaling mechanisms were studied in BON cells, a human EC model, using Fluo-4/Ca 2+ imaging, patch-clamp, pharmacological analysis, immunohistochemistry, western blots and qPCR. 5-HT release was monitored in BON or EC isolated from human gut surgical specimens (hEC). Results: UTP, UTPγS, UDP or ATP induced Ca 2+ oscillations in BON. UTP evoked a biphasic concentration-dependent Ca 2+ response. Cells responded in the order of UTP, ATP > UTPγS > UDP > MRS2768, BzATP, α,β-MeATP > MRS2365, MRS2690, and NF546. Different proportions of cells activated by UTP and ATP also responded to UTPγS (P2Y 4 , 50% cells), UDP (P2Y 6 , 30%), UTPγS and UDP (14%) or MRS2768 (<3%). UTP Ca 2+ responses were blocked with inhibitors of PLC, IP3R, SERCA Ca 2+ pump, La 3+ sensitive Ca 2+ channels or chelation of intracellular free Ca 2+ by BAPTA/AM. Inhibitors of L-type, TRPC, ryanodine-Ca 2+ pools, PI3-Kinase, PKC or SRC-Kinase had no effect. UTP stimulated voltage-sensitive Ca 2+ currents (I Ca ), V m -depolarization and inhibited I K (not I A ) currents. An I Kv 7.2/7.3 K + channel blocker XE-991 mimicked UTP-induced V m -depolarization and blocked UTP-responses. XE-991 blocked I K and UTP caused further reduction. La 3+ or PLC inhibitors blocked UTP depolarization; PKC inhibitors, thapsigargin or zero Ca 2+ buffer did not. UTP stimulated 5-HT release in hEC expressing TPH1, 5-HT, P2Y 4 /P2Y 6 R. Zero-Ca 2+ buffer augmented Ca 2+ responses and 5-HT release. Conclusion: UTP activates a predominant P2Y 4 R pathway to trigger Ca 2+ oscillations via internal Ca 2+ mobilization through a PLC/IP 3 /IP3R/SERCA Ca 2+ signaling pathway to stimulate 5-HT release; Ca 2+ influx is inhibitory. UTP-induced V m -depolarization depends on PLC signaling and an unidentified K channel (which appears independent of Ca 2+ oscillations or I ca /VOCC). UTP-gated signaling pathways triggered by activation of P2Y 4 R stimulate 5-HT release.
VEGF and VEGFR-2 (KDR) internalization is required for endothelial recovery during wound healing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Constantino Rosa Santos, Susana; Instituto de Biopatologia Quimica, Faculdade de Medicina de Lisboa/Unidade de Biopatologia Vascular, Instituto de Medicina Molecular, Lisbon; Instituto Gulbenkian de Ciencia
2007-05-01
Vascular endothelial growth factor (VEGF) receptor activation regulates endothelial cell (EC) survival, migration and proliferation. Recently, it was suggested the cross-talk between the VEGF receptors-1 (FLT-1) and -2 (KDR) modulated several of these functions, but the detailed molecular basis for such interactions remained unexplained. Here we demonstrate for the first time that VEGF stimulation of EC monolayers induced a rapid FLT-1-mediated internalization of KDR to the nucleus, via microtubules and the endocytic pathway, internalization which required the activation of PI 3-kinase/AKT. KDR deletion mutants were generated in several tyrosine residues; in these, VEGF-induced KDR internalization was impaired, demonstrating this processmore » required activation (phosphorylation) of the receptor. Furthermore, we demonstrate that in vitro wounding of EC monolayers leads to a rapid and transient internalization of VEGF + KDR to the nucleus, which is essential for monolayer recovery. Notably, FLT-1 blockade impedes VEGF and KDR activation and internalization, blocking endothelial monolayer recovery. Our data reveal a previously unrecognized mechanism induced by VEGF on EC, which regulates EC recovery following wounding, and as such indicate novel targets for therapeutic intervention.« less
NASA Astrophysics Data System (ADS)
Zhang, Yu; Hemmersbach, Ruth; Lau, Patrick; Pansky, Andreas; Kassack, Matthias; Tobiasch, Edda
Astronauts suffer from cardiovascular deconditioning when they are exposed to microgravity conditions during space missions. Thus, current research focuses on the identification of the underlying mechanism also with respect to therapy and countermeasures. Endothelial cells (ECs) and smooth muscle cells (SMCs) play a key role in a variety of vascular functions. Gene expression, cytoskeleton morphology and apoptosis in both, ECs and SMCs, have shown alterations under simulated and real microgravity condition. However, all these data were observed during single culturing of either ECs or SMCs under microgravity conditions, which is different from the in vivo situation. Purinergic 2 (P2) receptors bind extracellular nucleotides and can regulate the vascular tone and vascular cell proliferation, migration and apoptosis. In this study primary ECs and SMCs were obtained from bovine aorta and characterized using specific markers. Here we show for the first time that the P2-receptor expressions pattern in ECs and in SMCs is altered after 24h in simulated microgravity. Specific receptors are down- or up-regulated on the gene and protein level. In addition the supernatant of ECs during culture was used as conditioned medium for SMCs and vice visa to investigate the influence of either cell type on the other. ECs and SMCs secret cytokines which induce pathogenic proliferation and an altered migration behavior under simulated microgravity conditions. Interestingly, co-culturing with condition medium could compensate this change. In detail, P2X7 was down-regulated in ECs after 24h clinorotation but recovered to the 1 g level when cultured with conditioned medium from SMCs collected under normal gravity. In conclusion, our data indicate that the paracrine effect between ECs and SMCs is an important regulator of cell behavior, also under altered gravity conditions. P2-receptor gene and protein expression were altered during microgravity. Since several P2-receptor artificial ligands are already established as drugs, P2-receptors might be a reasonable candidate for drug development for astronaut treatment of vascular deconditioning in the future. Keywords: simulated microgravity, purinergic signaling, endothelial cells, smooth muscle cells, co-culture, clinostat
Wei, Shina; Huang, Youhua; Huang, Xiaohong; Cai, Jia; Yan, Yang; Guo, Chuanyu; Qin, Qiwei
2014-01-01
The lysosomal cysteine protease cathepsin B of papain family is a key regulator and signaling molecule that involves in various biological processes, such as the regulation of apoptosis and activation of virus. In the present study, cathepsin B gene (Ec-CB) was cloned and characterized from orange-spotted grouper, Epinephelus coioides. The full-length Ec-CB cDNA was composed of 1918 bp and encoded a polypeptide of 330 amino acids with higher identities to cathepsin B of teleosts and mammalians. Ec-CB possessed typical cathepsin B structural features including an N-terminal signal peptide, the propeptide region and the cysteine protease domain which were conserved in other cathepsin B sequences. Phylogenetic analysis revealed that Ec-CB was most closely related to Lutjanus argentimaculatus. RT-PCR analysis showed that Ec-CB transcript was expressed in all the examined tissues which abundant in spleen, kidney and gill. After challenged with Singapore grouper iridovirus (SGIV) stimulation, the mRNA expression of cathepsin B in E. coioides was up-regulated at 24 h post-infection. Subcellular localization analysis revealed that Ec-CB was distributed predominantly in the cytoplasm. When the fish cells (GS or FHM) were treated with the cathepsin B specific inhibitor CA-074Me, the occurrence of CPE induced by SGIV was delayed, and the viral gene transcription was significantly inhibited. Additionally, SGIV-induced typical apoptosis was also inhibited by CA-074Me in FHM cells. Taken together, our results demonstrated that the Ec-CB might play a functional role in SGIV infection. Copyright © 2013 Elsevier Ltd. All rights reserved.
Hortelano, Sonsoles; López-Fontal, Raquel; Través, Paqui G; Villa, Natividad; Grashoff, Carsten; Boscá, Lisardo; Luque, Alfonso
2010-05-01
The inflammatory response to injurious agents is tightly regulated to avoid adverse consequences of inappropriate leucocyte accumulation or failed resolution. Lipopolysaccharide (LPS)-activated endothelium recruits leucocytes to the inflamed tissue through controlled expression of membrane-associated adhesion molecules. LPS responses in macrophages are known to be regulated by integrin-linked kinase (ILK); in this study, we investigated the role of ILK in the regulation of the LPS-elicited inflammatory response in endothelium. This study was performed on immortalized mouse endothelial cells (EC) isolated from lung and coronary vasculature. Cells were thoroughly characterized and the role of ILK in the regulation of the LPS response was investigated by suppressing ILK expression using siRNA and shRNA technologies. Phenotypic and functional analyses confirmed that the immortalized cells behaved as true EC. LPS induced the expression of the inflammatory genes E-selectin, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). ILK knockdown impaired LPS-mediated endothelial activation by preventing the induction of ICAM-1 and VCAM-1. Blockade of the LPS-induced response inhibited the inflammatory-related processes of firm adhesion and trans-endothelial migration of leucocytes. ILK is involved in the expression of cell adhesion molecules by EC activated with the inflammatory stimulus LPS. This reduced expression modulates leucocyte adhesion to the endothelium and the extravasation process. This finding suggests ILK as a potential anti-inflammatory target for the development of vascular-specific treatments for inflammation-related diseases.
Yeasmin, Shamima; Ceccarelli, Jacob; Vigen, Marina; Carrion, Bita; Putnam, Andrew J.; Tarle, Susan A.
2014-01-01
In regenerative medicine approaches involving cell therapy, selection of the appropriate cell type is important in that the cells must directly (differentiation) or indirectly (trophic effects) participate in the regenerative response. Regardless of the mode of action of the cells, angiogenesis underlies the success of these approaches. Stem cells derived from tooth tissues, specifically the periodontal ligament of teeth (periodontal ligament stem cells [PDLSCs]), have recently been identified as a good source of multipotent cells for cell therapies. PDLSCs have demonstrated properties similar to mesenchymal stem cells (MSCs), yet, unlike MSCs, their vascular potential has not been previously demonstrated. Thus, the aim of this study was to determine if PDLSCs could modulate angiogenesis. In comparison to MSCs and stem cells derived from tooth pulp tissues (SHEDs), we first determined if PDLSCs released soluble proangiogenic factors with the capacity to induce vessel formation by endothelial cells (ECs). Next, the ability of PDLSCs to modulate angiogenesis was examined through their cotransplantation with ECs in subcutaneous sites of immunocompromised mice. Finally, the stability of the PDLSC-mediated vasculature was determined through evaluation of the maturity and functionality of the vessels formed following PDLSC transplantation. It was determined that PDLSCs produced appreciable levels of vascular endothelial growth factor and basic fibroblast growth factor-2, and additionally, were able to initiate in vitro angiogenesis of ECs comparable to MSC- and SHED-mediated angiogenesis. In vivo cotransplantation of ECs with PDLSCs significantly (>50% increase) enhanced the number of blood vessels formed relative to transplantation of ECs alone. Finally, vessels formed following PDLSC cotransplantation were more mature and less permeable than those formed after transplantation of EC alone. These data demonstrate for the first time that PDLSCs have vascular potential, which could make them a very attractive cell population for utilization in regenerative cell therapies. PMID:24147894
Wang, Hai-Tao; Kong, Jian-Ping; Ding, Fang; Wang, Xiu-Qin; Wang, Ming-Rong; Liu, Lian-Xin; Wu, Min; Liu, Zhi-Hua
2003-01-01
AIM: To obtain human esophageal cancer cell EC9706 stably expressed epithelial membrane protein-1 (EMP-1) with integrated eukaryotic plasmid harboring the open reading frame (ORF) of human EMP-1, and then to study the mechanism by which EMP-1 exerts its diverse cellular action on cell proliferation and altered gene profile by exploring the effect of EMP-1. METHODS: The authors first constructed pcDNA3.1/myc-his expression vector harboring the ORF of EMP-1 and then transfected it into human esophageal carcinoma cell line EC9706. The positive clones were analyzed by Western blot and RT-PCR. Moreover, the cell growth curve was observed and the cell cycle was checked by FACS technique. Using cDNA microarray technology, the authors compared the gene expression pattern in positive clones with control. To confirm the gene expression profile, semi-quantitative RT-PCR was carried out for 4 of the randomly picked differentially expressed genes. For those differentially expressed genes, classification was performed according to their function and cellular component. RESULTS: Human EMP-1 gene can be stably expressed in EC9706 cell line transfected with human EMP-1. The authors found the cell growth decreased, among which S phase was arrested and G1 phase was prolonged in the transfected positive clones. By cDNA microarray analysis, 35 genes showed an over 2.0 fold change in expression level after transfection, with 28 genes being consistently up-regulated and 7 genes being down-regulated. Among the classified genes, almost half of the induced genes (13 out of 28 genes) were related to cell signaling, cell communication and particularly to adhesion. CONCLUSION: Overexpression of human EMP-1 gene can inhibit the proliferation of EC9706 cell with S phase arrested and G1 phase prolonged. The cDNA microarray analysis suggested that EMP-1 may be one of regulators involved in cell signaling, cell communication and adhesion regulators. PMID:12632483
Wang, Hai-Tao; Kong, Jian-Ping; Ding, Fang; Wang, Xiu-Qin; Wang, Ming-Rong; Liu, Lian-Xin; Wu, Min; Liu, Zhi-Hua
2003-03-01
To obtain human esophageal cancer cell EC9706 stably expressed epithelial membrane protein-1 (EMP-1) with integrated eukaryotic plasmid harboring the open reading frame (ORF) of human EMP-1, and then to study the mechanism by which EMP-1 exerts its diverse cellular action on cell proliferation and altered gene profile by exploring the effect of EMP-1. The authors first constructed pcDNA3.1/myc-his expression vector harboring the ORF of EMP-1 and then transfected it into human esophageal carcinoma cell line EC9706. The positive clones were analyzed by Western blot and RT-PCR. Moreover, the cell growth curve was observed and the cell cycle was checked by FACS technique. Using cDNA microarray technology, the authors compared the gene expression pattern in positive clones with control. To confirm the gene expression profile, semi-quantitative RT-PCR was carried out for 4 of the randomly picked differentially expressed genes. For those differentially expressed genes, classification was performed according to their function and cellular component. Human EMP-1 gene can be stably expressed in EC9706 cell line transfected with human EMP-1. The authors found the cell growth decreased, among which S phase was arrested and G1 phase was prolonged in the transfected positive clones. By cDNA microarray analysis, 35 genes showed an over 2.0 fold change in expression level after transfection, with 28 genes being consistently up-regulated and 7 genes being down-regulated. Among the classified genes, almost half of the induced genes (13 out of 28 genes) were related to cell signaling, cell communication and particularly to adhesion. Overexpression of human EMP-1 gene can inhibit the proliferation of EC9706 cell with S phase arrested and G1 phase prolonged. The cDNA microarray analysis suggested that EMP-1 may be one of regulators involved in cell signaling, cell communication and adhesion regulators.
EGFR-dependent TOR-independent endocycles support Drosophila gut epithelial regeneration.
Xiang, Jinyi; Bandura, Jennifer; Zhang, Peng; Jin, Yinhua; Reuter, Hanna; Edgar, Bruce A
2017-05-09
Following gut epithelial damage, epidermal growth factor receptor/mitogen-activated protein kinase (EGFR/MAPK) signalling triggers Drosophila intestinal stem cells to produce enteroblasts (EBs) and enterocytes (ECs) that regenerate the gut. As EBs differentiate into ECs, they become postmitotic, but undergo extensive growth and DNA endoreplication. Here we report that EGFR/RAS/MAPK signalling is required and sufficient to drive damage-induced EB/EC growth. Endoreplication occurs exclusively in EBs and newborn ECs that inherit EGFR and active MAPK from fast-dividing progenitors. Mature ECs lack EGF receptors and are refractory to growth signalling. Genetic tests indicated that stress-dependent EGFR/MAPK promotes gut regeneration via a novel mechanism that operates independently of Insulin/Pi3K/TOR signalling, which is nevertheless required in nonstressed conditions. The E2f1 transcription factor is required for and sufficient to drive EC endoreplication, and Ras/Raf signalling upregulates E2f1 levels posttranscriptionally. We illustrate how distinct signalling mechanisms direct stress-dependent versus homeostatic regeneration, and highlight the importance of postmitotic cell growth in gut epithelial repair.
EGFR-dependent TOR-independent endocycles support Drosophila gut epithelial regeneration
Xiang, Jinyi; Bandura, Jennifer; Zhang, Peng; Jin, Yinhua; Reuter, Hanna; Edgar, Bruce A.
2017-01-01
Following gut epithelial damage, epidermal growth factor receptor/mitogen-activated protein kinase (EGFR/MAPK) signalling triggers Drosophila intestinal stem cells to produce enteroblasts (EBs) and enterocytes (ECs) that regenerate the gut. As EBs differentiate into ECs, they become postmitotic, but undergo extensive growth and DNA endoreplication. Here we report that EGFR/RAS/MAPK signalling is required and sufficient to drive damage-induced EB/EC growth. Endoreplication occurs exclusively in EBs and newborn ECs that inherit EGFR and active MAPK from fast-dividing progenitors. Mature ECs lack EGF receptors and are refractory to growth signalling. Genetic tests indicated that stress-dependent EGFR/MAPK promotes gut regeneration via a novel mechanism that operates independently of Insulin/Pi3K/TOR signalling, which is nevertheless required in nonstressed conditions. The E2f1 transcription factor is required for and sufficient to drive EC endoreplication, and Ras/Raf signalling upregulates E2f1 levels posttranscriptionally. We illustrate how distinct signalling mechanisms direct stress-dependent versus homeostatic regeneration, and highlight the importance of postmitotic cell growth in gut epithelial repair. PMID:28485389
Isthmin is a novel secreted angiogenesis inhibitor that inhibits tumour growth in mice.
Xiang, Wei; Ke, Zhiyuan; Zhang, Yong; Cheng, Grace Ho-Yuet; Irwan, Ishak Darryl; Sulochana, K N; Potturi, Padma; Wang, Zhengyuan; Yang, He; Wang, Jingyu; Zhuo, Lang; Kini, R Manjunatha; Ge, Ruowen
2011-02-01
Anti-angiogenesis represents a promising therapeutic strategy for the treatment of various malignancies. Isthmin (ISM) is a gene highly expressed in the isthmus of the midbrain-hindbrain organizer in Xenopus with no known functions. It encodes a secreted 60 kD protein containing a thrombospondin type 1 repeat domain in the central region and an adhesion-associated domain in MUC4 and other proteins (AMOP) domain at the C-terminal. In this work, we demonstrate that ISM is a novel angiogenesis inhibitor. Recombinant mouse ISM inhibited endothelial cell (EC) capillary network formation on Matrigel through its C-terminal AMOP domain. It also suppressed vascular endothelial growth factor (VEGF)-basic fibroblast growth factor (bFGF) induced in vivo angiogenesis in mouse. It mitigated VEGF-stimulated EC proliferation without affecting EC migration. Furthermore, ISM induced EC apoptosis in the presence of VEGF through a caspase-dependent pathway. ISM binds to αvβ(5) integrin on EC surface and supports EC adhesion. Overexpression of ISM significantly suppressed mouse B16 melanoma tumour growth through inhibition of tumour angiogenesis without affecting tumour cell proliferation. Knockdown of isthmin in zebrafish embryos using morpholino antisense oligonucleotides led to disorganized intersegmental vessels in the trunk. Our results demonstrate that ISM is a novel endogenous angiogenesis inhibitor with functions likely in physiological as well as pathological angiogenesis. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.
Durham, Jennifer T; Surks, Howard K; Dulmovits, Brian M; Herman, Ira M
2014-11-01
Microvascular stability and regulation of capillary tonus are regulated by pericytes and their interactions with endothelial cells (EC). While the RhoA/Rho kinase (ROCK) pathway has been implicated in modulation of pericyte contractility, in part via regulation of the myosin light chain phosphatase (MLCP), the mechanisms linking Rho GTPase activity with actomyosin-based contraction and the cytoskeleton are equivocal. Recently, the myosin phosphatase-RhoA-interacting protein (MRIP) was shown to mediate the RhoA/ROCK-directed MLCP inactivation in vascular smooth muscle. Here we report that MRIP directly interacts with the β-actin-specific capping protein βcap73. Furthermore, manipulation of MRIP expression influences pericyte contractility, with MRIP silencing inducing cytoskeletal remodeling and cellular hypertrophy. MRIP knockdown induces a repositioning of βcap73 from the leading edge to stress fibers; thus MRIP-silenced pericytes increase F-actin-driven cell spreading twofold. These hypertrophied and cytoskeleton-enriched pericytes demonstrate a 2.2-fold increase in contractility upon MRIP knockdown when cells are plated on a deformable substrate. In turn, silencing pericyte MRIP significantly affects EC cycle progression and angiogenic activation. When MRIP-silenced pericytes are cocultured with capillary EC, there is a 2.0-fold increase in EC cycle entry. Furthermore, in three-dimensional models of injury and repair, silencing pericyte MRIP results in a 1.6-fold elevation of total tube area due to EC network formation and increased angiogenic sprouting. The pivotal role of MRIP expression in governing pericyte contractile phenotype and endothelial growth should lend important new insights into how chemomechanical signaling pathways control the "angiogenic switch" and pathological angiogenic induction. Copyright © 2014 the American Physiological Society.
Massumi, Mohammad; Hoveizi, Elham; Baktash, Parvaneh; Hooti, Abdollah; Ghazizadeh, Leili; Nadri, Samad; Pourasgari, Farzaneh; Hajarizadeh, Athena; Soleimani, Masoud; Nabiuni, Mohammad; Khorramizadeh, Mohammad R
2014-03-10
Due to pluripotency of induced pluripotent stem (iPS) cells, and the lack of immunological incompatibility and ethical issues, iPS cells have been considered as an invaluable cell source for future cell replacement therapy. This study was aimed first at establishment of novel iPS cells, ECiPS, which directly reprogrammed from human Eye Conjunctiva-derived Mesenchymal Stem Cells (EC-MSCs); second, comparing the inductive effects of Wnt3a/Activin A biomolecules to IDE1 small molecule in derivation of definitive endoderm (DE) from the ECiPS cells. To that end, first, the EC-MSCs were transduced by SOKM-expressing lentiviruses and characterized for endogenous expression of embryonic markers Then the established ECiPS cells were induced to DE formation by Wnt3a/Activin A or IDE1. Quantification of GSC, Sox17 and Foxa2 expression, as DE-specific markers, in both mRNA and protein levels revealed that induction of ECiPS cells by either Wnt3a/Activin A or IDE1 could enhance the expression level of the genes; however the levels of increase were higher in Wnt3a/Activin A induced ECiPS-EBs than IDE1 induced cells. Furthermore, the flow cytometry analyses showed no synergistic effect between Activin A and Wnt3a to derive DE-like cells from ECiPS cells. The comparative findings suggest that although both Wnt3a/Activin A signaling and IDE1 molecule could be used for differentiation of iPS into DE cells, the DE-inducing effect of Wnt3a/Activin A was statistically higher than IDE1. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Kyung-Jin; Department of Biomedical Science, College of Medicine, Seoul National University, Seoul 110-799; Yun, Jang-Hyuk
Highlights: • PEDF was expressed and induced during the involuting phase of IH. • PEDF inhibited the cell growth of the involuting HemECs in an autocrine manner. • PEDF suppression restored the impaired cell growth of the involuting HemECs. - Abstract: Hemangioma is a benign tumor derived from abnormal blood vessel growth. Unlike other vascular tumor counterparts, a hemangioma is known to proliferate during its early stage but it is followed by a stage of involution where regression of the tumor occurs. The critical onset leading to the involution of hemangioma is currently not well understood. This study focused onmore » the molecular identities of the involution of hemangioma. We demonstrated that a soluble factor released from the involuting phase of hemangioma-derived endothelial cells (HemECs) and identified pigment epithelium-derived factor (PEDF) as an anti-angiogenic factor that was associated with the growth inhibition of the involuting HemECs. The growth inhibition of the involuting HemECs was reversed by suppression of PEDF in the involuting HemECs. Furthermore, we found that PEDF was more up-regulated in the involuting phase of hemangioma tissues than in the proliferating or the involuted. Taken together, we propose that PEDF accelerates the involution of hemangioma by growth inhibition of HemECs in an autocrine manner. The regulatory mechanism of PEDF expression could be a potential therapeutic target to treat hemangiomas.« less
van Engeland, Nicole C A; Pollet, Andreas M A O; den Toonder, Jaap M J; Bouten, Carlijn V C; Stassen, Oscar M J A; Sahlgren, Cecilia M
2018-05-29
Cell signalling and mechanics influence vascular pathophysiology and there is an increasing demand for in vitro model systems that enable examination of signalling between vascular cells under hemodynamic conditions. Current 3D vessel wall constructs do not recapitulate the mechanical conditions of the native tissue nor do they allow examination of cell-cell interactions under relevant hemodynamic conditions. Here, we describe a 3D microfluidic chip model of arterial endothelial and smooth muscle cells where cellular organization, composition and interactions, as well as the mechanical environment of the arterial wall are mimicked. The hemodynamic EC-VSMC-signalling-on-a-chip consists of two parallel polydimethylsiloxane (PDMS) cell culture channels, separated by a flexible, porous PDMS membrane, mimicking the porosity of the internal elastic lamina. The hemodynamic EC-VSMC-signalling-on-a-chip allows co-culturing of human aortic endothelial cells (ECs) and human aortic vascular smooth muscle cells (VSMCs), separated by a porous membrane, which enables EC-VSMC interaction and signalling, crucial for the development and homeostasis of the vessel wall. The device allows real time cell imaging and control of hemodynamic conditions. The culture channels are surrounded on either side by vacuum channels to induce cyclic strain by applying cyclic suction, resulting in mechanical stretching and relaxation of the membrane in the cell culture channels. The blood flow is mimicked by creating a flow of medium at the EC side. Vascular cells remain viable during prolonged culturing, exhibit physiological morphology and organization and make cell-cell contact. During dynamic culturing of the device with a shear stress of 1-1.5 Pa and strain of 5-8%, VSMCs align perpendicular to the given strain in the direction of the flow and EC adopt a cobblestone morphology. To our knowledge, this is the first report on the development of a microfluidic device, which enables a co-culture of interacting ECs and VSMCs under hemodynamic conditions and presents a novel approach to systematically study the biological and mechanical components of the intimal-medial vascular unit.
Pillekamp, Frank; Haustein, Moritz; Khalil, Markus; Emmelheinz, Markus; Nazzal, Rewa; Adelmann, Roland; Nguemo, Filomain; Rubenchyk, Olga; Pfannkuche, Kurt; Matzkies, Matthias; Reppel, Michael; Bloch, Wilhelm; Brockmeier, Konrad; Hescheler, Juergen
2012-08-10
Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) provide the unique opportunity to study the very early development of the human heart. The aim of this study was to investigate the effect of calcium and beta-adrenergic stimulation on the contractile properties of early hESC-CMs. Beating clusters containing hESC-CMs were co-cultured in vitro with noncontractile slices of neonatal murine ventricles. After 5-7 days, when beating clusters had integrated morphologically into the damaged tissue, isometric force measurements were performed during spontaneous beating as well as during electrical field stimulation. Spontaneous beating stopped when extracellular calcium ([Ca²⁺](ec)) was removed or after administration of the Ca²⁺ channel blocker nifedipine. During field stimulation at a constant rate, the developed force increased with incremental concentrations of [Ca²⁺](ec). During spontaneous beating, rising [Ca²⁺](ec) increased beating rate and developed force up to a [Ca²⁺](ec) of 2.5 mM. When [Ca²⁺](ec) was increased further, spontaneous beating rate decreased, whereas the developed force continued to increase. The beta-adrenergic agonist isoproterenol induced a dose-dependent increase of the frequency of spontaneous beating; however, it did not significantly change the developed force during spontaneous contractions or during electrical stimulation at a constant rate. Force developed by early hESC-CMs depends on [Ca²⁺](ec) and on the L-type Ca²⁺ channel. The lack of an inotropic reaction despite a pronounced chronotropic response after beta-adrenergic stimulation most likely indicates immaturity of the sarcoplasmic reticulum. For cell-replacement strategies, further maturation of cardiac cells has to be achieved either in vitro before or in vivo after transplantation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tandle, Anita T.; Calvani, Maura; Uranchimeg, Badarch
The majority of human tumors are angiogenesis dependent. Understanding the specific mechanisms that contribute to angiogenesis may offer the best approach to develop therapies to inhibit angiogenesis in cancer. Endothelial monocyte activating polypeptide-II (EMAP-II) is an anti-angiogenic cytokine with potent effects on endothelial cells (ECs). It inhibits EC proliferation and cord formation, and it suppresses primary and metastatic tumor growth in-vivo. However, very little is known about the molecular mechanisms behind the anti-angiogenic activity of EMAP-II. In the present study, we explored the molecular mechanism behind the anti-angiogenic activity exerted by this protein on ECs. Our results demonstrate that EMAP-IImore » binds to the cell surface {alpha}5{beta}1 integrin receptor. The cell surface binding of EMAP-II results in its internalization into the cytoplasmic compartment where it interacts with its cytoplasmic partner PSMA7, a component of the proteasome degradation pathway. This interaction increases hypoxia-inducible factor 1-alpha (HIF-1{alpha}) degradation under hypoxic conditions. The degradation results in the inhibition of HIF-1{alpha} mediated transcriptional activity as well as HIF-1{alpha} mediated angiogenic sprouting of ECs. HIF-1{alpha} plays a critical role in angiogenesis by activating a variety of angiogenic growth factors. Our results suggest that one of the major anti-angiogenic functions of EMAP-II is exerted through its inhibition of the HIF-1{alpha} activities.« less
Endothelial-specific inhibition of NF-κB enhances functional haematopoiesis.
Poulos, Michael G; Ramalingam, Pradeep; Gutkin, Michael C; Kleppe, Maria; Ginsberg, Michael; Crowley, Michael J P; Elemento, Olivier; Levine, Ross L; Rafii, Shahin; Kitajewski, Jan; Greenblatt, Matthew B; Shim, Jae-Hyuck; Butler, Jason M
2016-12-21
Haematopoietic stem cells (HSCs) reside in distinct niches within the bone marrow (BM) microenvironment, comprised of endothelial cells (ECs) and tightly associated perivascular constituents that regulate haematopoiesis through the expression of paracrine factors. Here we report that the canonical NF-κB pathway in the BM vascular niche is a critical signalling axis that regulates HSC function at steady state and following myelosuppressive insult, in which inhibition of EC NF-κB promotes improved HSC function and pan-haematopoietic recovery. Mice expressing an endothelial-specific dominant negative IκBα cassette under the Tie2 promoter display a marked increase in HSC activity and self-renewal, while promoting the accelerated recovery of haematopoiesis following myelosuppression, in part through protection of the BM microenvironment following radiation and chemotherapeutic-induced insult. Moreover, transplantation of NF-κB-inhibited BM ECs enhanced haematopoietic recovery and protected mice from pancytopenia-induced death. These findings pave the way for development of niche-specific cellular approaches for the treatment of haematological disorders requiring myelosuppressive regimens.
Endothelial-specific inhibition of NF-κB enhances functional haematopoiesis
Poulos, Michael G.; Ramalingam, Pradeep; Gutkin, Michael C.; Kleppe, Maria; Ginsberg, Michael; Crowley, Michael J. P.; Elemento, Olivier; Levine, Ross L.; Rafii, Shahin; Kitajewski, Jan; Greenblatt, Matthew B.; Shim, Jae-Hyuck; Butler, Jason M.
2016-01-01
Haematopoietic stem cells (HSCs) reside in distinct niches within the bone marrow (BM) microenvironment, comprised of endothelial cells (ECs) and tightly associated perivascular constituents that regulate haematopoiesis through the expression of paracrine factors. Here we report that the canonical NF-κB pathway in the BM vascular niche is a critical signalling axis that regulates HSC function at steady state and following myelosuppressive insult, in which inhibition of EC NF-κB promotes improved HSC function and pan-haematopoietic recovery. Mice expressing an endothelial-specific dominant negative IκBα cassette under the Tie2 promoter display a marked increase in HSC activity and self-renewal, while promoting the accelerated recovery of haematopoiesis following myelosuppression, in part through protection of the BM microenvironment following radiation and chemotherapeutic-induced insult. Moreover, transplantation of NF-κB-inhibited BM ECs enhanced haematopoietic recovery and protected mice from pancytopenia-induced death. These findings pave the way for development of niche-specific cellular approaches for the treatment of haematological disorders requiring myelosuppressive regimens. PMID:28000664
Modeling Aggressive Medulloblastoma Using Human Induced Pluripotent Stem Cells
2017-09-01
and Myc in turn induces expression of AT1R creating a positive feedback loop and development of aggression tumor phenotype. The therapeutic...strengths are the relevant expertise of the applicant and his collaborating team, the novel paracrine positive feedback loop in EC-tumor cell...to as MYC-driven MB. The molecular mechanisms that drive MYC hyper -activation in MB remain incompletely understood. MB cells in actual tumors interact
Olesen, Mikkel Vestergaard; Gøtzsche, Casper René; Christiansen, Søren Hofman; Woldbye, David Paul Drucker
2018-03-21
Electroconvulsive therapy (ECT) is regularly used to treat patients with severe major depression, but the mechanisms underlying the beneficial effects remain uncertain. Electroconvulsive stimulation (ECS) regulates diverse neurotransmitter systems and induces anticonvulsant effects, properties implicated in mediating therapeutic effects of ECT. Somatostatin (SST) is a candidate for mediating these effects because it is upregulated by ECS and exerts seizure-suppressant effects. However, little is known about how ECS might affect the SST receptor system. The present study examined effects of single and repeated ECS on the synthesis of SST receptors (SSTR1-4) and SST, and SST receptor binding ([125I]LTT-SST28) in mouse hippocampal regions and piriform/parietal cortices. A complex pattern of plastic changes was observed. In the dentate gyrus, SST and SSTR1 expression and the number of hilar SST immunoreactive cells were significantly increased at 1 week after repeated ECS while SSTR2 expression was downregulated by single ECS, and SSTR3 mRNA and SST binding were elevated 24 h after repeated ECS. In hippocampal CA1 and parietal/piriform cortices, we found elevated SST mRNA levels 1 week after repeated ECS and elevated SST binding after single ECS and 24 h after repeated ECS. In hippocampal CA3, repeated ECS increased SST expression 1 week after and SST binding 24 h after. In the parietal cortex, SSTR2 mRNA expression was downregulated after single ECS while SSTR4 mRNA expression was upregulated 24 h after repeated ECS. Considering the known anticonvulsant effects of SST, it is likely that these ECS-induced neuroplastic changes in the SST system could participate in modulating neuronal excitability and potentially contribute to therapeutic effects of ECT.
Acun, Aylin; Zorlutuna, Pinar
2017-08-01
Studying heart tissue is critical for understanding and developing treatments for cardiovascular diseases. In this work, we fabricated precisely controlled and biomimetic engineered model tissues to study how cell-cell and cell-matrix interactions influence myocardial cell survival upon exposure to pathological level oxidative stress. Specifically, the interactions of endothelial cells (ECs) and cardiomyocytes (CMs), and the role of hypoxia inducible factor-1α (HIF-1α), with its novel alternative regulator, HIF-1α antisense RNA1 (HIF1A-AS1), in these interactions were investigated. We encapsulated CMs in photo-crosslinkable, biomimetic hydrogels with or without ECs, then exposed to oxidative stress followed by normoxia. With precisely controlled microenvironment provided by the model tissues, cell-cell interactions were restricted to be solely through the secreted factors. CM survival after oxidative stress was significantly improved, in the presence of ECs, when cells were in the model tissues that were functionalized with cell attachment motifs. Importantly, the cardioprotective effect of ECs was reduced when HIF-1α expression was knocked down suggesting that HIF-1α is involved in cardioprotection from oxidative damage, provided through secreted factors conferred by the ECs. Using model tissues, we showed that cell survival increased with increased cell-cell communication and enhanced cell-matrix interactions. In addition, whole genome transcriptome analysis showed, for the first time to our knowledge, a possible role for HIF1A-AS1 in oxidative regulation of HIF-1α. We showed that although HIF1A-AS1 knockdown helps CM survival, its effect is overridden by CM-EC bidirectional interactions as we showed that the conditioned media taken from the CM-EC co-cultures improved CM survival, regardless of HIF1A-AS1 expression. Cardiovascular diseases, most of which are associated with oxidative stress, is the most common cause of death worldwide. Thus, understanding the molecular events as well as the role of intercellular communication under oxidative stress is upmost importance in its prevention. In this study we used 3D engineered tissue models to investigate the role of HIF-1α and its regulation in EC-mediated cardioprotection. We showed that EC-mediated protection is only possible when there is a bidirectional crosstalk between ECs and CMs even without physical cell-cell contact. In addition, this protective effect is at least partially related to cell-ECM interactions and HIF-1α, which is regulated by HIF1A-AS1 under oxidative stress. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Tauseef, Mohammad; Knezevic, Nebojsa; Chava, Koteswara R.; Smith, Monica; Sukriti, Sukriti; Gianaris, Nicholas; Obukhov, Alexander G.; Vogel, Stephen M.; Schraufnagel, Dean E.; Dietrich, Alexander; Birnbaumer, Lutz; Malik, Asrar B.
2012-01-01
Lung vascular endothelial barrier disruption and the accompanying inflammation are primary pathogenic features of acute lung injury (ALI); however, the basis for the development of both remains unclear. Studies have shown that activation of transient receptor potential canonical (TRPC) channels induces Ca2+ entry, which is essential for increased endothelial permeability. Here, we addressed the role of Toll-like receptor 4 (TLR4) intersection with TRPC6-dependent Ca2+ signaling in endothelial cells (ECs) in mediating lung vascular leakage and inflammation. We find that the endotoxin (lipopolysaccharide; LPS) induces Ca2+ entry in ECs in a TLR4-dependent manner. Moreover, deletion of TRPC6 renders mice resistant to endotoxin-induced barrier dysfunction and inflammation, and protects against sepsis-induced lethality. TRPC6 induces Ca2+ entry in ECs, which is secondary to the generation of diacylglycerol (DAG) induced by LPS. Ca2+ entry mediated by TRPC6, in turn, activates the nonmuscle myosin light chain kinase (MYLK), which not only increases lung vascular permeability but also serves as a scaffold to promote the interaction of myeloid differentiation factor 88 and IL-1R–associated kinase 4, which are required for NF-κB activation and lung inflammation. Our findings suggest that TRPC6-dependent Ca2+ entry into ECs, secondary to TLR4-induced DAG generation, participates in mediating both lung vascular barrier disruption and inflammation induced by endotoxin. PMID:23045603
Liu, X F; Yu, J Q; Dalan, R; Liu, A Q; Luo, K Q
2014-05-01
People suffering from Diabetes Mellitus (DM) are prone to an array of vascular complications leading to end organ damage. The hallmark of these vascular complications is endothelium dysfunction, which is caused by endothelial cell (EC) apoptosis. Although the endothelial cell (EC) dysfunction induced by hyperglycaemia and fluid shear stress has been studied, the effects of biological factors in the blood of DM patients on EC integrity have not been reported in the in vitro models that mimic the physiological pulsatile nature of the vascular system. This study reports the development of a hemodynamic lab-on-a-chip system to investigate this issue. The pulsatile flow was applied to a monolayer of endothelial cells expressing a fluorescence resonance energy transfer (FRET)-based biosensor that changes colour from green to blue in response to caspase-3 activation during apoptosis. Plasma samples from healthy volunteers and DM patients were compared to identify biological factors that are critical to endothelial disruption. Three types of microchannels were designed to simulate the blood vessels under healthy and partially blocked pathological conditions. The results showed that EC apoptosis rates increased with increasing glucose concentration and levels of shear stress. The rates of apoptosis further increased by a factor of 1.4-2.3 for hyperglycaemic plasma under all dynamic conditions. Under static conditions, little difference was detected in the rate of EC apoptosis between experiments using plasma from DM patients and glucose medium, suggesting that the effects of hyperglycaemia and biological factors on the induction of EC apoptosis are all shear flow-dependent. A proteomics study was then conducted to identify biological factors, demonstrating that the levels of eight proteins, including haptoglobin and clusterin, were significantly down-regulated, while six proteins, including apolipoprotein C-III, were significantly up-regulated in the plasma of DM patients compared to healthy volunteers. This hemodynamic lab-on-a-chip system can serve as a high throughput platform to assess the risk of vascular complications of DM patients and to determine the effects of therapeutics or other interventions on EC apoptosis.
Nakasaki, Tae; Tanaka, Toshiyuki; Okudaira, Shinichi; Hirosawa, Michi; Umemoto, Eiji; Otani, Kazuhiro; Jin, Soojung; Bai, Zhongbin; Hayasaka, Haruko; Fukui, Yoshinori; Aozasa, Katsuyuki; Fujita, Naoya; Tsuruo, Takashi; Ozono, Keiichi; Aoki, Junken; Miyasaka, Masayuki
2008-11-01
Autotaxin (ATX) is a secreted protein with lysophospholipase D activity that generates lysophosphatidic acid (LPA) from lysophosphatidylcholine. Here we report that functional ATX is selectively expressed in high endothelial venules (HEVs) of both lymph nodes and Peyer's patches. ATX expression was developmentally regulated and coincided with lymphocyte recruitment to the lymph nodes. In adults, ATX expression was independent of HEV-expressed chemokines such as CCL21 and CXCL13, innate immunity signals including those via TLR4 or MyD88, and of the extent of lymphocyte trafficking across the HEVs. ATX expression was induced in venules at sites of chronic inflammation. Receptors for the ATX enzyme product LPA were constitutively expressed in HEV endothelial cells (ECs). In vitro, LPA induced strong morphological changes in HEV ECs. Forced ATX expression caused cultured ECs to respond to lysophosphatidylcholine, up-regulating lymphocyte binding to the ECs in a LPA receptor-dependent manner under both static and flow conditions. Although in vivo depletion of circulating ATX did not affect lymphocyte trafficking into the lymph nodes, we surmise, based on the above data, that ATX expressed by HEVs acts on HEVs in situ to facilitate lymphocyte binding to ECs and that ATX in the general circulation does not play a major role in this process. Tissue-specific inactivation of ATX will verify this hypothesis in future studies of its mechanism of action.
Lin, Shiyu; Zhang, Qi; Shao, Xiaoru; Zhang, Tao; Xue, Changyue; Shi, Sirong; Zhao, Dan; Lin, Yunfeng
2017-12-01
The aim of this study was to investigate the role of insulin-like growth factor-1 (IGF-1) and crosstalk between endothelial cells (ECs) and adipose-derived stem cells (ASCs) in the process of angiogenesis. A three-dimensional collagen gel used to culture mouse ASCs and mouse ECs in vitro was established. The effects of angiogenesis after exposure to IGF-1 were observed by confocal laser scanning microscopy. Western blotting and qPCR were performed to elucidate the underlying mechanisms. IGF-1 treatment promoted the formation of vessel-like structures and the recruitment of ASCs in the three-dimensional collagen gel. The angiogenic genes and proteins in ECs were up-regulated by IGF-1 and in co-culture. Similar changes in the genes and in the proteins were detected in ASCs after exposure to IGF-1 and co-culture. p-Akt expression levels were high in ECs and ASCs after exposure to IGF-1 and co-culture. IGF-1 and co-culture between cells facilitate the process of angiogenesis via the PI3-kinase/Akt signalling pathway. In ECs, IGF-1 stimulates the expression of angiogenesis-related growth factors with the activation of the PI3-kinase/Akt signalling pathway. Co-cultured ECs exposed to excess VEGF-A and other angiogenesis-related growth factors para-secreted from ASCs exhibit high expression of angiogenesis-related genes and proteins. In ASCs, IGF-1 induces the recruitment and function of ASCs by up-regulating the expression of PDGFB, MMPs and α-SMA. Crosstalk with ECs further facilitates changes in ASCs. © 2017 John Wiley & Sons Ltd.
Fidzinski, Pawel; Wawra, Matthias; Bartsch, Julia; Heinemann, Uwe; Behr, Joachim
2012-01-09
The subiculum (Sub) as a part of the hippocampal formation is thought to play a functional role in learning and memory. In addition to its major input from CA1 pyramidal cells, the subiculum receives input from the entorhinal cortex (EC) via the temporoammonic pathway. Thus far, synaptic plasticity in the subiculum was mainly investigated at CA1-Sub synapses. According to their spiking pattern, pyramidal cells in the subiculum were classified as bursting cells and non-bursting cells. In the present study, we demonstrate that subicular bursting cells show input-specific forms of long-term potentiation (LTP). At CA1-Sub synapses, bursting cells have been shown to express a presynaptic NMDA receptor-dependent LTP that depends on the activation of a cAMP-PKA cascade (Wozny et al., Journal of Physiology 2008). In contrast, at EC-Sub synapses the induction of LTP in bursting cells shows a high induction-threshold and relies on the activation of postsynaptic NMDA receptors, postsynaptic depolarization and postsynaptic Ca(2+) influx. Each form of LTP is input-specific and fails to induce heterosynaptic plasticity. Taken together, our data suggest that distinct, input-specific mechanisms govern high frequency-induced LTP at subicular bursting cells' synapses. Copyright © 2011 Elsevier B.V. All rights reserved.
Cholesterol-5,6-epoxides: chemistry, biochemistry, metabolic fate and cancer.
Poirot, Marc; Silvente-Poirot, Sandrine
2013-03-01
In the nineteen sixties it was proposed that cholesterol might be involved in the etiology of cancers and cholesterol oxidation products were suspected of being causative agents. Researchers had focused their attention on cholesterol-5,6-epoxides (5,6-ECs) based on several lines of evidence: 1) 5,6-ECs contained an oxirane group that was supposed to confer alkylating properties such as those observed for aliphatic and aromatic epoxides. 2) cholesterol-5,6-epoxide hydrolase (ChEH) was induced in pre-neoplastic lesions of skin from rats exposed to ultraviolet irradiations and ChEH was proposed to be involved in detoxification processes like other epoxide hydrolases. However, 5,6-ECs failed to induce carcinogenicity in rodents which ruled out a potent carcinogenic potential for 5,6-ECs. Meanwhile, clinical studies revealed an anomalous increase in the concentrations of 5,6β-EC in the nipple fluids of patients with pre-neoplastic breast lesions and in the blood of patients with endometrious cancers, suggesting that 5,6-ECs metabolism could be linked with cancer. Paradoxically, ChEH has been recently shown to be totally inhibited by therapeutic concentrations of tamoxifen (Tam), which is one of the main drugs used in the hormonotherapy and the chemoprevention of breast cancers. These data would suggest that the accumulation of 5,6-ECs could represent a risk factor, but we found that 5,6-ECs were involved in the induction of breast cancer cell differentiation and death induced by Tam suggesting a positive role of 5,6-ECs. These observations meant that the biochemistry and the metabolism of 5,6-ECs needed to be extensively studied. We will review the current knowledge and the future direction of 5,6-ECs chemistry, biochemistry, metabolism, and relationship with cancer. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Shanshan; Department of Pediatrics, Baodi District People’s Hospital of Tianjin City, Tianjin, 301800; Wang, Jiaxing
Activated vascular endothelium inflammation under persistent hyperlipidemia is the initial step of atherogenesis. ATP-binding cassette G1 (ABCG1) is a crucial factor maintaining sterol and lipid homeostasis by transporting cholesterol efflux to high-density lipoprotein. In this study, we investigated the protective effects of ABCG1 in endothelial inflammation activation during early-stage atherogenesis in mice and the underlying mechanisms. Endothelial cell (EC)-specific ABCG1 transgenic (EC-ABCG1-Tg) mice were generated and cross-bred with low-density lipoprotein receptor–deficient (Ldlr{sup −/−}) mice. After a 4-week Western-type diet, the mice were sacrificed for assessing atherosclerosis. Human umbilical vein ECs were treated with different flows, and ABCG1 was adenovirally overexpressedmore » to investigate the mechanism in vitro. Compared with Ldlr{sup −/−} mouse aortas, EC-ABCG1-Tg/Ldlr{sup −/−} aortas showed decreased early-stage lesions. Furthermore, the lesion area in the EC-ABCG1-Tg/Ldlr{sup −/−} mouse aortic arch but not thoracic aorta was significantly reduced, which suggests a protective role of ABCG1 under atheroprone flow. In vitro, overexpression of ABCG1 attenuated EC activation caused by oscillatory shear stress. Overexpression of ABCG1 blunted cholesterol-activated ECs in vitro. In exploring the mechanisms of ABCG1 attenuating endothelial inflammation, we found that ABCG1 inhibited oscillatory flow-activated nuclear factor kappa B and NLRP3 inflammasome in ECs. ABCG1 may play a protective role in early-stage atherosclerosis by reducing endothelial activation induced by oscillatory shear stress via suppressing the inflammatory response. - Highlights: • EC-ABCG1-Tg mice in a Ldlr{sup −/−} background showed decreased atherosclerosis. • Overexpression of ABCG1 in ECs decreased OSS-induced EC activation. • NLRP3 and NF-κB might be an underlying mechanism of ABCG1 protective role.« less
Wei, Datsen George; Chiang, Vicki; Fyne, Elizabeth; Balakrishnan, Mini; Barnes, Tiffany; Graupe, Michael; Hesselgesser, Joseph; Irrinki, Alivelu; Murry, Jeffrey P.; Stepan, George; Stray, Kirsten M.; Tsai, Angela; Yu, Helen; Spindler, Jonathan; Kearney, Mary; Spina, Celsa A.; McMahon, Deborah; Lalezari, Jacob; Sloan, Derek; Mellors, John; Geleziunas, Romas; Cihlar, Tomas
2014-01-01
Persistent latent reservoir of replication-competent proviruses in memory CD4 T cells is a major obstacle to curing HIV infection. Pharmacological activation of HIV expression in latently infected cells is being explored as one of the strategies to deplete the latent HIV reservoir. In this study, we characterized the ability of romidepsin (RMD), a histone deacetylase inhibitor approved for the treatment of T-cell lymphomas, to activate the expression of latent HIV. In an in vitro T-cell model of HIV latency, RMD was the most potent inducer of HIV (EC50 = 4.5 nM) compared with vorinostat (VOR; EC50 = 3,950 nM) and other histone deacetylase (HDAC) inhibitors in clinical development including panobinostat (PNB; EC50 = 10 nM). The HIV induction potencies of RMD, VOR, and PNB paralleled their inhibitory activities against multiple human HDAC isoenzymes. In both resting and memory CD4 T cells isolated from HIV-infected patients on suppressive combination antiretroviral therapy (cART), a 4-hour exposure to 40 nM RMD induced a mean 6-fold increase in intracellular HIV RNA levels, whereas a 24-hour treatment with 1 µM VOR resulted in 2- to 3-fold increases. RMD-induced intracellular HIV RNA expression persisted for 48 hours and correlated with sustained inhibition of cell-associated HDAC activity. By comparison, the induction of HIV RNA by VOR and PNB was transient and diminished after 24 hours. RMD also increased levels of extracellular HIV RNA and virions from both memory and resting CD4 T-cell cultures. The activation of HIV expression was observed at RMD concentrations below the drug plasma levels achieved by doses used in patients treated for T-cell lymphomas. In conclusion, RMD induces HIV expression ex vivo at concentrations that can be achieved clinically, indicating that the drug may reactivate latent HIV in patients on suppressive cART. PMID:24722454
Choi, Christopher J.; Anantharam, Vellareddy; Saetveit, Nathan J.; Houk, Robert. S.; Kanthasamy, Arthi; Kanthasamy, Anumantha G.
2012-01-01
The normal prion protein is abundantly expressed in the CNS, but its biological function remains unclear. The prion protein has octapeptide repeat regions that bind to several divalent metals, suggesting that the prion proteins may alter the toxic effect of environmental neurotoxic metals. In the present study, we systematically examined whether prion protein modifies the neurotoxicity of manganese (Mn) by comparing the effect of Mn on mouse neural cells expressing prion protein (PrPC -cells) and prion-knockout (PrPKO -cells). Exposure to Mn (10 μM-1 mM) for 24 hr produced a dose-dependent cytotoxic response in both PrPC -cells and PrPKO -cells. Interestingly, PrPC -cells (EC50 117.6μM) were more resistant to Mn-induced cytotoxicity, as compared to PrPKO -cells (EC50 59.9μM), suggesting a protective role for PrPC against Mn neurotoxicity. Analysis of intracellular Mn levels showed less Mn accumulation in PrPC -cells as compared to PrPKO -cells. Furthermore, Mn-induced mitochondrial depolarization and ROS generation were significantly attenuated in PrPC -cells as compared to PrPKO -cells. Measurement of antioxidant status revealed similar basal levels of glutathione (GSH) in PrPC -cells and PrPKO -cells; however, Mn treatment caused greater depletion of GSH in PrPKO -cells. Mn-induced mitochondrial depolarization and ROS production were followed by time- and dose-dependent activation of the apoptotic cell death cascade involving caspase-9 and -3. Notably, DNA fragmentation induced by both Mn treatment and oxidative stress-inducer hydrogen peroxide (100μM) was significantly suppressed in PrPC -cells as compared to PrPKO -cells. Together, these results demonstrate that prion protein interferes with divalent metal Mn uptake and protects against Mn-induced oxidative stress and apoptotic cell death. PMID:17483122
Anticancer activity of botanical alkyl hydroquinones attributed to topoisomerase II poisoning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, C.-P.; Fang, W.-H.; Lin, L.-I.
2008-03-15
Cytotoxic alkyl hydroquinone compounds have been isolated from many plants. We previously isolated 3 structurally similar cytotoxic alkyl hydroquinone compounds from the sap of the lacquer tree Rhus succedanea L. belonging to the sumac family, which have a long history of medicinal use in Asia. Each has an unsaturated alkyl chain attached to the 2-position of a hydroquinone ring. One of these isolates, 10'(Z),13'(E),15'(E)-heptadecatrienylhydroquinone [HQ17(3)], being the most cytotoxic, was chosen for studying the anticancer mechanism of these compounds. We found that HQ17(3) was a topoisomerase (Topo) II poison. It irreversibly inhibited Topo II{alpha} activity through the accumulation of Topomore » II-DNA cleavable complexes. A cell-based assay showed that HQ17(3) inhibited the growth of leukemia HL-60 cells with an EC{sub 50} of 0.9 {mu}M, inhibited the topoisomerase-II-deficient cells HL-60/MX2 with an EC{sub 50} of 9.6 {mu}M, and exerted no effect on peripheral blood mononuclear cells at concentrations up to 50 {mu}M. These results suggest that Topo II is the cellular drug target. In HL-60 cells, HQ17(3) promptly inhibited DNA synthesis, induced chromosomal breakage, and led to cell death with an EC{sub 50} about one-tenth that of hydroquinone. Pretreatment of the cells with N-acetylcysteine could not attenuate the cytotoxicity and DNA damage induced by HQ17(3). However, N-acetylcysteine did significantly reduce the cytotoxicity of hydroquinone. In F344 rats, intraperitoneal injection of HQ17(3) for 28 days induced no clinical signs of toxicity. These results indicated that HQ17(3) is a potential anticancer agent, and its structural features could be a model for anticancer drug design.« less
NASA Astrophysics Data System (ADS)
Mak, Jeffrey Y. W.; Xu, Weijun; Reid, Robert C.; Corbett, Alexandra J.; Meehan, Bronwyn S.; Wang, Huimeng; Chen, Zhenjun; Rossjohn, Jamie; McCluskey, James; Liu, Ligong; Fairlie, David P.
2017-03-01
Mucosal-associated invariant T (MAIT) cells are activated by unstable antigens formed by reactions of 5-amino-6-D-ribitylaminouracil (a vitamin B2 biosynthetic intermediate) with glycolysis metabolites such as methylglyoxal. Here we show superior preparations of antigens in dimethylsulfoxide, avoiding their rapid decomposition in water (t1/2 1.5 h, 37 °C). Antigen solution structures, MAIT cell activation potencies (EC50 3-500 pM), and chemical stabilities are described. Computer analyses of antigen structures reveal stereochemical and energetic influences on MAIT cell activation, enabling design of a water stable synthetic antigen (EC50 2 nM). Like native antigens, this antigen preparation induces MR1 refolding and upregulates surface expression of human MR1, forms MR1 tetramers that detect MAIT cells in human PBMCs, and stimulates cytokine expression (IFNγ, TNF) by human MAIT cells. These antigens also induce MAIT cell accumulation in mouse lungs after administration with a co-stimulant. These chemical and immunological findings provide new insights into antigen properties and MAIT cell activation.
Jumelle, Clotilde; Mauclair, Cyril; Houzet, Julien; Bernard, Aurélien; He, Zhiguo; Forest, Fabien; Perrache, Chantal; Gain, Philippe; Thuret, Gilles
2016-08-01
The targeted delivery of drugs or genes into corneal endothelial cells (ECs) during eye banking could help improve graft quality and quantity. Physical methods raising less safety concerns than viral ones, we previously adapted, for in vitro ECs, a recent innovative technique of drug delivery based on the activation of carbon nanoparticles (CNPs) by a femtosecond laser (fsL). The aim of the present pilot study was to adapt this method to enable molecule delivery into the intact endothelium of ex vivo human corneas. ECs from 40 organ-cultured corneas were perforated by photoacoustic reaction induced by irradiation of CNPs by a fsL. This enabled intracellular delivery of Alexa Fluor 488 dextran, a 4000 Da fluorescent macromolecule. The influence of increasing laser fluences (15, 20, 30 and 40 mJ/cm(2)) and of protective additives (ROCK inhibitor and poloxamer 407) on delivery and mortality rates was quantified using ImageJ. No dextran was delivered with a fluence lower than 20 mJ/cm(2). Dextran was delivered into 3% (range 0%-7%) of cells at 20 mJ/cm(2), 7% (range 2%-12%) at 30 mJ/cm(2) and reaching a median 13% (range 3%-24%) for 40 mJ/cm(2), showing that dextran uptake by ECs increased significantly with fluence. Induced mortality varied from 0% to 53% irrespective of fluence, but likely to be related with the endothelial status (EC density and morphometry, donor age, storage duration and presence of Descemet's folds). ROCK inhibitor slightly increased uptake efficiency, unlike poloxamer. However, none of them decreased the mortality induced by laser. This study shows that a macromolecule can be delivered specifically into ECs of a whole organ-cultured human cornea, using fsL-activated CNPs. The delivery rate was relatively high for a non-viral method. Further optimisation is required to understand and reduce variability in cell mortality. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
NASA Astrophysics Data System (ADS)
Yamauchi, Toyohiko; Fukami, Tadashi; Iwai, Hidenao; Yamashita, Yutaka
2012-03-01
Embryonal carcinoma (EC) cells, which are cell lines derived from teratocarcinomas, have characteristics in common with stem cells and differentiate into many kinds of functional cells. Similar to embryonic stem (ES) cells, undifferentiated EC cells form multi-layered spheroids. In order to visualize the three-dimensional structure of multilayered EC cells without labeling, we employed full-field interference microscopy with the aid of a low-coherence quantitative phase microscope, which is a reflection-type interference microscope employing the digital holographic technique with a low-coherent light source. Owing to the low-coherency of the light-source (halogen lamp), only the light reflected from reflective surface at a specific sectioning height generates an interference image on the CCD camera. P19CL6 EC cells, derived from mouse teratocarcinomas, formed spheroids that are about 50 to 200 micrometers in diameter. Since the height of each cell is around 10 micrometers, it is assumed that each spheroid has 5 to 20 cell layers. The P19CL6 spheroids were imaged in an upright configuration and the horizontally sectioned reflection images of the sample were obtained by sequentially and vertically scanning the zero-path-length height. Our results show the threedimensional structure of the spheroids, in which plasma and nuclear membranes were distinguishably imaged. The results imply that our technique is further capable of imaging induced pluripotent stem (iPS) cells for the assessment of cell properties including their pluripotency.
Mooren, Olivia L; Li, Jinmei; Nawas, Julie; Cooper, John A
2014-12-15
The vascular endothelium is a highly dynamic structure, and the integrity of its barrier function is tightly regulated. Normally impenetrable to cells, the endothelium actively assists lymphocytes to exit the bloodstream during inflammation. The actin cytoskeleton of the endothelial cell (EC) is known to facilitate transmigration, but the cellular and molecular mechanisms are not well understood. Here we report that actin assembly in the EC, induced by Arp2/3 complex under control of WAVE2, is important for several steps in the process of transmigration. To begin transmigration, ECs deploy actin-based membrane protrusions that create a cup-shaped docking structure for the lymphocyte. We found that docking structure formation involves the localization and activation of Arp2/3 complex by WAVE2. The next step in transmigration is creation of a migratory pore, and we found that endothelial WAVE2 is needed for lymphocytes to follow a transcellular route through an EC. Later, ECs use actin-based protrusions to close the gap behind the lymphocyte, which we discovered is also driven by WAVE2. Finally, we found that ECs in resting endothelial monolayers use lamellipodial protrusions dependent on WAVE2 to form and maintain contacts and junctions between cells. © 2014 Mooren et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Nakaki, Ryo; Shimamura, Teppei; Matsunaga, Taichi; Yamamizu, Kohei; Katayama, Shiori; Suehiro, Jun-ichi; Osawa, Tsuyoshi; Aburatani, Hiroyuki; Kodama, Tatsuhiko; Wada, Youichiro; Yamashita, Jun K.
2017-01-01
Abstract Although studies of the differentiation from mouse embryonic stem (ES) cells to vascular endothelial cells (ECs) provide an excellent model for investigating the molecular mechanisms underlying vascular development, temporal dynamics of gene expression and chromatin modifications have not been well studied. Herein, using transcriptomic and epigenomic analyses based on H3K4me3 and H3K27me3 modifications at a genome-wide scale, we analysed the EC differentiation steps from ES cells and crucial epigenetic modifications unique to ECs. We determined that Gata2, Fli1, Sox7 and Sox18 are master regulators of EC that are induced following expression of the haemangioblast commitment pioneer factor, Etv2. These master regulator gene loci were repressed by H3K27me3 throughout the mesoderm period but rapidly transitioned to histone modification switching from H3K27me3 to H3K4me3 after treatment with vascular endothelial growth factor. SiRNA knockdown experiments indicated that these regulators are indispensable not only for proper EC differentiation but also for blocking the commitment to other closely aligned lineages. Collectively, our detailed epigenetic analysis may provide an advanced model for understanding temporal regulation of chromatin signatures and resulting gene expression profiles during EC commitment. These studies may inform the future development of methods to stimulate the vascular endothelium for regenerative medicine. PMID:28334937
Wong, Mei Mei; Chen, Yikuan; Margariti, Andriani; Winkler, Bernhard; Campagnolo, Paola; Potter, Claire; Hu, Yanhua; Xu, Qingbo
2014-03-01
Vascular lineage differentiation of stem/progenitor cells can contribute to both tissue repair and exacerbation of vascular diseases such as in vein grafts. The role of macrophages in controlling vascular progenitor differentiation is largely unknown and may play an important role in graft development. This study aims to identify the role of macrophages in vascular stem/progenitor cell differentiation and thereafter elucidate the mechanisms that are involved in the macrophage- mediated process. We provide in vitro evidence that macrophages can induce endothelial cell (EC) differentiation of the stem/progenitor cells while simultaneously inhibiting their smooth muscle cell differentiation. Mechanistically, both effects were mediated by macrophage-derived tumor necrosis factor-α (TNF-α) via TNF-α receptor 1 and canonical nuclear factor-κB activation. Although the overexpression of p65 enhanced EC (or attenuated smooth muscle cell) differentiation, p65 or TNF-α receptor 1 knockdown using lentiviral short hairpin RNA inhibited EC (or rescued smooth muscle cell) differentiation in response to TNF-α. Furthermore, TNF-α-mediated EC differentiation was driven by direct binding of nuclear factor-κB (p65) to specific VE-cadherin promoter sequences. Subsequent experiments using an ex vivo decellularized vessel scaffold confirmed an increase in the number of ECs and reduction in smooth muscle cell marker expression in the presence of TNF-α. The lack of TNF-α in a knockout mouse model of vein graft decreased endothelialization and significantly increased thrombosis formation. Our study highlights the role of macrophages in directing vascular stem/progenitor cell lineage commitment through TNF-α-mediated TNF-α receptor 1 and nuclear factor-κB activation that is likely required for endothelial repair in vascular diseases such as vein graft.
Jansen, Felix; Yang, Xiaoyan; Hoelscher, Marion; Cattelan, Arianna; Schmitz, Theresa; Proebsting, Sebastian; Wenzel, Daniela; Vosen, Sarah; Franklin, Bernardo S; Fleischmann, Bernd K; Nickenig, Georg; Werner, Nikos
2013-10-29
Repair of the endothelium after vascular injury is crucial for preserving endothelial integrity and preventing the development of vascular disease. The underlying mechanisms of endothelial cell repair are largely unknown. We sought to investigate whether endothelial microparticles (EMPs), released from apoptotic endothelial cells (ECs), influence EC repair. Systemic treatment of mice with EMPs after electric denudation of the endothelium accelerated reendothelialization in vivo. In vitro experiments revealed that EMP uptake in ECs promotes EC migration and proliferation, both critical steps in endothelial repair. To dissect the underlying mechanisms, Taqman microRNA array was performed, and microRNA (miR)-126 was identified as the predominantly expressed miR in EMPs. The following experiments demonstrated that miR-126 was transported into recipient human coronary artery endothelial cells by EMPs and functionally regulated the target protein sprouty-related, EVH1 domain-containing protein 1 (SPRED1). Knockdown of miR-126 in EMPs abrogated EMP-mediated effects on human coronary artery endothelial cell migration and proliferation in vitro and reendothelialization in vivo. Interestingly, after simulating diabetic conditions, EMPs derived from glucose-treated ECs contained significantly lower amounts of miR-126 and showed reduced endothelial repair capacity in vitro and in vivo. Finally, expression analysis of miR-126 in circulating microparticles from 176 patients with stable coronary artery disease with and without diabetes mellitus revealed a significantly reduced miR-126 expression in circulating microparticles from diabetic patients. Endothelial microparticles promote vascular endothelial repair by delivering functional miR-126 into recipient cells. In pathological hyperglycemic conditions, EMP-mediated miR-126-induced EC repair is altered.
Almalki, Sami G.; Llamas Valle, Yovani
2017-01-01
Abstract The molecular mechanisms that control the ability of adipose‐derived mesenchymal stem cells (AMSCs) to remodel three‐dimensional extracellular matrix barriers during differentiation are not clearly understood. Herein, we studied the expression of matrix metalloproteinases (MMPs) during the differentiation of AMSCs to endothelial cells (ECs) in vitro. MSCs were isolated from porcine abdominal adipose tissue, and characterized by immunopositivity to CD44, CD90, CD105, and immunonegativity to CD14 and CD45. Plasticity of AMSCs was confirmed by multilineage differentiation. The mRNA transcripts for MMPs and Tissue Inhibitor of Metalloproteinases (TIMPs), and protein expression of EC markers were analyzed. The enzyme activity and protein expression were analyzed by gelatin zymography, enzyme‐linked immunosorbent assay (ELISA), and Western blot. The differentiation of AMSCs to ECs was confirmed by mRNA and protein expressions of the endothelial markers. The mRNA transcripts for MMP‐2 and MMP‐14 were significantly increased during the differentiation of MSCs into ECs. Findings revealed an elevated MMP‐14 and MMP‐2 expression, and MMP2 enzyme activity. Silencing of MMP‐2 and MMP‐14 significantly increased the expression of EC markers, formation of capillary tubes, and acetylated‐low‐density lipoprotein uptake, and decreased the cleavage of vascular endothelial growth factor receptor type 2 (VEGFR2). Inhibition of VEGFR2 significantly decreased the expression of EC markers. These novel findings demonstrate that the upregulation of MMP2 and MMP14 has an inhibitory effect on the differentiation of AMSCs to ECs, and silencing these MMPs inhibit the cleavage of VEGFR2 and stimulate the differentiation of AMSCs to ECs. These findings provide a potential mechanism for the regulatory role of MMP‐2 and MMP‐14 in the re‐endothelialization of coronary arteries following intervention. Stem Cells Translational Medicine 2017;6:1385–1398 PMID:28213979
Okamoto-Uchida, Yoshimi; Nakamura, Ryosuke; Matsuzawa, Yumiko; Soma, Megumi; Kawakami, Hiroshi; Ishii-Watabe, Akiko; Nishimaki-Mogami, Tomoko; Teshima, Reiko; Saito, Yoshiro
2016-01-01
The physicochemical nature of allergen molecules differ from the liquid phase to the solid phase. However, conventional allergy tests are based on the detection of immunoglobulin (Ig)E binding to immobilized allergens. We recently developed an in vitro allergy testing method using a luciferase-reporting humanized rat mast cell line to detect IgE crosslinking-induced luciferase expression (EXiLE test). The aim of the present study was to evaluate the effects of antigen immobilization on the results of different in vitro allergy tests using two anti-ovalbumin (OVA) antibodies (Abs), E-C1 and E-G5, with different properties in the OVA-induced allergic reaction. Both Abs showed clear binding to OVA with an enzyme-linked immunosorbent assay and by BIAcore analysis. However, only E-C1 potentiated EXiLE response for the liquid-phase OVA. On the other hand, OVA immobilized on solid-phase induced EXiLE responses in both E-C1 Ab- and E-G5 Ab-sensitized mast cells. Western blotting of OVA indicated that E-C1 Ab binds both to OVA monomers and dimers, unlike E-G5 Ab, which probably binds only to the OVA dimer. These results suggest that antigen immobilization enhanced IgE crosslinking ability through multimerization of allergen molecules in the solid phase, resulting in an increase in false positives in IgE binding-based conventional in vitro allergy tests. These findings shed light on the physicochemical nature of antigens as an important factor for the development and evaluation of in vitro allergy tests and suggest that mast cell activation-based allergy testing with liquid-phase allergens is a promising strategy to evaluate the physiological interactions of IgE and allergens.
Mehta, Ranjit Kumar; Verma, Shikha; Pati, Rashmirekha; Sengupta, Mitali; Khatua, Biswajit; Jena, Rabindra Kumar; Sethy, Sudha; Kar, Santosh K; Mandal, Chitra; Roehm, Klaus H; Sonawane, Avinash
2014-02-07
L-Asparaginase-II from Escherichia coli (EcA) is a central component in the treatment of acute lymphoblastic leukemia (ALL). However, the therapeutic efficacy of EcA is limited due to immunogenicity and a short half-life in the patient. Here, we performed rational mutagenesis to obtain EcA variants with a potential to improve ALL treatment. Several variants, especially W66Y and Y176F, killed the ALL cells more efficiently than did wild-type EcA (WT-EcA), although nonleukemic peripheral blood monocytes were not affected. Several assays, including Western blotting, annexin-V/propidium iodide binding, comet, and micronuclei assays, showed that the reduction in viability of leukemic cells is due to the increase in caspase-3, cytochrome c release, poly(ADP-ribose) polymerase activation, down-regulation of anti-apoptotic protein Bcl-XL, an arrest of the cell cycle at the G0/G1 phase, and eventually apoptosis. Both W66Y and Y176F induced significantly more apoptosis in lymphocytes derived from ALL patients. In addition, Y176F and Y176S exhibited greatly decreased glutaminase activity, whereas K288S/Y176F, a variant mutated in one of the immunodominant epitopes, showed reduced antigenicity. Further in vivo immunogenicity studies in mice showed that K288S/Y176F was 10-fold less immunogenic as compared with WT-EcA. Moreover, sera obtained from WT-EcA immunized mice and ALL patients who were given asparaginase therapy for several weeks recognized the K288S/Y176F mutant significantly less than the WT-EcA. Further mechanistic studies revealed that W66Y, Y176F, and K288S/Y176F rapidly depleted asparagine and also down-regulated the transcription of asparagine synthetase as compared with WT-EcA. These highly desirable attributes of these variants could significantly advance asparaginase therapy of leukemia in the future.
Mehta, Ranjit Kumar; Verma, Shikha; Pati, Rashmirekha; Sengupta, Mitali; Khatua, Biswajit; Jena, Rabindra Kumar; Sethy, Sudha; Kar, Santosh K.; Mandal, Chitra; Roehm, Klaus H.; Sonawane, Avinash
2014-01-01
l-Asparaginase-II from Escherichia coli (EcA) is a central component in the treatment of acute lymphoblastic leukemia (ALL). However, the therapeutic efficacy of EcA is limited due to immunogenicity and a short half-life in the patient. Here, we performed rational mutagenesis to obtain EcA variants with a potential to improve ALL treatment. Several variants, especially W66Y and Y176F, killed the ALL cells more efficiently than did wild-type EcA (WT-EcA), although nonleukemic peripheral blood monocytes were not affected. Several assays, including Western blotting, annexin-V/propidium iodide binding, comet, and micronuclei assays, showed that the reduction in viability of leukemic cells is due to the increase in caspase-3, cytochrome c release, poly(ADP-ribose) polymerase activation, down-regulation of anti-apoptotic protein Bcl-XL, an arrest of the cell cycle at the G0/G1 phase, and eventually apoptosis. Both W66Y and Y176F induced significantly more apoptosis in lymphocytes derived from ALL patients. In addition, Y176F and Y176S exhibited greatly decreased glutaminase activity, whereas K288S/Y176F, a variant mutated in one of the immunodominant epitopes, showed reduced antigenicity. Further in vivo immunogenicity studies in mice showed that K288S/Y176F was 10-fold less immunogenic as compared with WT-EcA. Moreover, sera obtained from WT-EcA immunized mice and ALL patients who were given asparaginase therapy for several weeks recognized the K288S/Y176F mutant significantly less than the WT-EcA. Further mechanistic studies revealed that W66Y, Y176F, and K288S/Y176F rapidly depleted asparagine and also down-regulated the transcription of asparagine synthetase as compared with WT-EcA. These highly desirable attributes of these variants could significantly advance asparaginase therapy of leukemia in the future. PMID:24297177
Heme Oxygenase-1 Counteracts Contrast Media-Induced Endothelial Cell Dysfunction
Chang, Chao-Fu; Liu, Xiao-Ming; Peyton, Kelly J.; Durante, William
2013-01-01
Endothelial cell (EC) dysfunction is involved in the pathogenesis of contrast-induced acute kidney injury, which is a major adverse event following coronary angiography. In this study, we evaluated the effect of contrast media (CM) on human EC proliferation, migration, and inflammation, and determined if heme oxygenase-1 (HO-1) influences the biological actions of CM. We found that three distinct CM, including high-osmolar (diatrizoate), low-osmolar (iopamidol), and iso-osmolar (iodixanol), stimulated the expression of HO-1 protein and mRNA. The induction of HO-1 was associated with an increase in NF-E2-related factor-2 (Nrf2) activity and reactive oxygen species (ROS). CM also stimulated HO-1 promoter activity and this was prevented by mutating the antioxidant responsive element or by overexpressing dominant-negative Nrf2. In addition, the CM-mediated induction of HO-1 and activation of Nrf2 was abolished by acetylcysteine. Finally, CM inhibited the proliferation and migration of ECs and stimulated the expression of intercellular adhesion molecule-1 and the adhesion of monocytes on ECs. Inhibition or silencing of HO-1 exacerbated the anti-proliferative and inflammatory actions of CM but had no effect on the anti-migratory effect. Thus, induction of HO-1 via the ROS-Nrf2 pathway counteracts the anti-proliferative and inflammatory actions of CM. Therapeutic approaches targeting HO-1 may provide a novel approach in preventing CM-induced endothelial and organ dysfunction. PMID:24239896
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu Yang; Gao Yu; Wang, Hong
Neovascularization and re-endothelialization relies on circulating endothelial progenitor cells (EPCs), but their recruitment and angiogenic roles are subjected to regulation by the vascular microenvironment, which remains largely unknown. The present study was designed to investigate the effects of mature ECs and matrix protein CCN1 on the properties of EPCs. In a coculture system, effects of ECs on proliferation, migration and participation in tube-like formation of EPCs were evaluated, and functional assays were employed to identify the exact role of CCN1 in EPCs vitality and function. We demonstrated that ECs, as an indispensable part of the cellular milieu, significantly promoted themore » proliferation, migration and tube formation activities of EPCs, and more importantly, CCN1 was potentially involved in such effects of ECs. Expression of CCN1 in EPCs was significantly increased by serum, VEGF, ECs-cocultivation and ECs conditioned medium. Moreover, Ad-CCN1-mediated overexpression of CCN1 directly enhanced migration and tube formation of EPCs, whereas silencing of endogenous CCN1 in EPCs inhibits cell functions. Furthermore, CCN1 induced the expressions of chemokines and growth factors, such as MCP-1 and VEGF, suggesting a complex interaction between those proangiogenic factors. Our data suggest that matrix protein CCN1 may play an important role in microenvironment-mediated biological properties of EPCs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ko, Jae Hyung; Kim, Yang Hee; Asan Institute for Life Science, 388-1 Pungnap-2 Dong, Songpa-gu, Seoul
Collagen, one of the most important components of the extracellular matrix (ECM), may play a role in the survival of pancreatic islet cells. In addition, chemical modifications that change the collagen charge profile to a net positive charge by esterification have been shown to increase the adhesion and proliferation of various cell types. The purpose of this study was to characterize and compare the effects of native collagen (NC) and esterified collagen (EC) on β cell function and survival. After isolation by the collagenase digestion technique, rat islets were cultured with NC and EC in 2 dimensional (2D) and 3more » dimensional (3D) environments for a long-term duration in vitro. The cells were assessed for islet adhesion, morphology, viability, glucose-induced insulin secretion, and mRNA expression of glucose metabolism-related genes, and visualized by scanning electron microscopy (SEM). Islet cells attached tightly in the NC group, but islet cell viability was similar in both the NC and EC groups. Glucose-stimulated insulin secretion was higher in the EC group than in the NC group in both 2D and 3D culture. Furthermore, the mRNA expression levels of glucokinase in the EC group were higher than those in the NC group and were associated with glucose metabolism and insulin secretion. Finally, SEM observation confirmed that islets had more intact component cells on EC sponges than on NC sponges. These results indicate that modification of collagen may offer opportunities to improve function and viability of islet cells. - Highlights: • We changed the collagen charge profile to a net positive charge by esterification. • Islets cultured on esterified collagen improved survival in both 2D and 3D culture. • Islets cultured on esterified collagen enhanced glucose-stimulated insulin release. • High levels of glucokinase mRNA may be associated with increased insulin release.« less
Lin, Meng-Liang; Lu, Yao-Cheng; Chen, Hung-Yi; Lee, Chuan-Chun; Chung, Jing-Gung; Chen, Shih-Shun
2014-05-01
Stromal cell-derived factor-1α (SDF-1α) is a ligand for C-X-C chemokine receptor type 4 (CXCR4), which contributes to the metastasis of cancer cells by promoting cell migration. Here, we show that the SDF-1α/CXCR4 axis can significantly increase invasion of esophageal carcinoma (EC) cells. We accomplished this by examining the effects of CXCR4 knockdown as well as treatment with a CXCR4-neutralizing antibody and the CXCR4-specific inhibitor AMD3100. Curcumin suppressed SDF-1α-induced cell invasion and matrix metalloproteinase-2 (MMP-2) promoter activity, cell surface localization of CXCR4 at lipid rafts, and lipid raft-associated ras-related C3 botulinum toxin substrate 1 (Rac1)/phosphatidylinositol 3-kinase (PI3K) p85α/Akt signaling. Curcumin inhibited SDF-1α-induced cell invasion by suppressing the Rac1-PI3K signaling complex at lipid rafts but did not abrogate lipid raft formation. We further demonstrate that the attenuation of lipid raft-associated Rac1 activity by curcumin was critical for the inhibition of SDF-1α-induced PI3K/Akt/NF-κB activation, cell surface localization of CXCR4 at lipid rafts, MMP-2 promoter activity, and cell invasion. Collectively, our results indicate that curcumin inhibits SDF-1α-induced EC cell invasion by suppressing the formation of the lipid raft-associated Rac1-PI3K-Akt signaling complex, the localization of CXCR4 with lipid rafts at the cell surface, and MMP-2 promoter activity, likely through the inhibition of Rac1 activity. © 2012 Wiley Periodicals, Inc.
Glial diffusion barriers during aging and pathological states.
Syková, E
2001-01-01
In conclusion, glial cells control not only ECS ionic composition, but also ECS size and geometry. Since ECS ionic and volume changes have been shown to play an important role in modulating the complex synaptic and extrasynaptic signal transmission in the CNS, glial cells may thus affect neuronal interaction, synchronization and neuron-glia communication. As shown in Fig. 2, a link between ionic and volume changes and signal transmission has been proposed as a model for the non-specific feedback mechanism suppressing neuronal activity (Syková, 1997; Ransom, 2000). First, neuronal activity results in the accumulation of [K+]e, which in turn depolarizes glial cells, and this depolarization induces an alkaline shift in glial pHi. Second, the glial cells extrude acid and the resulting acid shift causes a decrease in the neuronal excitability. Because ionic transmembrane shifts are always accompanied by water, this feedback mechanism is amplified by activity-related glial swelling compensated for by ECS volume shrinkage and by increased tortuosity, presumably by the crowding of molecules of the ECS matrix and/or by the swelling of fine glial processes. This, in turn, results in a larger accumulation of ions and other neuroactive substances in the brain due to increased diffusion hinderance in the ECS. Astrocyte hypertrophy, proliferation and swelling influence the size of the ECS volume and tortuosity around neurons, slowing diffusion in the ECS. Their organization may also affect diffusion anisotropy, which could be an underlying mechanism for the specificity of extrasynaptic transmission, including 'cross-talk' between distinct synapses (Barbour and Hausser, 1997; Kullmann and Asztely, 1998). An increased concentration of transmitter released into a synapse (e.g. repetitive adequate stimuli or during high frequency electrical stimulation which induces LTP) results in a significant activation of high-affinity receptors at neighboring synapses. The efficacy of such synaptic cross-talk would be dependent on the extracellular space surrounding the synapses, i.e. on intersynaptic geometry and diffusion parameters. Other recent studies have also suggested an important role for proteoglycans, known to participate in multiple cellular processes, such as axonal outgrowth, axonal branching and synaptogenesis (Hardington and Fosang, 1992; Margolis and Margolis, 1993) that are important for the formation of memory traces. Recent observation of a decrease of fibronectin and chondroitin sulfate proteoglycan staining in the hippocampus of behaviorally impaired aged rats (Syková et al., 1998a,b) supports this hypothesis. It is reasonable to assume that besides neuronal and glial processes, macromolecules of the extracellular matrix contribute to diffusion barriers in the ECS. It is therefore apparent that glial cells play an important role in the local architecture of the CNS and they may also be involved in the modulation of signal transmission, in plastic changes, LTP, LTD and in changes of behavior and memory formation.
Sada, Kiminori; Nishikawa, Takeshi; Kukidome, Daisuke; Yoshinaga, Tomoaki; Kajihara, Nobuhiro; Sonoda, Kazuhiro; Senokuchi, Takafumi; Motoshima, Hiroyuki; Matsumura, Takeshi; Araki, Eiichi
2016-01-01
We previously proposed that hyperglycemia-induced mitochondrial reactive oxygen species (mtROS) generation is a key event in the development of diabetic complications. Interestingly, some common aspects exist between hyperglycemia and hypoxia-induced phenomena. Thus, hyperglycemia may induce cellular hypoxia, and this phenomenon may also be involved in the pathogenesis of diabetic complications. In endothelial cells (ECs), cellular hypoxia increased after incubation with high glucose (HG). A similar phenomenon was observed in glomeruli of diabetic mice. HG-induced cellular hypoxia was suppressed by mitochondria blockades or manganese superoxide dismutase (MnSOD) overexpression, which is a specific SOD for mtROS. Overexpression of MnSOD also increased the expression of aquaporin-1 (AQP1), a water and oxygen channel. AQP1 overexpression in ECs suppressed hyperglycemia-induced cellular hypoxia, endothelin-1 and fibronectin overproduction, and apoptosis. Therefore, hyperglycemia-induced cellular hypoxia and mtROS generation may promote hyperglycemic damage in a coordinated manner.
Olmos, Gabriel; DeGregorio-Rocasolano, Nuria; Regalado, M Paz; Gasull, Teresa; Boronat, M Assumpció; Trullas, Ramón; Villarroel, Alvaro; Lerma, Juan; García-Sevilla, Jesús A
1999-01-01
This study was designed to assess the potential neuroprotective effect of several imidazol(ine) drugs and agmatine on glutamate-induced necrosis and on apoptosis induced by low extracellular K+ in cultured cerebellar granule cells.Exposure (30 min) of energy deprived cells to L-glutamate (1–100 μM) caused a concentration-dependent neurotoxicity, as determined 24 h later by a decrease in the ability of the cells to metabolize 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) into a reduced formazan product. L-glutamate-induced neurotoxicity (EC50=5 μM) was blocked by the specific NMDA receptor antagonist MK-801 (dizocilpine).Imidazol(ine) drugs and agmatine fully prevented neurotoxicity induced by 20 μM (EC100) L-glutamate with the rank order (EC50 in μM): antazoline (13)>cirazoline (44)>LSL 61122 [2-styryl-2-imidazoline] (54)>LSL 60101 [2-(2-benzofuranyl) imidazole] (75)>idazoxan (90)>LSL 60129 [2-(1,4-benzodioxan-6-yl)-4,5-dihydroimidazole] (101)>RX821002 (2-methoxy idazoxan) (106)>agmatine (196). No neuroprotective effect of these drugs was observed in a model of apoptotic neuronal cell death (reduction of extracellular K+) which does not involve stimulation of NMDA receptors.Imidazol(ine) drugs and agmatine fully inhibited [3H]-(+)-MK-801 binding to the phencyclidine site of NMDA receptors in rat brain. The profile of drug potency protecting against L-glutamate neurotoxicity correlated well (r=0.90) with the potency of the same compounds competing against [3H]-(+)-MK-801 binding.In HEK-293 cells transfected to express the NR1-1a and NR2C subunits of the NMDA receptor, antazoline and agmatine produced a voltage- and concentration-dependent block of glutamate-induced currents. Analysis of the voltage dependence of the block was consistent with the presence of a binding site for antazoline located within the NMDA channel pore with an IC50 of 10–12 μM at 0 mV.It is concluded that imidazol(ine) drugs and agmatine are neuroprotective against glutamate-induced necrotic neuronal cell death in vitro and that this effect is mediated through NMDA receptor blockade by interacting with a site located within the NMDA channel pore. PMID:10455281
Yoo, Hyun Ju; Kim, Ji-Eun; Gu, Ja Yoon; Lee, Sae Bom; Lee, Hyun Joo; Hwang, Ho Young; Hwang, Yoohwa; Kim, Young Tae; Kim, Hyun Kyung
2016-11-01
Neutrophils play a role in xenograft rejection. When neutrophils are stimulated, they eject the DNA-histone complex into the extracellular space, called neutrophil extracellular traps (NET). We investigated whether NET formation actively occurs in the xenograft and contributes to coagulation and endothelial activation. Human whole blood was incubated with porcine aortic endothelial cells (pEC) from wild-type or α1,3-galactosyltransferase gene-knockout (GTKO) pigs. In the supernatant plasma from human blood, the level of the DNA-histone complex was measured by ELISA, and thrombin generation was measured using a calibrated automated thrombogram. Histone-induced tissue factor and adhesion molecule expression were measured by flow cytometry. pEC from both wild-type and GTKO pigs significantly induced DNA-histone complex formation in human whole blood. The DNA-histone complex produced shortened the thrombin generation time and clotting time. Histone alone dose-dependently induced tissue factor and adhesion molecule expression in pEC. Aurintricarboxylic acid pretreatment partially inhibited pEC-induced DNA-histone complex formation. DNA-histone complex actively generated upon xenotransplantation is a novel target to inhibit coagulation and endothelial activation. To prevent tissue factor and adhesion molecule expression, a strategy to block soluble histone may be required in xenotransplantation. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Monocyte recruitment to endothelial cells in response to oscillatory shear stress
Hsiai, Tzung K.; Cho, Sung K.; Wong, Pak K.; Ing, Mike; Salazar, Adler; Sevanian, Alex; Navab, Mohamad; Demer, Linda L.; Ho, Chih-Ming
2014-01-01
Leukocyte recruitment to endothelial cells is a critical event in inflammatory responses. The spatial, temporal gradients of shear stress, topology, and outcome of cellular interactions that underlie these responses have so far been inferred from static imaging of tissue sections or studies of statically cultured cells. In this report, we developed micro-electromechanical systems (MEMS) sensors, comparable to a single endothelial cell (EC) in size, to link real-time shear stress with monocyte/EC binding kinetics in a complex flow environment, simulating the moving and unsteady separation point at the arterial bifurcation with high spatial and temporal resolution. In response to oscillatory shear stress (τ) at ± 2.6 dyn/cm2 at a time-averaged shear stress (τave) = 0 and 0.5 Hz, individual monocytes displayed unique to-and-fro trajectories undergoing rolling, binding, and dissociation with other monocyte, followed by solid adhesion on EC. Our study quantified individual monocyte/EC binding kinetics in terms of displacement and velocity profiles. Oscillatory flow induces up-regulation of adhesion molecules and cytokines to mediate monocyte/EC interactions over a dynamic range of shear stress ± 2.6 dyn/cm2 (P= 0.50, n= 10).—Hsiai, T. K., Cho, S. K., Wong, P. K., Ing, M., Salazar, A., Sevanian, A., Navab, M., Demer, L. L., Ho, C.-M. Monocyte recruitment to endothelial cells in response to oscillatory shear stress. FASEB J. 17, 1648–1657 (2003) PMID:12958171
Dong, Du-Juan; Jing, Yu-Pu; Liu, Wen; Wang, Jin-Xing; Zhao, Xiao-Fan
2015-01-01
The steroid hormone 20-hydroxyecdysone (20E) and the serine/threonine Ste20-like kinase Hippo signal promote programmed cell death (PCD) during development, although the interaction between them remains unclear. Here, we present evidence that 20E up-regulates Hippo to induce PCD during the metamorphic development of insects. We found that Hippo is involved in 20E-induced metamorphosis via promoting the phosphorylation and cytoplasmic retention of Yorkie (Yki), causing suppressed expression of the inhibitor of apoptosis (IAP), thereby releasing its inhibitory effect on caspase. Furthermore, we show that 20E induced the expression of Hippo at the transcriptional level through the ecdysone receptor (EcR), ultraspiracle protein (USP), and hormone receptor 3 (HR3). We also found that Hippo suppresses the binding of Yki complex to the HR3 promoter. In summary, 20E up-regulates the transcription of Hippo via EcRB1, USP1, and HR3 to induce PCD, and Hippo has negative feedback effects on HR3 expression. These two signaling pathways coordinate PCD during insect metamorphosis. PMID:26272745
Chen, Ting; Kelaini, Sophia; Cochrane, Amy; Guha, Shaunta T.; Hu, Yanhua; Stitt, Alan W.; Xu, Qingbo
2015-01-01
Abstract Aims: Recent ability to derive endothelial cells (ECs) from induced pluripotent stem (iPS) cells holds a great therapeutic potential for personalized medicine and stem cell therapy. We aimed that better understanding of the complex molecular signals that are evoked during iPS cell differentiation toward ECs may allow specific targeting of their activities to enhance cell differentiation and promote tissue regeneration. Methods and Results: In this study, we have generated mouse iPS cells from fibroblasts using established protocol. When iPS cells were cultivated on type IV mouse collagen‐coated dishes in differentiation medium, cell differentiation toward vascular lineages were observed. To study the molecular mechanisms of iPS cell differentiation, we found that miR‐199b is involved in EC differentiation. A step‐wise increase in expression of miR‐199 was detected during EC differentiation. Notably, miR‐199b targeted the Notch ligand JAG1, resulting in vascular endothelial growth factor (VEGF) transcriptional activation and secretion through the transcription factor STAT3. Upon shRNA‐mediated knockdown of the Notch ligand JAG1, the regulatory effect of miR‐199b was ablated and there was robust induction of STAT3 and VEGF during EC differentiation. Knockdown of JAG1 also inhibited miR‐199b‐mediated inhibition of iPS cell differentiation toward smooth muscle markers. Using the in vitro tube formation assay and implanted Matrigel plugs, in vivo, miR‐199b also regulated VEGF expression and angiogenesis. Conclusions: This study indicates a novel role for miR‐199b as a regulator of the phenotypic switch during vascular cell differentiation derived from iPS cells by regulating critical signaling angiogenic responses. Stem Cells 2015;33:1405–1418 PMID:25535084
Wang, Shoujian; Zaitoun, Ismail S; Johnson, Ryan P; Jamali, Nasim; Gurel, Zafer; Wintheiser, Catherine M; Strasser, Andreas; Lindner, Volkhard; Sheibani, Nader; Sorenson, Christine M
2017-01-01
Apoptosis plays a central role in developmental and pathological angiogenesis and vessel regression. Bim is a pro-apoptotic Bcl-2 family member that plays a prominent role in both developmental and pathological ocular vessel regression, and neovascularization. Endothelial cells (EC) and pericytes (PC) each play unique roles during vascular development, maintenance and regression. We recently showed that germline deletion of Bim results in persistent hyaloid vasculature, increased retinal vascular density and prevents retinal vessel regression in response to hyperoxia. To determine whether retinal vascular regression is attributable to Bim expression in EC or PC we generated mice carrying a conditional Bim allele (BimFlox/Flox) and VE-cadherin-cre (BimEC mice) or Pdgfrb-cre (BimPC mice). BimEC and BimPC mice demonstrated attenuated hyaloid vessel regression and postnatal retinal vascular remodeling. We also observed decreased retinal vascular apoptosis and proliferation. Unlike global Bim -/- mice, mice conditionally lacking Bim in EC or PC underwent hyperoxia-mediated vessel obliteration and subsequent retinal neovascularization during oxygen-induced ischemic retinopathy similar to control littermates. Thus, understanding the cell autonomous role Bim plays in the retinal vascular homeostasis will give us new insight into how to modulate pathological retinal neovascularization and vessel regression to preserve vision.
Wang, Juan; Ai, Zhihong; Chen, Jing; Teng, Yincheng; Zhu, Jieping
2018-06-01
Endometrial carcinoma is the most common gynecological malignancy of the female genital tract worldwide (2012). Enhancer of zeste homolog 2 (EZH2), a critical component of the polycomb repressive complex 2, has been found to be associated with multiple biological processes and is overexpressed in multiple types of cancer. Previous studies have demonstrated that EZH2 is associated with endometrial carcinoma. The present study investigated the expression and biology function of EZH2 in endometrial cancer (EC). It was found that EZH2 levels were markedly increased in endometrial cancer tissues compared with that in adjacent normal tissues. EZH2 was significantly overexpressed in 3 separate endometrial cancer cell lines (Ishikawa, RL95-2 and HEC1-A) when compared with the normal endometrial cell line ESC. Additionally, small interfering RNA was used to investigate the role of EZH2 in endometrial carcinoma cell proliferation, and the results showed that EZH2 knockdown suppressed the proliferation of endometrial carcinoma cells in vitro . Furthermore, EZH2 knockdown induced apoptosis of human EC cells by promoting the expression of pro-apoptosis protein caspase 3, caspase 9, BCL2 associated X and decreasing the expression of anti-apoptosis protein Bcl-2. Finally, the present study demonstrated that EZH2 knockdown suppressed the invasion of EC cells through downregulation of the epithelial-mesenchymal transition. Collectively, these data demonstrate that EZH2 is frequently overexpressed in EC cells and its overexpression is associated with promoting the proliferation and invasion and decreasing the apoptosis of EC cells, suggesting that EZH2 may provide potential therapeutic targets for treatment of endometrial carcinoma.
Mele, Antonietta; Calzolaro, Sara; Cannone, Gianluigi; Cetrone, Michela; Conte, Diana; Tricarico, Domenico
2014-01-01
The ATP-sensitive K+ (KATP) channel is an emerging pathway in the skeletal muscle atrophy which is a comorbidity condition in diabetes. The “in vitro” effects of the sulfonylureas and glinides were evaluated on the protein content/muscle weight, fibers viability, mitochondrial succinic dehydrogenases (SDH) activity, and channel currents in oxidative soleus (SOL), glycolitic/oxidative flexor digitorum brevis (FDB), and glycolitic extensor digitorum longus (EDL) muscle fibers of mice using biochemical and cell-counting Kit-8 assay, image analysis, and patch-clamp techniques. The sulfonylureas were: tolbutamide, glibenclamide, and glimepiride; the glinides were: repaglinide and nateglinide. Food and Drug Administration-Adverse Effects Reporting System (FDA-AERS) database searching of atrophy-related signals associated with the use of these drugs in humans has been performed. The drugs after 24 h of incubation time reduced the protein content/muscle weight and fibers viability more effectively in FDB and SOL than in the EDL. The order of efficacy of the drugs in reducing the protein content in FDB was: repaglinide (EC50 = 5.21 × 10−6) ≥ glibenclamide(EC50 = 8.84 × 10−6) > glimepiride(EC50 = 2.93 × 10−5) > tolbutamide(EC50 = 1.07 × 10−4) > nateglinide(EC50 = 1.61 × 10−4) and it was: repaglinide(7.15 × 10−5) ≥ glibenclamide(EC50 = 9.10 × 10−5) > nateglinide(EC50 = 1.80 × 10−4) ≥ tolbutamide(EC50 = 2.19 × 10−4) > glimepiride(EC50=–) in SOL. The drug-induced atrophy can be explained by the KATP channel block and by the enhancement of the mitochondrial SDH activity. In an 8-month period, muscle atrophy was found in 0.27% of the glibenclamide reports in humans and in 0.022% of the other not sulfonylureas and glinides drugs. No reports of atrophy were found for the other sulfonylureas and glinides in the FDA-AERS. Glibenclamide induces atrophy in animal experiments and in human patients. Glimepiride shows less potential for inducing atrophy. PMID:25505577
Roles of endothelial A-type lamins in migration of T cells on and under endothelial layers
NASA Astrophysics Data System (ADS)
Song, Kwang Hoon; Lee, Jaehyun; Park, Hyoungjun; Kim, Hye Mi; Park, Jeehun; Kwon, Keon Woo; Doh, Junsang
2016-03-01
Stiff nuclei in cell-dense microenvironments may serve as distinct biomechanical cues for cell migration, but such a possibility has not been tested experimentally. As a first step addressing this question, we altered nuclear stiffness of endothelial cells (ECs) by reducing the expression of A-type lamins using siRNA, and investigated the migration of T cells on and under EC layers. While most T cells crawling on control EC layers avoided crossing over EC nuclei, a significantly higher fraction of T cells on EC layers with reduced expression of A-type lamins crossed over EC nuclei. This result suggests that stiff EC nuclei underlying T cells may serve as “duro-repulsive” cues to direct T cell migration toward less stiff EC cytoplasm. During subendothelial migration under EC layers with reduced expression of A-type lamins, T cells made prolonged contact and substantially deformed EC nuclei, resulting in reduced speed and directional persistence. This result suggests that EC nuclear stiffness promotes fast and directionally persistent subendothelial migration of T cells by allowing minimum interaction between T cells and EC nuclei.
Meyrick, B. O.; Reid, L. M.
1982-01-01
Feeding with Crotalaria spectabilis seeds induces structural changes in the pulmonary arterial circulation characteristic of pulmonary hypertension: increased medial and adventitial thickness, the appearance of muscle in smaller arteries than normal, and reduction in the number of peripheral arteries. By autoradiographic techniques, after injection of 3H-thymidine into rats fed Crotalaria for 3, 7, 14, 21, 28, or 35 days, the contribution of hyperplasia to these changes has been assessed at two levels of the pulmonary artery--the hilum and the periphery. In the hilar pulmonary artery, a biphasic increase in labeling index (LI) is seen in each cell type. After 3 days of feeding, the medial smooth muscle cells show a slight but significant increase (1.5 times the control value), and, after 7 days, so do the adventitial fibroblasts (3 x) and the endothelial cells (EC) (2 x). After 14 days LI for all three cell types is again at control values, but after 21 days (wall thickness is no increased) each cell type shows at least a fivefold increase; by 35 days all are again near control levels. In the intra-acinar region, by 14 days, "newly" muscularized arteries are identified and increase in number and proportion up to 35 days; 3H-thymidine uptake is not evident in this cell type until 35 days have passed. The ECs of these arteries, however, show a striking increase in LI after 14 days as do those of the alveolar capillaries. The ECs of the intra-acinar veins show a biphasic response being increased after 7, 28, and 35 days. The present study has shown that Crotalaria ingestion induces hyperplasia and hypertrophy of pulmonary arterial cells at pre- and intra-acinar levels. The early increase in LI probably represents a response to the original cell injury, the later changes, a response to continuing damage or, in part, adaptation to the pulmonary hypertension now present. Images Figure 3 Figure 7 PMID:7055214
Zeng, Shemin; Hernández, Jasmine
2012-01-01
Purpose. To investigate whether the benefit of Age-Related Eye Disease Study (AREDS) formula multivitamins and zinc in the progression of age-related macular degeneration (AMD) may occur through inhibiting inflammatory events in the choroid. Methods. Mouse C166 endothelial cells (ECs) and, for some experiments, human retinal pigment epithelium (RPE)–choroid organ cultures were treated with AREDS multivitamin solution (MVS) or ZnCl2. The cytotoxicity of MVS was evaluated using a lactate dehydrogenase colorimetric assay. Cell motility was assessed using a scratch assay. Macrophage adhesion to EC monolayers or ICAM-1 protein was determined after MVS and zinc treatment and with or without lipopolysaccharide (LPS). Quantitative reverse transcription PCR and Western blot analysis were used to determine the effects of MVS on the expression of proinflammatory molecules in treated and untreated cells. Results. AREDS MVS and zinc did not affect C166 EC viability until the 56th hour after treatment. Scratch assays showed partial inhibition of MVS and zinc on EC migration. In cell adhesion assays, MVS and zinc decreased the number of macrophages bound to EC and to ICAM-1 protein. Quantitative PCR showed that LPS increased the expression of ICAM-1 in both C166 and human RPE-choroid cultures, which was partially offset by MVS and zinc. MVS and zinc also mitigated LPS-induced ICAM-1 protein expression on Western blot analysis. Conclusions. Treatment with AREDS MVS and zinc may affect both angiogenesis and endothelial-macrophage interactions. These results suggest that AREDS vitamins and zinc ions may slow the progression of AMD, in part through the attenuation of EC activation. PMID:22247465
Zeng, Shemin; Hernández, Jasmine; Mullins, Robert F
2012-02-01
To investigate whether the benefit of Age-Related Eye Disease Study (AREDS) formula multivitamins and zinc in the progression of age-related macular degeneration (AMD) may occur through inhibiting inflammatory events in the choroid. Mouse C166 endothelial cells (ECs) and, for some experiments, human retinal pigment epithelium (RPE)-choroid organ cultures were treated with AREDS multivitamin solution (MVS) or ZnCl(2). The cytotoxicity of MVS was evaluated using a lactate dehydrogenase colorimetric assay. Cell motility was assessed using a scratch assay. Macrophage adhesion to EC monolayers or ICAM-1 protein was determined after MVS and zinc treatment and with or without lipopolysaccharide (LPS). Quantitative reverse transcription PCR and Western blot analysis were used to determine the effects of MVS on the expression of proinflammatory molecules in treated and untreated cells. AREDS MVS and zinc did not affect C166 EC viability until the 56th hour after treatment. Scratch assays showed partial inhibition of MVS and zinc on EC migration. In cell adhesion assays, MVS and zinc decreased the number of macrophages bound to EC and to ICAM-1 protein. Quantitative PCR showed that LPS increased the expression of ICAM-1 in both C166 and human RPE-choroid cultures, which was partially offset by MVS and zinc. MVS and zinc also mitigated LPS-induced ICAM-1 protein expression on Western blot analysis. Treatment with AREDS MVS and zinc may affect both angiogenesis and endothelial-macrophage interactions. These results suggest that AREDS vitamins and zinc ions may slow the progression of AMD, in part through the attenuation of EC activation.
Chakraborti, Sajal; Sarkar, Jaganmay; Bhuyan, Rajabrata; Chakraborti, Tapati
2017-12-05
Treatment of human pulmonary artery smooth muscle cells with ET-1 stimulated PLD and NADPH oxidase activities, which were inhibited upon pretreatment with bosentan (ET-1 receptor antagonist), FIPI (PLD inhibitor), apocynin (NADPH oxidase inhibitor) and EGCG & ECG (catechins having galloyl group), but not EGC & EC (catechins devoid of galloyl group). Herein, we determined the probable mechanism by which the galloyl group containing catechins inhibit ET-1 induced stimulation of PLD activity by molecular docking analyses based on our biochemical studies. ET-1 induced stimulation of PLD activity was inhibited by SecinH3 (inhibitor of cytohesin). Arf-6 and cytohesin-1 were associated in the cell membrane, which was not inhibited by the catechins during ET-1 treatment to the cells. However, EGCG and ECG inhibited binding of GTPγS with Arf-6 even in presence of cytohesin-1. The molecular docking analyses revealed that the galloyl group containing catechins (EGCG/ECG) with cytohesin1-Arf6GDP, but not the non-galloyl-containing catechins (EGC and EC), prevents GDP/GTP exchange in Arf-6 which seems to be an important mechanism for inhibition of ET-1 induced activation of PLD and subsequently increase in NADPH oxidase activities.
Chen, Lih-Geeng; Chang, Cheng-Wei; Tsay, Jwu-Guh; Weng, Brian Bor-Chun
2017-01-01
Drug tolerance, lacking liver regenerative activity and inconclusive inhibition of steatosis and cirrhosis by silymarin treatment during chronic liver injury have increased the demand for novel alternative or synergistic treatments for liver damage. Litchi fruit is abundant in polyphenolic compounds and is used in traditional Chinese medicine for treatments that include the strengthening of hepatic and pancreatic functions. Unique polyphenolic compounds obtained from litchi pericarp extract (LPE) were studied in vitro and in vivo for hepatoprotection. Epicatechin (EC) and procyanidin A2 (PA2) of LPE were obtained by fractionated-extraction from pulverized litchi pericarps. All fractions, including LPE, were screened against silymarin in carbon tetrachloride (CCl4)-treated murine embryonic liver cell line (BNL). The effects of daily gavage-feeding of LPE, silymarin (200 mg/kg body weight) or H2O in CCl4-intoxicated male ICR mice were evaluated by studying serum chemicals, liver pathology and glutathione antioxidative enzymes. The effects of EC and PA2 on liver cell regenerative activity were investigated using a scratch wound healing assay and flow cytometric cell cycle analysis; the results of which demonstrated that LPE protected BNL from CCl4-intoxication. Gavage-feeding of LPE decreased serum glutamic oxaloacetate transaminase and glutamic pyruvic transaminase levels, and exhibited superior retention of the hexagonal structure of hepatocytes and reduced necrotic cells following liver histopathological examinations in CCl4-intoxicated ICR mice. Glutathione peroxidise and glutathione reductase activities were preserved as the normal control level in LPE groups. EC and PA2 were principle components of LPE. PA2 demonstrated liver cell regenerative activity in scratch wound healing assays and alcohol-induced liver cell injury in vitro. The present findings suggest that litchi pericarp polyphenolic extracts, including EC and PA2, may be a synergistic alternative to silymarin in hepatoprotection and liver cell regeneration. PMID:28587348
Chen, Lih-Geeng; Chang, Cheng-Wei; Tsay, Jwu-Guh; Weng, Brian Bor-Chun
2017-06-01
Drug tolerance, lacking liver regenerative activity and inconclusive inhibition of steatosis and cirrhosis by silymarin treatment during chronic liver injury have increased the demand for novel alternative or synergistic treatments for liver damage. Litchi fruit is abundant in polyphenolic compounds and is used in traditional Chinese medicine for treatments that include the strengthening of hepatic and pancreatic functions. Unique polyphenolic compounds obtained from litchi pericarp extract (LPE) were studied in vitro and in vivo for hepatoprotection. Epicatechin (EC) and procyanidin A2 (PA2) of LPE were obtained by fractionated-extraction from pulverized litchi pericarps. All fractions, including LPE, were screened against silymarin in carbon tetrachloride (CCl 4 )-treated murine embryonic liver cell line (BNL). The effects of daily gavage-feeding of LPE, silymarin (200 mg/kg body weight) or H 2 O in CCl 4 -intoxicated male ICR mice were evaluated by studying serum chemicals, liver pathology and glutathione antioxidative enzymes. The effects of EC and PA2 on liver cell regenerative activity were investigated using a scratch wound healing assay and flow cytometric cell cycle analysis; the results of which demonstrated that LPE protected BNL from CCl 4 -intoxication. Gavage-feeding of LPE decreased serum glutamic oxaloacetate transaminase and glutamic pyruvic transaminase levels, and exhibited superior retention of the hexagonal structure of hepatocytes and reduced necrotic cells following liver histopathological examinations in CCl 4- intoxicated ICR mice. Glutathione peroxidise and glutathione reductase activities were preserved as the normal control level in LPE groups. EC and PA2 were principle components of LPE. PA2 demonstrated liver cell regenerative activity in scratch wound healing assays and alcohol-induced liver cell injury in vitro . The present findings suggest that litchi pericarp polyphenolic extracts, including EC and PA2, may be a synergistic alternative to silymarin in hepatoprotection and liver cell regeneration.
Han, Jung-Kyu; Kim, Hack-Lyoung; Jeon, Ki-Hyun; Choi, Young-Eun; Lee, Hyun-Sook; Kwon, Yoo-Wook; Jang, Ja-June; Cho, Hyun-Jai; Kang, Hyun-Jae; Oh, Byung-Hee; Park, Young-Bae; Kim, Hyo-Soo
2013-06-01
The roles of peroxisome proliferator-activated receptor (PPAR)-δ in vascular biology are mainly unknown. We investigated the effects of PPAR-δ activation on the paracrine networks between endothelial progenitor cells (EPCs) and endothelial cells (ECs)/skeletal muscle. Treatment of EPCs with GW501516, a PPAR-δ agonist, induced specifically matrix metallo-proteinase (MMP)-9 by direct transcriptional activation. Subsequently, this increased-MMP-9 broke down insulin-like growth factor-binding protein (IGFBP)-3, resulting in IGF-1 receptor (IGF-1R) activation in surrounding target cells. Treatment of conditioned medium from GW501516-stimulated EPCs enhanced the number and functions of human umbilical vein ECs and C2C12 myoblasts via MMP-9-mediated IGF-1R activation. Systemic administration of GW501516 in mice increased MMP-9 expression in EPCs, and augmented IGFBP-3 degradation in serum. In a mouse hindlimb ischaemia model, systemic treatment of GW501516 or local transplantation of GW501516-treated EPCs induced IGF-1R phosphorylation in ECs and skeletal muscle in the ischaemic limbs, leading to augmented angiogenesis and skeletal muscle regeneration. It also enhanced wound healing with increased angiogenesis in a mouse skin punch wound model. These pro-angiogenic and muscle-regenerating effects were abolished by MMP-9 knock-out. Our results suggest that PPAR-δ is a crucial modulator of angio-myogenesis via the paracrine effects of EPCs, and its agonist is a good candidate as a therapeutic drug for patients with peripheral vascular diseases.
Bacterial DNA induces pulmonary damage via TLR-9 through cross-talk with neutrophils.
Itagaki, Kiyoshi; Adibnia, Yasaman; Sun, Shiqin; Zhao, Cong; Sursal, Tolga; Chen, Yu; Junger, Wolfgang; Hauser, Carl J
2011-12-01
Bacterial DNA (bDNA) contains hypomethylated "CpG" repeats that can be recognized by Toll-like receptor 9 (TLR-9) as a pathogen-associated molecular pattern. The ability of bDNA to initiate lung injury via TLR-9 has been inferred on the basis of studies using artificial CpG DNA. But the role of authentic bDNA in lung injury is still unknown. Moreover, the mechanisms by which CpG DNA species can lead to pulmonary injury are unknown, although neutrophils (PMNs) are thought to play a key role in the genesis of septic acute lung injury. We evaluated the effects of bDNA on PMN-endothelial cell (EC) interactions thought critical for initiation of acute lung injury. Using a biocapacitance system to monitor real-time changes in endothelial permeability, we demonstrate here that bDNA causes EC permeability in a dose-dependent manner uniquely in the presence of PMNs. These permeability changes are inhibited by chloroquine, suggesting TLR-9 dependency. When PMNs were preincubated with bDNA and applied to ECs or when bDNA was applied to ECs without PMNs, no permeability changes were detected. To study the underlying mechanisms, we evaluated the effects of bDNA on PMN-EC adherence. Bacterial DNA significantly increased PMN adherence to ECs in association with upregulated adhesion molecules in both cell types. Taken together, our results strongly support the conclusion that bDNA can initiate lung injury by stimulating PMN-EC adhesive interactions predisposing to endothelial permeability. Bacterial DNA stimulation of TLR-9 appears to promote enhanced gene expression of adhesion molecules in both cell types. This leads to PMN-EC cross-talk, which is required for injury to occur.
Khanmohammadi, Mehdi; Sakai, Shinji; Taya, Masahito
2017-04-01
The hydrogels having the ability to promote migration and morphogenesis of endothelial cells (ECs) are useful for fabricating vascularized dense tissues in vitro. The present study explores the immobilization of low molecular weight hyaluronic acid (LMWHA) derivative within gelatin-based hydrogel to stimulate migration of ECs. The LMWHA derivative possessing phenolic hydroxyl moieties (LMWHA-Ph) was bound to gelatin-based derivative hydrogel through the horseradish peroxidase-catalyzed reaction. The motility of ECs was analyzed by scratch migration assay and microparticle-based cell migration assay. The incorporated LMWHA-Ph molecules within hydrogel was found to be preserved stably through covalent bonds during incubation. The free and immobilized LMWHA-Ph did not lose an inherent stimulatory effect on human umbilical vein endothelial cells (HUVECs). The immobilized LMWHA-Ph within gelatin-based hydrogel induced the high motility of HUVECs, accompanied by robust cytoskeleton extension, and cell subpopulation expressing CD44 cell receptor. In the presence of immobilized LMWHA-Ph, the migration distance and the number of existing HUVECs were demonstrated to be encouraged in dose-dependent and time-dependent manners. Based on the results obtained in this work, it was concluded that the enzymatic immobilization of LMWHA-Ph within gelatin-based hydrogel represents a promising approach to promote ECs' motility and further exploitation for vascular tissue engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Triiodothyronine Potentiates Vasorelaxation via PKG/VASP Signaling in Vascular Smooth Muscle Cells.
Samuel, Sherin; Zhang, Kuo; Tang, Yi-Da; Gerdes, A Martin; Carrillo-Sepulveda, Maria Alicia
2017-01-01
Vascular relaxation caused by Triiodothyronine (T3) involves direct activation of endothelial cells (EC) and vascular smooth muscle cells (VSMC). Activation of protein kinase G (PKG) has risen as a novel contributor to the vasorelaxation mechanism triggered by numerous stimuli. We hypothesize that T3-induced vasorelaxation involves PKG/vasodilator-stimulated phosphoprotein (VASP) signaling pathway in VSMC. Human aortic endothelial cells (HAEC) and VSMC were treated with T3 for short (2 to 60 minutes) and long term (24 hours). Nitric oxide (NO) production was measured using DAF-FM. Expression of protein targets was determined using western blot. For functional studies, rat aortas were isolated and treated with T3 for 20 minutes and mounted in a wire myograph. Relaxation was measured by a concentration-dependent response to acetylcholine (ACh) and sodium nitroprusside (SNP). Aortas stimulated with T3 exhibited augmented sensitivity to ACh and SNP-induced relaxation, endothelium-dependent and endothelium-independent responses, respectively. T3 directly increased vasorelaxation, which was abolished in the presence of a PKG inhibitor. T3 markedly induced phosphorylation of Akt, eNOS and consequently increased NO production in EC. Likewise, T3 induced phosphorylation of VASP at serine 239 via the PKG pathway in VSMC. Our findings have uncovered a PKG/VASP signaling pathway in VSMC as a key molecular mechanism underlying T3-induced vascular relaxation. © 2017 The Author(s)Published by S. Karger AG, Basel.
Gasparova, Zdenka; Stara, Veronika; Janega, Pavol; Navarova, Jana; Sedlackova, Natalia; Mach, Mojmir; Ujhazy, Eduard
2014-01-01
The idea of antioxidant therapy attenuating Alzheimer disease (AD) neuropathology starts to be attractive. Animal models are often used in these studies. An AD-like model of trimethyltin (TMT)-induced neurodegeneration, targeting the hippocampus, involves neuronal cell death and cognitive impairment. Effect of the pyridoindole SMe1EC2 (3×50 mg/kg) and vitamin C (3×50mg/kg) was analyzed in the model of TMT-induced (8 mg/kg) neurodegeneration. The study was focused on the effect of the antioxidants tested on learning performance in the Morris water maze (MWM) on days 21-25 after TMT administration, on biochemical variables - malondyaldehyde (MDA) and lysosomal enzyme NAGA in brain cortex and blood serum, and on pyramidal cell number in the CA1 area of the hippocampus on day 31 after TMT administration in adult male Wistar rats (n=32). Critical deterioration of learning performance was observed due to the TMT administration in the MWM. Further, apparent reduction of pyramidal cell number to 21% in the CA1 area of the hippocampus, increased MDA and NAGA activity in serum and increased NAGA activity in the cortex were determined contrary to controls. In serum, an increase of MDA level was prevented by both antioxidants tested without any effect on NAGA activity. SMe1EC2 apparently preserved pyramidal cell viability in the CA1 area. Both substances tested failed to ameliorate the detrimental effect of TMT on spatial memory. The biochemical and morphometrical findings suggest that reduction of oxidative stress may play a role in AD-like neurodegeneration. Different doses and timing of SMe1EC2 administration might bring improvement in next learning performance.
Zhao, Ruozhi; Xie, Xueping; Le, Khuong; Li, Wende; Moghadasian, Mohammed H; Beta, Trust; Shen, Garry X
2015-11-01
Endoplasmic reticulum (ER) stress is associated with insulin resistance and diabetic cardiovascular complications, and mechanism or remedy for ER stress remains to be determined. The results of the present study demonstrated that the levels of ER stress or unfolded protein response (UPR) markers, the intensity of thioflavin T (ThT) fluorescence and the abundances of GRP78/94, XBP-1 and CHOP proteins were elevated in cardiovascular tissue of diabetic leptin receptor-deficient (db/db) mice. Cyanidin-3-glucoside (C3G) and cyanidin-3-galactoside (C3Ga) are major anthocyanins in Saskatoon berry (SB) powder. The administration of 5% SB powder for 4 weeks attenuated ThT fluorescence and the UPR markers in hearts and aortae of wild-type and db/db mice. Treatment with glycated low-density lipoprotein (gLDL) increased ThT intensity in human umbilical vein endothelial cells (ECs). Elevated UPR markers were detected in gLDL-treated EC compared to control cultures. The involvement of ER stress in gLDL-treated EC was supported by that the addition of 4-phenyl butyrate acid (a known ER stress antagonist) inhibited gLDL-induced increases in ER stress or UPR markers. C3G at 30 μM or C3Ga at 100 μM reached their maximal inhibition on gLDL-induced increases in ThT, GRP78/94, XBP-1 and CHOP in EC. The results demonstrated that ER stress was enhanced in cardiovascular tissue of db/db mice or gLDL-treated EC. SB powder or cyanidin glycans prevented the abnormal increases in ER stress and UPR markers in cardiovascular tissue of diabetic db/db mice or gLDL-treated EC. Copyright © 2015 Elsevier Inc. All rights reserved.
Olsvik, Pål A; Berntssen, Marc H G; Hylland, Ketil; Eriksen, Dag Ø; Holen, Elisabeth
2012-07-01
The aim of this study was to investigate whether (226)Ra, a radionuclide present in produced water from oil platforms in the North Sea and other offshore drilling areas, could affect vulnerable early life stages of Atlantic cod (Gadus morhua). Blastula-stage embryonic cells (EC) from fertilized eggs of Atlantic cod were isolated and exposed to environmental relevant concentrations of (226)Ra and transcription of selected genes quantified. The results showed a weak, but significant up-regulation of GPx3 and HSP70 transcripts after 48 h of exposure to 2.11 Bq/L. In EC exposed to three (226)Ra concentrations (2.11, 23 and 117 Bq/L) for 12 h, metallothionein, HSP90AA, thioredoxin and caspase 8 were significantly up-regulated in cells exposed to 117 Bq/L, whereas thioredoxin was also significantly up-regulated in EC exposed to 23 Bq/L. When EC were exposed to the same (226)Ra concentrations for 48 h, only heme oxygenase was significantly up-regulated in the 23 Bq/L exposure group. The results suggest that environmentally relevant activities of (226)Ra may induce oxidative stress and apoptosis in fish ECs. Exposure of Atlantic cod EC to Cd, selected as a model toxicant, supported the ability of EC around blastula stage to respond to toxicants by altered transcription. Due to dilution, environmentally relevant concentrations of radionuclides present in produced water would be expected to pose a minor threat to early life stages of fish. Copyright © 2012 Elsevier Ltd. All rights reserved.
gp96 expression in neutrophils is critical for the onset of Escherichia coli K1 (RS218) meningitis.
Mittal, Rahul; Prasadarao, Nemani V
2011-11-22
Despite the fundamental function of neutrophils (polymorphonuclear leukocytes (PMNs)) in innate immunity, their role in Escherichia coli K1 (EC-K1) -induced meningitis is unexplored. Here we show that PMN-depleted mice are resistant to EC-K1 (RS218) meningitis. EC-K1 survives and multiplies in PMNs for which outer membrane protein A (OmpA) expression is essential. EC-K1 infection of PMNs increases the cell surface expression of gp96, which acts as a receptor for bacterial entry. Suppression of gp96 expression in newborn mice prevents the onset of EC-K1 meningitis. Infection of PMNs with EC-K1 suppresses oxidative burst by downregulating rac1, rac2 and gp91(phox) transcription both in vitro and in vivo. The interaction of loop 2 of OmpA with gp96 is essential for EC-K1-mediated inhibition of oxidative burst. These results reveal that EC-K1 exploits surface-expressed gp96 in PMNs to prevent oxidative burst for the onset of neonatal meningitis.
gp96 expression in neutrophils is critical for the onset of Escherichia coli K1 (RS218) meningitis
Mittal, Rahul; Prasadarao, Nemani V.
2012-01-01
Despite the fundamental function of neutrophils (PMNs) in innate immunity, their role in Escherichia coli K1 (EC-K1) induced meningitis is unexplored. Here we show that PMN-depleted mice are resistant to EC-K1 (RS218) meningitis. EC-K1 survives and multiplies in PMNs for which outer membrane protein A (OmpA) expression is essential. EC-K1infection of PMNs increases the cell surface expression of gp96, which acts as a receptor for bacterial entry. Suppression of gp96 expression in newborn mice prevents the onset of EC-K1 meningitis. Infection of PMNs with EC-K1 suppresses oxidative burst by down regulating rac1, rac2 and gp91phox transcription both in vitro and in vivo. The interaction of loop 2 of OmpA with gp96 is essential for EC-K1-mediated inhibition of oxidative burst. These results reveal that EC-K1 exploits surface expressed gp96 in PMNs to prevent oxidative burst for the onset of neonatal meningitis. PMID:22109526
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, L.L., E-mail: lana.miller@uleth.ca; Hontela, A.
Species differences in physiological and biochemical attributes exist even among closely related species and may underlie species-specific sensitivity to toxicants. Rainbow trout (RT) are more sensitive than brook trout (BT) to the teratogenic effects of selenium (Se), but it is not known whether all tissues exhibit this pattern of vulnerability. In this study, primary cultures of RT and BT adrenocortical cells were exposed to selenite (Na{sub 2}SO{sub 3}) and selenomethionine (Se-Met) to compare cell viability and ACTH-stimulated cortisol secretion in the two fish species. Cortisol, the primary stress hormone in fish, facilitates maintenance of homeostasis when fish are exposed tomore » stressors, including toxicants. Cell viability was not affected by Se, but selenite impaired cortisol secretion, while Se-Met did not (RT and BT EC{sub 50} > 2000 mg/L). RT cells were more sensitive (EC{sub 50} = 8.7 mg/L) to selenite than BT cells (EC{sub 50} = 90.4 mg/L). To identify the targets where Se disrupts cortisol synthesis, selenite-impaired RT and BT cells were stimulated with ACTH, dbcAMP, OH-cholesterol, and pregnenolone. Selenite acted at different steps in the cortisol biosynthesis pathway in RT and BT cells, confirming a species-specific toxicity mechanism. To test the hypothesis that oxidative stress mediates Se-induced toxicity, selenite-impaired RT cells were exposed to NAC, BSO and antioxidants (DETCA, ATA, Vit A, and Vit E). Inhibition of SOD by DETCA enhanced selenite-induced cortisol impairment, indicating that oxidative stress plays a role in Se toxicity; however, modifying GSH content of the cells did not have an effect. The results of this study, with two closely related salmonids, provided additional evidence for species-specific differences in sensitivity to Se which should be considered when setting thresholds and water quality guidelines. - Research Highlights: > We investigated species-specific sensitivity to Se in trout adrenocortical cells. > Selenite, not Se-Met, disrupts cortisol secretion in trout adrenocortical cells. > Rainbow trout cells are more sensitive than brook trout cells to selenite toxicity. > Superoxide dismutase may protect adrenocortical cells from selenite toxicity.« less
Homayouni Moghadam, Farshad; Tayebi, Tahereh; Moradi, Alireza; Nadri, Hamid; Barzegar, Kazem; Eslami, Gilda
2014-01-01
By considering stem cell-based therapies as a new hope for the treatment of some tragic diseases, marrow stromal cells or marrow mesenchymal stem cells (MSCs) were considered as a suitable and safe multipotential cell source for this new therapeutic approach. For this purpose, many investigations have been performed on differentiation of MSCs toward specific cell lines to overcome the demand for providing the organ specific cells for cell therapy or preparation of engineered tissues. In the present study, differentiation of MSCs to endothelial cells (ECs) by mechanical and chemical stimulation was evaluated. Fluid shear stress (FSS) was used as mechanical inducer, while platelet lysate (PL) and estradiol (E) were used as chemical induction factors. MSCs were placed under FSS with different forces (2, 5 and 10dyn/cm2) for different periods (6, 12 and 24 hours). In some groups, PL and E were added to the culture media to evaluate their effect on expression of EC specific markers. This investigation revealed that FSS with low tension (2.5-5 dyn/cm2) for a long time (24 hours) or high tension (10 dyn/cm2) in short time (6 hours) in the presence of PL could differentiate MSCs toward ECs. The presence of PL was necessary for initiation of endothelial differentiation, and in the absence of PL, there was not any expression of CD34 and Cadherin5 (Cdh5) among cells. Adding E to the culture medium did not change the rate of endothelial differentiation under FSS. Generated endothelial progenitors could produce von Willebrand factor (vWF) after two weeks culture and also they formed tubular structures after culture on matrigel. PMID:26417289
Homayouni Moghadam, Farshad; Tayebi, Tahereh; Moradi, Alireza; Nadri, Hamid; Barzegar, Kazem; Eslami, Gilda
2014-01-01
By considering stem cell-based therapies as a new hope for the treatment of some tragic diseases, marrow stromal cells or marrow mesenchymal stem cells (MSCs) were considered as a suitable and safe multipotential cell source for this new therapeutic approach. For this purpose, many investigations have been performed on differentiation of MSCs toward specific cell lines to overcome the demand for providing the organ specific cells for cell therapy or preparation of engineered tissues. In the present study, differentiation of MSCs to endothelial cells (ECs) by mechanical and chemical stimulation was evaluated. Fluid shear stress (FSS) was used as mechanical inducer, while platelet lysate (PL) and estradiol (E) were used as chemical induction factors. MSCs were placed under FSS with different forces (2, 5 and 10dyn/cm(2)) for different periods (6, 12 and 24 hours). In some groups, PL and E were added to the culture media to evaluate their effect on expression of EC specific markers. This investigation revealed that FSS with low tension (2.5-5 dyn/cm(2)) for a long time (24 hours) or high tension (10 dyn/cm(2)) in short time (6 hours) in the presence of PL could differentiate MSCs toward ECs. The presence of PL was necessary for initiation of endothelial differentiation, and in the absence of PL, there was not any expression of CD34 and Cadherin5 (Cdh5) among cells. Adding E to the culture medium did not change the rate of endothelial differentiation under FSS. Generated endothelial progenitors could produce von Willebrand factor (vWF) after two weeks culture and also they formed tubular structures after culture on matrigel.
Chen, Jian; Zhang, Xing; Wang, Yong; Ye, Yu; Huang, Zhaoquan
2018-05-02
For postmenopausal cardiovascular disease, long-term estrogen therapy may increase the risk of breast cancer. To reduce this risk, estrogen may be replaced with the phytoestrogen formononetin, but how formononetin acts on vascular endothelial cells (ECs) and breast cancer cells is unclear. Here, we show that low concentrations of formononetin induced proliferation and inhibited apoptosis more strongly in cultured human umbilical vein endothelial cells (HUVECs) than in breast cancer cells expressing estrogen receptor α (ERα) (MCF-7, BT474) or not (MDA-MB-231), and that this differential stimulation was associated with miR-375 up-regulation in HUVECs. For the first time, we demonstrate the presence of a feedback loop involving miR-375, ras dexamethasone-induced 1 (RASD1), and ERα in normal HUVECs, and we show that formononetin stimulated this feedback loop in HUVECs but not in MCF-7 or BT474 cells. In all three cell lines, formononetin increased Akt phosphorylation and Bcl-2 expression. Inhibiting miR-375 blocked these changes and increased proliferation in HUVECs, but not in MCF-7 or BT474 cells. In ovariectomized rats, formononetin increased uterine weight and caused similar changes in levels of miR-375, RASD1, ERα, and Bcl-2 in aortic ECs as in cultured HUVECs. In mice bearing MCF-7 xenografts, tumor growth was stimulated by 17β-estradiol but not by formononetin. These results suggest selective action of formononetin in ECs (proliferation stimulation and apoptosis inhibition) relative to breast cancer cells, possibly via a feedback loop involving miR-375, RASD1, and ERα. This differential effect may explain why formononetin may not increase the risk of postmenopausal breast cancer. © 2018 Wiley Periodicals, Inc.
Nader, Joëlle; Rapino, Cinzia; Gennequin, Benjamin; Chavant, Francois; Francheteau, Maureen; Makriyannis, Alexandros; Duranti, Andrea; Maccarrone, Mauro; Solinas, Marcello; Thiriet, Nathalie
2014-12-01
Methamphetamine toxicity is associated with cell death and loss of dopamine neuron terminals in the striatum similar to what is found in some neurodegenerative diseases. Conversely, the endocannabinoid system (ECS) has been suggested to be neuroprotective in the brain, and new pharmacological tools have been developed to increase their endogenous tone. In this study, we evaluated whether ECS stimulation could reduce the neurotoxicity of high doses of methamphetamine on the dopamine system. We found that methamphetamine alters the levels of the major endocannabinoids, anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) in the striatum, suggesting that the ECS participates in the brain responses to methamphetamine. Δ(9)-tetrahydrocannabinol (THC), a cannabis-derived agonist of both CB1 and CB2 cannabinoid receptors, or inhibitors of the main enzymes responsible for the degradation of AEA and 2-AG (URB597 and JZL184, respectively), blunted the decrease in striatal protein levels of tyrosine hydroxylase induced by methamphetamine. In addition, antagonists of CB2, but not of CB1, blocked the preventive effects of URB597 and JZL184, suggesting that only the former receptor subtype is engaged in neuroprotection exerted by ECS stimulation. Finally, we found that methamphetamine increases striatal levels of the cytokine tumor necrosis factor alpha, an effect that was blocked by ECS stimulation. Altogether, our results indicate that stimulation of ECS prior to the administration of an overdose of methamphetamine considerably reduces the neurotoxicity of the drug through CB2 receptor activation and highlight a protective function for the ECS against the toxicity induced by drugs and other external insults to the brain. This article is part of the Special Issue entitled 'CNS Stimulants'. Copyright © 2014 Elsevier Ltd. All rights reserved.
Nader, Joëlle; Rapino, Cinzia; Gennequin, Benjamin; Chavant, Francois; Francheteau, Maureen; Makriyannis, Alexandros; Duranti, Andrea; Maccarrone, Mauro; Solinas, Marcello; Thiriet, Nathalie
2016-01-01
Methamphetamine toxicity is associated with cell death and loss of dopamine neuron terminals in the striatum similar to what is found in some neurodegenerative diseases. Conversely, the endocannabinoid system (ECS) has been suggested to be neuroprotective in the brain, and new pharmacological tools have been developed to increase their endogenous tone. In this study, we evaluated whether ECS stimulation could reduce the neurotoxicity of high doses of methamphetamine on the dopamine system. We found that methamphetamine alters the levels of the major endocannabinoids, anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) in the striatum, suggesting that the ECS participates in the brain responses to methamphetamine. Δ9-tetrahydrocannabinol (THC), a cannabis-derived agonist of both CB1 and CB2 cannabinoid receptors, or inhibitors of the main enzymes responsible for the degradation of AEA and 2-AG (URB597 and JZL184, respectively), blunted the decrease in striatal protein levels of tyrosine hydroxylase induced by methamphetamine. In addition, antagonists of CB2, but not of CB1, blocked the preventive effects of URB597 and JZL184, suggesting that only the former receptor subtype is engaged in neuroprotection exerted by ECS stimulation. Finally, we found that methamphetamine increases striatal levels of the cytokine tumor necrosis factor alpha, an effect that was blocked by ECS stimulation. Altogether, our results indicate that stimulation of ECS prior to the administration of an overdose of meth-amphetamine considerably reduces the neurotoxicity of the drug through CB2 receptor activation and highlight a protective function for the ECS against the toxicity induced by drugs and other external insults to the brain. This article is part of the Special Issue entitled ‘CNS Stimulants’. PMID:24709540
Szulcek, Robert; van Bezu, Jan; Boonstra, Johannes; van Loon, Jack J. W. A.; van Nieuw Amerongen, Geerten P.
2015-01-01
Background Endothelial cells (EC) guard vascular functions by forming a dynamic barrier throughout the vascular system that sensitively adapts to ‘classical’ biomechanical forces, such as fluid shear stress and hydrostatic pressure. Alterations in gravitational forces might similarly affect EC integrity, but remain insufficiently studied. Methods In an unique approach, we utilized Electric Cell-substrate Impedance Sensing (ECIS) in the gravity-simulators at the European Space Agency (ESA) to study dynamic responses of human EC to simulated micro- and hyper-gravity as well as to classical forces. Results Short intervals of micro- or hyper-gravity evoked distinct endothelial responses. Stimulated micro-gravity led to decreased endothelial barrier integrity, whereas hyper-gravity caused sustained barrier enhancement by rapid improvement of cell-cell integrity, evidenced by a significant junctional accumulation of VE-cadherin (p = 0.011), significant enforcement of peripheral F-actin (p = 0.008) and accompanied by a slower enhancement of cell-matrix interactions. The hyper-gravity triggered EC responses were force dependent and nitric-oxide (NO) mediated showing a maximal resistance increase of 29.2±4.8 ohms at 2g and 60.9±6.2 ohms at 4g vs. baseline values that was significantly suppressed by NO blockage (p = 0.011). Conclusion In conclusion, short-term application of hyper-gravity caused a sustained improvement of endothelial barrier integrity, whereas simulated micro-gravity weakened the endothelium. In clear contrast, classical forces of shear stress and hydrostatic pressure induced either short-lived or no changes to the EC barrier. Here, ECIS has proven a powerful tool to characterize subtle and distinct EC gravity-responses due to its high temporal resolution, wherefore ECIS has a great potential for the study of gravity-responses such as in real space flights providing quantitative assessment of a variety of cell biological characteristics of any adherent growing cell type in an automated and continuous fashion. PMID:26637177
Uchida, Yasuto; Uchida, Yasumi; Maezawa, Yoshiro; Maezawa, Yuko; Tabata, Tsuyoshi
2012-01-01
It was previously thought that arteriogenesis and venogenesis are induced not only by proliferation of vessel-resident smooth muscle cells (SMCs) and endothelial cells (ECs) but also by migration of their precursors. However, it is not well understood through what route(s) the precursors migrate into the existing vessels.We examined through what route or routes circulating mononuclear cells expressing β-actin (β-MNCs), which we identified in canine coronary vessels, migrate into coronary vessel walls and cause arteriogenesis and venogenesis at 1, 2, 4 and 8 weeks after induction of myocardial infarction.The following changes were observed: (1) The β-MNCs migrated via coronary microvessels to the interstitial space at one week; (2) β-MNCs traversed the adventitia into the media and settled in parallel with pre-existing smooth muscle cells (SMCs) in arterioles and arteries and lost β-actin and acquired α-smooth muscle actin (α-SMA) to become mature SMCs at 2-4 weeks; (3) at the same time, other β-MNCs migrated across the adventitia and media into the intima and settled in parallel with pre-existing endothelial cells (ECs) and lost β-actin, while acquiring CD(31), to become mature ECs, resulting in arteriogenesis; (4) Similarly, β-MNCs migrated into venular and venous walls and became SMCs or ECs, resulting in venogenesis.β-MNCs in the interstitial space expressed CD(34) but not other major vascular cell markers.β-MNCs, possibly a vascular progenitor, migrate not from the lumen but across the adventitia into the media or intima of coronary vessels and transit to SMCs or ECs, and participate in arteriogenesis and venogenesis in ischemic myocardium.
Gu, Y; Groome, L J; Alexander, J S; Wang, Y
2012-10-01
PAR-2 is a G-protein coupled protease receptor whose activation in endothelial cells (ECs) is associated with increased solute permeability. VE-cadherin is an endothelial-specific junction protein, which exhibits a disorganized distribution at cell junction during inflammation and is a useful indicator of endothelial barrier dysfunction. In the present study, we tested the hypothesis that PAR-2 activation mediates placenta-derived chymotrypsin-like protease (CLP)-induced endothelial junction disturbance and permeability in preeclampsia (PE). PAR-2 and VE-cadherin were examined by immunofluorescent staining. Specific CLP induced PAR-2 activation and altered VE-cadherin distribution was assessed following depletion of protease chymotrypsin in the placental conditioned medium and after PAR-2 siRNA. VE-cadherin assembly was determined by treating cells with protease chymotrypsin and/or the specific PAR-2 agonist SLIGKV-NH2. Our results showed: 1) placental conditioned medium not only disturbed VE-cadherin distribution at cell junctions but also activated PAR-2 in ECs; 2) PAR-2 siRNA blocked the placental conditioned medium induced PAR-2 upregulation and disorganization of VE-cadherin at cell junctions; 3) PAR-2 agonist induced PAR-2 activation and VE-cadherin reorganization were dose-dependent; and 4) PAR-2 agonist could stimulate ERK1/2 activation. These results strongly suggest that proteases produced by the placenta elicit endothelial barrier dysfunction via a PAR-2 signaling regulatory mechanism in PE. Copyright © 2012 Elsevier Ltd. All rights reserved.
Gu, Yang; Groome, Lynn J.; Alexander, J. Steven; Wang, Yuping
2014-01-01
PAR-2 is a G-protein coupled protease receptor whose activation in endothelial cells (ECs) is associated with increased solute permeability. VE-cadherin is an endothelial specific junction protein, which exhibits a disorganized distribution at cell junction during inflammation and is a useful indicator of endothelial barrier dysfunction. In the present study, we tested the hypothesis that PAR-2 activation mediates placenta-derived chymotrypsin-like protease (CLP)-induced endothelial junction disturbance and permeability in preeclampsia (PE). PAR-2 and VE-cadherin were examined by immunofluorescent staining. Specific CLP-induced PAR-2 activation and altered VE-cadherin distribution was assessed following depletion of protease chymotrypsin in the placental conditioned medium and after PAR-2 siRNA. VE-cadherin assembly was determined by treating cells with protease chymotrypsin and/or the specific PAR-2 agonist SLIGKV-NH2. Our results showed: 1) placental conditioned medium not only disturbed VE-cadherin distribution at cell junctions but also activated PAR-2 in ECs; 2) PAR-2 siRNA blocked the placental conditioned medium induced PAR-2 upregulation and disorganization of VE-cadherin at cell junctions; 3) PAR-2 agonist induced PAR-2 activation and VE-cadherin reorganization were dose-dependent; and 4) PAR-2 agonist could stimulate ERK1/2 activation. These results strongly suggest that proteases produced by the placenta elicit endothelial barrier dysfunction via a PAR-2 signaling regulatory mechanism in PE. PMID:22840244
Chang, Alex C Y; Garside, Victoria C; Fournier, Michele; Smrz, Justin; Vrljicak, Pavle; Umlandt, Patricia; Fuller, Megan; Robertson, Gordon; Zhao, Yongjun; Tam, Angela; Jones, Steven J M; Marra, Marco A; Hoodless, Pamela A; Karsan, Aly
2014-07-01
Valvuloseptal defects are the most common congenital heart defects. Notch signaling-induced endothelial-to-mesenchymal transition (EMT) in the atrioventricular canal (AVC) cushions at murine embryonic day (E)9.5 is a required step during early valve development. Insights to the transcriptional network that is activated in endocardial cells (EC) during EMT and how these pathways direct valve maturation are lacking. We show that at E11.5, AVC-EC retain the ability to undergo Notch-dependent EMT when explanted on collagen. EC-Notch inhibition at E10.5 blocks expression of known mesenchymal genes in E11.5 AVC-EC. To understand the genetic network and AVC development downstream of Notch signaling beyond E9.5, we constructed Tag-Seq libraries corresponding to different cell types of the E11.5 AVC and atrium in wild-type mice and in EC-Notch inhibited mice. We identified 1,400 potential Notch targets in the AVC-EC, of which 124 are transcription factors (TF). From the 124 TFs, we constructed a transcriptional hierarchy and identify 10 upstream TFs within the network. We validated 4 of the upstream TFs as Notch targets that are enriched in AVC-EC. Functionally, we show these 4 TFs regulate EMT in AVC explant assays. These novel signaling pathways downstream of Notch are potentially relevant to valve development. © 2014 Wiley Periodicals, Inc.
Huang, Youhua; Huang, Xiaohong; Cai, Jia; OuYang, Zhengliang; Wei, Shina; Wei, Jingguang; Qin, Qiwei
2015-02-01
Interferon regulatory factor 3 (IRF3) is an important transcription factor which regulates the expression of interferon (IFN) and IFN-stimulated genes (ISGs) following virus recognition. In this study, a novel IRF3 gene was cloned from grouper Epinephelus coioides (EcIRF3) and its effects against Singapore grouper iridovirus (SGIV) and red spotted grouper nervous necrosis virus (RGNNV) was investigated. The full-length of EcIRF3 cDNA was composed of 2513 bp and encoded a polypeptide of 458 amino acids which shared 82% identity with European seabass (Dicentrarchus labrax). EcIRF3 contained three conserved domains including a DNA-binding domain (DBD), an IRF associated domain (IAD) and a serine-rich domain. Expression profile analysis revealed that EcIRF3 was abundant in head kidney, kidney, spleen and gill. Upon different stimuli in vitro, the transcript of EcIRF3 was significantly up-regulated after RGNNV infection or treatment with polyinosin-polycytidylic acid (poly I:C). During SGIV infection, the increase of the EcIRF3 transcription was only detected at the late stage, suggesting that EcIRF3 was differently regulated by different stimuli. Immune fluorescence assay indicated that the fluorescence signal of EcIRF3 was increased significantly after infection with RGNNV or treatment with poly I:C, but moderately at the late stage of SGIV infection. Reporter gene assay showed that EcIRF3 activated zebrafish type I IFN and type III IFN promoter in vitro. The viral gene transcription and virus production of RGNNV were significantly decreased in EcIRF3 overexpressing cells. However, the ectopic expression of EcIRF3 did not affect the gene transcription and virus production of SGIV. Moreover, the mRNA expression levels of type I IFN and IFN-inducible genes (MxI, ISG15 and ISG56) were increased in RGNNV infected EcIRF3 overexpressing cells compared to empty vector transfected cells. Together, our results demonstrated that IFN immune response mediated by grouper IRF3 was exerted crucial roles for fish RNA virus, but not for DNA virus replication. Copyright © 2014 Elsevier Ltd. All rights reserved.
Jaiswal, A K; Nebert, D W; Eisen, H W
1985-08-01
The human MCF-7 and the mouse Hepa-1 cell culture lines were compared for aryl hydrocarbon hydroxylase and acetanilide 4-hydroxylase inducibility by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and benzo[a]anthracene (BA) and TCDD- and BA-specific binding in the cytosol and nucleus. The effective concentration of BA in the growth medium required to induce either enzyme to 50% of its maximally inducible activity (EC50) was the same (5-11 microM) in both MCF-7 and Hepa-1 cells. On the other hand, the EC50 for TCDD in MCF-7 cells (5-25 nM) was more than 40-fold greater than that in Hepa-1 cells (0.4 to 0.6 nM). P1-450- and P3-450-specific mouse cDNA probes were used to quantitate mRNA induction in the Hepa-1 cell line. P1-450 mRNA was induced markedly by TCDD and benzo[a] anthracene, whereas P3-450 mRNA was induced negligibly. A P1-450-specific human cDNA probe was used to quantitate P1-450 mRNA induction in the MCF-7 cell line. Aryl hydrocarbon hydroxylase inducibility by TCDD or BA always paralleled P1-450 mRNA inducibility in either the mouse or human line. Although the cytosolic Ah receptor in Hepa-1 cells was easily detected by sucrose density gradient centrifugation, gel permeation chromatography, and anion-exchange high-performance liquid chromatography, the cytosolic receptor cannot be detected in MCF-7 cells. Following in vivo exposure of cultures to radiolabeled TCDD, the intranuclear concentration of inducer-receptor complex was at least fifty times greater in Hepa-1 than MCF-7 cultures. The complete lack of measurable cytosolic receptor and almost totally absent inducer-receptor complex in the nucleus of MCF-7 cells was, therefore, out of proportion to its capacity for aryl hydrocarbon hydroxylase and acetanilide 4-hydroxylase inducibility. This MCF-7 line should provide an interesting model for a better understanding of the mechanisms of drug-metabolizing enzyme induction by polycyclic aromatic compounds, including the Ah receptor-mediated mechanism.
S100A6 regulates endothelial cell cycle progression by attenuating antiproliferative STAT1 signaling
Lerchenmüller, Carolin; Heißenberg, Julian; Damilano, Federico; Bezzeridis, Vassilios J.; Krämer, Isabel; Bochaton-Piallat, Marie-Luce; Hirschberg, Kristóf; Busch, Martin; Katus, Hugo A.; Peppel, Karsten; Rosenzweig, Anthony; Busch, Hauke; Boerries, Melanie; Most, Patrick
2016-01-01
Objective S100A6, a member of the S100-protein family, has been described as relevant for cell cycle entry and progression in endothelial cells (ECs). The molecular mechanism conferring S100A6’s proliferative actions, however, remained elusive. Approach and Results Originating from the clinically relevant observation of enhanced S100A6 protein expression in proliferating ECs in remodeling coronary and carotid arteries, our study unveiled S100A6 as a suppressor of antiproliferative signal transducers and activators of transcription 1 (STAT1) signaling. Discovery of the molecular liaison was enabled by combining gene expression time series analysis with bioinformatic pathway modeling in S100A6 silenced human ECs stimulated with vascular endothelial growth factor A (VEGF-A). This unbiased approach led to successful identification and experimental validation of interferon-inducible transmembrane protein 1 (IFITM1) and protein inhibitors of activated STAT (PIAS) as key components of the link between S100A6 and STAT1. Conclusions Given the important role of coordinated EC cell cycle activity for integrity and reconstitution of the inner lining of arterial blood vessels in health and disease, STAT1 suppression by S100A6 may represent a promising therapeutic target to facilitate reendothelialization in damaged vessels. PMID:27386938
Yi, Lei; Huang, Xiaoqin; Guo, Feng; Zhou, Zengding; Chang, Mengling; Huan, Jingning
2017-01-01
The bacterial endotoxin or lipopolysaccharide (LPS) leads to the extensive vascular endothelial cells (EC) injury under septic conditions. Guanine nucleotide exchange factor-H1 (GEF-H1)/ROCK signaling not only involved in LPS-induced overexpression of pro-inflammatory mediator in ECs but also implicated in LPS-induced endothelial hyper-permeability. However, the mechanisms behind LPS-induced GEF-H1/ROCK signaling activation in the progress of EC injury remain incompletely understood. GEF-H1 localized on microtubules (MT) and is suppressed in its MT-bound state. MT disassembly promotes GEF-H1 release from MT and stimulates downstream ROCK-specific GEF activity. Since glycogen synthase kinase (GSK-3beta) participates in regulating MT dynamics under pathologic conditions, we examined the pivotal roles for GSK-3beta in modulating LPS-induced activation of GEF-H1/ROCK, increase of vascular endothelial permeability and severity of acute lung injury (ALI). In this study, we found that LPS induced human pulmonary endothelial cell (HPMEC) monolayers disruption accompanied by increase in GSK-3beta activity, activation of GEF-H1/ROCK signaling and decrease in beta-catenin and ZO-1 expression. Inhibition of GSK-3beta reduced HPMEC monolayers hyper-permeability and GEF-H1/ROCK activity in response to LPS. GSK-3beta/GEF-H1/ROCK signaling is implicated in regulating the expression of beta-catenin and ZO-1. In vivo , GSK-3beta inhibition attenuated LPS-induced activation of GEF-H1/ROCK pathway, lung edema and subsequent ALI. These findings present a new mechanism of GSK-3beta-dependent exacerbation of lung micro-vascular hyper-permeability and escalation of ALI via activation of GEF-H1/ROCK signaling and disruption of intracellular junctional proteins under septic condition.
Dalsgaard, Thomas; Bonev, Adrian D.; Nelson, Mark T.
2016-01-01
Key points Increase in endothelial cell (EC) calcium activates calcium‐sensitive intermediate and small conductance potassium (IK and SK) channels, thereby causing hyperpolarization and endothelium‐dependent vasodilatation.Endothelial cells express inward rectifier potassium (Kir) channels, but their role in endothelium‐dependent vasodilatation is not clear.In the mesenteric arteries, only ECs, but not smooth muscle cells, displayed Kir currents that were predominantly mediated by the Kir2.1 isoform.Endothelium‐dependent vasodilatations in response to muscarinic receptor, TRPV4 (transient receptor potential vanilloid 4) channel and IK/SK channel agonists were highly attenuated by Kir channel inhibitors and by Kir2.1 channel knockdown.These results point to EC Kir channels as amplifiers of vasodilatation in response to increases in EC calcium and IK/SK channel activation and suggest that EC Kir channels could be targeted to treat endothelial dysfunction, which is a hallmark of vascular disorders. Abstract Endothelium‐dependent vasodilators, such as acetylcholine, increase intracellular Ca2+ through activation of transient receptor potential vanilloid 4 (TRPV4) channels in the plasma membrane and inositol trisphosphate receptors in the endoplasmic reticulum, leading to stimulation of Ca2+‐sensitive intermediate and small conductance K+ (IK and SK, respectively) channels. Although strong inward rectifier K+ (Kir) channels have been reported in the native endothelial cells (ECs) their role in EC‐dependent vasodilatation is not clear. Here, we test the idea that Kir channels boost the EC‐dependent vasodilatation of resistance‐sized arteries. We show that ECs, but not smooth muscle cells, of small mesenteric arteries have Kir currents, which are substantially reduced in EC‐specific Kir2.1 knockdown (EC‐Kir2.1 −/−) mice. Elevation of extracellular K+ to 14 mm caused vasodilatation of pressurized arteries, which was prevented by endothelial denudation and Kir channel inhibitors (Ba2+, ML‐133) or in the arteries from EC‐Kir2.1 −/− mice. Potassium‐induced dilatations were unaffected by inhibitors of TRPV4, IK and SK channels. The Kir channel blocker, Ba2+, did not affect currents through TRPV4, IK or SK channels. Endothelial cell‐dependent vasodilatations in response to activation of muscarinic receptors, TRPV4 channels or IK/SK channels were reduced, but not eliminated, by Kir channel inhibitors or EC‐Kir2.1 −/−. In angiotensin II‐induced hypertension, the Kir channel function was not altered, although the endothelium‐dependent vasodilatation was severely impaired. Our results support the concept that EC Kir2 channels boost vasodilatory signals that are generated by Ca2+‐dependent activation of IK and SK channels. PMID:26840527
Chen, Yongshun; Li, Xiaohong; Guo, Leiming; Wu, Xiaoyuan; He, Chunyu; Zhang, Song; Xiao, Yanjing; Yang, Yuanyuan; Hao, Daxuan
2015-08-01
Radiotherapy is an effective treatment for esophageal cancer; however, tumor resistance to radiation remains a major biological problem. The present study aimed to investigate whether inhibition of autophagy may decrease overall tumor resistance to radiation. The effects of the autophagy inhibitor 3-methyladenine (3-MA) on radiosensitivity were tested in the EC9706 human esophageal squamous cell carcinoma cell line by colony formation assay. Furthermore, the synergistic cytotoxic effects of 3-MA and radiation were assessed in a tumor xenograft model in nude mice. Mechanistic studies were performed using flow cytometry, immunohistochemistry and western blot analysis. The results of the present study demonstrated that radiation induced an accumulation of autophagosomes and 3-MA effectively inhibited radiation-induced autophagy. Inhibition of autophagy was shown to significantly increase the radiosensitivity of the tumors in vitro and in vivo. The enhancement ratio of sensitization in EC9706 cells was 1.76 when the cells were treated with 10 mM 3-MA, alongside ionizing radiation. In addition, autophagy inhibition increased apoptosis and reduced tumor cell proliferation. The combination of radiation and autophagy inhibition resulted in a significant reduction in tumor volume and vasculature in the murine model. The present study demonstrated in vitro and in vivo that radiation-induced autophagy has a protective effect against cell death, and inhibition of autophagy is able to enhance the radiosensitivity of esophageal squamous cell carcinoma.
CHEN, YONGSHUN; LI, XIAOHONG; GUO, LEIMING; WU, XIAOYUAN; HE, CHUNYU; ZHANG, SONG; XIAO, YANJING; YANG, YUANYUAN; HAO, DAXUAN
2015-01-01
Radiotherapy is an effective treatment for esophageal cancer; however, tumor resistance to radiation remains a major biological problem. The present study aimed to investigate whether inhibition of autophagy may decrease overall tumor resistance to radiation. The effects of the autophagy inhibitor 3-methyladenine (3-MA) on radiosensitivity were tested in the EC9706 human esophageal squamous cell carcinoma cell line by colony formation assay. Furthermore, the synergistic cytotoxic effects of 3-MA and radiation were assessed in a tumor xenograft model in nude mice. Mechanistic studies were performed using flow cytometry, immunohistochemistry and western blot analysis. The results of the present study demonstrated that radiation induced an accumulation of autophagosomes and 3-MA effectively inhibited radiation-induced autophagy. Inhibition of autophagy was shown to significantly increase the radiosensitivity of the tumors in vitro and in vivo. The enhancement ratio of sensitization in EC9706 cells was 1.76 when the cells were treated with 10 mM 3-MA, alongside ionizing radiation. In addition, autophagy inhibition increased apoptosis and reduced tumor cell proliferation. The combination of radiation and autophagy inhibition resulted in a significant reduction in tumor volume and vasculature in the murine model. The present study demonstrated in vitro and in vivo that radiation-induced autophagy has a protective effect against cell death, and inhibition of autophagy is able to enhance the radiosensitivity of esophageal squamous cell carcinoma. PMID:25891159
In vitro analysis of human periodontal microvascular endothelial cells.
Tsubokawa, Mizuki; Sato, Soh
2014-08-01
Endothelial cells (ECs) participate in key aspects of vascular biology, such as maintenance of capillary permeability, initiation of coagulation, and regulation of inflammation. According to previous reports, ECs have revealed highly specific characteristics depending on the organs and tissues. However, some reports have described the characteristics of the capillaries formed by human periodontal ECs. Therefore, the aim of the present study is to examine the functional characteristics of the periodontal microvascular ECs in vitro. Human periodontal ligament-endothelial cells (HPDL-ECs) and human gingiva-endothelial cells (HG-ECs) were isolated by immunoprecipitation with magnetic beads conjugated to a monoclonal anti-CD31 antibody. The isolated HPDL-ECs and HG-ECs were characterized to definitively demonstrate that these cell cultures represented pure ECs. Human umbilical-vein ECs and human dermal microvascular ECs were used for comparison. These cells were compared according to the proliferation potential, the formation of capillary-like tubes, the transendothelial electric resistance (TEER), and the expression of tight junction proteins. HPDL-ECs and HG-ECs with characteristic cobblestone monolayer morphology were obtained, as determined by light microscopy at confluence. Furthermore, the HPDL-ECs and HG-ECs expressed the EC markers platelet endothelial cell adhesion molecule-1 (also known as CD31), von Willebrand factor, and Ulex europaeus agglutinin 1, and the cells stained strongly positive for CD31 and CD309. In addition, the HPDL-ECs and HG-ECs were observed to form capillary-like tubes, and they demonstrated uptake of acetylated low-density lipoprotein. Functional analyses of the HPDL-ECs and HG-ECs showed that, compared to the control cells, tube formation persisted for only a brief period of time, and TEER was substantially reduced at confluence. Furthermore, the cells exhibited delocalization of zonula occludens-1 and occludin at cell-cell contact sites. The present results provide new evidence that HPDL-ECs and HG-ECs have characteristics of fenestrated capillaries. Therefore, capillaries in human periodontal tissues have functional characteristics of fenestrated capillaries, which might be related to the onset and the progression of systemic diseases and inflammation.
Li, Bo-Chao; Chang, Hao; Ren, Ke-Feng; Ji, Jian
2016-11-01
Substrate-mediated delivery of functional plasmid DNA (pDNA) has been proven to be a promising strategy to promote competitiveness of endothelial cells (ECs) over smooth muscle cells (SMCs), which is beneficial to inducing fast endothelialization of implanted vascular devices. Thus, it is of great importance to develop universal approaches with simplicity and easiness to immobilize DNA complex nanoparticles on substrates. In this study, the bioinspired polydopamine (PDA) coating was employed in immobilization of DNA complex nanoparticles, which were composed of protamine (PrS) and plasmid DNA encoding with hepatocyte growth factor (HGF-pDNA) gene. We demonstrated that the DNA complex nanoparticles can be successfully immobilized onto the PDA surface. Consequently, the HGF expression of both ECs and SMCs were significantly improved when they cultured on the DNA complex nanoparticles-immobilized substrates. Furthermore, EC proliferation was specifically promoted due to bioactivity of HGF, leading to an enhancement of EC competitiveness over SMCs. Our findings demonstrated the substrate-mediated functional gene nanoparticle delivery through PDA coating as a simple and efficient approach. It may hold great potential in the field of interventional cardiovascular implants. Copyright © 2016 Elsevier B.V. All rights reserved.
Meng, Fanyong; Mambetsariev, Isa; Tian, Yufeng; Beckham, Yvonne; Meliton, Angelo; Leff, Alan; Gardel, Margaret L.; Allen, Michael J.; Birukov, Konstantin G.
2015-01-01
Reversible changes in lung microstructure accompany lung inflammation, although alterations in tissue micromechanics and their impact on inflammation remain unknown. This study investigated changes in extracellular matrix (ECM) remodeling and tissue stiffness in a model of LPS-induced inflammation and examined the role of lipoxin analog 15-epi-lipoxin A4 (eLXA4) in the reduction of stiffness-dependent exacerbation of the inflammatory process. Atomic force microscopy measurements of live lung slices were used to directly measure local tissue stiffness changes induced by intratracheal injection of LPS. Effects of LPS on ECM properties and inflammatory response were evaluated in an animal model of LPS-induced lung injury, live lung tissue slices, and pulmonary endothelial cell (EC) culture. In vivo, LPS increased perivascular stiffness in lung slices monitored by atomic force microscopy and stimulated expression of ECM proteins fibronectin, collagen I, and ECM crosslinker enzyme, lysyl oxidase. Increased stiffness and ECM remodeling escalated LPS-induced VCAM1 and ICAM1 expression and IL-8 production by lung ECs. Stiffness-dependent exacerbation of inflammatory signaling was confirmed in pulmonary ECs grown on substrates with high and low stiffness. eLXA4 inhibited LPS-increased stiffness in lung cross sections, attenuated stiffness-dependent enhancement of EC inflammatory activation, and restored lung compliance in vivo. This study shows that increased local vascular stiffness exacerbates lung inflammation. Attenuation of local stiffening of lung vasculature represents a novel mechanism of lipoxin antiinflammatory action. PMID:24992633
EZH2 Modulates Angiogenesis In Vitro and in a Mouse Model of Limb Ischemia
Mitić, Tijana; Caporali, Andrea; Floris, Ilaria; Meloni, Marco; Marchetti, Micol; Urrutia, Raul; Angelini, Gianni D; Emanueli, Costanza
2015-01-01
Epigenetic mechanisms may regulate the expression of pro-angiogenic genes, thus affecting reparative angiogenesis in ischemic limbs. The enhancer of zest homolog-2 (EZH2) induces thtrimethylation of lysine 27 on histone H3 (H3K27me3), which represses gene transcription. We explored (i) if EZH2 expression is regulated by hypoxia and ischemia; (ii) the impact of EZH2 on the expression of two pro-angiogenic genes: eNOS and BDNF; (iii) the functional effect of EZH2 inhibition on cultured endothelial cells (ECs); (iv) the therapeutic potential of EZH2 inhibition in a mouse model of limb ischemia (LI). EZH2 expression was increased in cultured ECs exposed to hypoxia (control: normoxia) and in ECs extracted from mouse ischemic limb muscles (control: absence of ischemia). EZH2 increased the H3K27me3 abundance onto regulatory regions of eNOS and BDNF promoters. In vitro RNA silencing or pharmacological inhibition by 3-deazaneplanocin (DZNep) of EZH2 increased eNOS and BDNF mRNA and protein levels and enhanced functional capacities (migration, angiogenesis) of ECs under either normoxia or hypoxia. In mice with experimentally induced LI, DZNep increased angiogenesis in ischaemic muscles, the circulating levels of pro-angiogenic hematopoietic cells and blood flow recovery. Targeting EZH2 for inhibition may open new therapeutic avenues for patients with limb ischemia. PMID:25189741
Nishimura, Satoshi; Manabe, Ichiro; Nagasaki, Mika; Kakuta, Shigeru; Iwakura, Yoichiro; Takayama, Naoya; Ooehara, Jun; Otsu, Makoto; Kamiya, Akihide; Petrich, Brian G; Urano, Tetsumei; Kadono, Takafumi; Sato, Shinichi; Aiba, Atsu; Yamashita, Hiroshi; Sugiura, Seiryo; Kadowaki, Takashi; Nakauchi, Hiromitsu; Eto, Koji; Nagai, Ryozo
2012-02-23
The mechanism by which thrombotic vessel occlusion occurs independently of plaque development or endothelial cell (EC) disruption remains unclear, largely because of an inability to visualize the formation of thrombus, especially at the single-platelet level in real time. Here we demonstrate that rapidly developing thrombi composed of discoid platelets can be induced in the mesenteric capillaries, arterioles, and large-sized arteries of living mice, enabling characterization of the kinetics of thrombosis initiation and the multicellular interrelationships during thrombus development. Platelet aggregation without EC disruption was triggered by reactive oxygen species (ROS) photochemically induced by moderate power laser irradiation. The inflammatory cytokines TNF-α and IL-1 could be key components of the EC response, acting through regulation of VWF mobilization to the cell surface. Thrombus formation was then initiated by the binding of platelet GPIbα to endothelial VWF in our model, and this effect was inhibited by the ROS scavenger N-acetylcysteine. Actin linker talin-dependent activation of alphaIIb-beta3 integrin or Rac1 in platelets was required for late-phase thrombus stability. Our novel imaging technology illustrates the molecular mechanism underlying inflammation-based thrombus formation by discoid platelets on undisrupted ECs and suggests control of ROS could be a useful therapeutic target for the prevention of thrombotic diseases.
Discovery of a potent, covalent BTK inhibitor for B-cell lymphoma.
Wu, Hong; Wang, Wenchao; Liu, Feiyang; Weisberg, Ellen L; Tian, Bei; Chen, Yongfei; Li, Binhua; Wang, Aoli; Wang, Beilei; Zhao, Zheng; McMillin, Douglas W; Hu, Chen; Li, Hong; Wang, Jinhua; Liang, Yanke; Buhrlage, Sara J; Liang, Junting; Liu, Jing; Yang, Guang; Brown, Jennifer R; Treon, Steven P; Mitsiades, Constantine S; Griffin, James D; Liu, Qingsong; Gray, Nathanael S
2014-05-16
BTK is a member of the TEC family of non-receptor tyrosine kinases whose deregulation has been implicated in a variety of B-cell-related diseases. We have used structure-based drug design in conjunction with kinome profiling and cellular assays to develop a potent, selective, and irreversible BTK kinase inhibitor, QL47, which covalently modifies Cys481. QL47 inhibits BTK kinase activity with an IC50 of 7 nM, inhibits autophosphorylation of BTK on Tyr223 in cells with an EC50 of 475 nM, and inhibits phosphorylation of a downstream effector PLCγ2 (Tyr759) with an EC50 of 318 nM. In Ramos cells QL47 induces a G1 cell cycle arrest that is associated with pronounced degradation of BTK protein. QL47 inhibits the proliferation of B-cell lymphoma cancer cell lines at submicromolar concentrations.
Kallio, A; Jänne, J
1983-01-01
Treatment of mice bearing L1210 leukaemia with 2-difluoromethylornithine, a specific inhibitor of ornithine decarboxylase (EC 4.1.1.17), produced a profound depletion of putrescine and spermidine in the tumour cells. Sequential combination of methylglyoxal bis(guanylhydrazone), an inhibitor of adenosylmethionine decarboxylase (EC 4.1.1.50), with difluoromethylornithine largely reversed the polyamine depletion and led to a marked accumulation of cadaverine in the tumour cells. Experiments carried out with the combination of difluoromethylornithine and aminoguanidine, a potent inhibitor of diamine oxidase (EC 1.4.3.6), indicated that the methylglyoxal bis(guanylhydrazone)-induced reversal of polyamine depletion was mediated by the known inhibition of diamine oxidase by the diguanidine. In spite of the normalization of the tumour cell polyamine pattern upon administration of methylglyoxal bis(guanylhydrazone) to difluoromethylornithine-treated animals, the combination of these two drugs produced a growth-inhibitory effect not achievable with either of the compounds alone. PMID:6411077
Hypoxia inducible factor-1α regulates autophagy via the p27-E2F1 signaling pathway
Wang, Pan; Long, Meijing; Zhang, Shijie; Cheng, Zhenyun; Zhao, Xin; He, Fucheng; Liu, Hongchun; Ming, Liang
2017-01-01
Autophagy is a highly conserved process by which the cell contents are delivered to lysosomes for degradation, or are used to provide macromolecules for energy generation under conditions of nutritional starvation. It has previously been demonstrated that cancer cells in hypoxic regions, with an oxygen concentration below the normal physiological level, express hypoxia inducible factor (HIF)-1α, in order to adapt and survive. HIF-1α is important in the regulation of oxygen homeostasis and the transcription of hundreds of genes in response to conditions of hypoxia, hence maintaining energy and redox homeostasis. To determine if HIF-1α modulates autophagy and the underlying molecular mechanisms regulating this process, the human esophageal cancer EC109 and IMR90 human diploid fibroblast cell lines were exposed to normoxic or hypoxic conditions and the expression levels of various proteins subsequently examined. Small interfering RNA was used to silence p27, in order to investigate its role in the process of HIF-1α regulated autophagy. Hypoxia induced autophagy in IMR90 cells and it was revealed that immature IMR90 cells demonstrated an increased rate of autophagy compared with mature cells. HIF-1α promoted EC109 cell autophagy via positively modulating p27, whereas silencing of p27 abolished the autophagy induced by hypoxia. The present study identified the primary components of the p27-E2F1 signaling pathway by which HIF-1α regulates autophagy. A previously unidentified mechanism is here presented, via which cancer cells may generate energy, or obtain macromolecules for survival. PMID:28627618
Ko, Su Hyuk; Jeon, Jong Ik; Myung, Hyun Soo; Kim, Young-Jeon; Kim, Jung Mogg
2017-10-01
Bacteroides fragilis enterotoxin (BFT), a virulence factor of enterotoxigenic B. fragilis (ETBF), plays an essential role in mucosal inflammation. Although autophagy contributes to the pathogenesis of diverse infectious diseases, little is known about autophagy in ETBF infection. This study was conducted to investigate the role of BFT in the autophagic process in endothelial cells (ECs). Stimulation of human umbilical vein ECs (HUVECs) with BFT increased light chain 3 protein II (LC3-II) conversion from LC3-I and protein expression of p62, Atg5, and Atg12. In addition, BFT-exposed ECs showed increased indices of autophagosomal fusion with lysosomes such as LC3-lysosome-associated protein 2 (LAMP2) colocalization and the percentage of red vesicles monitored by the expression of dual-tagged LC3B. BFT also upregulated expression of C/EBP homologous protein (CHOP), and inhibition of CHOP significantly increased indices of autophagosomal fusion with lysosomes. BFT activated an AP-1 transcription factor, in which suppression of AP-1 activity significantly downregulated CHOP and augmented autophagosomal fusion with lysosomes. Furthermore, suppression of Jun N-terminal protein kinase (JNK) mitogen-activated protein kinase (MAPK) significantly inhibited the AP-1 and CHOP signals, leading to an increase in autophagosomal fusion with lysosomes in BFT-stimulated ECs. These results suggest that BFT induced accumulation of autophagosomes in ECs, but activation of a signaling pathway involving JNK, AP-1, and CHOP may interfere with complete autophagy. Copyright © 2017 American Society for Microbiology.
The small tellurium-based compound SAS suppresses inflammation in human retinal pigment epithelium
Livnat, Tami; Halpert, Gilad; Jawad, Shayma; Nisgav, Yael; Azar-Avivi, Shirley; Liu, Baoying; Nussenblatt, Robert B.; Weinberger, Dov; Sredni, Benjamin
2016-01-01
Purpose Pathological angiogenesis and chronic inflammation greatly contribute to the development of choroidal neovascularization (CNV) in chorioretinal diseases involving abnormal contact between retinal pigment epithelial (RPE) and endothelial cells (ECs), associated with Bruch’s membrane rupture. We explored the ability of the small organotellurium compound octa-O-bis-(R,R)-tartarate ditellurane (SAS) to mitigate inflammatory processes in human RPE cells. Methods Cell adhesion assays and analyses of gene and protein expression were used to examine the effect of SAS on ARPE-19 cells or primary human RPE cells that were grown alone or in an RPE-EC co-culture. Results Adhesion assays showed that SAS inhibited αv integrins expressed on RPE cells. Co-cultures of RPE cells with ECs significantly reduced the gene expression of PEDF, as compared to RPE cells cultured alone. Both SAS and the anti-αvβ3 antibody LM609 significantly enhanced the production of PEDF at both mRNA and protein levels in RPE cells. RPE cells co-cultured with EC exhibited increased gene expression of CXCL5, COX1, MMP2, IGF1, and IL8, all of which are involved in both angiogenesis and inflammation. The enhanced expression of these genes was greatly suppressed by SAS, but interestingly, remained unaffected by LM609. Zymography assay showed that SAS reduced the level of MMP-2 activity in RPE cells. We also found that SAS significantly suppressed IL-1β-induced IL-6 expression and secretion from RPE cells by reducing the protein levels of phospho-IkappaBalpha (pIκBα). Conclusions Our results suggest that SAS is a promising anti-inflammatory agent in RPE cells, and may be an effective therapeutic approach for controlling chorioretinal diseases. PMID:27293373
The small tellurium-based compound SAS suppresses inflammation in human retinal pigment epithelium.
Dardik, Rima; Livnat, Tami; Halpert, Gilad; Jawad, Shayma; Nisgav, Yael; Azar-Avivi, Shirley; Liu, Baoying; Nussenblatt, Robert B; Weinberger, Dov; Sredni, Benjamin
2016-01-01
Pathological angiogenesis and chronic inflammation greatly contribute to the development of choroidal neovascularization (CNV) in chorioretinal diseases involving abnormal contact between retinal pigment epithelial (RPE) and endothelial cells (ECs), associated with Bruch's membrane rupture. We explored the ability of the small organotellurium compound octa-O-bis-(R,R)-tartarate ditellurane (SAS) to mitigate inflammatory processes in human RPE cells. Cell adhesion assays and analyses of gene and protein expression were used to examine the effect of SAS on ARPE-19 cells or primary human RPE cells that were grown alone or in an RPE-EC co-culture. Adhesion assays showed that SAS inhibited αv integrins expressed on RPE cells. Co-cultures of RPE cells with ECs significantly reduced the gene expression of PEDF, as compared to RPE cells cultured alone. Both SAS and the anti-αvβ3 antibody LM609 significantly enhanced the production of PEDF at both mRNA and protein levels in RPE cells. RPE cells co-cultured with EC exhibited increased gene expression of CXCL5, COX1, MMP2, IGF1, and IL8, all of which are involved in both angiogenesis and inflammation. The enhanced expression of these genes was greatly suppressed by SAS, but interestingly, remained unaffected by LM609. Zymography assay showed that SAS reduced the level of MMP-2 activity in RPE cells. We also found that SAS significantly suppressed IL-1β-induced IL-6 expression and secretion from RPE cells by reducing the protein levels of phospho-IkappaBalpha (pIκBα). Our results suggest that SAS is a promising anti-inflammatory agent in RPE cells, and may be an effective therapeutic approach for controlling chorioretinal diseases.
Jabbarzadeh, Ehsan; Starnes, Trevor; Khan, Yusuf M; Jiang, Tao; Wirtel, Anthony J; Deng, Meng; Lv, Qing; Nair, Lakshmi S; Doty, Steven B; Laurencin, Cato T
2008-08-12
One of the fundamental principles underlying tissue engineering approaches is that newly formed tissue must maintain sufficient vascularization to support its growth. Efforts to induce vascular growth into tissue-engineered scaffolds have recently been dedicated to developing novel strategies to deliver specific biological factors that direct the recruitment of endothelial cell (EC) progenitors and their differentiation. The challenge, however, lies in orchestration of the cells, appropriate biological factors, and optimal factor doses. This study reports an approach as a step forward to resolving this dilemma by combining an ex vivo gene transfer strategy and EC transplantation. The utility of this approach was evaluated by using 3D poly(lactide-co-glycolide) (PLAGA) sintered microsphere scaffolds for bone tissue engineering applications. Our goal was achieved by isolation and transfection of adipose-derived stromal cells (ADSCs) with adenovirus encoding the cDNA of VEGF. We demonstrated that the combination of VEGF releasing ADSCs and ECs results in marked vascular growth within PLAGA scaffolds. We thereby delineate the potential of ADSCs to promote vascular growth into biomaterials.
Jabbarzadeh, Ehsan; Starnes, Trevor; Khan, Yusuf M.; Jiang, Tao; Wirtel, Anthony J.; Deng, Meng; Lv, Qing; Nair, Lakshmi S.; Doty, Steven B.; Laurencin, Cato T.
2008-01-01
One of the fundamental principles underlying tissue engineering approaches is that newly formed tissue must maintain sufficient vascularization to support its growth. Efforts to induce vascular growth into tissue-engineered scaffolds have recently been dedicated to developing novel strategies to deliver specific biological factors that direct the recruitment of endothelial cell (EC) progenitors and their differentiation. The challenge, however, lies in orchestration of the cells, appropriate biological factors, and optimal factor doses. This study reports an approach as a step forward to resolving this dilemma by combining an ex vivo gene transfer strategy and EC transplantation. The utility of this approach was evaluated by using 3D poly(lactide-co-glycolide) (PLAGA) sintered microsphere scaffolds for bone tissue engineering applications. Our goal was achieved by isolation and transfection of adipose-derived stromal cells (ADSCs) with adenovirus encoding the cDNA of VEGF. We demonstrated that the combination of VEGF releasing ADSCs and ECs results in marked vascular growth within PLAGA scaffolds. We thereby delineate the potential of ADSCs to promote vascular growth into biomaterials. PMID:18678895
Guo, Peipei; Poulos, Michael G; Palikuqi, Brisa; Badwe, Chaitanya R; Lis, Raphael; Kunar, Balvir; Ding, Bi-Sen; Rabbany, Sina Y; Shido, Koji; Butler, Jason M; Rafii, Shahin
2017-12-01
Angiocrine factors, such as Notch ligands, supplied by the specialized endothelial cells (ECs) within the bone marrow and splenic vascular niche play an essential role in modulating the physiology of adult hematopoietic stem and progenitor cells (HSPCs). However, the relative contribution of various Notch ligands, specifically jagged-2, to the homeostasis of HSPCs is unknown. Here, we show that under steady state, jagged-2 is differentially expressed in tissue-specific vascular beds, but its expression is induced in hematopoietic vascular niches after myelosuppressive injury. We used mice with EC-specific deletion of the gene encoding jagged-2 (Jag2) to demonstrate that while EC-derived jagged-2 was dispensable for maintaining the capacity of HSPCs to repopulate under steady-state conditions, by activating Notch2 it did contribute to the recovery of HSPCs in response to myelosuppressive conditions. Engraftment and/or expansion of HSPCs was dependent on the expression of endothelial-derived jagged-2 following myeloablation. Additionally, jagged-2 expressed in bone marrow ECs regulated HSPC cell cycle and quiescence during regeneration. Endothelial-deployed jagged-2 triggered Notch2/Hey1, while tempering Notch2/Hes1 signaling in HSPCs. Collectively, these data demonstrate that EC-derived jagged-2 activates Notch2 signaling in HSPCs to promote hematopoietic recovery and has potential as a therapeutic target to accelerate balanced hematopoietic reconstitution after myelosuppression.
Guo, Peipei; Poulos, Michael G.; Palikuqi, Brisa; Badwe, Chaitanya R.; Lis, Raphael; Kunar, Balvir; Ding, Bi-Sen; Rabbany, Sina Y.; Butler, Jason M.
2017-01-01
Angiocrine factors, such as Notch ligands, supplied by the specialized endothelial cells (ECs) within the bone marrow and splenic vascular niche play an essential role in modulating the physiology of adult hematopoietic stem and progenitor cells (HSPCs). However, the relative contribution of various Notch ligands, specifically jagged-2, to the homeostasis of HSPCs is unknown. Here, we show that under steady state, jagged-2 is differentially expressed in tissue-specific vascular beds, but its expression is induced in hematopoietic vascular niches after myelosuppressive injury. We used mice with EC-specific deletion of the gene encoding jagged-2 (Jag2) to demonstrate that while EC-derived jagged-2 was dispensable for maintaining the capacity of HSPCs to repopulate under steady-state conditions, by activating Notch2 it did contribute to the recovery of HSPCs in response to myelosuppressive conditions. Engraftment and/or expansion of HSPCs was dependent on the expression of endothelial-derived jagged-2 following myeloablation. Additionally, jagged-2 expressed in bone marrow ECs regulated HSPC cell cycle and quiescence during regeneration. Endothelial-deployed jagged-2 triggered Notch2/Hey1, while tempering Notch2/Hes1 signaling in HSPCs. Collectively, these data demonstrate that EC-derived jagged-2 activates Notch2 signaling in HSPCs to promote hematopoietic recovery and has potential as a therapeutic target to accelerate balanced hematopoietic reconstitution after myelosuppression. PMID:29058691
Qi, Di; Tang, Xumao; He, Jing; Wang, Daoxin; Zhao, Yan; Deng, Wang; Deng, Xinyu; Zhou, Guoqi; Xia, Jing; Zhong, Xi; Pu, Shenglan
2016-09-08
Acute respiratory distress syndrome (ARDS) is characterized by increased pulmonary inflammation and endothelial barrier permeability. Omentin has been shown to benefit obesity-related systemic vascular diseases; however, its effects on ARDS are unknown. In the present study, the level of circulating omentin in patients with ARDS was assessed to appraise its clinical significance in ARDS. Mice were subjected to systemic administration of adenoviral vector expressing omentin (Ad-omentin) and one-shot treatment of recombinant human omentin (rh-omentin) to examine omentin's effects on lipopolysaccharide (LPS)-induced ARDS. Pulmonary endothelial cells (ECs) were treated with rh-omentin to further investigate its underlying mechanism. We found that a decreased level of circulating omentin negatively correlated with white blood cells and procalcitonin in patients with ARDS. Ad-omentin protected against LPS-induced ARDS by alleviating the pulmonary inflammatory response and endothelial barrier injury in mice, accompanied by Akt/eNOS pathway activation. Treatment of pulmonary ECs with rh-omentin attenuated inflammatory response and restored adherens junctions (AJs), and cytoskeleton organization promoted endothelial barrier after LPS insult. Moreover, the omentin-mediated enhancement of EC survival and differentiation was blocked by the Akt/eNOS pathway inactivation. Therapeutic rh-omentin treatment also effectively protected against LPS-induced ARDS via the Akt/eNOS pathway. Collectively, these data indicated that omentin protects against LPS-induced ARDS by suppressing inflammation and promoting the pulmonary endothelial barrier, at least partially, through an Akt/eNOS-dependent mechanism. Therapeutic strategies aiming to restore omentin levels may be valuable for the prevention or treatment of ARDS.
Simmers, Phillip; Gishto, Arsela; Vyavahare, Narendra
2015-01-01
Vascular diseases are characterized by the over-proliferation and migration of aortic smooth muscle cells (SMCs), and degradation of extracellular matrix (ECM) within the vessel wall, leading to compromise in cell–cell and cell–matrix signaling pathways. Tissue engineering approaches to regulate SMC over-proliferation and enhance healthy ECM synthesis showed promise, but resulted in low crosslinking efficiency. Here, we report the benefits of exogenous nitric oxide (NO) cues, delivered from S-Nitrosoglutathione (GSNO), to cell proliferation and matrix deposition by adult human aortic SMCs (HA-SMCs) within three-dimensional (3D) biomimetic cocultures. A coculture platform with two adjacent, permeable 3D culture chambers was developed to enable paracrine signaling between vascular cells. HA-SMCs were cultured in these chambers within collagen hydrogels, either alone or in the presence of human aortic endothelial cells (HA-ECs) cocultures, and exogenously supplemented with varying GSNO dosages (0–100 nM) for 21 days. Results showed that EC cocultures stimulated SMC proliferation within GSNO-free cultures. With increasing GSNO concentration, HA-SMC proliferation decreased in the presence or absence of EC cocultures, while HA-EC proliferation increased. GSNO (100 nM) significantly enhanced the protein amounts synthesized by HA-SMCs, in the presence or absence of EC cocultures, while lower dosages (1–10 nM) offered marginal benefits. Multi-fold increases in the synthesis and deposition of elastin, glycosaminoglycans, hyaluronic acid, and lysyl oxidase crosslinking enzyme (LOX) were noted at higher GSNO dosages, and coculturing with ECs significantly furthered these trends. Similar increases in TIMP-1 and MMP-9 levels were noted within cocultures with increasing GSNO dosages. Such increases in matrix synthesis correlated with NO-stimulated increases in endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS) expression within EC and SMC cultures, respectively. Results attest to the benefits of delivering NO cues to suppress SMC proliferation and promote robust ECM synthesis and deposition by adult human SMCs, with significant applications in tissue engineering, biomaterial scaffold development, and drug delivery. PMID:25597545
Dong, Du-Juan; Jing, Yu-Pu; Liu, Wen; Wang, Jin-Xing; Zhao, Xiao-Fan
2015-10-09
The steroid hormone 20-hydroxyecdysone (20E) and the serine/threonine Ste20-like kinase Hippo signal promote programmed cell death (PCD) during development, although the interaction between them remains unclear. Here, we present evidence that 20E up-regulates Hippo to induce PCD during the metamorphic development of insects. We found that Hippo is involved in 20E-induced metamorphosis via promoting the phosphorylation and cytoplasmic retention of Yorkie (Yki), causing suppressed expression of the inhibitor of apoptosis (IAP), thereby releasing its inhibitory effect on caspase. Furthermore, we show that 20E induced the expression of Hippo at the transcriptional level through the ecdysone receptor (EcR), ultraspiracle protein (USP), and hormone receptor 3 (HR3). We also found that Hippo suppresses the binding of Yki complex to the HR3 promoter. In summary, 20E up-regulates the transcription of Hippo via EcRB1, USP1, and HR3 to induce PCD, and Hippo has negative feedback effects on HR3 expression. These two signaling pathways coordinate PCD during insect metamorphosis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
2011-01-01
Introduction Folate receptor (FR)-expressing macrophages have been shown to accumulate at sites of inflammation, where they promote development of inflammatory symptoms. To target such a macrophage population, we designed and evaluated the biologic activity of EC0746, a novel folic acid conjugate of the highly potent antifolate, aminopterin. Methods Using a FR-positive subclone of murine macrophage-derived RAW264.7 cells and rat thioglycollate-elicited macrophages, we studied the effect of EC0746 on dihydrofolate reductase activity, cell proliferation, and cellular response towards bacterial lipopolysaccharide as well as IFNγ activation. The EC0746 anti-inflammatory activity, pharmacokinetics, and toxicity were also evaluated in normal rats or in rats with adjuvant-induced arthritis; that is, a FR-positive macrophage model that closely resembles rheumatoid arthritis in humans. Results EC0746 suppresses the proliferation of RAW264.7 cells and prevents the ability of nonproliferating rat macrophages to respond to inflammatory stimuli. In the macrophage-rich rat arthritis model, brief treatment with subcutaneously administered EC0746 is shown to mediate an FR-specific anti-inflammatory response that is more potent than either orally administered methotrexate or subcutaneously delivered etanercept. More importantly, EC0746 therapy is also shown to be ~40-fold less toxic than unmodified aminopterin, with fewer bone marrow and gastrointestinal problems. Conclusions EC0746 is the first high FR-binding dihydrofolate reductase inhibitor that demonstrates FR-specific anti-inflammatory activities both in vitro and in vivo. Our data reveal that a relatively toxic anti-inflammatory drug, such as aminopterin, can be targeted with folic acid to inflammatory macrophages and thereby relieve inflammatory symptoms with greatly reduced toxicity. PMID:21463515
Masood, Rizwan; Cesarman, Ethel; Smith, D. Lynne; Gill, Parkash S.; Flore, Ornella
2002-01-01
Kaposi’s sarcoma is a vascular tumor commonly associated with human immunodeficiency virus (HIV)-1 and human herpesvirus (HHV-8) also known as Kaposi’s sarcoma-associated herpesvirus. The principal features of this tumor are abnormal proliferation of vascular structures lined with spindle-shaped endothelial cells. HHV-8 may transform a subpopulation of endothelial cells in vitro via viral and cellular gene expression. We hypothesized that among the cellular genes, vascular endothelial growth factors (VEGFs) and their cognate receptors may be involved in viral-mediated transformation. We have shown that HHV-8-transformed endothelial cells (EC-HHV-8) express higher levels of VEGF, VEGF-C, VEGF-D, and PlGF in addition to VEGF receptors-1, -2, and -3. Furthermore, antibodies to VEGF receptor-2 inhibited cell proliferation and viability. Similarly, inhibition of VEGF gene expression with antisense oligonucleotides inhibited EC-HHV-8 cell proliferation/viability. The growth and viability of primary endothelial cells and a fibroblast cell line however were unaffected by either the VEGF receptor-2 antibody or the VEGF antisense oligodeoxynucleotides. VEGF and VEGF receptors are thus induced in EC-HHV-8 and participate in the transformation. Inhibitors of VEGF may thus modulate the disease process during development and progression. PMID:11786394
Cooley-Andrade, Osvaldo; Cheung, Kelvin; Chew, An-Ning; Connor, David Ewan; Parsi, Kurosh
2016-07-01
To investigate the apoptotic effects of detergent sclerosants sodium tetradecylsulphate (STS) and polidocanol (POL) on endothelial cells at sub-lytic concentrations. Human umbilical vein endothelial cells (HUVECs) were isolated and labelled with antibodies to assess for apoptosis and examined with confocal microscopy and flow cytometry. Isolated HUVECs viability was assessed using propidium iodide staining. Early apoptosis was determined by increased phosphatidylserine exposure by lactadherin binding. Caspase 3, 8, 9 and Bax activation as well as inhibitory assays with Pan Caspase (Z-VAD-FMK) and Bax (BI-6C9) were assessed to identify apoptotic pathways. Porimin activation was used to assess cell membrane permeability. Cell lysis reached almost 100 % with STS at 0.3 % and with POL at 0.6 %. Apoptosis was seen with both STS and POL at concentrations ranging from 0.075 to 0.15 %. PS exposure increased with both STS and POL and exhibited a dose-dependent trend. Active Caspase 3, 8 and 9 but not Bax were increased in HUVECs stimulated with low concentrations of both STS and POL. Inhibitory assays demonstrated Caspase 3, 8, 9 inhibition at low concentrations (0.075 to 0.6 %) with both STS and POL. Both agents increased the activation of porimin at all concentrations. Both sclerosants induced endothelial cell (EC) apoptosis at sub-lytic concentrations through a caspase-dependant pathway. Both agents induced EC oncosis.
Zhai, Zongzhao; Boquete, Jean-Philippe; Lemaitre, Bruno
2018-05-03
Intestinal infection triggers potent immune responses to combat pathogens and concomitantly drives epithelial renewal to maintain barrier integrity. Current models propose that epithelial renewal is primarily driven by damage caused by reactive oxygen species (ROS). Here we found that in Drosophila, the Imd-NF-κB pathway controlled enterocyte (EC) shedding upon infection, via a mechanism independent of ROS-associated apoptosis. Mechanistically, the Imd pathway synergized with JNK signaling to induce epithelial cell shedding specifically in the context of bacterial infection, requiring also the reduced expression of the transcription factor GATAe. Furthermore, cell-specific NF-κB responses enabled simultaneous production of antimicrobial peptides (AMPs) and epithelial shedding in different EC populations. Thus, the Imd-NF-κB pathway is central to the intestinal antibacterial response by mediating both AMP production and the maintenance of barrier integrity. Considering the similarities between Drosophila Imd signaling and mammalian TNFR pathway, our findings suggest the existence of an evolutionarily conserved genetic program in immunity-induced epithelial shedding. Copyright © 2018 Elsevier Inc. All rights reserved.
Bijli, Kaiser M.; Fazal, Fabeha; Slavin, Spencer A.; Leonard, Antony; Grose, Valerie; Alexander, William B.; Smrcka, Alan V.
2016-01-01
Phospholipase C-ε (PLC-ε) is a unique PLC isoform that can be regulated by multiple signaling inputs from both Ras family GTPases and heterotrimeric G proteins and has primary sites of expression in the heart and lung. Whereas the role of PLC-ε in cardiac function and pathology has been documented, its relevance in acute lung injury (ALI) is unclear. We used PLC-ε−/− mice to address the role of PLC-ε in regulating lung vascular inflammation and injury in an aerosolized bacterial LPS inhalation mouse model of ALI. PLC-ε−/− mice showed a marked decrease in LPS-induced proinflammatory mediators (ICAM-1, VCAM-1, TNF-α, IL-1β, IL-6, macrophage inflammatory protein 2, keratinocyte-derived cytokine, monocyte chemoattractant protein 1, and granulocyte-macrophage colony-stimulating factor), lung neutrophil infiltration and microvascular leakage, and loss of VE-cadherin compared with PLC-ε+/+ mice. These data identify PLC-ε as a critical determinant of proinflammatory and leaky phenotype of the lung. To test the possibility that PLC-ε activity in endothelial cells (EC) could contribute to ALI, we determined its role in EC inflammation and barrier disruption. RNAi knockdown of PLC-ε inhibited NF-κB activity in response to diverse proinflammatory stimuli, thrombin, LPS, TNF-α, and the nonreceptor agonist phorbol 13-myristate 12-acetate (phorbol esters) in EC. Depletion of PLC-ε also inhibited thrombin-induced expression of NF-κB target gene, VCAM-1. Importantly, PLC-ε knockdown also protected against thrombin-induced EC barrier disruption by inhibiting the loss of VE-cadherin at adherens junctions and formation of actin stress fibers. These data identify PLC-ε as a novel regulator of EC inflammation and permeability and show a hitherto unknown role of PLC-ε in the pathogenesis of ALI. PMID:27371732
Bijli, Kaiser M; Fazal, Fabeha; Slavin, Spencer A; Leonard, Antony; Grose, Valerie; Alexander, William B; Smrcka, Alan V; Rahman, Arshad
2016-08-01
Phospholipase C-ε (PLC-ε) is a unique PLC isoform that can be regulated by multiple signaling inputs from both Ras family GTPases and heterotrimeric G proteins and has primary sites of expression in the heart and lung. Whereas the role of PLC-ε in cardiac function and pathology has been documented, its relevance in acute lung injury (ALI) is unclear. We used PLC-ε(-/-) mice to address the role of PLC-ε in regulating lung vascular inflammation and injury in an aerosolized bacterial LPS inhalation mouse model of ALI. PLC-ε(-/-) mice showed a marked decrease in LPS-induced proinflammatory mediators (ICAM-1, VCAM-1, TNF-α, IL-1β, IL-6, macrophage inflammatory protein 2, keratinocyte-derived cytokine, monocyte chemoattractant protein 1, and granulocyte-macrophage colony-stimulating factor), lung neutrophil infiltration and microvascular leakage, and loss of VE-cadherin compared with PLC-ε(+/+) mice. These data identify PLC-ε as a critical determinant of proinflammatory and leaky phenotype of the lung. To test the possibility that PLC-ε activity in endothelial cells (EC) could contribute to ALI, we determined its role in EC inflammation and barrier disruption. RNAi knockdown of PLC-ε inhibited NF-κB activity in response to diverse proinflammatory stimuli, thrombin, LPS, TNF-α, and the nonreceptor agonist phorbol 13-myristate 12-acetate (phorbol esters) in EC. Depletion of PLC-ε also inhibited thrombin-induced expression of NF-κB target gene, VCAM-1. Importantly, PLC-ε knockdown also protected against thrombin-induced EC barrier disruption by inhibiting the loss of VE-cadherin at adherens junctions and formation of actin stress fibers. These data identify PLC-ε as a novel regulator of EC inflammation and permeability and show a hitherto unknown role of PLC-ε in the pathogenesis of ALI. Copyright © 2016 the American Physiological Society.
Wang, Feng-qiang; Ariztia, Edgardo V; Boyd, Leslie R; Horton, Faith R; Smicun, Yoel; Hetherington, Jessica A; Smith, Phillip J; Fishman, David A
2010-04-01
Lysophosphatidic acid (LPA) has potent growth-regulatory effect in many cell types and has been linked to the in vivo tumor growth and metastasis in several malignancies. The goal of this study was to assess the regulation of (EC) microenvironment by LPA through the examination of its effect on cell proliferation, migration, invasion, uPA activity, and matrix metalloproteinase (MMP) secretion/activation. All experiments were performed in vitro using an EC cell line, HEC-1A. Cell proliferation was determined using the Promega MTS proliferation assay following 48 h of exposures to different concentrations of LPA (0.1, 1.0 and 10.0 microM). Cell invasion was assessed using a modified Boyden chamber assay with collagen I coated on the membrane. HEC-1A motility was examined by Boyden chamber migration assay as well as the scratch wound closure assay on type I collagen. MMP secretion/activation in HEC-1A conditioned medium was detected by gelatin zymography. MMP-7 mRNA expression was determined using real-time PCR. uPA activity was measured using a coupled colorimetric assay. LPA, at the concentrations of 0.1 and 1.0 microM, significantly induced the proliferation of HEC-1A cells (p<0.01). At 10 microM, LPA- induced HEC-1A proliferation to a less extent and showed no significant effect on HEC-1A invasion and migration (p>0.05). Gelatin zymogram showed that HEC-1A cells secreted high levels of MMP-7, while MMP-2 and MMP-9 are barely detectable. In addition, LPA significantly enhanced uPA activity in HEC-1A conditioned medium in a concentration-dependent manner. LPA is a potent modulator of cellular proliferation and invasion for EC cells. It also has the capacity to stimulate the secretion/activity of uPA and MMP-7. Those results suggest that LPA is a bioactive modulator of EC microenvironment and may have a distinct regulation mechanism as observed in epithelial ovarian cancer. Copyright 2009. Published by Elsevier Inc.
Colin, S; Guilmain, W; Creoff, E; Schneider, C; Steverlynck, C; Bongaerts, M; Legrand, E; Vannier, J P; Muraine, M; Vasse, M; Al-Mahmood, S
2011-01-01
Background: Tetraspanins are transmembrane proteins known to contribute to angiogenesis. CD9 partner-1 (CD9P-1/EWI-F), a glycosylated type 1 transmembrane immunoglobulin, is a member of the tetraspanin web, but its role in angiogenesis remains to be elucidated. Methods: We measured the expression of CD9P-1 under angiogenic and angiostatic conditions, and the influence of its knockdown onto capillary structures formation by human endothelial cells (hECs). A truncated form of CDP-1, GS-168AT2, was produced and challenged vs hEC proliferation, migration and capillaries' formation. Its association with CD9P-1, CD9, CD81 and CD151 and the expressions of these later at hEC surface were analysed. Finally, its effects onto in vivo tumour-induced angiogenesis and tumour growth were investigated. Results: Vascular endothelial growth factor (VEGF)-induced capillary tube-like formation was inhibited by tumour necrosis factor α and was associated with a rise in CD9P-1 mRNA expression (P<0.05); accordingly, knockdown of CD9P-1 inhibited VEGF-dependent in vitro angiogenesis. GS-168AT2 dose-dependently inhibited in vitro angiogenesis, hEC migration and proliferation (P<0.05). Co-precipitation experiments suggest that GS-168AT2 corresponds to the sequence by which CD9P-1 physiologically associates with CD81. GS-168AT2 induced the depletion of CD151, CD9 and CD9P-1 from hEC surface, correlating with GS-168AT2 degradation. Finally, in vivo injections of GS-168AT2 inhibited tumour-associated angiogenesis by 53.4±9.5% (P=0.03), and reduced tumour growth of Calu 6 tumour xenografts by 73.9±16.4% (P=0.007) without bodyweight loss. Conclusion: The truncated form of CD9P-1, GS-168AT2, potently inhibits angiogenesis and cell migration by at least the downregulation of CD151 and CD9, which provides the first evidences for the central role of CD9P-1 in tumour-associated angiogenesis and tumour growth. PMID:21863033
Lee, Hae-June; Yoon, Changhwan; Park, Do Joong; Kim, Yeo-Jung; Schmidt, Benjamin; Lee, Yoon-Jin; Tap, William D; Eisinger-Mathason, T S Karin; Choy, Edwin; Kirsch, David G; Simon, M Celeste; Yoon, Sam S
2015-03-01
To examine the addition of genetic or pharmacologic inhibition of hypoxia-inducible factor 1α (HIF-1α) to radiation therapy (RT) and vascular endothelial growth factor A (VEGF-A) inhibition (ie trimodality therapy) for soft-tissue sarcoma. Hypoxia-inducible factor 1α was inhibited using short hairpin RNA or low metronomic doses of doxorubicin, which blocks HIF-1α binding to DNA. Trimodality therapy was examined in a mouse xenograft model and a genetically engineered mouse model of sarcoma, as well as in vitro in tumor endothelial cells (ECs) and 4 sarcoma cell lines. In both mouse models, any monotherapy or bimodality therapy resulted in tumor growth beyond 250 mm(3) within the 12-day treatment period, but trimodality therapy with RT, VEGF-A inhibition, and HIF-1α inhibition kept tumors at <250 mm(3) for up to 30 days. Trimodality therapy on tumors reduced HIF-1α activity as measured by expression of nuclear HIF-1α by 87% to 95% compared with RT alone, and cytoplasmic carbonic anhydrase 9 by 79% to 82%. Trimodality therapy also increased EC-specific apoptosis 2- to 4-fold more than RT alone and reduced microvessel density by 75% to 82%. When tumor ECs were treated in vitro with trimodality therapy under hypoxia, there were significant decreases in proliferation and colony formation and increases in DNA damage (as measured by Comet assay and γH2AX expression) and apoptosis (as measured by cleaved caspase 3 expression). Trimodality therapy had much less pronounced effects when 4 sarcoma cell lines were examined in these same assays. Inhibition of HIF-1α is highly effective when combined with RT and VEGF-A inhibition in blocking sarcoma growth by maximizing DNA damage and apoptosis in tumor ECs, leading to loss of tumor vasculature. Copyright © 2015 Elsevier Inc. All rights reserved.
Kadi, A; de Isla, N; Moby, V; Lacolley, P; Labrude, P; Stoltz, J F; Menu, P
2014-01-01
Nitric oxide is implicated in the target action of Nebivolol, a selective β1 adrenoceptor blocker used in hypertension treatment. As the Nitric Oxide (NO) production and the actin cytoskeleton are linked, the aim of this work was to study the involvement of actin cytoskeleton on mechanism of action of Nebivolol in cultured endothelial cells. We studied the effect of Nebivolol (200 μM) on actin filaments remodeling and its impact on NO production and eNOS activation. Results showed that Nebivolol perturbs actin filaments polymerization, increases NO production and eNOS activity between 30 minutes and 1 h. Stabilization of actin filaments with phalloïdine (50 μM) abolishes Nebivolol effects on eNOS activation and NO production. Furthermore, Rho-kinase activity decreased during the first hour of Nebivolol treatment, then increased after 3 h, while actin filaments repolymerized, eNOS activation and NO production decreased. In SMCs, Nebivolol induced a decrease in the Rho-kinase activity from 1 h until 24 h of incubation. In conclusion, we suggest that Nebivolol induced NO production in Endothelial Cells (ECs) via complementary actions between actin cytoskeleton remodeling inducing eNOS activation and Rho-kinase implication. The effect of Nebivolol on ECs occurs during the first hour, this effect on SMCs seems to be maintained until 24 h, explaining persisted action of Nebivolol observed in vivo.
Kumar, S; Reusch, H P; Ladilov, Y
2008-01-01
Ischaemic pre-conditioning has a powerful protective potential against ischaemia-induced cell death, and acidosis is an important feature of ischaemia and can lead to apoptosis. Here we tested whether pre-conditioning with acidosis, that is, acidic pre-conditioning (APC), may protect coronary endothelial cells (EC) against apoptosis induced by simulated ischaemia. For pre-conditioning, EC were exposed fo 40 min. to acidosis (pH 6.4) followed by a 14-hrs recovery period (pH 7.4) and finally treated for 2 hrs with simulated ischaemia (glucose-free anoxia at pH 6.4). Cells undergoing apoptosis were visualized by chromatin staining or by determination of caspase-3 activity Simulated ischaemia in untreated EC increased caspase-3 activity and the number of apoptotic cell (31.3 +/- 1.3%versus 3.9 +/- 0.6% in control). APC significantly reduced the rate of apoptosis (14.2 +/- 1.3%) and caspase-3 activity. Western blot analysis exploring the under lying mechanism leading to this protection revealed suppression of the endoplasmic reticulum- (reduced cleavage of caspase-12) and mitochondria-mediated (reduced cytochrome C release) pathways of apoptosis. These effects were associated with an over-expression of the anti-apoptotic protein Bcl-xL 14 hrs after APC, whereas no effect on the expression of Bcl-2, Bax, Bak, procaspase-12, reticulum-localized chaperones (GRP78, calreticulin), HSP70, HSP32 and HSP27 could be detected. Knock-down of Bcl-xL by siRNA-treatment prevented the protective effect of APC. In conclusion, short acidic pre-treatment can protect EC against ischaemic apoptosis. The mechanism of this protection consists of suppression of the endoplasmic reticulum- and mitochondria-mediated pathways. Over-expression of the anti apoptotic protein Bcl-xL is responsible for the increased resistance to apoptosis during ischaemic insult.
Zhang, Dan; Gao, Peng; Li, Qin; Li, Jinda; Li, Xiaojuan; Liu, Xiaoning; Kang, Yunqing; Ren, Liling
2017-06-05
There is a critical need for the management of large bone defects. The purpose of this study was to engineer a biomimetic periosteum and to combine this with a macroporous β-tricalcium phosphate (β-TCP) scaffold for bone tissue regeneration. Rat bone marrow-derived mesenchymal stem cells (rBMSCs) were harvested and cultured in different culture media to form undifferentiated rBMSC sheets (undifferentiated medium (UM)) and osteogenic cell sheets (osteogenic medium (OM)). Simultaneously, rBMSCs were differentiated to induced endothelial-like cells (iECs), and the iECs were further cultured on a UM to form a vascularized cell sheet. At the same time, flow cytometry was used to detect the conversion rates of rBMSCs to iECs. The pre-vascularized cell sheet (iECs/UM) and the osteogenic cell sheet (OM) were stacked together to form a biomimetic periosteum with two distinct layers, which mimicked the fibrous layer and cambium layer of native periosteum. The biomimetic periostea were wrapped onto porous β-TCP scaffolds (BP/β-TCP) and implanted in the calvarial bone defects of rats. As controls, autologous periostea with β-TCP (AP/β-TCP) and β-TCP alone were implanted in the calvarial defects of rats, with a no implantation group as another control. At 2, 4, and 8 weeks post-surgery, implants were retrieved and X-ray, microcomputed tomography (micro-CT), histology, and immunohistochemistry staining analyses were performed. Flow cytometry results showed that rBMSCs were partially differentiated into iECs with a 35.1% conversion rate in terms of CD31. There were still 20.97% rBMSCs expressing CD90. Scanning electron microscopy (SEM) results indicated that cells from the wrapped cell sheet on the β-TCP scaffold apparently migrated into the pores of the β-TCP scaffold. The histology and immunohistochemistry staining results from in vivo implantation indicated that the BP/β-TCP and AP/β-TCP groups promoted the formation of blood vessels and new bone tissues in the bone defects more than the other two control groups. In addition, micro-CT showed that more new bone tissue formed in the BP/β-TCP and AP/β-TCP groups than the other groups. Inducing rBMSCs to iECs could be a good strategy to obtain an endothelial cell source for prevascularization. Our findings indicate that the biomimetic periosteum with porous β-TCP scaffold has a similar ability to promote osteogenesis and angiogenesis in vivo compared to the autologous periosteum. This function could result from the double layers of biomimetic periosteum. The prevascularized cell sheet served a mimetic fibrous layer and the osteogenic cell sheet served a cambium layer of native periosteum. The biomimetic periosteum with a porous ceramic scaffold provides a new promising method for bone healing.
Sahoo, Subhransu S.; Quah, Min Yuan; Nielsen, Sarah; Atkins, Joshua; Au, Gough G.; Cairns, Murray J.; Nahar, Pravin; Lombard, Janine M.; Tanwar, Pradeep S.
2017-01-01
Although aggressive invasion and distant metastases are an important cause of morbidity and mortality in patients with endometrial cancer (EC), the requisite events determining this propensity are currently unknown. Using organotypic three-dimensional culture of endometrial cancer cell lines, we demonstrated anti-correlated TGF-β signalling gene expression patterns that arise among extracellular matrix (ECM)-attached cells. TGF-β pathway seemed to be active in EC cells forming non-glandular colonies in 3D-matrix but weaker in glandular colonies. Functionally we found that out of several ECM proteins, fibronectin relatively promotes Smad phosphorylation suggesting a potential role in regulating TGF-β signalling in non-glandular colonies. Importantly, alteration of TGF-β pathway induced EMT and MET in both type of colonies through slug protein. The results exemplify a crucial role of TGF-β pathway during EC metastasis in human patients and inhibition of the pathway in a murine model impaired tumour cell invasion and metastasis depicting an attractive target for therapeutic intervention of malignant tumour progression. These findings provide key insights into the role of ECM-derived TGF-β signalling to promote endometrial cancer metastasis and offer an avenue for therapeutic targeting of microenvironment derived signals along with tumour cells. PMID:29069715
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aranguren, Xabier L., E-mail: xabier.lopezaranguren@med.kuleuven.be; Beerens, Manu, E-mail: manu.beerens@med.kuleuven.be; Vandevelde, Wouter, E-mail: woutervandevelde@gmail.com
Highlights: {yields} COUP-TFII deficiency in zebrafish affects arterio-venous EC specification. {yields} COUP-TFII is indispensable for lymphatic development in zebrafish. {yields} COUP-TFII knockdown in Xenopus disrupts lymphatic EC differentiation and migration. {yields} COUP-TFII's role in EC fate decisions is evolutionary conserved. -- Abstract: Transcription factors play a central role in cell fate determination. Gene targeting in mice revealed that Chicken Ovalbumin Upstream Promoter-Transcription Factor II (COUP-TFII, also known as Nuclear Receptor 2F2 or NR2F2) induces a venous phenotype in endothelial cells (ECs). More recently, NR2F2 was shown to be required for initiating the expression of Prox1, responsible for lymphatic commitment ofmore » venous ECs. Small animal models like zebrafish embryos and Xenopus laevis tadpoles have been very useful to elucidate mechanisms of (lymph) vascular development. Therefore, the role of NR2F2 in (lymph) vascular development was studied by eliminating its expression in these models. Like in mice, absence of NR2F2 in zebrafish resulted in distinct vascular defects including loss of venous marker expression, major trunk vessel fusion and vascular leakage. Both in zebrafish and Xenopus the development of the main lymphatic structures was severely hampered. NR2F2 knockdown significantly decreased prox1 expression in zebrafish ECs and the same manipulation affected lymphatic (L)EC commitment, migration and function in Xenopus tadpoles. Therefore, the role of NR2F2 in EC fate determination is evolutionary conserved.« less
Pan, Xiaoming; Xue, Wujun; Li, Yang; Feng, Xinshun; Tian, Xiaohui; Ding, Chenguang
2011-12-15
Human islet transplantation is a great potential therapy for type I diabetes. To investigate islet graft survival and function, we recently showed the improved effects after co-culture and co-transplantation with vascular endothelial cells (ECs) in diabetic rats. ECs were isolated, and the viability of isolated islets was assessed in two groups (standard culture group and co-culture group with ECs). Then streptozotocin-induced diabetic rats were divided into four groups before islet transplantation as follows: group A with infusion of islet grafts; group B with combined vascular ECs and islet grafts; groups C and D as controls with single ECs infusion and phosphate-buffered saline injection, respectively. Blood glucose and insulin concentrations were measured daily. Expression of vascular endothelial growth factor was investigated by immunohistochemical staining. The mean microvascular density was also calculated. More than 90% of acridine orange-propidium iodide staining positive islets demonstrated normal morphology while co-cultured with ECs for 7 days. Compared with standard control, insulin release assays showed a significantly higher simulation index in co-culture group except for the first day (P<0.05). After transplantation, there was a significant difference in concentrations of blood glucose and insulin among these groups after 3 days (P<0.05). The mean microvascular density in co-culture group was significantly higher than that in single islet group (P=0.04). Co-culture with ECs in vitro could improve the survival and function of isolated rat islet, and co-transplantation of islets with ECs could effectively prolong the islet graft survival in diabetic rats.
Karakurt, Yasar; Huber, Donald J
2004-04-01
Watermelon fruit exhibit acute softening and placental-tissue water soaking following short exposure to exogenous ethylene. Experiments were performed to address transcript abundance and activities of cell wall and membrane hydrolases in placental tissue in response to treatment of watermelon fruit with ethylene. Watermelon fruit were harvested at immature and full-ripe stages and exposed to 50 microL L(-1) ethylene for 6 days at 20 degrees C. Ethylene affected the abundance of transcripts for PME (EC 3.2.1.11), and alpha-(EC 3.2.1.22) and beta-GAL (EC 3.2.1.23) but these effects were dependent on fruit maturity and appeared not to be associated with the water-soaking syndrome. PG (EC 3.2.1.15) and EXP mRNAs accumulated significantly in response to ethylene exposure. Additionally, the levels of mRNA and activities of LOX (EC 1.13.11.12), PLC (EC 3.1.4.3) and PLD (EC 3.1.4.4) were elevated in fruit of both maturity classes exposed to ethylene and were temporally associated with the visible symptoms of water soaking. The activity trends and transcript abundance in ethylene- compared with air-treated fruit indicate that PG, EXP, LOX, PLC and PLD levels increase with the onset and development of the water-soaking disorder and support the view that catabolic reactions targeting the membranes and cell-walls contribute to the disorder.
Toxicity of nutritionally available selenium compounds in primary and transformed hepatocytes.
Weiller, Markus; Latta, Markus; Kresse, Matthias; Lucas, Rudolf; Wendel, Albrecht
2004-09-01
The essential trace element selenium is also toxic at low doses. Since supplementation of selenium is discussed as cancer prophylaxis, we investigated whether or not bioavailable selenium compounds are selectively toxic on malignant cells by comparing primary and transformed liver cells as to the extent and mode of cell death. Sodium selenite and selenate exclusively induced necrosis in a concentration-dependent manner in all cell types investigated. In primary murine hepatocytes, the EC50 was 20 microM for selenite, 270 microM for selenate, and 30 microM for Se-methionine. In the human carcinoma cell line HepG2, the EC50 for selenite was 40 microM, and for selenate 1.1 mM, whereas Se-methionine was essentially non-toxic up to 10 mM. Similar results were found in murine Hepa1-6 cells. Exposure of primary murine cells to selenate or selenite resulted in increased lipid peroxidation. Toxicity was inhibited by superoxide dismutase plus catalase, indicating an important role for reactive oxygen intermediates. In primary hepatocytes, metabolical depletion of intracellular ATP by the ketohexose tagatose, significantly decreased the cytotoxicity of Se-methionine, while the one of selenite was increased. These data do not provide any in vitro evidence that bioavailable selenium compounds induce preferentially apoptotic cell death or selectively kill transformed hepatocytes.
Grabowska, Wioleta; Suszek, Małgorzata; Wnuk, Maciej; Lewinska, Anna; Wasiak, Emilia; Sikora, Ewa; Bielak-Zmijewska, Anna
2016-01-01
It is believed that curcumin, a component of the turmeric that belongs to hormetins, possesses anti-aging propensity. This property of curcumin can be partially explained by its influence on the level of sirtuins. Previously, we have shown that relatively high (2.5-10 μM) doses of curcumin induce senescence of cancer cells and cells building the vasculature. In the present study we examined whether curcumin at low doses (0.1 and 1 μM) is able to delay cell senescence and upregulate the level of sirtuins in human cells building the vasculature, namely vascular smooth muscle (VSMC) and endothelial (EC) cells. To this end we used cells senescing in a replicative and premature manner. We showed that low doses of curcumin in case of VSMC neither postponed the replicative senescence nor protected from premature senescence induced by doxorubicin. Moreover, curcumin slightly accelerated replicative senescence of EC. Despite some fluctuations, a clear increasing tendency in the level of sirtuins was observed in curcumin-treated young, senescing or already senescent cells. Sirtuin activation could be caused by the activation of AMPK resulting from superoxide elevation and ATP reduction. Our results show that curcumin at low doses can increase the level of sirtuins without delaying senescence of VSMC. PMID:27034011
Padmanabhan, Jagannath; Gonzalez, Anjelica L.
2012-01-01
Polymorphoneuclear leukocytes or neutrophils, a major component of white blood cells, contribute to the innate immune response in humans. Upon sensing changes in the microenvironment, neutrophils adhere to the vascular wall, migrate through the endothelial cell (EC)-pericyte bilayer, and subsequently through the extracellular matrix to reach the site of inflammation. These cells are capable of destroying microbes, cell debris, and foreign proteins by oxidative and non-oxidative processes. While primarily mediators of tissue homeostasis, there are an increasing number of studies indicating that neutrophil recruitment and transmigration can also lead to host-tissue injury and subsequently inflammation-related diseases. Neutrophil-induced tissue injury is highly regulated by the microenvironment of the infiltrated tissue, which includes cytokines, chemokines, and the provisional extracellular matrix, remodeled through increased vascular permeability and other cellular infiltrates. Thus, investigation of the effects of matrix proteins on neutrophil-EC interaction and neutrophil transmigration may help identify the proteins that induce pro- or anti-inflammatory responses. This area of research presents an opportunity to identify therapeutic targets in inflammation-related diseases. This review will summarize recent literature on the role of neutrophils and the effects of matrix proteins on neutrophil-EC interactions, with focus on three different disease models: 1) atherosclerosis, 2) COPD, and 3) tumor growth and progression. For each disease model, inflammatory molecules released by neutrophils, important regulatory matrix proteins, current anti-inflammatory treatments, and the scope for further research will be summarized. PMID:22737047
Vargas-Ramírez, Alba L; Medina-Enríquez, Miriam M; Cordero-Rodríguez, Neira I; Ruiz-Cuello, Tatiana; Aguilar-Faisal, Leopoldo; Trujillo-Ferrara, José G; Alcántara-Farfán, Verónica; Rodríguez-Páez, Lorena
2016-07-01
N-ω-chloroacetyl-L-ornithine (NCAO) is an ornithine decarboxylase (ODC) inhibitor that is known to exert cytotoxic and antiproliferative effects on three neoplastic human cancer cell lines (HeLa, MCF-7, and HepG2). Here, we show that NCAO has antiproliferative activity in 13 cancer cell lines, of diverse tissue origin from human and mice, and in a mouse cancer model in vivo. All cell lines were sensitive to NCAO after 72 h of treatment (the EC50 ranged from 1 to 50.6 µmol/l). The Ca Ski cell line was the most sensitive (EC50=1.18±0.07 µmol/l) and MDA-MB-231 was the least sensitive (EC50=50.6±0.3 µmol/l). This ODC inhibitor showed selectivity for cancer cells, exerting almost no cytotoxic effect on the normal Vero cell line (EC50>1000 µmol/l). NCAO induced apoptosis and inhibited tumor cell migration in vitro. Furthermore, in vivo, this compound (at 50 and 100 mg/kg, daily intraperitoneal injection for 7 days) exerted potent antitumor activity against both solid and ascitic tumors in a mouse model using the myeloma (Ag8) cell line. At these same two doses, the toxicological evaluation showed that NCAO has no obvious systemic toxicity. The current results suggest that the antitumor activity is exerted by apoptosis related not only to a local but also a systemic cytotoxic effect exerted by NCAO on tumor cells. The applications for NCAO as an antitumor agent may be extensive; however, further studies are needed to ascertain the antitumor activity on other types of tumor in vivo and to determine the precise molecular mechanism of its activity.
Dengue virus induces increased activity of the complement alternative pathway in infected cells.
Cabezas, Sheila; Bracho, Gustavo; L Aloia, Amanda; Adamson, Penelope J; Bonder, Claudine S; Smith, Justine R; Gordon, David L; Carr, Jillian M
2018-05-09
Severe dengue virus (DENV) infection is associated with overactivity of the complement alternative pathway (AP) in patient studies. Here, the molecular changes in components of the AP during DENV infection in vitro are investigated. mRNA for factor H (FH) a major negative regulator of the AP, is significantly increased in DENV-infected endothelial cells (EC) and macrophages but in contrast production of extracellular FH protein is not. This discord is not seen for the AP activator, factor B (FB), with DENV induction of both FB mRNA and protein, nor with Toll-like receptor 3 or 4 stimulation of EC and macrophages, which induces both FH and FB mRNA and protein. Surface bound and intracellular FH protein is however induced by DENV, but only in DENV antigen-positive cells, while in two other DENV-susceptible immortalised cell lines (ARPE-19 and HREC) FH protein is induced both intracellularly and extracellularly by DENV infection. Regardless of the cell type, there is an imbalance in AP components and an increase in markers of complement AP activity associated with DENV-infected cells - with lower FH relative to FB protein, increased ability to promote AP-mediated lytic activity and increased deposition of complement component C3b on the surface of DENV-infected cells. For EC in particular, these changes are predicted to result in higher complement activity in the local cellular microenvironment, with the potential to induce functional changes that may result in increased vascular permeability, a hallmark of dengue disease. IMPORTANCE Dengue virus (DENV) is a significant human viral pathogen with global medical and economic impact. DENV may cause serious and life-threatening disease with increased vascular permeability and plasma leakage. The pathogenic mechanisms underlying these features remain unclear; however overactivity of the complement alternative pathway has been suggested to play a role. In this study we investigate the molecular events that may be responsible for this observed alternative pathway overactivity and provide novel findings of changes in the complement system in response to DENV infection in primary cell types that are a major target for DENV infection (macrophages) and pathogenesis (endothelial cells) in vivo Our results suggest a new dimension of cellular events that may influence endothelial cell barrier function during DENV infection that could expand strategies for developing therapeutics to prevent or control DENV-mediated vascular disease. Copyright © 2018 American Society for Microbiology.
Chen, Shuo; Zong, Zhi-Hong; Wu, Dan-Dan; Sun, Kai-Xuan; Liu, Bo-Liang; Zhao, Yang
2017-04-01
Metastasis-associated in colon cancer-1 (MACC1), has recently been identified as a key regulator in the progression of many cancers. However, its role in endometrial carcinoma (EC) remains unknown. MACC1 expression was determined in EC and normal endometrial tissues by immunohistochemistry. EC cell phenotypes and related molecules were examined after MACC1 downregulation by Small interfering RNA (siRNA) or microRNA (miRNA) transfection. We found that MACC1 was highly expressed in EC tissues than normal samples, and was significantly different in FIGO staging (I and II vs. III and IV), the depth of myometrial infiltration (<1/2 vs. ≥1/2), lymph nodes metastasis (negative vs. positive), besides, MACC1 overexpression was correlated with lower cumulative and relapse-free survival rate. MACC1 downregulation by siRNA transfection significantly induced G1 phrase arrest, suppressed EC cell proliferation, migration, and invasion. In addition, MACC1 downregulation also reduced expression of Cyclin D1 and Cyclin-dependent Kinase 2 (CDK2), N-cadherin (N-Ca), α-SMA, matrix metalloproteinase 2 (MMP2), and MMP9, but increased expression of E-cadherin (E-Ca). Bioinformatic predictions and dual-luciferase reporter assays indicate that MACC1 is a possible target of miR-23b. MiR-23b overexpression reduced MACC1 expression in vitro and induced G1 phrase arrest, suppressed cell proliferation, migration, and invasion. MiR-23b transfection also reduced Cyclin D1 and CDK2, N-Ca, α-SMA, MMP2, MMP9 expression, but increased E-Ca expression. Furthermore, the nude mouse xenograft assay showed that miR-23b overexpression suppressed tumour growth through downregulating MACC1 expression. Taken together, our results demonstrate for the first time that MACC1 may be a new and important diagnosis and therapeutic target of endometrial carcinoma. © 2017 Wiley Periodicals, Inc.
PECAM1 regulates flow-mediated Gab1 tyrosine phosphorylation and signaling
Xu, Suowen; Ha, Chang Hoon; Wang, Weiye; Xu, Xiangbin; Yin, Meimei; Jin, Felix Q.; Mastrangelo, Michael; Koroleva, Marina; Fujiwara, Keigi; Jin, Zheng Gen
2016-01-01
Endothelial dysfunction, characterized by impaired activation of endothelial nitric oxide (NO) synthase (eNOS) and ensued decrease of NO production, is a common mechanism of various cardiovascular pathologies, including hypertension and atherosclerosis. Laminar blood flow-mediated specific signaling cascades modulate vascular endothelial cells (ECs) structure and functions. We have previously shown that flow-stimulated Gab1 (Grb2-associated binder-1) tyrosine phosphorylation mediates eNOS activation in ECs, which in part confers laminar flow atheroprotective action. However, the molecular mechanisms whereby flow regulates Gab1 tyrosine phosphorylation and its downstream signaling events remain unclear. Here we show that platelet endothelial cell adhesion molecule-1 (PECAM1), a key molecule in an endothelial mechanosensing complex, specifically mediates Gab1 tyrosine phosphorylation and its downstream Akt and eNOS activation in ECs upon flow rather than hepatocyte growth factor (HGF) stimulation. Small interfering RNA (siRNA) targeting PECAM1 abolished flow- but not HGF-induced Gab1 tyrosine phosphorylation and Akt, eNOS activation as well as Gab1 membrane translocation. Protein-tyrosine phosphatase SHP2, which has been shown to interact with Gab1, was involved in flow signaling and HGF signaling, as SHP2 siRNA diminished the flow- and HGF-induced Gab1 tyrosine phosphorylation, membrane localization and downstream signaling. Pharmacological inhibition of PI3K decreased flow-, but not HGF-mediated Gab1 phosphorylation and membrane localization as well as eNOS activation. Finally, we observed that flow-mediated Gab1 and eNOS phosphorylation in vivo induced by voluntary wheel running was reduced in PECAM1 knockout mice. These results demonstrate a specific role of PECAM1 in flow-mediated Gab1 tyrosine phosphorylation and eNOS signaling in ECs. PMID:26706435
Adachi, Tetsuo; Aida, Kazunari; Nishihara, Hiroko; Kamiya, Tetsuro; Hara, Hirokazu
2011-01-01
The initial clinical stage of diabetic retinopathy (DR) is characterized by the development of intraretinal microvascular abnormalities. The increased formation of reactive oxygen species (ROS) is thought to be a key event in the pathogenesis of DR. Extracellular-superoxide dismutase (EC-SOD) is an anti-inflammatory enzyme that is distributed mainly in vascular cells and protects cells from ROS by scavenging superoxide anion. Treatment with cobalt chloride (CoCl(2)) decreased the expression of EC-SOD but not other SOD isozymes in pericytes accompanied with an increase of intracellular ROS production. Pre-treatment with N-acetylcysteine (NAC) significantly suppressed the ROS production and down-regulation of EC-SOD. We observed the activation of caspase-3 and DNA fragmentation as signs of apoptotic process by CoCl(2) treatment. In addition, these phenomena were significantly inhibited by pre-treatment with NAC. EC-SOD enhancer 4-phenyl butyric acid also suppressed the caspase-3 activation. It is known that the presence of a high level of EC-SOD throughout the vessel walls might have an important protective role against superoxide in the vascular system. The decrease in EC-SOD expression accompanied with elevation of ROS level in pericytes under hypoxia might induce and/or promote the ROS-triggered apoptosis of pericytes and the development of pathogenesis in DR.
Human iPSC-derived myocardium-on-chip with capillary-like flow for personalized medicine.
Ellis, Bradley W; Acun, Aylin; Can, U Isik; Zorlutuna, Pinar
2017-03-01
The heart wall tissue, or the myocardium, is one of the main targets in cardiovascular disease prevention and treatment. Animal models have not been sufficient in mimicking the human myocardium as evident by the very low clinical translation rates of cardiovascular drugs. Additionally, current in vitro models of the human myocardium possess several shortcomings such as lack of physiologically relevant co-culture of myocardial cells, lack of a 3D biomimetic environment, and the use of non-human cells. In this study, we address these shortcomings through the design and manufacture of a myocardium-on-chip (MOC) using 3D cell-laden hydrogel constructs and human induced pluripotent stem cell (hiPSC) derived myocardial cells. The MOC utilizes 3D spatially controlled co-culture of hiPSC derived cardiomyocytes (iCMs) and hiPSC derived endothelial cells (iECs) integrated among iCMs as well as in capillary-like side channels, to better mimic the microvasculature seen in native myocardium. We first fully characterized iCMs using immunostaining, genetic, and electrochemical analysis and iECs through immunostaining and alignment analysis to ensure their functionality, and then seeded these cells sequentially into the MOC device. We showed that iECs could be cultured within the microfluidic device without losing their phenotypic lineage commitment, and align with the flow upon physiological level shear stresses. We were able to incorporate iCMs within the device in a spatially controlled manner with the help of photocrosslinkable polymers. The iCMs were shown to be viable and functional within the device up to 7 days, and were integrated with the iECs. The iCMs and iECs in this study were derived from the same hiPSC cell line, essentially mimicking the myocardium of an individual human patient. Such devices are essential for personalized medicine studies where the individual drug response of patients with different genetic backgrounds can be tested in a physiologically relevant manner.
Taylor, Shannon L.; Wahl-Jensen, Victoria; Copeland, Anna Maria; Jahrling, Peter B.; Schmaljohn, Connie S.
2013-01-01
Hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS) are diseases caused by hantavirus infections and are characterized by vascular leakage due to alterations of the endothelial barrier. Hantavirus-infected endothelial cells (EC) display no overt cytopathology; consequently, pathogenesis models have focused either on the influx of immune cells and release of cytokines or on increased degradation of the adherens junction protein, vascular endothelial (VE)-cadherin, due to hantavirus-mediated hypersensitization of EC to vascular endothelial growth factor (VEGF). To examine endothelial leakage in a relevant in vitro system, we co-cultured endothelial and vascular smooth muscle cells (vSMC) to generate capillary blood vessel-like structures. In contrast to results obtained in monolayers of cultured EC, we found that despite viral replication in both cell types as well as the presence of VEGF, infected in vitro vessels neither lost integrity nor displayed evidence of VE-cadherin degradation. Here, we present evidence for a novel mechanism of hantavirus-induced vascular leakage involving activation of the plasma kallikrein-kinin system (KKS). We show that incubation of factor XII (FXII), prekallikrein (PK), and high molecular weight kininogen (HK) plasma proteins with hantavirus-infected EC results in increased cleavage of HK, higher enzymatic activities of FXIIa/kallikrein (KAL) and increased liberation of bradykinin (BK). Measuring cell permeability in real-time using electric cell-substrate impedance sensing (ECIS), we identified dramatic increases in endothelial cell permeability after KKS activation and liberation of BK. Furthermore, the alterations in permeability could be prevented using inhibitors that directly block BK binding, the activity of FXIIa, or the activity of KAL. Lastly, FXII binding and autoactivation is increased on the surface of hantavirus-infected EC. These data are the first to demonstrate KKS activation during hantavirus infection and could have profound implications for treatment of hantavirus infections. PMID:23874198
Human iPSC-derived myocardium-on-chip with capillary-like flow for personalized medicine
Ellis, Bradley W.; Acun, Aylin; Can, U. Isik; Zorlutuna, Pinar
2017-01-01
The heart wall tissue, or the myocardium, is one of the main targets in cardiovascular disease prevention and treatment. Animal models have not been sufficient in mimicking the human myocardium as evident by the very low clinical translation rates of cardiovascular drugs. Additionally, current in vitro models of the human myocardium possess several shortcomings such as lack of physiologically relevant co-culture of myocardial cells, lack of a 3D biomimetic environment, and the use of non-human cells. In this study, we address these shortcomings through the design and manufacture of a myocardium-on-chip (MOC) using 3D cell-laden hydrogel constructs and human induced pluripotent stem cell (hiPSC) derived myocardial cells. The MOC utilizes 3D spatially controlled co-culture of hiPSC derived cardiomyocytes (iCMs) and hiPSC derived endothelial cells (iECs) integrated among iCMs as well as in capillary-like side channels, to better mimic the microvasculature seen in native myocardium. We first fully characterized iCMs using immunostaining, genetic, and electrochemical analysis and iECs through immunostaining and alignment analysis to ensure their functionality, and then seeded these cells sequentially into the MOC device. We showed that iECs could be cultured within the microfluidic device without losing their phenotypic lineage commitment, and align with the flow upon physiological level shear stresses. We were able to incorporate iCMs within the device in a spatially controlled manner with the help of photocrosslinkable polymers. The iCMs were shown to be viable and functional within the device up to 7 days, and were integrated with the iECs. The iCMs and iECs in this study were derived from the same hiPSC cell line, essentially mimicking the myocardium of an individual human patient. Such devices are essential for personalized medicine studies where the individual drug response of patients with different genetic backgrounds can be tested in a physiologically relevant manner. PMID:28396709
Kim, Do-Hee; Kwak, Yeonui; Kim, Nam Doo; Sim, Taebo
2016-01-01
ABSTRACT Aberrant mutational activation of FGFR2 is associated with endometrial cancers (ECs). AP24534 (ponatinib) currently undergoing clinical trials has been known to be an orally available multi-targeted tyrosine kinase inhibitor. Our biochemical kinase assay showed that AP24534 is potent against wild-type FGFR1-4 and 5 mutant FGFRs (V561M-FGFR1, N549H-FGFR2, K650E-FGFR3, G697C-FGFR3, N535K-FGFR4) and possesses the strongest kinase-inhibitory activity on N549H-FGFR2 (IC50 of 0.5 nM) among all FGFRs tested. We therefore investigated the effects of AP24534 on endometrial cancer cells harboring activating FGFR2 mutations and explored the underlying molecular mechanisms. AP24534 significantly inhibited the proliferation of endometrial cancer cells bearing activating FGFR2 mutations (N549K, K310R/N549K, S252W) and mainly induced G1/S cell cycle arrest leading to apoptosis. AP24534 also diminished the kinase activity of immunoprecipitated FGFR2 derived from MFE-296 and MFE-280 cells and reduced the phosphorylation of FGFR2 and FRS2 on MFE-296 and AN3CA cells. AP24534 caused substantial reductions in ERK phosphorylation, PLCγ signaling and STAT5 signal transduction on ECs bearing FGFR2 activating mutations. Akt signaling pathway was also deactivated by AP24534. AP24534 causes the chemotherapeutic effect through mainly the blockade of ERK, PLCγ and STAT5 signal transduction on ECs. Moreover, AP24534 inhibited migration and invasion of endometrial cancer cells with FGFR2 mutations. In addition, AP24534 significantly blocked anchorage-independent growth of endometrial cancer cells. We, for the first time, report the molecular mechanisms by which AP24534 exerts antitumor effects on ECs with FGFR2 activating mutations, which would provide mechanistic insight into ongoing clinical investigations of AP24534 for ECs. PMID:26574622
Aoki, T; Nishimura, M; Matsuoka, T; Yamamoto, K; Furuyashiki, T; Kataoka, H; Kitaoka, S; Ishibashi, R; Ishibazawa, A; Miyamoto, S; Morishita, R; Ando, J; Hashimoto, N; Nozaki, K; Narumiya, S
2011-01-01
BACKGROUND AND PURPOSE Cerebral aneurysm is a frequent cerebrovascular event and a major cause of fatal subarachnoid haemorrhage, but there is no medical treatment for this condition. Haemodynamic stress and, recently, chronic inflammation have been proposed as major causes of cerebral aneurysm. Nevertheless, links between haemodynamic stress and chronic inflammation remain ill-defined, and to clarify such links, we evaluated the effects of prostaglandin E2 (PGE2), a mediator of inflammation, on the formation of cerebral aneurysms. EXPERIMENTAL APPROACH Expression of COX and prostaglandin E synthase (PGES) and PGE receptors were examined in human and rodent cerebral aneurysm. The incidence, size and inflammation of cerebral aneurysms were evaluated in rats treated with COX-2 inhibitors and mice lacking each prostaglandin receptor. Effects of shear stress and PGE receptor signalling on expression of pro-inflammatory molecules were studied in primary cultures of human endothelial cells (ECs). KEY RESULTS COX-2, microsomal PGES-1 and prostaglandin E receptor 2 (EP2) were induced in ECs in the walls of cerebral aneurysms. Shear stress applied to primary ECs induced COX-2 and EP2. Inhibition or loss of COX-2 or EP2in vivo attenuated each other's expression, suppressed nuclear factor κB (NF-κB)-mediated chronic inflammation and reduced incidence of cerebral aneurysm. EP2 stimulation in primary ECs induced NF-κB activation and expression of the chemokine (C-C motif) ligand 2, essential for cerebral aneurysm. CONCLUSIONS AND IMPLICATIONS These results suggest that shear stress activated PGE2-EP2 pathway in ECs and amplified chronic inflammation via NF-κB. We propose EP2 as a therapeutic target in cerebral aneurysm. PMID:21426319
2011-01-01
Background We previously showed that microglia damage blood brain barrier (BBB) components following ischemic brain insults, but the underlying mechanism(s) is/are not well known. Recent work has established the contribution of toll-like receptor 4 (TLR4) activation to several brain pathologies including ischemia, neurodegeneration and sepsis. The present study established the requirement of microglia for lipopolysaccharide (LPS) mediated endothelial cell death, and explored pathways involved in this toxicity. LPS is a classic TLR4 agonist, and is used here to model aspects of brain conditions where TLR4 stimulation occurs. Methods/Results In monocultures, LPS induced death in microglia, but not brain derived endothelial cells (EC). However, LPS increased EC death when cocultured with microglia. LPS led to nitric oxide (NO) and inducible NO synthase (iNOS) induction in microglia, but not in EC. Inhibiting microglial activation by blocking iNOS and other generators of NO or blocking reactive oxygen species (ROS) also prevented injury in these cocultures. To assess the signaling pathway(s) involved, inhibitors of several downstream TLR-4 activated pathways were studied. Inhibitors of NF-κB, JAK-STAT and JNK/SAPK decreased microglial activation and prevented cell death, although the effect of blocking JNK/SAPK was rather modest. Inhibitors of PI3K, ERK, and p38 MAPK had no effect. Conclusions We show that LPS-activated microglia promote BBB disruption through injury to endothelial cells, and the specific blockade of JAK-STAT, NF-κB may prove to be especially useful anti-inflammatory strategies to confer cerebrovascular protection. PMID:21385378
Siaussat, David; Bozzolan, Françoise; Porcheron, Patrick; Debernard, Stéphane
2008-05-01
The mechanisms involved in the control of cellular proliferation by the steroid hormone 20-hydroxyecdysone (20E) in insects are not known. We dissected the 20E signalling pathway responsible for G2/M arrest of imaginal cells from the IAL-PID2 cells of the Indian meal moth Plodia interpunctella. We first used a 5'-3' RACE-based strategy to clone a 4479bp cDNA encoding a putative P. interpunctella HR3 transcription factor named PiHR3. The deduced amino acid sequence of PiHR3 was highly similar to those of HR3 proteins from other lepidopterans, e.g. Manduca sexta and Bombyx mori. Using double-stranded RNA-mediated interference (dsRNAi), we then succeeded in blocking the ability of 20E to induce the expression of PiEcR-B1, PiUSP-2 and PiHR3 genes that encode the P. interpunctella ecdysone receptor B1-isoform, Ultraspiracle-2 isoform, the insect homologue of the vertebrate retinoid X receptor, and the HR3 transcription factor. We showed that inhibiting the 20E induction of PiEcR-B1, PiUSP-2 and PiHR3 mRNAs prevented the decreased expression of B cyclin and consequently the G2/M arrest of IAL-PID2 cells. Using this functional approach, we revealed the participation of EcR, USP and HR3 in a 20E signalling pathway that controls the proliferation of imaginal cells by regulating the expression of B cyclin.
The effect of tamoxifen and raloxifene on estrogen metabolism and endometrial cancer risk.
Williams-Brown, Marian Y; Salih, Sana M; Xu, Xia; Veenstra, Timothy D; Saeed, Muhammad; Theiler, Shaleen K; Diaz-Arrastia, Concepcion R; Salama, Salama A
2011-09-01
Selective estrogen receptor modulators (SERMs) demonstrate differential endometrial cancer (EC) risk. While tamoxifen (TAM) use increases the risk of endometrial hyperplasia and malignancy, raloxifene (RAL) has neutral effects on the uterus. How TAM increases the risk of EC and why TAM and RAL differentially modulate the risk for EC, however, remain elusive. Here, we tested the hypothesis that TAM increases the risk for EC, at least in part, by enhancing the local estrogen biosynthesis and directing estrogen metabolism towards the formation of genotoxic and hormonally active estrogen metabolites. In addition, the differential effects of TAM and RAL in EC risk are attributed to their differential effect on estrogen metabolism/metabolites. The endometrial cancer cell line (Ishikawa cells) and the nonmalignant immortalized human endometrial glandular cell line (EM1) were used for the study. The profile of estrogen/estrogen metabolites (EM), depurinating estrogen-DNA adducts, and the expression of estrogen-metabolizing enzymes in cells treated with 17β-estradiol (E2) alone or in combination with TAM or RAL were investigated using high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS(2)), ultraperformance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS), and Western blot analysis, respectively. TAM significantly increased the total EM and enhanced the formation of hormonally active and carcinogenic estrogen metabolites, 4-hydroxestrone (4-OHE1) and 16α-hydroxyestrone, with concomitant reduction in the formation of antiestrogenic and anticarcinogenic 2-hydroxyestradiol and 2-methoxyestradiol. Furthermore, TAM increased the formation of depurinating estrogen-DNA adducts 4-OHE1 [2]-1-N7Guanine and 4-OHE1 [2]-1-N3 Adenine. TAM-induced alteration in EM and depurinating DNA adduct formation is associated with altered expression of estrogen metabolizing enzymes CYP1A1, CYP1B1, COMT, NQO1, and SF-1 as revealed by Western blot analysis. In contrast to TAM, RAL has minimal effect on EM, estrogen-DNA adduct formation, or estrogen-metabolizing enzymes expression. These data show that TAM perturbs the balance of estrogen-metabolizing enzymes and alters the disposition of estrogen metabolites, which can explain, at least in part, the mechanism for TAM-induced EC. These results also implicate the differential effect of TAM and RAL on estrogen metabolism/metabolites as a potential mechanism for their disparate effects on the endometrium. Copyright © 2011 Elsevier Ltd. All rights reserved.
Nitroprusside and ECS-induced retrograde amnesia.
Sudha, S; Andrade, C; Anand, A; Guido, S; Venkataraman, B V
2001-03-01
Previous research found that the administration of verapamil and felodipine immediately before electroconvulsive shocks (ECS) attenuated ECS-induced retrograde amnesia. This study examined whether sodium nitroprusside, an antihypertensive drug that does not affect calcium channels, has a similar action. Adult male Sprague-Dawley rats received nitroprusside (0.5 mg/kg ip) or saline 3 minutes before each of three once-daily true or sham ECS. Retention of pre-ECS learning was studied 1 day after ECS using a passive avoidance task. Nitroprusside was associated with increased seizure duration in ECS-treated rats, and with enhanced recall in both true and sham ECS groups. The latter finding suggests that nitroprusside nonspecifically improves cognitive functions, and does not support the hypothesis that ECS-induced cognitive impairment is a result of blood-brain barrier breach. Nitric oxide mechanisms may underlie the benefits purveyed by nitroprusside.
Human iPSC-Derived Endothelial Cell Sprouting Assay in Synthetic Hydrogel Arrays
Activation of vascular endothelial cells (ECs) by growth factors initiates a cascade of events in vivo consisting of EC tip cell selection, sprout formation, EC stalk cell proliferation, and ultimately vascular stabilization by support cells. Although EC functional assays can rec...
Chen, Zhibo; Wang, Mian; He, Qiong; Li, Zilun; Zhao, Yang; Wang, Wenjian; Ma, Jieyi; Li, Yongxin; Chang, Guangqi
2017-01-01
Oxidized low-density lipoprotein (ox-LDL) is a major and critical mediator of atherosclerosis, and the underlying mechanism is thought to involve the ox-LDL-induced dysfunction of endothelial cells (ECs). MicroRNAs (miRNAs), which are a group of small non-coding RNA molecules that post-transcriptionally regulate the expression of target genes, have been associated with diverse cellular functions and the pathogenesis of various diseases, including atherosclerosis. miRNA-98 (miR-98) has been demonstrated to be involved in the regulation of cellular apoptosis; however, the role of miR-98 in ox-LDL-induced dysfunction of ECs and atherosclerosis has yet to be elucidated. Therefore, the present study aimed to investigate the role of miR-98 in ox-LDL-induced dysfunction of ECs and the underlying mechanism. It was demonstrated that miR-98 expression was markedly downregulated in ox-LDL-treated human umbilical vein ECs (HUVECs) and that miR-98 promoted the proliferation and alleviated apoptosis of HUVECs exposed to ox-LDL. In addition, the results demonstrated that lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1) was a direct target of miR-98 in HUVECs, as indicated by a luciferase assay. The results of the present study suggested that miR-98 may inhibit the uptake of toxic ox-LDL, maintain HUVEC proliferation and protect HUVECs against apoptosis via the suppression of LOX-1. PMID:28565756
Chillà, Anastasia; Margheri, Francesca; Biagioni, Alessio; Del Rosso, Mario; Fibbi, Gabriella; Laurenzana, Anna
2018-04-03
Controlling vascular growth is a challenging aim for the inhibition of tumor growth and metastasis. The amoeboid and mesenchymal types of invasiveness are two modes of migration interchangeable in cancer cells: the Rac-dependent mesenchymal migration requires the activity of proteases; the Rho-ROCK-dependent amoeboid motility is protease-independent and has never been described in endothelial cells. A cocktail of physiologic inhibitors (Ph-C) of serine-proteases, metallo-proteases and cysteine-proteases, mimicking the physiological environment that cells encounter during their migration within the angiogenesis sites was used to induce amoeboid style migration of Endothelial colony forming cells (ECFCs) and mature endothelial cells (ECs). To evaluate the mesenchymal-ameboid transition RhoA and Rac1 activation assays were performed along with immunofluorescence analysis of proteins involved in cytoskeleton organization. Cell invasion was studied in Boyden chambers and Matrigel plug assay for the in vivo angiogenesis. In the present study we showed in both ECFCs and ECs, a decrease of activated Rac1 and an increase of activated RhoA upon shifting of cells to the amoeboid conditions. In presence of Ph-C inhibitors both cell lines acquired a round morphology and Matrigel invasion was greatly enhanced with respect to that observed in the absence of protease inhibition. We also observed that the urokinase-plasminogen-activator (uPAR) receptor silencing and uPAR-integrin uncoupling with the M25 peptide abolished both mesenchymal and amoeboid angiogenesis of ECFCs and ECs in vitro and in vivo, indicating a role of the uPAR-integrin-actin axis in the regulation of amoeboid angiogenesis. Furthermore, under amoeboid conditions endothelial cells seem to be indifferent to VEGF stimulation, which induces an amoeboid signaling pattern also in mesenchymal conditions. Here we first provide a data set disclosing that endothelial cells can move and differentiate into vascular structures in vitro and in vivo also in the absence of proteases activity, performing a new type of neovascularization: the "amoeboid angiogenesis". uPAR is indispensable for ECs and ECFCs to perform an efficient amoeboid angiogenesis. Therefore, uPAR silencing or the block of its integrin-interaction, together with standard treatment against VEGF, could be a possible solution for angiogenesis inhibition.
Guo, Li; Tong, Dongxia; Yu, Muxin; Zhang, Yan; Li, Tao; Wang, Chunxu; Zhou, Peng; Jin, Jiaqi; Li, Baorong; Liu, Yingmiao; Liu, Ruipeng; Novakovic, Valerie A; Dong, Zengxiang; Tian, Ye; Kou, Junjie; Bi, Yayan; Zhou, Jin; Shi, Jialan
2018-06-01
Multiple myeloma (MM) is characterized by an increased incidence of thromboembolic events, particularly when treated with immunomodulatory drugs (IMiDs) in combination with dexamethasone. The optimal prophylactic strategy to prevent the hypercoagulable state of patients with MM is still debated. The aim of the current study was to investigate the definitive role of phosphatidylserine (PS) in supporting procoagulant activity (PCA) in patients with MM. Patients with MM (n=20) and healthy subjects (n=15) were recruited for the present study. PS analyses were performed by flow cytometry and confocal microscopy. The PCA was evaluated by clotting time, purified coagulation complex assays and fibrin production assays. The percentage of PS+ blood cells was significantly higher in patients with MM than in healthy subjects. Additionally, the patient serum induced more PS exposure on endothelial cells (ECs) in vitro than serum from healthy subjects. Isolated blood cells from patients with MM and ECs cultured with patient serum in vitro demonstrated significantly shortened coagulation time, greatly intrinsic/extrinsic factor Xa generation and increased thrombin formation. In addition, the levels of PS+ erythrocytes, platelets, leukocytes, and ECs incubated with IMiDs and dexamethasone were higher than with IMiDs alone. The findings support the hypothesis that increased PS exposure on blood cells and ECs participates in the hypercoagulable state in patients with MM. Thus, blocking PS may be a novel therapeutic target for the prevention of thrombosis in these patients.
Matsunaga, Taichi; Yamashita, Jun K
2014-02-07
Specific gene knockout and rescue experiments are powerful tools in developmental and stem cell biology. Nevertheless, the experiments require multiple steps of molecular manipulation for gene knockout and subsequent rescue procedures. Here we report an efficient and single step strategy to generate gene knockout-rescue system in pluripotent stem cells by promoter insertion with CRISPR/Cas9 genome editing technology. We inserted a tetracycline-regulated inducible gene promoter (tet-OFF/TRE-CMV) upstream of the endogenous promoter region of vascular endothelial growth factor receptor 2 (VEGFR2/Flk1) gene, an essential gene for endothelial cell (EC) differentiation, in mouse embryonic stem cells (ESCs) with homologous recombination. Both homo- and hetero-inserted clones were efficiently obtained through a simple selection with a drug-resistant gene. The insertion of TRE-CMV promoter disrupted endogenous Flk1 expression, resulting in null mutation in homo-inserted clones. When the inserted TRE-CMV promoter was activated with doxycycline (Dox) depletion, Flk1 expression was sufficiently recovered from the downstream genomic Flk1 gene. Whereas EC differentiation was almost completely perturbed in homo-inserted clones, Flk1 rescue with TRE-CMV promoter activation restored EC appearance, indicating that phenotypic changes in EC differentiation can be successfully reproduced with this knockout-rescue system. Thus, this promoter insertion strategy with CRISPR/Cas9 would be a novel attractive method for knockout-rescue experiments. Copyright © 2014 Elsevier Inc. All rights reserved.
Daniel, Jan-Marcus; Dutzmann, Jochen; Brunsch, Hannes; Bauersachs, Johann; Braun-Dullaeus, Rüdiger; Sedding, Daniel G
2017-07-01
Systemic treatment with sirolimus, as used for immunosuppression in transplant patients, results in markedly low rates of in-stent restenosis. Since the underlying mechanisms remain obscure, we aimed to determine the molecular and cellular effects of systemic sirolimus treatment on vascular remodeling processes. Systemic sirolimus treatment significantly reduced smooth muscle cell (SMC) proliferation 14days after wire-induced injury and neointima formation 28days after injury in C57BL/6 mice, while simultaneously impairing re-endothelialization. Interestingly, in vitro, sirolimus had no direct effect on the proliferation of SMC or endothelial cells (EC) at serum concentrations observed after systemic application. In contrast, sirolimus reduced the adhesion of leukocytes (CD45 + ) and bone marrow-derived progenitor cells (CD34 + ) to activated EC by down-regulating the adhesion molecules ICAM-1 and VCAM-1. In addition, sirolimus treatment also significantly reduced the upregulation of ICAM-1 and VCAM-1 and the recruitment of monocytic cells (MOMA-2 + ) in neointimal lesions in vivo. Our findings show that systemic sirolimus treatment effectively prevents SMC and EC proliferation in vivo without directly affecting these cells. Instead, sirolimus prevents neointima formation and re-endothelialization by attenuating the inflammatory response after injury with secondary effects on SMC and EC proliferation. Thus, despite a similar net effect, the mechanisms of systemic sirolimus treatment are largely different from the local effects achieved after application of sirolimus-eluting stents. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Carter, Emma J.; Barnes, David; Hoppe, Hans-Jürgen; Hughes, Jennifer; Cobbold, Stephen; Harper, James; Morreau, Hans; Surakhy, Mirvat; Hassan, A. Bassim
2016-01-01
Two important protein-protein interactions establish E-cadherin (Cdh1) in the adhesion complex; homophilic binding via the extra-cellular (EC1) domain and cytoplasmic tail binding to β-catenin. Here, we evaluate whether E-cadherin binding can inhibit β-catenin when there is loss of Adenomatous polyposis coli (APC) from the β-catenin destruction complex. Combined conditional loss of Cdh1 and Apc were generated in the intestine, intestinal adenoma and adenoma organoids. Combined intestinal disruption (Cdh1fl/flApcfl/flVil-CreERT2) resulted in lethality, breakdown of the intestinal barrier, increased Wnt target gene expression and increased nuclear β-catenin localization, suggesting that E-cadherin inhibits β-catenin. Combination with an intestinal stem cell Cre (Lgr5CreERT2) resulted in ApcΔ/Δ recombination and adenoma, but intact Cdh1fl/fl alleles. Cultured ApcΔ/ΔCdh1fl/fl adenoma cells infected with adenovirus-Cre induced Cdh1fl/fl recombination (Cdh1Δ/Δ), disruption of organoid morphology, nuclear β-catenin localization, and cells with an epithelial-mesenchymal phenotype. Complementation with adenovirus expressing wild-type Cdh1 (Cdh1-WT) rescued adhesion and β-catenin membrane localization, yet an EC1 specific double mutant defective in homophilic adhesion (Cdh1-MutW2A, S78W) did not. These data suggest that E-cadherin inhibits β-catenin in the context of disruption of the APC-destruction complex, and that this function is also EC1 domain dependent. Both binding functions of E-cadherin may be required for its tumour suppressor activity. PMID:27566565
Jiang, Xiaoyan; Zhang, Lili; Pu, Hongjian; Hu, Xiaoming; Zhang, Wenting; Cai, Wei; Gao, Yanqin; Leak, Rehana K.; Keep, Richard F.; Bennett, Michael V. L.; Chen, Jun
2017-01-01
The damage borne by the endothelial cells (ECs) forming the blood–brain barrier (BBB) during ischemic stroke and other neurological conditions disrupts the structure and function of the neurovascular unit and contributes to poor patient outcomes. We recently reported that structural aberrations in brain microvascular ECs—namely, uncontrolled actin polymerization and subsequent disassembly of junctional proteins, are a possible cause of the early onset BBB breach that arises within 30–60 min of reperfusion after transient focal ischemia. Here, we investigated the role of heat shock protein 27 (HSP27) as a direct inhibitor of actin polymerization and protectant against BBB disruption after ischemia/reperfusion (I/R). Using in vivo and in vitro models, we found that targeted overexpression of HSP27 specifically within ECs—but not within neurons—ameliorated BBB impairment 1–24 h after I/R. Mechanistically, HSP27 suppressed I/R-induced aberrant actin polymerization, stress fiber formation, and junctional protein translocation in brain microvascular ECs, independent of its protective actions against cell death. By preserving BBB integrity after I/R, EC-targeted HSP27 overexpression attenuated the infiltration of potentially destructive neutrophils and macrophages into brain parenchyma, thereby improving long-term stroke outcome. Notably, early poststroke administration of HSP27 attached to a cell-penetrating transduction domain (TAT-HSP27) rapidly elevated HSP27 levels in brain microvessels and ameliorated I/R-induced BBB disruption and subsequent neurological deficits. Thus, the present study demonstrates that HSP27 can function at the EC level to preserve BBB integrity after I/R brain injury. HSP27 may be a therapeutic agent for ischemic stroke and other neurological conditions involving BBB breakdown. PMID:28137866
Preconditioning with Endoplasmic Reticulum Stress Ameliorates Endothelial Cell Inflammation
Leonard, Antony; Paton, Adrienne W.; El-Quadi, Monaliza; Paton, James C.; Fazal, Fabeha
2014-01-01
Endoplasmic Reticulum (ER) stress, caused by disturbance in ER homeostasis, has been implicated in several pathological conditions such as ischemic injury, neurodegenerative disorders, metabolic diseases and more recently in inflammatory conditions. Our present study aims at understanding the role of ER stress in endothelial cell (EC) inflammation, a critical event in the pathogenesis of acute lung injury (ALI). We found that preconditioning human pulmonary artery endothelial cells (HPAEC) to ER stress either by depleting ER chaperone and signaling regulator BiP using siRNA, or specifically cleaving (inactivating) BiP using subtilase cytotoxin (SubAB), alleviates EC inflammation. The two approaches adopted to abrogate BiP function induced ATF4 protein expression and the phosphorylation of eIF2α, both markers of ER stress, which in turn resulted in blunting the activation of NF-κB, and restoring endothelial barrier integrity. Pretreatment of HPAEC with BiP siRNA inhibited thrombin-induced IκBα degradation and its resulting downstream signaling pathway involving NF-κB nuclear translocation, DNA binding, phosphorylation at serine536, transcriptional activation and subsequent expression of adhesion molecules. However, TNFα-mediated NF-κB signaling was unaffected upon BiP knockdown. In an alternative approach, SubAB-mediated inactivation of NF-κB was independent of IκBα degradation. Mechanistic analysis revealed that pretreatment of EC with SubAB interfered with the binding of the liberated NF-κB to the DNA, thereby resulting in reduced expression of adhesion molecules, cytokines and chemokines. In addition, both knockdown and inactivation of BiP stimulated actin cytoskeletal reorganization resulting in restoration of endothelial permeability. Together our studies indicate that BiP plays a central role in EC inflammation and injury via its action on NF-κB activation and regulation of vascular permeability. PMID:25356743
Preconditioning with endoplasmic reticulum stress ameliorates endothelial cell inflammation.
Leonard, Antony; Paton, Adrienne W; El-Quadi, Monaliza; Paton, James C; Fazal, Fabeha
2014-01-01
Endoplasmic Reticulum (ER) stress, caused by disturbance in ER homeostasis, has been implicated in several pathological conditions such as ischemic injury, neurodegenerative disorders, metabolic diseases and more recently in inflammatory conditions. Our present study aims at understanding the role of ER stress in endothelial cell (EC) inflammation, a critical event in the pathogenesis of acute lung injury (ALI). We found that preconditioning human pulmonary artery endothelial cells (HPAEC) to ER stress either by depleting ER chaperone and signaling regulator BiP using siRNA, or specifically cleaving (inactivating) BiP using subtilase cytotoxin (SubAB), alleviates EC inflammation. The two approaches adopted to abrogate BiP function induced ATF4 protein expression and the phosphorylation of eIF2α, both markers of ER stress, which in turn resulted in blunting the activation of NF-κB, and restoring endothelial barrier integrity. Pretreatment of HPAEC with BiP siRNA inhibited thrombin-induced IκBα degradation and its resulting downstream signaling pathway involving NF-κB nuclear translocation, DNA binding, phosphorylation at serine536, transcriptional activation and subsequent expression of adhesion molecules. However, TNFα-mediated NF-κB signaling was unaffected upon BiP knockdown. In an alternative approach, SubAB-mediated inactivation of NF-κB was independent of IκBα degradation. Mechanistic analysis revealed that pretreatment of EC with SubAB interfered with the binding of the liberated NF-κB to the DNA, thereby resulting in reduced expression of adhesion molecules, cytokines and chemokines. In addition, both knockdown and inactivation of BiP stimulated actin cytoskeletal reorganization resulting in restoration of endothelial permeability. Together our studies indicate that BiP plays a central role in EC inflammation and injury via its action on NF-κB activation and regulation of vascular permeability.
Regulation of Endothelial Cell Inflammation and Lung PMN Infiltration by Transglutaminase 2
Bijli, Kaiser M.; Kanter, Bryce G.; Minhajuddin, Mohammad; Leonard, Antony; Xu, Lei; Fazal, Fabeha; Rahman, Arshad
2014-01-01
We addressed the role of transglutaminase2 (TG2), a calcium-dependent enzyme that catalyzes crosslinking of proteins, in the mechanism of endothelial cell (EC) inflammation and lung PMN infiltration. Exposure of EC to thrombin, a procoagulant and proinflammatory mediator, resulted in activation of the transcription factor NF-κB and its target genes, VCAM-1, MCP-1, and IL-6. RNAi knockdown of TG2 inhibited these responses. Analysis of NF-κB activation pathway showed that TG2 knockdown was associated with inhibition of thrombin-induced DNA binding as well as serine phosphorylation of RelA/p65, a crucial event that controls transcriptional capacity of the DNA-bound RelA/p65. These results implicate an important role for TG2 in mediating EC inflammation by promoting DNA binding and transcriptional activity of RelA/p65. Because thrombin is released in high amounts during sepsis and its concentration is elevated in plasma and lavage fluids of patients with Acute Respiratory Distress Syndrome (ARDS), we determined the in vivo relevance of TG2 in a mouse model of sepsis-induced lung PMN recruitment. A marked reduction in NF-κB activation, adhesion molecule expression, and lung PMN sequestration was observed in TG2 knockout mice compared to wild type mice exposed to endotoxemia. Together, these results identify TG2 as an important mediator of EC inflammation and lung PMN sequestration associated with intravascular coagulation and sepsis. PMID:25057925
Ohmura, Tomomi; Tian, Yufeng; Sarich, Nicolene; Ke, Yunbo; Meliton, Angelo; Shah, Alok S.; Andreasson, Katrin; Birukov, Konstantin G.; Birukova, Anna A.
2017-01-01
The role of prostaglandin A2 (PGA2) in modulation of vascular endothelial function is unknown. We investigated effects of PGA2 on pulmonary endothelial cell (EC) permeability and inflammatory activation and identified a receptor mediating these effects. PGA2 enhanced the EC barrier and protected against barrier dysfunction caused by vasoactive peptide thrombin and proinflammatory bacterial wall lipopolysaccharide (LPS). Receptor screening using pharmacological and molecular inhibitory approaches identified EP4 as a novel PGA2 receptor. EP4 mediated barrier-protective effects of PGA2 by activating Rap1/Rac1 GTPase and protein kinase A targets at cell adhesions and cytoskeleton: VE-cadherin, p120-catenin, ZO-1, cortactin, and VASP. PGA2 also suppressed LPS-induced inflammatory signaling by inhibiting the NFκB pathway and expression of EC adhesion molecules ICAM1 and VCAM1. These effects were abolished by pharmacological or molecular inhibition of EP4. In vivo, PGA2 was protective in two distinct models of acute lung injury (ALI): LPS-induced inflammatory injury and two-hit ALI caused by suboptimal mechanical ventilation and injection of thrombin receptor–activating peptide. These protective effects were abolished in mice with endothelial-specific EP4 knockout. The results suggest a novel role for the PGA2–EP4 axis in vascular EC protection that is critical for improvement of pathological states associated with increased vascular leakage and inflammation. PMID:28428256
Lenna, Stefania; Townsend, Danyelle M.; Tan, Filemon K.; Kapanadze, Bagrat; Markiewicz, Malgorzata; Trojanowska, Maria; Scorza, Raffaella
2013-01-01
The presence of the HLA-B35 allele has emerged as an important risk factor for the development of isolated pulmonary hypertension in patients with scleroderma, however the mechanisms underlying this association have not been fully elucidated. The goal of our study was to determine the molecular mechanisms that mediate the biological effects of HLA-B35 in endothelial cells (ECs). Our data demonstrate that HLA-B35 expression at physiological levels via adenoviral vector resulted in significantly increased endothelin-1 (ET-1) and a significantly decreased endothelial NO synthase (eNOS), mRNA, and protein levels. Furthermore, HLA-B35 greatly upregulated expression of chaperones, including heat shock proteins (HSPs) HSP70 (HSPA1A and HSPA1B) and HSP40 (DNAJB1 and DNAJB9), suggesting that HLA-B35 induces the endoplasmic reticulum (ER) stress and unfolded protein response in ECs. Examination of selected mediators of the unfolded protein response, including H chain binding protein (BiP; GRP78), C/Ebp homologous protein (CHOP; GADD153), endoplasmic reticulum oxidase, and protein disulfide isomerase has revealed a consistent increase of BiP expression levels. Accordingly, thapsigargin, a known ER stress inducer, stimulated ET-1mRNAand protein levels in ECs. This study suggests that HLA-B35 could contribute to EC dysfunction via ER stress-mediated induction of ET-1 in patients with pulmonary hypertension. PMID:20335527
Lenna, Stefania; Townsend, Danyelle M; Tan, Filemon K; Kapanadze, Bagrat; Markiewicz, Malgorzata; Trojanowska, Maria; Scorza, Raffaella
2010-05-01
The presence of the HLA-B35 allele has emerged as an important risk factor for the development of isolated pulmonary hypertension in patients with scleroderma, however the mechanisms underlying this association have not been fully elucidated. The goal of our study was to determine the molecular mechanisms that mediate the biological effects of HLA-B35 in endothelial cells (ECs). Our data demonstrate that HLA-B35 expression at physiological levels via adenoviral vector resulted in significantly increased endothelin-1 (ET-1) and a significantly decreased endothelial NO synthase (eNOS), mRNA, and protein levels. Furthermore, HLA-B35 greatly upregulated expression of chaperones, including heat shock proteins (HSPs) HSP70 (HSPA1A and HSPA1B) and HSP40 (DNAJB1 and DNAJB9), suggesting that HLA-B35 induces the endoplasmic reticulum (ER) stress and unfolded protein response in ECs. Examination of selected mediators of the unfolded protein response, including H chain binding protein (BiP; GRP78), C/Ebp homologous protein (CHOP; GADD153), endoplasmic reticulum oxidase, and protein disulfide isomerase has revealed a consistent increase of BiP expression levels. Accordingly, thapsigargin, a known ER stress inducer, stimulated ET-1 mRNA and protein levels in ECs. This study suggests that HLA-B35 could contribute to EC dysfunction via ER stress-mediated induction of ET-1 in patients with pulmonary hypertension.
Yoon, Young-sup; Wecker, Andrea; Heyd, Lindsay; Park, Jong-Seon; Tkebuchava, Tengiz; Kusano, Kengo; Hanley, Allison; Scadova, Heather; Qin, Gangjian; Cha, Dong-Hyun; Johnson, Kirby L.; Aikawa, Ryuichi; Asahara, Takayuki; Losordo, Douglas W.
2005-01-01
We have identified a subpopulation of stem cells within adult human BM, isolated at the single-cell level, that self-renew without loss of multipotency for more than 140 population doublings and exhibit the capacity for differentiation into cells of all 3 germ layers. Based on surface marker expression, these clonally expanded human BM-derived multipotent stem cells (hBMSCs) do not appear to belong to any previously described BM-derived stem cell population. Intramyocardial transplantation of hBMSCs after myocardial infarction resulted in robust engraftment of transplanted cells, which exhibited colocalization with markers of cardiomyocyte (CMC), EC, and smooth muscle cell (SMC) identity, consistent with differentiation of hBMSCs into multiple lineages in vivo. Furthermore, upregulation of paracrine factors including angiogenic cytokines and antiapoptotic factors, and proliferation of host ECs and CMCs, were observed in the hBMSC-transplanted hearts. Coculture of hBMSCs with CMCs, ECs, or SMCs revealed that phenotypic changes of hBMSCs result from both differentiation and fusion. Collectively, the favorable effect of hBMSC transplantation after myocardial infarction appears to be due to augmentation of proliferation and preservation of host myocardial tissues as well as differentiation of hBMSCs for tissue regeneration and repair. To our knowledge, this is the first demonstration that a specific population of multipotent human BM-derived stem cells can induce both therapeutic neovascularization and endogenous and exogenous cardiomyogenesis. PMID:15690083
Zhao, Kai; Yang, Shang-You; Geng, Jun; Gong, Xuan; Gong, Weiming; Shen, Lin; Ning, Bin
2018-06-01
Investigate whether rAAV-anginex gene therapy combined with radiotherapy could decrease growth and pulmonary metastasis of osteosarcoma in mice and examine the mechanisms involved in this therapeutic strategy. During in vitro experiment, multiple treatment regimes (rAAV-eGFP, radiotherapy, rAAV-anginex, combination therapy) were applied to determine effects on proliferation of endothelial cells (ECs) and G-292 osteosarcoma cells. During in vivo analysis, the same multiple treatment regimes were applied to osteosarcoma tumor-bearing mice. Use microcomputed tomography to evaluate tumor size. Eight weeks after tumor cell inoculation, immunohistochemistry was used to assess the therapeutic efficacy according to microvessel density (MVD), proliferating cell nuclear antigen (PCNA), and terminal-deoxynucleotidyl transferase-mediated nick-end labeling (TUNEL) assays. Metastasis of lungs was also evaluated by measuring number of metastatic nodules and wet weight of metastases. The proliferation of ECs and the tumor volumes in combination therapy group were inhibited more effectively than the other three groups at end point (P < 0.05). Cell clone assay showed anginex had radiosensitization effect on ECs. Immunohistochemistry showed tumors from mice treated with combination therapy exhibited the lowest MVD and proliferation rate, with highest apoptosis rate, as confirmed by IHC staining for CD34 and PCNA and TUNEL assays (P < 0.05). Combination therapy also induced the fewest metastatic nodules and lowest wet weights of the lungs (P < 0.05). rAAV-anginex combined with radiotherapy induced apoptosis of osteosarcoma cells and inhibited tumor growth and pulmonary metastasis on the experimental osteosarcoma models. We conclude that the primary mechanism of this process may be due to sensitizing effect of anginex to radiotherapy. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Delneste, Y; Jeannin, P; Gosset, P; Lassalle, P; Cardot, E; Tillie-Leblond, I; Joseph, M; Pestel, J; Tonnel, A B
1995-01-01
Adhesion of inflammatory cells to endothelium is a critical step for their transvascular migration to inflammatory sites. To evaluate the relationship between T lymphocytes (TL) and vascular endothelium, supernatants from allergen-stimulated TL obtained from patients sensitive to Dermatophagoides pteronyssinus (Dpt) versus healthy subjects were added to endothelial cell (EC) cultures. TL were stimulated by autologous-activated antigen-presenting cells (APC) previously fixed in paraformaldehyde to prevent monokine secretion. Two parameters were measured: the expression of adhesion molecule and the production of IL-6. Related allergen-stimulated TL supernatants from allergic patients induced an increase of VCAM-1 and intercellular adhesion molecule-1 (ICAM-1) expression when supernatants of the control groups (TL exposed to an unrelated allergen or not stimulated or TL obtained from healthy subjects) did not. E-selectin expression was not modulated whatever the supernatant added to EC culture. IL-6 production by EC was significantly enhanced after activation with related allergen-stimulated TL supernatants from allergics compared with control supernatants. Induction of VCAM-1 expression was inhibited by adding neutralizing antibodies against IL-4, whereas IL-6 production and ICAM-1 expression were inhibited by anti-interferon-gamma (IFN-gamma) antibodies. Enhanced production of IL-4 and IFN-gamma was detected in related allergen-stimulated TL supernatants from allergic subjects compared with the different supernatants. These data suggest that allergen-specific TL present in the peripheral blood of allergic patients are of Th1 and Th2 subtypes. Their stimulation in allergic patients may lead to the activation of endothelial cells and thereby participate in leucocyte recruitment towards the inflammatory site. PMID:7542574
Joddar, Binata; Kumar, Shweta Anil; Kumar, Alok
2018-06-01
Adult stem cells such as mesenchymal stem cells (MSC) are known to possess the ability to augment neovascularization processes and are thus widely popular as an autologous source of progenitor cells. However there is a huge gap in our current knowledge of mechanisms involved in differentiating MSC into endothelial cells (EC), essential for lining engineered blood vessels. To fill up this gap, we attempted to differentiate human MSC into EC, by culturing the former onto chemically fixed layers of EC or its ECM, respectively. We expected direct contact of MSC when cultured atop fixed EC or its ECM, would coax the former to differentiate into EC. Results showed that human MSC cultured atop chemically fixed EC or its ECM using EC-medium showed enhanced expression of CD31, a marker for EC, compared to other cases. Further in all human MSC cultured using EC-medium, typically characteristic cobble stone shaped morphologies were noted in comparison to cells cultured using MSC medium, implying that the differentiated cells were sensitive to soluble VEGF supplementation present in the EC-medium. Results will enhance and affect therapies utilizing autologous MSC as a cell source for generating vascular cells to be used in a variety of tissue engineering applications.
Raghunath, Shobana; Pudupakam, Raghavendra Sumanth; Allen, Adria; Biswas, Moanaro; Sriranganathan, Nammalwar
2017-10-20
Oncolytic virotherapy is a promising novel approach that overcomes the limitations posed by radiation and chemotherapy. In this study, the oncolytic efficacy of a recombinant Newcastle disease virus (rNDV) BC-KLQL-GFP, against prostate cancer stem-like/tumor initiating cells was evaluated. Xenograft derived prostaspheres (XPS) induced tumor more efficiently than monolayer cell derived prostaspheres (MCPS) in nude mice. Primary and secondary XPS show enhanced self-renewal and clonogenic potential compared to MCPS. XPS also expressed embryonic stem cell markers, such as Nanog, CD44 and Nestin. Further, prostate specific antigen (PSA) activated recombinant Newcastle Disease Virus (rNDV) was selectively cytotoxic to tumor derived DU145 prostaspheres. An effective concentration (EC 50 ) of 0.11-0.14 multiplicity of infection was sufficient to cause prostasphere cell death in serum free culture. DU145 tumor xenograft derived prostaspheres were used as tumor surrogates as they were enriched for a putative tumor initiating cell population. PSA activated rNDV was efficient in inducing cell death of cells and prostaspheres derived from primary xenografts ex-vivo, thus signifying a potential in vivo efficacy. The EC 50 (∼0.1 MOI) for cytolysis of tumor initiating cells was slightly higher than that was required for the parental cell line, but within the therapeutic margin for safety and efficacy. Copyright © 2017 Elsevier B.V. All rights reserved.
2011-01-01
Introduction Systemic sclerosis (SSc) is characterized by fibrosis and microvascular abnormalities including dysregulated angiogenesis. Chemokines, in addition to their chemoattractant properties, have the ability to modulate angiogenesis. Chemokines lacking the enzyme-linked receptor (ELR) motif, such as monokine induced by interferon-γ (IFN-γ) (MIG/CXCL9) and IFN-inducible protein 10 (IP-10/CXCL10), inhibit angiogenesis by binding CXCR3. In addition, CXCL16 promotes angiogenesis by binding its unique receptor CXCR6. In this study, we determined the expression of these chemokines and receptors in SSc skin and serum. Methods Immunohistology and enzyme-linked immunosorbent assays (ELISAs) were used to determine chemokine and chemokine receptor expression in the skin and serum, respectively, of SSc and normal patients. Endothelial cells (ECs) were isolated from SSc skin biopsies and chemokine and chemokine receptor expression was determined by quantitative PCR and immunofluorescence staining. Results Antiangiogenic IP-10/CXCL10 and MIG/CXCL9 were elevated in SSc serum and highly expressed in SSc skin. However, CXCR3, the receptor for these chemokines, was decreased on ECs in SSc vs. normal skin. CXCL16 was elevated in SSc serum and increased in SSc patients with early disease, pulmonary arterial hypertension, and those that died during the 36 months of the study. In addition, its receptor CXCR6 was overexpressed on ECs in SSc skin. At the mRNA and protein levels, CXCR3 was decreased while CXCR6 was increased on SSc ECs vs. human microvascular endothelial cells (HMVECs). Conclusions These results show that while the expression of MIG/CXCL9 and IP-10/CXCL10 are elevated in SSc serum, the expression of CXCR3 is downregulated on SSc dermal ECs. In contrast, CXCL16 and CXCR6 are elevated in SSc serum and on SSc dermal ECs, respectively. In all, these findings suggest angiogenic chemokine receptor expression is likely regulated in an effort to promote angiogenesis in SSc skin. PMID:21303517
Fürst, Robert; Zirrgiebel, Ute; Totzke, Frank; Zahler, Stefan; Vollmar, Angelika M; Koch, Egon
2010-08-01
Effective systemic drugs against restenosis upon percutaneous transluminal coronary angioplasty (PTCA) are largely lacking. Polyphenols have been suggested to ameliorate post-angioplasty restenosis. Hawthorn (Crataegus spp.) extracts, which are among the most frequently used herbal medicinal products against mild forms of congestive heart failure, contain polyphenols, but have not been investigated in this context. We aimed to assess the potential of the hawthorn extract WS 1442 to prevent balloon catheter-induced intimal hyperplasia and to elucidate the underlying mechanisms. We analyzed the effects of WS 1442 on serum-induced vascular smooth muscle cell (VSMC) and endothelial cell (EC) growth and migration, growth factor-induced proliferation, growth factor receptor activity, and neointima formation in the rat carotid artery model. WS 1442 (100 microg/ml) decreased VSMC migration by 38% and proliferation by 44%, whereas EC migration and proliferation were unaltered. The extract inhibited VSMC DNA synthesis induced by platelet-derived growth factor (PDGF) (IC(50): 47 microg/ml), but not that of basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF). Along this line, WS 1442 blocked recombinant human PDGF receptor (PDGFR)-beta kinase activity (IC(50): 1.4 microg/ml) and decreased PDGFR-beta activation and extracellular signal-regulated kinase (ERK) activation in VSMCs. In rats, orally administered WS 1442 significantly reduced neointima formation after balloon catheter dilatation of the carotid artery. WS 1442 inhibits migration and proliferation of VSMCs, but not of ECs, and reduces balloon catheter-evoked neointima formation probably through inhibition of PDGFR-beta. Thus, the present study suggests a novel adjunct pharmacological strategy to prevent angioplasty-related restenosis. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
Yang, Lingyun; Huang, Feng; Mei, Jiandong; Wang, Xun; Zhang, Qiuyang; Wang, Hongjing; Xi, Mingrong; You, Zongbing
2017-02-01
Estrogen is a well-known oncogenic driver in endometrial (ECs) and breast cancers (BCs). Programmed cell death protein 1 (PD-1) and its ligands PD-1 Ligand 1 (PD-L1) and PD-L2 have been shown to mediate immune evasion of the tumor cells. The purpose of the present study was to assess the effects of estrogen on PD-L1 and PD-L2 expression in EC and BC cell lines. 17β-Estradiol (E2)-induced expression of PD-L1 and PD-L2 and possible signaling pathway were investigated in EC and BC cells. Coculture of T cells and cancer cells with E2 stimulation was performed to assess the functions of T cells. We found that E2 increased expression of PD-L1, but not PD-L2, protein via activation of phosphoinositide 3-kinase (PI3K)/Akt pathway in Ishikawa and Michigan Cancer Foundation-7 (MCF-7) cells. Phosphoinositide 3-kinase and Akt inhibitors could block E2's effects. 17β-Estradiol did not increase PD-L1 mRNA transcription, but stabilized PD-L1 mRNA. 17β-Estradiol's effects were only observed in estrogen receptor α (ERα)-positive Ishikawa and MCF-7 cells, but not in ERα-negative MDA-MB-231 cells. Coculture of Ishikawa or MCF-7 cells with T cells inhibited expression of interferon-γ and interleukin-2 and increased BCL-2-interacting mediator of cell death expression in the presence of E2. This study provides the first evidence that estrogen upregulates PD-L1 protein expression in ERα-positive EC and BC cells to suppress immune functions of T cells in the tumor microenvironment, demonstrating a new mechanism of how estrogen drives cancer progression.
Chadburn, A; Hyjek, E M; Tam, W; Liu, Y; Rengifo, T; Cesarman, E; Knowles, D M
2008-11-01
Kaposi sarcoma herpesvirus (KSHV) is aetiologically related to Kaposi sarcoma, classical and extracavitary primary effusion lymphoma (PEL; EC-PEL) and multicentric Castleman disease (MCD), entities preferentially occurring in HIV-infected individuals. Characterization of HIV-associated PELs/EC-PELs suggests that the KSHV-infected malignant cells originate from a pre-terminal stage of B-cell differentiation. However, only limited phenotypic studies have been performed on HIV+ MCD, including for PR domain containing 1 with zinc finger domain/B lymphocyte-induced maturation protein 1 (PRDM1/BLIMP1), a key regulator of terminal B-cell differentiation. The aim was to characterize KSHV-infected cells in 17 cases of HIV+ MCD. Double immunohistochemistry and immunohistochemistry-in situ hybridization were used to characterize the KSHV-infected cells in MCD; the results were compared with the phenotypic profiles of 39 PELs/EC-PELs and seven PEL cell lines. Whereas the immunophenotype of KSHV-infected cells in MCD and malignant KSHV+ PEL cells was similar (PAX5, Bcl-6-; PRDM1/BLIMP1, IRF4/MUM1+; Ki67+), the MCD KSHV-infected cells differed, as they expressed OCT2, cytoplasmic lambda immunoglobulin; variably expressed CD27; lacked CD138; and were Epstein-Barr virus negative. Although both PEL and MCD originate from KSHV-infected pre-terminally differentiated B cells, these findings, with previously reported genetic studies, indicate HIV+ MCD may arise from extrafollicular B cells, whereas PELs may originate from cells that have traversed the germinal centre.
Kluckova, Katarina; Zobalova, Renata; Goodwin, Jacob; Tilly, David; Stursa, Jan; Pecinova, Alena; Philimonenko, Anatoly; Hozak, Pavel; Banerjee, Jaideep; Ledvina, Miroslav; Sen, Chandan K.; Houstek, Josef; Coster, Mark J.
2011-01-01
Abstract Aims A plausible strategy to reduce tumor progress is the inhibition of angiogenesis. Therefore, agents that efficiently suppress angiogenesis can be used for tumor suppression. We tested the antiangiogenic potential of a mitochondrially targeted analog of α-tocopheryl succinate (MitoVES), a compound with high propensity to induce apoptosis. Results MitoVES was found to efficiently kill proliferating endothelial cells (ECs) but not contact-arrested ECs or ECs deficient in mitochondrial DNA, and suppressed angiogenesis in vitro by inducing accumulation of reactive oxygen species and induction of apoptosis in proliferating/angiogenic ECs. Resistance of arrested ECs was ascribed, at least in part, to the lower mitochondrial inner transmembrane potential compared with the proliferating ECs, thus resulting in the lower level of mitochondrial uptake of MitoVES. Shorter-chain homologs of MitoVES were less efficient in angiogenesis inhibition, thus suggesting a molecular mechanism of its activity. Finally, MitoVES was found to suppress HER2-positive breast carcinomas in a transgenic mouse as well as inhibit tumor angiogenesis. The antiangiogenic efficacy of MitoVES was corroborated by its inhibitory activity on wound healing in vivo. Innovation and Conclusion We conclude that MitoVES, a mitochondrially targeted analog of α-tocopheryl succinate, is an efficient antiangiogenic agent of potential clinical relevance, exerting considerably higher activity than its untargeted counterpart. MitoVES may be helpful against cancer but may compromise wound healing. Antioxid. Redox Signal. 15, 2923–2935. PMID:21902599
Glisić, Radmila; Koko, Vesna; Todorović, Vera; Drndarević, Neda; Cvijić, Gordana
2006-09-11
The aim of our study was to investigate the morphological, immunohistochemical and ultrastructural changes of rat serotonin-producing enterochromaffin (EC) cells of gastrointestinal mucosa in dexamethasone-treated rats (D). After 12-daily intraperitoneal administration of 2 mg/kg dexamethasone, rats developed diabetes similar to human diabetes type 2. Stomach, small and large intestines were examined. Large serotonin positive EC cells appeared in the corpus mucosa epithelium of D group of rats, although these cells were not present in control (C) rats. Both volume fraction and the number of EC cells per mm(2) of mucosa were significantly increased only in the duodenum. However, the number of EC cells per circular sections of both antrum and small intestine was increased, but reduced both in the ascending and descending colon in D group. The dexamethasone treatment caused a strong reduction in number of granules in the antral EC cells, while it was gradually increased beginning from the jejunum to descending colon. The mean granular content was reduced in the antral EC cells but increased in the jejunal EC cells in D group. In conclusion, the present study showed that morphological changes in gut serotonin-producing EC cells occurred in diabetic rats.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukuda, Kazuki; Matsumura, Takeshi, E-mail: takeshim@gpo.kumamoto-u.ac.jp; Senokuchi, Takafumi
Highlights: • Statins induce PPARγ activation in vascular smooth muscle cells. • Statin-induced PPARγ activation is mediated by COX-2 expression. • Statins suppress cell migration and proliferation in vascular smooth muscle cells. • Statins inhibit LPS-induced inflammatory responses by PPARγ activation. • Fluvastatin suppress the progression of atherosclerosis and induces PPARγ activation in the aorta of apoE-deficient mice. - Abstract: The peroxisome proliferator-activated receptor-γ (PPARγ) is an important regulator of lipid and glucose metabolism, and its activation is reported to suppress the progression of atherosclerosis. We have reported that 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) activate PPARγ in macrophages. However,more » it is not yet known whether statins activate PPARγ in other vascular cells. In the present study, we investigated whether statins activate PPARγ in smooth muscle cells (SMCs) and endothelial cells (ECs) and thus mediate anti-atherosclerotic effects. Human aortic SMCs (HASMCs) and human umbilical vein ECs (HUVECs) were used in this study. Fluvastatin and pitavastatin activated PPARγ in HASMCs, but not in HUVECs. Statins induced cyclooxygenase-2 (COX-2) expression in HASMCs, but not in HUVECs. Moreover, treatment with COX-2-siRNA abrogated statin-mediated PPARγ activation in HASMCs. Statins suppressed migration and proliferation of HASMCs, and inhibited lipopolysaccharide-induced expression of monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-α (TNF-α) in HASMCs. These effects of statins were abrogated by treatment with PPARγ-siRNA. Treatment with statins suppressed atherosclerotic lesion formation in Apoe{sup −/−} mice. In addition, transcriptional activity of PPARγ and CD36 expression were increased, and the expression of MCP-1 and TNF-α was decreased, in the aorta of statin-treated Apoe{sup −/−} mice. In conclusion, statins mediate anti-atherogenic effects through PPARγ activation in SMCs. These effects of statins on SMCs may be beneficial for the prevention of atherosclerosis.« less
Yang, Xiaoyu; Ji, Yinghua; Kang, Xiaochun; Chen, Meiling; Kou, Weizheng; Jin, Cailing; Lu, Ping
2016-02-01
Esophageal cancer is one of the leading causes of mortality worldwide. Although, surgery, radio- and chemotherapy are used to treat the disease, the identification of new drugs is crucial to increase the curative effect. The aim of the present study was to examine the chemotherapeutic sensitizing effect of nimotuzumab (h-R3) and cisplatin cytotoxic drugs cisplatin (DDP) and 5-fluorouracil (5-FU) on esophageal carcinoma cells with two different epidermal growth factor receptor (EGFR) expressions. The expression of EGFR was detected in the human EC1 or EC9706 esophageal squamous cell carcinoma cell line using immunohistochemistry. The inhibitory effect of DDP and 5-FU alone or combined with h-R3 on EC1 or EC9706 cell proliferation was detected using an MTT assay. Flow cytometry and the TUNEL assay were used to determine the effect of single or combined drug treatment on cell apoptosis. The results showed that the expression of EGFR was low in EC1 cells but high in EC9706 cells. The inhibitory effect of the single use of h-R3 on EC1 or EC9706 cell proliferation was decreased. The inhibitory effect between single use of h-R3 alone and combined use of the chemotherapy drugs showed no statistically significant difference (P>0.05) on the EC1 cell growth rate, but showed a statistically significant difference (a=0.05) on EC9706 cell growth rate. The results detected by flow cytometry and TUNEL assay showed that the difference between single use of h-R3 alone and the control group was statistically significant with regard to the EC1 apoptosis rate effect (P<0.05), but not statistically significant for EC9706 (P>0.05). However, statistically significant differences were identified in the apoptotic rate of EC9706 cells between the h-R3 combined chemotherapy group and single chemotherapy group (P<0.05), but not on in the EC1 chemotherapy group (P>0.05). In conclusion, the sensitization effect of h-R3 on chemotherapy drugs is associated with the expression level of EGFR in EC1 or EC9706 cells. The cell killing effect of the combined use of h-R3 with DDP and 5-FU showed no obvious synergistic effect compared to the single-drug group, but only an additive effect.
Mitra, Sumegha; Sammani, Saad; Wang, Ting; Boone, David L.; Meyer, Nuala J.; Dudek, Steven M.; Moreno-Vinasco, Liliana; Garcia, Joe G. N.
2011-01-01
Rationale: The stress-induced growth arrest and DNA damage–inducible α (GADD45a) gene is up-regulated by mechanical stress with GADD45a knockout (GADD45a−/−) mice demonstrating both increased susceptibility to ventilator-induced lung injury (VILI) and reduced levels of the cell survival and vascular permeability signaling effector (Akt). However, the functional role of GADD45a in the pathogenesis of VILI is unknown. Objectives: We sought to define the role of GADD45a in the regulation of Akt activation induced by mechanical stress. Methods: VILI-challenged GADD45a−/− mice were administered a constitutively active Akt1 vector and injury was assessed by bronchoalveolar lavage cell counts and protein levels. Human pulmonary artery endothelial cells (EC) were exposed to 18% cyclic stretch (CS) under conditions of GADD45a silencing and used for immunoprecipitation, Western blotting or immunofluoresence. EC were also transfected with mutant ubiquitin vectors to characterize site-specific Akt ubiquitination. DNA methylation was measured using methyl-specific polymerase chain reaction assay. Measurements and Main Results: Studies exploring the linkage of GADD45a with mechanical stress and Akt regulation revealed VILI-challenged GADD45a−/− mice to have significantly reduced lung injury on overexpression of Akt1 transgene. Increased mechanical stress with 18% CS in EC induced Akt phosphorylation via E3 ligase tumor necrosis factor receptor–associated factor 6 (TRAF6)–mediated Akt K63 ubiquitination resulting in Akt trafficking and activation at the membrane. GADD45a is essential to this process because GADD45a-silenced endothelial cells and GADD45a−/− mice exhibited increased Akt K48 ubiquitination leading to proteasomal degradation. These events involve loss of ubiquitin carboxyl terminal hydrolase 1 (UCHL1), a deubiquitinating enzyme that normally removes K48 polyubiquitin chains bound to Akt thus promoting Akt K63 ubiquitination. Loss of GADD45a significantly reduces UCHL1 expression via UCHL1 promoter methylation resulting in increased Akt K48 ubiquitination and reduced Akt levels. Conclusions: These studies highlight a novel role for GADD45a in the regulation of site-specific Akt ubiquitination and activation and implicate a significant functional role for GADD45a in the clinical predisposition to VILI. PMID:21816939
Rapamycin-treated human endothelial cells preferentially activate allogeneic regulatory T cells
Wang, Chen; Yi, Tai; Qin, Lingfeng; Maldonado, Roberto A.; von Andrian, Ulrich H.; Kulkarni, Sanjay; Tellides, George; Pober, Jordan S.
2013-01-01
Human graft endothelial cells (ECs) can act as antigen-presenting cells to initiate allograft rejection by host memory T cells. Rapamycin, an mTOR inhibitor used clinically to suppress T cell responses, also acts on DCs, rendering them tolerogenic. Here, we report the effects of rapamycin on EC alloimmunogenicity. Compared with mock-treated cells, rapamycin-pretreated human ECs (rapa-ECs) stimulated less proliferation and cytokine secretion from allogeneic CD4+ memory cells, an effect mimicked by shRNA knockdown of mTOR or raptor in ECs. The effects of rapamycin persisted for several days and were linked to upregulation of the inhibitory molecules PD-L1 and PD-L2 on rapa-ECs. Additionally, rapa-ECs produced lower levels of the inflammatory cytokine IL-6. CD4+ memory cells activated by allogeneic rapa-ECs became hyporesponsive to restimulation in an alloantigen-specific manner and contained higher percentages of suppressive CD4+CD25hiCD127loFoxP3+ cells that did not produce effector cytokines. In a human-mouse chimeric model of allograft rejection, rapamycin pretreatment of human arterial allografts increased graft EC expression of PD-L1 and PD-L2 and reduced subsequent infiltration of allogeneic effector T cells into the artery intima and intimal expansion. Preoperative conditioning of allograft ECs with rapamycin could potentially reduce immune-mediated rejection. PMID:23478407
Ekambaram, Padmini; Narayanan, Meenakshi; Parasuraman, Parimala
2017-02-15
The brain requires constant oxygen supply to perform its biological functions essential for survival. Because of low oxygen capacity and poor oxygen diffusibility of water, many fish species have evolved various adaptive mechanisms to cope with depleted oxygen. Endothelial cells (EC) are the primary components responsible for controlled environment of brain. Brain homeostasis largely depends on integrity of the EC. To elucidate their adaptive strategy, EC were isolated from the fish brain of Kovalam-control site and Ennore estuary-test/field hypoxic site and were subjected to low oxygen tension in laboratory. Cell viability, 4-hydroxynonenal (4HNE) and total antioxidant capacity (TAC) were analyzed to ascertain stress. Hypoxic insult, cytoprotective role of HSPs and apoptotic effect were analyzed by assessing hypoxia-inducible-factor-α (HIF1α), heat-shock-protein-70 (HSP70), heme-oxygenase 1 (HO-1), and apoptosis signal regulating kinase-1 (ASK1). This study evidenced that HSP70 and HO-1 are the key stress proteins, confer high tolerance to decreased oxygen tension mediated stress. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nolan, Daniel J.; Ginsberg, Michael; Israely, Edo; Palikuqi, Brisa; Poulos, Michael G.; James, Daylon; Ding, Bi-Sen; Schachterle, William; Liu, Ying; Rosenwaks, Zev; Butler, Jason M.; Xiang, Jenny; Rafii, Arash; Shido, Koji; Rabbany, Sina Y.; Elemento, Olivier; Rafii, Shahin
2013-01-01
SUMMARY Microvascular endothelial cells (ECs) within different tissues are endowed with distinct but as yet unrecognized structural, phenotypic, and functional attributes. We devised EC purification, cultivation, profiling, and transplantation models that establish tissue-specific molecular libraries of ECs devoid of lymphatic ECs or parenchymal cells. These libraries identify attributes that confer ECs with their organotypic features. We show that clusters of transcription factors, angiocrine growth factors, adhesion molecules, and chemokines are expressed in unique combinations by ECs of each organ. Furthermore, ECs respond distinctly in tissue regeneration models, hepatectomy, and myeloablation. To test the data set, we developed a transplantation model that employs generic ECs differentiated from embryonic stem cells. Transplanted generic ECs engraft into regenerating tissues and acquire features of organotypic ECs. Collectively, we demonstrate the utility of informational databases of ECs toward uncovering the extravascular and intrinsic signals that define EC heterogeneity. These factors could be exploited therapeutically to engineer tissue-specific ECs for regeneration. PMID:23871589
Dae Seok Na; Lee, Hwang; Sun Uk Kim; Chang Nam Hwang; Sang Ho Lee; Ji Yoon Kang; Jai Kyeong Kim; James Jungho Pak
2008-07-01
Various materials including glass and polymers have been widely used for stem cell culture due to their biocompatibility. However, the roles of these materials are fundamentally limited because they cannot realize or imitate the complex biological functions of living tissues, except in very simple cases. Here, the development of a bio-derived material suitable for stem cell culture and improvement of differentiation efficiency to specific cell lineages with no stimulating agents by using a chorion obtained from a fertilized zebrafish egg through the removal of the yolk and embryonic cell mass from the egg is reported. Mouse P19 EC stem cells introduced into the empty chorion form a uniform embryoid body (EB) without addition of any inducing agent. It is demonstrated that the zebrafish chorion with nanopores improves efficiencies greatly in the EB formation, cell proliferation, and lineage-specific differentiations compared to those of the conventional hanging drop culture method.
Manrique, Camila; Lastra, Guido; Ramirez-Perez, Francisco I; Haertling, Dominic; DeMarco, Vincent G; Aroor, Annayya R; Jia, Guanghong; Chen, Dongqing; Barron, Brady J; Garro, Mona; Padilla, Jaume; Martinez-Lemus, Luis A; Sowers, James R
2016-04-01
Consumption of a diet high in fat and refined carbohydrates (Western diet [WD]) is associated with obesity and insulin resistance, both major risk factors for cardiovascular disease (CVD). In women, obesity and insulin resistance abrogate the protection against CVD likely afforded by estrogen signaling through estrogen receptor (ER)α. Indeed, WD in females results in increased vascular stiffness, which is independently associated with CVD. We tested the hypothesis that loss of ERα signaling in the endothelium exacerbates WD-induced vascular stiffening in female mice. We used a novel model of endothelial cell (EC)-specific ERα knockout (EC-ERαKO), obtained after sequential crossing of the ERα double floxed mice and VE-Cadherin Cre-recombinase mice. Ten-week-old females, EC-ERαKO and aged-matched genopairs were fed either a regular chow diet (control diet) or WD for 8 weeks. Vascular stiffness was measured in vivo by pulse wave velocity and ex vivo in aortic explants by atomic force microscopy. In addition, vascular reactivity was assessed in isolated aortic rings. Initial characterization of the model fed a control diet did not reveal changes in whole-body insulin sensitivity, aortic vasoreactivity, or vascular stiffness in the EC-ERαKO mice. Interestingly, ablation of ERα in ECs reduced WD-induced vascular stiffness and improved endothelial-dependent dilation. In the setting of a WD, endothelial ERα signaling contributes to vascular stiffening in females. The precise mechanisms underlying the detrimental effects of endothelial ERα in the setting of a WD remain to be elucidated.
Lefranc, G; Chung, Y T; Barrière, P; Pradal, G
1980-01-01
The thiocarbohydrazide-silver proteinate (TCH SP) method was applied to the study of cat, rabbit and mouse gastric mucosa endocrine cells. After 24-h treatment with thiocarbohydrazide (TCH), glycogen was seen in the hyaloplasm of X, D, P, A and O cells but not in EC, EC-like or D1 cells. With flotation times as short as 30 to 40 min glycogen was readily detected in X cells. Secretory granules of EC cells were constantly stained, while those of D1 cells failed to react. In most experiments granules of X, A and O cells showed peripheral "staining", while in others staining of variable intensity affected the entire granular cross-section in X, D and P cells. With 72-h exposure to TCH, EC and EC-like cells showed particles resembling glycogen, even staining or only peripheral staining of certain EC cell granules. From the results of this and previous studies, EC cell staining is believed to be due wholly or partly, according to exposure times, to the action of silver proteinate, while that of certain non-EC cells is probably a specific indicator of complexed carbohydrates.
Prokaryotic RNA Associated to Bacterial Viability Induces Polymorphonuclear Neutrophil Activation.
Rodriguez-Rodrigues, Nahuel; Castillo, Luis A; Landoni, Verónica I; Martire-Greco, Daiana; Milillo, M Ayelén; Barrionuevo, Paula; Fernández, Gabriela C
2017-01-01
Polymorphonuclear neutrophils (PMN) are the first cellular line of antibacterial host defense. They sense pathogens through recognition of pathogen-associated molecular patterns (PAMPs) by innate pattern recognition receptors, such as Toll-like receptors (TLR). The aim of this study was to investigate whether PMN sense bacterial viability and explore which viability factor could be involved in this phenomenon. For this purpose, different functions were evaluated in isolated human PMN using live Escherichia coli (Ec) and heat-killed Ec (HK-Ec). We found that bacterial viability was indispensable to induce PMN activation, as measured by forward-scatter (FSC) increase, CD11b surface expression, chemotaxis, reactive oxygen species (ROS) generation and neutrophil extracellular trap (NET) formation. As uncapped non-polyadenylated prokaryotic mRNA has been recognized as a PAMP associated to bacterial viability by macrophages and dendritic cells, total prokaryotic RNA (pRNA) from live Ec was purified and used as a stimulus for PMN. pRNA triggered similar responses to those observed with live bacteria. No RNA could be isolated from HK-Ec, explaining the lack of effect of dead bacteria. Moreover, the supernatant of dead bacteria was able to induce PMN activation, and this was associated with the presence of pRNA in this supernatant, which is released in the killing process. The induction of bactericidal functions (ROS and NETosis) by pRNA were abolished when the supernatant of dead bacteria or isolated pRNA were treated with RNAse. Moreover, endocytosis was necessary for pRNA-induced ROS generation and NETosis, and priming was required for the induction of pRNA-induced ROS in whole blood. However, responses related to movement and degranulation (FSC increase, CD11b up-regulation, and chemotaxis) were still triggered when pRNA was digested with RNase, and were not dependent on pRNA endocytosis or PMN priming. In conclusion, our results indicate that PMN sense live bacteria through recognition of pRNA, and this sensing triggers potent bactericidal mechanisms.
Prokaryotic RNA Associated to Bacterial Viability Induces Polymorphonuclear Neutrophil Activation
Rodriguez-Rodrigues, Nahuel; Castillo, Luis A.; Landoni, Verónica I.; Martire-Greco, Daiana; Milillo, M. Ayelén; Barrionuevo, Paula; Fernández, Gabriela C.
2017-01-01
Polymorphonuclear neutrophils (PMN) are the first cellular line of antibacterial host defense. They sense pathogens through recognition of pathogen-associated molecular patterns (PAMPs) by innate pattern recognition receptors, such as Toll-like receptors (TLR). The aim of this study was to investigate whether PMN sense bacterial viability and explore which viability factor could be involved in this phenomenon. For this purpose, different functions were evaluated in isolated human PMN using live Escherichia coli (Ec) and heat-killed Ec (HK-Ec). We found that bacterial viability was indispensable to induce PMN activation, as measured by forward-scatter (FSC) increase, CD11b surface expression, chemotaxis, reactive oxygen species (ROS) generation and neutrophil extracellular trap (NET) formation. As uncapped non-polyadenylated prokaryotic mRNA has been recognized as a PAMP associated to bacterial viability by macrophages and dendritic cells, total prokaryotic RNA (pRNA) from live Ec was purified and used as a stimulus for PMN. pRNA triggered similar responses to those observed with live bacteria. No RNA could be isolated from HK-Ec, explaining the lack of effect of dead bacteria. Moreover, the supernatant of dead bacteria was able to induce PMN activation, and this was associated with the presence of pRNA in this supernatant, which is released in the killing process. The induction of bactericidal functions (ROS and NETosis) by pRNA were abolished when the supernatant of dead bacteria or isolated pRNA were treated with RNAse. Moreover, endocytosis was necessary for pRNA-induced ROS generation and NETosis, and priming was required for the induction of pRNA-induced ROS in whole blood. However, responses related to movement and degranulation (FSC increase, CD11b up-regulation, and chemotaxis) were still triggered when pRNA was digested with RNase, and were not dependent on pRNA endocytosis or PMN priming. In conclusion, our results indicate that PMN sense live bacteria through recognition of pRNA, and this sensing triggers potent bactericidal mechanisms. PMID:28730145
Petrova, Yuliya I.; Spano, MarthaJoy M.; Gumbiner, Barry M.
2012-01-01
We investigated changes in cadherin structure at the cell surface that regulate its adhesive activity. Colo 205 cells are nonadhesive cells with a full but inactive complement of E-cadherin–catenin complexes at the cell surface, but they can be triggered to adhere and form monolayers. We were able to distinguish the inactive and active states of E-cadherin at the cell surface by using a special set of monoclonal antibodies (mAbs). Another set of mAbs binds E-cadherin and strongly activates adhesion. In other epithelial cell types these activating mAbs inhibit growth factor–induced down-regulation of adhesion and epithelial morphogenesis, indicating that these phenomena are also controlled by E-cadherin activity at the cell surface. Both types of mAbs recognize conformational epitopes at different interfaces between extracellular cadherin repeat domains (ECs), especially near calcium-binding sites. Activation also induces p120-catenin dephosphorylation, as well as changes in the cadherin cytoplasmic domain. Moreover, phospho-site mutations indicate that dephosphorylation of specific Ser/Thr residues in the N-terminal domain of p120-catenin mediate adhesion activation. Thus physiological regulation of the adhesive state of E-cadherin involves physical and/or conformational changes in the EC interface regions of the ectodomain at the cell surface that are mediated by catenin-associated changes across the membrane. PMID:22513089
Li, Jintao; Khodahemmati, Sara; Wang, Minglian; Wang, Yangjunqi; Zhao, Lijiao; Jia, Runqing; Chen, Su
2018-01-01
Objective The incidence of the upper gastrointestinal tumor has increased rapidly during recent decades. The relationship between local water pollution and the tumor is still not much clear, so this study was conducted to further investigate the local water pollution and its influence on the malignant cell transformation. Prevalence of human papillomavirus (HPV) in local esophageal cancer (EC) patients was also analyzed in Shenqiu County for the first time. Methods Two-step cell transformation was used to study different sources of water in the malignant cell transformation, and the existence of 3-methylcholanthrene (3-MC) in water was analyzed from the river and shallow and deep wells. HPV DNA in tissue samples of EC patients was detected by polymerase chain reaction (PCR) and HPV diagnostic kit. Results The river water has higher cytotoxicity than the shallow well water and induced significant cell malignant transformation, while deep well water has not shown the malignant cell transformation. In Huaihe River water, the 3-MC concentration was found higher than shallow and deep wells. An HPV infection rate was found high in patients with esophageal cancer. Conclusion Long-term consumption of polluted water can induce malignant cell transformation, and the presence of HPV may be an important cause of cancer. PMID:29853858
Physiological cyclic strain promotes endothelial cell survival via the induction of heme oxygenase-1
Liu, Xiao-ming; Peyton, Kelly J.
2013-01-01
Endothelial cells (ECs) are constantly subjected to cyclic strain that arises from periodic change in vessel wall diameter as a result of pulsatile blood flow. Application of physiological levels of cyclic strain inhibits EC apoptosis; however, the underlying mechanism is not known. Since heme oxygenase-1 (HO-1) is a potent inhibitor of apoptosis, the present study investigated whether HO-1 contributes to the antiapoptotic action of cyclic strain. Administration of physiological cyclic strain (6% at 1 Hz) to human aortic ECs stimulated an increase in HO-1 activity, protein, and mRNA expression. The induction of HO-1 was preceded by a rise in reactive oxygen species (ROS) and Nrf2 protein expression. Cyclic strain also stimulated an increase in HO-1 promoter activity that was prevented by mutating the antioxidant responsive element in the promoter or by overexpressing dominant-negative Nrf2. In addition, the strain-mediated induction of HO-1 and activation of Nrf2 was abolished by the antioxidant N-acetyl-l-cysteine. Finally, application of cyclic strain blocked inflammatory cytokine-mediated EC death and apoptosis. However, the protective action of cyclic strain was reversed by the HO inhibitor tin protoporphyrin-IX and was absent in ECs isolated from HO-1-deficient mice. In conclusion, the present study demonstrates that a hemodynamically relevant level of cyclic strain stimulates HO-1 gene expression in ECs via the ROS-Nrf2 signaling pathway to inhibit EC death. The ability of cyclic strain to induce HO-1 expression may provide an important mechanism by which hemodynamic forces promote EC survival and vascular homeostasis. PMID:23604711
Yoshizumi, Masanori; Abe, Jun-Ichi; Tsuchiya, Koichiro; Berk, Bradford C; Tamaki, Toshiaki
2003-03-01
Atherosclerosis preferentially occurs in areas of turbulent blood flow and low fluid shear stress, whereas laminar blood flow and high shear stress are atheroprotective. Inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-alpha), stimulate expression of endothelial cell (EC) genes that may promote atherosclerosis. Recent findings suggest a steady laminar blood flow decreases EC apoptosis and inhibits TNF-mediated EC activation. EC apoptosis or activation is suggested to be involved in plaque erosion, which may lead to platelet aggregation. TNF-alpha regulates gene expression in ECs, in part, by stimulating mitogen-activated protein (MAP) kinases, which phosphorylate transcription factors. We hypothesized that steady laminar flow inhibits cytokine-mediated activation of MAP kinases in ECs. To test this hypothesis, we determined the effects of steady laminar flow (shear stress = 12 dynes/cm(2)) on TNF-alpha-stimulated activity of three MAP kinases in human umbilical vein ECs (HUVEC): extracellular signal-regulated kinase (ERK1/2), c-Jun N-terminal kinase (JNK), and p38. TNF-alpha activated ERK1/2, JNK, and p38 maximally at 15 min in HUVEC. Pre-exposing HUVEC for 10 min to flow inhibited TNF-alpha activation of JNK, but showed no significant effect on ERK1/2 or p38 activation. Incubation of HUVEC with PD98059, a specific ERK1/2 inhibitor, blocked the flow-mediated inhibition of TNF activation of JNK. Transfection studies with dominant-negative constructs of the protein kinase MEK5 suggested an important role for big mitogen-activated protein kinase 1 (BMK1) in flow-mediated regulation of EC activation by TNF-alpha. Understanding the mechanisms by which steady laminar flow regulates JNK activation by cytokines may provide insight into the atheroprotective mechanisms induced by laminar blood flow.
Jones, Charles I; Han, Zhaosheng; Presley, Tennille; Varadharaj, Saradhadevi; Zweier, Jay L; Ilangovan, Govindasamy; Alevriadou, B Rita
2008-07-01
Cultured vascular endothelial cell (EC) exposure to steady laminar shear stress results in peroxynitrite (ONOO(-)) formation intramitochondrially and inactivation of the electron transport chain. We examined whether the "hyperoxic state" of 21% O(2), compared with more physiological O(2) tensions (Po(2)), increases the shear-induced nitric oxide (NO) synthesis and mitochondrial superoxide (O(2)(*-)) generation leading to ONOO(-) formation and suppression of respiration. Electron paramagnetic resonance oximetry was used to measure O(2) consumption rates of bovine aortic ECs sheared (10 dyn/cm(2), 30 min) at 5%, 10%, or 21% O(2) or left static at 5% or 21% O(2). Respiration was inhibited to a greater extent when ECs were sheared at 21% O(2) than at lower Po(2) or left static at different Po(2). Flow in the presence of an endothelial NO synthase (eNOS) inhibitor or a ONOO(-) scavenger abolished the inhibitory effect. EC transfection with an adenovirus that expresses manganese superoxide dismutase in mitochondria, and not a control virus, blocked the inhibitory effect. Intracellular and mitochondrial O(2)(*-) production was higher in ECs sheared at 21% than at 5% O(2), as determined by dihydroethidium and MitoSOX red fluorescence, respectively, and the latter was, at least in part, NO-dependent. Accumulation of NO metabolites in media of ECs sheared at 21% O(2) was modestly increased compared with ECs sheared at lower Po(2), suggesting that eNOS activity may be higher at 21% O(2). Hence, the hyperoxia of in vitro EC flow studies, via increased NO and mitochondrial O(2)(*-) production, leads to enhanced ONOO(-) formation intramitochondrially and suppression of respiration.
Lira-Albarrán, Saúl; Larrea-Schiavon, Marco F; González, Leticia; Durand, Marta; Rangel, Claudia; Larrea, Fernando
2017-01-05
Levonorgestrel (LNG), a synthetic progestin, is used in emergency contraception (EC). The mechanism is preventing or delaying ovulation at the level of the hypothalamic pituitary unit; however, little knowledge exists on LNG effects at the ovary. The aim of this study was to identify the effects of LNG on FSH-induced 17β-estradiol (E 2 ) production, including LNG-mediated changes on global gene expression in rat granulosa cells (GC). Isolated GC from female Wistar rats were incubated in vitro in the presence or absence of human FSH and progestins. At the end of incubations, culture media and cells were collected for E 2 and mRNA quantitation. The results showed the ability of LNG to inhibit both hFSH-induced E 2 production and aromatase gene expression. Microarray analysis revealed that LNG treatment affects GC functionality particularly that related to folliculogenesis and steroid metabolism. These results may offer additional evidence for the mechanisms of action of LNG as EC. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Endothelial microparticles reduce ICAM-1 expression in a microRNA-222-dependent mechanism
Jansen, Felix; Yang, Xiaoyan; Baumann, Katharina; Przybilla, David; Schmitz, Theresa; Flender, Anna; Paul, Kathrin; Alhusseiny, Adil; Nickenig, Georg; Werner, Nikos
2015-01-01
Endothelial microparticles (EMP) are released from activated or apoptotic endothelial cells (ECs) and can be taken up by adjacent ECs, but their effect on vascular inflammation after engulfment is largely unknown. We sought to determine the role of EMP in EC inflammation. In vitro, EMP treatment significantly reduced tumour necrosis factor-α-induced endothelial intercellular adhesion molecule (ICAM)-1 expression on mRNA and protein level, whereas there was no effect on vascular cell adhesion molecule-1 expression. Reduced ICAM-1 expression after EMP treatment resulted in diminished monocyte adhesion in vitro. In vivo, systemic treatment of ApoE−/− mice with EMP significantly reduced murine endothelial ICAM-1 expression. To explore the underlying mechanisms, Taqman microRNA array was performed and microRNA (miR)-222 was identified as the strongest regulated miR between EMP and ECs. Following experiments demonstrated that miR-222 was transported into recipient ECs by EMP and functionally regulated expression of its target protein ICAM-1 in vitro and in vivo. After simulating diabetic conditions, EMP derived from glucose-treated ECs contained significantly lower amounts of miR-222 and showed reduced anti-inflammatory capacity in vitro and in vivo. Finally, circulating miR-222 level was diminished in patients with coronary artery disease (CAD) compared to patients without CAD. EMPs promote anti-inflammatory effects in vitro and in vivo by reducing endothelial ICAM-1 expression via the transfer of functional miR-222 into recipient cells. In pathological hyperglycaemic conditions, EMP-mediated miR-222-dependent anti-inflammatory effects are reduced. PMID:26081516
Endothelial microparticles reduce ICAM-1 expression in a microRNA-222-dependent mechanism.
Jansen, Felix; Yang, Xiaoyan; Baumann, Katharina; Przybilla, David; Schmitz, Theresa; Flender, Anna; Paul, Kathrin; Alhusseiny, Adil; Nickenig, Georg; Werner, Nikos
2015-09-01
Endothelial microparticles (EMP) are released from activated or apoptotic endothelial cells (ECs) and can be taken up by adjacent ECs, but their effect on vascular inflammation after engulfment is largely unknown. We sought to determine the role of EMP in EC inflammation. In vitro, EMP treatment significantly reduced tumour necrosis factor-α-induced endothelial intercellular adhesion molecule (ICAM)-1 expression on mRNA and protein level, whereas there was no effect on vascular cell adhesion molecule-1 expression. Reduced ICAM-1 expression after EMP treatment resulted in diminished monocyte adhesion in vitro. In vivo, systemic treatment of ApoE-/- mice with EMP significantly reduced murine endothelial ICAM-1 expression. To explore the underlying mechanisms, Taqman microRNA array was performed and microRNA (miR)-222 was identified as the strongest regulated miR between EMP and ECs. Following experiments demonstrated that miR-222 was transported into recipient ECs by EMP and functionally regulated expression of its target protein ICAM-1 in vitro and in vivo. After simulating diabetic conditions, EMP derived from glucose-treated ECs contained significantly lower amounts of miR-222 and showed reduced anti-inflammatory capacity in vitro and in vivo. Finally, circulating miR-222 level was diminished in patients with coronary artery disease (CAD) compared to patients without CAD. EMPs promote anti-inflammatory effects in vitro and in vivo by reducing endothelial ICAM-1 expression via the transfer of functional miR-222 into recipient cells. In pathological hyperglycaemic conditions, EMP-mediated miR-222-dependent anti-inflammatory effects are reduced. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Croom, Edward L.; Shafer, Timothy J.; Evans, Marina V.
Approaches for extrapolating in vitro toxicity testing results for prediction of human in vivo outcomes are needed. The purpose of this case study was to employ in vitro toxicokinetics and PBPK modeling to perform in vitro to in vivo extrapolation (IVIVE) of lindane neurotoxicity. Lindane cell and media concentrations in vitro, together with in vitro concentration-response data for lindane effects on neuronal network firing rates, were compared to in vivo data and model simulations as an exercise in extrapolation for chemical-induced neurotoxicity in rodents and humans. Time- and concentration-dependent lindane dosimetry was determined in primary cultures of rat cortical neuronsmore » in vitro using “faux” (without electrodes) microelectrode arrays (MEAs). In vivo data were derived from literature values, and physiologically based pharmacokinetic (PBPK) modeling was used to extrapolate from rat to human. The previously determined EC{sub 50} for increased firing rates in primary cultures of cortical neurons was 0.6 μg/ml. Media and cell lindane concentrations at the EC{sub 50} were 0.4 μg/ml and 7.1 μg/ml, respectively, and cellular lindane accumulation was time- and concentration-dependent. Rat blood and brain lindane levels during seizures were 1.7–1.9 μg/ml and 5–11 μg/ml, respectively. Brain lindane levels associated with seizures in rats and those predicted for humans (average = 7 μg/ml) by PBPK modeling were very similar to in vitro concentrations detected in cortical cells at the EC{sub 50} dose. PBPK model predictions matched literature data and timing. These findings indicate that in vitro MEA results are predictive of in vivo responses to lindane and demonstrate a successful modeling approach for IVIVE of rat and human neurotoxicity. - Highlights: • In vitro to in vivo extrapolation for lindane neurotoxicity was performed. • Dosimetry of lindane in a micro-electrode array (MEA) test system was assessed. • Cell concentrations at the MEA EC{sub 50} equaled rat brain levels associated with seizure. • PBPK-predicted human brain levels at seizure also equaled EC{sub 50} cell concentrations. • In vitro MEA results are predictive of lindane in vivo dose–response in rats/humans.« less
Garonna, Elena; Botham, Kathleen M.; Birdsey, Graeme M.; Randi, Anna M.; Gonzalez-Perez, Ruben R.; Wheeler-Jones, Caroline P. D.
2011-01-01
Background The adipocyte-derived hormone leptin influences the behaviour of a wide range of cell types and is now recognised as a pro-angiogenic and pro-inflammatory factor. In the vasculature, these effects are mediated in part through its direct leptin receptor (ObRb)-driven actions on endothelial cells (ECs) but the mechanisms responsible for these activities have not been established. In this study we sought to more fully define the molecular links between inflammatory and angiogenic responses of leptin-stimulated human ECs. Methodology/Principal Findings Immunoblotting studies showed that leptin increased cyclo-oxygenase-2 (COX-2) expression (but not COX-1) in cultured human umbilical vein ECs (HUVEC) through pathways that depend upon activation of both p38 mitogen-activated protein kinase (p38MAPK) and Akt, and stimulated rapid phosphorylation of vascular endothelial growth factor receptor 2 (VEGFR2) on Tyr1175. Phosphorylation of VEGFR2, p38MAPK and Akt, and COX-2 induction in cells challenged with leptin were blocked by a specific leptin peptide receptor antagonist. Pharmacological inhibitors of COX-2, the phosphatidylinositol 3-kinase (PI3K)/Akt pathway and p38MAPK abrogated leptin-induced EC proliferation (assessed by quantifying 5-bromo-2′-deoxyuridine incorporation, calcein fluorescence and propidium iodide staining), slowed the increased migration rate of leptin-stimulated cells (in vitro wound healing assay) and inhibited leptin-induced capillary-like tube formation by HUVEC on Matrigel. Inhibition of VEGFR2 tyrosine kinase activity reduced leptin-stimulated p38MAPK and Akt activation, COX-2 induction, and pro-angiogenic EC responses, and blockade of VEGFR2 or COX-2 activities abolished leptin-driven neo-angiogenesis in a chick chorioallantoic membrane vascularisation assay in vivo. Conclusions/Significance We conclude that a functional endothelial p38MAPK/Akt/COX-2 signalling axis is required for leptin's pro-angiogenic actions and that this is regulated upstream by ObRb-dependent activation of VEGFR2. These studies identify a new function for VEGFR2 as a mediator of leptin-stimulated COX-2 expression and angiogenesis and have implications for understanding leptin's regulation of the vasculature in both non-obese and obese individuals. PMID:21533119
Han, Yue; Wang, Lu; Yao, Qing-Ping; Zhang, Ping; Liu, Bo; Wang, Guo-Liang; Shen, Bao-Rong; Cheng, Binbin; Wang, Yingxiao; Jiang, Zong-Lai; Qi, Ying-Xin
2015-05-01
The dysfunction of vascular endothelial cells (ECs) influenced by flow shear stress is crucial for vascular remodeling. However, the roles of nuclear envelope (NE) proteins in shear stress-induced EC dysfunction are still unknown. Our results indicated that, compared with normal shear stress (NSS), low shear stress (LowSS) suppressed the expression of two types of NE proteins, Nesprin2 and LaminA, and increased the proliferation and apoptosis of ECs. Targeted small interfering RNA (siRNA) and gene overexpression plasmid transfection revealed that Nesprin2 and LaminA participate in the regulation of EC proliferation and apoptosis. A protein/DNA array was further used to detect the activation of transcription factors in ECs following transfection with target siRNAs and overexpression plasmids. The regulation of AP-2 and TFIID mediated by Nesprin2 and the activation of Stat-1, Stat-3, Stat-5 and Stat-6 by LaminA were verified under shear stress. Furthermore, using Ingenuity Pathway Analysis software and real-time RT-PCR, the effects of Nesprin2 or LaminA on the downstream target genes of AP-2, TFIID, and Stat-1, Stat-3, Stat-5 and Stat-6, respectively, were investigated under LowSS. Our study has revealed that NE proteins are novel mechano-sensitive molecules in ECs. LowSS suppresses the expression of Nesprin2 and LaminA, which may subsequently modulate the activation of important transcription factors and eventually lead to EC dysfunction. Copyright © 2015 Elsevier B.V. All rights reserved.
CTP synthase 1, a smooth muscle-sensitive therapeutic target for effective vascular repair
Tang, Rui; Cui, Xiao-Bing; Wang, Jia-Ning; Chen, Shi-You
2013-01-01
Objective Vascular remodeling due to smooth muscle cell (SMC) proliferation and neointima formation is a major medical challenge in cardiovascular intervention. However, anti-neointima drugs often indistinguishably block re-endothelialization, an essential step toward successful vascular repair, due to their non-specific effect on endothelial cells (EC). The objective of this study was to identify a therapeutic target that differentially regulates SMC and EC proliferation. Approach and Results By using both rat balloon-injury and mouse wire-injury models, we identified CTP synthase (CTPS) as one of the potential targets that may be used for developing therapeutics for treating neointima-related disorders. CTPS1 was induced in proliferative SMCs in vitro and neointima SMCs in vivo. Blockade of CTPS1 expression by small hairpin RNA or activity by cyclopentenyl cytosine suppressed SMC proliferation and neointima formation. Surprisingly, cyclopentenyl cytosine had much less effect on EC proliferation. Of importance, blockade of CTPS1 in vivo sustained the re-endothelialization due to induction of CTP synthesis salvage pathway enzymes nucleoside diphosphate kinase A and B in ECs. Diphosphate kinase B appeared to preserve EC proliferation via utilization of extracellular cytidine to synthesize CTP. Indeed, blockade of both CTPS1 and diphosphate kinase B suppressed EC proliferation in vitro and the re-endothelization in vivo. Conclusions Our study uncovered a fundamental difference in CTP biosynthesis between SMCs and ECs during vascular remodeling, which provided a novel strategy by using cyclopentenyl cytosine or other CTPS1 inhibitors to selectively block SMC proliferation without disturbing or even promoting re-endothelialization for effective vascular repair following injury. PMID:24008161
Casey, Darren P; Ueda, Kenichi; Wegman-Points, Lauren; Pierce, Gary L
2017-10-01
We determined if local increases in brachial artery shear during repetitive muscle contractions induce changes in protein expression of endothelial nitric oxide synthase (eNOS) and/or phosphorylated (p-)eNOS at Ser 1177 , the primary activation site on eNOS, in endothelial cells (ECs) of humans. Seven young male subjects (25 ± 1 yr) performed 20 separate bouts (3 min each) of rhythmic forearm exercise at 20% of maximum over a 2-h period. Each bout of exercise was separated by 3 min of rest. An additional six male subjects (24 ± 1 yr) served as time controls (no exercise). ECs were freshly isolated from the brachial artery using sterile J-wires through an arterial catheter at baseline and again after the 2-h exercise or time control period. Expression of eNOS or p-eNOS Ser 1177 in ECs was determined via immunofluorescence. Brachial artery mean shear rate was elevated compared with baseline and the time control group throughout the 2-h exercise protocol ( P < 0.001). p-eNOS Ser 1177 expression was increased 57% in ECs in the exercise group [0.06 ± 0.01 vs. 0.10 ± 0.02 arbitrary units (au), P = 0.02] but not in the time control group (0.08 ± 0.01 vs. 0.07 ± 0.01 au, P = 0.72). In contrast, total eNOS expression did not change in either the exercise (0.13 ± 0.04 vs. 0.12 ± 0.03 au) or time control (0.12 ± 0.03 vs. 0.11 ± 0.03 au) group ( P > 0.05 for both). Our novel results suggest that elevations in brachial artery shear increase eNOS Ser 1177 phosphorylation in the absence of changes in total eNOS in ECs of young healthy male subjects, suggesting that this model is sufficient to alter posttranslational modification of eNOS activity in vivo in humans. NEW & NOTEWORTHY Elevations in brachial artery shear in response to forearm exercise increased endothelial nitric oxide synthase Ser 1177 phosphorylation in brachial artery endothelial cells of healthy humans. Our present study provides the first evidence in humans that muscle contraction-induced increases in conduit arterial shear lead to in vivo posttranslational modification of endothelial nitric oxide synthase activity in endothelial cells. Copyright © 2017 the American Physiological Society.
Clarkin, Claire E; King, Aileen J; Dhadda, Paramjeet; Chagastelles, Pedro; Nardi, Nance; Wheeler-Jones, Caroline P; Jones, Peter M
2013-03-01
Following islet transplantation, islet graft revascularization is compromised due to loss of endothelial cells (ECs) during islet culture. TGF-β signaling pathways are essential for vascular homeostasis but their importance for islet EC function is unclear. We have identified a population of multipotent mesenchymal stromal cells (MSCs) within islets and investigated how modulation of TGF-β signaling by these cells influences islet EC viability. Cultured islets exhibited reduced expression of EC markers (VEGFR2, VE-cadherin and CD31), which was associated with diminished but sustained expression of endoglin a marker of both ECs and MSCs. Double fluorescent labeling of islets in situ with the EC marker CD31 disclosed a population of CD31-negative cells which were positive for endoglin. In vitro coculture of microvascular ECs with endoglin-positive, CD31-negative islet MSCs reduced VEGFR2 protein expression, disrupted EC angiogenic behavior, and increased EC detachment. Medium conditioned by islet MSCs significantly decreased EC viability and increased EC caspase 3/7 activity. EC:MSC cocultures showed enhanced Smad2 phosphorylation consistent with altered ALK5 signaling. Pharmacological inhibition of ALK5 activity with SB431542 (SB) improved EC survival upon contact with MSCs, and SB-treated cultured islets retained EC marker expression and sensitivity to exogenous VEGF164 . Thus, endoglin-expressing islet MSCs influence EC ALK5 signaling in vitro, which decreases EC viability, and changes in ALK5 activity in whole cultured islets contribute to islet EC loss. Modifying TGF-β signaling may enable maintenance of islet ECs during islet isolation and thus improve islet graft revascularization post-transplantation. Copyright © 2013 AlphaMed Press.
Raghuvanshi, Ruma; Chaudhari, Archana; Kumar, G Naresh
2016-01-01
Antioxidants, chelating agents, and probiotics are used to manage the toxic effects of cadmium (Cd) and mercury (Hg). The aim of this study was to investigate the combined effects of antioxidants, chelating agents, and probiotics against heavy metal toxicity. Genetically modified probiotic Escherichia coli Nissle 1917 (EcN-20) producing a potent water soluble antioxidant pyrroloquinoline quinone (PQQ) was supplemented with oral citric acid and compared with another genetically modified probiotic EcN-21 producing PQQ and citric acid against oxidative stress induced by Cd and Hg. Rats were independently given 100 ppm Cd and 80 ppm Hg in drinking water for 4 wk. EcN-20 was found to be more effective than EcN-2 (EcN strain with genomic integration of vgb and gfp genes) with orally given PQQ against oxidative stress induced by Cd and Hg. EcN-20 supplemented with oral citric acid was more effective against Cd and Hg toxicity compared with EcN-2+citric acid (oral), EcN-2+PQQ (oral), EcN-2+PQQ (oral)+citric acid (oral), EcN-20, and EcN-21. However, protection shown by EcN-21 was similar to EcN-20. The combination therapy involving probiotic EcN-20 producing PQQ with citric acid given orally was found to be a moderately effective strategy against toxicity induced by Cd and Hg, whereas the protective effect of EcN-21 was the same as EcN-20. Copyright © 2016 Elsevier Inc. All rights reserved.
Suschek, Christoph; Kolb, Hubert; Kolb-Bachofen, Victoria
1997-01-01
Dobesilate is used for normalizing vascular dysfunction in a number of diseases. In search for an effect on endothelial NO production, macrovascular endothelial cells from rat aorta, microvascular endothelial cells from rat exocrine pancreatic tissue, and capillary endothelial cells from rat islets, were cultured in the presence or absence of Mg-Dobesilate. The activity of constitutive nitric oxide synthase (ecNOS) in resident cells as well as of inducible nitric oxide synthase (iNOS) in cytokine-activated cells was measured indirectly by recording the citrulline concentrations in culture supernatants.In each of the different endothelial cells Mg-Dobesilate incubation (0.25–1 mM) for 24 h led to a significant and concentration-dependent increase in ecNOS-activities. With cytokine-activated endothelial cell cultures only moderate effects were seen with little or no concentration-dependency. Addition of the NOS-inhibitor NG-monomethyl-L-arginine led to a significant suppression of citrulline formation in all cultures as an evidence for the enzyme specificity of these effects.iNOS- and ecNOS-specific reverse transcription and semi-quantitative polymerase chain reaction (RT–PCR) with RNA from resident or cytokine-activated endothelial cells gave no evidence for an increase in NOS-specific mRNA after Mg-Dobesilate-treatment. Furthermore, Dobesilate-mediated enhancement of NO synthesis in resting endothelial cells was not due to iNOS induction in these cells, as no iNOS-specific signal was found by RT–PCR. PMID:9421302
Inflammatory response and extracorporeal circulation.
Kraft, Florian; Schmidt, Christoph; Van Aken, Hugo; Zarbock, Alexander
2015-06-01
Patients undergoing cardiac surgery with extracorporeal circulation (EC) frequently develop a systemic inflammatory response syndrome. Surgical trauma, ischaemia-reperfusion injury, endotoxaemia and blood contact to nonendothelial circuit compounds promote the activation of coagulation pathways, complement factors and a cellular immune response. This review discusses the multiple pathways leading to endothelial cell activation, neutrophil recruitment and production of reactive oxygen species and nitric oxide. All these factors may induce cellular damage and subsequent organ injury. Multiple organ dysfunction after cardiac surgery with EC is associated with an increased morbidity and mortality. In addition to the pathogenesis of organ dysfunction after EC, this review deals with different therapeutic interventions aiming to alleviate the inflammatory response and consequently multiple organ dysfunction after cardiac surgery. Copyright © 2015 Elsevier Ltd. All rights reserved.
DPPIV promotes endometrial carcinoma cell proliferation, invasion and tumorigenesis
Yang, Xiaoqing; Zhang, Xinhua; Wu, Rongrong; Huang, Qicheng; Jiang, Yao; Qin, Jianbing; Yao, Feng; Jin, Guohua; Zhang, Yuquan
2017-01-01
Dipeptidyl peptidase IV (DPPIV), also known as CD26, is a 110-kDa cell surface glycoprotein expressed in various tissues. DPPIV reportedly plays a direct role in the progression of several human malignancies. DPPIV specific inhibitors are employed as antidiabetics and could potentially be repurposed to enhance anti-tumor immunotherapies. In the present study, we investigated the correlation between DPPIV expression and tumor progression in endometrial carcinoma (EC). DPPIV overexpression altered cell morphology and stimulated cell proliferation, invasion and tumorigenesis in vitro and in vivo. These effects were abrogated by DPPIV knockdown or pharmacological inhibition using sitagliptin. DPPIV overexpression increased hypoxia-inducible factor 1a (HIF-1a) and vascular endothelial growth factor A (VEGFA) expression to promote HIF-1a-VEGFA signaling. Our results indicated that DPPIV accelerated endometrial carcinoma progression and that sitagliptin may be an effective anti-EC therapeutic. PMID:28060721
DPPIV promotes endometrial carcinoma cell proliferation, invasion and tumorigenesis.
Yang, Xiaoqing; Zhang, Xinhua; Wu, Rongrong; Huang, Qicheng; Jiang, Yao; Qin, Jianbing; Yao, Feng; Jin, Guohua; Zhang, Yuquan
2017-01-31
Dipeptidyl peptidase IV (DPPIV), also known as CD26, is a 110-kDa cell surface glycoprotein expressed in various tissues. DPPIV reportedly plays a direct role in the progression of several human malignancies. DPPIV specific inhibitors are employed as antidiabetics and could potentially be repurposed to enhance anti-tumor immunotherapies. In the present study, we investigated the correlation between DPPIV expression and tumor progression in endometrial carcinoma (EC). DPPIV overexpression altered cell morphology and stimulated cell proliferation, invasion and tumorigenesis in vitro and in vivo. These effects were abrogated by DPPIV knockdown or pharmacological inhibition using sitagliptin. DPPIV overexpression increased hypoxia-inducible factor 1a (HIF-1a) and vascular endothelial growth factor A (VEGFA) expression to promote HIF-1a-VEGFA signaling. Our results indicated that DPPIV accelerated endometrial carcinoma progression and that sitagliptin may be an effective anti-EC therapeutic.
Wang, Ying; Chen, Jiarui; Tang, Weiqing; Zhang, Yanping; Li, Xiaoyan
2017-01-01
FABP4 is widely expressed in both normal and pathologic tissues. It promotes cell proliferation, survival and migration of endothelial cells, and therefore, angiogenesis. However, the role of FABP4 in hemangioma or hemangioma endothelial cells (HemECs) has not been explored. In this study, we investigated whether FABP4 directly regulates the proliferation of HemECs. The expression of cell cycle checkpoint genes was analyzed with the microarray data of human dermal microvascular endothelial cells (HDVECs) and infantile hemangioma endothelial cells. Real-time RT-PCR and western blotting were used to examine the expression of FABP4 in HemECs. Next, the FABP4 expression was inhibited in HemECs using siRNA or rapamycin and upregulated using retroviral transduction of HemECs to assess its influence on proliferation of HemECs. The microarray data showed that cell cycle checkpoint genes were upregulated in HemECs. Moreover, HemECs showed significantly higher proliferation rates than HDVECs. The expression of FABP4 and mTOR was increased in the HemECs. While FABP4 knockdown reduced the BrdU incorporation and cell number of HemECs as expected, cell proliferation was accelerated by FABP4 over-expression. Moreover, rapamycin (10nM) inhibited mTOR-FABP4 signaling and HemEC proliferation. Taken together, these results indicated that mTOR signaling pathway-activated FABP4 directly regulates the proliferation of endothelial cells in hemangioma. Rapamycin and inhibitors of FABP4 have therapeutic potential for treating infantile hemangiomas. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Scheidegger, F; Ellner, Y; Guye, P; Rhomberg, T A; Weber, H; Augustin, H G; Dehio, C
2009-07-01
The zoonotic pathogen Bartonella henselae (Bh) can lead to vasoproliferative tumour lesions in the skin and inner organs known as bacillary angiomatosis and bacillary peliosis. The knowledge on the molecular and cellular mechanisms involved in this pathogen-triggered angiogenic process is confined by the lack of a suitable animal model and a physiologically relevant cell culture model of angiogenesis. Here we employed a three-dimensional in vitro angiogenesis assay of collagen gel-embedded endothelial cell (EC) spheroids to study the angiogenic properties of Bh. Spheroids generated from Bh-infected ECs displayed a high capacity to form sprouts, which represent capillary-like projections into the collagen gel. The VirB/VirD4 type IV secretion system and a subset of its translocated Bartonella effector proteins (Beps) were found to profoundly modulate this Bh-induced sprouting activity. BepA, known to protect ECs from apoptosis, strongly promoted sprout formation. In contrast, BepG, triggering cytoskeletal rearrangements, potently inhibited sprouting. Hence, the here established in vitro model of Bartonella- induced angiogenesis revealed distinct and opposing activities of type IV secretion system effector proteins, which together with a VirB/VirD4-independent effect may control the angiogenic activity of Bh during chronic infection of the vasculature.
Cardiac Endothelial Cell Transcriptome.
Lother, Achim; Bergemann, Stella; Deng, Lisa; Moser, Martin; Bode, Christoph; Hein, Lutz
2018-03-01
Endothelial cells (ECs) are a highly specialized cell type with marked diversity between different organs or vascular beds. Cardiac ECs are an important player in cardiac physiology and pathophysiology but are not sufficiently characterized yet. Thus, the aim of the present study was to analyze the cardiac EC transcriptome. We applied fluorescence-assisted cell sorting to isolate pure ECs from adult mouse hearts. RNAseq revealed 1288 genes predominantly expressed in cardiac ECs versus heart tissue including several transcription factors. We found an overrepresentation of corresponding transcription factor binding motifs within the promotor region of EC-enriched genes, suggesting that they control the EC transcriptome. Cardiac ECs exhibit a distinct gene expression profile when compared with renal, cerebral, or pulmonary ECs. For example, we found the Meox2 / Tcf15, Fabp4 , and Cd36 signaling cascade higher expressed in cardiac ECs which is a key regulator of fatty acid uptake and involved in the development of atherosclerosis. The results from this study provide a comprehensive resource of gene expression and transcriptional control in cardiac ECs. The cardiac EC transcriptome exhibits distinct differences in gene expression compared with other cardiac cell types and ECs from other organs. We identified new candidate genes that have not been investigated in ECs yet as promising targets for future evaluation. © 2018 American Heart Association, Inc.
Quantitative phase imaging characterization of tumor-associated blood vessel formation on a chip
NASA Astrophysics Data System (ADS)
Guo, Peng; Huang, Jing; Moses, Marsha A.
2018-02-01
Angiogenesis, the formation of new blood vessels from existing ones, is a biological process that has an essential role in solid tumor growth, development, and progression. Recent advances in Lab-on-a-Chip technology has created an opportunity for scientists to observe endothelial cell (EC) behaviors during the dynamic process of angiogenesis using a simple and economical in vitro platform that recapitulates in vivo blood vessel formation. Here, we use quantitative phase imaging (QPI) microscopy to continuously and non-invasively characterize the dynamic process of tumor cell-induced angiogenic sprout formation on a microfluidic chip. The live tumor cell-induced angiogenic sprouts are generated by multicellular endothelial sprouting into 3 dimensional (3D) Matrigel using human umbilical vein endothelial cells (HUVECs). By using QPI, we quantitatively measure a panel of cellular morphological and behavioral parameters of each individual EC participating in this sprouting. In this proof-of-principle study, we demonstrate that QPI is a powerful tool that can provide real-time quantitative analysis of biological processes in in vitro 3D biomimetic devices, which, in turn, can improve our understanding of the biology underlying functional tissue engineering.
Zeppernick, Felix; Ardighieri, Laura; Hannibal, Charlotte G.; Vang, Russell; Junge, Jette; Kjaer, Susanne K.; Zhang, Rugang; Kurman, Robert J.; Shih, Ie-Ming
2014-01-01
Serous borderline tumor (SBT) also known as atypical proliferative serous tumor (APST) is the precursor of ovarian low-grade serous carcinoma (LGSC). In this study, we correlated the morphologic and immunohistochemical phenotypes of 71 APSTs and 18 LGSCs with the mutational status of KRAS and BRAF, the most common molecular genetic changes in these neoplasms. A subset of cells characterized by abundant eosinophilic cytoplasm (EC), discrete cell borders and bland nuclei was identified in all (100%) 25 BRAF mutated APSTs but in only 5 (10%) of 46 APSTs without BRAF mutations (p<0.0001). Among the 18 LGSCs, EC cells were found in only 2 and both contained BRAF mutations. The EC cells were present admixed with cuboidal and columnar cells lining the papillae and appeared to be budding from the surface, resulting in individual cells and clusters of detached cells “floating” above the papillae. Immunohistochemistry showed that the EC cells always expressed p16, a senescence-associated marker, and had a significantly lower Ki-67 labeling index than adjacent cuboidal and columnar cells (p=0.02). In vitro studies supported the interpretation that these cells were undergoing senescence as the same morphologic features could be reproduced in cultured epithelial cells by ectopic expression of BRAFV600E. Senescence was further established by markers such as SA-β-gal staining, expression of p16 and p21, and reduction in DNA synthesis. In conclusion, this study sheds light on the pathogenesis of this unique group of ovarian tumors by showing that BRAF mutation is associated with cellular senescence and the presence of a specific cell type characterized by abundant eosinophilic cytoplasm. This “oncogene-induced senescence” phenotype may represent a mechanism that prevents impedes progression of APSTs to LGSC. PMID:25188864
Wang, Yan-Yang; Zhou, Shun; Zhao, Ren; Hai, Ping; Zhe, Hong
2016-01-01
CDDO-Me has exhibited a potent anticancer effect in human esophageal squamous cell carcinoma (ESCC) cells in our previous study, but the molecular interactome remains elusive. We applied the approach of stable-isotope labeling by amino acids in cell culture (SILAC) to assess the proteomic responses of CDDO-Me treatment in human ESCC Ec109 cells. The data were subsequently validated using Western blot assay. The results of our study revealed that CDDO-Me increased the expression level of 543 protein molecules, but decreased the expression level of 709 protein molecules in Ec109 cells. Among these modulated protein molecules, calcium/calmodulin-dependent protein kinase type II subunit α (CaMKIIα) was highly expressed in all tested ESCC cell lines, whereas its expression levels were substantially lower in normal control cell line. Its silencing by small interfering RNA inhibited CDDO-Me induced apoptosis and autophagy in ESCC cells. Collectively, these data demonstrate that the therapeutic response of CDDO-Me in the human ESCC cells is mediated by CaMKIIα.
Raoufi-Rad, Newsha; McRobb, Lucinda S; Lee, Vivienne S; Bervini, David; Grace, Michael; Ukath, Jaysree; Mchattan, Joshua; Sreenivasan, Varun K A; Duong, T T Hong; Zhao, Zhenjun; Stoodley, Marcus A
2017-01-01
Focussed radiosurgery may provide a means of inducing molecular changes on the luminal surface of diseased endothelium to allow targeted delivery of novel therapeutic compounds. We investigated the potential of ionizing radiation to induce surface expression of intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) on endothelial cells (EC) in vitro and in vivo, to assess their suitability as vascular targets in irradiated arteriovenous malformations (AVMs). Cultured brain microvascular EC were irradiated by linear accelerator at single doses of 0, 5, 15 or 25 Gy and expression of ICAM-1 and VCAM-1 measured by qRT-PCR, Western, ELISA and immunocytochemistry. In vivo, near-infrared (NIR) fluorescence optical imaging using Xenolight 750-conjugated ICAM-1 or VCAM-1 antibodies examined luminal biodistribution over 84 days in a rat AVM model after Gamma Knife surgery at a single 15 Gy dose. ICAM-1 and VCAM-1 were minimally expressed on untreated EC in vitro. Doses of 15 and 25 Gy stimulated expression equally; 5 Gy was not different from the unirradiated. In vivo, normal vessels did not bind or retain the fluorescent probes, however binding was significant in AVM vessels. No additive increases in probe binding were found in response to radiosurgery at a dose of 15 Gy. In summary, radiation induces adhesion molecule expression in vitro but elevated baseline levels in AVM vessels precludes further induction in vivo. These molecules may be suitable targets in irradiated vessels without hemodynamic derangement, but not AVMs. These findings demonstrate the importance of using flow-modulated, pre-clinical animal models for validating candidate proteins for vascular targeting in irradiated AVMs.
Francischetti, Ivo M B; Oliveira, Carlo J; Ostera, Graciela R; Yager, Stephanie B; Debierre-Grockiego, Françoise; Carregaro, Vanessa; Jaramillo-Gutierrez, Giovanna; Hume, Jen C C; Jiang, Lubin; Moretz, Samuel E; Lin, Christina K; Ribeiro, José M C; Long, Carole A; Vickers, Brandi K; Schwarz, Ralph T; Seydel, Karl B; Iacobelli, Massimo; Ackerman, Hans C; Srinivasan, Prakash; Gomes, Regis B; Wang, Xunde; Monteiro, Robson Q; Kotsyfakis, Michail; Sá-Nunes, Anderson; Waisberg, Michael
2012-03-01
The coagulation-inflammation cycle has been implicated as a critical component in malaria pathogenesis. Defibrotide (DF), a mixture of DNA aptamers, displays anticoagulant, anti-inflammatory, and endothelial cell (EC)-protective activities and has been successfully used to treat comatose children with veno-occlusive disease. DF was investigated here as a drug to treat cerebral malaria. DF blocks tissue factor expression by ECs incubated with parasitized red blood cells and attenuates prothrombinase activity, platelet aggregation, and complement activation. In contrast, it does not affect nitric oxide bioavailability. We also demonstrated that Plasmodium falciparum glycosylphosphatidylinositol (Pf-GPI) induces tissue factor expression in ECs and cytokine production by dendritic cells. Notably, dendritic cells, known to modulate coagulation and inflammation systemically, were identified as a novel target for DF. Accordingly, DF inhibits Toll-like receptor ligand-dependent dendritic cells activation by a mechanism that is blocked by adenosine receptor antagonist (8-p-sulfophenyltheophylline) but not reproduced by synthetic poly-A, -C, -T, and -G. These results imply that aptameric sequences and adenosine receptor mediate dendritic cells responses to the drug. DF also prevents rosetting formation, red blood cells invasion by P. falciparum and abolishes oocysts development in Anopheles gambiae. In a murine model of cerebral malaria, DF affected parasitemia, decreased IFN-γ levels, and ameliorated clinical score (day 5) with a trend for increased survival. Therapeutic use of DF in malaria is proposed.
Patterning vascular networks in vivo for tissue engineering applications.
Chaturvedi, Ritika R; Stevens, Kelly R; Solorzano, Ricardo D; Schwartz, Robert E; Eyckmans, Jeroen; Baranski, Jan D; Stapleton, Sarah Chase; Bhatia, Sangeeta N; Chen, Christopher S
2015-05-01
The ultimate design of functionally therapeutic engineered tissues and organs will rely on our ability to engineer vasculature that can meet tissue-specific metabolic needs. We recently introduced an approach for patterning the formation of functional spatially organized vascular architectures within engineered tissues in vivo. Here, we now explore the design parameters of this approach and how they impact the vascularization of an engineered tissue construct after implantation. We used micropatterning techniques to organize endothelial cells (ECs) into geometrically defined "cords," which in turn acted as a template after implantation for the guided formation of patterned capillaries integrated with the host tissue. We demonstrated that the diameter of the cords before implantation impacts the location and density of the resultant capillary network. Inclusion of mural cells to the vascularization response appears primarily to impact the dynamics of vascularization. We established that clinically relevant endothelial sources such as induced pluripotent stem cell-derived ECs and human microvascular endothelial cells can drive vascularization within this system. Finally, we demonstrated the ability to control the juxtaposition of parenchyma with perfused vasculature by implanting cords containing a mixture of both a parenchymal cell type (hepatocytes) and ECs. These findings define important characteristics that will ultimately impact the design of vasculature structures that meet tissue-specific needs.
Palmieri, Daniela; Mura, Marzia; Mambrini, Simone; Palombo, Domenico
2015-09-01
One of the limitations emerged with both synthetic and degradable vascular grafts is the lack of endothelialization after implantation that is known to be the main reason leading to unfavourable outcomes. It emerges the need to find new strategies to promote a rapid endothelialization of the scaffold. Pleiotrophin is a growth/differentiation cytokine for various cell type. We here evaluated the effect of Pleiotrophin on endothelial cells (EC), monocytes and macrophages that have been shown as key cells promoting neovascularization. EA.hy926 endothelial cells, THP-1 monocytes and PMA-differentiated macrophages were treated with Pleiotrophin (10 and 100ng/ml). VEGF, Flk-1, Nrp-1, COX-2, ICAM-1 and TGFβ expression were detected by Western Blot, IL-10, MCP-1 and TNFα levels by ELISA. Chemotaxis was performed in Boyden chambers. Wound healing was performed by scratch wound assay. Pleiotrophin induces in EC the expression of VEGF and its receptors Flk-1 and Nrp-1 and improves the migratory capacity. In THP-1 monocytes, Pleiotrophin induces the expression of VEGF and its receptor Nrp-1 and decreases the levels of COX-2 and TNFα. In PMA-differentiated macrophages COX-2 expression was significantly reduced by Pleiotrophin, while IL-10 and TGFβ were increased. Pleiotrophin acts as an angiogenesis 'driver' by promoting the creation of a pro-angiogenic environment, a migratory behaviour in EC and a pro-regenerative alternative phenotype in macrophages. Our results suggest that Pleiotrophin might be considered for vascular prosthesis engineering. Copyright © 2015 Medical University of Bialystok. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Kokesová, A; Frolová, L; Kverka, M; Sokol, D; Rossmann, P; Bártová, J; Tlaskalová-Hogenová, H
2006-01-01
Our study examined whether repeated preventive oral administration of live probiotic bacterial strains Escherichia coli O83:K24:H31 (Ec O83), Escherichia coli Nissle 1917 O6:K5:H1 (Ec Nis) and Lactobacillus casei DN 114001 (Lc) can protect mice against dextran sodium sulfate (DSS)-induced colitis. A significant decrease in average symptom score was observed in Ec O83-, Ec Nis- and Lc-pretreated group (p < 0.05). Significant differences in body mass loss between Lc pretreated mice with DSS-induced colitis were found when compared with nontreated mice (p < 0.05). PBS pretreated mice had a significantly shorter colon than Ec O83-, Ec Nis- and Lc-pretreated mice (p < 0.05). Administration of Lc significantly decreased the severity of DSS induced histological marks of inflammation (p < 0.05). A significant difference (p < 0.05) was also found in specific IgA level against given probiotic in enteral fluid between colitic mice and healthy mice pretreated with Ec 083 and Ec Nis.
Wanjare, Maureen; Hou, Luqia; Nakayama, Karina H; Kim, Joseph J; Mezak, Nicholas P; Abilez, Oscar J; Tzatzalos, Evangeline; Wu, Joseph C; Huang, Ngan F
2017-07-25
Engineering of myocardial tissue constructs is a promising approach for treatment of coronary heart disease. To engineer myocardial tissues that better mimic the highly ordered physiological arrangement and function of native cardiomyocytes, we generated electrospun microfibrous polycaprolactone scaffolds with either randomly oriented (14 μm fiber diameter) or parallel-aligned (7 μm fiber diameter) microfiber arrangement and co-seeded the scaffolds with human induced pluripotent stem cell-derived cardiomyocytes (iCMs) and endothelial cells (iECs) for up to 12 days after iCM seeding. Here we demonstrated that aligned microfibrous scaffolds induced iCM alignment along the direction of the aligned microfibers after 2 days of iCM seeding, as well as promoted greater iCM maturation by increasing the sarcomeric length and gene expression of myosin heavy chain adult isoform (MYH7), in comparison to randomly oriented scaffolds. Furthermore, the benefit of scaffold anisotropy was evident in the significantly higher maximum contraction velocity of iCMs on the aligned scaffolds, compared to randomly oriented scaffolds, at 12 days of culture. Co-seeding of iCMs with iECs led to reduced contractility, compared to when iCMs were seeded alone. These findings demonstrate a dominant role of scaffold anisotropy in engineering cardiovascular tissues that maintain iCM organization and contractile function.
de Bragança, Ana C.; Moreau, Regina L. M.; de Brito, Thales; Shimizu, Maria H. M.; Canale, Daniele; de Jesus, Denise A.; Silva, Ana M. G.; Gois, Pedro H.; Seguro, Antonio C.
2017-01-01
Background Ecstasy (Ec) use produces hyperthermia, excessive sweating, intense thirst, an inappropriate antidiuretic hormone secretion (SIADH) and a multisystemic toxicity due to oxidative stress (OS). Intense thirst induces high intake of pure water, which associated with SIADH, usually develops into acute hyponatremia (Hn). As Hn is induced rapidly, experiments to check if Ec acted directly on the Inner Medullary Collecting Ducts (IMCD) of rats were conducted. Rhabdomyolysis and OS were also studied because Ec is known to induce Reactive Oxygen Species (ROS) and tissue damage. To decrease OS, the antioxidant inhibitors N-acetylcysteine (NAC) and Allopurinol (Allo) were used. Methods Rats were maintained on a lithium (Li) diet to block the Vasopressin action before Ec innoculation. AQP2 (Aquaporin 2), ENaC (Epitheliun Sodium Channel) and NKCC2 (Sodium, Potassium, 2 Chloride) expression were determined by Western Blot in isolated IMCDs. The TBARS (thiobarbituric acid reactive substances) and GSH (reduced form of Glutathione) were determined in the Ec group (6 rats injected with Ec-10mg/kg), in Ec+NAC groups (NAC 100mg/Kg/bw i.p.) and in Allo+Ec groups (Allo 50mg/Kg/i.p.). Results Enhanced AQP2 expression revealed that Ec increased water transporter expression, decreased by Li diet, but the expression of the tubular transporters did not change. The Ec, Ec+NAC and Allo+Ec results showed that Ec increased TBARS and decreased GSH, showing evidence of ROS occurrence, which was protected by NAC and Allo. Rhabdomyolysis was only protected by Allo. Conclusion Results showed that Ec induced an increase in AQP2 expression, evidencing another mechanism that might contribute to cause rapid hyponatremia. In addition, they showed that NAC and Allo protected against OS, but only Allo decreased rhabdomyolysis and hyperthermia. PMID:28678861
Israely, Edo; Ginsberg, Michael; Nolan, Daniel; Ding, Bi-Sen; James, Daylon; Elemento, Olivier; Rafii, Shahin; Rabbany, Sina Y
2016-01-01
The ability to generate and maintain stable in vitro cultures of mouse endothelial cells (EC) has great potential for genetic dissection of the numerous pathologies involving vascular dysfunction as well as therapeutic applications. However, previous efforts at achieving sustained cultures of primary stable murine vascular cells have fallen short, and the cellular requirements for EC maintenance in vitro remain undefined. In this study, we have generated vascular ECs from mouse embryonic stem (ES) cells, and show that active Akt is essential to their survival and propagation as homogeneous monolayers in vitro. These cells harbor the phenotypical, biochemical, and functional characteristics of ECs, and expand throughout long-term cultures, while maintaining their angiogenic capacity. Moreover, Akt-transduced embryonic ECs form functional perfused vessels in vivo that anastomose with host blood vessels. We provide evidence for a novel function of Akt in stabilizing EC identity, whereby the activated form of the protein protects mouse ES cell-derived ECs from TGFβ-mediated transdifferentiation by downregulating SMAD3. These findings identify a role for Akt in regulating the developmental potential of ES cell-derived ECs, and demonstrate that active Akt maintains endothelial identity in embryonic ECs by interfering with active TGFβ-mediated processes that would ordinarily usher these cells to alternate fates. PMID:23963623
Israely, Edo; Ginsberg, Michael; Nolan, Daniel; Ding, Bi-Sen; James, Daylon; Elemento, Olivier; Rafii, Shahin; Rabbany, Sina Y
2014-01-01
The ability to generate and maintain stable in vitro cultures of mouse endothelial cells (ECs) has great potential for genetic dissection of the numerous pathologies involving vascular dysfunction as well as therapeutic applications. However, previous efforts at achieving sustained cultures of primary stable murine vascular cells have fallen short, and the cellular requirements for EC maintenance in vitro remain undefined. In this study, we have generated vascular ECs from mouse embryonic stem (ES) cells and show that active Akt is essential to their survival and propagation as homogeneous monolayers in vitro. These cells harbor the phenotypical, biochemical, and functional characteristics of ECs and expand throughout long-term cultures, while maintaining their angiogenic capacity. Moreover, Akt-transduced embryonic ECs form functional perfused vessels in vivo that anastomose with host blood vessels. We provide evidence for a novel function of Akt in stabilizing EC identity, whereby the activated form of the protein protects mouse ES cell-derived ECs from TGFβ-mediated transdifferentiation by downregulating SMAD3. These findings identify a role for Akt in regulating the developmental potential of ES cell-derived ECs and demonstrate that active Akt maintains endothelial identity in embryonic ECs by interfering with active TGFβ-mediated processes that would ordinarily usher these cells to alternate fates. © AlphaMed Press.
Endothelial stress induces the release of vitamin D-binding protein, a novel growth factor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raymond, Marc-Andre; Desormeaux, Anik; Labelle, Andree
2005-12-23
Endothelial cells (EC) under stress release paracrine mediators that facilitate accumulation of vascular smooth muscle cells (VSCM) at sites of vascular injury. We found that medium conditioned by serum-starved EC increase proliferation and migration of VSCM in vitro. Fractionation of the conditioned medium followed by mass spectral analysis identified one bioactive component as vitamin D-binding protein (DBP). DBP induced both proliferation and migration of VSMC in vitro in association with increased phosphorylation of ERK 1/2. PD 98059, a biochemical inhibitor of ERK 1/2, abrogated these proliferative and migratory responses in VSMC. DBP is an important carrier for the vitamin-D sterols,more » 25-hydroxyvitamin-D, and 1{alpha},25-dihydroxyvitamin-D. Both sterols inhibited the activity of DBP on VSMC, suggesting that vitamin D binding sites are important for initiating the activities of DBP on VSMC. Release of DBP at sites of endothelial injury represents a novel pathway favoring accumulation of VSMC at sites of vascular injury.« less
Su, Kuo-Hui; Tsai, Jin-Yi; Kou, Yu Ru; Chiang, An-Na; Hsiao, Sheng-Huang; Wu, Yuh-Lin; Hou, Hsin-Han; Pan, Ching-Chian; Shyue, Song-Kun; Lee, Tzong-Shyuan
2009-06-01
Valsartan, a selective angiotensin II type 1 receptor (AT1R) blocker, has beneficial effects in the cardiovascular system in part by its increase of nitric oxide (NO) bioavailability, yet the mechanisms are unclear. We investigated the molecular mechanisms underlying this effect in endothelial cells (ECs). NO production was examined by Griess reagent assay, DAF-2 DA fluorescence staining and cGMP ELISA kits. Protein interaction was determined by western blotting and immunoprecipitation. Treating bovine or human aortic ECs with valsartan increased NO production, as evidenced by elevated level of stable NO metabolites and intracellular cGMP. Valsartan increased the phosphorylation but not the protein level of endothelial NO synthase (eNOS). Inhibition of phosphoinositide-3 kinase (PI3K)/Akt and Src pathways by specific inhibitors suppressed valsartan-induced NO release. In addition, valsartan increased the tyrosine residue phosphorylation of AT1R, which was attenuated by inhibition of Src but not PI3K activities. Valsartan also suppressed the interaction of eNOS and AT1R, which was blocked by Src or PI3K inhibition. Valsartan-induced NO production in ECs is mediated through Src/PI3K/Akt-dependent phosphorylation of eNOS. Valsartan-induced AT1R phosphorylation depends on Src but not PI3K, whereas valsartan-induced suppression of AT1R-eNOS interaction depends on Src/PI3K/Akt signalling. These results indicate a novel vasoprotective mechanism of valsartan in upregulating NO production in ECs.
Fu, Bingmei M.; Tarbell, John M.
2014-01-01
The endothelial cells (ECs) lining every blood vessel wall are constantly exposed to the mechanical forces generated by blood flow. The EC responses to these hemodynamic forces play a critical role in the homeostasis of the circulatory system. To ensure proper EC mechano-sensing and transduction, there are a variety of mechano-sensors and transducers that have been identified on the EC surface, intra- and trans-EC membrane and within the EC cytoskeleton. Among them, the most recent candidate is the endothelial surface glycocalyx (ESG), which is a matrix-like thin layer covering the luminal surface of the EC. It consists of various proteoglycans, glycosaminoglycans, and plasma proteins, and is close to other prominent EC mechano-sensors and transducers. The ESG thickness was found to be in the order of 0.1–1 μm by different visualization techniques and in different types of vessels. Detailed analysis on the electron microscopy (EM) images of the microvascular ESG revealed a quasi-periodic substructure with the ESG fiber diameter of 10–12 and 20 nm spacing between adjacent fibers. Atomic force microscopy and optical tweezers were applied to investigate the mechanical properties of the ESG on the cultured EC monolayers and in solutions. Enzymatic degradation of specific ESG glycosaminoglycan components was used to directly elucidate the role of the ESG in EC mechano-sensing and transduction by measuring the shear-induced productions of nitric oxide and prostacyclin, two characteristic responses of the ECs to the flow. The unique location, composition, and structure of the ESG determine its role in EC mechano-sensing and transduction. PMID:23401243
Uchide, Keiji; Sakon, Masato; Ariyoshi, Hideo; Nakamori, Syouji; Tokunaga, Masaru; Monden, Morito
2007-02-01
Cancer cell mediated vascular endothelial cell (vEC) retraction plays a pivotal role in cancer metastasis. The aim of this study is to clarify the biochemical character of vEC retraction factor derived from human breast cancer cell line, MCF-7. In order to estimate vEC retracting activity, transwell chamber assay system was employed. We first tested the effects of trypsin digestion as well as lipid extraction of culture medium (CM). Trypsin digestion of CM resulted in approximately 40% loss of vEC retracting activity and lipid extraction of CM by Brigh and Dyer methods recovered approximately 60% of vEC retracting activity, suggesting that approximately 60% of vEC retracting activity in MCF-7 derived CM is due to lipid. Although Nordihydroguaiaretic acid (NDGA), the specific lipoxygenase inhibitor, suppressed vEC retracting activity in CM, Acetyl salicylic acid (ASA), a specific cyclooxygenase inhibitor, did not affect the activity, suggesting that lipid exerting vEC retracting activity in CM belongs to lipoxygenase mediated arachidonate metabolites. Thin layer chromatography clearly demonstrated that Rf value of lipid vEC retracting factor in CM is identical to 12HETE. Authentic 12(S)HETE, but not 12(R)HETE, showed vEC retracting activity. After the ultracentrifugation of CM, most lipid vEC retracting activity was recovered from the pellet fraction, and flow cytometric analysis using specific antibody against 12(S)HETE clearly showed the association of 12(S)HETE with small particle in CM. These findings suggested the principal involvement of 12(S)HETE in cancer cell derived microparticles in cancer cell mediated vEC retraction.