Sample records for ec gene expression

  1. Cardiac Endothelial Cell Transcriptome.

    PubMed

    Lother, Achim; Bergemann, Stella; Deng, Lisa; Moser, Martin; Bode, Christoph; Hein, Lutz

    2018-03-01

    Endothelial cells (ECs) are a highly specialized cell type with marked diversity between different organs or vascular beds. Cardiac ECs are an important player in cardiac physiology and pathophysiology but are not sufficiently characterized yet. Thus, the aim of the present study was to analyze the cardiac EC transcriptome. We applied fluorescence-assisted cell sorting to isolate pure ECs from adult mouse hearts. RNAseq revealed 1288 genes predominantly expressed in cardiac ECs versus heart tissue including several transcription factors. We found an overrepresentation of corresponding transcription factor binding motifs within the promotor region of EC-enriched genes, suggesting that they control the EC transcriptome. Cardiac ECs exhibit a distinct gene expression profile when compared with renal, cerebral, or pulmonary ECs. For example, we found the Meox2 / Tcf15, Fabp4 , and Cd36 signaling cascade higher expressed in cardiac ECs which is a key regulator of fatty acid uptake and involved in the development of atherosclerosis. The results from this study provide a comprehensive resource of gene expression and transcriptional control in cardiac ECs. The cardiac EC transcriptome exhibits distinct differences in gene expression compared with other cardiac cell types and ECs from other organs. We identified new candidate genes that have not been investigated in ECs yet as promising targets for future evaluation. © 2018 American Heart Association, Inc.

  2. Acute and repeated ECS treatment increases CRF, POMC and PENK gene expression in selected regions of the rat hypothalamus.

    PubMed

    Garcia-Garcia, L; Llewellyn-Jones, V; Fernandez Fernandez, I; Fuentes, J A; Manzanares, J

    1998-01-05

    The purpose of this study was to investigate the effects of acute and repeated electroconvulsive shock (ECS) on corticotropin releasing factor (CRF), proopiomelanocortin (POMC) and proenkephalin (PENK) gene expression in selected regions of the brain and pituitary of the rat. Acute ECS increased CRF gene expression in the paraventricular nucleus (PVN) by 20%, an effect that was further enhanced to 38% when rats received repeated ECS treatment. Acute and repeated ECS increased POMC gene expression in the arcuate nucleus (ARC) by 49-59% but failed to alter these mRNA levels in the anterior lobe (AL) of the pituitary gland. PENK gene expression was increased by 35% in the nucleus accumbens (NA) and by 180% the ventromedial nucleus (VMN) after acute or repeated ECS treatment but no significant changes were found in the PVN or striatum (ST). Taken together, these results indicate a differential CRF and opioid gene expression regulation after acute or repeated ECS treatment that may be relevant to their therapeutic or side effects in depression.

  3. Visual gene-network analysis reveals the cancer gene co-expression in human endometrial cancer

    PubMed Central

    2014-01-01

    Background Endometrial cancers (ECs) are the most common form of gynecologic malignancy. Recent studies have reported that ECs reveal distinct markers for molecular pathogenesis, which in turn is linked to the various histological types of ECs. To understand further the molecular events contributing to ECs and endometrial tumorigenesis in general, a more precise identification of cancer-associated molecules and signaling networks would be useful for the detection and monitoring of malignancy, improving clinical cancer therapy, and personalization of treatments. Results ECs-specific gene co-expression networks were constructed by differential expression analysis and weighted gene co-expression network analysis (WGCNA). Important pathways and putative cancer hub genes contribution to tumorigenesis of ECs were identified. An elastic-net regularized classification model was built using the cancer hub gene signatures to predict the phenotypic characteristics of ECs. The 19 cancer hub gene signatures had high predictive power to distinguish among three key principal features of ECs: grade, type, and stage. Intriguingly, these hub gene networks seem to contribute to ECs progression and malignancy via cell-cycle regulation, antigen processing and the citric acid (TCA) cycle. Conclusions The results of this study provide a powerful biomarker discovery platform to better understand the progression of ECs and to uncover potential therapeutic targets in the treatment of ECs. This information might lead to improved monitoring of ECs and resulting improvement of treatment of ECs, the 4th most common of cancer in women. PMID:24758163

  4. Developmental regulation of ecdysone receptor (EcR) and EcR-controlled gene expression during pharate-adult development of honeybees (Apis mellifera)

    PubMed Central

    Mello, Tathyana R. P.; Aleixo, Aline C.; Pinheiro, Daniel G.; Nunes, Francis M. F.; Bitondi, Márcia M. G.; Hartfelder, Klaus; Barchuk, Angel R.; Simões, Zilá L. P.

    2014-01-01

    Major developmental transitions in multicellular organisms are driven by steroid hormones. In insects, these, together with juvenile hormone (JH), control development, metamorphosis, reproduction and aging, and are also suggested to play an important role in caste differentiation of social insects. Here, we aimed to determine how EcR transcription and ecdysteroid titers are related during honeybee postembryonic development and what may actually be the role of EcR in caste development of this social insect. In addition, we expected that knocking-down EcR gene expression would give us information on the participation of the respective protein in regulating downstream targets of EcR. We found that in Apis mellifera females, EcR-A is the predominantly expressed variant in postembryonic development, while EcR-B transcript levels are higher in embryos, indicating an early developmental switch in EcR function. During larval and pupal stages, EcR-B expression levels are very low, while EcR-A transcripts are more variable and abundant in workers compared to queens. Strikingly, these transcript levels are opposite to the ecdysteroid titer profile. 20-hydroxyecdysone (20E) application experiments revealed that low 20E levels induce EcR expression during development, whereas high ecdysteroid titers seem to be repressive. By means of RNAi-mediated knockdown (KD) of both EcR transcript variants we detected the differential expression of 234 poly-A+ transcripts encoding genes such as CYPs, MRJPs and certain hormone response genes (Kr-h1 and ftz-f1). EcR-KD also promoted the differential expression of 70 miRNAs, including highly conserved ones (e.g., miR-133 and miR-375), as well honeybee-specific ones (e.g., miR-3745 and miR-3761). Our results put in evidence a broad spectrum of EcR-controlled gene expression during postembryonic development of honeybees, revealing new facets of EcR biology in this social insect. PMID:25566327

  5. Identification of the Key Genes and Pathways in Esophageal Carcinoma.

    PubMed

    Su, Peng; Wen, Shiwang; Zhang, Yuefeng; Li, Yong; Xu, Yanzhao; Zhu, Yonggang; Lv, Huilai; Zhang, Fan; Wang, Mingbo; Tian, Ziqiang

    2016-01-01

    Objective . Esophageal carcinoma (EC) is a frequently common malignancy of gastrointestinal cancer in the world. This study aims to screen key genes and pathways in EC and elucidate the mechanism of it. Methods . 5 microarray datasets of EC were downloaded from Gene Expression Omnibus. Differentially expressed genes (DEGs) were screened by bioinformatics analysis. Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and protein-protein interaction (PPI) network construction were performed to obtain the biological roles of DEGs in EC. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the expression level of DEGs in EC. Results . A total of 1955 genes were filtered as DEGs in EC. The upregulated genes were significantly enriched in cell cycle and the downregulated genes significantly enriched in Endocytosis. PPI network displayed CDK4 and CCT3 were hub proteins in the network. The expression level of 8 dysregulated DEGs including CDK4, CCT3, THSD4, SIM2, MYBL2, CENPF, CDCA3, and CDKN3 was validated in EC compared to adjacent nontumor tissues and the results were matched with the microarray analysis. Conclusion . The significantly DEGs including CDK4, CCT3, THSD4, and SIM2 may play key roles in tumorigenesis and development of EC involved in cell cycle and Endocytosis.

  6. Isolation and genome-wide expression and methylation characterization of CD31+ cells from normal and malignant human prostate tissue

    PubMed Central

    Luo, Wei; Hu, Qiang; Wang, Dan; Deeb, Kristin K.; Ma, Yingyu; Morrison, Carl D.; Liu, Song; Johnson, Candace S.; Trump, Donald L.

    2013-01-01

    Endothelial cells (ECs) are an important component involved in the angiogenesis. Little is known about the global gene expression and epigenetic regulation in tumor endothelial cells. The identification of gene expression and epigenetic difference between human prostate tumor-derived endothelial cells (TdECs) and those in normal tissues may uncover unique biological features of TdEC and facilitate the discovery of new anti-angiogenic targets. We established a method for isolation of CD31+ endothelial cells from malignant and normal prostate tissues obtained at prostatectomy. TdECs and normal-derived ECs (NdECs) showed >90% enrichment in primary culture and demonstrated microvascular endothelial cell characteristics such as cobblestone morphology in monolayer culture, diI-acetyl-LDL uptake and capillary-tube like formation in Matrigel®. In vitro primary cultures of ECs maintained expression of endothelial markers such as CD31, von Willebrand factor, intercellular adhesion molecule, vascular endothelial growth factor receptor 1, and vascular endothelial growth factor receptor 2. We then conducted a pilot study of transcriptome and methylome analysis of TdECs and matched NdECs from patients with prostate cancer. We observed a wide spectrum of differences in gene expression and methylation patterns in endothelial cells, between malignant and normal prostate tissues. Array-based expression and methylation data were validated by qRT-PCR and bisulfite DNA pyrosequencing. Further analysis of transcriptome and methylome data revealed a number of differentially expressed genes with loci whose methylation change is accompanied by an inverse change in gene expression. Our study demonstrates the feasibility of isolation of ECs from histologically normal prostate and prostate cancer via CD31+ selection. The data, although preliminary, indicates that there exist widespread differences in methylation and transcription between TdECs and NdECs. Interestingly, only a small proportion of perturbed genes were overlapped between American (AA) and Caucasian American (CA) patients with prostate cancer. Our study indicates that identifying gene expression and/or epigenetic differences between TdECs and NdECs may provide us with new anti-angiogenic targets. Future studies will be required to further characterize the isolated ECs and determine the biological features that can be exploited in the prognosis and therapy of prostate cancer. PMID:23978847

  7. Sox17 drives functional engraftment of endothelium converted from non-vascular cells.

    PubMed

    Schachterle, William; Badwe, Chaitanya R; Palikuqi, Brisa; Kunar, Balvir; Ginsberg, Michael; Lis, Raphael; Yokoyama, Masataka; Elemento, Olivier; Scandura, Joseph M; Rafii, Shahin

    2017-01-16

    Transplanting vascular endothelial cells (ECs) to support metabolism and express regenerative paracrine factors is a strategy to treat vasculopathies and to promote tissue regeneration. However, transplantation strategies have been challenging to develop, because ECs are difficult to culture and little is known about how to direct them to stably integrate into vasculature. Here we show that only amniotic cells could convert to cells that maintain EC gene expression. Even so, these converted cells perform sub-optimally in transplantation studies. Constitutive Akt signalling increases expression of EC morphogenesis genes, including Sox17, shifts the genomic targeting of Fli1 to favour nearby Sox consensus sites and enhances the vascular function of converted cells. Enforced expression of Sox17 increases expression of morphogenesis genes and promotes integration of transplanted converted cells into injured vessels. Thus, Ets transcription factors specify non-vascular, amniotic cells to EC-like cells, whereas Sox17 expression is required to confer EC function.

  8. Cyclic strain is a weak inducer of prostacyclin synthase expression in bovine aortic endothelial cells

    NASA Technical Reports Server (NTRS)

    Segurola, R. J. Jr; Oluwole, B.; Mills, I.; Yokoyama, C.; Tanabe, T.; Kito, H.; Nakajima, N.; Sumpio, B. E.

    1997-01-01

    Recent studies indicate that hemodynamic forces such as cyclic strain and shear stress can increase prostacyclin (PGI2) secretion by endothelial cells (EC) but the effect of these forces on prostacyclin synthase (PGIS) gene expression remains unclear and is the focus of this study. Bovine aortic EC were seeded onto type I collagen coated flexible membranes and grown to confluence. The membranes and attached EC were subjected to 10% average strain at 60 cpm (0.5 sec deformation alternating with 0.5 sec relaxation) for up to 5 days. PGIS gene expression was determined by Northern blot analysis and protein level by Western blot analysis. The effect of cyclic strain on the PGIS promoter was determined by the transfection of a 1-kb human PGIS gene promoter construct coupled to a luciferase reporter gene into EC, followed by determination of luciferase activity. PGIS gene expression increased 1.7-fold in EC subjected to cyclic strain for 24 hr. Likewise, EC transfected with a pGL3B-PGIS (-1070/-10) construct showed an approximate 1.3-fold elevation in luciferase activity in EC subjected to cyclic strain for 3, 4, 8, and 12 hr. The weak stimulation of PGIS gene expression by cyclic strain was reflected in an inability to detect alterations in PGIS protein levels in EC subjected to cyclic strain for as long as 5 days. These data suggest that strain-induced stimulation of PGIS gene expression plays only a minor role in the ability of cyclic strain to stimulate PGI2 release in EC. These findings coupled with our earlier demonstration of a requisite addition of exogenous arachidonate in order to observe strain-induced PGI2 release, implicates a mechanism that more likely involves strain-induced stimulation of PGIS activity.

  9. Prognostic factors and genes associated with endometrial cancer based on gene expression profiling by bioinformatics analysis.

    PubMed

    Zhang, Ying; Zhang, Wei; Li, Xinglan; Li, Dapeng; Zhang, Xiaoling; Yin, Yajie; Deng, Xiangyun; Sheng, Xiugui

    2016-06-01

    Endometrial cancer (EC) is the most prevalent malignancy worldwide. Although several efforts had been made to explore the molecular mechanism responsible for EC progression, it is still not fully understood. To evaluate the clinical characteristics and prognostic factors of patients with EC, and further to search for novel genes associated with EC progression. We recruited 328 patients with EC and analyzed prognostic factors using Cox proportional hazard regression model. Further, a gene expression profile of EC was used to identify the differentially expressed genes (DEGs) between normal samples and tumor samples. Subsequently, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis ( http://www.genome.jp/kegg/ ) for DEGs were performed, and then protein-protein interaction (PPI) network of DEGs as well as the subnetwork of PPI were constructed with plug-in, MCODE by mapping DEGs into the Search Tool for the Retrieval of Interacting Genes database. Our results showed that body mass index (BMI), hypertension, myometrial invasion, pathological type, and Glut4 positive expression were prognostic factors in EC (P < 0.05). Bioinformatics analysis showed that upregulated DEGs were associated with cell cycle, and downregulated DEGs were related to MAPK pathway. Meanwhile, PPI network analysis revealed that upregulated CDK1 and CCNA2 as well as downregulated JUN and FOS were listed in top two nodes with high degrees. Patients with EC should be given more focused attentions in respect of pathological type, BMI, hypertension, and Glut4-positive expression. In addition, CDK1, CCNA2, JUN, and FOS might play important roles in EC development.

  10. Improvement of pest resistance in transgenic tobacco plants expressing dsRNA of an insect-associated gene EcR.

    PubMed

    Zhu, Jin-Qi; Liu, Shumin; Ma, Yao; Zhang, Jia-Qi; Qi, Hai-Sheng; Wei, Zhao-Jun; Yao, Qiong; Zhang, Wen-Qing; Li, Sheng

    2012-01-01

    The adoption of pest-resistant transgenic plants to reduce yield loss and pesticide utilization has been successful in the past three decades. Recently, transgenic plant expressing double-stranded RNA (dsRNA) targeting pest genes emerges as a promising strategy for improving pest resistance in crops. The steroid hormone, 20-hydroxyecdysone (20E), predominately controls insect molting via its nuclear receptor complex, EcR-USP. Here we report that pest resistance is improved in transgenic tobacco plants expressing dsRNA of EcR from the cotton bollworm, Helicoverpa armigera, a serious lepidopteran pest for a variety of crops. When H. armigera larvae were fed with the whole transgenic tobacco plants expressing EcR dsRNA, resistance to H. armigera was significantly improved in transgenic plants. Meanwhile, when H. armigera larvae were fed with leaves of transgenic tobacco plants expressing EcR dsRNA, its EcR mRNA level was dramatically decreased causing molting defects and larval lethality. In addition, the transgenic tobacco plants expressing H. armigera EcR dsRNA were also resistant to another lepidopteran pest, the beet armyworm, Spodoptera exigua, due to the high similarity in the nucleotide sequences of their EcR genes. This study provides additional evidence that transgenic plant expressing dsRNA targeting insect-associated genes is able to improve pest resistance.

  11. Single-cell RNA sequencing reveals gene expression signatures of breast cancer-associated endothelial cells.

    PubMed

    Sun, Zhengda; Wang, Chih-Yang; Lawson, Devon A; Kwek, Serena; Velozo, Hugo Gonzalez; Owyong, Mark; Lai, Ming-Derg; Fong, Lawrence; Wilson, Mark; Su, Hua; Werb, Zena; Cooke, Daniel L

    2018-02-16

    Tumor endothelial cells (TEC) play an indispensible role in tumor growth and metastasis although much of the detailed mechanism still remains elusive. In this study we characterized and compared the global gene expression profiles of TECs and control ECs isolated from human breast cancerous tissues and reduction mammoplasty tissues respectively by single cell RNA sequencing (scRNA-seq). Based on the qualified scRNA-seq libraries that we made, we found that 1302 genes were differentially expressed between these two EC phenotypes. Both principal component analysis (PCA) and heat map-based hierarchical clustering separated the cancerous versus control ECs as two distinctive clusters, and MetaCore disease biomarker analysis indicated that these differentially expressed genes are highly correlated with breast neoplasm diseases. Gene Set Enrichment Analysis software (GSEA) enriched these genes to extracellular matrix (ECM) signal pathways and highlighted 127 ECM-associated genes. External validation verified some of these ECM-associated genes are not only generally overexpressed in various cancer tissues but also specifically overexpressed in colorectal cancer ECs and lymphoma ECs. In conclusion, our data demonstrated that ECM-associated genes play pivotal roles in breast cancer EC biology and some of them could serve as potential TEC biomarkers for various cancers.

  12. Sox17 drives functional engraftment of endothelium converted from non-vascular cells

    PubMed Central

    Schachterle, William; Badwe, Chaitanya R.; Palikuqi, Brisa; Kunar, Balvir; Ginsberg, Michael; Lis, Raphael; Yokoyama, Masataka; Elemento, Olivier; Scandura, Joseph M.; Rafii, Shahin

    2017-01-01

    Transplanting vascular endothelial cells (ECs) to support metabolism and express regenerative paracrine factors is a strategy to treat vasculopathies and to promote tissue regeneration. However, transplantation strategies have been challenging to develop, because ECs are difficult to culture and little is known about how to direct them to stably integrate into vasculature. Here we show that only amniotic cells could convert to cells that maintain EC gene expression. Even so, these converted cells perform sub-optimally in transplantation studies. Constitutive Akt signalling increases expression of EC morphogenesis genes, including Sox17, shifts the genomic targeting of Fli1 to favour nearby Sox consensus sites and enhances the vascular function of converted cells. Enforced expression of Sox17 increases expression of morphogenesis genes and promotes integration of transplanted converted cells into injured vessels. Thus, Ets transcription factors specify non-vascular, amniotic cells to EC-like cells, whereas Sox17 expression is required to confer EC function. PMID:28091527

  13. Association between differential gene expression and body mass index among endometrial cancers from The Cancer Genome Atlas Project.

    PubMed

    Roque, Dario R; Makowski, Liza; Chen, Ting-Huei; Rashid, Naim; Hayes, D Neil; Bae-Jump, Victoria

    2016-08-01

    The Cancer Genome Atlas (TCGA) identified four integrated clusters for endometrial cancer (EC): POLE, MSI, CNL and CNH. We evaluated differences in gene expression profiles of obese and non-obese women with EC and examined the association of body mass index (BMI) within the clusters identified in TCGA. TCGA RNAseq data was used to identify genes related to increasing BMI among ECs. The POLE, MSI and CNL clusters were composed mostly of endometrioid EC. Patient BMI was compared between these three clusters with one-way ANOVA. Association between gene expression and BMI was also assessed while adjusting for confounding effects of potential confounding factors. p-Values testing the association between gene expression and BMI were adjusted for multiple hypothesis testing over the 20,531 genes considered. Mean BMI was statistically different between the ECs in the CNL (35.8) versus POLE (29.8) cluster (p=0.006) and approached significance for the MSI (33.0) versus CNL (35.8) cluster (p=0.05). 181 genes were significantly up- or down-regulated with increasing BMI in endometrioid EC (q-value<0.01), including LPL, IRS-1, IGFBP4, IGFBP7 and the progesterone receptor. DAVID functional annotation analysis revealed significant enrichment in "cell cycle" (adjusted p-value=1.5E-5) and "DNA metabolic processes" (adjusted p-value=1E-3) for the identified genes. Obesity related genes were found to be upregulated with increasing BMI among endometrioid ECs. Patients with POLE tumors have the lowest median BMI when compared to MSI and CNL. Given the heterogeneity among endometrioid EC, consideration should be given to abandoning the Type I and II classification of EC tumors. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Epigenetic reprogramming governs EcSOD expression during human mammary epithelial cell differentiation, tumorigenesis and metastasis

    PubMed Central

    Teoh-Fitzgerald, ML; Fitzgerald, MP; Zhong, W; Askeland, RW; Domann, FE

    2013-01-01

    Expression of the antioxidant enzyme EcSOD in normal human mammary epithelial cells was not recognized until recently. Although expression of EcSOD was not detectable in non-malignant human mammary epithelial cells (HMEC) cultured in conventional two-dimensional (2D) culture conditions, EcSOD protein expression was observed in normal human breast tissues, suggesting that the 2D-cultured condition induces a repressive status of EcSOD gene expression in HMEC. With the use of laminin-enriched extracellular matrix (lrECM), we were able to detect expression of EcSOD when HMEC formed polarized acinar structures in a 3D-culture condition. Repression of the EcSOD-gene expression was again seen when the HMEC acini were sub-cultured as a monolayer, implying that lrECM-induced acinar morphogenesis is essential in EcSOD-gene activation. We have further shown the involvement of DNA methylation in regulating EcSOD expression in HMEC under these cell culture conditions. EcSOD mRNA expression was strongly induced in the 2D-cultured HMEC after treatment with a DNA methyltransferase inhibitor. In addition, epigenetic analyses showed a decrease in the degree of CpG methylation in the EcSOD promoter in the 3D versus 2D-cultured HMEC. More importantly, >80% of clinical mammary adenocarcinoma samples showed significantly decreased EcSOD mRNA and protein expression levels compared with normal mammary tissues and there is an inverse correlation between the expression levels of EcSOD and the clinical stages of breast cancer. Combined bisulfite restriction analysis analysis of some of the tumors also revealed an association of DNA methylation with the loss of EcSOD expression in vivo. Furthermore, overexpression of EcSOD inhibited breast cancer metastasis in both the experimental lung metastasis model and the syngeneic mouse model. This study suggests that epigenetic silencing of EcSOD may contribute to mammary tumorigenesis and that restoring the extracellular superoxide scavenging activity could be an effective strategy for breast cancer treatment. PMID:23318435

  15. Molecular anatomy of the developing limb in the coquí frog, Eleutherodactylus coqui.

    PubMed

    Gross, Joshua B; Kerney, Ryan; Hanken, James; Tabin, Clifford J

    2011-01-01

    The vertebrate limb demonstrates remarkable similarity in basic organization across phylogenetically disparate groups. To gain further insight into how this morphological similarity is maintained in different developmental contexts, we explored the molecular anatomy of size-reduced embryos of the Puerto Rican coquí frog, Eleutherodactylus coqui. This animal demonstrates direct development, a life-history strategy marked by rapid progression from egg to adult and absence of a free-living, aquatic larva. Nonetheless, coquí exhibits a basal anuran limb structure, with four toes on the forelimb and five toes on the hind limb. We investigated the extent to which coquí limb bud development conforms to the model of limb development derived from amniote studies. Toward this end, we characterized dynamic patterns of expression for 13 critical patterning genes across three principle stages of limb development. As expected, most genes demonstrate expression patterns that are essentially unchanged compared to amniote species. For example, we identified an EcFgf8-expression domain within the apical ectodermal ridge (AER). This expression pattern defines a putatively functional AER signaling domain, despite the absence of a morphological ridge in coquí embryos. However, two genes, EcMeis2 and EcAlx4, demonstrate altered domains of expression, which imply a potential shift in gene function between coquí frogs and amniote model systems. Unexpectedly, several genes thought to be critical for limb patterning in other systems, including EcFgf4, EcWnt3a, EcWnt7a, and EcGremlin, demonstrated no evident expression pattern in the limb at the three stages we analyzed. The absence of EcFgf4 and EcWnt3a expression during limb patterning is perhaps not surprising, given that neither gene is critical for proper limb development in the mouse, based on knockout and expression analyses. In contrast, absence of EcWnt7a and EcGremlin is surprising, given that expression of these molecules appears to be absolutely essential in all other model systems so far examined. Although this analysis substantiates the existence of a core set of ancient limb-patterning molecules, which likely mediate identical functions across highly diverse vertebrate forms, it also reveals remarkable evolutionary flexibility in the genetic control of a conserved morphological pattern across evolutionary time. © 2011 Wiley Periodicals, Inc.

  16. MicroRNAs expression in ox-LDL treated HUVECs: MiR-365 modulates apoptosis and Bcl-2 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Bing; Xiao, Bo; Liang, Desheng

    Highlights: {yields} We evaluated the role of miRNAs in ox-LDL induced apoptosis in ECs. {yields} We found 4 up-regulated and 11 down-regulated miRNAs in apoptotic ECs. {yields} Target genes of the dysregulated miRNAs regulate ECs apoptosis and atherosclerosis. {yields} MiR-365 promotes ECs apoptosis via suppressing Bcl-2 expression. {yields} MiR-365 inhibitor alleviates ECs apoptosis induced by ox-LDL. -- Abstract: Endothelial cells (ECs) apoptosis induced by oxidized low-density lipoprotein (ox-LDL) is thought to play a critical role in atherosclerosis. MicroRNAs (miRNAs) are a class of noncoding RNAs that posttranscriptionally regulate the expression of genes involved in diverse cell functions, including differentiation, growth,more » proliferation, and apoptosis. However, whether miRNAs are associated with ox-LDL induced apoptosis and their effect on ECs is still unknown. Therefore, this study evaluated potential miRNAs and their involvement in ECs apoptosis in response to ox-LDL stimulation. Microarray and qRT-PCR analysis performed on human umbilical vein endothelial cells (HUVECs) exposed to ox-LDL identified 15 differentially expressed (4 up- and 11 down-regulated) miRNAs. Web-based query tools were utilized to predict the target genes of the differentially expressed miRNAs, and the potential target genes were classified into different function categories with the gene ontology (GO) term and KEGG pathway annotation. In particular, bioinformatics analysis suggested that anti-apoptotic protein B-cell CLL/lymphoma 2 (Bcl-2) is a target gene of miR-365, an apoptomir up-regulated by ox-LDL stimulation in HUVECs. We further showed that transfection of miR-365 inhibitor partly restored Bcl-2 expression at both mRNA and protein levels, leading to a reduction of ox-LDL-mediated apoptosis in HUVECs. Taken together, our findings indicate that miRNAs participate in ox-LDL-mediated apoptosis in HUVECs. MiR-365 potentiates ox-LDL-induced ECs apoptosis by regulating the expression of Bcl-2, suggesting potential novel therapeutic targets for atherosclerosis.« less

  17. Fluid Mechanics, Arterial Disease, and Gene Expression.

    PubMed

    Tarbell, John M; Shi, Zhong-Dong; Dunn, Jessilyn; Jo, Hanjoong

    2014-01-01

    This review places modern research developments in vascular mechanobiology in the context of hemodynamic phenomena in the cardiovascular system and the discrete localization of vascular disease. The modern origins of this field are traced, beginning in the 1960s when associations between flow characteristics, particularly blood flow-induced wall shear stress, and the localization of atherosclerotic plaques were uncovered, and continuing to fluid shear stress effects on the vascular lining endothelial) cells (ECs), including their effects on EC morphology, biochemical production, and gene expression. The earliest single-gene studies and genome-wide analyses are considered. The final section moves from the ECs lining the vessel wall to the smooth muscle cells and fibroblasts within the wall that are fluid me chanically activated by interstitial flow that imposes shear stresses on their surfaces comparable with those of flowing blood on EC surfaces. Interstitial flow stimulates biochemical production and gene expression, much like blood flow on ECs.

  18. Hypoxia triggers angiogenesis by increasing expression of LOX genes in 3-D culture of ASCs and ECs.

    PubMed

    Xie, Qiang; Xie, Jiamin; Tian, Taoran; Ma, Quanquan; Zhang, Qi; Zhu, Bofeng; Cai, Xiaoxiao

    2017-03-01

    This study aimed to investigate the expression changes of LOX (lysyl oxidase) family genes, VEGFA, and VEGFB under hypoxic conditions in a co-culture system of ASCs (adipose-derived stromal cells) and ECs (endothelial cells). ASCs and ECs were co-cultured under hypoxic and normal oxygen conditions in a 1:1 ratio, and the formation of vessel-like was detected at 7 days. The transwell co-culture system was used and cell lysates were collected at 7 days after co-culture in hypoxic and normal oxygen condition. Semi-quantitative PCR was performed to quantify the mRNA expression of VEGFA, VEGFB, and the LOX genes (LOX, LOXL-1, LOXL-2, LOXL-3, and LOXL-4). Expression changes were determined by densitomery. Enhanced angiogenesis was detected in the co-culture of ASCs and ECs under hypoxic conditions. Among the genes screened, VEGFA, VEGFB, LOXL-1, and LOXL-3 in ECs, both mono-cultured and co-cultured, were significantly enhanced after culturing under hypoxic conditions. In ASCs, VEGFB, LOXL-1, and LOXL-3 were upregulated. Contact co-culture between ASCs and ECs promotes angiogenesis under hypoxia. LOXL-1 and LOXL-3 expressions were increased in both ASCs and ECs and might play important roles in the enhanced angiogenesis promoted by hypoxia. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Cryopreservation and Recovery of Human Endometrial Epithelial Cells with High Viability, Purity, and Functional Fidelity

    PubMed Central

    Chen, Joseph C.; Hoffman, Jacquelyn R.; Arora, Ripla; Perrone, Lila A.; Gonzalez-Gomez, Christian J; Vo, Kim Chi; Laird, Diana J.; Irwin, Juan C.; Giudice, Linda C.

    2015-01-01

    Objective To develop a protocol for cryopreservation and recovery of human endometrial epithelial cells (eEC) retaining molecular and functional characteristics of endometrial epithelium in vivo. Design This is an in vitro study using human endometrial cells. Setting University research laboratory. Patients Endometrial biopsies were obtained from premenopausal women undergoing benign gynecological procedures. Interventions Primary eEC were cryopreserved in 1% fetal bovine serum (FBS)/10% dimethyl sulfoxide (DMSO) in Defined Keratinocyte Serum Free Medium (KSFM). Recovered cells were observed for endometrial stromal fibroblast (eSF) contamination and subsequently evaluated for morphology, gene expression, and functional characteristics of freshly cultured eECs and in vivo endometrial epithelium. Main Outcome Measures Analysis of eEC morphology and the absence of eSF contamination; evaluation of epithelial-specific gene and protein expression; assessment of epithelial polarity. Results eEC recovered after cryopreservation (n=5) displayed epithelial morphology and expressed E-cadherin (CDH1), occludin (OCLN), claudin1 (CLDN1), and keratin18 (KRT18). Compared to eSF, recovered eEC displayed increased (P<0.05) expression of epithelial-specific genes AREG, CDH1, DEFB4A, MMP7, and WNT7A, while exhibiting low-to-undetectable (P<0.05) stromal-specific genes COL6A3, HOXA11, MMP2, PDGFRB, and WNT5A. Recovered eEC secrete levels of cytokines and growth factors comparable to freshly cultured eEC. Recovered eEC can formed a polarized monolayer with high transepithelial electrical resistance (TER) and impermeability to small molecules, and expressed apical/basolateral localization of CDH1 and apical localization of OCLN. Conclusion We have developed a protocol for cryopreservation of eEC in which recovered cells after thawing demonstrate morphological, transcriptomic, and functional characteristics of human endometrial epithelium in vivo. PMID:26515378

  20. Significant fluctuations in ecdysteroid receptor gene (EcR) expression in relation to seasons of molt and reproduction in the grapsid crab, Metopograpsus messor (Brachyura: Decapoda).

    PubMed

    Shyamal, Sharmishtha; Anilkumar, G; Bhaskaran, R; Doss, G P; Durica, D S

    2015-01-15

    Metopograpsus messor, a brachyuran crab inhabiting the estuaries of North Kerala (India), is a prolific breeder releasing approximately 14-16 broods a year. The present paper reports the sequence information on the DNA binding domain (C domain, DBD), linker (D domain) and ligand binding domain (E domain, LBD) of M. messor ecdysteroid receptor (MmEcR) gene, the first grapsid brachyuran crab EcR examined. We have also measured MmEcR transcript levels in the ovary and the hepatopancreas throughout the annual cycle, with special reference to seasons of molt and reproduction. MmEcR expression in both the tissues is found to be at its peak (P<0.05) in late premolt crabs (January/May, molt/reproduction season); the expression levels are lowest (P<0.05) during June/July, when the females would neither molt nor reproduce (season for molt/reproduction repose). Intermediate levels of expression were found during the breeding season (August/December). Interestingly, this pattern of gene expression is in concordance with the fluctuating ecdysteroid levels of the hemolymph and Y organ secretory activity. The significant levels of fluctuation in the ovarian expression of MmEcR strongly suggest the ovary as a potential target for ecdysteroid action. A season-wise comparison of the gene expression reveals that ovarian MmEcR transcript levels are higher in breeding crabs (August/December) than the non-breeding animals (June/July), implicating a possible ecdysteroid role in reproduction in M. messor. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Histone Acetylation Regulates the Cell-Specific and Interferon-γ–Inducible Expression of Extracellular Superoxide Dismutase in Human Pulmonary Arteries

    PubMed Central

    Stepp, Marcus W.; Vorst, Alan L.; Folz, Rodney J.

    2011-01-01

    Extracellular superoxide dismutase (EC-SOD) is the major antioxidant enzyme present in the vascular wall, and is responsible for both the protection of vessels from oxidative stress and for the modulation of vascular tone. Concentrations of EC-SOD in human pulmonary arteries are very high relative to other tissues, and the expression of EC-SOD appears highly restricted to smooth muscle. The molecular basis for this smooth muscle–specific expression of EC-SOD is not known. Here we assessed the role of epigenetic factors in regulating the cell-specific and IFN-γ–inducible expression of EC-SOD in human pulmonary artery cells. The analysis of CpG site methylation within the promoter and coding regions of the EC-SOD gene demonstrated higher levels of DNA methylation within the distal promoter region in endothelial cells compared with smooth muscle cells. Exposure of both cell types to DNA demethylation agents reactivated the transcription of EC-SOD in endothelial cells alone. However, exposure to the histone deacetylase inhibitor trichostatin A (TSA) significantly induced EC-SOD gene expression in both endothelial cells and smooth muscle cells. Concentrations of EC-SOD mRNA were also induced up to 45-fold by IFN-γ in smooth muscle cells, but not in endothelial cells. The IFN-γ–dependent expression of EC-SOD was regulated by the Janus tyrosine kinase/signal transducers and activators of transcription proteins signaling pathway. Simultaneous exposure to TSA and IFN-γ produced a synergistic effect on the induction of EC-SOD gene expression, but only in endothelial cells. These findings provide strong evidence that EC-SOD cell-specific and IFN-γ–inducible expression in pulmonary artery cells is regulated, to a major degree, by epigenetic mechanisms that include histone acetylation and DNA methylation. PMID:21493784

  2. Characterisation of human induced pluripotent stem cell-derived endothelial cells under shear stress using an easy-to-use microfluidic cell culture system.

    PubMed

    Ohtani-Kaneko, Rsituko; Sato, Kenjiro; Tsutiya, Atsuhiro; Nakagawa, Yuka; Hashizume, Kazutoshi; Tazawa, Hidekatsu

    2017-10-09

    Induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) can contribute to elucidating the pathogenesis of heart and vascular diseases and developing their treatments. Their precise characteristics in fluid flow however remain unclear. Therefore, the aim of the present study is to characterise these features. We cultured three types of ECs in a microfluidic culture system: commercially available human iPS-ECs, human umbilical vein endothelial cells (HUVECs) and human umbilical artery endothelial cells (HUAECs). We then examined the mRNA expression levels of endothelial marker gene cluster of differentiation 31 (CD31), fit-related receptor tyrosine kinase (Flk-1), and the smooth muscle marker gene smooth muscle alpha-actin, and investigated changes in plasminogen activator inhibitor-1 (PAI-1) secretion and intracellular F-actin arrangement following heat stress. We also compared expressions of the arterial and venous marker genes ephrinB2 and EphB4, and the endothelial gap junction genes connexin (Cx) 37, 40, and 43 under fluidic shear stress to determine their arterial or venous characteristics. We found that iPS-ECs had similar endothelial marker gene expressions and exhibited similar increases in PAI-1 secretion under heat stress as HUVECs and HUAECs. In addition, F-actin arrangement in iPSC-ECs also responded to heat stress, as previously reported. However, they had different expression patterns of arterial and venous marker genes and Cx genes under different fluidic shear stress levels, showing that iPSC-ECs exhibit different characteristics from arterial and venous ECs. This microfluidic culture system equipped with variable shear stress control will provide an easy-to-use assay tool to examine characteristics of iPS-ECs generated by different protocols in various laboratories and contribute to basic and applied biomedical researches on iPS-ECs.

  3. Development of a yeast heterologous expression cassette based on the promoter and terminator elements of the Eremothecium cymbalariae translational elongation factor 1α (EcTEF1) gene.

    PubMed

    Linder, Tomas

    2018-04-01

    A new expression cassette ( EC0 ) consisting of the fused 5' and 3' intergenic regions (IGRs) of the Eremothecium cymbalariae translational elongation factor 1α ( EcTEF1 ) gene was evaluated through expression of the bacterial hygromycin B phosphotransferase ( hph ) resistance gene in the common baker's yeast Saccharomyces cerevisiae . Progressively shorter versions of the hph -containing EC cassette ( hphEC1 though hphEC6 ) with trimmed 5' and 3' EcTEF1 IGRs were tested for their ability to confer resistance to hygromycin B in S. cerevisiae . Hygromycin B resistance was retained in all six generated hphEC variants up to a concentration of 400 mg/L. The hphEC6 cassette was the shortest cassette to be assayed in this study with 366 and 155 bp of the EcTEF1 5' and 3' IGRs, respectively. When tested for deletion of the S. cerevisiae proline oxidase gene PUT1 , the hphEC6 cassette was shown to successfully act as a selection marker on hygromycin B-containing medium. The hphEC6 cassette could be placed immediately adjacent to a kanMX4 G418 disulfate resistance marker without any discernable effect on the ability of the yeast to grow in the presence of both hygromycin B and G418 disulfate. Co-cultivation experiments under non-selective conditions demonstrated that a PUT1 deletion strain carrying the hphEC6 cassette displayed equivalent fitness to an otherwise isogenic PUT1 deletion strain carrying the kanMX4 cassette.

  4. Expression for caffeine biosynthesis and related enzymes in Camellia sinensis.

    PubMed

    Kato, Misako; Kitao, Naoko; Ishida, Mariko; Morimoto, Hanayo; Irino, Fumi; Mizuno, Kouichi

    2010-01-01

    Caffeine (1,3,7-trimethylxanthine) is a purine alkaloid that is present in high concentrations in the tea plant Camellia sinensis. Caffeine synthase (CS, EC 2.1.1.160) catalyzes the S-adenosyl-L-methionine-dependent N-3- and N-1-methylation of the purine base to form caffeine, the last step in the purine alkaloid biosynthetic pathway. We studied the expression profile of the tea caffeine synthase (TCS) gene in developing leaves and flowers by means of northern blot analysis, and compared it with those of phenylalanine ammonia lyase (PAL, EC 4.3.1.5), chalcone synthase (CHS, EC 2.3.1.74), and S-adenosyl-L-methionine synthase (SAMS, EC 2.5.1.6). The amount of TCS transcripts was highest in young leaves and declined markedly during leaf development, whereas it remained constant throughout the development of the flower. Environmental stresses other than heavy metal stress and plant hormone treatments had no effect on the expression of TCS genes, unlike the other three genes. Drought stress suppressed TCS gene expression in leaves, and the expression pattern mirrored that of the dehydrin gene. The amounts of TCS transcripts increased slightly on supply of a nitrogen source. We discuss the regulation of TCS gene expression.

  5. Identification of orange-spotted grouper (Epinephelus coioides) interferon regulatory factor 3 involved in antiviral immune response against fish RNA virus.

    PubMed

    Huang, Youhua; Huang, Xiaohong; Cai, Jia; OuYang, Zhengliang; Wei, Shina; Wei, Jingguang; Qin, Qiwei

    2015-02-01

    Interferon regulatory factor 3 (IRF3) is an important transcription factor which regulates the expression of interferon (IFN) and IFN-stimulated genes (ISGs) following virus recognition. In this study, a novel IRF3 gene was cloned from grouper Epinephelus coioides (EcIRF3) and its effects against Singapore grouper iridovirus (SGIV) and red spotted grouper nervous necrosis virus (RGNNV) was investigated. The full-length of EcIRF3 cDNA was composed of 2513 bp and encoded a polypeptide of 458 amino acids which shared 82% identity with European seabass (Dicentrarchus labrax). EcIRF3 contained three conserved domains including a DNA-binding domain (DBD), an IRF associated domain (IAD) and a serine-rich domain. Expression profile analysis revealed that EcIRF3 was abundant in head kidney, kidney, spleen and gill. Upon different stimuli in vitro, the transcript of EcIRF3 was significantly up-regulated after RGNNV infection or treatment with polyinosin-polycytidylic acid (poly I:C). During SGIV infection, the increase of the EcIRF3 transcription was only detected at the late stage, suggesting that EcIRF3 was differently regulated by different stimuli. Immune fluorescence assay indicated that the fluorescence signal of EcIRF3 was increased significantly after infection with RGNNV or treatment with poly I:C, but moderately at the late stage of SGIV infection. Reporter gene assay showed that EcIRF3 activated zebrafish type I IFN and type III IFN promoter in vitro. The viral gene transcription and virus production of RGNNV were significantly decreased in EcIRF3 overexpressing cells. However, the ectopic expression of EcIRF3 did not affect the gene transcription and virus production of SGIV. Moreover, the mRNA expression levels of type I IFN and IFN-inducible genes (MxI, ISG15 and ISG56) were increased in RGNNV infected EcIRF3 overexpressing cells compared to empty vector transfected cells. Together, our results demonstrated that IFN immune response mediated by grouper IRF3 was exerted crucial roles for fish RNA virus, but not for DNA virus replication. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Comparative gene expression analysis between coronary arteries and internal mammary arteries identifies a role for the TES gene in endothelial cell functions relevant to coronary artery disease.

    PubMed

    Archacki, Stephen R; Angheloiu, George; Moravec, Christine S; Liu, Hui; Topol, Eric J; Wang, Qing Kenneth

    2012-03-15

    Coronary artery disease (CAD) is the leading cause of death worldwide. It has been established that internal mammary arteries (IMA) are resistant to the development of atherosclerosis, whereas left anterior descending (LAD) coronary arteries are athero-prone. The contrasting properties of these two arteries provide an innovative strategy to identify the genes that play important roles in the development of atherosclerosis. We carried out microarray analysis to identify genes differentially expressed between IMA and LAD. Twenty-nine genes showed significant differences in their expression levels between IMA and LAD, which included the TES gene encoding Testin. The role of TES in the cardiovascular system is unknown. Here we show that TES is involved in endothelial cell (EC) functions relevant to atherosclerosis. Western blot analysis showed higher TES expression in IMA than in LAD. Reverse transcription polymerase chain reaction and western blot analyses showed that TES was consistently and markedly down-regulated by more than 6-fold at both mRNA and protein levels in patients with CAD compared with controls without CAD (P= 0.000049). The data suggest that reduced TES expression is associated with the development of CAD. Knockdown of TES expression by small-interfering RNA promoted oxidized-LDL-mediated monocyte adhesion to ECs, EC migration and the transendothelial migration of monocytes, while the over-expression of TES in ECs blunted these processes. These results demonstrate association between reduced TES expression and CAD, establish a novel role for TES in EC functions and raise the possibility that reduced TES expression increases susceptibility to the development of CAD.

  7. Effects of cellular origin on differentiation of human induced pluripotent stem cell–derived endothelial cells

    PubMed Central

    Zhao, Ming-Tao; Jahanbani, Fereshteh; Lee, Won Hee; Snyder, Michael P.

    2016-01-01

    Human induced pluripotent stem cells (iPSCs) can be derived from various types of somatic cells by transient overexpression of 4 Yamanaka factors (OCT4, SOX2, C-MYC, and KLF4). Patient-specific iPSC derivatives (e.g., neuronal, cardiac, hepatic, muscular, and endothelial cells [ECs]) hold great promise in drug discovery and regenerative medicine. In this study, we aimed to evaluate whether the cellular origin can affect the differentiation, in vivo behavior, and single-cell gene expression signatures of human iPSC–derived ECs. We derived human iPSCs from 3 types of somatic cells of the same individuals: fibroblasts (FB-iPSCs), ECs (EC-iPSCs), and cardiac progenitor cells (CPC-iPSCs). We then differentiated them into ECs by sequential administration of Activin, BMP4, bFGF, and VEGF. EC-iPSCs at early passage (10 < P < 20) showed higher EC differentiation propensity and gene expression of EC-specific markers (PECAM1 and NOS3) than FB-iPSCs and CPC-iPSCs. In vivo transplanted EC-iPSC–ECs were recovered with a higher percentage of CD31+ population and expressed higher EC-specific gene expression markers (PECAM1, KDR, and ICAM) as revealed by microfluidic single-cell quantitative PCR (qPCR). In vitro EC-iPSC–ECs maintained a higher CD31+ population than FB-iPSC–ECs and CPC-iPSC–ECs with long-term culturing and passaging. These results indicate that cellular origin may influence lineage differentiation propensity of human iPSCs; hence, the somatic memory carried by early passage iPSCs should be carefully considered before clinical translation. PMID:27398408

  8. Nitrate signals determine the sensing of nitrogen through differential expression of genes involved in nitrogen uptake and assimilation in finger millet.

    PubMed

    Gupta, Alok Kumar; Gaur, Vikram Singh; Gupta, Sanjay; Kumar, Anil

    2013-06-01

    In order to understand the molecular basis of high nitrogen use efficiency of finger millet, five genes (EcHNRT2, EcLNRT1, EcNADH-NR, EcGS, and EcFd-GOGAT) involved in nitrate uptake and assimilation were isolated using conserved primer approaches. Expression profiles of these five genes along with the previously isolated EcDof1 was studied under increased KNO3 concentrations (0.15 to 1,500 μM) for 2 h as well as at 1.5 μM for 24 h in the roots and shoots of 25 days old nitrogen deprived two contrasting finger millet genotypes (GE-3885 and GE-1437) differing in grain protein content (13.76 and 6.15 %, respectively). Time kinetics experiment revealed that, all the five genes except EcHNRT2 in the leaves of GE-3885 were induced within 30 min of nitrate exposure indicating that there might be a greater nitrogen deficit in leaves and therefore quick transportation of nitrate signals to the leaves. Exposing the plants to increasing nitrate concentrations for 2 h showed that in roots of GE-3885, NR was strongly induced while GS was repressed; however, the pattern was found to be reversed in leaves of GE-1437 indicating that in GE-3885, most of the nitrate might be reduced in the roots but assimilated in leaves and vice-versa. Furthermore, compared with the low-protein genotype, expression of HNRT2 was strongly induced in both roots and shoots of high-protein genotype at the least nitrate concentration supplied. This further indicates that GE-3885 is a quick sensor of nitrogen compared with the low-protein genotype. Furthermore, expression of EcDof1 was also found to overlap the expression of NR, GS, and GOGAT indicating that Dof1 probably regulates the expression of these genes under different conditions by sensing the nitrogen fluctuations around the root zone.

  9. Analysis of gene expression profile induced by EMP-1 in esophageal cancer cells using cDNA Microarray

    PubMed Central

    Wang, Hai-Tao; Kong, Jian-Ping; Ding, Fang; Wang, Xiu-Qin; Wang, Ming-Rong; Liu, Lian-Xin; Wu, Min; Liu, Zhi-Hua

    2003-01-01

    AIM: To obtain human esophageal cancer cell EC9706 stably expressed epithelial membrane protein-1 (EMP-1) with integrated eukaryotic plasmid harboring the open reading frame (ORF) of human EMP-1, and then to study the mechanism by which EMP-1 exerts its diverse cellular action on cell proliferation and altered gene profile by exploring the effect of EMP-1. METHODS: The authors first constructed pcDNA3.1/myc-his expression vector harboring the ORF of EMP-1 and then transfected it into human esophageal carcinoma cell line EC9706. The positive clones were analyzed by Western blot and RT-PCR. Moreover, the cell growth curve was observed and the cell cycle was checked by FACS technique. Using cDNA microarray technology, the authors compared the gene expression pattern in positive clones with control. To confirm the gene expression profile, semi-quantitative RT-PCR was carried out for 4 of the randomly picked differentially expressed genes. For those differentially expressed genes, classification was performed according to their function and cellular component. RESULTS: Human EMP-1 gene can be stably expressed in EC9706 cell line transfected with human EMP-1. The authors found the cell growth decreased, among which S phase was arrested and G1 phase was prolonged in the transfected positive clones. By cDNA microarray analysis, 35 genes showed an over 2.0 fold change in expression level after transfection, with 28 genes being consistently up-regulated and 7 genes being down-regulated. Among the classified genes, almost half of the induced genes (13 out of 28 genes) were related to cell signaling, cell communication and particularly to adhesion. CONCLUSION: Overexpression of human EMP-1 gene can inhibit the proliferation of EC9706 cell with S phase arrested and G1 phase prolonged. The cDNA microarray analysis suggested that EMP-1 may be one of regulators involved in cell signaling, cell communication and adhesion regulators. PMID:12632483

  10. Analysis of gene expression profile induced by EMP-1 in esophageal cancer cells using cDNA Microarray.

    PubMed

    Wang, Hai-Tao; Kong, Jian-Ping; Ding, Fang; Wang, Xiu-Qin; Wang, Ming-Rong; Liu, Lian-Xin; Wu, Min; Liu, Zhi-Hua

    2003-03-01

    To obtain human esophageal cancer cell EC9706 stably expressed epithelial membrane protein-1 (EMP-1) with integrated eukaryotic plasmid harboring the open reading frame (ORF) of human EMP-1, and then to study the mechanism by which EMP-1 exerts its diverse cellular action on cell proliferation and altered gene profile by exploring the effect of EMP-1. The authors first constructed pcDNA3.1/myc-his expression vector harboring the ORF of EMP-1 and then transfected it into human esophageal carcinoma cell line EC9706. The positive clones were analyzed by Western blot and RT-PCR. Moreover, the cell growth curve was observed and the cell cycle was checked by FACS technique. Using cDNA microarray technology, the authors compared the gene expression pattern in positive clones with control. To confirm the gene expression profile, semi-quantitative RT-PCR was carried out for 4 of the randomly picked differentially expressed genes. For those differentially expressed genes, classification was performed according to their function and cellular component. Human EMP-1 gene can be stably expressed in EC9706 cell line transfected with human EMP-1. The authors found the cell growth decreased, among which S phase was arrested and G1 phase was prolonged in the transfected positive clones. By cDNA microarray analysis, 35 genes showed an over 2.0 fold change in expression level after transfection, with 28 genes being consistently up-regulated and 7 genes being down-regulated. Among the classified genes, almost half of the induced genes (13 out of 28 genes) were related to cell signaling, cell communication and particularly to adhesion. Overexpression of human EMP-1 gene can inhibit the proliferation of EC9706 cell with S phase arrested and G1 phase prolonged. The cDNA microarray analysis suggested that EMP-1 may be one of regulators involved in cell signaling, cell communication and adhesion regulators.

  11. Fluctuation of Dof1/Dof2 expression ratio under the influence of varying nitrogen and light conditions: involvement in differential regulation of nitrogen metabolism in two genotypes of finger millet (Eleusine coracana L.).

    PubMed

    Gupta, Supriya; Gupta, Sanjay Mohan; Gupta, Alok Kumar; Gaur, Vikram Singh; Kumar, Anil

    2014-08-10

    In order to gain insights into the mechanism of high nitrogen use efficiency (NUE) of finger millet (FM) the role of Dof2 transcription factor (TF), which is a repressor of genes involved in C/N metabolism was investigated. The partial cDNA fragment of EcDof2 (912-bp; GenBank acc. no. KF261117) was isolated and characterized from finger millet (FM) that showed 63% and 58% homology with Dof2 of Zea mays at nucleotide and protein level, respectively. Its expression studies were carried out along with the activator EcDof1 in two genotypes (GE3885, high protein genotype (HPG); GE1437, low protein genotype (LPG)) of FM differing in grain protein contents (13.8% and 6.2%) showed that EcDof2 is expressed in both shoot and root tissues with significantly (p≤0.05) higher expression in the roots. The diurnal expression of both EcDof1 and EcDof2 in shoots was differential having different time of peak expression indicating a differential response to diurnal condition. Under continuous dark conditions, expression of EcDof1 and EcDof2 oscillated in both the genotypes whereas on illumination, the fold expression of EcDof1 was higher as compared to EcDof2. Under increasing nitrate concentration, EcDof2 expression increases in roots and shoots of LPG while it remains unchanged in HPG. However, the EcDof1 expression was found to increase in both genotypes. Further, time kinetics studies under single nitrate concentration revealed that EcDof2 was repressed in the roots of both genotypes whereas EcDof1 oscillated with time. The EcDof1/EcDof2 ratio measured showed differential response under different light and nitrogen conditions. It was higher in the roots of HPG indicating higher activation of genes involved in N uptake and assimilation resulting in high grain protein accumulation. The results indicate that both light and nitrogen concentration influence Dof1 and Dof2 expression and suggests a complex pattern of regulation of genes influenced by these plant specific TFs. In nutshell, the Dof1/Dof2 ratio can serve as an index for measuring the N responsiveness and NUE of crops and can be further validated by Dof2 knock down approach. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Vasohibin-1 is identified as a master-regulator of endothelial cell apoptosis using gene network analysis

    PubMed Central

    2013-01-01

    Background Apoptosis is a critical process in endothelial cell (EC) biology and pathology, which has been extensively studied at protein level. Numerous gene expression studies of EC apoptosis have also been performed, however few attempts have been made to use gene expression data to identify the molecular relationships and master regulators that underlie EC apoptosis. Therefore, we sought to understand these relationships by generating a Bayesian gene regulatory network (GRN) model. Results ECs were induced to undergo apoptosis using serum withdrawal and followed over a time course in triplicate, using microarrays. When generating the GRN, this EC time course data was supplemented by a library of microarray data from EC treated with siRNAs targeting over 350 signalling molecules. The GRN model proposed Vasohibin-1 (VASH1) as one of the candidate master-regulators of EC apoptosis with numerous downstream mRNAs. To evaluate the role played by VASH1 in EC, we used siRNA to reduce the expression of VASH1. Of 10 mRNAs downstream of VASH1 in the GRN that were examined, 7 were significantly up- or down-regulated in the direction predicted by the GRN.Further supporting an important biological role of VASH1 in EC, targeted reduction of VASH1 mRNA abundance conferred resistance to serum withdrawal-induced EC death. Conclusion We have utilised Bayesian GRN modelling to identify a novel candidate master regulator of EC apoptosis. This study demonstrates how GRN technology can complement traditional methods to hypothesise the regulatory relationships that underlie important biological processes. PMID:23324451

  13. The Bioinformatic Analysis of the Dysregulated Genes and MicroRNAs in Entorhinal Cortex, Hippocampus, and Blood for Alzheimer's Disease

    PubMed Central

    Pang, Xiaocong; Zhao, Ying; Wang, Jinhua; Zhou, Qimeng; Xu, Lvjie; Kang, De

    2017-01-01

    Aim The incidence of Alzheimer's disease (AD) has been increasing in recent years, but there exists no cure and the pathological mechanisms are not fully understood. This study aimed to find out the pathogenesis of learning and memory impairment, new biomarkers, potential therapeutic targets, and drugs for AD. Methods We downloaded the microarray data of entorhinal cortex (EC) and hippocampus (HIP) of AD and controls from Gene Expression Omnibus (GEO) database, and then the differentially expressed genes (DEGs) in EC and HIP regions were analyzed for functional and pathway enrichment. Furthermore, we utilized the DEGs to construct coexpression networks to identify hub genes and discover the small molecules which were capable of reversing the gene expression profile of AD. Finally, we also analyzed microarray and RNA-seq dataset of blood samples to find the biomarkers related to gene expression in brain. Results We found some functional hub genes, such as ErbB2, ErbB4, OCT3, MIF, CDK13, and GPI. According to GO and KEGG pathway enrichment, several pathways were significantly dysregulated in EC and HIP. CTSD and VCAM1 were dysregulated significantly in blood, EC, and HIP, which were potential biomarkers for AD. Target genes of four microRNAs had similar GO_terms distribution with DEGs in EC and HIP. In addtion, small molecules were screened out for AD treatment. Conclusion These biological pathways and DEGs or hub genes will be useful to elucidate AD pathogenesis and identify novel biomarkers or drug targets for developing improved diagnostics and therapeutics against AD. PMID:29359159

  14. Identification and characterization of finger millet OPAQUE2 transcription factor gene under different nitrogen inputs for understanding their role during accumulation of prolamin seed storage protein.

    PubMed

    Gaur, Vikram Singh; Kumar, Lallan; Gupta, Supriya; Jaiswal, J P; Pandey, Dinesh; Kumar, Anil

    2018-03-01

    In this study, we report the isolation and characterization of the mRNA encoding OPAQUE2 (O2) like TF of finger millet (FM) ( Eleusine coracana) ( EcO2 ). Full-length EcO2 mRNA was isolated using conserved primers designed by aligning O2 mRNAs of different cereals followed by 3' and 5' RACE (Rapid Amplification of cDNA Ends). The assembled full-length EcO2 mRNA was found to contain an ORF of 1248-nt coding the 416 amino acids O2 protein. Domain analysis revealed the presence of the BLZ and bZIP-C domains which is a characteristic feature of O2 proteins. Phylogenetic analysis of EcO2 protein with other bZIP proteins identified using finger millet transcriptome data and O2 proteins of other cereals showed that EcO2 shared high sequence similarity with barley BLZ1 protein. Transcripts of EcO2 were detected in root, stem, leaves, and seed development stages. Furthermore, to investigate nitrogen responsiveness and the role of EcO2 in regulating seed storage protein gene expression, the expression profiles of EcO2 along with an α-prolamin gene were studied during the seed development stages of two FM genotypes (GE-3885 and GE-1437) differing in grain protein content (13.8 and 6.2%, respectively) grown under increasing nitrogen inputs. Compared to GE-1437, the EcO2 was relatively highly expressed during the S2 stage of seed development which further increased as nitrogen input was increased. The Ecα - prolamin gene was strongly induced in the high protein genotype (GE-3885) at all nitrogen inputs. These results indicate the presence of nitrogen responsiveness regulatory elements which might play an important role in accumulating protein in FM genotypes through modulating EcO2 expression by sensing plant nitrogen status.

  15. miR-145 targets the SOX11 3’UTR to suppress endometrial cancer growth

    PubMed Central

    Chang, Lei; Yuan, Zhongfu; Shi, Huirong; Bian, Yangyang; Guo, Ruixia

    2017-01-01

    To explore the functions of SOX (Sex determining Region Y-related HMG-box) family genes in endometrial cancer (EC) and determine the influence of miR-145/SOX11 on EC cell functions. The relationship between miR-145 and SOX11 was confirmed using TargetScan, miRNA databases and dual-luciferase reporter gene assays. The expression of SOX11 mRNA in tissue specimens was examined using RT-qPCR, while SOX11 protein expression in tissues and cell lines were detected through immunohistochemistry (IHC) and western blotting. After transfection using Lipofectamine 2000, the proliferation, migration, invasion and apoptosis of ECC-1 and HEC-1-A cells were assessed through colony formation, transwell and flow cytometry assays. The correlation of SOX11 expression with the prognosis outcomes of patients was analyzed using Kaplan-Meier analysis and the log-rank test. SOX11 showed high expression in EC, which is negatively correlated with a poor prognostic outcome of EC patients. The expression of miR-145 was lower in EC tissues than in adjacent tissues. MiR-145 significantly reduced the expression of SOX11. In ECC-1 cells, miR-145 suppressed the propagation, migration, and invasion of cells and promoted cell apoptosis. MiR-145 also inhibited the proliferation, migration, and invasion of HEC-1-A cells and facilitated cell apoptosis by inhibiting SOX11. MiR-145 targeted site 3 (3615) of the SOX11 3’UTR to affect the expression of SOX11. MiR-145 and its target gene SOX11 could serve as diagnostic markers for EC. MiR-145 targets the SOX11 3’UTR to inhibit its expression and suppress the propagation and metastasis of EC cells. PMID:29218252

  16. Isolation of prawn ( Exopalaemon carinicauda) lipopolysaccharide and β-1, 3-glucan binding protein gene and its expression in responding to bacterial and viral infections

    NASA Astrophysics Data System (ADS)

    Ge, Qianqian; Li, Jian; Duan, Yafei; Li, Jitao; Sun, Ming; Zhao, Fazhen

    2016-04-01

    The pattern recognition proteins (PRPs) play a major role in immune response of crustacean to resist pathogens. In the present study, as one of PRPs, lipopolysaccharide and β-1, 3-glucan binding protein (LGBP) gene in the ridge tail white prawn ( Exopalaemon carinicauda) ( EcLGBP) was isolated. The full-length cDNA of EcLGBP was 1338 bp, encoding a polypeptide of 366 amino acid residules. The deduced amino acid sequence of EcLGBP shared high similarities with LGBP and BGBP from other crustaceans. Some conservative domains were predicted in EcLGBP sequence. EcLGBP constitutively expressed in most tissues at different levels, and the highest expression was observed in hepatopancreas. With infection time, the cumulative mortality increased gradually followed by the proliferation of Vibrio parahaemolyticus and white spot syndrome virus (WSSV). The expression of EcLGBP in response to V. parahaemolyticus infection was up-regulated in hemocytes and hepatopancreas, and the up-regulation in hepatopancreas was earlier than that in hemocytes. EcLGBP expression after WSSV infection increased at 3 h, then significantly decreased in both hemocytes and hepatopancreas. The results indicated that EcLGBP was involved in the immune defense against bacterial and viral infections.

  17. Rapamycin inhibits the proliferation of endothelial cells in hemangioma by blocking the mTOR-FABP4 pathway.

    PubMed

    Wang, Ying; Chen, Jiarui; Tang, Weiqing; Zhang, Yanping; Li, Xiaoyan

    2017-01-01

    FABP4 is widely expressed in both normal and pathologic tissues. It promotes cell proliferation, survival and migration of endothelial cells, and therefore, angiogenesis. However, the role of FABP4 in hemangioma or hemangioma endothelial cells (HemECs) has not been explored. In this study, we investigated whether FABP4 directly regulates the proliferation of HemECs. The expression of cell cycle checkpoint genes was analyzed with the microarray data of human dermal microvascular endothelial cells (HDVECs) and infantile hemangioma endothelial cells. Real-time RT-PCR and western blotting were used to examine the expression of FABP4 in HemECs. Next, the FABP4 expression was inhibited in HemECs using siRNA or rapamycin and upregulated using retroviral transduction of HemECs to assess its influence on proliferation of HemECs. The microarray data showed that cell cycle checkpoint genes were upregulated in HemECs. Moreover, HemECs showed significantly higher proliferation rates than HDVECs. The expression of FABP4 and mTOR was increased in the HemECs. While FABP4 knockdown reduced the BrdU incorporation and cell number of HemECs as expected, cell proliferation was accelerated by FABP4 over-expression. Moreover, rapamycin (10nM) inhibited mTOR-FABP4 signaling and HemEC proliferation. Taken together, these results indicated that mTOR signaling pathway-activated FABP4 directly regulates the proliferation of endothelial cells in hemangioma. Rapamycin and inhibitors of FABP4 have therapeutic potential for treating infantile hemangiomas. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Identification of LmUAP1 as a 20-hydroxyecdysone response gene in the chitin biosynthesis pathway from the migratory locust, Locusta migratoria.

    PubMed

    Liu, Xiao-Jian; Sun, Ya-Wen; Li, Da-Qi; Li, Sheng; Ma, En-Bo; Zhang, Jian-Zhen

    2018-04-01

    In Locusta migratoria, we found that two chitin biosynthesis genes, UDP N-acetylglucosamine pyrophosphorylase gene LmUAP1 and chitin synthase gene LmCHS1, are expressed mainly in the integument and are responsible for cuticle formation. However, whether these genes are regulated by 20-hydroxyecdysone (20E) is still largely unclear. Here, we showed the developmental expression pattern of LmUAP1, LmCHS1 and the corresponding 20E titer during the last instar nymph stage of locust. RNA interference (RNAi) directed toward a common region of the two isoforms of LmEcR (LmEcRcom) reduced the expression level of LmUAP1, while there was no difference in the expression of LmCHS1. Meantime, injection of 20E in vivo induced the expression of LmUAP1 but not LmCHS1. Further, we found injection-based RNAi of LmEcRcom resulted in 100% mortality. The locusts failed to molt with no apolysis, and maintained in the nymph stage until death. In conclusion, our preliminary results indicated that LmUAP1 in the chitin biosynthesis pathway is a 20E late-response gene and LmEcR plays an essential role in locust growth and development, which could be a good potential target for RNAi-based pest control. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  19. Endothelial cells (ECs) for vascular tissue engineering: venous ECs are less thrombogenic than arterial ECs.

    PubMed

    Geenen, I L A; Molin, D G M; van den Akker, N M S; Jeukens, F; Spronk, H M; Schurink, G W H; Post, M J

    2015-05-01

    Primary endothelial cells (ECs) are the preferred cellular source for luminal seeding of tissue-engineered (TE) vascular grafts. Research into the potential of ECs for vascular TE has focused particularly on venous rather than arterial ECs. In this study we evaluated the functional characteristics of arterial and venous ECs, relevant for vascular TE. Porcine ECs were isolated from femoral artery (PFAECs) and vein (PFVECs). The proliferation rate was comparable for both EC sources, whereas migration, determined through a wound-healing assay, was less profound for PFVECs. EC adhesion was lower for PFVECs on collagen I, measured after 10 min of arterial shear stress. Gene expression was analysed by qRT-PCR for ECs cultured under static conditions and after exposure to arterial shear stress and revealed differences in gene expression, with lower expression of EphrinB2 and VCAM-1 and higher levels of vWF and COUP-TFII in PFVECs than in PFAECs. PFVECs exhibited diminished platelet adhesion under flow and cell-based thrombin generation was delayed for PFVECs, indicating diminished tissue factor (TF) activity. After stimulation, prostacyclin secretion, but not nitric oxide (NO), was lower in PFVECs. Our data support the use of venous ECs for TE because of their beneficial antithrombogenic profile. Copyright © 2012 John Wiley & Sons, Ltd.

  20. Altered expression of genes involved in progesterone biosynthesis, metabolism and action in endometrial cancer.

    PubMed

    Sinreih, Maša; Hevir, Neli; Rižner, Tea Lanišnik

    2013-02-25

    Endometrial cancer (EC) is one of the most common gynecological malignancies worldwide. It is associated with prolonged exposure to estrogens that is unopposed by the protective effects of progesterone, which suggests that altered progesterone biosynthesis, metabolism and actions might be implicated in the development of EC. Our aim was to evaluate these processes through quantitative real-time PCR expression analysis in up to 47 pairs of EC tissue and adjacent control endometrium. First, we examined the expression of genes encoding proteins associated with progesterone biosynthesis: steroidogenic acute regulatory protein (STAR); a side chain cleavage enzyme (CYP11A1); and 3β-hydroxysteroid dehydrogenase/ketosteroid isomerase (HSD3B). There were 1.9- and 10.0-fold decreased expression of STAR and CYP11A1, respectively, in EC versus adjacent control endometrium, with no significant differences in the expression of HSD3B1 and HSD3B2. Next, we examined expression of genes encoding five progesterone metabolizing enzymes: the 3-keto and 20-ketosteroid reductases (AKR1C1-AKR1C3) and 5α-reductases (SRD5A1 and SRD5A2); and the opposing 20α-hydroxysteroid dehydrogenase (HSD17B2). These genes are expressed in EC and adjacent control endometrium. No statistically significant differences were seen in mRNA levels of AKR1C1, AKR1C2, AKR1C3 and SRD5A1. Expression of HSD17B2 was 3.0-fold increased, and expression of SRD5A2 was 3.7-fold decreased, in EC versus adjacent control endometrium. We also examined mRNA levels of progesterone receptors A and B (PGR), and separately the expression of progesterone receptor B (PR-B). Here we saw 1.8- and 2.0-fold lower mRNA levels of PGR and PR-B, respectively, in EC versus adjacent control endometrium. This down-regulation of STAR, CYP11A1 and PGR in endometrial cancer may lead to decreased progesterone biosynthesis and actions although the effects on progesterone levels should be further studied. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  1. Expression of HES and HEY genes in infantile hemangiomas.

    PubMed

    Adepoju, Omotinuwe; Wong, Alvin; Kitajewski, Alex; Tong, Karen; Boscolo, Elisa; Bischoff, Joyce; Kitajewski, Jan; Wu, June K

    2011-08-11

    Infantile hemangiomas (IHs) are the most common benign tumor of infancy, yet their pathogenesis is poorly understood. IHs are believed to originate from a progenitor cell, the hemangioma stem cell (HemSC). Recent studies by our group showed that NOTCH proteins and NOTCH ligands are expressed in hemangiomas, indicating Notch signaling may be active in IHs. We sought to investigate downstream activation of Notch signaling in hemangioma cells by evaluating the expression of the basic HLH family proteins, HES/HEY, in IHs. HemSCs and hemangioma endothelial cells (HemECs) are isolated from freshly resected hemangioma specimens. Quantitative RT-PCR was performed to probe for relative gene transcript levels (normalized to beta-actin). Immunofluorescence was performed to evaluate protein expression. Co-localization studies were performed with CD31 (endothelial cells) and NOTCH3 (peri-vascular, non-endothelial cells). HemSCs were treated with the gamma secretase inhibitor (GSI) Compound E, and gene transcript levels were quantified with real-time PCR. HEY1, HEYL, and HES1 are highly expressed in HemSCs, while HEY2 is highly expressed in HemECs. Protein expression evaluation by immunofluorescence confirms that HEY2 is expressed by HemECs (CD31+ cells), while HEY1, HEYL, and HES1 are more widely expressed and mostly expressed by perivascular cells of hemangiomas. Inhibition of Notch signaling by addition of GSI resulted in down-regulation of HES/HEY genes. HES/HEY genes are expressed in IHs in cell type specific patterns; HEY2 is expressed in HemECs and HEY1, HEYL, HES1 are expressed in HemSCs. This pattern suggests that HEY/HES genes act downstream of Notch receptors that function in distinct cell types of IHs. HES/HEY gene transcripts are decreased with the addition of a gamma-secretase inhibitor, Compound E, demonstrating that Notch signaling is active in infantile hemangioma cells.

  2. Expression of NAD(P)H quinone dehydrogenase 1 (NQO1) is increased in the endometrium of women with endometrial cancer and women with polycystic ovary syndrome.

    PubMed

    Atiomo, William; Shafiee, Mohamad Nasir; Chapman, Caroline; Metzler, Veronika M; Abouzeid, Jad; Latif, Ayşe; Chadwick, Amy; Kitson, Sarah; Sivalingam, Vanitha N; Stratford, Ian J; Rutland, Catrin S; Persson, Jenny L; Ødum, Niels; Fuentes-Utrilla, Pablo; Jeyapalan, Jennie N; Heery, David M; Crosbie, Emma J; Mongan, Nigel P

    2017-11-01

    Women with a prior history of polycystic ovary syndrome (PCOS) have an increased risk of endometrial cancer (EC). To investigate whether the endometrium of women with PCOS possesses gene expression changes similar to those found in EC. Patients with EC, PCOS and control women unaffected by either PCOS or EC were recruited into a cross-sectional study at the Nottingham University Hospital, UK. For RNA sequencing, representative individual endometrial biopsies were obtained from women with EC, PCOS and a woman unaffected by PCOS or EC. Expression of a subset of differentially expressed genes identified by RNA sequencing, including NAD(P)H quinone dehydrogenase 1 (NQO1), was validated by quantitative reverse transcriptase PCR validation (n = 76) and in the cancer genome atlas UCEC (uterine corpus endometrioid carcinoma) RNA sequencing data set (n = 381). The expression of NQO1 was validated by immunohistochemistry in EC samples from a separate cohort (n = 91) comprised of consecutive patients who underwent hysterectomy at St Mary's Hospital, Manchester, between 2011 and 2013. A further 6 postmenopausal women with histologically normal endometrium who underwent hysterectomy for genital prolapse were also included. Informed consent and local ethics approval were obtained for the study. We show for the first that NQO1 expression is significantly increased in the endometrium of women with PCOS and EC. Immunohistochemistry confirms significantly increased NQO1 protein expression in EC relative to nonmalignant endometrial tissue (P < .0001). The results obtained here support a previously unrecognized molecular link between PCOS and EC involving NQO1. © 2017 The Authors. Clinical Endocrinology Published by John Wiley & Sons Ltd.

  3. The ICAM-1 expression level determines the susceptibility of human endothelial cells to simulated microgravity.

    PubMed

    Buravkova, Ludmila B; Rudimov, Eugene G; Andreeva, Elena R; Grigoriev, Anatoly I

    2018-03-01

    Microgravity is a principal risk factor hampering human cardiovascular regulation during space flights. Endothelial dysfunction associated with the impaired integrity and uniformity of the monolayer represents a potential trigger for vascular damage. We characterized the expression profile of the multi-step cascade of adhesion molecules (ICAM-1, VCAM-1, E-selectin, VE-cadherin) in umbilical cord endothelial cells (ECs) after 24 h of exposure to simulated microgravity (SMG), pro-inflammatory cytokine TNF-α, and the combination of the two. Random Positioning Machine (RPM)-mediated SMG was used to mimic microgravity effects. SMG stimulated the expression of E-selectin, which is known to be involved in slowing leukocyte rolling. Primary ECs displayed heterogeneity with respect to the proportion of ICAM-1-positive cells. ECs were divided into two groups: pre-activated ECs displaying high proportion of ICAM-1 + -cells (ECs-1) (greater than 50%) and non-activated ECs with low proportion of ICAM-1 + -cells (ECs-2) (less than 25%). Only non-activated ECs-2 responded to SMG by elevating gene transcription and increasing ICAM-1 and VE-cadherin expression. This effect was enhanced after cumulative SMG-TNF-α exposure. ECs-1 displayed an unexpected decrease in number of E-selectin- and ICAM-1-positive ECs and pronounced up-regulation of VCAM1 upon activation of inflammation, which was partially abolished by SMG. Thus, non-activated ECs-2 are quite resistant to the impacts of microgravity and even exhibited an elevation of the VE-cadherin gene and protein expression, thus improving the integrity of the endothelial monolayer. Pre-activation of ECs with inflammatory stimuli may disturb the EC adhesion profile, attenuating its barrier function. These alterations may be among the mechanisms underlying cardiovascular dysregulation in real microgravity conditions. © 2017 Wiley Periodicals, Inc.

  4. A copper-induced metallothionein gene from Exopalaemon carinicauda and its response to heavy metal ions.

    PubMed

    Zhang, Jiquan; Wang, Jing; Gui, Tianshu; Sun, Zheng; Xiang, Jianhai

    2014-09-01

    A full-length copper-induced metallothionein (EcMT-Cu) cDNA was obtained from Exopalaemon carinicauda (Holthuis) and it contained a 198 bp open reading frame that encoded a peptide with 65 amino acid residues. Twenty-one cysteines were found in deduced amino acid sequence and the cysteine (Cys)-rich characteristic was also reported in different types of metallothioneins from other species. EcMT-Cu mRNA expression profile showed that it is the hepatopancreas specific gene. The expression of EcMT-Cu was extremely different when shrimp were exposed to seawater containing 50 μM CuSO4 or 2.5 μM CdCl2. The expression of EcMT-Cu in shrimp was significantly up-regulated at 12 and 24 h after exposure to CuSO4, however, its expression was not induced compared to that of pretreatment (p>0.05) when shrimp were exposed to CdCl2. The transcript of EcMT-Cu was found to be extremely low at gastrula and nauplius stage and expression of EcMT-Cu could be detected from egg protozoa stage. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Downregulation of microRNA expression in the lungs of rats exposed to cigarette smoke

    PubMed Central

    Izzotti, Alberto; Calin, George A.; Arrigo, Patrizio; Steele, Vernon E.; Croce, Carlo M.; De Flora, Silvio

    2009-01-01

    Although microRNAs have been investigated extensively in cancer research, little is known regarding their response to noxious agents in apparently healthy tissues. We analyzed the expression of 484 miRNAs in the lungs of rats exposed to environmental cigarette smoke (ECS) for 28 days. ECS down-regulated 126 miRNAs (26.0%) at least 2-fold and 24 miRNAs more than 3-fold. We previously demonstrated that 107 of 4858 genes (2.9%) and 50 of 518 proteins (9.7%) were up-regulated by ECS in the same tissue, which is consistent with the role of microRNAs as negative regulators of gene expression. The most remarkably down-regulated microRNAs belonged to the families of let-7, miR-10, miR-26, miR-30, miR-34, miR-99, miR-122, miR-123, miR-124, miR-125, miR-140, miR-145, miR-146, miR-191, miR-192, miR-219, miR-222, and miR-223, which regulate stress response, apoptosis, proliferation, angiogenesis, and expression of genes. In contrast, miR-294, an inhibitor of transcriptional repressor genes, was up-regulated by ECS. There was a strong parallelism in dysregulation of rodent microRNAs and their human homologues, which are often transcribed from genes localized in fragile sites deleted in lung cancer. Five ECS-down-regulated microRNAs are known to be affected by single nucleotide polymorphisms. Thus, changes in microRNA expression are an early event following exposure to cigarette smoke.—Izzotti, A., Calin, G. A., Arrigo, P., Steele, V. E., Croce, C. M., De Flora, S. Downregulation of microRNA expression in the lungs of rats exposed to cigarette smoke. PMID:18952709

  6. Relevance of estrogen-related receptor gene and ecdysone receptor gene in adult testis of the cricket Teleogryllus emma (Orthoptera: Gryllidae)

    NASA Astrophysics Data System (ADS)

    Jin, Wenjie; Jia, Yishu; Tan, E.; Xi, Gengsi

    2017-12-01

    Estrogen-related receptor gene ( ERR) and ecdysone receptor gene ( EcR) belong to the nuclear receptor gene superfamily, both of which are associated with the regulation of insect reproductive development. However, the relationship between ERR and EcR and whether ERR participates in the 20E signal pathway during male reproduction are unclear. In this paper, adult male crickets Teleogryllus emma Ohmschi & Matsumura were divided into the experimental group, negative group, and control group. Crickets of the experimental group were injected with TeERR or TeEcR-dsRNA, and those in the negative group received EGFP-dsRNA. The efficiency of TeERR and TeEcR-RNAi was detected in the experimental group. Furthermore, the transcription level, morphological characteristics as well as weight were analyzed in the TeERR or TeEcR knocked-down testis. Results showed that the expression level of TeERR or TeEcR was significantly down-regulated ( P < 0.05) when treated with 2000 ng TeERR or TeEcR-dsRNA for 48 h. The expression level of TeERR could be down-regulated ( P < 0.05) using TeEcR-RNAi and vice versa. TeERR and TeEcR-RNAi caused morphological changes in testes, but they had no obvious effect on weight ( P > 0.05). These results indicate that TeERR and TeEcR are intimately related to each other. In addition, TeERR may be involved in the 20E signal pathway and maintain the function of adult cricket testis.

  7. Activation of AMPK stimulates heme oxygenase-1 gene expression and human endothelial cell survival

    PubMed Central

    Liu, Xiao-ming; Peyton, Kelly J.; Shebib, Ahmad R.; Wang, Hong; Korthuis, Ronald J.

    2011-01-01

    The present study determined whether AMP-activated protein kinase (AMPK) regulates heme oxygenase (HO)-1 gene expression in endothelial cells (ECs) and if HO-1 contributes to the biological actions of this kinase. Treatment of human ECs with the AMPK activator 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) stimulated a concentration- and time-dependent increase in HO-1 protein and mRNA expression that was associated with a prominent increase in nuclear factor-erythroid 2-related factor 2 (Nrf2) protein. Induction of HO-1 was also observed in rat carotid arteries after the in vivo application of AICAR. Induction of HO-1 by AICAR was blocked by the AMPK inhibitor compound C, the adenosine kinase inhibitor 5′-iodotubercidin, and by silencing AMPK-α1/2 and was mimicked by the AMPK activator A-769662 and by infecting ECs with an adenovirus expressing constitutively active AMPK-α1. AICAR also induced a significant rise in HO-1 promoter activity that was abolished by mutating the antioxidant responsive elements of the HO-1 promoter or by the overexpression of dominant negative Nrf2. Finally, activation of AMPK inhibited cytokine-mediated EC death, and this was prevented by the HO inhibitor tin protoporphyrin-IX or by silencing HO-1 expression. In conclusion, AMPK stimulates HO-1 gene expression in human ECs via the Nrf2/antioxidant responsive element signaling pathway. The induction of HO-1 mediates the antiapoptotic effect of AMPK, and this may provide an important adaptive response to preserve EC viability during periods of metabolic stress. PMID:21037234

  8. Relevance of estrogen-related receptor gene and ecdysone receptor gene in adult testis of the cricket Teleogryllus emma (Orthoptera: Gryllidae).

    PubMed

    Jin, Wenjie; Jia, Yishu; Tan, E; Xi, Gengsi

    2017-10-30

    Estrogen-related receptor gene (ERR) and ecdysone receptor gene (EcR) belong to the nuclear receptor gene superfamily, both of which are associated with the regulation of insect reproductive development. However, the relationship between ERR and EcR and whether ERR participates in the 20E signal pathway during male reproduction are unclear. In this paper, adult male crickets Teleogryllus emma Ohmschi & Matsumura were divided into the experimental group, negative group, and control group. Crickets of the experimental group were injected with TeERR or TeEcR-dsRNA, and those in the negative group received EGFP-dsRNA. The efficiency of TeERR and TeEcR-RNAi was detected in the experimental group. Furthermore, the transcription level, morphological characteristics as well as weight were analyzed in the TeERR or TeEcR knocked-down testis. Results showed that the expression level of TeERR or TeEcR was significantly down-regulated (P < 0.05) when treated with 2000 ng TeERR or TeEcR-dsRNA for 48 h. The expression level of TeERR could be down-regulated (P < 0.05) using TeEcR-RNAi and vice versa. TeERR and TeEcR-RNAi caused morphological changes in testes, but they had no obvious effect on weight (P > 0.05). These results indicate that TeERR and TeEcR are intimately related to each other. In addition, TeERR may be involved in the 20E signal pathway and maintain the function of adult cricket testis.

  9. Molecular Analysis of Mixed Endometrioid and Serous Adenocarcinoma of the Endometrium

    PubMed Central

    Lawrenson, Kate; Pakzamir, Elham; Liu, Biao; Lee, Janet M.; Delgado, Melissa K.; Duncan, Kara; Gayther, Simon A.; Liu, Song; Roman, Lynda; Mhawech-Fauceglia, Paulette

    2015-01-01

    Background The molecular biology and cellular origins of mixed type endometrial carcinomas (MT-ECs) are poorly understood, and a Type II component of 10 percent or less may confer poorer prognoses. Methodology/Principal Findings We studied 10 cases of MT-EC (containing endometrioid and serous differentiation), 5 pure low-grade endometrioid adenocarcinoma (EAC) and 5 pure uterine serous carcinoma (USC). Endometrioid and serous components of the MT-ECs were macrodissected and the expression of 60 candidate genes compared between MT-EC, pure USC and pure EAC. We found that four genes were differentially expressed when MT-ECs were compared to pure low-grade EAC: CDKN2A (P = 0.006), H19 (P = 0.010), HOMER2 (P = 0.009) and TNNT1 (P = 0.006). Also while we found that even though MT-ECs closely resembled the molecular profiles of pure USCs, they also exhibit lower expression of PAX8 compared to all pure cases combined (P = 0.035). Conclusion Our data suggest that MT-EC exhibits the closest molecular and epidemiological similarities to pure USC and supports clinical observations that suggest patients with MT-EC should receive the same treatment as patients with pure serous carcinoma. Novel specific markers of MT-EC could be of diagnostic utility and could represent novel therapeutic targets in the future. PMID:26132201

  10. Peripheral Endocannabinoid System Activity in Patients Treated With Sibutramine

    PubMed Central

    Engeli, Stefan; Heusser, Karsten; Janke, Jürgen; Gorzelniak, Kerstin; Bátkai, Sándor; Pacher, Pál; Harvey-White, Judith; Luft, Friedrich C.; Jordan, Jens

    2008-01-01

    Objective The endocannabinoid system (ECS) promotes weight gain and obesity-associated metabolic changes. Weight loss interventions may influence obesity-associated risk indirectly through modulation of the peripheral ECS. We investigated the effect of acute and chronic treatment with sibutramine on components of the peripheral ECS. Methods and Procedures Twenty obese otherwise healthy patients received randomized, double-blind, crossover treatment with placebo and 15 mg/day sibutramine for 5 days each, followed by 12 weeks open-label sibutramine treatment. We determined circulating anandamide and 2-arachidonoylglycerol and expression levels of endocannabinoid genes in subcutaneous abdominal adipose tissue biopsies. Results Body weight was stable during the acute treatment period and decreased by 6.0 ± 0.8 kg in those patients completing 3 months of sibutramine treatment (P < 0.05). Circulating endocannabinoids and the expression of ECS genes did not change with acute or chronic sibutramine treatment. Discussion The ECS is activated in obesity. We did not find any influence of 5% body weight loss induced by sibutramine on circulating levels of endocannabinoids and adipose-tissue expression of endocannabinoid genes in obese subjects. These data confirm our previous findings on dietary weight loss and suggest that the dysregulation of the ECS may be a cause rather than a consequence of obesity. PMID:18356837

  11. The myeloid-binding peptide adenoviral vector enables multi-organ vascular endothelial gene targeting.

    PubMed

    Lu, Zhi Hong; Kaliberov, Sergey; Zhang, Jingzhu; Muz, Barbara; Azab, Abdel K; Sohn, Rebecca E; Kaliberova, Lyudmila; Du, Yingqiu; Curiel, David T; Arbeit, Jeffrey M

    2014-08-01

    Vascular endothelial cells (ECs) are ideal gene therapy targets as they provide widespread tissue access and are the first contact surfaces following intravenous vector administration. Human recombinant adenovirus serotype 5 (Ad5) is the most frequently used gene transfer system because of its appreciable transgene payload capacity and lack of somatic mutation risk. However, standard Ad5 vectors predominantly transduce liver but not the vasculature following intravenous administration. We recently developed an Ad5 vector with a myeloid cell-binding peptide (MBP) incorporated into the knob-deleted, T4 fibritin chimeric fiber (Ad.MBP). This vector was shown to transduce pulmonary ECs presumably via a vector handoff mechanism. Here we tested the body-wide tropism of the Ad.MBP vector, its myeloid cell necessity, and vector-EC expression dose response. Using comprehensive multi-organ co-immunofluorescence analysis, we discovered that Ad.MBP produced widespread EC transduction in the lung, heart, kidney, skeletal muscle, pancreas, small bowel, and brain. Surprisingly, Ad.MBP retained hepatocyte tropism albeit at a reduced frequency compared with the standard Ad5. While binding specifically to myeloid cells ex vivo, multi-organ Ad.MBP expression was not dependent on circulating monocytes or macrophages. Ad.MBP dose de-escalation maintained full lung-targeting capacity but drastically reduced transgene expression in other organs. Swapping the EC-specific ROBO4 for the CMV promoter/enhancer abrogated hepatocyte expression but also reduced gene expression in other organs. Collectively, our multilevel targeting strategy could enable therapeutic biological production in previously inaccessible organs that pertain to the most debilitating or lethal human diseases.

  12. Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature

    NASA Astrophysics Data System (ADS)

    Dai, Guohao; Kaazempur-Mofrad, Mohammad R.; Natarajan, Sripriya; Zhang, Yuzhi; Vaughn, Saran; Blackman, Brett R.; Kamm, Roger D.; García-Cardeña, Guillermo; Gimbrone, Michael A., Jr.

    2004-10-01

    Atherosclerotic lesion localization to regions of disturbed flow within certain arterial geometries, in humans and experimental animals, suggests an important role for local hemodynamic forces in atherogenesis. To explore how endothelial cells (EC) acquire functional/dysfunctional phenotypes in response to vascular region-specific flow patterns, we have used an in vitro dynamic flow system to accurately reproduce arterial shear stress waveforms on cultured human EC and have examined the effects on EC gene expression by using a high-throughput transcriptional profiling approach. The flow patterns in the carotid artery bifurcations of several normal human subjects were characterized by using 3D flow analysis based on actual vascular geometries and blood flow profiles. Two prototypic arterial waveforms, "athero-prone" and "athero-protective," were defined as representative of the wall shear stresses in two distinct regions of the carotid artery (carotid sinus and distal internal carotid artery) that are typically "susceptible" or "resistant," respectively, to atherosclerotic lesion development. These two waveforms were applied to cultured EC, and cDNA microarrays were used to analyze the differential patterns of EC gene expression. In addition, the differential effects of athero-prone vs. athero-protective waveforms were further characterized on several parameters of EC structure and function, including actin cytoskeletal organization, expression and localization of junctional proteins, activation of the NF-B transcriptional pathway, and expression of proinflammatory cytokines and adhesion molecules. These global gene expression patterns and functional data reveal a distinct phenotypic modulation in response to the wall shear stresses present in atherosclerosis-susceptible vs. atherosclerosis-resistant human arterial geometries.

  13. Dynamically and epigenetically coordinated GATA/ETS/SOX transcription factor expression is indispensable for endothelial cell differentiation

    PubMed Central

    Nakaki, Ryo; Shimamura, Teppei; Matsunaga, Taichi; Yamamizu, Kohei; Katayama, Shiori; Suehiro, Jun-ichi; Osawa, Tsuyoshi; Aburatani, Hiroyuki; Kodama, Tatsuhiko; Wada, Youichiro; Yamashita, Jun K.

    2017-01-01

    Abstract Although studies of the differentiation from mouse embryonic stem (ES) cells to vascular endothelial cells (ECs) provide an excellent model for investigating the molecular mechanisms underlying vascular development, temporal dynamics of gene expression and chromatin modifications have not been well studied. Herein, using transcriptomic and epigenomic analyses based on H3K4me3 and H3K27me3 modifications at a genome-wide scale, we analysed the EC differentiation steps from ES cells and crucial epigenetic modifications unique to ECs. We determined that Gata2, Fli1, Sox7 and Sox18 are master regulators of EC that are induced following expression of the haemangioblast commitment pioneer factor, Etv2. These master regulator gene loci were repressed by H3K27me3 throughout the mesoderm period but rapidly transitioned to histone modification switching from H3K27me3 to H3K4me3 after treatment with vascular endothelial growth factor. SiRNA knockdown experiments indicated that these regulators are indispensable not only for proper EC differentiation but also for blocking the commitment to other closely aligned lineages. Collectively, our detailed epigenetic analysis may provide an advanced model for understanding temporal regulation of chromatin signatures and resulting gene expression profiles during EC commitment. These studies may inform the future development of methods to stimulate the vascular endothelium for regenerative medicine. PMID:28334937

  14. Induction of the early-late Ddc gene during Drosophila metamorphosis by the ecdysone receptor.

    PubMed

    Chen, Li; Reece, Christian; O'Keefe, Sandra L; Hawryluk, Gregory W L; Engstrom, Monica M; Hodgetts, Ross B

    2002-06-01

    During Drosophila metamorphosis, the 'early-late' genes constitute a unique class regulated by the steroid hormone 20-hydroxyecdysone. Their induction is comprised of both a primary and a secondary response to ecdysone. Previous work has suggested that the epidermal expression of the dopa decarboxylase gene (Ddc) is likely that of a typical early-late gene. Accumulation of the Ddc transcript is rapidly initiated in the absence of protein synthesis, which implies that the ecdysone receptor plays a direct role in induction. However, full Ddc expression requires the participation of one of the transcription factors encoded by the Broad-Complex. In this paper, we characterize an ecdysone response element (EcRE) that contributes to the primary response. Using gel mobility shift assays and transgenic assays, we identified a single functional EcRE, located at position -97 to -83 bp relative to the transcription initiation site. This is the first report of an EcRE associated with an early-late gene in Drosophila. Competition experiments indicated that the affinity of the Ddc EcRE for the ecdysone receptor complex was at least four-fold less than that of the canonical EcRE of the hsp27 gene. Using in vitro mutagenesis, we determined that the reduced affinity of the EcRE resided at two positions where the nucleotides differed from those found in the canonical sequence. The ecdysone receptor, acting through this EcRE, releases Ddc from a silencing mechanism, whose cis-acting domain we have mapped to the 5'-upstream region between -2067 and -1427 bp. Deletion of this repressive element resulted in precocious expression of Ddc in both epidermis and imaginal discs. Thus, epidermal Ddc induction at pupariation is under the control of an extended genomic region that contains both positive and negative regulatory elements. Copyright 2002 Elsevier Science Ireland Ltd.

  15. Efficient gene disruption in cultured primary human endothelial cells by CRISPR/Cas9.

    PubMed

    Abrahimi, Parwiz; Chang, William G; Kluger, Martin S; Qyang, Yibing; Tellides, George; Saltzman, W Mark; Pober, Jordan S

    2015-07-03

    The participation of endothelial cells (EC) in many physiological and pathological processes is widely modeled using human EC cultures, but genetic manipulation of these untransformed cells has been technically challenging. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 nuclease (Cas9) technology offers a promising new approach. However, mutagenized cultured cells require cloning to yield homogeneous populations, and the limited replicative lifespan of well-differentiated human EC presents a barrier for doing so. To create a simple but highly efficient method using CRISPR/Cas9 to generate biallelic gene disruption in untransformed human EC. To demonstrate proof-of-principle, we used CRISPR/Cas9 to disrupt the gene for the class II transactivator. We used endothelial colony forming cell-derived EC and lentiviral vectors to deliver CRISPR/Cas9 elements to ablate EC expression of class II major histocompatibility complex molecules and with it, the capacity to activate allogeneic CD4(+) T cells. We show the observed loss-of-function arises from biallelic gene disruption in class II transactivator that leaves other essential properties of the cells intact, including self-assembly into blood vessels in vivo, and that the altered phenotype can be rescued by reintroduction of class II transactivator expression. CRISPR/Cas9-modified human EC provides a powerful platform for vascular research and for regenerative medicine/tissue engineering. © 2015 American Heart Association, Inc.

  16. Specific gene delivery to liver sinusoidal and artery endothelial cells.

    PubMed

    Abel, Tobias; El Filali, Ebtisam; Waern, Johan; Schneider, Irene C; Yuan, Qinggong; Münch, Robert C; Hick, Meike; Warnecke, Gregor; Madrahimov, Nodir; Kontermann, Roland E; Schüttrumpf, Jörg; Müller, Ulrike C; Seppen, Jurgen; Ott, Michael; Buchholz, Christian J

    2013-09-19

    Different types of endothelial cells (EC) fulfill distinct tasks depending on their microenvironment. ECs are therefore difficult to genetically manipulate ex vivo for functional studies or gene therapy. We assessed lentiviral vectors (LVs) targeted to the EC surface marker CD105 for in vivo gene delivery. The mouse CD105-specific vector, mCD105-LV, transduced only CD105-positive cells in primary liver cell cultures. Upon systemic injection, strong reporter gene expression was detected in liver where mCD105-LV specifically transduced liver sinusoidal ECs (LSECs) but not Kupffer cells, which were mainly transduced by nontargeted LVs. Tumor ECs were specifically targeted upon intratumoral vector injection. Delivery of the erythropoietin gene with mCD105-LV resulted in substantially increased erythropoietin and hematocrit levels. The human CD105-specific vector (huCD105-LV) transduced exclusively human LSECs in mice transplanted with human liver ECs. Interestingly, when applied at higher dose and in absence of target cells in the liver, huCD105-LV transduced ECs of a human artery transplanted into the descending mouse aorta. The data demonstrate for the first time targeted gene delivery to specialized ECs upon systemic vector administration. This strategy offers novel options to better understand the physiological functions of ECs and to treat genetic diseases such as those affecting blood factors.

  17. EcR expression in the prothoracicotropic hormone-producing neurosecretory cells of the Bombyx mori brain.

    PubMed

    Hossain, Monwar; Shimizu, Sakiko; Fujiwara, Haruhiko; Sakurai, Sho; Iwami, Masafumi

    2006-08-01

    The steroid hormone 20-hydroxyecdysone (20E) initiates insect molting and metamorphosis through binding with a heterodimer of two nuclear receptors, the ecdysone receptor (EcR) and ultraspiracle (USP). Expression of the specific isoforms EcR-A and EcR-B1 governs steroid-induced responses in the developing cells of the silkworm Bombyx mori. Here, analysis of EcR-A and EcR-B1 expression during larval-pupal development showed that both genes were up-regulated by 20E in the B. mori brain. Whole-mount in situ hybridization and immunohistochemistry revealed that EcR-A and EcR-B1 mRNAs and proteins were exclusively located in two pairs of lateral neurosecretory cells in the larval brain known as the prothoracicotropic hormone (PTTH)- producing cells (PTPCs). In the pupal brain, EcR-A and EcR-B1 expression was detected in tritocerebral cells and optic lobe cells in addition to PTPCs. As PTTH controls ecdysone secretion by the prothoracic gland, these results indicate that 20E-responsive PTPCs are the master cells of insect metamorphosis.

  18. MicroRNA-281 regulates the expression of ecdysone receptor (EcR) isoform B in the silkworm, Bombyx mori

    USDA-ARS?s Scientific Manuscript database

    Hundreds of Bombyx mori miRNAs had been identified in recent years, but their function in vivo remains poorly understood. The silkworm EcR gene (BmEcR) has three transcriptional isoforms, A, B1 and B2. Isoform sequences are different in the 3’UTR region of the gene, which is the case only in insects...

  19. Expression of four phosphate transporter genes from Finger millet (Eleusine coracana L.) in response to mycorrhizal colonization and Pi stress.

    PubMed

    Pudake, Ramesh Namdeo; Mehta, Chandra Mohan; Mohanta, Tapan Kumar; Sharma, Suvigya; Varma, Ajit; Sharma, Anil Kumar

    2017-05-01

    Phosphorus (P) is a vital nutrient for plant growth and development, and is absorbed in cells with the help of membrane-spanning inorganic phosphate transporter (Pht) protein. Symbiosis with arbuscular mycorrhiza (AM) also helps in transporting P from the soil to plant and Pht proteins play an important role in it. To understand this phenomenon in Finger Mille plant, we have cloned four Pht genes from Finger millet, which shares the homology with Pht1 protein family of cereals. Expression pattern analysis during the AM infection indicated that EcPT4 gene was AM specific, and its expression was higher in roots where AM colonization percentage was high. The expression level of EcPT1-4 gene under the phosphorous (Pi) stress in seedlings was found to be consistent with its role in acquisition of phosphorus. Homology study of the EcPt proteins with Pht proteins of cereals shows close relationship. The findings of the study indicate that Pht1 family genes from finger millet can serve to be an important resource for the better understanding of phosphorus use efficiency.

  20. Effects of blue light on flavonoid accumulation linked to the expression of miR393, miR394 and miR395 in longan embryogenic calli

    PubMed Central

    Li, Hansheng; Lin, Yuling; Chen, Xiaohui; Bai, Yu; Wang, Congqiao; Xu, Xiaoping; Wang, Yun

    2018-01-01

    While flavonoid metabolism’s regulation under light conditions by structural genes and transcription factors is understood, the roles of microRNAs (miRNAs) in this pathway have been rarely reported. In this paper, the accurate control of light was firstly enabled through the specially designed plant growth chamber which ensures consistency and accuracy of the cultivation of longan ECs and the repeatability of the experiments. Then, longan ECs were cultured in this chamber for 25 days. The change of growth rate of longan ECs was compared under different light qualities (dark, blue, green, white, green), intensities (16, 32, 64, 128, 256 μmol ·m-2 ·s-1), and durations (8 h, 12 h, 16 h, 20h, 24h). Results indicated that longan ECs had a high growth rate in the condition of blue or green light, at intensity ranged from 16 μmol·m-2·s-1 to 64 μmol·m-2·s-1, and duration from 8 h to 16 h. In addition, the contents of total flavonoids, rutin, and epicatechin were determined. Results indicated that flavonoid contents of longan ECs reached the highest value under blue light, at 32 μmol·m-2·s-1 and 12h/d. Blue light promoted the accumulation of epicatechin, but inhibited the synthesis of rutin. Finally, the expressions of flavonoid pathway genes, miRNAs and target genes were analyzed by qPCR. These results indicated that miR393 and its target gene DlTIR1-3, miR394 and its target gene DlAlMT12, and miR395 and its target gene DlAPS1 had a negative regulating relationship under blue light in longan ECs. Furthermore, miR393, miR394, and miR395 acted on target genes, which negatively regulated flavonoid key genes DlFLS and positively regulated key genes DlCHS, DlCHI, DlF3′H, DlDFR, DlLAR, and finally affected the accumulation of flavonoids. The treatment of longan ECs under the blue light at the intensity of 32 μmol·m-2·s-1 for 12 h/d inhibited the expression of miR393, miR394 and miR395, which promoted the expression of target genes and the accumulation of flavonoids and epicatechin, but inhibited the synthesis of rutin. PMID:29381727

  1. Effects of blue light on flavonoid accumulation linked to the expression of miR393, miR394 and miR395 in longan embryogenic calli.

    PubMed

    Li, Hansheng; Lin, Yuling; Chen, Xiaohui; Bai, Yu; Wang, Congqiao; Xu, Xiaoping; Wang, Yun; Lai, Zhongxiong

    2018-01-01

    While flavonoid metabolism's regulation under light conditions by structural genes and transcription factors is understood, the roles of microRNAs (miRNAs) in this pathway have been rarely reported. In this paper, the accurate control of light was firstly enabled through the specially designed plant growth chamber which ensures consistency and accuracy of the cultivation of longan ECs and the repeatability of the experiments. Then, longan ECs were cultured in this chamber for 25 days. The change of growth rate of longan ECs was compared under different light qualities (dark, blue, green, white, green), intensities (16, 32, 64, 128, 256 μmol ·m-2 ·s-1), and durations (8 h, 12 h, 16 h, 20h, 24h). Results indicated that longan ECs had a high growth rate in the condition of blue or green light, at intensity ranged from 16 μmol·m-2·s-1 to 64 μmol·m-2·s-1, and duration from 8 h to 16 h. In addition, the contents of total flavonoids, rutin, and epicatechin were determined. Results indicated that flavonoid contents of longan ECs reached the highest value under blue light, at 32 μmol·m-2·s-1 and 12h/d. Blue light promoted the accumulation of epicatechin, but inhibited the synthesis of rutin. Finally, the expressions of flavonoid pathway genes, miRNAs and target genes were analyzed by qPCR. These results indicated that miR393 and its target gene DlTIR1-3, miR394 and its target gene DlAlMT12, and miR395 and its target gene DlAPS1 had a negative regulating relationship under blue light in longan ECs. Furthermore, miR393, miR394, and miR395 acted on target genes, which negatively regulated flavonoid key genes DlFLS and positively regulated key genes DlCHS, DlCHI, DlF3'H, DlDFR, DlLAR, and finally affected the accumulation of flavonoids. The treatment of longan ECs under the blue light at the intensity of 32 μmol·m-2·s-1 for 12 h/d inhibited the expression of miR393, miR394 and miR395, which promoted the expression of target genes and the accumulation of flavonoids and epicatechin, but inhibited the synthesis of rutin.

  2. In Vitro Evaluation of the Impact of the Probiotic E. coli Nissle 1917 on Campylobacter jejuni's Invasion and Intracellular Survival in Human Colonic Cells.

    PubMed

    Helmy, Yosra A; Kassem, Issmat I; Kumar, Anand; Rajashekara, Gireesh

    2017-01-01

    Campylobacter jejuni is a leading cause of bacterial food poisoning in humans. Due to the rise in antibiotic-resistant Campylobacter , there exists a need to develop antibiotic-independent interventions to control infections in humans. Here, we evaluated the impact of Escherichia coli Nissle 1917 (EcN), a probiotic strain, on C. jejuni's invasion and intracellular survival in polarized human colonic cells (HT-29). To further understand how EcN mediates its impact, the expression of 84 genes associated with tight junctions and cell adhesion was profiled in HT-29 cells after treatment with EcN and challenge with C. jejuni . The pre-treatment of polarized HT-29 cells with EcN for 4 h showed a significant effect on C. jejuni 's invasion (∼2 log reduction) of the colonic cells. Furthermore, no intracellular C. jejuni were recovered from EcN pre-treated HT-29 cells at 24 h post-infection. Other probiotic strains tested had no significant impact on C. jejuni invasion and intracellular survival. C. jejuni decreased the expression of genes associated with epithelial cells permeability and barrier function in untreated HT-29 cells. However, EcN positively affected the expression of genes that are involved in enhanced intestinal barrier function, decreased cell permeability, and increased tight junction integrity. The results suggest that EcN impedes C. jejuni invasion and subsequent intracellular survival by affecting HT-29 cells barrier function and tight junction integrity. We conclude that EcN might be a viable alternative for controlling C. jejuni infections.

  3. MiR-328 suppresses the survival of esophageal cancer cells by targeting PLCE1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Na; Zhao, Wenchao; Zhang, Zhongmian

    2016-01-29

    Esophageal cancer (EC) is the sixth leading cause of death worldwide. Recent studies have highlighted the vital role of microRNAs (miRNAs) in EC development and diagnosis. In our study, qPCR analysis showed that miRNA-328 was expressed at significantly low levels in EC109 and EC9706 cells. The results also showed that overexpression of miR-328 by lentivirus-mediated gene transfer markedly inhibited cell proliferation and invasion, and enhanced apoptosis; whereas, inhibition of miR-328 significantly promoted cell proliferation and invasion, and suppressed apoptosis in EC109 and EC9706 cells. Dual-luciferase reporter assay confirmed that miR-328 directly targeted phospholipase C epsilon 1 (PLCE1) by binding to target sequencesmore » in the 3′-UTR. qPCR and Western blot analysis showed that the PLCE1 was overexpressed in EC109 and EC9706 cells. Additionally, we found that miR-328 overexpression decreased PLCE1 mRNA and protein levels, while miR-328 inhibition enhanced the PLCE1 expression. Further analysis showed that PLCE1 overexpression rescued the inhibitory effect of miR-328 on cell proliferation and invasion, and repressed the promotive effect of miR-328 on cell apoptosis. In conclusion, our results suggest that miR-328 suppresses the survival of EC cells by regulating PLCE1 expression, which might be a potential therapeutic method for EC. - Highlights: • PLCE1 was a target gene of miR-328. • MiR-328 overexpression decreased PLCE1 expression. • PLCE1 overexpression rescued the inhibitory effect of miR-328 on the survival of EC cells.« less

  4. Molecular characterization of EcCIPK24 gene of finger millet (Eleusine coracana) for investigating its regulatory role in calcium transport.

    PubMed

    Chinchole, Mahadev; Pathak, Rajesh Kumar; Singh, Uma M; Kumar, Anil

    2017-08-01

    Finger millet grains contain exceptionally high levels of calcium which is much higher compared to other cereals and millets. Since calcium is an important macronutrient in human diet, it is necessary to explore the molecular basis of calcium accumulation in the seeds of finger millet. CIPK is a calcium sensor gene, having role in activating Ca 2+ exchanger protein by interaction with CBL proteins. To know the role of EcCIPK24 gene in seed Ca 2+ accumulation, sequence is retrieved from the transcriptome data of two finger millet genotypes GP1 (low Ca 2+ ) and GP45 (high Ca 2+ ), and the expression was determined through qRT-PCR. The higher expression was found in root, shoot, leaf and developing spike tissue of GP45 compared to GP1; structural analysis showed difference of nine SNPs and one extra beta sheet domain as well as differences in vacuolar localization was predicted; besides, the variation in amino acid composition among both the genotypes was also investigated. Molecular modeling and docking studies revealed that both EcCBL4 and EcCBL10 showed strong binding affinity with EcCIPK24 (GP1) compared to EcCIPK24 (GP45). It indicates a genotypic structural variation, which not only affects the affinity but also calcium transport efficiency after interaction of CIPK-CBL with calcium exchanger ( Ec CAX1b) to pull calcium in the vacuole. Based on the expression and in silico study, it can be suggested that by activating EcCAX1b protein, EcCIPK24 plays an important role in high seed Ca 2+ accumulation.

  5. Ecdysone receptor (EcR) and ultraspiracle (USP) genes from the cyclopoid copepod Paracyclopina nana: Identification and expression in response to water accommodated fractions (WAFs).

    PubMed

    Puthumana, Jayesh; Lee, Min-Chul; Han, Jeonghoon; Kim, Hui-Su; Hwang, Dae-Sik; Lee, Jae-Seong

    2017-02-01

    Ecdysteroid hormones are pivotal in the development, growth, and molting of arthropods, and the hormone pathway is triggered by binding ecdysteroid to a heterodimer of the two nuclear receptors; ecdysone receptors (EcR) and ultraspiracle (USP). We have characterized EcR and USP genes, and their 5'-untranslated region (5'-UTR) from the copepod Paracyclopina nana, and studied mRNA transcription levels in post-embryonic stages and in response to water accommodated fractions (WAFs) of crude oil. The open reading frames (ORF) of EcR and USP were 1470 and 1287bp that encoded 490 and 429 amino acids with molecular weight of 121.18 and 105.03kDa, respectively. Also, a well conserved DNA-binding domain (DBD) and ligand-binding domain (LBD) were identified which confirmed by phylogenetic analysis. Messenger RNA transcriptional levels of EcR and USP were developmental stage-specific in early post-embryonic stages (N3-4). However, an evoked expression of USP was observed throughout copepodid stage and in adult females. WAFs (40 and 80%) were acted as an ecdysone agonist in P. nana, and elicited the mRNA transcription levels in adults. Developmental stage-specific transcriptional activation of EcR and USP in response to WAFs was observed. USP gene was down-regulated in the nauplius in response to WAF, whereas up-regulation of USP was observed in the adults. This study represents the first data of molecular elucidation of EcR and USP genes and their regulatory elements from P. nana and the developmental stage specific expression in response to WAFs, which can be used as potential biomarkers for environmental stressors with ecotoxicological evaluations in copepods. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. IGF-1 promotes angiogenesis in endothelial cells/adipose-derived stem cells co-culture system with activation of PI3K/Akt signal pathway.

    PubMed

    Lin, Shiyu; Zhang, Qi; Shao, Xiaoru; Zhang, Tao; Xue, Changyue; Shi, Sirong; Zhao, Dan; Lin, Yunfeng

    2017-12-01

    The aim of this study was to investigate the role of insulin-like growth factor-1 (IGF-1) and crosstalk between endothelial cells (ECs) and adipose-derived stem cells (ASCs) in the process of angiogenesis. A three-dimensional collagen gel used to culture mouse ASCs and mouse ECs in vitro was established. The effects of angiogenesis after exposure to IGF-1 were observed by confocal laser scanning microscopy. Western blotting and qPCR were performed to elucidate the underlying mechanisms. IGF-1 treatment promoted the formation of vessel-like structures and the recruitment of ASCs in the three-dimensional collagen gel. The angiogenic genes and proteins in ECs were up-regulated by IGF-1 and in co-culture. Similar changes in the genes and in the proteins were detected in ASCs after exposure to IGF-1 and co-culture. p-Akt expression levels were high in ECs and ASCs after exposure to IGF-1 and co-culture. IGF-1 and co-culture between cells facilitate the process of angiogenesis via the PI3-kinase/Akt signalling pathway. In ECs, IGF-1 stimulates the expression of angiogenesis-related growth factors with the activation of the PI3-kinase/Akt signalling pathway. Co-cultured ECs exposed to excess VEGF-A and other angiogenesis-related growth factors para-secreted from ASCs exhibit high expression of angiogenesis-related genes and proteins. In ASCs, IGF-1 induces the recruitment and function of ASCs by up-regulating the expression of PDGFB, MMPs and α-SMA. Crosstalk with ECs further facilitates changes in ASCs. © 2017 John Wiley & Sons Ltd.

  7. Honey bee foraging induces upregulation of early growth response protein 1, hormone receptor 38 and candidate downstream genes of the ecdysteroid signalling pathway.

    PubMed

    Singh, A S; Shah, A; Brockmann, A

    2018-02-01

    In honey bees, continuous foraging at an artificial feeder induced a sustained upregulation of the immediate early genes early growth response protein 1 (Egr-1) and hormone receptor 38 (Hr38). This gene expression response was accompanied by an upregulation of several Egr-1 candidate downstream genes: ecdysone receptor (EcR), dopamine/ecdysteroid receptor (DopEcR), dopamine decarboxylase and dopamine receptor 2. Hr38, EcR and DopEcR are components of the ecdysteroid signalling pathway, which is highly probably involved in learning and memory processes in honey bees and other insects. Time-trained foragers still showed an upregulation of Egr-1 when the feeder was presented at an earlier time of the day, suggesting that the genomic response is more dependent on the food reward than training time. However, presentation of the feeder at the training time without food was still capable of inducing a transient increase in Egr-1 expression. Thus, learnt feeder cues, or even training time, probably affect Egr-1 expression. In contrast, whole brain Egr-1 expression changes did not differ between dancing and nondancing foragers. On the basis of our results we propose that food reward induced continuous foraging ultimately elicits a genomic response involving Egr-1 and Hr38 and their downstream genes. Furthermore this genomic response is highly probably involved in foraging-related learning and memory responses. © 2017 The Royal Entomological Society.

  8. Molecular classification of spontaneous endometrial adenocarcinomas in BDII rats.

    PubMed

    Samuelson, Emma; Hedberg, Carola; Nilsson, Staffan; Behboudi, Afrouz

    2009-03-01

    Female rats of the BDII/Han inbred strain are prone to spontaneously develop endometrial carcinomas (EC) that in cell biology and pathogenesis are very similar to those of human. Human EC are classified into two major groups: Type I displays endometroid histology, is hormone-dependent, and characterized by frequent microsatellite instability and PTEN, K-RAS, and CTNNB1 (beta-Catenin) mutations; Type II shows non-endometrioid histology, is hormone-unrelated, displays recurrent TP53 mutation, CDKN2A (P16) inactivation, over-expression of ERBB2 (Her2/neu), and reduced CDH1 (Cadherin 1 or E-Cadherin) expression. However, many human EC have overlapping clinical, morphologic, immunohistochemical, and molecular features of types I and II. The EC developed in BDII rats can be related to type I tumors, since they are hormone-related and histologically from endometrioid type. Here, we combined gene sequencing (Pten, Ifr1, and Ctnnb1) and real-time gene expression analysis (Pten, Cdh1, P16, Erbb2, Ctnnb1, Tp53, and Irf1) to further characterize molecular alterations in this tumor model with respect to different subtypes of EC in humans. No mutation in Pten and Ctnnb1 was detected, whereas three tumors displayed sequence aberrations of the Irf1 gene. Significant down regulation of Pten, Cdh1, p16, Erbb2, and Ctnnb1 gene products was found in the tumors. In conclusion, our data suggest that molecular features of spontaneous EC in BDII rats can be related to higher-grade human type I tumors and thus, this model represents an excellent experimental tool for research on this malignancy in human.

  9. Novel genes associated with enhanced motility of Escherichia coli ST131

    PubMed Central

    Kakkanat, Asha; Phan, Minh-Duy; Lo, Alvin W.; Beatson, Scott A.

    2017-01-01

    Uropathogenic Escherichia coli (UPEC) is the cause of ~75% of all urinary tract infections (UTIs) and is increasingly associated with multidrug resistance. This includes UPEC strains from the recently emerged and globally disseminated sequence type 131 (ST131), which is now the dominant fluoroquinolone-resistant UPEC clone worldwide. Most ST131 strains are motile and produce H4-type flagella. Here, we applied a combination of saturated Tn5 mutagenesis and transposon directed insertion site sequencing (TraDIS) as a high throughput genetic screen and identified 30 genes associated with enhanced motility of the reference ST131 strain EC958. This included 12 genes that repress motility of E. coli K-12, four of which (lrhA, ihfA, ydiV, lrp) were confirmed in EC958. Other genes represented novel factors that impact motility, and we focused our investigation on characterisation of the mprA, hemK and yjeA genes. Mutation of each of these genes in EC958 led to increased transcription of flagellar genes (flhD and fliC), increased expression of the FliC flagellin, enhanced flagella synthesis and a hyper-motile phenotype. Complementation restored all of these properties to wild-type level. We also identified Tn5 insertions in several intergenic regions (IGRs) on the EC958 chromosome that were associated with enhanced motility; this included flhDC and EC958_1546. In both of these cases, the Tn5 insertions were associated with increased transcription of the downstream gene(s), which resulted in enhanced motility. The EC958_1546 gene encodes a phage protein with similarity to esterase/deacetylase enzymes involved in the hydrolysis of sialic acid derivatives found in human mucus. We showed that over-expression of EC958_1546 led to enhanced motility of EC958 as well as the UPEC strains CFT073 and UTI89, demonstrating its activity affects the motility of different UPEC strains. Overall, this study has identified and characterised a number of novel factors associated with enhanced UPEC motility. PMID:28489862

  10. Transcriptional expression of type-I interferon response genes and stability of housekeeping genes in the human endometrium and endometriosis.

    PubMed

    Vestergaard, Anna L; Knudsen, Ulla B; Munk, Torben; Rosbach, Hanne; Martensen, Pia M

    2011-04-01

    Endometriosis is a painful chronic female disease defined by the presence of endometrial tissue implants in ectopic (Ec) locations. The pathogenesis is much debated, and type-I interferons (IFNs) could be involved. The expression of genes of the type-I IFN response were profiled by a specific PCR array of RNA obtained from Ec and eutopic (Eu) endometrium collected from nine endometriosis patients and nine healthy control women. Transcriptional expression levels of selected IFN-regulated and housekeeping genes (HKGs) were investigated by real-time quantitative reverse transcriptase PCR (qRT-PCR). Stably expressed HKGs for valid normalization of transcriptional studies of endometrium and endometriosis have not yet been published. Here, seven HKGs were evaluated for stability using the GeNorm and NormFinder software. A normalization factor based on HMBS, TBP and YWHAZ expression was suitable for normalization of qRT-PCR studies of Eu versus Ec endometrium. In the endometrial cell lines HEC1A, HEC1B, Ishikawa and RL95-2, HMBS and HPRT1 were the most stably expressed. The IFN-specific PCR array indicated significantly different expression of the genes BST2, COL16A1, HOXB2 and ISG20 between the endometrial tissue types. However, by correctly normalized qRT-PCR, levels of BST2, COL16A1 and the highly type-I IFN-stimulated genes ISG12A and 6-16 displayed insignificant variations. Conversely, HOXB2 and ISG20 transcriptions were significantly reduced in endometriosis lesions compared with endometrium from endometriosis patients and healthy controls. In conclusion, appropriate HKGs for normalization of qRT-PCR studies of endometrium and endometriosis have been identified here. Abolished expression of ISG20 and HOX genes could be important in endometriosis.

  11. MicroRNA-101 mediates the suppressive effect of laminar shear stress on mTOR expression in vascular endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Kui; Fan, Wendong; Wang, Xing

    Highlights: Black-Right-Pointing-Pointer Laminar shear stress upregulates miR-101 expression in vascular endothelial cells. Black-Right-Pointing-Pointer miR-101 represses mTOR expression through a specific 3 Prime UTR binding site. Black-Right-Pointing-Pointer Overexpression of miR-101 inhibits G1/S transition and endothelial cell proliferation. Black-Right-Pointing-Pointer Blockade of miR-101 attenuates the suppressive effect of laminar flow on mTOR expression. -- Abstract: Shear stress associated with blood flow plays an important role in regulating gene expression and cell function in endothelial cells (ECs). MicroRNAs (miRNAs) are highly conserved, small non-coding RNAs that negatively regulate the expression of target genes by binding to the mRNA 3 Prime -untranslated region (3 Primemore » UTR) at the posttranscriptional level involved in diverse cellular processes. This study demonstrates that microRNA-101 in response to laminar shear stress (LSS) is involved in the flow regulation of gene expression in ECs. qRT-PCR analysis showed that miR-101 expression was significantly upregulated in human umbilical vein endothelial cells (HUVECs) exposed to 12 dyn/cm{sup 2} laminar shear stress for 12 h. We found that transfection of miR-101 significantly decreased the luciferase activity of plasmid reporter containing the 3 Prime UTR of mammalian target of rapamycin (mTOR) gene. Western analysis revealed that the protein level of mTOR was significantly reduced in ECs transfected with miR-101. Furthermore, miR-101 overexpression induced cell cycle arrest at the G1/S transition and suppressed endothelial cell proliferation. Finally, transfection of miR-101 inhibitors attenuated the suppressive effects of LSS on mTOR expression, which identified the efficacy of loss-of-function of miR-101 in laminar flow-treated ECs. In conclusion, we have demonstrated that upregulation of miR-101 in response to LSS contributes to the suppressive effects of LSS on mTOR expression and EC proliferation. These studies advance our understanding of the posttranscriptional mechanisms by which shear stress modulates endothelial homeostasis.« less

  12. Low p16INK4a Expression in Early Passage Human Prostate Basal Epithelial Cells Enables Immortalization by Telomerase Expression Alone.

    PubMed

    Graham, Mindy Kim; Principessa, Lorenzo; Antony, Lizamma; Meeker, Alan K; Isaacs, John T

    2017-03-01

    There are two principal senescence barriers that must be overcome to successfully immortalize primary human epithelial cells in culture, stress-induced senescence, and replicative senescence. The p16 INK4a /retinoblastoma protein (p16/Rb) pathway mediates stress-induced senescence, and is generally upregulated by primary epithelial cells in response to the artificial conditions from tissue culture. Replicative senescence is associated with telomere loss. Following each round of cell division, telomeres progressively shorten. Once telomeres shorten to a critical length, the DNA damage response pathway is activated, and the tumor suppressor p53 pathway triggers replicative senescence. Exogenous expression of telomerase in normal human epithelial cells extends the replicative capacity of cells, and in some cases, immortalizes cells. However reliable immortalization of epithelial cells usually requires telomerase activity coupled with inactivation of the p16/Rb pathway. A lentiviral vector, pLOX-TERT-iresTK (Addgene #12245), containing a CMV promoter upstream of a bicistronic coding cassette that includes loxP sites flanking the catalytic subunit of human telomerase gene (TERT) and herpes simplex virus type-1 thymidine kinase gene (HSV1-tk) was used to transduce normal prostate basal epithelial cells (PrECs) initiated in cell culture from prostate cancer patients undergoing radical prostatectomies. Transduction of early (i.e., <7) passage PrECs with TERT led to successful immortalization. However, attempts to immortalize late (i.e., >7) passage PrECs were unsuccessful. Late passage PrECs, which acquired elevated p16, were unable to overcome the senescence barrier. Immortalized PrECs (TERT-PrECs) retained a normal male karyotype and low p16 expression. Additionally, TERT-PrECs were non-tumorigenic when inoculated into intact male immunodeficient NSG mice. The present studies document that early passage human PrECs have sufficiently low p16 to permit immortalization by TERT expression alone. TERT-PrECs developed using this transduction approach provides an appropriate and experimentally facile model for clarifying the molecular mechanism(s) involved in both immortalization of human PrECs, as well as identifying genetic/epigenetic "drivers" for conversion of these immortalized non-tumorigenic cells into fully lethal prostate cancers. Notably, loxP sites flank the exogenous TERT gene in the TERT-PrECs. Cre recombinase can be used to excise TERT, and resolve whether TERT expression is required for these cells to be fully transformed into lethal cancer. Prostate 77: 374-384, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Molecular cloning, characterization and expression analysis of PPAR gamma in the orange-spotted grouper (Epinephelus coioides) after the Vibrio alginolyticus challenge.

    PubMed

    Luo, Shengwei; Huang, Youhua; Xie, Fuxing; Huang, Xiaohong; Liu, Yuan; Wang, Weina; Qin, Qiwei

    2015-04-01

    PPAR gamma was a key nuclear receptor, playing an important role in the immune defense and the anti-inflammatory mechanism. In this study, the full-length PPAR gamma (EcPPAR gamma) was obtained, containing a 5'UTR of 133 bp, an ORF of 1602 bp and a 3'UTR of 26 bp besides the poly (A) tail. The EcPPAR gamma gene encoded a protein of 533 amino acids with an estimated molecular mass of 60.02 KDa and a predicted isoelectric point (pI) of 6.26. The deduced amino acid sequence showed that EcPPAR gamma consisted of the conserved residues and the domains known to be critical for the PPAR gamma function. The quantitative real-time PCR analysis revealed that EcPPAR gamma transcript was expressed in all the examined tissue, while the strong expression was observed in intestine, followed by the expression in liver, gill, spleen heart, kidney and muscle. Vibrio challenge could stimulate the inflammatory response in grouper and induce a sharp increase of pro-inflammatory cytokines expression, lipid peroxidation and DNA damage, while the up-regulation of vibrio-induced inflammation could also increase the non-specific immune defense. The groupers challenged with Vibrio alginolyticus showed a sharp increase of EcPPAR gamma transcript in immune tissues. Subcellular localization analysis revealed that EcPPAR gamma was distributed in the nucleus. Furthermore, overexpression of EcPPAR gamma could down-regulated the expression of IL1b, IL6, TNF1 and TNF2. In addition, the administration of PPAR gamma antagonist, GW9662, could up-regulate the expression of pro-inflammatory genes, including IL1b, IL6, TNF1 and TNF2. Together, these results indicated that EcPPAR gamma serving as a negative regulator of pro-inflammatory cytokines may play an important role in the immune defense against vibrio-induced inflammation in grouper. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Cathepsin L is required for endothelial progenitor cell-induced neovascularization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urbich, Carmen; Heeschen, Christopher; Aicher, Alexandra

    Infusion of endothelial progenitor cells (EPCs), but not of mature endothelial cells (ECs), promotes neovascularization after ischemia. We performed a gene expression profiling of EPCs and ECs to identify genes, which might be important for the neovascularization capacity of EPCs. Intriguingly, the protease cathepsin L (CathL) was highly expressed in EPCs as opposed to ECs and is essential for matrix degradation and invasion by EPCs in vitro. CathL deficient mice showed impaired functional recovery after hind limb ischemia supporting the concept for an important role of CathL in postnatal neovascularization. Infused CathL deficient progenitor cells failed to home to sitesmore » of ischemia and to augment neovascularization. In contrast, over expression of CathL in mature ECs significantly enhanced their invasive activity and induced their neovascularization capacity in vivo. Taken together, CathL plays a crucial role for the integration of circulating EPCs into the ischemic tissue and is required for neovascularization mediated by EPCs.« less

  15. Quercetin manipulates the expression of genes involved in the reactive oxygen species (ROS) processin chicken heterophils.

    PubMed

    Nambooppha, Boondarika; Photichai, Kornravee; Wongsawan, Kanreuthai; Chuammitri, Phongsakorn

    2018-06-06

    Chicken heterophils generate reactive oxygen species (ROS) molecules to defend against invading pathogens. The present study examined effects of quercetin on chicken heterophils. Heterophils were stimulated with PBS, 50 μM quercetin (QH), PMA or Escherichia coli (EC) and the resulting intracellular ROS molecules were determined. Flow cytometry results showed that cells stimulated with QH, PMA and EC had a higher ROS production. Increases in intracellular ROS molecules were identified in all treatment groups by fluorescence microscopy. Determination of the ability of quercetin to manipulate mRNA expression of ROS subunits was assessed using real-time RT-PCR. Quercetin and other stimulants up-regulated the majority of genes involved in ROS production: CYBB (NOX2), NCF1 (p47 phox ), NCF2 (p67 phox ), NOX1 and RAC2. The antioxidant property of QH was explored by measuring mRNA expression of CAT and SOD1. The data indicate increased levels of CAT with all treatments; however, only QH attenuated the expression ofthe SOD1 gene. To further investigate the effects of ROS-driven inflammation or cell death, IL6, CASP8, and MCL1 genes were preferentially tested. The inflammatory gene (IL6) was profoundly down-regulated in the QH- and PMA-treated groups while EC induced a strikingly high IL6 expression level. Investigation of the known apoptotic (CASP8) and anti-apoptotic (MCL1) genes found down-regulation of CASP8 in the QH- and PMA-treated groups which were contradicted to the MCL1 gene. In conclusion, quercetin can enhance ROS production by regulating the expression of genes involved in ROS production as well as in subsequent processes.

  16. The small tellurium-based compound SAS suppresses inflammation in human retinal pigment epithelium

    PubMed Central

    Livnat, Tami; Halpert, Gilad; Jawad, Shayma; Nisgav, Yael; Azar-Avivi, Shirley; Liu, Baoying; Nussenblatt, Robert B.; Weinberger, Dov; Sredni, Benjamin

    2016-01-01

    Purpose Pathological angiogenesis and chronic inflammation greatly contribute to the development of choroidal neovascularization (CNV) in chorioretinal diseases involving abnormal contact between retinal pigment epithelial (RPE) and endothelial cells (ECs), associated with Bruch’s membrane rupture. We explored the ability of the small organotellurium compound octa-O-bis-(R,R)-tartarate ditellurane (SAS) to mitigate inflammatory processes in human RPE cells. Methods Cell adhesion assays and analyses of gene and protein expression were used to examine the effect of SAS on ARPE-19 cells or primary human RPE cells that were grown alone or in an RPE-EC co-culture. Results Adhesion assays showed that SAS inhibited αv integrins expressed on RPE cells. Co-cultures of RPE cells with ECs significantly reduced the gene expression of PEDF, as compared to RPE cells cultured alone. Both SAS and the anti-αvβ3 antibody LM609 significantly enhanced the production of PEDF at both mRNA and protein levels in RPE cells. RPE cells co-cultured with EC exhibited increased gene expression of CXCL5, COX1, MMP2, IGF1, and IL8, all of which are involved in both angiogenesis and inflammation. The enhanced expression of these genes was greatly suppressed by SAS, but interestingly, remained unaffected by LM609. Zymography assay showed that SAS reduced the level of MMP-2 activity in RPE cells. We also found that SAS significantly suppressed IL-1β-induced IL-6 expression and secretion from RPE cells by reducing the protein levels of phospho-IkappaBalpha (pIκBα). Conclusions Our results suggest that SAS is a promising anti-inflammatory agent in RPE cells, and may be an effective therapeutic approach for controlling chorioretinal diseases. PMID:27293373

  17. The small tellurium-based compound SAS suppresses inflammation in human retinal pigment epithelium.

    PubMed

    Dardik, Rima; Livnat, Tami; Halpert, Gilad; Jawad, Shayma; Nisgav, Yael; Azar-Avivi, Shirley; Liu, Baoying; Nussenblatt, Robert B; Weinberger, Dov; Sredni, Benjamin

    2016-01-01

    Pathological angiogenesis and chronic inflammation greatly contribute to the development of choroidal neovascularization (CNV) in chorioretinal diseases involving abnormal contact between retinal pigment epithelial (RPE) and endothelial cells (ECs), associated with Bruch's membrane rupture. We explored the ability of the small organotellurium compound octa-O-bis-(R,R)-tartarate ditellurane (SAS) to mitigate inflammatory processes in human RPE cells. Cell adhesion assays and analyses of gene and protein expression were used to examine the effect of SAS on ARPE-19 cells or primary human RPE cells that were grown alone or in an RPE-EC co-culture. Adhesion assays showed that SAS inhibited αv integrins expressed on RPE cells. Co-cultures of RPE cells with ECs significantly reduced the gene expression of PEDF, as compared to RPE cells cultured alone. Both SAS and the anti-αvβ3 antibody LM609 significantly enhanced the production of PEDF at both mRNA and protein levels in RPE cells. RPE cells co-cultured with EC exhibited increased gene expression of CXCL5, COX1, MMP2, IGF1, and IL8, all of which are involved in both angiogenesis and inflammation. The enhanced expression of these genes was greatly suppressed by SAS, but interestingly, remained unaffected by LM609. Zymography assay showed that SAS reduced the level of MMP-2 activity in RPE cells. We also found that SAS significantly suppressed IL-1β-induced IL-6 expression and secretion from RPE cells by reducing the protein levels of phospho-IkappaBalpha (pIκBα). Our results suggest that SAS is a promising anti-inflammatory agent in RPE cells, and may be an effective therapeutic approach for controlling chorioretinal diseases.

  18. Endothelial cell response to biomechanical forces under simulated vascular loading conditions.

    PubMed

    Punchard, M A; Stenson-Cox, C; O'cearbhaill, E D; Lyons, E; Gundy, S; Murphy, L; Pandit, A; McHugh, P E; Barron, V

    2007-01-01

    In vivo, endothelial cells (EC) are constantly exposed to the haemodynamic forces (HF) of pressure, wall shear stress and hoop stress. The main aim of this study was to design, create and validate a novel perfusion bioreactor capable of delivering shear stress and intravascular pressure to EC in vitro and to characterise their morphology, orientation and gene expression. Here we report the creation and validation of such a simulator and the dual application of pressure (120/60 mmHg) and low shear stress (5 dyn/cm(2)) to a monolayer of EC established on a non-compliant silicone tube. Under these conditions, EC elongated and realigned obliquely to the direction of applied shear stress in a time-dependent manner. Furthermore, randomly distributed F-actin microfilaments reorganised into long, dense stress fibres crossing the cells in a direction perpendicular to that of flow. Finally, combinatorial biomechanical conditioning of EC induced the expression of the inflammatory-associated E-selectin gene.

  19. Enhancement of CCL15 expression and monocyte adhesion to endothelial cells (ECs) after hypoxia/reoxygenation and induction of ICAM-1 expression by CCL15 via the JAK2/STAT3 pathway in ECs.

    PubMed

    Park, Keun Hyung; Lee, Tae Hoon; Kim, Chan Woo; Kim, Jiyoung

    2013-06-15

    CCL15, a member of the CC chemokine family, is a potent chemoattractant for leukocytes and endothelial cells (ECs). Given that chemokines play key roles in vascular inflammation, we investigated the effects of hypoxia/reoxygenation (H/R) on expression of human CCL15 and a role of CCL15 in upregulating ICAM-1 in ECs. We found that exposure of ECs to H/R increased expression of CCL15 and ICAM-1, which resulted in an increase in monocyte adhesivity to the ECs. Further studies revealed that knockdown of CCL15 or CCR1 attenuated expression of ICAM-1 in ECs after H/R, suggesting that expression of ICAM-1 is upregulated by CCL15. Stimulation of ECs with CCL15 significantly increased expression of ICAM-1 predominantly via the CCR1 receptor. We observed that phosphorylation of JAK2 and STAT3 was stimulated by CCL15 treatment of ECs. Results from reporter and chromatin immunoprecipitation assays revealed that CCL15 activates transcription from the IFN-γ activation site promoter and stimulates binding of STAT3 to the ICAM-1 promoter. Our data also showed that CCL15 increased cell adhesion of human monocytes to ECs under static and shear-stress conditions. Pretreatment of these cells with inhibitors for JAK, PI3K, and AKT prevented the CCL15-induced expression of ICAM-1 and monocyte adhesion to ECs, suggesting the involvement of those signaling molecules in ICAM-1 gene activation by CCL15. The results suggest that CCR1 and its ligands may be a potential target for treating inflammatory diseases involving upregulation of cell adhesion molecules.

  20. Genome-wide gene expression effects in B6C3F1 mouse intestinal epithelia following 7 and 90 days of exposure to hexavalent chromium in drinking water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopec, Anna K.; Kim, Suntae; Forgacs, Agnes L.

    2012-02-15

    Chronic administration of high doses of hexavalent chromium [Cr(VI)] as sodium dichromate dihydrate (SDD) elicits alimentary cancers in mice. To further elucidate key events underlying tumor formation, a 90-day drinking water study was conducted in B6C3F1 mice. Differential gene expression was examined in duodenal and jejunal epithelial samples following 7 or 90 days of exposure to 0, 0.3, 4, 14, 60, 170 or 520 mg/L SDD in drinking water. Genome-wide microarray analyses identified 6562 duodenal and 4448 jejunal unique differentially expressed genes at day 8, and 4630 and 4845 unique changes, respectively, in the duodenum and jejunum at day 91.more » Comparative analysis identified significant overlap in duodenal and jejunal differential gene expression. Automated dose–response modeling identified > 80% of the differentially expressed genes exhibited sigmoidal dose–response curves with EC{sub 50} values ranging from 10 to 100 mg/L SDD. Only 16 genes satisfying the dose-dependent differential expression criteria had EC{sub 50} values < 10 mg/L SDD, 3 of which were regulated by Nrf2, suggesting oxidative stress in response to SDD at low concentrations. Analyses of differentially expressed genes identified over-represented functions associated with oxidative stress, cell cycle, lipid metabolism, and immune responses consistent with the reported effects on redox status and histopathology at corresponding SDD drinking water concentrations. Collectively, these data are consistent with a mode of action involving oxidative stress and cytotoxicity as early key events. This suggests that the tumorigenic effects of chronic Cr(VI) oral exposure likely require chronic tissue damage and compensatory epithelial cell proliferation. Highlights: ► Mouse small intestine gene expression is highly responsive to hexavalent chromium [Cr(VI)]. ► Cr(VI) elicits more differential gene expression after 7 days of exposure than 90 days of exposure. ► Oral exposure to Cr(VI) leads to oxidative stress, cell cycle, lipid and immune dysregulation. ► Cr(VI) elicits dose-dependent changes in gene expression with an overall median EC{sub 50} of 47 mg/L SDD.« less

  1. 20-Hydroxyecdysone (20E) Primary Response Gene E93 Modulates 20E Signaling to Promote Bombyx Larval-Pupal Metamorphosis*

    PubMed Central

    Liu, Xi; Dai, Fangyin; Guo, Enen; Li, Kang; Ma, Li; Tian, Ling; Cao, Yang; Zhang, Guozheng; Palli, Subba R.; Li, Sheng

    2015-01-01

    As revealed in a previous microarray study to identify genes regulated by 20-hydroxyecdysone (20E) and juvenile hormone (JH) in the silkworm, Bombyx mori, E93 expression in the fat body was markedly low prior to the wandering stage but abundant during larval-pupal metamorphosis. Induced by 20E and suppressed by JH, E93 expression follows this developmental profile in multiple silkworm alleles. The reduction of E93 expression by RNAi disrupted 20E signaling and the 20E-induced autophagy, caspase activity, and cell dissociation in the fat body. Reducing E93 expression also decreased the expression of the 20E-induced pupal-specific cuticle protein genes and prevented growth and differentiation of the wing discs. Importantly, the two HTH domains in E93 are critical for inducing the expression of a subset of 20E response genes, including EcR, USP, E74, Br-C, and Atg1. By contrast, the LLQHLL and PLDLSAK motifs in E93 inhibit its transcriptional activity. E93 binds to the EcR-USP complex via a physical association with USP through its LLQHLL motif; and this association is enhanced by 20E-induced EcR-USP interaction, which attenuates the transcriptional activity of E93. E93 acts through the two HTH domains to bind to GAGA-containing motifs present in the Atg1 promoter region for inducing gene expression. In conclusion, E93 transcriptionally modulates 20E signaling to promote Bombyx larval-pupal metamorphosis. PMID:26378227

  2. 20-Hydroxyecdysone (20E) Primary Response Gene E93 Modulates 20E Signaling to Promote Bombyx Larval-Pupal Metamorphosis.

    PubMed

    Liu, Xi; Dai, Fangyin; Guo, Enen; Li, Kang; Ma, Li; Tian, Ling; Cao, Yang; Zhang, Guozheng; Palli, Subba R; Li, Sheng

    2015-11-06

    As revealed in a previous microarray study to identify genes regulated by 20-hydroxyecdysone (20E) and juvenile hormone (JH) in the silkworm, Bombyx mori, E93 expression in the fat body was markedly low prior to the wandering stage but abundant during larval-pupal metamorphosis. Induced by 20E and suppressed by JH, E93 expression follows this developmental profile in multiple silkworm alleles. The reduction of E93 expression by RNAi disrupted 20E signaling and the 20E-induced autophagy, caspase activity, and cell dissociation in the fat body. Reducing E93 expression also decreased the expression of the 20E-induced pupal-specific cuticle protein genes and prevented growth and differentiation of the wing discs. Importantly, the two HTH domains in E93 are critical for inducing the expression of a subset of 20E response genes, including EcR, USP, E74, Br-C, and Atg1. By contrast, the LLQHLL and PLDLSAK motifs in E93 inhibit its transcriptional activity. E93 binds to the EcR-USP complex via a physical association with USP through its LLQHLL motif; and this association is enhanced by 20E-induced EcR-USP interaction, which attenuates the transcriptional activity of E93. E93 acts through the two HTH domains to bind to GAGA-containing motifs present in the Atg1 promoter region for inducing gene expression. In conclusion, E93 transcriptionally modulates 20E signaling to promote Bombyx larval-pupal metamorphosis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Ecdysone receptor isoform-B mediates soluble trehalase expression to regulate growth and development in the mirid bug, Apolygus lucorum (Meyer-Dür).

    PubMed

    Tan, Y-A; Xiao, L-B; Zhao, J; Xiao, Y-F; Sun, Y; Bai, L-X

    2015-12-01

    Ecdysone receptor (EcR) is the hormonal receptor of ecdysteroids and strictly regulates growth and development in insects. However, the action mechanism of EcR is not very clear. In this study, the cDNA of EcR isoform-B was cloned from Apolygus lucorum (AlEcR-B) and its expression profile was investigated. We reduced AlEcR-B mRNA expression using systemic RNA interference in vivo, and obtained knockdown specimens. Examination of these specimens indicated that AlEcR-B is required for nymphal survival, and that reduced expression is associated with longer development time and lower nymphal weight. To investigate the underlying molecular mechanism of the observed suppression effects, we selected trehalase for a detailed study. Transcript encoding soluble trehalase (AlTre-1) was up-regulated by 20-hydroxyecdysone and in agreement with the mRNA expression of AlEcR-B. The expression profile of AlTre-1, soluble trehalase activity and translated protein level in the midgut of surviving nymphs were down-regulated, compared with controls, after the knockdown expression of AlEcR-B. By contrast, membrane-bound trehalase activity, the related gene expression and translated protein level remained at their initial levels. However, trehalose content significantly increased and the glucose content significantly decreased under the same conditions. We propose that AlEcR-B controls normal carbohydrate metabolism by mediating the expression of AlTre-1 to regulate the growth and development in A. lucorum, which provide an extended information into the functions of AlEcR-B. © 2015 The Royal Entomological Society.

  4. Concerted regulation of retinal pigment epithelium basement membrane and barrier function by angiocrine factors.

    PubMed

    Benedicto, Ignacio; Lehmann, Guillermo L; Ginsberg, Michael; Nolan, Daniel J; Bareja, Rohan; Elemento, Olivier; Salfati, Zelda; Alam, Nazia M; Prusky, Glen T; Llanos, Pierre; Rabbany, Sina Y; Maminishkis, Arvydas; Miller, Sheldon S; Rafii, Shahin; Rodriguez-Boulan, Enrique

    2017-05-19

    The outer blood-retina barrier is established through the coordinated terminal maturation of the retinal pigment epithelium (RPE), fenestrated choroid endothelial cells (ECs) and Bruch's membrane, a highly organized basement membrane that lies between both cell types. Here we study the contribution of choroid ECs to this process by comparing their gene expression profile before (P5) and after (P30) the critical postnatal period when mice acquire mature visual function. Transcriptome analyses show that expression of extracellular matrix-related genes changes dramatically over this period. Co-culture experiments support the existence of a novel regulatory pathway: ECs secrete factors that remodel RPE basement membrane, and integrin receptors sense these changes triggering Rho GTPase signals that modulate RPE tight junctions and enhance RPE barrier function. We anticipate our results will spawn a search for additional roles of choroid ECs in RPE physiology and disease.

  5. Concerted regulation of retinal pigment epithelium basement membrane and barrier function by angiocrine factors

    PubMed Central

    Benedicto, Ignacio; Lehmann, Guillermo L.; Ginsberg, Michael; Nolan, Daniel J.; Bareja, Rohan; Elemento, Olivier; Salfati, Zelda; Alam, Nazia M.; Prusky, Glen T.; Llanos, Pierre; Rabbany, Sina Y.; Maminishkis, Arvydas; Miller, Sheldon S.; Rafii, Shahin; Rodriguez-Boulan, Enrique

    2017-01-01

    The outer blood-retina barrier is established through the coordinated terminal maturation of the retinal pigment epithelium (RPE), fenestrated choroid endothelial cells (ECs) and Bruch's membrane, a highly organized basement membrane that lies between both cell types. Here we study the contribution of choroid ECs to this process by comparing their gene expression profile before (P5) and after (P30) the critical postnatal period when mice acquire mature visual function. Transcriptome analyses show that expression of extracellular matrix-related genes changes dramatically over this period. Co-culture experiments support the existence of a novel regulatory pathway: ECs secrete factors that remodel RPE basement membrane, and integrin receptors sense these changes triggering Rho GTPase signals that modulate RPE tight junctions and enhance RPE barrier function. We anticipate our results will spawn a search for additional roles of choroid ECs in RPE physiology and disease. PMID:28524846

  6. Single-step generation of gene knockout-rescue system in pluripotent stem cells by promoter insertion with CRISPR/Cas9.

    PubMed

    Matsunaga, Taichi; Yamashita, Jun K

    2014-02-07

    Specific gene knockout and rescue experiments are powerful tools in developmental and stem cell biology. Nevertheless, the experiments require multiple steps of molecular manipulation for gene knockout and subsequent rescue procedures. Here we report an efficient and single step strategy to generate gene knockout-rescue system in pluripotent stem cells by promoter insertion with CRISPR/Cas9 genome editing technology. We inserted a tetracycline-regulated inducible gene promoter (tet-OFF/TRE-CMV) upstream of the endogenous promoter region of vascular endothelial growth factor receptor 2 (VEGFR2/Flk1) gene, an essential gene for endothelial cell (EC) differentiation, in mouse embryonic stem cells (ESCs) with homologous recombination. Both homo- and hetero-inserted clones were efficiently obtained through a simple selection with a drug-resistant gene. The insertion of TRE-CMV promoter disrupted endogenous Flk1 expression, resulting in null mutation in homo-inserted clones. When the inserted TRE-CMV promoter was activated with doxycycline (Dox) depletion, Flk1 expression was sufficiently recovered from the downstream genomic Flk1 gene. Whereas EC differentiation was almost completely perturbed in homo-inserted clones, Flk1 rescue with TRE-CMV promoter activation restored EC appearance, indicating that phenotypic changes in EC differentiation can be successfully reproduced with this knockout-rescue system. Thus, this promoter insertion strategy with CRISPR/Cas9 would be a novel attractive method for knockout-rescue experiments. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. EZH2 Modulates Angiogenesis In Vitro and in a Mouse Model of Limb Ischemia

    PubMed Central

    Mitić, Tijana; Caporali, Andrea; Floris, Ilaria; Meloni, Marco; Marchetti, Micol; Urrutia, Raul; Angelini, Gianni D; Emanueli, Costanza

    2015-01-01

    Epigenetic mechanisms may regulate the expression of pro-angiogenic genes, thus affecting reparative angiogenesis in ischemic limbs. The enhancer of zest homolog-2 (EZH2) induces thtrimethylation of lysine 27 on histone H3 (H3K27me3), which represses gene transcription. We explored (i) if EZH2 expression is regulated by hypoxia and ischemia; (ii) the impact of EZH2 on the expression of two pro-angiogenic genes: eNOS and BDNF; (iii) the functional effect of EZH2 inhibition on cultured endothelial cells (ECs); (iv) the therapeutic potential of EZH2 inhibition in a mouse model of limb ischemia (LI). EZH2 expression was increased in cultured ECs exposed to hypoxia (control: normoxia) and in ECs extracted from mouse ischemic limb muscles (control: absence of ischemia). EZH2 increased the H3K27me3 abundance onto regulatory regions of eNOS and BDNF promoters. In vitro RNA silencing or pharmacological inhibition by 3-deazaneplanocin (DZNep) of EZH2 increased eNOS and BDNF mRNA and protein levels and enhanced functional capacities (migration, angiogenesis) of ECs under either normoxia or hypoxia. In mice with experimentally induced LI, DZNep increased angiogenesis in ischaemic muscles, the circulating levels of pro-angiogenic hematopoietic cells and blood flow recovery. Targeting EZH2 for inhibition may open new therapeutic avenues for patients with limb ischemia. PMID:25189741

  8. Effect of triclosan on reproduction, DNA damage and heat shock protein gene expression of the earthworm Eisenia fetida.

    PubMed

    Lin, Dasong; Li, Ye; Zhou, Qixing; Xu, Yingming; Wang, Di

    2014-12-01

    Triclosan (TCS) is released into the terrestrial environment via the application of sewage sludge and reclaimed water to agricultural land. More attention has been paid to its effect on non-target soil organisms. In the present study, chronic toxic effects of TCS on earthworms at a wide range of concentrations were investigated. The reproduction, DNA damage, and expression levels of heat shock protein (Hsp70) gene of earthworms were studied as toxicity endpoints. The results showed that the reproduction of earthworms were significantly reduced (p < 0.05) after exposure to the concentrations ranges from 50 to 300 mg kg(-1), with a half-maximal effective concentration (EC50) of 142.11 mg kg(-1). DNA damage, detected by the comet assay, was observed and there was a clear significant (R(2) = 0.941) relationship between TCS concentrations and DNA damage, with the EC50 value of 8.85 mg kg(-1). The expression levels of Hsp70 gene of earthworms were found to be up-regulated under the experimental conditions. The expression level of hsp70 gene increased, up to about 2.28 folds that in the control at 50 mg kg(-1). The EC50 value based on the Hsp70 biomarker was 1.79 mg kg(-1). Thus, among the three toxicity endpoints, the Hsp70 gene was more sensitive to TCS in soil.

  9. Efficient Direct Reprogramming of Mature Amniotic Cells into Endothelial Cells by ETS Factors and TGFβ Suppression

    PubMed Central

    Ginsberg, Michael; James, Daylon; Ding, Bi-Sen; Nolan, Daniel; Geng, Fuqiang; Butler, Jason M; Schachterle, William; Pulijaal, Venkat R; Mathew, Susan; Chasen, Stephen T; Xiang, Jenny; Rosenwaks, Zev; Shido, Koji; Elemento, Olivier; Rabbany, Sina Y; Rafii, Shahin

    2012-01-01

    ETS transcription factors ETV2, FLI1 and ERG1 specify pluripotent stem cells into endothelial cells (ECs). However, these ECs are unstable and drift towards non-vascular cell fates. We show that human mid-gestation c-Kit− lineage-committed amniotic cells (ACs) can be readily reprogrammed into induced vascular endothelial cells (iVECs). Transient ETV2 expression in ACs generated proliferative but immature iVECs, while co-expression with FLI1/ERG1 endowed iVECs with a vascular repertoire and morphology matching mature stable ECs. Brief TGFβ-inhibition functionalized VEGFR2 signaling, augmenting specification of ACs to iVECs. Genome-wide transcriptional analyses showed that iVECs are similar to adult ECs in which vascular-specific genes are turned on and non-vascular genes are silenced. Functionally, iVECs form long-lasting patent vasculature in Matrigel plugs and regenerating livers. Thus, short-term ETV2 expression and TGFβ-inhibition along with constitutive ERG1/FLI1 co-expression reprogram mature ACs into durable and functional iVECs with clinical-scale expansion potential. Public banking of HLA-typed iVECs would establish a vascular inventory for treatment of genetically diverse disorders. PMID:23084400

  10. Endothelial ERK signaling controls lymphatic fate specification

    PubMed Central

    Deng, Yong; Atri, Deepak; Eichmann, Anne; Simons, Michael

    2013-01-01

    Lymphatic vessels are thought to arise from PROX1-positive endothelial cells (ECs) in the cardinal vein in response to induction of SOX18 expression; however, the molecular event responsible for increased SOX18 expression has not been established. We generated mice with endothelial-specific, inducible expression of an RAF1 gene with a gain-of-function mutation (RAF1S259A) that is associated with Noonan syndrome. Expression of mutant RAF1S259A in ECs activated ERK and induced SOX18 and PROX1 expression, leading to increased commitment of venous ECs to the lymphatic fate. Excessive production of lymphatic ECs resulted in lymphangiectasia that was highly reminiscent of abnormal lymphatics seen in Noonan syndrome and similar “RASopathies.” Inhibition of ERK signaling during development abrogated the lymphatic differentiation program and rescued the lymphatic phenotypes induced by expression of RAF1S259A. These data suggest that ERK activation plays a key role in lymphatic EC fate specification and that excessive ERK activation is the basis of lymphatic abnormalities seen in Noonan syndrome and related diseases. PMID:23391722

  11. BDNF restores the expression of Jun and Fos inducible transcription factors in the rat brain following repetitive electroconvulsive seizures.

    PubMed

    Hsieh, T F; Simler, S; Vergnes, M; Gass, P; Marescaux, C; Wiegand, S J; Zimmermann, M; Herdegen, T

    1998-01-01

    The expression of inducible transcription factors was studied following repetitive electroconvulsive seizures (ECS), c-Fos, c-Jun, JunB, and JunD immunoreactivities were investigated following a single (1 x ECS) or repetitive ECS evoked once per day for 4, 5, or 10 days (4 x ECS, 5 x ECS, or 10 x ECS). Animals were killed 3 or 12 h following the last ECS. Three hours after 1 x ECS, c-Fos was expressed throughout the cortex and hippocampus. After 5 x ECS and 10 x ECS, c-Fos was reexpressed in the CA4 area, but was completely absent in the other hippocampal areas and cortex. In these areas, c-Fos became only reinducible when the time lag between two ECS stimuli was 5 days. In contrast to c-Fos, intense JunB expression was inducible in the cortex and hippocampus, but not CA4 subfield, after 1 x ECS, 5 x ECS, and 10 x ECS. Repetitive ECS did not effect c-Jun and JunD expression. In a second model of systemic excitation of the brain, repetitive daily injection of kainic acid for 4 days completely failed to express c-Fos, c-Jun, and JunB after the last application whereas injection of kainic acid once per week did not alter the strong expressions compared to a single application of kainic acid. In order to study the maintenance of c-Fos expression during repetitive seizures, brain-derived neurotrophic factor (BDNF) was applied in parallel for 5 or 10 days via miniosmotic pumps and permanent cannula targeted at the hippocampus or the parietal cortex. Infusion of BDNF completely reinduced c-Fos expression during 5 x ECS or 10 x ECS in the cortex ipsilaterally to the cannula and, to a less extent, also increased the expression of c-Jun and JunB when compared to saline-treated controls. BDNF had no effect on the expression patterns in the hippocampus. ECS with or without BDNF infusion did not change the expression patterns of the constitutive transcription factors ATF-2, CREB, and SRF. These data demonstrate that various transcription factors substantially differ in their response to acute and chronic neural stimulation. Repetitive pathophysiological excitation decreases the transcriptional actions of neurons over days in the adult brain, and this decrement can be prevented by BDNF restoring the neuroplasticity at the level of gene transcription.

  12. Cloning and expression of 1-aminocyclopropane-1-carboxylate oxidase cDNA induced by thidiazuron during somatic embryogenesis of alfalfa (Medicago sativa).

    PubMed

    Feng, Bi-Hong; Wu, Bei; Zhang, Chun-Rong; Huang, Xia; Chen, Yun-Feng; Huang, Xue-Lin

    2012-01-15

    Embryogenic callus (EC) induced from petioles of alfalfa (Medicago sativa L. cv. Jinnan) on B5h medium turned green, compact and non-embryogenic when the kinetin (KN) in the medium was replaced partially or completely by thidiazuron (TDZ). The application of CoCl₂, which is an inhibitor of 1-aminocyclopropane-1-carboxylate oxidase (ACO), counteracted the effect of TDZ. Ethylene has been shown to be involved in the modulation of TDZ-induced morphogenesis responses. However, very little is known about the genes involved in ethylene formation during somatic embryogenesis (SE). To investigate whether ethylene mediated by ACO is involved in the effect of TDZ on inhibition of embryogenic competence of the alfalfa callus. In this study we cloned full-length ACO cDNA from the alfalfa callus, named MsACO, and observed changes in this gene expression during callus formation and induction of SE under treatment with TDZ or TDZ plus CoCl₂. RNA blot analysis showed that during the EC subcultural period, the expression level of MsACO in EC was significantly increased on the 2nd day, rose to the highest level on the 8th day and remained at this high level until the 21st day. However, the ACO expression in the TDZ (0.93 μM)-treated callus was higher than in the EC especially on the 8th day. Moreover the ACO expression level increased with increasing TDZ concentration during the subcultural/maintenance period of the callus. It is worth noting that comparing the treatment with TDZ alone, the treatment with 0.93 μM TDZ plus 50 μM CoCl₂ reduced both of the ACO gene expressions and ACO activity in the treated callus. These results indicate that the effect of TDZ could be counteracted by CoCl₂ either on the ACO gene expression level or ACO activity. Thus, a TDZ inhibitory effect on embryogenic competence of alfalfa callus could be mediated by ACO gene expression. Crown Copyright © 2011. Published by Elsevier GmbH. All rights reserved.

  13. Heterologous expression of the Pleurotus ostreatus MnP3 gene by the laccase gene promoter in Lentinula edodes.

    PubMed

    Sato, Toshitsugu; Irie, Toshikazu; Yoshino, Fumihiko

    2017-08-01

    Lentinula edodes (shiitake), which have a powerful ligninolytic system, is one of the most important edible mushrooms in Asia. In this study, we introduced the manganese peroxidase (MnP, EC 1.11.1.13) gene from Pleurotus ostreatus driven by L. edodes laccase 1 gene promoter into L. edodes for expression. The resulting transformant expressed the recombinant gene and showed a higher level of MnP activity than that of the wild-type strain.

  14. Myocardial protective effect of extracellular superoxide dismutase gene modified bone marrow mesenchymal stromal cells on infarcted mice hearts.

    PubMed

    Pan, Qiao; Qin, Xing; Ma, Sai; Wang, Haichang; Cheng, Kang; Song, Xinxing; Gao, Haokao; Wang, Qiang; Tao, Rannie; Wang, Yabin; Li, Xiujuan; Xiong, Lize; Cao, Feng

    2014-01-01

    Extracellular superoxide dismutase (ecSOD) is a unique scavenger of superoxide anions and a promising target of gene therapy for ischemia/reperfusion injury (I/R). However, conventional gene therapies have limitation in effectiveness and efficiency. This study aimed to investigate the protective effects of ecSOD gene modified bone marrow mesenchymal stromal cells (BMSCs) on cardiac function improvement in mice infarcted heart. BMSCs were isolated from Fluc(+) transgenic mice (Tg FVB[Fluc(+)]) and transfected by adenovirus combined with human ecSOD gene. ELISA was performed to determine ecSOD protein level. Female syngeneic FVB mice were randomized into 5 groups: (1) Sham group (sham); (2) MI group (MI); (3) MI+BMSCs group (BMSC); (4) MI+BMSCs-vector group (BMSC-vector); (5) MI+ BMSCs-ecSOD group (BMSC-ecSOD). MI was accomplished by ligation of the left anterior descending artery. BMSCs (2 x 10(6)) were injected into the border zone of infarction. In vivo bioluminescence imaging (BLI) was performed to monitor transplanted BMSCs viability. Echocardiography and histological staining revealed that BMSCs-ecSOD significantly reduced myocardial infarction size and improved cardiac function. Lucigenin chemiluminescence, DHE and TUNEL staining demonstrated that BMSCs-ecSOD delivery reduced ROS level and cell apoptosis both in vivo and in vitro. Western blot assay revealed that ecSOD supplementation increased FoxO3a phosphorylation in cardiomyocytes. Moreover, quantitative real-time PCR showed that pro-apoptotic factors (bim and bax) were decreased while the anti-apoptotic factor mir-21 expression was increased after ecSOD intervention. Intra-myocardial transplantation of adenovirus-ecSOD transfected BMSCs could exert potential cardiac protection against MI, which may be partly through reduction of oxidative stress and improvement of BMSCs survival.

  15. Assessment of RNAi-induced silencing in banana (Musa spp.).

    PubMed

    Dang, Tuong Vi T; Windelinckx, Saskia; Henry, Isabelle M; De Coninck, Barbara; Cammue, Bruno P A; Swennen, Rony; Remy, Serge

    2014-09-18

    In plants, RNA- based gene silencing mediated by small RNAs functions at the transcriptional or post-transcriptional level to negatively regulate target genes, repetitive sequences, viral RNAs and/or transposon elements. Post-transcriptional gene silencing (PTGS) or the RNA interference (RNAi) approach has been achieved in a wide range of plant species for inhibiting the expression of target genes by generating double-stranded RNA (dsRNA). However, to our knowledge, successful RNAi-application to knock-down endogenous genes has not been reported in the important staple food crop banana. Using embryogenic cell suspension (ECS) transformed with ß-glucuronidase (GUS) as a model system, we assessed silencing of gusAINT using three intron-spliced hairpin RNA (ihpRNA) constructs containing gusAINT sequences of 299-nt, 26-nt and 19-nt, respectively. Their silencing potential was analysed in 2 different experimental set-ups. In the first, Agrobacterium-mediated co-transformation of banana ECS with a gusAINT containing vector and an ihpRNA construct resulted in a significantly reduced GUS enzyme activity 6-8 days after co-cultivation with either the 299-nt and 19-nt ihpRNA vectors. In the second approach, these ihpRNA constructs were transferred to stable GUS-expressing ECS and their silencing potential was evaluated in the regenerated in vitro plants. In comparison to control plants, transgenic plants transformed with the 299-nt gusAINT targeting sequence showed a 4.5 fold down-regulated gusA mRNA expression level, while GUS enzyme activity was reduced by 9 fold. Histochemical staining of plant tissues confirmed these findings. Northern blotting used to detect the expression of siRNA in the 299-nt ihpRNA vector transgenic in vitro plants revealed a negative relationship between siRNA expression and GUS enzyme activity. In contrast, no reduction in GUS activity or GUS mRNA expression occurred in the regenerated lines transformed with either of the two gusAINT oligo target sequences (26-nt and 19-nt). RNAi-induced silencing was achieved in banana, both at transient and stable level, resulting in significant reduction of gene expression and enzyme activity. The success of silencing was dependent on the targeted region of the target gene. The successful generation of transgenic ECS for second transformation with (an)other construct(s) can be of value for functional genomics research in banana.

  16. Endothelial protein kinase MAP4K4 promotes vascular inflammation and atherosclerosis

    PubMed Central

    Roth Flach, Rachel J.; Skoura, Athanasia; Matevossian, Anouch; Danai, Laura V.; Zheng, Wei; Cortes, Christian; Bhattacharya, Samit K.; Aouadi, Myriam; Hagan, Nana; Yawe, Joseph C.; Vangala, Pranitha; Menendez, Lorena Garcia; Cooper, Marcus P.; Fitzgibbons, Timothy P.; Buckbinder, Leonard; Czech, Michael P.

    2015-01-01

    Signalling pathways that control endothelial cell (EC) permeability, leukocyte adhesion and inflammation are pivotal for atherosclerosis initiation and progression. Here we demonstrate that the Sterile-20-like mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4), which has been implicated in inflammation, is abundantly expressed in ECs and in atherosclerotic plaques from mice and humans. On the basis of endothelial-specific MAP4K4 gene silencing and gene ablation experiments in Apoe−/− mice, we show that MAP4K4 in ECs markedly promotes Western diet-induced aortic macrophage accumulation and atherosclerotic plaque development. Treatment of Apoe−/− and Ldlr−/− mice with a selective small-molecule MAP4K4 inhibitor also markedly reduces atherosclerotic lesion area. MAP4K4 silencing in cultured ECs attenuates cell surface adhesion molecule expression while reducing nuclear localization and activity of NFκB, which is critical for promoting EC activation and atherosclerosis. Taken together, these results reveal that MAP4K4 is a key signalling node that promotes immune cell recruitment in atherosclerosis. PMID:26688060

  17. Radiation-induced senescence-like phenotype in proliferating and plateau-phase vascular endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Igarashi, Kaori; Sakimoto, Ippei; Kataoka, Keiko

    The effects of ionizing radiation (IR) on tumor angiogenesis still remain largely unknown. In this study, we found that IR (8 Gy) induces a high-frequency (80-90%) senescence-like phenotype in vascular endothelial cells (ECs) undergoing exponential growth. This finding allowed us to characterize the IR-induced senescence-like (IRSL) phenotype by examining the gene expression profiles and in vitro angiogenic activities of these ECs. The expression levels of genes associated with cell cycle progression and DNA replication were remarkably reduced in the IRSL ECs. Additionally, the in vitro invasion and migration activities of these cells through Matrigel were significantly suppressed. We also foundmore » that confluent ECs exhibited a high-frequency IRSL phenotype when they were replated immediately after irradiation, whereas incubation in plateau-phase conditions reduced the induction of this phenotype and enhanced colony formation. The kinetics of DNA double-strand break repair, which showed a faster time course in confluent ECs than in growing ECs, may contribute to the protective mechanism associated with the IRSL phenotype. These results imply that the IRSL phenotype may be important for determining the angiogenic activity of ECs following irradiation. The present study should contribute to the understanding of the effects of IR on tumor angiogenesis.« less

  18. Cat odour-induced anxiety--a study of the involvement of the endocannabinoid system.

    PubMed

    Sütt, Silva; Raud, Sirli; Areda, Tarmo; Reimets, Ain; Kõks, Sulev; Vasar, Eero

    2008-07-01

    Recent evidence suggests the involvement of the endocannabinoid (EC) system in the regulation of anxiety. The aim of present work was to study the role of the EC system in cat odour-induced anxiety in rats. Materials and methods Male Wistar rats were exposed to cat odour in home and motility cages. Exposure of rats to elevated zero-maze was used to determine changes in anxiety. Effect of rimonabant (0.3-3 mg/kg), antagonist of CB1 receptors, was studied on cat odour-induced alterations in exploratory behaviour. Real-time PCR was used to determine gene expression levels of EC-related genes in the brain. Anxiogenic-like action of cat odour was evident in the elevated zero-maze. Cat odour increased the expression of FAAH, the enzyme responsible for the degradation of anandamide, in the mesolimbic area. By contrast, in the amygdala and periaqueductal grey (PAG) levels of NAPE-PLD, the enzyme related to the synthesis of anandamide, and FAAH were remarkably decreased. Cat odour also decreased the expression of enzymes related to metabolism of 2-archidonoyl-glycerol in the amygdala and PAG. Pre-treatment of rats with rimonabant (0.3-3 mg/kg) reduced the exploratory behaviour of rats, but did not affect cat odour-induced changes. Exposure to cat odour induces anxiogenic-like effect on the behaviour in rats. Cat odour also causes moderate increase in expression of EC-related genes in the mesolimbic area, whereas significant down-regulation is established in the amygdala and PAG. Relation of predator odour-induced anxiety to the inhibition of the EC system in the amygdala and PAG is supported by behavioural studies where blockade of CB1 receptors by rimonabant induces anxiogenic-like action.

  19. Changes in Gene Expression Profiles in Adult Rat Brain Structures after Neonatal Action of Dipeptidyl Peptidase-IV Inhibitors.

    PubMed

    Zubkov, Eugene A; Zorkina, Yana A; Orshanskaya, Elena V; Khlebnikova, Nadezhda N; Krupina, Natalia A; Chekhonin, Vladimir P

    2017-01-01

    Previous studies have shown the development of emotional and motivational disorders, such as anxiety-depression-like disorders with increased aggression in adolescent and adult Wistar rats, occurs after neonatal exposure to the dipeptidyl peptidase-IV (DPP-IV, EC 3.4.14.5) inhibitors diprotin A and sitagliptin (postnatal days 5-18). In this study, using real-time PCR, we evaluated changes in the gene expression of serine protease DPP-IV and prolyl endopeptidase (PREP, EC 3.4.21.26; dpp4 and prep genes), monoamine oxidase А (maoA) and B (maoB), and serotonin transporter (SERT; sert) in the brain structures from 3-month-old rats after postnatal action of DPP-IV inhibitors diprotin A and sitagliptin. Dpp4, sert, and maoB gene expression increased and maoA gene expression changed with a tendency to increase in the striatum of rats with neonatal sitagliptin action. The increase of maoA gene expression was also shown in the amygdala. An increase in prep gene expression was found in the striatum of rats with the neonatal action of diprotin A, and a decrease in maoB gene expression was observed in the amygdala. We detected a significant downward trend in sert gene expression in the frontal cortex and amygdala, as well as a tendency to increase in maoA gene expression in the hypothalamus. These findings suggest that changes in the expression of the abovementioned genes are associated with the development of anxiety and depression, with increased aggression caused by the neonatal action of diprotin A and sitagliptin. © 2018 S. Karger AG, Basel.

  20. Nrf2-related gene expression and exposure to traffic-related air pollution in elderly subjects with cardiovascular disease: An exploratory panel study

    PubMed Central

    Wittkopp, Sharine; Staimer, Norbert; Tjoa, Thomas; Stinchcombe, Timothy; Daher, Nancy; Schauer, James J.; Shafer, Martin M.; Sioutas, Constantinos; Gillen, Daniel L.; Delfino, Ralph J.

    2015-01-01

    Gene expression changes are linked to air pollutant exposures in in vitro and animal experiments. However, limited data are available on how these outcomes relate to ambient air pollutant exposures in humans. We performed an exploratory analysis testing whether gene expression levels were associated with air pollution exposures in a Los Angeles area cohort of elderly subjects with coronary artery disease. Candidate genes (35) were selected from published studies of gene expression-pollutant associations. Expression levels were measured weekly in 43 subjects (≤12 weeks) using quantitative PCR. Exposures included gaseous pollutants O3, nitrogen oxides (NOx), and CO; particulate matter (PM) pollutants elemental and black carbon (EC, BC); and size-fractionated PM mass. We measured organic compounds from PM filter extracts, including polycyclic aromatic hydrocarbons (PAHs), and determined the in vitro oxidative potential of particle extracts. Associations between exposures and gene expression levels were analyzed using mixed-effects regression models. We found positive associations of traffic-related pollutants (EC, BC, primary organic carbon, PM0.25-2.5 PAH and/or PM0.25 PAH, and NOx) with NFE2L2, Nrf2-mediated genes (HMOX1, NQO1, and SOD2), CYP1B1, IL1B, and SELP. Findings suggest that NFE2L2 gene expression links associations of traffic-related air pollution with phase I and II enzyme genes at the promoter transcription level. PMID:25564368

  1. Nrf2-related gene expression and exposure to traffic-related air pollution in elderly subjects with cardiovascular disease: An exploratory panel study.

    PubMed

    Wittkopp, Sharine; Staimer, Norbert; Tjoa, Thomas; Stinchcombe, Timothy; Daher, Nancy; Schauer, James J; Shafer, Martin M; Sioutas, Constantinos; Gillen, Daniel L; Delfino, Ralph J

    2016-01-01

    Gene expression changes are linked to air pollutant exposures in in vitro and animal experiments. However, limited data are available on how these outcomes relate to ambient air pollutant exposures in humans. We performed an exploratory analysis testing whether gene expression levels were associated with air pollution exposures in a Los Angeles area cohort of elderly subjects with coronary artery disease. Candidate genes (35) were selected from published studies of gene expression-pollutant associations. Expression levels were measured weekly in 43 subjects (≤ 12 weeks) using quantitative PCR. Exposures included gaseous pollutants O3, nitrogen oxides (NOx), and CO; particulate matter (PM) pollutants elemental and black carbon (EC, BC); and size-fractionated PM mass. We measured organic compounds from PM filter extracts, including polycyclic aromatic hydrocarbons (PAHs), and determined the in vitro oxidative potential of particle extracts. Associations between exposures and gene expression levels were analyzed using mixed-effects regression models. We found positive associations of traffic-related pollutants (EC, BC, primary organic carbon, PM 0.25-2.5 PAH and/or PM 0.25 PAH, and NOx) with NFE2L2, Nrf2-mediated genes (HMOX1, NQO1, and SOD2), CYP1B1, IL1B, and SELP. Findings suggest that NFE2L2 gene expression links associations of traffic-related air pollution with phase I and II enzyme genes at the promoter transcription level.

  2. Molecular cloning, characterization, and expression analysis of an ecdysone receptor homolog in Teleogryllus emma (Orthoptera: Gryllidae).

    PubMed

    He, Hui; Xi, Gengsi; Lu, Xiao

    2015-01-01

    Ecdysteroids are steroid hormones that play important roles in the regulation of Arthropoda animal growth development, larvae ecdysis, and reproduction. The effect of ecdysteroids is mediated by ecdysteroid receptor (EcR). The ecdysone receptor (EcR) belongs to the superfamily of nuclear receptors (NRs) that are ligand-dependent transcription factors. Ecdysone receptor is present only in invertebrates and plays a critical role in regulating the expression of a series of genes during development and reproduction. Here, we isolated and characterized cDNA of the cricket Teleopgryllus emma (Ohmachi & Matsuura) (Orthoptera: Gryllidae) and studied mRNA expression pattern using real time-polymerase chain reaction. The full-length cDNA of T. emma EcR, termed TeEcR, is 2,558 bp and contains a 5'-untranslated region of 555 bp and a 3'-untranslated region of 407 bp. The open reading frame of TeEcR encodes deduced 531-amino acid peptides with a predicted molecular mass of 60.7 kDa. The amino acid sequence of T. emma EcR was similar to that of known EcR especially in the ligand-binding domain of insect EcR. Real-time quantitative reverse transcription-polymerase chain reaction was performed to compare TeEcR mRNA expression level at the whole body and gonad during T. emma development. The data revealed that TeEcR mRNA is differentially expressed during T. emma development, with the highest expression level in late-instar larvae of the body and lowest in third instar. The levels of TeEcR transcripts also vary among gonads development, and levels in ovaries were higher than in testes at every developmental stage. These results suggest that TeEcR may have potential significance to regulate the morphological structure and gonad development of T. emma, due to its expression in different developmental periods. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  3. Molecular Cloning, Characterization, and Expression Analysis of an Ecdysone Receptor Homolog in Teleogryllus emma (Orthoptera: Gryllidae)

    PubMed Central

    He, Hui; Xi, Gengsi; Lu, Xiao

    2015-01-01

    Ecdysteroids are steroid hormones that play important roles in the regulation of Arthropoda animal growth development, larvae ecdysis, and reproduction. The effect of ecdysteroids is mediated by ecdysteroid receptor (EcR). The ecdysone receptor (EcR) belongs to the superfamily of nuclear receptors (NRs) that are ligand-dependent transcription factors. Ecdysone receptor is present only in invertebrates and plays a critical role in regulating the expression of a series of genes during development and reproduction. Here, we isolated and characterized cDNA of the cricket Teleopgryllus emma (Ohmachi & Matsuura) (Orthoptera: Gryllidae) and studied mRNA expression pattern using real time-polymerase chain reaction. The full-length cDNA of T. emma EcR, termed TeEcR, is 2,558 bp and contains a 5′-untranslated region of 555 bp and a 3′-untranslated region of 407 bp. The open reading frame of TeEcR encodes deduced 531-amino acid peptides with a predicted molecular mass of 60.7 kDa. The amino acid sequence of T. emma EcR was similar to that of known EcR especially in the ligand-binding domain of insect EcR. Real-time quantitative reverse transcription-polymerase chain reaction was performed to compare TeEcR mRNA expression level at the whole body and gonad during T. emma development. The data revealed that TeEcR mRNA is differentially expressed during T. emma development, with the highest expression level in late-instar larvae of the body and lowest in third instar. The levels of TeEcR transcripts also vary among gonads development, and levels in ovaries were higher than in testes at every developmental stage. These results suggest that TeEcR may have potential significance to regulate the morphological structure and gonad development of T. emma, due to its expression in different developmental periods. PMID:25797799

  4. Induced pluripotent stem cells with NOTCH1 gene mutation show impaired differentiation into smooth muscle and endothelial cells: Implications for bicuspid aortic valve-related aortopathy.

    PubMed

    Jiao, Jiao; Tian, Weihua; Qiu, Ping; Norton, Elizabeth L; Wang, Michael M; Chen, Y Eugene; Yang, Bo

    2018-03-12

    The NOTCH1 gene mutation has been identified in bicuspid aortic valve patients. We developed an in vitro model with human induced pluripotent stem cells (iPSCs) to evaluate the role of NOTCH1 in smooth muscle and endothelial cell (EC) differentiation. The iPSCs were derived from a patient with a normal tricuspid aortic valve and aorta. The NOTCH1 gene was targeted in iPSCs with the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9 nuclease (Cas9) system. The NOTCH1 -/- (NOTCH1 homozygous knockout) and isogenic control iPSCs (wild type) were differentiated into neural crest stem cells (NCSCs) and into cardiovascular progenitor cells (CVPCs). The NCSCs were differentiated into smooth muscle cells (SMCs). The CVPCs were differentiated into ECs. The differentiations of SMCs and ECs were compared between NOTCH1 -/- and wild type cells. The expression of NCSC markers (SRY-related HMG-box 10 and transcription factor AP-2 alpha) was significantly lower in NOTCH1 -/- NCSCs than in wild type NCSCs. The SMCs derived from NOTCH1 -/- NCSCs showed immature morphology with smaller size and decreased expression of all SMC-specific contractile proteins. In NOTCH1 -/- CVPCs, the expression of ISL1, NKX2.5, and MYOCD was significantly lower than that in isogenic control CVPCs, indicating impaired differentiation from iPSCs to CVPCs. The NOTCH1 -/- ECs derived from CVPCs showed significantly lower expression of cluster of differentiation 105 and cluster of differentiation 31 mRNA and protein, indicating a defective differentiation process. NOTCH1 is critical in SMC and EC differentiation of iPSCs through NCSCs and CVPCs, respectively. NOTCH1 gene mutations might potentially contribute to the development of thoracic aortic aneurysms by affecting SMC differentiation in some patients with bicuspid aortic valve. Copyright © 2018 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  5. Studies on the Expression of Sesquiterpene Synthases Using Promoter-β-Glucuronidase Fusions in Transgenic Artemisia annua L

    PubMed Central

    Wang, Hongzhen; Han, Junli; Kanagarajan, Selvaraju; Lundgren, Anneli; Brodelius, Peter E.

    2013-01-01

    In order to better understand the influence of sesquiterpene synthases on artemisinin yield in Artemisia annua, the expression of some sesquiterpene synthases has been studied using transgenic plants expressing promoter-GUS fusions. The cloned promoter sequences were 923, 1182 and 1510 bp for β-caryophyllene (CPS), epi-cedrol (ECS) and β-farnesene (FS) synthase, respectively. Prediction of cis-acting regulatory elements showed that the promoters are involved in complex regulation of expression. Transgenic A. annua plants carrying promoter-GUS fusions were studied to elucidate the expression pattern of the three sesquiterpene synthases and compared to the previously studied promoter of amorpha-4,11-diene synthase (ADS), a key enzyme of artemisinin biosynthesis. The CPS and ECS promoters were active in T-shaped trichomes of leaves and stems, basal bracts of flower buds and also in some florets cells but not in glandular secretory trichome while FS promoter activity was only observed in leaf cells and trichomes of transgenic shoots. ADS, CPS, ECS and FS transcripts were induced by wounding in a time depended manner. The four sesquiterpene synthases may be involved in responsiveness of A. annua to herbivory. Methyl jasmonate treatment triggered activation of the promoters of all four sesquiterpene synthases in a time depended manner. Southern blot result showed that the GUS gene was inserted into genomic DNA of transgenic lines as a single copy or two copies. The relative amounts of CPS and ECS as well as germacrene A synthase (GAS) transcripts are much lower than that of ADS transcript. Consequently, down-regulation of the expression of the CPS, ECS or GAS gene may not improve artemsinin yield. However, blocking the expression of FS may have effects on artemisinin production. PMID:24278301

  6. Characterization of cathepsin B gene from orange-spotted grouper, Epinephelus coioides involved in SGIV infection.

    PubMed

    Wei, Shina; Huang, Youhua; Huang, Xiaohong; Cai, Jia; Yan, Yang; Guo, Chuanyu; Qin, Qiwei

    2014-01-01

    The lysosomal cysteine protease cathepsin B of papain family is a key regulator and signaling molecule that involves in various biological processes, such as the regulation of apoptosis and activation of virus. In the present study, cathepsin B gene (Ec-CB) was cloned and characterized from orange-spotted grouper, Epinephelus coioides. The full-length Ec-CB cDNA was composed of 1918 bp and encoded a polypeptide of 330 amino acids with higher identities to cathepsin B of teleosts and mammalians. Ec-CB possessed typical cathepsin B structural features including an N-terminal signal peptide, the propeptide region and the cysteine protease domain which were conserved in other cathepsin B sequences. Phylogenetic analysis revealed that Ec-CB was most closely related to Lutjanus argentimaculatus. RT-PCR analysis showed that Ec-CB transcript was expressed in all the examined tissues which abundant in spleen, kidney and gill. After challenged with Singapore grouper iridovirus (SGIV) stimulation, the mRNA expression of cathepsin B in E. coioides was up-regulated at 24 h post-infection. Subcellular localization analysis revealed that Ec-CB was distributed predominantly in the cytoplasm. When the fish cells (GS or FHM) were treated with the cathepsin B specific inhibitor CA-074Me, the occurrence of CPE induced by SGIV was delayed, and the viral gene transcription was significantly inhibited. Additionally, SGIV-induced typical apoptosis was also inhibited by CA-074Me in FHM cells. Taken together, our results demonstrated that the Ec-CB might play a functional role in SGIV infection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. The impact of simulated microgravity on purinergic signaling in an endothelial and smooth muscle cell co-culture model

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Hemmersbach, Ruth; Lau, Patrick; Pansky, Andreas; Kassack, Matthias; Tobiasch, Edda

    Astronauts suffer from cardiovascular deconditioning when they are exposed to microgravity conditions during space missions. Thus, current research focuses on the identification of the underlying mechanism also with respect to therapy and countermeasures. Endothelial cells (ECs) and smooth muscle cells (SMCs) play a key role in a variety of vascular functions. Gene expression, cytoskeleton morphology and apoptosis in both, ECs and SMCs, have shown alterations under simulated and real microgravity condition. However, all these data were observed during single culturing of either ECs or SMCs under microgravity conditions, which is different from the in vivo situation. Purinergic 2 (P2) receptors bind extracellular nucleotides and can regulate the vascular tone and vascular cell proliferation, migration and apoptosis. In this study primary ECs and SMCs were obtained from bovine aorta and characterized using specific markers. Here we show for the first time that the P2-receptor expressions pattern in ECs and in SMCs is altered after 24h in simulated microgravity. Specific receptors are down- or up-regulated on the gene and protein level. In addition the supernatant of ECs during culture was used as conditioned medium for SMCs and vice visa to investigate the influence of either cell type on the other. ECs and SMCs secret cytokines which induce pathogenic proliferation and an altered migration behavior under simulated microgravity conditions. Interestingly, co-culturing with condition medium could compensate this change. In detail, P2X7 was down-regulated in ECs after 24h clinorotation but recovered to the 1 g level when cultured with conditioned medium from SMCs collected under normal gravity. In conclusion, our data indicate that the paracrine effect between ECs and SMCs is an important regulator of cell behavior, also under altered gravity conditions. P2-receptor gene and protein expression were altered during microgravity. Since several P2-receptor artificial ligands are already established as drugs, P2-receptors might be a reasonable candidate for drug development for astronaut treatment of vascular deconditioning in the future. Keywords: simulated microgravity, purinergic signaling, endothelial cells, smooth muscle cells, co-culture, clinostat

  8. Molecular basis of the dopaminergic system in the cricket Gryllus bimaculatus.

    PubMed

    Watanabe, Takayuki; Sadamoto, Hisayo; Aonuma, Hitoshi

    2013-12-01

    In insects, dopamine modulates various aspects of behavior such as learning and memory, arousal and locomotion, and is also a precursor of melanin. To elucidate the molecular basis of the dopaminergic system in the field cricket Gryllus bimaculatus DeGeer, we identified genes involved in dopamine biosynthesis, signal transduction, and dopamine re-uptake in the cricket. Complementary DNA of two isoforms of tyrosine hydroxylase (TH), which convert tyrosine into L-3,4-dihydroxyphenylalanine, was isolated from the cricket brain cDNA library. In addition, four dopamine receptor genes (Dop1, Dop2, Dop3, and DopEcR) and a high-affinity dopamine transporter gene were identified. The two TH isoforms contained isoform-specific regions in the regulatory ACT domain and showed differential expression patterns in different tissues. In addition, the dopamine receptor genes had a receptor subtype-specific distribution: the Dop1, Dop2, and DopEcR genes were broadly expressed in various tissues at differential expression levels, and the Dop3 gene was restrictedly expressed in neuronal tissues and the testicles. Our findings provide a fundamental basis for understanding the dopaminergic regulation of diverse physiological processes in the cricket.

  9. The insect ecdysone receptor is a good potential target for RNAi-based pest control.

    PubMed

    Yu, Rong; Xu, Xinping; Liang, Yongkang; Tian, Honggang; Pan, Zhanqing; Jin, Shouheng; Wang, Na; Zhang, Wenqing

    2014-01-01

    RNA interference (RNAi) has great potential for use in insect pest control. However, some significant challenges must be overcome before RNAi-based pest control can become a reality. One challenge is the proper selection of a good target gene for RNAi. Here, we report that the insect ecdysone receptor (EcR) is a good potential target for RNAi-based pest control in the brown planthopper Nilaparvata lugens, a serious insect pest of rice plants. We demonstrated that the use of a 360 bp fragment (NlEcR-c) that is common between NlEcR-A and NlEcR-B for feeding RNAi experiments significantly decreased the relative mRNA expression levels of NlEcR compared with those in the dsGFP control. Feeding RNAi also resulted in a significant reduction in the number of offspring per pair of N. lugens. Consequently, a transgenic rice line expressing NlEcR dsRNA was constructed by Agrobacterium- mediated transformation. The results of qRT-PCR showed that the total copy number of the target gene in all transgenic rice lines was 2. Northern blot analysis showed that the small RNA of the hairpin dsNlEcR-c was successfully expressed in the transgenic rice lines. After newly hatched nymphs of N. lugens fed on the transgenic rice lines, effective RNAi was observed. The NlEcR expression levels in all lines examined were decreased significantly compared with the control. In all lines, the survival rate of the nymphs was nearly 90%, and the average number of offspring per pair in the treated groups was significantly less than that observed in the control, with a decrease of 44.18-66.27%. These findings support an RNAi-based pest control strategy and are also important for the management of rice insect pests.

  10. MiR-21 is induced in endothelial cells by shear stress and modulates apoptosis and eNOS activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Martina; Baker, Meredith B.; Moore, Jeffrey P.

    Mechanical forces associated with blood flow play an important role in regulating vascular signaling and gene expression in endothelial cells (ECs). MicroRNAs (miRNAs) are a class of noncoding RNAs that posttranscriptionally regulate the expression of genes involved in diverse cell functions, including differentiation, growth, proliferation, and apoptosis. miRNAs are known to have an important role in modulating EC biology, but their expression and functions in cells subjected to shear stress conditions are unknown. We sought to determine the miRNA expression profile in human ECs subjected to unidirectional shear stress and define the role of miR-21 in shear stress-induced changes inmore » EC function. TLDA array and qRT-PCR analysis performed on HUVECs exposed to prolonged unidirectional shear stress (USS, 24 h, 15 dynes/cm{sup 2}) identified 13 miRNAs whose expression was significantly upregulated (p < 0.05). The miRNA with the greatest change was miR-21; it was increased 5.2-fold (p = 0.002) in USS-treated versus control cells. Western analysis demonstrated that PTEN, a known target of miR-21, was downregulated in HUVECs exposed to USS or transfected with pre-miR-21. Importantly, HUVECs overexpressing miR-21 had decreased apoptosis and increased eNOS phosphorylation and nitric oxide (NO{sup {center_dot}}) production. These data demonstrate that shear stress forces regulate the expression of miRNAs in ECs, and that miR-21 influences endothelial biology by decreasing apoptosis and activating the NO{sup {center_dot}} pathway. These studies advance our understanding of the mechanisms by which shear stress forces modulate vascular homeostasis.« less

  11. Distinct mechanisms for N-acetylcysteine inhibition of cytokine-induced E-selectin and VCAM-1 expression.

    PubMed

    Faruqi, R M; Poptic, E J; Faruqi, T R; De La Motte, C; DiCorleto, P E

    1997-08-01

    We have examined the effects of N-acetyl-L-cysteine (NAC), a well-characterized, thiol-containing antioxidant, on agonist-induced monocytic cell adhesion to endothelial cells (EC). NAC inhibited interleukin-1 (IL-1 beta)-induced, but not basal, adhesion with 50% inhibition at approximately 20 mM. Monocytic cell adhesion to EC in response to tumor necrosis factor-alpha (TNF-alpha), lipopolysaccharide (LPS), alpha-thrombin, or phorbol 12-myristate 13-acetate (PMA) was similarly inhibited by NAC. Unlike published studies with pyrrolidinedithiocarbamate, which specifically inhibited vascular cell adhesion molecule 1 (VCAM-1), NAC inhibited IL-1 beta-induced mRNA and cell surface expression of both E-selectin and VCAM-1. NAC had no effect on the half-life of E-selectin or VCAM-1 mRNA. Although NAC reduced nuclear factor-kappa B (NF-kappa B) activation in EC as measured by gel-shift assays using an oligonucleotide probe corresponding to the consensus NF-kappa B binding sites of the VCAM-1 gene (VCAM-NF-kappa B), the antioxidant had no appreciable effect when an oligomer corresponding to the consensus NF-kappa B binding site of the E-selectin gene (E-selectin-NF-kappa B) was used. Because NF-kappa B has been reported to be redox sensitive, we studied the effects of NAC on the EC redox environment. NAC caused an expected dramatic increase in the reduced glutathione (GSH) levels in EC. In vitro studies demonstrated that whereas the binding affinity of NF-kappa B to the VCAM-NF-kappa B oligomer peaked at a GSH-to-oxidized glutathione (GSSG) ratio of approximately 200 and decreased at higher ratios, the binding to the E-selectin-NF-kappa B oligomer appeared relatively unaffected even at ratios > 400, i.e., those achieved in EC treated with 40 mM NAC. These results suggest that NF-kappa B binding to its consensus sequences in the VCAM-1 and E-selectin gene exhibits marked differences in redox sensitivity, allowing for differential gene expression regulated by the same transcription factor. Our data also demonstrate that NAC increases the GSH-to-GSSG ratio within the EC suggesting one possible mechanism through which this antioxidant inhibits agonist-induced monocyte adhesion to EC.

  12. Deep sequencing of small RNA libraries from human prostate epithelial and stromal cells reveal distinct pattern of microRNAs primarily predicted to target growth factors.

    PubMed

    Singh, Savita; Zheng, Yun; Jagadeeswaran, Guru; Ebron, Jey Sabith; Sikand, Kavleen; Gupta, Sanjay; Sunker, Ramanjulu; Shukla, Girish C

    2016-02-28

    Complex epithelial and stromal cell interactions are required during the development and progression of prostate cancer. Regulatory small non-coding microRNAs (miRNAs) participate in the spatiotemporal regulation of messenger RNA (mRNA) and regulation of translation affecting a large number of genes involved in prostate carcinogenesis. In this study, through deep-sequencing of size fractionated small RNA libraries we profiled the miRNAs of prostate epithelial (PrEC) and stromal (PrSC) cells. Over 50 million reads were obtained for PrEC in which 860,468 were unique sequences. Similarly, nearly 76 million reads for PrSC were obtained in which over 1 million were unique reads. Expression of many miRNAs of broadly conserved and poorly conserved miRNA families were identified. Sixteen highly expressed miRNAs with significant change in expression in PrSC than PrEC were further analyzed in silico. ConsensusPathDB showed the target genes of these miRNAs were significantly involved in adherence junction, cell adhesion, EGRF, TGF-β and androgen signaling. Let-7 family of tumor-suppressor miRNAs expression was highly pervasive in both, PrEC and PrSC cells. In addition, we have also identified several miRNAs that are unique to PrEC or PrSC cells and their predicted putative targets are a group of transcription factors. This study provides perspective on the miRNA expression in PrEC and PrSC, and reveals a global trend in miRNA interactome. We conclude that the most abundant miRNAs are potential regulators of development and differentiation of the prostate gland by targeting a set of growth factors. Additionally, high level expression of the most members of let-7 family miRNAs suggests their role in the fine tuning of the growth and proliferation of prostate epithelial and stromal cells. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. RING domain is essential for the antiviral activity of TRIM25 from orange spotted grouper.

    PubMed

    Yang, Ying; Huang, Youhua; Yu, Yepin; Yang, Min; Zhou, Sheng; Qin, Qiwei; Huang, Xiaohong

    2016-08-01

    Tripartite motif-containing 25 (TRIM25) has been demonstrated to exert crucial roles in the regulation of innate immune signaling. However, the roles of fish TRIM25 in antiviral immune response still remained uncertain. Here, a novel fish TRIM25 gene from orange spotted grouper (EcTRIM25) was cloned and its roles in grouper virus infection were elucidated. EcTRIM25 encoded a 734-aa protein which shared 68% identity to large yellow croaker (Larimichthys crocea). Amino acid alignment showed that EcTRIM25 contained three conserved domains, including a RING-finger domain, a B box/coiled-coil domain and a SPRY domain. In healthy grouper, the transcript of EcTRIM25 was predominantly detected in skin, spleen and intestine. After stimulation with Singapore grouper iridovirus (SGIV) or poly I:C, the relative expression of EcTRIM25 in grouper spleen was significantly increased at the early stage of injection. Subcellular localization analysis showed that EcTRIM25 distributed throughout the cytoplasm in grouper cells. Notably, the deletion RING domain affected its accurate localization and displayed microtubule like structures or bright aggregates in GS cells. After incubation with SGIV or red spotted grouper nervous necrosis virus (RGNNV), overexpression of full length of EcTRIM25 in vitro significantly decreased the viral gene transcription of SGIV and RGNNV. Consistently, the deletion of RING domain obviously affected the inhibitory effect of EcTRIM25. Furthermore, overexpression of EcTRIM25 significantly increased the expression level of interferon related signaling molecules, including interferon regulatory factor (IRF) 3, interferon-induced 35-kDa protein (IFP35), MXI, IRF7 and myeloid differentiation factor 88 (MyD88), suggesting that the positive regulation of interferon immune response by EcTRIM25 might affected RGNNV replication directly. Meanwhile, the expression levels of pro-inflammation cytokines were differently regulated by the ectopic expression of EcTRIM25. We proposed that the regulation of IRF7, MyD88 and pro-inflammation cytokines might contribute more important roles in SGIV infection. In addition, the RING domain of EcTRIM25 also played critical roles in the regulation of interferon immune and inflammation response. Together, our results will provide new evidences that the RING domain was essential for the antiviral action of fish TRIM25 against iridovirus and nodavirus infection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. The BCL2 antagonist of cell death pathway influences endometrial cancer cell sensitivity to cisplatin.

    PubMed

    Chon, Hye Sook; Marchion, Douglas C; Xiong, Yin; Chen, Ning; Bicaku, Elona; Stickles, Xiaomang Ba; Bou Zgheib, Nadim; Judson, Patricia L; Hakam, Ardeshir; Gonzalez-Bosquet, Jesus; Wenham, Robert M; Apte, Sachin M; Lancaster, Johnathan M

    2012-01-01

    To identify pathways that influence endometrial cancer (EC) cell sensitivity to cisplatin and to characterize the BCL2 antagonist of cell death (BAD) pathway as a therapeutic target to increase cisplatin sensitivity. Eight EC cell lines (Ishikawa, MFE296, RL 95-2, AN3CA, KLE, MFE280, MFE319, HEC-1-A) were subjected to Affymetrix Human U133A GeneChip expression analysis of approximately 22,000 probe sets. In parallel, endometrial cell line sensitivity to cisplatin was quantified by MTS assay, and IC(50) values were calculated. Pearson's correlation test was used to identify genes associated with response to cisplatin. Genes associated with cisplatin responsiveness were subjected to pathway analysis. The BAD pathway was identified and subjected to targeted modulation, and the effect on cisplatin sensitivity was evaluated. Pearson's correlation analysis identified 1443 genes associated with cisplatin resistance (P<0.05), which included representation of the BAD-apoptosis pathway. Small interfering RNA (siRNA) knockdown of BAD pathway protein phosphatase PP2C expression was associated with increased phosphorylated BAD (serine-155) levels and a parallel increase in cisplatin resistance in Ishikawa (P=0.004) and HEC-1-A (P=0.02) cell lines. In contrast, siRNA knockdown of protein kinase A expression increased cisplatin sensitivity in the Ishikawa (P=0.02) cell line. The BAD pathway influences EC cell sensitivity to cisplatin, likely via modulation of the phosphorylation status of the BAD protein. The BAD pathway represents an appealing therapeutic target to increase EC cell sensitivity to cisplatin. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Specific knockdown of Oct4 and beta2-microglobulin expression by RNA interference in human embryonic stem cells and embryonic carcinoma cells.

    PubMed

    Matin, Maryam M; Walsh, James R; Gokhale, Paul J; Draper, Jonathan S; Bahrami, Ahmad R; Morton, Ian; Moore, Harry D; Andrews, Peter W

    2004-01-01

    We have used RNA interference (RNAi) to downregulate beta2-microglobulin and Oct4 in human embryonal carcinoma (hEC) cells and embryonic stem (hES) cells, demonstrating that RNAi is an effective tool for regulating specific gene activity in these human stem cells. The knockdown of Oct4 but not beta2-microglobulin expression in both EC and ES cells resulted in their differentiation, as indicated by a marked change in morphology, growth rate, and surface antigen phenotype, with respect to SSEA1, SSEA3, and TRA-1-60 expression. Expression of hCG and Gcm1 was also induced following knockdown of Oct4 expression, in both 2102Ep hEC cells and in H7 and H14 hES cells, consistent with the conclusion that, as in the mouse, Oct4 is required to maintain the undifferentiated stem cell state, and that differentiation to trophectoderm occurs in its absence. NTERA2 hEC cells also differentiated, but not to trophectoderm, suggesting their equivalence to a later stage of embryogenesis than other hEC and hES cells.

  16. An eleven gene molecular signature for extra-capsular spread in oral squamous cell carcinoma serves as a prognosticator of outcome in patients without nodal metastases.

    PubMed

    Wang, Weining; Lim, Weng Khong; Leong, Hui Sun; Chong, Fui Teen; Lim, Tony K H; Tan, Daniel S W; Teh, Bin Tean; Iyer, N Gopalakrishna

    2015-04-01

    Extracapsular spread (ECS) is an important prognostic factor for oral squamous cell carcinoma (OSCC) and is used to guide management. In this study, we aimed to identify an expression profile signature for ECS in node-positive OSCC using data derived from two different sources: a cohort of OSCC patients from our institution (National Cancer Centre Singapore) and The Cancer Genome Atlas (TCGA) head and neck squamous cell carcinoma (HNSCC) cohort. We also sought to determine if this signature could serve as a prognostic factor in node negative cancers. Patients with a histological diagnosis of OSCC were identified from an institutional database and fresh tumor samples were retrieved. RNA was extracted and gene expression profiling was performed using the Affymetrix GeneChip Human Genome U133 Plus 2.0 microarray platform. RNA sequence data and corresponding clinical data for the TCGA HNSCC cohort were downloaded from the TCGA Data Portal. All data analyses were conducted using R package and SPSS. We identified an 11 gene signature (GGH, MTFR1, CDKN3, PSRC1, SMIM3, CA9, IRX4, CPA3, ZSCAN16, CBX7 and ZFP3) which was robust in segregating tumors by ECS status. In node negative patients, patients harboring this ECS signature had a significantly worse overall survival (p=0.04). An eleven gene signature for ECS was derived. Our results also suggest that this signature is prognostic in a separate subset of patients with no nodal metastasis Further validation of this signature on other datasets and immunohistochemical studies are required to establish utility of this signature in stratifying early stage OSCC patients. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Expression of Finger Millet EcDehydrin7 in Transgenic Tobacco Confers Tolerance to Drought Stress.

    PubMed

    Singh, Rajiv Kumar; Singh, Vivek Kumar; Raghavendrarao, Sanagala; Phanindra, Mullapudi Lakshmi Venkata; Venkat Raman, K; Solanke, Amolkumar U; Kumar, Polumetla Ananda; Sharma, Tilak Raj

    2015-09-01

    One of the critical alarming constraints for agriculture is water scarcity. In the current scenario, global warming due to climate change and unpredictable rainfall, drought is going to be a master player and possess a big threat to stagnating gene pool of staple food crops. So it is necessary to understand the mechanisms that enable the plants to cope with drought stress. In this study, effort was made to prospect the role of EcDehydrin7 protein from normalized cDNA library of drought tolerance finger millet in transgenic tobacco. Biochemical and molecular analyses of T0 transgenic plants were done for stress tolerance. Leaf disc assay, seed germination test, dehydration assay, and chlorophyll estimation showed EcDehydrin7 protein directly link to drought tolerance. Northern and qRT PCR analyses shows relatively high expression of EcDehydrin7 protein compare to wild type. T0 transgenic lines EcDehydrin7(11) and EcDehydrin7(15) shows superior expression among all lines under study. In summary, all results suggest that EcDehydrin7 protein has a remarkable role in drought tolerance and may be used for sustainable crop breeding program in other food crops.

  18. Transcriptome Analysis of Escherichia coli O157:H7 Exposed to Lysates of Lettuce Leaves ▿

    PubMed Central

    Kyle, Jennifer L.; Parker, Craig T.; Goudeau, Danielle; Brandl, Maria T.

    2010-01-01

    Harvesting and processing of leafy greens inherently cause plant tissue damage, creating niches on leaves that human pathogens can exploit. We previously demonstrated that Escherichia coli O157:H7 (EcO157) multiplies more rapidly on shredded leaves than on intact leaves (M. T. Brandl, Appl. Environ. Microbiol. 74:5285-5289, 2008). To investigate how EcO157 cells adapt to physicochemical conditions in injured lettuce tissue, we used microarray-based whole-genome transcriptional profiling to characterize gene expression patterns in EcO157 after 15- and 30-min exposures to romaine lettuce lysates. Multiple carbohydrate transport systems that have a role in the utilization of substrates known to be prevalent in plant cells were activated in EcO157. This indicates the availability to the human pathogen of a variety of carbohydrates released from injured plant cells that may promote its extensive growth in leaf lysates and, thus, in wounded leaf tissue. In addition, microarray analysis revealed the upregulation of numerous genes associated with EcO157 attachment and virulence, with oxidative stress and antimicrobial resistance (including the OxyR and Mar regulons), with detoxification of noxious compounds, and with DNA repair. Upregulation of oxidative stress and antimicrobial resistance genes in EcO157 was confirmed on shredded lettuce by quantitative reverse transcription-PCR. We further demonstrate that this adaptation to stress conditions imparts the pathogen with increased resistance to hydrogen peroxide and calcium hypochlorite. This enhanced resistance to chlorinated sanitizers combined with increased expression of virulence determinants and multiplication at sites of injury on the leaves may help explain the association of processed leafy greens with outbreaks of EcO157. PMID:20061451

  19. Identification and characterization of Rab7 from orange-spotted grouper, Epinephelus coioides.

    PubMed

    Fu, Jing; Huang, Youhua; Cai, Jia; Wei, Shina; Ouyang, Zhengliang; Ye, Fuzhou; Huang, Xiaohong; Qin, Qiwei

    2014-01-01

    Rab7 is a small GTPase that regulates vesicular traffic from early to late endosomal stages of the endocytic pathway. During the virus-host co-evolution, host Rab7 was also exploited by virus to complete their life cycle. To date, however, the roles of fish Rab7 in virus infection remained largely unknown. Here, we cloned and characterized a Rab7 gene from grouper, Epinephelus coioides (Ec-Rab7). The full-length Ec-Rab7 cDNA was composed of 1182 bp and encoded a polypeptide of 207 amino acids which shared 99% identity with that from Anoplopoma fimbria or Oreochromis niloticus. Ec-Rab7 contained five conserved domains of Rab GTPase family including GTP-binding or GTPase regions as well as an effector site. RT-PCR analysis revealed that Ec-Rab7 ubiquitously expressed in all detected tissues and its transcript in spleen was up-regulated after challenge with Singapore grouper iridovirus (SGIV). Subcellular localization analysis revealed that Ec-Rab7 was distributed in the cytoplasm as spots and mostly colocalized with lysosomes. Notably, the ectopic expressed Ec-Rab7 partly aggregated into the viral factories in cells infected by SGIV. Furthermore, overexpression of Ec-Rab7 accelerated the occurrence of cytopathic effect (CPE) induced by SGIV infection and promoted viral gene transcription. In addition, far western blotting assay revealed that Ec-Rab7 might interact with viral proteins, including SGIV VP69 and VP101. Taken together, our data suggested that Ec-Rab7 might be potentially involved in SGIV replication. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Serum-based six-miRNA signature as a potential marker for EC diagnosis: Comparison with TCGA miRNAseq dataset and identification of miRNA-mRNA target pairs by integrated analysis of TCGA miRNAseq and RNAseq datasets.

    PubMed

    Sharma, Priyanka; Saraya, Anoop; Sharma, Rinu

    2018-01-30

    To evaluate the diagnostic potential of a six microRNAs (miRNAs) panel consisting of miR-21, miR-144, miR-107, miR-342, miR-93 and miR-152 for esophageal cancer (EC) detection. The expression of miRNAs was analyzed in EC sera samples using quantitative real-time PCR. Risk score analysis was performed and linear regression models were then fitted to generate the six-miRNA panel. In addition, we made an effort to identify significantly dysregulated miRNAs and mRNAs in EC using the Cancer Genome Atlas (TCGA) miRNAseq and RNAseq datasets, respectively. Further, we identified significantly correlated miRNA-mRNA target pairs by integrating TCGA EC miRNAseq dataset with RNAseq dataset. The panel of circulating miRNAs showed enhanced sensitivity (87.5%) and specificity (90.48%) in terms of discriminating EC patients from normal subjects (area under the curve [AUC] = 0.968). Pathway enrichment analysis for potential targets of six miRNAs revealed 48 significant (P < 0.05) pathways, viz. pathways in cancer, mRNA surveillance, MAPK, Wnt, mTOR signaling, and so on. The expression data for mRNAs and miRNAs, downloaded from TCGA database, lead to identification of 2309 differentially expressed genes and 189 miRNAs. Gene ontology and pathway enrichment analysis showed that cell-cycle processes were most significantly enriched for differentially expressed mRNA. Integrated analysis of TCGA miRNAseq and RNAseq datasets resulted in identification of 53 063 significantly and negatively correlated miRNA-mRNA pairs. In summary, a novel and highly sensitive signature of serum miRNAs was identified for EC detection. Moreover, this is the first report identifying miRNA-mRNA target pairs from EC TCGA dataset, thus providing a comprehensive resource for understanding the interactions existing between miRNA and their target mRNAs in EC. © 2018 John Wiley & Sons Australia, Ltd.

  1. Protein tyrosine phosphatase encoded in Cotesia plutellae bracovirus suppresses a larva-to-pupa metamorphosis of the diamondback moth, Plutella xylostella.

    PubMed

    Kim, Jiwan; Hepat, Rahul; Lee, Daeweon; Kim, Yonggyun

    2013-09-01

    Parasitization by an endoparasitoid wasp, Cotesia plutellae, inhibits a larva-to-pupa metamorphosis of the diamondback moth, Plutella xylostella. This study tested an inhibitory effect of C. plutellae bracovirus (CpBV) on the metamorphosis of P. xylostella. Parasitized P. xylostella exhibited significantly reduced prothoracic gland (PTG) development at the last instar compared to nonparasitized larvae. Expression of the ecdysone receptor (EcR) was markedly suppressed during the last instar larvae parasitized by C. plutellae. By contrast, expression of the insulin receptor (InR) significantly increased in the parasitized larvae. Microinjection of CpBV significantly inhibited the larva-to-pupa metamorphosis of nonparasitized larvae in a dose-dependent manner. Injection of CpBV also inhibited the expression of the EcR and increased the expression of the InR. Individual CpBV segments were transiently expressed in its encoded genes in nonparasitized larvae and screened to determine antimetamorphic viral gene(s). Out of 21 CpBV segments, two viral segments (CpBV-S22 and CpBV-S27) were proved to inhibit larva-to-pupa metamorphosis by transient expression assay. RNA interference of each gene encoded in the viral segments was applied to determine antimetamorphic gene(s). Protein tyrosine phosphatase, early expressed gene, and four hypothetical genes were selected to be associated with the antimetamorphic activity of CpBV. These results suggest that antimetamorphosis of P. xylostella parasitized by C. plutellae is induced by inhibiting PTG development and subsequent ecdysteroid signaling with viral factors of CpBV. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Docosahexaenoyl ethanolamide improves glucose uptake and alters endocannabinoid system gene expression in proliferating and differentiating C2C12 myoblasts

    PubMed Central

    Kim, Jeffrey; Carlson, Morgan E.; Watkins, Bruce A.

    2014-01-01

    Skeletal muscle is a major storage site for glycogen and a focus for understanding insulin resistance and type-2-diabetes. New evidence indicates that overactivation of the peripheral endocannabinoid system (ECS) in skeletal muscle diminishes insulin sensitivity. Specific n-6 and n-3 polyunsaturated fatty acids (PUFA) are precursors for the biosynthesis of ligands that bind to and activate the cannabinoid receptors. The function of the ECS and action of PUFA in skeletal muscle glucose uptake was investigated in proliferating and differentiated C2C12 myoblasts treated with either 25 μM of arachidonate (AA) or docosahexaenoate (DHA), 25 μM of EC [anandamide (AEA), 2-arachidonoylglycerol (2-AG), docosahexaenoylethanolamide (DHEA)], 1 μM of CB1 antagonist NESS0327, and CB2 inverse agonist AM630. Compared to the BSA vehicle control cell cultures in both proliferating and differentiated myoblasts those treated with DHEA, the EC derived from the n-3 PUFA DHA, had higher 24 h glucose uptake, while AEA and 2-AG, the EC derived from the n-6 PUFA AA, had lower basal glucose uptake. Adenylyl cyclase mRNA was higher in myoblasts treated with DHA in both proliferating and differentiated states while those treated with AEA or 2-AG were lower compared to the control cell cultures. Western blot and qPCR analysis showed higher expression of the cannabinoid receptors in differentiated myoblasts treated with DHA while the opposite was observed with AA. These findings indicate a compensatory effect of DHA and DHEA compared to AA-derived ligands on the ECS and associated ECS gene expression and higher glucose uptake in myoblasts. PMID:24711795

  3. Evidence for increased expression of the vesicular glutamate transporter, VGLUT1, by a course of antidepressant treatment.

    PubMed

    Tordera, Rosa M; Pei, Qi; Sharp, Trevor

    2005-08-01

    The therapeutic effect of a course of antidepressant treatment is believed to involve a cascade of neuroadaptive changes in gene expression leading to increased neural plasticity. Because glutamate is linked to mechanisms of neural plasticity, this transmitter may play a role in these changes. This study investigated the effect of antidepressant treatment on expression of the vesicular glutamate transporters, VGLUT1-3 in brain regions of the rat. Repeated treatment with fluoxetine, paroxetine or desipramine increased VGLUT1 mRNA abundance in frontal, orbital, cingulate and parietal cortices, and regions of the hippocampus. Immunoautoradiography analysis showed that repeated antidepressant drug treatment increased VGLUT1 protein expression. Repeated electroconvulsive shock (ECS) also increased VGLUT1 mRNA abundance in regions of the cortex and hippocampus compared to sham controls. The antidepressant drugs and ECS did not alter VGLUT1 mRNA abundance after acute administration, and no change was detected after repeated treatment with the antipsychotic agents, haloperidol and chlorpromazine. In contrast to VGLUT1, the different antidepressant treatments did not commonly increase the expression of VGLUT2 or VGLUT3 mRNA. These data suggest that a course of antidepressant drug or ECS treatment increases expression of VGLUT1, a key gene involved in the regulation of glutamate secretion.

  4. Parasitization by Scleroderma guani influences expression of superoxide dismutase genes in Tenebrio molitor.

    PubMed

    Zhu, Jia-Ying; Ze, Sang-Zi; Stanley, David W; Yang, Bin

    2014-09-01

    Superoxide dismutase (SOD) is an antioxidant enzyme involved in detoxifying reactive oxygen species. In this study, we identified genes encoding the extracellular and intracellular copper-zinc SODs (ecCuZnSOD and icCuZnSOD) and a manganese SOD (MnSOD) in the yellow mealworm beetle, Tenebrio molitor. The cDNAs for ecCuZnSOD, icCuZnSOD, and MnSOD, respectively, encode 24.55, 15.81, and 23.14 kDa polypeptides, which possess structural features typical of other insect SODs. They showed 20-94% identity to other known SOD sequences from Bombyx mori, Musca domestica, Nasonia vitripennis, Pediculus humanus corporis, and Tribolium castaneum. Expression of these genes was analyzed in selected tissues and developmental stages, and following exposure to Escherichia coli and parasitization by Scleroderma guani. We recorded expression of all three SODs in cuticle, fat body, and hemocytes and in the major developmental stages. Relatively higher expressions were detected in late-instar larvae and pupae, compared to other developmental stages. Transcriptional levels were upregulated following bacterial infection. Analysis of pupae parasitized by S. guani revealed that expression of T. molitor SOD genes was significantly induced following parasitization. We infer that these genes act in immune response and in host-parasitoid interactions. © 2014 Wiley Periodicals, Inc.

  5. Herbal remedy magnolol suppresses IL-6-induced STAT3 activation and gene expression in endothelial cells

    PubMed Central

    Chen, Shih-Chung; Chang, Ying-Ling; Wang, Danny Ling; Cheng, Jing-Jy

    2006-01-01

    Magnolol (Mag), an active constituent isolated from the Chinese herb Hou p'u (Magnolia officinalis) has long been used to suppress inflammatory processes. Chronic inflammation is well known to be involved in vascular injuries such as atherosclerosis in which interleukin (IL)-6 may participate. Signal transducer and activator of transcription protein 3 (STAT3), a transcription factor involved in inflammation and the cell cycle, is activated by IL-6. In this study, we evaluated whether Mag can serve as an anti-inflammatory agent during endothelial injuries. The effects of Mag on IL-6-induced STAT3 activation and downstream target gene induction in endothelial cells (ECs) were examined. Pretreatment of ECs with Mag dose dependently inhibited IL-6-induced Tyr705 and Ser727 phosphorylation in STAT3 without affecting the phosphorylation of JAK1, JAK2, and ERK1/2. Mag pretreatment of these ECs dose dependently suppressed IL-6-induced promoter activity of intracellular cell adhesion molecule (ICAM)-1 that contains functional IL-6 response elements (IREs). An electrophoretic mobility shift assay (EMSA) revealed that Mag treatment significantly reduced STAT3 binding to the IRE region. Consistently, Mag treatment markedly inhibited ICAM-1 expression on the endothelial surface. As a result, reduced monocyte adhesion to IL-6-activated ECs was observed. Furthermore, Mag suppressed IL-6-induced promoter activity of cyclin D1 and monocyte chemotactic protein (MCP)-1 for which STAT3 activation plays a role. In conclusion, our results indicate that Mag inhibits IL-6-induced STAT3 activation and subsequently results in the suppression of downstream target gene expression in ECs. These results provide a therapeutic basis for the development of Mag as an anti-inflammatory agent for vascular disorders including atherosclerosis. PMID:16520748

  6. Thiol synthetases of legumes: immunogold localization and differential gene regulation by phytohormones

    PubMed Central

    Clemente, Maria R.; Bustos-Sanmamed, Pilar; Loscos, Jorge; James, Euan K.; Pérez-Rontomé, Carmen; Navascués, Joaquín; Gay, Marina; Becana, Manuel

    2012-01-01

    In plants and other organisms, glutathione (GSH) biosynthesis is catalysed sequentially by γ-glutamylcysteine synthetase (γECS) and glutathione synthetase (GSHS). In legumes, homoglutathione (hGSH) can replace GSH and is synthesized by γECS and a specific homoglutathione synthetase (hGSHS). The subcellular localization of the enzymes was examined by electron microscopy in several legumes and gene expression was analysed in Lotus japonicus plants treated for 1–48 h with 50 μM of hormones. Immunogold localization studies revealed that γECS is confined to chloroplasts and plastids, whereas hGSHS is also in the cytosol. Addition of hormones caused differential expression of thiol synthetases in roots. After 24–48 h, abscisic and salicylic acids downregulated GSHS whereas jasmonic acid upregulated it. Cytokinins and polyamines activated GSHS but not γECS or hGSHS. Jasmonic acid elicited a coordinated response of the three genes and auxin induced both hGSHS expression and activity. Results show that the thiol biosynthetic pathway is compartmentalized in legumes. Moreover, the similar response profiles of the GSH and hGSH contents in roots of non-nodulated and nodulated plants to the various hormonal treatments indicate that thiol homeostasis is independent of the nitrogen source of the plants. The differential regulation of the three mRNA levels, hGSHS activity, and thiol contents by hormones indicates a fine control of thiol biosynthesis at multiple levels and strongly suggests that GSH and hGSH play distinct roles in plant development and stress responses. PMID:22442424

  7. Thiol synthetases of legumes: immunogold localization and differential gene regulation by phytohormones.

    PubMed

    Clemente, Maria R; Bustos-Sanmamed, Pilar; Loscos, Jorge; James, Euan K; Pérez-Rontomé, Carmen; Navascués, Joaquín; Gay, Marina; Becana, Manuel

    2012-06-01

    In plants and other organisms, glutathione (GSH) biosynthesis is catalysed sequentially by γ-glutamylcysteine synthetase (γECS) and glutathione synthetase (GSHS). In legumes, homoglutathione (hGSH) can replace GSH and is synthesized by γECS and a specific homoglutathione synthetase (hGSHS). The subcellular localization of the enzymes was examined by electron microscopy in several legumes and gene expression was analysed in Lotus japonicus plants treated for 1-48 h with 50 μM of hormones. Immunogold localization studies revealed that γECS is confined to chloroplasts and plastids, whereas hGSHS is also in the cytosol. Addition of hormones caused differential expression of thiol synthetases in roots. After 24-48 h, abscisic and salicylic acids downregulated GSHS whereas jasmonic acid upregulated it. Cytokinins and polyamines activated GSHS but not γECS or hGSHS. Jasmonic acid elicited a coordinated response of the three genes and auxin induced both hGSHS expression and activity. Results show that the thiol biosynthetic pathway is compartmentalized in legumes. Moreover, the similar response profiles of the GSH and hGSH contents in roots of non-nodulated and nodulated plants to the various hormonal treatments indicate that thiol homeostasis is independent of the nitrogen source of the plants. The differential regulation of the three mRNA levels, hGSHS activity, and thiol contents by hormones indicates a fine control of thiol biosynthesis at multiple levels and strongly suggests that GSH and hGSH play distinct roles in plant development and stress responses.

  8. Convergent evidence from systematic analysis of GWAS revealed genetic basis of esophageal cancer.

    PubMed

    Gao, Xue-Xin; Gao, Lei; Wang, Jiu-Qiang; Qu, Su-Su; Qu, Yue; Sun, Hong-Lei; Liu, Si-Dang; Shang, Ying-Li

    2016-07-12

    Recent genome-wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) associated with risk of esophageal cancer (EC). However, investigation of genetic basis from the perspective of systematic biology and integrative genomics remains scarce.In this study, we explored genetic basis of EC based on GWAS data and implemented a series of bioinformatics methods including functional annotation, expression quantitative trait loci (eQTL) analysis, pathway enrichment analysis and pathway grouped network analysis.Two hundred and thirteen risk SNPs were identified, in which 44 SNPs were found to have significantly differential gene expression in esophageal tissues by eQTL analysis. By pathway enrichment analysis, 170 risk genes mapped by risk SNPs were enriched into 38 significant GO terms and 17 significant KEGG pathways, which were significantly grouped into 9 sub-networks by pathway grouped network analysis. The 9 groups of interconnected pathways were mainly involved with muscle cell proliferation, cellular response to interleukin-6, cell adhesion molecules, and ethanol oxidation, which might participate in the development of EC.Our findings provide genetic evidence and new insight for exploring the molecular mechanisms of EC.

  9. G9a/GLP histone lysine dimethyltransferase complex activity in the hippocampus and the entorhinal cortex is required for gene activation and silencing during memory consolidation.

    PubMed

    Gupta-Agarwal, Swati; Franklin, Aimee V; Deramus, Thomas; Wheelock, Muriah; Davis, Robin L; McMahon, Lori L; Lubin, Farah D

    2012-04-18

    Learning triggers alterations in gene transcription in brain regions such as the hippocampus and the entorhinal cortex (EC) that are necessary for long-term memory (LTM) formation. Here, we identify an essential role for the G9a/G9a-like protein (GLP) lysine dimethyltransferase complex and the histone H3 lysine 9 dimethylation (H3K9me2) marks it catalyzes, in the transcriptional regulation of genes in area CA1 of the rat hippocampus and the EC during memory consolidation. Contextual fear learning increased global levels of H3K9me2 in area CA1 and the EC, with observable changes at the Zif268, DNMT3a, BDNF exon IV, and cFOS gene promoters, which occurred in concert with mRNA expression. Inhibition of G9a/GLP in the EC, but not in the hippocampus, enhanced contextual fear conditioning relative to control animals. The inhibition of G9a/GLP in the EC induced several histone modifications that include not only methylation but also acetylation. Surprisingly, we found that downregulation of G9a/GLP activity in the EC enhanced H3K9me2 in area CA1, resulting in transcriptional silencing of the non-memory permissive gene COMT in the hippocampus. In addition, synaptic plasticity studies at two distinct EC-CA1 cellular pathways revealed that G9a/GLP activity is critical for hippocampus-dependent long-term potentiation initiated in the EC via the perforant pathway, but not the temporoammonic pathway. Together, these data demonstrate that G9a/GLP differentially regulates gene transcription in the hippocampus and the EC during memory consolidation. Furthermore, these findings support the possibility of a role for G9a/GLP in the regulation of cellular and molecular cross talk between these two brain regions during LTM formation.

  10. Identification and molecular characterization of 48 kDa calcium binding protein as calreticulin from finger millet (Eleusine coracana) using peptide mass fingerprinting and transcript profiling.

    PubMed

    Singh, Manoj; Metwal, Mamta; Kumar, Vandana A; Kumar, Anil

    2016-01-30

    Attempts were made to identify and characterize the calcium binding proteins (CaBPs) in grain filling stages of finger millet using proteomics, bioinformatics and molecular approaches. A distinctly observed blue color band of 48 kDa stained by Stains-all was eluted and analyzed as calreticulin (CRT) using nano liquid chromatography-tandem mass spectrometry (nano LC-MS). Based on the top hits of peptide mass fingerprinting results, conserved primers were designed for isolation of the CRT gene from finger millet using calreticulin sequences of different cereals. The deduced nucleotide sequence analysis of 600 bp amplicon showed up to 91% similarity with CRT gene(s) of rice and other plant species and designated as EcCRT1. Transcript profiling of EcCRT1 showed different levels of relative expression at different stages of developing spikes. The higher expression of EcCRT1 transcripts and protein were observed in later stages of developing spikes which might be due to greater translational synthesis of EcCRT1 protein during seed maturation in finger millet. Preferentially higher synthesis of this CaBP during later stages of grain filling may be responsible for the sequestration of calcium in endoplasmic reticulum of finger millet grains. © 2015 Society of Chemical Industry.

  11. Adenovirus Vector E4 Gene Regulates Connexin 40 and 43 Expression in Endothelial Cells via PKA and PI3K Signal Pathways

    PubMed Central

    Zhang, Fan; Cheng, Joseph; Lam, George; Jin, David K.; Vincent, Loïc; Hackett, Neil R.; Wang, Shiyang; Young, Lauren M.; Hempstead, Barbara; Crystal, Ronald G.; Rafii, Shahin

    2010-01-01

    Connexins (Cxs) provide a means for intercellular communication and play important roles in the pathophysiology of vascular cardiac diseases. Infection of endothelial cells (ECs) with first-generation E1/E3-deleted E4+ adenovirus (AdE4+) selectively modulates the survival and angiogenic potential of ECs by as of yet unrecognized mechanisms. We show here that AdE4+ vectors potentiate Cx expression in ECs in vitro and in mouse heart tissue. Infection of ECs with AdE4+, but not AdE4−, resulted in a time- and dose-dependent induction of junctional Cx40 expression and suppression of Cx43 protein and mRNA expression. Treatment of ECs with PKA inhibitor H89 or PI3K inhibitor LY294002 prevented the AdE4+-mediated regulation of Cx40 and Cx43 that was associated with diminished AdE4+-mediated survival of ECs. Moreover, both PKA activity and cAMP-response element (CRE)-binding activity were enhanced by treatment of ECs with AdE4+. However, there is no causal evidence of a cross-talk between the 2 modulatory pathways, PKA and PI3K. Remarkably, Cx40 immunostaining was markedly increased and Cx43 was decreased in the heart tissue of mice treated with intratracheal AdE4+. Taken together, these results suggest that AdE4+ may play an important role in the regulation of Cx expression in ECs, and that these effects are mediated by both the PKA/CREB and PI3K signaling pathways. PMID:15831817

  12. Expression of an Acid Urease with Urethanase Activity in E. coli and Analysis of Urease Gene.

    PubMed

    Liu, Xiaofeng; Zhang, Qian; Zhou, Nandi; Tian, Yaping

    2017-03-01

    Urea in alcoholic beverage is a precursor of ethyl carbamate (EC), which is carcinogenic. Enzymatic elimination of urea has attracted much research interest. Acid urease with good tolerance toward ethanol and acid is ideal enzyme for such applications. In the present work, the structural genes of urease from Providencia rettgeri JN-B815, ureABC were efficiently expressed in E. coli BL21(DE3) in an active form (apourease) exhibiting both urease and urethanase (hydrolyze EC) activities. The specific activities of the purified apourease were comparatively low, which were 2.1 U/mg for urease and 0.6 U/mg for urethanase, respectively. However, apourease exhibited good resistance toward ethanol and acidic conditions. The relative activities of urease and urethanase remained over 80% in the buffers within pH 4-7. And the recoveries of both urease and urethanase activities were more than 50% in 5-25% ethanol solution. Apourease was utilized to eliminate urea in wine, and the residual urea in model wine was less than 50% after treatment with apourease for 30 h. Then 3D structure of UreC was predicted, and it was docked with urea and EC, respectively. The docking result revealed that three hydrogen bonds were formed between urea and amino acid residues in the active site of urease, whereas only one hydrogen bond can be formed between EC and the active center. Moreover, EC exhibited greater steric hindrance than urea when combined with the active site. Due to the low specific activities of apourease, both structural genes and accessory genes of urease were co-expressed in E. coli BL21(DE3). The holoenzyme was expressed as inclusion body. After renaturation and purification, the specific activities of urease and urethanase reached 10.7 and 3.8 U/mg, which were 5.62-fold and 6.33-fold of those of apourease, respectively. Therefore, accessory subunits of urease play an important role in enhancing urease and urethanase activities.

  13. Impact of IGF-1, IGF-1R, and IGFBP-3 promoter methylation on the risk and prognosis of esophageal carcinoma.

    PubMed

    Ye, Peng; Qu, Chang-Fa; Hu, Xue-Lin

    2016-05-01

    The aim of this study is to investigate IGF-1, IGF-1R, and IGFBP-3 methylations in esophageal carcinoma (EC) patients and their relationship with the development and prognosis of EC. This study population consisted of 264 patients (case group) whom EC radical resection was performed and 283 healthy individuals (control group). Methylation-specific PCR (MSP) detected the methylation status of IGF-1, IGF-1R, and IGFBP-3 in the peripheral blood in both groups. The expressions of IGF-1, IGF-1R, and IGFBP-3 in EC and adjacent normal tissues were detected by immunohistochemistry (IHC). The methylation rates of IGF-1, IGF-1R, IGFBP3, and IGF-1 + IGF1R + IGFBP3 in the case group were higher than those in the control group (all P < 0.05). Additionally, there were statistical significances for the methylation rates of IGF-1, IGF-1R, IGFBP3, and IGF-1 + IGF1R + IGFBP3 IGF-1 among patients of different clinicopathological features (all P < 0.05). The positive expression rates of IGF-1 and IGF-1R in EC were significantly higher than those in adjacent normal tissues (both P < 0.001), and the rate of IGFBP-3 in EC was significantly lower than that in adjacent normal tissues (P < 0.05). Correlation analysis showed that IGF-1 and IGF1R gene promoter methylation was positively correlated with the positive expressions of IGF-1 (r = 0.139, P = 0.024) and IGF-1R (r = 0.135, P = 0.028), while the IGFBP3 methylation was negatively correlated with the positive expression of IGFBP3 (r = -0.133, P = 0.031). The positive expressions of IGF-1, IGF-1R, and IGFBP-3 were related to different clinicopathological features (all P < 0.05). Cox multivariate analysis results showed that methylation status of IGF-1, IGF-1R, and IGF-1 + IGF1R + IGFBP3 ; expressions of IGF-1 and IGF-1R protein; infiltration depth; and lymph node metastasis (LNM) were independent factors of EC prognosis. Our study demonstrated that methylation of IGF-1, IGF1R, IGFBP3, and IGF-1 + IGF1R + IGFBP3 was closely linked with the occurrence of EC and patients' clinicopathological features. Besides, the methylation status of the target genes and the expressions of IGF-1 and IGF-1R protein were independent factors of EC prognosis, which could provide a direction for the prognosis and treatment of EC.

  14. Endothelial Hypoxia-Inducible Factor-1α Promotes Atherosclerosis and Monocyte Recruitment by Upregulating MicroRNA-19a.

    PubMed

    Akhtar, Shamima; Hartmann, Petra; Karshovska, Ela; Rinderknecht, Fatuma-Ayaan; Subramanian, Pallavi; Gremse, Felix; Grommes, Jochen; Jacobs, Michael; Kiessling, Fabian; Weber, Christian; Steffens, Sabine; Schober, Andreas

    2015-12-01

    Chemokines mediate monocyte adhesion to dysfunctional endothelial cells (ECs) and promote arterial inflammation during atherosclerosis. Hypoxia-inducible factor (HIF)-1α is expressed in various cell types of atherosclerotic lesions and is associated with lesional inflammation. However, the impact of endothelial HIF-1α in atherosclerosis is unclear. HIF-1α was detectable in the nucleus of ECs covering murine and human atherosclerotic lesions. To study the role of endothelial HIF-1α in atherosclerosis, deletion of the Hif1a gene was induced in ECs from apolipoprotein E knockout mice (EC-Hif1a(-/-)) by Tamoxifen injection. The formation of atherosclerotic lesions, the lesional macrophage accumulation, and the expression of CXCL1 in ECs were reduced after partial carotid ligation in EC-Hif1a(-/-) compared with control mice. Moreover, the lesion area and the lesional macrophage accumulation were decreased in the aortas of EC-Hif1a(-/-) mice compared with control mice during diet-induced atherosclerosis. In vitro, mildly oxidized low-density lipoprotein or lysophosphatidic acid 20:4 increased endothelial CXCL1 expression and monocyte adhesion by inducing HIF-1α expression. Moreover, endothelial Hif1a deficiency resulted in downregulation of miR-19a in atherosclerotic arteries determined by microRNA profiling. In vitro, HIF-1α-induced miR-19a expression mediated the upregulation of CXCL1 in mildly oxidized low-density lipoprotein-stimulated ECs. These results indicate that hyperlipidemia upregulates HIF-1α expression in ECs by mildly oxidized low-density lipoprotein-derived unsaturated lysophosphatidic acid. Endothelial HIF-1α promoted atherosclerosis by triggering miR-19a-mediated CXCL1 expression and monocyte adhesion, indicating that inhibition of the endothelial HIF-1α/miR-19a pathway may be a therapeutic option against atherosclerosis. © 2015 American Heart Association, Inc.

  15. Co-Expression of Monodehydroascorbate Reductase and Dehydroascorbate Reductase from Brassica rapa Effectively Confers Tolerance to Freezing-Induced Oxidative Stress

    PubMed Central

    Shin, Sun-Young; Kim, Myung-Hee; Kim, Yul-Ho; Park, Hyang-Mi; Yoon, Ho-Sung

    2013-01-01

    Plants are exposed to various environmental stresses and have therefore developed antioxidant enzymes and molecules to protect their cellular components against toxicity derived from reactive oxygen species (ROS). Ascorbate is a very important antioxidant molecule in plants, and monodehydroascorbate reductase (MDHAR; EC 1.6.5.4) and dehydroascorbate reductase (DHAR; EC 1.8.5.1) are essential to regeneration of ascorbate for maintenance of ROS scavenging ability. The MDHAR and DHAR genes from Brassica rapa were cloned, transgenic plants overexpressing either BrMDHAR and BrDHAR were established, and then, each transgenic plant was hybridized to examine the effects of co-expression of both genes conferring tolerance to freezing. Transgenic plants co-overexpressing BrMDHAR and BrDHAR showed activated expression of relative antioxidant enzymes, and enhanced levels of glutathione and phenolics under freezing condition. Then, these alteration caused by co-expression led to alleviated redox status and lipid peroxidation and consequently conferred improved tolerance against severe freezing stress compared to transgenic plants overexpressing single gene. The results of this study suggested that although each expression of BrMDHAR or BrDHAR was available to according tolerance to freezing, the simultaneous expression of two genes generated synergistic effects conferring improved tolerance more effectively even severe freezing. PMID:24170089

  16. Embryonal carcinoma cell induction of miRNA and mRNA changes in co-cultured prostate stromal fibromuscular cells

    PubMed Central

    VÊNCIO, ENEIDA F.; PASCAL, LAURA E.; PAGE, LAURA S.; DENYER, GARETH; WANG, AMY J.; RUOHOLA-BAKER, HANNELE; ZHANG, SHILE; WANG, KAI; GALAS, DAVID J.; LIU, ALVIN Y.

    2014-01-01

    The prostate stromal mesenchyme controls organ-specific development. In cancer, the stromal compartment shows altered gene expression compared to non-cancer. The lineage relationship between cancer-associated stromal cells and normal tissue stromal cells is not known. Nor is the cause underlying the expression difference. Previously, the embryonal carcinoma (EC) cell line, NCCIT, was used by us to study the stromal induction property. In the current study, stromal cells from non-cancer (NP) and cancer (CP) were isolated from tissue specimens and co-cultured with NCCIT cells in a trans-well format to preclude heterotypic cell contact. After 3 days, the stromal cells were analyzed by gene arrays for microRNA (miRNA) and mRNA expression. In co-culture, NCCIT cells were found to alter the miRNA and mRNA expression of NP stromal cells to one like that of CP stromal cells. In contrast, NCCIT had no significant effect on the gene expression of CP stromal cells. We conclude that the gene expression changes in stromal cells can be induced by diffusible factors synthesized by EC cells, and suggest that cancer-associated stromal cells represent a more primitive or less differentiated stromal cell type. PMID:20945389

  17. Identification of Unstable Network Modules Reveals Disease Modules Associated with the Progression of Alzheimer’s Disease

    PubMed Central

    Kikuchi, Masataka; Ogishima, Soichi; Miyamoto, Tadashi; Miyashita, Akinori; Kuwano, Ryozo; Nakaya, Jun; Tanaka, Hiroshi

    2013-01-01

    Alzheimer’s disease (AD), the most common cause of dementia, is associated with aging, and it leads to neuron death. Deposits of amyloid β and aberrantly phosphorylated tau protein are known as pathological hallmarks of AD, but the underlying mechanisms have not yet been revealed. A high-throughput gene expression analysis previously showed that differentially expressed genes accompanying the progression of AD were more down-regulated than up-regulated in the later stages of AD. This suggested that the molecular networks and their constituent modules collapsed along with AD progression. In this study, by using gene expression profiles and protein interaction networks (PINs), we identified the PINs expressed in three brain regions: the entorhinal cortex (EC), hippocampus (HIP) and superior frontal gyrus (SFG). Dividing the expressed PINs into modules, we examined the stability of the modules with AD progression and with normal aging. We found that in the AD modules, the constituent proteins, interactions and cellular functions were not maintained between consecutive stages through all brain regions. Interestingly, the modules were collapsed with AD progression, specifically in the EC region. By identifying the modules that were affected by AD pathology, we found the transcriptional regulation-associated modules that interact with the proteasome-associated module via UCHL5 hub protein, which is a deubiquitinating enzyme. Considering PINs as a system made of network modules, we found that the modules relevant to the transcriptional regulation are disrupted in the EC region, which affects the ubiquitin-proteasome system. PMID:24348898

  18. Reduced Mitochondrial Activity is Early and Steady in the Entorhinal Cortex but it is Mainly Unmodified in the Frontal Cortex in Alzheimer's Disease.

    PubMed

    Armand-Ugon, Mercedes; Ansoleaga, Belen; Berjaoui, Sara; Ferrer, Isidro

    2017-01-01

    It is well established that mitochondrial damage plays a role in the pathophysiology of Alzheimer's disease (AD). However, studies carried out in humans barely contemplate regional differences with disease progression. To study the expression of selected nuclear genes encoding subunits of the mitochondrial complexes and the activity of mitochondrial complexes in AD, in two regions: the entorhinal cortex (EC) and frontal cortex area 8 (FC). Frozen samples from 148 cases processed for gene expression by qRT-PCR and determination of individual activities of mitochondrial complexes I, II, IV and V using commercial kits and home-made assays. Decreased expression of NDUFA2, NDUFB3, UQCR11, COX7C, ATPD, ATP5L and ATP50, covering subunits of complex I, II, IV and V, occurs in total homogenates of the EC in AD stages V-VI when compared with stages I-II. However reduced activity of complexes I, II and V of isolated mitochondria occurs as early as stages I-II when compared with middle-aged individuals in the EC. In contrast, no alterations in the expression of the same genes and no alterations in the activity of mitochondrial complexes are found in the FC in the same series. Different mechanisms of impaired energy metabolism may occur in AD, one of them, represented by the EC, is the result of primary and early alteration of mitochondria; the other one is probably the result, at least in part, of decreased functional input and is represented by hypometabolism in the FC in AD patients aged 86 or younger. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Enhancers and super-enhancers have an equivalent regulatory role in embryonic stem cells through regulation of single or multiple genes

    PubMed Central

    Moorthy, Sakthi D.; Davidson, Scott; Shchuka, Virlana M.; Singh, Gurdeep; Malek-Gilani, Nakisa; Langroudi, Lida; Martchenko, Alexandre; So, Vincent; Macpherson, Neil N.; Mitchell, Jennifer A.

    2017-01-01

    Transcriptional enhancers are critical for maintaining cell-type–specific gene expression and driving cell fate changes during development. Highly transcribed genes are often associated with a cluster of individual enhancers such as those found in locus control regions. Recently, these have been termed stretch enhancers or super-enhancers, which have been predicted to regulate critical cell identity genes. We employed a CRISPR/Cas9-mediated deletion approach to study the function of several enhancer clusters (ECs) and isolated enhancers in mouse embryonic stem (ES) cells. Our results reveal that the effect of deleting ECs, also classified as ES cell super-enhancers, is highly variable, resulting in target gene expression reductions ranging from 12% to as much as 92%. Partial deletions of these ECs which removed only one enhancer or a subcluster of enhancers revealed partially redundant control of the regulated gene by multiple enhancers within the larger cluster. Many highly transcribed genes in ES cells are not associated with a super-enhancer; furthermore, super-enhancer predictions ignore 81% of the potentially active regulatory elements predicted by cobinding of five or more pluripotency-associated transcription factors. Deletion of these additional enhancer regions revealed their robust regulatory role in gene transcription. In addition, select super-enhancers and enhancers were identified that regulated clusters of paralogous genes. We conclude that, whereas robust transcriptional output can be achieved by an isolated enhancer, clusters of enhancers acting on a common target gene act in a partially redundant manner to fine tune transcriptional output of their target genes. PMID:27895109

  20. Human Herpesvirus-8-Transformed Endothelial Cells Have Functionally Activated Vascular Endothelial Growth Factor/Vascular Endothelial Growth Factor Receptor

    PubMed Central

    Masood, Rizwan; Cesarman, Ethel; Smith, D. Lynne; Gill, Parkash S.; Flore, Ornella

    2002-01-01

    Kaposi’s sarcoma is a vascular tumor commonly associated with human immunodeficiency virus (HIV)-1 and human herpesvirus (HHV-8) also known as Kaposi’s sarcoma-associated herpesvirus. The principal features of this tumor are abnormal proliferation of vascular structures lined with spindle-shaped endothelial cells. HHV-8 may transform a subpopulation of endothelial cells in vitro via viral and cellular gene expression. We hypothesized that among the cellular genes, vascular endothelial growth factors (VEGFs) and their cognate receptors may be involved in viral-mediated transformation. We have shown that HHV-8-transformed endothelial cells (EC-HHV-8) express higher levels of VEGF, VEGF-C, VEGF-D, and PlGF in addition to VEGF receptors-1, -2, and -3. Furthermore, antibodies to VEGF receptor-2 inhibited cell proliferation and viability. Similarly, inhibition of VEGF gene expression with antisense oligonucleotides inhibited EC-HHV-8 cell proliferation/viability. The growth and viability of primary endothelial cells and a fibroblast cell line however were unaffected by either the VEGF receptor-2 antibody or the VEGF antisense oligodeoxynucleotides. VEGF and VEGF receptors are thus induced in EC-HHV-8 and participate in the transformation. Inhibitors of VEGF may thus modulate the disease process during development and progression. PMID:11786394

  1. Implications of the Endothelial Cell Response in Glioblastoma to Stimulation by Mesenchymal Stem Cells and Ionizing Radiation

    NASA Astrophysics Data System (ADS)

    Zhao, Tansy Y.

    Heightened angiogenesis is both the pathophysiologic hallmark and the potential cause of therapy resistance for glioblastoma (GBM), a deadly brain tumor. It is thought that mesenchymal stem cells (MSCs) play important roles in neovascularization and tumor progression. We postulated that MSCs protect ECs against radiotherapy, which subsequently enhances tumor angiogenesis, and promotes GBM tumor recurrence following therapy. We therefore sought to establish the in-vitro endothelial cell response to stimulation by MSC condition media and ionizing radiation (IR) treatment. We established the gene expression profiles of endothelial cells in response to IR, MSCs and the combination of both. Within the same gene profiles, we identified a unique gene signature that was highly predictive of response to Bevacizumab for GBM patients. We also demonstrated that MSC increased the viability of ECs in response to IR. Protein analysis in ECs suggested MSC-mediated cell cycle arrest as a mechanism for radio-resistance in ECs.

  2. Differential expression of genes encoding anti-oxidant enzymes in Sydney rock oysters, Saccostrea glomerata (Gould) selected for disease resistance.

    PubMed

    Green, Timothy J; Dixon, Tom J; Devic, Emilie; Adlard, Robert D; Barnes, Andrew C

    2009-05-01

    Sydney rock oysters (Saccostrea glomerata) selectively bred for disease resistance (R) and wild-caught control oysters (W) were exposed to a field infection of disseminating neoplasia. Cumulative mortality of W oysters (31.7%) was significantly greater than R oysters (0.0%) over the 118 days of the experiment. In an attempt to understand the biochemical and molecular pathways involved in disease resistance, differentially expressed sequence tags (ESTs) between R and W S. glomerata hemocytes were identified using the PCR technique, suppression subtractive hybridisation (SSH). Sequencing of 300 clones from two SSH libraries revealed 183 distinct sequences of which 113 shared high similarity to sequences in the public databases. Putative function could be assigned to 64 of the sequences. Expression of nine ESTs homologous to genes previously shown to be involved in bivalve immunity was further studied using quantitative reverse-transcriptase PCR (qRT-PCR). The base-line expression of an extracellular superoxide dismutase (ecSOD) and a small heat shock protein (sHsP) were significantly increased, whilst peroxiredoxin 6 (Prx6) and interferon inhibiting cytokine factor (IK) were significantly decreased in R oysters. From these results it was hypothesised that R oysters would be able to generate the anti-parasitic compound, hydrogen peroxide (H(2)O(2)) faster and to higher concentrations during respiratory burst due to the differential expression of genes for the two anti-oxidant enzymes of ecSOD and Prx6. To investigate this hypothesis, protein extracts from hemolymph were analysed for oxidative burst enzyme activity. Analysis of the cell free hemolymph proteins separated by native-polyacrylamide gel electrophoresis (PAGE) failed to detect true superoxide dismutase (SOD) activity by assaying dismutation of superoxide anion in zymograms. However, the ecSOD enzyme appears to generate hydrogen peroxide, presumably via another process, which is yet to be elucidated. This corroborates our hypothesis, whilst phylogenetic analysis of the complete coding sequence (CDS) of the S. glomerata ecSOD gene is supportive of the atypical nature of the ecSOD enzyme. Results obtained from this work further the current understanding of the molecular mechanisms involved in resistance to disease in this economically important bivalve, and shed further light on the anomalous oxidative processes involved.

  3. Mechanical stimuli differentially control stem cell behavior: morphology, proliferation, and differentiation

    PubMed Central

    Maul, Timothy M.; Chew, Douglas W.; Nieponice, Alejandro

    2011-01-01

    Mesenchymal stem cell (MSC) therapy has demonstrated applications in vascular regenerative medicine. Although blood vessels exist in a mechanically dynamic environment, there has been no rigorous, systematic analysis of mechanical stimulation on stem cell differentiation. We hypothesize that mechanical stimuli, relevant to the vasculature, can differentiate MSCs toward smooth muscle (SMCs) and endothelial cells (ECs). This was tested using a unique experimental platform to differentially apply various mechanical stimuli in parallel. Three forces, cyclic stretch, cyclic pressure, and laminar shear stress, were applied independently to mimic several vascular physiologic conditions. Experiments were conducted using subconfluent MSCs for 5 days and demonstrated significant effects on morphology and proliferation depending upon the type, magnitude, frequency, and duration of applied stimulation. We have defined thresholds of cyclic stretch that potentiate SMC protein expression, but did not find EC protein expression under any condition tested. However, a second set of experiments performed at confluence and aimed to elicit the temporal gene expression response of a select magnitude of each stimulus revealed that EC gene expression can be increased with cyclic pressure and shear stress in a cell-contact-dependent manner. Further, these MSCs also appear to express genes from multiple lineages simultaneously which may warrant further investigation into post-transcriptional mechanisms for controlling protein expression. To our knowledge, this is the first systematic examination of the effects of mechanical stimulation on MSCs and has implications for the understanding of stem cell biology, as well as potential bioreactor designs for tissue engineering and cell therapy applications. PMID:21253809

  4. Enhanced Expression of Fibroblast Growth Factor Receptor 3 IIIc Promotes Human Esophageal Carcinoma Cell Proliferation

    PubMed Central

    Ueno, Nobuhiro; Shimizu, Akio; Kanai, Michiyuki; Iwaya, Yugo; Ueda, Shugo; Nakayama, Jun; Seo, Misuzu Kurokawa

    2015-01-01

    Deregulated expression of fibroblast growth factor receptors (FGFRs) and their ligands plays critical roles in tumorigenesis. The gene expression of an alternatively spliced isoforms of FGFR3, FGFR3IIIc, was analyzed by RT-PCR in samples from patients with esophageal carcinoma (EC), including esophageal squamous cell carcinoma (ESCC) and adenocarcinoma (EAC). The incidence of FGFR3IIIc was higher in EC [12/16 (75%); p=0.073] than in non-cancerous mucosa (NCM) [6/16 (38%)]. Indeed, an immunohistochemical analysis of early-stage ESCC showed that carcinoma cells expressing FGFR3IIIc stained positively with SCC-112, a tumor marker, and Ki67, a cell proliferation marker, suggesting that the expression of FGFR3IIIc promotes cell proliferation. We used EC-GI-10 cells endogenously expressing FGFR3IIIc as a model of ESCC to provide mechanistic insight into the role of FGFR3IIIc in ESCC. The knockdown of endogenous FGFR3 using siRNA treatment significantly abrogated cell proliferation and the overexpression of FGFR3IIIc in cells with enhanced cell proliferation. EC-GI-10 cells and ESCC from patients with EC showed endogenous expression of FGF2, a specific ligand for FGFR3IIIc, suggesting that the upregulated expression of FGFR3IIIc may create autocrine FGF signaling in ESCC. Taken together, FGFR3IIIc may have the potential to be an early-stage tumor marker and a molecular target for ESCC therapy. PMID:26487184

  5. MyD88-dependent dendritic and epithelial cell crosstalk orchestrates immune responses to allergens.

    PubMed

    Thomas, S Y; Whitehead, G S; Takaku, M; Ward, J M; Xu, X; Nakano, K; Lyons-Cohen, M R; Nakano, H; Gowdy, K M; Wade, P A; Cook, D N

    2018-05-01

    Sensitization to inhaled allergens is dependent on activation of conventional dendritic cells (cDCs) and on the adaptor molecule, MyD88. However, many cell types in the lung express Myd88, and it is unclear how signaling in these different cell types reprograms cDCs and leads to allergic inflammation of the airway. By combining ATAC-seq with RNA profiling, we found that MyD88 signaling in cDCs maintained open chromatin at select loci even at steady state, allowing genes to be rapidly induced during allergic sensitization. A distinct set of genes related to metabolism was indirectly controlled in cDCs through MyD88 signaling in airway epithelial cells (ECs). In mouse models of asthma, Myd88 expression in ECs was critical for eosinophilic inflammation, whereas Myd88 expression in cDCs was required for Th17 cell differentiation and consequent airway neutrophilia. Thus, both cell-intrinsic and cell-extrinsic MyD88 signaling controls gene expression in cDCs and orchestrates immune responses to inhaled allergens.

  6. Extracellular Superoxide Dismutase Ameliorates Skeletal Muscle Abnormalities, Cachexia and Exercise Intolerance in Mice with Congestive Heart Failure

    PubMed Central

    Okutsu, Mitsuharu; Call, Jarrod A.; Lira, Vitor A.; Zhang, Mei; Donet, Jean A.; French, Brent A.; Martin, Kyle S.; Peirce-Cottler, Shayn M.; Rembold, Christopher M.; Annex, Brian H.; Yan, Zhen

    2014-01-01

    Background Congestive heart failure (CHF) is a leading cause of morbidity and mortality, and oxidative stress has been implicated in the pathogenesis of cachexia (muscle wasting) and the hallmark symptom, exercise intolerance. We have previously shown that a nitric oxide (NO)-dependent antioxidant defense renders oxidative skeletal muscle resistant to catabolic wasting. Here, we aimed to identify and determine the functional role of the NO-inducible antioxidant enzyme(s) in protection against cardiac cachexia and exercise intolerance in CHF. Methods and Results We demonstrated that systemic administration of endogenous nitric oxide donor S-Nitrosoglutathione in mice blocked the reduction of extracellular superoxide dismutase (EcSOD) protein expression, the induction of MAFbx/Atrogin-1 mRNA expression and muscle atrophy induced by glucocorticoid. We further showed that endogenous EcSOD, expressed primarily by type IId/x and IIa myofibers and enriched at endothelial cells, is induced by exercise training. Muscle-specific overexpression of EcSOD by somatic gene transfer or transgenesis [muscle creatine kinase (MCK)-EcSOD] in mice significantly attenuated muscle atrophy. Importantly, when crossbred into a mouse genetic model of CHF [α-myosin heavy chain (MHC)-calsequestrin] MCK-EcSOD transgenic mice had significant attenuation of cachexia with preserved whole body muscle strength and endurance capacity in the absence of reduced heart failure. Enhanced EcSOD expression significantly ameliorated CHF-induced oxidative stress, MAFbx/Atrogin-1 mRNA expression, loss of mitochondria and vascular rarefaction in skeletal muscle. Conclusions EcSOD plays an important antioxidant defense function in skeletal muscle against cardiac cachexia and exercise intolerance in CHF. PMID:24523418

  7. JunB is required for endothelial cell morphogenesis by regulating core-binding factor β

    PubMed Central

    Licht, Alexander H.; Pein, Oliver T.; Florin, Lore; Hartenstein, Bettina; Reuter, Hendrik; Arnold, Bernd; Lichter, Peter; Angel, Peter; Schorpp-Kistner, Marina

    2006-01-01

    The molecular mechanism triggering the organization of endothelial cells (ECs) in multicellular tubules is mechanistically still poorly understood. We demonstrate that cell-autonomous endothelial functions of the AP-1 subunit JunB are required for proper endothelial morphogenesis both in vivo in mouse embryos with endothelial-specific ablation of JunB and in in vitro angiogenesis models. By cDNA microarray analysis, we identified core-binding factor β (CBFβ), which together with the Runx proteins forms the heterodimeric core-binding transcription complex CBF, as a novel JunB target gene. In line with our findings, expression of the CBF target MMP-13 was impaired in JunB-deficient ECs. Reintroduction of CBFβ into JunB-deficient ECs rescued the tube formation defect and MMP-13 expression, indicating an important role for CBFβ in EC morphogenesis. PMID:17158955

  8. A cadmium metallothionein gene of ridgetail white prawn Exopalaemon carinicauda (Holthuis, 1950) and its expression

    NASA Astrophysics Data System (ADS)

    Zhang, Jiquan; Wang, Jing; Xiang, Jianhai

    2013-11-01

    Metallothioneins (MTs) are a group of low molecular weight cysteine-rich proteins capable of binding heavy metal ions. A cadmium metallothionein ( EcMT — Cd) cDNA with a 189 bp open reading frame (ORF) that encoded a 62 amino acid protein was obtained from Exopalaemon carinicauda. Seventeen cysteines were in the deduced amino acid sequence, and the cysteine (Cys)-rich characteristic was revealed in different metallothioneins in other species. In addition, the deduced amino acid sequence did not contain any aromatic amino acid residues, such as tyrosine (Tyr), tryptophan (Trp), and phenylalanine (Phe). EcMT—Cd mRNA was expressed in all tested tissues (the ovary, muscle, stomach, and hepatopancreas), and its expression profiles in the hepatopancreas were very different when shrimps were exposed to seawater containing either 50 μmol/L CuSO4 or 2.5 μmol/L CdCl 2. The expression of EcMT-Cd was significantly up-regulated in shrimp exposed to CuSO4 for 12 h and down-regulated in shrimps exposed to CdCl2 for 12 h. After 24 h exposure to both metals, its expression was down-regulated. By contrast, at 48 h the EcMT-Cd was up-regulated in test shrimps exposed to CdCl2. The transcript of EcMT-Cd was very low or even absent before the zoea stage, and the expression of EcMT-Cd was detected from mysis larvae-I, then its expression began to rise. In conclusion, a cadmium MT exists in E. carinicauda that is expressed in different tissues and during different developmental stages, and responds to the challenge with heavy metal ions, which provides a clue to understanding the function of cadmium MT.

  9. Transcription factor COUP-TFII is indispensable for venous and lymphatic development in zebrafish and Xenopus laevis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aranguren, Xabier L., E-mail: xabier.lopezaranguren@med.kuleuven.be; Beerens, Manu, E-mail: manu.beerens@med.kuleuven.be; Vandevelde, Wouter, E-mail: woutervandevelde@gmail.com

    Highlights: {yields} COUP-TFII deficiency in zebrafish affects arterio-venous EC specification. {yields} COUP-TFII is indispensable for lymphatic development in zebrafish. {yields} COUP-TFII knockdown in Xenopus disrupts lymphatic EC differentiation and migration. {yields} COUP-TFII's role in EC fate decisions is evolutionary conserved. -- Abstract: Transcription factors play a central role in cell fate determination. Gene targeting in mice revealed that Chicken Ovalbumin Upstream Promoter-Transcription Factor II (COUP-TFII, also known as Nuclear Receptor 2F2 or NR2F2) induces a venous phenotype in endothelial cells (ECs). More recently, NR2F2 was shown to be required for initiating the expression of Prox1, responsible for lymphatic commitment ofmore » venous ECs. Small animal models like zebrafish embryos and Xenopus laevis tadpoles have been very useful to elucidate mechanisms of (lymph) vascular development. Therefore, the role of NR2F2 in (lymph) vascular development was studied by eliminating its expression in these models. Like in mice, absence of NR2F2 in zebrafish resulted in distinct vascular defects including loss of venous marker expression, major trunk vessel fusion and vascular leakage. Both in zebrafish and Xenopus the development of the main lymphatic structures was severely hampered. NR2F2 knockdown significantly decreased prox1 expression in zebrafish ECs and the same manipulation affected lymphatic (L)EC commitment, migration and function in Xenopus tadpoles. Therefore, the role of NR2F2 in EC fate determination is evolutionary conserved.« less

  10. Genome-wide gene expression effects in B6C3F1 mouse intestinal epithelia following 7 and 90days of exposure to hexavalent chromium in drinking water.

    PubMed

    Kopec, Anna K; Kim, Suntae; Forgacs, Agnes L; Zacharewski, Timothy R; Proctor, Deborah M; Harris, Mark A; Haws, Laurie C; Thompson, Chad M

    2012-02-15

    Chronic administration of high doses of hexavalent chromium [Cr(VI)] as sodium dichromate dihydrate (SDD) elicits alimentary cancers in mice. To further elucidate key events underlying tumor formation, a 90-day drinking water study was conducted in B6C3F1 mice. Differential gene expression was examined in duodenal and jejunal epithelial samples following 7 or 90days of exposure to 0, 0.3, 4, 14, 60, 170 or 520mg/L SDD in drinking water. Genome-wide microarray analyses identified 6562 duodenal and 4448 jejunal unique differentially expressed genes at day 8, and 4630 and 4845 unique changes, respectively, in the duodenum and jejunum at day 91. Comparative analysis identified significant overlap in duodenal and jejunal differential gene expression. Automated dose-response modeling identified >80% of the differentially expressed genes exhibited sigmoidal dose-response curves with EC(50) values ranging from 10 to 100mg/L SDD. Only 16 genes satisfying the dose-dependent differential expression criteria had EC(50) values <10mg/L SDD, 3 of which were regulated by Nrf2, suggesting oxidative stress in response to SDD at low concentrations. Analyses of differentially expressed genes identified over-represented functions associated with oxidative stress, cell cycle, lipid metabolism, and immune responses consistent with the reported effects on redox status and histopathology at corresponding SDD drinking water concentrations. Collectively, these data are consistent with a mode of action involving oxidative stress and cytotoxicity as early key events. This suggests that the tumorigenic effects of chronic Cr(VI) oral exposure likely require chronic tissue damage and compensatory epithelial cell proliferation. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Cancer-associated fibroblasts promote endometrial cancer growth via activation of interleukin-6/STAT-3/c-Myc pathway.

    PubMed

    Subramaniam, Kavita S; Omar, Intan Sofia; Kwong, Soke Chee; Mohamed, Zahurin; Woo, Yin Ling; Mat Adenan, Noor Azmi; Chung, Ivy

    2016-01-01

    Cancer-associated fibroblasts (CAFs) secrete various pro-tumorigenic cytokines, yet the role of these cytokines in the progression of endometrial cancer remains unclear. We found that CAFs isolated from human endometrial cancer (EC) tissues secreted high levels of interleukin-6 (IL-6), which promotes EC cell proliferation in vitro. Neutralizing IL-6 in CAF-conditioned media reduced (47% inhibition) while IL-6 recombinant protein increased cell proliferation (~2.4 fold) of both EC cell lines and primary cultures. IL-6 receptors (IL-6R and gp130) were expressed only in EC epithelial cells but not in CAF, indicating a one-way paracrine signaling. In the presence of CAF-conditioned media, Janus kinase/signal transducers and activators of transcription (JAK/STAT3) pathway was activated in EC cells. Treatment with JAK and STAT3 specific inhibitors, AD412 and STATTIC, respectively, significantly abrogated CAF-mediated cell proliferation, indicating the role of IL-6 activation in EC cell proliferation. We further showed that one of STAT-3 target genes, c-Myc, was highly induced in EC cells after exposure to CAF-conditioned medium at both mRNA (>105-fold vs. control) and protein level (>2-fold vs. control). EC cell proliferation was dependent on c-Myc expression, as RNAi-mediated c-Myc down-regulation led to a significant 46% reduction in cell viability when compared with scrambled control. Interestingly, CAF-conditioned media failed to promote proliferation in EC cells with reduced c-Myc expression, suggesting that CAF-mediated cell proliferation was also dependent on c-Myc expression. Subcutaneous tumor xenograft model showed that EC cells grew at least 1.4 times larger when co-injected with CAF, when compared to those injected with EC cells alone. Mice injected with EC cells with down-regulated c-Myc expression, however, showed at least 2.5 times smaller tumor compared to those in control group. Notably, there was no increase of tumor size when co-injected with CAFs. Further immunohistochemical staining on human tissues showed positive expression of IL-6 receptors, phosphorylated-STAT3 and c-Myc in human EC tissues with less signals in benign endometrium. Taken together, our data suggests that IL-6 secreted by CAF induces c-Myc expression to promote EC proliferation in vitro and in vivo. IL-6 pathway can be a potential target to disrupt tumor-stroma interaction in endometrial cancer progression.

  12. Endothelial cell colony forming units derived from malignant breast diseases are resistant to tumor necrosis factor-α-induced apoptosis.

    PubMed

    Chou, Chen-Pin; Jiang, Shih Sheng; Pan, Huay-Ben; Yen, Yi-Chen; Tseng, Hui-Hwa; Hung, Yu-Ting; Wang, Ssu-Han; Chen, Yu-Lin; Chen, Ya-Wen

    2016-11-24

    Mobilisation of endothelial progenitor cells (EPCs) from the bone marrow is a crucial step in the formation of de novo blood vessels, and levels of peripheral blood EPCs have been shown to be elevated in certain malignant states. Using flow cytometry and a Hill-based colony forming unit (CFU) assay, the present study indicated that higher levels of CD34 and vascular endothelial growth factor receptor 2 (VEGFR2) double-positive EPCs, as well as increased formation of endothelial cell colony-forming units (EC-CFUs) are associated with benign and malignant breast diseases, providing possible indicators for breast disease detection. Gene expression profiles revealed a genetic difference between CD34 + VEGFR2 + EPCs and EC-CFUs. Decreased expression of tumour necrosis factor receptor 2 (TNFR2) signalling-related genes and inhibition of tumour necrosis factor (TNF)-induced signalling were demonstrated in EC-CFUs derived from patients with malignant breast disease in comparison with those from healthy controls. Interestingly, our data provided the first evidence that EC-CFUs derived from patients with malignant breast disease were resistant to TNF-α-induced apoptosis, indicating a plausible target for future therapeutic interventions.

  13. Nuclear envelope proteins Nesprin2 and LaminA regulate proliferation and apoptosis of vascular endothelial cells in response to shear stress.

    PubMed

    Han, Yue; Wang, Lu; Yao, Qing-Ping; Zhang, Ping; Liu, Bo; Wang, Guo-Liang; Shen, Bao-Rong; Cheng, Binbin; Wang, Yingxiao; Jiang, Zong-Lai; Qi, Ying-Xin

    2015-05-01

    The dysfunction of vascular endothelial cells (ECs) influenced by flow shear stress is crucial for vascular remodeling. However, the roles of nuclear envelope (NE) proteins in shear stress-induced EC dysfunction are still unknown. Our results indicated that, compared with normal shear stress (NSS), low shear stress (LowSS) suppressed the expression of two types of NE proteins, Nesprin2 and LaminA, and increased the proliferation and apoptosis of ECs. Targeted small interfering RNA (siRNA) and gene overexpression plasmid transfection revealed that Nesprin2 and LaminA participate in the regulation of EC proliferation and apoptosis. A protein/DNA array was further used to detect the activation of transcription factors in ECs following transfection with target siRNAs and overexpression plasmids. The regulation of AP-2 and TFIID mediated by Nesprin2 and the activation of Stat-1, Stat-3, Stat-5 and Stat-6 by LaminA were verified under shear stress. Furthermore, using Ingenuity Pathway Analysis software and real-time RT-PCR, the effects of Nesprin2 or LaminA on the downstream target genes of AP-2, TFIID, and Stat-1, Stat-3, Stat-5 and Stat-6, respectively, were investigated under LowSS. Our study has revealed that NE proteins are novel mechano-sensitive molecules in ECs. LowSS suppresses the expression of Nesprin2 and LaminA, which may subsequently modulate the activation of important transcription factors and eventually lead to EC dysfunction. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Stress and vascular responses: atheroprotective effect of laminar fluid shear stress in endothelial cells: possible role of mitogen-activated protein kinases.

    PubMed

    Yoshizumi, Masanori; Abe, Jun-Ichi; Tsuchiya, Koichiro; Berk, Bradford C; Tamaki, Toshiaki

    2003-03-01

    Atherosclerosis preferentially occurs in areas of turbulent blood flow and low fluid shear stress, whereas laminar blood flow and high shear stress are atheroprotective. Inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-alpha), stimulate expression of endothelial cell (EC) genes that may promote atherosclerosis. Recent findings suggest a steady laminar blood flow decreases EC apoptosis and inhibits TNF-mediated EC activation. EC apoptosis or activation is suggested to be involved in plaque erosion, which may lead to platelet aggregation. TNF-alpha regulates gene expression in ECs, in part, by stimulating mitogen-activated protein (MAP) kinases, which phosphorylate transcription factors. We hypothesized that steady laminar flow inhibits cytokine-mediated activation of MAP kinases in ECs. To test this hypothesis, we determined the effects of steady laminar flow (shear stress = 12 dynes/cm(2)) on TNF-alpha-stimulated activity of three MAP kinases in human umbilical vein ECs (HUVEC): extracellular signal-regulated kinase (ERK1/2), c-Jun N-terminal kinase (JNK), and p38. TNF-alpha activated ERK1/2, JNK, and p38 maximally at 15 min in HUVEC. Pre-exposing HUVEC for 10 min to flow inhibited TNF-alpha activation of JNK, but showed no significant effect on ERK1/2 or p38 activation. Incubation of HUVEC with PD98059, a specific ERK1/2 inhibitor, blocked the flow-mediated inhibition of TNF activation of JNK. Transfection studies with dominant-negative constructs of the protein kinase MEK5 suggested an important role for big mitogen-activated protein kinase 1 (BMK1) in flow-mediated regulation of EC activation by TNF-alpha. Understanding the mechanisms by which steady laminar flow regulates JNK activation by cytokines may provide insight into the atheroprotective mechanisms induced by laminar blood flow.

  15. Antiviral function of grouper MDA5 against iridovirus and nodavirus.

    PubMed

    Huang, Youhua; Yu, Yepin; Yang, Ying; Yang, Min; Zhou, Linli; Huang, Xiaohong; Qin, Qiwei

    2016-07-01

    Melanoma differentiation-associated gene 5 (MDA5) is a critical member of retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) family which can recognize viral RNA and enhances antiviral response in host cells. In this study, a MDA5 homolog from orange spotted grouper (Epinephelus coioides) (EcMDA5) was cloned, and its roles on grouper virus infection were characterized. The full-length EcMDA5 cDNA encoded a polypeptide of 982 amino acids with 74% identity with MDA5 homolog from rock bream (Oplegnathus fasciatus). Amino acid alignment analysis indicated that EcMDA5 contained three functional domains: two caspase activation and recruitment domain (CARDs), a DEAD box helicase-like (DExDc) domain, a helicase superfamily C-terminal domain (HELICc), and a C-terminal regulatory domain (RD). Upon challenge with Singapore grouper iridovirus (SGIV) or polyinosin-polycytidylic acid (poly I:C), the transcript of EcMDA5 was significantly up-regulated especially at the early stage post-injection. Under fluorescence microscopy, we observed that EcMDA5 mostly localized in the cytoplasm of grouper spleen (GS) cells. Interestingly, during virus infection, the distribution pattern of EcMDA5 was significantly altered in SGIV infected cells, but not in red spotted grouper nervous necrosis virus (RGNNV) infected cells, suggested that EcMDA5 might interact with viral proteins during SGIV infection. The ectopic expression of EcMDA5 in vitro obviously delayed virus infection induced cytopathic effect (CPE) progression and significantly inhibited viral gene transcription of RGNNV and SGIV. Moreover, overexpression of EcMDA5 not only significantly increased interferon (IFN) and IFN-stimulated response element (ISRE) promoter activities in a dose dependent manner, but also enhanced the expression of IRF3, IRF7 and TRAF6. In addition, the transcription level of the proinflammatory factors, including TNF-α, IL-6 and IL-8 were differently altered by EcMDA5 overexpression during SGIV or RGNNV infection, suggesting that the regulation on proinflammatory cytokines by EcMDA5 were also important for RGNNV infection. Together, our results demonstrated for the first time that the inhibitory effect of fish MDA5 on iridovirus replication might be mainly through the regulation of proinflammatory cytokines. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. AIP1-mediated stress signaling in atherosclerosis and arteriosclerosis

    PubMed Central

    Zhang, Jiqin; Zhou, Huanjiao Jenny; Ji, Weidong; Min, Wang

    2016-01-01

    AIP1 (encoded by the DAB2IP gene), a signaling scaffolding protein, is abundantly expressed in vascular endothelial cells (EC). While it was initially discovered as an ASK1-interacting protein, AIP1 broadly suppresses inflammatory responses triggered by cytokines and stresses such as TNF, LPS, VEGF and ER stress in EC (therefore AIP1 is an Anti-Inflammatory Protein). Human genome-wide association study (GWAS) has identified DAB2IP gene variants conferring susceptibility to cardiovascular diseases. Consistently, a global or vascular EC-specific deletion of DAB2IP in mice strongly enhances inflammatory responses and exacerbates atherosclerosis and graft arteriosclerosis progression in mouse models. Mechanisms for AIP1 function and regulation associated with human cardiovascular diseases need further investigations. PMID:25732743

  17. Epigenetic and Epitranscriptomic Factors Make a Mark on Hematopoietic Stem Cell Development.

    PubMed

    Kasper, Dionna M; Nicoli, Stefania

    2018-03-01

    Blood specification is a highly dynamic process, whereby committed hemogenic endothelial cells (ECs) progressively transdifferentiate into multipotent, self-renewing hematopoietic stem cells (HSCs). Massive changes in gene expression must occur to switch cell identity, however the factors that mediate such an effect were a mystery until recently. This review summarizes the higher-order mechanisms involved in endothelial to hematopoietic reprogramming identified thus far. Accumulating evidence from mouse and zebrafish studies reveal that numerous chromatin-modifying (epigenetic) and RNA-modifying (epitranscriptomic) factors are required for the formation of HSCs from hemogenic endothelium. These genes function throughout the endothelial-hematopoietic transition, suggesting a dynamic interplay between 'epi'-machineries. Epigenetic and epitranscriptomic regulation are key mechanisms for reshaping global EC gene expression patterns to those that support HSC production. Future studies that capture modification dynamics should bring us closer to a complete understanding of how HSCs transition from hemogenic endothelium at the molecular level.

  18. Conversion of adult endothelium to immunocompetent haematopoietic stem cells.

    PubMed

    Lis, Raphael; Karrasch, Charles C; Poulos, Michael G; Kunar, Balvir; Redmond, David; Duran, Jose G Barcia; Badwe, Chaitanya R; Schachterle, William; Ginsberg, Michael; Xiang, Jenny; Tabrizi, Arash Rafii; Shido, Koji; Rosenwaks, Zev; Elemento, Olivier; Speck, Nancy A; Butler, Jason M; Scandura, Joseph M; Rafii, Shahin

    2017-05-25

    Developmental pathways that orchestrate the fleeting transition of endothelial cells into haematopoietic stem cells remain undefined. Here we demonstrate a tractable approach for fully reprogramming adult mouse endothelial cells to haematopoietic stem cells (rEC-HSCs) through transient expression of the transcription-factor-encoding genes Fosb, Gfi1, Runx1, and Spi1 (collectively denoted hereafter as FGRS) and vascular-niche-derived angiocrine factors. The induction phase (days 0-8) of conversion is initiated by expression of FGRS in mature endothelial cells, which results in endogenous Runx1 expression. During the specification phase (days 8-20), RUNX1 + FGRS-transduced endothelial cells commit to a haematopoietic fate, yielding rEC-HSCs that no longer require FGRS expression. The vascular niche drives a robust self-renewal and expansion phase of rEC-HSCs (days 20-28). rEC-HSCs have a transcriptome and long-term self-renewal capacity similar to those of adult haematopoietic stem cells, and can be used for clonal engraftment and serial primary and secondary multi-lineage reconstitution, including antigen-dependent adaptive immune function. Inhibition of TGFβ and CXCR7 or activation of BMP and CXCR4 signalling enhanced generation of rEC-HSCs. Pluripotency-independent conversion of endothelial cells into autologous authentic engraftable haematopoietic stem cells could aid treatment of haematological disorders.

  19. Conversion of adult endothelium to immunocompetent haematopoietic stem cells

    PubMed Central

    Lis, Raphael; Karrasch, Charles C.; Poulos, Michael G.; Kunar, Balvir; Redmond, David; Barcia Duran, Jose G.; Badwe, Chaitanya R.; Schachterle, Will; Ginsberg, Michael; Xiang, Jenny; Tabrizi, Arash Rafii; Shido, Koji; Rosenwaks, Zev; Elemento, Olivier; Speck, Nancy; Butler, Jason M.; Scandura, Joseph M.; Rafii, Shahin

    2018-01-01

    Developmental pathways that orchestrate the fleeting transition of endothelial cells into haematopoietic stem cells remain undefined. Here we demonstrate a tractable approach for fully converting adult mouse endothelial cells to haematopoietic stem cells (rEC-HSCs) through transient expression of genes encoding the transcription factors Fosb, Gfi1, Runx1, and Spi1 (also known as Fgrs) and vascular-niche-derived angiocrine factors. The induction phase (day 0–8) of conversion is initiated by expression of Fgrs in mature endothelial cells, which results in endogenous Runx1 expression. During the specification phase (day 8–20), Runx1+ Fgrs-transduced endothelial cells commit to a haematopoietic fate yielding rEC-HSCs that no longer require Fgrs expression. The vascular niche drives a robust self-renewal and expansion phase of rEC-HSCs (at day 20–28). rEC-HSCs have a transcriptome and long-term self-renewal capacity similar to those of adult haematopoietic stem cells, are competent for clonal engraftment and serial primary and secondary multi-lineage reconstituting potential, including antigen-dependent adaptive immune function. Inhibition of TGF-β and CXCR7 or activation of BMP and CXCR4 signalling enhanced generation of rEC-HSCs. Conversion of endothelial cells into autologous authentic engraftable haematopoietic stem cells could aid treatment of haematological disorders. PMID:28514438

  20. How Changes in Anti-SD Sequences Would Affect SD Sequences in Escherichia coli and Bacillus subtilis.

    PubMed

    Abolbaghaei, Akram; Silke, Jordan R; Xia, Xuhua

    2017-05-05

    The 3' end of the small ribosomal RNAs (ssu rRNA) in bacteria is directly involved in the selection and binding of mRNA transcripts during translation initiation via well-documented interactions between a Shine-Dalgarno (SD) sequence located upstream of the initiation codon and an anti-SD (aSD) sequence at the 3' end of the ssu rRNA. Consequently, the 3' end of ssu rRNA (3'TAIL) is strongly conserved among bacterial species because a change in the region may impact the translation of many protein-coding genes. Escherichia coli and Bacillus subtilis differ in their 3' ends of ssu rRNA, being GAUC ACCUCCUUA 3' in E. coli and GAUC ACCUCCUU UCU3' or GAUC ACCUCCUU UCUA3' in B. subtilis Such differences in 3'TAIL lead to species-specific SDs (designated SD Ec for E. coli and SD Bs for B. subtilis ) that can form strong and well-positioned SD/aSD pairing in one species but not in the other. Selection mediated by the species-specific 3'TAIL is expected to favor SD Bs against SD Ec in B. subtilis , but favor SD Ec against SD Bs in E. coli Among well-positioned SDs, SD Ec is used more in E. coli than in B. subtilis , and SD Bs more in B. subtilis than in E. coli Highly expressed genes and genes of high translation efficiency tend to have longer SDs than lowly expressed genes and genes with low translation efficiency in both species, but more so in B. subtilis than in E. coli Both species overuse SDs matching the bolded part of the 3'TAIL shown above. The 3'TAIL difference contributes to the host specificity of phages. Copyright © 2017 Abolbaghaei et al.

  1. miR-34a is a common link in both HIV- and antiretroviral therapy-induced vascular aging.

    PubMed

    Zhan, Jiaxin; Qin, Shanshan; Lu, Lili; Hu, Xiamin; Zhou, Jun; Sun, Yeying; Yang, Jian; Liu, Ying; Wang, Zunzhe; Tan, Ning; Chen, Jiyan; Zhang, Chunxiang

    2016-11-26

    Both HIV and antiretroviral therapy could induce vascular aging with unclear mechanisms. In this study, via microarray analysis, we identified, for the first time, that miR-34a expression was significantly increased in both HIV-infected, and antiretroviral agents-treated vessels and vascular endothelial cells (ECs) from these vessels. In cultured ECs, miR-34a expression was significantly increased by HIV-Tat protein and by the antiretroviral agents, lopinavir/ritonavir. Both HIV-Tat protein and antiretroviral agents could induce EC senescence, which was inhibited by miR-34a inhibition. In contrast, EC senescence was exacerbated by miR-34a overexpression. In addition, the vascular ECs isolated from miR-34a knockout mice were resistant to HIV and antiretroviral agents-mediated senescence. In vivo, miR-34a expression in mouse vascular walls and their ECs was increased by antiretroviral therapy and by HIV-1 Tat transgenic approach. miR-34a inhibition could effectively inhibit both HIV-Tat protein and antiretroviral therapy-induced vascular aging in mice. The increased miR-34a was induced via p53, whereas Sirt1 was a downstream target gene of miR-34a in both HIV-Tat protein and antiretroviral agents-treated ECs and vessels. The study has demonstrated that miR-34a is a common link in both HIV and antiretroviral therapy-mediated vascular aging.

  2. Electroconvulsive stimulation (ECS) increases the expression of neuropeptide Y (NPY) in rat brains in a model of neuropathic pain: a quantitative real-time polymerase chain reaction (RT-PCR) study.

    PubMed

    Okabe, Tadashi; Sato, Chiyo; Matsumoto, Keisuke; Ozawa, Hitoshi; Sakamoto, Atsuhiro

    2009-11-01

    Electroconvulsive shock therapy (ECT) has been widely used as an effective and established treatment for refractory depression and schizophrenia. Some reports have shown that ECT is also effective for treating refractory neuropathic pain. In a rat model of neuropathic pain produced by chronic constrictive injury (CCI) of the sciatic nerve, thermal hyperalgesia, and mechanical allodynia were observed from day 2 after surgery. An electroconvulsive shock (ECS) was administered to rodents once daily for 6 days on days 7-12 after CCI operation using a pulse generator. Thermal and mechanical stimulation tests were performed to assess pain thresholds. Real-time polymerase chain reaction was used to measure the gene expression levels for 5HT(1A)R, 5HT(2A)R, neuropeptide Y (NPY), and GABAA(alpha1)R in the brain. After ECS, the latency to withdrawal from thermal stimulation was significantly increased; however, pain withdrawal thresholds in response to mechanical stimulation were not significantly changed. Expression ratios of NPY were significantly greater after ECS. Symptoms of neuropathic pain improved and expression of NPY in the brain was increased in CCI model rats after ECS, suggesting that changes in the expression of NPY in the brain may be related to the mechanism of action of ECT in treating neuropathic pain.

  3. Increased c-kit and stem cell factor expression in the pulmonary vasculature of nitrofen-induced congenital diaphragmatic hernia.

    PubMed

    Takahashi, Toshiaki; Friedmacher, Florian; Zimmer, Julia; Puri, Prem

    2016-05-01

    Persistent pulmonary hypertension(PPH) in congenital diaphragmatic hernia (CDH) is caused by increased vascular cell proliferation and endothelial cell (EC) dysfunction, thus leading to obstructive changes in the pulmonary vasculature. C-Kit and its ligand, stem cell factor(SCF), are expressed by ECs in the developing lung mesenchyme, suggesting an important role during lung vascular formation. Conversely, absence of c-Kit expression has been demonstrated in ECs of dysplastic alveolar capillaries. We hypothesized that c-Kit and SCF expression is increased in the pulmonary vasculature of nitrofen-induced CDH. Timed-pregnant rats received nitrofen or vehicle on gestational day 9(D9). Fetuses were sacrificed on D15, D18, and D21, and divided into control and CDH group. Pulmonary gene expression levels of c-Kit and SCF were analyzed by qRT-PCR. Immunofluorescence double staining for c-Kit and SCF was combined with CD34 to evaluate protein expression in ECs of the pulmonary vasculature. Relative mRNA levels of c-Kit and SCF were significantly increased in lungs of CDH fetuses on D15, D18, and D21 compared to controls. Confocal laser scanning microscopy confirmed markedly increased vascular c-Kit and SCF expression in mesenchymal ECs of CDH lungs on D15, D18, and D21 compared to controls. Increased expression of c-Kit and SCF in the pulmonary vasculature of nitrofen-induced CDH lungs suggest that increased c-Kit signaling during lung vascular formation may contribute to vascular remodeling and thus to PPH. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Generation of Resistance to the Diphenyl Ether Herbicide, Oxyfluorfen, via Expression of the Bacillus subtilis Protoporphyrinogen Oxidase Gene in Transgenic Tobacco Plants.

    PubMed

    Choi, K W; Han, O; Lee, H J; Yun, Y C; Moon, Y H; Kim, M; Kuk, Y I; Han, S U; Guh, J O

    1998-01-01

    In an effort to develop transgenic plants resistant to diphenyl ether herbicides, we introduced the protoporphyrinogen oxidase (EC 1.3.3.4) gene of Bacillus subtilis into tobacco plants. The results from a Northern analysis and leaf disc assay indicate that the expression of the B. subtilis protoporphyrinogen oxidase gene under the cauliflower mosaic virus 35S promoter generated resistance to the diphenyl ether herbicide, oxyfluorfen, in transgenic tobacco plants.

  5. Combgap Promotes Ovarian Niche Development and Chromatin Association of EcR-Binding Regions in BR-C.

    PubMed

    Hitrik, Anna; Popliker, Malka; Gancz, Dana; Mukamel, Zohar; Lifshitz, Aviezer; Schwartzman, Omer; Tanay, Amos; Gilboa, Lilach

    2016-11-01

    The development of niches for tissue-specific stem cells is an important aspect of stem cell biology. Determination of niche size and niche numbers during organogenesis involves precise control of gene expression. How this is achieved in the context of a complex chromatin landscape is largely unknown. Here we show that the nuclear protein Combgap (Cg) supports correct ovarian niche formation in Drosophila by controlling ecdysone-Receptor (EcR)- mediated transcription and long-range chromatin contacts in the broad locus (BR-C). Both cg and BR-C promote ovarian growth and the development of niches for germ line stem cells. BR-C levels were lower when Combgap was either reduced or over-expressed, indicating an intricate regulation of the BR-C locus by Combgap. Polytene chromosome stains showed that Cg co-localizes with EcR, the major regulator of BR-C, at the BR-C locus and that EcR binding to chromatin was sensitive to changes in Cg levels. Proximity ligation assay indicated that the two proteins could reside in the same complex. Finally, chromatin conformation analysis revealed that EcR-bound regions within BR-C, which span ~30 KBs, contacted each other. Significantly, these contacts were stabilized in an ecdysone- and Combgap-dependent manner. Together, these results highlight Combgap as a novel regulator of chromatin structure that promotes transcription of ecdysone target genes and ovarian niche formation.

  6. Combgap Promotes Ovarian Niche Development and Chromatin Association of EcR-Binding Regions in BR-C

    PubMed Central

    Gancz, Dana; Lifshitz, Aviezer; Tanay, Amos

    2016-01-01

    The development of niches for tissue-specific stem cells is an important aspect of stem cell biology. Determination of niche size and niche numbers during organogenesis involves precise control of gene expression. How this is achieved in the context of a complex chromatin landscape is largely unknown. Here we show that the nuclear protein Combgap (Cg) supports correct ovarian niche formation in Drosophila by controlling ecdysone-Receptor (EcR)- mediated transcription and long-range chromatin contacts in the broad locus (BR-C). Both cg and BR-C promote ovarian growth and the development of niches for germ line stem cells. BR-C levels were lower when Combgap was either reduced or over-expressed, indicating an intricate regulation of the BR-C locus by Combgap. Polytene chromosome stains showed that Cg co-localizes with EcR, the major regulator of BR-C, at the BR-C locus and that EcR binding to chromatin was sensitive to changes in Cg levels. Proximity ligation assay indicated that the two proteins could reside in the same complex. Finally, chromatin conformation analysis revealed that EcR-bound regions within BR-C, which span ~30 KBs, contacted each other. Significantly, these contacts were stabilized in an ecdysone- and Combgap-dependent manner. Together, these results highlight Combgap as a novel regulator of chromatin structure that promotes transcription of ecdysone target genes and ovarian niche formation. PMID:27846223

  7. DNA methylation enzyme inhibitor RG108 suppresses the radioresistance of esophageal cancer

    PubMed Central

    Ou, Yao; Zhang, Quan; Tang, Yiting; Lu, Zhonghua; Lu, Xujing; Zhou, Xifa; Liu, Changmin

    2018-01-01

    Esophageal cancer (EC) is the eighth most common highly aggressive cancer worldwide. The purpose of this study was to investigate the effect of the DNA methyltransferase inhibitor RG108 on the radiosensitivity of EC cells. MTT and clonogenic assays were performed to assess the effect of RG108 on the proliferation and radiosensitivity of Eca-109 and TE-1 human EC cells. The cell cycle progression and alterations in apoptosis were analyzed by flow cytometry. For the in vivo analysis, the Eca-109 cells were inoculated into nude mice to establish tumors. Tissues from xenografts were obtained to detect changes to microvessels and tumor growth by immunohistochemistry (IHC). RNA-seq was used to identify differentially expressed genes. We found that RG108 increased the radiosensitivity of EC cells. Apoptosis and G2/M-phase arrest were induced by X-ray irradiation and were significantly enhanced by RG108. In addition, growth of tumor xenografts from the Eca-109 cells was significantly inhibited by irradiation in combination with RG108. The RNA-seq analysis revealed that, compared with radiation alone, X-ray irradiation in combination with RG108 altered the expression of 121 genes in multiple pathways, including the TGF-β signaling pathway and the Epstein-Barr virus infection pathway. In conclusion, RG108 induced radiosensitivity in EC cells both in vitro and in vivo. PMID:29328411

  8. The molecular basis of conformational instability of the ecdysone receptor DNA binding domain studied by in silico and in vitro experiments.

    PubMed

    Szamborska-Gbur, Agnieszka; Rymarczyk, Grzegorz; Orłowski, Marek; Kuzynowski, Tomasz; Jakób, Michał; Dziedzic-Letka, Agnieszka; Górecki, Andrzej; Dobryszycki, Piotr; Ożyhar, Andrzej

    2014-01-01

    The heterodimer of the ecdysone receptor (EcR) and ultraspiracle (Usp), members of the nuclear receptors superfamily, regulates gene expression associated with molting and metamorphosis in insects. The DNA binding domains (DBDs) of the Usp and EcR play an important role in their DNA-dependent heterodimerization. Analysis of the crystal structure of the UspDBD/EcRDBD heterocomplex from Drosophila melanogaster on the hsp27 gene response element, suggested an appreciable similarity between both DBDs. However, the chemical denaturation experiments showed a categorically lower stability for the EcRDBD in contrast to the UspDBD. The aim of our study was an elucidation of the molecular basis of this intriguing instability. Toward this end, we mapped the EcRDBD amino acid sequence positions which have an impact on the stability of the EcRDBD. The computational protein design and in vitro analyses of the EcRDBD mutants indicate that non-conserved residues within the α-helix 2, forming the EcRDBD hydrophobic core, represent a specific structural element that contributes to instability. In particular, the L58 appears to be a key residue which differentiates the hydrophobic cores of UspDBD and EcRDBD and is the main reason for the low stability of the EcRDBD. Our results might serve as a benchmark for further studies of the intricate nature of the EcR molecule.

  9. Differential regulations of fibronectin and laminin in Smad2 activation in vascular endothelial cells in response to disturbed flow.

    PubMed

    Yang, Tung-Lin; Lee, Pei-Ling; Lee, Ding-Yu; Wang, Wei-Li; Wei, Shu-Yi; Lee, Chih-I; Chiu, Jeng-Jiann

    2018-01-02

    Atherosclerosis occurs in arterial curvatures and branches, where the flow is disturbed with low and oscillatory shear stress (OSS). The remodeling and alterations of extracellular matrices (ECMs) and their composition is the critical step in atherogenesis. In this study, we investigated the effects of different ECM proteins on the regulation of mechanotransduction in vascular endothelial cells (ECs) in response to OSS. Through the experiments ranging from in vitro cell culture studies on effects of OSS on molecular signaling to in vivo examinations on clinical specimens from patients with coronary artery disease (CAD), we elucidated the roles of integrins and different ECMs, i.e., fibronectin (FN) and laminin (LM), in transforming growth factor (TGF)-β receptor (TβR)-mediated Smad2 activation and nuclear factor-κB (NF-κB) signaling in ECs in response to OSS and hence atherogenesis. OSS at 0.5±12 dynes/cm 2 induces sustained increases in the association of types I and II TβRs with β1 and β3 integrins in ECs grown on FN, but it only transient increases in ECs grown on LM. OSS induces a sustained activation of Smad2 in ECs on FN, but only a transient activation of Smad2 in ECs on LM. OSS-activation of Smad2 in ECs on FN regulates downstream NF-κB signaling and pro-inflammatory gene expression through the activation of β1 integrin and its association with TβRs. In contrast, OSS induces transient activations of β1 and β3 integrins in ECs on LM, which associate with type I TβR to regulate Smad2 phosphorylation, resulting in transient induction of NF-κB and pro-inflammatory gene expression. In vivo investigations on diseased human coronary arteries from CAD patients revealed that Smad2 is highly activated in ECs of atherosclerotic lesions, which is accompanied by the concomitant increase of FN rather than LM in the EC layer and neointimal region of atherosclerotic lesions. Our findings provide new insights into the mechanisms of how OSS regulates Smad2 signaling and pro-inflammatory genes through the complex signaling networks of integrins, TβRs, and ECMs, thus illustrating the molecular basis of regional pro-inflammatory activation within disturbed flow regions in the arterial tree.

  10. Physiological cyclic strain promotes endothelial cell survival via the induction of heme oxygenase-1

    PubMed Central

    Liu, Xiao-ming; Peyton, Kelly J.

    2013-01-01

    Endothelial cells (ECs) are constantly subjected to cyclic strain that arises from periodic change in vessel wall diameter as a result of pulsatile blood flow. Application of physiological levels of cyclic strain inhibits EC apoptosis; however, the underlying mechanism is not known. Since heme oxygenase-1 (HO-1) is a potent inhibitor of apoptosis, the present study investigated whether HO-1 contributes to the antiapoptotic action of cyclic strain. Administration of physiological cyclic strain (6% at 1 Hz) to human aortic ECs stimulated an increase in HO-1 activity, protein, and mRNA expression. The induction of HO-1 was preceded by a rise in reactive oxygen species (ROS) and Nrf2 protein expression. Cyclic strain also stimulated an increase in HO-1 promoter activity that was prevented by mutating the antioxidant responsive element in the promoter or by overexpressing dominant-negative Nrf2. In addition, the strain-mediated induction of HO-1 and activation of Nrf2 was abolished by the antioxidant N-acetyl-l-cysteine. Finally, application of cyclic strain blocked inflammatory cytokine-mediated EC death and apoptosis. However, the protective action of cyclic strain was reversed by the HO inhibitor tin protoporphyrin-IX and was absent in ECs isolated from HO-1-deficient mice. In conclusion, the present study demonstrates that a hemodynamically relevant level of cyclic strain stimulates HO-1 gene expression in ECs via the ROS-Nrf2 signaling pathway to inhibit EC death. The ability of cyclic strain to induce HO-1 expression may provide an important mechanism by which hemodynamic forces promote EC survival and vascular homeostasis. PMID:23604711

  11. Cloning of a heat shock protein 90 (HSP90) gene and expression analysis in the ridgetail white prawn Exopalaemon carinicauda.

    PubMed

    Li, Jitao; Han, Junying; Chen, Ping; Chang, Zhiqiang; He, Yuying; Liu, Ping; Wang, Qingyin; Li, Jian

    2012-06-01

    Heat shock protein 90 (HSP90) is a highly conserved molecular chaperone contributing to the folding, maintenance of structural integrity and proper regulation of a subset of cytosolic proteins. In this study, a heat shock protein 90 cDNA named EcHSP90 was cloned from the hepatopancreas of ridgetail white prawn Exopalaemon carinicauda by reverse transcription polymerase chain reaction (RT-PCR) coupled with rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of EcHSP90 was of 2695 bp, including an open reading frame (ORF) of 2163 bp encoding a polypeptide of 720 amino acids with an estimated molecular mass of 82.73 kDa and an estimated isoelectric point of 4.83. BLAST analysis revealed that the EcHSP90 shared high similarity (87.6%-75.24%) with other known HSP90s. The five conserved amino acid blocks defined as HSP90 protein family signatures were also identified in EcHSP90, which indicated that EcHSP90 should be a cytosolic member of the HSP90 family. Quantitative real-time RT-PCR analysis revealed that EcHSP90 transcript could be detected in all the tested tissues, and strongly expressed in ovary of E. carinicauda. The transcript of EcHSP90 in hepatopancreas of E. carinicauda showed different expression profiles after pH and ammonia-N stresses. The results indicated that EcHSP90 was a constitutive and inducible expressed protein and could be induced by various stresses from environment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. The Idiopathic Pulmonary Fibrosis Honeycomb Cyst Contains A Mucocilary Pseudostratified Epithelium

    PubMed Central

    Seibold, Max A.; Smith, Russell W.; Urbanek, Cydney; Groshong, Steve D.; Cosgrove, Gregory P.; Brown, Kevin K.; Schwarz, Marvin I.

    2013-01-01

    Background We previously identified a MUC5B gene promoter-variant that is a risk allele for sporadic and familial Idiopathic Pulmonary Fibrosis/Usual Interstitial Pneumonia (IPF/UIP). This allele was strongly associated with increased MUC5B gene expression in lung tissue from unaffected subjects. Despite the strong association of this airway epithelial marker with disease, little is known of mucin expressing structures or of airway involvement in IPF/UIP. Methods Immunofluorescence was used to subtype mucus cells according to MUC5B and MUC5AC expression and to identify ciliated, basal, and alveolar type II (ATII) cells in tissue sections from control and IPF/UIP subjects. Staining patterns were quantified for distal airways (Control and IPF/UIP) and in honeycomb cysts (HC). Results MUC5B-expressing cells (EC) were detected in the majority of control distal airways. MUC5AC-EC were identified in half of these airways and only in airways that contained MUC5B-EC. The frequency of MUC5B+ and MUC5AC+ distal airways was increased in IPF/UIP subjects. MUC5B-EC were the dominant mucus cell type in the HC epithelium. The distal airway epithelium from control and IPF/UIP subjects and HC was populated by basal and ciliated cells. Most honeycombing regions were distinct from ATII hyperplasic regions. ATII cells were undetectable in the overwhelming majority of HC. Conclusions The distal airway contains a pseudostratified mucocilary epithelium that is defined by basal epithelial cells and mucus cells that express MUC5B predominantly. These data suggest that the HC is derived from the distal airway. PMID:23527003

  13. Reproductive toxicity effects of 4-nonylphenol with known endocrine disrupting effects and induction of vitellogenin gene expression in silkworm, Bombyx mori.

    PubMed

    Yuan, Hong-Xia; Xu, Xu; Sima, Yang-Hu; Xu, Shi-Qing

    2013-09-01

    4-Nonylphenol (4-NP) a known endocrine disrupting chemical is a persistent environmental contaminant. However, the mechanism of reproductive toxicity caused by 4-NP is still largely unresolved in invertebrates. In this study, Bombyx mori larvae were constantly fed 4-NP at concentrations ranging from 0.05 to 0.4gkg(-1), reproductive toxicity and induction of vitellogenin gene (Vg) expression were investigated in this organism which is an ideal lepidopteran model insect. The results showed that gonad development was retarded and maturity was decreased in both male and female pupae, while the sex ratio was unaffected by 4-NP exposure. In the 4-NP exposed animals, the corresponding egg yolk protein, vitellin, involved in energy reserves for embryonic development in oviparous animals, was present in the testis of male pupae, and the mRNA transcript of the Vg gene was detected in the fat body, a specific organ of Vg synthesis, which is normally silent in males. In addition, expression of the Vg gene was up-regulated in the fat body of female pupae and adults, while the protein was decreased in developing eggs. Furthermore, expression of the ecdysone receptor gene (EcR) in the ovaries of pupae was down-regulated, suggested that the transport of Vg from the fat body to developing oocytes was disturbed by 4-NP due to interference in the expression of EcR related to ecdysone activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. The effects of levonorgestrel on FSH-stimulated primary rat granulosa cell cultures through gene expression profiling are associated to hormone and folliculogenesis processes.

    PubMed

    Lira-Albarrán, Saúl; Larrea-Schiavon, Marco F; González, Leticia; Durand, Marta; Rangel, Claudia; Larrea, Fernando

    2017-01-05

    Levonorgestrel (LNG), a synthetic progestin, is used in emergency contraception (EC). The mechanism is preventing or delaying ovulation at the level of the hypothalamic pituitary unit; however, little knowledge exists on LNG effects at the ovary. The aim of this study was to identify the effects of LNG on FSH-induced 17β-estradiol (E 2 ) production, including LNG-mediated changes on global gene expression in rat granulosa cells (GC). Isolated GC from female Wistar rats were incubated in vitro in the presence or absence of human FSH and progestins. At the end of incubations, culture media and cells were collected for E 2 and mRNA quantitation. The results showed the ability of LNG to inhibit both hFSH-induced E 2 production and aromatase gene expression. Microarray analysis revealed that LNG treatment affects GC functionality particularly that related to folliculogenesis and steroid metabolism. These results may offer additional evidence for the mechanisms of action of LNG as EC. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Dlx1 and Rgs5 in the Ductus Arteriosus: Vessel-Specific Genes Identified by Transcriptional Profiling of Laser-Capture Microdissected Endothelial and Smooth Muscle Cells

    PubMed Central

    Bökenkamp, Regina; van Brempt, Ronald; van Munsteren, Jacoba Cornelia; van den Wijngaert, Ilse; de Hoogt, Ronald; Finos, Livio; Goeman, Jelle; Groot, Adriana Cornelia Gittenberger-de; Poelmann, Robert Eugen; Blom, Nicolaas Andreas; DeRuiter, Marcus Cornelis

    2014-01-01

    Closure of the ductus arteriosus (DA) is a crucial step in the transition from fetal to postnatal life. Patent DA is one of the most common cardiovascular anomalies in children with significant clinical consequences especially in premature infants. We aimed to identify genes that specify the DA in the fetus and differentiate it from the aorta. Comparative microarray analysis of laser-captured microdissected endothelial (ECs) and vascular smooth muscle cells (SMCs) from the DA and aorta of fetal rats (embryonic day 18 and 21) identified vessel-specific transcriptional profiles. We found a strong age-dependency of gene expression. Among the genes that were upregulated in the DA the regulator of the G-protein coupled receptor 5 (Rgs5) and the transcription factor distal-less homeobox 1 (Dlx1) exhibited the highest and most significant level of differential expression. The aorta showed a significant preferential expression of the Purkinje cell protein 4 (Pcp4) gene. The results of the microarray analysis were validated by real-time quantitative PCR and immunohistochemistry. Our study confirms vessel-specific transcriptional profiles in ECs and SMCs of rat DA and aorta. Rgs5 and Dlx1 represent novel molecular targets for the regulation of DA maturation and closure. PMID:24489801

  16. Morphological and transcript changes in the biosynthesis of lignin in oil palm (Elaeis guineensis) during Ganoderma boninense infections in vitro.

    PubMed

    Goh, Kar Mun; Dickinson, Matthew; Supramaniam, Christina V

    2018-03-01

    Lignification of the plant cell wall could serve as the first line of defense against pathogen attack, but the molecular mechanisms of virulence and disease between oil palm and Ganoderma boninense are poorly understood. This study presents the biochemical, histochemical, enzymology and gene expression evidences of enhanced lignin biosynthesis in young oil palm as a response to G. boninense (GBLS strain). Comparative studies with control (T1), wounded (T2) and infected (T3) oil palm plantlets showed significant accumulation of total lignin content and monolignol derivatives (syringaldehyde and vanillin). These derivatives were deposited on the epidermal cell wall of infected plants. Moreover, substantial differences were detected in the activities of enzyme and relative expressions of genes encoding phenylalanine ammonia lyase (EC 4.3.1.24), cinnamate 4-hydroxylase (EC 1.14.13.11), caffeic acid O-methyltransferase (EC 2.1.1.68) and cinnamyl alcohol dehydrogenase (CAD, EC 1.1.1.195). These enzymes are key intermediates dedicated to the biosynthesis of lignin monomers, the guaicyl (G), syringyl (S) and ρ-hydroxyphenyl (H) subunits. Results confirmed an early, biphasic and transient positive induction of all gene intermediates, except for CAD enzyme activities. These differences were visualized by anatomical and metabolic changes in the profile of lignin in the oil palm plantlets such as low G lignin, indicating a potential mechanism for enhanced susceptibility toward G. boninense infection. © 2017 Scandinavian Plant Physiology Society.

  17. Expression of RYamide in the nervous and endocrine system of Bombyx mori.

    PubMed

    Roller, Ladislav; Čižmár, Daniel; Bednár, Branislav; Žitňan, Dušan

    2016-06-01

    RYamides are neuropeptides encoded by a gene whose precise expression and function have not yet been determined. We identified the RYamide gene transcript (fmgV1g15f, SilkBase database) and predicted two candidates for G-protein coupled RYamide receptors (A19-BAG68418 and A22-BAG68421) in the silkworm Bombyx mori. We cloned the RYamide transcript and described its spatial expression using in situ hybridisation. In the larval central nervous system (CNS) expression of RYamide was restricted to 12-14 small neurons in the brain and two posterior neurons in the terminal abdominal ganglion. During metamorphosis their number decreased to eight protocerebral neurons in the adults. Multiple staining, using various insect neuropeptide antibodies, revealed that neurons expressing RYamide are different from other peptidergic cells in the CNS. We also found RYamide expression in the enteroendocrine cells (EC) of the anterior midgut of larvae, pupae and adults. Two minor subpopulations of these EC were also immunoreactive to antibodies against tachykinin and myosupressin. This expression pattern suggests RYamides may play a role in the regulation of feeding and digestion. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Family history of cancer predicts endometrial cancer risk independently of Lynch Syndrome: Implications for genetic counselling.

    PubMed

    Johnatty, Sharon E; Tan, Yen Y; Buchanan, Daniel D; Bowman, Michael; Walters, Rhiannon J; Obermair, Andreas; Quinn, Michael A; Blomfield, Penelope B; Brand, Alison; Leung, Yee; Oehler, Martin K; Kirk, Judy A; O'Mara, Tracy A; Webb, Penelope M; Spurdle, Amanda B

    2017-11-01

    To determine endometrial cancer (EC) risk according to family cancer history, including assessment by degree of relatedness, type of and age at cancer diagnosis of relatives. Self-reported family cancer history was available for 1353 EC patients and 628 controls. Logistic regression was used to quantify the association between EC and cancer diagnosis in ≥1 first or second degree relative, and to assess whether level of risk differed by degree of relationship and/or relative's age at diagnosis. Risk was also evaluated for family history of up to three cancers from known familial syndromes (Lynch, Cowden, hereditary breast and ovarian cancer) overall, by histological subtype and, for a subset of 678 patients, by EC tumor mismatch repair (MMR) gene expression. Report of EC in ≥1 first- or second-degree relative was associated with significantly increased risk of EC (P=3.8×10 -7 ), independent of lifestyle risk factors. There was a trend in increasing EC risk with closer relatedness and younger age at EC diagnosis in relatives (P Trend =4.43×10 -6 ), and with increasing numbers of Lynch cancers in relatives (P Trend ≤0.0001). EC risk associated with family history did not differ by proband tumor MMR status, or histological subtype. Reported EC in first- or second-degree relatives remained associated with EC risk after conservative correction for potential misreported family history (OR 2.0; 95% CI, 1.24-3.37, P=0.004). The strongest predictor of EC risk was closer relatedness and younger EC diagnosis age in ≥1 relative. Associations remained significant irrespective of proband MMR status, and after excluding MMR pathogenic variant carriers, indicating that Lynch syndrome genes do not fully explain familial EC risk. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Constitutive expression of the DUR1,2 gene in an industrial yeast strain to minimize ethyl carbamate production during Chinese rice wine fermentation.

    PubMed

    Wu, Dianhui; Li, Xiaomin; Lu, Jian; Chen, Jian; Zhang, Liang; Xie, Guangfa

    2016-01-01

    Urea and ethanol are the main precursors of ethyl carbamate (EC) in Chinese rice wine. During fermentation, urea is generated from arginine by arginase in Saccharomyces cerevisiae, and subsequently cleaved by urea amidolyase or directly transported out of the cell into the fermentation liquor, where it reacts with ethanol to form EC. To reduce the amount of EC in Chinese rice wine, we metabolically engineered two yeast strains, N85(DUR1,2) and N85(DUR1,2)-c, from the wild-type Chinese rice wine yeast strain N85. Both new strains were capable of constitutively expressing DUR1,2 (encodes urea amidolyase) and thus enhancing urea degradation. The use of N85(DUR1,2) and N85(DUR1,2)-c reduced the concentration of EC in Chinese rice wine fermented on a small-scale by 49.1% and 55.3%, respectively, relative to fermentation with the parental strain. All of the engineered strains showed good genetic stability and minimized the production of urea during fermentation, with no exogenous genes introduced during genetic manipulation, and were therefore suitable for commercialization to increase the safety of Chinese rice wine. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Endothelial jagged-2 sustains hematopoietic stem and progenitor reconstitution after myelosuppression.

    PubMed

    Guo, Peipei; Poulos, Michael G; Palikuqi, Brisa; Badwe, Chaitanya R; Lis, Raphael; Kunar, Balvir; Ding, Bi-Sen; Rabbany, Sina Y; Shido, Koji; Butler, Jason M; Rafii, Shahin

    2017-12-01

    Angiocrine factors, such as Notch ligands, supplied by the specialized endothelial cells (ECs) within the bone marrow and splenic vascular niche play an essential role in modulating the physiology of adult hematopoietic stem and progenitor cells (HSPCs). However, the relative contribution of various Notch ligands, specifically jagged-2, to the homeostasis of HSPCs is unknown. Here, we show that under steady state, jagged-2 is differentially expressed in tissue-specific vascular beds, but its expression is induced in hematopoietic vascular niches after myelosuppressive injury. We used mice with EC-specific deletion of the gene encoding jagged-2 (Jag2) to demonstrate that while EC-derived jagged-2 was dispensable for maintaining the capacity of HSPCs to repopulate under steady-state conditions, by activating Notch2 it did contribute to the recovery of HSPCs in response to myelosuppressive conditions. Engraftment and/or expansion of HSPCs was dependent on the expression of endothelial-derived jagged-2 following myeloablation. Additionally, jagged-2 expressed in bone marrow ECs regulated HSPC cell cycle and quiescence during regeneration. Endothelial-deployed jagged-2 triggered Notch2/Hey1, while tempering Notch2/Hes1 signaling in HSPCs. Collectively, these data demonstrate that EC-derived jagged-2 activates Notch2 signaling in HSPCs to promote hematopoietic recovery and has potential as a therapeutic target to accelerate balanced hematopoietic reconstitution after myelosuppression.

  1. Endothelial jagged-2 sustains hematopoietic stem and progenitor reconstitution after myelosuppression

    PubMed Central

    Guo, Peipei; Poulos, Michael G.; Palikuqi, Brisa; Badwe, Chaitanya R.; Lis, Raphael; Kunar, Balvir; Ding, Bi-Sen; Rabbany, Sina Y.; Butler, Jason M.

    2017-01-01

    Angiocrine factors, such as Notch ligands, supplied by the specialized endothelial cells (ECs) within the bone marrow and splenic vascular niche play an essential role in modulating the physiology of adult hematopoietic stem and progenitor cells (HSPCs). However, the relative contribution of various Notch ligands, specifically jagged-2, to the homeostasis of HSPCs is unknown. Here, we show that under steady state, jagged-2 is differentially expressed in tissue-specific vascular beds, but its expression is induced in hematopoietic vascular niches after myelosuppressive injury. We used mice with EC-specific deletion of the gene encoding jagged-2 (Jag2) to demonstrate that while EC-derived jagged-2 was dispensable for maintaining the capacity of HSPCs to repopulate under steady-state conditions, by activating Notch2 it did contribute to the recovery of HSPCs in response to myelosuppressive conditions. Engraftment and/or expansion of HSPCs was dependent on the expression of endothelial-derived jagged-2 following myeloablation. Additionally, jagged-2 expressed in bone marrow ECs regulated HSPC cell cycle and quiescence during regeneration. Endothelial-deployed jagged-2 triggered Notch2/Hey1, while tempering Notch2/Hes1 signaling in HSPCs. Collectively, these data demonstrate that EC-derived jagged-2 activates Notch2 signaling in HSPCs to promote hematopoietic recovery and has potential as a therapeutic target to accelerate balanced hematopoietic reconstitution after myelosuppression. PMID:29058691

  2. Indoleamine 2,3-dioxygenase 1 and overall survival of patients diagnosed with esophageal cancer

    PubMed Central

    Rosenberg, Ari J.; Wainwright, Derek A.; Rademaker, Alfred; Galvez, Carlos; Genet, Matthew; Zhai, Lijie; Lauing, Kristen L.; Mulcahy, Mary F.; Hayes, John P.; Odell, David D.; Horbinski, Craig; Komanduri, Srinadh; Tetreault, Marie-Pier; Kim, Kwang-Youn A.; Villaflor, Victoria M.

    2018-01-01

    Background Indoleamine 2,3-dioxygenase 1 (IDO1) is an enzyme with immunomodulatory properties that has emerged as a potential immunotherapeutic target in human cancer. However, the role, expression pattern, and relevance of IDO1 in esophageal cancer (EC) are poorly understood. Here, we utilize gene expression analysis of the cancer genome atlas (TCGA) and immunohistochemistry (IHC) to better understand the role and prognostic significance of IDO1 in EC. Results High IDO1 mRNA levels were associated with worse overall survival (OS) in both esophageal squamous cell carcinoma (SCC) (P = 0.02) and adenocarcinoma (AC) (P = 0.036). High co-expression of IDO1 and programmed death ligand 1 (PD-L1) was associated with worse OS in SCC (P = 0.0031) and AC (P = 0.0186). IHC for IDO1 in SCC showed a significant correlation with PD-L1 (P < 0.0001) and CD3ε (P < 0.0001). Conclusions EC with high IDO1 and PD-L1 expression is significantly correlated with decreased patient survival, and may correlate with increased T-cells. These data suggest that simultaneous inhibition of IDO1 and PD-(L)1 may overcome important barriers to T-cell mediated immune rejection of EC. Materials and Methods mRNA expression data from TCGA (SCC N = 87; AC N = 97). IHC in a second cohort of EC (N = 93) were stained for IDO1, PD-L1, and CD3ε, followed by light microscopic analysis. PMID:29805749

  3. Endothelial cell O-glycan deficiency causes blood/lymphatic misconnections and consequent fatty liver disease in mice

    PubMed Central

    Fu, Jianxin; Gerhardt, Holger; McDaniel, J. Michael; Xia, Baoyun; Liu, Xiaowei; Ivanciu, Lacramioara; Ny, Annelii; Hermans, Karlien; Silasi-Mansat, Robert; McGee, Samuel; Nye, Emma; Ju, Tongzhong; Ramirez, Maria I.; Carmeliet, Peter; Cummings, Richard D.; Lupu, Florea; Xia, Lijun

    2008-01-01

    Mucin-type O-glycans (O-glycans) are highly expressed in vascular ECs. However, it is not known whether they are important for vascular development. To investigate the roles of EC O-glycans, we generated mice lacking T-synthase, a glycosyltransferase encoded by the gene C1galt1 that is critical for the biosynthesis of core 1–derived O-glycans, in ECs and hematopoietic cells (termed here EHC T-syn–/– mice). EHC T-syn–/– mice exhibited embryonic and neonatal lethality associated with disorganized and blood-filled lymphatic vessels. Bone marrow transplantation and EC C1galt1 transgene rescue demonstrated that lymphangiogenesis specifically requires EC O-glycans, and intestinal lymphatic microvessels in EHC T-syn–/– mice expressed a mosaic of blood and lymphatic EC markers. The level of O-glycoprotein podoplanin was significantly reduced in EHC T-syn–/– lymphatics, and podoplanin-deficient mice developed blood-filled lymphatics resembling EHC T-syn–/– defects. In addition, postnatal inactivation of C1galt1 caused blood/lymphatic vessel misconnections that were similar to the vascular defects in the EHC T-syn–/– mice. One consequence of eliminating T-synthase in ECs and hematopoietic cells was that the EHC T-syn–/– pups developed fatty liver disease, because of direct chylomicron deposition via misconnected portal vein and intestinal lymphatic systems. Our studies therefore demonstrate that EC O-glycans control the separation of blood and lymphatic vessels during embryonic and postnatal development, in part by regulating podoplanin expression. PMID:18924607

  4. MAX Mutations in Endometrial Cancer: Clinicopathologic Associations and Recurrent MAX p.His28Arg Functional Characterization.

    PubMed

    Walker, Christopher J; Rush, Craig M; Dama, Paola; O'Hern, Matthew J; Cosgrove, Casey M; Gillespie, Jessica L; Zingarelli, Roman A; Smith, Blair; Stein, Maggie E; Mutch, David G; Shakya, Reena; Chang, Chia-Wen; Selvendiran, Karuppaiyah; Song, Jonathan W; Cohn, David E; Goodfellow, Paul J

    2018-05-01

    Genomic studies have revealed that multiple genes are mutated at varying frequency in endometrial cancer (EC); however, the relevance of many of these mutations is poorly understood. An EC-specific recurrent mutation in the MAX transcription factor p.His28Arg was recently discovered. We sought to assess the functional consequences of this hotspot mutation and determine its association with cancer-relevant phenotypes. MAX was sequenced in 509 endometrioid ECs, and associations between mutation status and clinicopathologic features were assessed. EC cell lines stably expressing MAXH28R were established and used for functional experiments. DNA binding was examined using electrophoretic mobility shift assays and chromatin immunoprecipitation. Transcriptional profiling was performed with microarrays. Murine flank (six to 11 mice per group) and intraperitoneal tumor models were used for in vivo studies. Vascularity of xenografts was assessed by MECA-32 immunohistochemistry. The paracrine pro-angiogenic nature of MAXH28R-expressing EC cells was tested using microfluidic HUVEC sprouting assays and VEGFA enzyme-linked immunosorbent assays. All statistical tests were two-sided. Twenty-two of 509 tumors harbored mutations in MAX, including 12 tumors with the p.His28Arg mutation. Patients with a MAX mutation had statistically significantly reduced recurrence-free survival (hazard ratio = 4.00, 95% confidence interval = 1.15 to 13.91, P = .03). MAXH28R increased affinity for canonical E-box sequences, and MAXH28R-expressing EC cells dramatically altered transcriptional profiles. MAXH28R-derived xenografts statistically significantly increased vascular area compared with MAXWT and empty vector tumors (P = .003 and P = .008, respectively). MAXH28R-expressing EC cells secreted nearly double the levels of VEGFA compared with MAXWT cells (P = .03, .005, and .005 at 24, 48, and 72 hours, respectively), and conditioned media from MAXH28R cells increased sprouting when applied to HUVECs. These data highlight the importance of MAX mutations in EC and point to increased vascularity as one mechanism contributing to clinical aggressiveness of EC.

  5. Long Noncoding RNA-GAS5: A Novel Regulator of Hypertension-Induced Vascular Remodeling.

    PubMed

    Wang, Yang-Ning-Zhi; Shan, Kun; Yao, Mu-Di; Yao, Jin; Wang, Jia-Jian; Li, Xiang; Liu, Ban; Zhang, Yang-Yang; Ji, Yong; Jiang, Qin; Yan, Biao

    2016-09-01

    Vascular remodeling is an important pathological feature of hypertension, leading to increased vascular resistance and reduced compliance. Endothelial cell (EC) and vascular smooth muscle cell (VSMC) dysfunction is involved in vascular remodeling. Long noncoding RNAs are potential regulators of EC and VSMC function. Herein, we determined whether long noncoding RNA-growth arrest-specific 5 (GAS5) is involved in hypertension-related vascular remodeling. We revealed that GAS5 knockdown aggravated hypertension-induced microvascular dysfunction as shown by increased retinal neovascularization and capillary leakage. GAS5 regulated the remodeling of arteries, including caudal arteries, carotid arteries, renal arteries, and thoracic arteries. GAS5 was mainly expressed in ECs and VSMCs, and its expression was significantly downregulated in hypertension. GAS5 knockdown affected endothelial activation, endothelial proliferation, VSMC phenotypic conversion, and EC-VSMC communication in vivo and in vitro. Mechanistically, GAS5 regulated EC and VSMC function through β-catenin signaling. This study identified GAS5 as a critical regulator in hypertension and demonstrated the potential of gene therapy and drug development for treating hypertension. © 2016 American Heart Association, Inc.

  6. Simvastatin Treatment Upregulates HO-1 in Patients with Abdominal Aortic Aneurysm but Independently of Nrf2

    PubMed Central

    Kopacz, Aleksandra; Kloska, Damian; Zagrapan, Branislav; Neumayer, Christoph; Grochot-Przeczek, Anna; Huk, Ihor; Brostjan, Christine; Dulak, Jozef

    2018-01-01

    Heme oxygenase-1 (HO-1), encoded by HMOX1 gene and regulated by Nrf2 transcription factor, is a cytoprotective enzyme. Its deficiency may exacerbate abdominal aortic aneurysm (AAA) development, which is also often associated with hyperlipidemia. Beneficial effects of statins, the broadly used antilipidemic drugs, were attributed to modulation of Nrf2/HO-1 axis. However, the effect of statins on Nrf2/HO-1 pathway in patients with AAA has not been studied yet. We analyzed AAA tissue from patients treated with simvastatin (N = 28) or without statins (N = 14). Simvastatin treatment increased HO-1 protein level in AAA, both in endothelial cells (ECs) and in smooth muscle cells (SMCs), but increased Nrf2 localization was restricted only to vasa vasorum. Nrf2 target genes HMOX1, NQO1, and GCLM expression remained unchanged in AAA. In vitro studies showed that simvastatin raises HO-1 protein level slightly in ECs and to much higher extent in SMCs, which is not related to Nrf2/ARE activation, although HMOX1 expression is upregulated by simvastatin in both cell types. In conclusion, simvastatin-induced modulation of HO-1 level in ECs and SMCs in vitro is not related to Nrf2/ARE activity. Likewise, divergent HO-1 and Nrf2 localization together with stable expression of Nrf2 target genes, including HMOX1, in AAA tissue denotes Nrf2 independency. PMID:29743974

  7. Nuclear IL-33 regulates soluble ST2 receptor and IL-6 expression in primary human arterial endothelial cells and is decreased in idiopathic pulmonary arterial hypertension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Dongmin; Perros, Frédéric; Caramori, Gaetano

    Highlights: • Nuclear IL-33 expression is reduced in vascular endothelial cells from PAH patients. • Knockdown of IL-33 leads to increased IL-6 and sST2 mRNA expression. • IL-33 binds homeobox motifs in target gene promoters and recruits repressor proteins. - Abstract: Idiopathic pulmonary arterial hypertension (IPAH) is an incurable condition leading to right ventricular failure and death and inflammation is postulated to be associated with vascular remodelling. Interleukin (IL)-33, a member of the “alarmin” family can either act on the membrane ST2 receptor or as a nuclear repressor, to regulate inflammation. We show, using immunohistochemistry, that IL-33 expression is nuclearmore » in the vessels of healthy subjects whereas nuclear IL-33 is markedly diminished in the vessels of IPAH patients. This correlates with reduced IL-33 mRNA expression in their lung. In contrast, serum levels of IL-33 are unchanged in IPAH. However, the expression of the soluble form of ST2, sST2, is enhanced in the serum of IPAH patients. Knock-down of IL-33 in human endothelial cells (ECs) using siRNA is associated with selective modulation of inflammatory genes involved in vascular remodelling including IL-6. Additionally, IL-33 knock-down significantly increased sST2 release from ECs. Chromatin immunoprecipitation demonstrated that IL-33 bound multiple putative homeodomain protein binding motifs in the proximal and distal promoters of ST2 genes. IL-33 formed a complex with the histone methyltransferase SUV39H1, a transcriptional repressor. In conclusion, IL-33 regulates the expression of IL-6 and sST2, an endogenous IL-33 inhibitor, in primary human ECs and may play an important role in the pathogenesis of PAH through recruitment of transcriptional repressor proteins.« less

  8. Interleukin-17 Promotes Neutrophil-Mediated Immunity by Activating Microvascular Pericytes and Not Endothelium

    PubMed Central

    Liu, Rebecca; Lauridsen, Holly M.; Amezquita, Robert A.; Pierce, Richard W.; Jane-wit, Dan; Fang, Caodi; Pellowe, Amanda S.; Kirkiles-Smith, Nancy C.; Gonzalez, Anjelica L.; Pober, Jordan S.

    2016-01-01

    A classical hallmark of acute inflammation is neutrophil infiltration of tissues, a multi-step process that involves sequential cell-cell interactions of circulating leukocytes with interleukin (IL)-1- or tumor necrosis factor-α (TNF)-activated microvascular endothelial cells (ECs) and pericytes (PCs) that form the wall of the postcapillary venules. The initial infiltrating cells accumulate perivascularly in close proximity to PCs. IL-17, a pro-inflammatory cytokine that acts on target cells via a heterodimeric receptor formed by IL-17RA and IL-17RC subunits, also promotes neutrophilic inflammation but its effects on vascular cells are less clear. We report that both cultured human ECs and PCs strongly express IL-17RC and, while neither cell type expresses much IL-17RA, PCs express significantly more than ECs. IL-17, alone or synergistically with TNF, significantly alters inflammatory gene expression in cultured human PCs but not ECs. RNA-seq analysis identifies many IL-17-induced transcripts in PCs encoding proteins known to stimulate neutrophil-mediated immunity. Conditioned media (CM) from IL-17-activated PCs, but not ECs, induce pertussis toxin-sensitive neutrophil polarization, likely mediated by PC-secreted chemokines, and also stimulate neutrophil production of pro-inflammatory molecules, including TNF, IL-1α, IL-1β, and IL-8. Furthermore, IL-17-activated PCs but not ECs can prolong neutrophil survival by producing G-CSF and GM-CSF, delaying the mitochondria outer membrane permeabilization and caspase 9 activation. Importantly, neutrophils exhibit enhanced phagocytic capacity after activation by CM from IL-17-treated PCs. We conclude that PCs, not ECs, are the major target of IL-17 within the microvessel wall and that IL-17-activated PCs can modulate neutrophil functions within the perivascular tissue space. PMID:27534549

  9. Synthetic phytochelatin surface display in Cupriavidus metallidurans CH34 for enhanced metals bioremediation.

    PubMed

    Biondo, Ronaldo; da Silva, Felipe Almeida; Vicente, Elisabete José; Souza Sarkis, Jorge Eduardo; Schenberg, Ana Clara Guerrini

    2012-08-07

    This work describes the effects of the cell surface display of a synthetic phytochelatin in the highly metal tolerant bacterium Cupriavidus metallidurans CH34. The EC20sp synthetic phytochelatin gene was fused between the coding sequences of the signal peptide (SS) and of the autotransporter β-domain of the Neisseria gonorrhoeae IgA protease precursor (IgAβ), which successfully targeted the hybrid protein toward the C. metallidurans outer membrane. The expression of the SS-EC20sp-IgAβ gene fusion was driven by a modified version of the Bacillus subtilis mrgA promoter showing high level basal gene expression that is further enhanced by metal presence in C. metallidurans. The recombinant strain showed increased ability to immobilize Pb(2+), Zn(2+), Cu(2+), Cd(2+), Mn(2+), and Ni(2+) ions from the external medium when compared to the control strain. To ensure plasmid stability and biological containment, the MOB region of the plasmid was replaced by the E. coli hok/sok coding sequence.

  10. Novel cytochrome P450 genes, CYP6EB1 and CYP6EC1, are over-expressed in acrinathrin-resistant Frankliniella occidentalis (Thysanoptera: Thripidae).

    PubMed

    Cifuentes, D; Chynoweth, R; Guillén, J; De la Rúa, P; Bielza, P

    2012-06-01

    Control of Frankliniella occidentalis (Pergande) is a serious problem for agriculture all over the world because of the limited range of insecticides that are available. Insecticide resistance in F. occidentalis has been reported for all major insecticide groups. Our previous studies showed that cytochrome P450-mediated detoxification is a major mechanism responsible for insecticide resistance in this pest. Degenerate polymerase chain reaction was used to identify P450 genes that might be involved in acrinathrin resistance, in a laboratory population of F. occidentalis. Associated sequences were classified as belonging to the CYP4 and CYP6 families. Real-time quantitative polymerase chain reaction analyses revealed that two genes, CYP6EB1 and CYP6EC1, were over-expressed in adults and L2 larvae of the resistant population, when compared with the susceptible population, suggesting their possible involvement in resistance to acrinathrin.

  11. Cultured Human Adipose Tissue Pericytes and Mesenchymal Stromal Cells Display a Very Similar Gene Expression Profile

    PubMed Central

    Malta, Tathiane Maistro; de Deus Wagatsuma, Virgínia Mara; Palma, Patrícia Viana Bonini; Araújo, Amélia Goes; Ribeiro Malmegrim, Kelen Cristina; Morato de Oliveira, Fábio; Panepucci, Rodrigo Alexandre; Silva, Wilson Araújo; Kashima Haddad, Simone; Covas, Dimas Tadeu

    2015-01-01

    Mesenchymal stromal cells (MSCs) are cultured cells that can give rise to mature mesenchymal cells under appropriate conditions and secrete a number of biologically relevant molecules that may play an important role in regenerative medicine. Evidence indicates that pericytes (PCs) correspond to mesenchymal stem cells in vivo and can give rise to MSCs when cultured, but a comparison between the gene expression profiles of cultured PCs (cPCs) and MSCs is lacking. We have devised a novel methodology to isolate PCs from human adipose tissue and compared cPCs to MSCs obtained through traditional methods. Freshly isolated PCs expressed CD34, CD140b, and CD271 on their surface, but not CD146. Both MSCs and cPCs were able to differentiate along mesenchymal pathways in vitro, displayed an essentially identical surface immunophenotype, and exhibited the ability to suppress CD3+ lymphocyte proliferation in vitro. Microarray expression data of cPCs and MSCs formed a single cluster among other cell types. Further analyses showed that the gene expression profiles of cPCs and MSCs are extremely similar, although MSCs differentially expressed endothelial cell (EC)-specific transcripts. These results confirm, using the power of transcriptomic analysis, that PCs give rise to MSCs and suggest that low levels of ECs may persist in MSC cultures established using traditional protocols. PMID:26192741

  12. Parasitization by Scleroderma guani influences expression of superoxide dismutase genes in Tenebrio molitor

    USDA-ARS?s Scientific Manuscript database

    Superoxide dismutase (SOD) is an antioxidant enzyme involved in detoxifying reactive oxygen species. In this study, we identified genes encoding the extracellular and intracellular copper-zinc SODs (ecCuZnSOD and icCuZnSOD) and a manganese SOD (MnSOD) in the yellow mealworm beetle, Tenebrio molitor....

  13. Emodin Inhibits Migration and Invasion of Human Endometrial Stromal Cells by Facilitating the Mesenchymal-Epithelial Transition Through Targeting ILK.

    PubMed

    Zheng, Qiaomei; Xu, Ying; Lu, Jingjing; Zhao, Jing; Wei, Xuan; Liu, Peishu

    2016-11-01

    To determine whether emodin facilitates the mesenchymal-epithelial transition (MET) of endometrial stromal cells (ESCs) as well as to explore the mechanism through which emodin favored the MET of ESCs. Cell viability was tested by methyl thiazolyl tetrazolium assay. Cell migration and invasion abilities were detected by transwell assays. Levels of integrin-linked kinase (ILK) and epithelial-mesenchymal transition (EMT)-related proteins were detected by Western blot. Upregulated ILK and increased abilities of migration and invasion were confirmed in the eutopic and ectopic ESCs (EuSCs and EcSCs), especially in the EcSCs. After treated with emodin, the expression of ILK was statistically downregulated in EcSCs, resulting in the MET and decreased migration and invasion abilities of EcSCs. Additionally, silencing of the ILK gene in EcSCs also achieved the above-mentioned effects, which were strengthened by emodin. Furthermore, exogenous expression of ILK in control ESCs (CSCs) resulted in the EMT and increased abilities of migration and invasion of CSCs, which can be abrogated by emodin. Besides, exogenous expression of ILK also abrogated the effects of emodin on CSCs. Emodin inhibits the migration and invasion abilities of human ESCs by facilitating the MET through targeting ILK. © The Author(s) 2016.

  14. The Putzig-NURF nucleosome remodeling complex is required for ecdysone receptor signaling and innate immunity in Drosophila melanogaster.

    PubMed

    Kugler, Sabrina J; Gehring, Eva-Maria; Wallkamm, Veronika; Krüger, Victoria; Nagel, Anja C

    2011-05-01

    Putzig (Pzg) was originally identified as being an integral component of the TRF2/DREF complex in Drosophila melanogaster, thereby regulating the transcriptional activation of replication-related genes. In a DREF-independent manner, Pzg was shown to mediate Notch target gene activation. This function of Pzg entails an association with the nucleosome remodeling factor complex NURF, which directly binds the ecdysone receptor EcR and coregulates targets of the EcR via the NURF-specific subunit Nurf-301. In contrast, Nurf-301 acts as a negative regulator of JAK/STAT signaling. Here, we provide evidence to show that Pzg is fundamental for these functions of NURF, apart from the regulation of Notch signaling activity. A jump-out mutagenesis provided us with a pzg null mutant displaying early larval lethality, defects in growth, and molting accompanied by aberrant feeding behavior. We show that Pzg is associated with EcR in vivo and required for the transcriptional induction of EcR target genes, whereas reduced ecdysteroid levels imply a NURF-independent function of Pzg. Moreover, pzg interferes with JAK/STAT-signaling activity by acting as a corepressor of Ken. Lamellocyte differentiation was consistently affected in a JAK/STAT mutant background and the expression level of defense response genes was elevated in pzg mutants, leading to the formation of melanotic tumors. Our results suggest that Pzg acts as an important partner of NURF in the regulation of EcR and JAK/STAT signaling.

  15. Evaluation of a toxicogenomic approach to the local lymph node assay (LLNA).

    PubMed

    Boverhof, Darrell R; Gollapudi, B Bhaskar; Hotchkiss, Jon A; Osterloh-Quiroz, Mandy; Woolhiser, Michael R

    2009-02-01

    Genomic technologies have the potential to enhance and complement existing toxicology endpoints; however, assessment of these approaches requires a systematic evaluation including a robust experimental design with genomic endpoints anchored to traditional toxicology endpoints. The present study was conducted to assess the sensitivity of genomic responses when compared with the traditional local lymph node assay (LLNA) endpoint of lymph node cell proliferation and to evaluate the responses for their ability to provide insights into mode of action. Female BALB/c mice were treated with the sensitizer trimellitic anhydride (TMA), following the standard LLNA dosing regimen, at doses of 0.1, 1, or 10% and traditional tritiated thymidine ((3)HTdR) incorporation and gene expression responses were monitored in the auricular lymph nodes. Additional mice dosed with either vehicle or 10% TMA and sacrificed on day 4 or 10, were also included to examine temporal effects on gene expression. Analysis of (3)HTdR incorporation revealed TMA-induced stimulation indices of 2.8, 22.9, and 61.0 relative to vehicle with an EC(3) of 0.11%. Examination of the dose-response gene expression responses identified 9, 833, and 2122 differentially expressed genes relative to vehicle for the 0.1, 1, and 10% TMA dose groups, respectively. Calculation of EC(3) values for differentially expressed genes did not identify a response that was more sensitive than the (3)HTdR value, although a number of genes displayed comparable sensitivity. Examination of temporal responses revealed 1760, 1870, and 953 differentially expressed genes at the 4-, 6-, and 10-day time points respectively. Functional analysis revealed many responses displayed dose- and time-specific induction patterns within the functional categories of cellular proliferation and immune response, including numerous immunoglobin genes which were highly induced at the day 10 time point. Overall, these experiments have systematically illustrated the potential utility of genomic endpoints to enhance the LLNA and support further exploration of this approach through examination of a more diverse array of chemicals.

  16. Corexit-EC9527A Disrupts Retinol Signaling and Neuronal Differentiation in P19 Embryonal Pluripotent Cells

    PubMed Central

    Chen, Yanling; Reese, David H.

    2016-01-01

    Corexit-EC9500A and Corexit-EC9527A are two chemical dispersants that have been used to remediate the impact of the 2010 Deepwater Horizon oil spill. Both dispersants are composed primarily of organic solvents and surfactants and act by emulsifying the crude oil to facilitate biodegradation. The potential adverse effect of the Corexit chemicals on mammalian embryonic development remains largely unknown. Retinol (vitamin A) signaling, mediated by all-trans retinoic acid (RA), is essential for neural tube formation and the development of many organs in the embryo. The physiological levels of RA in cells and tissues are maintained by the retinol signaling pathway (RSP), which controls the biosynthesis of RA from dietary retinol and the catabolism of RA to polar metabolites for removal. RA is a potent activating ligand for the RAR/RXR nuclear receptors. Through RA and the receptors, the RSP modulates the expression of many developmental genes; interference with the RSP is potentially teratogenic. In this study the mouse P19 embryonal pluripotent cell, which contains a functional RSP, was used to evaluate the effects of the Corexit dispersants on retinol signaling and associated neuronal differentiation. The results showed that Corexit-EC9500A was more cytotoxic than Corexit-EC9527A to P19 cells. At non-cytotoxic doses, Corexit-EC9527A inhibited retinol-induced expression of the Hoxa1 gene, which encodes a transcription factor for the regulation of body patterning in the embryo. Such inhibition was seen in the retinol- and retinal- induced, but not RA-induced, Hoxa1 up-regulation, indicating that the Corexit chemicals primarily inhibit RA biosynthesis from retinal. In addition, Corexit-EC9527A suppressed retinol-induced P19 cell differentiation into neuronal cells, indicating potential neurotoxic effect of the chemicals under the tested conditions. The surfactant ingredient, dioctyl sodium sulfosuccinate (DOSS), may be a major contributor to the observed effect of Corexit-EC9527A in the cell. PMID:27684493

  17. Substrate-mediated delivery of gene complex nanoparticles via polydopamine coating for enhancing competitiveness of endothelial cells.

    PubMed

    Li, Bo-Chao; Chang, Hao; Ren, Ke-Feng; Ji, Jian

    2016-11-01

    Substrate-mediated delivery of functional plasmid DNA (pDNA) has been proven to be a promising strategy to promote competitiveness of endothelial cells (ECs) over smooth muscle cells (SMCs), which is beneficial to inducing fast endothelialization of implanted vascular devices. Thus, it is of great importance to develop universal approaches with simplicity and easiness to immobilize DNA complex nanoparticles on substrates. In this study, the bioinspired polydopamine (PDA) coating was employed in immobilization of DNA complex nanoparticles, which were composed of protamine (PrS) and plasmid DNA encoding with hepatocyte growth factor (HGF-pDNA) gene. We demonstrated that the DNA complex nanoparticles can be successfully immobilized onto the PDA surface. Consequently, the HGF expression of both ECs and SMCs were significantly improved when they cultured on the DNA complex nanoparticles-immobilized substrates. Furthermore, EC proliferation was specifically promoted due to bioactivity of HGF, leading to an enhancement of EC competitiveness over SMCs. Our findings demonstrated the substrate-mediated functional gene nanoparticle delivery through PDA coating as a simple and efficient approach. It may hold great potential in the field of interventional cardiovascular implants. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Vascular Repair by Circumferential Cell Therapy Using Magnetic Nanoparticles and Tailored Magnets.

    PubMed

    Vosen, Sarah; Rieck, Sarah; Heidsieck, Alexandra; Mykhaylyk, Olga; Zimmermann, Katrin; Bloch, Wilhelm; Eberbeck, Dietmar; Plank, Christian; Gleich, Bernhard; Pfeifer, Alexander; Fleischmann, Bernd K; Wenzel, Daniela

    2016-01-26

    Cardiovascular disease is often caused by endothelial cell (EC) dysfunction and atherosclerotic plaque formation at predilection sites. Also surgical procedures of plaque removal cause irreversible damage to the EC layer, inducing impairment of vascular function and restenosis. In the current study we have examined a potentially curative approach by radially symmetric re-endothelialization of vessels after their mechanical denudation. For this purpose a combination of nanotechnology with gene and cell therapy was applied to site-specifically re-endothelialize and restore vascular function. We have used complexes of lentiviral vectors and magnetic nanoparticles (MNPs) to overexpress the vasoprotective gene endothelial nitric oxide synthase (eNOS) in ECs. The MNP-loaded and eNOS-overexpressing cells were magnetic, and by magnetic fields they could be positioned at the vascular wall in a radially symmetric fashion even under flow conditions. We demonstrate that the treated vessels displayed enhanced eNOS expression and activity. Moreover, isometric force measurements revealed that EC replacement with eNOS-overexpressing cells restored endothelial function after vascular injury in eNOS(-/-) mice ex and in vivo. Thus, the combination of MNP-based gene and cell therapy with custom-made magnetic fields enables circumferential re-endothelialization of vessels and improvement of vascular function.

  19. HR38, an ortholog of NR4A family nuclear receptors, mediates 20-hydroxyecdysone regulation of carbohydrate metabolism during mosquito reproduction.

    PubMed

    Dong, Dujuan; Zhang, Yang; Smykal, Vlastimil; Ling, Lin; Raikhel, Alexander S

    2018-05-01

    The Aedes aegypti mosquito is the principal vector for many dangerous human viral diseases. Carbohydrate metabolism (CM) is essential for supplying the energy necessary for host seeking, blood digestion and rapid egg development of this vector insect. The steroid hormone 20-hydroxyecdysone (20E) and the ecdysone receptor (EcR) are important regulators of CM, coordinating it with female reproductive events. We report here that the NR4A nuclear receptor AHR38 plays a critical role in mediating these actions of 20E and EcR. AHR38 RNA interference (RNAi) depletion in female mosquitoes blocked the transcriptional activation of CM genes encoding phosphoglucomutase (PGM) and trehalose-6-phophate synthase (TPS); it caused an increase of glycogen accumulation and a decrease of the circulating sugar trehalose. This treatment also resulted in a dramatic reduction in fecundity. Considering that these phenotypes resulting from AHR38 RNAi depletion are similar to those of EcR RNAi, we investigated a possible connection between these transcription factors in CM regulation. EcR RNAi inhibits the AHR38 gene expression. Moreover, the 20E-induced EcR complex directly activates AHR38 by binding to the ecdysone response element (EcRE) in the upstream regulatory region of this gene. The present work has implicated AHR38 in the 20E-mediated control of CM and provided new insight into mechanisms of 20E regulation of metabolism during female mosquito reproduction. © 2018 Published by Elsevier Ltd.

  20. Chemoprevention of Cigarette Smoke–Induced Alterations of MicroRNA Expression in Rat Lungs

    PubMed Central

    Izzotti, Alberto; Calin, George A.; Steele, Vernon E.; Cartiglia, Cristina; Longobardi, Mariagrazia; Croce, Carlo M.; De Flora, Silvio

    2015-01-01

    We previously showed that exposure to environmental cigarette smoke (ECS) for 28 days causes extensive downregulation of microRNA expression in the lungs of rats, resulting in the overexpression of multiple genes and proteins. In the present study, we evaluated by microarray the expression of 484 microRNAs in the lungs of either ECS-free or ECS-exposed rats treated with the orally administered chemopreventive agents N-acetylcysteine, oltipraz, indole-3-carbinol, 5,6-benzoflavone, and phenethyl isothiocyanate (as single agents or in combinations). This is the first study of microRNA modulation by chemopreventive agents in nonmalignant tissues. Scatterplot, hierarchical cluster, and principal component analyses of microarray and quantitative PCR data showed that none of the above chemopreventive regimens appreciably affected the baseline microRNA expression, indicating potential safety. On the other hand, all of them attenuated ECS-induced alterations but to a variable extent and with different patterns, indicating potential preventive efficacy. The main ECS-altered functions that were modulated by chemopreventive agents included cell proliferation, apoptosis, differentiation, Ras activation, P53 functions, NF-κB pathway, transforming growth factor–related stress response, and angiogenesis. Some micro-RNAs known to be polymorphic in humans were downregulated by ECS and were protected by chemopreventive agents. This study provides proof-of-concept and validation of technology that we are further refining to screen and prioritize potential agents for continued development and to help elucidate their biological effects and mechanisms. Therefore, microRNA analysis may provide a new tool for predicting at early carcinogenesis stages both the potential safety and efficacy of cancer chemopreventive agents. PMID:20051373

  1. Comparative Transcriptomics of Bacillus mycoides Strains in Response to Potato-Root Exudates Reveals Different Genetic Adaptation of Endophytic and Soil Isolates.

    PubMed

    Yi, Yanglei; de Jong, Anne; Frenzel, Elrike; Kuipers, Oscar P

    2017-01-01

    Plant root secreted compounds alter the gene expression of associated microorganisms by acting as signal molecules that either stimulate or repel the interaction with beneficial or harmful species, respectively. However, it is still unclear whether two distinct groups of beneficial bacteria, non-plant-associated (soil) strains and plant-associated (endophytic) strains, respond uniformly or variably to the exposure with root exudates. Therefore, Bacillus mycoides , a potential biocontrol agent and plant growth-promoting bacterium, was isolated from the endosphere of potatoes and from soil of the same geographical region. Confocal fluorescence microscopy of plants inoculated with GFP-tagged B. mycoides strains showed that the endosphere isolate EC18 had a stronger plant colonization ability and competed more successfully for the colonization sites than the soil isolate SB8. To dissect these phenotypic differences, the genomes of the two strains were sequenced and the transcriptome response to potato root exudates was compared. The global transcriptome profiles evidenced that the endophytic isolate responded more pronounced than the soil-derived isolate and a higher number of significant differentially expressed genes were detected. Both isolates responded with the alteration of expression of an overlapping set of genes, which had previously been reported to be involved in plant-microbe interactions; including organic substance metabolism, oxidative reduction, and transmembrane transport. Notably, several genes were specifically upregulated in the endosphere isolate EC18, while being oppositely downregulated in the soil isolate SB8. These genes mainly encoded membrane proteins, transcriptional regulators or were involved in amino acid metabolism and biosynthesis. By contrast, several genes upregulated in the soil isolate SB8 and downregulated in the endosphere isolate EC18 were related to sugar transport, which might coincide with the different nutrient availability in the two environments. Altogether, the presented transcriptome profiles provide highly improved insights into the life strategies of plant-associated endophytes and soil isolates of B. mycoides .

  2. Identification, characterization and expression analysis of lineage-specific genes within sweet orange (Citrus sinensis).

    PubMed

    Xu, Yuantao; Wu, Guizhi; Hao, Baohai; Chen, Lingling; Deng, Xiuxin; Xu, Qiang

    2015-11-23

    With the availability of rapidly increasing number of genome and transcriptome sequences, lineage-specific genes (LSGs) can be identified and characterized. Like other conserved functional genes, LSGs play important roles in biological evolution and functions. Two set of citrus LSGs, 296 citrus-specific genes (CSGs) and 1039 orphan genes specific to sweet orange, were identified by comparative analysis between the sweet orange genome sequences and 41 genomes and 273 transcriptomes. With the two sets of genes, gene structure and gene expression pattern were investigated. On average, both the CSGs and orphan genes have fewer exons, shorter gene length and higher GC content when compared with those evolutionarily conserved genes (ECs). Expression profiling indicated that most of the LSGs expressed in various tissues of sweet orange and some of them exhibited distinct temporal and spatial expression patterns. Particularly, the orphan genes were preferentially expressed in callus, which is an important pluripotent tissue of citrus. Besides, part of the CSGs and orphan genes expressed responsive to abiotic stress, indicating their potential functions during interaction with environment. This study identified and characterized two sets of LSGs in citrus, dissected their sequence features and expression patterns, and provided valuable clues for future functional analysis of the LSGs in sweet orange.

  3. Clinical impact of endometrial cancer stratified by genetic mutational profiles, POLE mutation, and microsatellite instability.

    PubMed

    Haruma, Tomoko; Nagasaka, Takeshi; Nakamura, Keiichiro; Haraga, Junko; Nyuya, Akihiro; Nishida, Takeshi; Goel, Ajay; Masuyama, Hisashi; Hiramatsu, Yuji

    2018-01-01

    The molecular characterization of endometrial cancer (EC) can facilitate identification of various tumor subtypes. Although EC patients with POLE mutations reproducibly demonstrate better prognosis, the outcome of patients with microsatellite instability (MSI) remains controversial. This study attempted to interrogate whether genetic stratification of EC can identify distinct subsets with prognostic significance. A cohort of 138 EC patients who underwent surgical resection with curative intent was enrolled. Sanger sequencing was used to evaluate mutations in the POLE and KRAS genes. MSI analysis was performed using four mononucleotide repeat markers and methylation status of the MLH1 promoter was measured by a fluorescent bisulfite polymerase chain reaction (PCR). Protein expression for mismatch repair (MMR) proteins was evaluated by immunohistochemistry (IHC). Extensive hypermethylation of the MLH1 promoter was observed in 69.6% ECs with MLH1 deficiency and 3.5% with MMR proficiency, but in none of the ECs with loss of other MMR genes (P < .0001). MSI-positive and POLE mutations were found in 29.0% and 8.7% EC patients, respectively. Our MSI analysis showed a sensitivity of 92.7% for EC patients with MMR deficiency, and a specificity of 97.9% for EC patients with MMR proficiency. In univariate and multivariate analyses, POLE mutations and MSI status was significantly associated with progression-free survival (P = 0.0129 and 0.0064, respectively) but not with endometrial cancer-specific survival. This study provides significant evidence that analyses of proofreading POLE mutations and MSI status based on mononucleotide repeat markers are potentially useful biomarkers to identify EC patients with better prognosis.

  4. Genome-wide analysis of transcription factors during somatic embryogenesis in banana (Musa spp.) cv. Grand Naine.

    PubMed

    Shivani; Awasthi, Praveen; Sharma, Vikrant; Kaur, Navjot; Kaur, Navneet; Pandey, Pankaj; Tiwari, Siddharth

    2017-01-01

    Transcription factors BABY BOOM (BBM), WUSCHEL (WUS), BSD, LEAFY COTYLEDON (LEC), LEAFY COTYLEDON LIKE (LIL), VIVIPAROUS1 (VP1), CUP SHAPED COTYLEDONS (CUC), BOLITA (BOL), and AGAMOUS LIKE (AGL) play a crucial role in somatic embryogenesis. In this study, we identified eighteen genes of these nine transcription factors families from the banana genome database. All genes were analyzed for their structural features, subcellular, and chromosomal localization. Protein sequence analysis indicated the presence of characteristic conserved domains in these transcription factors. Phylogenetic analysis revealed close evolutionary relationship among most transcription factors of various monocots. The expression patterns of eighteen genes in embryogenic callus containing somatic embryos (precisely isolated by Laser Capture Microdissection), non-embryogenic callus, and cell suspension cultures of banana cultivar Grand Naine were analyzed. The application of 2, 4-dichlorophenoxyacetic acid (2, 4-D) in the callus induction medium enhanced the expression of MaBBM1, MaBBM2, MaWUS2, and MaVP1 in the embryogenic callus. It suggested 2, 4-D acts as an inducer for the expression of these genes. The higher expression of MaBBM2 and MaWUS2 in embryogenic cell suspension (ECS) as compared to non-embryogenic cells suspension (NECS), suggested that these genes may play a crucial role in banana somatic embryogenesis. MaVP1 showed higher expression in both ECS and NECS, whereas MaLEC2 expression was significantly higher in NECS. It suggests that MaLEC2 has a role in the development of non-embryogenic cells. We postulate that MaBBM2 and MaWUS2 can be served as promising molecular markers for the embryogencity in banana.

  5. Genome-wide analysis of transcription factors during somatic embryogenesis in banana (Musa spp.) cv. Grand Naine

    PubMed Central

    Shivani; Awasthi, Praveen; Sharma, Vikrant; Kaur, Navjot; Kaur, Navneet; Pandey, Pankaj

    2017-01-01

    Transcription factors BABY BOOM (BBM), WUSCHEL (WUS), BSD, LEAFY COTYLEDON (LEC), LEAFY COTYLEDON LIKE (LIL), VIVIPAROUS1 (VP1), CUP SHAPED COTYLEDONS (CUC), BOLITA (BOL), and AGAMOUS LIKE (AGL) play a crucial role in somatic embryogenesis. In this study, we identified eighteen genes of these nine transcription factors families from the banana genome database. All genes were analyzed for their structural features, subcellular, and chromosomal localization. Protein sequence analysis indicated the presence of characteristic conserved domains in these transcription factors. Phylogenetic analysis revealed close evolutionary relationship among most transcription factors of various monocots. The expression patterns of eighteen genes in embryogenic callus containing somatic embryos (precisely isolated by Laser Capture Microdissection), non-embryogenic callus, and cell suspension cultures of banana cultivar Grand Naine were analyzed. The application of 2, 4-dichlorophenoxyacetic acid (2, 4-D) in the callus induction medium enhanced the expression of MaBBM1, MaBBM2, MaWUS2, and MaVP1 in the embryogenic callus. It suggested 2, 4-D acts as an inducer for the expression of these genes. The higher expression of MaBBM2 and MaWUS2 in embryogenic cell suspension (ECS) as compared to non-embryogenic cells suspension (NECS), suggested that these genes may play a crucial role in banana somatic embryogenesis. MaVP1 showed higher expression in both ECS and NECS, whereas MaLEC2 expression was significantly higher in NECS. It suggests that MaLEC2 has a role in the development of non-embryogenic cells. We postulate that MaBBM2 and MaWUS2 can be served as promising molecular markers for the embryogencity in banana. PMID:28797040

  6. Discovering the Deregulated Molecular Functions Involved in Malignant Transformation of Endometriosis to Endometriosis-Associated Ovarian Carcinoma Using a Data-Driven, Function-Based Analysis

    PubMed Central

    Chang, Chia-Ming; Yang, Yi-Ping; Chuang, Jen-Hua; Chuang, Chi-Mu; Lin, Tzu-Wei; Wang, Peng-Hui; Yu, Mu-Hsien

    2017-01-01

    The clinical characteristics of clear cell carcinoma (CCC) and endometrioid carcinoma EC) are concomitant with endometriosis (ES), which leads to the postulation of malignant transformation of ES to endometriosis-associated ovarian carcinoma (EAOC). Different deregulated functional areas were proposed accounting for the pathogenesis of EAOC transformation, and there is still a lack of a data-driven analysis with the accumulated experimental data in publicly-available databases to incorporate the deregulated functions involved in the malignant transformation of EOAC. We used the microarray gene expression datasets of ES, CCC and EC downloaded from the National Center for Biotechnology Information Gene Expression Omnibus (NCBI GEO) database. Then, we investigated the pathogenesis of EAOC by a data-driven, function-based analytic model with the quantified molecular functions defined by 1454 Gene Ontology (GO) term gene sets. This model converts the gene expression profiles to the functionome consisting of 1454 quantified GO functions, and then, the key functions involving the malignant transformation of EOAC can be extracted by a series of filters. Our results demonstrate that the deregulated oxidoreductase activity, metabolism, hormone activity, inflammatory response, innate immune response and cell-cell signaling play the key roles in the malignant transformation of EAOC. These results provide the evidence supporting the specific molecular pathways involved in the malignant transformation of EAOC. PMID:29113136

  7. The effect of genotypes and parent of origin on cancer risk and age of cancer development in PMS2 mutation carriers.

    PubMed

    Suerink, Manon; van der Klift, Heleen M; Ten Broeke, Sanne W; Dekkers, Olaf M; Bernstein, Inge; Capellá Munar, Gabriel; Gomez Garcia, Encarna; Hoogerbrugge, Nicoline; Letteboer, Tom G W; Menko, Fred H; Lindblom, Annika; Mensenkamp, Arjen; Moller, Pal; van Os, Theo A; Rahner, Nils; Redeker, Bert J W; Olderode-Berends, M J W; Olderode, Maran; Spruijt, Liesbeth; Vos, Yvonne J; Wagner, Anja; Morreau, Hans; Hes, Frederik J; Vasen, Hans F A; Tops, Carli M; Wijnen, Juul T; Nielsen, Maartje

    2016-04-01

    Lynch syndrome (LS), a heritable disorder with an increased risk of primarily colorectal cancer (CRC) and endometrial cancer (EC), can be caused by mutations in the PMS2 gene. We wished to establish whether genotype and/or parent-of-origin effects (POE) explain (part of) the reported variability in severity of the phenotype. European PMS2 mutation carriers (n = 381) were grouped and compared based on RNA expression and whether the mutation was inherited paternally or maternally. Mutation carriers with loss of RNA expression (group 1) had a significantly lower age at CRC diagnosis (51.1 years vs. 60.0 years, P = 0.035) and a lower age at EC diagnosis (55.8 years vs. 61.0 years, P = 0.2, nonsignificant) compared with group 2 (retention of RNA expression). Furthermore, group 1 showed slightly higher, but nonsignificant, hazard ratios (HRs) for both CRC (HR: 1.31, P = 0.38) and EC (HR: 1.22, P = 0.72). No evidence for a significant parent-of-origin effect was found for either CRC or EC. PMS2 mutation carriers with retention of RNA expression developed CRC 9 years later than those with loss of RNA expression. If confirmed, this finding would justify a delay in surveillance for these cases. Cancer risk was not influenced by a parent-of-origin effect.Genet Med 18 4, 405-409.

  8. Expression of xyloglucan endotransglucosylase/hydrolase (XTH) genes and XET activity in ethylene treated apple and tomato fruits.

    PubMed

    Muñoz-Bertomeu, J; Miedes, E; Lorences, E P

    2013-09-01

    Xyloglucan endotransglucosylase/hydrolase (XTHs: EC 2.4.1.207 and/or EC 3.2.1.151), a xyloglucan modifying enzyme, has been proposed to have a role during tomato and apple fruit ripening by loosening the cell wall. Since the ripening of climacteric fruits is controlled by endogenous ethylene biosynthesis, we wanted to study whether XET activity was ethylene-regulated, and if so, which specific genes encoding ripening-regulated XTH genes were indeed ethylene-regulated. XET specific activity in tomato and apple fruits was significantly increased by the ethylene treatment, as compared with the control fruits, suggesting an increase in the XTH gene expression induced by ethylene. The 25 SlXTH protein sequences of tomato and the 11 sequences MdXTH of apple were phylogenetically analyzed and grouped into three major clades. The SlXTHs genes with highest expression during ripening were SlXTH5 and SlXTH8 from Group III-B, and in apple MdXTH2, from Group II, and MdXTH10, and MdXTH11 from Group III-B. Ethylene was involved in the regulation of the expression of different SlXTH and MdXTH genes during ripening. In tomato fruit fifteen different SlXTH genes showed an increase in expression after ethylene treatment, and the SlXTHs that were ripening associated were also ethylene dependent, and belong to Group III-B (SlXTH5 and SlXTH8). In apple fruit, three MdXTH showed an increase in expression after the ethylene treatment and the only MdXTH that was ripening associated and ethylene dependent was MdXTH10 from Group III-B. The results indicate that XTH may play an important role in fruit ripening and a possible relationship between XTHs from Group III-B and fruit ripening, and ethylene regulation is suggested. Copyright © 2013 Elsevier GmbH. All rights reserved.

  9. The endocrine disruptor bisphenol A increases the expression of HSP70 and ecdysone receptor genes in the aquatic larvae of Chironomus riparius.

    PubMed

    Planelló, R; Martínez-Guitarte, J L; Morcillo, G

    2008-05-01

    Bisphenol A (BPA) is an endocrine disruptor that can mimic the action of estrogens by interacting with hormone receptors and is, therefore, potentially able to influence reproductive functions in vertebrates. Although information about the interaction with the endocrine systems in invertebrates is limited, it has also been shown its effect on reproductive and developmental parameters in these organisms. As little is known about its mechanism of action in aquatic invertebrates, we have examined the effects of BPA on the expression of some selected genes, including housekeeping, stress-induced and hormone-related genes in Chironomus riparius larvae, a widely used organism in aquatic ecotoxicology. The levels of different gene transcripts were measured by Northern blot or by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR). Exposure to BPA (3 mgl(-1), 12-24h) did not affect the levels of rRNA or those of mRNAs for both L11 or L13 ribosomal proteins, selected as examples of housekeeping genes involved in ribosome biogenesis. Nevertheless, BPA treatment induced the expression of the HSP70 gene. Interestingly, it was found that BPA significantly increases the mRNA level of the ecdysone receptor (EcR). These results show for the first time that exposure to endocrine disrupting chemicals, such as BPA, can selectively affect the expression of the ecdysone receptor gene suggesting a direct interaction with the insect endocrine system. Furthermore, this finding suggests a common way of BPA action, shared by vertebrates and invertebrates, through interaction with steroid hormone receptors. Our study adds a new element, the EcR, which may be a useful tool for the screening of environmental xenoestrogens in insects.

  10. Isolation, characterization and immunolocalization of a seed dominant CaM from finger millet (Eleusine coracana L. Gartn.) for studying its functional role in differential accumulation of calcium in developing grains.

    PubMed

    Kumar, Anil; Mirza, Neelofar; Charan, Tara; Sharma, Netrapal; Gaur, Vikram Singh

    2014-03-01

    To understand the exceptional high grain calcium accumulation in finger millet grains, a calmodulin (CaM) gene that is strongly expressed during developing spikes of high grain calcium genotype was further characterized. Using 5'-3' RACE, the full-length CaM open reading frame (ORF) was isolated and the deduced protein sequence showed the presence of four characteristic EF motifs. Phylogenetic analysis showed that the finger millet CaM (Eleusine coracana calmodulin [EcCaM]) was identical to the rice CaM 1-1. Southern hybridization showed the presence of at least four copies of CaM gene that might be located on different regions of the finger millet "AABB" genome. Immunodetection using monospecific polyclonal anti-EcCaM antibodies revealed that EcCaM is localized in the embryo and aleurone layer and accumulates in higher amounts in high grain calcium genotype compared to the low grain calcium genotype. Furthermore, in silico analysis showed that EcCaM interacts with aquaporin which indicates that calcium is probably delivered to developing spike via mass flow of water. These results indicate that higher expression of CaM might cause greater stimulation of the downstream calcium transport machinery operative in the aleurone layer leading to the higher calcium accumulation in the grains of high grain calcium genotype.

  11. Endothelial atheroprotective and anti-inflammatory mechanisms.

    PubMed

    Berk, B C; Abe, J I; Min, W; Surapisitchat, J; Yan, C

    2001-12-01

    Atherosclerosis preferentially occurs in areas of turbulent flow and low fluid shear stress, whereas laminar flow and high shear stress are atheroprotective. Inflammatory cytokines, such as tumor necrosis factor-alpha (TNF), have been shown to stimulate expression of endothelial cell (EC) genes that may promote atherosclerosis. Recent data suggest that steady laminar flow decreases EC apoptosis and blocks TNF-mediated EC activation. EC apoptosis is likely important in the process termed "plaque erosion" that leads to platelet aggregation. Steady laminar flow inhibits EC apoptosis by preventing cell cycle entry, by increasing antioxidant mechanisms (e.g., superoxide dismutase), and by stimulating nitric oxide-dependent protective pathways that involve enzymes PI3-kinase and Akt. Conversely, our laboratory has identified nitric oxide-independent mechanisms that limit TNF signal transduction. TNF regulates gene expression in EC, in part, by stimulating mitogen-activated protein kinases (MAPK) which phosphorylate transcription factors. We hypothesized that fluid shear stress modulates TNF effects on EC by inhibiting TNF-mediated activation of MAP kinases. To test this hypothesis, we determined the effects of steady laminar flow (shear stress = 12 dynes/cm2) on TNF-stimulated activity of two MAP kinases: extracellular signal regulated kinase (ERK1/2) and c-Jun N-terminal kinase (JNK). Flow alone stimulated ERK1/2 activity, but decreased JNK activity compared to static controls. TNF (10 ng/ml) alone activated both ERK1/2 and JNK maximally at 15 minutes in human umbilical vein EC (HUVEC). Pre-exposing HUVEC for 10 minutes to flow inhibited TNF activation of JNK by 46%, but it had no significant effect on ERK1/2 activation. Incubation of EC with PD98059, a specific mitogen-activated protein kinase kinase inhibitor, blocked the flow-mediated inhibition of TNF activation of JNK. Flow-mediated inhibition of JNK was unaffected by 0.1 mM L-nitroarginine, 100 pM 8-bromo-cyclic GMP, or 100 microM 8-bromo-cyclic AMP. Transfection studies with dominant negative constructs of the protein kinase MEK1 and MEK5 suggested an important role for BMK1 in flow-mediated regulation of TNF signals. In summary, the atheroprotective effects of steady laminar flow on the endothelium involve multiple synergistic mechanisms.

  12. Orphan nuclear receptor Nur77 is a novel negative regulator of endothelin-1 expression in vascular endothelial cells.

    PubMed

    Qin, Qing; Chen, Ming; Yi, Bing; You, Xiaohua; Yang, Ping; Sun, Jianxin

    2014-12-01

    Endothelin-1 (ET-1) produced by vascular endothelial cells plays essential roles in the regulation of vascular tone and development of cardiovascular diseases. The objective of this study is to identify novel regulators implicated in the regulation of ET-1 expression in vascular endothelial cells (ECs). By using quantitative real-time PCR (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA), we show that either ectopic expression of orphan nuclear receptor Nur77 or pharmacological activation of Nur77 by 6-mercaptopurine (6-MP) substantially inhibits ET-1 expression in human umbilical vein endothelial cells (HUVECs), under both basal and thrombin-stimulated conditions. Furthermore, thrombin-stimulated ET expression is significantly augmented in both Nur77 knockdown ECs and aort from Nur77 knockout mice, suggesting that Nur77 is a negative regulator of ET-1 expression. Inhibition of ET-1 expression by Nur77 occurs at gene transcriptional levels, since Nur77 potently inhibits ET-1 promoter activity, without affecting ET-1 mRNA stability. As shown in electrophoretic mobility shift assay (EMSA), Nur77 overexpression markedly inhibits both basal and thrombin-stimulated transcriptional activity of AP-1. Mechanistically, we demonstrate that Nur77 specially interacts with c-Jun and inhibits AP-1 dependent c-Jun promoter activity, which leads to a decreased expression of c-Jun, a critical component involved in both AP-1 transcriptional activity and ET-1 expression in ECs. These findings demonstrate that Nur77 is a novel negative regulator of ET-1 expression in vascular ECs through an inhibitory interaction with the c-Jun/AP-1 pathway. Activation of Nur77 may represent a useful therapeutic strategy for preventing certain cardiovascular diseases, such as atherosclerosis and pulmonary artery hypertension. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. [Effect of EMP-1 gene on human esophageal cancer cell line].

    PubMed

    Wang, Hai-tao; Liu, Zhi-hua; Wang, Xiu-qin; Wu, Min

    2002-03-01

    EMP-1 was selected from a series of differential expressed genes obtained from cDNA microarray in the authors' lab. Epithelial membrane pnteiu-1 gene (EMP-1) was expressed 6 fold lower in esophageal cancer than in normal tissue. The authors further designed the experiment to study the effect of human EMP-1 gene on human esophageal cancer cell line in order to explain the function of this gene on the carcinogensis and progression esophageal cancer. EMP-1 gene was cloned into eukaryotic vector and transfected into the human esophageal cancer cell line. The transfection effect was qualified by Western blot and RT-PCR method. The cell growth curve was observed and the cell cycle was checked by FACS method. EMP-1 was transfected into EC9706 cell line and its expression was up-regulated. The cell growth is accelerated and expression of EMP-1 is linked to induction of S phase arrest. EMP-1 gene has some relationship with carcinogenesis of esophagus.

  14. Isoform-selective induction of human p110δ PI3K expression by TNFα: identification of a new and inducible PIK3CD promoter

    PubMed Central

    Whitehead, Maria A.; Bombardieri, Michele; Pitzalis, Costantino; Vanhaesebroeck, Bart

    2012-01-01

    PI3Ks (phosphoinositide 3-kinases) are signalling molecules and drug targets with important biological functions, yet the regulation of PI3K gene expression is poorly understood. Key PI3Ks are the class IA PI3Ks that consist of a catalytic subunit (p110α, p110β and p110δ) in complex with a p85 regulatory subunit. Whereas p110α and p110β are ubiquitously expressed, high levels of p110δ are mainly found in white blood cells, with most non-leucocytes expressing low levels of p110δ. In the present paper we report that TNFα (tumour necrosis factor α) stimulation induces p110δ expression in human ECs (endothelial cells) and synovial fibroblasts, but not in leucocytes, through transcription start sites located in a novel promoter region in the p110δ gene (PIK3CD). This promoter is used in all cell types, including solid tumour cell lines that express p110δ, and is activated by TNFα in ECs and synovial fibroblasts. We further present a detailed biochemical and bioinformatic characterization of p110δ gene regulation, demonstrating that PIK3CD has distinct promoters, some of which can be dynamically activated by pro-inflammatory mediators. This is the first molecular identification of a PI3K promoter under the control of acute extracellular stimulation. PMID:22375552

  15. Vascular Injury Triggers Krüppel-Like Factor 6 (KLF6) Mobilization and Cooperation with Sp1 to Promote Endothelial Activation through Upregulation of the Activin Receptor-Like Kinase 1 (ALK1) Gene

    PubMed Central

    Garrido-Martín, Eva M.; Blanco, Francisco J.; Roquè, Mercé; Novensà, Laura; Tarocchi, Mirko; Lee, Ursula E.; Suzuki, Toru; Friedman, Scott L.; Botella, Luisa M.; Bernabéu, Carmelo

    2012-01-01

    Rationale Activin receptor-Like Kinase-1 (ALK1) is an endothelial TGF-β receptor involved in angiogenesis. ALK1 expression is high in the embryo vasculature, becoming less detectable in the quiescent endothelium of adult stages. However, ALK1 expression becomes rapidly increased after angiogenic stimuli such as vascular injury. Objective To characterize the molecular mechanisms underlying the regulation of ALK1 upon vascular injury. Methods and Results Alk1 becomes strongly upregulated in endothelial (EC) and vascular smooth muscle cells (vSMC) of mouse femoral arteries after wire-induced endothelial denudation. In vitro, denudation of monolayers of Human Umbilical Vein Endothelial Cells (HUVEC) also leads to an increase in ALK1. Interestingly, a key factor in tissue remodeling, Krüppel-like factor 6 (KLF6), translocates to the cell nucleus during wound healing, concomitantly with an increase in the ALK1 gene transcriptional rate. KLF6 knock down in HUVECs promotes ALK1 mRNA downregulation. Moreover, Klf6+/− mice have lower levels of Alk1 in their vasculature compared with their wild type siblings. Chromatin immunoprecipitation assays show that KLF6 interacts with ALK1 promoter in ECs, and this interaction is enhanced during wound healing. We demonstrate that KLF6 is transactivating ALK1 gene, and this transactivation occurs by a synergistic cooperative mechanism with Sp1. Finally, Alk1 levels in vSMCs are not directly upregulated in response to damage, but in response to soluble factors, such as IL-6, released from ECs after injury. Conclusions ALK1 is upregulated in ECs during vascular injury by a synergistic cooperative mechanism between KLF6 and Sp1, and in vSMCs by an EC-vSMC paracrine communication during vascular remodeling. PMID:23048070

  16. BioVLAB-MMIA: a cloud environment for microRNA and mRNA integrated analysis (MMIA) on Amazon EC2.

    PubMed

    Lee, Hyungro; Yang, Youngik; Chae, Heejoon; Nam, Seungyoon; Choi, Donghoon; Tangchaisin, Patanachai; Herath, Chathura; Marru, Suresh; Nephew, Kenneth P; Kim, Sun

    2012-09-01

    MicroRNAs, by regulating the expression of hundreds of target genes, play critical roles in developmental biology and the etiology of numerous diseases, including cancer. As a vast amount of microRNA expression profile data are now publicly available, the integration of microRNA expression data sets with gene expression profiles is a key research problem in life science research. However, the ability to conduct genome-wide microRNA-mRNA (gene) integration currently requires sophisticated, high-end informatics tools, significant expertise in bioinformatics and computer science to carry out the complex integration analysis. In addition, increased computing infrastructure capabilities are essential in order to accommodate large data sets. In this study, we have extended the BioVLAB cloud workbench to develop an environment for the integrated analysis of microRNA and mRNA expression data, named BioVLAB-MMIA. The workbench facilitates computations on the Amazon EC2 and S3 resources orchestrated by the XBaya Workflow Suite. The advantages of BioVLAB-MMIA over the web-based MMIA system include: 1) readily expanded as new computational tools become available; 2) easily modifiable by re-configuring graphic icons in the workflow; 3) on-demand cloud computing resources can be used on an "as needed" basis; 4) distributed orchestration supports complex and long running workflows asynchronously. We believe that BioVLAB-MMIA will be an easy-to-use computing environment for researchers who plan to perform genome-wide microRNA-mRNA (gene) integrated analysis tasks.

  17. Endothelial Cells Promote Expansion of Long‐Term Engrafting Marrow Hematopoietic Stem and Progenitor Cells in Primates

    PubMed Central

    Gori, Jennifer L.; Butler, Jason M.; Kunar, Balvir; Poulos, Michael G.; Ginsberg, Michael; Nolan, Daniel J.; Norgaard, Zachary K.; Adair, Jennifer E.; Rafii, Shahin

    2016-01-01

    Abstract Successful expansion of bone marrow (BM) hematopoietic stem and progenitor cells (HSPCs) would benefit many HSPC transplantation and gene therapy/editing applications. However, current expansion technologies have been limited by a loss of multipotency and self‐renewal properties ex vivo. We hypothesized that an ex vivo vascular niche would provide prohematopoietic signals to expand HSPCs while maintaining multipotency and self‐renewal. To test this hypothesis, BM autologous CD34+ cells were expanded in endothelial cell (EC) coculture and transplanted in nonhuman primates. CD34+C38− HSPCs cocultured with ECs expanded up to 17‐fold, with a significant increase in hematopoietic colony‐forming activity compared with cells cultured with cytokines alone (colony‐forming unit‐granulocyte‐erythroid‐macrophage‐monocyte; p < .005). BM CD34+ cells that were transduced with green fluorescent protein lentivirus vector and expanded on ECs engrafted long term with multilineage polyclonal reconstitution. Gene marking was observed in granulocytes, lymphocytes, platelets, and erythrocytes. Whole transcriptome analysis indicated that EC coculture altered the expression profile of 75 genes in the BM CD34+ cells without impeding the long‐term engraftment potential. These findings show that an ex vivo vascular niche is an effective platform for expansion of adult BM HSPCs. Stem Cells Translational Medicine 2017;6:864–876 PMID:28297579

  18. Expression of RXR, EcR, E75 and VtG mRNA levels in the hepatopancreas and ovary of the freshwater edible crab, Oziothelphusa senex senex (Fabricius, 1798) during different vitellogenic stages

    NASA Astrophysics Data System (ADS)

    Girish, B. P.; Swetha, CH.; Reddy, P. Sreenivasula

    2015-04-01

    The objective of the present study was to investigate the expression profile of retinoid X receptor ( RXR), ecdysone receptor ( EcR) and ecdysone inducible gene ( E75) in the hepatopancreas and ovary of Oziothelphusa senex senex during different vitellogenic stages. RXR, EcR and E75 complementary DNAs (cDNAs) were isolated from the ovaries, while vitellogenin ( VtG) cDNA was isolated from the hepatopancreas of vitellogenic female crab. Deduced amino acid sequence of the messenger RNAs (mRNAs) of RXR, EcR and E75 showed more than 80 % identity with their respective mRNAs of other brachyurans. VtG mRNA was not detected in the ovary throughout vitellogenic stages. RXR and EcR were significantly increased in the ovaries during vitellogenic stage I. The levels of EcR, E75 and VtG in the hepatopancreas elevated significantly during vitellogenic stages I and II, whereas the levels of RXR elevated only in vitellogenic stage I. During vitellogenic stage III, the levels of RXR, EcR and VtG in the hepatopancreas were significantly decreased. Immunoprecipitation analysis revealed the presence of VtG in the haemolymph, hepatopancreas and ovary extracts from the females but absent in haemolymph and hepatopancreas extract of males. It can be inferred that RXR, EcR and E75 are involved in the regulation of synthesis of VtG in hepatopancreas, whereas in ovary, it is hypothesized that they play an important role in the uptake of VtG from the haemolymph, probably by regulating the levels of vitellogenin receptor. These are the first data showing an association between the expression levels of RXR, EcR and E75 and vitellogenesis and provide an alternative molecular intervention mechanism to the traditional eyestalk ablation to induce vitellogenesis and ovarian maturation in crustaceans.

  19. Tributyltin synergizes with 20-hydroxyecdysone to produce endocrine toxicity.

    PubMed

    Wang, Ying H; Kwon, Gwijun; Li, Hong; Leblanc, Gerald A

    2011-09-01

    One of the great challenges facing modern toxicology is in predicting the hazard associated with chemical mixtures. The development of effective means of predicting the toxicity of chemical mixtures requires an understanding of how chemicals interact to produce nonadditive outcomes (e.g., synergy). We hypothesized that tributyltin would elicit toxicity in daphnids (Daphnia magna) by exaggerating physiological responses to 20-hydroxyecdysone signaling via synergistic activation of the retinoid X receptor (RXR):ecdysteroid receptor (EcR) complex. Using reporter gene assays, we demonstrated that RXR, alone, is activated by a variety of ligands including tributyltin, whereas RXR:EcR heterodimers were not activated by tributyltin. However, tributyltin, in combination with the daphnid EcR ligand 20-hydroxyecdysone, caused concentration-dependent, synergistic activation of the RXR:EcR reporter. Electrophoretic mobility shift assays revealed that tributyltin did not enhance the activity of 20-hydroxyecdysone by increasing binding of the receptor complex to a DR-4 DNA-binding site. Exposure of daphnids to elevated concentrations of 20-hydroxyecdysone caused premature and incomplete ecdysis resulting in death. Tributyltin exaggerated this effect of exogenous 20-hydroxyecdysone. Further, exposure of daphnids to tributyltin enhanced the inductive effects of 20-hydroxyecdysone on expression of the 20-hydroxyecdysone-inducible gene HR3. Continuous, prolonged exposure of maternal daphnids to concentrations of tributyltin resulted in mortality concurrent with molting. Taken together, these results demonstrate that xenobiotics, such as tributyltin, can interact with RXR to influence gene expression regulated by the heterodimeric partner to RXR. The result of such interactions can be toxicity due to inappropriate or exaggerated hormonal signaling. The application of the in vitro/in vivo approach used in this study is discussed in relation to modeling of nonadditive interactions among constituents of chemical mixtures.

  20. The effects of binary UV filter mixtures on the midge Chironomus riparius.

    PubMed

    Ozáez, Irene; Morcillo, Gloria; Martínez-Guitarte, José-Luis

    2016-06-15

    Organic ultraviolet (UV) filters are used in a wide variety of products, including cosmetics, to prevent damage from UV light in tissues and industrial materials. Their extensive use has raised concerns about potential adverse effects in human health and aquatic ecosystems that accumulate these pollutants. To increase sun radiation protection, UV filters are commonly used in mixtures. Here, we studied the toxicity of binary mixtures of 4-methylbenzylidene camphor (4MBC), octyl-methoxycinnamate (OMC), and benzophenone-3 (BP-3), by evaluating the larval mortality of Chironomus riparius. Also molecular endpoints have been analyzed, including alterations in the expression levels of a gene related with the endocrine system (EcR, ecdysone receptor) and a gene related with the stress response (hsp70, heat shock protein 70). The results showed that the mortality caused by binary mixtures was similar to that observed for each compound alone; however, some differences in LC50 were observed between groups. Gene expression analysis showed that EcR mRNA levels increased in the presence of 0.1mg/L 4MBC but returned to normal levels after exposure to mixtures of 4MBC with 0.1, 1, and 10mg/L of BP-3 or OMC. In contrast, the hsp70 mRNA levels increased after exposure to the combinations tested of 4MBC and BP-3 or OMC mixtures. These data suggest that 4MBC, BP-3, and OMC may have antagonist effects on EcR gene transcription and a synergistic effect on hsp70 gene activation. This is the first experimental study to show the complex patterned effects of UV filter mixtures on invertebrates. The data suggest that the interactions within these chemicals mixtures are complex and show diverse effects on various endpoints. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Ultraviolet filters differentially impact the expression of key endocrine and stress genes in embryos and larvae of Chironomus riparius.

    PubMed

    Ozáez, Irene; Morcillo, Gloria; Martínez-Guitarte, José-Luis

    2016-07-01

    Several organic UV filters have hormonal activity in vertebrates, as demonstrated in fishes, rodents and human cells. Despite the accumulation of filter contaminants in aquatic systems, research on their effects on the endocrine systems of freshwaters invertebrates is scarce. In this work, the effects of five frequently used UV filters were investigated in embryos and larvae of Chironomus riparius, which is a reference organism in ecotoxicology. LC50 values for larvae as well as the percentage of eclosion of eggs were determined following exposures to: octyl-p-methoxycinnamate (OMC) also known as 2-ethylhexyl-4-methoxycinnamate (EHMC); 4-methylbenzylidene camphor (4MBC); 4-hydroxybenzophenone (4HB); octocrylene (OC); and octyldimethyl-p-aminobenzoate (OD-PABA). To assess sublethal effects, expression levels of the genes coding for the ecdysone receptor (EcR) and heat shock protein HSP70 were investigated as biomarkers for endocrine and stress effects at the cellular level. Life-stage-dependent sensitivity was found. In embryos, all of the UV filters provoked a significant overexpression of EcR at 24h after exposure. OC, 4MBC and OD-PABA also triggered transcriptional activation of the hsp70 stress gene in embryos. In contrast, in larvae, only 4MBC and OMC/EHMC increased EcR and hsp70 mRNA levels and OD-PABA upregulated only the EcR gene. These results revealed that embryos are particularly sensitive to UV filters, which affect endocrine regulation during development. Most UV filters also triggered the cellular stress response, and thus exhibit proteotoxic effects. The differences observed between embryos and larvae and the higher sensitivity of embryos highlight the importance of considering different life stages when evaluating the environmental risks of pollutants, particularly when analyzing endocrine effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Corexit-EC9527A Disrupts Retinol Signaling and Neuronal Differentiation in P19 Embryonal Pluripotent Cells

    DOE PAGES

    Chen, Yanling; Reese, David H.; Kelly, Gregory M.

    2016-09-29

    Corexit-EC9500A and Corexit-EC9527A are two chemical dispersants that have been used to remediate the impact of the 2010 Deepwater Horizon oil spill. Both dispersants are composed primarily of organic solvents and surfactants and act by emulsifying the crude oil to facilitate biodegradation. The potential adverse effect of the Corexit chemicals on mammalian embryonic development remains largely unknown. Retinol (vitamin A) signaling, mediated by all-trans retinoic acid (RA), is essential for neural tube formation and the development of many organs in the embryo. The physiological levels of RA in cells and tissues are maintained by the retinol signaling pathway (RSP), whichmore » controls the biosynthesis of RA from dietary retinol and the catabolism of RA to polar metabolites for removal. RA is a potent activating ligand for the RAR/RXR nuclear receptors. Through RA and the receptors, the RSP modulates the expression of many developmental genes; interference with the RSP is potentially teratogenic. In this study the mouse P19 embryonal pluripotent cell, which contains a functional RSP, was used to evaluate the effects of the Corexit dispersants on retinol signaling and associated neuronal differentiation. The results showed that Corexit-EC9500A was more cytotoxic than Corexit-EC9527A to P19 cells. At non-cytotoxic doses, Corexit-EC9527A inhibited retinol-induced expression of the Hoxa1 gene, which encodes a transcription factor for the regulation of body patterning in the embryo. Such inhibition was seen in the retinol- and retinal- induced, but not RA-induced, Hoxa1 up-regulation, indicating that the Corexit chemicals primarily inhibit RA biosynthesis from retinal. In addition, Corexit-EC9527A suppressed retinol-induced P19 cell differentiation into neuronal cells, indicating potential neurotoxic effect of the chemicals under the tested conditions. In conclusion, the surfactant ingredient, dioctyl sodium sulfosuccinate (DOSS), may be a major contributor to the observed effect of Corexit-EC9527A in the cell.« less

  3. Corexit-EC9527A Disrupts Retinol Signaling and Neuronal Differentiation in P19 Embryonal Pluripotent Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yanling; Reese, David H.; Kelly, Gregory M.

    Corexit-EC9500A and Corexit-EC9527A are two chemical dispersants that have been used to remediate the impact of the 2010 Deepwater Horizon oil spill. Both dispersants are composed primarily of organic solvents and surfactants and act by emulsifying the crude oil to facilitate biodegradation. The potential adverse effect of the Corexit chemicals on mammalian embryonic development remains largely unknown. Retinol (vitamin A) signaling, mediated by all-trans retinoic acid (RA), is essential for neural tube formation and the development of many organs in the embryo. The physiological levels of RA in cells and tissues are maintained by the retinol signaling pathway (RSP), whichmore » controls the biosynthesis of RA from dietary retinol and the catabolism of RA to polar metabolites for removal. RA is a potent activating ligand for the RAR/RXR nuclear receptors. Through RA and the receptors, the RSP modulates the expression of many developmental genes; interference with the RSP is potentially teratogenic. In this study the mouse P19 embryonal pluripotent cell, which contains a functional RSP, was used to evaluate the effects of the Corexit dispersants on retinol signaling and associated neuronal differentiation. The results showed that Corexit-EC9500A was more cytotoxic than Corexit-EC9527A to P19 cells. At non-cytotoxic doses, Corexit-EC9527A inhibited retinol-induced expression of the Hoxa1 gene, which encodes a transcription factor for the regulation of body patterning in the embryo. Such inhibition was seen in the retinol- and retinal- induced, but not RA-induced, Hoxa1 up-regulation, indicating that the Corexit chemicals primarily inhibit RA biosynthesis from retinal. In addition, Corexit-EC9527A suppressed retinol-induced P19 cell differentiation into neuronal cells, indicating potential neurotoxic effect of the chemicals under the tested conditions. In conclusion, the surfactant ingredient, dioctyl sodium sulfosuccinate (DOSS), may be a major contributor to the observed effect of Corexit-EC9527A in the cell.« less

  4. FOXA1 promotes tumor cell proliferation through AR involving the Notch pathway in endometrial cancer

    PubMed Central

    2014-01-01

    Background Increasing evidence suggests that forkhead box A1 (FOXA1) is frequently dysregulated in many types of human cancers. However, the exact function and mechanism of FOXA1 in human endometrial cancer (EC) remains unclear. Methods FOXA1 expression, androgen receptor (AR) expression, and the relationships of these two markers with clinicopathological factors were determined by immunohistochemistry analysis. FOXA1 and AR were up-regulated by transient transfection with plasmids, and were down-regulated by transfection with siRNA or short hairpin RNA (shRNA). The effects of FOXA1 depletion and FOXA1 overexpression on AR-mediated transcription as well as Notch pathway and their impact on EC cell proliferation were examined by qRT-PCR, western blotting, co-immunoprecipitation, ChIP-PCR, MTT, colony-formation, and xenograft tumor–formation assays. Results We found that the expression of FOXA1 and AR in ECs was significantly higher than that in a typical hyperplasia and normal tissues. FOXA1 expression was significantly correlated with AR expression in clinical tissues. High FOXA1 levels positively correlated with pathological grade and depth of myometrial invasion in EC. High AR levels also positively correlated with pathological grade in EC. Moreover, the expression of XBP1, MYC, ZBTB16, and UHRF1, which are downstream targets of AR, was promoted by FOXA1 up-regulation or inhibited by FOXA1 down-regulation. Co-immunoprecipitation showed that FOXA1 interacted with AR in EC cells. ChIP-PCR assays showed that FOXA1 and AR could directly bind to the promoter and enhancer regions upstream of MYC. Mechanistic investigation revealed that over-expression of Notch1 and Hes1 proteins by FOXA1 could be reversed by AR depletion. In addition, we showed that down-regulation of AR attenuated FOXA1-up-regulated cell proliferation. However, AR didn’t influence the promotion effect of FOXA1 on cell migration and invasion. In vivo xenograft model, FOXA1 knockdown reduced the rate of tumor growth. Conclusions These results suggest that FOXA1 promotes cell proliferation by AR and activates Notch pathway. It indicated that FOXA1 and AR may serve as potential gene therapy in EC. PMID:24512546

  5. Tumor-specific expression of shVEGF and suicide gene as a novel strategy for esophageal cancer therapy.

    PubMed

    Liu, Ting; Wu, Hai-Jun; Liang, Yu; Liang, Xu-Jun; Huang, Hui-Chao; Zhao, Yan-Zhong; Liao, Qing-Chuan; Chen, Ya-Qi; Leng, Ai-Min; Yuan, Wei-Jian; Zhang, Gui-Ying; Peng, Jie; Chen, Yong-Heng

    2016-06-21

    To develop a potent and safe gene therapy for esophageal cancer. An expression vector carrying fusion suicide gene (yCDglyTK) and shRNA against vascular endothelial growth factor (VEGF) was constructed and delivered into EC9706 esophageal cancer cells by calcium phosphate nanoparticles (CPNP). To achieve tumor selectivity, expression of the fusion suicide gene was driven by a tumor-specific human telomerase reverse transcriptase (hTERT) promoter. The biologic properties and therapeutic efficiency of the vector, in the presence of prodrug 5-fluorocytosine (5-FC), were evaluated in vitro and in vivo. Both in vitro and in vivo testing showed that the expression vector was efficiently introduced by CPNP into tumor cells, leading to cellular expression of yCDglyTK and decreased VEGF level. With exposure to 5-FC, it exhibited strong anti-tumor effects against esophageal cancer. Combination of VEGF shRNA with the fusion suicide gene demonstrated strong anti-tumor activity. The shVEGF-hTERT-yCDglyTK/5-FC system provided a novel approach for esophageal cancer-targeted gene therapy.

  6. Endothelial mineralocorticoid receptor ablation does not alter blood pressure, kidney function or renal vessel contractility

    PubMed Central

    Laursen, Sidsel B.; Finsen, Stine; Marcussen, Niels; Quaggin, Susan E.

    2018-01-01

    Aldosterone blockade confers substantial cardiovascular and renal protection. The effects of aldosterone on mineralocorticoid receptors (MR) expressed in endothelial cells (EC) within the renal vasculature have not been delineated. We hypothesized that lack of MR in EC may be protective in renal vasculature and examined this by ablating the Nr3c2 gene in endothelial cells (EC-MR) in mice. Blood pressure, heart rate and PAH clearance were measured using indwelling catheters in conscious mice. The role of the MR in EC on contraction and relaxation was investigated in the renal artery and in perfused afferent arterioles. Urinary sodium excretion was determined by use of metabolic cages. EC-MR transgenics had markedly decreased MR expression in isolated aortic endothelial cells as compared to littermates (WT). Blood pressure and effective renal plasma flow at baseline and following AngII infusion was similar between groups. No differences in contraction and relaxation were observed between WT and EC-MR KO in isolated renal arteries during baseline or following 2 or 4 weeks of AngII infusion. The constriction or dilatations of afferent arterioles between genotypes were not different. No changes were found between the groups with respect to urinary excretion of sodium after 4 weeks of AngII infusion, or in urinary albumin excretion and kidney morphology. In conclusion, deletion of the EC-MR does not confer protection towards the development of hypertension, endothelial dysfunction of renal arteries or renal function following prolonged AngII-infusion. PMID:29466427

  7. Molecular characterization and expression of microbial inulinase genes.

    PubMed

    Liu, Guang-Lei; Chi, Zhe; Chi, Zhen-Ming

    2013-05-01

    Many genes encoding exo- and endo-inulinases from bacteria, yeasts and filamentous fungi have been cloned and characterized. All the inulinases have several conserved motifs, such as WMND(E)PNGL, RDP, EC(V)P, SVEVF, Q and FS(T), which play an important role in inulinase catalysis and substrate binding. However, the exo-inulinases produced by yeasts has no conserved motif SVEVF and the yeasts do not produce any endo-inulinase. Exo- and endo-inulinases found in different microorganisms cluster separately at distant positions from each other. Most of the cloned inulinase genes have been expressed in Yarrowia lipolytica, Saccharomyces cerevisiae, Pichia pastoris, Klyuveromyces lactis and Escherichia coli, respectively. The recombinant inulinases produced and the engineered hosts using the cloned inulinase genes have many potential applications. Expression of most of the inulinase genes is repressed by glucose and fructose and induced by inulin and sucrose. However, the detailed mechanisms of the repression and induction are still unknown.

  8. Genome-wide characterization of the Pectate Lyase-like (PLL) genes in Brassica rapa.

    PubMed

    Jiang, Jingjing; Yao, Lina; Miao, Ying; Cao, Jiashu

    2013-11-01

    Pectate lyases (PL) depolymerize demethylated pectin (pectate, EC 4.2.2.2) by catalyzing the eliminative cleavage of α-1,4-glycosidic linked galacturonan. Pectate Lyase-like (PLL) genes are one of the largest and most complex families in plants. However, studies on the phylogeny, gene structure, and expression of PLL genes are limited. To understand the potential functions of PLL genes in plants, we characterized their intron-exon structure, phylogenetic relationships, and protein structures, and measured their expression patterns in various tissues, specifically the reproductive tissues in Brassica rapa. Sequence alignments revealed two characteristic motifs in PLL genes. The chromosome location analysis indicated that 18 of the 46 PLL genes were located in the least fractionated sub-genome (LF) of B. rapa, while 16 were located in the medium fractionated sub-genome (MF1) and 12 in the more fractionated sub-genome (MF2). Quantitative RT-PCR analysis showed that BrPLL genes were expressed in various tissues, with most of them being expressed in flowers. Detailed qRT-PCR analysis identified 11 pollen specific PLL genes and several other genes with unique spatial expression patterns. In addition, some duplicated genes showed similar expression patterns. The phylogenetic analysis identified three PLL gene subfamilies in plants, among which subfamily II might have evolved from gene neofunctionalization or subfunctionalization. Therefore, this study opens the possibility for exploring the roles of PLL genes during plant development.

  9. Nicotiana tabacum overexpressing γ-ECS exhibits biotic stress tolerance likely through NPR1-dependent salicylic acid-mediated pathway.

    PubMed

    Ghanta, Srijani; Bhattacharyya, Dipto; Sinha, Ragini; Banerjee, Anindita; Chattopadhyay, Sharmila

    2011-05-01

    The elaborate networks and the crosstalk of established signaling molecules like salicylic acid (SA), jasmonic acid (JA), ethylene (ET), abscisic acid (ABA), reactive oxygen species (ROS) and glutathione (GSH) play key role in plant defense response. To obtain further insight into the mechanism through which GSH is involved in this crosstalk to mitigate biotic stress, transgenic Nicotiana tabacum overexpressing Lycopersicon esculentum gamma-glutamylcysteine synthetase (LeECS) gene (NtGB lines) were generated with enhanced level of GSH in comparison with wild-type plants exhibiting resistance to pathogenesis as well. The expression levels of non-expressor of pathogenesis-related genes 1 (NPR1)-dependent genes like pathogenesis-related gene 1 (NtPR1), mitogen-activated protein kinase kinase (NtMAPKK), glutamine synthetase (NtGLS) were significantly enhanced along with NtNPR1. However, the expression levels of NPR1-independent genes like NtPR2, NtPR5 and short-chain dehydrogenase/reductase family protein (NtSDRLP) were either insignificant or were downregulated. Additionally, increase in expression of thioredoxin (NtTRXh), S-nitrosoglutathione reductase 1 (NtGSNOR1) and suppression of isochorismate synthase 1 (NtICS1) was noted. Comprehensive analysis of GSH-fed tobacco BY2 cell line in a time-dependent manner reciprocated the in planta results. Better tolerance of NtGB lines against biotrophic Pseudomonas syringae pv. tabaci was noted as compared to necrotrophic Alternaria alternata. Through two-dimensional gel electrophoresis (2-DE) and image analysis, 48 differentially expressed spots were identified and through identification as well as functional categorization, ten proteins were found to be SA-related. Collectively, our results suggest GSH to be a member in cross-communication with other signaling molecules in mitigating biotic stress likely through NPR1-dependent SA-mediated pathway.

  10. TGFβ Triggers miR-143/145 Transfer From Smooth Muscle Cells to Endothelial Cells, Thereby Modulating Vessel Stabilization.

    PubMed

    Climent, Montserrat; Quintavalle, Manuela; Miragoli, Michele; Chen, Ju; Condorelli, Gianluigi; Elia, Leonardo

    2015-05-22

    The miR-143/145 cluster is highly expressed in smooth muscle cells (SMCs), where it regulates phenotypic switch and vascular homeostasis. Whether it plays a role in neighboring endothelial cells (ECs) is still unknown. To determine whether SMCs control EC functions through passage of miR-143 and miR-145. We used cocultures of SMCs and ECs under different conditions, as well as intact vessels to assess the transfer of miR-143 and miR-145 from one cell type to another. Imaging of cocultured cells transduced with fluorescent miRNAs suggested that miRNA transfer involves membrane protrusions known as tunneling nanotubes. Furthermore, we show that miRNA passage is modulated by the transforming growth factor (TGF) β pathway because both a specific transforming growth factor-β (TGFβ) inhibitor (SB431542) and an shRNA against TGFβRII suppressed the passage of miR-143/145 from SMCs to ECs. Moreover, miR-143 and miR-145 modulated angiogenesis by reducing the proliferation index of ECs and their capacity to form vessel-like structures when cultured on matrigel. We also identified hexokinase II (HKII) and integrin β 8 (ITGβ8)-2 genes essential for the angiogenic potential of ECs-as targets of miR-143 and miR-145, respectively. The inhibition of these genes modulated EC phenotype, similarly to miR-143 and miR-145 overexpression in ECs. These findings were confirmed by ex vivo and in vivo approaches, in which it was shown that TGFβ and vessel stress, respectively, triggered miR-143/145 transfer from SMCs to ECs. Our results demonstrate that miR-143 and miR-145 act as communication molecules between SMCs and ECs to modulate the angiogenic and vessel stabilization properties of ECs. © 2015 American Heart Association, Inc.

  11. L-Ascorbic acid metabolism during fruit development in an ascorbate-rich fruit crop chestnut rose (Rosa roxburghii Tratt).

    PubMed

    Huang, Ming; Xu, Qiang; Deng, Xiu-Xin

    2014-09-01

    Chestnut rose (Rosa roxburghii Tratt) is a fruit crop that contains unusually high levels of l-ascorbic acid (AsA; ∼1300 mg 100g(-1) FW). To explore the mechanisms underlying AsA metabolism, we investigated the distribution and abundance of AsA during fruit development. We also analyzed gene expression patterns, enzyme activities, and content of metabolites related to AsA biosynthesis and recycling. AsA first accumulated during late fruit development and continued to accumulate during ripening, with the highest accumulation rate near fruit maturity. The redox state of AsA in fruit was also enhanced during late fruit development, while leaf and other tissues had much lower levels of AsA and the redox state of AsA was lower. In mature fruit, AsA was mainly distributed in the cytoplasm of the mesocarp. Correlation analysis suggested that the gene expression patterns, enzyme activities, and related metabolite concentrations involved in the l-galactose pathway showed relatively high correlations with the accumulation rate of AsA. The gene expression pattern and activity of dehydroascorbate reductase (DHAR, EC 1.8.5.1) correlated strongly with AsA concentration, possibly indicating the crucial role of DHAR in the accumulation of high levels of AsA in chestnut rose fruit. Over expression of DHAR in Arabidopsis significantly increased the reduced AsA content and redox state. This was more effective than over expression of the l-galactose pathway gene GDP-d-mannose-3,5-epimerase (EC 5.1.3.18). These findings will enhance understanding of the molecular mechanisms regulating accumulation of AsA in chestnut rose. Copyright © 2014 Elsevier GmbH. All rights reserved.

  12. Gene structure, phylogeny and expression profile of the sucrose synthase gene family in cacao (Theobroma cacao L.).

    PubMed

    Li, Fupeng; Hao, Chaoyun; Yan, Lin; Wu, Baoduo; Qin, Xiaowei; Lai, Jianxiong; Song, Yinghui

    2015-09-01

    In higher plants, sucrose synthase (Sus, EC 2.4.1.13) is widely considered as a key enzyme involved in sucrose metabolism. Although, several paralogous genes encoding different isozymes of Sus have been identified and characterized in multiple plant genomes, to date detailed information about the Sus genes is lacking for cacao. This study reports the identification of six novel Sus genes from economically important cacao tree. Analyses of the gene structure and phylogeny of the Sus genes demonstrated evolutionary conservation in the Sus family across cacao and other plant species. The expression of cacao Sus genes was investigated via real-time PCR in various tissues, different developmental phases of leaf, flower bud and pod. The Sus genes exhibited distinct but partially redundant expression profiles in cacao, with TcSus1, TcSus5 and TcSus6, being the predominant genes in the bark with phloem, TcSus2 predominantly expressing in the seed during the stereotype stage. TcSus3 and TcSus4 were significantly detected more in the pod husk and seed coat along the pod development, and showed development dependent expression profiles in the cacao pod. These results provide new insights into the evolution, and basic information that will assist in elucidating the functions of cacao Sus gene family.

  13. Endothelial Cells Promote Expansion of Long-Term Engrafting Marrow Hematopoietic Stem and Progenitor Cells in Primates.

    PubMed

    Gori, Jennifer L; Butler, Jason M; Kunar, Balvir; Poulos, Michael G; Ginsberg, Michael; Nolan, Daniel J; Norgaard, Zachary K; Adair, Jennifer E; Rafii, Shahin; Kiem, Hans-Peter

    2017-03-01

    Successful expansion of bone marrow (BM) hematopoietic stem and progenitor cells (HSPCs) would benefit many HSPC transplantation and gene therapy/editing applications. However, current expansion technologies have been limited by a loss of multipotency and self-renewal properties ex vivo. We hypothesized that an ex vivo vascular niche would provide prohematopoietic signals to expand HSPCs while maintaining multipotency and self-renewal. To test this hypothesis, BM autologous CD34 + cells were expanded in endothelial cell (EC) coculture and transplanted in nonhuman primates. CD34 + C38 - HSPCs cocultured with ECs expanded up to 17-fold, with a significant increase in hematopoietic colony-forming activity compared with cells cultured with cytokines alone (colony-forming unit-granulocyte-erythroid-macrophage-monocyte; p < .005). BM CD34 + cells that were transduced with green fluorescent protein lentivirus vector and expanded on ECs engrafted long term with multilineage polyclonal reconstitution. Gene marking was observed in granulocytes, lymphocytes, platelets, and erythrocytes. Whole transcriptome analysis indicated that EC coculture altered the expression profile of 75 genes in the BM CD34 + cells without impeding the long-term engraftment potential. These findings show that an ex vivo vascular niche is an effective platform for expansion of adult BM HSPCs. Stem Cells Translational Medicine 2017;6:864-876. © 2016 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  14. β-Fructofuranosidase Genes of the Silkworm, Bombyx mori

    PubMed Central

    Daimon, Takaaki; Taguchi, Tomohiro; Meng, Yan; Katsuma, Susumu; Mita, Kazuei; Shimada, Toru

    2008-01-01

    Mulberry latex contains extremely high concentrations of alkaloidal sugar mimic glycosidase inhibitors, such as 1,4-dideoxy-1,4-imino-d-arabinitol (d-AB1) and 1-deoxynojirimycin (DNJ). Although these compounds do not harm the silkworm, Bombyx mori, a mulberry specialist, they are highly toxic to insects that do not normally feed on mulberry leaves. d-AB1 and DNJ are strong inhibitors of α-glucosidases (EC 3.2.1.20); however, they do not affect the activity ofβ-fructofuranosidases (EC 3.2.1.26). Althoughα-glucosidase genes are found in a wide range of organisms, β-fructofuranosidase genes have not been identified in any animals so far. In this study, we report the identification and characterization of β-fructofuranosidase genes (BmSuc1 and BmSuc2) from B. mori. The BmSuc1 gene was highly expressed in the midgut and silk gland, whereas the expression of BmSuc2 gene was not detected. BmSuc1 encodes a functional β-fructofuranosidase, whose enzymatic activity was not inhibited by DNJ or d-AB1. We also showed that BmSUC1 protein localized within the midgut goblet cell cavities. Collectively, our data clearly demonstrated that BmSuc1 serves as a sugar-digesting enzyme in the silkworm physiology. This anomalous presence of the β-fructofuranosidase gene in the B. mori genome may partly explain why the silkworm can circumvent the mulberry's defense system. PMID:18397891

  15. An Archaea 5S rRNA analog is stably expressed in Escherichia coli

    NASA Technical Reports Server (NTRS)

    Yang, Y.; Fox, G. E.

    1996-01-01

    Mini-genes for 5S-like rRNA were constructed. These genes had a sequence which largely resembles that of the naturally occurring 5S rRNA of a bacterium, Halococcus morrhuae, which phylogenetically belongs to the Archaea. Plasmids carrying the mini-genes were transformed into Escherichia coli (Ec). Ribosomal incorporation was not a prerequisite for stable accumulation of the RNA product. However, only those constructs with a well-base-paired helix I accumulated RNA product. This result strongly implies that this aspect of the structure is likely to be an important condition for stabilizing 5S rRNA-like products. The results are consistent with our current understanding of 5S rRNA processing in Ec. When used in conjunction with rRNA probe technology, the resulting chimeric RNA may be useful as a monitoring tool for genetically engineered microorganisms or naturally occurring organisms that are released into the environment.

  16. Identification and characterization of calcium transporter gene family in finger millet in relation to grain calcium content.

    PubMed

    Singh, Uma M; Metwal, Mamta; Singh, Manoj; Taj, Gohar; Kumar, Anil

    2015-07-15

    Calcium (Ca) is an essential mineral for proper growth and development of plants as well as animals. In plants including cereals, calcium is deposited in seed during its development which is mediated by specialized Ca transporters. Common cereal seeds contain very low amounts of Ca while the finger millet (Eleusine coracana) contains exceptionally high amounts of Ca in seed. In order to understand the role of Ca transporters in grain Ca accumulation, developing seed transcriptome of two finger millet genotypes (GP-1, low Ca and GP-45 high Ca) differing in seed Ca content was sequenced using Illumina paired-end sequencing technology and members of Ca transporter gene family were identified. Out of 109,218 and 120,130 contigs, 86 and 81 contigs encoding Ca transporters were identified in GP-1 and GP-45, respectively. After removal of redundant sequences, a total of 19 sequences were confirmed as Ca transporter genes, which includes 11 Ca(2+) ATPases, 07 Ca(2+)/cation exchangers and 01 Ca(2+) channel. The differential expressions of all genes were analyzed from transcriptome data and it was observed that 9 and 3 genes were highly expressed in GP-45 and GP-1 genotypes respectively. Validation of transcriptome expression data of selected Ca transporter genes was performed on different stages of developing spikes of both genotypes grown under different concentrations of exogenous Ca. In both genotypes, significant correlation was observed between the expression of these genes, especially EcCaX3, and on the amount of Ca accumulated in seed. The positive correlation of seed mass with the amount of Ca concentration was also observed. The efficient Ca transport property and responsiveness of EcCAX3 towards exogenous Ca could be utilized in future biofortification program. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Endotoxin induces fibrosis in vascular endothelial cells through a mechanism dependent on transient receptor protein melastatin 7 activity.

    PubMed

    Echeverría, Cesar; Montorfano, Ignacio; Hermosilla, Tamara; Armisén, Ricardo; Velásquez, Luis A; Cabello-Verrugio, Claudio; Varela, Diego; Simon, Felipe

    2014-01-01

    The pathogenesis of systemic inflammatory diseases, including endotoxemia-derived sepsis syndrome, is characterized by endothelial dysfunction. It has been demonstrated that the endotoxin lipopolysaccharide (LPS) induces the conversion of endothelial cells (ECs) into activated fibroblasts through endothelial-to-mesenchymal transition mechanism. Fibrogenesis is highly dependent on intracellular Ca2+ concentration increases through the participation of calcium channels. However, the specific molecular identity of the calcium channel that mediates the Ca2+ influx during endotoxin-induced endothelial fibrosis is still unknown. Transient receptor potential melastatin 7 (TRPM7) is a calcium channel that is expressed in many cell types, including ECs. TRPM7 is involved in a number of crucial processes such as the conversion of fibroblasts into activated fibroblasts, or myofibroblasts, being responsible for the development of several characteristics of them. However, the role of the TRPM7 ion channel in endotoxin-induced endothelial fibrosis is unknown. Thus, our aim was to study whether the TRPM7 calcium channel participates in endotoxin-induced endothelial fibrosis. Using primary cultures of ECs, we demonstrated that TRPM7 is a crucial protein involved in endotoxin-induced endothelial fibrosis. Suppression of TRPM7 expression protected ECs from the fibrogenic process stimulated by endotoxin. Downregulation of TRPM7 prevented the endotoxin-induced endothelial markers decrease and fibrotic genes increase in ECs. In addition, TRPM7 downregulation abolished the endotoxin-induced increase in ECM proteins in ECs. Furthermore, we showed that intracellular Ca2+ levels were greatly increased upon LPS challenge in a mechanism dependent on TRPM7 expression. These results demonstrate that TRPM7 is a key protein involved in the mechanism underlying endotoxin-induced endothelial fibrosis.

  18. Analysis of expressed sequence tags (ESTs) from cocoa (Theobroma cacao L) upon infection with Phytophthora megakarya.

    PubMed

    Naganeeswaran, Sudalaimuthu Asari; Subbian, Elain Apshara; Ramaswamy, Manimekalai

    2012-01-01

    Phytophthora megakarya, the causative agent of cacao black pod disease in West African countries causes an extensive loss of yield. In this study we have analyzed 4 libraries of ESTs derived from Phytophthora megakarya infected cocoa leaf and pod tissues. Totally 6379 redundant sequences were retrieved from ESTtik database and EST processing was performed using seqclean tool. Clustering and assembling using CAP3 generated 3333 non-redundant (907 contigs and 2426 singletons) sequences. The primary sequence analysis of 3333 non-redundant sequences showed that the GC percentage was 42.7 and the sequence length ranged from 101 - 2576 nucleotides. Further, functional analysis (Blast, Interproscan, Gene ontology and KEGG search) were executed and 1230 orthologous genes were annotated. Totally 272 enzymes corresponding to 114 metabolic pathways were identified. Functional annotation revealed that most of the sequences are related to molecular function, stress response and biological processes. The annotated enzymes are aldehyde dehydrogenase (E.C: 1.2.1.3), catalase (E.C: 1.11.1.6), acetyl-CoA C-acetyltransferase (E.C: 2.3.1.9), threonine ammonia-lyase (E.C: 4.3.1.19), acetolactate synthase (E.C: 2.2.1.6), O-methyltransferase (E.C: 2.1.1.68) which play an important role in amino acid biosynthesis and phenyl propanoid biosynthesis. All this information was stored in MySQL database management system to be used in future for reconstruction of biotic stress response pathway in cocoa.

  19. Identification and expression profile analysis of the sucrose phosphate synthase gene family in Litchi chinensis Sonn.

    PubMed Central

    Wang, Dan; Zhao, Jietang; Hu, Bing; Li, Jiaqi; Qin, Yaqi; Chen, Linhuan; Qin, Yonghua

    2018-01-01

    Sucrose phosphate synthase (SPS, EC 2.4.1.14) is a key enzyme that regulates sucrose biosynthesis in plants. SPS is encoded by different gene families which display differential expression patterns and functional divergence. Genome-wide identification and expression analyses of SPS gene families have been performed in Arabidopsis, rice, and sugarcane, but a comprehensive analysis of the SPS gene family in Litchi chinensis Sonn. has not yet been reported. In the current study, four SPS gene (LcSPS1, LcSPS2, LcSPS3, and LcSPS4) were isolated from litchi. The genomic organization analysis indicated the four litchi SPS genes have very similar exon-intron structures. Phylogenetic tree showed LcSPS1-4 were grouped into different SPS families (LcSPS1 and LcSPS2 in A family, LcSPS3 in B family, and LcSPS4 in C family). LcSPS1 and LcSPS4 were strongly expressed in the flowers, while LcSPS3 most expressed in mature leaves. RT-qPCR results showed that LcSPS genes expressed differentially during aril development between cultivars with different hexose/sucrose ratios. A higher level of expression of LcSPS genes was detected in Wuheli, which accumulates higher sucrose in the aril at mature. The tissue- and developmental stage-specific expression of LcSPS1-4 genes uncovered in this study increase our understanding of the important roles played by these genes in litchi fruits. PMID:29473005

  20. Gene therapy of murine teratocarcinoma: separate functions for insulin-like growth factors I and II in immunogenicity and differentiation.

    PubMed Central

    Trojan, J; Johnson, T R; Rudin, S D; Blossey, B K; Kelley, K M; Shevelev, A; Abdul-Karim, F W; Anthony, D D; Tykocinski, M L; Ilan, J

    1994-01-01

    Teratocarcinoma is a germ-line carcinoma giving rise to an embryoid tumor with structures derived from the three embryonic layers: mesoderm, endoderm, and ectoderm. Teratocarcinoma is widely used as an in vitro model system to study regulation of cell determination and differentiation during mammalian embryogenesis. Murine embryonic carcinoma (EC) PCC3 cells express insulin-like growth factor I(IGF-I) and its receptor, while all derivative tumor structures express IGF-I and IGF-II and their receptors. Therefore the system lends itself to dissect the role of these two growth factors during EC differentiation. With an episomal antisense strategy, we define a role for IGF-I in tumorigenicity and evasion of immune surveillance. Antisense IGF-I EC transfectants are shown to elicit a curative anti-tumor immune response with tumor regression at distal sites. In contrast, IGF-II is shown to drive determination and differentiation in EC cells. Since IGF-I and IGF-II bind to type I receptor and antisense sequence used for IGF-II cannot form duplex with endogenous IGF-I transcripts, it follows that this receptor is not involved in determination and differentiation. Images PMID:8016120

  1. Defibrotide blunts the prothrombotic effect of thalidomide on endothelial cells.

    PubMed

    Echart, C L; Somaini, S; Distaso, M; Palumbo, A; Richardson, P G; Fareed, J; Iacobelli, M

    2012-01-01

    Patients with multiple myeloma (MM) are at relatively high risk of developing thromboembolic events such deep venous thrombosis (DVT) where thalidomide therapy has been identified to increase this risk. Defibrotide (DF), a polydisperse oligonucleotide, showed previously to counteract the alterations in endothelial cells (ECs) induced by lipopolysaccharide. It prompts us to investigate the impact of thalidomide on ECs and whether DF modulates changes in fibrinolysis induced by thalidomide. In this in vitro study, MM by itself alters the profibrinolytic potential of ECs decreasing the tissue plasminogen activator (t-PA) and increasing the plasminogen activator inhibitor 1 (PAI-1) levels which is potentiated by thalidomide. Defibrotide was able to counteract these effects. Additionally, DF upregulated the t-PA and downregulated PAI-1 gene expression modulated by thalidomide. Defibrotide also protects ECs from thalidomide-mediated cell death without interfering with its antitumor effects. These findings support DF clinical use for the prevention of DVT induced by immunomodulatory drugs.

  2. The impact of 27-hydroxycholesterol on endometrial cancer proliferation.

    PubMed

    Gibson, Douglas A; Collins, Frances; Cousins, Fiona L; Esnal Zufiaurre, Arantza; Saunders, Philippa T K

    2018-04-01

    Endometrial cancer (EC) is the most common gynaecological malignancy. Obesity is a major risk factor for EC and is associated with elevated cholesterol. 27-hydroxycholesterol (27HC) is a cholesterol metabolite that functions as an endogenous agonist for Liver X receptor (LXR) and a selective oestrogen receptor modulator (SERM). Exposure to oestrogenic ligands increases risk of developing EC; however, the impact of 27HC on EC is unknown. Samples of stage 1 EC ( n  = 126) were collected from postmenopausal women undergoing hysterectomy. Expression of LXRs ( NR1H3 , LXRα; NR1H2 , LXRβ) and enzymes required for the synthesis ( CYP27A1 ) or breakdown ( CYP7B1 ) of 27HC were detected in all grades of EC. Cell lines originating from well-, moderate- and poorly-differentiated ECs (Ishikawa, RL95, MFE 280 respectively) were used to assess the impact of 27HC or the LXR agonist GW3965 on proliferation or expression of a luciferase reporter gene under the control of LXR- or ER-dependent promoters (LXRE, ERE). Incubation with 27HC or GW3965 increased transcription via LXRE in Ishikawa, RL95 and MFE 280 cells ( P  < 0.01). 27HC selectively activated ER-dependent transcription ( P  < 0.001) in Ishikawa cells and promoted proliferation of both Ishikawa and RL95 cells ( P  < 0.001). In MFE 280 cells, 27HC did not alter proliferation but selective targeting of LXR with GW3965 significantly reduced cell proliferation ( P  < 0.0001). These novel results suggest that 27HC can contribute to risk of EC by promoting proliferation of endometrial cancer epithelial cells and highlight LXR as a potential therapeutic target in the treatment of advanced disease. © 2018 The authors.

  3. Porcine endothelium induces DNA-histone complex formation in human whole blood: a harmful effect of histone on coagulation and endothelial activation.

    PubMed

    Yoo, Hyun Ju; Kim, Ji-Eun; Gu, Ja Yoon; Lee, Sae Bom; Lee, Hyun Joo; Hwang, Ho Young; Hwang, Yoohwa; Kim, Young Tae; Kim, Hyun Kyung

    2016-11-01

    Neutrophils play a role in xenograft rejection. When neutrophils are stimulated, they eject the DNA-histone complex into the extracellular space, called neutrophil extracellular traps (NET). We investigated whether NET formation actively occurs in the xenograft and contributes to coagulation and endothelial activation. Human whole blood was incubated with porcine aortic endothelial cells (pEC) from wild-type or α1,3-galactosyltransferase gene-knockout (GTKO) pigs. In the supernatant plasma from human blood, the level of the DNA-histone complex was measured by ELISA, and thrombin generation was measured using a calibrated automated thrombogram. Histone-induced tissue factor and adhesion molecule expression were measured by flow cytometry. pEC from both wild-type and GTKO pigs significantly induced DNA-histone complex formation in human whole blood. The DNA-histone complex produced shortened the thrombin generation time and clotting time. Histone alone dose-dependently induced tissue factor and adhesion molecule expression in pEC. Aurintricarboxylic acid pretreatment partially inhibited pEC-induced DNA-histone complex formation. DNA-histone complex actively generated upon xenotransplantation is a novel target to inhibit coagulation and endothelial activation. To prevent tissue factor and adhesion molecule expression, a strategy to block soluble histone may be required in xenotransplantation. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Comprehensive genetic assessment of the ESR1 locus identifies a risk region for endometrial cancer.

    PubMed

    O'Mara, Tracy A; Glubb, Dylan M; Painter, Jodie N; Cheng, Timothy; Dennis, Joe; Attia, John; Holliday, Elizabeth G; McEvoy, Mark; Scott, Rodney J; Ashton, Katie; Proietto, Tony; Otton, Geoffrey; Shah, Mitul; Ahmed, Shahana; Healey, Catherine S; Gorman, Maggie; Martin, Lynn; Hodgson, Shirley; Fasching, Peter A; Hein, Alexander; Beckmann, Matthias W; Ekici, Arif B; Hall, Per; Czene, Kamila; Darabi, Hatef; Li, Jingmei; Dürst, Matthias; Runnebaum, Ingo; Hillemanns, Peter; Dörk, Thilo; Lambrechts, Diether; Depreeuw, Jeroen; Annibali, Daniela; Amant, Frederic; Zhao, Hui; Goode, Ellen L; Dowdy, Sean C; Fridley, Brooke L; Winham, Stacey J; Salvesen, Helga B; Njølstad, Tormund S; Trovik, Jone; Werner, Henrica M J; Tham, Emma; Liu, Tao; Mints, Miriam; Bolla, Manjeet K; Michailidou, Kyriaki; Tyrer, Jonathan P; Wang, Qin; Hopper, John L; Peto, Julian; Swerdlow, Anthony J; Burwinkel, Barbara; Brenner, Hermann; Meindl, Alfons; Brauch, Hiltrud; Lindblom, Annika; Chang-Claude, Jenny; Couch, Fergus J; Giles, Graham G; Kristensen, Vessela N; Cox, Angela; Pharoah, Paul D P; Dunning, Alison M; Tomlinson, Ian; Easton, Douglas F; Thompson, Deborah J; Spurdle, Amanda B

    2015-10-01

    Excessive exposure to estrogen is a well-established risk factor for endometrial cancer (EC), particularly for cancers of endometrioid histology. The physiological function of estrogen is primarily mediated by estrogen receptor alpha, encoded by ESR1. Consequently, several studies have investigated whether variation at the ESR1 locus is associated with risk of EC, with conflicting results. We performed comprehensive fine-mapping analyses of 3633 genotyped and imputed single nucleotide polymorphisms (SNPs) in 6607 EC cases and 37 925 controls. There was evidence of an EC risk signal located at a potential alternative promoter of the ESR1 gene (lead SNP rs79575945, P=1.86×10(-5)), which was stronger for cancers of endometrioid subtype (P=3.76×10(-6)). Bioinformatic analysis suggests that this risk signal is in a functionally important region targeting ESR1, and eQTL analysis found that rs79575945 was associated with expression of SYNE1, a neighbouring gene. In summary, we have identified a single EC risk signal located at ESR1, at study-wide significance. Given SNPs located at this locus have been associated with risk for breast cancer, also a hormonally driven cancer, this study adds weight to the rationale for performing informed candidate fine-scale genetic studies across cancer types. © 2015 Society for Endocrinology.

  5. Characterization of Trichuris skrjabini by isoenzyme gel electrophoresis: comparative study with Trichuris ovis.

    PubMed

    Cutillas, C; German, P; Arias, P; Guevara, D

    1996-10-01

    Morphological and biometric studies were performed in Trichuris skrjabini (Baskakov, 1924) collected from the caecum of Capra hircus. The LDH (EC 1.1.1.27.), G6PD (EC 1.1.1.49.), GPI (EC 5.3.1.9.), MDH (EC 1.1.1.37) and malic enzyme (ME) (EC 1.1.1.40) isoenzymatic patterns of T. skrjabini were determined by starch gel electrophoresis. The G6PD and GPI isoenzymatic patterns of T. skrjabini displayed two anodic bands for both enzymes: one fast migration band and one band near the origin. This isoenzymatic pattern was interpreted as two gene loci encoding both enzymes. The LDH isoenzymatic pattern of T. skrjabini was characterized by the presence of a cathodically migrating band, while the MDH isoenzymatic pattern showed a very slow cathodic band. These two phenotypes were interpreted as the expression of a homozygous state of a gene locus for LDH and MDH in T. skrjabini. The ME isoenzymatic pattern was characterized by the presence of a single anodic band. Further, comparative isoenzymatic studies were carried out between T. skrjabini and T. ovis. The different G6PD, GPI, LDH, MDH and ME isoenzymatic patterns observed for both species allowed us to distinguish them and therefore to use isoenzymatic patterns as a diagnostic tool to differentiate species of Trichuris.

  6. Characterization of specialized flocculent yeasts to improve sparkling wine fermentation.

    PubMed

    Tofalo, R; Perpetuini, G; Di Gianvito, P; Arfelli, G; Schirone, M; Corsetti, A; Suzzi, G

    2016-06-01

    Flocculent wine yeasts were characterized for the expression of FLO1, FLO5, FLO8, AMN1 and RGA1 genes, growth kinetics and physicochemical properties of the cell surface during a 6-month sparkling wine fermentation period. The expression of FLO1, FLO5, FLO8, AMN1 and RGA1 genes was determined by RT-qPCR. The physicochemical characterization of yeast surface properties was evaluated by the microbial adhesion to solvents method. FLO5 gene was the most expressed one and a linear correlation with the flocculent degree was found. Flocculent strains were more hydrophobic than the commercial wine strain EC1118. Gene expressions and the ability to face secondary wine fermentation conditions were strain dependent. The importance of FLO5 gene in developing the high flocculent characteristic of wine yeasts was highlighted. Cell surface properties depended on the time of fermentation. Better knowledge about the expression of some genes encoding the flocculent phenotype which could be useful to select suitable starter cultures to improve sparkling wine technology was achieved. A step forward in understanding the complexity and strain-specific nature of flocculation phenotype was done. © 2016 The Society for Applied Microbiology.

  7. Le(x) glycan mediates homotypic adhesion of embryonal cells independently from E-cadherin: a preliminary note.

    PubMed

    Handa, Kazuko; Takatani-Nakase, Tomoka; Larue, Lionel; Stemmler, Marc P; Kemler, Rolf; Hakomori, Sen-itiroh

    2007-06-22

    Le(x) glycan and E-cadherin (Ecad) are co-expressed at embryonal stem (ES) cells and embryonal carcinoma (EC) cells. While the structure and function of Ecad mediating homotypic adhesion of these cells have been well established, evidence that Le(x) glycan also mediates such adhesion is weak, despite the fact that Le(x) oligosaccharide inhibits the compaction process. To provide stronger evidence, we knocked out Ecad gene in EC and ES cells to establish F9 Ecad (-/-) and D3M Ecad (-/-) cells, which highly express Le(x) glycan but do not express Ecad at all. Both F9 Ecad (-/-) and D3M Ecad (-/-) cells displayed strong autoaggregation in the presence of Ca(2+), while PYS-2 cells, which express trace amount of Ecad and undetectable level of Le(x) glycan, did not display autoaggregation. In addition, F9 Ecad (-/-) and D3M Ecad (-/-) cells displayed strong adhesion to plates coated with Le(x) glycosphingolipid (III(3)FucnLc4Cer), in dose-dependent manner, in the presence of Ca(2+). Thus, ES or EC cells display autoaggregation and strong adhesion to Le(x)-coated plates in the absence of Ecad, further supporting the notion of Le(x) self-recognition (i.e., Le(x)-to-Le(x) interaction) in cell adhesion.

  8. Changes in global gene expression profiles induced by HPV 16 E6 oncoprotein variants in cervical carcinoma C33-A cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zacapala-Gómez, Ana Elvira, E-mail: zak_ana@yahoo.com.mx; Del Moral-Hernández, Oscar, E-mail: odelmoralh@gmail.com; Villegas-Sepúlveda, Nicolás, E-mail: nvillega@cinvestav.mx

    We analyzed the effects of the expression of HPV 16 E6 oncoprotein variants (AA-a, AA-c, E-A176/G350, E-C188/G350, E-G350), and the E-Prototype in global gene expression profiles in an in vitro model. E6 gene was cloned into an expression vector fused to GFP and was transfected in C33-A cells. Affymetrix GeneChip Human Transcriptome Array 2.0 platform was used to analyze the expression of over 245,000 coding transcripts. We found that HPV16 E6 variants altered the expression of 387 different genes in comparison with E-Prototype. The altered genes are involved in cellular processes related to the development of cervical carcinoma, such asmore » adhesion, angiogenesis, apoptosis, differentiation, cell cycle, proliferation, transcription and protein translation. Our results show that polymorphic changes in HPV16 E6 natural variants are sufficient to alter the overall gene expression profile in C33-A cells, explaining in part the observed differences in oncogenic potential of HPV16 variants. - Highlights: • Amino acid changes in HPV16 E6 variants modulate the transciption of specific genes. • This is the first comparison of global gene expression profile of HPV 16 E6 variants. • Each HPV 16 E6 variant appears to have its own molecular signature.« less

  9. Acidosis Activates Endoplasmic Reticulum Stress Pathways through GPR4 in Human Vascular Endothelial Cells

    PubMed Central

    Dong, Lixue; Krewson, Elizabeth A.; Yang, Li V.

    2017-01-01

    Acidosis commonly exists in the tissue microenvironment of various pathophysiological conditions such as tumors, inflammation, ischemia, metabolic disease, and respiratory disease. For instance, the tumor microenvironment is characterized by acidosis and hypoxia due to tumor heterogeneity, aerobic glycolysis (the “Warburg effect”), and the defective vasculature that cannot efficiently deliver oxygen and nutrients or remove metabolic acid byproduct. How the acidic microenvironment affects the function of blood vessels, however, is not well defined. GPR4 (G protein-coupled receptor 4) is a member of the proton-sensing G protein-coupled receptors and it has high expression in endothelial cells (ECs). We have previously reported that acidosis induces a broad inflammatory response in ECs. Acidosis also increases the expression of several endoplasmic reticulum (ER) stress response genes such as CHOP (C/EBP homologous protein) and ATF3 (activating transcription factor 3). In the current study, we have examined acidosis/GPR4-induced ER stress pathways in human umbilical vein endothelial cells (HUVEC) and other types of ECs. All three arms of the ER stress/unfolded protein response (UPR) pathways were activated by acidosis in ECs as an increased expression of phosphorylated eIF2α (eukaryotic initiation factor 2α), phosphorylated IRE1α (inositol-requiring enzyme 1α), and cleaved ATF6 upon acidic pH treatment was observed. The expression of other downstream mediators of the UPR, such as ATF4, ATF3, and spliced XBP-1 (X box-binding protein 1), was also induced by acidosis. Through genetic and pharmacological approaches to modulate the expression level or activity of GPR4 in HUVEC, we found that GPR4 plays an important role in mediating the ER stress response induced by acidosis. As ER stress/UPR can cause inflammation and cell apoptosis, acidosis/GPR4-induced ER stress pathways in ECs may regulate vascular growth and inflammatory response in the acidic microenvironment. PMID:28134810

  10. Acidosis Activates Endoplasmic Reticulum Stress Pathways through GPR4 in Human Vascular Endothelial Cells.

    PubMed

    Dong, Lixue; Krewson, Elizabeth A; Yang, Li V

    2017-01-27

    Acidosis commonly exists in the tissue microenvironment of various pathophysiological conditions such as tumors, inflammation, ischemia, metabolic disease, and respiratory disease. For instance, the tumor microenvironment is characterized by acidosis and hypoxia due to tumor heterogeneity, aerobic glycolysis (the "Warburg effect"), and the defective vasculature that cannot efficiently deliver oxygen and nutrients or remove metabolic acid byproduct. How the acidic microenvironment affects the function of blood vessels, however, is not well defined. GPR4 (G protein-coupled receptor 4) is a member of the proton-sensing G protein-coupled receptors and it has high expression in endothelial cells (ECs). We have previously reported that acidosis induces a broad inflammatory response in ECs. Acidosis also increases the expression of several endoplasmic reticulum (ER) stress response genes such as CHOP (C/EBP homologous protein) and ATF3 (activating transcription factor 3). In the current study, we have examined acidosis/GPR4- induced ER stress pathways in human umbilical vein endothelial cells (HUVEC) and other types of ECs. All three arms of the ER stress/unfolded protein response (UPR) pathways were activated by acidosis in ECs as an increased expression of phosphorylated eIF2α (eukaryotic initiation factor 2α), phosphorylated IRE1α (inositol-requiring enzyme 1α), and cleaved ATF6 upon acidic pH treatment was observed. The expression of other downstream mediators of the UPR, such as ATF4, ATF3, and spliced XBP-1 (X box-binding protein 1), was also induced by acidosis. Through genetic and pharmacological approaches to modulate the expression level or activity of GPR4 in HUVEC, we found that GPR4 plays an important role in mediating the ER stress response induced by acidosis. As ER stress/UPR can cause inflammation and cell apoptosis, acidosis/GPR4-induced ER stress pathways in ECs may regulate vascular growth and inflammatory response in the acidic microenvironment.

  11. Identification of DNA Methyltransferase Genes in Human Pathogenic Bacteria by Comparative Genomics.

    PubMed

    Brambila-Tapia, Aniel Jessica Leticia; Poot-Hernández, Augusto Cesar; Perez-Rueda, Ernesto; Rodríguez-Vázquez, Katya

    2016-06-01

    DNA methylation plays an important role in gene expression and virulence in some pathogenic bacteria. In this report, we describe DNA methyltransferases (MTases) present in human pathogenic bacteria and compared them with related species, which are not pathogenic or less pathogenic, based in comparative genomics. We performed a search in the KEGG database of the KEGG database orthology groups associated with adenine and cytosine DNA MTase activities (EC: 2.1.1.37, EC: 2.1.1.113 and EC: 2.1.1.72) in 37 human pathogenic species and 18 non/less pathogenic relatives and performed comparisons of the number of these MTases sequences according to their genome size, the DNA MTase type and with their non-less pathogenic relatives. We observed that Helicobacter pylori and Neisseria spp. presented the highest number of MTases while ten different species did not present a predicted DNA MTase. We also detected a significant increase of adenine MTases over cytosine MTases (2.19 vs. 1.06, respectively, p < 0.001). Adenine MTases were the only MTases associated with restriction modification systems and DNA MTases associated with type I restriction modification systems were more numerous than those associated with type III restriction modification systems (0.84 vs. 0.17, p < 0.001); additionally, there was no correlation with the genome size and the total number of DNA MTases, indicating that the number of DNA MTases is related to the particular evolution and lifestyle of specific species, regulating the expression of virulence genes in some pathogenic bacteria.

  12. Hypoxia-Inducible Factor-1α (HIF-1α) Expression on Endothelial Cells in Juvenile Nasopharyngeal Angiofibroma: A Review of 70 cases and Tissue Microarray Analysis.

    PubMed

    Song, Xiaole; Yang, Chenhe; Zhang, Huankang; Wang, Jingjing; Sun, Xicai; Hu, Li; Liu, Zhuofu; Wang, Dehui

    2018-06-01

    To examine the expression of hypoxia-inducible factor-1α (HIF-1α) and its related molecules (cellular repressor of E1A-stimulated genes [CREG], osteopontin [OPN], proto-oncogene tyrosine-protein kinase Src [c-Src], and vascular endothelial growth factor [VEGF]) in juvenile nasopharyngeal angiofibroma (JNA) and explore the correlation between clinical prognosis and HIF-1α expression. The study performed a retrospective review of the clinical records of patients with JNA treated between 2003 and 2007. Specimens were analyzed by immunohistochemistry for HIF-1α, CREG, OPN, c-Src, and VEGF expression, and microvessel density (MVD) was assessed by tissue microarray. The correlation between expression levels and clinicopathological features including age, tumor stage, intraoperative blood loss, and recurrence was analyzed. HIF-1α, CREG, OPN, c-Src, and VEGF were upregulated in endothelial cells (ECs) of patients with JNA, and strong correlations in the expression of these molecules were observed. HIF-1α expression was higher in young patients ( P = .032) and in recurrent cases ( P = .01). Survival analysis showed that low HIF-1α levels in ECs predicted longer time to recurrence (log rank test P = .006). Receiver operating characteristic curve analysis showed that HIF-1α was a prognostic factor for recurrence (area under the curve = 0.690, P = .019). No correlation was found between the expression of molecules and Radkowski stage or intraoperative blood loss. In cases of JNA treated surgically, HIF-1α expression in ECs is a useful prognostic factor for tumor recurrence.

  13. NADPH Oxidase-Dependent Signaling in Endothelial Cells: Role in Physiology and Pathophysiology

    PubMed Central

    Ushio-Fukai, Masuko; Malik, Asrar B.

    2009-01-01

    Abstract Reactive oxygen species (ROS) including superoxide (O2·−) and hydrogen peroxide (H2O2) are produced endogenously in response to cytokines, growth factors; G-protein coupled receptors, and shear stress in endothelial cells (ECs). ROS function as signaling molecules to mediate various biological responses such as gene expression, cell proliferation, migration, angiogenesis, apoptosis, and senescence in ECs. Signal transduction activated by ROS, “oxidant signaling,” has received intense investigation. Excess amount of ROS contribute to various pathophysiologies, including endothelial dysfunction, atherosclerosis, hypertension, diabetes, and acute respiratory distress syndrome (ARDS). The major source of ROS in EC is a NADPH oxidase. The prototype phagaocytic NADPH oxidase is composed of membrane-bound gp91phox and p22hox, as well as cytosolic subunits such as p47phox, p67phox and small GTPase Rac. In ECs, in addition to all the components of phagocytic NADPH oxidases, homologues of gp91phox (Nox2) including Nox1, Nox4, and Nox5 are expressed. The aim of this review is to provide an overview of the emerging area of ROS derived from NADPH oxidase and oxidant signaling in ECs linked to physiological and pathophysiological functions. Understanding these mechanisms may provide insight into the NADPH oxidase and oxidant signaling components as potential therapeutic targets. Antioxid. Redox Signal. 11, 791–810. PMID:18783313

  14. P-Selectin Targeted Dexamethasone-Loaded Lipid Nanoemulsions: A Novel Therapy to Reduce Vascular Inflammation

    PubMed Central

    Simion, Viorel; Constantinescu, Cristina Ana; Stan, Daniela; Deleanu, Mariana; Tucureanu, Monica Madalina; Butoi, Elena; Manduteanu, Ileana; Simionescu, Maya

    2016-01-01

    Inflammation is a common process associated with numerous vascular pathologies. We hypothesized that targeting the inflamed endothelium by coupling a peptide with high affinity for P-selectin to the surface of dexamethasone-loaded lipid nanoemulsions will highly increase their specific binding to activated endothelial cells (EC) and reduce the cell activation. We developed and characterized dexamethasone-loaded lipid nanoemulsions directed towards P-selectin (PLN-Dex) and monitored their anti-inflammatory effects in vitro using cultured EC (EA.hy926 cells) and in vivo using a mouse model of acute inflammation [lipopolysaccharides (LPS) intravenously administered in C57BL/6 mice]. We found that PLN-Dex bound specifically to the surface of activated EC are efficiently internalized by EC and reduced the expression of proinflammatory genes, thus preventing the monocyte adhesion and transmigration to/through activated EC. Given intravenously in mice with acute inflammation, PLN-Dex accumulated at a significant high level in the lungs (compared to nontargeted nanoemulsions) and significantly reduced mRNA expression level of key proinflammatory cytokines such as IL-1β, IL-6, and MCP-1. In conclusion, the newly developed nanoformulation, PLN-Dex, is functional in vitro and in vivo, reducing selectively the endothelium activation and the consequent monocyte infiltration and diminishing significantly the lungs' inflammation, in a mouse model of acute inflammation. PMID:27703301

  15. Quantitative trait locus mapping in mice identifies phospholipase Pla2g12a as novel atherosclerosis modifier.

    PubMed

    Nicolaou, Alexandros; Northoff, Bernd H; Sass, Kristina; Ernst, Jana; Kohlmaier, Alexander; Krohn, Knut; Wolfrum, Christian; Teupser, Daniel; Holdt, Lesca M

    2017-10-01

    In a previous work, a female-specific atherosclerosis risk locus on chromosome (Chr) 3 was identified in an intercross of atherosclerosis-resistant FVB and atherosclerosis-susceptible C57BL/6 (B6) mice on the LDL-receptor deficient (Ldlr -/- ) background. It was the aim of the current study to identify causative genes at this locus. We established a congenic mouse model, where FVB.Chr3 B6/B6 mice carried an 80 Mb interval of distal Chr3 on an otherwise FVB.Ldlr -/- background, to validate the Chr3 locus. Candidate genes were identified using genome-wide expression analyses. Differentially expressed genes were validated using quantitative PCRs in F0 and F2 mice and their functions were investigated in pathophysiologically relevant cells. Fine-mapping of the Chr3 locus revealed two overlapping, yet independent subloci for female atherosclerosis susceptibility: when transmitted by grandfathers to granddaughters, the B6 risk allele increased atherosclerosis and downregulated the expression of the secreted phospholipase Pla2g12a (2.6 and 2.2 fold, respectively); when inherited by grandmothers, the B6 risk allele induced vascular cell adhesion molecule 1 (Vcam1). Down-regulation of Pla2g12a and up-regulation of Vcam1 were validated in female FVB.Chr3 B6/B6 congenic mice, which developed 2.5 greater atherosclerotic lesions compared to littermate controls (p=0.039). Pla2g12a was highly expressed in aortic endothelial cells in vivo, and knocking-down Pla2g12a expression by RNAi in cultured vascular endothelial cells or macrophages increased their adhesion to ECs in vitro. Our data establish Pla2g12a as an atheroprotective candidate gene in mice, where high expression levels in ECs and macrophages may limit the recruitment and accumulation of these cells in nascent atherosclerotic lesions. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The Probiotic Escherichia coli Strain Nissle 1917 Combats Lambdoid Bacteriophages stx and λ.

    PubMed

    Bury, Susanne; Soundararajan, Manonmani; Bharti, Richa; von Bünau, Rudolf; Förstner, Konrad U; Oelschlaeger, Tobias A

    2018-01-01

    Shiga toxin (Stx) producing E. coli (STEC) such as Enterohemorrhagic E. coli (EHEC) are the major cause of foodborne illness in humans. In vitro studies showed the probiotic Escherichia coli strain Nissle 1917 (EcN) to efficiently inhibit the production of Stx. Life threatening EHEC strains as for example the serotype O104:H4, responsible for the great outbreak in 2011 in Germany, evolutionary developed from certain E. coli strains which got infected by stx2 -encoding lambdoid phages turning the E. coli into lysogenic and subsequently Stx producing strains. Since antibiotics induce stx genes and Stx production, EHEC infected persons are not recommended to be treated with antibiotics. Therefore, EcN might be an alternative medication. However, because even commensal E. coli strains might be converted into Stx-producers after becoming host to a stx encoding prophage, we tested EcN for stx -phage genome integration. Our experiments revealed the resistance of EcN toward not only stx -phages but also against lambda-phages. This resistance was not based on the lack of or by mutated phage receptors. Rather it involved the expression of a phage repressor ( pr ) gene of a defective prophage in EcN which was able to partially protect E. coli K-12 strain MG1655 against stx and lambda phage infection. Furthermore, we observed EcN to inactivate phages and thereby to protect E. coli K-12 strains against infection by stx - as well as lambda-phages. Inactivation of lambda-phages was due to binding of lambda-phages to LamB of EcN whereas inactivation of stx -phages was caused by a thermostable protein of EcN. These properties together with its ability to inhibit Stx production make EcN a good candidate for the prevention of illness caused by EHEC and probably for the treatment of already infected people.

  17. A High-Throughput Regeneration and Transformation Platform for Production of Genetically Modified Banana.

    PubMed

    Tripathi, Jaindra N; Oduor, Richard O; Tripathi, Leena

    2015-01-01

    Banana (Musa spp.) is an important staple food as well as cash crop in tropical and subtropical countries. Various bacterial, fungal, and viral diseases and pests such as nematodes are major constraints in its production and are currently destabilizing the banana production in sub-Saharan Africa. Genetic engineering is a complementary option used for incorporating useful traits in banana to bypass the long generation time, polyploidy, and sterility of most of the cultivated varieties. A robust transformation protocol for farmer preferred varieties is crucial for banana genomics and improvement. A robust and reproducible system for genetic transformation of banana using embryogenic cell suspensions (ECS) has been developed in this study. Two different types of explants (immature male flowers and multiple buds) were tested for their ability to develop ECS in several varieties of banana locally grown in Africa. ECS of banana varieties "Cavendish Williams" and "Gros Michel" were developed using multiple buds, whereas ECS of "Sukali Ndiizi" was developed using immature male flowers. Regeneration efficiency of ECS was about 20,000-50,000 plantlets per ml of settled cell volume (SCV) depending on variety. ECS of three different varieties were transformed through Agrobacterium-mediated transformation using gusA reporter gene and 20-70 independent transgenic events per ml SCV of ECS were regenerated on selective medium. The presence and integration of gusA gene in transgenic plants was confirmed by PCR, dot blot, and Southern blot analysis and expression by histochemical GUS assays. The robust transformation platform was successfully used to generate hundreds of transgenic lines with disease resistance. Such a platform will facilitate the transfer of technologies to national agricultural research systems (NARS) in Africa.

  18. A High-Throughput Regeneration and Transformation Platform for Production of Genetically Modified Banana

    PubMed Central

    Tripathi, Jaindra N.; Oduor, Richard O.; Tripathi, Leena

    2015-01-01

    Banana (Musa spp.) is an important staple food as well as cash crop in tropical and subtropical countries. Various bacterial, fungal, and viral diseases and pests such as nematodes are major constraints in its production and are currently destabilizing the banana production in sub-Saharan Africa. Genetic engineering is a complementary option used for incorporating useful traits in banana to bypass the long generation time, polyploidy, and sterility of most of the cultivated varieties. A robust transformation protocol for farmer preferred varieties is crucial for banana genomics and improvement. A robust and reproducible system for genetic transformation of banana using embryogenic cell suspensions (ECS) has been developed in this study. Two different types of explants (immature male flowers and multiple buds) were tested for their ability to develop ECS in several varieties of banana locally grown in Africa. ECS of banana varieties “Cavendish Williams” and “Gros Michel” were developed using multiple buds, whereas ECS of “Sukali Ndiizi” was developed using immature male flowers. Regeneration efficiency of ECS was about 20,000–50,000 plantlets per ml of settled cell volume (SCV) depending on variety. ECS of three different varieties were transformed through Agrobacterium-mediated transformation using gusA reporter gene and 20–70 independent transgenic events per ml SCV of ECS were regenerated on selective medium. The presence and integration of gusA gene in transgenic plants was confirmed by PCR, dot blot, and Southern blot analysis and expression by histochemical GUS assays. The robust transformation platform was successfully used to generate hundreds of transgenic lines with disease resistance. Such a platform will facilitate the transfer of technologies to national agricultural research systems (NARS) in Africa. PMID:26635849

  19. Effects of Disturbed Flow on Vascular Endothelium: Pathophysiological Basis and Clinical Perspectives

    PubMed Central

    Chiu, Jeng-Jiann; Chien, Shu

    2013-01-01

    Vascular endothelial cells (ECs) are exposed to hemodynamic forces, which modulate EC functions and vascular biology/pathobiology in health and disease. The flow patterns and hemodynamic forces are not uniform in the vascular system. In straight parts of the arterial tree, blood flow is generally laminar and wall shear stress is high and directed; in branches and curvatures, blood flow is disturbed with nonuniform and irregular distribution of low wall shear stress. Sustained laminar flow with high shear stress upregulates expressions of EC genes and proteins that are protective against atherosclerosis, whereas disturbed flow with associated reciprocating, low shear stress generally upregulates the EC genes and proteins that promote atherogenesis. These findings have led to the concept that the disturbed flow pattern in branch points and curvatures causes the preferential localization of atherosclerotic lesions. Disturbed flow also results in postsurgical neointimal hyperplasia and contributes to pathophysiology of clinical conditions such as in-stent restenosis, vein bypass graft failure, and transplant vasculopathy, as well as aortic valve calcification. In the venous system, disturbed flow resulting from reflux, outflow obstruction, and/or stasis leads to venous inflammation and thrombosis, and hence the development of chronic venous diseases. Understanding of the effects of disturbed flow on ECs can provide mechanistic insights into the role of complex flow patterns in pathogenesis of vascular diseases and can help to elucidate the phenotypic and functional differences between quiescent (nonatherogenic/nonthrombogenic) and activated (atherogenic/thrombogenic) ECs. This review summarizes the current knowledge on the role of disturbed flow in EC physiology and pathophysiology, as well as its clinical implications. Such information can contribute to our understanding of the etiology of lesion development in vascular niches with disturbed flow and help to generate new approaches for therapeutic interventions. PMID:21248169

  20. Effects of the micro-nano surface topography of titanium alloy on the biological responses of osteoblast.

    PubMed

    Yin, Chengcheng; Zhang, Yanjing; Cai, Qing; Li, Baosheng; Yang, Hua; Wang, Heling; Qi, Hua; Zhou, Yanmin; Meng, Weiyan

    2017-03-01

    In clinical applications, osseointegration is essential for the long-term stability of dental implants. Inspired by the hierarchical structure of natural bone, we applied the electrochemical etching (EC) technique to form a micro-nano structure on a titanium alloy (Ti6Al4V) substrate, called EC surface. Sand blasting and acid etching (SLA) and machined (M) methods were employed to generate micro and smooth textures, respectively, as the control groups. The surface topographies of the three substrates were characterized using scanning electron microscopy (SEM). Then, human osteoblast-like cells (MG63) were cultured on substrates, and adhesion, proliferation, morphology, alkaline phosphatase activity (ALP), and gene expression levels of Runt-related transcription factor 2 (RUNX2), osteocalcin (OCN), osteopontin (OPN), and type I collagen (COLIA 1) were analyzed. MG63 cells cultured on the EC Ti alloy substrates displayed better cell adhesion, significant proliferation, and a higher production level of ALP, gene expressions of RUNX2, OCN, OPN and COLIA 1 (p < 0.01 or p < 0.05) compared with those of SLA and M substrates. These results indicate that the micro-nano structure fabricated by electrochemical etching method is beneficial for the biological functions of MG63 cells and may be a promising candidate in dental implants. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 757-769, 2017. © 2016 Wiley Periodicals, Inc.

  1. Dietary TiO2 particles modulate expression of hormone-related genes in Bombyx mori.

    PubMed

    Shi, Guofang; Zhan, Pengfei; Jin, Weiming; Fei, JianMing; Zhao, Lihua

    2017-08-01

    Silkworm (Bombyx mori) is an economically beneficial insect. Its growth and development are regulated by endogenous hormones. In the present study, we found that feeding titanium dioxide nanoparticles (TiO 2 NP) caused a significant increase of body size. TiO 2 NP stimulated the transcription of several genes, including the insulin-related hormone bombyxin, PI3K/Akt/TOR (where PI3K is phosphatidylinositol 3-kinase and TOR is target of rapamycin), and the adenosine 5'-monophosphateactivated protein kinase (AMPK)/target of rapamycin (TOR) pathways. Differentially expressed gene (DEG) analysis documented 26 developmental hormone signaling related genes that were differentially expressed following dietary TiO 2 NP treatment. qPCR analysis confirmed the upregulation of insulin/ecdysteroid signaling genes, such as bombyxin B-1, bombyxin B-4, bombyxin B-7, MAPK, P70S6K, PI3k, eIF4E, E75, ecdysteroid receptor (EcR), and insulin-related peptide binding protein precursor 2 (IBP2). We infer from the upregulated expression of bombyxins and the signaling network that they act in bombyxin-stimulated ecdysteroidogenesis. © 2017 Wiley Periodicals, Inc.

  2. Cinnamaldehyde inhibits the tumor necrosis factor-{alpha}-induced expression of cell adhesion molecules in endothelial cells by suppressing NF-{kappa}B activation: Effects upon I{kappa}B and Nrf2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, B.-C.; Hsieh, C.-W.; Liu, Y.-C.

    The production of adhesion molecules and subsequent attachment of leukocytes to endothelial cells (ECs) are critical early events in atherogenesis. These adhesion molecules thus play an important role in the development of this disease. Recent studies have highlighted the chemoprotective and anti-inflammatory effects of cinnamaldehyde, a Cinnamomum cassia Presl-specific diterpene. In our current study, we have examined the effects of both cinnamaldehyde and extracts of C. cassia on cytokine-induced monocyte/human endothelial cell interactions. We find that these compounds inhibit the adhesion of TNF{alpha}-induced monocytes to endothelial cells and suppress the expression of the cell adhesion molecules, VCAM-1 and ICAM-1, atmore » the transcriptional level. Moreover, in TNF{alpha}-treated ECs, the principal downstream signal of VCAM-1 and ICAM-1, NF-{kappa}B, was also found to be abolished in a time-dependent manner. Interestingly, cinnamaldehyde exerts its anti-inflammatory effects by blocking the degradation of the inhibitory protein I{kappa}B-{alpha}, but only in short term pretreatments, whereas it does so via the induction of Nrf2-related genes, including heme-oxygenase-1 (HO-1), over long term pretreatments. Treating ECs with zinc protoporphyrin, a HO-1 inhibitor, partially blocks the anti-inflammatory effects of cinnamaldehyde. Elevated HO-1 protein levels were associated with the inhibition of TNF{alpha}-induced ICAM-1 expression. In addition to HO-1, we also found that cinnamaldehyde can upregulate Nrf2 in nuclear extracts, and can increase ARE-luciferase activity and upregulate thioredoxin reductase-1, another Nrf2-related gene. Moreover, cinnamaldehyde exposure rapidly reduces the cellular GSH levels in ECs over short term treatments but increases these levels after 9 h exposure. Hence, our present findings indicate that cinnamaldehyde suppresses TNF-induced singling pathways via two distinct mechanisms that are activated by different pretreatment periods.« less

  3. Enhanced Skeletal Muscle Expression of EcSOD Mitigates Streptozotocin-Induced Diabetic Cardiomyopathy by Reducing Oxidative Stress and Aberrant Cell Signaling

    PubMed Central

    Call, Jarrod A.; Chain, Kristopher H.; Martin, Kyle S.; Lira, Vitor A.; Okutsu, Mitsuharu; Zhang, Mei; Yan, Zhen

    2015-01-01

    Background Exercise training enhances extracellular superoxide dismutase (EcSOD) expression in skeletal muscle and elicits positive health outcomes in individuals with diabetes. The goal of this study was to determine if enhanced skeletal muscle expression of EcSOD is sufficient to mitigate streptozotocin (STZ)-induced diabetic cardiomyopathy (DCM). Methods and Results Exercise training promotes EcSOD expression in skeletal muscle and provides protection against DCM; however, it is not known if enhanced EcSOD expression in skeletal muscle plays a functional role in this protection. Here, we show that skeletal muscle-specific EcSOD transgenic mice (TG) are protected from cardiac hypertrophy, fibrosis and dysfunction under the condition of type-1 diabetes induced by STZ injection. We also show that both exercise training and muscle-specific transgenic expression of EcSOD result in elevated EcSOD protein in the blood and heart without increased transcription in the heart, suggesting enhanced expression of EcSOD from skeletal muscle redistributes to the heart. Importantly, cardiac tissue in TG mice displayed significantly reduced oxidative stress, aberrant cell signaling and inflammatory cytokine expression compared with wild type mice under the same diabetic condition. Conclusions Enhanced expression of EcSOD in skeletal muscle is sufficient to mitigate STZ-induced DCM through attenuation of oxidative stress, aberrant cell signaling and inflammation, suggesting a cross-organ mechanism by which exercise training improves cardiac function in diabetes. PMID:25504759

  4. Endothelial FoxM1 Mediates Bone Marrow Progenitor Cell-Induced Vascular Repair and Resolution of Inflammation following Inflammatory Lung Injury

    PubMed Central

    Zhao, Yidan D.; Huang, Xiaojia; Yi, Fan; Dai, Zhiyu; Qian, Zhijian; Tiruppathi, Chinnaswamy; Tran, Khiem; Zhao, You-Yang

    2015-01-01

    Adult stem cell treatment is a potential novel therapeutic approach for acute respiratory distress syndrome. Given the extremely low rate of cell engraftment, it is believed that these cells exert their beneficial effects via paracrine mechanisms. However, the endogenous mediator(s) in the pulmonary vasculature remains unclear. Employing the mouse model with endothelial cell (EC)-restricted disruption of FoxM1 (FoxM1 CKO), here we show that endothelial expression of the reparative transcriptional factor FoxM1 is required for the protective effects of bone marrow progenitor cells (BMPC) against LPS-induced inflammatory lung injury and mortality. BMPC treatment resulted in rapid induction of FoxM1 expression in WT but not FoxM1 CKO lungs. BMPC-induced inhibition of lung vascular injury, resolution of lung inflammation, and survival, as seen in WT mice, were abrogated in FoxM1 CKO mice following LPS challenge. Mechanistically, BMPC treatment failed to induce lung EC proliferation in FoxM1 CKO mice, which was associated with impaired expression of FoxM1 target genes essential for cell cycle progression. We also observed that BMPC treatment enhanced endothelial barrier function in WT, but not in FoxM1-deficient EC monolayers. Restoration of β-catenin expression in FoxM1-deficient ECs normalized endothelial barrier enhancement in response to BMPC treatment. These data demonstrate the requisite role of endothelial FoxM1 in the mechanism of BMPC-induced vascular repair to restore vascular integrity and accelerate resolution of inflammation, thereby promoting survival following inflammatory lung injury. PMID:24578354

  5. Expression of fungal pectin methylesterase in transgenic tobacco leads to alteration in cell wall metabolism and a dwarf phenotype.

    PubMed

    Hasunuma, Tomohisa; Fukusaki, Ei-ichiro; Kobayashi, Akio

    2004-08-05

    A transgenic tobacco plant (Nicotiana tabacum L.) expressing a fungal pectin methylesterase (PME; EC 3.1.1.11) gene derived from a black filamentous fungus, Aspergillus niger was created. Fungal PME should have a wider range of adaptability to substrate pectin compared with plant PME. As expected, the proportion of methyl esters in pectin was reduced in the transgenic tobacco. Consequently, the transgenic plant showed short internodes, small leaves and a dwarf phenotype. At a cellular level, the longitudinal lengths of stem epidermal cells were shorter than those of control plants. This is the first report that fungal PME promotes dwarfism in plants. It is worth noting that in the PME-expressing dwarf plant, the expression levels of cell wall metabolism related genes that included endo-1,4-beta-glucanase, cellulose synthase, endo-xyloglucan transferase and expansin gene were decreased. These results suggest that the expression of fungal PME in plants affects the cell wall metabolism.

  6. ILK mediates LPS-induced vascular adhesion receptor expression and subsequent leucocyte trans-endothelial migration.

    PubMed

    Hortelano, Sonsoles; López-Fontal, Raquel; Través, Paqui G; Villa, Natividad; Grashoff, Carsten; Boscá, Lisardo; Luque, Alfonso

    2010-05-01

    The inflammatory response to injurious agents is tightly regulated to avoid adverse consequences of inappropriate leucocyte accumulation or failed resolution. Lipopolysaccharide (LPS)-activated endothelium recruits leucocytes to the inflamed tissue through controlled expression of membrane-associated adhesion molecules. LPS responses in macrophages are known to be regulated by integrin-linked kinase (ILK); in this study, we investigated the role of ILK in the regulation of the LPS-elicited inflammatory response in endothelium. This study was performed on immortalized mouse endothelial cells (EC) isolated from lung and coronary vasculature. Cells were thoroughly characterized and the role of ILK in the regulation of the LPS response was investigated by suppressing ILK expression using siRNA and shRNA technologies. Phenotypic and functional analyses confirmed that the immortalized cells behaved as true EC. LPS induced the expression of the inflammatory genes E-selectin, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). ILK knockdown impaired LPS-mediated endothelial activation by preventing the induction of ICAM-1 and VCAM-1. Blockade of the LPS-induced response inhibited the inflammatory-related processes of firm adhesion and trans-endothelial migration of leucocytes. ILK is involved in the expression of cell adhesion molecules by EC activated with the inflammatory stimulus LPS. This reduced expression modulates leucocyte adhesion to the endothelium and the extravasation process. This finding suggests ILK as a potential anti-inflammatory target for the development of vascular-specific treatments for inflammation-related diseases.

  7. Galantamine and carbon monoxide protect brain microvascular endothelial cells by heme oxygenase-1 induction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakao, Atsunori; Thomas E Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15213; Kaczorowski, David J.

    2008-03-14

    Galantamine, a reversible inhibitor of acetylcholine esterase (AChE), is a novel drug treatment for mild to moderate Alzheimer's disease and vascular dementia. Interestingly, it has been suggested that galantamine treatment is associated with more clinical benefit in patients with mild-to-moderate Alzheimer disease compared to other AChE inhibitors. We hypothesized that the protective effects of galantamine would involve induction of the protective gene, heme oxygenase-1 (HO-1), in addition to enhancement of the cholinergic system. Brain microvascular endothelial cells (mvECs) were isolated from spontaneous hypertensive rats. Galantamine significantly reduced H{sub 2}O{sub 2}-induced cell death of mvECs in association with HO-1 induction. Thesemore » protective effects were completely reversed by nuclear factor-{kappa}B (NF-{kappa}B) inhibition or HO inhibition. Furthermore, galantamine failed to induce HO-1 in mvECs which lack inducible nitric oxide synthase (iNOS), supplementation of a nitric oxide (NO) donor or iNOS gene transfection on iNOS-deficient mvECs resulted in HO-1 induction with galantamine. These data suggest that the protective effects of galantamine require NF-{kappa}B activation and iNOS expression, in addition to HO-1. Likewise, carbon monoxide (CO), one of the byproducts of HO, up-regulated HO-1 and protected mvECs from oxidative stress in a similar manner. Our data demonstrate that galantamine mediates cytoprotective effects on mvECs through induction HO-1. This pharmacological action of galantamine may, at least in part, account for the superior clinical efficacy of galantamine in vascular dementia and Alzheimer disease.« less

  8. Gene Copy-Number Variations (CNVs) of Complement C4 and C4A Deficiency in Genetic Risk and Pathogenesis of Juvenile Dermatomyositis

    PubMed Central

    Lintner, Katherine E.; Patwardhan, Anjali; Rider, Lisa G.; Abdul-Aziz, Rabheh; Wu, Yee Ling; Lundström, Emeli; Padyukov, Leonid; Zhou, Bi; Alhomosh, Alaaedin; Newsom, David; White, Peter; Jones, Karla B.; O’Hanlon, Terrance P.; Miller, Frederick W.; Spencer, Charles H.; Yu, C. Yung

    2017-01-01

    Objective Complement-mediated vasculopathy of muscle and skin are clinical features of juvenile dermatomyositis (JDM). We assess gene copy-number variations (CNVs) for complement C4 and its isotypes, C4A and C4B, in genetic risks and pathogenesis of JDM. Methods The study population included 105 JDM patients and 500 healthy European Americans. Gene copy-numbers (GCNs) for total C4, C4A, C4B and HLA-DRB1 genotypes were determined by Southern blots and PCRs. Processed activation product C4d bound to erythrocytes (E-C4d) was measured by flow cytometry. Global gene-expression microarrays were performed in 19 JDM and 7 controls using PAXgene-blood RNA. Differential expression levels for selected genes were validated by qPCR. Results Significantly lower GCNs and differences in distribution of GCN groups for total C4 and C4A were observed between JDM and controls. Lower GCN of C4A in JDM remained among HLA DR3-positive subjects (p=0.015). Homozygous or heterozygous C4A-deficiency was present in 40.0% of JDM compared to 18.2% of controls [odds ratio (OR)=3.00 (1.87–4.79), p=8.2x10−6]. JDM had higher levels of E-C4d than controls (p=0.004). In JDM, C4A-deficient subjects had higher levels of E-C4d (p=0.0003) and higher frequency of elevated levels of multiple serum muscle enzymes at diagnosis (p=0.004). Microarray profiling of blood RNA revealed upregulation of type I Interferon-stimulated genes and lower abundance of transcripts for T-cell and chemokine function genes in JDM, but this was less prominent among C4A-deficient or DR3-positive patients. Conclusions Complement C4A-deficiency appears to be an important factor for the genetic risk and pathogenesis of JDM, particularly in patients with a DR3-positive background. PMID:26493816

  9. Comparative Genomics of Pneumocystis Species Suggests the Absence of Genes for myo-Inositol Synthesis and Reliance on Inositol Transport and Metabolism

    PubMed Central

    Sesterhenn, Thomas M.; Collins, Margaret S.; Welge, Jeffrey A.

    2014-01-01

    ABSTRACT In the context of deciphering the metabolic strategies of the obligate pathogenic fungi in the genus Pneumocystis, the genomes of three species (P. carinii, P. murina, and P. jirovecii) were compared among themselves and with the free-living, phylogenetically related fission yeast (Schizosaccharomyces pombe). The underrepresentation of amino acid metabolism pathways compared to those in S. pombe, as well as the incomplete steroid biosynthesis pathway, were confirmed for P. carinii and P. jirovecii and extended to P. murina. All three Pneumocystis species showed overrepresentation of the inositol phosphate metabolism pathway compared to that in the fission yeast. In addition to those known in S. pombe, four genes, encoding inositol-polyphosphate multikinase (EC 2.7.1.151), inositol-pentakisphosphate 2-kinase (EC 2.7.1.158), phosphoinositide 5-phosphatase (EC 3.1.3.36), and inositol-1,4-bisphosphate 1-phosphatase (EC 3.1.3.57), were identified in the two rodent Pneumocystis genomes, P. carinii and P. murina. The P. jirovecii genome appeared to contain three of these genes but lacked phosphoinositide 5-phosphatase. Notably, two genes encoding enzymes essential for myo-inositol synthesis, inositol-1-phosphate synthase (INO1) and inositol monophosphatase (INM1), were absent from all three genomes, suggesting that Pneumocystis species are inositol auxotrophs. In keeping with the need to acquire exogenous inositol, two genes with products homologous to fungal inositol transporters, ITR1 and ITR2, were identified in P. carinii and P. murina, while P. jirovecii contained only the ITR1 homolog. The ITR and inositol metabolism genes in P. murina and P. carinii were expressed during fulminant infection as determined by reverse transcriptase real-time PCR of cDNA from infected lung tissue. Supplementation of in vitro culture with inositol yielded significant improvement of the viability of P. carinii for days 7 through 14. PMID:25370490

  10. The human serotonin N-acetyltransferase (EC 2.3.1.87) gene (AANAT): Structure, chromosomal localization, and tissue expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coon, S.L.; Bernard, M.; Roseboom, P.H.

    Serotonin N-acetyltransferase (arylalkylamine N-acetyltransferase, AA-NAT, HGMW-approved symbol AANAT;EC 2.3.1.87) is the penultimate enzyme in melatonin synthesis and controls the night/day rhythm in melatonin production in the vertebrate pineal gland. We have found that the human AA-NAT gene spans {approx}2.5 kb, contains four exons, and is located at chromosome 17q25. The open reading frame encodes a 23.2-kDa protein that is {approx}80% identical to sheep and rat AA-NAT. The AA-NAT transcript ({approx}1 kb) is highly abundant in the pineal gland and is expressed at lower levels in the retina and in the Y79 retinoblastoma cell line. AA-NAT mRNA is also detectable atmore » low levels in several brain regions and the pituitary gland, but not in several peripheral tissues examined. Brain and pituitary AA-NAT could modulate serotonin-dependent aspects of human behavior and pituitary function. 31 refs., 5 figs.« less

  11. Differential expression of catalase genes in Nicotiana plumbaginifolia (L.).

    PubMed Central

    Willekens, H; Langebartels, C; Tiré, C; Van Montagu, M; Inzé, D; Van Camp, W

    1994-01-01

    We have analyzed the expression of three catalase (Cat; EC 1.11.1.6) genes from Nicotiana plumbaginifolia by means of RNA blot and in situ hybridizations. Our data demonstrate that the expression of each catalase is associated with a particular H2O2-producing process. Cat1 appears to be specifically involved in the scavenging of photorespiratory H2O2 and is under control of a circadian rhythm, Cat2 is uniformly expressed in different organs with a cellular preference for vascular tissues, and the expression profile of Cat3 points to a role in glyoxysomal processes. Differential expression of these catalases is also manifested in response to temperature changes. DNA sequence comparison with other dicotyledonous catalases led to the identification of at least three distinct classes, which indicates that the functional organization of catalases is generally conserved in dicotyledonous plants. Images PMID:7937973

  12. Differential expression of catalase genes in Nicotiana plumbaginifolia (L.).

    PubMed

    Willekens, H; Langebartels, C; Tiré, C; Van Montagu, M; Inzé, D; Van Camp, W

    1994-10-25

    We have analyzed the expression of three catalase (Cat; EC 1.11.1.6) genes from Nicotiana plumbaginifolia by means of RNA blot and in situ hybridizations. Our data demonstrate that the expression of each catalase is associated with a particular H2O2-producing process. Cat1 appears to be specifically involved in the scavenging of photorespiratory H2O2 and is under control of a circadian rhythm, Cat2 is uniformly expressed in different organs with a cellular preference for vascular tissues, and the expression profile of Cat3 points to a role in glyoxysomal processes. Differential expression of these catalases is also manifested in response to temperature changes. DNA sequence comparison with other dicotyledonous catalases led to the identification of at least three distinct classes, which indicates that the functional organization of catalases is generally conserved in dicotyledonous plants.

  13. Thrombin selectively engages LIM kinase 1 and slingshot-1L phosphatase to regulate NF-κB activation and endothelial cell inflammation

    PubMed Central

    Leonard, Antony; Marando, Catherine; Rahman, Arshad

    2013-01-01

    Endothelial cell (EC) inflammation is a central event in the pathogenesis of many pulmonary diseases such as acute lung injury and its more severe form acute respiratory distress syndrome. Alterations in actin cytoskeleton are shown to be crucial for NF-κB regulation and EC inflammation. Previously, we have described a role of actin binding protein cofilin in mediating cytoskeletal alterations essential for NF-κB activation and EC inflammation. The present study describes a dynamic mechanism in which LIM kinase 1 (LIMK1), a cofilin kinase, and slingshot-1Long (SSH-1L), a cofilin phosphatase, are engaged by procoagulant and proinflammatory mediator thrombin to regulate these responses. Our data show that knockdown of LIMK1 destabilizes whereas knockdown of SSH-1L stabilizes the actin filaments through modulation of cofilin phosphorylation; however, in either case thrombin-induced NF-κB activity and expression of its target genes (ICAM-1 and VCAM-1) is inhibited. Further mechanistic analyses reveal that knockdown of LIMK1 or SSH-1L each attenuates nuclear translocation and thereby DNA binding of RelA/p65. In addition, LIMK1 or SSH-1L depletion inhibited RelA/p65 phosphorylation at Ser536, a critical event conferring transcriptional competency to the bound NF-κB. However, unlike SSH-1L, LIMK1 knockdown also impairs the release of RelA/p65 by blocking IKKβ-dependent phosphorylation/degradation of IκBα. Interestingly, LIMK1 or SSH-1L depletion failed to inhibit TNF-α-induced RelA/p65 nuclear translocation and proinflammatory gene expression. Thus this study provides evidence for a novel role of LIMK1 and SSH-1L in selectively regulating EC inflammation associated with intravascular coagulation. PMID:24039253

  14. Thrombin selectively engages LIM kinase 1 and slingshot-1L phosphatase to regulate NF-κB activation and endothelial cell inflammation.

    PubMed

    Leonard, Antony; Marando, Catherine; Rahman, Arshad; Fazal, Fabeha

    2013-11-01

    Endothelial cell (EC) inflammation is a central event in the pathogenesis of many pulmonary diseases such as acute lung injury and its more severe form acute respiratory distress syndrome. Alterations in actin cytoskeleton are shown to be crucial for NF-κB regulation and EC inflammation. Previously, we have described a role of actin binding protein cofilin in mediating cytoskeletal alterations essential for NF-κB activation and EC inflammation. The present study describes a dynamic mechanism in which LIM kinase 1 (LIMK1), a cofilin kinase, and slingshot-1Long (SSH-1L), a cofilin phosphatase, are engaged by procoagulant and proinflammatory mediator thrombin to regulate these responses. Our data show that knockdown of LIMK1 destabilizes whereas knockdown of SSH-1L stabilizes the actin filaments through modulation of cofilin phosphorylation; however, in either case thrombin-induced NF-κB activity and expression of its target genes (ICAM-1 and VCAM-1) is inhibited. Further mechanistic analyses reveal that knockdown of LIMK1 or SSH-1L each attenuates nuclear translocation and thereby DNA binding of RelA/p65. In addition, LIMK1 or SSH-1L depletion inhibited RelA/p65 phosphorylation at Ser(536), a critical event conferring transcriptional competency to the bound NF-κB. However, unlike SSH-1L, LIMK1 knockdown also impairs the release of RelA/p65 by blocking IKKβ-dependent phosphorylation/degradation of IκBα. Interestingly, LIMK1 or SSH-1L depletion failed to inhibit TNF-α-induced RelA/p65 nuclear translocation and proinflammatory gene expression. Thus this study provides evidence for a novel role of LIMK1 and SSH-1L in selectively regulating EC inflammation associated with intravascular coagulation.

  15. Impact of a short-term exposure to spaceflight on the phenotype, genome, transcriptome and proteome of Escherichia coli

    NASA Astrophysics Data System (ADS)

    Li, Tianzhi; Chang, De; Xu, Huiwen; Chen, Jiapeng; Su, Longxiang; Guo, Yinghua; Chen, Zhenhong; Wang, Yajuan; Wang, Li; Wang, Junfeng; Fang, Xiangqun; Liu, Changting

    2015-07-01

    Escherichia coli (E. coli) is the most widely applied model organism in current biological science. As a widespread opportunistic pathogen, E. coli can survive not only by symbiosis with human, but also outside the host as well, which necessitates the evaluation of its response to the space environment. Therefore, to keep humans safe in space, it is necessary to understand how the bacteria respond to this environment. Despite extensive investigations for a few decades, the response of E. coli to the real space environment is still controversial. To better understand the mechanisms how E. coli overcomes harsh environments such as microgravity in space and to investigate whether these factors may induce pathogenic changes in E. coli that are potentially detrimental to astronauts, we conducted detailed genomics, transcriptomic and proteomic studies on E. coli that experienced 17 days of spaceflight. By comparing two flight strains LCT-EC52 and LCT-EC59 to a control strain LCT-EC106 that was cultured under the same temperature conditions on the ground, we identified metabolism changes, polymorphism changes, differentially expressed genes and proteins in the two flight strains. The flight strains differed from the control in the utilization of more than 30 carbon sources. Two single nucleotide polymorphisms (SNPs) and one deletion were identified in the flight strains. The expression level of more than 1000 genes altered in flight strains. Genes involved in chemotaxis, lipid metabolism and cell motility express differently. Moreover, the two flight strains also differed extensively from each other in terms of metabolism, transcriptome and proteome, indicating the impact of space environment on individual cells is heterogeneous and probably genotype-dependent. This study presents the first systematic profile of E. coli genome, transcriptome and proteome after spaceflight, which helps to elucidate the mechanism that controls the adaptation of microbes to the space environment.

  16. Deletion of Rbpj from postnatal endothelium leads to abnormal arteriovenous shunting in mice

    PubMed Central

    Nielsen, Corinne M.; Cuervo, Henar; Ding, Vivianne W.; Kong, Yupeng; Huang, Eric J.; Wang, Rong A.

    2014-01-01

    Arteriovenous malformations (AVMs) are tortuous vessels characterized by arteriovenous (AV) shunts, which displace capillaries and shunt blood directly from artery to vein. Notch signaling regulates embryonic AV specification by promoting arterial, as opposed to venous, endothelial cell (EC) fate. To understand the essential role of endothelial Notch signaling in postnatal AV organization, we used inducible Cre-loxP recombination to delete Rbpj, a mediator of canonical Notch signaling, from postnatal ECs in mice. Deletion of endothelial Rbpj from birth resulted in features of AVMs by P14, including abnormal AV shunting and tortuous vessels in the brain, intestine and heart. We further analyzed brain AVMs, as they pose particular health risks. Consistent with AVM pathology, we found cerebral hemorrhage, hypoxia and necrosis, and neurological deficits. AV shunts originated from capillaries (and possibly venules), with the earliest detectable morphological abnormalities in AV connections by P8. Prior to AV shunt formation, alterations in EC gene expression were detected, including decreased Efnb2 and increased Pai1, which encodes a downstream effector of TGFβ signaling. After AV shunts had formed, whole-mount immunostaining showed decreased Efnb2 and increased Ephb4 expression within AV shunts, suggesting that ECs were reprogrammed from arterial to venous identity. Deletion of Rbpj from adult ECs led to tortuosities in gastrointestinal, uterine and skin vascular beds, but had mild effects in the brain. Our results demonstrate a temporal requirement for Rbpj in postnatal ECs to maintain proper artery, capillary and vein organization and to prevent abnormal AV shunting and AVM pathogenesis. PMID:25209249

  17. Activin receptor-like kinase 5 inhibition reverses impairment of endothelial cell viability by endogenous islet mesenchymal stromal cells.

    PubMed

    Clarkin, Claire E; King, Aileen J; Dhadda, Paramjeet; Chagastelles, Pedro; Nardi, Nance; Wheeler-Jones, Caroline P; Jones, Peter M

    2013-03-01

    Following islet transplantation, islet graft revascularization is compromised due to loss of endothelial cells (ECs) during islet culture. TGF-β signaling pathways are essential for vascular homeostasis but their importance for islet EC function is unclear. We have identified a population of multipotent mesenchymal stromal cells (MSCs) within islets and investigated how modulation of TGF-β signaling by these cells influences islet EC viability. Cultured islets exhibited reduced expression of EC markers (VEGFR2, VE-cadherin and CD31), which was associated with diminished but sustained expression of endoglin a marker of both ECs and MSCs. Double fluorescent labeling of islets in situ with the EC marker CD31 disclosed a population of CD31-negative cells which were positive for endoglin. In vitro coculture of microvascular ECs with endoglin-positive, CD31-negative islet MSCs reduced VEGFR2 protein expression, disrupted EC angiogenic behavior, and increased EC detachment. Medium conditioned by islet MSCs significantly decreased EC viability and increased EC caspase 3/7 activity. EC:MSC cocultures showed enhanced Smad2 phosphorylation consistent with altered ALK5 signaling. Pharmacological inhibition of ALK5 activity with SB431542 (SB) improved EC survival upon contact with MSCs, and SB-treated cultured islets retained EC marker expression and sensitivity to exogenous VEGF164 . Thus, endoglin-expressing islet MSCs influence EC ALK5 signaling in vitro, which decreases EC viability, and changes in ALK5 activity in whole cultured islets contribute to islet EC loss. Modifying TGF-β signaling may enable maintenance of islet ECs during islet isolation and thus improve islet graft revascularization post-transplantation. Copyright © 2013 AlphaMed Press.

  18. Epithelial Membrane Protein-2 Expression is an Early Predictor of Endometrial Cancer Development

    PubMed Central

    Habeeb, Omar; Goodglick, Lee; Soslow, Robert A.; Rao, Rajiv; Gordon, Lynn K.; Schirripa, Osvaldo; Horvath, Steve; Braun, Jonathan; Seligson, David B.; Wadehra, Madhuri

    2010-01-01

    BACKGROUND Endometrial cancer (EC) is a common malignancy worldwide. It is often preceded by endometrial hyperplasia, whose management and risk of neoplastic progression vary. Previously, we have shown that the tetraspan protein Epithelial Membrane Protein-2 (EMP2) is a prognostic indicator for EC aggressiveness and survival. Here we validate the expression of EMP2 in EC, and further examine whether EMP2 expression within preneoplastic lesions is an early prognostic biomarker for EC development. METHODS A tissue microarray (TMA) was constructed with a wide representation of benign and malignant endometrial samples. The TMA contains a metachronous cohort of cases from individuals who either developed or did not develop EC. Intensity and frequency of EMP2 expression were assessed using immunohistochemistry. RESULTS There was a stepwise, statistically-significant increase in the average EMP2 expression from benign to hyperplasia to atypia to EC. Furthermore, detailed analysis of EMP2 expression in potentially premalignant cases demonstrated that EMP2 positivity was a strong predictor for EC development. CONCLUSION EMP2 is an early predictor of EC development in preneoplastic lesions. In addition, combined with our previous findings, these results validate that EMP2 as a novel biomarker for EC development. PMID:20578181

  19. S100A6 regulates endothelial cell cycle progression by attenuating antiproliferative STAT1 signaling

    PubMed Central

    Lerchenmüller, Carolin; Heißenberg, Julian; Damilano, Federico; Bezzeridis, Vassilios J.; Krämer, Isabel; Bochaton-Piallat, Marie-Luce; Hirschberg, Kristóf; Busch, Martin; Katus, Hugo A.; Peppel, Karsten; Rosenzweig, Anthony; Busch, Hauke; Boerries, Melanie; Most, Patrick

    2016-01-01

    Objective S100A6, a member of the S100-protein family, has been described as relevant for cell cycle entry and progression in endothelial cells (ECs). The molecular mechanism conferring S100A6’s proliferative actions, however, remained elusive. Approach and Results Originating from the clinically relevant observation of enhanced S100A6 protein expression in proliferating ECs in remodeling coronary and carotid arteries, our study unveiled S100A6 as a suppressor of antiproliferative signal transducers and activators of transcription 1 (STAT1) signaling. Discovery of the molecular liaison was enabled by combining gene expression time series analysis with bioinformatic pathway modeling in S100A6 silenced human ECs stimulated with vascular endothelial growth factor A (VEGF-A). This unbiased approach led to successful identification and experimental validation of interferon-inducible transmembrane protein 1 (IFITM1) and protein inhibitors of activated STAT (PIAS) as key components of the link between S100A6 and STAT1. Conclusions Given the important role of coordinated EC cell cycle activity for integrity and reconstitution of the inner lining of arterial blood vessels in health and disease, STAT1 suppression by S100A6 may represent a promising therapeutic target to facilitate reendothelialization in damaged vessels. PMID:27386938

  20. Clinical prognostic significance and pro-metastatic activity of RANK/RANKL via the AKT pathway in endometrial cancer.

    PubMed

    Wang, Jing; Liu, Yao; Wang, Lihua; Sun, Xiao; Wang, Yudong

    2016-02-02

    RANK/RANKL plays a key role in metastasis of certain malignant tumors, which makes it a promising target for developing novel therapeutic strategies for cancer. However, the prognostic value and pro-metastatic activity of RANK in endometrial cancer (EC) remain to be determined. Thus, the present study investigated the effect of RANK on the prognosis of EC patients, as well as the pro-metastatic activity of EC cells. The results indicated that those with high expression of RANK showed decreased overall survival and progression-free survival. Statistical analysis revealed the positive correlations between RANK/RANKL expression and metastasis-related factors. Additionally, RANK/RANKL significantly promoted cell migration/invasion via activating AKT/β-catenin/Snail pathway in vitro. However, RANK/RANKL-induced AKT activation could be suppressed after osteoprotegerin (OPG) treatment. Furthermore, the combination of medroxyprogesterone acetate (MPA) and RANKL could in turn attenuate the effect of RANKL alone. Similarly, MPA could partially inhibit the RANK-induced metastasis in an orthotopic mouse model via suppressing AKT/β-catenin/Snail pathway. Therefore, therapeutic inhibition of MPA in RANK/RANKL-induced metastasis was mediated by AKT/β-catenin/Snail pathway both in vitro and in vivo, suggesting a potential target of RANK for gene-based therapy for EC.

  1. TNF induction of jagged-1 in endothelial cells is NFκB-dependent

    PubMed Central

    Johnston, Douglas A.; Dong, Bamboo; Hughes, Christopher C.W.

    2009-01-01

    TNF-α is a potent proinflammatory cytokine that induces endothelial cell (EC) adhesion molecules. In addition, TNF promotes angiogenesis by inducing an EC tip cell phenotype and the expression of jagged-1, a ligand for the notch pathway. Notch signaling is critical for vascular patterning and helps to restrict the proliferation of tip cells. Here we demonstrate that TNF induction of jagged-1 in human EC is rapid and dependent upon signaling through TNFR1, but not TNFR2. A luciferase reporter construct carrying 3.7 kb of 5′ promoter sequence from the human gene was responsive to both TNF and overexpression of NFκB pathway components. TNF-induced promoter activation was blocked by treatment with an NFκB inhibitor or co-expression of dominant-negative IKKβ. Mutations in a putative NFκB-binding site at −3.0 kb, which is conserved across multiple species, resulted in a loss of responsiveness to TNF and NFκB. Electromobility shift and chromatin immunoprecipitation assays revealed binding of both p50 and p65 to the promoter in response to TNF treatment. Full promoter activity also depends on an AP-1 site at −2.0 kb. These results indicate that canonical NFκB signaling is required for TNF induction of the notch ligand jagged-1 in EC. PMID:19393188

  2. c-Met–mediated endothelial plasticity drives aberrant vascularization and chemoresistance in glioblastoma

    PubMed Central

    Huang, Menggui; Liu, Tianrun; Ma, Peihong; Mitteer, R. Alan; Zhang, Zhenting; Kim, Hyun Jun; Yeo, Eujin; Zhang, Duo; Cai, Peiqiang; Li, Chunsheng; Zhang, Lin; Zhao, Botao; Roccograndi, Laura; O’Rourke, Donald M.; Dahmane, Nadia; Gong, Yanqing; Koumenis, Constantinos

    2016-01-01

    Aberrant vascularization is a hallmark of cancer progression and treatment resistance. Here, we have shown that endothelial cell (EC) plasticity drives aberrant vascularization and chemoresistance in glioblastoma multiforme (GBM). By utilizing human patient specimens, as well as allograft and genetic murine GBM models, we revealed that a robust endothelial plasticity in GBM allows acquisition of fibroblast transformation (also known as endothelial mesenchymal transition [Endo-MT]), which is characterized by EC expression of fibroblast markers, and determined that a prominent population of GBM-associated fibroblast-like cells have EC origin. Tumor ECs acquired the mesenchymal gene signature without the loss of EC functions, leading to enhanced cell proliferation and migration, as well as vessel permeability. Furthermore, we identified a c-Met/ETS-1/matrix metalloproteinase–14 (MMP-14) axis that controls VE-cadherin degradation, Endo-MT, and vascular abnormality. Pharmacological c-Met inhibition induced vessel normalization in patient tumor–derived ECs. Finally, EC-specific KO of Met inhibited vascular transformation, normalized blood vessels, and reduced intratumoral hypoxia, culminating in suppressed tumor growth and prolonged survival in GBM-bearing mice after temozolomide treatment. Together, these findings illustrate a mechanism that controls aberrant tumor vascularization and suggest that targeting Endo-MT may offer selective and efficient strategies for antivascular and vessel normalization therapies in GBM, and possibly other malignant tumors. PMID:27043280

  3. Induction of Human Blood Group A Antigen Expression on Mouse Cells, Using Lentiviral Gene Transduction

    PubMed Central

    Fan, Xiaohu; Lang, Haili; Zhou, Xianpei; Zhang, Li; Yin, Rong; Maciejko, Jessica; Giannitsos, Vasiliki; Motyka, Bruce; Medin, Jeffrey A.; Platt, Jeffrey L.

    2010-01-01

    Abstract The ABO histo-blood group system is the most important antigen system in transplantation medicine, yet no small animal model of the ABO system exists. To determine the feasibility of developing a murine model, we previously subcloned the human α-1,2-fucosyltransferase (H-transferase, EC 2.4.1.69) cDNA and the human α-1,3-N-acetylgalactosaminyltransferase (A-transferase, EC 2.4.1.40) cDNA into lentiviral vectors to study their ability to induce human histo-blood group A antigen expression on mouse cells. Herein we investigated the optimal conditions for human A and H antigen expression in murine cells. We determined that transduction of a bicistronic lentiviral vector (LvEF1-AH-trs) resulted in the expression of A antigen in a mouse endothelial cell line. We also studied the in vivo utility of this vector to induce human A antigen expression in mouse liver. After intrahepatic injection of LvEF1-AH-trs, A antigen expression was observed on hepatocytes as detected by immunohistochemistry and real-time RT-PCR. In human group A erythrocyte-sensitized mice, A antigen expression in the liver was associated with tissue damage, and deposition of antibody and complement. These results suggest that this gene transfer strategy can be used to simulate the human ABO blood group system in a murine model. This model will facilitate progress in the development of interventions for ABO-incompatible transplantation and transfusion scenarios, which are difficult to develop in clinical or large animal settings. PMID:20163247

  4. Phenotypically anchored transcriptome profiling of developmental exposure to the antimicrobial agent, triclosan, reveals hepatotoxicity in embryonic zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haggard, Derik E.

    Triclosan (TCS) is an antimicrobial agent commonly found in a variety of personal care products and cosmetics. TCS readily enters the environment through wastewater and is detected in human plasma, urine, and breast milk due to its widespread use. Studies have implicated TCS as a disruptor of thyroid and estrogen signaling; therefore, research examining the developmental effects of TCS is warranted. In this study, we used embryonic zebrafish to investigate the developmental toxicity and potential mechanism of action of TCS. Embryos were exposed to graded concentrations of TCS from 6 to 120 hours post-fertilization (hpf) and the concentration where 80%more » of the animals had mortality or morbidity at 120 hpf (EC{sub 80}) was calculated. Transcriptomic profiling was conducted on embryos exposed to the EC{sub 80} (7.37 μM). We identified a total of 922 significant differentially expressed transcripts (FDR adjusted P-value ≤ 0.05; fold change ≥ 2). Pathway and gene ontology enrichment analyses identified biological networks and transcriptional hubs involving normal liver functioning, suggesting TCS may be hepatotoxic in zebrafish. Tissue-specific gene enrichment analysis further supported the role of the liver as a target organ for TCS toxicity. We also examined the in vitro bioactivity profile of TCS reported by the ToxCast screening program. TCS had a diverse bioactivity profile and was a hit in 217 of the 385 assay endpoints we identified. We observed similarities in gene expression and hepatic steatosis assays; however, hit data for TCS were more concordant with the hypothesized CAR/PXR activity of TCS from rodent and human in vitro studies. - Highlights: • Triclosan is a common antimicrobial agent with widespread human exposure. • Exposure to the triclosan EC{sub 80} causes robust gene expression changes in zebrafish. • The liver may be a target organ of triclosan toxicity in embryonic zebrafish. • Triclosan disrupts normal liver functioning and development in embryonic zebrafish. • A summary of triclosan's bioactivity profile in the ToxCast program is discussed.« less

  5. rigor mortis encodes a novel nuclear receptor interacting protein required for ecdysone signaling during Drosophila larval development.

    PubMed

    Gates, Julie; Lam, Geanette; Ortiz, José A; Losson, Régine; Thummel, Carl S

    2004-01-01

    Pulses of the steroid hormone ecdysone trigger the major developmental transitions in Drosophila, including molting and puparium formation. The ecdysone signal is transduced by the EcR/USP nuclear receptor heterodimer that binds to specific response elements in the genome and directly regulates target gene transcription. We describe a novel nuclear receptor interacting protein encoded by rigor mortis (rig) that is required for ecdysone responses during larval development. rig mutants display defects in molting, delayed larval development, larval lethality, duplicated mouth parts, and defects in puparium formation--phenotypes that resemble those seen in EcR, usp, E75A and betaFTZ-F1 mutants. Although the expression of these nuclear receptor genes is essentially normal in rig mutant larvae, the ecdysone-triggered switch in E74 isoform expression is defective. rig encodes a protein with multiple WD-40 repeats and an LXXLL motif, sequences that act as specific protein-protein interaction domains. Consistent with the presence of these elements and the lethal phenotypes of rig mutants, Rig protein interacts with several Drosophila nuclear receptors in GST pull-down experiments, including EcR, USP, DHR3, SVP and betaFTZ-F1. The ligand binding domain of betaFTZ-F1 is sufficient for this interaction, which can occur in an AF-2-independent manner. Antibody stains reveal that Rig protein is present in the brain and imaginal discs of second and third instar larvae, where it is restricted to the cytoplasm. In larval salivary gland and midgut cells, however, Rig shuttles between the cytoplasm and nucleus in a spatially and temporally regulated manner, at times that correlate with the major lethal phase of rig mutants and major switches in ecdysone-regulated gene expression. Taken together, these data indicate that rig exerts essential functions during larval development through gene-specific effects on ecdysone-regulated transcription, most likely as a cofactor for one or more nuclear receptors. Furthermore, the dynamic intracellular redistribution of Rig protein suggests that it may act to refine spatial and temporal responses to ecdysone during development.

  6. Endocrine disruption screening by protein and gene expression of vitellogenin in freshly isolated and cryopreserved rainbow trout hepatocytes.

    PubMed

    Markell, Lauren K; Mingoia, Robert T; Peterson, Heather M; Yao, Jianhong; Waters, Stephanie M; Finn, James P; Nabb, Diane L; Han, Xing

    2014-08-18

    Xenobiotics may activate the estrogen receptor, resulting in alteration of normal endocrine functions in animals and humans. Consequently, this necessitates development of assay end points capable of identifying estrogenic xenobiotics. In the present study, we screened the potential estrogenicity of chemicals via their ability to induce vitellogenin (VTG) expression in cultured primary hepatocytes from male trout. A routine method for VTG detection measures the secretion of the protein by enzyme-linked immunosorbent assay (ELISA) in freshly isolated trout hepatocytes. However, this lengthy (6 days) culturing procedure requires that hepatocyte isolation is performed each time the assay is run. We optimized this methodology by investigating the utility of cryopreserved hepatocytes, shortening the incubation time, performing a quantitative real-time PCR (qPCR) method for VTG quantification, and verifying the model system with reference chemicals 17β-estradiol, estrone, diethylstilbestrol, hexestrol, genistein, and a negative control, corticosterone. To test the performance of both freshly isolated and cryopreserved hepatocytes, mRNA was collected from hepatocytes following 24 h treatment for VTG gene expression analysis, whereas cell culture media was collected for a VTG ELISA 96 h post-treatment. EC50 values were obtained for each reference chemical except for corticosterone, which exhibited no induction of VTG gene or protein level. Our results show linear concordance between ELISA and qPCR detection methods. Although there was approximately 50% reduction in VTG inducibility following cryopreservation, linear concordance of EC50 values was found between freshly isolated and cryopreserved hepatocytes, indicating that cryopreservation does not alter the functional assessment of estrogen receptor activation and therefore VTG expression. These studies demonstrate that qPCR is a sensitive and specific method for detecting VTG gene expression that can be used together with cryopreserved trout hepatocytes for screening estrogenic chemicals, resulting in a reduction of the time required to perform the assay and enabling greater access to the model system through the approach of cryopreservation.

  7. Interleukin-1beta and interleukin-6 disturb the antioxidant enzyme system in bovine chondrocytes: a possible explanation for oxidative stress generation.

    PubMed

    Mathy-Hartert, M; Hogge, L; Sanchez, C; Deby-Dupont, G; Crielaard, J M; Henrotin, Y

    2008-07-01

    Beside matrix metalloproteinases, reactive oxygen species (ROS) are the main biochemical factors of cartilage degradation. To prevent ROS toxicity, chondrocytes possess a well-coordinated enzymatic antioxidant system formed principally by superoxide dismutases (SODs), catalase (CAT) and glutathione peroxidase (GPX). This work was designed to assess the effects of interleukin (IL)-1beta and IL-6 on the enzymatic activity and gene expression of SODs, CAT and GPX in bovine chondrocytes. Bovine chondrocytes were cultured in monolayer for 4-96 h in the absence or in the presence of IL-1beta (0.018-1.8ng/ml) or IL-6 (10-100 ng/ml). To study signal transduction pathway, inhibitors of mitogen-activated protein kinases (MAPK) (PD98059, SB203580 and SP600125) (5-20 microM) and nuclear factor (NF)-kappaB inhibitors [BAY11-7082 (1-10 microM) and MG132 (0.1-10 microM)] were used. SODs, CAT and GPX enzymatic activities were evaluated in cellular extract by using colorimetric enzymatic assays. Mn SODs, Cu/Zn SOD, extracellular SOD (EC SOD), CAT and GPX gene expressions were quantified by real-time and quantitative polymerase chain reaction (PCR). Mn SOD and GPX activities were dose and time-dependently increased by IL-1beta. In parallel, IL-1beta markedly enhanced Mn SOD and GPX gene expressions, but decreased Cu/Zn SOD, EC SOD and CAT gene expressions. Induction of SOD enzymatic activity and Mn SOD mRNA expression were inhibited by NF-kappaB inhibitors but not by MAPK inhibitors. IL-6 effects were similar but weaker than those of IL-1beta. In conclusion, IL-1beta, and to a lesser extend IL-6, dysregulates enzymatic antioxidant defenses in chondrocyte. These changes could lead to a transient accumulation of H(2)O(2) in mitochondria, and consequently to mitochondria damage. These changes contribute to explain the mitochondrial dysfunction observed in osteoarthritis chondrocytes.

  8. Neutrophil Activation of Endothelial Cell-Expressed TRPM2 Mediates Transendothelial Neutrophil Migration and Vascular Injury.

    PubMed

    Mittal, Manish; Nepal, Saroj; Tsukasaki, Yoshikazu; Hecquet, Claudie M; Soni, Dheeraj; Rehman, Jalees; Tiruppathi, Chinnaswamy; Malik, Asrar B

    2017-10-13

    TRPM2 (transient receptor potential melastatin-2) expressed in endothelial cells (ECs) is a cation channel mediating Ca 2+ entry in response to intracellular generation of adenosine diphosphoribose-the TRPM2 ligand. Because polymorphonuclear neutrophils (PMN) interaction with ECs generates reactive oxygen species, we addressed the possible role of TRPM2 expressed in ECs in the mechanism of transendothelial migration of PMNs. We observed defective PMN transmigration in response to lipopolysaccharide challenge in adult mice in which the EC expressed TRPM2 is conditionally deleted ( Trpm2 iΔEC ). PMN interaction with ECs induced the entry of Ca 2+ in ECs via the EC-expressed TRPM2. Prevention of generation of adenosine diphosphoribose in ECs significantly reduced Ca 2+ entry in response to PMN activation of TRPM2 in ECs. PMNs isolated from gp91phox -/- mice significantly reduced Ca 2+ entry in ECs via TRPM2 as compared with wild-type PMNs and failed to induce PMN transmigration. Overexpression of the adenosine diphosphoribose insensitive TRPM2 mutant channel (C1008→A) in ECs suppressed the Ca 2+ entry response. Further, the forced expression of TRPM2 mutant channel (C1008→A) or silencing of poly ADP-ribose polymerase in ECs of mice prevented PMN transmigration. Thus, endotoxin-induced transmigration of PMNs was secondary to TRPM2-activated Ca 2+ signaling and VE-cadherin phosphorylation resulting in the disassembly of adherens junctions and opening of the paracellular pathways. These results suggest blocking TRPM2 activation in ECs is a potentially important means of therapeutically modifying PMN-mediated vascular inflammation. © 2017 American Heart Association, Inc.

  9. Erwinia carotovora elicitors and Botrytis cinerea activate defense responses in Physcomitrella patens

    PubMed Central

    Ponce de León, Inés; Oliver, Juan Pablo; Castro, Alexandra; Gaggero, Carina; Bentancor, Marcel; Vidal, Sabina

    2007-01-01

    Background Vascular plants respond to pathogens by activating a diverse array of defense mechanisms. Studies with these plants have provided a wealth of information on pathogen recognition, signal transduction and the activation of defense responses. However, very little is known about the infection and defense responses of the bryophyte, Physcomitrella patens, to well-studied phytopathogens. The purpose of this study was to determine: i) whether two representative broad host range pathogens, Erwinia carotovora ssp. carotovora (E.c. carotovora) and Botrytis cinerea (B. cinerea), could infect Physcomitrella, and ii) whether B. cinerea, elicitors of a harpin (HrpN) producing E.c. carotovora strain (SCC1) or a HrpN-negative strain (SCC3193), could cause disease symptoms and induce defense responses in Physcomitrella. Results B. cinerea and E.c. carotovora were found to readily infect Physcomitrella gametophytic tissues and cause disease symptoms. Treatments with B. cinerea spores or cell-free culture filtrates from E.c. carotovoraSCC1 (CF(SCC1)), resulted in disease development with severe maceration of Physcomitrella tissues, while CF(SCC3193) produced only mild maceration. Although increased cell death was observed with either the CFs or B. cinerea, the occurrence of cytoplasmic shrinkage was only visible in Evans blue stained protonemal cells treated with CF(SCC1) or inoculated with B. cinerea. Most cells showing cytoplasmic shrinkage accumulated autofluorescent compounds and brown chloroplasts were evident in a high proportion of these cells. CF treatments and B. cinerea inoculation induced the expression of the defense-related genes: PR-1, PAL, CHS and LOX. Conclusion B. cinerea and E.c. carotovora elicitors induce a defense response in Physcomitrella, as evidenced by enhanced expression of conserved plant defense-related genes. Since cytoplasmic shrinkage is the most common morphological change observed in plant PCD, and that harpins and B. cinerea induce this type of cell death in vascular plants, our results suggest that E.c. carotovora CFSCC1 containing HrpN and B. cinerea could also induce this type of cell death in Physcomitrella. Our studies thus establish Physcomitrella as an experimental host for investigation of plant-pathogen interactions and B. cinerea and elicitors of E.c. carotovora as promising tools for understanding the mechanisms involved in defense responses and in pathogen-mediated cell death in this simple land plant. PMID:17922917

  10. Modulation of organic acids and sugar content in tomato fruits by an abscisic acid-regulated transcription factor.

    PubMed

    Bastías, Adriana; López-Climent, María; Valcárcel, Mercedes; Rosello, Salvador; Gómez-Cadenas, Aurelio; Casaretto, José A

    2011-03-01

    Growing evidence suggests that the phytohormone abscisic acid (ABA) plays a role in fruit development. ABA signaling components of developmental programs and responses to stress conditions include the group of basic leucine zipper transcriptional activators known as ABA-response element binding factors (AREBs/ABFs). AREB transcription factors mediate ABA-regulated gene expression involved in desiccation tolerance and are expressed mainly in seeds and in vegetative tissues under stress; however, they are also expressed in some fruits such as tomato. In order to get an insight into the role of ABA signaling in fruit development, the expression of two AREB-like factors were investigated during different developmental stages. In addition, tomato transgenic lines that overexpress and downregulate one AREB-like transcription factor, SlAREB1, were used to determine its effect on the levels of some metabolites determining fruit quality. Higher levels of citric acid, malic acid, glutamic acid, glucose and fructose were observed in SlAREB1-overexpressing lines compared with those in antisense suppression lines in red mature fruit pericarp. The higher hexose concentration correlated with increased expression of genes encoding a vacuolar invertase (EC 3.2.1.26) and a sucrose synthase (EC 2.4.1.13). No significant changes were found in ethylene content which agrees with the normal ripening phenotype observed in transgenic fruits. These results suggest that an AREB-mediated ABA signal affects the metabolism of these compounds during the fruit developmental program. Copyright © Physiologia Plantarum 2010.

  11. Hypomethylation associated enhanced transcription of trefoil factor-3 mediates tamoxifen-stimulated oncogenicity of ER+ endometrial carcinoma cells.

    PubMed

    Pandey, Vijay; Zhang, Min; Chong, Qing-Yun; You, Mingliang; Raquib, Ainiah Rushdiana; Pandey, Amit K; Liu, Dong-Xu; Liu, Liang; Ma, Lan; Jha, Sudhakar; Wu, Zheng-Sheng; Zhu, Tao; Lobie, Peter E

    2017-09-29

    Tamoxifen (TAM) is widely used as an adjuvant therapy for women with breast cancer (BC). However, TAM possesses partial oestrogenic activity in the uterus and its use has been associated with an increased incidence of endometrial carcinoma (EC). The molecular mechanism for these observations is not well understood. Herein, we demonstrated that forced expression of Trefoil factor 3 ( TFF3) , in oestrogen receptor-positive (ER+) EC cells significantly increased cell cycle progression, cell survival, anchorage-independent growth, invasiveness and tumour growth in xenograft models. Clinically, elevated TFF3 protein expression was observed in EC compared with normal endometrial tissue, and its increased expression in EC was significantly associated with myometrial invasion. TAM exposure increased expression of TFF3 in ER+ EC cells and its elevated expression resulted in increased oncogenicity and invasiveness. TAM-stimulated expression of TFF3 in EC cells was associated with hypomethylation of the TFF3 promoter sequence and c-JUN/SP1-dependent transcriptional activation. In addition, small interfering ( si) RNA -mediated depletion or polyclonal antibody inhibition of TFF3 significantly abrogated oncogenicity and invasiveness in EC cells consequent to TAM induction or forced expression of TFF3. Hence, TAM-stimulated upregulation of TFF3 in EC cells was critical in promoting EC progression associated with TAM treatment. Importantly, inhibition of TFF3 function might be an attractive molecular modality to abrogate the stimulatory effects of TAM on endometrial tissue and to limit the progression of EC.

  12. DEPTOR regulates vascular endothelial cell activation and proinflammatory and angiogenic responses.

    PubMed

    Bruneau, Sarah; Nakayama, Hironao; Woda, Craig B; Flynn, Evelyn A; Briscoe, David M

    2013-09-05

    The maintenance of normal tissue homeostasis and the prevention of chronic inflammatory disease are dependent on the active process of inflammation resolution. In endothelial cells (ECs), proinflammation results from the activation of intracellular signaling responses and/or the inhibition of endogenous regulatory/pro-resolution signaling networks that, to date, are poorly defined. In this study, we find that DEP domain containing mTOR interacting protein (DEPTOR) is expressed in different microvascular ECs in vitro and in vivo, and using a small interfering RNA (siRNA) knockdown approach, we find that it regulates mammalian target of rapamycin complex 1 (mTORC1), extracellular signal-regulated kinase 1/2, and signal transducer and activator of transcription 1 activation in part through independent mechanisms. Moreover, using limited gene arrays, we observed that DEPTOR regulates EC activation including mRNA expression of the T-cell chemoattractant chemokines CXCL9, CXCL10, CXCL11, CX3CL1, CCL5, and CCL20 and the adhesion molecules intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 (P < .05). DEPTOR siRNA-transfected ECs also bound increased numbers of peripheral blood mononuclear cells (P < .005) and CD3+ T cells (P < .005) in adhesion assays in vitro and had increased migration and angiogenic responses in spheroid sprouting (P < .01) and wound healing (P < .01) assays. Collectively, these findings define DEPTOR as a critical upstream regulator of EC activation responses and suggest that it plays an important role in endogenous mechanisms of anti-inflammation and pro-resolution.

  13. Expression optimization and biochemical characterization of a recombinant gamma-glutamyltranspeptidase from Escherichia coli novablue.

    PubMed

    Yao, Ya-Feng; Weng, Yih-Ming; Hu, Hui-Yu; Ku, Kuo-Lung; Lin, Long-Liu

    2006-09-01

    A truncated Escherichia coli Novablue gamma-glutamyltranspeptidase (EcGGT) gene lacking the first 48-bp coding sequence for part of the signal sequence was amplified by polymerase chain reaction and cloned into expression vector pQE-30 to generate pQE-EcGGT. The maximum production of His(6)-tagged enzyme by E. coli M15 (pQE-EcGGT) was achieved with 0.1 mM IPTG induction for 12 h at 20 degrees C. The overexpressed enzyme was purified to homogeneity by nickel-chelate chromatography to a specific transpeptidase activity of 4.25 U/mg protein and a final yield of 83%. The molecular masses of the subunits of the purified enzyme were estimated to be 41 and 21 kDa respectively by SDS-PAGE, indicating EcGGT still undergoes the post-translational cleavage even in the truncation of signal sequence. The optimum temperature and pH for the recombinant enzyme were 40 degrees C and 9, respectively. The apparent K (m) and V (max) values for gamma-glutamyl-p-nitroanilide as gamma-glutamyl donor in the transpeptidation reaction were 37.9 microM and 53.7 x 10(-3) mM min(-1), respectively. The synthesis of L -theanine was performed in a reaction mixture containing 10 mM L -Gln, 40 mM ethylamine, and 1.04 U His(6)-tagged EcGGT/ml, pH 10, and a conversion rate of 45% was obtained.

  14. Endoplasmic reticulum stress in complex atypical hyperplasia as a possible predictor of occult carcinoma and progestin response.

    PubMed

    Tierney, Katherine E; Ji, Lingyun; Dralla, Shannon S; Yoo, Eunjeong; Yessaian, Annie; Pham, Huyen Q; Roman, Lynda; Sposto, Richard; Mhawech-Fauceglia, Paulette; Lin, Yvonne G

    2016-12-01

    Glucose-regulated protein (GRP)-78, the key regulator of endoplasmic reticulum (ER) stress, is associated with endometrial cancer (EC) development and progression. However, its role in the continuum from complex atypical hyperplasia (CAH) to EC is unknown and the focus of this study. 252 formalin-fixed, paraffin-embedded endometrial biopsies from patients with CAH diagnosed between 2003 and 2011 were evaluated for GRP78 expression by immunohistochemistry. Expression was also evaluated in subsequent biopsies from those patients treated with progestins. Differences in GRP78 expression were assessed using standard statistical methods. GRP78 expression was undetectable in 45(18%) patients with CAH, while 120(48%) CAH cases showed moderate/strong expression. Among women who ultimately underwent hysterectomy for CAH (n=134), 54(40%) had occult EC while 57(43%) had persistent CAH. Those with occult EC upon hysterectomy had significantly stronger GRP78 expression than those who did not have occult EC (p=0.007). Greater GRP78 expression within CAH remained independently associated with the presence of an occult EC (p=0.017). Thirty-four of 54 (63%) patients with occult EC had moderate/strong GRP78 expression compared to 36 of 80 (45%) patients with persistent CAH, benign or non-atypical hyperplastic endometrium. In those treated with progestins, samples with persistent CAH and EC were more likely to have high levels of GRP78 expression in the initial biopsies than those who responded (p=0.014). Increased GRP78 expression in untreated CAH correlates with the presence of an occult EC. In addition, CAH specimens with greater GRP78 expression may identify patients who are less likely to respond to progestin therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Microsatellite polymorphism in the P1 promoter region of the IGF-1 gene is associated with endometrial cancer

    PubMed Central

    KWASNIEWSKI, WOJCIECH; GOZDZICKA-JOZEFIAK, ANNA; WOLUN-CHOLEWA, MARIA; POLAK, GRZEGORZ; SIEROCINSKA-SAWA, JADWIGA; KWASNIEWSKA, ANNA; KOTARSKI, JAN

    2016-01-01

    Endometrial carcinoma (EC) is the most common type of gynecological malignancy. Studies have demonstrated that the insulin growth factor (IGF) pathway is implicated in the development of endometrial tumors and that the serum levels of IGF-1 are affected by estrogen. Most EC cells with high microsatellite instability (MSI-H) accumulate mutations at a microsatellite sequence in the IGF-1 gene. The present study investigated the CA repeat polymorphism in the P1 promoter region of the IGF-1 gene among Caucasian females with endometrial hyperplasia, EC and healthy control subjects, whose blood serum and surgical tissue specimens were analyzed. Differences or correlations between the analyzed parameters [serum levels of IGF-1 and IGF binding protein (IGFBP)-1 and IGFBP-3 as well as estrogens among the polymorphisms] were verified using the χ2, Mann-Whitney U, Kruskal-Wallis or Spearman's rank correlation tests. A PCR amplification and DNA sequencing analysis was used for identification of (CA)n repeats in the P1 region of IGF-1. ELISA was used to determine the blood serum levels of IGF-1, IGFBP-1, IGFBP-3 and estrogens. Furthermore, IGF-1 was assessed in endometrial tissues by immunohistochemical analysis. The present study indicated no statistically significant differences between serum levels of IGF-1, IGFBP-1, IGFBP-3 and estrone, estriol and estradiol in the control and study groups. A significant correlation was identified between the IGF-1 levels and estrone levels in the MSI-H polymorphism (r=−0.41, P=0.012) as well as a highly negative correlation between IGF-1 levels and the estradiol levels in the MSI-H polymorphism (r=−0.6, P=0.002). Genotypes without the 19 CA allele were predominantly found in EC. Furthermore, statistical analysis indicated that the number of IGF-1-expressing cells was significantly elevated in MSI-H type 18-20 (P= 0.0072), MSI-L type 19-20 (P=0.025) and microsatellite-stable MSS type 19-19 (P=0.024) compared with those in the MSI-H 20-20 genotype. The present study suggested that it is rather likely that the polymorphisms in the IGF-1 promoter are associated with EC in Caucasian females with regard to its development. In the present study, polymorphisms of the IGF-1 promoter may have been introduced during the genesis of EC and contributed to it by leading to aberrant expression of IGF-1. PMID:27121258

  16. Ecdysone-dependent and ecdysone-independent programmed cell death in the developing optic lobe of Drosophila.

    PubMed

    Hara, Yusuke; Hirai, Keiichiro; Togane, Yu; Akagawa, Hiromi; Iwabuchi, Kikuo; Tsujimura, Hidenobu

    2013-02-01

    The adult optic lobe of Drosophila develops from the primordium during metamorphosis from mid-3rd larval stage to adult. Many cells die during development of the optic lobe with a peak of the number of dying cells at 24 h after puparium formation (h APF). Dying cells were observed in spatio-temporal specific clusters. Here, we analyzed the function of a component of the insect steroid hormone receptor, EcR, in this cell death. We examined expression patterns of two EcR isoforms, EcR-A and EcR-B1, in the optic lobe. Expression of each isoform altered during development in isoform-specific manner. EcR-B1 was not expressed in optic lobe neurons from 0 to 6h APF, but was expressed between 9 and 48 h APF and then disappeared by 60 h APF. In each cortex, its expression was stronger in older glia-ensheathed neurons than in younger ones. EcR-B1 was also expressed in some types of glia. EcR-A was expressed in optic lobe neurons and many types of glia from 0 to 60 h APF in a different pattern from EcR-B1. Then, we genetically analyzed EcR function in the optic lobe cell death. At 0 h APF, the optic lobe cell death was independent of any EcR isoforms. In contrast, EcR-B1 was required for most optic lobe cell death after 24 h APF. It was suggested that cell death cell-autonomously required EcR-B1 expressed after puparium formation. βFTZ-F1 was also involved in cell death in many dying-cell clusters, but not in some of them at 24 h APF. Altogether, the optic lobe cell death occurred in ecdysone-independent manner at prepupal stage and ecdysone-dependent manner after 24 h APF. The acquisition of ecdysone-dependence was not directly correlated with the initiation or increase of EcR-B1 expression. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Changes in ecdysteroid levels and expression patterns of ecdysteroid-responsive factors and neuropeptide hormones during the embryogenesis of the blue crab, Callinectes sapidus.

    PubMed

    Techa, Sirinart; Alvarez, Javier V; Sook Chung, J

    2015-04-01

    Embryogenesis requires the involvement and coordination of multiple networks of various genes, according to a timeline governing development. Crustacean embryogenesis usually includes the first molt, a process that is known to be positively controlled by ecdysteroids. We determined the amounts of ecdysteroids, as well as other related factors: the ecdysone receptor (CasEcR), the retinoid X receptor (CasRXR), the molt-inhibiting hormone (CasMIH), and crustacean hyperglycemic hormone (CasCHH) during the ovarian and embryonic developments of Callinectes sapidus. In summary, the ovaries at stages 1-4 have expression levels of maternal CasEcR and CasRXR 10-50 times higher than levels seen in embryos at the yolk stage. This large difference in the amount of the these factors in C. sapidus ovaries suggests that these maternal ecdysteroid-responsive factors may be utilized at the initiation of embryogenesis. During embryogenesis, the changes in total ecdysteroids and levels of CasEcR and CasRXR expression are similar to those observed in juvenile molts. The full-length cDNA sequence of the C. sapidus BTB domain protein (CasBTBDP) initially isolated from Y-organ cDNA, contains only Broad-Complex, Tramtrack, and Bric a brac (BTB) domains. The levels of CasBTBDP are kept constant throughout embryogenesis. The expression profiles of CasMIH and CasCHH are similar to the titers of ecdysteroids. However, the timing of their appearance is followed by increases in CasEcRs and CasRXRs, implying that the expressions of these neuropeptides may be influenced by ecdysteroids. Moreover, the ecdysteroid profile during embryogenesis may track directly with the timing of organogenesis of Y-organs and their activity. Our work reports, for first time, the observed expression and changes of ecdysteroid-responsive factors, along with CasCHH and CasMIH, during embryogenesis in the crustacean C. sapidus. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. CagA-positive and CagA-negative Helicobacter pylori strains differentially affect the expression of micro RNAs 21, 92a, 155 and 663 in human umbilical vein endothelial cells.

    PubMed

    Kalani, M; Hodjati, H; GhamarTalepoor, A; Samsami Dehaghani, A; Doroudchi, M

    2017-01-30

    Given that the basic mechanism of the effect of Helicobacter (H.) pylori in the induction of atherosclerosis remains unknown and regarding the regulatory role of micro RNAs (miRNAs) in endothelial cell (EC) functions, we aimed to investigate the effect of H. pylori on the expression of miRNAs involved in atherosclerosis (atheromiRs) and their correlation with apoptosis in human umbilical vein EC (HUVEC). HUVECs were treated with different cytotoxin associated gene A (CagA) positive and negative H. pylori derived products, then the levels of apoptosis and miR-21, 92a, 155 and 663 were measured using flowcytometry and real time-PCR methods, respectively. Although, comparing induced apoptosis and necrosis in HUVECs revealed that water extract of CagA+ H. pylori (HpWE) was more potent than CagA- one and H. pylori lipopolysacharide (Hp-LPS), no significant difference was observed between LPS extracted from CagA+ and CagA- strains. Besides, CagA+ HpWE significantly increased the levels of anti-apoptotic miR-21, and inflammatory miRNAs 155 and 663 but not miR-92a. A positive correlation was observed between apoptosis and necrosis and miR-155 as well as the expressions of miR-21 with miR-155 (P=0.024) and miR-663 (P=0.0001). As H. pylori products differentially influenced phenotypic and epigenetic changes in ECs pictured in apoptosis and in the expression of atheromiRs, we suggest that the presence of CagA molecule accompanied by these atheromiRs may act as beneficial biomarkers predicting ECs apoptosis as a sign of plaque rupture.

  19. Phenobarbital reduces blood glucose and gluconeogenesis through down-regulation of phosphoenolpyruvate carboxykinase (GTP) gene expression in rats.

    PubMed

    Oda, Hiroaki; Okuda, Yuji; Yoshida, Yukiko; Kimura, Noriko; Kakinuma, Atsushi

    2015-10-23

    The regulatory mechanism of phosphoenolpyruvate carboykinase (GTP) (EC 4.1.1.32) (PEPCK) gene expression and gluconeogenesis by phenobarbital (PB), which is known to induce drug-metabolizing enzymes, was investigated. Higher level of PEPCK mRNA was observed in spherical rat primary hepatocytes on EHS-gel than monolayer hepatocytes on TIC (type I collagen). We found that PB directly suppressed PEPCK gene expression in spherical hepatocytes on EHS-gel, but not in those on TIC. PB strongly suppressed cAMP-dependent induction of PEPCK gene expression. Tyrosine aminotransferase (TAT), another gluconeogenic enzyme, was induced by cAMP, but not suppressed by PB. Chronic administration of PB reduced hepatic PEPCK mRNA in streptozotocin-induced diabetic and nondiabetic rats, and PB reduced blood glucose level in diabetic rats. Increased TAT mRNA in diabetic rats was not suppressed by PB. These results indicated that PB-dependent reduction is specific to PEPCK. From pyrvate challenge test, PB suppressed the increased gluconeogenesis in diabetic rats. PEPCK gene promoter activity was suppressed by PB in HepG2 cells. In conclusion, we found that spherical hepatocytes cultured on EHS-gel are capable to respond to PB to suppress PEPCK gene expression. Moreover, our results indicate that hypoglycemic action of PB result from transcriptional repression of PEPCK gene and subsequent suppression of gluconeogenesis. Copyright © 2015. Published by Elsevier Inc.

  20. Increased resveratrol production in wines using engineered wine strains Saccharomyces cerevisiae EC1118 and relaxed antibiotic or auxotrophic selection.

    PubMed

    Sun, Ping; Liang, Jing-Long; Kang, Lin-Zhi; Huang, Xiao-Yan; Huang, Jia-Jun; Ye, Zhi-Wei; Guo, Li-Qiong; Lin, Jun-Fang

    2015-01-01

    Resveratrol is a polyphenolic compound with diverse beneficial effects on human health. Red wine is the major dietary source of resveratrol but the amount that people can obtain from wines is limited. To increase the resveratrol production in wines, two expression vectors carrying 4-coumarate: coenzyme A ligase gene (4CL) from Arabidopsis thaliana and resveratrol synthase gene (RS) from Vitis vinifera were transformed into industrial wine strain Saccharomyces cerevisiae EC1118. When cultured with 1 mM p-coumaric acid, the engineered strains grown with and without the addition of antibiotics produced 8.249 and 3.317 mg/L of trans-resveratrol in the culture broth, respectively. Resveratrol content of the wine fermented with engineered strains was twice higher than that of the control, indicating that our engineered strains could increase the production of resveratrol during wine fermentation. © 2015 American Institute of Chemical Engineers.

  1. The missing step of the L-galactose pathway of ascorbate biosynthesis in plants, an L-galactose guanyltransferase, increases leaf ascorbate content.

    PubMed

    Laing, William A; Wright, Michele A; Cooney, Janine; Bulley, Sean M

    2007-05-29

    The gene for one postulated enzyme that converts GDP-L-galactose to L-galactose-1-phosphate is unknown in the L-galactose pathway of ascorbic acid biosynthesis and a possible candidate identified through map-based cloning is the uncharacterized gene At4g26850. We identified a putative function for At4g26850 using PSI-Blast and motif searching to show it was a member of the histidine triad superfamily, which includes D-galactose uridyltransferase. We cloned and expressed this Arabidopsis gene and the homologous gene from Actinidia chinensis in Escherichia coli and assayed the expressed protein for activities related to converting GDP-L-galactose to L-galactose-1-P. The expressed protein is best described as a GDP-L-galactose-hexose-1-phosphate guanyltransferase (EC 2.7.7.), catalyzing the transfer of GMP from GDP-l-galactose to a hexose-1-P, most likely D-mannose-1-phosphate in vivo. Transient expression of this A. chinensis gene in tobacco leaves resulted in a >3-fold increase in leaf ascorbate as well as a 50-fold increase in GDP-L-galactose-D-mannose-1-phosphate guanyltransferase activity.

  2. The missing step of the l-galactose pathway of ascorbate biosynthesis in plants, an l-galactose guanyltransferase, increases leaf ascorbate content

    PubMed Central

    Laing, William A.; Wright, Michele A.; Cooney, Janine; Bulley, Sean M.

    2007-01-01

    The gene for one postulated enzyme that converts GDP-l-galactose to l-galactose-1-phosphate is unknown in the l-galactose pathway of ascorbic acid biosynthesis and a possible candidate identified through map-based cloning is the uncharacterized gene At4g26850. We identified a putative function for At4g26850 using PSI-Blast and motif searching to show it was a member of the histidine triad superfamily, which includes d-galactose uridyltransferase. We cloned and expressed this Arabidopsis gene and the homologous gene from Actinidia chinensis in Escherichia coli and assayed the expressed protein for activities related to converting GDP-l-galactose to l-galactose-1-P. The expressed protein is best described as a GDP-l-galactose-hexose-1-phosphate guanyltransferase (EC 2.7.7.), catalyzing the transfer of GMP from GDP-l-galactose to a hexose-1-P, most likely d-mannose-1-phosphate in vivo. Transient expression of this A. chinensis gene in tobacco leaves resulted in a >3-fold increase in leaf ascorbate as well as a 50-fold increase in GDP-l-galactose-d-mannose-1-phosphate guanyltransferase activity. PMID:17485667

  3. gp96 expression in neutrophils is critical for the onset of Escherichia coli K1 (RS218) meningitis.

    PubMed

    Mittal, Rahul; Prasadarao, Nemani V

    2011-11-22

    Despite the fundamental function of neutrophils (polymorphonuclear leukocytes (PMNs)) in innate immunity, their role in Escherichia coli K1 (EC-K1) -induced meningitis is unexplored. Here we show that PMN-depleted mice are resistant to EC-K1 (RS218) meningitis. EC-K1 survives and multiplies in PMNs for which outer membrane protein A (OmpA) expression is essential. EC-K1 infection of PMNs increases the cell surface expression of gp96, which acts as a receptor for bacterial entry. Suppression of gp96 expression in newborn mice prevents the onset of EC-K1 meningitis. Infection of PMNs with EC-K1 suppresses oxidative burst by downregulating rac1, rac2 and gp91(phox) transcription both in vitro and in vivo. The interaction of loop 2 of OmpA with gp96 is essential for EC-K1-mediated inhibition of oxidative burst. These results reveal that EC-K1 exploits surface-expressed gp96 in PMNs to prevent oxidative burst for the onset of neonatal meningitis.

  4. gp96 expression in neutrophils is critical for the onset of Escherichia coli K1 (RS218) meningitis

    PubMed Central

    Mittal, Rahul; Prasadarao, Nemani V.

    2012-01-01

    Despite the fundamental function of neutrophils (PMNs) in innate immunity, their role in Escherichia coli K1 (EC-K1) induced meningitis is unexplored. Here we show that PMN-depleted mice are resistant to EC-K1 (RS218) meningitis. EC-K1 survives and multiplies in PMNs for which outer membrane protein A (OmpA) expression is essential. EC-K1infection of PMNs increases the cell surface expression of gp96, which acts as a receptor for bacterial entry. Suppression of gp96 expression in newborn mice prevents the onset of EC-K1 meningitis. Infection of PMNs with EC-K1 suppresses oxidative burst by down regulating rac1, rac2 and gp91phox transcription both in vitro and in vivo. The interaction of loop 2 of OmpA with gp96 is essential for EC-K1-mediated inhibition of oxidative burst. These results reveal that EC-K1 exploits surface expressed gp96 in PMNs to prevent oxidative burst for the onset of neonatal meningitis. PMID:22109526

  5. Use of DEAD-box polypeptide-4 (Ddx4) gene promoter-driven fluorescent reporter mice to identify mitotically active germ cells in post-natal mouse ovaries

    PubMed Central

    Park, Eun-Sil; Tilly, Jonathan L.

    2015-01-01

    Several laboratories have independently isolated mitotically active germ cells, termed female germline stem cells or oogonial stem cells (OSCs), from adult mouse ovaries. However, a recent study using Ddx4-Cre;Rosa26 reporter mice concluded that such germ cells do not exist. Given the disparity in conclusions drawn in this study compared with others, we felt it was important to re-assess the utility of Ddx4-Cre;Rosa26 reporter mice for identification of OSCs in adult mouse ovaries. Transgenic Ddx4-Cre mice were crossed with Rosa26tdTm/tdTm mice to drive restricted tomato red (tdTm) gene expression in cells in which the Ddx4 gene promoter has been activated. Crude dispersion of ovaries from recombined offspring generated cell fractions containing tdTm-positive immature oocytes, which are incapable of proliferation and thus probably represent the uncharacterized reporter-positive ovarian cells identified in the paper Zhang et al. (2012) as being mitotically inactive. Dispersed ovaries further subjected to fluorescence-activated cell sorting yielded a large population of non-germline tdTm-positive cells, indicative of promoter ‘leakiness’ in the Ddx4-Cre mouse line. Nonetheless, a small percentage of these tdTm-positive cells exhibited externalized (extracellular, ec) expression of Ddx4 protein (ecDdx4-positive), expressed markers of primitive germ cells but not of oocytes, and actively proliferated in culture, all of which are characteristic features of OSCs. Thus, crude dispersion of ovaries collected from Ddx4 gene promoter-driven reporter mice is not, by itself, a reliable approach to identify OSCs, whereas the same ovarian dispersates further subjected to cell sorting strategies yield purified OSCs that can be expanded in culture. PMID:25147160

  6. Safe Genetic Modification of Cardiac Stem Cells Using a Site-Specific Integration Technique

    PubMed Central

    Lan, Feng; Liu, Junwei; Narsinh, Kazim H.; Hu, Shijun; Han, Leng; Lee, Andrew S.; Karow, Marisa; Nguyen, Patricia K.; Nag, Divya; Calos, Michele P.; Robbins, Robert C.; Wu, Joseph C.

    2012-01-01

    Background Human cardiac progenitor cells (hCPCs) are a promising cell source for regenerative repair after myocardial infarction. Exploitation of their full therapeutic potential may require stable genetic modification of the cells ex vivo. Safe genetic engineering of stem cells, using facile methods for site-specific integration of transgenes into known genomic contexts, would significantly enhance the overall safety and efficacy of cellular therapy in a variety of clinical contexts. Methods and Results We employed the phiC31 site-specific recombinase to achieve targeted integration of a triple fusion reporter gene into a known chromosomal context in hCPCs and human endothelial cells (hECs). Stable expression of the reporter gene from its unique chromosomal integration site resulted in no discernible genomic instability or adverse changes in cell phenotype. Namely, phiC31-modified hCPCs were unchanged in their differentiation propensity, cellular proliferative rate, and global gene expression profile when compared to unaltered control hCPCs. Expression of the triple fusion reporter gene enabled multimodal assessment of cell fate in vitro and in vivo using fluorescence microscopy, bioluminescence imaging (BLI), and positron emission tomography (PET). Intramyocardial transplantation of genetically modified hCPCs resulted in significant improvement in myocardial function two weeks after cell delivery, as assessed by echocardiography (P = 0.002) and magnetic resonance imaging (P = 0.001). We also demonstrated the feasibility and therapeutic efficacy of genetically modifying differentiated hECs, which enhanced hindlimb perfusion (P<0.05 at day 7 and 14 after transplantation) on laser Doppler imaging. Conclusions The phiC31 integrase genomic modification system is a safe, efficient tool to enable site-specific integration of reporter transgenes in progenitor and differentiated cell types. PMID:22965984

  7. Retinoic Acid Signaling Is Essential for Valvulogenesis by Affecting Endocardial Cushions Formation in Zebrafish Embryos.

    PubMed

    Li, Junbo; Yue, Yunyun; Zhao, Qingshun

    2016-02-01

    Retinoic acid (RA) plays important roles in many stages of heart morphogenesis. Zebrafish embryos treated with exogenous RA display defective atrio-ventricular canal (AVC) specification. However, whether endogenous RA signaling takes part in cardiac valve formation remains unknown. Herein, we investigated the role of RA signaling in cardiac valve development by knocking down aldh1a2, the gene encoding an enzyme that is mainly responsible for RA synthesis during early development, in zebrafish embryos. The results showed that partially knocking down aldh1a2 caused defective formation of primitive cardiac valve leaflets at 108 hpf (hour post-fertilization). Inhibiting endogenous RA signaling by 4-diethylaminobenzal-dehyde revealed that 16-26 hpf was a key time window when RA signaling affects the valvulogenesis. The aldh1a2 morphants had defective formation of endocardial cushion (EC) at 76 hpf though they had almost normal hemodynamics and cardiac chamber specification at early development. Examining the expression patterns of AVC marker genes including bmp4, bmp2b, nppa, notch1b, and has2, we found the morphants displayed abnormal development of endocardial AVC but almost normal development of myocardial AVC at 50 hpf. Being consistent with the reduced expression of notch1b in endocardial AVC, the VE-cadherin gene cdh5, the downstream gene of Notch signaling, was ectopically expressed in AVC of aldh1a2 morphants at 50 hpf, and overexpression of cdh5 greatly affected the formation of EC in the embryos at 76 hpf. Taken together, our results suggest that RA signaling plays essential roles in zebrafish cardiac valvulogenesis.

  8. Differential expression of copper-zinc superoxide dismutase gene of Polygonum sibiricum leaves, stems and underground stems, subjected to high-salt stress.

    PubMed

    Qu, Chun-Pu; Xu, Zhi-Ru; Liu, Guan-Jun; Liu, Chun; Li, Yang; Wei, Zhi-Gang; Liu, Gui-Feng

    2010-01-01

    In aerobic organisms, protection against oxidative damage involves the combined action of highly specialized antioxidant enzymes, such as copper-zinc superoxide dismutase. In this work, a cDNA clone which encodes a copper-zinc superoxide dismutase gene, named PS-CuZnSOD, has been identified from P. sibiricum Laxm. by the rapid amplification of cDNA ends method (RACE). Analysis of the nucleotide sequence reveals that the PS-CuZnSOD gene cDNA clone consists of 669 bp, containing 87 bp in the 5' untranslated region; 459 bp in the open reading frame (ORF) encoding 152 amino acids; and 123 bp in 3' untranslated region. The gene accession nucleotide sequence number in GenBank is GQ472846. Sequence analysis indicates that the protein, like most plant superoxide dismutases (SOD), includes two conserved ecCuZnSOD signatures that are from the amino acids 43 to 51, and from the amino acids 137 to 148, and it has a signal peptide extension in the front of the N-terminus (1-16 aa). Expression analysis by real-time quantitative PCR reveals that the PS-CuZnSOD gene is expressed in leaves, stems and underground stems. PS-CuZnSOD gene expression can be induced by 3% NaHCO(3). The different mRNA levels' expression of PS-CuZnSOD show the gene's different expression modes in leaves, stems and underground stems under the salinity-alkalinity stress.

  9. Ischemia/Reperfusion Model Impairs Endocannabinoid Signaling and Na+/K+ ATPase Expression and Activity in Kidney Proximal Tubule Cells.

    PubMed

    Sampaio, Luzia S; Iannotti, Fabio A; Veneziani, Luciana; Borelli-Tôrres, Rosa T; De Maio, Fabrizia; Piscitelli, Fabiana; Reis, Ricardo A M; Di Marzo, Vincenzo; Einicker-Lamas, Marcelo

    2018-06-08

    LLC-PK1 cells, an immortalized epithelial cell line derived from pig renal proximal tubules, express all the major players of the endocannabinoid system (ECS) such as CB1, CB2 and TRPV1 receptor, as well as the main enzymes involved in the biosynthesis and degradation of the major endocannabinoids named 2-arachidonoylglycerol, 2-AG and anandamide, AEA. Here we investigated whether the damages caused by ischemic insult either in vitro using LLC-PK1 cells exposed to antimycin A (an inductor of ATP-depletion) or in vivo using Wistar rats in a classic renal ischemia and reperfusion (IR) protocol, lead to changes in AEA and 2-AG levels, as well as altered expression of genes from the main enzymes involved in the regulation of the ECS. Our data show that the mRNA levels of CB1 receptor gene were downregulated, while the transcript levels of monoacylglycerol lipase (MAGL), the main 2-AG degradative enzyme, are upregulated in LLC-PK1 cells after IR model. Accordingly, IR was accompanied by a significant reduction in the levels of 2-AG and AEA, as well as of the two endocannabinoid related molecules, oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) in LLC-PK1 cells. In kidney cortex homogenates, the AEA levels were selectively significantly decreased. In addition, we found that both the in vitro and in vivo model of IR caused a reduction in the expression and activity of the Na + /K + ATPase. These changes were reversed by the CB1/CB2 agonist WIN55,212, in a CB1-receptor dependent manner on LLC-PK1 IR model. In conclusion, the ECS and Na + /K + ATPase are down-regulated following IR model in LLC-PK1 cells and rat kidney. We suggest that CB1 agonists might represent a potential strategy to reverse the consequences of IR injury in kidney tissues. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Differential plastic changes in synthesis and binding in the mouse somatostatin system after electroconvulsive stimulation.

    PubMed

    Olesen, Mikkel Vestergaard; Gøtzsche, Casper René; Christiansen, Søren Hofman; Woldbye, David Paul Drucker

    2018-03-21

    Electroconvulsive therapy (ECT) is regularly used to treat patients with severe major depression, but the mechanisms underlying the beneficial effects remain uncertain. Electroconvulsive stimulation (ECS) regulates diverse neurotransmitter systems and induces anticonvulsant effects, properties implicated in mediating therapeutic effects of ECT. Somatostatin (SST) is a candidate for mediating these effects because it is upregulated by ECS and exerts seizure-suppressant effects. However, little is known about how ECS might affect the SST receptor system. The present study examined effects of single and repeated ECS on the synthesis of SST receptors (SSTR1-4) and SST, and SST receptor binding ([125I]LTT-SST28) in mouse hippocampal regions and piriform/parietal cortices. A complex pattern of plastic changes was observed. In the dentate gyrus, SST and SSTR1 expression and the number of hilar SST immunoreactive cells were significantly increased at 1 week after repeated ECS while SSTR2 expression was downregulated by single ECS, and SSTR3 mRNA and SST binding were elevated 24 h after repeated ECS. In hippocampal CA1 and parietal/piriform cortices, we found elevated SST mRNA levels 1 week after repeated ECS and elevated SST binding after single ECS and 24 h after repeated ECS. In hippocampal CA3, repeated ECS increased SST expression 1 week after and SST binding 24 h after. In the parietal cortex, SSTR2 mRNA expression was downregulated after single ECS while SSTR4 mRNA expression was upregulated 24 h after repeated ECS. Considering the known anticonvulsant effects of SST, it is likely that these ECS-induced neuroplastic changes in the SST system could participate in modulating neuronal excitability and potentially contribute to therapeutic effects of ECT.

  11. Gene Therapy With Extracellular Superoxide Dismutase Protects Conscious Rabbits Against Myocardial Infarction

    PubMed Central

    Li, Qianhong; Bolli, Roberto; Qiu, Yumin; Tang, Xian-Liang; Guo, Yiru; French, Brent A.

    2013-01-01

    Background Extracellular superoxide dismutase (Ec-SOD) may protect the heart against myocardial infarction (MI) because of its extended half-life and capacity to bind heparan sulfate proteoglycans on cellular surfaces. Accordingly, we used direct gene transfer to increase systemic levels of Ec-SOD and determined whether this gene therapy could protect against MI. Methods and Results The cDNA for human Ec-SOD was incorporated into a replication-deficient adenovirus (Ad5/CMV/Ec-SOD). Injection of this virus produced a high level of Ec-SOD in the liver, which was redistributed to the heart and other organs by injection of heparin. Untreated rabbits (group I) underwent a 30-minute coronary occlusion and 3 days of reperfusion. For comparison, preconditioned rabbits (group II) underwent a sequence of six 4-minute-occlusion/4-minute-reperfusion cycles 24 hours before the 30-minute occlusion. Control-treated rabbits (group III) were injected intravenously with Ad5/CMV/nls-LacZ, and gene-therapy rabbits (group IV) were injected with Ad5/CMV/Ec-SOD 3 days before the 30-minute occlusion. Both groups treated with Ad5 received intravenous heparin 2 hours before the 30-minute occlusion. Infarct size (percent risk area) was similar in groups I (57±6%) and III (58±5%). Ec-SOD gene therapy markedly reduced infarct size to 25±4% (P<0.01, group IV versus group III), a protection comparable to that of the late phase of ischemic preconditioning (29±3%, P<0.01 group II versus group I). Conclusions Direct gene transfer of the cDNA encoding membrane-bound Ec-SOD affords powerful cardioprotection, providing proof of principle for the effectiveness of antioxidant gene therapy against MI. PMID:11294809

  12. Inhibition of HIV-1 gene expression by retroviral vector-mediated small-guide RNAs that direct specific RNA cleavage by tRNase ZL

    PubMed Central

    Habu, Yuichiro; Miyano-Kurosaki, Naoko; Kitano, Michiko; Endo, Yumihiko; Yukita, Masakazu; Ohira, Shigeru; Takaku, Hiroaki; Nashimoto, Masayuki; Takaku, Hiroshi

    2005-01-01

    The tRNA 3′-processing endoribonuclease (tRNase Z or 3′ tRNase; EC 3.1.26.11) is an essential enzyme that removes the 3′ trailer from pre-tRNA. The long form (tRNase ZL) can cleave a target RNA in vitro at the site directed by an appropriate small-guide RNA (sgRNA). Here, we investigated whether this sgRNA/tRNase ZL strategy could be applied to gene therapy for AIDS. We tested the ability of four sgRNA-expression plasmids to inhibit HIV-1 gene expression in COS cells, using a transient-expression assay. The three sgRNAs guide inhibition of HIV-1 gene expression in cultured COS cells. Analysis of the HIV-1 mRNA levels suggested that sgRNA directed the tRNase ZL to mediate the degradation of target RNA. The observation that sgRNA was localized primarily in nuclei suggests that tRNase ZL cleaves the HIV-1 mRNA when complexed with sgRNA in this location. We also examined the ability of two retroviral vectors expressing sgRNA to suppress HIV-1 expression in HIV-1-infected Jurkat T cells. sgRNA-SL4 suppressed HIV-1 expression almost completely in infected cells for up to 18 days. These results suggest that the sgRNA/tRNase ZL approach is effective in downregulating HIV-1 gene expression. PMID:15647506

  13. Comparative toxicogenomic analysis of oral Cr(VI) exposure effects in rat and mouse small intestinal epithelia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopec, Anna K.; Thompson, Chad M.; Kim, Suntae

    2012-07-15

    Continuous exposure to high concentrations of hexavalent chromium [Cr(VI)] in drinking water results in intestinal tumors in mice but not rats. Concentration-dependent gene expression effects were evaluated in female F344 rat duodenal and jejunal epithelia following 7 and 90 days of exposure to 0.3–520 mg/L (as sodium dichromate dihydrate, SDD) in drinking water. Whole-genome microarrays identified 3269 and 1815 duodenal, and 4557 and 1534 jejunal differentially expressed genes at 8 and 91 days, respectively, with significant overlaps between the intestinal segments. Functional annotation identified gene expression changes associated with oxidative stress, cell cycle, cell death, and immune response that weremore » consistent with reported changes in redox status and histopathology. Comparative analysis with B6C3F1 mouse data from a similarly designed study identified 2790 differentially expressed rat orthologs in the duodenum compared to 5013 mouse orthologs at day 8, and only 1504 rat and 3484 mouse orthologs at day 91. Automated dose–response modeling resulted in similar median EC{sub 50}s in the rodent duodenal and jejunal mucosae. Comparative examination of differentially expressed genes also identified divergently regulated orthologs. Comparable numbers of differentially expressed genes were observed at equivalent Cr concentrations (μg Cr/g duodenum). However, mice accumulated higher Cr levels than rats at ≥ 170 mg/L SDD, resulting in a ∼ 2-fold increase in the number of differentially expressed genes. These qualitative and quantitative differences in differential gene expression, which correlate with differences in tissue dose, likely contribute to the disparate intestinal tumor outcomes. -- Highlights: ► Cr(VI) elicits dose-dependent changes in gene expression in rat intestine. ► Cr(VI) elicits less differential gene expression in rats compared to mice. ► Cr(VI) gene expression can be phenotypically anchored to intestinal changes. ► Species-specific and divergent changes are consistent with species-specific tumors.« less

  14. AKT inhibition mitigates GRP78 (glucose-regulated protein) expression and contribution to chemoresistance in endometrial cancers.

    PubMed

    Gray, Michael J; Mhawech-Fauceglia, Paulette; Yoo, Eunjeong; Yang, Wangrong; Wu, Eijean; Lee, Amy S; Lin, Yvonne G

    2013-07-01

    Overexpression of the unfolded protein response master regulator GRP78 is associated with poor prognosis and therapeutic resistance in numerous human cancers, yet its role in endometrial cancers (EC) is undefined. To better understand the contribution of GRP78 to EC, we examined its expression levels in EC patient samples and EC cell lines. We demonstrate that GRP78 overexpression occurs more frequently in EC tissues compared with that found in normal endometrium, and that GRP78 expression occurs in most EC cell lines examined. Functional analysis demonstrated that GRP78 is inducible by cisplatin in EC cells, and siRNA knockdown of GRP78 augments chemotherapy-mediated cell death. Examination of AKT and GRP78 expression demonstrated that inhibition of AKT activity by MK2206 blocks GRP78 expression in EC cells. SiRNA studies also revealed that knockdown of GRP78 reduces but does not abrogate AKT activity, demonstrating that GRP78 is required for optimal AKT activity. In the presence of MK2206, siRNA knockdown of GRP78 does not augment AKT mediated survival in response to cisplatin treatment, suggesting that GRP78's antiapoptosis functions are part of the AKT survival pathway. Targeted therapies that reduce GRP78 expression or activity in cancers may serve to increase the effectiveness of current therapies for EC patients. Copyright © 2012 UICC.

  15. Protection of dopaminergic neurons by electroconvulsive shock in an animal model of Parkinson's disease.

    PubMed

    Anastasia, Agustín; de Erausquin, Gabriel A; Wojnacki, José; Mascó, Daniel H

    2007-11-01

    Electroconvulsive shock (ECS) improves motor function in Parkinson's disease. In rats, ECS stimulates the expression of various factors some of which have been proposed to exert neuroprotective actions. We have investigated the effects of ECS on 6-hydroxydopamine (6-OHDA)-injected rats. Three weeks after a unilateral administration of 6-OHDA, 85-95% nigral dopaminergic neurons are lost. Chronic ECS prevented this cell loss, protect the nigrostriatal pathway (assessed by FloroGold retrograde labeling) and reduce motor impairment in 6-OHDA-treated animals. Injection of 6-OHDA caused loss of expression of glial cell-line derived neurotrophic factor (GDNF) in the substantia nigra. Chronic ECS completely prevented this loss of GDNF expression in 6-OHDA-treated animals. We also found that protected dopaminergic neurons co-express GDNF receptor proteins. These results strongly suggest that endogenous changes in GDNF expression may participate in the neuroprotective mechanism of ECS against 6-OHDA induced toxicity.

  16. A Notch-dependent transcriptional hierarchy promotes mesenchymal transdifferentiation in the cardiac cushion.

    PubMed

    Chang, Alex C Y; Garside, Victoria C; Fournier, Michele; Smrz, Justin; Vrljicak, Pavle; Umlandt, Patricia; Fuller, Megan; Robertson, Gordon; Zhao, Yongjun; Tam, Angela; Jones, Steven J M; Marra, Marco A; Hoodless, Pamela A; Karsan, Aly

    2014-07-01

    Valvuloseptal defects are the most common congenital heart defects. Notch signaling-induced endothelial-to-mesenchymal transition (EMT) in the atrioventricular canal (AVC) cushions at murine embryonic day (E)9.5 is a required step during early valve development. Insights to the transcriptional network that is activated in endocardial cells (EC) during EMT and how these pathways direct valve maturation are lacking. We show that at E11.5, AVC-EC retain the ability to undergo Notch-dependent EMT when explanted on collagen. EC-Notch inhibition at E10.5 blocks expression of known mesenchymal genes in E11.5 AVC-EC. To understand the genetic network and AVC development downstream of Notch signaling beyond E9.5, we constructed Tag-Seq libraries corresponding to different cell types of the E11.5 AVC and atrium in wild-type mice and in EC-Notch inhibited mice. We identified 1,400 potential Notch targets in the AVC-EC, of which 124 are transcription factors (TF). From the 124 TFs, we constructed a transcriptional hierarchy and identify 10 upstream TFs within the network. We validated 4 of the upstream TFs as Notch targets that are enriched in AVC-EC. Functionally, we show these 4 TFs regulate EMT in AVC explant assays. These novel signaling pathways downstream of Notch are potentially relevant to valve development. © 2014 Wiley Periodicals, Inc.

  17. Acetylcholine-induced seizure-like activity and modified cholinergic gene expression in chronically epileptic rats.

    PubMed

    Zimmerman, Gabriel; Njunting, Marleisje; Ivens, Sebastian; Tolner, Else A; Tolner, Elsa; Behrens, Christoph J; Gross, Miriam; Soreq, Hermona; Heinemann, Uwe; Friedman, Alon

    2008-02-01

    The entorhinal cortex (EC) plays an important role in temporal lobe epilepsy. Under normal conditions, the enriched cholinergic innervation of the EC modulates local synchronized oscillatory activity; however, its role in epilepsy is unknown. Enhanced neuronal activation has been shown to induce transcriptional changes of key cholinergic genes and thus alter cholinergic responses. To examine cholinergic modulations in epileptic tissue we studied molecular and electrophysiological cholinergic responses in the EC of chronically epileptic rats following exposure to pilocarpine or kainic acid. We confirmed that while the total activity of the acetylcholine (ACh)-hydrolysing enzyme, acetylcholinesterase (AChE) was not altered, epileptic rats showed alternative splicing of AChE pre-mRNA transcripts, accompanied by a shift from membrane-bound AChE tetramers to soluble monomers. This was associated with increased sensitivity to ACh application: thus, in control rats, ACh (10-100 microm) induced slow (< 1Hz), periodic events confined to the EC; however, in epileptic rats, ACh evoked seconds-long seizure-like events with initial appearance in the EC, and frequent propagation to neighbouring cortical regions. ACh-induced seizure-like events could be completely blocked by the non-specific muscarinic antagonist, atropine, and were partially blocked by the muscarinic-1 receptor antagonist, pirenzepine; but were not affected by the non-specific nicotinic antagonist, mecamylamine. Epileptic rats presented reduced transcript levels of muscarinic receptors with no evidence of mRNA editing or altered mRNA levels for nicotinic ACh receptors. Our findings suggest that altered cholinergic modulation may initiate seizure events in the epileptic temporal cortex.

  18. Dietary DHA reduced downstream endocannabinoid and inflammatory gene expression, epididymal fat mass, and improved aspects of glucose use in muscle in C57BL/6J mice

    USDA-ARS?s Scientific Manuscript database

    Objective: Endocannabinoid system (ECS) overactivation is associated with increased adiposity and likely contributes to type II diabetes risk. Elevated tissue cannabinoid receptor 1 (CB1) and circulating endocannabinoids derived from the n-6 polyunsaturated acid (PUFA) arachidonic acid occur in obes...

  19. Pancreatic non-functioning neuroendocrine tumor: a new entity genetically related to Lynch syndrome

    PubMed Central

    Serracant Barrera, Anna; Serra Pla, Sheila; Blázquez Maña, Carmen María; Salas, Rubén Carrera; García Monforte, Neus; Bejarano González, Natalia; Romaguera Monzonis, Andreu; Andreu Navarro, Francisco Javier; Bella Cueto, Maria Rosa

    2017-01-01

    Some pancreatic neuroendocrine tumors (P-NETs) are associated with hereditary syndromes. An association between Lynch syndrome (LS) and P-NETs has been suggested, however it has not been confirmed to date. We describe the first case associating LS and P-NETs. Here we report a 65-year-old woman who in the past 20 years presented two colorectal carcinomas (CRC) endometrial carcinoma (EC), infiltrating ductal breast carcinoma, small intestine adenocarcinoma, two non-functioning P-NETs and sebomatricoma. With the exception of one P-NET, all these conditions were associated with LS, as confirmed by immunohistochemistry (IHC) and polymerase chain reaction (PCR). LS is caused by a mutation of a mismatch repair (MMR) gene which leads to a loss of expression of its protein. CRC is the most common tumor, followed by EC. Pancreatic tumors have also been associated with LS. Diagnosis of LS is based on clinical criteria (Amsterdam II and Bethesda) and genetic study (MMR gene mutation). The association between LS and our patient’s tumors was confirmed by IHC (loss of expression of proteins MLH1 and its dimer PMS2) and the detection of microsatellite instability (MSI) using PCR. PMID:29184699

  20. Roles of endothelial A-type lamins in migration of T cells on and under endothelial layers

    NASA Astrophysics Data System (ADS)

    Song, Kwang Hoon; Lee, Jaehyun; Park, Hyoungjun; Kim, Hye Mi; Park, Jeehun; Kwon, Keon Woo; Doh, Junsang

    2016-03-01

    Stiff nuclei in cell-dense microenvironments may serve as distinct biomechanical cues for cell migration, but such a possibility has not been tested experimentally. As a first step addressing this question, we altered nuclear stiffness of endothelial cells (ECs) by reducing the expression of A-type lamins using siRNA, and investigated the migration of T cells on and under EC layers. While most T cells crawling on control EC layers avoided crossing over EC nuclei, a significantly higher fraction of T cells on EC layers with reduced expression of A-type lamins crossed over EC nuclei. This result suggests that stiff EC nuclei underlying T cells may serve as “duro-repulsive” cues to direct T cell migration toward less stiff EC cytoplasm. During subendothelial migration under EC layers with reduced expression of A-type lamins, T cells made prolonged contact and substantially deformed EC nuclei, resulting in reduced speed and directional persistence. This result suggests that EC nuclear stiffness promotes fast and directionally persistent subendothelial migration of T cells by allowing minimum interaction between T cells and EC nuclei.

  1. Drosophila arginine methyltransferase 1 (DART1) is an ecdysone receptor co-repressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, Shuhei; Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574; Sawatsubashi, Shun

    2008-07-11

    Histone arginine methylation is an epigenetic marker that regulates gene expression by defining the chromatin state. Arginine methyltransferases, therefore, serve as transcriptional co-regulators. However, unlike other transcriptional co-regulators, the physiological roles of arginine methyltransferases are poorly understood. Drosophila arginine methyltransferase 1 (DART1), the mammalian PRMT1 homologue, methylates the arginine residue of histone H4 (H4R3me2). Disruption of DART1 in Drosophila by imprecise P-element excision resulted in low viability during metamorphosis in the pupal stages. In the pupal stage, an ecdysone hormone signal is critical for developmental progression. DART1 interacted with the nuclear ecdysone receptor (EcR) in a ligand-dependent manner, and co-repressedmore » EcR in intact flies. These findings suggest that DART1, a histone arginine methyltransferase, is a co-repressor of EcR that is indispensable for normal pupal development in the intact fly.« less

  2. Universal screening of both endometrial and colon cancers increases the detection of Lynch syndrome.

    PubMed

    Adar, Tomer; Rodgers, Linda H; Shannon, Kristen M; Yoshida, Makoto; Ma, Tianle; Mattia, Anthony; Lauwers, Gregory Y; Iafrate, Anthony J; Hartford, Nicole M; Oliva, Esther; Chung, Daniel C

    2018-05-11

    Lynch syndrome (LS) is the most common hereditary cause of colorectal cancer (CRC) and endometrial cancer (EC). Screening of all CRCs for LS is currently recommended, but screening of ECs is inconsistent. The objective of this study was to determine the added value of screening both CRC and EC tumors in the same population. A prospective, immunohistochemistry (IHC)-based screening program for all patients with newly diagnosed CRCs and ECs was initiated in 2011 and 2013, respectively, at 2 centers (primary and tertiary). Genetic testing was recommended for those who had tumors with absent mutS homolog 2 (MSH2), MSH6, or postmeiotoic segregation increased 2 (PMS2) expression and for those who had tumors with absent mutL homolog 1 (MLH1) expression and no v-Raf murine sarcoma viral oncogene homolog B (BRAF) mutation or MLH1 promoter methylation. Amsterdam II criteria, revised Bethesda criteria, and scores from prediction models for gene mutations (the PREMM 1,2,6 and PREMM 5 prediction models) were ascertained in patients with LS. In total, 1290 patients with CRC and 484 with EC were screened for LS, and genetic testing was recommended for 137 patients (10.6%) and 32 patients (6.6%), respectively (P = .01). LS was identified in 16 patients (1.2%) with CRC and in 8 patients (1.7%) with EC. Among patients for whom genetic testing was recommended, the LS diagnosis rate was higher among those with EC (25.0% vs 11.7%, P = .052). The Amsterdam II criteria, revised Bethesda criteria, and both PREMM calculators would have missed 62.5%, 50.0%, and 12.5% of the identified patients with LS, respectively. Expanding a universal screening program for LS to include patients who had EC identified 50% more patients with LS, and many of these patients would have been missed by risk assessment tools (including PREMM 5 ). Universal screening programs for LS should include both CRC and EC. Cancer 2018. © 2018 American Cancer Society. © 2018 American Cancer Society.

  3. Genome-Wide Responses of Female Fruit Flies Subjected to Divergent Mating Regimes

    PubMed Central

    Gerrard, Dave T.; Fricke, Claudia; Edward, Dominic A.; Edwards, Dylan R.; Chapman, Tracey

    2013-01-01

    Elevated rates of mating and reproduction cause decreased female survival and lifetime reproductive success across a wide range of taxa from flies to humans. These costs are fundamentally important to the evolution of life histories. Here we investigate the potential mechanistic basis of this classic life history component. We conducted 4 independent replicated experiments in which female Drosophila melanogaster were subjected to ‘high’ and ‘low’ mating regimes, resulting in highly significant differences in lifespan. We sampled females for transcriptomic analysis at day 10 of life, before the visible onset of ageing, and used Tiling expression arrays to detect differential gene expression in two body parts (abdomen versus head+thorax). The divergent mating regimes were associated with significant differential expression in a network of genes showing evidence for interactions with ecdysone receptor. Preliminary experimental manipulation of two genes in that network with roles in post-transcriptional modification (CG11486, eyegone) tended to enhance sensitivity to mating costs. However, the subtle nature of those effects suggests substantial functional redundancy or parallelism in this gene network, which could buffer females against excessive responses. There was also evidence for differential expression in genes involved in germline maintenance, cell proliferation and in gustation / odorant reception. Interestingly, we detected differential expression in three specific genes (EcR, keap1, lbk1) and one class of genes (gustation / odorant receptors) with previously reported roles in determining lifespan. Our results suggest that high and low mating regimes that lead to divergence in lifespan are associated with changes in the expression of genes such as reproductive hormones, that influence resource allocation to the germ line, and that may modify post-translational gene expression. This predicts that the correct signalling of nutrient levels to the reproductive system is important for maintaining organismal integrity. PMID:23826372

  4. The Anti-Inflammatory Cytokine Interleukin-19 Is Expressed in and Angiogenic for Human Endothelial Cells

    PubMed Central

    Jain, Surbhi; Gabunia, Khatuna; Kelemen, Sheri E.; Panetti, Tracee S.; Autieri, Michael V.

    2010-01-01

    OBJECTIVE The expression and effects of anti-inflammatory interleukins on endothelial cell (EC) activation and development of angiogenesis is uncharacterized. The purpose of this study is to characterize the expression and function of Interleukin-19 (IL-19), a recently described Th2 anti-inflammatory interleukin on EC pathophysiology. METHODS and RESULTS We demonstrate by immunohistochemistry and immunoblot that IL-19 is expressed in inflamed, but not normal human coronary endothelium, and can be induced in cultured human EC by serum and bFGF. IL-19 is mitogenic, chemotactic, and promotes cell EC spreading. IL-19 activates the signaling proteins STAT3, p44/42, and Rac1. In functional ex vivo studies, IL-19 promotes cord-like structure formation of cultured EC and also enhances microvessel sprouting in the mouse aortic ring assay. IL-19 induces tube formation in matrigel plugs in vivo. CONCLUSIONS These data are the first to report expression of the anti-inflammatory interleukin IL-19 in EC, and the first to indicate that IL-19 is mitogenic and chemotactic for EC, and can induce the angiogenic potential of EC. PMID:20966397

  5. Inhibition of Cycloartenol Synthase (CAS) Function in Tobacco BY-2 Cells.

    PubMed

    Gas-Pascual, Elisabet; Simonovik, Biljana; Schaller, Hubert; Bach, Thomas J

    2015-08-01

    Tobacco BY-2 cell suspensions are our preferred model for studying isoprenoid biosynthesis pathways, due to their easy genetic transformation and the efficient absorption of metabolic precursors, intermediates, and/or inhibitors. Using this model system, we have analyzed the effects of chemical and genetic blockage of cycloartenol synthase (CAS, EC 5.4.99.8), an oxidosqualene cyclase that catalyzes the first committed step in the sterol pathway of plants. BY-2 cells were treated with RO 48-8071, a potent inhibitor of oxidosqualene cyclization. Short-term treatments (24 h) resulted in accumulation of oxidosqualene with no changes in the final sterol products. Interestingly, long-term treatments (6 days) induced down-regulation in gene expression not only of CAS but also of the SMT2 gene coding sterol methyltransferase 2 (EC 2.1.1.41). This explains some of the increase in 24-methyl sterols at the expense of the 24-ethyl sterols stigmasterol and sitosterol. In our alternative strategy, CAS gene expression was partially blocked by using an inducible artificial microRNA. The limited effectiveness of this approach might be explained by some dependence of the machinery for RNAi formation on an operating MVA/sterol pathway. For comparison we checked the effect of RO 48-8071 on a green cell suspension of Arabidopsis and on seedlings, containing a small spectrum of triterpenes besides phytosterols. Triterpenes remained essentially unaffected, but phytosterol accumulation was clearly diminished.

  6. Isolation, structural analysis, and expression characteristics of the maize (Zea mays L.) hexokinase gene family.

    PubMed

    Zhang, Zhongbao; Zhang, Jiewei; Chen, Yajuan; Li, Ruifen; Wang, Hongzhi; Ding, Liping; Wei, Jianhua

    2014-09-01

    Hexokinases (HXKs, EC 2.7.1.1) play important roles in metabolism, glucose (Glc) signaling, and phosphorylation of Glc and fructose and are ubiquitous in all organisms. Despite their physiological importance, the maize HXK (ZmHXK) genes have not been analyzed systematically. We isolated and characterized nine members of the ZmHXK gene family which were distributed on 3 of the 10 maize chromosomes. A multiple sequence alignment and motif analysis revealed that the maize ZmHXK proteins share three conserved domains. Phylogenetic analysis revealed that the ZmHXK family can be divided into four subfamilies. We identified putative cis-elements in the ZmHXK promoter sequences potentially involved in phytohormone and abiotic stress responses, sugar repression, light and circadian rhythm regulation, Ca(2+) responses, seed development and germination, and CO2-responsive transcriptional activation. To study the functions of maize HXK isoforms, we characterized the expression of the ZmHXK5 and ZmHXK6 genes, which are evolutionarily related to the OsHXK5 and OsHXK6 genes from rice. Analysis of tissue-specific expression patterns using quantitative real time-PCR showed that ZmHXK5 was highly expressed in tassels, while ZmHXK6 was expressed in both tassels and leaves. ZmHXK5 and ZmHXK6 expression levels were upregulated by phytohormones and by abiotic stress.

  7. Functional characterization of transmembrane adenylyl cyclases from the honeybee brain.

    PubMed

    Balfanz, Sabine; Ehling, Petra; Wachten, Sebastian; Jordan, Nadine; Erber, Joachim; Mujagic, Samir; Baumann, Arnd

    2012-06-01

    The second messenger cAMP has a pivotal role in animals' physiology and behavior. Intracellular concentrations of cAMP are balanced by cAMP-synthesizing adenylyl cyclases (ACs) and cAMP-cleaving phosphodiesterases. Knowledge about ACs in the honeybee (Apis mellifera) is rather limited and only an ortholog of the vertebrate AC3 isoform has been functionally characterized, so far. Employing bioinformatics and functional expression we characterized two additional honeybee genes encoding membrane-bound (tm)ACs. The proteins were designated AmAC2t and AmAC8. Unlike the common structure of tmACs, AmAC2t lacks the first transmembrane domain. Despite this unusual topography, AmAC2t-activity could be stimulated by norepinephrine and NKH477 with EC(50s) of 0.07 μM and 3 μM. Both ligands stimulated AmAC8 with EC(50s) of 0.24 μM and 3.1 μM. In brain cryosections, intensive staining of mushroom bodies was observed with specific antibodies against AmAC8, an expression pattern highly reminiscent of the Drosophila rutabaga AC. In a current release of the honeybee genome database we identified three additional tmAC- and one soluble AC-encoding gene. These results suggest that (1) the AC-gene family in honeybees is comparably large as in other species, and (2) based on the restricted expression of AmAC8 in mushroom bodies, this enzyme might serve important functions in honeybee behavior. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Comparative effects of butyl benzyl phthalate (BBP) and di(2-ethylhexyl) phthalate (DEHP) on the aquatic larvae of Chironomus riparius based on gene expression assays related to the endocrine system, the stress response and ribosomes.

    PubMed

    Planelló, Rosario; Herrero, Oscar; Martínez-Guitarte, José Luis; Morcillo, Gloria

    2011-09-01

    In this work, the effects of butyl benzyl phthalate (BBP) and di(2-ethylhexyl) phthalate (DEHP), two of the most extensively used phthalates, were studied in Chironomus riparius under acute short-term treatments, to compare their relative toxicities and identify genes sensitive to exposure. The ecotoxicity of these phthalates was assessed by analysis of the alterations in gene expression profiles of selected inducible and constitutive genes related to the endocrine system, the cellular stress response and the ribosomal machinery. Fourth instar larvae, a model system in aquatic toxicology, were experimentally exposed to five increasing concentrations (0.01, 0.1, 1, 10, and 100mg/L) of DEHP and BBP for 24h. Gene expression was analysed by the changes in levels of transcripts, using RT-PCR techniques with specific gene probes. The exposures to DEHP or BBP were able to rapidly induce the hsp70 gene in a concentration-dependent manner, whereas the cognate form hsc70 was not altered by either of these chemicals. Transcription of ribosomal RNA as a measure of cell viability, quantified by the levels of ITS2, was not affected by DEHP, but was slightly, yet significantly, downregulated by BBP at the highest concentrations tested. Finally, as these phthalates are classified as endocrine disruptor chemicals (EDCs), their potential effect on the ecdysone endocrine system was studied by analysing the two genes, EcR and usp, of the heterodimeric ecdysone receptor complex. It was found that BBP provoked the overexpression of the EcR gene, with significant increases from exposures of 0.1mg/L and above, while DEHP significantly decreased the activity of this gene at the highest concentration. These data are relevant as they show for the first time the ability of phthalates to interfere with endocrine marker genes in invertebrates, demonstrating their potential capacity to alter the ecdysone signalling pathway. Overall, the study clearly shows a differential gene-toxin interaction for these two phthalates and adds novel genomic tools for biomonitoring environmental xenobiotics in insects. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. MicroRNA-372 inhibits endometrial carcinoma development by targeting the expression of the Ras homolog gene family member C (RhoC)

    PubMed Central

    Liu, Bo-Liang; Sun, Kai-Xuan; Zong, Zhi-Hong; Chen, Shuo; Zhao, Yang

    2016-01-01

    Here we explore the role of microRNA-372 (miR-372) in tumorigenesis and development of endometrial adenocarcinoma (EC) and analyze the underlying mechanism. We found that miR-372 expression is much lower in EC than normal endometrial specimens. Cell function experiments demonstrated that miR-372 overexpression suppressed cell proliferation, migration, and invasion, and led to a G1 phase arrest and promoted the apoptosis of endometrial carcinoma cells in vitro. The nude mouse xenograft assay demonstrated that miR-372 overexpression suppressed tumor growth. RT-PCR and Western blot assays detected the expression of known targets of miR-372 in other malignant tumors and found Cyclin A1 and Cyclin-dependent Kinase 2 (CDK2) was downregulated by miR-372. Bioinformatic predictions and dual-luciferase reporter assays found that RhoC was a possible target of miR-372. RT-PCR and Western blot assays demonstrated that miR-372 transfection reduced the expression of RhoC, matrix metalloproteinase 2 (MMP2) and MMP9, while it increased the expression of cleaved poly (ADP ribose) polymerase (PARP) and bcl-2-associated X protein (Bax). The cell function experiments that transfected siRNA with RhoC showed the same trend as those which were transfected with miR-372. Taken together, our results demonstrated for the first time that miR-372 suppresses tumorigenesis and the development of EC; RhoC is a new and potentially important therapeutic target. PMID:26673619

  10. Comparative genomics of enterohemorrhagic Escherichia coli O145:H28 demonstrates a common evolutionary lineage with Escherichia coli O157:H7

    PubMed Central

    2014-01-01

    Background Although serotype O157:H7 is the predominant enterohemorrhagic Escherichia coli (EHEC), outbreaks of non-O157 EHEC that cause severe foodborne illness, including hemolytic uremic syndrome have increased worldwide. In fact, non-O157 serotypes are now estimated to cause over half of all the Shiga toxin-producing Escherichia coli (STEC) cases, and outbreaks of non-O157 EHEC infections are frequently associated with serotypes O26, O45, O103, O111, O121, and O145. Currently, there are no complete genomes for O145 in public databases. Results We determined the complete genome sequences of two O145 strains (EcO145), one linked to a US lettuce-associated outbreak (RM13514) and one to a Belgium ice-cream-associated outbreak (RM13516). Both strains contain one chromosome and two large plasmids, with genome sizes of 5,737,294 bp for RM13514 and 5,559,008 bp for RM13516. Comparative analysis of the two EcO145 genomes revealed a large core (5,173 genes) and a considerable amount of strain-specific genes. Additionally, the two EcO145 genomes display distinct chromosomal architecture, virulence gene profile, phylogenetic origin of Stx2a prophage, and methylation profile (methylome). Comparative analysis of EcO145 genomes to other completely sequenced STEC and other E. coli and Shigella genomes revealed that, unlike any other known non-O157 EHEC strain, EcO145 ascended from a common lineage with EcO157/EcO55. This evolutionary relationship was further supported by the pangenome analysis of the 10 EHEC str ains. Of the 4,192 EHEC core genes, EcO145 shares more genes with EcO157 than with the any other non-O157 EHEC strains. Conclusions Our data provide evidence that EcO145 and EcO157 evolved from a common lineage, but ultimately each serotype evolves via a lineage-independent nature to EHEC by acquisition of the core set of EHEC virulence factors, including the genes encoding Shiga toxin and the large virulence plasmid. The large variation between the two EcO145 genomes suggests a distinctive evolutionary path between the two outbreak strains. The distinct methylome between the two EcO145 strains is likely due to the presence of a BsuBI/PstI methyltransferase gene cassette in the Stx2a prophage of the strain RM13514, suggesting a role of horizontal gene transfer-mediated epigenetic alteration in the evolution of individual EHEC strains. PMID:24410921

  11. DEPTOR regulates vascular endothelial cell activation and proinflammatory and angiogenic responses

    PubMed Central

    Bruneau, Sarah; Nakayama, Hironao; Woda, Craig B.; Flynn, Evelyn A.

    2013-01-01

    The maintenance of normal tissue homeostasis and the prevention of chronic inflammatory disease are dependent on the active process of inflammation resolution. In endothelial cells (ECs), proinflammation results from the activation of intracellular signaling responses and/or the inhibition of endogenous regulatory/pro-resolution signaling networks that, to date, are poorly defined. In this study, we find that DEP domain containing mTOR interacting protein (DEPTOR) is expressed in different microvascular ECs in vitro and in vivo, and using a small interfering RNA (siRNA) knockdown approach, we find that it regulates mammalian target of rapamycin complex 1 (mTORC1), extracellular signal-regulated kinase 1/2, and signal transducer and activator of transcription 1 activation in part through independent mechanisms. Moreover, using limited gene arrays, we observed that DEPTOR regulates EC activation including mRNA expression of the T-cell chemoattractant chemokines CXCL9, CXCL10, CXCL11, CX3CL1, CCL5, and CCL20 and the adhesion molecules intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 (P < .05). DEPTOR siRNA-transfected ECs also bound increased numbers of peripheral blood mononuclear cells (P < .005) and CD3+ T cells (P < .005) in adhesion assays in vitro and had increased migration and angiogenic responses in spheroid sprouting (P < .01) and wound healing (P < .01) assays. Collectively, these findings define DEPTOR as a critical upstream regulator of EC activation responses and suggest that it plays an important role in endogenous mechanisms of anti-inflammation and pro-resolution. PMID:23881914

  12. Effects of Intermittent Alcohol Exposure on Emotion and Cognition: A Potential Role for the Endogenous Cannabinoid System and Neuroinflammation

    PubMed Central

    Sanchez-Marin, Laura; Pavon, Francisco J.; Decara, Juan; Suarez, Juan; Gavito, Ana; Castilla-Ortega, Estela; Rodriguez de Fonseca, Fernando; Serrano, Antonia

    2017-01-01

    Intermittent alcohol exposure is a common pattern of adolescent alcohol use that can lead to binge drinking episodes. Alcohol use is known to modulate the endocannabinoid system (ECS), which is involved in neuronal communication, neuroplasticity, neuroinflammation and behavior. Adolescent male Wistar rats were exposed to 4-week intermittent alcohol intoxication (3 g/kg injections for 4 days/week) or saline (N = 12 per group). After alcohol deprivation, adult rats were assessed for emotionality and cognition and the gene expression of the ECS and other factors related to behavior and neuroinflammation was examined in the brain. Alcohol-exposed rats exhibited anxiogenic-like responses and impaired recognition memory but no motor alterations. There were brain region-dependent changes in the mRNA levels of the ECS and molecular signals compared with control rats. Thus, overall, alcohol-exposed rats expressed higher mRNA levels of endocannabinoid synthetic enzymes (N-acyl-phosphatidylethanolamine phospholipase D and diacylglycerol lipases) in the medial-prefrontal cortex (mPFC) but lower mRNA levels in the amygdala. Furthermore, we observed lower mRNA levels of receptors CB1 CB2 and peroxisome proliferator-activated receptor-α in the striatum. Regarding neuropeptide signaling, alcohol-exposed rats displayed lower mRNA levels of the neuropeptide Y signaling, particularly NPY receptor-2, in the amygdala and hippocampus and higher mRNA levels of corticotropin-releasing factor in the hippocampus. Additionally, we observed changes of several neuroinflammation-related factors. Whereas, the mRNA levels of toll-like receptor-4, tumor necrosis factor-α, cyclooxygenase-2 and glial fibrillary acidic protein were significantly increased in the mPFC, the mRNA levels of cyclooxygenase-2 and glial fibrillary acidic protein were decreased in the striatum and hippocampus. However, nuclear factor-κβ mRNA levels were lower in the mPFC and striatum and allograft inflammatory factor-1 levels were differentially expressed in the amygdala and hippocampus. In conclusion, rats exposed to adolescent intermittent alcohol displayed anxiety-like behavior and cognitive deficits in adulthood and these alterations were accompanied by brain region-dependent changes in the gene expression of the ECS and other signals associated with neuroinflammation and behavior. An intermittent adolescent alcohol exposure has behavioral and molecular consequences in the adult brain, which might be linked to higher vulnerability to addictive behaviors and psychopathologies. PMID:28223925

  13. Testicular Sertoli cells influence the proliferation and immunogenicity of co-cultured endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Ping, E-mail: fanpinggoodluck@163.com; He, Lan; Pu, Dan

    Research highlights: {yields} The proliferation of dramatic increased by co-cultured with Sertoli cells. {yields} VEGF receptor-2 expression of ECs was up-regulated by co-cultured with Sertoli cells. {yields} The MHC expression of ECs induced by INF-{gamma} and IL-6, IL-8 and sICAM induced by TNF-{alpha} decreased respectively after co-cultured with Sertoli cells. {yields} ECs co-cultured with Sertoli cells also didn't increase the stimulation index of spleen lymphocytes. -- Abstract: The major problem of the application of endothelial cells (ECs) in transplantation is the lack of proliferation and their immunogenicity. In this study, we co-cultured ECs with Sertoli cells to monitor whether Sertolimore » cells can influence the proliferation and immunogenicity of co-cultured ECs. Sertoli cells were isolated from adult testicular tissue. ECs were divided into the control group and the experimental group, which included three sub-groups co-cultured with 1 x 10{sup 3}, 1 x 10{sup 4} or 1 x 10{sup 5} cell/ml of Sertoli cells. The growth and proliferation of ECs were observed microscopically, and the expression of vascular endothelial growth factor (VEGF) receptor-2 (KDR) was examined by Western blotting. In another experiment, ECs were divided into the control group, the single culture group and the co-culture group with the optimal concentration of Sertoli cells. After INF-{gamma} and TNF-{alpha} were added to the culture medium, MHC II antigen expression was detected by immunofluorescence staining and western blotting; interleukin (IL)-6, IL-8 and soluble intercellular adhesion molecule (sICAM) were measured in the culture medium by ELISA. We demonstrated that 1 x 10{sup 4} cell/ml Sertoli cells promoted the proliferation of co-cultured ECs more dramatically than that in other groups (P < 0.05). Western blotting showed that 1 x 10{sup 4} cell/ml of the Sertoli cells was most effective in the up-regulation of KDR expression in the co-cultured ECs (P < 0.05). Sertoli cells can effectively suppress INF-{gamma}-induced MHC II antigen expression in co-cultured ECs compared with single culture group (P < 0.05). TNF-{alpha} induced the expression of IL-6, IL-8 and sICAM in ECs. When co-cultured with Sertoli cells, their expressions were significantly lower than in the EC single culture group (P < 0.05). ECs co-cultured with Sertoli cells also did not significantly increase the stimulation index of spleen lymphocytes compared to the single culture group (P < 0.05). Our results suggested that co-culturing with Sertoli cells can significantly promote the proliferation of ECs, accelerate post-transplant angiogenesis, while reduce EC immunogenicity and stimulus to lymphocytes.« less

  14. Cellular and Transcriptional Responses of Crassostrea gigas Hemocytes Exposed in Vitro to Brevetoxin (PbTx-2)

    PubMed Central

    Mello, Danielle F.; de Oliveira, Eliza S.; Vieira, Renato C.; Simoes, Erik; Trevisan, Rafael; Dafre, Alcir Luiz; Barracco, Margherita Anna

    2012-01-01

    Hemocytes mediate a series of immune reactions essential for bivalve survival in the environment, however, the impact of harmful algal species and their associated phycotoxins upon bivalve immune system is under debate. To better understand the possible toxic effects of these toxins, Crassostrea gigas hemocytes were exposed to brevetoxin (PbTx-2). Hemocyte viability, monitored through the neutral red retention and MTT reduction assays, and apoptosis (Hoechst staining) remained unchanged during 12 h of exposure to PbTx-2 in concentrations up to 1000 µg/L. Despite cell viability and apoptosis remained stable, hemocytes incubated for 4 h with 1000 µg/L of PbTx-2 revealed higher expression levels of Hsp70 (p < 0.01) and CYP356A1 (p < 0.05) transcripts and a tendency to increase FABP expression, as evaluated by Real-Time quantitative PCR. The expression of other studied genes (BPI, IL-17, GSTO, EcSOD, Prx6, SOD and GPx) remained unchanged. The results suggest that the absence of cytotoxic effects of PbTx-2 in Crassostrea gigas hemocytes, even at high concentrations, allow early defense responses to be produced by activating protective mechanisms associated to detoxification (CYP356A1 and possibly FABP) and stress (Hsp70), but not to immune or to antioxidant (BPI, IL-17, EcSOD, Prx6, GPx and SOD) related genes. PMID:22611355

  15. The Mannitol Operon Repressor MTIR belongs to a new class of transcription regulators in bacteria.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, K.; Borovilos, M.; Zhou, M

    2009-12-25

    Many bacteria express phosphoenolpyruvate-dependent phosphotransferase systems (PTS). The mannitol-specific PTS catalyze the uptake and phosphorylation of d-mannitol. The uptake system comprises several genes encoded in the single operon. The expression of the mannitol operon is regulated by a proposed transcriptional factor, mannitol operon repressor (MtlR) that was first studied in Escherichia coli. Here we report the first crystal structures of MtlR from Vibrio parahemeolyticus (Vp-MtlR) and its homolog YggD protein from Shigella flexneri (Sf-YggD). MtlR and YggD belong to the same protein family (Pfam05068). Although Vp-MtlR and Sf-YggD share low sequence identity (22%), their overall structures are very similar, representingmore » a novel all {alpha}-helical fold, and indicate similar function. However, their lack of any known DNA-binding structural motifs and their unfavorable electrostatic properties imply that MtlR/YggD are unlikely to bind a specific DNA operator directly as proposed earlier. This structural observation is further corroborated by in vitro DNA-binding studies of E. coli MtlR (Ec-MtlR), which detected no interaction of Ec-MtlR with the well characterized mannitol operator/promoter region. Therefore, MtlR/YggD belongs to a new class of transcription factors in bacteria that may regulate gene expression indirectly as a part of a larger transcriptional complex.« less

  16. Transcriptional regulation of podoplanin expression by Prox1 in lymphatic endothelial cells.

    PubMed

    Pan, Yanfang; Wang, Wen-di; Yago, Tadayuki

    2014-07-01

    Transcription factor prospero homeobox 1 (Prox-1) and podoplanin (PDPN), mucin-type transmembane protein, are both constantly expressed in lymphatic endothelial cells (LECs) and appear to function in an LEC-autonomous manner. Mice globally lacking PDPN (Pdpn(-/-)) develop abnormal and blood-filled lymphatic vessels that highly resemble those in inducible mice lacking Prox-1 (Prox1(-/-)). Prox1 has also been reported to induce PDPN expression in cultured ECs. Thus, we hypothesize that PDPN functions downstream of Prox1 and that its expression is regulated by Prox1 in LECs at the transcriptional level. We first identified four putative binding elements for Prox1 in the 5' upstream regulatory region of Pdpn gene and found that Prox1 directly binds to the 5' regulatory sequence of Pdpn gene in LECs by chromatin immunoprecipitation assay. DNA pull down assay confirmed that Prox1 binds to the putative binding element. In addition, luciferase reporter assay indicated that Prox1 binding to the 5' regulatory sequence of Pdpn regulates Pdpn gene expression. We are therefore the first to experimentally demonstrate that Prox1 regulates PDPN expression at the transcriptional level in the lymphatic vascular system. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Viral Activation of MK2-hsp27-p115RhoGEF-RhoA Signaling Axis Causes Cytoskeletal Rearrangements, P-body Disruption and ARE-mRNA Stabilization

    PubMed Central

    Corcoran, Jennifer A.; Johnston, Benjamin P.; McCormick, Craig

    2015-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is the infectious cause of several AIDS-related cancers, including the endothelial cell (EC) neoplasm Kaposi's sarcoma (KS). KSHV-infected ECs secrete abundant host-derived pro-inflammatory molecules and angiogenic factors that contribute to tumorigenesis. The precise contributions of viral gene products to this secretory phenotype remain to be elucidated, but there is emerging evidence for post-transcriptional regulation. The Kaposin B (KapB) protein is thought to contribute to the secretory phenotype in infected cells by binding and activating the stress-responsive kinase MK2, thereby selectively blocking decay of AU-rich mRNAs (ARE-mRNAs) encoding pro-inflammatory cytokines and angiogenic factors. Processing bodies (PBs) are cytoplasmic ribonucleoprotein foci in which ARE-mRNAs normally undergo rapid 5′ to 3′ decay. Here, we demonstrate that PB dispersion is a feature of latent KSHV infection, which is dependent on kaposin protein expression. KapB is sufficient to disperse PBs, and KapB-mediated ARE-mRNA stabilization could be partially reversed by treatments that restore PBs. Using a combination of genetic and chemical approaches we provide evidence that KapB-mediated PB dispersion is dependent on activation of a non-canonical Rho-GTPase signaling axis involving MK2, hsp27, p115RhoGEF and RhoA. PB dispersion in latently infected cells is likewise dependent on p115RhoGEF. In addition to PB dispersion, KapB-mediated RhoA activation in primary ECs caused actin stress fiber formation, increased cell motility and angiogenesis; these effects were dependent on the activity of the RhoA substrate kinases ROCK1/2. By contrast, KapB-mediated PB dispersion occurred in a ROCK1/2-independent manner. Taken together, these observations position KapB as a key contributor to viral reprogramming of ECs, capable of eliciting many of the phenotypes characteristic of KS tumor cells, and strongly contributing to the post-transcriptional control of EC gene expression and secretion. PMID:25569678

  18. Alteration of the fatty acid profile of Streptomyces coelicolor by replacement of the initiation enzyme 3-ketoacyl acyl carrier protein synthase III (FabH).

    PubMed

    Li, Yongli; Florova, Galina; Reynolds, Kevin A

    2005-06-01

    The first elongation step of fatty acid biosynthesis by a type II dissociated fatty acid synthases is catalyzed by 3-ketoacyl-acyl carrier protein (ACP) synthase III (KASIII, FabH). This enzyme, encoded by the fabH gene, catalyzes a decarboxylative condensation between an acyl coenzyme A (CoA) primer and malonyl-ACP. In organisms such as Escherichia coli, which generate only straight-chain fatty acids (SCFAs), FabH has a substrate preference for acetyl-CoA. In streptomycetes and other organisms which produce a mixture of both SCFAs and branched-chain fatty acids (BCFAs), FabH has been shown to utilize straight- and branched-chain acyl-CoA substrates. We report herein the generation of a Streptomyces coelicolor mutant (YL/ecFabH) in which the chromosomal copy of the fabH gene has been replaced and the essential process of fatty acid biosynthesis is initiated by plasmid-based expression of the E. coli FabH (bearing only 35% amino acid identity to the Streptomyces enzyme). The YL/ecFabH mutant produces predominantly SCFAs (86%). In contrast, BCFAs predominate (approximately 70%) in both the S. coelicolor parental strain and S. coelicolor YL/sgFabH (a deltafabH mutant carrying a plasmid expressing the Streptomyces glaucescens FabH). These results provide the first unequivocal evidence that the substrate specificity of FabH observed in vitro is a determinant of the fatty acid made in an organism. The YL/ecFabH strain grows significantly slower on both solid and liquid media. The levels of FabH activity in cell extracts of YL/ecFabH were also significantly lower than those in cell extracts of YL/sgFabH, suggesting that a decreased rate of fatty acid synthesis may account for the observed decreased growth rate. The production of low levels of BCFAs in YL/ecFabH suggests either that the E. coli FabH is more tolerant of different acyl-CoAs substrates than previously thought or that there is an additional pathway for initiation of BCFA biosynthesis in Streptomyces coelicolor.

  19. let-7 Contributes to Diabetic Retinopathy but Represses Pathological Ocular Angiogenesis

    PubMed Central

    Zhou, Qinbo; Frost, Robert J. A.; Anderson, Chastain; Zhao, Fangkun; Ma, Jing; Yu, Bo

    2017-01-01

    ABSTRACT The in vivo function of microRNAs (miRs) in diabetic retinopathy (DR) and age-related macular degeneration (AMD) remains unclear. We report here that let-7 family members are expressed in retinal and choroidal endothelial cells (ECs). In ECs, overexpression of let-7 by adenovirus represses EC proliferation, migration, and networking in vitro, whereas inhibition of the let-7 family with a locked nucleic acid (LNA)–anti-miR has the opposite effect. Mechanistically, silencing of the let-7 target HMGA2 gene mimics the phenotype of let-7 overexpression in ECs. let-7 transgenic (let-7-Tg) mice show features of nonproliferative DR, including tortuous retinal vessels and defective pericyte coverage. However, these mice develop significantly less choroidal neovascularization (CNV) compared to wild-type controls after laser injury. Consistently, silencing of let-7 in the eye increased laser-induced CNV in wild-type mice. Together, our data establish a causative role of let-7 in nonproliferative diabetic retinopathy and a repressive function of let-7 in pathological angiogenesis, suggesting distinct implications of let-7 in the pathogenesis of DR and AMD. PMID:28584193

  20. FLICE-like inhibitory protein (FLIP) protects against apoptosis and suppresses NF-kappaB activation induced by bacterial lipopolysaccharide.

    PubMed

    Bannerman, Douglas D; Eiting, Kristine T; Winn, Robert K; Harlan, John M

    2004-10-01

    Bacterial lipopolysaccharide (LPS) via its activation of Toll-like receptor-4 contributes to much of the vascular injury/dysfunction associated with gram-negative sepsis. Inhibition of de novo gene expression has been shown to sensitize endothelial cells (EC) to LPS-induced apoptosis, the onset of which correlates with decreased expression of FLICE-like inhibitory protein (FLIP). We now have data that conclusively establish a role for FLIP in protecting EC against LPS-induced apoptosis. Overexpression of FLIP protected against LPS-induced apoptosis, whereas down-regulation of FLIP using antisense oligonucleotides sensitized EC to direct LPS killing. Interestingly, FLIP overexpression suppressed NF-kappaB activation induced by LPS, but not by phorbol ester, suggesting a specific role for FLIP in mediating LPS activation. Conversely, mouse embryo fibroblasts (MEF) obtained from FLIP -/- mice showed enhanced LPS-induced NF-kappaB activation relative to those obtained from wild-type mice. Reconstitution of FLIP-/- MEF with full-length FLIP reversed the enhanced NF-kappaB activity elicited by LPS in the FLIP -/- cells. Changes in the expression of FLIP had no demonstrable effect on other known LPS/Tlr-4-activated signaling pathways including the p38, Akt, and Jnk pathways. Together, these data support a dual role for FLIP in mediating LPS-induced apoptosis and NF-kappaB activation.

  1. Gene Set−Based Integrative Analysis Revealing Two Distinct Functional Regulation Patterns in Four Common Subtypes of Epithelial Ovarian Cancer

    PubMed Central

    Chang, Chia-Ming; Chuang, Chi-Mu; Wang, Mong-Lien; Yang, Yi-Ping; Chuang, Jen-Hua; Yang, Ming-Jie; Yen, Ming-Shyen; Chiou, Shih-Hwa; Chang, Cheng-Chang

    2016-01-01

    Clear cell (CCC), endometrioid (EC), mucinous (MC) and high-grade serous carcinoma (SC) are the four most common subtypes of epithelial ovarian carcinoma (EOC). The widely accepted dualistic model of ovarian carcinogenesis divided EOCs into type I and II categories based on the molecular features. However, this hypothesis has not been experimentally demonstrated. We carried out a gene set-based analysis by integrating the microarray gene expression profiles downloaded from the publicly available databases. These quantified biological functions of EOCs were defined by 1454 Gene Ontology (GO) term and 674 Reactome pathway gene sets. The pathogenesis of the four EOC subtypes was investigated by hierarchical clustering and exploratory factor analysis. The patterns of functional regulation among the four subtypes containing 1316 cases could be accurately classified by machine learning. The results revealed that the ERBB and PI3K-related pathways played important roles in the carcinogenesis of CCC, EC and MC; while deregulation of cell cycle was more predominant in SC. The study revealed that two different functional regulation patterns exist among the four EOC subtypes, which were compatible with the type I and II classifications proposed by the dualistic model of ovarian carcinogenesis. PMID:27527159

  2. Functional expression of plant acetolactate synthase genes in Escherichia coli

    PubMed Central

    Smith, Julie K.; Schloss, John V.; Mazur, Barbara J.

    1989-01-01

    Acetolactate synthase (ALS; EC 4.1.3.18) is the first common enzyme in the biosynthetic pathways leading to leucine, isoleucine, and valine. It is the target enzyme for three classes of structurally unrelated herbicides, the sulfonylureas, the imidazolinones, and the triazolopyrimidines. A cloned ALS gene from the small cruciferous plant Arabidopsis thaliana has been fused to bacterial transcription/translation signals and the resulting plasmid has been used to transform Escherichia coli. The cloned plant gene, which includes sequences encoding the chloroplast transit peptide, is functionally expressed in the bacteria. It is able to complement genetically a strain of E. coli that lacks endogenous ALS activity. An ALS gene cloned from a line of Arabidopsis previously shown to be resistant to sulfonylurea herbicides has been similarly expressed in E. coli. The herbicide-resistance phenotype is expressed in the bacteria, as assayed by both enzyme activity and the ability to grow in the presence of herbicides. This system has been useful for purifying substantial amounts of the plant enzyme, for studying the sequence parameters involved in subcellular protein localization, and for characterizing the interactions that occur between ALS and its various inhibitors. Images PMID:16594052

  3. A vascular biology network model focused on inflammatory processes to investigate atherogenesis and plaque instability

    PubMed Central

    2014-01-01

    Background Numerous inflammation-related pathways have been shown to play important roles in atherogenesis. Rapid and efficient assessment of the relative influence of each of those pathways is a challenge in the era of “omics” data generation. The aim of the present work was to develop a network model of inflammation-related molecular pathways underlying vascular disease to assess the degree of translatability of preclinical molecular data to the human clinical setting. Methods We constructed and evaluated the Vascular Inflammatory Processes Network (V-IPN), a model representing a collection of vascular processes modulated by inflammatory stimuli that lead to the development of atherosclerosis. Results Utilizing the V-IPN as a platform for biological discovery, we have identified key vascular processes and mechanisms captured by gene expression profiling data from four independent datasets from human endothelial cells (ECs) and human and murine intact vessels. Primary ECs in culture from multiple donors revealed a richer mapping of mechanisms identified by the V-IPN compared to an immortalized EC line. Furthermore, an evaluation of gene expression datasets from aortas of old ApoE-/- mice (78 weeks) and human coronary arteries with advanced atherosclerotic lesions identified significant commonalities in the two species, as well as several mechanisms specific to human arteries that are consistent with the development of unstable atherosclerotic plaques. Conclusions We have generated a new biological network model of atherogenic processes that demonstrates the power of network analysis to advance integrative, systems biology-based knowledge of cross-species translatability, plaque development and potential mechanisms leading to plaque instability. PMID:24965703

  4. Ecstasy induces reactive oxygen species, kidney water absorption and rhabdomyolysis in normal rats. Effect of N-acetylcysteine and Allopurinol in oxidative stress and muscle fiber damage

    PubMed Central

    de Bragança, Ana C.; Moreau, Regina L. M.; de Brito, Thales; Shimizu, Maria H. M.; Canale, Daniele; de Jesus, Denise A.; Silva, Ana M. G.; Gois, Pedro H.; Seguro, Antonio C.

    2017-01-01

    Background Ecstasy (Ec) use produces hyperthermia, excessive sweating, intense thirst, an inappropriate antidiuretic hormone secretion (SIADH) and a multisystemic toxicity due to oxidative stress (OS). Intense thirst induces high intake of pure water, which associated with SIADH, usually develops into acute hyponatremia (Hn). As Hn is induced rapidly, experiments to check if Ec acted directly on the Inner Medullary Collecting Ducts (IMCD) of rats were conducted. Rhabdomyolysis and OS were also studied because Ec is known to induce Reactive Oxygen Species (ROS) and tissue damage. To decrease OS, the antioxidant inhibitors N-acetylcysteine (NAC) and Allopurinol (Allo) were used. Methods Rats were maintained on a lithium (Li) diet to block the Vasopressin action before Ec innoculation. AQP2 (Aquaporin 2), ENaC (Epitheliun Sodium Channel) and NKCC2 (Sodium, Potassium, 2 Chloride) expression were determined by Western Blot in isolated IMCDs. The TBARS (thiobarbituric acid reactive substances) and GSH (reduced form of Glutathione) were determined in the Ec group (6 rats injected with Ec-10mg/kg), in Ec+NAC groups (NAC 100mg/Kg/bw i.p.) and in Allo+Ec groups (Allo 50mg/Kg/i.p.). Results Enhanced AQP2 expression revealed that Ec increased water transporter expression, decreased by Li diet, but the expression of the tubular transporters did not change. The Ec, Ec+NAC and Allo+Ec results showed that Ec increased TBARS and decreased GSH, showing evidence of ROS occurrence, which was protected by NAC and Allo. Rhabdomyolysis was only protected by Allo. Conclusion Results showed that Ec induced an increase in AQP2 expression, evidencing another mechanism that might contribute to cause rapid hyponatremia. In addition, they showed that NAC and Allo protected against OS, but only Allo decreased rhabdomyolysis and hyperthermia. PMID:28678861

  5. Identification of the IGF-1 processing product human Ec/rodent Eb peptide in various tissues: Evidence for its differential regulation after exercise-induced muscle damage in humans.

    PubMed

    Vassilakos, George; Philippou, Anastassios; Koutsilieris, Michael

    2017-02-01

    Insulin-like growth factor-1 (IGF-1) is a pleiotropic factor expressed in various tissues and plays a critical role in skeletal muscle physiology. Alternative splicing of the IGF-1 gene gives rise to different precursor polypeptides (isoforms) which could undergo post-translational cleavage, generating the common mature IGF-1 peptide and different carboxyl terminal extension (E-) peptides, with the fate of the latter being, so far, unknown. The objective if this study was to identify the IGF-1Ec forms or processing product(s), other than mature IGF-1, generated in different human and rodent tissues and particularly in human skeletal muscle after exercise-induced damage. Protein lysates from a wide range of human and rodent tissues were immunoblotted with a rabbit anti-human Ec polyclonal antibody raised against the last 24 amino acids of the C-terminal of the Ec peptide. This antibody can recognize the Ec peptide, both as part of IGF-1Ec and alone, and also the corresponding rodent forms, due to the high homology that the human Ec shares with the rodent Eb. We were able to confirm, for the first time, that the human Ec peptide and its rodent homologous Eb peptide are produced simultaneously with their precursor protein (pro-IGF-1Ec/Eb) in vivo, in a wide range of tissues (e.g. muscle, liver, heart). Proprotein convertase furin digestion of human muscle and liver protein lysates confirmed that the higher molecular form, pro-IGF-1Ec, can be cleaved to produce the free Ec peptide. Furthermore, initial evidence is provided that Ec peptide is differentially regulated during the process of muscle regeneration after exercise-induced damage in humans. The findings of this study possibly imply that the post-translational modification of the IGF-1Ec pro-peptide may regulate the bioavailability and activity of the processing product(s). Copyright © 2016. Published by Elsevier Ltd.

  6. TET1-GPER-PI3K/AKT pathway is involved in insulin-driven endometrial cancer cell proliferation.

    PubMed

    Xie, Bing-Ying; Lv, Qiao-Ying; Ning, Cheng-Cheng; Yang, Bing-Yi; Shan, Wei-Wei; Cheng, Ya-Li; Gu, Chao; Luo, Xue-Zhen; Zhang, Zhen-Bo; Chen, Xiao-Jun; Xi, Xiao-Wei; Feng, You-Ji

    2017-01-22

    Large amount of clinical evidence has demonstrated that insulin resistance is closely related to oncogenesis of endometrial cancer (EC). Despite recent studies showed the up-regulatory role of insulin in G protein-coupled estrogen receptor (GPER/GPR30) expression, GPER expression was not decreased compared to control when insulin receptor was blocked even in insulin treatment. The purpose of this study was to explore the possible mechanism by which insulin up-regulates GPER that drives EC cell proliferation. For this purpose, we first investigated the GPER expression in tissues of endometrial lesions, further explored the effect of GPER on EC cell proliferation in insulin resistance context. Then we analyzed the role of Ten-Eleven Translocation 1 (TET1) in insulin-induced GEPR expression and EC cell proliferation. The results showed that GPER was highly expressed in endometrial atypical hyperplasia and EC tissues. Mechanistically, insulin up-regulated TET1 expression and the latter played an important role in up-regulating GPER expression and activating PI3K/AKT signaling pathway. TET1 mediated GPER up-regulation was another mechanism that insulin promotes EC cell proliferation. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. The effects of fipronil and the photodegradation product fipronil desulfinyl on growth and gene expression in juvenile blue crabs, Callinectes sapidus, at different salinities

    USGS Publications Warehouse

    Goff, Andrew D.; Saranjampour, Parichehr; Ryan, Lauren M.; Hladik, Michelle; Covi, Joseph A.; Armbrust, Kevin L.; Brander, Susanne M.

    2017-01-01

    Endocrine disrupting compounds (EDCs) are now widely established to be present in the environment at concentrations capable of affecting wild organisms. Although many studies have been conducted in fish, less is known about effects in invertebrates such as decapod crustaceans. Decapods are exposed to low concentrations of EDCs that may cause infertility, decreased growth, and developmental abnormalities. The objective herein was to evaluate effects of fipronil and its photodegradation product fipronil desulfinyl. Fipronil desulfinyl was detected in the eggs of the decapod Callinectes sapidus sampled off the coast of South Carolina. As such, to examine specific effects on C. sapidus exposed in early life, we exposed laboratory-reared juveniles to fipronil and fipronil desulfinyl for 96 hours at three nominal concentrations (0.01, 0.1, 0.5 μg/L) and two different salinities (10, 30 ppt). The size of individual crabs (weight, carapace width) and the expression of several genes critical to growth and reproduction were evaluated. Exposure to fipronil and fipronil desulfinyl resulted in significant size increases in all treatments compared to controls. Levels of expression for vitellogenin (Vtg), an egg yolk precursor, and the ecdysone receptor (EcR), which binds to ecdysteroids that control molting, were inversely correlated with increasing fipronil and fipronil desulfinyl concentrations. Effects on overall growth and on the expression of EcR and Vtg differ depending on the exposure salinity. The solubility of fipronil is demonstrated to decrease considerably at higher salinities. This suggests that fipronil and its photodegradation products may be more bioavailable to benthic organisms as salinity increases, as more chemical would partition to tissues. Our findings suggest that endocrine disruption is occurring through alterations to gene expression in C. sapidus populations exposed to environmental levels of fipronil, and that effects may be dependent upon the salinity at which exposure occurs.

  8. Isolated Loss of PMS2 Immunohistochemical Expression is Frequently Caused by Heterogenous MLH1 Promoter Hypermethylation in Lynch Syndrome Screening for Endometrial Cancer Patients

    PubMed Central

    Sato, Naoki; Sugawara, Tae; Takahashi, Kazue; Kito, Masahiko; Makino, Kenichi; Sato, Toshiharu; Shimizu, Dai; Shirasawa, Hiromistu; Miura, Hiroshi; Sato, Wataru; Kumazawa, Yukiyo; Sato, Akira; Kumagai, Jin; Terada, Yukihiro

    2016-01-01

    Lynch syndrome (LS) is an autosomal-dominant inherited disorder mainly caused by a germline mutation in the DNA mismatch repair (MMR) genes (MLH1, MSH2, MSH6, and PMS2) and is associated with increased risk for various cancers, particularly colorectal cancer and endometrial cancer (EC). Women with LS account for 2% to 6% of EC patients; it is clinically important to identify LS in such individuals for predicting and/or preventing additional LS-associated cancers. PMS2 germline mutation (PMS2-LS) is the rarest contribution to LS etiology among the 4 LS-associated MMR germline mutations, and its detection is complicated. Therefore, prudent screening for PMS2-LS is important as it leads to an efficient LS identification strategy. Immunohistochemistry is recommended as a screening method for LS in EC. Isolated loss of PMS2 (IL-PMS2) expression is caused not only by PMS2-LS but also by MLH1 germline mutation or MLH1 promoter hypermethylation (MLH-PHM). This study aimed to determine the association between MLH1-PHM and IL-PMS2 to avoid inappropriate genetic analysis. We performed MLH1 methylation analysis and MLH1/PMS2 germline mutation testing on the IL-PMS2 cases. By performing MMR-immunohistochemistry on 360 unselected ECs, we could select 8 (2.2%) cases as IL-PMS2. Heterogenous MLH1 staining and MLH1-PHM were detected in 4 of 8 (50%) IL-PMS2 tumors. Of the 5 IL-PMS2 patients who underwent genetic analysis, 1 had PMS2 germline mutation with normal MLH1 expression (without MLH1-PHM), and no MLH1 germline mutation was detected. We suggest that MLH1 promoter methylation analysis for IL-PMS2 EC should be performed to exclude sporadic cases before further PMS2 genetic testing. PMID:26848797

  9. Isolated Loss of PMS2 Immunohistochemical Expression is Frequently Caused by Heterogenous MLH1 Promoter Hypermethylation in Lynch Syndrome Screening for Endometrial Cancer Patients.

    PubMed

    Kato, Aya; Sato, Naoki; Sugawara, Tae; Takahashi, Kazue; Kito, Masahiko; Makino, Kenichi; Sato, Toshiharu; Shimizu, Dai; Shirasawa, Hiromistu; Miura, Hiroshi; Sato, Wataru; Kumazawa, Yukiyo; Sato, Akira; Kumagai, Jin; Terada, Yukihiro

    2016-06-01

    Lynch syndrome (LS) is an autosomal-dominant inherited disorder mainly caused by a germline mutation in the DNA mismatch repair (MMR) genes (MLH1, MSH2, MSH6, and PMS2) and is associated with increased risk for various cancers, particularly colorectal cancer and endometrial cancer (EC). Women with LS account for 2% to 6% of EC patients; it is clinically important to identify LS in such individuals for predicting and/or preventing additional LS-associated cancers. PMS2 germline mutation (PMS2-LS) is the rarest contribution to LS etiology among the 4 LS-associated MMR germline mutations, and its detection is complicated. Therefore, prudent screening for PMS2-LS is important as it leads to an efficient LS identification strategy. Immunohistochemistry is recommended as a screening method for LS in EC. Isolated loss of PMS2 (IL-PMS2) expression is caused not only by PMS2-LS but also by MLH1 germline mutation or MLH1 promoter hypermethylation (MLH-PHM). This study aimed to determine the association between MLH1-PHM and IL-PMS2 to avoid inappropriate genetic analysis. We performed MLH1 methylation analysis and MLH1/PMS2 germline mutation testing on the IL-PMS2 cases. By performing MMR-immunohistochemistry on 360 unselected ECs, we could select 8 (2.2%) cases as IL-PMS2. Heterogenous MLH1 staining and MLH1-PHM were detected in 4 of 8 (50%) IL-PMS2 tumors. Of the 5 IL-PMS2 patients who underwent genetic analysis, 1 had PMS2 germline mutation with normal MLH1 expression (without MLH1-PHM), and no MLH1 germline mutation was detected. We suggest that MLH1 promoter methylation analysis for IL-PMS2 EC should be performed to exclude sporadic cases before further PMS2 genetic testing.

  10. Chitinase-like (CTL) and cellulose synthase (CESA) gene expression in gelatinous-type cellulosic walls of flax (Linum usitatissimum L.) bast fibers.

    PubMed

    Mokshina, Natalia; Gorshkova, Tatyana; Deyholos, Michael K

    2014-01-01

    Plant chitinases (EC 3.2.1.14) and chitinase-like (CTL) proteins have diverse functions including cell wall biosynthesis and disease resistance. We analyzed the expression of 34 chitinase and chitinase-like genes of flax (collectively referred to as LusCTLs), belonging to glycoside hydrolase family 19 (GH19). Analysis of the transcript expression patterns of LusCTLs in the stem and other tissues identified three transcripts (LusCTL19, LusCTL20, LusCTL21) that were highly enriched in developing bast fibers, which form cellulose-rich gelatinous-type cell walls. The same three genes had low relative expression in tissues with primary cell walls and in xylem, which forms a xylan type of secondary cell wall. Phylogenetic analysis of the LusCTLs identified a flax-specific sub-group that was not represented in any of other genomes queried. To provide further context for the gene expression analysis, we also conducted phylogenetic and expression analysis of the cellulose synthase (CESA) family genes of flax, and found that expression of secondary wall-type LusCESAs (LusCESA4, LusCESA7 and LusCESA8) was correlated with the expression of two LusCTLs (LusCTL1, LusCTL2) that were the most highly enriched in xylem. The expression of LusCTL19, LusCTL20, and LusCTL21 was not correlated with that of any CESA subgroup. These results defined a distinct type of CTLs that may have novel functions specific to the development of the gelatinous (G-type) cellulosic walls.

  11. Accumulation of catechins in tea in relation to accumulation of mRNA from genes involved in catechin biosynthesis.

    PubMed

    Eungwanichayapant, P D; Popluechai, S

    2009-02-01

    Catechins are a group of polyphenols found in tea (Camellia sinensis var. sinensis) at high levels. They are beneficial for health. From the study on accumulation of catechins in shoots and mature leaves of a tea cultivar, Oolong No. 17, using high-performance liquid chromatography (HPLC), it was found that the amounts of most catechins in the shoots were higher than those in the mature leaves, with an exception of catechins gallate (CG) that was found in trace amounts in both the shoots and mature leaves. mRNA accumulation of genes involved in catechin synthesis was studied using reverse transcriptase-polymerase chain reaction (RT-PCR). The results showed that the mRNA accumulation of the genes were higher in the shoots than in the mature leaves. These genes included genes of phenylalanine ammonia-lyase 1 (PAL1; EC 4.3.1.5), chalcone synthase (CHS; EC 2.3.1.74), dihydroflavonol 4-reductase (DFR; EC 1.1.1.219), leucoanthocyanidin reductase (LCR; EC 1.17.1.3), and flavanone 3-hydroxylase (F3H; EC 1.14.11.9).

  12. Mutations of glucocorticoid receptor differentially affect AF2 domain activity in a steroid-selective manner to alter the potency and efficacy of gene induction and repression†

    PubMed Central

    Tao, Yong-guang; Xu, Yong; Xu, H. Eric; Simons, S. Stoney

    2009-01-01

    The transcriptional activity of steroid hormones is intimately associated with their structure. Deacylcortivazol (DAC) contains several features that were predicted to make it an inactive glucocorticoid. Nevertheless, gene induction and repression by complexes of glucocorticoid receptor (GR) with DAC occurs with greater potency (lower EC50) than, and equal efficacy (maximal activity, or Amax) to, the very active and smaller synthetic glucocorticoid dexamethasone (Dex). Guided by a recent x-ray structure of DAC bound to the GR ligand binding domain (LBD), we now report that several point mutants in the LBD have little effect on the binding of either agonist steroid. However, these same mutations dramatically alter the Amax and/or EC50 of exogenous and endogenous genes in a manner that depends on steroid structure. In some cases, Dex is no longer a full agonist. These properties appear to result from a preferential inactivation of the AF2 activation domain in the GR LBD of Dex-, but not DAC-, bound receptors. The Dex-bound receptors display normal binding to, but greatly reduced response to, the coactivator TIF2, thus indicating a defect in the transmission efficiency of GR-steroid complex information to the coactivator TIF2. In addition, all GR mutants that are active in gene induction with either Dex or DAC have greatly reduced activity in gene repression. This contrasts with the reports of GR mutations preferentially suppressing GR-mediated induction. The properties of these GR mutants in gene induction support the hypothesis that the Amax and EC50 of GR-controlled gene expression can be independently modified, indicate that the receptor can be modified to favor activity with a specific agonist steroid, and suggest that new ligands with suitable substituents may be able to affect the same LBD conformational changes and thereby broaden the therapeutic applications of glucocorticoid steroids PMID:18578507

  13. Ethylene-induced gene expression, enzyme activities, and water soaking in immature and ripe watermelon (Citrullus lanatus) fruit.

    PubMed

    Karakurt, Yasar; Huber, Donald J

    2004-04-01

    Watermelon fruit exhibit acute softening and placental-tissue water soaking following short exposure to exogenous ethylene. Experiments were performed to address transcript abundance and activities of cell wall and membrane hydrolases in placental tissue in response to treatment of watermelon fruit with ethylene. Watermelon fruit were harvested at immature and full-ripe stages and exposed to 50 microL L(-1) ethylene for 6 days at 20 degrees C. Ethylene affected the abundance of transcripts for PME (EC 3.2.1.11), and alpha-(EC 3.2.1.22) and beta-GAL (EC 3.2.1.23) but these effects were dependent on fruit maturity and appeared not to be associated with the water-soaking syndrome. PG (EC 3.2.1.15) and EXP mRNAs accumulated significantly in response to ethylene exposure. Additionally, the levels of mRNA and activities of LOX (EC 1.13.11.12), PLC (EC 3.1.4.3) and PLD (EC 3.1.4.4) were elevated in fruit of both maturity classes exposed to ethylene and were temporally associated with the visible symptoms of water soaking. The activity trends and transcript abundance in ethylene- compared with air-treated fruit indicate that PG, EXP, LOX, PLC and PLD levels increase with the onset and development of the water-soaking disorder and support the view that catabolic reactions targeting the membranes and cell-walls contribute to the disorder.

  14. Bioinformatic Analysis of Pathogenic Missense Mutations of Activin Receptor Like Kinase 1 Ectodomain

    PubMed Central

    Scotti, Claudia; Olivieri, Carla; Boeri, Laura; Canzonieri, Cecilia; Ornati, Federica; Buscarini, Elisabetta; Pagella, Fabio; Danesino, Cesare

    2011-01-01

    Activin A receptor, type II-like kinase 1 (also called ALK1), is a serine-threonine kinase predominantly expressed on endothelial cells surface. Mutations in its ACVRL1 encoding gene (12q11-14) cause type 2 Hereditary Haemorrhagic Telangiectasia (HHT2), an autosomal dominant multisystem vascular dysplasia. The study of the structural effects of mutations is crucial to understand their pathogenic mechanism. However, while an X-ray structure of ALK1 intracellular domain has recently become available (PDB ID: 3MY0), structure determination of ALK1 ectodomain (ALK1EC) has been elusive so far. We here describe the building of a homology model for ALK1EC, followed by an extensive bioinformatic analysis, based on a set of 38 methods, of the effect of missense mutations at the sequence and structural level. ALK1EC potential interaction mode with its ligand BMP9 was then predicted combining modelling and docking data. The calculated model of the ALK1EC allowed mapping and a preliminary characterization of HHT2 associated mutations. Major structural changes and loss of stability of the protein were predicted for several mutations, while others were found to interfere mainly with binding to BMP9 or other interactors, like Endoglin (CD105), whose encoding ENG gene (9q34) mutations are known to cause type 1 HHT. This study gives a preliminary insight into the potential structure of ALK1EC and into the structural effects of HHT2 associated mutations, which can be useful to predict the potential effect of each single mutation, to devise new biological experiments and to interpret the biological significance of new mutations, private mutations, or non-synonymous polymorphisms. PMID:22028876

  15. Importins α and β signaling mediates endothelial cell inflammation and barrier disruption.

    PubMed

    Leonard, Antony; Rahman, Arshad; Fazal, Fabeha

    2018-04-01

    Nucleocytoplasmic shuttling via importins is central to the function of eukaryotic cells and an integral part of the processes that lead to many human diseases. In this study, we addressed the role of α and β importins in the mechanism of endothelial cell (EC) inflammation and permeability, important pathogenic features of many inflammatory diseases such as acute lung injury and atherosclerosis. RNAi-mediated knockdown of importin α4 or α3 each inhibited NF-κB activation, proinflammatory gene (ICAM-1, VCAM-1, and IL-6) expression, and thereby endothelial adhesivity towards HL-60 cells, upon thrombin challenge. The inhibitory effect of α4 and α3 knockdown was associated with impaired nuclear import and consequently, DNA binding of RelA/p65 subunit of NF-κB and occurred independently of IκBα degradation. Intriguingly, knockdown of importins α4 and α3 also inhibited thrombin-induced RelA/p65 phosphorylation at Ser 536 , showing a novel role of α importins in regulating transcriptional activity of RelA/p65. Similarly, knockdown of importin β1, but not β2, blocked thrombin-induced activation of RelA/p65 and its target genes. In parallel studies, TNFα-mediated inflammatory responses in EC were refractory to knockdown of importins α4, α3 or β1, indicating a stimulus-specific regulation of RelA/p65 and EC inflammation by these importins. Importantly, α4, α3, or β1 knockdown also protected against thrombin-induced EC barrier disruption by inhibiting the loss of VE-cadherin at adherens junctions and by regulating actin cytoskeletal rearrangement. These results identify α4, α3 and β1 as critical mediators of EC inflammation and permeability associated with intravascular coagulation. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Antithrombotic Effects of Nur77 and Nor1 Are Mediated Through Upregulating Thrombomodulin Expression in Endothelial Cells.

    PubMed

    Yang, Ping; Wei, Xin; Zhang, Jian; Yi, Bing; Zhang, Guan-Xin; Yin, Litian; Yang, Xiao-Feng; Sun, Jianxin

    2016-02-01

    Thrombomodulin is highly expressed on the lumenal surface of vascular endothelial cells (ECs) and possesses potent anticoagulant, antifibrinolytic, and anti-inflammatory activities in the vessel wall. However, the regulation of thrombomodulin expression in ECs remains largely unknown. In this study, we characterized nuclear receptor 4A family as a novel regulator of thrombomodulin expression in vascular ECs. We demonstrated that both nuclear receptors 4A, Nur77 and Nor1, robustly increase thrombomodulin mRNA and protein levels in human vascular ECs and in mouse liver tissues after adenovirus-mediated transduction of Nur77 and Nor1 cDNAs. Moreover, Nur77 deficiency and knockdown of Nur77 and Nor1 expression markedly attenuated the basal and vascular endothelial growth factor165-stimulated thrombomodulin expression. Mechanistically, we found that Nur77 and Nor1 increase thrombomodulin expression by acting through 2 different mechanisms. We showed that Nur77 barely affects thrombomodulin promoter activity, but significantly increases thrombomodulin mRNA stability, whereas Nor1 enhances thrombomodulin expression mainly through induction of Kruppel-like factors 2 and 4 in vascular ECs. Furthermore, we demonstrated that both Nur77 and Nor1 significantly increase protein C activity and inhibit tumor necrosis factor α-induced prothrombotic effects in human ECs. Deficiency of Nur77 increases susceptibility to arterial thrombosis, whereas enhanced expression of Nur77 and Nor1 protects mice from arterial thrombus formation. Our results identified nuclear receptors 4A as novel regulators of thrombomodulin expression and function in vascular ECs and provided a proof-of-concept demonstration that targeted increasing expression of Nur77 and Nor1 in the vascular endothelium might represent a novel therapeutic approach for the treatment of thrombotic disorders. © 2015 American Heart Association, Inc.

  17. Differential Expression of Ecdysone Receptor Leads to Variation in Phenotypic Plasticity across Serial Homologs

    PubMed Central

    Tong, Xiaoling; Bear, Ashley; Liew, Seng Fatt; Bhardwaj, Shivam; Wasik, Bethany R.; Dinwiddie, April; Bastianelli, Carole; Cheong, Wei Fun; Wenk, Markus R.; Cao, Hui

    2015-01-01

    Bodies are often made of repeated units, or serial homologs, that develop using the same core gene regulatory network. Local inputs and modifications to this network allow serial homologs to evolve different morphologies, but currently we do not understand which modifications allow these repeated traits to evolve different levels of phenotypic plasticity. Here we describe variation in phenotypic plasticity across serial homologous eyespots of the butterfly Bicyclus anynana, hypothesized to be under selection for similar or different functions in the wet and dry seasonal forms. Specifically, we document the presence of eyespot size and scale brightness plasticity in hindwing eyespots hypothesized to vary in function across seasons, and reduced size plasticity and absence of brightness plasticity in forewing eyespots hypothesized to have the same function across seasons. By exploring the molecular and physiological causes of this variation in plasticity across fore and hindwing serial homologs we discover that: 1) temperature experienced during the wandering stages of larval development alters titers of an ecdysteroid hormone, 20-hydroxyecdysone (20E), in the hemolymph of wet and dry seasonal forms at that stage; 2) the 20E receptor (EcR) is differentially expressed in the forewing and hindwing eyespot centers of both seasonal forms during this critical developmental stage; and 3) manipulations of EcR signaling disproportionately affected hindwing eyespots relative to forewing eyespots. We propose that differential EcR expression across forewing and hindwing eyespots at a critical stage of development explains the variation in levels of phenotypic plasticity across these serial homologues. This finding provides a novel signaling pathway, 20E, and a novel molecular candidate, EcR, for the regulation of levels of phenotypic plasticity across body parts or serial homologs. PMID:26405828

  18. Isthmin is a novel secreted angiogenesis inhibitor that inhibits tumour growth in mice

    PubMed Central

    Xiang, Wei; Ke, Zhiyuan; Zhang, Yong; Ho-Yuet Cheng, Grace; Irwan, Ishak Darryl; Sulochana, K N; Potturi, Padma; Wang, Zhengyuan; Yang, He; Wang, Jingyu; Zhuo, Lang; Kini, R Manjunatha; Ge, Ruowen

    2011-01-01

    Abstract Anti-angiogenesis represents a promising therapeutic strategy for the treatment of various malignancies. Isthmin (ISM) is a gene highly expressed in the isthmus of the midbrain–hindbrain organizer in Xenopus with no known functions. It encodes a secreted 60 kD protein containing a thrombospondin type 1 repeat domain in the central region and an adhesion-associated domain in MUC4 and other proteins (AMOP) domain at the C-terminal. In this work, we demonstrate that ISM is a novel angiogenesis inhibitor. Recombinant mouse ISM inhibited endothelial cell (EC) capillary network formation on Matrigel through its C-terminal AMOP domain. It also suppressed vascular endothelial growth factor (VEGF)-basic fibroblast growth factor (bFGF) induced in vivo angiogenesis in mouse. It mitigated VEGF-stimulated EC proliferation without affecting EC migration. Furthermore, ISM induced EC apoptosis in the presence of VEGF through a caspase-dependent pathway. ISM binds to αvβ5 integrin on EC surface and supports EC adhesion. Overexpression of ISM significantly suppressed mouse B16 melanoma tumour growth through inhibition of tumour angiogenesis without affecting tumour cell proliferation. Knockdown of isthmin in zebrafish embryos using morpholino antisense oligonucleotides led to disorganized intersegmen-tal vessels in the trunk. Our results demonstrate that ISM is a novel endogenous angiogenesis inhibitor with functions likely in physiological as well as pathological angiogenesis. PMID:19874420

  19. MCP-1-Induced Protein Promotes Endothelial-Like and Angiogenic Properties in Human Bone Marrow Monocytic Cells

    PubMed Central

    Wang, Kangkai; Zhelyabovska, Olga; Saad, Yasser; Kolattukudy, Pappachan E.

    2013-01-01

    Monocytic cells enhance neovascularization by releasing proangiogenic mediators and/or by transdifferentiating into endothelial-like cells. However, the mechanisms that govern this transdifferentiation process are largely unknown. Recently, monocyte chemotactic protein-1 (MCP-1)-induced protein (MCPIP) has been identified as a novel CCCH-type zinc-finger protein expressed primarily in monocytic cells. Here, we analyzed whether MCPIP might exert angiogenic effects by promoting differentiation of monocytic cells into endothelial cell (EC)-like phenotype. The expression of MCPIP increased during MCP-1-induced transdifferentiation in human bone marrow mononuclear cells (BMNCs). Knockdown of MCPIP with small interfering RNA (siRNA) abolished MCP-1-induced expression of EC markers Flk-1 and Tie-2 in human BMNCs. BMNCs transfected with MCPIP expression vector displayed EC-like morphology accompanied by downregulation of monocytic markers CD14 and CD11b, upregulation of EC markers Flk-1 and Tie-2, induction of cadherin (cdh)-12 and -19, activation of endoplasmic reticulum (ER) stress, and autophagy. Knockdown of cdh-12 or cdh-19 markedly inhibited MCPIP-induced enhancement of cell attachment and EC-marker expression. Inhibition of ER stress by tauroursodeoxycholate abolished MCPIP-induced expression of EC markers. Inhibition of autophagy by knockdown of Beclin-1 with siRNA or by an autophagy inhibitor 3′-methyladenine inhibited MCPIP-induced expression of EC markers. Expression of MCPIP in BMNCs enhanced uptake of acetylated low-density lipoprotein (acLDL), formation of EC-colony, incorporation of cells into capillary-like structure on Matrigel, and exhibited increased neovascularization in the ischemic hindlimb in mice. These results demonstrate that MCPIP may be an important regulator of inflammatory angiogenesis and provide novel mechanistic insights into the link between MCP-1 and cardiovascular diseases. PMID:24008336

  20. Seminal plasma induces global transcriptomic changes associated with cell migration, proliferation and viability in endometrial epithelial cells and stromal fibroblasts.

    PubMed

    Chen, Joseph C; Johnson, Brittni A; Erikson, David W; Piltonen, Terhi T; Barragan, Fatima; Chu, Simon; Kohgadai, Nargis; Irwin, Juan C; Greene, Warner C; Giudice, Linda C; Roan, Nadia R

    2014-06-01

    How does seminal plasma (SP) affect the transcriptome of human primary endometrial epithelial cells (eEC) and stromal fibroblasts (eSF)? Exposure of eEC and eSF to SP in vitro increases expression of genes and secreted proteins associated with cellular migration, proliferation, viability and inhibition of cell death. Studies in both humans and animals suggest that SP can access and induce physiological changes in the upper female reproductive tract (FRT), which may participate in promoting reproductive success. This is a cross sectional study involving control samples versus treatment. SP (pooled from twenty donors) was first tested for dose- and time-dependent cytotoxic effects on eEC and eSF (n = 4). As exposure of eEC or eSF to 1% SP for 6 h proved to be non-toxic, a second set of eEC/eSF samples (n = 4) was treated under these conditions for transcriptome, protein and functional analysis. With a third set of samples (n = 3), we further compared the transcriptional response of the cells to SP versus fresh semen. eEC and eSF were isolated from endometrial biopsies from women of reproductive age undergoing benign gynecologic procedures and maintained in vitro. RNA was isolated and processed for microarray studies to analyze global transcriptomic changes. Secreted factors in conditioned media from SP-treated cells were analyzed by Luminex and for the ability to stimulate migration of CD14+ monocytes and CD4+ T cells. Pathway identifications were determined using the Z-scoring system in Ingenuity Pathways Analysis (Z scores ≥|1.5|). SP induced transcriptomic changes (P < 0.05) associated with promoting leukocyte and endothelial cell recruitment, and proliferation of eEC and eSF. Cell viability pathways were induced, while those associated with cell death were suppressed (P < 0.05). SP and fresh semen induced similar sets of pathways, suggesting that SP can model the signaling effects of semen in the endometrium. SP also induced secretion of pro-inflammatory and pro-chemotactic cytokines, as well as pro-angiogenic and proliferative growth factors (P < 0.05) in both eEC and eSF. Finally, functional assays revealed that conditioned media from SP-treated eEC and eSF significantly increased (P < 0.05) chemotaxis of CD14+ monocytes and CD4+ T cells. This study is limited to in vitro analyses of the effects of SP on endometrial cells. In addition, the measured response to SP was conducted in the absence of the ovarian hormones estradiol and progesterone, as well as epithelial-stromal paracrine signaling. While this study focused on establishing the baseline cellular response of endometrial cells to SP, future work should assess how hormone signaling in the presence of appropriate paracrine interactions affects SP-induced genes in these cells. The results of this study support previous findings that SP and semen contain bioactive factors capable of eliciting chemotactic responses in the uterus, which can lead to recruitment of leukocytes to the endometrium. Future directions will explore if similar changes in gene expression do indeed occur after coitus in vivo, and how the signaling cascades initiated by SP in the endometrium can affect reproductive success, female reproductive health and susceptibility to sexually transmitted diseases. The gene list provided by the transcriptome analysis reported here should prove a valuable resource for understanding the response of the upper FRT to SP exposure. This project was supported by NIH AI083050-04 (W.C.G./L.C.G.); NIH U54HD 055764 (L.C.G.); NIH 1F32HD074423-02 (J.C.C.); DOD W81XWH-11-1-0562 (W.C.G.); NIH 5K12-DK083021-04, NIH 1K99AI104262-01A1, The UCSF Hellman Award (N.R.R.). The authors have nothing to disclose.

  1. MicroRNA-98 rescues proliferation and alleviates ox-LDL-induced apoptosis in HUVECs by targeting LOX-1

    PubMed Central

    Chen, Zhibo; Wang, Mian; He, Qiong; Li, Zilun; Zhao, Yang; Wang, Wenjian; Ma, Jieyi; Li, Yongxin; Chang, Guangqi

    2017-01-01

    Oxidized low-density lipoprotein (ox-LDL) is a major and critical mediator of atherosclerosis, and the underlying mechanism is thought to involve the ox-LDL-induced dysfunction of endothelial cells (ECs). MicroRNAs (miRNAs), which are a group of small non-coding RNA molecules that post-transcriptionally regulate the expression of target genes, have been associated with diverse cellular functions and the pathogenesis of various diseases, including atherosclerosis. miRNA-98 (miR-98) has been demonstrated to be involved in the regulation of cellular apoptosis; however, the role of miR-98 in ox-LDL-induced dysfunction of ECs and atherosclerosis has yet to be elucidated. Therefore, the present study aimed to investigate the role of miR-98 in ox-LDL-induced dysfunction of ECs and the underlying mechanism. It was demonstrated that miR-98 expression was markedly downregulated in ox-LDL-treated human umbilical vein ECs (HUVECs) and that miR-98 promoted the proliferation and alleviated apoptosis of HUVECs exposed to ox-LDL. In addition, the results demonstrated that lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1) was a direct target of miR-98 in HUVECs, as indicated by a luciferase assay. The results of the present study suggested that miR-98 may inhibit the uptake of toxic ox-LDL, maintain HUVEC proliferation and protect HUVECs against apoptosis via the suppression of LOX-1. PMID:28565756

  2. Scleroderma dermal microvascular endothelial cells exhibit defective response to pro-angiogenic chemokines

    PubMed Central

    Rabquer, Bradley J.; Ohara, Ray A.; Stinson, William A.; Campbell, Phillip L.; Amin, M. Asif; Balogh, Beatrix; Zakhem, George; Renauer, Paul A.; Lozier, Ann; Arasu, Eshwar; Haines, G. Kenneth; Kahaleh, Bashar; Schiopu, Elena; Khanna, Dinesh; Koch, Alisa E.

    2016-01-01

    Objectives. Angiogenesis plays a critical role in SSc (scleroderma). The aim of this study was to examine the expression of growth-regulated protein-γ (Gro-γ/CXCL3), granulocyte chemotactic protein 2 (GCP-2/CXCL6) and their receptor CXCR2 in endothelial cells (ECs) isolated from SSc skin and determine whether these cells mount an angiogenic response towards pro-angiogenic chemokines. The downstream signalling pathways as well as the pro-angiogenic transcription factor inhibitor of DNA-binding protein 1 (Id-1) were also examined. Methods. Skin biopsies were obtained from patients with dcSSc. ECs were isolated via magnetic positive selection. Angiogenesis was measured by EC chemotaxis assay. Results. Gro-γ/CXCL3 and GCP-2/CXCL6 were minimally expressed in both skin types but elevated in SSc serum. Pro-angiogenic chemokine mRNA was greater in SSc ECs than in normal ECs. SSc ECs did not migrate to vascular endothelial growth factor (VEGF), Gro-γ/CXCL3, GCP-2/CXCL6 or CXCL16. The signalling pathways stimulated by these chemokines were also dysregulated. Id-1 mRNA in SSc ECs was lower compared with normal ECs, and overexpression of Id-1 in SSc ECs increased their ability to migrate towards VEGF and CXCL16. Conclusion. Our results show that SSc ECs are unable to respond to pro-angiogenic chemokines despite their increased expression in serum and ECs. This might be due to the differences in the signalling pathways activated by these chemokines in normal vs SSc ECs. In addition, the lower expression of Id-1 also decreases the angiogenic response. The inability of pro-angiogenic chemokines to promote EC migration provides an additional mechanism for the impaired angiogenesis that characterizes SSc. PMID:26705326

  3. KDM4B and KDM4A promote endometrial cancer progression by regulating androgen receptor, c-myc, and p27kip1

    PubMed Central

    Kwan, Suet-Ying; Chen, Limo; Chen, Jin-Hong; Ying, Zuo-Lin; Zhou, Ye; Gu, Wei; Wang, Li-Hua; Cheng, Wei-Wei; Zeng, Jianfang; Wan, Xiao-Ping; Mok, Samuel C.; Wong, Kwong-Kwok; Bao, Wei

    2015-01-01

    Epidemiological evidence suggests that elevated androgen levels and genetic variation related to the androgen receptor (AR) increase the risk of endometrial cancer (EC). However, the role of AR in EC is poorly understood. We report that two members of the histone demethylase KDM4 family act as major regulators of AR transcriptional activityin EC. In the MFE-296 cell line, KDM4B and AR upregulate c-myc expression, while in AN3CA cells KDM4A and AR downregulate p27kip1. Additionally, KDM4B expression is positively correlated with AR expression in EC cell lines with high baseline AR expression, while KDM4A and AR expression are positively correlated in low-AR cell lines. In clinical specimens, both KDM4B and KDM4A expression are significantly higher in EC tissues than that in normal endometrium. Finally, patients with alterations in AR, KDM4B, KDM4A, and c-myc have poor overall and disease-free survival rates. Together, these findings demonstrate that KDM4B and KDM4A promote EC progression by regulating AR activity. PMID:26397136

  4. Recapitulating physiological and pathological shear stress and oxygen to model vasculature in health and disease

    NASA Astrophysics Data System (ADS)

    Abaci, Hasan Erbil; Shen, Yu-I.; Tan, Scott; Gerecht, Sharon

    2014-05-01

    Studying human vascular disease in conventional cell cultures and in animal models does not effectively mimic the complex vascular microenvironment and may not accurately predict vascular responses in humans. We utilized a microfluidic device to recapitulate both shear stress and O2 levels in health and disease, establishing a microfluidic vascular model (μVM). Maintaining human endothelial cells (ECs) in healthy-mimicking conditions resulted in conversion to a physiological phenotype namely cell elongation, reduced proliferation, lowered angiogenic gene expression and formation of actin cortical rim and continuous barrier. We next examined the responses of the healthy μVM to a vasotoxic cancer drug, 5-Fluorouracil (5-FU), in comparison with an in vivo mouse model. We found that 5-FU does not induce apoptosis rather vascular hyperpermeability, which can be alleviated by Resveratrol treatment. This effect was confirmed by in vivo findings identifying a vasoprotecting strategy by the adjunct therapy of 5-FU with Resveratrol. The μVM of ischemic disease demonstrated the transition of ECs from a quiescent to an activated state, with higher proliferation rate, upregulation of angiogenic genes, and impaired barrier integrity. The μVM offers opportunities to study and predict human ECs with physiologically relevant phenotypes in healthy, pathological and drug-treated environments.

  5. Reduced production of ethyl carbamate for wine fermentation by deleting CAR1 in Saccharomyces cerevisiae.

    PubMed

    Guo, Xue-Wu; Li, Yuan-Zi; Guo, Jian; Wang, Qing; Huang, Shi-Yong; Chen, Ye-Fu; Du, Li-Ping; Xiao, Dong-Guang

    2016-05-01

    Ethyl carbamate (EC), a pluripotent carcinogen, is mainly formed by a spontaneous chemical reaction of ethanol with urea in wine. The arginine, one of the major amino acids in grape musts, is metabolized by arginase (encoded by CAR1) to ornithine and urea. To reduce the production of urea and EC, an arginase-deficient recombinant strain YZ22 (Δcarl/Δcarl) was constructed from a diploid wine yeast, WY1, by successive deletion of two CAR1 alleles to block the pathway of urea production. The RT-qPCR results indicated that the YZ22 almost did not express CAR1 gene and the specific arginase activity of strain YZ22 was 12.64 times lower than that of parent strain WY1. The fermentation results showed that the content of urea and EC in wine decreased by 77.89 and 73.78 %, respectively. Furthermore, EC was forming in a much lower speed with the lower urea during wine storage. Moreover, the two CAR1 allele deletion strain YZ22 was substantially equivalent to parental strain in terms of growth and fermentation characteristics. Our research also suggested that EC in wine originates mainly from urea that is produced by the arginine.

  6. Enhanced Toxic Metal Accumulation in Engineered Bacterial Cells Expressing Arabidopsis thaliana Phytochelatin Synthase

    PubMed Central

    Sauge-Merle, Sandrine; Cuiné, Stéphan; Carrier, Patrick; Lecomte-Pradines, Catherine; Luu, Doan-Trung; Peltier, Gilles

    2003-01-01

    Phytochelatins (PCs) are metal-binding cysteine-rich peptides, enzymatically synthesized in plants and yeasts from glutathione in response to heavy metal stress by PC synthase (EC 2.3.2.15). In an attempt to increase the ability of bacterial cells to accumulate heavy metals, the Arabidopsis thaliana gene encoding PC synthase (AtPCS) was expressed in Escherichia coli. A marked accumulation of PCs was observed in vivo together with a decrease in the glutathione cellular content. When bacterial cells expressing AtPCS were placed in the presence of heavy metals such as cadmium or the metalloid arsenic, cellular metal contents were increased 20- and 50-fold, respectively. We discuss the possibility of using genes of the PC biosynthetic pathway to design bacterial strains or higher plants with increased abilities to accumulate toxic metals, and also arsenic, for use in bioremediation and/or phytoremediation processes. PMID:12514032

  7. Down-regulation of p-coumaroyl quinate/shikimate 3'-hydroxylase (C3'H) and cinnamate 4-hydroxylase (C4H) genes in the lignin biosynthetic pathway of Eucalyptus urophylla x E. grandis leads to improved sugar release

    DOE PAGES

    Sykes, Robert W.; Gjersing, Erica L.; Foutz, Kirk; ...

    2015-08-27

    In this study, lignocellulosic materials provide an attractive replacement for food-based crops used to produce ethanol. Understanding the interactions within the cell wall is vital to overcome the highly recalcitrant nature of biomass. One factor imparting plant cell wall recalcitrance is lignin, which can be manipulated by making changes in the lignin biosynthetic pathway. In this study, eucalyptus down-regulated in expression of cinnamate 4-hydroxylase (C4H, EC 1.14.13.11) or p-coumaroyl quinate/shikimate 3'-hydroxylase (C3'H, EC 1.14.13.36) were evaluated for cell wall composition and reduced recalcitrance.

  8. Expression of Allene Oxide Synthase Determines Defense Gene Activation in Tomato1

    PubMed Central

    Sivasankar, Sobhana; Sheldrick, Bay; Rothstein, Steven J.

    2000-01-01

    Allene oxide synthase (AOS; hydroperoxide dehydratase; EC 4.2.1.92) catalyzes the first step in the biosynthesis of jasmonic acid from lipoxygenase-derived hydroperoxides of free fatty acids. Using the AOS cDNA from tomato (Lycopersicon esculentum), in which the role of jasmonic acid in wound-induced defense gene activation has been best described, we examined the kinetics of AOS induction in response to wounding and elicitors, in parallel with that of the wound-inducible PIN II (proteinase inhibitor II) gene. AOS was induced in leaves by wounding, systemin, 12-oxophytodienoic acid, and methyl jasmonate. The levels of AOS mRNA started declining by 4 h after induction, whereas the levels of PIN II mRNA continued to increase up to 20 h after induction. Salicylic acid inhibited AOS and PIN II expression, and the addition of 12-oxophytodienoic acid or methyl jasmonate did not prevent the inhibition of PIN II expression in the presence of salicylic acid. Ethylene induced the expression of AOS, but the presence of ethylene alone did not produce an optimal induction of PIN II. The addition of silver thiosulfate, an ethylene action inhibitor, prevented the wound-induced expression of both AOS and PIN II. Products of hydroperoxide lyase affected neither AOS nor PIN II, but induced expression of prosystemin. Based on these results, we propose an updated model for defense gene activation in tomato. PMID:10759530

  9. Mechanisms of vasculogenesis in 3D fibrin matrices mediated by the interaction of adipose-derived stem cells and endothelial cells.

    PubMed

    Rohringer, Sabrina; Hofbauer, Pablo; Schneider, Karl H; Husa, Anna-Maria; Feichtinger, Georg; Peterbauer-Scherb, Anja; Redl, Heinz; Holnthoner, Wolfgang

    2014-10-01

    Vascularization of tissue-engineered constructs is essential to provide sufficient nutrient supply and hemostasis after implantation into target sites. Co-cultures of adipose-derived stem cells (ASC) with outgrowth endothelial cells (OEC) in fibrin gels were shown to provide an effective possibility to induce vasculogenesis in vitro. However, the mechanisms of the interaction between these two cell types remain unclear so far. The aim of this study was to evaluate differences of direct and indirect stimulation of ASC-induced vasculogenesis, the influence of ASC on network stabilization and molecular mechanisms involved in vascular structure formation. Endothelial cells (EC) were embedded in fibrin gels either containing non-coated or ASC-coated microcarrier beads as well as ASC alone. Moreover, EC-seeded constructs incubated with ASC-conditioned medium were used in addition to constructs with ASC seeded on top. Vascular network formation was visualized by green fluorescent protein expressing cells or immunostaining for CD31 and quantified. RT-qPCR of cells derived from co-cultures in fibrin was performed to evaluate changes in the expression of EC marker genes during the first week of culture. Moreover, angiogenesis-related protein levels were measured by performing angiogenesis proteome profiler arrays. The results demonstrate that proximity of endothelial cells and ASC is required for network formation and ASC stabilize EC networks by developing pericyte characteristics. We further showed that ASC induce controlled vessel growth by secreting pro-angiogenic and regulatory proteins. This study reveals angiogenic protein profiles involved in EC/ASC interactions in fibrin matrices and confirms the usability of OEC/ASC co-cultures for autologous vascular tissue engineering.

  10. Reduced proliferation of endothelial colony-forming cells in unprovoked venous thromboembolic disease as a consequence of endothelial dysfunction

    PubMed Central

    Hernandez-Lopez, Rubicel; Chavez-Gonzalez, Antonieta; Torres-Barrera, Patricia; Moreno-Lorenzana, Dafne; Lopez-DiazGuerrero, Norma; Santiago-German, David; Isordia-Salas, Irma; Smadja, David; C. Yoder, Mervin; Majluf-Cruz, Abraham

    2017-01-01

    Background Venous thromboembolic disease (VTD) is a public health problem. We recently reported that endothelial colony-forming cells (ECFCs) derived from endothelial cells (EC) (ECFC-ECs) from patients with VTD have a dysfunctional state. For this study, we proposed that a dysfunctional status of these cells generates a reduction of its proliferative ability, which is also associated with senescence and reactive oxygen species (ROS). Methods and results Human mononuclear cells (MNCs) were obtained from peripheral blood from 40 healthy human volunteers (controls) and 50 patients with VTD matched by age (20−50 years) and sex to obtain ECFCs. We assayed their proliferative ability with plasma of patients and controls and supernatants of cultures from ECFC-ECs, senescence-associated β-galactosidase (SA-β-gal), ROS, and expression of ephrin-B2/Eph-B4 receptor. Compared with cells from controls, cells from VTD patients showed an 8-fold increase of ECFCs that emerged 1 week earlier, reduced proliferation at long term (39%) and, in passages 4 and 10, a highly senescent rate (30±1.05% vs. 91.3±15.07%, respectively) with an increase of ROS and impaired expression of ephrin-B2/Eph-4 genes. Proliferation potential of cells from VTD patients was reduced in endothelial medium [1.4±0.22 doubling population (DP)], control plasma (1.18±0.31 DP), or plasma from VTD patients (1.65±0.27 DP). Conclusions As compared with controls, ECFC-ECs from individuals with VTD have higher oxidative stress, proliferation stress, cellular senescence, and low proliferative potential. These findings suggest that patients with a history of VTD are ECFC-ECs dysfunctional that could be associated to permanent risk for new thrombotic events. PMID:28910333

  11. Maternal dietary choline deficiency alters angiogenesis in fetal mouse hippocampus.

    PubMed

    Mehedint, Mihai G; Craciunescu, Corneliu N; Zeisel, Steven H

    2010-07-20

    We examined whether maternal dietary choline modulates angiogenesis in fetal brain. Pregnant C57BL/6 mice were fed either a choline-deficient (CD), control (CT), or choline-supplemented diet (CS) from days 12 to 17 (E12-17) of pregnancy and then fetal brains were studied. In CD fetal hippocampus, proliferation of endothelial cells (EC) was decreased by 32% (p < 0.01 vs. CT or CS) while differentiated EC clusters (expressing factor VIII related antigen (RA)) increased by 25% (p < 0.01 vs. CT or CS). These changes were associated with > 25% decrease in the number of blood vessels in CD fetal hippocampus (p < 0.01 vs. CT and CS), with no change in total cross-sectional area of these blood vessels. Expression of genes for the angiogenic signals derived from both endothelial and neuronal progenitor cells (NPC) was increased in CD fetal hippocampus VEGF C (Vegfc), 2.0-fold, p < 0.01 vs. CT and angiopoietin 2 (Angpt2), 2.1-fold, (p < 0.01 vs. CT)). Similar increased expression was observed in NPC isolated from E14 fetal mouse brains and exposed to low (5 microM), CT (70 microM), or high choline (280 microM) media for 72 h (low choline caused a 9.7-fold increase in relative gene expression of Vegfc (p < 0.001 vs. CT and high) and a 3.4-fold increase in expression of Angpt2, (p < 0.05 vs. CT and high). ANGPT2 protein was increased 42.2% (p < 0.01). Cytosine-phosphate-guanine dinucleotide islands in the proximity of the promoter areas of Vegfc and Angpt2 were hypomethylated in low choline NPC compared to CT NPC (p < 0.01). We conclude that maternal dietary choline intake alters angiogenesis in the developing fetal hippocampus.

  12. Effect and mechanism of PAR-2 on the proliferation of esophageal cancer cells.

    PubMed

    Quanjun, D; Qingyu, Z; Qiliang, Z; Liqun, X; Jinmei, C; Ziquan, L; Shike, H

    2016-11-01

    Esophageal Cancer (EC) is a common malignant tumor occurred in the digestive tract. In this study, we investigated the mechanism of Protease Activated Receptor 2 (PAR-2) on the proliferation of esophageal cancer cell. Transfected esophageal cancer (EC) cell (PAR-2shRNA EC109) was established with low stable PAR-2 expression. EC109 cell was treated with PAR-2 agonist, PAR-2 anti-agonist and MAPK inhibitor respectively; Untreated EC109 cell (blank control) and PAR-2shRNA EC109 cell were used for analysis also. The mRNA expressions of PAR-2, ERK1, Cyclin D1, and c-fos in each group were detected by reverse transcript and polymerase chain reaction. Western blot was used to detect the protein expressions in each group. The cell growth curves were drawn to compare the cell growth. Compared with the blank control, the mRNA and protein expressions of PAR-2, Cyclin D1, and c-fos in PAR-2 agonist group increased significantly (p < 0.05), while decreased significantly in PAR-2shRNA EC109 cell and MAPK inhibitor group (p < 0.05). The mRNA expression of ERK1 and protein expression of p-ERK1 increased in PAR-2 agonist group, decreased in PAR-2shRNA EC109 cell and MAPK inhibitor group when compared with blank control (p < 0.05). The growth of cells was upward in PAR-2 agonist group at cell growth phase when compared with blank control, while decreased in PAR-2 shRNA EC109 cell and MAPK inhibitor group with statistical difference (p < 0.05). PAR-2 regulate cell proliferation through the MAPK pathway in esophageal carcinoma cell, and Cyclin D1, c-fos are involved in this process.

  13. High-throughput tool to discriminate effects of NMs (Cu-NPs, Cu-nanowires, CuNO3, and Cu salt aged): transcriptomics in Enchytraeus crypticus.

    PubMed

    Gomes, Susana I L; Roca, Carlos P; Pegoraro, Natália; Trindade, Tito; Scott-Fordsmand, Janeck J; Amorim, Mónica J B

    2018-05-01

    The current testing of nanomaterials (NMs) via standard toxicity tests does not cover many of the NMs specificities. One of the recommendations lays on understanding the mechanisms of action, as these can help predicting long-term effects and safe-by-design production. In the present study, we used the high-throughput gene expression tool, developed for Enchytraeus crypticus (4 × 44k Agilent microarray), to study the effects of exposure to several copper (Cu) forms. The Cu treatments included two NMs (spherical and wires) and two copper-salt treatments (CuNO 3 spiked and Cu salt field historical contamination). To relate gene expression with higher effect level, testing was done with reproduction effect concentrations (EC 20 , EC 50 ), using 3 and 7 days as exposure periods. Results showed that time plays a major role in the transcriptomic response, most of it occurring after 3 days. Analysis of gene expression profiles showed that Cu-salt-aged and Cu-nanowires (Nwires) differed from CuNO 3 and Cu-nanoparticles (NPs). Functional analysis revealed specific mechanisms: Cu-NPs uniquely affected senescence and cuticle pattern formation, which can result from the contact of the NPs with the worms' tegument. Cu-Nwires affected reproduction via male gamete generation and hermaphrodite genitalia development. CuNO 3 affected neurotransmission and locomotory behavior, both of which can be related with avoidance response. Cu salt-aged uniquely affected phagocytosis and reproductive system development (via different mechanisms than Cu-Nwires). For the first time for Cu (nano)materials, the adverse outcome pathways (AOPs) drafted here provide an overview for common and unique effects per material and linkage with apical effects.

  14. Cytotoxicity, cytokine release and ER stress-autophagy gene expression in endothelial cells and alveolar-endothelial co-culture exposed to pristine and carboxylated multi-walled carbon nanotubes.

    PubMed

    Chang, Shiwei; Zhao, Xuqi; Li, Siyu; Liao, Tuqiang; Long, Jimin; Yu, Zhiqiang; Cao, Yi

    2018-06-18

    Recently we found that direct exposure of human umbilical vein endothelial cells (HUVECs) to multi-walled carbon nanotubes (MWCNTs) might induce toxicological responses through the modulation of ER stress gene expression, but whether this signal could be transferred from other cells to endothelial cells (ECs) is unknown. This study investigated the toxicity of pristine and carboxylated MWCNTs to HUVECs and alveolar-endothelial co-culture, the later of which could mimic the possible signaling communications between ECs and MWCNT exposed alveolar cells. The results showed that direct contact with high levels of MWCNTs induced cytotoxicity and modulated expression of genes associated with ER stress (HSPA5, DDIT3 and XBP-1s) and autophagy (BECN1 and ATG12) both in A549-THP-1 macrophages cultured in the upper chambers as well as HUVECs. However, most of these responses were minimal or negligible in HUVECs cultured in the lower chambers. Moreover, significantly increased cytokine release (interleukin-6 and soluble vascular cell adhesion molecule-1) was only observed in MWCNT exposed HUVECs (p < 0.01) but not HUVECs cultured in the lower chambers (p > 0.05). The minimal or even absent response was likely due to relatively low translocation of MWCNTs from upper chambers to lower chambers, whereas A549-macrophages cultured in the upper chambers internalized large amount MWCNTs. The results indicated that ER stress-autophagy signaling might not be able to transfer from alveolar cells to endothelial cells unless sufficient MWCNTs are translocated. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Characterization of Stg Fimbriae from an Avian Pathogenic Escherichia coli O78:K80 Strain and Assessment of Their Contribution to Colonization of the Chicken Respiratory Tract

    PubMed Central

    Lymberopoulos, Maria H.; Houle, Sébastien; Daigle, France; Léveillé, Simon; Brée, Annie; Moulin-Schouleur, Maryvonne; Johnson, James R.; Dozois, Charles M.

    2006-01-01

    In a previous study, ecs-3, a sequence from avian pathogenic Escherichia coli (APEC) O78:K80 strain χ7122, was found to be expressed in vivo in infected chicken tissues. The region encompassing ecs-3 carries a fimbrial gene cluster that is a putative ortholog of the stg fimbrial gene cluster of Salmonella enterica serovar Typhi. This APEC fimbrial gene cluster, which we have termed stg, is a member of a distinct group of related fimbriae that are located in the glmS-pstS intergenic region of certain E. coli and S. enterica strains. Under the control of the pBAD promoter, the production of Stg fimbriae was demonstrated by Western blotting and immunogold electron microscopy with E. coli K-12. Transcriptional fusions suggest that stg expression is influenced by the carbohydrate source and decreased by the addition of iron and that Fur plays a role in the regulation of stg expression. stg sequences were associated with APEC O78 isolates, and stg was phylogenetically distributed among E. coli reference strains and clinical isolates from human urinary tract infections. Stg fimbriae contributed to the adherence of a nonfimbriated E. coli K-12 strain to avian lung sections and human epithelial cells in vitro. Coinfection experiments with APEC strain χ7122 and an isogenic Δstg mutant demonstrated that compared to the wild-type parent, the Δstg mutant was less able to colonize air sacs, equally able to colonize lungs, and able to more effectively colonize tracheas of infected chickens. Stg fimbriae, together with other adhesins, may therefore contribute to the colonization of avian respiratory tissues by certain APEC strains. PMID:16952934

  16. Expression patterns of STM-like KNOX and Histone H4 genes in shoot development of the dissected-leaved basal eudicot plants Chelidonium majus and Eschscholzia californica (Papaveraceae).

    PubMed

    Groot, Edwin P; Sinha, Neelima; Gleissberg, Stefan

    2005-06-01

    Knotted-like homeobox (KNOX) genes encode important regulators of shoot development in flowering plants. In Arabidopsis, class I KNOX genes are part of a regulatory system that contributes to indeterminacy of shoot development, delimitation of leaf primordia and internode development. In other species, class I KNOX genes have also been recruited in the control of marginal blastozone fractionation during dissected leaf development. Here we report the isolation of class I KNOX genes from two species of the basal eudicot family Papaveraceae, Chelidonium majus and Eschscholzia californica. Sequence comparisons and expression patterns indicate that these genes are orthologs of SHOOTMERISTEMLESS (STM), a class I KNOX gene from Arabidopsis. Both genes are expressed in the center of vegetative and floral shoot apical meristems (SAM), but downregulated at leaf or floral organ initiating sites. While Eschscholzia californica STM (EcSTM) is again upregulated during acropetal pinna formation, in situ hybridization could not detect Chelidonium majus STM (CmSTM) transcripts at any stage of basipetal leaf development, indicating divergent evolution of STM gene function in leaves within Papaveraceae. Immunolocalization of KNOX proteins indicate that other gene family members may control leaf dissection in both species. The contrasting direction of pinna initiation in the two species was also investigated using Histone H4 expression. Leaves at early stages of development did not reveal notable differences in cell division activity of the elongating leaf axis, suggesting that differential meristematic growth may not play a role in determining the observed dissection patterns.

  17. [Knockdown of NEDD9 inhibits the proliferation, invasion and migration of esophageal carcinoma EC109 cells].

    PubMed

    Zhang, Wen; Li, Shaojun; Zhao, Yunlong; Guo, Nannan; Li, Yingjie

    2016-12-01

    Objective To observe the expression of the neural precursor cell expressed, developmentally down-regulated 9 (NEDD9) in esophageal cancer, to investigate the impact of decreased expression of NEDD9 on invasion and migration, and to explicit the function of NEDD9 in EC109 human esophageal cancer cell line. Methods Immunohistochemical staining was used to detect the expression of NEDD9 in human esophageal cancer tissues and paracancerous normal tissues. RNA interfering (RNAi) was used to knockdown NEDD9 in EC109 cells. The interference efficiency was detected by reverse transcription PCR (RT-PCR) and Western blot analysis. Cell proliferation was determined by MTT assay and the invasion and migration abilities of EC109 cells were monitored by Transwell TM assay. The protein levels of proliferating cell nuclear antigen (PCNA), Bax and Bcl-2 were tested by Western blotting. Results The positive expression rate of NEDD9 in esophageal carcinoma tissues was significantly higher compared with that in the paracancerous tissues. After NEDD9 expression was successfully downregulated in EC109 cells by siRNA, the proliferation, invasion and migration rates in transfection group were significantly lower than those in control group; meanwhile, the expression of Bcl-2 was reduced and Bax expression was enhanced. Conclusion The protein expression level of NEDD9 is higher in esophageal carcinoma tissues than that in adjacent normal tissues. Knockdown of NEDD9 expression can restrain the proliferation, invasion and migration of EC109 cells.

  18. Thermostable, salt tolerant, wide pH range novel chitobiase from Vibrio parahemolyticus: isolation, characterization, molecular cloning, and expression.

    PubMed

    Zhu, B C; Lo, J Y; Li, Y T; Li, S C; Jaynes, J M; Gildemeister, O S; Laine, R A; Ou, C Y

    1992-07-01

    A chitobiase gene from Vibrio parahemolyticus was cloned into plasmid pUC18 in Escherichia coli strain DH5 alpha. The plasmid construct, pC120, contained a 6.4 kb Vibrio DNA insert. The recombinant gene expressed chitobiase [EC 3.2.1.30] activity similar to that found in the native Vibrio. The enzyme was purified by ion exchange, hydroxylapatite and gel permeation chromatographies, and exhibited an apparent molecular weight of 80 kDa on SDS-polyacrylamide gel electrophoresis. Chitobiose and 6 more substrates, including beta-N-acetyl galactosamine glycosides, were hydrolyzed by the recombinant chitobiase, indicating its putative classification as an hexosaminidase [EC 3.2.1.52]. The enzyme was resistant to denaturation by 2 M NaCl, thermostable at 45 degrees C and active over a very unusual (for glycosyl hydrolases) pH range, from 4 to 10. The purified cloned chitobiase gave 4 closely focussed bands on an isoelectric focusing gel, at pH 4 to 6.5. The N-terminal 43 amino acid sequence shows no homology with other proteins in commercial databanks or in the literature, and from its N-terminal sequence, appears to be a novel protein, unrelated in sequence to chitobiases from other Vibrios reported and unrelated to hexosaminidases from other organisms.

  19. A20 Regulates Atherogenic Interferon (IFN)-γ Signaling in Vascular Cells by Modulating Basal IFNβ Levels*

    PubMed Central

    Moll, Herwig P.; Lee, Andy; Minussi, Darlan C.; da Silva, Cleide G.; Csizmadia, Eva; Bhasin, Manoj; Ferran, Christiane

    2014-01-01

    IFNγ signaling in endothelial (EC) and smooth muscle cells (SMC) is a key culprit of pathologic vascular remodeling. The impact of NF-κB inhibitory protein A20 on IFNγ signaling in vascular cells remains unknown. In gain- and loss-of-function studies, A20 inversely regulated expression of IFNγ-induced atherogenic genes in human EC and SMC by modulating STAT1 transcription. In vivo, inadequate A20 expression in A20 heterozygote mice aggravated intimal hyperplasia following partial carotid artery ligation. This outcome uniquely associated with increased levels of Stat1 and super-induction of Ifnγ-dependent genes. Transcriptome analysis of the aortic media from A20 heterozygote versus wild-type mice revealed increased basal Ifnβ signaling as the likely cause for higher Stat1 transcription. We confirmed higher basal IFNβ levels in A20-silenced human SMC and showed that neutralization or knockdown of IFNβ abrogates heightened STAT1 levels in these cells. Upstream of IFNβ, A20-silenced EC and SMC demonstrated higher levels of phosphorylated/activated TANK-binding kinase-1 (TBK1), a regulator of IFNβ transcription. This suggested that A20 knockdown increased STAT1 transcription by enhancing TBK1 activation and subsequently basal IFNβ levels. Altogether, these results uncover A20 as a key physiologic regulator of atherogenic IFNγ/STAT1 signaling. This novel function of A20 added to its ability to inhibit nuclear factor-κB (NF-κB) activation solidifies its promise as an ideal therapeutic candidate for treatment and prevention of vascular diseases. In light of recently discovered A20/TNFAIP3 (TNFα-induced protein 3) single nucleotide polymorphisms that impart lower A20 expression or function, these results also qualify A20 as a reliable clinical biomarker for vascular risk assessment. PMID:25217635

  20. Treatment Failure and Miltefosine Susceptibility in Dermal Leishmaniasis Caused by Leishmania Subgenus Viannia Species

    PubMed Central

    Obonaga, Ricardo; Fernández, Olga Lucía; Valderrama, Liliana; Rubiano, Luisa Consuelo; Castro, Maria del Mar; Barrera, Maria Claudia; Gomez, Maria Adelaida

    2014-01-01

    Treatment failure and parasite drug susceptibility in dermal leishmaniasis caused by Leishmania (Viannia) species are poorly understood. Prospective evaluation of drug susceptibility of strains isolated from individual patients before drug exposure and at clinical failure allows intrinsic and acquired differences in susceptibility to be discerned and analyzed. To determine whether intrinsic susceptibility or loss of susceptibility to miltefosine contributed to treatment failure, we evaluated the miltefosine susceptibility of intracellular amastigotes and promastigotes of six Leishmania (Viannia) braziliensis and six Leishmania (Viannia) panamensis strains isolated sequentially, at diagnosis and treatment failure, from two children and four adults ≥55 years old with concurrent conditions. Four patients presented only cutaneous lesions, one had mucosal disease, and one had disseminated mucocutaneous disease. Expression of the Leishmania drug transporter genes abca2, abca3, abcc2, abcc3, abcg4, abcg6, and LbMT was evaluated by quantitative reverse transcription-PCR (qRT-PCR). Intracellular amastigotes (median 50% effective concentration [EC50], 10.7 μmol/liter) were more susceptible to miltefosine than promastigotes (median EC50, 55.3 μmol/liter) (P < 0.0001). Loss of susceptibility at failure, demonstrated by a miltefosine EC50 of >32 μmol/liter (the upper limit of intracellular amastigote assay), occurred in L. panamensis infection in a child and in L. braziliensis infection in an adult and was accompanied by decreased expression of the miltefosine transporter LbMT (LbMT/β-tubulin, 0.42- to 0.26-fold [P = 0.039] and 0.70- to 0.57-fold [P = 0.009], respectively). LbMT gene polymorphisms were not associated with susceptibility phenotype. Leishmania ABCA3 transporter expression was inversely correlated with miltefosine susceptibility (r = −0.605; P = 0.037). Loss of susceptibility is one of multiple factors involved in failure of miltefosine treatment in dermal leishmaniasis. PMID:24145529

  1. Relations of Positive and Negative Expressivity and Effortful Control to Kindergarteners’ Student-Teacher Relationship, Academic Engagement, and Externalizing Problems at School

    PubMed Central

    Diaz, Anjolii; Eisenberg, Nancy; Valiente, Carlos; VanSchyndel, Sarah; Spinrad, Tracy L.; Berger, Rebecca; Hernandez, Maciel M.; Silva, Kassondra M.; Southworth, Jody

    2015-01-01

    The current study examined the role of naturally-occurring negative and positive emotion expressivity in kindergarten and children’s effortful control (EC) on their relationships with teachers, academic engagement, and problems behaviors in school. Further, the potential moderating role of EC on these important school outcomes was assessed. Emotion and engagement were observed at school. EC was assessed by multiple methods. Teachers reported on their student–teacher relationships and student’s externalizing behaviors. Children’s emotion expressivity and EC were related to engagement and relationships with teachers as well as behavioral problems at school. Children low in EC may be particularly vulnerable to the poor outcomes associated with relatively intense emotion expressivity as they struggle to manage their emotions and behaviors in the classroom. PMID:28584388

  2. Imiquimod Induces Apoptosis in Human Endometrial Cancer Cells In vitro and Prevents Tumor Progression In vivo

    PubMed Central

    Almomen, Aliyah; Jarboe, Elke A.; Dodson, Mark K.; Peterson, C. Matthew; Owen, Shawn C.; Janát-Amsbury, Margit M.

    2016-01-01

    Purpose The increasing incidence of endometrial cancer (EC), in younger age at diagnosis, calls for new tissue-sparing treatment options. This work aims to evaluate the potential of imiquimod (IQ) in the treatment of low-grade EC. Methods Effects of IQ on the viabilities of Ishikawa and HEC-1A cells were evaluated using MTT assay. The ability of IQ to induce apoptosis was evaluated by testing changes in caspase 3/7 levels and expression of cleaved caspase-3, using luminescence assay and western blot. Apoptosis was confirmed by flow cytometry and the expression of cleaved PARP. Western blot was used to evaluate the effect of IQ on expression levels of Bcl-2, Bcl-xL, and BAX. Finally, the in vivo efficacy of IQ was tested in an EC mouse model. Results There was a decrease in EC cell viability following IQ treatment as well as increased caspase 3/7 activities, cleaved caspase-3 expression, and Annexin-V/ 7AAD positive cell population. Western blot results showed the ability of IQ in cleaving PARP, decreasing Bcl-2 and Bcl-xL expressions, but not affecting BAX expression. In vivo study demonstrated IQ’s ability to inhibit EC tumor growth and progression without significant toxicity. Conclusions IQ induces apoptosis in low-grade EC cells in vitro, probably through its direct effect on Bcl-2 family protein expression. In, vivo, IQ attenuates EC tumor growth and progression, without an obvious toxicity. Our study provides the first building block for the potential role of IQ in the non-surgical management of low-grades EC and encouraging further investigations. PMID:27245465

  3. Endothelial connexin 32 regulates tissue factor expression induced by inflammatory stimulation and direct cell-cell interaction with activated cells.

    PubMed

    Okamoto, Takayuki; Akita, Nobuyuki; Hayashi, Tatsuya; Shimaoka, Motomu; Suzuki, Koji

    2014-10-01

    Endothelial cell (EC) interacts with adjacent EC through gap junction, and abnormal expression or function of Cxs is associated with cardiovascular diseases. In patients with endothelial dysfunction, the up-regulation of tissue factor (TF) expression promotes the pathogenic activation of blood coagulation, however the relationship between gap junctions and TF expression in ECs remains uncharacterized. ECs express the gap junction (GJ) proteins connexin32 (Cx32), Cx37, Cx40 and Cx43. We investigated the role of endothelial gap junctions, particularly Cx32, in modulating TF expression during vascular inflammation. Human umbilical vein endothelial cells (HUVECs) were stimulated with tumor necrosis factor-α (TNF-α) and TF activity was assessed in the presence of GJ blockers and an inhibitory anti-Cx32 monoclonal antibody. Treatment with GJ blockers and anti-Cx32 monoclonal antibody enhanced the TNF-α-induced TF activity and mRNA expression in HUVECs. TNF-α-activated effector HUVECs or mouse MS-1 cells were co-cultured with non-stimulated acceptor HUVECs and TF expression in acceptor HUVECs was detected. Effector EC induced TF expression in adjacent acceptor HUVECs through direct cell-cell interaction. Cell-cell interaction induced TF expression was reduced by anti-intercellular adhesion molecule-1 (ICAM1) monoclonal antibody. Soluble ICAM1-Fc fusion protein promotes TF expression. GJ blockers and anti-Cx32 monoclonal antibody enhanced TF expression induced by cell-cell interaction and ICAM1-Fc treatment. Blockade of endothelial Cx32 increased TF expression induced by TNF-α stimulation and cell-cell interaction which was at least partly dependent upon ICAM1. These results suggest that direct Cx32-mediated interaction modulates TF expression in ECs during vascular inflammation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Lipocalin-type prostaglandin D synthase-derived PGD2 attenuates malignant properties of tumor endothelial cells.

    PubMed

    Omori, Keisuke; Morikawa, Teppei; Kunita, Akiko; Nakamura, Tatsuro; Aritake, Kosuke; Urade, Yoshihiro; Fukayama, Masashi; Murata, Takahisa

    2018-01-01

    Endothelial cells (ECs) are a key component of the tumor microenvironment. They have abnormal characteristics compared to the ECs in normal tissues. Here, we found a marked increase in lipocalin-type prostaglandin D synthase (L-PGDS) mRNA (Ptgds) expression in ECs isolated from mouse melanoma. Immunostaining of mouse melanoma revealed expression of L-PGDS protein in the ECs. In situ hybridization also showed L-PGDS (PTGDS) mRNA expression in the ECs of human melanoma and oral squamous cell carcinoma. In vitro experiments showed that stimulation with tumor cell-derived IL-1 and TNF-α increased L-PGDS mRNA expression and its product prostaglandin D 2 (PGD 2 ) in human normal ECs. We also investigated the contribution of L-PGDS-PGD 2 to tumor growth and vascularization. Systemic or EC-specific deficiency of L-PGDS accelerated the growth of melanoma in mice, whereas treatment with an agonist of the PGD 2 receptor, DP1 (BW245C, 0.1 mg/kg, injected intraperitoneally twice daily), attenuated it. Morphological and in vivo studies showed that endothelial L-PGDS deficiency resulted in functional changes of tumor ECs such as accelerated vascular hyperpermeability, angiogenesis, and endothelial-to-mesenchymal transition (EndMT) in tumors, which in turn reduced tumor cell apoptosis. These observations suggest that tumor cell-derived inflammatory cytokines increase L-PGDS expression and subsequent PGD 2 production in the tumor ECs. This PGD 2 acts as a negative regulator of the tumorigenic changes in tumor ECs. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  5. Defining the extent of cables loss in endometrial cancer subtypes and its effectiveness as an inhibitor of cell proliferation in malignant endometrial cells in vitro and in vivo.

    PubMed

    DeBernardo, Robert L; Littell, Ramey D; Luo, Hongwei; Duska, Linda R; Oliva, Esther; Kirley, Sandra D; Lynch, Maureen P; Zukerberg, Lawrence R; Rueda, Bo R

    2005-01-01

    Loss of Cables expression is associated with a high incidence of endometrial hyperplasia and endometrial adenocarcinoma in humans. The Cables mutant mouse develops endometrial hyperplasia and following exposure to chronic estrogen develops early endometrial adenocarcinoma. The objectives of the current study were to determine if: (1) loss of Cables expression occurred in high grade endometrioid adenocarcinoma, uterine serous and clear cell carcinoma as observed in endometrial hyperplasia and low grade endometrial adenocarcinoma; (2) overexpression of Cables inhibited cell proliferation in endometrial cancer (EC) cells in vitro and in vivo; and (3) progesterone could regulate the expression of Cables mRNA. Hyperplastic endometrium and low and high grade endometrioid adenocarcinoma showed loss of Cables expression when compared to benign control secretory endometrium. Loss of Cables expression in serous and clear cell tumors was similar to that observed in endometrioid adenocarcinomas with greater than 80% showing loss of protein expression. Treatment of EC lines with progesterone increased cables expression in low-grade EC whereas it had no effect on cables expression in cells derived from high-grade EC. The progesterone-induced increase in cables was abrogated in the presence of a progesterone receptor (PR) antagonist, suggesting the PR mediates the increase. Cables overexpression inhibited cell proliferation of well differentiated EC cells and had no effect on the poorly differentiated EC cells. The capacity to form tumors was dramatically reduced in the Cables overexpressing cell lines compared to those cells containing the control vector. Collectively these results suggest that Cables is an important regulator of cell proliferation and loss of Cables expression contributes to the development of all types of EC.

  6. Adhesion Molecule Expression and Function of Primary Endothelial Cells in Benign and Malignant Tissues Correlates with Proliferation

    PubMed Central

    Sievert, Wolfgang; Tapio, Soile; Breuninger, Stephanie; Gaipl, Udo; Andratschke, Nicolaus; Trott, Klaus-Rüdiger; Multhoff, Gabriele

    2014-01-01

    Background Comparative analysis of the cellular biology of the microvasculature in different tissues requires the availability of viable primary endothelial cells (ECs). This study describes a novel method to isolate primary ECs from healthy organs, repair blastemas and tumors as examples of non-proliferating and proliferating benign and malignant tissues and their functional characterization. Methodology/Principal Findings Single cell suspensions from hearts, lungs, repair blastemas and tumors were incubated consecutively with an anti-CD31 antibody and magnetic micro-beads, coupled to a derivative of biotin and streptavidin, respectively. Following magnetic bead separation, CD31-positive ECs were released by biotin-streptavidin competition. In the absence of micro-beads, ECs became adherent to plastic surfaces. ECs from proliferating repair blastemas and tumors were larger and exhibited higher expression densities of CD31, CD105 and CD102 compared to those from non-proliferating normal tissues such as heart and lung. The expression density of CD34 was particularly high in tumor-derived ECs, and that of CD54 and CD144 in ECs of repair blastemas. Functionally, ECs of non-proliferating and proliferating tissues differed in their capacity to form tubes in matrigel and to align under flow conditions. Conclusions/Significance This method provides a powerful tool to generate high yields of viable, primary ECs of different origins. The results suggest that an altered expression of adhesion molecules on ECs in proliferating tissues contribute to loss of EC function that might cause a chaotic tumor vasculature. PMID:24632811

  7. Pinosylvin and monomethylpinosylvin, constituents of an extract from the knot of Pinus sylvestris, reduce inflammatory gene expression and inflammatory responses in vivo.

    PubMed

    Laavola, Mirka; Nieminen, Riina; Leppänen, Tiina; Eckerman, Christer; Holmbom, Bjarne; Moilanen, Eeva

    2015-04-08

    Scots pine (Pinus sylvestris) is known to be rich in phenolic compounds, which may have anti-inflammatory properties. The present study investigated the anti-inflammatory effects of a knot extract from P. sylvestris and two stilbenes, pinosylvin and monomethylpinosylvin, isolated from the extract. Inflammation is characterized by increased release of pro-inflammatory and regulatory mediators including nitric oxide (NO) produced by the inducible nitric oxide synthase (iNOS) pathway. The knot extract (EC50 values of 3 and 3 μg/mL) as well as two of its constituents, pinosylvin (EC50 values of 13 and 15 μM) and monomethylpinosylvin (EC50 values of 8 and 12 μM), reduced NO production and iNOS expression in activated macrophages. They also inhibited the production of inflammatory cytokines IL-6 and MCP-1. More importantly, pinosylvin and monomethylpinosylvin exerted a clear anti-inflammatory effect (80% inhibition at the dose of 100 mg/kg) in the standard in vivo model, carrageenan-induced paw inflammation in the mouse, with the effect being comparable to that of a known iNOS inhibitor L-NIL. The results reveal that the Scots pine stilbenes pinosylvin and monomethylpinosylvin are potential anti-inflammatory compounds.

  8. Differential Impact of Single-Dose Fe Ion and X-Ray Irradiation on Endothelial Cell Transcriptomic and Proteomic Responses

    PubMed Central

    Baselet, Bjorn; Azimzadeh, Omid; Erbeldinger, Nadine; Bakshi, Mayur V.; Dettmering, Till; Janssen, Ann; Ktitareva, Svetlana; Lowe, Donna J.; Michaux, Arlette; Quintens, Roel; Raj, Kenneth; Durante, Marco; Fournier, Claudia; Benotmane, Mohammed A.; Baatout, Sarah; Sonveaux, Pierre; Tapio, Soile; Aerts, An

    2017-01-01

    Background and Purpose: Radiotherapy is an essential tool for cancer treatment. In order to spare normal tissues and to reduce the risk of normal tissue complications, particle therapy is a method of choice. Although a large part of healthy tissues can be spared due to improved depth dose characteristics, little is known about the biological and molecular mechanisms altered after particle irradiation in healthy tissues. Elucidation of these effects is also required in the context of long term space flights, as particle radiation is the main contributor to the radiation effects observed in space. Endothelial cells (EC), forming the inner layer of all vascular structures, are especially sensitive to irradiation and, if damaged, contribute to radiation-induced cardiovascular disease. Materials and Methods: Transcriptomics, proteomics and cytokine analyses were used to compare the response of ECs irradiated or not with a single 2 Gy dose of X-rays or Fe ions measured one and 7 days post-irradiation. To support the observed inflammatory effects, monocyte adhesion on ECs was also assessed. Results: Experimental data indicate time- and radiation quality-dependent changes of the EC response to irradiation. The irradiation impact was more pronounced and longer lasting for Fe ions than for X-rays. Both radiation qualities decreased the expression of genes involved in cell-cell adhesion and enhanced the expression of proteins involved in caveolar mediated endocytosis signaling. Endothelial inflammation and adhesiveness were increased with X-rays, but decreased after Fe ion exposure. Conclusions: Fe ions induce pro-atherosclerotic processes in ECs that are different in nature and kinetics than those induced by X-rays, highlighting radiation quality-dependent differences which can be linked to the induction and progression of cardiovascular diseases (CVD). Our findings give a better understanding of the underlying processes triggered by particle irradiation in ECs, a crucial aspect for the development of protective measures for cancer patients undergoing particle therapy and for astronauts in space. PMID:28993729

  9. Ovarian transitional cell carcinoma represents a poorly differentiated form of high-grade serous or endometrioid adenocarcinoma.

    PubMed

    Takeuchi, Tadahisa; Ohishi, Yoshihiro; Imamura, Hiroko; Aman, Murasaki; Shida, Kaai; Kobayashi, Hiroaki; Kato, Kiyoko; Oda, Yoshinao

    2013-07-01

    Ovarian transitional cell tumors include Brenner tumors (BTs) and transitional cell carcinoma (TCC; non-BTs) according to the most recent World Health Organization classification. However, it remains a matter of debate whether TCC represents a distinct entity or a morphologic variant of high-grade serous adenocarcinoma (HG-SC). The purpose of this study was to resolve the above question by clarifying the morphologic, immunohistochemical, and molecular features of TCC. We reviewed 488 cases of epithelial ovarian carcinomas and reclassified them on the basis of the most recent World Health Organization classification with the modifications proposed by Köbel and colleagues, and 35 cases of TCC were identified; 25 and 6 TCCs were admixed with HG-SC and endometrioid adenocarcinoma (EC), respectively, and the remaining 4 cases were pure TCC. TCC components were not observed in any clear cell carcinomas or mucinous adenocarcinomas. Only 2 cases of malignant BT were identified. In addition to TCCs, malignant BTs, and related adenocarcinomas, benign and borderline BTs were included in the following immunohistochemical and molecular analyses. Immunohistochemically, pure TCCs, TCCs admixed with HG-SC, and pure HG-SCs were characterized by frequent aberrant p53 expression (diffuse or null pattern) and WT1+/ER+/PR+/IMP2+ immunophenotype, whereas BTs, including benign, borderline, and malignant BTs, were characterized by lack of aberrant p53 expression and WT1-/ER-/PR-/IMP2- immunophenotype. In contrast to the BTs, pure ECs and TCCs admixed with EC showed an ER+/PR+ immunophenotype. Nearly all the tumors with a TP53 gene mutation by molecular analysis showed aberrant p53 staining patterns. In conclusion, TCC is not a distinct entity but a poorly differentiated form of serous or EC, as (1) most TCCs coexist with HG-SC (mostly) or EC (occasionally), and (2) the immunophenotype and molecular features are similar to those of HG-SC or EC but different from those of BTs.

  10. Collagen esterification enhances the function and survival of pancreatic β cells in 2D and 3D culture systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ko, Jae Hyung; Kim, Yang Hee; Asan Institute for Life Science, 388-1 Pungnap-2 Dong, Songpa-gu, Seoul

    Collagen, one of the most important components of the extracellular matrix (ECM), may play a role in the survival of pancreatic islet cells. In addition, chemical modifications that change the collagen charge profile to a net positive charge by esterification have been shown to increase the adhesion and proliferation of various cell types. The purpose of this study was to characterize and compare the effects of native collagen (NC) and esterified collagen (EC) on β cell function and survival. After isolation by the collagenase digestion technique, rat islets were cultured with NC and EC in 2 dimensional (2D) and 3more » dimensional (3D) environments for a long-term duration in vitro. The cells were assessed for islet adhesion, morphology, viability, glucose-induced insulin secretion, and mRNA expression of glucose metabolism-related genes, and visualized by scanning electron microscopy (SEM). Islet cells attached tightly in the NC group, but islet cell viability was similar in both the NC and EC groups. Glucose-stimulated insulin secretion was higher in the EC group than in the NC group in both 2D and 3D culture. Furthermore, the mRNA expression levels of glucokinase in the EC group were higher than those in the NC group and were associated with glucose metabolism and insulin secretion. Finally, SEM observation confirmed that islets had more intact component cells on EC sponges than on NC sponges. These results indicate that modification of collagen may offer opportunities to improve function and viability of islet cells. - Highlights: • We changed the collagen charge profile to a net positive charge by esterification. • Islets cultured on esterified collagen improved survival in both 2D and 3D culture. • Islets cultured on esterified collagen enhanced glucose-stimulated insulin release. • High levels of glucokinase mRNA may be associated with increased insulin release.« less

  11. Identification and characterization of a resident vascular stem/progenitor cell population in preexisting blood vessels

    PubMed Central

    Naito, Hisamichi; Kidoya, Hiroyasu; Sakimoto, Susumu; Wakabayashi, Taku; Takakura, Nobuyuki

    2012-01-01

    Vasculogenesis, the in-situ assembly of angioblast or endothelial progenitor cells (EPCs), may persist into adult life, contributing to new blood vessel formation. However, EPCs are scattered throughout newly developed blood vessels and cannot be solely responsible for vascularization. Here, we identify an endothelial progenitor/stem-like population located at the inner surface of preexisting blood vessels using the Hoechst method in which stem cell populations are identified as side populations. This population is dormant in the steady state but possesses colony-forming ability, produces large numbers of endothelial cells (ECs) and when transplanted into ischaemic lesions, restores blood flow completely and reconstitutes de-novo long-term surviving blood vessels. Moreover, although surface markers of this population are very similar to conventional ECs, and they reside in the capillary endothelium sub-population, the gene expression profile is completely different. Our results suggest that this heterogeneity of stem-like ECs will lead to the identification of new targets for vascular regeneration therapy. PMID:22179698

  12. Combined effects of physiologically relevant disturbed wall shear stress and glycated albumin on endothelial cell functions associated with inflammation, thrombosis and cytoskeletal dynamics.

    PubMed

    Maria, Zahra; Yin, Wei; Rubenstein, David Alan

    2014-07-01

    Diabetes mellitus is a major risk factor in the development of cardiovascular diseases (CVDs). The presence of advanced glycation end-products (AGEs) promotes CVDs by upregulating endothelial cell (EC) inflammatory and thrombotic responses, in a similar manner as disturbed shear stress. However, the combined effect of disturbed shear stress and AGEs on EC function has yet to be determined. Our goal was to evaluate these effects on EC responses. ECs were incubated with AGEs for 5 days. ECs were then subjected to physiological or pathological shear stress. Cell metabolic activity, surface expression of intercellular adhesion molecule-1, thrombomodulin, connexin-43 and caveolin-1, and cytoskeleton organization were quantified. The results show that irreversibly glycated albumin and pathological shear stress increased EC metabolic activity, and upregulated and downregulated the EC surface expression of intercellular adhesion molecule-1 and thrombomodulin, respectively. Expression of connexin-43, caveolin-1 and cytoskeletal organization was independent of shear stress; however, the presence of irreversibly glycated AGEs markedly increased connexin-43, and decreased caveolin-1 expression and actin cytoskeletal connectivity. Our data suggest that irreversibly glycated albumin and disturbed shear stress could promote CVD pathogenesis by enhancing EC inflammatory and thrombotic responses, and through the deterioration of the cytoskeletal organization.

  13. Isolated tumor endothelial cells maintain specific character during long-term culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuda, Kohei; Oral Pathology and Biology, Hokkaido University Graduate School of Dental Medicine, N13 W7, Kita-ku, Sapporo 060-8586; Oral and Maxillofacial Surgery, Hokkaido University Graduate School of Dental Medicine, N13 W7, Kita-ku, Sapporo 060-8586

    Tumor angiogenesis is necessary for solid tumor progression and metastasis. Increasing evidence indicates that tumor endothelial cells (TECs) are more relevant to the study of tumor angiogenesis than normal endothelial cells (NECs) because their morphologies and gene expression are different from NECs. However, it is challenging to isolate and culture large numbers of pure ECs from tumor tissue since the percentage of ECs is only about 1-2% and tumor cells and fibroblasts easily overgrow them. In addition, there has been concern that isolated TECs may lose their special phenotype once they are dissociated from tumor cells. In this study, wemore » have successfully purified murine TECs from four different human tumor xenografts and NECs from murine dermal tissue. Isolated ECs expressed endothelial markers, such as CD31, VE-cadherin (CD144), and endoglin (CD105), for more than 3 months after isolation. TECs maintained tumor endothelial-specific markers, such as tumor endothelial marker 8 (TEM8) and aminopeptidase N (APN), as in tumor blood vessels in vivo. In addition, TECs were more proliferative and motile than NECs. TECs showed a higher response to VEGF and higher expression of VEGF receptors-1 and -2 than NECs did. Stem cell antigen-1 was up-regulated in all four TECs, suggesting that they have a kind of stemness. Cultured TECs maintain distinct biological differences from NECs as in vivo. In conclusion, it was suggested that TECs are relevant material for tumor angiogenesis research.« less

  14. HIF-1α and GLUT-1 Expression in Atypical Endometrial Hyperplasia, Type I and II Endometrial Carcinoma: A Potential Role in Pathogenesis

    PubMed Central

    Abdou, Asmaa Gaber; Wahed, Moshira Mohammed Abdel; Kassem, Hend Abdou

    2016-01-01

    Introduction Hypoxia-Inducible Factor 1α (HIF-1α) is one of the major adaptive responses to hypoxia, regulating the activity of glucose transporter -1 (GLUT-1), responsible for glucose uptake. Aim To evaluate the immunohistochemical expression of both HIF-1α and GLUT-1 in type I and II endometrial carcinoma and their correlation with the available clinicopathologic variables in each type. Materials and Methods A retrospective study was conducted on archival blocks diagnosed from pathology department between April 2010 and August 2014 included 9 cases of atypical hyperplasia and 67 cases of endometrial carcinoma. Evaluation of both HIF-1α and GLUT-1 expression using standard immunohistochemical techniques performed on cut sections from selected paraffin embedded blocks. Statistical Analysis Descriptive analysis of the variables and statistical significances were calculated by non-parametric chi-square test using the Statistical Package for the Social Sciences version 12.0 (SPSS). Results HIF-1α was expressed in epithelial (88.9%, 52.2%, 61.2% and 50%) and stromal (33.3%, 74.6%. 71.4% and 83.3%) components of hyperplasia, total cases of EC, type I and II EC, respectively. GLUT-1 was expressed in the epithelial component of 88.9%, 98.5%, 98% and 100% of hyperplasia, total EC cases, type I and II EC, respectively. The necrosis related pattern of epithelial HIF-1α expression was in favour of type II (p=0.018) and grade III (p=0.038). HIF-1α H-score was associated with high apoptosis in both type I and total cases of EC (p=0.04). GLUT-1 H-score was negatively correlated with apoptotic count (p=0.04) and associated with high grade (p=0.003) and advanced stage in total EC (p=0.004). GLUT-1 H-score was correlated with the pattern of HIF-1α staining in all cases of EC (p= 0.04). Conclusion The role of HIF-1α in epithelial cells may differ from that of stromal cells in EC; however they augment the expression of each other supporting the crosstalk between them. The stepwise increase in H- score of GLUT-1 in the studied cases implies its potential role in carcinogenesis of EC. HIF-1α may promote GLUT-1 expression in EC especially surrounding areas of necrosis. The differences between type I and type II EC regarding HIF-1α and GLUT-1 expression may confirm the differences in their aetiopathogenesis. PMID:27437226

  15. HIF-1α and GLUT-1 Expression in Atypical Endometrial Hyperplasia, Type I and II Endometrial Carcinoma: A Potential Role in Pathogenesis.

    PubMed

    Al-Sharaky, Dalia Rifaat; Abdou, Asmaa Gaber; Wahed, Moshira Mohammed Abdel; Kassem, Hend Abdou

    2016-05-01

    Hypoxia-Inducible Factor 1α (HIF-1α) is one of the major adaptive responses to hypoxia, regulating the activity of glucose transporter -1 (GLUT-1), responsible for glucose uptake. To evaluate the immunohistochemical expression of both HIF-1α and GLUT-1 in type I and II endometrial carcinoma and their correlation with the available clinicopathologic variables in each type. A retrospective study was conducted on archival blocks diagnosed from pathology department between April 2010 and August 2014 included 9 cases of atypical hyperplasia and 67 cases of endometrial carcinoma. Evaluation of both HIF-1α and GLUT-1 expression using standard immunohistochemical techniques performed on cut sections from selected paraffin embedded blocks. Descriptive analysis of the variables and statistical significances were calculated by non-parametric chi-square test using the Statistical Package for the Social Sciences version 12.0 (SPSS). HIF-1α was expressed in epithelial (88.9%, 52.2%, 61.2% and 50%) and stromal (33.3%, 74.6%. 71.4% and 83.3%) components of hyperplasia, total cases of EC, type I and II EC, respectively. GLUT-1 was expressed in the epithelial component of 88.9%, 98.5%, 98% and 100% of hyperplasia, total EC cases, type I and II EC, respectively. The necrosis related pattern of epithelial HIF-1α expression was in favour of type II (p=0.018) and grade III (p=0.038). HIF-1α H-score was associated with high apoptosis in both type I and total cases of EC (p=0.04). GLUT-1 H-score was negatively correlated with apoptotic count (p=0.04) and associated with high grade (p=0.003) and advanced stage in total EC (p=0.004). GLUT-1 H-score was correlated with the pattern of HIF-1α staining in all cases of EC (p= 0.04). The role of HIF-1α in epithelial cells may differ from that of stromal cells in EC; however they augment the expression of each other supporting the crosstalk between them. The stepwise increase in H- score of GLUT-1 in the studied cases implies its potential role in carcinogenesis of EC. HIF-1α may promote GLUT-1 expression in EC especially surrounding areas of necrosis. The differences between type I and type II EC regarding HIF-1α and GLUT-1 expression may confirm the differences in their aetiopathogenesis.

  16. Use of DEAD-box polypeptide-4 (Ddx4) gene promoter-driven fluorescent reporter mice to identify mitotically active germ cells in post-natal mouse ovaries.

    PubMed

    Park, Eun-Sil; Tilly, Jonathan L

    2015-01-01

    Several laboratories have independently isolated mitotically active germ cells, termed female germline stem cells or oogonial stem cells (OSCs), from adult mouse ovaries. However, a recent study using Ddx4-Cre;Rosa26 reporter mice concluded that such germ cells do not exist. Given the disparity in conclusions drawn in this study compared with others, we felt it was important to re-assess the utility of Ddx4-Cre;Rosa26 reporter mice for identification of OSCs in adult mouse ovaries. Transgenic Ddx4-Cre mice were crossed with Rosa26(tdTm/tdTm) mice to drive restricted tomato red (tdTm) gene expression in cells in which the Ddx4 gene promoter has been activated. Crude dispersion of ovaries from recombined offspring generated cell fractions containing tdTm-positive immature oocytes, which are incapable of proliferation and thus probably represent the uncharacterized reporter-positive ovarian cells identified in the paper Zhang et al. (2012) as being mitotically inactive. Dispersed ovaries further subjected to fluorescence-activated cell sorting yielded a large population of non-germline tdTm-positive cells, indicative of promoter 'leakiness' in the Ddx4-Cre mouse line. Nonetheless, a small percentage of these tdTm-positive cells exhibited externalized (extracellular, ec) expression of Ddx4 protein (ecDdx4-positive), expressed markers of primitive germ cells but not of oocytes, and actively proliferated in culture, all of which are characteristic features of OSCs. Thus, crude dispersion of ovaries collected from Ddx4 gene promoter-driven reporter mice is not, by itself, a reliable approach to identify OSCs, whereas the same ovarian dispersates further subjected to cell sorting strategies yield purified OSCs that can be expanded in culture. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Role of the endocannabinoid system in the emotional manifestations of osteoarthritis pain.

    PubMed

    La Porta, Carmen; Bura, S Andreea; Llorente-Onaindia, Jone; Pastor, Antoni; Navarrete, Francisco; García-Gutiérrez, María Salud; De la Torre, Rafael; Manzanares, Jorge; Monfort, Jordi; Maldonado, Rafael

    2015-10-01

    In this study, we investigated the role of the endocannabinoid system (ECS) in the emotional and cognitive alterations associated with osteoarthritis pain. The monosodium iodoacetate model was used to evaluate the affective and cognitive manifestations of osteoarthritis pain in type 1 (CB1R) and type 2 (CB2R) cannabinoid receptor knockout and wild-type mice and the ability of CB1R (ACEA) and CB2R (JWH133) selective agonists to improve these manifestations during a 3-week time period. The levels of the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) were measured in plasma and brain areas involved in the control of these manifestations. Patients with knee osteoarthritis and healthy controls were recruited to evaluate pain, affective, and cognitive symptoms, as well as plasma endocannabinoid levels and cannabinoid receptor gene expression in peripheral blood lymphocytes. The affective manifestations of osteoarthritis were enhanced in CB1R knockout mice and absent in CB2R knockouts. Interestingly, both ACEA and JWH133 ameliorated the nociceptive and affective alterations, whereas ACEA also improved the associated memory impairment. An increase of 2-AG levels in prefrontal cortex and plasma was observed in this mouse model of osteoarthritis. In agreement, an increase of 2-AG plasmatic levels and an upregulation of CB1R and CB2R gene expression in peripheral blood lymphocytes were observed in patients with osteoarthritis compared with healthy subjects. Changes found in these biomarkers of the ECS correlated with pain, affective, and cognitive symptoms in these patients. The ECS plays a crucial role in osteoarthritis and represents an interesting pharmacological target and biomarker of this disease.

  18. Role of the endocannabinoid system in the emotional manifestations of osteoarthritis pain

    PubMed Central

    La Porta, Carmen; Bura, S. Andreea; Llorente-Onaindia, Jone; Pastor, Antoni; Navarrete, Francisco; García-Gutiérrez, María Salud; De la Torre, Rafael; Manzanares, Jorge; Monfort, Jordi; Maldonado, Rafael

    2015-01-01

    Abstract In this study, we investigated the role of the endocannabinoid system (ECS) in the emotional and cognitive alterations associated with osteoarthritis pain. The monosodium iodoacetate model was used to evaluate the affective and cognitive manifestations of osteoarthritis pain in type 1 (CB1R) and type 2 (CB2R) cannabinoid receptor knockout and wild-type mice and the ability of CB1R (ACEA) and CB2R (JWH133) selective agonists to improve these manifestations during a 3-week time period. The levels of the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) were measured in plasma and brain areas involved in the control of these manifestations. Patients with knee osteoarthritis and healthy controls were recruited to evaluate pain, affective, and cognitive symptoms, as well as plasma endocannabinoid levels and cannabinoid receptor gene expression in peripheral blood lymphocytes. The affective manifestations of osteoarthritis were enhanced in CB1R knockout mice and absent in CB2R knockouts. Interestingly, both ACEA and JWH133 ameliorated the nociceptive and affective alterations, whereas ACEA also improved the associated memory impairment. An increase of 2-AG levels in prefrontal cortex and plasma was observed in this mouse model of osteoarthritis. In agreement, an increase of 2-AG plasmatic levels and an upregulation of CB1R and CB2R gene expression in peripheral blood lymphocytes were observed in patients with osteoarthritis compared with healthy subjects. Changes found in these biomarkers of the ECS correlated with pain, affective, and cognitive symptoms in these patients. The ECS plays a crucial role in osteoarthritis and represents an interesting pharmacological target and biomarker of this disease. PMID:26067584

  19. A comprehensive analysis on preservation patterns of gene co-expression networks during Alzheimer's disease progression.

    PubMed

    Ray, Sumanta; Hossain, Sk Md Mosaddek; Khatun, Lutfunnesa; Mukhopadhyay, Anirban

    2017-12-20

    Alzheimer's disease (AD) is a chronic neuro-degenerative disruption of the brain which involves in large scale transcriptomic variation. The disease does not impact every regions of the brain at the same time, instead it progresses slowly involving somewhat sequential interaction with different regions. Analysis of the expression patterns of the genes in different regions of the brain influenced in AD surely contribute for a enhanced comprehension of AD pathogenesis and shed light on the early characterization of the disease. Here, we have proposed a framework to identify perturbation and preservation characteristics of gene expression patterns across six distinct regions of the brain ("EC", "HIP", "PC", "MTG", "SFG", and "VCX") affected in AD. Co-expression modules were discovered considering a couple of regions at once. These are then analyzed to know the preservation and perturbation characteristics. Different module preservation statistics and a rank aggregation mechanism have been adopted to detect the changes of expression patterns across brain regions. Gene ontology (GO) and pathway based analysis were also carried out to know the biological meaning of preserved and perturbed modules. In this article, we have extensively studied the preservation patterns of co-expressed modules in six distinct brain regions affected in AD. Some modules are emerged as the most preserved while some others are detected as perturbed between a pair of brain regions. Further investigation on the topological properties of preserved and non-preserved modules reveals a substantial association amongst "betweenness centrality" and "degree" of the involved genes. Our findings may render a deeper realization of the preservation characteristics of gene expression patterns in discrete brain regions affected by AD.

  20. Identification of a peroxisome proliferator-responsive element upstream of the gene encoding rat peroxisomal enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase.

    PubMed Central

    Zhang, B; Marcus, S L; Sajjadi, F G; Alvares, K; Reddy, J K; Subramani, S; Rachubinski, R A; Capone, J P

    1992-01-01

    Ciprofibrate, a hypolipidemic drug that acts as a peroxisome proliferator, induces the transcription of genes encoding peroxisomal beta-oxidation enzymes. To identify cis-acting promoter elements involved in this induction, 5.8 kilobase pairs of promoter sequence from the gene encoding rat peroxisomal enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase (EC 4.2.1.17/EC 1.1.1.35) was inserted upstream of a luciferase reporter gene. Transfection of this expression vector into rat hepatoma H4IIEC3 cells in the presence of ciprofibrate resulted in a 5- to 10-fold, cell type-specific increase in luciferase activity as compared to cells transfected in the absence of drug. A peroxisome proliferator-responsive element (PPRE) was localized to a 196-nucleotide region centered at position -2943 from the transcription start site. This PPRE conferred ciprofibrate responsiveness on a heterologous promoter and functioned independently of orientation or position. Gel retardation analysis with nuclear extracts demonstrated that ciprofibrate-treated or untreated H4IIEC3 cells, but not HeLa cells or monkey kidney cells, contained sequence-specific DNA binding factors that interact with the PPRE. These results have implications for understanding the mechanisms of coordinated transcriptional induction of genes encoding peroxisomal proteins by hypolipidemic agents and other peroxisome proliferators. Images PMID:1502166

  1. Sequence, overproduction and purification of Vibrio proteolyticus ribosomal protein L18 for in vitro and in vivo studies

    NASA Technical Reports Server (NTRS)

    Setterquist, R. A.; Smith, G. K.; Oakley, T. H.; Lee, Y. H.; Fox, G. E.

    1996-01-01

    A strategy suggested by comparative genomic studies was used to amplify the entire Vibrio proteolyticus (Vp) gene for ribosomal protein L18. Vp L18 and its flanking regions were sequenced and compared with the deduced amino acid (aa) sequences of other known L18 proteins. A 26-aa residue segment at the carboxy terminus contains many strongly conserved residues and may be critical for the L18 interaction with 5S rRNA. This approach should allow rapid characterization of L18 from large numbers of bacteria. Both Vp L18 and Escherichia coli (Ec) L18 were overproduced and purified using a T7 expression vector which fuses an N-terminal peptide segment (His-tag) containing 6 histidine residues to the recombinant protein. The purified fusion proteins, Vp His::L18 and Ec His::L18, were both found to bind to either the Vp 5S or Ec 5S rRNAs in vitro. Vp His::L18 protein was also shown to incorporate into Ec ribosomes in vivo. This His-tag strategy likely will have general applicability for the study of ribosomal proteins in vitro and in vivo.

  2. Activation of the adenylyl cyclase/cyclic AMP/protein kinase A pathway in endothelial cells exposed to cyclic strain

    NASA Technical Reports Server (NTRS)

    Cohen, C. R.; Mills, I.; Du, W.; Kamal, K.; Sumpio, B. E.

    1997-01-01

    The aim of this study was to assess the involvement of the adenylyl cyclase/cyclic AMP/protein kinase A pathway (AC) in endothelial cells (EC) exposed to different levels of mechanical strain. Bovine aortic EC were seeded to confluence on flexible membrane-bottom wells. The membranes were deformed with either 150 mm Hg (average 10% strain) or 37.5 mm Hg (average 6% strain) vacuum at 60 cycles per minute (0.5 s strain; 0.5 s relaxation) for 0-60 min. The results demonstrate that at 10% average strain (but not 6% average strain) there was a 1.5- to 2.2-fold increase in AC, cAMP, and PKA activity by 15 min when compared to unstretched controls. Further studies revealed an increase in cAMP response element binding protein in EC subjected to the 10% average strain (but not 6% average strain). These data support the hypothesis that cyclic strain activates the AC/cAMP/PKA signal transduction pathway in EC which may occur by exceeding a strain threshold and suggest that cyclic strain may stimulate the expression of genes containing cAMP-responsive promoter elements.

  3. Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study.

    PubMed

    Cribbs, David H; Berchtold, Nicole C; Perreau, Victoria; Coleman, Paul D; Rogers, Joseph; Tenner, Andrea J; Cotman, Carl W

    2012-07-23

    This study undertakes a systematic and comprehensive analysis of brain gene expression profiles of immune/inflammation-related genes in aging and Alzheimer's disease (AD). In a well-powered microarray study of young (20 to 59 years), aged (60 to 99 years), and AD (74 to 95 years) cases, gene responses were assessed in the hippocampus, entorhinal cortex, superior frontal gyrus, and post-central gyrus. Several novel concepts emerge. First, immune/inflammation-related genes showed major changes in gene expression over the course of cognitively normal aging, with the extent of gene response far greater in aging than in AD. Of the 759 immune-related probesets interrogated on the microarray, approximately 40% were significantly altered in the SFG, PCG and HC with increasing age, with the majority upregulated (64 to 86%). In contrast, far fewer immune/inflammation genes were significantly changed in the transition to AD (approximately 6% of immune-related probesets), with gene responses primarily restricted to the SFG and HC. Second, relatively few significant changes in immune/inflammation genes were detected in the EC either in aging or AD, although many genes in the EC showed similar trends in responses as in the other brain regions. Third, immune/inflammation genes undergo gender-specific patterns of response in aging and AD, with the most pronounced differences emerging in aging. Finally, there was widespread upregulation of genes reflecting activation of microglia and perivascular macrophages in the aging brain, coupled with a downregulation of select factors (TOLLIP, fractalkine) that when present curtail microglial/macrophage activation. Notably, essentially all pathways of the innate immune system were upregulated in aging, including numerous complement components, genes involved in toll-like receptor signaling and inflammasome signaling, as well as genes coding for immunoglobulin (Fc) receptors and human leukocyte antigens I and II. Unexpectedly, the extent of innate immune gene upregulation in AD was modest relative to the robust response apparent in the aged brain, consistent with the emerging idea of a critical involvement of inflammation in the earliest stages, perhaps even in the preclinical stage, of AD. Ultimately, our data suggest that an important strategy to maintain cognitive health and resilience involves reducing chronic innate immune activation that should be initiated in late midlife.

  4. Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study

    PubMed Central

    2012-01-01

    Background This study undertakes a systematic and comprehensive analysis of brain gene expression profiles of immune/inflammation-related genes in aging and Alzheimer’s disease (AD). Methods In a well-powered microarray study of young (20 to 59 years), aged (60 to 99 years), and AD (74 to 95 years) cases, gene responses were assessed in the hippocampus, entorhinal cortex, superior frontal gyrus, and post-central gyrus. Results Several novel concepts emerge. First, immune/inflammation-related genes showed major changes in gene expression over the course of cognitively normal aging, with the extent of gene response far greater in aging than in AD. Of the 759 immune-related probesets interrogated on the microarray, approximately 40% were significantly altered in the SFG, PCG and HC with increasing age, with the majority upregulated (64 to 86%). In contrast, far fewer immune/inflammation genes were significantly changed in the transition to AD (approximately 6% of immune-related probesets), with gene responses primarily restricted to the SFG and HC. Second, relatively few significant changes in immune/inflammation genes were detected in the EC either in aging or AD, although many genes in the EC showed similar trends in responses as in the other brain regions. Third, immune/inflammation genes undergo gender-specific patterns of response in aging and AD, with the most pronounced differences emerging in aging. Finally, there was widespread upregulation of genes reflecting activation of microglia and perivascular macrophages in the aging brain, coupled with a downregulation of select factors (TOLLIP, fractalkine) that when present curtail microglial/macrophage activation. Notably, essentially all pathways of the innate immune system were upregulated in aging, including numerous complement components, genes involved in toll-like receptor signaling and inflammasome signaling, as well as genes coding for immunoglobulin (Fc) receptors and human leukocyte antigens I and II. Conclusions Unexpectedly, the extent of innate immune gene upregulation in AD was modest relative to the robust response apparent in the aged brain, consistent with the emerging idea of a critical involvement of inflammation in the earliest stages, perhaps even in the preclinical stage, of AD. Ultimately, our data suggest that an important strategy to maintain cognitive health and resilience involves reducing chronic innate immune activation that should be initiated in late midlife. PMID:22824372

  5. Differential Network Analyses of Alzheimer’s Disease Identify Early Events in Alzheimer’s Disease Pathology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Jing; Rocke, David M.; Perry, George

    In late-onset Alzheimer’s disease (AD), multiple brain regions are not affected simultaneously. Comparing the gene expression of the affected regions to identify the differences in the biological processes perturbed can lead to greater insight into AD pathogenesis and early characteristics. We identified differentially expressed (DE) genes from single cell microarray data of four AD affected brain regions: entorhinal cortex (EC), hippocampus (HIP), posterior cingulate cortex (PCC), and middle temporal gyrus (MTG). We organized the DE genes in the four brain regions into region-specific gene coexpression networks. Differential neighborhood analyses in the coexpression networks were performed to identify genes with lowmore » topological overlap (TO) of their direct neighbors. The low TO genes were used to characterize the biological differences between two regions. Our analyses show that increased oxidative stress, along with alterations in lipid metabolism in neurons, may be some of the very early events occurring in AD pathology. Cellular defense mechanisms try to intervene but fail, finally resulting in AD pathology as the disease progresses. Furthermore, disease annotation of the low TO genes in two independent protein interaction networks has resulted in association between cancer, diabetes, renal diseases, and cardiovascular diseases.« less

  6. Differential Network Analyses of Alzheimer’s Disease Identify Early Events in Alzheimer’s Disease Pathology

    DOE PAGES

    Xia, Jing; Rocke, David M.; Perry, George; ...

    2014-01-01

    In late-onset Alzheimer’s disease (AD), multiple brain regions are not affected simultaneously. Comparing the gene expression of the affected regions to identify the differences in the biological processes perturbed can lead to greater insight into AD pathogenesis and early characteristics. We identified differentially expressed (DE) genes from single cell microarray data of four AD affected brain regions: entorhinal cortex (EC), hippocampus (HIP), posterior cingulate cortex (PCC), and middle temporal gyrus (MTG). We organized the DE genes in the four brain regions into region-specific gene coexpression networks. Differential neighborhood analyses in the coexpression networks were performed to identify genes with lowmore » topological overlap (TO) of their direct neighbors. The low TO genes were used to characterize the biological differences between two regions. Our analyses show that increased oxidative stress, along with alterations in lipid metabolism in neurons, may be some of the very early events occurring in AD pathology. Cellular defense mechanisms try to intervene but fail, finally resulting in AD pathology as the disease progresses. Furthermore, disease annotation of the low TO genes in two independent protein interaction networks has resulted in association between cancer, diabetes, renal diseases, and cardiovascular diseases.« less

  7. Bacterial DNA induces pulmonary damage via TLR-9 through cross-talk with neutrophils.

    PubMed

    Itagaki, Kiyoshi; Adibnia, Yasaman; Sun, Shiqin; Zhao, Cong; Sursal, Tolga; Chen, Yu; Junger, Wolfgang; Hauser, Carl J

    2011-12-01

    Bacterial DNA (bDNA) contains hypomethylated "CpG" repeats that can be recognized by Toll-like receptor 9 (TLR-9) as a pathogen-associated molecular pattern. The ability of bDNA to initiate lung injury via TLR-9 has been inferred on the basis of studies using artificial CpG DNA. But the role of authentic bDNA in lung injury is still unknown. Moreover, the mechanisms by which CpG DNA species can lead to pulmonary injury are unknown, although neutrophils (PMNs) are thought to play a key role in the genesis of septic acute lung injury. We evaluated the effects of bDNA on PMN-endothelial cell (EC) interactions thought critical for initiation of acute lung injury. Using a biocapacitance system to monitor real-time changes in endothelial permeability, we demonstrate here that bDNA causes EC permeability in a dose-dependent manner uniquely in the presence of PMNs. These permeability changes are inhibited by chloroquine, suggesting TLR-9 dependency. When PMNs were preincubated with bDNA and applied to ECs or when bDNA was applied to ECs without PMNs, no permeability changes were detected. To study the underlying mechanisms, we evaluated the effects of bDNA on PMN-EC adherence. Bacterial DNA significantly increased PMN adherence to ECs in association with upregulated adhesion molecules in both cell types. Taken together, our results strongly support the conclusion that bDNA can initiate lung injury by stimulating PMN-EC adhesive interactions predisposing to endothelial permeability. Bacterial DNA stimulation of TLR-9 appears to promote enhanced gene expression of adhesion molecules in both cell types. This leads to PMN-EC cross-talk, which is required for injury to occur.

  8. POLE proofreading mutations elicit an anti-tumor immune response in endometrial cancer

    PubMed Central

    van Gool, Inge C; Eggink, Florine A; Freeman-Mills, Luke; Stelloo, Ellen; Marchi, Emanuele; de Bruyn, Marco; Palles, Claire; Nout, Remi A; de Kroon, Cor D; Osse, Elisabeth M; Klenerman, Paul; Creutzberg, Carien L; Tomlinson, Ian PM; Smit, Vincent THBM; Nijman, Hans W

    2015-01-01

    Purpose Recent studies have shown that 7-12% of endometrial cancers (ECs) are ultramutated due to somatic mutation in the proofreading exonuclease domain of the DNA replicase POLE. Interestingly, these tumors have an excellent prognosis. In view of the emerging data linking mutation burden, immune response and clinical outcome in cancer, we investigated whether POLE-mutant ECs showed evidence of increased immunogenicity. Experimental design We examined immune infiltration and activation according to tumor POLE proofreading mutation in a molecularly defined EC cohort including 47 POLE-mutant tumors. We sought to confirm our results by analysis of RNAseq data from the TCGA EC series and used the same series to examine whether differences in immune infiltration could be explained by an enrichment of immunogenic neoepitopes in POLE-mutant ECs. Results Compared to other ECs, POLE-mutants displayed an enhanced cytotoxic T cell response, evidenced by increased numbers of CD8+ tumor infiltrating lymphocytes and CD8A expression, enrichment for a tumor-infiltrating T cell gene signature, and strong upregulation of the T cell cytotoxic differentiation and effector markers T-bet, Eomes, IFNG, PRF and granzyme B. This was accompanied by upregulation of T cell exhaustion markers, consistent with chronic antigen exposure. In-silico analysis confirmed that POLE-mutant cancers are predicted to display more antigenic neo-epitopes than other ECs, providing a potential explanation for our findings. Conclusions Ultramutated POLE proofreading-mutant ECs are characterized by a robust intratumoral T cell response, which correlates with, and may be caused by an enrichment of antigenic neo-peptides. Our study provides a plausible mechanism for the excellent prognosis of these cancers. PMID:25878334

  9. FABP-1 GENE ABLATION IMPACTS BRAIN ENDOCANNABINOID SYSTEM IN MALE MICE

    PubMed Central

    Martin, Gregory G.; Chung, Sarah; Landrock, Danilo; Landrock, Kerstin K.; Huang, Huan; Dangott, Lawrence J.; Peng, Xiaoxue; Kaczocha, Martin; Seeger, Drew R.; Murphy, Eric J.; Golovko, Mikhail Y.; Kier, Ann B.; Schroeder, Friedhelm

    2016-01-01

    Liver fatty acid binding protein (FABP1, L-FABP) has high affinity for and enhances uptake of arachidonic acid (ARA, C20:4, n-6) which, when esterified to phospholipids, is the requisite precursor for synthesis of endocannabinoids (EC) such as arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG). The brain derives most of its ARA from plasma, taking up ARA and transporting it intracellularly via cytosolic fatty acid binding proteins (FABPs 3,5, and 7) localized within the brain. In contrast, the much more prevalent cytosolic FABP1 is not detectable in the brain but is instead highly expressed in the liver. Therefore, the possibility that FABP1 outside the central nervous system may regulate brain AEA and 2-AG was examined in wild-type (WT) and FABP1 null (LKO) male mice. LKO increased brain levels of AA-containing EC (AEA, 2-AG), correlating with increased free and total ARA in brain and serum. LKO also increased brain levels of non-ARA that contain potentiating endocannabinoids (EC*) such as OEA, PEA, 2-OG, and 2-PG. Concomitantly, LKO decreased serum total ARA-containing EC, but not non-ARA endocannabinoids. LKO did not elicit these changes in the brain EC and EC* due to compensatory upregulation of brain protein levels of enzymes in EC synthesis (NAPEPLD, DAGLα) or cytosolic EC chaperone proteins (FABPs 3, 5, 7, SCP-2, HSP70), or cannabinoid receptors (CB1, TRVP1). These data show for the first time that the non-CNS fatty acid binding protein FABP1 markedly affected brain levels of both ARA-containing endocannabinoids (AEA, 2-AG) as well as their non-ARA potentiating endocannabinoids. PMID:27167970

  10. Compound C Stimulates Heme Oxygenase-1 Gene Expression via the Nrf2-ARE Pathway to Preserve Human Endothelial Cell Survival

    PubMed Central

    Liu, Xiao-ming; Peyton, Kelly J.; Shebib, Ahmad R.; Wang, Hong; Durante, William

    2011-01-01

    We recently identified adenosine monophosphate-activated protein kinase (AMPK) as a novel inducer of heme oxygenase-1 (HO-1) and surprisingly found that compound C (6-[4-(2-piperidin-1-yl-ethoxy)-phenyl]3-pyridin-4-yl-pyrazolo[1,5-a] pyrimidine), a cell-permeable inhibitor of AMPK, could also elevate HO-1 suggesting other AMPK-independent actions for this agent. In this study, we investigated the biochemical mechanism by which compound C stimulates HO-1 expression in human endothelial cells (ECs) and determined the biological significance of the induction of HO-1 by compound C in these cells. Compound C stimulated a concentration- and time-dependent increase in HO-1 expression and an increase in HO-1 promoter activity that was abrogated by mutating the antioxidant responsive elements (AREs) in the HO-1 promoter or by overexpressing a dominant negative mutant of NF-E2-related factor-2 (Nrf2). Compound C also stimulated Nrf2 expression and this was associated with an increase in the production of reactive oxygen species and with a decline in intracellular glutathione levels. Interestingly, the glutathione donor N-acetyl-L-cysteine or the NADPH oxidase inhibitor apocynin blocked the induction of HO-1 by compound C. Finally, compound C stimulated EC death and this was potentiated by silencing HO-1 expression and reversed by the administration of CO, biliverdin, or bilirubin. In conclusion, this study demonstrates that compound C stimulates HO-1 gene expression in human vascular endothelium via the activation of the Nrf2/ARE signaling pathway to counteract compound C-mediated cell death. The ability of compound C to induce HO-1 expression may contribute to the pleiotropic actions of this agent and suggest caution when using compound C to probe for AMPK functions. PMID:21635873

  11. Integrated Copy Number and Expression Analysis Identifies Profiles of Whole-Arm Chromosomal Alterations and Subgroups with Favorable Outcome in Ovarian Clear Cell Carcinomas

    PubMed Central

    Uehara, Yuriko; Oda, Katsutoshi; Ikeda, Yuji; Koso, Takahiro; Tsuji, Shingo; Yamamoto, Shogo; Asada, Kayo; Sone, Kenbun; Kurikawa, Reiko; Makii, Chinami; Hagiwara, Otoe; Tanikawa, Michihiro; Maeda, Daichi; Hasegawa, Kosei; Nakagawa, Shunsuke; Wada-Hiraike, Osamu; Kawana, Kei; Fukayama, Masashi; Fujiwara, Keiichi; Yano, Tetsu; Osuga, Yutaka; Fujii, Tomoyuki; Aburatani, Hiroyuki

    2015-01-01

    Ovarian clear cell carcinoma (CCC) is generally associated with chemoresistance and poor clinical outcome, even with early diagnosis; whereas high-grade serous carcinomas (SCs) and endometrioid carcinomas (ECs) are commonly chemosensitive at advanced stages. Although an integrated genomic analysis of SC has been performed, conclusive views on copy number and expression profiles for CCC are still limited. In this study, we performed single nucleotide polymorphism analysis with 57 epithelial ovarian cancers (31 CCCs, 14 SCs, and 12 ECs) and microarray expression analysis with 55 cancers (25 CCCs, 16 SCs, and 14 ECs). We then evaluated PIK3CA mutations and ARID1A expression in CCCs. SNP array analysis classified 13% of CCCs into a cluster with high frequency and focal range of copy number alterations (CNAs), significantly lower than for SCs (93%, P < 0.01) and ECs (50%, P = 0.017). The ratio of whole-arm to all CNAs was higher in CCCs (46.9%) than SCs (21.7%; P < 0.0001). SCs with loss of heterozygosity (LOH) of BRCA1 (85%) also had LOH of NF1 and TP53, and LOH of BRCA2 (62%) coexisted with LOH of RB1 and TP53. Microarray analysis classified CCCs into three clusters. One cluster (CCC-2, n = 10) showed more favorable prognosis than the CCC-1 and CCC-3 clusters (P = 0.041). Coexistent alterations of PIK3CA and ARID1A were more common in CCC-1 and CCC-3 (7/11, 64%) than in CCC-2 (0/10, 0%; P < 0.01). Being in cluster CCC-2 was an independent favorable prognostic factor in CCC. In conclusion, CCC was characterized by a high ratio of whole-arm CNAs; whereas CNAs in SC were mainly focal, but preferentially caused LOH of well-known tumor suppressor genes. As such, expression profiles might be useful for sub-classification of CCC, and might provide useful information on prognosis. PMID:26043110

  12. Putrescine accumulation in Arabidopsis thaliana transgenic lines enhances tolerance to dehydration and freezing stress.

    PubMed

    Alet, Analía I; Sanchez, Diego H; Cuevas, Juan C; Del Valle, Secundino; Altabella, Teresa; Tiburcio, Antonio F; Marco, Francisco; Ferrando, Alejandro; Espasandín, Fabiana D; González, María E; Ruiz, Oscar A; Carrasco, Pedro

    2011-02-01

    Polyamines have been globally associated to plant responses to abiotic stress. Particularly, putrescine has been related to a better response to cold and dehydration stresses. It is known that this polyamine is involved in cold tolerance, since Arabidopsis thaliana plants mutated in the key enzyme responsible for putrescine synthesis (arginine decarboxilase, ADC; EC 4.1.1.19) are more sensitive than the wild type to this stress. Although it is speculated that the over-expression of ADC genes may confer tolerance, this is hampered by pleiotropic effects arising from the constitutive expression of enzymes from the polyamine metabolism. Here, we present our work using A. thaliana transgenic plants harboring the ADC gene from oat under the control of a stress-inducible promoter (pRD29A) instead of a constitutive promoter. The transgenic lines presented in this work were more resistant to both cold and dehydration stresses, associated with a concomitant increment in endogenous putrescine levels under stress. Furthermore, the increment in putrescine upon cold treatment correlated with the induction of known stress-responsive genes, and suggested that putrescine may be directly or indirectly involved in ABA metabolism and gene expression.

  13. Overexpression of malic enzyme (ME) of Mucor circinelloides improved lipid accumulation in engineered Rhodotorula glutinis.

    PubMed

    Li, Zhi; Sun, Hanxiao; Mo, Xuemei; Li, Xiuying; Xu, Bo; Tian, Peng

    2013-06-01

    The oleaginous yeast Rhodotorula glutinis has been known to be a potential feedstock for lipid production. In the present study, we investigated the enhancement of expression of malic enzyme (ME; NADP(+) dependent; EC 1.1.1.40) from Mucor circinelloides as a strategy to improve lipid content inside the yeast cells. The 26S rDNA and 5.8S rDNA gene fragments isolated from Rhodotorula glutinis were used for homologous integration of ME gene into R. glutinis chromosome under the control of the constitutively highly expressed gene phosphoglycerate kinase 1 to achieve stable expression. We demonstrated that by increasing the expression of the foreign ME gene in R. glutinis, we successfully improved the lipid content by more than twofold. At the end of lipid accumulation phrase (96 h) in the transformants, activity of ME was increased by twofold and lipid content of the yeast cells was increased from 18.74 % of the biomass to 39.35 %. Simultaneously, there were no significant differences in fatty acid profiles between the wild-type strain and the recombinant strain. Over 94 % of total fatty acids were C16:0, C18:0, C16:1, C18:1, and C18:2. Our results indicated that heterologous expression of NADP(+)-dependent ME involved in fatty acid biosynthesis indeed increased the lipid accumulation in the oleaginous yeast R. glutinis.

  14. Endothelial cells of extremely premature infants display impaired immune response after proinflammatory stimulation.

    PubMed

    Wisgrill, Lukas; Muck, Martina; Wessely, Isabelle; Berger, Angelika; Spittler, Andreas; Förster-Waldl, Elisabeth; Sadeghi, Kambis

    2018-01-01

    BackgroundEndothelial cells (ECs) exert immunological functions such as production of proinflammatory cytokines/chemokines as well as facilitation of extravasation of immune cells into infected tissue. Limited data are available on the functionality of ECs from extremely preterm neonates during infection. Accordingly, the aim of our study was to investigate the immune response of premature ECs after proinflammatory stimulation.MethodsCell adhesion receptors' expression and function, nuclear factor 'kappa-light-chain-enhancer' of activated B-cells (NFκB) signaling, and chemokine production were analyzed in umbilical cord ECs from extremely preterm and term neonates after proinflammatory stimulation.ResultsP-selectin and E-selectin surface expression as well as NFκB signaling were lower after lipopolysaccharide (LPS) stimulation in premature ECs. Preterm ECs exhibited lower, but significant, cell-adhesive functions after LPS stimulation compared with term ECs. CCL2/CXCL8 chemokine secretion was significantly upregulated after proinflammatory stimulation in both groups. CXCL10 production was significantly increased in term but not in preterm ECs upon stimulation with tumor necrosis factor compared with unstimulated ECs.ConclusionExtremely premature ECs showed partly reduced expression levels and function of cell adhesion molecules. Both NFκB signaling and chemokine/cytokine production were reduced in premature ECs. The diminished endothelial proinflammatory immune response might result in impaired infection control of preterm newborns rendering them prone to severe infection.

  15. Isthmin is a novel secreted angiogenesis inhibitor that inhibits tumour growth in mice.

    PubMed

    Xiang, Wei; Ke, Zhiyuan; Zhang, Yong; Cheng, Grace Ho-Yuet; Irwan, Ishak Darryl; Sulochana, K N; Potturi, Padma; Wang, Zhengyuan; Yang, He; Wang, Jingyu; Zhuo, Lang; Kini, R Manjunatha; Ge, Ruowen

    2011-02-01

    Anti-angiogenesis represents a promising therapeutic strategy for the treatment of various malignancies. Isthmin (ISM) is a gene highly expressed in the isthmus of the midbrain-hindbrain organizer in Xenopus with no known functions. It encodes a secreted 60 kD protein containing a thrombospondin type 1 repeat domain in the central region and an adhesion-associated domain in MUC4 and other proteins (AMOP) domain at the C-terminal. In this work, we demonstrate that ISM is a novel angiogenesis inhibitor. Recombinant mouse ISM inhibited endothelial cell (EC) capillary network formation on Matrigel through its C-terminal AMOP domain. It also suppressed vascular endothelial growth factor (VEGF)-basic fibroblast growth factor (bFGF) induced in vivo angiogenesis in mouse. It mitigated VEGF-stimulated EC proliferation without affecting EC migration. Furthermore, ISM induced EC apoptosis in the presence of VEGF through a caspase-dependent pathway. ISM binds to αvβ(5) integrin on EC surface and supports EC adhesion. Overexpression of ISM significantly suppressed mouse B16 melanoma tumour growth through inhibition of tumour angiogenesis without affecting tumour cell proliferation. Knockdown of isthmin in zebrafish embryos using morpholino antisense oligonucleotides led to disorganized intersegmental vessels in the trunk. Our results demonstrate that ISM is a novel endogenous angiogenesis inhibitor with functions likely in physiological as well as pathological angiogenesis. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  16. Laccase 1 gene from Plutella xylostella (PxLac1) and its functions in humoral immune response.

    PubMed

    Wang, Ze-Hua; Hu, Rong-Min; Ye, Xi-Qian; Huang, Jian-Hua; Chen, Xue-Xin; Shi, Min

    Laccase (EC 1.10.3.2) is a phenoloxidase found in many insect species. The Laccase 1 gene from Plutella xylostella (PxLac1) was cloned, and its expression patterns and functions were determined using qPCR and RNAi methods. The results showed that the expression levels of PxLac1 were consistently high in all larval stages, and the most abundant was in the midgut during the 4th instar stage. Moreover, the expression of PxLac1 was up-regulated in response to bacterial infection, and decreased 24 h after being parasitized by Cotesia vestalis. Further analyses indicated that the effect of parasitization on PxLac1 was induced by active C. vestalis Bracovirus (CvBV). Haemocyte-free hemolymph phenoloxidase (PO) activity was suppressed when PxLac1 was treated with RNAi. Our results provide evidence for a connection between the Laccase 1 gene and insect immunity, and revealed that parasitoid polydnavirus suppresses host PO activity via PxLac1 regulation. Copyright © 2018. Published by Elsevier Ltd.

  17. The role of the megagametophyte in maintaining loblolly pine (Pinus taeda L.) seedling arginase gene expression in vitro.

    PubMed

    Todd, Christopher D; Gifford, David J

    2002-05-01

    Following loblolly pine (Pinus taeda L.) seed germination, storage-protein breakdown in the megagametophyte and in the seedling results in a large increase in the seedling's free amino acid pool. A substantial portion of both the storage proteins and the amino acid pool is arginine, a very efficient nitrogen-storage compound. Free arginine is hydrolyzed in the seedling by the enzyme arginase (EC 3.5.3.1), which is under strong developmental control. At present, regulation of arginase in conifers is not well understood. Here we report the utilization of an in vitro culture system to address the separate impacts of the seedling and megagametophyte tissues on arginase enzyme activity, protein levels and patterns of gene expression. We also describe the generation of an anti-arginase antibody prepared from a histidine-tagged loblolly pine arginase fusion protein expressed in Escherichia coli. Our results indicate that arginase gene expression in the seedling is initiated by the seedling itself and then maintained or up-regulated by the megagametophyte. The contribution of storage-protein breakdown and the free amino acid pool, particularly arginine, in this regulation is also addressed.

  18. The antioxidant property of chitosan green tea polyphenols complex induces transglutaminase activation in wound healing.

    PubMed

    Qin, Yao; Guo, Xing Wei; Li, Lei; Wang, Hong Wei; Kim, Wook

    2013-06-01

    The present study examined, for the first time, the in vitro wound healing potential of chitosan green tea polyphenols (CGP) complex based on the activation of transglutaminase (TGM) genes in epidermal morphogenesis. Response surface methodology was applied to determine the optimal processing condition that gave maximum extraction of green tea polyphenols. The antioxidant activity, scavenging ability, and chelating ability were studied and expressed as average EC50 values of CGP and other treatments. In silico analysis and gene coexpression network was subjected to the TGM sequences analysis. The temporal expressions of TGMs were profiled by semi-quantitative reverse transcription (RT)-PCR technology within 10 days after wounding and 2 days postwounding. CGP showed the effectiveness of antioxidant properties, and the observations of histopathological photography showed advanced tissue granulation and epithelialization formation by CGP treatment. In silico and coexpression analysis confirmed the regulation via TGM gene family in dermatological tissues. RT-PCR demonstrated increased levels of TGM1-3 expression induced by CGP treatment. The efficacy of CGP in wound healing based on these results may be ascribed to its antioxidant properties and activation of the expression of TGMs, and is, thus, essential for the facilitated repair of skin injury.

  19. Induced Pluripotent Stem Cell‐Derived Endothelial Cells Overexpressing Interleukin‐8 Receptors A/B and/or C‐C Chemokine Receptors 2/5 Inhibit Vascular Injury Response

    PubMed Central

    Giordano, Samantha; Zhao, Xiangmin; Chen, Yiu‐Fai; Litovsky, Silvio H.; Hage, Fadi G.; Townes, Tim M.; Sun, Chiao‐Wang; Wu, Li‐Chen; Oparil, Suzanne

    2017-01-01

    Abstract Recruitment of neutrophils and monocytes/macrophages to the site of vascular injury is mediated by binding of chemoattractants to interleukin (IL) 8 receptors RA and RB (IL8RA/B) C‐C chemokine receptors (CCR) 2 and 5 expressed on neutrophil and monocyte/macrophage membranes. Endothelial cells (ECs) derived from rat‐induced pluripotent stem cells (RiPS) were transduced with adenovirus containing cDNA of IL8RA/B and/or CCR2/5. We hypothesized that RiPS‐ECs overexpressing IL8RA/B (RiPS‐IL8RA/B‐ECs), CCR2/5 (RiPS‐CCR2/5‐ECs), or both receptors (RiPS‐IL8RA/B+CCR2/5‐ECs) will inhibit inflammatory responses and neointima formation in balloon‐injured rat carotid artery. Twelve‐week‐old male Sprague‐Dawley rats underwent balloon injury of the right carotid artery and intravenous infusion of (a) saline vehicle, (b) control RiPS‐Null‐ECs (ECs transduced with empty virus), (c) RiPS‐IL8RA/B‐ECs, (d) RiPS‐CCR2/5‐ECs, or (e) RiPS‐IL8RA/B+CCR2/5‐ECs. Inflammatory mediator expression and leukocyte infiltration were measured in injured and uninjured arteries at 24 hours postinjury by enzyme‐linked immunosorbent assay (ELISA) and immunohistochemistry, respectively. Neointima formation was assessed at 14 days postinjury. RiPS‐ECs expressing the IL8RA/B or CCR2/5 homing device targeted the injured arteries and decreased injury‐induced inflammatory cytokine expression, neutrophil/macrophage infiltration, and neointima formation. Transfused RiPS‐ECs overexpressing IL8RA/B and/or CCR2/5 prevented inflammatory responses and neointima formation after vascular injury. Targeted delivery of iPS‐ECs with a homing device to inflammatory mediators in injured arteries provides a novel strategy for the treatment of cardiovascular diseases. Stem Cells Translational Medicine 2017;6:1168–1177 PMID:28233474

  20. Molecular identification of venous progenitors in the dorsal aorta reveals an aortic origin for the cardinal vein in mammals

    PubMed Central

    Lindskog, Henrik; Kim, Yung Hae; Jelin, Eric B.; Kong, Yupeng; Guevara-Gallardo, Salvador; Kim, Tyson N.; Wang, Rong A.

    2014-01-01

    Coordinated arterial-venous differentiation is crucial for vascular development and function. The origin of the cardinal vein (CV) in mammals is unknown, while conflicting theories have been reported in chick and zebrafish. Here, we provide the first molecular characterization of endothelial cells (ECs) expressing venous molecular markers, or venous-fated ECs, within the emergent dorsal aorta (DA). These ECs, expressing the venous molecular markers Coup-TFII and EphB4, cohabited the early DA with ECs expressing the arterial molecular markers ephrin B2, Notch and connexin 40. These mixed ECs in the early DA expressed either the arterial or venous molecular marker, but rarely both. Subsequently, the DA exhibited uniform arterial markers. Real-time imaging of mouse embryos revealed EC movement from the DA to the CV during the stage when venous-fated ECs occupied the DA. We analyzed mutants for EphB4, which encodes a receptor tyrosine kinase for the ephrin B2 ligand, as we hypothesized that ephrin B2/EphB4 signaling may mediate the repulsion of venous-fated ECs from the DA to the CV. Using an EC quantification approach, we discovered that venous-fated ECs increased in the DA and decreased in the CV in the mutants, whereas the rest of the ECs in each vessel were unaffected. This result suggests that the venous-fated ECs were retained in the DA and missing in the CV in the EphB4 mutant, and thus that ephrin B2/EphB4 signaling normally functions to clear venous-fated ECs from the DA to the CV by cell repulsion. Therefore, our cellular and molecular evidence suggests that the DA harbors venous progenitors that move to participate in CV formation, and that ephrin B2/EphB4 signaling regulates this aortic contribution to the mammalian CV. PMID:24550118

  1. Effects of in vivo exposure to UV filters (4-MBC, OMC, BP-3, 4-HB, OC, OD-PABA) on endocrine signaling genes in the insect Chironomus riparius.

    PubMed

    Ozáez, Irene; Martínez-Guitarte, José Luis; Morcillo, Gloria

    2013-07-01

    There is increasing evidence indicating that several UV filters might have endocrine disruptive effects. Numerous studies have evaluated hormonal effects in vertebrates, mainly reporting estrogenic and androgenic activities in mammals and fishes. There is only limited knowledge about potential endocrine activity in invertebrate hormonal systems. In this work, the effects on endocrine signaling genes of six frequently used UV filters were investigated in Chironomus riparius, a reference organism in aquatic toxicology. The UV filters studied were: octyl-p-methoxycinnamate (OMC) also called 2-ethylhexyl-4-methoxycinnamate (EHMC); 4-methylbenzylidene camphor (4-MBC); benzophenone-3 (BP-3); 4-hidroxybenzophenone (4-HB); octocrylene (OC); and octyldimethyl-p-aminobenzoate (OD-PABA). After in vivo exposure at different dosages, expression levels of the genes coding for the ecdysone receptor (EcR), the ultraspiracle (usp, ortholog of the RXR) and the estrogen-related receptor (ERR) were quantified by Real Time PCR. The EcR gene was significantly upregulated by 4-MBC, OMC/EHMC and OD-PABA, with a dose-related response following 24h exposure. In contrast, the benzophenones, BP-3 and 4-HB, as well as OC did not alter this gene at the same exposure conditions. The transcription profiles of the usp and ERR genes were not significantly affected, except for BP-3 that inhibited the usp gene at the highest concentration. To our knowledge, this is the first experimental evidence in invertebrates of a direct effect of UV filters on endocrine-related genes, and is consistent with the known effects on vertebrate hormonal receptor genes. The capability of 4-MBC, OMC/EHMC and OD-PABA to stimulate the expression of the ecdysone receptor, a key transcription factor for the ecdysone-genomic response in arthropods, suggests the possibility of a broad and long-term effect on this hormonal pathway. These findings strengthen the need for further research about the ecotoxicological implications of chronic exposure to these compounds in aquatic invertebrates. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. A family of octopamine [corrected] receptors that specifically induce cyclic AMP production or Ca2+ release in Drosophila melanogaster.

    PubMed

    Balfanz, Sabine; Strünker, Timo; Frings, Stephan; Baumann, Arnd

    2005-04-01

    In invertebrates, the biogenic-amine octopamine is an important physiological regulator. It controls and modulates neuronal development, circadian rhythm, locomotion, 'fight or flight' responses, as well as learning and memory. Octopamine mediates its effects by activation of different GTP-binding protein (G protein)-coupled receptor types, which induce either cAMP production or Ca(2+) release. Here we describe the functional characterization of two genes from Drosophila melanogaster that encode three octopamine receptors. The first gene (Dmoa1) codes for two polypeptides that are generated by alternative splicing. When heterologously expressed, both receptors cause oscillatory increases of the intracellular Ca(2+) concentration in response to applying nanomolar concentrations of octopamine. The second gene (Dmoa2) codes for a receptor that specifically activates adenylate cyclase and causes a rise of intracellular cAMP with an EC(50) of approximately 3 x 10(-8) m octopamine. Tyramine, the precursor of octopamine biosynthesis, activates all three receptors at > or = 100-fold higher concentrations, whereas dopamine and serotonin are non-effective. Developmental expression of Dmoa genes was assessed by RT-PCR. Overlapping but not identical expression patterns were observed for the individual transcripts. The genes characterized in this report encode unique receptors that display signature properties of native octopamine receptors.

  3. Genomic organization and chromosomal localization of the gene TCF15 encoding the early mesodermal basic helix-loop-helix factor bHLH-EC2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hidai, H.; Quertermous, E.E.; Quertermous, T.

    1995-12-10

    bHLH-EC2 is a recently characterized member of a growing family of basic helix-loop-helix transcription factors. This family includes bHLH factors such as twist, which appear to be primarily involved in early mesodermal differentiation, and bHLH factors such as TAL-1, which have been characterized through their association with chromosomal breakpoints associated with T-cell leukemias. To provide for studies aimed at understanding the genetic regulation of bHLH-EC2, we have characterized the organization of this gene and conducted preliminary studies of the transcriptional activity of the upstream promoter region. The mouse bHLH-EC2 gene was found to consist of two exons separated by amore » 5-kb intron, an organization pattern similar to the mouse twist gene. The transcription initiation site was identified by RNase protection assay and primer extension analysis. Linked promoter-reporter gene transfection experiments in cultured cells indicated that while the identified upstream sequence can function to promote transcription, it does not function in a cell-specific fashion. To investigate the possible association of bHLH-EC2 with hematological malignancy, the chromosomal location of this gene in the human was mapped by fluorescence in situ hybridization and assigned to chromosome band 20p13. 16 refs., 3 figs.« less

  4. Decreased apelin and apelin-receptor expression in the pulmonary vasculature of nitrofen-induced congenital diaphragmatic hernia.

    PubMed

    Hofmann, Alejandro D; Friedmacher, Florian; Takahashi, Hiromizu; Hunziker, Manuela; Gosemann, Jan-Hendrik; Puri, Prem

    2014-02-01

    The high morbidity and mortality in congenital diaphragmatic hernia (CDH) are attributed to severe pulmonary hypoplasia and persistent pulmonary hypertension (PH). PH is characterized by structural changes in pulmonary arteries, resulting in adventitial and medial thickness. These effects are triggered by abnormal apoptosis and proliferation of pulmonary vascular endothelial and smooth muscle cells (SMCs). Apelin (APLN), a target gene of bone morphogenic protein receptor 2 (BMPR2), is known to play an important and manifold role in regulating pulmonary homeostasis promoting endothelial cell (EC) survival, proliferation and migration. In addition to these autocrine effects of apelin, it displays a paracrine function attenuating the response of pulmonary SMCs to growth factors and promoting apoptosis. Apelin exerts its effect via its G-protein-coupled receptor (APLNR) and is solely expressed by pulmonary vascular EC, whereas APLNR is co-localized in pulmonary ECs and SMCs. Dysfunction of BMPR2 and downstream signalling have been shown to disturb the crucial balance of proliferation of SMCs contributing to the pathogenesis of human and experimentally induced PH. We designed this study to investigate the hypothesis that apelin and APLNR signalling are disrupted in the pulmonary vasculature of rats in nitrofen-induced CDH. Pregnant rats were exposed to nitrofen or vehicle on D9 of gestation. Foetuses were sacrificed on D21 and divided into nitrofen and control group (n = 32). Pulmonary RNA was extracted and mRNA levels of APLN and APLNR were determined by quantitative real-time PCR. Protein expression of apelin and APLNR was investigated by western blotting. Confocal immunofluorescence double staining for apelin, APLNR and SMCs were performed. Relative mRNA level of APLN and APLNR were significantly decreased in the CDH group compared to control lungs. Western blotting and confocal microscopy confirmed the qRT-PCR results showing decreased pulmonary protein expression of apelin and APLNR in lungs of nitrofen-exposed foetuses compared to controls. This study provides striking evidence of markedly decreased gene and protein expression of apelin and its receptor APLNR in the pulmonary vasculature of nitrofen-induced CDH. The disruption of the apelin-APLNR signalling axis in the pulmonary vasculature may lead to extensive vascular remodelling and contribute to PPH in the nitrofen-induced CDH model.

  5. The endocannabinoid system expression in the female reproductive tract is modulated by estrogen.

    PubMed

    Maia, J; Almada, M; Silva, A; Correia-da-Silva, G; Teixeira, N; Sá, S I; Fonseca, B M

    2017-11-01

    The endocannabinoid system (ECS) is involved in several physiological events that resulted in a growing interest in its modulation. Moreover, the uterine levels of anandamide (AEA), the major endocannabinoid, must be tightly regulated to create proper embryo implantation conditions. However, there are no evidences about the regulation of AEA in uterus by estrogen. Thus, the aim of this study is to elucidate whether estradiol benzoate (EB) and tamoxifen (TAM) administration to ovariectomized (OVX) rats can induce changes in the expression of cannabinoid receptors and AEA-metabolic enzymes in uterus by evaluating gene transcription and protein levels by qPCR, Western blot and immunohistochemistry. Moreover, the plasmatic and uterine levels of AEA and of prostaglandin E 2 (PGE 2 ) and prostaglandin F 2 α (PGF 2α ), the major cyclooxygenase-2 (COX-2) products, were determined by UPLC-MS/MS. The immunohistochemistry showed that cannabinoid receptors, as well as AEA-metabolic enzymes are mainly located in the epithelial cells of both lumen and glands and, to a lesser extent, in the muscle cells. Moreover, EB administration to OVX rats significantly increased CB1, CB2, NAPE-PLD, FAAH and COX-2 expression and transcription. These effects were absent in TAM and TAM+EB treatments showing that this response is estrogen receptor dependent. Additionally, although uterine levels of AEA remained unchanged in EB or TAM treated animals, they showed a rise with EB treatment in plasma. The latter also produced a decrease in uterine PGE 2 levels. In summary, these data collectively indicate that the expression of ECS components, as well as, the AEA and PGE 2 levels in rat uterus is modulated by EB. Thus, estradiol may have a direct regulatory role in the modulation of ECS in female reproductive tissues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Dual mechanisms of NF-kappaB inhibition in carnosol-treated endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian, K.-C.; Chuang, J.-J.; Hsieh, C.-W.

    2010-05-15

    The increased adhesion of monocytes to injured endothelial layers is a critical early event in atherogenesis. Under inflammatory conditions, there is increased expression of specific cell adhesion molecules on activated vascular endothelial cells, which increases monocyte adhesion. In our current study, we demonstrate a putative mechanism for the anti-inflammatory effects of carnosol, a diterpene derived from the herb rosemary. Our results show that both carnosol and rosemary essential oils inhibit the adhesion of TNFalpha-induced monocytes to endothelial cells and suppress the expression of ICAM-1 at the transcriptional level. Moreover, carnosol was found to exert its inhibitory effects by blocking themore » degradation of the inhibitory protein IkappaBalpha in short term pretreatments but not in 12 h pretreatments. Our data show that carnosol reduces IKK-beta phosphorylation in pretreatments of less than 3 h. In TNFalpha-treated ECs, NF-kappaB nuclear translocation and transcriptional activity was abolished by up to 12 h of carnosol pretreatment and this was blocked by Nrf-2 siRNA. The long-term inhibitory effects of carnosol thus appear to be mediated through its induction of Nrf-2-related genes. The inhibition of ICAM-1 expression and p65 translocation is reversed by HO-1 siRNA. Carnosol also upregulates the Nrf-2-related glutathione synthase gene and thereby increases the GSH levels after 9 h of exposure. Treating ECs with a GSH synthesis inhibitor, BSO, blocks the inhibitory effects of carnosol. In addition, carnosol increases p65 glutathionylation. Hence, our present findings indicate that carnosol suppresses TNFalpha-induced singling pathways through the inhibition of IKK-beta activity or the upregulation of HO-1 expression. The resulting GSH levels are dependent, however, on the length of the carnosol pretreatment period.« less

  7. The P450 enzyme Shade mediates the hydroxylation of ecdysone to 20-hydroxyecdysone in the Colorado potato beetle, Leptinotarsa decemlineata.

    PubMed

    Kong, Y; Liu, X-P; Wan, P-J; Shi, X-Q; Guo, W-C; Li, G-Q

    2014-10-01

    Ecdysone 20-monooxygenase (E20MO), a cytochrome P450 monooxygenase (CYP314A1), catalyses the conversion of ecdysone (E) to 20-hydroxyecdysone (20E). We report here the cloning and characterization of the Halloween gene Shade (Shd) encoding E20MO in the Colorado potato beetle, Leptinotarsa decemlineata. LdSHD has five conserved motifs typical of insect P450s, ie the Helix-C, Helix-I, Helix-K, PxxFxPE/DRF (PERF) and heme-binding motifs. LdShd was expressed in developing eggs, the first to fourth instars, wandering larvae, pupae and adults, with statistically significant fluctuations. Its mRNA was ubiquitously distributed in the head, thorax and abdomen. The recombinant LdSHD protein expressed in Spodoptera frugiperda 9 (Sf9) cells catalysed the conversion of E to 20E. Dietary introduction of double-stranded RNA (dsRNA) of LdShd into the second instar larvae successfully knocked down the LdShd expression level, decreased the mRNA level of the ecdysone receptor (LdEcR) gene, caused larval lethality, delayed development and affected pupation. Moreover, ingestion of LdShd-dsRNA by the fourth instars also down-regulated LdShd and LdEcR expression, reduced the 20E titre, and negatively influenced pupation. Introduction of 20E and a nonsteroidal ecdysteroid agonist halofenozide into the LdShd-dsRNA-ingested second instars, and of halofenozide into the LdShd-dsRNA-ingested fourth instars almost completely relieved the negative effects on larval performance. Thus, LdSHD functions to regulate metamorphotic processes by converting E to 20E in a coleopteran insect species Le. decemlineata. © 2014 The Royal Entomological Society.

  8. The rat ErbB2 tyrosine kinase receptor produced in plants is immunogenic in mice and confers protective immunity against ErbB2(+) mammary cancer.

    PubMed

    Matić, Slavica; Quaglino, Elena; Arata, Lucia; Riccardo, Federica; Pegoraro, Mattia; Vallino, Marta; Cavallo, Federica; Noris, Emanuela

    2016-01-01

    The rat ErbB2 (rErbB2) protein is a 185-kDa glycoprotein belonging to the epidermal growth factor-related proteins (ErbB) of receptor tyrosine kinases. Overexpression and mutations of ErbB proteins lead to several malignancies including breast, lung, pancreatic, bladder and ovary carcinomas. ErbB2 is immunogenic and is an ideal candidate for cancer immunotherapy. We investigated the possibility of expressing the extracellular (EC) domain of rErbB2 (653 amino acids, aa) in Nicotiana benthamiana plants, testing the influence of the 23 aa transmembrane (TM) sequence on protein accumulation. Synthetic variants of the rErbB2 gene portion encoding the EC domain, optimized with a human codon usage and either linked to the full TM domain (rErbB2_TM, 676 aa), to a portion of it (rErbB2-pTM, 662 aa), or deprived of it (rErbB2_noTM, 653 aa) were cloned in the pEAQ-HT expression vector as 6X His tag fusions. All rErbB2 variants (72-74.5 kDa) were transiently expressed, but the TM was detrimental for rErbB2 EC accumulation. rERbB2_noTM was the most expressed protein; it was solubilized and purified with Nickel affinity resin. When crude soluble extracts expressing rErbB2_noTM were administered to BALB/c mice, specific rErbB2 immune responses were triggered. A potent antitumour activity was induced when vaccinated mice were challenged with syngeneic transplantable ErbB2(+) mammary carcinoma cells. To our knowledge, this is the first report of expression of rErbB2 in plants and of its efficacy in inducing a protective antitumour immune response, opening interesting perspectives for further immunological testing. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  9. MMP‐2 and MMP‐14 Silencing Inhibits VEGFR2 Cleavage and Induces the Differentiation of Porcine Adipose‐Derived Mesenchymal Stem Cells to Endothelial Cells

    PubMed Central

    Almalki, Sami G.; Llamas Valle, Yovani

    2017-01-01

    Abstract The molecular mechanisms that control the ability of adipose‐derived mesenchymal stem cells (AMSCs) to remodel three‐dimensional extracellular matrix barriers during differentiation are not clearly understood. Herein, we studied the expression of matrix metalloproteinases (MMPs) during the differentiation of AMSCs to endothelial cells (ECs) in vitro. MSCs were isolated from porcine abdominal adipose tissue, and characterized by immunopositivity to CD44, CD90, CD105, and immunonegativity to CD14 and CD45. Plasticity of AMSCs was confirmed by multilineage differentiation. The mRNA transcripts for MMPs and Tissue Inhibitor of Metalloproteinases (TIMPs), and protein expression of EC markers were analyzed. The enzyme activity and protein expression were analyzed by gelatin zymography, enzyme‐linked immunosorbent assay (ELISA), and Western blot. The differentiation of AMSCs to ECs was confirmed by mRNA and protein expressions of the endothelial markers. The mRNA transcripts for MMP‐2 and MMP‐14 were significantly increased during the differentiation of MSCs into ECs. Findings revealed an elevated MMP‐14 and MMP‐2 expression, and MMP2 enzyme activity. Silencing of MMP‐2 and MMP‐14 significantly increased the expression of EC markers, formation of capillary tubes, and acetylated‐low‐density lipoprotein uptake, and decreased the cleavage of vascular endothelial growth factor receptor type 2 (VEGFR2). Inhibition of VEGFR2 significantly decreased the expression of EC markers. These novel findings demonstrate that the upregulation of MMP2 and MMP14 has an inhibitory effect on the differentiation of AMSCs to ECs, and silencing these MMPs inhibit the cleavage of VEGFR2 and stimulate the differentiation of AMSCs to ECs. These findings provide a potential mechanism for the regulatory role of MMP‐2 and MMP‐14 in the re‐endothelialization of coronary arteries following intervention. Stem Cells Translational Medicine 2017;6:1385–1398 PMID:28213979

  10. FABP-1 gene ablation impacts brain endocannabinoid system in male mice.

    PubMed

    Martin, Gregory G; Chung, Sarah; Landrock, Danilo; Landrock, Kerstin K; Huang, Huan; Dangott, Lawrence J; Peng, Xiaoxue; Kaczocha, Martin; Seeger, Drew R; Murphy, Eric J; Golovko, Mikhail Y; Kier, Ann B; Schroeder, Friedhelm

    2016-08-01

    Liver fatty acid-binding protein (FABP1, L-FABP) has high affinity for and enhances uptake of arachidonic acid (ARA, C20:4, n-6) which, when esterified to phospholipids, is the requisite precursor for synthesis of endocannabinoids (EC) such as arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG). The brain derives most of its ARA from plasma, taking up ARA and transporting it intracellularly via cytosolic fatty acid-binding proteins (FABPs 3,5, and 7) localized within the brain. In contrast, the much more prevalent cytosolic FABP1 is not detectable in the brain but is instead highly expressed in the liver. Therefore, the possibility that FABP1 outside the central nervous system may regulate brain AEA and 2-AG was examined in wild-type (WT) and FABP1 null (LKO) male mice. LKO increased brain levels of AA-containing EC (AEA, 2-AG), correlating with increased free and total ARA in brain and serum. LKO also increased brain levels of non-ARA that contain potentiating endocannabinoids (EC*) such as oleoyl ethanolamide (OEA), PEA, 2-OG, and 2-PG. Concomitantly, LKO decreased serum total ARA-containing EC, but not non-ARA endocannabinoids. LKO did not elicit these changes in the brain EC and EC* as a result of compensatory up-regulation of brain protein levels of enzymes in EC synthesis (NAPEPLD, DAGLα) or cytosolic EC chaperone proteins (FABPs 3, 5, 7, SCP-2, HSP70), or cannabinoid receptors (CB1, TRVP1). These data show for the first time that the non-CNS fatty acid-binding protein FABP1 markedly affected brain levels of both ARA-containing endocannabinoids (AEA, 2-AG) as well as their non-ARA potentiating endocannabinoids. Fatty acid-binding protein-1 (FABP-1) is not detectable in brain but instead is highly expressed in liver. The possibility that FABP1 outside the central nervous system may regulate brain endocannabinoids arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG) was examined in wild-type (WT) and FABP-1 null (LKO) male mice. LKO increased brain levels of arachidonic acid-containing endocannabinoids (AEA, 2-AG), correlating with increased free and total arachidonic acid in brain and serum. Read the Editorial Highlight for this article on page 371. © 2016 International Society for Neurochemistry.

  11. [The Expression of Pokemon in Endometrial Carcinoma Tissue and the Correlation with Mutant p53].

    PubMed

    Yi, Tian-jin; Wang, Ping

    2016-05-01

    To detect the expression of Pokemon in endometrial carcinoma (EC), to provide preliminary theoretical basis for clarifying pathogenesis and searching for effective targets. Ninety-eight cases of endometrial tissue paraffin specimens form July 2012 to July 2014 in West China Second University Hospital, Sichuan University, were collected, including: EC group, consisting of adenocarcinoma 23 cases, adenosquamous 12 cases, serous 3 cases, mucinous 11 cases and clear cell 9 cases, and control group, consisting of atypical hyperplasia endometrium 20 cases and normal endometrium 20 cases (secretory 10 cases, hyperplasia 10 cases). Immunohistochemistry was used to detect the expression of Pokemonin each section, analyzing the correlation of Pokemon expression with clinicopathologic characteristics and p53 expression. The positive rate of Pokemon in normal endometrium was 25% (5/20), significantly lower than that in atypical hyperplasia endometrium (60.0%, 12/20) and EC (93.1%, 54/58) (P < 0.05); the rate in type II was 97. 12% (34/35), significantly higher than that in type I (86.96%, 20/23) (P = 0.018). The positive rate of Pokemon in III-IV stage, type II and Ki-67 ≥ 50 EC tissue was much higher (P = 0.012, 0.023, 0.029). In type II EC tissue, the correlation index between Pokemon and p53 is 0.669 (P = 0.000). The over expression of Pokemon upregulates the expression of mutant p53, which may be one of the carcinogenesis modes in type II EC.

  12. Targeted delivery of human iPS-ECs overexpressing IL-8 receptors inhibits neointimal and inflammatory responses to vascular injury in the rat.

    PubMed

    Giordano, Samantha; Zhao, Xiangmin; Xing, Daisy; Hage, Fadi; Oparil, Suzanne; Cooke, John P; Lee, Jieun; Nakayama, Karina H; Huang, Ngan F; Chen, Yiu-Fai

    2016-03-15

    Interleukin-8 (IL8) is highly expressed by injured arteries in a variety of diseases and is a chemoattractant for neutrophils which express IL8 receptors IL8RA and RB (IL8RA/B) on their membranes. Neutrophils interact with the damaged endothelium and initiate an inflammatory cascade at the site of injury. We have generated a novel translational targeted cell therapy for acute vascular injury using adenoviral vectors to overexpress IL8RA/B and green fluorescent protein (GFP) on the surface of endothelial cells (ECs) derived from human induced pluripotent stem cells (HiPS-IL8RA/B-ECs). We hypothesize that HiPS-IL8RA/B-ECs transfused intravenously into rats with balloon injury of the carotid artery will target to the injured site and compete with neutrophils, thus inhibiting inflammation and neointima formation. Young adult male Sprague-Dawley rats underwent balloon injury of the right carotid artery and received intravenous transfusion of saline vehicle, 1.5 × 10(6) HiPS-ECs, 1.5 × 10(6) HiPS-Null-ECs, or 1.5 × 10(6) HiPS-IL8RA/B-ECs immediately after endoluminal injury. Tissue distribution of HiPS-IL8RA/B-ECs was analyzed by a novel GFP DNA qPCR method. Cytokine and chemokine expression and leukocyte infiltration were measured in injured and uninjured arteries at 24 h postinjury by ELISA and immunohistochemistry, respectively. Neointimal, medial areas, and reendothelialization were measured 14 days postinjury. HiPS-IL8RA/B-ECs homed to injured arteries, inhibited inflammatory mediator expression and inflammatory cell infiltration, accelerated reendothelialization, and attenuated neointima formation after endoluminal injury while control HiPS-ECs and HiPS-Null-ECs did not. HiPS-IL8RA/B-ECs transfused into rats with endoluminal carotid artery injury target to the injured artery and provide a novel strategy to treat vascular injury.

  13. Targeted delivery of human iPS-ECs overexpressing IL-8 receptors inhibits neointimal and inflammatory responses to vascular injury in the rat

    PubMed Central

    Giordano, Samantha; Zhao, Xiangmin; Xing, Daisy; Hage, Fadi; Oparil, Suzanne; Cooke, John P.; Lee, Jieun; Nakayama, Karina H.; Huang, Ngan F.

    2016-01-01

    Interleukin-8 (IL8) is highly expressed by injured arteries in a variety of diseases and is a chemoattractant for neutrophils which express IL8 receptors IL8RA and RB (IL8RA/B) on their membranes. Neutrophils interact with the damaged endothelium and initiate an inflammatory cascade at the site of injury. We have generated a novel translational targeted cell therapy for acute vascular injury using adenoviral vectors to overexpress IL8RA/B and green fluorescent protein (GFP) on the surface of endothelial cells (ECs) derived from human induced pluripotent stem cells (HiPS-IL8RA/B-ECs). We hypothesize that HiPS-IL8RA/B-ECs transfused intravenously into rats with balloon injury of the carotid artery will target to the injured site and compete with neutrophils, thus inhibiting inflammation and neointima formation. Young adult male Sprague-Dawley rats underwent balloon injury of the right carotid artery and received intravenous transfusion of saline vehicle, 1.5 × 106 HiPS-ECs, 1.5 × 106 HiPS-Null-ECs, or 1.5 × 106 HiPS-IL8RA/B-ECs immediately after endoluminal injury. Tissue distribution of HiPS-IL8RA/B-ECs was analyzed by a novel GFP DNA qPCR method. Cytokine and chemokine expression and leukocyte infiltration were measured in injured and uninjured arteries at 24 h postinjury by ELISA and immunohistochemistry, respectively. Neointimal, medial areas, and reendothelialization were measured 14 days postinjury. HiPS-IL8RA/B-ECs homed to injured arteries, inhibited inflammatory mediator expression and inflammatory cell infiltration, accelerated reendothelialization, and attenuated neointima formation after endoluminal injury while control HiPS-ECs and HiPS-Null-ECs did not. HiPS-IL8RA/B-ECs transfused into rats with endoluminal carotid artery injury target to the injured artery and provide a novel strategy to treat vascular injury. PMID:26801304

  14. LH/hCG-Receptor Expression May Have a Negative Prognostic Value in Low-Risk Endometrial Cancer.

    PubMed

    Noci, Ivo; Sorbi, Flavia; Mannini, Luca; Projetto, Elisabetta; Pillozzi, Serena; Ghizzoni, Viola; Lottini, Tiziano; Moncini, Daniela; Baroni, Gianna; Mungai, Francesco; Arcangeli, Annarosa; Fambrini, Massimiliano

    2016-01-01

    A 51 year-old woman was diagnosed with endometrial cancer (EC) and underwent surgical staging. Pathological evaluation showed a 2 cm × 1 cm G2 endometrioid EC with a 30% myometrial deep invasion (FIGO Stage 1A). The patient was classified as low risk of recurrence, and no adjuvant treatment was offered. Six months after surgery, the patient developed an early vescico-vaginal recurrence, and chemotherapy treatment was started. Few months later, a subsequent involvement of vaginal wall, ileum, and omentum was detected, and the patient underwent second surgery. LH/hCG-receptor (LH/hCG-R) expression has been previously reported to be associated with an invasive phenotype in EC cells. Moreover, in a preclinical mouse model of EC behaves as a prometastatic molecular device. We analyzed the expression level of LH/hCG-R in cancer specimens collected during surgeries. Molecular and immunohistochemical analyses showed a strong expression of both mRNA and protein for LH/hCG-R in all specimens. LH/hCG-R expression may be assessed together with other clinicopathological parameters in order to better predict the risk of recurrence in low-risk EC patients. Further clinical trials are warranted in order to validate LH/hCG-R as biomarker in EC.

  15. Grouper translationally controlled tumor protein prevents cell death and inhibits the replication of Singapore grouper iridovirus (SGIV).

    PubMed

    Wei, Jingguang; Guo, Minglan; Ji, Huasong; Yan, Yang; Ouyang, Zhengliang; Huang, Xiaohong; Hang, Youhua; Qin, Qiwei

    2012-10-01

    Translationally controlled tumor protein (TCTP) is an important molecule involved in multiple biological processes, such as cell growth, cell cycle progression, malignant transformation, and enhancement of the anti-apoptotic activity. In this study, the TCTP from orange-spotted grouper Epinephelus coioides (Ec-TCTP) was cloned and characterized. The full-length cDNA of Ec-TCTP was comprised of 1057 bp with a 510 bp open reading frame that encodes a putative protein of 170 amino acids. Recombinant Ec-TCTP (rEc-TCTP) was expressed in Escherichia BL21 (DE3) and purified for mouse anti-Ec-TCTP serum preparation. The rEc-TCTP fusion protein was demonstrated to possess antioxidant activity, which conferred resistance to H(2)O(2) damage. Quantitative real-time PCR analysis revealed that Ec-TCTP mRNA is predominately expressed in the liver, and the expression was up-regulated in the liver of grouper after viral challenge with Singapore grouper iridovirus (SGIV). Intracellular localization revealed that Ec-TCTP expression was distributed predominantly in the cytoplasm. Although human TCTP has a role in apoptosis regulation, it is not known if grouper TCTP has any role in apoptosis regulation. Strikingly, grouper TCTP, when overexpressed in fathead minnow (FHM) cells, protected them from cell death induced by cycloheximide (CHX). In addition, overexpressed Ec-TCTP in grouper spleen (GS) cells inhibited the replication of SGIV. These results suggest that Ec-TCTP may play a critical role in their response to SGIV infection, through regulation of a cell death pathway that is common to fish and humans. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Molecular and biochemical characterisation of two aspartic proteinases TcAP1 and TcAP2 from Theobroma cacao seeds.

    PubMed

    Laloi, Maryse; McCarthy, James; Morandi, Olivia; Gysler, Christof; Bucheli, Peter

    2002-09-01

    Aspartic proteinase (EC 3.4.23) activity plays a pivotal role in the degradation of Theobroma cacao L. seed proteins during the fermentation step of cacao bean processing. Therefore, this enzyme is believed to be critical for the formation of the peptide and amino acid cocoa flavor precursors that occurs during fermentation. Using cDNA cloning and northern blot analysis, we show here that there are at least two distinct aspartic proteinase genes ( TcAP1 and TcAP2) expressed during cacao seed development. Both genes are expressed early during seed development and their mRNA levels decrease towards the end of seed maturation. TcAP2 is expressed at a much higher level than TcAP1, although the expression of TcAP1 increases slightly during germination. The proteins encoded by TcAP1 and TcAP2 are relatively different from each other (73% identity). This, and the fact that the two corresponding genes have different expression patterns, suggests that the TcAP1 and TcAP2 proteins may have different functions in the maturing seeds and during germination. Because the TcAP2 gene is expressed at a much higher level during seed development than TcAP1, it is likely that the TcAP2 protein is primarily responsible for the majority of the industrially important protein hydrolysis that occurs during cacao bean fermentation. Finally, TcAP2 has been functionally expressed in the yeast Yarrowia lipolytica. The secreted recombinant protein is able to hydrolyse bovine haemoglobin at acidic pH and is sensitive to pepstatin A, confirming that TcAP2 encodes an aspartic proteinase, and strongly suggests that this gene encodes the well-characterized aspartic proteinase of mature cacao seeds.

  17. Function of xyloglucan endotransglucosylase/hydrolases in rice

    PubMed Central

    Hara, Yoshinao; Yokoyama, Ryusuke; Osakabe, Keishi; Toki, Seiichi; Nishitani, Kazuhiko

    2014-01-01

    Background and Aims Although xyloglucans are ubiquitous in land plants, they are less abundant in Poales species than in eudicotyledons. Poales cell walls contain higher levels of β-1,3/1,4 mixed-linked glucans and arabinoxylans than xyloglucans. Despite the relatively low level of xyloglucans in Poales, the xyloglucan endotransglucosylase/hydrolase (XTH) gene family in rice (Oryza sativa) is comparable in size to that of the eudicotyledon Arabidopsis thaliana. This raises the question of whether xyloglucan is a substrate for rice XTH gene products, whose enzyme activity remains largely uncharacterized. Methods This study focused on OsXTH19 (which belongs to Group IIIA of the XTH family and is specifically expressed in growing tissues of rice shoots), and two other XTHs, OsXTH11 (Group I/II) and OsXTH20 (Group IIIA), for reference, and measurements were made of the enzymatic activities of three recombinant rice XTHs, i.e. OsXTH11, OsXTH20 and OsXTH19. Key Results All three OsXTH gene products have xyloglucan endohydrolase (XEH, EC 3·2·1·151) activity, and OsXTH11 has both XEH and xyloglucan endotransglycosylase (XET, EC 2·4·1207) activities. However, these proteins had neither hydrolase nor transglucosylase activity when glucuronoarabinoxylan or mixed-linkage glucan was used as the substrate. These results are consistent with histological observations demonstrating that pOsXTH19::GUS is expressed specifically in the vicinity of tissues where xyloglucan immunoreactivity is present. Transgenic rice lines over-expressing OsXTH19 (harbouring a Cauliflower Mosaic Virus 35S promoter::OsXTH19 cDNA construct) or with suppressed OsXTH19 expression (harbouring a pOsXTH19 RNAi construct) did not show dramatic phenotypic changes, suggesting functional redundancy and collaboration among XTH family members, as was observed in A. thaliana. Conclusions OsXTH20 and OsXTH19 act as hydrolases exclusively on xyloglucan, while OsXTH11 exhibits both hydrolase and XET activities exclusively on xyloglucans. Phenotypic analysis of transgenic lines with altered expression of OsXTH19 suggests that OsXTH19 and related XTH(s) play redundant roles in rice growth. PMID:24363334

  18. Cloning and expression of a conjugated bile acid hydrolase gene from Lactobacillus plantarum by using a direct plate assay.

    PubMed

    Christiaens, H; Leer, R J; Pouwels, P H; Verstraete, W

    1992-12-01

    The conjugated bile acid hydrolase gene from the silage isolate Lactobacillus plantarum 80 was cloned and expressed in Escherichia coli MC1061. For the screening of this hydrolase gene within the gene bank, a direct plate assay developed by Dashkevicz and Feighner (M. P. Dashkevicz and S. D. Feighner, Appl. Environ. Microbiol. 53:331-336, 1989) was adapted to the growth requirements of E. coli. Because of hydrolysis and medium acidification, hydrolase-active colonies were surrounded with big halos of precipitated, free bile acids. This phenomenon was also obtained when the gene was cloned into a multicopy shuttle vector and subsequently reintroduced into the parental Lactobacillus strain. The cbh gene and surrounding regions were characterized by nucleotide sequence analysis. The deduced amino acid sequence was shown to have 52% similarity with a penicillin V amidase from Bacillus sphaericus. Preliminary characterization of the gene product showed that it is a cholylglycine hydrolase (EC 3.5.1.24) with only slight activity against taurine conjugates. The optimum pH was between 4.7 and 5.5. Optimum temperature ranged from 30 to 45 degrees C. Southern blot analysis indicated that the cloned gene has similarity with genomic DNA of bile acid hydrolase-active Lactobacillus spp. of intestinal origin.

  19. Practical uses for ecdysteroids in mammals including humans: an update

    PubMed Central

    Lafont, R.; Dinan, L.

    2003-01-01

    Ecdysteroids are widely used as inducers for gene-switch systems based on insect ecdysteroid receptors and genes of interest placed under the control of ecdysteroid-response elements. We review here these systems, which are currently mainly used in vitro with cultured cells in order to analyse the role of a wide array of genes, but which are expected to represent the basis for future gene therapy strategies. Such developments raise several questions, which are addressed in detail. First, the metabolic fate of ecdysteroids in mammals, including humans, is only poorly known, and the rapid catabolism of ecdysteroids may impede their use as in vivo inducers. A second set of questions arose in fact much earlier with the pioneering “heterophylic” studies of Burdette in the early sixties on the pharmacological effects of ecdysteroids on mammals. These and subsequent studies showed a wide range of effects, most of them being beneficial for the organism (e.g. hypoglycaemic, hypocholesterolaemic, anabolic). These effects are reviewed and critically analysed, and some hypotheses are proposed to explain the putative mechanisms involved. All of these pharmacological effects have led to the development of a wide array of ecdysteroid-containing preparations, which are primarily used for their anabolic and/or “adaptogenic” properties on humans (or horses or dogs). In the same way, increasing numbers of patents have been deposited concerning various beneficial effects of ecdysteroids in many medical or cosmetic domains, which make ecdysteroids very attractive candidates for several practical uses. It may be questioned whether all these pharmacological actions are compatible with the development of ecdysteroid-inducible gene switches for gene therapy, and also if ecdysteroids should be classified among doping substances. Abbreviation: 20E 20-hydroxyecdysone 2d20E 2-deoxy-20-hydroxyecdysone 2dE 2-deoxyecdysone BAH bisacylhydrazine BmEcR Bombyx mori EcR CfEcR Choristoneura fumiferana EcR CfUSP Choristoneura fumiferana USP CHO Chinese hamster ovary CMV cytomegalovirus DBD DNA-binding domain DmEcR Drosophila melanogaster EcR AbbE ecdysone EcR ecdysteroid receptor EcRE ecdysteroid response element EHT effective half-time ERE oestrogen response element GR glucocorticoid receptor GRE glucocorticoid response element HEK human embryonic kidney HvEcR Heliothis virescens EcR LBD ligand binding domain murA muristerone A PKA protein kinase A polB polypodine B ponA ponasterone A PPAR peroxisome proliferator-activated receptor RAR retinoic acid receptor RXR retinoid X receptor TR thyroid receptor USP ultraspiracle VDR vitamin D receptor VEGF vascular endothelial growth factor PMID:15844229

  20. CD146 coordinates brain endothelial cell–pericyte communication for blood–brain barrier development

    PubMed Central

    Chen, Jianan; Luo, Yongting; Hui, Hui; Cai, Tanxi; Huang, Hongxin; Yang, Fuquan; Feng, Jing; Zhang, Jingjing; Yan, Xiyun

    2017-01-01

    The blood–brain barrier (BBB) establishes a protective interface between the central neuronal system and peripheral blood circulation and is crucial for homeostasis of the CNS. BBB formation starts when the endothelial cells (ECs) invade the CNS and pericytes are recruited to the nascent vessels during embryogenesis. Despite the essential function of pericyte–EC interaction during BBB development, the molecular mechanisms coordinating the pericyte–EC behavior and communication remain incompletely understood. Here, we report a single cell receptor, CD146, that presents dynamic expression patterns in the cerebrovasculature at the stages of BBB induction and maturation, coordinates the interplay of ECs and pericytes, and orchestrates BBB development spatiotemporally. In mouse brain, CD146 is first expressed in the cerebrovascular ECs of immature capillaries without pericyte coverage; with increased coverage of pericytes, CD146 could only be detected in pericytes, but not in cerebrovascular ECs. Specific deletion of Cd146 in mice ECs resulted in reduced brain endothelial claudin-5 expression and BBB breakdown. By analyzing mice with specific deletion of Cd146 in pericytes, which have defects in pericyte coverage and BBB integrity, we demonstrate that CD146 functions as a coreceptor of PDGF receptor-β to mediate pericyte recruitment to cerebrovascular ECs. Moreover, we found that the attached pericytes in turn down-regulate endothelial CD146 by secreting TGF-β1 to promote further BBB maturation. These results reveal that the dynamic expression of CD146 controls the behavior of ECs and pericytes, thereby coordinating the formation of a mature and stable BBB. PMID:28827364

  1. Expression of cholinesterase gene(s) in human brain tissues: translational evidence for multiple mRNA species.

    PubMed Central

    Soreq, H; Zevin-Sonkin, D; Razon, N

    1984-01-01

    To resolve the origin(s) of the molecular heterogeneity of human nervous system cholinesterases (ChEs), we used Xenopus oocytes, which produce biologically active ChE when microinjected with unfractionated brain mRNA. The RNA was prepared from primary gliomas, meningiomas and embryonic brain, each of which expresses ChE activity with distinct substrate specificities and molecular forms. Sucrose gradient fractionation of DMSO-denatured mRNA from these sources revealed three size classes of ChE-inducing mRNAs, sedimenting at approximately 32S, 20S and 9S. The amounts of these different classes of ChE-inducing mRNAs varied between the three tissue sources examined. To distinguish between ChEs produced in oocytes and having different substrate specificities, their activity was determined in the presence of selective inhibitors. Both 'true' (acetylcholine hydrolase, EC 3.1.1.7) and 'pseudo' (acylcholine acylhydrolase, EC 3.1.1.8) multimeric cholinesterase activities were found in the mRNA-injected oocytes. Moreover, human brain mRNAs inducing 'true' and 'pseudo' ChE activities had different size distribution, indicating that different mRNAs might be translated into various types of ChEs. These findings imply that the heterogeneity of ChEs in the human nervous system is not limited to the post-translational level, but extends to the level of mRNA. PMID:6745236

  2. Study on chemotherapeutic sensitizing effect of nimotuzumab on different human esophageal squamous carcinoma cells.

    PubMed

    Yang, Xiaoyu; Ji, Yinghua; Kang, Xiaochun; Chen, Meiling; Kou, Weizheng; Jin, Cailing; Lu, Ping

    2016-02-01

    Esophageal cancer is one of the leading causes of mortality worldwide. Although, surgery, radio- and chemotherapy are used to treat the disease, the identification of new drugs is crucial to increase the curative effect. The aim of the present study was to examine the chemotherapeutic sensitizing effect of nimotuzumab (h-R3) and cisplatin cytotoxic drugs cisplatin (DDP) and 5-fluorouracil (5-FU) on esophageal carcinoma cells with two different epidermal growth factor receptor (EGFR) expressions. The expression of EGFR was detected in the human EC1 or EC9706 esophageal squamous cell carcinoma cell line using immunohistochemistry. The inhibitory effect of DDP and 5-FU alone or combined with h-R3 on EC1 or EC9706 cell proliferation was detected using an MTT assay. Flow cytometry and the TUNEL assay were used to determine the effect of single or combined drug treatment on cell apoptosis. The results showed that the expression of EGFR was low in EC1 cells but high in EC9706 cells. The inhibitory effect of the single use of h-R3 on EC1 or EC9706 cell proliferation was decreased. The inhibitory effect between single use of h-R3 alone and combined use of the chemotherapy drugs showed no statistically significant difference (P>0.05) on the EC1 cell growth rate, but showed a statistically significant difference (a=0.05) on EC9706 cell growth rate. The results detected by flow cytometry and TUNEL assay showed that the difference between single use of h-R3 alone and the control group was statistically significant with regard to the EC1 apoptosis rate effect (P<0.05), but not statistically significant for EC9706 (P>0.05). However, statistically significant differences were identified in the apoptotic rate of EC9706 cells between the h-R3 combined chemotherapy group and single chemotherapy group (P<0.05), but not on in the EC1 chemotherapy group (P>0.05). In conclusion, the sensitization effect of h-R3 on chemotherapy drugs is associated with the expression level of EGFR in EC1 or EC9706 cells. The cell killing effect of the combined use of h-R3 with DDP and 5-FU showed no obvious synergistic effect compared to the single-drug group, but only an additive effect.

  3. Trehalose-producing enzymes MTSase and MTHase in Anabaena 7120 under NaCl stress.

    PubMed

    Asthana, Ravi K; Nigam, Subhasha; Maurya, Archana; Kayastha, Arvind M; Singh, Sureshwar P

    2008-05-01

    Salt tolerance, a multigenic trait, necessitates knowledge about biosynthesis and function of candidate gene(s) at the cellular level. Among the osmolytes, trehalose biosynthesis in cyanobacteria facing NaCl stress is little understood. Anabaena 7120 filaments exposed to 150 mM: NaCl fragmented and recovered on transfer to -NaCl medium with the increased heterocysts frequency (7%) over the control (4%). Cells failed to retain Na+ beyond a threshold [2.19 mM/cm3 (PCV)]. Whereas NaCl-stressed cells exhibited a marginal rise in K+ (1.1-fold) only at 30 h, for Na+ it was 130-fold at 48 h over cells in control. A time-course study (0-54 h) revealed reduction in intracellular Na+ beyond 48 h [0.80 mM/cm3 (PCV)] suggestive of ion efflux. The NaCl-stressed cells showed differential expression of maltooligosyltrehalose synthase (MTSase; EC 5.4.99.15) and maltooligosyltrehalose trehalohydrolase (MTHase; EC 3.2.1.141) depending on the time and the extent of intracellular Na+ buildup.

  4. Sarcoplasmic/endoplasmic reticulum Ca2+ ATPase C674 promotes ischemia- and hypoxia-induced angiogenesis via coordinated endothelial cell and macrophage function.

    PubMed

    Mei, Yu; Thompson, Melissa D; Shiraishi, Yasunaga; Cohen, Richard A; Tong, Xiaoyong

    2014-11-01

    Ischemia is a complex phenomenon modulated by the concerted action of several cell types. We have identified that sarcoplasmic/endoplasmic reticulum Ca(2+) ATPase 2 (SERCA 2) cysteine 674 (C674) S-glutathiolation is essential for ischemic angiogenesis, vascular endothelial growth factor (VEGF)-mediated endothelial cell (EC) migration and network formation. A heterozygote SERCA 2 C674S knockin (SKI) mouse shows impaired ischemic blood flow recovery after femoral artery ligation, and its ECs show depleted endoplasmic reticulum (ER) Ca(2+) stores and impaired angiogenic behavior. Here we studied the role of SERCA 2 C674 in the interaction between ECs and macrophages in the context of ischemia and discovered the involvement of the ER stress response protein, ER oxidoreductin-1α (ERO1). In wild type (WT) mice, expression of ERO1 was increased in the ischemic hind limb in vivo, as well as in ECs and macrophages exposed to hypoxia in vitro. The increase in ERO1 to ischemia/hypoxia was less in SKI mice. In WT ECs, both vascular cell adhesion molecule 1 (VCAM1) expression and bone marrow-derived macrophage adhesion to ECs were increased by hypoxia, and both were attenuated in SKI ECs. In WT ECs, ERO1 siRNA blocked hypoxia-induced VCAM1 expression and macrophage adhesion. In WT macrophages, hypoxia also stimulated both ERO1 and VEGF expression, and both were less in SKI macrophages. Compared with conditioned media of hypoxic SKI macrophages, conditioned media from WT macrophages had a greater effect on EC angiogenic behavior, and were blocked by VEGF neutralizing antibody. Taken together, under hypoxic conditions, SERCA 2 C674 and ERO1 enable increased VCAM1 expression and macrophage adhesion to ECs, as well as macrophage VEGF production that, in turn, promote angiogenesis. This study highlights the hitherto unrecognized interaction of two ER proteins, SERCA 2 C674 and ERO1, which mediate the EC and macrophage angiogenic response to ischemia/hypoxia. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. [Effects of HOXB2 antisense oligodeoxynucleotides on the biological properties of primary human umbilical vein endothelial cells].

    PubMed

    Zhang, Xiaoqi; Liu, Xusheng

    2002-07-01

    To explore the effects of HOXB2 antisense oligodeoxynuc leotides (Asodn) on the biological properties of primary human umbilical vein endothelial cells (ECs). Fluorescent labelled Asodn was transfected into the endothelial cells of human unbilical vein mediated liposome and its distribution within endothelia was observed. (3)H-TdR incorporation test was employed to determine its effects on the DNA synthesis. Flow cytometry was applied to determine the change of the cell cycle. In the same time, RT-PCR was adopted to study the influence of Asodn on the expression of target genes. Fifteen minutes after the transfection, weak nucleic staining was observed. The fluorescent staining was the strongest 4 approximately 8 hours after the transfection and began to weaken in 16 hours. The proportion of cells in G1/0 phase in Asodn group was 53.4 +/- 3.1, significantly higher than that in control group (35.8 +/- 7.3, P < 0.01), and the proportion of cells in S phase in Asodn group was 42.2 +/- 3.5, significantly lower than that in control group (60.8 +/- 6.2, P < 0.01). The expression of HOXB2 mRNA was remarkably decreased during 24 to 48 hours. HOXB2 Asodn exerts inhibitory effects on EC proliferation dose-dependently, delays the conversion of G1 phase to S Phase, and inhibits the expression of HOXB2 mRNA. HOXB2 gene plays an important role in proliferation of endothelial cells and the mechanism is related to cell cycle.

  6. Reactivation of epigenetically silenced miR-124 reverses the epithelial-to-mesenchymal transition and inhibits invasion in endometrial cancer cells via the direct repression of IQGAP1 expression.

    PubMed

    Dong, Peixin; Ihira, Kei; Xiong, Ying; Watari, Hidemichi; Hanley, Sharon J B; Yamada, Takahiro; Hosaka, Masayoshi; Kudo, Masataka; Yue, Junming; Sakuragi, Noriaki

    2016-04-12

    Overexpression of IQGAP1 and microRNA (miRNA) dysregulation are frequent in human tumors, but little is known about the role of IQGAP1 and its relationship to miRNA in endometrial carcinogenesis. We demonstrate that IQGAP1 activates the epithelial-mesenchymal transition (EMT) program and that miR-124 directly represses IQGAP1 expression in endometrial cancer (EC) cells. The overexpression of IQGAP1 stimulates EMT features and enhances migration, invasion and proliferation of EC cells, whereas knocking down IQGAP1 expression reverses EMT and inhibits these malignant properties. Using miRNA microarray profiling, we identified 29 miRNAs (let-7b, let-7f, miR-10b, miR-15b, miR-23a, miR-24, miR-25, miR-27a, miR-29b, miR-30a-5p, miR-34a, miR-124, miR-127, miR-130b, miR-148a, miR-155, miR-191*, miR-194, miR-224, miR-362, miR-409-3p, miR-422b, miR-424, miR-453, miR-497, miR-518d, miR-518f*, miR-526a and miR-656) that are significantly down-regulated in an in vitro-selected highly invasive derivative cell line (HEC-50-HI) relative to the parental HEC-50 cells. We further identified miR-124 as a direct regulator of IQGAP1 in EC cells. Enforced expression of miR-124 suppresses EC cell invasion and proliferation. The expression of IQGAP1 mRNA was significantly elevated in EC tissues, while the expression of miR-124 was decreased. The downregulation of miR-124 correlates with a poor survival outcome for patients with EC. Treating EC cells with the demethylating agent 5-aza-2'-deoxycytidine increased miR-124 expression and down-regulated IQGAP1 levels. Our data suggest that IQGAP1 promotes EMT, migration and invasion of EC cells. MiR-124, a novel tumor suppressor miRNA that is epigenetically silenced in EC, can reverse EMT and the invasive properties, by attenuating the expression of the IQGAP1 oncogene.

  7. Reactivation of epigenetically silenced miR-124 reverses the epithelial-to-mesenchymal transition and inhibits invasion in endometrial cancer cells via the direct repression of IQGAP1 expression

    PubMed Central

    Watari, Hidemichi; Hanley, Sharon J.B.; Yamada, Takahiro; Hosaka, Masayoshi; Kudo, Masataka; Yue, Junming; Sakuragi, Noriaki

    2016-01-01

    Overexpression of IQGAP1 and microRNA (miRNA) dysregulation are frequent in human tumors, but little is known about the role of IQGAP1 and its relationship to miRNA in endometrial carcinogenesis. We demonstrate that IQGAP1 activates the epithelial–mesenchymal transition (EMT) program and that miR-124 directly represses IQGAP1 expression in endometrial cancer (EC) cells. The overexpression of IQGAP1 stimulates EMT features and enhances migration, invasion and proliferation of EC cells, whereas knocking down IQGAP1 expression reverses EMT and inhibits these malignant properties. Using miRNA microarray profiling, we identified 29 miRNAs (let-7b, let-7f, miR-10b, miR-15b, miR-23a, miR-24, miR-25, miR-27a, miR-29b, miR-30a-5p, miR-34a, miR-124, miR-127, miR-130b, miR-148a, miR-155, miR-191*, miR-194, miR-224, miR-362, miR-409-3p, miR-422b, miR-424, miR-453, miR-497, miR-518d, miR-518f*, miR-526a and miR-656) that are significantly down-regulated in an in vitro-selected highly invasive derivative cell line (HEC-50-HI) relative to the parental HEC-50 cells. We further identified miR-124 as a direct regulator of IQGAP1 in EC cells. Enforced expression of miR-124 suppresses EC cell invasion and proliferation. The expression of IQGAP1 mRNA was significantly elevated in EC tissues, while the expression of miR-124 was decreased. The downregulation of miR-124 correlates with a poor survival outcome for patients with EC. Treating EC cells with the demethylating agent 5-aza-2′-deoxycytidine increased miR-124 expression and down-regulated IQGAP1 levels. Our data suggest that IQGAP1 promotes EMT, migration and invasion of EC cells. MiR-124, a novel tumor suppressor miRNA that is epigenetically silenced in EC, can reverse EMT and the invasive properties, by attenuating the expression of the IQGAP1 oncogene. PMID:26934121

  8. Modulation of Intersectin-1s Lung Expression Induces Obliterative Remodeling and Severe Plexiform Arteriopathy in the Murine Pulmonary Vascular Bed.

    PubMed

    Patel, Monal; Predescu, Dan; Bardita, Cristina; Chen, Jiwang; Jeganathan, Niranjan; Pritchard, Melanie; DiBartolo, Salvatore; Machado, Roberto; Predescu, Sanda

    2017-03-01

    Murine models of pulmonary arterial hypertension (PAH) that recapitulate the plexiform and obliterative arteriopathy seen in PAH patients and help in defining the molecular mechanisms involved are missing. Herein, we investigated whether intersectin-1s (ITSN) deficiency and prolonged lung expression of an ITSN fragment with endothelial cell (EC) proliferative potential (EH ITSN ), present in the lungs of PAH animal models and human patients, induce formation of plexiform/obliterative lesions and defined the molecular mechanisms involved. ITSN-deficient mice (knockout/heterozygous and knockdown) were subjected to targeted lung delivery of EH ITSN via liposomes for 20 days. Immunohistochemistry and histological and morphometric analyses revealed a twofold increase in proliferative ECs and a 1.35-fold increase in proliferative α-smooth muscle actin-positive cells in the lungs of ITSN-deficient mice, transduced with the EH ITSN relative to wild-type littermates. Treated mice developed severe medial wall hypertrophy, intima proliferation, and various forms of obliterative and plexiform-like lesions in pulmonary arteries, similar to PAH patients. Hemodynamic measurements indicated modest increases in the right ventricular systolic pressure and right ventricle hypertrophy. Transcriptional and protein assays of lung tissue indicated p38 MAPK -dependent activation of Elk-1 transcription factor and increased expression of c-Fos gene. This unique murine model of PAH-like plexiform/obliterative arteriopathy induced via a two-hit pathophysiological mechanism without hypoxia provides novel druggable targets to ameliorate and, perhaps, reverse the EC plexiform phenotype in severe human PAH. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  9. Interleukin-27 induces the endothelial differentiation in Sca-1+ cardiac resident stem cells.

    PubMed

    Tanaka, Tomohiro; Obana, Masanori; Mohri, Tomomi; Ebara, Masaki; Otani, Yuta; Maeda, Makiko; Fujio, Yasushi

    2015-10-01

    Cytokines play important roles in cardiac repair and regeneration. Recently, we demonstrated that interleukin (IL)-6 family cytokines induce the endothelial differentiation of Sca-1+ cardiac resident stem cells through STAT3/Pim-1 signaling pathway. In contrast, the biological functions of IL-12 family cytokines in heart remain to be elucidated, though they show structural homology with IL-6. In the present study, we examined the effects of IL-12 family cytokines on the transdifferentiation of cardiac Sca-1+ cells into cardiac cells. RT-PCR analyses revealed that IL-27 receptor α (IL-27Rα), but not IL-12R or IL-23R, was expressed in cardiac Sca-1+ cells. The transcript expression of IL-27 was elevated in murine hearts in cardiac injury models. Intriguingly, IL-27 stimulation for 14 days induced the endothelial cell (EC) marker genes, such as CD-31 and VE-cadherin. Immunoblot analyses clarified that IL-27 treatment rapidly phosphorylated STAT3. IL-27 upregulated the expression of Pim-1, but the overexpression of dominant negative STAT3 abrogated the induction of Pim-1 by IL-27. Finally, adenoviral transfection of dominant negative Pim-1 inhibited IL-27-induced EC differentiation of cardiac Sca-1+ cells. These findings demonstrated that IL-27 promoted the commitment of cardiac stem cells into the EC lineage, possibly leading to neovascularization as a novel biological function. IL-27 could not only regulate the inflammation but also contribute to the maintenance of the tissue homeostasis through stem cell differentiation at inflammatory sites. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. The 20-hydroxyecdysone-induced signalling pathway in G2/M arrest of Plodia interpunctella imaginal wing cells.

    PubMed

    Siaussat, David; Bozzolan, Françoise; Porcheron, Patrick; Debernard, Stéphane

    2008-05-01

    The mechanisms involved in the control of cellular proliferation by the steroid hormone 20-hydroxyecdysone (20E) in insects are not known. We dissected the 20E signalling pathway responsible for G2/M arrest of imaginal cells from the IAL-PID2 cells of the Indian meal moth Plodia interpunctella. We first used a 5'-3' RACE-based strategy to clone a 4479bp cDNA encoding a putative P. interpunctella HR3 transcription factor named PiHR3. The deduced amino acid sequence of PiHR3 was highly similar to those of HR3 proteins from other lepidopterans, e.g. Manduca sexta and Bombyx mori. Using double-stranded RNA-mediated interference (dsRNAi), we then succeeded in blocking the ability of 20E to induce the expression of PiEcR-B1, PiUSP-2 and PiHR3 genes that encode the P. interpunctella ecdysone receptor B1-isoform, Ultraspiracle-2 isoform, the insect homologue of the vertebrate retinoid X receptor, and the HR3 transcription factor. We showed that inhibiting the 20E induction of PiEcR-B1, PiUSP-2 and PiHR3 mRNAs prevented the decreased expression of B cyclin and consequently the G2/M arrest of IAL-PID2 cells. Using this functional approach, we revealed the participation of EcR, USP and HR3 in a 20E signalling pathway that controls the proliferation of imaginal cells by regulating the expression of B cyclin.

  11. Dynamic regulation of canonical TGFβ signalling by endothelial transcription factor ERG protects from liver fibrogenesis.

    PubMed

    Dufton, Neil P; Peghaire, Claire R; Osuna-Almagro, Lourdes; Raimondi, Claudio; Kalna, Viktoria; Chuahan, Abhishek; Webb, Gwilym; Yang, Youwen; Birdsey, Graeme M; Lalor, Patricia; Mason, Justin C; Adams, David H; Randi, Anna M

    2017-10-12

    The role of the endothelium in protecting from chronic liver disease and TGFβ-mediated fibrosis remains unclear. Here we describe how the endothelial transcription factor ETS-related gene (ERG) promotes liver homoeostasis by controlling canonical TGFβ-SMAD signalling, driving the SMAD1 pathway while repressing SMAD3 activity. Molecular analysis shows that ERG binds to SMAD3, restricting its access to DNA. Ablation of ERG expression results in endothelial-to-mesenchymal transition (EndMT) and spontaneous liver fibrogenesis in EC-specific constitutive hemi-deficient (Erg cEC-Het ) and inducible homozygous deficient mice (Erg iEC-KO ), in a SMAD3-dependent manner. Acute administration of the TNF-α inhibitor etanercept inhibits carbon tetrachloride (CCL 4 )-induced fibrogenesis in an ERG-dependent manner in mice. Decreased ERG expression also correlates with EndMT in tissues from patients with end-stage liver fibrosis. These studies identify a pathogenic mechanism where loss of ERG causes endothelial-dependent liver fibrogenesis via regulation of SMAD2/3. Moreover, ERG represents a promising candidate biomarker for assessing EndMT in liver disease.The transcription factor ERG is key to endothelial lineage specification and vascular homeostasis. Here the authors show that ERG balances TGFβ signalling through the SMAD1 and SMAD3 pathways, protecting the endothelium from endothelial-to-mesenchymal transition and consequent liver fibrosis in mice via a SMAD3-dependent mechanism.

  12. Involvement of ethylene and polyamines biosynthesis and abdominal phloem tissues characters of wheat caryopsis during grain filling under stress conditions

    PubMed Central

    Yang, Weibing; Li, Yanxia; Yin, Yanping; Qin, Zhilie; Zheng, Mengjing; Chen, Jin; Luo, Yongli; Pang, Dangwei; Jiang, Wenwen; Li, Yong; Wang, Zhenlin

    2017-01-01

    Severe water deficit (SD) severely limited the photo-assimilate supply during the grain-filling stages. Although the ethylene and polyamines (PAs) have been identified as important signaling molecules involved in stress tolerance, it is yet unclear how 1-Aminocylopropane-1-carboxylic acid (ACC) and PA biosynthesis involving wheat abdominal phloem characters mitigate SD-induced filling inhibition. The results obtained indicated that the SD down-regulated the TaSUT1 expression and decreased the activities of sucrose synthase (SuSase, EC2.4.1.13), ADP glucose pyrophosphorylase (AGPase, EC2.7.7.27), soluble starch synthase (SSSase, EC2.4.1.21), then substantially limited grain filling. As a result, increased ACC and putrescine (Put) concentrations and their biosynthesis-related gene expression reduced spermidine (Spd) biosynthesis under SD condition. And, the ACC and PA biosynthesis in inferior grains was more sensitive to SD than that in superior grains. Intermediary cells (ICs) of caryopsis emerged prematurely under SD to compensate for the weakened photo-assimilate transport functions of sieve elements (SEs). Finally, plasmolysis and nuclear chromatin condensation of phloem parenchyma cells (PPC) and membrane degradation of SEs, as well as the decreased ATPase activity on plasma membranes of ICs and PPC at the later filling stage under SD were responsible for the considerably decreased weight of inferior grains. PMID:28383077

  13. Epigenetic signatures of familial cancer are characteristic of tumor type and family category.

    PubMed

    Joensuu, Emmi I; Abdel-Rahman, Wael M; Ollikainen, Miina; Ruosaari, Salla; Knuutila, Sakari; Peltomäki, Päivi

    2008-06-15

    Tumor suppressor genes (TSG) may be inactivated by methylation of critical CpG sites in their promoter regions, providing targets for early detection and prevention. Although sporadic cancers, especially colorectal carcinoma (CRC), have been characterized for epigenetic changes extensively, such information in familial/hereditary cancer is limited. We studied 108 CRCs and 63 endometrial carcinomas (EC) occurring as part of hereditary nonpolyposis CRC, as separate familial site-specific entities or sporadically, for promoter methylation of 24 TSGs. Eleven genes in CRC and 6 in EC were methylated in at least 15% of tumors and together accounted for 89% and 82% of promoter methylation events in CRC and EC, respectively. Some genes (e.g., CDH13, APC, GSTP1, and TIMP3) showed frequent methylation in both cancers, whereas promoter methylation of ESR1, CHFR, and RARB was typical of CRC and that of RASSF1(A) characterized EC. Among CRCs, sets of genes with methylation characteristic of familial versus sporadic tumors appeared. A TSG methylator phenotype (methylation of at least 5 of 24 genes) occurred in 37% of CRC and 18% of EC (P = 0.013), and the presence versus absence of MLH1 methylation divided the tumors into high versus low methylation groups. In conclusion, inactivation of TSGs by promoter methylation followed patterns characteristic of tumor type (CRC versus EC) and family category and was strongly influenced by MLH1 promoter methylation status in all categories. Paired normal tissues or blood displayed negligible methylation arguing against a constitutional methylation abnormality in familial cases.

  14. Involvement of the lysophosphatidic acid-generating enzyme autotaxin in lymphocyte-endothelial cell interactions.

    PubMed

    Nakasaki, Tae; Tanaka, Toshiyuki; Okudaira, Shinichi; Hirosawa, Michi; Umemoto, Eiji; Otani, Kazuhiro; Jin, Soojung; Bai, Zhongbin; Hayasaka, Haruko; Fukui, Yoshinori; Aozasa, Katsuyuki; Fujita, Naoya; Tsuruo, Takashi; Ozono, Keiichi; Aoki, Junken; Miyasaka, Masayuki

    2008-11-01

    Autotaxin (ATX) is a secreted protein with lysophospholipase D activity that generates lysophosphatidic acid (LPA) from lysophosphatidylcholine. Here we report that functional ATX is selectively expressed in high endothelial venules (HEVs) of both lymph nodes and Peyer's patches. ATX expression was developmentally regulated and coincided with lymphocyte recruitment to the lymph nodes. In adults, ATX expression was independent of HEV-expressed chemokines such as CCL21 and CXCL13, innate immunity signals including those via TLR4 or MyD88, and of the extent of lymphocyte trafficking across the HEVs. ATX expression was induced in venules at sites of chronic inflammation. Receptors for the ATX enzyme product LPA were constitutively expressed in HEV endothelial cells (ECs). In vitro, LPA induced strong morphological changes in HEV ECs. Forced ATX expression caused cultured ECs to respond to lysophosphatidylcholine, up-regulating lymphocyte binding to the ECs in a LPA receptor-dependent manner under both static and flow conditions. Although in vivo depletion of circulating ATX did not affect lymphocyte trafficking into the lymph nodes, we surmise, based on the above data, that ATX expressed by HEVs acts on HEVs in situ to facilitate lymphocyte binding to ECs and that ATX in the general circulation does not play a major role in this process. Tissue-specific inactivation of ATX will verify this hypothesis in future studies of its mechanism of action.

  15. Meta-analysis of genome-wide association studies identifies common susceptibility polymorphisms for colorectal and endometrial cancer near SH2B3 and TSHZ1.

    PubMed

    Cheng, Timothy H T; Thompson, Deborah; Painter, Jodie; O'Mara, Tracy; Gorman, Maggie; Martin, Lynn; Palles, Claire; Jones, Angela; Buchanan, Daniel D; Win, Aung Ko; Hopper, John; Jenkins, Mark; Lindor, Noralane M; Newcomb, Polly A; Gallinger, Steve; Conti, David; Schumacher, Fred; Casey, Graham; Giles, Graham G; Pharoah, Paul; Peto, Julian; Cox, Angela; Swerdlow, Anthony; Couch, Fergus; Cunningham, Julie M; Goode, Ellen L; Winham, Stacey J; Lambrechts, Diether; Fasching, Peter; Burwinkel, Barbara; Brenner, Hermann; Brauch, Hiltrud; Chang-Claude, Jenny; Salvesen, Helga B; Kristensen, Vessela; Darabi, Hatef; Li, Jingmei; Liu, Tao; Lindblom, Annika; Hall, Per; de Polanco, Magdalena Echeverry; Sans, Monica; Carracedo, Angel; Castellvi-Bel, Sergi; Rojas-Martinez, Augusto; Aguiar Jnr, Samuel; Teixeira, Manuel R; Dunning, Alison M; Dennis, Joe; Otton, Geoffrey; Proietto, Tony; Holliday, Elizabeth; Attia, John; Ashton, Katie; Scott, Rodney J; McEvoy, Mark; Dowdy, Sean C; Fridley, Brooke L; Werner, Henrica M J; Trovik, Jone; Njolstad, Tormund S; Tham, Emma; Mints, Miriam; Runnebaum, Ingo; Hillemanns, Peter; Dörk, Thilo; Amant, Frederic; Schrauwen, Stefanie; Hein, Alexander; Beckmann, Matthias W; Ekici, Arif; Czene, Kamila; Meindl, Alfons; Bolla, Manjeet K; Michailidou, Kyriaki; Tyrer, Jonathan P; Wang, Qin; Ahmed, Shahana; Healey, Catherine S; Shah, Mitul; Annibali, Daniela; Depreeuw, Jeroen; Al-Tassan, Nada A; Harris, Rebecca; Meyer, Brian F; Whiffin, Nicola; Hosking, Fay J; Kinnersley, Ben; Farrington, Susan M; Timofeeva, Maria; Tenesa, Albert; Campbell, Harry; Haile, Robert W; Hodgson, Shirley; Carvajal-Carmona, Luis; Cheadle, Jeremy P; Easton, Douglas; Dunlop, Malcolm; Houlston, Richard; Spurdle, Amanda; Tomlinson, Ian

    2015-12-01

    High-risk mutations in several genes predispose to both colorectal cancer (CRC) and endometrial cancer (EC). We therefore hypothesised that some lower-risk genetic variants might also predispose to both CRC and EC. Using CRC and EC genome-wide association series, totalling 13,265 cancer cases and 40,245 controls, we found that the protective allele [G] at one previously-identified CRC polymorphism, rs2736100 near TERT, was associated with EC risk (odds ratio (OR) = 1.08, P = 0.000167); this polymorphism influences the risk of several other cancers. A further CRC polymorphism near TERC also showed evidence of association with EC (OR = 0.92; P = 0.03). Overall, however, there was no good evidence that the set of CRC polymorphisms was associated with EC risk, and neither of two previously-reported EC polymorphisms was associated with CRC risk. A combined analysis revealed one genome-wide significant polymorphism, rs3184504, on chromosome 12q24 (OR = 1.10, P = 7.23 × 10(-9)) with shared effects on CRC and EC risk. This polymorphism, a missense variant in the gene SH2B3, is also associated with haematological and autoimmune disorders, suggesting that it influences cancer risk through the immune response. Another polymorphism, rs12970291 near gene TSHZ1, was associated with both CRC and EC (OR = 1.26, P = 4.82 × 10(-8)), with the alleles showing opposite effects on the risks of the two cancers.

  16. Enhanced endothelial cell senescence by lithium-induced matrix metalloproteinase-1 expression.

    PubMed

    Struewing, Ian T; Durham, Samuel N; Barnett, Corey D; Mao, Catherine D

    2009-06-26

    Endothelial cell (EC) senescence and dysfunction occurring after chronic injury and inflammation are highly associated with the development and progression of cardiovascular diseases. However, the factors involved in the establishment of EC senescence remain poorly understood. We have previously shown that lithium, an inhibitor of glycogen synthase kinase (GSK)-3beta and activator of the Wnt/beta-catenin signaling pathway, induces an EC senescent-like phenotype. Herein, we show that lithium induces a rapid and pronounced up-regulation of the matrix metalloproteinase (MMP)-1, an inflammation and senescent cell marker, at the mRNA and protein levels, whereas the induction of two other senescent cell markers is either weak (interleukin-8) or delayed (plasminogen activator inhibitor-1). Lithium effect on MMP-1 expression is also specific among other MMPs and not mediated by GSK3beta inhibition. Lithium affects MMP-1 expression mainly at the transcriptional level but neither the AP1/Ets regulatory sites nor the redox sensitive (-1607/2G) site in MMP-1 promoter are involved in lithium-dependent MMP-1 regulation. However, down-regulation of p53, a target of lithium in EC, dampens both basal and lithium-induced MMP-1 expression, which further links MMP-1 up-regulation with the establishment of cell senescence. Although increased MMP-1 levels are usually associated with angiogenesis in enabled proliferative EC, the exogenous addition of activated MMP-1 on lithium- arrested EC increases the number of EC positive for the senescent-associated-beta-galactosidase marker. Conversely, down-regulation of MMP-1 expression by small interfering RNAs blunts the lithium-dependent increase in senescent-associated-beta-galactosidase positive cells. Altogether our data indicate that lithium-induced MMP-1 may participate in the reinforcement of EC senescence and reveal a novel mechanism for lithium-induced tissue remodeling.

  17. Analysis of the global transcriptome of longan (Dimocarpus longan Lour.) embryogenic callus using Illumina paired-end sequencing

    PubMed Central

    2013-01-01

    Background Longan is a tropical/subtropical fruit tree of great economic importance in Southeast Asia. Progress in understanding molecular mechanisms of longan embryogenesis, which is the primary influence on fruit quality and yield, is slowed by lack of transcriptomic and genomic information. Illumina second generation sequencing, which is suitable for generating enormous numbers of transcript sequences that can be used for functional genomic analysis of longan. Results In this study, a longan embryogenic callus (EC) cDNA library was sequenced using an Illumina HiSeq 2000 system. A total of 64,876,258 clean reads comprising 5.84 Gb of nucleotides were assembled into 68,925 unigenes of 448-bp mean length, with unigenes ≥1000 bp accounting for 8.26% of the total. Using BLASTx, 40,634 unigenes were found to have significant similarity with accessions in Nr and Swiss- Prot databases. Of these, 38,845 unigenes were assigned to 43 GO sub-categories and 17,118 unigenes were classified into 25 COG sub-groups. In addition, 17,306 unigenes mapped to 199 KEGG pathways, with the categories of Metabolic pathways, Plant-pathogen interaction, Biosynthesis of secondary metabolites, and Genetic information processing being well represented. Analyses of unigenes ≥1000 bp revealed 328 embryogenesis-related unigenes as well as numerous unigenes expressed in EC associated with functions of reproductive growth, such as flowering, gametophytogenesis, and fertility, and vegetative growth, such as root and shoot growth. Furthermore, 23 unigenes related to embryogenesis and reproductive and vegetative growth were validated by quantitative real time PCR (qPCR) in samples from different stages of longan somatic embryogenesis (SE); their differentially expressions in the various embryogenic cultures indicated their possible roles in longan SE. Conclusions The quantity and variety of expressed EC genes identified in this study is sufficient to serve as a global transcriptome dataset for longan EC and to provide more molecular resources for longan functional genomics. PMID:23957614

  18. Plant defense genes are regulated by ethylene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ecker, J.R.; Davis, R.W.

    One of the earliest detectable events during plant-pathogen interaction is a rapid increase in ethylene biosynthesis. This gaseous plant stress hormone may be a signal for plants to activate defense mechanisms against invading pathogens such as bacteria, fungi, and viruses. The effect of ethylene on four plant genes involved in three separate plant defense response pathways was examined; these included (i and ii) genes that encode L-phenylalanine ammonia-lyase (EC 4.3.1.5) and 4-coumarate:CoA ligase (4-coumarate:CoA ligase (AMP-forming), EC 6.2.1.12), enzymes of the phenylpropanoid pathway, (iii) the gene encoding chalcone synthase, an enzyme of the flavonoid glycoside pathway, and (iv) the genesmore » encoding hydroxyproline-rich glycoprotein, a major protein component(s) of plant cell walls. Blot hybridization analysis of mRNA from ethylene-treated carrot roots reveals marked increases in the levels of phenylalanine ammonia-lyase mRNA, 4-coumarate CoA ligase mRNA, chalcone synthase mRNA, and certain hydroxyproline-rich glycoprotein transcripts. The effect of ethylene on hydroxyproline-rich glycoprotein mRNA accumulation was different from that of wounding. Ethylene induces two hydroxyproline-rich glycoprotein mRNAs (1.8 and 4.0 kilobases), whereas wounding of carrot root leads to accumulation of an additional hydroxyproline-rich mRNA (1.5 kilobases). These results indicate that at least two distinct signals, ethylene and a wound signal, can affect the expression of plant defense-response genes.« less

  19. Expression Patterns of Glutathione Transferase Gene (GstI) in Maize Seedlings Under Juglone-Induced Oxidative Stress

    PubMed Central

    Sytykiewicz, Hubert

    2011-01-01

    Juglone (5-hydroxy-1,4-naphthoquinone) has been identified in organs of many plant species within Juglandaceae family. This secondary metabolite is considered as a highly bioactive substance that functions as direct oxidant stimulating the production of reactive oxygen species (ROS) in acceptor plants. Glutathione transferases (GSTs, E.C.2.5.1.18) represent an important group of cytoprotective enzymes participating in detoxification of xenobiotics and limiting oxidative damages of cellular macromolecules. The purpose of this study was to investigate the impact of tested allelochemical on growth and development of maize (Zea mays L.) seedlings. Furthermore, the effect of juglone-induced oxidative stress on glutathione transferase (GstI) gene expression patterns in maize seedlings was recorded. It was revealed that 4-day juglone treatment significantly stimulated the transcriptional activity of GstI in maize seedlings compared to control plants. By contrast, at the 6th and 8th day of experiments the expression gene responses were slightly lower as compared with non-stressed seedlings. Additionally, the specific gene expression profiles, as well as the inhibition of primary roots and coleoptile elongation were proportional to juglone concentrations. In conclusion, the results provide strong molecular evidence that allelopathic influence of juglone on growth and development of maize seedlings may be relevant with an induction of oxidative stress in acceptor plants. PMID:22174645

  20. Isoleucine Biosynthesis in Leptospira interrogans Serotype lai Strain 56601 Proceeds via a Threonine-Independent Pathway† ‡

    PubMed Central

    Xu, Hai; Zhang, Yuzhen; Guo, Xiaokui; Ren, Shuangxi; Staempfli, Andreas A.; Chiao, Juishen; Jiang, Weihong; Zhao, Guoping

    2004-01-01

    Three leuA-like protein-coding sequences were identified in Leptospira interrogans. One of these, the cimA gene, was shown to encode citramalate synthase (EC 4.1.3.-). The other two encoded α-isopropylmalate synthase (EC 4.1.3.12). Expressed in Escherichia coli, the citramalate synthase was purified and characterized. Although its activity was relatively low, it was strictly specific for pyruvate as the keto acid substrate. Unlike the citramalate synthase of the thermophile Methanococcus jannaschii, the L. interrogans enzyme is temperature sensitive but exhibits a much lower Km (0.04 mM) for pyruvate. The reaction product was characterized as (R)-citramalate, and the proposed β-methyl-d-malate pathway was further confirmed by demonstrating that citraconate was the substrate for the following reaction. This alternative pathway for isoleucine biosynthesis from pyruvate was analyzed both in vitro by assays of leptospiral isopropylmalate isomerase (EC 4.2.1.33) and β-isopropylmalate dehydrogenase (EC 1.1.1.85) in E. coli extracts bearing the corresponding clones and in vivo by complementation of E. coli ilvA, leuC/D, and leuB mutants. Thus, the existence of a leucine-like pathway for isoleucine biosynthesis in L. interrogans under physiological conditions was unequivocally proven. Significant variations in either the enzymatic activities or mRNA levels of the cimA and leuA genes were detected in L. interrogans grown on minimal medium supplemented with different levels of the corresponding amino acids or in cells grown on serum-containing rich medium. The similarity of this metabolic pathway in leptospires and archaea is consistent with the evolutionarily primitive status of the eubacterial spirochetes. PMID:15292141

  1. Erythropoietin Employs Cell Longevity Pathways of SIRT1 to Foster Endothelial Vascular Integrity During Oxidant Stress

    PubMed Central

    Hou, Jinling; Wang, Shaohui; Shang, Yan Chen; Chong, Zhao Zhong; Maiese, Kenneth

    2011-01-01

    Given the cytoprotective ability of erythropoietin (EPO) in cerebral microvascular endothelial cells (ECs) and the invaluable role of ECs in the central nervous system, it is imperative to elucidate the cellular pathways for EPO to protect ECs against brain injury. Here we illustrate that EPO relies upon the modulation of SIRT1 (silent mating type information regulator 2 homolog 1) in cerebral microvascular ECs to foster cytoprotection during oxygen-glucose deprivation (OGD). SIRT1 activation which results in the inhibition of apoptotic early membrane phosphatidylserine (PS) externalization and subsequent DNA degradation during OGD becomes a necessary component for EPO protection in ECs, since inhibition of SIRT1 activity or diminishing its expression by gene silencing abrogates cell survival supported by EPO during OGD. Furthermore, EPO promotes the subcellular trafficking of SIRT1 to the nucleus which is necessary for EPO to foster vascular protection. EPO through SIRT1 averts apoptosis through activation of protein kinase B (Akt1) and the phosphorylation and cytoplasmic retention of the forkhead transcription factor FoxO3a. SIRT1 through EPO activation also utilizes mitochondrial pathways to prevent mitochondrial depolarization, cytochrome c release, and Bad, caspase 1, and caspase 3 activation. Our work identifies novel pathways for EPO in the vascular system that can govern the activity of SIRT1 to prevent apoptotic injury through Akt1, FoxO3a phosphorylation and trafficking, mitochondrial membrane permeability, Bad activation, and caspase 1 and 3 activities in ECs during oxidant stress. PMID:21722091

  2. Cloning and characterization of the metE gene encoding S-adenosylmethionine synthetase from Bacillus subtilis.

    PubMed Central

    Yocum, R R; Perkins, J B; Howitt, C L; Pero, J

    1996-01-01

    The metE gene, encoding S-adenosylmethionine synthetase (EC 2.5.1.6) from Bacillus subtilis, was cloned in two steps by normal and inverse PCR. The DNA sequence of the metE gene contains an open reading frame which encodes a 400-amino-acid sequence that is homologous to other known S-adenosylmethionine synthetases. The cloned gene complements the metE1 mutation and integrates at or near the chromosomal site of metE1. Expression of S-adenosylmethionine synthetase is reduced by only a factor of about 2 by exogenous methioinine. Overproduction of S-adenosylmethionine synthetase from a strong constitutive promoter leads to methionine auxotrophy in B. subtilis, suggesting that S-adenosylmethionine is a corepressor of methionine biosynthesis in B. subtilis, as others have already shown for Escherichia coli. PMID:8755891

  3. Cloning and characterization of the metE gene encoding S-adenosylmethionine synthetase from Bacillus subtilis.

    PubMed

    Yocum, R R; Perkins, J B; Howitt, C L; Pero, J

    1996-08-01

    The metE gene, encoding S-adenosylmethionine synthetase (EC 2.5.1.6) from Bacillus subtilis, was cloned in two steps by normal and inverse PCR. The DNA sequence of the metE gene contains an open reading frame which encodes a 400-amino-acid sequence that is homologous to other known S-adenosylmethionine synthetases. The cloned gene complements the metE1 mutation and integrates at or near the chromosomal site of metE1. Expression of S-adenosylmethionine synthetase is reduced by only a factor of about 2 by exogenous methioinine. Overproduction of S-adenosylmethionine synthetase from a strong constitutive promoter leads to methionine auxotrophy in B. subtilis, suggesting that S-adenosylmethionine is a corepressor of methionine biosynthesis in B. subtilis, as others have already shown for Escherichia coli.

  4. BMP9 induces EphrinB2 expression in endothelial cells through an Alk1-BMPRII/ActRII-ID1/ID3-dependent pathway: Implications for Hereditary Hemorrhagic Telangiectasia Type II

    PubMed Central

    Kim, Jai-Hyun; Peacock, Matthew R.; George, Steven C.; Hughes, Christopher C.W.

    2012-01-01

    ALK1 (ACVRL1) is a member of the TGFβ receptor family and is expressed predominantly by arterial endothelial cells (EC). Mutations in ACVRL1 are responsible for Hereditary Hemorrhagic Telangiectasia Type 2 (HHT2), a disease manifesting as fragile vessels, capillary overgrowth, and numerous arterio-venous malformations (AVMs). Arterial EC also express EphrinB2, which has multiple roles in vascular development and angiogenesis and is known to be reduced in ACVRL1 knockout mice. Using an in vitro angiogenesis model we find that the Alk1 ligand BMP9 induces EphrinB2 in EC, and this is entirely dependent on expression of Alk1 and at least one of the co-receptors BMPRII or ActRII. BMP9 induces both ID1 and ID3, and both are necessary for full induction of EphrinB2. Loss of Alk1 or EphrinB2 results in increased arterial-venous anastomosis, while loss of Alk1 but not EphrinB2 results in increased VEGFR2 expression and enhanced capillary sprouting. Conversely, BMP9 blocks EC sprouting and this is dependent on Alk1, BMPRII/ActRII and ID1/ID3. Finally, notch signaling overcomes the loss of Alk1 – restoring EphrinB2 expression in EC, and curbing excess sprouting. Thus, in an in vitro model of HHT2, loss of Alk1 blocks BMP9 signaling, resulting in reduced EphrinB2 expression, enhanced VEGFR2 expression, and misregulated EC sprouting and anastomosis. PMID:22622516

  5. The thiostrepton-resistance-encoding gene in Streptomyces laurentii is located within a cluster of ribosomal protein operons.

    PubMed

    Smith, T M; Jiang, Y F; Shipley, P; Floss, H G

    1995-10-16

    A common approach to identify and clone biosynthetic gene from an antibiotic-producing streptomycete is to clone the resistance gene for the antibiotic of interest and then use that gene to clone DNA that is linked to it. As a first step toward cloning the genes responsible for the biosynthesis of thiostrepton (Th) in Streptomyces laurentii (Sl), the Th resistance-encoding gene (tsnR) was cloned as a 1.5-kb BamHI-PvuII fragment in Escherichia coli (Ec), and shown to confer Th resistance when introduced into S. lividans TK24. The tsnR-containing DNA fragment was used as a probe to isolate clones from cosmid libraries of DNA in the Ec cosmid vector SuperCos, and pOJ446 (an Ec/streptomycete) cosmid vector. Sequence and genetic analysis of the DNA flanking the tsnR indicates that the Sl tsnR is not closely linked to biosynthetic genes. Instead it is located within a cluster of ribosomal protein operons.

  6. Seminal plasma induces global transcriptomic changes associated with cell migration, proliferation and viability in endometrial epithelial cells and stromal fibroblasts

    PubMed Central

    Chen, Joseph C.; Johnson, Brittni A.; Erikson, David W.; Piltonen, Terhi T.; Barragan, Fatima; Chu, Simon; Kohgadai, Nargis; Irwin, Juan C.; Greene, Warner C.; Giudice, Linda C.; Roan, Nadia R.

    2014-01-01

    STUDY QUESTION How does seminal plasma (SP) affect the transcriptome of human primary endometrial epithelial cells (eEC) and stromal fibroblasts (eSF)? SUMMARY ANSWER Exposure of eEC and eSF to SP in vitro increases expression of genes and secreted proteins associated with cellular migration, proliferation, viability and inhibition of cell death. WHAT IS KNOWN ALREADY Studies in both humans and animals suggest that SP can access and induce physiological changes in the upper female reproductive tract (FRT), which may participate in promoting reproductive success. STUDY DESIGN, SIZE, DURATION This is a cross sectional study involving control samples versus treatment. SP (pooled from twenty donors) was first tested for dose- and time-dependent cytotoxic effects on eEC and eSF (n = 4). As exposure of eEC or eSF to 1% SP for 6 h proved to be non-toxic, a second set of eEC/eSF samples (n = 4) was treated under these conditions for transcriptome, protein and functional analysis. With a third set of samples (n = 3), we further compared the transcriptional response of the cells to SP versus fresh semen. PARTICIPANTS/MATERIALS, SETTING, METHODS eEC and eSF were isolated from endometrial biopsies from women of reproductive age undergoing benign gynecologic procedures and maintained in vitro. RNA was isolated and processed for microarray studies to analyze global transcriptomic changes. Secreted factors in conditioned media from SP-treated cells were analyzed by Luminex and for the ability to stimulate migration of CD14+ monocytes and CD4+ T cells. MAIN RESULTS AND THE ROLE OF CHANCE Pathway identifications were determined using the Z-scoring system in Ingenuity Pathways Analysis (Z scores ≥|1.5|). SP induced transcriptomic changes (P < 0.05) associated with promoting leukocyte and endothelial cell recruitment, and proliferation of eEC and eSF. Cell viability pathways were induced, while those associated with cell death were suppressed (P < 0.05). SP and fresh semen induced similar sets of pathways, suggesting that SP can model the signaling effects of semen in the endometrium. SP also induced secretion of pro-inflammatory and pro-chemotactic cytokines, as well as pro-angiogenic and proliferative growth factors (P < 0.05) in both eEC and eSF. Finally, functional assays revealed that conditioned media from SP-treated eEC and eSF significantly increased (P < 0.05) chemotaxis of CD14+ monocytes and CD4+ T cells. LIMITATIONS, REASONS FOR CAUTION This study is limited to in vitro analyses of the effects of SP on endometrial cells. In addition, the measured response to SP was conducted in the absence of the ovarian hormones estradiol and progesterone, as well as epithelial-stromal paracrine signaling. While this study focused on establishing the baseline cellular response of endometrial cells to SP, future work should assess how hormone signaling in the presence of appropriate paracrine interactions affects SP-induced genes in these cells. WIDER IMPLICATIONS OF THE FINDINGS The results of this study support previous findings that SP and semen contain bioactive factors capable of eliciting chemotactic responses in the uterus, which can lead to recruitment of leukocytes to the endometrium. Future directions will explore if similar changes in gene expression do indeed occur after coitus in vivo, and how the signaling cascades initiated by SP in the endometrium can affect reproductive success, female reproductive health and susceptibility to sexually transmitted diseases. The gene list provided by the transcriptome analysis reported here should prove a valuable resource for understanding the response of the upper FRT to SP exposure. STUDY FUNDING/COMPETING INTEREST(S) This project was supported by NIH AI083050-04 (W.C.G./L.C.G.); NIH U54HD 055764 (L.C.G.); NIH 1F32HD074423-02 (J.C.C.); DOD W81XWH-11-1-0562 (W.C.G.); NIH 5K12-DK083021-04, NIH 1K99AI104262-01A1, The UCSF Hellman Award (N.R.R.). The authors have nothing to disclose. PMID:24626806

  7. 20-Hydroxyecdysone upregulates Atg genes to induce autophagy in the Bombyx fat body.

    PubMed

    Tian, Ling; Ma, Li; Guo, Enen; Deng, Xiaojuan; Ma, Sanyuan; Xia, Qingyou; Cao, Yang; Li, Sheng

    2013-08-01

    Autophagy is finely regulated at multiple levels and plays crucial roles in development and disease. In the fat body of the silkworm, Bombyx mori, autophagy occurs and Atg gene expression peaks during the nonfeeding molting and pupation stages when the steroid hormone (20-hydroxyecdysone; 20E) is high. Injection of 20E into the feeding larvae upregulated Atg genes and reduced TORC1 activity resulting in autophagy induction in the fat body. Conversely, RNAi knockdown of the 20E receptor partner (USP) or targeted overexpression of a dominant negative mutant of the 20E receptor (EcR (DN) ) in the larval fat body reduced autophagy and downregulated the Atg genes, confirming the importance of 20E-induction of Atg gene expression during pupation. Moreover, in vitro treatments of the larval fat body with 20E upregulated the Atg genes. Five Atg genes were potentially 20E primary-responsive, and a 20E response element was identified in the Atg1 (ortholog of human ULK1) promoter region. Furthermore, RNAi knockdown of 4 key genes (namely Br-C, E74, HR3 and βftz-F1) in the 20E-triggered transcriptional cascade reduced autophagy and downregulated Atg genes to different levels. Taken together, we conclude that in addition to blocking TORC1 activity for autophagosome initiation, 20E upregulates Atg genes to induce autophagy in the Bombyx fat body.

  8. 20-hydroxyecdysone upregulates Atg genes to induce autophagy in the Bombyx fat body

    PubMed Central

    Tian, Ling; Ma, Li; Guo, Enen; Deng, Xiaojuan; Ma, Sanyuan; Xia, Qingyou; Cao, Yang; Li, Sheng

    2013-01-01

    Autophagy is finely regulated at multiple levels and plays crucial roles in development and disease. In the fat body of the silkworm, Bombyx mori, autophagy occurs and Atg gene expression peaks during the nonfeeding molting and pupation stages when the steroid hormone (20-hydroxyecdysone; 20E) is high. Injection of 20E into the feeding larvae upregulated Atg genes and reduced TORC1 activity resulting in autophagy induction in the fat body. Conversely, RNAi knockdown of the 20E receptor partner (USP) or targeted overexpression of a dominant negative mutant of the 20E receptor (EcRDN) in the larval fat body reduced autophagy and downregulated the Atg genes, confirming the importance of 20E-induction of Atg gene expression during pupation. Moreover, in vitro treatments of the larval fat body with 20E upregulated the Atg genes. Five Atg genes were potentially 20E primary-responsive, and a 20E response element was identified in the Atg1 (ortholog of human ULK1) promoter region. Furthermore, RNAi knockdown of 4 key genes (namely Br-C, E74, HR3 and βftz-F1) in the 20E-triggered transcriptional cascade reduced autophagy and downregulated Atg genes to different levels. Taken together, we conclude that in addition to blocking TORC1 activity for autophagosome initiation, 20E upregulates Atg genes to induce autophagy in the Bombyx fat body. PMID:23674061

  9. A Novel Ecdysone Receptor Mediates Steroid-Regulated Developmental Events during the Mid-Third Instar of Drosophila

    PubMed Central

    Costantino, Benjamin F. B.; Bricker, Daniel K.; Alexandre, Kelly; Shen, Kate; Merriam, John R.; Antoniewski, Christophe; Callender, Jenna L.; Henrich, Vincent C.; Presente, Asaf; Andres, Andrew J.

    2008-01-01

    The larval salivary gland of Drosophila melanogaster synthesizes and secretes glue glycoproteins that cement developing animals to a solid surface during metamorphosis. The steroid hormone 20-hydroxyecdysone (20E) is an essential signaling molecule that modulates most of the physiological functions of the larval gland. At the end of larval development, it is known that 20E—signaling through a nuclear receptor heterodimer consisting of EcR and USP—induces the early and late puffing cascade of the polytene chromosomes and causes the exocytosis of stored glue granules into the lumen of the gland. It has also been reported that an earlier pulse of hormone induces the temporally and spatially specific transcriptional activation of the glue genes; however, the receptor responsible for triggering this response has not been characterized. Here we show that the coordinated expression of the glue genes midway through the third instar is mediated by 20E acting to induce genes of the Broad Complex (BRC) through a receptor that is not an EcR/USP heterodimer. This result is novel because it demonstrates for the first time that at least some 20E-mediated, mid-larval, developmental responses are controlled by an uncharacterized receptor that does not contain an RXR-like component. PMID:18566664

  10. Lincomycin Biosynthesis Involves a Tyrosine Hydroxylating Heme Protein of an Unusual Enzyme Family

    PubMed Central

    Novotna, Jitka; Olsovska, Jana; Novak, Petr; Mojzes, Peter; Chaloupkova, Radka; Kamenik, Zdenek; Spizek, Jaroslav; Kutejova, Eva; Mareckova, Marketa; Tichy, Pavel; Damborsky, Jiri; Janata, Jiri

    2013-01-01

    The gene lmbB2 of the lincomycin biosynthetic gene cluster of Streptomyces lincolnensis ATCC 25466 was shown to code for an unusual tyrosine hydroxylating enzyme involved in the biosynthetic pathway of this clinically important antibiotic. LmbB2 was expressed in Escherichia coli, purified near to homogeneity and shown to convert tyrosine to 3,4-dihydroxyphenylalanine (DOPA). In contrast to the well-known tyrosine hydroxylases (EC 1.14.16.2) and tyrosinases (EC 1.14.18.1), LmbB2 was identified as a heme protein. Mass spectrometry and Soret band-excited Raman spectroscopy of LmbB2 showed that LmbB2 contains heme b as prosthetic group. The CO-reduced differential absorption spectra of LmbB2 showed that the coordination of Fe was different from that of cytochrome P450 enzymes. LmbB2 exhibits sequence similarity to Orf13 of the anthramycin biosynthetic gene cluster, which has recently been classified as a heme peroxidase. Tyrosine hydroxylating activity of LmbB2 yielding DOPA in the presence of (6R)-5,6,7,8-tetrahydro-L-biopterin (BH4) was also observed. Reaction mechanism of this unique heme peroxidases family is discussed. Also, tyrosine hydroxylation was confirmed as the first step of the amino acid branch of the lincomycin biosynthesis. PMID:24324587

  11. Metabolic and transcriptomic response of the wine yeast Saccharomyces cerevisiae strain EC1118 after an oxygen impulse under carbon-sufficient, nitrogen-limited fermentative conditions.

    PubMed

    Orellana, Marcelo; Aceituno, Felipe F; Slater, Alex W; Almonacid, Leonardo I; Melo, Francisco; Agosin, Eduardo

    2014-05-01

    During alcoholic fermentation, Saccharomyces cerevisiae is exposed to continuously changing environmental conditions, such as decreasing sugar and increasing ethanol concentrations. Oxygen, a critical nutrient to avoid stuck and sluggish fermentations, is only discretely available throughout the process after pump-over operation. In this work, we studied the physiological response of the wine yeast S. cerevisiae strain EC1118 to a sudden increase in dissolved oxygen, simulating pump-over operation. With this aim, an impulse of dissolved oxygen was added to carbon-sufficient, nitrogen-limited anaerobic continuous cultures. Results showed that genes related to mitochondrial respiration, ergosterol biosynthesis, and oxidative stress, among other metabolic pathways, were induced after the oxygen impulse. On the other hand, mannoprotein coding genes were repressed. The changes in the expression of these genes are coordinated responses that share common elements at the level of transcriptional regulation. Beneficial and detrimental effects of these physiological processes on wine quality highlight the dual role of oxygen in 'making or breaking wines'. These findings will facilitate the development of oxygen addition strategies to optimize yeast performance in industrial fermentations. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  12. Effects of the antipsychotic paliperidone on stress-induced changes in the endocannabinoid system in rat prefrontal cortex.

    PubMed

    MacDowell, Karina S; Sayd, Aline; García-Bueno, Borja; Caso, Javier R; Madrigal, José L M; Leza, Juan Carlos

    2017-09-01

    Objectives There is a need to explore novel mechanisms of action of existing/new antipsychotics. One potential candidate is the endocannabinoid system (ECS). The present study tried to elucidate the effects of the antipsychotic paliperidone on stress-induced ECS alterations. Methods Wister rats were submitted to acute/chronic restraint stress. Paliperidone (1 mg/kg) was given prior each stress session. Cannabinoid receptors and endocannabinoids (eCBs) synthesis and degradation enzymes were measured in prefrontal cortex (PFC) samples by RT-PCR and Western Blot. Results In the PFC of rats exposed to acute stress, paliperidone increased CB1 receptor (CB1R) expression. Furthermore, paliperidone increased the expression of the eCB synthesis enzymes N-acylphosphatidylethanolamine- hydrolysing phospholipase D and DAGLα, and blocked the stress-induced increased expression of the degrading enzyme fatty acid amide hydrolase. In chronic conditions, paliperidone prevented the chronic stress-induced down-regulation of CB1R, normalised DAGLα expression and reverted stress-induced down-regulation of the 2-AG degrading enzyme monoacylglycerol lipase. ECS was analysed also in periphery. Acute stress decreased DAGLα expression, an effect prevented by paliperidone. Contrarily, chronic stress increased DAGLα and this effect was potentiated by paliperidone. Conclusions The results obtained described a preventive effect of paliperidone on stress-induced alterations in ECS. Considering the diverse alterations on ECS described in psychotic disease, targeting ECS emerges as a new therapeutic possibility.

  13. Expression of Eph receptor tyrosine kinases and their ligands in human Granulosa lutein cells and human umbilical vein endothelial cells.

    PubMed

    Xu, Y; Zagoura, D; Keck, C; Pietrowski, D

    2006-11-01

    Corpus luteum development is regulated by gonadotropins and accompanied by extremely rapid vascularization of the avascular granulosa cell compartiment by endothelial cells (EC). The proliferation of Granulosa cells (GC) and EC is a complex interplay and takes place in a spatially and temporarily coordinated manner. The erythropoietin-producing hepatoma amplified sequence (Eph) receptors and their ligands-the ephrins- are a recently detected family of membrane located protein tyrosine kinases which play a crucial role in the growth and development of nerve and blood vessel network. We report about the mRNA expression pattern of Ephs and their ligands in human GC, in human EC, and in carcinoma cell lines OvCar-3 and Hela. The mRNA of EphA4, EphA7, ephrinA4, ephrinB1 and ephrinB2 was detected in GC and EC, while EphA2 was expressed only in GC. The expression of various Ephs and ephrins did not change in GC after stimulation with human chorion gonadotropin. Our study analyzes for the first time the expression of the complete human Eph/ephriny-system in GC and in EC. The remarkable similarity between these two cell types supports the theory of a functional relationship of EC and GC. In addition, it was shown that hCG is not a major determinant of Eph/ephrin regulation in GC.

  14. Phospholipase C-ε signaling mediates endothelial cell inflammation and barrier disruption in acute lung injury

    PubMed Central

    Bijli, Kaiser M.; Fazal, Fabeha; Slavin, Spencer A.; Leonard, Antony; Grose, Valerie; Alexander, William B.; Smrcka, Alan V.

    2016-01-01

    Phospholipase C-ε (PLC-ε) is a unique PLC isoform that can be regulated by multiple signaling inputs from both Ras family GTPases and heterotrimeric G proteins and has primary sites of expression in the heart and lung. Whereas the role of PLC-ε in cardiac function and pathology has been documented, its relevance in acute lung injury (ALI) is unclear. We used PLC-ε−/− mice to address the role of PLC-ε in regulating lung vascular inflammation and injury in an aerosolized bacterial LPS inhalation mouse model of ALI. PLC-ε−/− mice showed a marked decrease in LPS-induced proinflammatory mediators (ICAM-1, VCAM-1, TNF-α, IL-1β, IL-6, macrophage inflammatory protein 2, keratinocyte-derived cytokine, monocyte chemoattractant protein 1, and granulocyte-macrophage colony-stimulating factor), lung neutrophil infiltration and microvascular leakage, and loss of VE-cadherin compared with PLC-ε+/+ mice. These data identify PLC-ε as a critical determinant of proinflammatory and leaky phenotype of the lung. To test the possibility that PLC-ε activity in endothelial cells (EC) could contribute to ALI, we determined its role in EC inflammation and barrier disruption. RNAi knockdown of PLC-ε inhibited NF-κB activity in response to diverse proinflammatory stimuli, thrombin, LPS, TNF-α, and the nonreceptor agonist phorbol 13-myristate 12-acetate (phorbol esters) in EC. Depletion of PLC-ε also inhibited thrombin-induced expression of NF-κB target gene, VCAM-1. Importantly, PLC-ε knockdown also protected against thrombin-induced EC barrier disruption by inhibiting the loss of VE-cadherin at adherens junctions and formation of actin stress fibers. These data identify PLC-ε as a novel regulator of EC inflammation and permeability and show a hitherto unknown role of PLC-ε in the pathogenesis of ALI. PMID:27371732

  15. Phospholipase C-ε signaling mediates endothelial cell inflammation and barrier disruption in acute lung injury.

    PubMed

    Bijli, Kaiser M; Fazal, Fabeha; Slavin, Spencer A; Leonard, Antony; Grose, Valerie; Alexander, William B; Smrcka, Alan V; Rahman, Arshad

    2016-08-01

    Phospholipase C-ε (PLC-ε) is a unique PLC isoform that can be regulated by multiple signaling inputs from both Ras family GTPases and heterotrimeric G proteins and has primary sites of expression in the heart and lung. Whereas the role of PLC-ε in cardiac function and pathology has been documented, its relevance in acute lung injury (ALI) is unclear. We used PLC-ε(-/-) mice to address the role of PLC-ε in regulating lung vascular inflammation and injury in an aerosolized bacterial LPS inhalation mouse model of ALI. PLC-ε(-/-) mice showed a marked decrease in LPS-induced proinflammatory mediators (ICAM-1, VCAM-1, TNF-α, IL-1β, IL-6, macrophage inflammatory protein 2, keratinocyte-derived cytokine, monocyte chemoattractant protein 1, and granulocyte-macrophage colony-stimulating factor), lung neutrophil infiltration and microvascular leakage, and loss of VE-cadherin compared with PLC-ε(+/+) mice. These data identify PLC-ε as a critical determinant of proinflammatory and leaky phenotype of the lung. To test the possibility that PLC-ε activity in endothelial cells (EC) could contribute to ALI, we determined its role in EC inflammation and barrier disruption. RNAi knockdown of PLC-ε inhibited NF-κB activity in response to diverse proinflammatory stimuli, thrombin, LPS, TNF-α, and the nonreceptor agonist phorbol 13-myristate 12-acetate (phorbol esters) in EC. Depletion of PLC-ε also inhibited thrombin-induced expression of NF-κB target gene, VCAM-1. Importantly, PLC-ε knockdown also protected against thrombin-induced EC barrier disruption by inhibiting the loss of VE-cadherin at adherens junctions and formation of actin stress fibers. These data identify PLC-ε as a novel regulator of EC inflammation and permeability and show a hitherto unknown role of PLC-ε in the pathogenesis of ALI. Copyright © 2016 the American Physiological Society.

  16. Mouse repeated electroconvulsive seizure (ECS) does not reverse social stress effects but does induce behavioral and hippocampal changes relevant to electroconvulsive therapy (ECT) side-effects in the treatment of depression

    PubMed Central

    Sigrist, Hannes; Seifritz, Erich; Fikse, Lianne; Bosker, Fokko J.; Schoevers, Robert A.; Klein, Hans C.

    2017-01-01

    Electroconvulsive therapy (ECT) is an effective treatment for depression, but can have negative side effects including amnesia. The mechanisms of action underlying both the antidepressant and side effects of ECT are not well understood. An equivalent manipulation that is conducted in experimental animals is electroconvulsive seizure (ECS). Rodent studies have provided valuable insights into potential mechanisms underlying the antidepressant and side effects of ECT. However, relatively few studies have investigated the effects of ECS in animal models with a depression-relevant manipulation such as chronic stress. In the present study, mice were first exposed to chronic social stress (CSS) or a control procedure for 15 days followed by ECS or a sham procedure for 10 days. Behavioral effects were investigated using an auditory fear conditioning (learning) and expression (memory) test and a treadmill-running fatigue test. Thereafter, immunohistochemistry was conducted on brain material using the microglial marker Iba-1 and the cholinergic fibre marker ChAT. CSS did not increase fear learning and memory in the present experimental design; in both the control and CSS mice ECS reduced fear learning and fear memory expression. CSS induced the expected fatigue-like effect in the treadmill-running test; ECS induced increased fatigue in CSS and control mice. In CSS and control mice ECS induced inflammation in hippocampus in terms of increased expression of Iba-1 in radiatum of CA1 and CA3. CSS and ECS both reduced acetylcholine function in hippocampus as indicated by decreased expression of ChAT in several hippocampal sub-regions. Therefore, CSS increased fatigue and reduced hippocampal ChAT activity and, rather than reversing these effects, a repeated ECS regimen resulted in impaired fear learning-memory, increased fatigue, increased hippocampal Iba-1 expression, and decreased hippocampal ChAT expression. As such, the current model does not provide insights into the mechanism of ECT antidepressant function but does provide evidence for pathophysiological mechanisms that might contribute to important ECT side-effects. PMID:28910337

  17. Mouse repeated electroconvulsive seizure (ECS) does not reverse social stress effects but does induce behavioral and hippocampal changes relevant to electroconvulsive therapy (ECT) side-effects in the treatment of depression.

    PubMed

    van Buel, Erin M; Sigrist, Hannes; Seifritz, Erich; Fikse, Lianne; Bosker, Fokko J; Schoevers, Robert A; Klein, Hans C; Pryce, Christopher R; Eisel, Ulrich Lm

    2017-01-01

    Electroconvulsive therapy (ECT) is an effective treatment for depression, but can have negative side effects including amnesia. The mechanisms of action underlying both the antidepressant and side effects of ECT are not well understood. An equivalent manipulation that is conducted in experimental animals is electroconvulsive seizure (ECS). Rodent studies have provided valuable insights into potential mechanisms underlying the antidepressant and side effects of ECT. However, relatively few studies have investigated the effects of ECS in animal models with a depression-relevant manipulation such as chronic stress. In the present study, mice were first exposed to chronic social stress (CSS) or a control procedure for 15 days followed by ECS or a sham procedure for 10 days. Behavioral effects were investigated using an auditory fear conditioning (learning) and expression (memory) test and a treadmill-running fatigue test. Thereafter, immunohistochemistry was conducted on brain material using the microglial marker Iba-1 and the cholinergic fibre marker ChAT. CSS did not increase fear learning and memory in the present experimental design; in both the control and CSS mice ECS reduced fear learning and fear memory expression. CSS induced the expected fatigue-like effect in the treadmill-running test; ECS induced increased fatigue in CSS and control mice. In CSS and control mice ECS induced inflammation in hippocampus in terms of increased expression of Iba-1 in radiatum of CA1 and CA3. CSS and ECS both reduced acetylcholine function in hippocampus as indicated by decreased expression of ChAT in several hippocampal sub-regions. Therefore, CSS increased fatigue and reduced hippocampal ChAT activity and, rather than reversing these effects, a repeated ECS regimen resulted in impaired fear learning-memory, increased fatigue, increased hippocampal Iba-1 expression, and decreased hippocampal ChAT expression. As such, the current model does not provide insights into the mechanism of ECT antidepressant function but does provide evidence for pathophysiological mechanisms that might contribute to important ECT side-effects.

  18. Isolation and characterization of an Arabidopsis biotin carboxylase gene and its promoter.

    PubMed

    Bao, X; Shorrosh, B S; Ohlrogge, J B

    1997-11-01

    In the plastids of most plants, acetyl-CoA carboxylase (ACCase; EC 6.4.1.2) is a multisubunit complex consisting of biotin carboxylase (BC), biotin-carboxyl carrier protien (BCCP), and carboxytransferase (alpha-CT, beta-CT) subunits. To better understand the regulation of this enzyme, we have isolated and sequenced a BC genomic clone from Arabidopsis and partially characterized its promoter. Fifteen introns were identified. The deduced amino acid sequence of the mature BC protein is highly conserved between Arabidopsis and tobacco (92.6% identity). BC expression was evaluated using northern blots and BC/GUS fusion constructs in transgenic Arabidopsis. GUS activity in the BC/GUS transgenics as well as transcript level of the native gene were both found to be higher in silique and flower than in root and leaf. Analysis of tobacco suspension cells transformed with truncated BC promoter/GUS gene fusions indicated the region from -140 to +147 contained necessary promoter elements which supported basal gene expression. A positive regulatory region was found to be located between -2100 and -140, whereas a negative element was possibly located in the first intron. In addition, several conserved regulatory elements were identified in the BC promoter. Surprisingly, although BC is a low-abundance protein, the expression of BC/GUS fusion constructs was similar to 35S/GUS constructs.

  19. CD30 antigen in embryonal carcinoma and embryogenesis and release of the soluble molecule.

    PubMed Central

    Latza, U.; Foss, H. D.; Dürkop, H.; Eitelbach, F.; Dieckmann, K. P.; Loy, V.; Unger, M.; Pizzolo, G.; Stein, H.

    1995-01-01

    The expression, serological detection, and possible functional role of the CD30 antigen in Hodgkin's disease and anaplastic large cell lymphoma is well documented. In embryonal carcinoma (EC), the expression of this cytokine receptor has been demonstrated only by immunohistology. Because the CD30 monoclonal antibody Ki-1 was found to cross-react with an unrelated molecule, we examined by in situ hybridization testicular germ cell neoplasms for the presence of CD30-specific transcripts. CD30 mRNA was detectable in the tumor cells of 9 of 9 cases of EC or mixed germ cell tumors with an EC component but in no other nonlymphoid tumors. Thus, the CD30 transcript expression pattern proved to be identical to the immunostaining pattern seen with the CD30-specific monoclonal antibody Ber-H2. By Northern blot analysis, CD30 transcripts could be demonstrated in the EC cell line Tera-2. Employing a highly sensitive second generation sandwich enzyme-linked immunosorbent assay, we could detect the soluble CD30 molecule in 8 of 8 sera from patients with a diagnosis of EC but not in 8 of 10 sera from patients with other testicular germ cell tumors. In fetal tissue, no CD30-expressing germ cells or epithelial cells could be observed. Thus, the cellularly expressed CD30 marker for testicular neoplasms of EC type. Moreover, the serum levels of soluble CD30 antigen seem to be a promising parameter for monitoring patients with EC. Images Figure 1 Figure 2 PMID:7856755

  20. Intestinal Metagenomes and Metabolomes in Healthy Young Males: Inactivity and Hypoxia Generated Negative Physiological Symptoms Precede Microbial Dysbiosis

    PubMed Central

    Šket, Robert; Debevec, Tadej; Kublik, Susanne; Schloter, Michael; Schoeller, Anne; Murovec, Boštjan; Vogel Mikuš, Katarina; Makuc, Damjan; Pečnik, Klemen; Plavec, Janez; Mekjavić, Igor B.; Eiken, Ola; Prevoršek, Zala; Stres, Blaž

    2018-01-01

    We explored the metagenomic, metabolomic and trace metal makeup of intestinal microbiota and environment in healthy male participants during the run-in (5 day) and the following three 21-day interventions: normoxic bedrest (NBR), hypoxic bedrest (HBR) and hypoxic ambulation (HAmb) which were carried out within a controlled laboratory environment (circadian rhythm, fluid and dietary intakes, microbial bioburden, oxygen level, exercise). The fraction of inspired O2 (FiO2) and partial pressure of inspired O2 (PiO2) were 0.209 and 133.1 ± 0.3 mmHg for the NBR and 0.141 ± 0.004 and 90.0 ± 0.4 mmHg (~4,000 m simulated altitude) for HBR and HAmb interventions, respectively. Shotgun metagenomes were analyzed at various taxonomic and functional levels, 1H- and 13C -metabolomes were processed using standard quantitative and human expert approaches, whereas metals were assessed using X-ray fluorescence spectrometry. Inactivity and hypoxia resulted in a significant increase in the genus Bacteroides in HBR, in genes coding for proteins involved in iron acquisition and metabolism, cell wall, capsule, virulence, defense and mucin degradation, such as beta-galactosidase (EC3.2.1.23), α-L-fucosidase (EC3.2.1.51), Sialidase (EC3.2.1.18), and α-N-acetylglucosaminidase (EC3.2.1.50). In contrast, the microbial metabolomes, intestinal element and metal profiles, the diversity of bacterial, archaeal and fungal microbial communities were not significantly affected. The observed progressive decrease in defecation frequency and concomitant increase in the electrical conductivity (EC) preceded or took place in absence of significant changes at the taxonomic, functional gene, metabolome and intestinal metal profile levels. The fact that the genus Bacteroides and proteins involved in iron acquisition and metabolism, cell wall, capsule, virulence and mucin degradation were enriched at the end of HBR suggest that both constipation and EC decreased intestinal metal availability leading to modified expression of co-regulated genes in Bacteroides genomes. Bayesian network analysis was used to derive the first hierarchical model of initial inactivity mediated deconditioning steps over time. The PlanHab wash-out period corresponded to a profound life-style change (i.e., reintroduction of exercise) that resulted in stepwise amelioration of the negative physiological symptoms, indicating that exercise apparently prevented the crosstalk between the microbial physiology, mucin degradation and proinflammatory immune activities in the host. PMID:29593560

  1. Epithelial-mesenchymal transition and nuclear β-catenin induced by conditional intestinal disruption of Cdh1 with Apc is E-cadherin EC1 domain dependent

    PubMed Central

    Carter, Emma J.; Barnes, David; Hoppe, Hans-Jürgen; Hughes, Jennifer; Cobbold, Stephen; Harper, James; Morreau, Hans; Surakhy, Mirvat; Hassan, A. Bassim

    2016-01-01

    Two important protein-protein interactions establish E-cadherin (Cdh1) in the adhesion complex; homophilic binding via the extra-cellular (EC1) domain and cytoplasmic tail binding to β-catenin. Here, we evaluate whether E-cadherin binding can inhibit β-catenin when there is loss of Adenomatous polyposis coli (APC) from the β-catenin destruction complex. Combined conditional loss of Cdh1 and Apc were generated in the intestine, intestinal adenoma and adenoma organoids. Combined intestinal disruption (Cdh1fl/flApcfl/flVil-CreERT2) resulted in lethality, breakdown of the intestinal barrier, increased Wnt target gene expression and increased nuclear β-catenin localization, suggesting that E-cadherin inhibits β-catenin. Combination with an intestinal stem cell Cre (Lgr5CreERT2) resulted in ApcΔ/Δ recombination and adenoma, but intact Cdh1fl/fl alleles. Cultured ApcΔ/ΔCdh1fl/fl adenoma cells infected with adenovirus-Cre induced Cdh1fl/fl recombination (Cdh1Δ/Δ), disruption of organoid morphology, nuclear β-catenin localization, and cells with an epithelial-mesenchymal phenotype. Complementation with adenovirus expressing wild-type Cdh1 (Cdh1-WT) rescued adhesion and β-catenin membrane localization, yet an EC1 specific double mutant defective in homophilic adhesion (Cdh1-MutW2A, S78W) did not. These data suggest that E-cadherin inhibits β-catenin in the context of disruption of the APC-destruction complex, and that this function is also EC1 domain dependent. Both binding functions of E-cadherin may be required for its tumour suppressor activity. PMID:27566565

  2. Agmatine Induced NO Dependent Rat Mesenteric Artery Relaxation and its Impairment in Salt-Sensitive Hypertension

    PubMed Central

    Gadkari, Tushar V.; Cortes, Natalie; Madrasi, Kumpal; Tsoukias, Nikolaos M.; Joshi, Mahesh S.

    2013-01-01

    L-arginine and its decarboxylated product, agmatine are important mediators of NO production and vascular relaxation. However, the underlying mechanisms of their action are not understood. We have investigated the role of arginine and agmatine in resistance vessel relaxation of Sprague-Dawley (SD) and Dahl salt-sensitive hypertensive rats. Second or 3rd-order mesenteric arterioles were cannulated in an organ chamber, pressurized and equilibrated before perfusing intraluminally with agonists. The vessel diameters were measured after mounting on the stage of a microscope fitted with a video camera. The gene expression in Dahl rat vessel homogenates was ascertained by real-time PCR. L-arginine initiated relaxations (EC50, 5.8 ± 0.7 mM; n = 9) were inhibited by arginine decarboxylase (ADC) inhibitor, difluoromethylarginine (DFMA) (EC50, 18.3 ± 1.3 mM; n = 5) suggesting that arginine-induced vessel relaxation was mediated by agmatine formation. Agmatine relaxed the SD rat vessels at significantly lower concentrations (EC50, 138.7 ± 12.1 μM; n = 22), which was compromised by L-NAME (L-NG-Nitroarginine methyl ester, an eNOS inhibitor), RX821002 (α-2 AR antagonist) and pertussis toxin (G-protein inhibitor). The agmatine-mediated vessel relaxation from high salt Dahl rats was abolished as compared to that from normal salt rats (EC50, 143.9 ± 23.4 μM; n = 5). The α-2A AR, α-2B AR and eNOS mRNA expression was downregulated in mesenteric arterioles of high-salt treated Dahl hypertensive rats. These findings demonstrate that agmatine facilitated the relaxation via activation of α-2 adrenergic G-protein coupled receptor and NO synthesis, and this pathway is compromised in salt-sensitive hypertension. PMID:23994446

  3. Agmatine induced NO dependent rat mesenteric artery relaxation and its impairment in salt-sensitive hypertension.

    PubMed

    Gadkari, Tushar V; Cortes, Natalie; Madrasi, Kumpal; Tsoukias, Nikolaos M; Joshi, Mahesh S

    2013-11-30

    l-Arginine and its decarboxylated product, agmatine are important mediators of NO production and vascular relaxation. However, the underlying mechanisms of their action are not understood. We have investigated the role of arginine and agmatine in resistance vessel relaxation of Sprague-Dawley (SD) and Dahl salt-sensitive hypertensive rats. Second or 3rd-order mesenteric arterioles were cannulated in an organ chamber, pressurized and equilibrated before perfusing intraluminally with agonists. The vessel diameters were measured after mounting on the stage of a microscope fitted with a video camera. The gene expression in Dahl rat vessel homogenates was ascertained by real-time PCR. l-Arginine initiated relaxations (EC50, 5.8±0.7mM; n=9) were inhibited by arginine decarboxylase (ADC) inhibitor, difluoromethylarginine (DFMA) (EC50, 18.3±1.3mM; n=5) suggesting that arginine-induced vessel relaxation was mediated by agmatine formation. Agmatine relaxed the SD rat vessels at significantly lower concentrations (EC50, 138.7±12.1μM; n=22), which was compromised by l-NAME (l-N(G)-nitroarginine methyl ester, an eNOS inhibitor), RX821002 (α-2 AR antagonist) and pertussis toxin (G-protein inhibitor). The agmatine-mediated vessel relaxation from high salt Dahl rats was abolished as compared to that from normal salt rats (EC50, 143.9±23.4μM; n=5). The α-2A AR, α-2B AR and eNOS mRNA expression was downregulated in mesenteric arterioles of high-salt treated Dahl hypertensive rats. These findings demonstrate that agmatine facilitated the relaxation via activation of α-2 adrenergic G-protein coupled receptor and NO synthesis, and this pathway is compromised in salt-sensitive hypertension. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. New multifunctional Escherichia coli-Streptomyces shuttle vectors allowing blue-white screening on XGal plates.

    PubMed

    Wehmeier, U F

    1995-11-07

    Four new shuttle vectors for Escherichia coli (Ec) and Streptomyces, pUWL218, pUWL219, pUWL-SK and pUWL-KS, which permit recognition of recombinant (re-) plasmids on XGal plates in Ec, were constructed. These vectors contain the replication functions of the Streptomyces wide-host-range multicopy plasmid pIJ101, the tsr gene conferring resistance to thiostrepton in Streptomyces, the ColEI origin of replication from the pUC plasmids for replication in Ec and the bla gene conferring resistance to ampicillin in Ec. They possess multiple cloning sites with a number of unique restriction sites and allow direct sequencing of re-derivatives using the pUC sequencing primers.

  5. Putrescine differently influences the effect of salt stress on polyamine metabolism and ethylene synthesis in rice cultivars differing in salt resistance

    PubMed Central

    Quinet, Muriel; Lefèvre, Isabelle; Lambillotte, Béatrice; Dupont-Gillain, Christine C.; Lutts, Stanley

    2010-01-01

    Effects of salt stress on polyamine metabolism and ethylene production were examined in two rice (Oryza sativa L.) cultivars [I Kong Pao (IKP), salt sensitive; and Pokkali, salt resistant] grown for 5 d and 12 d in nutrient solution in the presence or absence of putrescine (1 mM) and 0, 50, and 100 mM NaCl. The salt-sensitive (IKP) and salt-resistant (Pokkali) cultivars differ not only in their mean levels of putrescine, but also in the physiological functions assumed by this molecule in stressed tissues. Salt stress increased the proportion of conjugated putrescine in salt-resistant Pokkali and decreased it in the salt-sensitive IKP, suggesting a possible protective function in response to NaCl. Activities of the enzymes ornithine decarboxylase (ODC; EC 4.1.1.17) and arginine decarboxylase (ADC; EC 4.1.1.19) involved in putrescine synthesis were higher in salt-resistant Pokkali than in salt-sensitive IKP. Both enzymes were involved in the response to salt stress. Salt stress also increased diamine oxidase (DAO; 1.4.3.6) and polyamine oxidase (PAO EC 1.5.3.11) activities in the roots of salt-resistant Pokkali and in the shoots of salt-sensitive IKP. Gene expression followed by reverse transcription-PCR suggested that putrescine could have a post-translational impact on genes coding for ADC (ADCa) and ODC (ODCa and ODCb) but could induce a transcriptional activation of genes coding for PAO (PAOb) mainly in the shoot of salt-stressed plants. The salt-resistant cultivar Pokkali produced higher amounts of ethylene than the salt-sensitive cultivar IKP, and exogenous putrescine increased ethylene synthesis in both cultivars, suggesting no direct antagonism between polyamine and ethylene pathways in rice. PMID:20472577

  6. Linking metabolic network features to phenotypes using sparse group lasso.

    PubMed

    Samal, Satya Swarup; Radulescu, Ovidiu; Weber, Andreas; Fröhlich, Holger

    2017-11-01

    Integration of metabolic networks with '-omics' data has been a subject of recent research in order to better understand the behaviour of such networks with respect to differences between biological and clinical phenotypes. Under the conditions of steady state of the reaction network and the non-negativity of fluxes, metabolic networks can be algebraically decomposed into a set of sub-pathways often referred to as extreme currents (ECs). Our objective is to find the statistical association of such sub-pathways with given clinical outcomes, resulting in a particular instance of a self-contained gene set analysis method. In this direction, we propose a method based on sparse group lasso (SGL) to identify phenotype associated ECs based on gene expression data. SGL selects a sparse set of feature groups and also introduces sparsity within each group. Features in our model are clusters of ECs, and feature groups are defined based on correlations among these features. We apply our method to metabolic networks from KEGG database and study the association of network features to prostate cancer (where the outcome is tumor and normal, respectively) as well as glioblastoma multiforme (where the outcome is survival time). In addition, simulations show the superior performance of our method compared to global test, which is an existing self-contained gene set analysis method. R code (compatible with version 3.2.5) is available from http://www.abi.bit.uni-bonn.de/index.php?id=17. samal@combine.rwth-aachen.de or frohlich@bit.uni-bonn.de. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  7. Changes of exoskeleton surface roughness and expression of crucial participation genes for chitin formation and digestion in the mud crab (Macrophthalmus japonicus) following the antifouling biocide irgarol.

    PubMed

    Park, Kiyun; Nikapitiya, Chamilani; Kim, Won-Seok; Kwak, Tae-Soo; Kwak, Ihn-Sil

    2016-10-01

    Irgarol is a common antifoulant present in coastal sediment. The mud crab Macrophthalmus japonicus is one of the most abundant of the macrobenthos in the costal environment, and its exoskeleton has a protective function against various environmental threats. We evaluated the effects of irgarol toxicity on the exoskeleton of M. japonicus, which is the outer layer facing the environment. We analyzed transcriptional expression of exoskeleton, molting, and proteolysis-related genes in the gill and hepatopancreas of these exposed M. japonicus. In addition, changes in survival and exoskeleton surface characteristics were investigated. In the hepatopancreas, mRNA expression of chitinase 1 (Mj-chi1), chitinase 4 (Mj-chi4), and chitinase 5 (Mj-chi5) increased in M. japonicus exposed to all concentrations of irgarol. Mj-chi1 and Mj-chi4 expressions from 1 to 10μgL(-1) were dose- and time-dependent. Ecdysteroid receptor (Mj-EcR), trypsin (Mj-Tryp), and serine proteinase (Mj-SP) in the hepatopancreas were upregulated in response to different exposure levels of irgarol at day 1, 4, or 7. In contrast, gill Mj-chi5, Mj-Tryp, and Mj-SP exhibited late upregulated responses to 10μgL(-1) irgarol compared to the control at day 7. Mj-chi1 showed early upregulation upon exposure to 10μgL(-1) irgarol and Mj-chi4 showed no changes in transcription in the gill. Gill Mj-EcR presented generally downregulated expression patterns. In addition, decreased survival and change of exoskeleton surface roughness were observed in M. japonicus exposed to the three concentrations of irgarol. These results suggest that exposure to irgarol induces changes in the exoskeleton, molting, and proteolysis metabolism of M. japonicus. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Identification and characterization of phospholipase D and its association with drought susceptibilities in peanut (Arachis hypogaea).

    PubMed

    Guo, B Z; Xu, G; Cao, Y G; Holbrook, C C; Lynch, R E

    2006-02-01

    Preharvest aflatoxin contamination has been identified by the peanut industry as a serious issue in food safety and human health because of the carcinogenic toxicity. Drought stress is the most important environmental factor exacerbating Aspergillus infection and aflatoxin contamination in peanut. The development of drought-tolerant peanut cultivars could reduce aflatoxin contamination and would represent a major advance in the peanut industry. In this study, we identified a novel PLD gene in peanut (Arachis hypogaea), encoding a putative phospholipase D (PLD, EC 3.1.4.4). The completed cDNA sequence was obtained by using the consensus-degenerated hybrid oligonucleotide primer strategy. The deduced amino acid sequence shows high identity with known PLDs, and has similar conserved domains. The PLD gene expression under drought stress has been studied using four peanut lines: Tifton 8 and A13 (both drought tolerant) and Georgia Green (moderate) and PI 196754 (drought sensitive). Northern analysis showed that PLD gene expression was induced faster by drought stress in the drought-sensitive lines than the drought tolerance lines. Southern analysis showed that cultivated peanut has multiple copies (3 to 5 copies) of the PLD gene. These results suggest that peanut PLD may be involved in drought sensitivity and tolerance responses. Peanut PLD gene expression may be useful as a tool in germplasm screening for drought tolerance.

  9. Meta-analysis of genome-wide association studies identifies common susceptibility polymorphisms for colorectal and endometrial cancer near SH2B3 and TSHZ1

    PubMed Central

    Cheng, Timothy HT; Thompson, Deborah; Painter, Jodie; O’Mara, Tracy; Gorman, Maggie; Martin, Lynn; Palles, Claire; Jones, Angela; Buchanan, Daniel D.; Ko Win, Aung; Hopper, John; Jenkins, Mark; Lindor, Noralane M.; Newcomb, Polly A.; Gallinger, Steve; Conti, David; Schumacher, Fred; Casey, Graham; Giles, Graham G; Pharoah, Paul; Peto, Julian; Cox, Angela; Swerdlow, Anthony; Couch, Fergus; Cunningham, Julie M; Goode, Ellen L; Winham, Stacey J; Lambrechts, Diether; Fasching, Peter; Burwinkel, Barbara; Brenner, Hermann; Brauch, Hiltrud; Chang-Claude, Jenny; Salvesen, Helga B.; Kristensen, Vessela; Darabi, Hatef; Li, Jingmei; Liu, Tao; Lindblom, Annika; Hall, Per; de Polanco, Magdalena Echeverry; Sans, Monica; Carracedo, Angel; Castellvi-Bel, Sergi; Rojas-Martinez, Augusto; Aguiar Jnr, Samuel; Teixeira, Manuel R.; Dunning, Alison M; Dennis, Joe; Otton, Geoffrey; Proietto, Tony; Holliday, Elizabeth; Attia, John; Ashton, Katie; Scott, Rodney J; McEvoy, Mark; Dowdy, Sean C; Fridley, Brooke L; Werner, Henrica MJ; Trovik, Jone; Njolstad, Tormund S; Tham, Emma; Mints, Miriam; Runnebaum, Ingo; Hillemanns, Peter; Dörk, Thilo; Amant, Frederic; Schrauwen, Stefanie; Hein, Alexander; Beckmann, Matthias W; Ekici, Arif; Czene, Kamila; Meindl, Alfons; Bolla, Manjeet K; Michailidou, Kyriaki; Tyrer, Jonathan P; Wang, Qin; Ahmed, Shahana; Healey, Catherine S; Shah, Mitul; Annibali, Daniela; Depreeuw, Jeroen; Al-Tassan, Nada A.; Harris, Rebecca; Meyer, Brian F.; Whiffin, Nicola; Hosking, Fay J; Kinnersley, Ben; Farrington, Susan M.; Timofeeva, Maria; Tenesa, Albert; Campbell, Harry; Haile, Robert W.; Hodgson, Shirley; Carvajal-Carmona, Luis; Cheadle, Jeremy P.; Easton, Douglas; Dunlop, Malcolm; Houlston, Richard; Spurdle, Amanda; Tomlinson, Ian

    2015-01-01

    High-risk mutations in several genes predispose to both colorectal cancer (CRC) and endometrial cancer (EC). We therefore hypothesised that some lower-risk genetic variants might also predispose to both CRC and EC. Using CRC and EC genome-wide association series, totalling 13,265 cancer cases and 40,245 controls, we found that the protective allele [G] at one previously-identified CRC polymorphism, rs2736100 near TERT, was associated with EC risk (odds ratio (OR) = 1.08, P = 0.000167); this polymorphism influences the risk of several other cancers. A further CRC polymorphism near TERC also showed evidence of association with EC (OR = 0.92; P = 0.03). Overall, however, there was no good evidence that the set of CRC polymorphisms was associated with EC risk, and neither of two previously-reported EC polymorphisms was associated with CRC risk. A combined analysis revealed one genome-wide significant polymorphism, rs3184504, on chromosome 12q24 (OR = 1.10, P = 7.23 × 10−9) with shared effects on CRC and EC risk. This polymorphism, a missense variant in the gene SH2B3, is also associated with haematological and autoimmune disorders, suggesting that it influences cancer risk through the immune response. Another polymorphism, rs12970291 near gene TSHZ1, was associated with both CRC and EC (OR = 1.26, P = 4.82 × 10−8), with the alleles showing opposite effects on the risks of the two cancers. PMID:26621817

  10. Removal of selected PPCPs, EDCs, and antibiotic resistance genes in landfill leachate by a full-scale constructed wetlands system.

    PubMed

    Yi, Xinzhu; Tran, Ngoc Han; Yin, Tingru; He, Yiliang; Gin, Karina Yew-Hoong

    2017-09-15

    Landfill leachate could be a significant source of emerging contaminants (ECs) and antibiotic resistance genes (ARGs) into the environment. This study provides the first information on the occurrence of selected ECs and ARGs in raw leachate from 16-year old closed landfill site in Singapore. Among the investigated ECs, acetaminophen (ACT), bisphenol A (BPA), clofibric acid (CA), caffeine (CF), crotamiton (CTMT), diclofenac (DCF), N,N-diethyl-m-toluamide (DEET), gemfibrozil (GFZ), lincomycin (LIN), salicylic acid (SA), and sulfamethazine (SMZ) were the most frequently detected compounds in raw landfill leachate. The concentrations of detected ECs in raw landfill leachate varied significantly, from below quantification limit to 473,977 ng/L, depending on the compound. In this study, Class I integron (intl1) gene and ten ARGs were detected in raw landfill leachate. Sulfonamide resistance (sul1, sul2, and dfrA), aminoglycoside resistance (aac6), tetracycline resistance (tetO), quinolone resistance (qnrA), and intl1 were ubiquitously present in raw landfill leachate. Other resistance genes, such as beta-lactam resistance (blaNMD1, blaKPC, and blaCTX) and macrolide-lincosamide resistance (ermB) were also detected, detection frequency of <50%. The removal of target ECs and ARGs by a full-scale hybrid constructed wetland (CW) was also evaluated. The vast majority of ECs exhibited excellent removal efficiencies (>90%) in the investigated hybrid CW system. This hybrid CW system was also found to be effective in the reduction of several ARGs (intl1, sul1, sul2, and qnrA). Aeration lagoons and reed beds appeared to be the most important treatment units of the hybrid CW for removing the majority of ECs from the leachate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Exosomes from iPSCs Delivering siRNA Attenuate Intracellular Adhesion Molecule-1 Expression and Neutrophils Adhesion in Pulmonary Microvascular Endothelial Cells.

    PubMed

    Ju, Zhihai; Ma, Jinhui; Wang, Chen; Yu, Jie; Qiao, Yeru; Hei, Feilong

    2017-04-01

    The pro-inflammatory activation of pulmonary microvascular endothelial cells resulting in continuous expression of cellular adhesion molecules, and subsequently recruiting primed neutrophils to form a firm neutrophils-endothelium (PMN-EC) adhesion, has been examined and found to play a vital role in acute lung injury (ALI). RNA interference (RNAi) is a cellular process through harnessing a natural pathway silencing target gene based on recognition and subsequent degradation of specific mRNA sequences. It opens a promising approach for precision medicine. However, this application was hampered by many obstacles, such as immunogenicity, instability, toxicity problems, and difficulty in across the biological membrane. In this study, we reprogrammed urine exfoliated renal epithelial cells into human induced pluripotent stem cells (huiPSCs) and purified the exosomes (Exo) from huiPSCs as RNAi delivery system. Through choosing the episomal system to deliver transcription factors, we obtained a non-integrating huiPSCs. Experiments in both vitro and vivo demonstrated that these huiPSCs possess the pluripotent properties. The exosomes of huiPSCs isolated by differential centrifugation were visualized by transmission electron microscopy (TEM) showing a typical exosomal appearance with an average diameter of 122 nm. Immunoblotting confirmed the presence of the typical exosomal markers, including CD63, TSG 101, and Alix. Co-cultured PKH26-labeled exosomes with human primary pulmonary microvascular endothelial cells (HMVECs) confirmed that they could be internalized by recipient cells at a time-dependent manner. Then, electroporation was used to introduce siRNA against intercellular adhesion molecule-1 (ICAM-1) into exosomes to form an Exo/siRNA compound. The Exo/siRNA compound efficiently delivered the target siRNA into HMVECs causing selective gene silencing, inhibiting the ICAM-1 protein expression, and PMN-EC adhesion induced by lipopolysaccharide (LPS). These data suggest that huiPSCs exosomes could be used as a natural gene delivery vector to transport therapeutic siRNAs for alleviating inflammatory responses in recipient cells.

  12. Expression of the 1-SST and 1-FFT genes and consequent fructan accumulation in Agave tequilana and A. inaequidens is differentially induced by diverse (a)biotic-stress related elicitors.

    PubMed

    Suárez-González, Edgar Martín; López, Mercedes G; Délano-Frier, John P; Gómez-Leyva, Juan Florencio

    2014-02-15

    The expression of genes coding for sucrose:sucrose 1-fructosyltransferase (1-SST; EC 2.4.1.99) and fructan:fructan 1-fructosyltransferase (1-FFT; EC 2.4.1.100), both fructan biosynthesizing enzymes, characterization by TLC and HPAEC-PAD, as well as the quantification of the fructo-oligosaccharides (FOS) accumulating in response to the exogenous application of sucrose, kinetin (cytokinin) or other plant hormones associated with (a)biotic stress responses were determined in two Agave species grown in vitro, domesticated Agave tequilana var. azul and wild A. inaequidens. It was found that elicitors such as salicylic acid (SA), and jasmonic acid methyl ester (MeJA) had the strongest effect on fructo-oligosaccharide (FOS) accumulation. The exogenous application of 1mM SA induced a 36-fold accumulation of FOS of various degrees of polymerization (DP) in stems of A. tequilana. Other treatments, such as 50mM abscisic acid (ABA), 8% Sucrose (Suc), and 1.0 mg L(-1) kinetin (KIN) also led to a significant accumulation of low and high DP FOS in this species. Conversely, treatment with 200 μM MeJA, which was toxic to A. tequilana, induced an 85-fold accumulation of FOS in the stems of A. inaequidens. Significant FOS accumulation in this species also occurred in response to treatments with 1mM SA, 8% Suc, and 10% polyethylene glycol (PEG). Maximum yields of 13.6 and 8.9 mg FOS per g FW were obtained in stems of A. tequilana and A. inaequidens, respectively. FOS accumulation in the above treatments was tightly associated with increased expression levels of either the 1-FFT or the 1-SST gene in tissues of both Agave species. Copyright © 2013 Elsevier GmbH. All rights reserved.

  13. Isolation and characterization of cDNAs encoding wheat 3-hydroxy-3-methylglutaryl coenzyme A reductase.

    PubMed Central

    Aoyagi, K; Beyou, A; Moon, K; Fang, L; Ulrich, T

    1993-01-01

    The enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR, EC 1.1.1.34) is a key enzyme in the isoprenoid biosynthetic pathway. We have isolated partial cDNAs from wheat (Triticum aestivum) using the polymerase chain reaction. Comparison of deduced amino acid sequences of these cDNAs shows that they represent a small family of genes that share a high degree of sequence homology among themselves as well as among genes from other organisms including tomato, Arabidopsis, hamster, human, Drosophila, and yeast. Southern blot analysis reveals the presence of at least four genes. Our results concerning the tissue-specific expression as well as developmental regulation of these HMGR cDNAs highlight the important role of this enzyme in the growth and development of wheat. PMID:8108513

  14. A distinct entorhinal cortex to hippocampal CA1 direct circuit for olfactory associative learning.

    PubMed

    Li, Yiding; Xu, Jiamin; Liu, Yafeng; Zhu, Jia; Liu, Nan; Zeng, Wenbo; Huang, Ning; Rasch, Malte J; Jiang, Haifei; Gu, Xiang; Li, Xiang; Luo, Minhua; Li, Chengyu; Teng, Junlin; Chen, Jianguo; Zeng, Shaoqun; Lin, Longnian; Zhang, Xiaohui

    2017-04-01

    Lateral and medial parts of entorhinal cortex (EC) convey nonspatial 'what' and spatial 'where' information, respectively, into hippocampal CA1, via both the indirect EC layer 2→ hippocampal dentate gyrus→CA3→CA1 and the direct EC layer 3→CA1 paths. However, it remains elusive how the direct path transfers distinct information and contributes to hippocampal learning functions. Here we report that lateral EC projection neurons selectively form direct excitatory synapses onto a subpopulation of morphologically complex, calbindin-expressing pyramidal cells (PCs) in the dorsal CA1 (dCA1), while medial EC neurons uniformly innervate all dCA1 PCs. Optogenetically inactivating the distinct lateral EC-dCA1 connections or the postsynaptic dCA1 calbindin-expressing PC activity slows olfactory associative learning. Moreover, optetrode recordings reveal that dCA1 calbindin-expressing PCs develop more selective spiking responses to odor cues during learning. Thus, our results identify a direct lateral EC→dCA1 circuit that is required for olfactory associative learning.

  15. Control of germline stem cell self-renewal and differentiation in the Drosophila ovary: concerted actions of niche signals and intrinsic factors.

    PubMed

    Xie, Ting

    2013-01-01

    In the Drosophila ovary, germline stem cells (GSCs) physically interact with their niche composed of terminal filament cells, cap cells, and possibly GSC-contacting escort cells (ECs). A GSC divides to generate a self-renewing stem cell that remains in the niche and a differentiating daughter that moves away from the niche. The GSC niche provides a bone morphogenetic protein (BMP) signal that maintains GSC self-renewal by preventing stem cell differentiation via repression of the differentiation-promoting gene bag of marbles (bam). In addition, it expresses E-cadherin, which mediates cell adhesion for anchoring GSCs in the niche, enabling continuous self-renewal. GSCs themselves also express different classes of intrinsic factors, including signal transducers, transcription factors, chromatin remodeling factors, translation regulators, and miRNAs, which control self-renewal by strengthening interactions with the niche and repressing various differentiation pathways. Differentiated GSC daughters, known as cystoblasts (CBs), also express distinct classes of intrinsic factors to inhibit self-renewal and promote germ cell differentiation. Surprisingly, GSC progeny are also dependent on their surrounding ECs for proper differentiation at least partly by preventing BMP from diffusing to the differentiated germ cell zone and by repressing ectopic BMP expression. Therefore, both GSC self-renewal and CB differentiation are controlled by collaborative actions of extrinsic signals and intrinsic factors. Copyright © 2012 Wiley Periodicals, Inc.

  16. Trypsinogen 4 boosts tumor endothelial cells migration through proteolysis of tissue factor pathway inhibitor-2.

    PubMed

    Ghilardi, Carmen; Silini, Antonietta; Figini, Sara; Anastasia, Alessia; Lupi, Monica; Fruscio, Robert; Giavazzi, Raffaella; Bani, Maria Rosa

    2015-09-29

    Proteases contribute to cancer in many ways, including tumor vascularization and metastasis, and their pharmacological inhibition is a potential anticancer strategy. We report that human endothelial cells (EC) express the trypsinogen 4 isoform of the serine protease 3 (PRSS3), and lack both PRSS2 and PRSS1. Trypsinogen 4 expression was upregulated by the combined action of VEGF-A, FGF-2 and EGF, angiogenic factors representative of the tumor microenvironment. Suppression of trypsinogen 4 expression by siRNA inhibited the angiogenic milieu-induced migration of EC from cancer specimens (tumor-EC), but did not affect EC from normal tissues. We identified tissue factor pathway inhibitor-2 (TFPI-2), a matrix associated inhibitor of cell motility, as the functional target of trypsinogen 4, which cleaved TFPI-2 and removed it from the matrix put down by tumor-EC. Silencing tumor-EC for trypsinogen 4 accumulated TFPI2 in the matrix. Showing that angiogenic factors stimulate trypsinogen 4 expression, which hydrolyses TFPI-2 favoring a pro-migratory situation, our study suggests a new pathway linking tumor microenvironment signals to endothelial cell migration, which is essential for angiogenesis and blood vessel remodeling. Abolishing trypsinogen 4 functions might be an exploitable strategy as anticancer, particularly anti-vascular, therapy.

  17. Trypsinogen 4 boosts tumor endothelial cells migration through proteolysis of tissue factor pathway inhibitor-2

    PubMed Central

    Ghilardi, Carmen; Silini, Antonietta; Figini, Sara; Anastasia, Alessia; Lupi, Monica; Fruscio, Robert; Giavazzi, Raffaella; Bani, MariaRosa

    2015-01-01

    Proteasescontribute to cancer in many ways, including tumor vascularization and metastasis, and their pharmacological inhibition is a potential anticancer strategy. We report that human endothelial cells (EC) express the trypsinogen 4 isoform of the serine protease 3 (PRSS3), and lack both PRSS2 and PRSS1. Trypsinogen 4 expression was upregulated by the combined action of VEGF-A, FGF-2 and EGF, angiogenic factors representative of the tumor microenvironment. Suppression of trypsinogen 4 expression by siRNA inhibited the angiogenic milieu-induced migration of EC from cancer specimens (tumor-EC), but did not affect EC from normal tissues. We identified tissue factor pathway inhibitor-2 (TFPI-2), a matrix associated inhibitor of cell motility, as the functional target of trypsinogen 4, which cleaved TFPI-2 and removed it from the matrix put down by tumor-EC. Silencing tumor-EC for trypsinogen 4 accumulated TFPI2 in the matrix. Showing that angiogenic factors stimulate trypsinogen 4 expression, which hydrolyses TFPI-2 favoring a pro-migratory situation, our study suggests a new pathway linking tumor microenvironment signals to endothelial cell migration, which is essential for angiogenesis and blood vessel remodeling. Abolishing trypsinogen 4 functions might be an exploitable strategy as anticancer, particularly anti-vascular, therapy. PMID:26318044

  18. Mitochondrial ribosomal protein S18-2 is highly expressed in endometrial cancers along with free E2F1

    PubMed Central

    Iurchenko, Natalia; Kovalevska, Larysa; Stip, Maria C; Budnikova, Daria; Andersson, Sonia; Polischuk, Ludmila; Buchynska, Lubov; Kashuba, Elena

    2016-01-01

    Endometrial cancer (EC) is one of the most frequent causes of cancer death among women in developed countries. Histopathological diagnosis and imaging techniques for EC are limited, thus new prognostic markers are needed to offer patients the best treatment and follow-up. In the present paper we showed that the level of mitochondrial ribosomal protein MRPS18-2 (S18-2) increased in EC compared with the normal endometrium and hyperplasia, based on a study of 42 patient biopsies. Importantly, high expression of free E2F1 in EC correlates well with high S18-2 expression. The EC cell line HEC-1-A, which overexpresses S18-2 constitutively, showed an increased proliferation capacity in vitro and in vivo (in SCID mice). Moreover, pan-keratin, beta-catenin and E-cadherin signals are diminished in these cells, compared to the parental HEC-1-A line, in contrast to vimentin signal that is increased. This may be associated with epithelial-mesenchymal cell transition (EMT). We conclude that high expression of S18-2 and free E2F1, and low pan-keratin, beta-catenin, and E-cadherin signals might be a good set of prognostic markers for EC. PMID:26959119

  19. Hormonal control of GTP cyclohydrolase I gene expression and enzyme activity during color pattern development in wings of Precis coenia.

    PubMed

    Sawada, H; Nakagoshi, M; Reinhardt, R K; Ziegler, I; Koch, P B

    2002-06-01

    Color patterns of butterfly wings are composed of single color points represented by each scale. In the case of Precis coenia, at the end of pupal development, different types of pigments are synthesized sequentially in the differently colored scales beginning with white (pterins) followed by red (ommatins) and then black (melanin). In order to explain how formation of these different colors is regulated, we examined the expression of an mRNA-encoding guanosine triphosphate-cyclohydrolase I (GTP-CH I; EC 3.5.4.16), the first key enzyme in the biosynthesis of pteridines, during pigment formation in the wings of P. coenia. The strongest positive signal was recognized around pigment formation one day before butterfly emergence. This GTP-CH I gene expression is paralleled by GTP-CH I enzyme activity measured in wing extracts. We also investigated the effect of 20-hydroxyecdysone on the expression of GTP-CH I mRNA and the enzyme activity during color formation. The results strongly suggest that the onset and duration of the expression of a GTP-CH I mRNA is triggered by a declining ecdysteroid hormone titer during late pupal development.

  20. Endothelial microparticles reduce ICAM-1 expression in a microRNA-222-dependent mechanism

    PubMed Central

    Jansen, Felix; Yang, Xiaoyan; Baumann, Katharina; Przybilla, David; Schmitz, Theresa; Flender, Anna; Paul, Kathrin; Alhusseiny, Adil; Nickenig, Georg; Werner, Nikos

    2015-01-01

    Endothelial microparticles (EMP) are released from activated or apoptotic endothelial cells (ECs) and can be taken up by adjacent ECs, but their effect on vascular inflammation after engulfment is largely unknown. We sought to determine the role of EMP in EC inflammation. In vitro, EMP treatment significantly reduced tumour necrosis factor-α-induced endothelial intercellular adhesion molecule (ICAM)-1 expression on mRNA and protein level, whereas there was no effect on vascular cell adhesion molecule-1 expression. Reduced ICAM-1 expression after EMP treatment resulted in diminished monocyte adhesion in vitro. In vivo, systemic treatment of ApoE−/− mice with EMP significantly reduced murine endothelial ICAM-1 expression. To explore the underlying mechanisms, Taqman microRNA array was performed and microRNA (miR)-222 was identified as the strongest regulated miR between EMP and ECs. Following experiments demonstrated that miR-222 was transported into recipient ECs by EMP and functionally regulated expression of its target protein ICAM-1 in vitro and in vivo. After simulating diabetic conditions, EMP derived from glucose-treated ECs contained significantly lower amounts of miR-222 and showed reduced anti-inflammatory capacity in vitro and in vivo. Finally, circulating miR-222 level was diminished in patients with coronary artery disease (CAD) compared to patients without CAD. EMPs promote anti-inflammatory effects in vitro and in vivo by reducing endothelial ICAM-1 expression via the transfer of functional miR-222 into recipient cells. In pathological hyperglycaemic conditions, EMP-mediated miR-222-dependent anti-inflammatory effects are reduced. PMID:26081516

Top