Sample records for ec ozone threshold

  1. Solar photocatalytic ozonation of a mixture of pharmaceutical compounds in water.

    PubMed

    Márquez, Gracia; Rodríguez, Eva M; Beltrán, Fernando J; Álvarez, Pedro M

    2014-10-01

    Aqueous solutions of mixtures of four pharmaceutical compounds (atenolol, hydrochlorothiazide, ofloxacin and trimethoprim) both in Milli-Q ultrapure water and in a secondary effluent from a municipal wastewater treatment plant have been treated at pH 7 by different oxidation methods, such as conventional ozonation, photolytic ozonation, TiO2 catalytic ozonation, TiO2 photocatalytic oxidation and TiO2 photocatalytic ozonation. Experiments were carried out using a solar compound parabolic concentrator. The performance results have been compared in terms of removal of emerging contaminants (ECs), generation rate of phenolic intermediates, organic matter mineralization, ecotoxicity removal and enhancement of biodegradability. Also, the consumption of ozone to achieve certain treatment goals (95% removal of ECs and 40% mineralization) is discussed. Results reveal that solar photocatalytic ozonation is a promising oxidation method as it led to the best results in terms of EC mineralization (∼85%), toxicity removal (∼90%) and efficient use of ozone (∼2mgO3mgEC(-1) to achieve complete EC removal and ∼18mgO3mgTOC(-1) to achieve 40% EC mineralization, respectively). Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. A study of surface ozone variability over the Iberian Peninsula during the last fifty years

    NASA Astrophysics Data System (ADS)

    Fernández-Fernández, M. I.; Gallego, M. C.; García, J. A.; Acero, F. J.

    2011-02-01

    There is good evidence for an increase in the global surface level of ozone in the past century. In this work we present an analysis of 18 surface ozone series over the Iberian Peninsula, considering the target values of ozone for the protection of human health and for the protection of vegetation, as well as the information and alert thresholds established by the current European Directive on ambient air quality and cleaner air for Europe (Directive 2008/50/EC). The results show that the stations located on the Cantabrian coast exceeded neither the target value for the protection of human health nor the target value for the protection of vegetation. The information threshold was exceeded in most of the stations, while the alert threshold was only exceeded in one. The seasonal and daily evolution of ozone concentrations were as expected. A trend analysis of three surface ozone concentration indices (monthly median and 98th percentile, and monthly maximum of the daily maximum 8-h mean) was performed both for the whole period of each station and for the common period from 2001 to 2007 for all the months of the year. It was noted that generally the south of the Iberian Peninsula presented increasing trends for the three indices, especially in the last six months of the year, and the north decreasing trends. Finally, a correlation analysis was performed between the daily maximum 8-h mean and both daily mean temperature and daily mean solar radiation for the whole and the common periods. For all stations, there was a significant positive association at a 5% significance level between the daily maximum 8-h mean and the two meteorological variables of up to approximately 0.5. The spatial distribution of these association values from 2001 to 2007 showed a positive northwest to southeast gradient over the Iberian Peninsula.

  3. Quantification of source region influences on the ozone burden

    NASA Astrophysics Data System (ADS)

    Treffeisen, Renate; Grunow, Katja; Möller, Detlev; Hainsch, Andreas

    A project was performed to quantify different influences on the ozone burden. It could be shown that large-scale meteorological influences determine a very large percentage of the ozone concentration. Local measures intended to reduce peak ozone concentrations in summer turn out to be not very effective as a result. The aim of this paper is to quantify regional emission influences on the ozone burden. The investigation of these influences is possible by comparison of the ozone (O 3) and oxidant (O x=O 3+NO 2) concentrations at high-elevation sites downwind and upwind of a source region by using back trajectories. It has been shown that a separation between large-scale influenced meteorological and regional ozone burdens at these sites is possible. This method is applied for an important emission area in Germany—the Ruhrgebiet. On average, no significant ozone contribution of this area to the regional ozone concentration could be found. A large part of the ozone concentration is highly correlated with synoptic weather systems, which exhibit a dominant influence on the local ozone concentrations. Significant contributions of related photochemical ozone formation of the source area of 13-15% have been found only during favourable meteorological situations, identified by the hourly maximum day temperature being above 25°C. This is important with respect to the EU daughter directive to EU 96/62/EC (Official Journal L296 (1996) 55) because Member States should explore the possibilities of local measures to avoid the exceedance of threshold values and, if effective local measures exist, to implement them.

  4. Iron-based catalysts for photocatalytic ozonation of some emerging pollutants of wastewater.

    PubMed

    Espejo, Azahara; Beltrán, Fernando J; Rivas, Francisco J; García-Araya, Juan F; Gimeno, Olga

    2015-01-01

    A synthetic secondary effluent containing an aqueous mixture of emerging contaminants (ECs) has been treated by photocatalytic ozonation using Fe(3+) or Fe3O4 as catalysts and black light lamps as the radiation source. For comparative purposes, ECs have also been treated by ultraviolet radiation (UVA radiation, black light) and ozonation (pH 3 and 7). With the exception of UVA radiation, O3-based processes lead to the total removal of ECs in the mixture. The time taken to achieve complete degradation depends on the oxidation process applied. Ozonation at pH 3 is the most effective technique. The addition of iron based catalysts results in a slight inhibition of the parent compounds degradation rate. However, a positive effect is experienced when measuring the total organic carbon (TOC) and the chemical oxygen demand (COD) removals. Photocatalytic oxidation in the presence of Fe(3+) leads to 81% and 88% of TOC and COD elimination, respectively, compared to only 23% and 29% of TOC and COD removals achieved by single ozonation. The RCT concept has been used to predict the theoretical ECs profiles in the homogeneous photocatalytic oxidation process studied. Treated wastewater effluent was toxic to Daphnia magna when Fe(3+) was used in photocatalytic ozonation. In this case, toxicity was likely due to the ferryoxalate formed in the process. Single ozonation significantly reduced the toxicity of the treated wastewater.

  5. Evaluating the effects of climate change on summertime ozone using a relative response factor approach for policymakers.

    PubMed

    Avise, Jeremy; Abraham, Rodrigo Gonzalez; Chung, Serena H; Chen, Jack; Lamb, Brian; Salathé, Eric P; Zhang, Yongxin; Nolte, Christopher G; Loughlin, Daniel H; Guenther, Alex; Wiedinmyer, Christine; Duhl, Tiffany

    2012-09-01

    The impact of climate change on surface-level ozone is examined through a multiscale modeling effort that linked global and regional climate models to drive air quality model simulations. Results are quantified in terms of the relative response factor (RRF(E)), which estimates the relative change in peak ozone concentration for a given change in pollutant emissions (the subscript E is added to RRF to remind the reader that the RRF is due to emission changes only). A matrix of model simulations was conducted to examine the individual and combined effects offuture anthropogenic emissions, biogenic emissions, and climate on the RRF(E). For each member in the matrix of simulations the warmest and coolest summers were modeled for the present-day (1995-2004) and future (2045-2054) decades. A climate adjustment factor (CAF(C) or CAF(CB) when biogenic emissions are allowed to change with the future climate) was defined as the ratio of the average daily maximum 8-hr ozone simulated under a future climate to that simulated under the present-day climate, and a climate-adjusted RRF(EC) was calculated (RRF(EC) = RRF(E) x CAF(C)). In general, RRF(EC) > RRF(E), which suggests additional emission controls will be required to achieve the same reduction in ozone that would have been achieved in the absence of climate change. Changes in biogenic emissions generally have a smaller impact on the RRF(E) than does future climate change itself The direction of the biogenic effect appears closely linked to organic-nitrate chemistry and whether ozone formation is limited by volatile organic compounds (VOC) or oxides of nitrogen (NO(x) = NO + NO2). Regions that are generally NO(x) limited show a decrease in ozone and RRF(EC), while VOC-limited regions show an increase in ozone and RRF(EC). Comparing results to a previous study using different climate assumptions and models showed large variability in the CAF(CB). We present a methodology for adjusting the RRF to account for the influence of climate change on ozone. The findings of this work suggest that in some geographic regions, climate change has the potential to negate decreases in surface ozone concentrations that would otherwise be achieved through ozone mitigation strategies. In regions of high biogenic VOC emissions relative to anthropogenic NO(x) emissions, the impact of climate change is somewhat reduced, while the opposite is true in regions of high anthropogenic NO(x) emissions relative to biogenic VOC emissions. Further, different future climate realizations are shown to impact ozone in different ways.

  6. Concentration–Response Function for Ozone and Daily Mortality: Results from Five Urban and Five Rural U.K. Populations

    PubMed Central

    Yu, Dahai; Armstrong, Ben G.; Pattenden, Sam; Wilkinson, Paul; Doherty, Ruth M.; Heal, Mathew R.; Anderson, H. Ross

    2012-01-01

    Background: Short-term exposure to ozone has been associated with increased daily mortality. The shape of the concentration–response relationship—and, in particular, if there is a threshold—is critical for estimating public health impacts. Objective: We investigated the concentration–response relationship between daily ozone and mortality in five urban and five rural areas in the United Kingdom from 1993 to 2006. Methods: We used Poisson regression, controlling for seasonality, temperature, and influenza, to investigate associations between daily maximum 8-hr ozone and daily all-cause mortality, assuming linear, linear-threshold, and spline models for all-year and season-specific periods. We examined sensitivity to adjustment for particles (urban areas only) and alternative temperature metrics. Results: In all-year analyses, we found clear evidence for a threshold in the concentration–response relationship between ozone and all-cause mortality in London at 65 µg/m3 [95% confidence interval (CI): 58, 83] but little evidence of a threshold in other urban or rural areas. Combined linear effect estimates for all-cause mortality were comparable for urban and rural areas: 0.48% (95% CI: 0.35, 0.60) and 0.58% (95% CI: 0.36, 0.81) per 10-µg/m3 increase in ozone concentrations, respectively. Seasonal analyses suggested thresholds in both urban and rural areas for effects of ozone during summer months. Conclusions: Our results suggest that health impacts should be estimated across the whole ambient range of ozone using both threshold and nonthreshold models, and models stratified by season. Evidence of a threshold effect in London but not in other study areas requires further investigation. The public health impacts of exposure to ozone in rural areas should not be overlooked. PMID:22814173

  7. No minimum threshold for ozone-induced changes in soybean canopy fluxes

    USDA-ARS?s Scientific Manuscript database

    Tropospheric ozone concentrations [O3] are increasing at rates that exceed any other pollutant. This highly reactive gas drives reductions in plant productivity and canopy water use while also increasing canopy temperature and sensible heat flux. It is not clear whether a minimum threshold of ozone ...

  8. Acute effect of ozone exposure on daily mortality in seven cities of Jiangsu Province, China: No clear evidence for threshold.

    PubMed

    Chen, Kai; Zhou, Lian; Chen, Xiaodong; Bi, Jun; Kinney, Patrick L

    2017-05-01

    Few multicity studies have addressed the health effects of ozone in China due to the scarcity of ozone monitoring data. A critical scientific and policy-relevant question is whether a threshold exists in the ozone-mortality relationship. Using a generalized additive model and a univariate random-effects meta-analysis, this research evaluated the relationship between short-term ozone exposure and daily total mortality in seven cities of Jiangsu Province, China during 2013-2014. Spline, subset, and threshold models were applied to further evaluate whether a safe threshold level exists. This study found strong evidence that short-term ozone exposure is significantly associated with premature total mortality. A 10μg/m 3 increase in the average of the current and previous days' maximum 8-h average ozone concentration was associated with a 0.55% (95% posterior interval: 0.34%, 0.76%) increase of total mortality. This finding is robust when considering the confounding effect of PM 2.5 , PM 10 , NO 2 , and SO 2 . No consistent evidence was found for a threshold in the ozone-mortality concentration-response relationship down to concentrations well below the current Chinese Ambient Air Quality Standard (CAAQS) level 2 standard (160μg/m 3 ). Our findings suggest that ozone concentrations below the current CAAQS level 2 standard could still induce increased mortality risks in Jiangsu Province, China. Continuous air pollution control measures could yield important health benefits in Jiangsu Province, China, even in cities that meet the current CAAQS level 2 standard. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Acute effect of ozone exposure on daily mortality in seven cities of Jiangsu Province, China: No clear evidence for threshold

    PubMed Central

    Chen, Kai; Zhou, Lian; Chen, Xiaodong; Bi, Jun; Kinney, Patrick L.

    2017-01-01

    Background Few multicity studies have addressed the health effects of ozone in China due to the scarcity of ozone monitoring data. A critical scientific and policy-relevant question is whether a threshold exists in the ozone-mortality relationship. Methods Using a generalized additive model and a univariate random-effects meta-analysis, this research evaluated the relationship between short-term ozone exposure and daily total mortality in seven cities of Jiangsu Province, China during 2013–2014. Spline, subset, and threshold models were applied to further evaluate whether a safe threshold level exists. Results This study found strong evidence that short-term ozone exposure is significantly associated with premature total mortality. A 10 μg/m3 increase in the average of the current and previous days’ maximum 8-h average ozone concentration was associated with a 0.55% (95% posterior interval: 0.34%, 0.76%) increase of total mortality. This finding is robust when considering the confounding effect of PM2.5, PM10, NO2, and SO2. No consistent evidence was found for a threshold in the ozone-mortality concentration-response relationship down to concentrations well below the current Chinese Ambient Air Quality Standard (CAAQS) level 2 standard (160 μg/m3). Conclusions Our findings suggest that ozone concentrations below the current CAAQS level 2 standard could still induce increased mortality risks in Jiangsu Province, China. Continuous air pollution control measures could yield important health benefits in Jiangsu Province, China, even in cities that meet the current CAAQS level 2 standard. PMID:28231551

  10. The impact of climate change on ozone-related mortality in Sydney.

    PubMed

    Physick, William; Cope, Martin; Lee, Sunhee

    2014-01-13

    Coupled global, regional and chemical transport models are now being used with relative-risk functions to determine the impact of climate change on human health. Studies have been carried out for global and regional scales, and in our paper we examine the impact of climate change on ozone-related mortality at the local scale across an urban metropolis (Sydney, Australia). Using three coupled models, with a grid spacing of 3 km for the chemical transport model (CTM), and a mortality relative risk function of 1.0006 per 1 ppb increase in daily maximum 1-hour ozone concentration, we evaluated the change in ozone concentrations and mortality between decades 1996-2005 and 2051-2060. The global model was run with the A2 emissions scenario. As there is currently uncertainty regarding a threshold concentration below which ozone does not impact on mortality, we calculated mortality estimates for the three daily maximum 1-hr ozone concentration thresholds of 0, 25 and 40 ppb. The mortality increase for 2051-2060 ranges from 2.3% for a 0 ppb threshold to 27.3% for a 40 ppb threshold, although the numerical increases differ little. Our modeling approach is able to identify the variation in ozone-related mortality changes at a suburban scale, estimating that climate change could lead to an additional 55 to 65 deaths across Sydney in the decade 2051-2060. Interestingly, the largest increases do not correspond spatially to the largest ozone increases or the densest population centres. The distribution pattern of changes does not seem to vary with threshold value, while the magnitude only varies slightly.

  11. Clover as a tool for bioindication of phytotoxic ozone--5 years of experience from southern Sweden--consequences for the short-term critical levels.

    PubMed

    Karlsson, Gunilla Pihl; Karlsson, Per Erik; Danielsson, Helena; Pleijel, Håkan

    2003-01-01

    Critical levels (CLs) for ozone effects on plants in Europe have been defined within the UN-ECE Convention on Long-Range Transboundary Air Pollution, CLRTAP. The purpose of the short-term CLs is to ensure protection of all crops to acute ozone injury. The currently used CLs are based on the ozone exposure of the plants during daylight hours expressed as AOT40 (Accumulated exposure Over the Threshold 40 nmol mol(-1) ozone). The aims of this study were: to test the performance of the current short-term CLs, to test alternative ozone exposure indices and to test if changes in the ozone cut-off concentration, the inclusion of a lag-period (LP) between exposure and identification of visible ozone injury or the duration of the ozone integration period improved the performance of the exposure index. The analysis was based on 38 different datasets from experiments with subterranean clover, Trifolium subterraneum in southern Sweden. AOT indices generally performed better than averaged ozone concentrations or SUM (Sum of ozone concentrations when a threshold is exceeded) indices. Regression analysis showed that the current short-term CL, AOT40 with a VPD (water vapour pressure deficit) threshold of 1.5 kPa, explained 56% of the variation in visible injury. A longer exposure period and the introduction of a LP, admitting visible ozone injury time to develop after exposure, improved the performance of the exposure index. AOT30 accumulated over 10 days before harvest, excluding a LP of 3 days before injury observation, performed best and explained 88% of the variation in visible injury. AOT40 indices left a rather large amount of visible injury unexplained indicating that a lower cut-off concentration for ozone is preferable. The results of the investigation indicated that a visible injury threshold of 10% improved the distinction between harmful and less harmful exposure. Copyright 2002 Elsevier Science B.V.

  12. The Impact of Climate Change on Ozone-Related Mortality in Sydney

    PubMed Central

    Physick, William; Cope, Martin; Lee, Sunhee

    2014-01-01

    Coupled global, regional and chemical transport models are now being used with relative-risk functions to determine the impact of climate change on human health. Studies have been carried out for global and regional scales, and in our paper we examine the impact of climate change on ozone-related mortality at the local scale across an urban metropolis (Sydney, Australia). Using three coupled models, with a grid spacing of 3 km for the chemical transport model (CTM), and a mortality relative risk function of 1.0006 per 1 ppb increase in daily maximum 1-hour ozone concentration, we evaluated the change in ozone concentrations and mortality between decades 1996–2005 and 2051–2060. The global model was run with the A2 emissions scenario. As there is currently uncertainty regarding a threshold concentration below which ozone does not impact on mortality, we calculated mortality estimates for the three daily maximum 1-hr ozone concentration thresholds of 0, 25 and 40 ppb. The mortality increase for 2051–2060 ranges from 2.3% for a 0 ppb threshold to 27.3% for a 40 ppb threshold, although the numerical increases differ little. Our modeling approach is able to identify the variation in ozone-related mortality changes at a suburban scale, estimating that climate change could lead to an additional 55 to 65 deaths across Sydney in the decade 2051–2060. Interestingly, the largest increases do not correspond spatially to the largest ozone increases or the densest population centres. The distribution pattern of changes does not seem to vary with threshold value, while the magnitude only varies slightly. PMID:24419047

  13. Micrometeorological flux measurements at a coastal site

    NASA Astrophysics Data System (ADS)

    Song, Guozheng; Meixner, Franz X.; Bruse, Michael; Mamtimin, Buhalqem

    2014-05-01

    The eddy covariance (EC) technique is the only direct measurement of the momentum, heat, and trace gas (e.g. water vapor, CO2 and ozone) fluxes. The measurements are expected to be most accurate over flat terrain where there is an extended homogenous surface upwind from the tower, and when the environmental conditions are steady. Additionally, the one dimensional approach assumes that vertical turbulent exchange is the dominant flux, whereas advective influences should be negligible. The application of EC method under non-ideal conditions, for example in complex terrain, has yet to be fully explored. To explore the possibilities and limitations of EC technique under non-ideal conditions, an EC system was set up at Selles beach, Crete, Greece (35.33°N, 25.71°E) in the beginning of July 2012. The dominant wind direction was west, parallel to the coast. The EC system consisted of a sonic anemometer (CSAT3 Campbell Scientific), an infrared open-path CO2/H2O gas analyzer (LI-7500, Li-COR Biosciences) and a fast chemiluminescence ozone analyzer (enviscope GmbH). All the signals of these fast response instruments were sampled at 10 Hz and the measurement height was 3 m. Besides, another gradient system was setup. Air temperature, relative humidity (HYGROMER MP 103 A), and wind speed (WMT700 Vaisala) were measured every 10 seconds at 3 heights (0.7, 1.45, 3 m). Air intakes were set up at 0.7m and 3m. A pump drew the air through a flow system and a telflon valve alternately switched between the two heights every 30 seconds. H2O, CO2 (LI-840A, Li-COR Biosciences) and ozone mixing ratio s (model 205, 2BTechnologies) were measured every 10 seconds. Momentum, heat, CO2 and ozone fluxes were evaluated by both EC and gradient technique. For the calculation of turbulent fluxes, TK3 algorithm (Department of Micrometeorology, University Bayreuth, Germany) was applied. We will present the measured fluxes of the two systems and assess the data quality under such non-ideal condition.

  14. Toxicity and genotoxicity of hospital laundry wastewaters treated with photocatalytic ozonation.

    PubMed

    Kern, Deivid I; Schwaickhardt, Rômulo de O; Mohr, Geane; Lobo, Eduardo A; Kist, Lourdes T; Machado, Ênio L

    2013-01-15

    The aim of the present study was to assess the efficiency of advanced oxidative processes based on photocatalytic ozonation (O(3), UV, UV/O(3), UV/O(3)/Fe(2+) 50 mg L(-1) and 150 mg L(-1)) in the treatment of hospital laundry wastewaters. The analysis of the investigated wastewater revealed high chemical oxygen demand (COD - 3343.8 mg L(-1)), biochemical oxygen demand (BOD(5) - 1906.4 mg L(-1)), total Kjeldahl nitrogen (TKN - 79.8 mg L(-1)) and Daphnia magna toxicity (EC50=1.73). Genotoxic effects were also detected for Allium cepa. Reductions of some parameters occurred after photocatalytic ozonation. The UV/O(3)/Fe(2+) 150 mg L(-1) method was more efficient in reducing COD (59.1%), BOD(5) (50.3%) and TKN (86.8%). There was significant reduction (p<0.05) in D. magna toxicity, O(3) (EC50=47.3%), UV (EC50=50.6%) and UV/O(3)/Fe(2+) 150 mg L(-1) (EC50=45.4%) processes. Normalization of the mitotic index and reduction of micronucleated cells were observed in A. cepa after the treatments. Results demonstrate that these methods were efficient in the degradation of hospital laundry wastewaters, representing a thriving alternative for the removal of pollutants that cause toxicity and genotoxicity. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. From ozone mini-holes and mini-highs towards extreme value theory: New insights from extreme events and non-stationarity

    NASA Astrophysics Data System (ADS)

    Rieder, H. E.; Staehelin, J.; Maeder, J. A.; Ribatet, M.; Stübi, R.; Weihs, P.; Holawe, F.; Peter, T.; Davison, A. C.

    2009-04-01

    Over the last few decades negative trends in stratospheric ozone have been studied because of the direct link between decreasing stratospheric ozone and increasing surface UV-radiation. Recently a discussion on ozone recovery has begun. Long-term measurements of total ozone extending back earlier than 1958 are limited and only available from a few stations in the northern hemisphere. The world's longest total ozone record is available from Arosa, Switzerland (Staehelin et al., 1998a,b). At this site total ozone measurements have been made since late 1926 through the present day. Within this study (Rieder et al., 2009) new tools from extreme value theory (e.g. Coles, 2001; Ribatet, 2007) are applied to select mathematically well-defined thresholds for extreme low and extreme high total ozone. A heavy-tail focused approach is used by fitting the Generalized Pareto Distribution (GPD) to the Arosa time series. Asymptotic arguments (Pickands, 1975) justify the use of the GPD for modeling exceedances over a sufficiently high (or below a sufficiently low) threshold (Coles, 2001). More precisely, the GPD is the limiting distribution of normalized excesses over a threshold, as the threshold approaches the endpoint of the distribution. In practice, GPD parameters are fitted, to exceedances by maximum likelihood or other methods - such as the probability weighted moments. A preliminary step consists in defining an appropriate threshold for which the asymptotic GPD approximation holds. Suitable tools for threshold selection as the MRL-plot (mean residual life plot) and TC-plot (stability plot) from the POT-package (Ribatet, 2007) are presented. The frequency distribution of extremes in low (termed ELOs) and high (termed EHOs) total ozone and their influence on the long-term changes in total ozone are analyzed. Further it is shown that from the GPD-model the distribution of so-called ozone mini holes (e.g. Bojkov and Balis, 2001) can be precisely estimated and that the "extremes concept" provides new information on the data distribution and variability within the Arosa record as well as on the influence of ELOs and EHOs on the long-term trends of the ozone time series. References: Bojkov, R. D., and Balis, D.S.: Characteristics of episodes with extremely low ozone values in the northern middle latitudes 1975-2000, Ann. Geophys., 19, 797-807, 2001. Coles, S.: An Introduction to Statistical Modeling of Extreme Values, Springer Series in Statistics, ISBN:1852334592, Springer, Berlin, 2001. Pickands, J.: Statistical inference using extreme order statistics, Ann. Stat., 3, 1, 119-131, 1975. Ribatet, M.: POT: Modelling peaks over a threshold, R News, 7, 34-36, 2007. Rieder, H.E., Staehelin, J., Maeder, J.A., Stübi, R., Weihs, P., Holawe, F., and M. Ribatet: From ozone mini holes and mini highs towards extreme value theory: New insights from extreme events and non stationarity, submitted to J. Geophys. Res., 2009. Staehelin, J., Kegel, R., and Harris, N. R.: Trend analysis of the homogenized total ozone series of Arosa (Switzerland), 1929-1996, J. Geophys. Res., 103(D7), 8389-8400, doi:10.1029/97JD03650, 1998a. Staehelin, J., Renaud, A., Bader, J., McPeters, R., Viatte, P., Hoegger, B., Bugnion, V., Giroud, M., and Schill, H.: Total ozone series at Arosa (Switzerland): Homogenization and data comparison, J. Geophys. Res., 103(D5), 5827-5842, doi:10.1029/97JD02402, 1998b.

  16. Extreme events in total ozone over Arosa - Part 1: Application of extreme value theory

    NASA Astrophysics Data System (ADS)

    Rieder, H. E.; Staehelin, J.; Maeder, J. A.; Peter, T.; Ribatet, M.; Davison, A. C.; Stübi, R.; Weihs, P.; Holawe, F.

    2010-10-01

    In this study ideas from extreme value theory are for the first time applied in the field of stratospheric ozone research, because statistical analysis showed that previously used concepts assuming a Gaussian distribution (e.g. fixed deviations from mean values) of total ozone data do not adequately address the structure of the extremes. We show that statistical extreme value methods are appropriate to identify ozone extremes and to describe the tails of the Arosa (Switzerland) total ozone time series. In order to accommodate the seasonal cycle in total ozone, a daily moving threshold was determined and used, with tools from extreme value theory, to analyse the frequency of days with extreme low (termed ELOs) and high (termed EHOs) total ozone at Arosa. The analysis shows that the Generalized Pareto Distribution (GPD) provides an appropriate model for the frequency distribution of total ozone above or below a mathematically well-defined threshold, thus providing a statistical description of ELOs and EHOs. The results show an increase in ELOs and a decrease in EHOs during the last decades. The fitted model represents the tails of the total ozone data set with high accuracy over the entire range (including absolute monthly minima and maxima), and enables a precise computation of the frequency distribution of ozone mini-holes (using constant thresholds). Analyzing the tails instead of a small fraction of days below constant thresholds provides deeper insight into the time series properties. Fingerprints of dynamical (e.g. ENSO, NAO) and chemical features (e.g. strong polar vortex ozone loss), and major volcanic eruptions, can be identified in the observed frequency of extreme events throughout the time series. Overall the new approach to analysis of extremes provides more information on time series properties and variability than previous approaches that use only monthly averages and/or mini-holes and mini-highs.

  17. Extreme events in total ozone over Arosa - Part 1: Application of extreme value theory

    NASA Astrophysics Data System (ADS)

    Rieder, H. E.; Staehelin, J.; Maeder, J. A.; Peter, T.; Ribatet, M.; Davison, A. C.; Stübi, R.; Weihs, P.; Holawe, F.

    2010-05-01

    In this study ideas from extreme value theory are for the first time applied in the field of stratospheric ozone research, because statistical analysis showed that previously used concepts assuming a Gaussian distribution (e.g. fixed deviations from mean values) of total ozone data do not adequately address the structure of the extremes. We show that statistical extreme value methods are appropriate to identify ozone extremes and to describe the tails of the Arosa (Switzerland) total ozone time series. In order to accommodate the seasonal cycle in total ozone, a daily moving threshold was determined and used, with tools from extreme value theory, to analyse the frequency of days with extreme low (termed ELOs) and high (termed EHOs) total ozone at Arosa. The analysis shows that the Generalized Pareto Distribution (GPD) provides an appropriate model for the frequency distribution of total ozone above or below a mathematically well-defined threshold, thus providing a statistical description of ELOs and EHOs. The results show an increase in ELOs and a decrease in EHOs during the last decades. The fitted model represents the tails of the total ozone data set with high accuracy over the entire range (including absolute monthly minima and maxima), and enables a precise computation of the frequency distribution of ozone mini-holes (using constant thresholds). Analyzing the tails instead of a small fraction of days below constant thresholds provides deeper insight into the time series properties. Fingerprints of dynamical (e.g. ENSO, NAO) and chemical features (e.g. strong polar vortex ozone loss), and major volcanic eruptions, can be identified in the observed frequency of extreme events throughout the time series. Overall the new approach to analysis of extremes provides more information on time series properties and variability than previous approaches that use only monthly averages and/or mini-holes and mini-highs.

  18. Accurate motor mapping in awake common marmosets using micro-electrocorticographical stimulation and stochastic threshold estimation

    NASA Astrophysics Data System (ADS)

    Kosugi, Akito; Takemi, Mitsuaki; Tia, Banty; Castagnola, Elisa; Ansaldo, Alberto; Sato, Kenta; Awiszus, Friedemann; Seki, Kazuhiko; Ricci, Davide; Fadiga, Luciano; Iriki, Atsushi; Ushiba, Junichi

    2018-06-01

    Objective. Motor map has been widely used as an indicator of motor skills and learning, cortical injury, plasticity, and functional recovery. Cortical stimulation mapping using epidural electrodes is recently adopted for animal studies. However, several technical limitations still remain. Test-retest reliability of epidural cortical stimulation (ECS) mapping has not been examined in detail. Many previous studies defined evoked movements and motor thresholds by visual inspection, and thus, lacked quantitative measurements. A reliable and quantitative motor map is important to elucidate the mechanisms of motor cortical reorganization. The objective of the current study was to perform reliable ECS mapping of motor representations based on the motor thresholds, which were stochastically estimated by motor evoked potentials and chronically implanted micro-electrocorticographical (µECoG) electrode arrays, in common marmosets. Approach. ECS was applied using the implanted µECoG electrode arrays in three adult common marmosets under awake conditions. Motor evoked potentials were recorded through electromyographical electrodes implanted in upper limb muscles. The motor threshold was calculated through a modified maximum likelihood threshold-hunting algorithm fitted with the recorded data from marmosets. Further, a computer simulation confirmed reliability of the algorithm. Main results. Computer simulation suggested that the modified maximum likelihood threshold-hunting algorithm enabled to estimate motor threshold with acceptable precision. In vivo ECS mapping showed high test-retest reliability with respect to the excitability and location of the cortical forelimb motor representations. Significance. Using implanted µECoG electrode arrays and a modified motor threshold-hunting algorithm, we were able to achieve reliable motor mapping in common marmosets with the ECS system.

  19. Accurate motor mapping in awake common marmosets using micro-electrocorticographical stimulation and stochastic threshold estimation.

    PubMed

    Kosugi, Akito; Takemi, Mitsuaki; Tia, Banty; Castagnola, Elisa; Ansaldo, Alberto; Sato, Kenta; Awiszus, Friedemann; Seki, Kazuhiko; Ricci, Davide; Fadiga, Luciano; Iriki, Atsushi; Ushiba, Junichi

    2018-06-01

    Motor map has been widely used as an indicator of motor skills and learning, cortical injury, plasticity, and functional recovery. Cortical stimulation mapping using epidural electrodes is recently adopted for animal studies. However, several technical limitations still remain. Test-retest reliability of epidural cortical stimulation (ECS) mapping has not been examined in detail. Many previous studies defined evoked movements and motor thresholds by visual inspection, and thus, lacked quantitative measurements. A reliable and quantitative motor map is important to elucidate the mechanisms of motor cortical reorganization. The objective of the current study was to perform reliable ECS mapping of motor representations based on the motor thresholds, which were stochastically estimated by motor evoked potentials and chronically implanted micro-electrocorticographical (µECoG) electrode arrays, in common marmosets. ECS was applied using the implanted µECoG electrode arrays in three adult common marmosets under awake conditions. Motor evoked potentials were recorded through electromyographical electrodes implanted in upper limb muscles. The motor threshold was calculated through a modified maximum likelihood threshold-hunting algorithm fitted with the recorded data from marmosets. Further, a computer simulation confirmed reliability of the algorithm. Computer simulation suggested that the modified maximum likelihood threshold-hunting algorithm enabled to estimate motor threshold with acceptable precision. In vivo ECS mapping showed high test-retest reliability with respect to the excitability and location of the cortical forelimb motor representations. Using implanted µECoG electrode arrays and a modified motor threshold-hunting algorithm, we were able to achieve reliable motor mapping in common marmosets with the ECS system.

  20. Evaluation of enhanced coagulation pretreatment to improve ozone oxidation efficiency in wastewater.

    PubMed

    Wert, Eric C; Gonzales, Sarah; Dong, Mei Mei; Rosario-Ortiz, Fernando L

    2011-10-15

    Enhanced coagulation (EC) using ferric chloride was evaluated as a pretreatment process to improve the efficiency of ozone (O3) for the oxidation of trace organic contaminants in wastewater. At the applied dosages (10-30 mg/L as Fe), EC pretreatment removed between 10 and 47% of the dissolved organic carbon (DOC) from the three wastewaters studied. Size exclusion chromatography (SEC) showed that EC preferentially removed higher apparent molecular weight (AMW) compounds. Subsequent O3 testing was performed using an O3:DOC ratio of 1. Results showed that O3 exposures were similar even though the required doses were reduced by 10-47% by the EC pretreatment process. Hydroxyl radical (HO·) exposure, measured by parachlorobenzoic acid (pCBA), showed 10% reduction when using a FeCl3 dose of 30 mg/L, likely due to the lower O3 dose and decreased production of HO· during the initial phase of O3 decomposition (t<30 s). The oxidation of 13 trace organic contaminants (including atenolol, carbamazepine, DEET, diclofenac, dilantin, gemfibrozil, ibuprofen, meprobamate, naproxen, primidone, sulfamethoxazole, triclosan, and trimethoprim) was evaluated after EC and O3 treatment. EC was ineffective at removing any of the contaminants, while O3 oxidation reduced the concentration of compounds according to their reaction rate constants with O3 and HO·. Copyright © 2011. Published by Elsevier Ltd.

  1. Effects of ozone therapy on facial nerve regeneration.

    PubMed

    Ozbay, Isa; Ital, Ilker; Kucur, Cuneyt; Akcılar, Raziye; Deger, Aysenur; Aktas, Savas; Oghan, Fatih

    Ozone may promote moderate oxidative stress, which increases antioxidant endogenous systems. There are a number of antioxidants that have been investigated therapeutically for improving peripheral nerve regeneration. However, no previous studies have reported the effect of ozone therapy on facial nerve regeneration. We aimed to evaluate the effect of ozone therapy on facial nerve regeneration. Fourteen Wistar albino rats were randomly divided into two groups with experimental nerve crush injuries: a control group, which received saline treatment post-crush, and an experimental group, which received ozone treatment. All animals underwent surgery in which the left facial nerve was exposed and crushed. Treatment with saline or ozone began on the day of the nerve crush. Left facial nerve stimulation thresholds were measured before crush, immediately after crush, and after 30 days. After measuring nerve stimulation thresholds at 30 days post-injury, the crushed facial nerve was excised. All specimens were studied using light and electron microscopy. Post-crushing, the ozone-treated group had lower stimulation thresholds than the saline group. Although this did not achieve statistical significance, it is indicative of greater functional improvement in the ozone group. Significant differences were found in vascular congestion, macrovacuolization, and myelin thickness between the ozone and control groups. Significant differences were also found in axonal degeneration and myelin ultrastructure between the two groups. We found that ozone therapy exerted beneficial effect on the regeneration of crushed facial nerves in rats. Copyright © 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  2. Assessing the fate of an aromatic hydrocarbon fluid in agricultural spray applications using the three-stage ADVOCATE model framework

    USDA-ARS?s Scientific Manuscript database

    Components of emulsifiable concentrates (ECs) used in pesticide formulations may be emitted to air following application in agricultural use and contribute to ozone formation. A key consideration is the fraction of the ECs that is volatilized. This study is designed to provide a mechanistic model fr...

  3. 77 FR 8197 - Implementation of the 2008 National Ambient Air Quality Standards for Ozone: Nonattainment Area...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-14

    ...-AR32 Implementation of the 2008 National Ambient Air Quality Standards for Ozone: Nonattainment Area Classifications Approach, Attainment Deadlines and Revocation of the 1997 Ozone Standards for Transportation... proposing thresholds for classifying nonattainment areas for the 2008 ozone National Ambient Air Quality...

  4. Effects of ozone on the cholinergic secretory responsiveness of ferret tracheal glands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBride, R.K.; Oberdoerster, G.; Marin, M.G.

    1991-06-01

    Oxidant air pollutants exacerbate several pulmonary diseases. Inhalation of ozone has been shown to induce airway smooth muscle hyperresponsiveness. Oxidant injury could also affect airway secretory mechanisms. The authors postulated that oxidant exposure would alter the glycoconjugate secretory function of airway submucosal glands. To test this hypothesis they examined the effects of in vivo ozone exposure on the in vitro secretory responsiveness of ferret tracheal glands. Ferrets were exposed to 1 ppm ozone, 24 hr/day for 3 or 7 days. Following exposure, glandular explants, denuded of surface epithelial cells, were prepared and incubated in medium containing 3H-glucosamine for 18 hr.more » Basal secretion of labeled glycoconjugates was significantly increased 31% following 3 days of ozone exposure (P less than or equal to 0.05) and remained elevated 11% after 7 days of exposure compared to the air-exposed group. After 3 or 7 days of exposure to ozone, tracheal gland responsiveness to carbachol was increased as indicated by significantly lower EC50 values (log molar concentration) of -6.43 {plus minus} 0.04 (n = 6) and -6.50 {plus minus} 0.11 (n = 5), respectively; compared to -6.20 {plus minus} 0.08 (n = 6) for the air-exposed group. There was no difference in carbachol EC50 values for air and 7-day ozone-exposed animals treated with dexamethasone. Dexamethasone did not attenuate the ozone-induced increase in basal secretion. Tracheal gland responsiveness to {alpha}- or {beta}-adrenergic agonists was not changed by oxidant exposure. These experiments suggest that oxidant injury not only increases basal secretion of respiratory glycoconjugates but also increases tracheal gland sensitivity to a cholinergic agonist.« less

  5. Effects of nicotine-containing and "nicotine-free" e-cigarette refill liquids on intracranial self-stimulation in rats.

    PubMed

    Harris, Andrew C; Muelken, Peter; Smethells, John R; Yershova, Katrina; Stepanov, Irina; Olson, Thao Tran; Kellar, Kenneth J; LeSage, Mark G

    2018-04-01

    Animal models are needed to inform FDA regulation of electronic cigarettes (ECs) because they avoid limitations associated with human studies. We previously reported that an EC refill liquid produced less aversive/anhedonic effects at a high nicotine dose than nicotine alone as measured by elevations in intracranial self-stimulation (ICSS) thresholds, which may reflect the presence of behaviorally active non-nicotine constituents (e.g., propylene glycol) in the EC liquids. The primary objective of this study was to assess the generality of our prior ICSS findings to two additional EC liquids. We also compared effects of "nicotine-free" varieties of these EC liquids on ICSS, as well as binding affinity and/or functional activity of nicotine alone, nicotine-containing EC liquids, and "nicotine-free" EC liquids at nicotinic acetylcholine receptors (nAChRs). Nicotine alone and nicotine dose-equivalent concentrations of both nicotine-containing EC liquids produced similar lowering of ICSS thresholds at low to moderate nicotine doses, indicating similar reinforcement-enhancing effects. At high nicotine doses, nicotine alone elevated ICSS thresholds (a measure of anhedonia-like behavior) while the EC liquids did not. Nicotine-containing EC liquids did not differ from nicotine alone in terms of binding affinity or functional activity at nAChRs. "Nicotine-free" EC liquids did not affect ICSS, but bound with low affinity at some (e.g., α4ß2) nAChRs. These findings suggest that non-nicotine constituents in these EC liquids do not contribute to their reinforcement-enhancing effects. However, they may attenuate nicotine's acute aversive/anhedonic and/or toxic effects, which may moderate the abuse liability and/or toxicity of ECs. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. [Application of artificial neural networks on the prediction of surface ozone concentrations].

    PubMed

    Shen, Lu-Lu; Wang, Yu-Xuan; Duan, Lei

    2011-08-01

    Ozone is an important secondary air pollutant in the lower atmosphere. In order to predict the hourly maximum ozone one day in advance based on the meteorological variables for the Wanqingsha site in Guangzhou, Guangdong province, a neural network model (Multi-Layer Perceptron) and a multiple linear regression model were used and compared. Model inputs are meteorological parameters (wind speed, wind direction, air temperature, relative humidity, barometric pressure and solar radiation) of the next day and hourly maximum ozone concentration of the previous day. The OBS (optimal brain surgeon) was adopted to prune the neutral work, to reduce its complexity and to improve its generalization ability. We find that the pruned neural network has the capacity to predict the peak ozone, with an agreement index of 92.3%, the root mean square error of 0.0428 mg/m3, the R-square of 0.737 and the success index of threshold exceedance 77.0% (the threshold O3 mixing ratio of 0.20 mg/m3). When the neural classifier was added to the neural network model, the success index of threshold exceedance increased to 83.6%. Through comparison of the performance indices between the multiple linear regression model and the neural network model, we conclud that that neural network is a better choice to predict peak ozone from meteorological forecast, which may be applied to practical prediction of ozone concentration.

  7. Requirement of a Relatively High Threshold Level of Mg2+ for Cell Growth of a Rhizoplane Bacterium, Sphingomonas yanoikuyae EC-S001

    PubMed Central

    Hoo, Henny; Hashidoko, Yasuyuki; Islam, Md. Tofazzal; Tahara, Satoshi

    2004-01-01

    Mg2+ is one of the essential elements for bacterial cell growth. The presence of the magnesium cation (Mg2+) in various concentrations often affects cell growth restoration in plant-associating bacteria. This study attempted to determine whether Mg2+ levels in Sphingomonas yanoikuyae EC-S001 affected cell growth restoration in the host plant and what the threshold level is. S. yanoikuyae EC-S001, isolated from the rhizoplane of spinach seedlings grown from surface-sterilized seeds under aseptic conditions, displayed uniform dispersion and attachment throughout the rhizoplane and phylloplane of the host seedlings. S. yanoikuyae EC-S001 did not grow in potato-dextrose broth medium but grew well in an aqueous extract of spinach leaves. Chemical investigation of the growth factor in the spinach leaf extract led to identification of the active principle as the magnesium cation. A concentration of ca. 0.10 mM Mg2+ or more allowed S. yanoikuyae EC-S001 to grow in potato-dextrose broth medium. Some saprophytic and/or diazotrophic bacteria used in our experiment were found to have diverse threshold levels for their Mg2+ requirements. For example, Burkholderia cepacia EC-K014, originally isolated from the rhizoplane of a Melastoma sp., could grow even in Mg2+-free Hoagland's no. 2 medium with saccharose and glutamine (HSG medium) and requires a trace level of Mg2+ for its growth. In contrast, S. yanoikuyae EC-S001, together with Bacillus subtilis IFO12113, showed the most drastic restoring responses to subsequent addition of 0.98 mM Mg2+ to Mg2+-free HSG medium. Our studies concluded that Mg2+ is more than just the essential trace element needed for cell growth restoration in S. yanoikuyae EC-S001 and that certain nonculturable bacteria may require a higher concentration of Mg2+ or another specific essential element for their growth. PMID:15345402

  8. A modelling case study to evaluate control strategies for ozone reduction in Southwestern Spain

    NASA Astrophysics Data System (ADS)

    Castell, N.; Mantilla, E.; Salvador, R.; Stein, A. F.; Millán, M.

    2009-09-01

    Ozone is a strong oxidant and when certain concentrations are reached it has adverse effects on health, vegetation and materials. With the aim of protecting human health and ecosystems, European Directive 2008/50/EC establishes target values for ozone concentrations, to be achieved from 2010 onwards. In our study area, located in southwestern Spain, ozone levels regularly exceed the human health protection threshold defined in the European Directive. Indeed, this threshold was exceeded on 92 days in 2007, despite the fact that the Directive stipulates that it should not be exceeded on more than 25 days per calendar year averaged over three years. It is urgent, therefore, to reduce the current ozone levels, but because ozone is a secondary pollutant, this reduction must necessarily involve limiting the emission of its precursors, primarily nitrogen oxides (NOx) and volatile organic compounds (VOC). During the central months of the year, southwestern Spain is under strong insolation and weak synoptic forcing, promoting the development of sea breezes and mountain-induced winds and creating re-circulations of pollutants. The complex topography of the area induces the formation of vertical layers, into which the pollutants are injected and subjected to long distance transport and compensatory subsidence. The characteristics of these highly complex flows have important effects on the pollutant dispersion. In this study two ozone pollution episodes have been selected to assess the ozone response to reductions in NOx and VOC emissions from industry and traffic. The first corresponds to a typical summer episode, with the development of breezes in an anticyclonic situation with low gradient pressure and high temperatures, while the second episode presents a configuration characteristic of spring or early summer, with a smooth westerly flow and more moderate temperatures. Air pollution studies in complex terrain require the use of high-resolution models to resolve the complex structures of the local flows and their impact on emissions; nevertheless, these mesoscale systems are developed within the scope of a synoptic circulation, which also affects both the breeze development and the pollutant transport. In order to take the relationship between the different atmospheric scales into account, we used the CAMx photochemical model coupled with the MM5 meteorological model, both configured with a system of nested grids. The study domain covers an area of 28224 km2, with 2 km horizontal resolution and 18 vertical layers up to a height of 5 km with high resolution in the levels close to the ground. This paper assesses the impact over the hourly and 8-hourly maximum daily ozone concentrations of four reduction strategies in an area with complex terrain: (i) 25% reduction in VOC and NOx from industry and traffic, (ii) 50% reduction in NOx and VOC from the industry, (iii) 50% reduction in NOx and VOC from traffic, and (iv) 100% reduction in NOx and VOC from the petrochemical plant and the refinery. The study area has large industrial sources, such as a petroleum refinery, a petrochemical plant, several chemical complexes and co-generation power plants, among others. The study area includes the cities of Huelva (148,000 inhabitants), Seville (699,760 inhabitants) and Cadiz (127,200 inhabitants). The analyses presented in this work provide an assessment of the effectiveness of several strategies to reduce ozone pollution in different meteorological scenarios.

  9. Long-term ambient concentrations of total suspended particulates and oxidants as related to incidence of chronic disease in California Seventh-Day Adventists.

    PubMed

    Abbey, D E; Mills, P K; Petersen, F F; Beeson, W L

    1991-08-01

    Cancer incidence and mortality in a cohort of 6000 nonsmoking California Seventh-Day Adventists were monitored for a 6-year period, and relationships with long-term cumulative ambient air pollution were observed. Total suspended particulates (TSP) and ozone were measured in terms of numbers of hours in excess of several threshold levels corresponding to national standards as well as mean concentration. For all malignant neoplasms among females, risk increased with increasing exceedance frequencies of all thresholds of TSP except the lowest one, and those increased risks were highly statistically significant. For respiratory cancers, increased risk was associated with only one threshold of ozone, and this result was of borderline significance. Respiratory disease symptoms were assessed in 1977 and again in 1987 using the National Heart, Lung and Blood Institute respiratory symptoms questionnaire on a subcohort of 3914 individuals. Multivariate analyses which adjusted for past and passive smoking and occupational exposures indicated statistically significantly (p less than 0.05) elevated relative risks ranging up to 1.7 for incidence of asthma, definite symptoms of airway obstructive disease, and chronic bronchitis with TSP in excess of all thresholds except the lowest one but not for any thresholds of ozone. A trend association (p = 0.056) was noted between the threshold of 10 pphm ozone and incidence of asthma. These results are presented within the context of standards setting for these constituents of air pollution.

  10. Long-term ambient concentrations of total suspended particulates and oxidants as related to incidence of chronic disease in California Seventh-Day Adventists.

    PubMed Central

    Abbey, D E; Mills, P K; Petersen, F F; Beeson, W L

    1991-01-01

    Cancer incidence and mortality in a cohort of 6000 nonsmoking California Seventh-Day Adventists were monitored for a 6-year period, and relationships with long-term cumulative ambient air pollution were observed. Total suspended particulates (TSP) and ozone were measured in terms of numbers of hours in excess of several threshold levels corresponding to national standards as well as mean concentration. For all malignant neoplasms among females, risk increased with increasing exceedance frequencies of all thresholds of TSP except the lowest one, and those increased risks were highly statistically significant. For respiratory cancers, increased risk was associated with only one threshold of ozone, and this result was of borderline significance. Respiratory disease symptoms were assessed in 1977 and again in 1987 using the National Heart, Lung and Blood Institute respiratory symptoms questionnaire on a subcohort of 3914 individuals. Multivariate analyses which adjusted for past and passive smoking and occupational exposures indicated statistically significantly (p less than 0.05) elevated relative risks ranging up to 1.7 for incidence of asthma, definite symptoms of airway obstructive disease, and chronic bronchitis with TSP in excess of all thresholds except the lowest one but not for any thresholds of ozone. A trend association (p = 0.056) was noted between the threshold of 10 pphm ozone and incidence of asthma. These results are presented within the context of standards setting for these constituents of air pollution. PMID:1954938

  11. Effects of stimulation parameters and electrode location on thresholds for epidural stimulation of cat motor cortex

    NASA Astrophysics Data System (ADS)

    Wongsarnpigoon, Amorn; Grill, Warren M.

    2011-12-01

    Epidural electrical stimulation (ECS) of the motor cortex is a developing therapy for neurological disorders. Both placement and programming of ECS systems may affect the therapeutic outcome, but the treatment parameters that will maximize therapeutic outcomes and minimize side effects are not known. We delivered ECS to the motor cortex of anesthetized cats and investigated the effects of electrode placement and stimulation parameters on thresholds for evoking motor responses in the contralateral forelimb. Thresholds were inversely related to stimulation frequency and the number of pulses per stimulus train. Thresholds were lower over the forelimb representation in motor cortex (primary site) than surrounding sites (secondary sites), and thresholds at sites <4 mm away from the primary site were significantly lower than at sites >4 mm away. Electrode location and montage influenced the effects of polarity on thresholds: monopolar anodic and cathodic thresholds were not significantly different over the primary site, cathodic thresholds were significantly lower than anodic thresholds over secondary sites and bipolar thresholds were significantly lower with the anode over the primary site than with the cathode over the primary site. A majority of bipolar thresholds were either between or equal to the respective monopolar thresholds, but several bipolar thresholds were greater than or less than the monopolar thresholds of both the anode and cathode. During bipolar stimulation, thresholds were influenced by both electric field superposition and indirect, synaptically mediated interactions. These results demonstrate the influence of stimulation parameters and electrode location during cortical stimulation, and these effects should be considered during the programming of systems for therapeutic cortical stimulation.

  12. Randomised, double-blinded, placebo-controlled, clinical trial of ozone therapy as treatment of sudden sensorineural hearing loss.

    PubMed

    Ragab, A; Shreef, E; Behiry, E; Zalat, S; Noaman, M

    2009-01-01

    To investigate the safety and efficacy of ozone therapy in adult patients with sudden sensorineural hearing loss. Prospective, randomised, double-blinded, placebo-controlled, parallel group, clinical trial. Forty-five adult patients presented with sudden sensorineural hearing loss, and were randomly allocated to receive either placebo (15 patients) or ozone therapy (auto-haemotherapy; 30 patients). For the latter treatment, 100 ml of the patient's blood was treated immediately with a 1:1 volume, gaseous mixture of oxygen and ozone (from an ozone generator) and re-injected into the patient by intravenous infusion. Treatments were administered twice weekly for 10 sessions. The following data were recorded: pre- and post-treatment mean hearing gains; air and bone pure tone averages; speech reception thresholds; speech discrimination scores; and subjective recovery rates. Significant recovery was observed in 23 patients (77 per cent) receiving ozone treatment, compared with six (40 per cent) patients receiving placebo (p < 0.05). Mean hearing gains, pure tone averages, speech reception thresholds and subjective recovery rates were significantly better in ozone-treated patients compared with placebo-treated patients (p < 0.05). Ozone therapy is a significant modality for treatment of sudden sensorineural hearing loss; no complications were observed.

  13. Ozone dose-response relationships for spring oilseed rape and broccoli

    NASA Astrophysics Data System (ADS)

    De Bock, Maarten; Op de Beeck, Maarten; De Temmerman, Ludwig; Guisez, Yves; Ceulemans, Reinhart; Vandermeiren, Karine

    2011-03-01

    Tropospheric ozone is an important air pollutant with known detrimental effects for several crops. Ozone effects on seed yield, oil percentage, oil yield and 1000 seed weight were examined for spring oilseed rape ( Brassica napus cv. Ability). For broccoli ( Brassica oleracea L. cv. Italica cv. Monaco) the effects on fresh marketable weight and total dry weight were studied. Current ozone levels were compared with an increase of 20 and 40 ppb during 8 h per day, over the entire growing season. Oilseed rape seed yield was negatively correlated with ozone dose indices calculated from emergence until harvest. This resulted in an R2 of 0.24 and 0.26 ( p < 0.001) for the accumulated hourly O 3 exposure over a threshold of 40 ppb (AOT40) and the phytotoxic ozone dose above a threshold of 6 nmol m -2 s -1 (POD 6) respectively. Estimated critical levels, above which 5% yield reduction is expected, were 3.7 ppm h and 4.4 mmol m -2 respectively. Our results also confirm that a threshold value of 6 nmol s -1 m -2 projected leaf area, as recommended for agricultural crops (UNECE, Mills, 2004), can indeed be applied for spring oilseed rape. The reduction of oilseed rape yield showed the highest correlation with the ozone uptake during the vegetative growth stage: when only the first 47 days after emergence were used to calculate POD 6, R2 values increased up to 0.476 or even 0.545 when the first 23 days were excluded. The highest ozone treatments, corresponding to the future ambient level by 2100 (IPCC, Meehl et al., 2007), led to a reduction of approximately 30% in oilseed rape seed yield in comparison to the current ozone concentrations. Oil percentage was also significantly reduced in response to ozone ( p < 0.001). As a consequence oil yield was even more severely affected by elevated ozone exposure compared to seed yield: critical levels for oil yield dropped to 3.2 ppm h and 3.9 mmol m -2. For broccoli the applied ozone doses had no effect on yield.

  14. Using satellite data to guide emission control strategies for surface ozone pollution

    NASA Astrophysics Data System (ADS)

    Jin, X.; Fiore, A. M.

    2017-12-01

    Surface ozone (O3) has adverse effects on public health, agriculture and ecosystems. As a secondary pollutant, ozone is not emitted directly. Ozone forms from two classes of precursors: NOx and VOCs. We use satellite observations of formaldehyde (a marker of VOCs) and NO2 (a marker of NOx) to identify areas which would benefit more from reducing NOx emissions (NOx-limited) versus areas where reducing VOC emissions would lead to lower ozone (VOC-limited). We use a global chemical transport model (GEOS-Chem) to develop a set of threshold values that separate the NOx-limited and VOC-limited conditions. Combining these threshold values with a decadal record of satellite observations, we find that U.S. cities (e.g. New York, Chicago) have shifted from VOC-limited to NOx-limited ozone production regimes in the warm season. This transition reflects the NOx emission controls implemented over the past decade. Increasing NOx sensitivity implies that regional NOx emission control programs will improve O3 air quality more now than it would have a decade ago.

  15. Effect of ozone on infection of wild strawberry by Xanthomonas fragariae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurence, J.A.; Wood, F.A.

    1978-05-01

    Interaction studies were conducted to determine the response of wild strawberry to ozone and the effects of ozone on the infection of wild strawberry by Xanthomonas fragariae. Data from the interaction studies showed that bacterial infection of wild strawberry was inhibited by ozone exposure at concentrations that caused visible injury to the plants. Since wild strawberry was sensitive to ozone exposure and the threshold for symptom development was higher than the current ambient air quality standard for ozone, the possible use of the plant as an indicator of ambient phytotoxic concentrations of ozone was suggested. (7 graphs, 1 photo, 18more » references)« less

  16. Behavior, distribution and variability of surface ozone at an arid region in the south of Iberian Peninsula (Seville, Spain).

    PubMed

    Adame, José A; Lozano, Antonio; Bolívar, Juan P; De la Morena, Benito A; Contreras, Juan; Godoy, Francisca

    2008-01-01

    In order to improve our knowledge of the surface ozone in the south of the Iberian Peninsula, annual, monthly, weekly and daily ozone concentrations have been closely monitored in the Seville metropolitan area highlighting those episodes that exceed the European Ozone Directive. A three-year period (2003-2005) and eight ozone stations were used; five of them located in the city's busiest areas and the rest in adjacent zones ( approximately 25km). In addition, the wind regime was also studied in order to understand the main characteristics of the surface atmospheric dynamics. The lowest ozone concentrations 17-33microgm(-3) took place in January while the highest 57-95microgm(-3) occurred in June. The ozone concentration week-weekend differences from May to September indicate that this phenomenon does not affect the ozone stations analysed. Daily cycles show minimum values between 7:00 and 8:00 UTC and maximum at noon, exceeding 90microgm(-3) during summer months. From March to October the ozone concentrations were above the target value for the protection of human health, especially during the summer months, with values up to 30% over the limit. The information threshold has been exceeded at all ozone stations studied but with greater frequency in the stations far from the city centre. In addition, at these latter stations the alert threshold was also exceeded on six occasions. This study in the city of Seville indicates that the high ozone levels are due to local atmospheric effects, mainly since the ozone air masses may undergo recirculation processes. The ozone is transported to the city from the S-SW, having a major impact in the NE areas.

  17. Critical levels as applied to ozone for North American forests

    Treesearch

    Robert C. Musselman

    2006-01-01

    The United States and Canada have used concentration-based parameters for air quality standards for ozone effects on forests in North America. The European critical levels method for air quality standards uses an exposure-based parameter, a cumulative ozone concentration index with a threshold cutoff value. The critical levels method has not been used in North America...

  18. Temporal and Spatial Variation in, and Population Exposure to, Summertime Ground-Level Ozone in Beijing

    PubMed Central

    Zheng, Youfei; Li, Ting; Wei, Li; Guan, Qing

    2018-01-01

    Ground-level ozone pollution in Beijing has been causing concern among the public due to the risks posed to human health. This study analyzed the temporal and spatial distribution of, and investigated population exposure to, ground-level ozone. We analyzed hourly ground-level ozone data from 35 ambient air quality monitoring sites, including urban, suburban, background, and traffic monitoring sites, during the summer in Beijing from 2014 to 2017. The results showed that the four-year mean ozone concentrations for urban, suburban, background, and traffic monitoring sites were 95.1, 99.8, 95.9, and 74.2 μg/m3, respectively. A total of 44, 43, 45, and 43 days exceeded the Chinese National Ambient Air Quality Standards (NAAQS) threshold for ground-level ozone in 2014, 2015, 2016, and 2017, respectively. The mean ozone concentration was higher in suburban sites than in urban sites, and the traffic monitoring sites had the lowest concentration. The diurnal variation in ground-level ozone concentration at the four types of monitoring sites displayed a single-peak curve. The peak and valley values occurred at 3:00–4:00 p.m. and 7:00 a.m., respectively. Spatially, ground-level ozone concentrations decreased in gradient from the north to the south. Population exposure levels were calculated based on ground-level ozone concentrations and population data. Approximately 50.38%, 44.85%, and 48.49% of the total population of Beijing were exposed to ground-level ozone concentrations exceeding the Chinese NAAQS threshold in 2014, 2015, and 2016, respectively. PMID:29596366

  19. Temporal and Spatial Variation in, and Population Exposure to, Summertime Ground-Level Ozone in Beijing.

    PubMed

    Zhao, Hui; Zheng, Youfei; Li, Ting; Wei, Li; Guan, Qing

    2018-03-29

    Ground-level ozone pollution in Beijing has been causing concern among the public due to the risks posed to human health. This study analyzed the temporal and spatial distribution of, and investigated population exposure to, ground-level ozone. We analyzed hourly ground-level ozone data from 35 ambient air quality monitoring sites, including urban, suburban, background, and traffic monitoring sites, during the summer in Beijing from 2014 to 2017. The results showed that the four-year mean ozone concentrations for urban, suburban, background, and traffic monitoring sites were 95.1, 99.8, 95.9, and 74.2 μg/m³, respectively. A total of 44, 43, 45, and 43 days exceeded the Chinese National Ambient Air Quality Standards (NAAQS) threshold for ground-level ozone in 2014, 2015, 2016, and 2017, respectively. The mean ozone concentration was higher in suburban sites than in urban sites, and the traffic monitoring sites had the lowest concentration. The diurnal variation in ground-level ozone concentration at the four types of monitoring sites displayed a single-peak curve. The peak and valley values occurred at 3:00-4:00 p.m. and 7:00 a.m., respectively. Spatially, ground-level ozone concentrations decreased in gradient from the north to the south. Population exposure levels were calculated based on ground-level ozone concentrations and population data. Approximately 50.38%, 44.85%, and 48.49% of the total population of Beijing were exposed to ground-level ozone concentrations exceeding the Chinese NAAQS threshold in 2014, 2015, and 2016, respectively.

  20. An evaluation of indices that describe the impact of ozone on the yield of spring wheat ( Triticum aestivum L.)

    NASA Astrophysics Data System (ADS)

    Finnan, J. M.; Burke, J. I.; Jones, M. B.

    A comparison of the performance of different ozone indices in exposure-response functions was made using crop yield and ozone monitoring data from spring wheat studies carried out within the framework of the European open-top chamber programme. Indices were calculated for a twelve-hour period (0900-2100 h, local time). An attempt was made to incorporate a measure of absorbed dose into current indices by weighting with simultaneous sunshine hour values. Both linear and Weibull models were fitted to the exposure-response data in order to evaluate index performance. Cumulative indices which employed continuous weighting functions (allometric or sigmoid) or which censored concentrations above threshold values performed best as they attributed increasing weight to higher concentrations. Indices which simply summed concentrations greater than or equal to a threshold value did not perform as well as equal weight was given to all concentrations greater than the threshold value. Model selection was found to be very important in determining the indices that best describe the relationship between exposure and response. In general weighting hourly ozone concentrations with the corresponding sunshine hour values in an attempt to incorporate this proposed measure of plant activity into current indices did not improve index performance. Ozone exposure indices accounted for a large proportion of the variability in data (91%) and it is suggested that a strong link exists between exposure and dose.

  1. Contribution to the hygienic assessment of atmospheric ozone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eglite, M.E.

    1968-01-01

    The concentration of atmospheric ozone in Moscow in autumn and winter of 1965 and 1966 and in spring of 1967 amounted to 0.065 mg/mT and in Riga in spring and summer months of 1966 it oscillated in the limits of 0.01 to 0.093 mg/mT. The threshold value of the smell of ozone for the most sensitive persons attained 0.015 mg/mT, the subthreshold concentration equaled 0.01 mg/mT. The threshold value of the reflex action of ozone on the electric activity of the cerebral cortex amounted to 0.01 mg/mT, the subthreshold value equaled 0.005 mg/mT. A 24-hour chronic poisoning with ozone atmore » a concentration of 0.11 mg/mT for a period of 93 days produced in experimental rats weight decrease, an inhibition of the blood cholinesterase activity, a decrease of oxygen consumption rate, a rise of 17-ketosteroids content in the urine, a fall in ascorbic acid content of the suprarenal glands. Ozone at concentrations of 0.02 and 0.005 mg/mT proved to be ineffective.« less

  2. "OZONE SOURCE APPORTIONMENT IN CMAQ' | Science ...

    EPA Pesticide Factsheets

    Ozone source attribution has been used to support various policy purposes including interstate transport (Cross State Air Pollution Rule) by U.S. EPA and ozone nonattainment area designations by State agencies. Common scientific applications include tracking intercontinental transport of ozone and ozone precursors and delineating anthropogenic and non-anthropogenic contribution to ozone in North America. As in the public release due in September 2013, CMAQ’s Integrated Source Apportionment Method (ISAM) attributes PM EC/OC, sulfate, nitrate, ammonium, ozone and its precursors NOx and VOC, to sectors/regions of users’ interest. Although the peroxide-to-nitric acid productions ratio has been the most common indicator to distinguish NOx-limited ozone production from VOC-limited one, other indicators are implemented in addition to allowing for an ensemble decision based on a total of 9 available indicator ratios. Moreover, an alternative approach of ozone attribution based on the idea of chemical sensitivity in a linearized system that has formed the basis of chemical treatment in forward DDM/backward adjoint tools has been implemented in CMAQ. This method does not require categorization into either ozone regime. In this study, ISAM will simulate the 2010 North America ozone using all of the above gas-phase attribution methods. The results are to be compared with zero-out difference out of those sectors in the host model runs. In addition, ozone contribution wil

  3. Aerospect operations criteria for Mercury thresholds

    NASA Technical Reports Server (NTRS)

    Katz, S.

    1979-01-01

    The hazards anticipated from a large scale mercury spill during a possible failure in the preflight and early flight stages of the Space Shuttle were studied. Toxicity thresholds were investigated as well as other consequences of mercury interacting with the environment. Three sites of mercury spill were investigated: land, water, and atmosphere. A laboratory study of interactions between mercury vapor and ozone in a low pressure, high ultraviolet radiation environment approximated the conditions of a mercury vapor release in the ozone layer region of the stratosphere. Clear evidence of an interaction leading to the destruction of ozone by conversion to oxygen was obtained. The impact of a spill on the Earth's environment and methods of early detection of a developing hazard wave of primary concern in the study.

  4. Advances on the determination of thresholds of Cu phytotoxicity in field-contaminated soils in central Chile.

    PubMed

    Mondaca, Pedro; Catrin, Joanie; Verdejo, José; Sauvé, Sébastien; Neaman, Alexander

    2017-04-01

    To better determine phytotoxicity thresholds for metals in the soil, studies should use actual field-contaminated soil samples rather than metal-spiked soil preparations. However, there are surprisingly few such data available for Cu phytotoxicity in field-contaminated soils. Moreover, these studies differ from each other with regards to soil characteristics and experimental setups. This study aimed at more accurately estimating Cu phytotoxicity thresholds using field-collected agricultural soils (Entisols) from areas exposed to contamination from Cu mining. For this purpose, the exposure to Cu was assessed by measuring total soil Cu, soluble Cu, free Cu 2+ activity, and Cu in the plant aerial tissues. On the other hand, two bioassay durations (short-term and long-term), three plant species (Avena sativa L., Brassica rapa CrGC syn. Rbr, and Lolium perenne L.), and five biometric endpoints (shoot length and weight, root length and weight, and number of seed pods) were considered. Overall plant growth was best predicted by total Cu content of the soil. Despite some confounding factors, it was possible to determine EC 10 , EC 25 and EC 50 of total Cu in the soil. Brassica rapa was more sensitive than Avena sativa for all endpoints, while Lolium perenne was of intermediate sensitivity. For the short-term bioassay (21 days for all three species), the averaged EC 10 , EC 25 and EC 50 values of total soil Cu (in mg kg -1 ) were 356, 621, and 904, respectively. For the long-term bioassay (62 days for oat and 42 days for turnip), the averaged EC 10 , EC 25 and EC 50 values of total soil Cu (in mg kg -1 ) were 355, 513, and 688, respectively. The obtained results indicate that chronic test is a suitable method for assessing Cu phytotoxicity in field-contaminated soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Photochemical model evaluation of the ground-level ozone impacts on ambient air quality and vegetation health in the Alberta oil sands region: Using present and future emission scenarios

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, Krish; Cho, Sunny; Morris, Ralph; Spink, David; Jung, Jaegun; Pauls, Ron; Duffett, Katherine

    2016-09-01

    One of the potential environmental issues associated with oil sands development is increased ozone formation resulting from NOX and volatile organic compound emissions from bitumen extraction, processing and upgrading. To manage this issue in the Athabasca Oil Sands Region (AOSR) in northeast Alberta, a regional multi-stakeholder group, the Cumulative Environmental Management Association (CEMA), developed an Ozone Management Framework that includes a modelling based assessment component. In this paper, we describe how the Community Multi-scale Air Quality (CMAQ) model was applied to assess potential ground-level ozone formation and impacts on ambient air quality and vegetation health for three different ozone precursor cases in the AOSR. Statistical analysis methods were applied, and the CMAQ performance results met the U.S. EPA model performance goal at all sites. The modelled 4th highest daily maximum 8-h average ozone concentrations in the base and two future year scenarios did not exceed the Canada-wide standard of 65 ppb or the newer Canadian Ambient Air Quality Standards of 63 ppb in 2015 and 62 ppb in 2020. Modelled maximum 1-h ozone concentrations in the study were well below the Alberta Ambient Air Quality Objective of 82 ppb in all three cases. Several ozone vegetation exposure metrics were also evaluated to investigate the potential impact of ground-level ozone on vegetation. The chronic 3-months SUM60 exposure metric is within the CEMA baseline range (0-2000 ppb-hr) everywhere in the AOSR. The AOT40 ozone exposure metric predicted by CMAQ did not exceed the United Nations Economic Commission for Europe (UN/ECE) threshold of concern of 3000 ppb-hr in any of the cases but is just below the threshold in high-end future emissions scenario. In all three emission scenarios, the CMAQ predicted W126 ozone exposure metric is within the CEMA baseline threshold of 4000 ppb-hr. This study outlines the use of photochemical modelling of the impact of an industry (oil sands) on ground-level ozone levels as an air quality management tool in the AOSR. It allows an evaluation of the relationships between the pollutants emitted to the atmosphere and potential ground level ozone concentrations throughout the AOSR thereby extending the spatial coverage of the results beyond the monitoring network and also allowing an assessment of the potential impacts of possible future emission cases.

  6. Surface ozone measurements in the southwest of the Iberian Peninsula (Huelva, Spain).

    PubMed

    Carnero, Jose A Adame; Bolívar, Juan P; de la Morena, Benito A

    2010-02-01

    Photochemical ozone pollution of the lower troposphere (LT) is a very complex process involving meteorological, topographic emissions and chemical parameters. Ozone is considered the most important air pollutant in rural, suburban and industrial areas of many sites in the world since it strongly affects human health, vegetation and forest ecosystems, and its increase during the last decades has been significant. In addition, ozone is a greenhouse gas that contributes to climate change. For these reasons, it is necessary to carry out investigations that determine the behaviour of ozone at different locations. The aim of this work is to understand the levels and temporal variations of surface ozone in an industrial-urban region of the Southwest Iberian Peninsula. The study is based on ozone hourly data recorded during a 6-year period, 2000 to 2005 at four stations and meteorological data from a coastal station. The stations used were El Arenosillo and Cartaya--both coastal stations, Huelva--an urban site and Valverde--an inland station 50 km away from the coastline. The general characteristics of the ozone series, seasonal and daily ozone cycles as well as number of exceedances of the threshold established in the European Ozone Directive have been calculated and analysed. Analysis of the meteorological data shows that winter-autumn seasons are governed by the movement of synoptic weather systems; however, in the spring-summer seasons, both synoptic and mesoescale conditions exist. Average hourly ozone concentrations range from 78.5 +/- 0.1 microg m(-3) at Valverde to 57.8 +/- 0.2 microg m(-3) at Huelva. Ozone concentrations present a seasonal variability with higher values in summer months, while in wintertime, lower values are recorded. A seasonal daily evolution has also been found with minimum levels around 08:00 UTC, which occurs approximately 1-1.5 h after sunrise, whereas the maximum is reached at about 16:00 UTC. Furthermore, during summer, the maximum value at El Arenosillo and Valverde stations remains very uniformed until 20:00 UTC. These levels could be due to the photochemical production in situ and also to the horizontal and vertical ozone transport at El Arenosillo from the reservoir layers in the sea and in the case of Valverde, the horizontal transport, thanks to the marine breeze. Finally, the data have been evaluated relative to the thresholds defined in the European Ozone Directive. The threshold to protect human health has been exceeded during the spring and summer months mainly at El Arenosillo and Valverde. The vegetation threshold has also been frequently exceeded, ranging from 131 days at Cartaya up to 266 days at Valverde. The results in the seasonal and daily variations demonstrate that El Arenosillo and Valverde stations show higher ozone concentrations than Cartaya and Huelva during the spring and summer months. Under meteorological conditions characterized by land-sea breeze circulation, the daytime sea breeze transports the emissions from urban and industrial sources in the SW further inland. Under this condition, the area located downwind to the NE is affected very easily by high ozone concentrations, which is the case for the Valverde station. Nevertheless, according to this circulation model, the El Arenosillo station located at the coast SE from these sources is not directly affected by their emissions. The ozone concentrations observed at El Arenosillo can be explained by the ozone residual layer over the sea, similar to other coastal sites in the Mediterranean basin. The temporal variations of the ozone concentrations have been studied at four measurement sites in the southwest of the Iberian Peninsula. The results obtained point out that industrial and urban emissions combined with specific meteorological conditions in spring and summer cause high ozone levels which exceed the recommended threshold limits and could affect the vegetation and human health in this area. This work is the first investigation related to surface ozone in this region; therefore, the results obtained may be a useful tool to air quality managers and policy-makers to apply possible air control strategies towards a reduction of ozone exceedances and the impact on human health and vegetation. Due to the levels, variability and underlying boundary layer dynamics, it is necessary to extend this research in this geographical area with the purpose of improving the understanding of photochemical air pollution in the Western Mediterranean Basin and in the south of the Iberian Peninsula.

  7. A novel optical ozone sensor based on purely organic phosphor.

    PubMed

    Lee, Dongwook; Jung, Jaehun; Bilby, David; Kwon, Min Sang; Yun, Jaesook; Kim, Jinsang

    2015-02-11

    An optical ozone sensor was developed based on the finding that a purely organic phosphor linearly loses its phosphorescence emission intensity in the presence of varying concentration of ozone gas and ozonated water. Compared to conventional conductance-based inorganic sensors, our novel sensory film has many advantages such as easy fabrication, low-cost, and portability. NMR data confirmed that phosphorescence drop is attributed to oxidation of the core triplet generating aldehyde group of the phosphor. We observed that linear correlation between phosphorescence and ozone concentration and it can detect ozone concentrations of 0.1 ppm that is the threshold concentration harmful to human tissue and respiratory organs. Like a litmus paper, this ozone sensor can be fabricated as a free-standing and disposable film.

  8. Ozone risk assessment for agricultural crops in Europe: Further development of stomatal flux and flux-response relationships for European wheat and potato

    NASA Astrophysics Data System (ADS)

    Pleijel, H.; Danielsson, H.; Emberson, L.; Ashmore, M. R.; Mills, G.

    Applications of a parameterised Jarvis-type multiplicative stomatal conductance model with data collated from open-top chamber experiments on field grown wheat and potato were used to derive relationships between relative yield and stomatal ozone uptake. The relationships were based on thirteen experiments from four European countries for wheat and seven experiments from four European countries for potato. The parameterisation of the conductance model was based both on an extensive literature review and primary data. Application of the stomatal conductance models to the open-top chamber experiments resulted in improved linear regressions between relative yield and ozone uptake compared to earlier stomatal conductance models, both for wheat ( r2=0.83) and potato ( r2=0.76). The improvement was largest for potato. The relationships with the highest correlation were obtained using a stomatal ozone flux threshold. For both wheat and potato the best performing exposure index was AF st6 (accumulated stomatal flux of ozone above a flux rate threshold of 6 nmol ozone m -2 projected sunlit leaf area, based on hourly values of ozone flux). The results demonstrate that flux-based models are now sufficiently well calibrated to be used with confidence to predict the effects of ozone on yield loss of major arable crops across Europe. Further studies, using innovations in stomatal conductance modelling and plant exposure experimentation, are needed if these models are to be further improved.

  9. Synoptic and meteorological drivers of extreme ozone concentrations over Europe

    NASA Astrophysics Data System (ADS)

    Otero, Noelia Felipe; Sillmann, Jana; Schnell, Jordan L.; Rust, Henning W.; Butler, Tim

    2016-04-01

    The present work assesses the relationship between local and synoptic meteorological conditions and surface ozone concentration over Europe in spring and summer months, during the period 1998-2012 using a new interpolated data set of observed surface ozone concentrations over the European domain. Along with local meteorological conditions, the influence of large-scale atmospheric circulation on surface ozone is addressed through a set of airflow indices computed with a novel implementation of a grid-by-grid weather type classification across Europe. Drivers of surface ozone over the full distribution of maximum daily 8-hour average values are investigated, along with drivers of the extreme high percentiles and exceedances or air quality guideline thresholds. Three different regression techniques are applied: multiple linear regression to assess the drivers of maximum daily ozone, logistic regression to assess the probability of threshold exceedances and quantile regression to estimate the meteorological influence on extreme values, as represented by the 95th percentile. The relative importance of the input parameters (predictors) is assessed by a backward stepwise regression procedure that allows the identification of the most important predictors in each model. Spatial patterns of model performance exhibit distinct variations between regions. The inclusion of the ozone persistence is particularly relevant over Southern Europe. In general, the best model performance is found over Central Europe, where the maximum temperature plays an important role as a driver of maximum daily ozone as well as its extreme values, especially during warmer months.

  10. Chemical processes related to net ozone tendencies in the free troposphere

    NASA Astrophysics Data System (ADS)

    Bozem, Heiko; Butler, Tim M.; Lawrence, Mark G.; Harder, Hartwig; Martinez, Monica; Kubistin, Dagmar; Lelieveld, Jos; Fischer, Horst

    2017-09-01

    Ozone (O3) is an important atmospheric oxidant, a greenhouse gas, and a hazard to human health and agriculture. Here we describe airborne in situ measurements and model simulations of O3 and its precursors during tropical and extratropical field campaigns over South America and Europe, respectively. Using the measurements, net ozone formation/destruction tendencies are calculated and compared to 3-D chemistry-transport model simulations. In general, observation-based net ozone tendencies are positive in the continental boundary layer and the upper troposphere at altitudes above ˜ 6 km in both environments. On the other hand, in the marine boundary layer and the middle troposphere, from the top of the boundary layer to about 6-8 km altitude, net O3 destruction prevails. The ozone tendencies are controlled by ambient concentrations of nitrogen oxides (NOx). In regions with net ozone destruction the available NOx is below the threshold value at which production and destruction of O3 balance. While threshold NO values increase with altitude, in the upper troposphere NOx concentrations are generally higher due to the integral effect of convective precursor transport from the boundary layer, downward transport from the stratosphere and NOx produced by lightning. Two case studies indicate that in fresh convective outflow of electrified thunderstorms net ozone production is enhanced by a factor 5-6 compared to the undisturbed upper tropospheric background. The chemistry-transport model MATCH-MPIC generally reproduces the pattern of observation-based net ozone tendencies but mostly underestimates the magnitude of the net tendency (for both net ozone production and destruction).

  11. Alternative Fuels Tests on a C-17 Aircraft: Emissions Characteristics

    DTIC Science & Technology

    2010-12-01

    Chamber DMA Differential Mobility Analyzer DNPH Dinitrophenylhydrazine EC Elemental Carbon EIn Particle Number Emission Index EIm...flows at 2 SLPM for five minutes through an ozone scrubber and then through a silica gel cartridge treated with 2,4- dinitrophenylhydrazine (DNPH). The

  12. NMOC, ozone, and organic aerosol in the southeastern United States, 1999-2007: 3. Origins of organic aerosol in Atlanta, Georgia, and surrounding areas

    NASA Astrophysics Data System (ADS)

    Blanchard, C. L.; Hidy, G. M.; Tanenbaum, S.; Edgerton, E. S.

    2011-02-01

    Carbonaceous compounds constitute a major fraction of the fine particle mass at locations throughout North America; much of the condensed-phase organic carbon (OC) is produced in the atmosphere from NMOC reactions as "secondary" OC (SOC). Ten years of particulate carbon and speciated non-methane organic compound (NMOC) data combined with other measurements from Southeastern Aerosol Research and Characterization (SEARCH) and other sites provide insight into the association between elemental carbon (EC), OC and NMOCs. Data are analyzed to characterize the OC and SOC contrasts between urban Atlanta, Georgia, and nearby non-urban conditions in the Southeast. Analysis of the monitoring record indicates that the mean Atlanta urban excess of total carbon (TC) is 2.1-2.8 μg m -3. The OC/EC ratio of the Atlanta urban excess is in the range 1.3 to 1.8, consistent with OC/EC ratios observed in motor vehicle emissions and a fossil carbon source of urban excess TC. Carbon isotope analysis of a subset of particle samples demonstrates that the urban excess is mainly fossil in origin, even though the majority of the TC is modern at both urban and non-urban sites. Temperature-dependent partitioning of OC between gas and condensed phases cannot explain the observed diurnal and seasonal variations of OC/CO, EC/CO, and OC/EC ratios. Alternatively, a hypothesis involving vertical mixing of OC-enriched air from aloft is supported by the seasonal and diurnal OC, isopentane, aromatic and isoprene observations at the ground. A statistical model is applied to indicate the relative significance of aerometric factors affecting OC and EC concentrations, including meteorological and pollutant associations. The model results demonstrate strong linkages between fine particle carbon and pollutant indicators of source emissions compared with meteorological factors; the model results show weaker dependence of OC on meteorological factors than is the case for ozone (O 3) concentrations.

  13. Interannual variability in ozone removal by a temperate deciduous forest

    NASA Astrophysics Data System (ADS)

    Clifton, O. E.; Fiore, A. M.; Munger, J. W.; Malyshev, S.; Horowitz, L. W.; Shevliakova, E.; Paulot, F.; Murray, L. T.; Griffin, K. L.

    2017-01-01

    The ozone (O3) dry depositional sink and its contribution to observed variability in tropospheric O3 are both poorly understood. Distinguishing O3 uptake through plant stomata versus other pathways is relevant for quantifying the O3 influence on carbon and water cycles. We use a decade of O3, carbon, and energy eddy covariance (EC) fluxes at Harvard Forest to investigate interannual variability (IAV) in O3 deposition velocities (vd,O3). In each month, monthly mean vd,O3 for the highest year is twice that for the lowest. Two independent stomatal conductance estimates, based on either water vapor EC or gross primary productivity, vary little from year to year relative to canopy conductance. We conclude that nonstomatal deposition controls the substantial observed IAV in summertime vd,O3 during the 1990s over this deciduous forest. The absence of obvious relationships between meteorology and vd,O3 implies a need for additional long-term, high-quality measurements and further investigation of nonstomatal mechanisms.

  14. Postural control after a prolonged treadmill run at individual ventilatory and anaerobic threshold.

    PubMed

    Guidetti, Laura; Franciosi, Emanuele; Gallotta, Maria Chiara; Emerenziani, Gian Pietro; Baldari, Carlo

    2011-01-01

    The objective of the study was to verify whether young males' balance was affected by 30min prolonged treadmill running (TR) at individual ventilatory (IVT) and anaerobic (IAT) thresholds in recovery time. The VO2max, IAT and IVT during an incremental TR were determined. Mean displacement amplitude (Acp) and velocity (Vcp) of center of pressure were recorded before (pre) and after (0min post; 5min post; and 10min post) prolonged TR at IAT and IVT, through posturographic trials performed with eyes open (EO) and closed (EC). Significant differences between IVT and IAT for Vcp, between EO and EC for Acp and Vcp, were observed. The IAT induced higher destabilizing effect when postural trials were performed with EC. The IVT intensity produced also a destabilizing effect on postural control immediately after exercise. An impairment of postural control after prolonged treadmill running exercise at IVT and IAT intensity was showed. However, destabilizing effect on postural control disappeared within 10min after IAT intensity and within 5min after IVT intensity. Key pointsTo verify whether young males' balance was affected by 30min prolonged treadmill running at individual ventilatory and anaerobic thresholds in recovery time.Mean displacement amplitude and velocity of foot pressure center were recorded before and after prolonged treadmill running at individual ventilatory and anaerobic thresholds, through posturographic trials performed with eyes open and closed.Destabilizing effect on postural control disappeared within 10min post individual anaerobic threshold, and within 5min post individual ventilatory threshold.

  15. Abuse liability assessment of an e-cigarette refill liquid using intracranial self-stimulation and self-administration models in rats

    PubMed Central

    LeSage, MG; Staley, M; Muelken, P; Smethells, JR; Stepanov, I; Vogel, RI; Pentel, PR; Harris, AC

    2016-01-01

    Background The popularity of electronic cigarettes (ECs) has increased dramatically despite their unknown health consequences. Because the abuse liability of ECs is one of the leading concerns of the Food and Drug Administration (FDA), models to assess it are urgently needed to inform FDA regulatory decisions regarding these products. The purpose of this study was to assess the relative abuse liability of an EC liquid compared to nicotine alone in rats. Because this EC liquid contains non-nicotine constituents that may enhance its abuse liability, we hypothesized that it would have greater abuse liability than nicotine alone. Methods Nicotine alone and nicotine dose-equivalent concentrations of EC liquid were compared in terms of their acute effects on intracranial self-stimulation (ICSS) thresholds, acquisition of self-administration, reinforcing efficacy (i.e., elasticity of demand), blockade of these behavioral effects by mecamylamine, nicotine pharmacokinetics and nicotinic acetylcholine receptor binding and activation. Results There were no significant differences between formulations on any measure, except that EC liquid produced less of an elevation in ICSS thresholds at high nicotine doses. Conclusions Collectively, these findings suggest that the relative abuse liability of this EC liquid is similar to that of nicotine alone in terms of its reinforcing and reinforcement-enhancing effects, but that it may have less aversive/anhedonic effects at high doses. The present methods may be useful for assessing the abuse liability of other ECs to inform potential FDA regulation of those products. PMID:27627814

  16. Extreme events in total ozone over Arosa: Application of extreme value theory and fingerprints of atmospheric dynamics and chemistry and their effects on mean values and long-term changes

    NASA Astrophysics Data System (ADS)

    Rieder, Harald E.; Staehelin, Johannes; Maeder, Jörg A.; Peter, Thomas; Ribatet, Mathieu; Davison, Anthony C.; Stübi, Rene; Weihs, Philipp; Holawe, Franz

    2010-05-01

    In this study tools from extreme value theory (e.g. Coles, 2001; Ribatet, 2007) are applied for the first time in the field of stratospheric ozone research, as statistical analysis showed that previously used concepts assuming a Gaussian distribution (e.g. fixed deviations from mean values) of total ozone data do not address the internal data structure concerning extremes adequately. The study illustrates that tools based on extreme value theory are appropriate to identify ozone extremes and to describe the tails of the world's longest total ozone record (Arosa, Switzerland - for details see Staehelin et al., 1998a,b) (Rieder et al., 2010a). A daily moving threshold was implemented for consideration of the seasonal cycle in total ozone. The frequency of days with extreme low (termed ELOs) and extreme high (termed EHOs) total ozone and the influence of those on mean values and trends is analyzed for Arosa total ozone time series. The results show (a) an increase in ELOs and (b) a decrease in EHOs during the last decades and (c) that the overall trend during the 1970s and 1980s in total ozone is strongly dominated by changes in these extreme events. After removing the extremes, the time series shows a strongly reduced trend (reduction by a factor of 2.5 for trend in annual mean). Furthermore, it is shown that the fitted model represents the tails of the total ozone data set with very high accuracy over the entire range (including absolute monthly minima and maxima). Also the frequency distribution of ozone mini-holes (using constant thresholds) can be calculated with high accuracy. Analyzing the tails instead of a small fraction of days below constant thresholds provides deeper insight in time series properties. Excursions in the frequency of extreme events reveal "fingerprints" of dynamical factors such as ENSO or NAO, and chemical factors, such as cold Arctic vortex ozone losses, as well as major volcanic eruptions of the 20th century (e.g. Gunung Agung, El Chichón, Mt. Pinatubo). Furthermore, atmospheric loading in ozone depleting substances lead to a continuous modification of column ozone in the northern hemisphere also with respect to extreme values (partly again in connection with polar vortex contributions). It is shown that application of extreme value theory allows the identification of many more such fingerprints than conventional time series analysis of annual and seasonal mean values. Especially, the analysis shows the strong influence of dynamics, revealing that even moderate ENSO and NAO events have a discernible effect on total ozone (Rieder et al., 2010b). Overall the presented new extremes concept provides new information on time series properties, variability, trends and the influence of dynamics and chemistry, complementing earlier analyses focusing only on monthly (or annual) mean values. References: Coles, S.: An Introduction to Statistical Modeling of Extreme Values, Springer Series in Statistics, ISBN:1852334592, Springer, Berlin, 2001. Ribatet, M.: POT: Modelling peaks over a threshold, R News, 7, 34-36, 2007. Rieder ,H.E., Staehelin, J., Maeder, J.A., Ribatet, M., Stübi, R., Weihs, P., Holawe, F., Peter, T., and A.D., Davison (2010): Extreme events in total ozone over Arosa - Part I: Application of extreme value theory, to be submitted to ACPD. Rieder, H.E., Staehelin, J., Maeder, J.A., Ribatet, M., Stübi, R., Weihs, P., Holawe, F., Peter, T., and A.D., Davison (2010): Extreme events in total ozone over Arosa - Part II: Fingerprints of atmospheric dynamics and chemistry and effects on mean values and long-term changes, to be submitted to ACPD. Staehelin, J., Renaud, A., Bader, J., McPeters, R., Viatte, P., Hoegger, B., Bugnion, V., Giroud, M., and Schill, H.: Total ozone series at Arosa (Switzerland): Homogenization and data comparison, J. Geophys. Res., 103(D5), 5827-5842, doi:10.1029/97JD02402, 1998a. Staehelin, J., Kegel, R., and Harris, N. R.: Trend analysis of the homogenized total ozone series of Arosa (Switzerland), 1929-1996, J. Geophys. Res., 103(D7), 8389-8400, doi:10.1029/97JD03650, 1998b.

  17. European commission research on stratospheric ozone depletion

    NASA Astrophysics Data System (ADS)

    Amanatidis, G. T.; Ott, H.

    1995-02-01

    The research policy of the European Commission (EC) on the stratospheric ozone depletion, which is implemented through the ENVIRONMENT Programme is described. The strategy of this stratospheric ozone research, which is developed to address the open scientific questions, requires a coordinated and balanced programme which is based on long term measurements, process studies at regional or global scale, laboratory studies, continuous and accurate measurements of ultraviolet (UV) radiation and development of instrumentation. These research activities, whenever necessary, take form of extensive and coordinated experiments (EASOE 1991/92, SESAME 1994-95), while the overall objective is to provide a firm scientific basis for future European Union (EU) policy actions in this area. Finally, priorities which have been identified for future research in the ENVIRONMENT and CLIMATE Programme (1994-1998) are also detailed.

  18. Effect of Ozone Treatment on Nano-Sized Silver Sulfide in Wastewater Effluent.

    PubMed

    Thalmann, Basilius; Voegelin, Andreas; von Gunten, Urs; Behra, Renata; Morgenroth, Eberhard; Kaegi, Ralf

    2015-09-15

    Silver nanoparticles used in consumer products are likely to be released into municipal wastewater. Transformation reactions, most importantly sulfidation, lead to the formation of nanoscale silver sulfide (nano-Ag2S) particles. In wastewater treatment plants (WWTP), ozonation can enhance the effluent quality by eliminating organic micropollutants. The effect of ozonation on the fate of nano-Ag2S, however, is currently unknown. In this study, we investigate the interaction of ozone with nano-Ag2S and evaluate the effect of ozonation on the short-term toxicity of WWTP effluent spiked with nano-Ag2S. The oxidation of nano-Ag2S by ozone resulted in a stoichiometric factor (number of moles of ozone required to oxidize one mole of sulfide to sulfate) of 2.91, which is comparable to the results obtained for the reaction of bisulfide (HS(-)) with ozone. The second-order rate constant for the reaction of nano-Ag2S with ozone (k = 3.1 × 10(4) M(-1) s(-1)) is comparable to the rate constant of fast-reacting micropollutants. Analysis of the ozonation products of nano-Ag2S by transmission electron microscopy (TEM) and X-ray absorption spectroscopy (XAS) revealed that ozonation dominantly led to the formation of silver chloride in WWTP effluent. After ozonation of the Ag2S-spiked effluent, the short-term toxicity for the green algae Chlamydomonas reinhardtii increased and reached EC50 values comparable to Ag(+). This study thus reveals that ozone treatment of WWTP effluent results in the oxidation of Ag2S and, hence, an increase of the Ag toxicity in the effluent, which may become relevant at elevated Ag concentrations.

  19. Ozone levels in the Spanish Sierra de Guadarrama mountain range are above the thresholds for plant protection: analysis at 2262, 1850, and 995 m a.s.l.

    PubMed

    Elvira, S; González-Fernández, I; Alonso, R; Sanz, J; Bermejo-Bermejo, V

    2016-10-01

    The Sierra de Guadarrama mountain range, located at 60 km from Madrid City (Spain), includes high valuable ecosystems following an altitude gradient, some of them protected under the Sierra de Guadarrama National Park. The characteristic Mediterranean climatic conditions and the precursors emitted from Madrid favor a high photochemical production of ozone (O 3 ) in the region. However, very little information is available about the patterns and levels of O 3 and other air pollutants in the high elevation areas and their potential effects on vegetation. Ozone levels were monitored at three altitudes (2262, 1850, and 995 m a.s.l.) for at least 3 years within the 2005-2011 period. NO x and SO 2 were also recorded at the highest and lowest altitude sites. Despite the inter-annual and seasonal variations detected in the O 3 concentrations, the study revealed that SG is exposed to a chronic O 3 pollution. The two high elevation sites showed high O 3 levels even in winter and at nighttime, having low correlation with local meteorological variables. At the lower elevation site, O 3 levels were more related with local meteorological and pollution conditions. Ozone concentrations at the three sites exceeded the thresholds for the protection of human health and vegetation according to the European Air Quality Directive (EU/50/2008) and the thresholds for vegetation protection of the CLRTAP. Ozone should be considered as a stress factor for the health of the Sierra de Guadarrama mountain ecosystems. Furthermore, since O 3 levels at foothills differ from concentration in high elevation, monitoring stations in mountain ranges should be incorporated in regional air quality monitoring networks.

  20. Study of drug release and tablet characteristics of silicone adhesive matrix tablets.

    PubMed

    Tolia, Gaurav; Li, S Kevin

    2012-11-01

    Matrix tablets of a model drug acetaminophen (APAP) were prepared using a highly compressible low glass transition temperature (T(g)) polymer silicone pressure sensitive adhesive (PSA) at various binary mixtures of silicone PSA/APAP ratios. Matrix tablets of a rigid high T(g) matrix forming polymer ethyl cellulose (EC) were the reference for comparison. Drug release study was carried out using USP Apparatus 1 (basket), and the relationship between the release kinetic parameters of APAP and polymer/APAP ratio was determined to estimate the excipient percolation threshold. The critical points attributed to both silicone PSA and EC tablet percolation thresholds were found to be between 2.5% and 5% w/w. For silicone PSA tablets, satisfactory mechanical properties were obtained above the polymer percolation threshold; no cracking or chipping of the tablet was observed above this threshold. Rigid EC APAP tablets showed low tensile strength and high friability. These results suggest that silicone PSA could eliminate issues related to drug compressibility in the formulation of directly compressed oral controlled release tablets of poorly compressible drug powder such as APAP. No routinely used excipients such as binders, granulating agents, glidants, or lubricants were required for making an acceptable tablet matrix of APAP using silicone PSA. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Extreme Events: low and high total ozone over Arosa, Switzerland

    NASA Astrophysics Data System (ADS)

    Rieder, H. E.; Staehelin, J.; Maeder, J. A.; Ribatet, M.; Stübi, R.; Weihs, P.; Holawe, F.; Peter, T.; Davison, A. C.

    2009-04-01

    The frequency distribution of days with extreme low (termed ELOs) and high (termed EHOs) total ozone is analyzed for the world's longest total ozone record (Arosa, Switzerland - for details see Staehelin et al.,1998a,b), with new tools from extreme value theory (e.g. Coles, 2001; Ribatet, 2007). A heavy-tail focused approach is used through the fitting of the Generalized Pareto Distribution (GPD) to the Arosa time series. Asymptotic arguments (Pickands, 1975) justify the use of the GPD for modeling exceedances over a high (or below a low) enough threshold (Coles, 2001). The analysis shows that the GPD is appropriate for modeling the frequency distribution in total ozone above or below a mathematically well-defined threshold. While previous studies focused on so termed ozone mini-holes and mini-highs (e.g. Bojkov and Balis, 2001, Koch et al., 2005), this study is the first to present a mathematical description of extreme events in low and high total ozone for a northern mid-latitudes site (Rieder et al., 2009). The results show (a) an increase in days with extreme low (ELOs) and (b) a decrease in days with extreme high total ozone (EHOs) during the last decades, (c) that the general trend in total ozone is strongly determined by these extreme events and (d) that fitting the GPD is an appropriate method for the estimation of the frequency distribution of so-called ozone mini-holes. Furthermore, this concept allows one to separate the effect of Arctic ozone depletion from that of in situ mid-latitude ozone loss. As shown by this study, ELOs and EHOs have a strong influence on mean values in total ozone and the "extremes concept" could be further used also for validation of Chemistry-Climate-Models (CCMs) within the scientific community. References: Bojkov, R. D., and Balis, D.S.: Characteristics of episodes with extremely low ozone values in the northern middle latitudes 1975-2000, Ann. Geophys., 19, 797-807, 2001. Coles, S.: An Introduction to Statistical Modeling of Extreme Values, Springer Series in Statistics, ISBN:1852334592, Springer, Berlin, 2001. Koch, G., H. Wernli, C. Schwierz, J. Staehelin, and T. Peter (2005), A composite study on the structure and formation of ozone miniholes and minihighs over central Europe, Geophys. Res. Lett., 32, L12810, doi:10.1029/2004GL022062. Pickands, J.: Statistical-Inference using extreme order Statistics, Ann. Stat., 3, 1, 119-131, 1975. Ribatet, M.: POT: Modelling peaks over a threshold, R News, 7, 34-36, 2007. Rieder, H.E., Staehelin, J., Maeder, J.A., Ribatet, M., Stübi, R., Weihs, P., Holawe, F., Peter, T., and Davison, A.C.: From ozone mini holes and mini highs towards extreme value theory: New insights from extreme events and non stationarity, submitted to J. Geophys. Res., 2009. Staehelin, J., Kegel, R., and Harris, N. R.: Trend analysis of the homogenized total ozone series of Arosa (Switzerland), 1929-1996, J. Geophys. Res., 103(D7), 8389-8400, doi:10.1029/97JD03650, 1998a. Staehelin, J., Renaud, A., Bader, J., McPeters, R., Viatte, P., Hoegger, B., Bugnion, V., Giroud, M., and Schill, H.: Total ozone series at Arosa (Switzerland): Homogenization and data comparison, J. Geophys. Res., 103(D5), 5827-5842, doi:10.1029/97JD02402, 1998b.

  2. Thresholds of copper phytotoxicity in field-collected agricultural soils exposed to copper mining activities in Chile.

    PubMed

    Verdejo, José; Ginocchio, Rosanna; Sauvé, Sébastien; Salgado, Eduardo; Neaman, Alexander

    2015-12-01

    It has been argued that the identification of the phytotoxic metal thresholds in soil should be based on field-collected soil rather than on artificially-contaminated soils. However, the use of field-collected soils presents several difficulties for interpretation because of mixed contamination and unavoidable covariance of metal contamination with other soil properties that affect plant growth. The objective of this study was to estimate thresholds of copper phytotoxicity in topsoils of 27 agricultural areas historically contaminated by mining activities in Chile. We performed emergence and early growth (21 days) tests (OECD 208 and ISO 11269-2) with perennial ryegrass (Lolium perenne L.). The total Cu content in soils was the best predictor of plant growth and shoot Cu concentrations, while soluble Cu and pCu(2+) did not well correlate with these biological responses. The effects of Pb, Zn, and As on plant responses were not significant, suggesting that Cu is a metal of prime concern for plant growth in soils exposed to copper mining activities in Chile. The effects of soil nutrient availability and shoot nutrient concentrations on ryegrass response were not significant. It was possible to determine EC10, EC25 and EC50 of total Cu in the soil of 327 mg kg(-1), 735 mg kg(-1) and 1144 mg kg(-1), respectively, using the shoot length as a response variable. However, the derived 95% confidence intervals for EC10, EC25 and EC50 values of total soil Cu were wide, and thus not allowing a robust assessment of metal toxicity for agricultural crops, based on total soil Cu concentrations. Thus, plant tests might need to be performed for metal toxicity assessment. This study suggests shoot length of ryegrass as a robust response variable for metal toxicity assessment in contaminated soils with different nutrient availability. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Similar precipitated withdrawal effects on intracranial self-stimulation during chronic infusion of an e-cigarette liquid or nicotine alone.

    PubMed

    Harris, A C; Muelken, P; Smethells, J R; Krueger, M; LeSage, M G

    2017-10-01

    The FDA recently extended their regulatory authority to electronic cigarettes (ECs). Because the abuse liability of ECs is a leading concern of the FDA, animal models are urgently needed to identify factors that influence the relative abuse liability of these products. The ability of tobacco products to induce nicotine dependence, defined by the emergence of anhedonia and other symptoms of nicotine withdrawal following cessation of their use, contributes to tobacco abuse liability. The present study compared the severity of precipitated withdrawal during chronic infusion of nicotine alone or nicotine-dose equivalent concentrations of three different EC refill liquids in rats, as indicated by elevations in intracranial self-stimulation (ICSS) thresholds (anhedonia-like behavior). Because these EC liquids contain constituents that may enhance their abuse liability (e.g., minor alkaloids), we hypothesized that they would be associated with greater withdrawal effects than nicotine alone. Results indicated that the nicotinic acetylcholine receptor antagonist mecamylamine precipitated elevations in ICSS thresholds in rats receiving a chronic infusion of nicotine alone or EC liquids (3.2mg/kg/day, via osmotic pump). Magnitude of this effect did not differ between formulations. Our findings indicate that nicotine alone is the primary CNS determinant of the ability of ECs to engender dependence. Combined with our previous findings that nicotine alone and these EC liquids do not differ in other preclinical addiction models, these data suggest that product standards set by the FDA to reduce EC abuse liability should primarily target nicotine, other constituents with peripheral sensory effects (e.g. flavorants), and factors that influence product appeal (e.g., marketing). Copyright © 2017 Elsevier Inc. All rights reserved.

  4. 20-HETE mediates ozone-induced, neutrophil-independent airway hyper-responsiveness in mice.

    PubMed

    Cooper, Philip R; Mesaros, A Clementina; Zhang, Jie; Christmas, Peter; Stark, Christopher M; Douaidy, Karim; Mittelman, Michael A; Soberman, Roy J; Blair, Ian A; Panettieri, Reynold A

    2010-04-20

    Ozone, a pollutant known to induce airway hyper-responsiveness (AHR), increases morbidity and mortality in patients with obstructive airway diseases and asthma. We postulate oxidized lipids mediate in vivo ozone-induced AHR in murine airways. Male BALB/c mice were exposed to ozone (3 or 6 ppm) or filtered air (controls) for 2 h. Precision cut lung slices (PCLS; 250 microm thickness) containing an intrapulmonary airway ( approximately 0.01 mm(2) lumen area) were prepared immediately after exposure or 16 h later. After 24 h, airways were contracted to carbachol (CCh). Log EC(50) and E(max) values were then calculated by measuring the airway lumen area with respect to baseline. In parallel studies, dexamethasone (2.5 mg/kg), or 1-aminobenzotriazol (ABT) (50 mg/kg) were given intraperitoneal injection to naïve mice 18 h prior to ozone exposure. Indomethacin (10 mg/kg) was administered 2 h prior. Cell counts, cytokine levels and liquid chromatography-mass spectrometry (LC-MS) for lipid analysis were assessed in bronchoalveolar lavage (BAL) fluid from ozone exposed and control mice. Ozone acutely induced AHR to CCh. Dexamethasone or indomethacin had little effect on the ozone-induced AHR; while, ABT, a cytochrome P450 inhibitor, markedly attenuated airway sensitivity. BAL fluid from ozone exposed animals, which did not contain an increase in neutrophils or interleukin (IL)-6 levels, increased airway sensitivity following in vitro incubation with a naïve PCLS. In parallel, significant increases in oxidized lipids were also identified using LC-MS with increases of 20-HETE that were decreased following ABT treatment. These data show that ozone acutely induces AHR to CCh independent of inflammation and is insensitive to steroid treatment or cyclooxygenase (COX) inhibition. BAL fluid from ozone exposed mice mimicked the effects of in vivo ozone exposure that were associated with marked increases in oxidized lipids. 20-HETE plays a pivotal role in mediating acute ozone-induced AHR.

  5. Global ozone and air quality: a multi-model assessment of risks to human health and crops

    NASA Astrophysics Data System (ADS)

    Ellingsen, K.; Gauss, M.; van Dingenen, R.; Dentener, F. J.; Emberson, L.; Fiore, A. M.; Schultz, M. G.; Stevenson, D. S.; Ashmore, M. R.; Atherton, C. S.; Bergmann, D. J.; Bey, I.; Butler, T.; Drevet, J.; Eskes, H.; Hauglustaine, D. A.; Isaksen, I. S. A.; Horowitz, L. W.; Krol, M.; Lamarque, J. F.; Lawrence, M. G.; van Noije, T.; Pyle, J.; Rast, S.; Rodriguez, J.; Savage, N.; Strahan, S.; Sudo, K.; Szopa, S.; Wild, O.

    2008-02-01

    Within ACCENT, a European Network of Excellence, eighteen atmospheric models from the U.S., Europe, and Japan calculated present (2000) and future (2030) concentrations of ozone at the Earth's surface with hourly temporal resolution. Comparison of model results with surface ozone measurements in 14 world regions indicates that levels and seasonality of surface ozone in North America and Europe are characterized well by global models, with annual average biases typically within 5-10 nmol/mol. However, comparison with rather sparse observations over some regions suggest that most models overestimate annual ozone by 15-20 nmol/mol in some locations. Two scenarios from the International Institute for Applied Systems Analysis (IIASA) and one from the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (IPCC SRES) have been implemented in the models. This study focuses on changes in near-surface ozone and their effects on human health and vegetation. Different indices and air quality standards are used to characterise air quality. We show that often the calculated changes in the different indices are closely inter-related. Indices using lower thresholds are more consistent between the models, and are recommended for global model analysis. Our analysis indicates that currently about two-thirds of the regions considered do not meet health air quality standards, whereas only 2-4 regions remain below the threshold. Calculated air quality exceedances show moderate deterioration by 2030 if current emissions legislation is followed and slight improvements if current emissions reduction technology is used optimally. For the "business as usual" scenario severe air quality problems are predicted. We show that model simulations of air quality indices are particularly sensitive to how well ozone is represented, and improved accuracy is needed for future projections. Additional measurements are needed to allow a more quantitative assessment of the risks to human health and vegetation from changing levels of surface ozone.

  6. Gridded global surface ozone metrics for atmospheric chemistry model evaluation

    NASA Astrophysics Data System (ADS)

    Sofen, E. D.; Bowdalo, D.; Evans, M. J.; Apadula, F.; Bonasoni, P.; Cupeiro, M.; Ellul, R.; Galbally, I. E.; Girgzdiene, R.; Luppo, S.; Mimouni, M.; Nahas, A. C.; Saliba, M.; Tørseth, K.

    2016-02-01

    The concentration of ozone at the Earth's surface is measured at many locations across the globe for the purposes of air quality monitoring and atmospheric chemistry research. We have brought together all publicly available surface ozone observations from online databases from the modern era to build a consistent data set for the evaluation of chemical transport and chemistry-climate (Earth System) models for projects such as the Chemistry-Climate Model Initiative and Aer-Chem-MIP. From a total data set of approximately 6600 sites and 500 million hourly observations from 1971-2015, approximately 2200 sites and 200 million hourly observations pass screening as high-quality sites in regionally representative locations that are appropriate for use in global model evaluation. There is generally good data volume since the start of air quality monitoring networks in 1990 through 2013. Ozone observations are biased heavily toward North America and Europe with sparse coverage over the rest of the globe. This data set is made available for the purposes of model evaluation as a set of gridded metrics intended to describe the distribution of ozone concentrations on monthly and annual timescales. Metrics include the moments of the distribution, percentiles, maximum daily 8-hour average (MDA8), sum of means over 35 ppb (daily maximum 8-h; SOMO35), accumulated ozone exposure above a threshold of 40 ppbv (AOT40), and metrics related to air quality regulatory thresholds. Gridded data sets are stored as netCDF-4 files and are available to download from the British Atmospheric Data Centre (doi: 10.5285/08fbe63d-fa6d-4a7a-b952-5932e3ab0452). We provide recommendations to the ozone measurement community regarding improving metadata reporting to simplify ongoing and future efforts in working with ozone data from disparate networks in a consistent manner.

  7. Vitamin D Synthesis by UV Radiation: the Importance of Ozone Monitoring

    NASA Astrophysics Data System (ADS)

    Olds, W. J.; Moore, M. R.; Kimlin, M. G.

    2006-12-01

    The majority of humans rely on incidental sun exposure to maintain vitamin D sufficiency. Depending on where thresholds of vitamin D "sufficiency" are defined, it was recently stated that up to one billion people worldwide have suboptimal vitamin D levels (Bouillon, R., University of Leuven). Even in sunny southeast Queensland, the world's skin cancer capital, a 2006 study uncovered deficiency rates of up to 78% (at a threshold of 75 nmol/L of circulating 25-hydroxyvitamin D). Vitamin D regulates calcium absorption and inadequate levels are proven to result in osteomalacia, osteoporosis, rickets, bone pain and general skeletal weakness. Recent evidence also suggests vitamin D plays a preventative role in autoimmune diseases including numerous cancers, diabetes, schizophrenia, coronary heart disease, depression and other disorders. The most promising means of alleviating the worldwide burden of vitamin D deficiency seems to be by increased UV exposure. However, a much more mature understanding of UV exposures encountered in everyday life is required. This understanding is fundamentally founded in geophysics. UV exposures are strongly influenced by season/time of year, time of day, climate, location, pollution, aerosols and, importantly, ozone. In this work, we use computer simulations to obtain daily totals of vitamin D producing UV at numerous latitudes during one year. The ozone concentration is varied from 260 DU to 360 DU to determine the role of ozone variability on the ambient levels of vitamin D UV. Vitamin D synthesis is highly dependent on UVB. In our results, we demonstrate that this has important implications. Namely, vitamin D is strongly affected by ozone variability, since ozone filters UVB more strongly than UVA. Moreover, since erythema (sunburn) can occur at UVA wavelengths, ozone variation will more strongly affect vitamin D synthesis than erythema. Our results highlight that ozone monitoring is essential for understanding appropriate UV exposures for vitamin D health. We finally discuss implications for population health and how geophysics continues to play a vital role in addressing the widespread dilemma of vitamin D deficiency.

  8. DO3SE model applicability and O3 flux performance compared to AOT40 for an O3-sensitive tropical tree species (Psidium guajava L. 'Paluma').

    PubMed

    Assis, Pedro I L S; Alonso, Rocío; Meirelles, Sérgio T; Moraes, Regina M

    2015-07-01

    Phytotoxic ozone (O3) levels have been recorded in the Metropolitan Region of São Paulo (MRSP). Flux-based critical levels for O3 through stomata have been adopted for some northern hemisphere species, showing better accuracy than with accumulated ozone exposure above a threshold of 40 ppb (AOT40). In Brazil, critical levels for vegetation protection against O3 adverse effects do not exist. The study aimed to investigate the applicability of O3 deposition model (Deposition of Ozone for Stomatal Exchange (DO3SE)) to an O3-sensitive tropical tree species (Psidium guajava L. 'Paluma') under the MRSP environmental conditions, which are very unstable, and to assess the performance of O3 flux and AOT40 in relation to O3-induced leaf injuries. Stomatal conductance (g s) parameterization for 'Paluma' was carried out and used to calculate different rate thresholds (from 0 to 5 nmol O3 m(-2) projected leaf area (PLA) s(-1)) for the phytotoxic ozone dose (POD). The model performance was assessed through the relationship between the measured and modeled g sto. Leaf injuries were analyzed and associated with POD and AOT40. The model performance was satisfactory and significant (R (2) = 0.56; P < 0.0001; root-mean-square error (RMSE) = 116). As already expected, high AOT40 values did not result in high POD values. Although high POD values do not always account for more injuries, POD0 showed better performance than did AOT40 and other different rate thresholds for POD. Further investigation is necessary to improve our model and also to check if there is a critical level of ozone in which leaf injuries arise. The conclusion is that the DO3SE model for 'Paluma' is applicable in the MRSP as well as in temperate regions and may contribute to future directives.

  9. A novel catalytic ceramic membrane fabricated with CuMn2O4 particles for emerging UV absorbers degradation from aqueous and membrane fouling elimination.

    PubMed

    Guo, Yang; Song, Zilong; Xu, Bingbing; Li, Yanning; Qi, Fei; Croue, Jean-Philippe; Yuan, Donghai

    2018-02-15

    A novel catalytic ceramic membrane (CM) for improving ozonation and filtration performance was fabricated by surface coating CuMn 2 O 4 particles on a tubular CM. The degradation of ultraviolet (UV) absorbers, reduction of toxicity, elimination of membrane fouling and catalytic mechanism were investigated. The characterization results suggested the particles were well-fixed on membrane surface. The modified membrane showed improved benzophenone-3 removal performance (from 28% to 34%), detoxification (EC 50 as 12.77%) and the stability of catalytic activity. In the degradation performance of model UV absorbers, the developed membrane significantly decreased the UV254 and DOC values in effluent. Compared with a virgin CM, this CM ozonation increased water flux as 29.9% by in-situ degrade effluent organic matters. The CuMn 2 O 4 modified membrane enhanced the ozone self-decompose to generate O 2 - and initiated the chain reaction of ozone decomposition, and subsequently reacted with molecule ozone to produce OH. Additionally, CM was able to promote the interaction between ozone and catalyst/organic chemicals to form H 2 O 2 that promoted the formation of OH. This catalytic ceramic membrane combining with ozonation showed potential applications in emerging pollutant degradation and membrane fouling elimination, and acted as a novel ternary technology for wastewater treatment and water reuse. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Electroconvulsive stimulation (ECS) increases the expression of neuropeptide Y (NPY) in rat brains in a model of neuropathic pain: a quantitative real-time polymerase chain reaction (RT-PCR) study.

    PubMed

    Okabe, Tadashi; Sato, Chiyo; Matsumoto, Keisuke; Ozawa, Hitoshi; Sakamoto, Atsuhiro

    2009-11-01

    Electroconvulsive shock therapy (ECT) has been widely used as an effective and established treatment for refractory depression and schizophrenia. Some reports have shown that ECT is also effective for treating refractory neuropathic pain. In a rat model of neuropathic pain produced by chronic constrictive injury (CCI) of the sciatic nerve, thermal hyperalgesia, and mechanical allodynia were observed from day 2 after surgery. An electroconvulsive shock (ECS) was administered to rodents once daily for 6 days on days 7-12 after CCI operation using a pulse generator. Thermal and mechanical stimulation tests were performed to assess pain thresholds. Real-time polymerase chain reaction was used to measure the gene expression levels for 5HT(1A)R, 5HT(2A)R, neuropeptide Y (NPY), and GABAA(alpha1)R in the brain. After ECS, the latency to withdrawal from thermal stimulation was significantly increased; however, pain withdrawal thresholds in response to mechanical stimulation were not significantly changed. Expression ratios of NPY were significantly greater after ECS. Symptoms of neuropathic pain improved and expression of NPY in the brain was increased in CCI model rats after ECS, suggesting that changes in the expression of NPY in the brain may be related to the mechanism of action of ECT in treating neuropathic pain.

  11. Geostatistics as a validation tool for setting ozone standards for durum wheat.

    PubMed

    De Marco, Alessandra; Screpanti, Augusto; Paoletti, Elena

    2010-02-01

    Which is the best standard for protecting plants from ozone? To answer this question, we must validate the standards by testing biological responses vs. ambient data in the field. A validation is missing for European and USA standards, because the networks for ozone, meteorology and plant responses are spatially independent. We proposed geostatistics as validation tool, and used durum wheat in central Italy as a test. The standards summarized ozone impact on yield better than hourly averages. Although USA criteria explained ozone-induced yield losses better than European criteria, USA legal level (75 ppb) protected only 39% of sites. European exposure-based standards protected > or =90%. Reducing the USA level to the Canadian 65 ppb or using W126 protected 91% and 97%, respectively. For a no-threshold accumulated stomatal flux, 22 mmol m(-2) was suggested to protect 97% of sites. In a multiple regression, precipitation explained 22% and ozone explained <0.9% of yield variability. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  12. Validation of the stomatal flux approach for the assessment of ozone visible injury in young forest trees. Results from the TOP (transboundary ozone pollution) experiment at Curno, Italy.

    PubMed

    Gerosa, G; Marzuoli, R; Desotgiu, R; Bussotti, F; Ballarin-Denti, A

    2009-05-01

    This paper summarises some of the main results of a two-year experiment carried out in an Open-Top Chambers facility in Northern Italy. Seedlings of Populus nigra, Fagus sylvatica, Quercus robur and Fraxinus excelsior have been subjected to different ozone treatments (charcoal-filtered and non-filtered air) and soil moisture regimes (irrigated and non-irrigated plots). Stomatal conductance models were applied and parameterised under South Alpine environmental conditions and stomatal ozone fluxes have been calculated. The flux-based approach provided a better performance than AOT40 in predicting the onset of foliar visible injuries. Critical flux levels, related to visible leaf injury, are proposed for P. nigra and F. sylvatica (ranging between 30 and 33 mmol O(3) m(-2)). Soil water stress delayed visible injury appearance and development by limiting ozone uptake. Data from charcoal-filtered treatments suggest the existence of an hourly flux threshold, below which may occur a complete ozone detoxification.

  13. Long-term variation of Surface Ozone, NO2, temperature and relative humidity on crop yield over Andhra Pradesh (AP), India

    NASA Astrophysics Data System (ADS)

    Arunachalam, M. S.; Obili, Manjula; Srimurali, M.

    2016-07-01

    Long-term variation of Surface Ozone, NO2, Temperature, Relative humidity and crop yield datasets over thirteen districts of Andhra Pradesh(AP) has been studied with the help of OMI, MODIS, AIRS, ERA-Interim re-analysis and Directorate of Economics and Statistics (DES) of AP. Inter comparison of crop yield loss estimates according to exposure metrics such as AOT40 (accumulated ozone exposure over a threshold of 40) and non-linear variation of surface temperature for twenty and eighteen varieties of two major crop growing seasons namely, kharif (April-September) and rabi (October-March), respectively has been made. Study is carried to establish a new crop-yield-exposure relationship for different crop cultivars of AP. Both ozone and temperature are showing a correlation coefficient of 0.66 and 0.87 with relative humidity; and 0.72 and 0.80 with NO2. Alleviation of high surface ozone results in high food security and improves the economy thereby reduces the induced warming of the troposphere caused by ozone. Keywords: Surface Ozone, NO2, Temperature, Relative humidity, Crop yield, AOT 40.

  14. Correlation between experimental human and murine skin sensitization induction thresholds.

    PubMed

    Api, Anne Marie; Basketter, David; Lalko, Jon

    2015-01-01

    Quantitative risk assessment for skin sensitization is directed towards the determination of levels of exposure to known sensitizing substances that will avoid the induction of contact allergy in humans. A key component of this work is the predictive identification of relative skin sensitizing potency, achieved normally by the measurement of the threshold (the "EC3" value) in the local lymph node assay (LLNA). In an extended series of studies, the accuracy of this murine induction threshold as the predictor of the absence of a sensitizing effect has been verified by conduct of a human repeated insult patch test (HRIPT). Murine and human thresholds for a diverse set of 57 fragrance chemicals spanning approximately four orders of magnitude variation in potency have been compared. The results confirm that there is a useful correlation, with the LLNA EC3 value helping particularly to identify stronger sensitizers. Good correlation (with half an order of magnitude) was seen with three-quarters of the dataset. The analysis also helps to identify potential outlier types of (fragrance) chemistry, exemplified by hexyl and benzyl salicylates (an over-prediction) and trans-2-hexenal (an under-prediction).

  15. Sources and sinks of ozone in savanna and forest areas during EXPRESSO: Airborne turbulent flux measurements

    NASA Astrophysics Data System (ADS)

    Cros, B.; Delon, C.; Affre, C.; Marion, T.; Druilhet, A.; Perros, P. E.; Lopez, A.

    2000-12-01

    An airborne study of ozone concentrations and fluxes in the lower layers of the atmosphere was conducted over the Central African Republic (CAR) and northern Congo in November/December 1996, within the framework of the Experiment of Regional Sources and Sinks of Oxidants (EXPRESSO). The first 4 km of the atmosphere above savanna, rain forest, and the transitional area between them, were investigated with the French research aircraft Avion de Recherche Atmosphérique et de Télédétection (ARAT). Turbulent fluxes and deposition velocities of ozone were determined using the Eddy Correlation (EC) method. A specific methodology was developed to obtain accurate airborne turbulent flux measurements. This methodology is linked to the turbulence stationarity. The average values of ozone fluxes and ozone deposition velocities in the Atmospheric Boundary Layer (ABL) increase appreciably from savanna to forest. Near the ground, the ozone fluxes range between -0.115 +/-0.073 ppbv m/s above savanna and -0.350 +/-0.115 ppbv m/s above forest; for the deposition, the ranges are 0.0042 +/-0.0018 m/s and 0.015 +/-0.004 m/s. A simple empirical relationship between deposition velocity and Leaf Area Index (LAI) is proposed, giving an estimation of the deposition velocity for a whole latitudinal band. Vertical inputs of ozone to the ABL are estimated according to entrainment fluxes. The role of advection is neglected for horizontal transport of ozone in the ABL. The photochemical ozone production is deduced from the photo-stationary state deviation, and compared to the net ozone increase in the ABL during the flights performed above the forest. A tentative ozone budget based on the aircraft measurements is proposed in the ABL of the rain forest. Around noon, the photochemical production dominates with a net production of about 10 ppbv/h.

  16. Is the ozone climate penalty robust in Europe?

    NASA Astrophysics Data System (ADS)

    Colette, Augustin; Andersson, Camilla; Baklanov, Alexander; Bessagnet, Bertrand; Brandt, Jørgen; Christensen, Jesper H.; Doherty, Ruth; Engardt, Magnuz; Geels, Camilla; Giannakopoulos, Christos; Hedegaard, Gitte B.; Katragkou, Eleni; Langner, Joakim; Lei, Hang; Manders, Astrid; Melas, Dimitris; Meleux, Frédérik; Rouïl, Laurence; Sofiev, Mikhail; Soares, Joana; Stevenson, David S.; Tombrou-Tzella, Maria; Varotsos, Konstantinos V.; Young, Paul

    2015-08-01

    Ozone air pollution is identified as one of the main threats bearing upon human health and ecosystems, with 25 000 deaths in 2005 attributed to surface ozone in Europe (IIASA 2013 TSAP Report #10). In addition, there is a concern that climate change could negate ozone pollution mitigation strategies, making them insufficient over the long run and jeopardising chances to meet the long term objective set by the European Union Directive of 2008 (Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008) (60 ppbv, daily maximum). This effect has been termed the ozone climate penalty. One way of assessing this climate penalty is by driving chemistry-transport models with future climate projections while holding the ozone precursor emissions constant (although the climate penalty may also be influenced by changes in emission of precursors). Here we present an analysis of the robustness of the climate penalty in Europe across time periods and scenarios by analysing the databases underlying 11 articles published on the topic since 2007, i.e. a total of 25 model projections. This substantial body of literature has never been explored to assess the uncertainty and robustness of the climate ozone penalty because of the use of different scenarios, time periods and ozone metrics. Despite the variability of model design and setup in this database of 25 model projection, the present meta-analysis demonstrates the significance and robustness of the impact of climate change on European surface ozone with a latitudinal gradient from a penalty bearing upon large parts of continental Europe and a benefit over the North Atlantic region of the domain. Future climate scenarios present a penalty for summertime (JJA) surface ozone by the end of the century (2071-2100) of at most 5 ppbv. Over European land surfaces, the 95% confidence interval of JJA ozone change is [0.44; 0.64] and [0.99; 1.50] ppbv for the 2041-2070 and 2071-2100 time windows, respectively.

  17. Differential Effects of High Dose Magnetic Seizure Therapy (MST) and Electroconvulsive Shock (ECS) on Cognitive Function

    PubMed Central

    Spellman, Timothy; McClintock, Shawn M.; Terrace, Herbert; Luber, Bruce; Husain, Mustafa M.; Lisanby, Sarah H.

    2008-01-01

    Background Magnetic seizure therapy (MST) is under investigation as an alternative form of convulsive therapy that induces more focal seizures and spares cortical regions involved in memory. Using a newly expanded version of the Columbia University Primate Cognitive Profile, we compared the cognitive effects of high-dose MST delivered at 100 Hz (6X seizure threshold) with electroconvulsive shock (ECS) delivered at 2.5X seizure threshold. Methods Daily high-dose MST, ECS, and Sham (anesthesia-only) were administered for 4 weeks each in a within-subject cross-over design. Rhesus macaques (n = 3) were trained on five cognitive tasks assessing automatic memory, anterograde learning and memory, combined anterograde and retrograde simultaneous chaining, and spatial and serial working memory. Acutely following each intervention, monkeys were tested on the cognitive battery twice daily, separated by a 3-hour retention interval. Results Subjects were slower to complete criterion tasks (p’s<0.0001) following ECS, compared to sham and high-dose MST. Moreover, time to task-completion following high-dose MST did not differ from sham. Out of 6 measures of accuracy, treatment effects were found in 4; in all of these, ECS, but not MST, fared worse than Sham. On all accuracy and time to completion measurements, subjects performed as well as following high-dose MST as did subjects from a previous study on moderate-dose MST. Conclusion These findings provide evidence that high-dose MST results in benign acute cognitive side-effect profile relative to ECS, and are in line with our previous studies. PMID:18262171

  18. Non-Linear Concentration-Response Relationships between Ambient Ozone and Daily Mortality.

    PubMed

    Bae, Sanghyuk; Lim, Youn-Hee; Kashima, Saori; Yorifuji, Takashi; Honda, Yasushi; Kim, Ho; Hong, Yun-Chul

    2015-01-01

    Ambient ozone (O3) concentration has been reported to be significantly associated with mortality. However, linearity of the relationships and the presence of a threshold has been controversial. The aim of the present study was to examine the concentration-response relationship and threshold of the association between ambient O3 concentration and non-accidental mortality in 13 Japanese and Korean cities from 2000 to 2009. We selected Japanese and Korean cities which have population of over 1 million. We constructed Poisson regression models adjusting daily mean temperature, daily mean PM10, humidity, time trend, season, year, day of the week, holidays and yearly population. The association between O3 concentration and mortality was examined using linear, spline and linear-threshold models. The thresholds were estimated for each city, by constructing linear-threshold models. We also examined the city-combined association using a generalized additive mixed model. The mean O3 concentration did not differ greatly between Korea and Japan, which were 26.2 ppb and 24.2 ppb, respectively. Seven out of 13 cities showed better fits for the spline model compared with the linear model, supporting a non-linear relationships between O3 concentration and mortality. All of the 7 cities showed J or U shaped associations suggesting the existence of thresholds. The range of city-specific thresholds was from 11 to 34 ppb. The city-combined analysis also showed a non-linear association with a threshold around 30-40 ppb. We have observed non-linear concentration-response relationship with thresholds between daily mean ambient O3 concentration and daily number of non-accidental death in Japanese and Korean cities.

  19. Environmental Assessment: Construction and Operation of New Security Forces Facility at Hill Air Force Base, Utah

    DTIC Science & Technology

    2008-10-01

    Quality Standards NEPA National Environmental Policy Act of 1969 NOx Nitrogen Oxides OO-ALC Ogden Air Logistics Center OSHA Occupational Safety...current NAAQS. These standards regulate six common pollutants: carbon monoxide, lead, nitrogen oxides, sulfur oxides, ozone, and particulate matter...with the state plan. The conformity threshold emission level for ozone in maintenance areas is 100 tons per year for nitrogen oxide (NOx) and volatile

  20. Carbonaceous and Ionic Compositions of PM2.5 Aerosols at Ieodo Ocean Research Station in the East China Sea.

    NASA Astrophysics Data System (ADS)

    Kim, J.; Hwang, G.; Han, J.; Lee, M.; Sim, J.

    2008-12-01

    The aim of this study is to examine characteristic of long range transported aerosol in the East China Sea. The PM2.5 samples have been collected using RAAS 2.5-300 since June 2004 at Ieodo Ocean Research Station (IORS), which is located in the middle of China and South Korea. The number of total samples is 118 for which inorganic ions, elemental carbon (EC) and organic carbon (OC) were analyzed. Along with aerosol species, ozone and meteorological parameters were measured. From December 2004 to June 2007, The mean PM2.5 concentration was 21.2ug/m3. The average concentrations (mass fractions) of SO42- and NH4+ were 6.74ug/3(32.2%), 1.70ug/m3(14.2%), respectively. EC and OC concentrations for 1 year from June 2006 to June 2007 were 1.1ug/m3, 2.2ug/m3. Organic matter (OM=OC*1.4) and elemental carbon constituted 15.0% and 5.1% of PM2.5 mass, respectively. The average OC/EC ratio was 2.49 and there was a good correlation among EC, OC, and SO42- except for July and August : r= 0.54 (EC and SO42-, 0.45 (OC and SO42-), 0.71 (EC and OC)

  1. Simulation of tropospheric chemistry and aerosols with the climate model EC-Earth

    NASA Astrophysics Data System (ADS)

    van Noije, T. P. C.; Le Sager, P.; Segers, A. J.; van Velthoven, P. F. J.; Krol, M. C.; Hazeleger, W.

    2014-03-01

    We have integrated the atmospheric chemistry and transport model TM5 into the global climate model EC-Earth version 2.4. We present an overview of the TM5 model and the two-way data exchange between TM5 and the integrated forecasting system (IFS) model from the European Centre for Medium-Range Weather Forecasts (ECMWF), the atmospheric general circulation model of EC-Earth. In this paper we evaluate the simulation of tropospheric chemistry and aerosols in a one-way coupled configuration. We have carried out a decadal simulation for present-day conditions and calculated chemical budgets and climatologies of tracer concentrations and aerosol optical depth. For comparison we have also performed offline simulations driven by meteorological fields from ECMWF's ERA-Interim reanalysis and output from the EC-Earth model itself. Compared to the offline simulations, the online-coupled system produces more efficient vertical mixing in the troposphere, which likely reflects an improvement of the treatment of cumulus convection. The chemistry in the EC-Earth simulations is affected by the fact that the current version of EC-Earth produces a cold bias with too dry air in large parts of the troposphere. Compared to the ERA-Interim driven simulation, the oxidizing capacity in EC-Earth is lower in the tropics and higher in the extratropics. The methane lifetime is 7% higher in EC-Earth, but remains well within the range reported in the literature. We evaluate the model by comparing the simulated climatologies of surface carbon monoxide, tropospheric and surface ozone, and aerosol optical depth against observational data. The work presented in this study is the first step in the development of EC-Earth into an Earth system model with fully interactive atmospheric chemistry and aerosols.

  2. Ozone exposure thresholds and foliar injury on forest plants in Switzerland.

    PubMed

    VanderHeyden, D; Skelly, J; Innes, J; Hug, C; Zhang, J; Landolt, W; Bleuler, P

    2001-01-01

    Canton Ticino in southern Switzerland is exposed to some of the highest concentrations of tropospheric ozone in Europe. During recent field surveys in Canton Ticino, foliar symptoms identical to those caused by ozone have been documented on native tree and shrub species. In Europe, the critical ozone level for forest trees has been defined at an AOT40 of 10 ppm.h O3 (10 ppm.h accumulated exposure of ozone over a threshold of 40 ppb) during daylight hours over a six-month growing season. The objective of this study was to determine the amount of ambient ozone required to induce visible foliar symptoms on various forest plant species in southern Switzerland. Species were grown within eight open-top chambers and four open plots at the Vivaio Lattecaldo Cantonal Forest Nursery in Ticino, Switzerland. Species differed significantly in terms of the ppb.h exposures needed to cause visible symptoms. The most to least symptomatic species grown within open-plots in this study rank as Prunus serotina, Salix viminalis, Vibrnum lantana, Rhamnus cathartica, Betula pendula, Rumex obtusifolius, Sambucus racemosa, Morus nigra, Prunus avium, Fraxinus excelsior, Rhamnus frangula, Alnus viridis, Fagus sylvatica and Acer pseudoplatanus. Similar rankings were obtained in the non-filtered chamber plots. The ranking of species sensitivity closely follows AOT values for the occurrence of initial symptoms and symptom progression across the remainder of the exposure season. Species that first showed evidence of foliar injury also demonstrated the most sensitivity throughout the growing season, with symptoms rapidly advancing over ca. 25-30% of the total plant leaf surfaces by the end of the observation period. Conversely, those species that developed symptoms later in the season had far less total injury to plant foliage by the end of the observation period (1.5 to < 5% total leaf area injured). The current European ambient ozone standard may be insufficient to protect native plant species from visible foliar injury, and many more native species may be sensitive to ozone-induced foliar injury than are currently known.

  3. α-Tocopherol/Gallic Acid Cooperation in the Protection of Galactolipids Against Ozone-Induced Oxidation.

    PubMed

    Rudolphi-Skórska, Elżbieta; Filek, Maria; Zembala, Maria

    2016-04-01

    The protective ability of α-tocopherol (TOH) and gallic acid (GA) acting simultaneously at the moment of oxidizer application was evaluated by determination of galactolipid layers' oxidation degree. Addition of GA resulted in a significant decrease of ozone-derived radicals shifting the threshold of lipid sensitivity by an amount approximately corresponding to the GA intake in bulk reaction with ozone. TOH presence in lipid layers results in a change of the role of GA which additionally may be involved in the reduction of tocopheroxyl radical formed during oxidation. This leads to a decrease in effectiveness of GA in diminishing the amount of ozone radicals. Such an effect was not observed for mixed layers containing galactolipid and pre-oxidized tocopherol where the ozone threshold level was associated with a stoichiometry of GA + O3 reaction. It was concluded that probably subsequent transformations of tocopheroxyl radical to less reactive forms prevent its reaction with GA the entire quantity of which is used for radicals scavenging. This result shows the role of time parameter in systems where substrates are engaged in various reactions taking place simultaneously. The inactivation of 1,1-diphenyl-2-picrylhydrazyl radical by studied antioxidants in homogeneous system confirmed observations made on the basis of lipid layer properties indicating their antagonistic action (at least at studied conditions). Formation of layers in post-oxidation situation did not depend whether tocopherol was oxidized during oxidation of lipid/tocopherol mixture or was introduced as pre-oxidized. This may be interpreted as indication that products of tocopherol oxidation may stabilize lipid layers.

  4. Assessing the role of soil water limitation in determining the Phytotoxic Ozone Dose (PODY) thresholds

    NASA Astrophysics Data System (ADS)

    De Marco, Alessandra; Sicard, Pierre; Fares, Silvano; Tuovinen, Juha-Pekka; Anav, Alessandro; Paoletti, Elena

    2016-12-01

    Phytotoxic Ozone Dose (PODY), defined as the accumulated stomatal ozone flux over a threshold of Y, is considered an optimal metric to evaluate O3 effects on vegetation. PODY is often computed through the DO3SE model, which includes species-specific parameterizations for the environmental response of stomatal conductance. However, the effect of soil water content (SWC) on stomatal aperture is difficult to model on a regional scale and thus often ignored. In this study, we used environmental input data obtained from the WRF-CHIMERE model for 14,546 grid-based forest sites in Southern Europe. SWC was obtained for the upper 10 cm of soil, which resulted in a worst-case risk scenario. PODY was calculated either with or without water limitation for different Y thresholds. Exclusion of the SWC effect on stomatal fluxes caused a serious overestimation of PODY. The difference increased with increasing Y (78%, 128%, 237% and 565% with Y = 0, 1, 2 and 3 nmol O3 m-2 s-1, respectively). This behaviour was confirmed by applying the same approach to field data measured in a Mediterranean Quercus ilex forest. WRF-CHIMERE overestimated SWC at this field site, so under real-world conditions the SWC effect may be larger than modelled. The differences were lower for temperate species (Pinus cembra 50-340%, P. sylvestris 57-363%, Abies alba 57-371%) than for Mediterranean species (P. pinaster 87-356%, P. halepensis 96-429%, P. pinea 107-532%, Q. suber 104-1602%), although a high difference was recorded also for the temperate species Fagus sylvatica with POD3 (524%). We conclude that SWC should be considered in PODY simulations and a low Y threshold should be used for robustness.

  5. Transport temperatures observed during the commercial transportation of animals.

    PubMed

    Fiore, Gianluca; Hofherr, Johann; Natale, Fabrizio; Mainetti, Sergio; Ruotolo, Espedito

    2012-01-01

    Current temperature standards and those proposed by the European Food Safety Authority (EFSA) were compared with the actual practices of commercial transport in the European Union. Temperature and humidity records recorded for a year on 21 vehicles over 905 journeys were analysed. Differences in temperature and humidity recorded by sensors at four different positions in the vehicles exceeded 10°C between the highest and lowest temperatures in nearly 7% of cases. The number and position of temperature sensors are important to ensure the correct representation of temperature conditions in the different parts of a vehicle. For all journeys and all animal categories, a relatively high percentage of beyond threshold temperatures can be observed in relation to the temperature limits of 30°C and 5°C. Most recorded temperature values lie within the accepted tolerance of ±5°C stipulated in European Community Regulation (EC) 1/2005. The temperature thresholds proposed by EFSA would result in a higher percentage of non-compliant conditions which are more pronounced at the lower threshold, compared to the thresholds laid down in Regulation (EC) 1/2005. With respect to the different animal categories, the non-compliant temperature occurrences were more frequent in pigs and sheep, in particular with regard to the thresholds proposed by EFSA.

  6. Long-term changes in ozone mini-hole event frequency over the Northern Hemisphere derived from ground-based measurements

    NASA Astrophysics Data System (ADS)

    Krzycin, Janusz W.

    2002-10-01

    Decadal changes of ozone mini-hole event appearance over the Northern Hemisphere midlatitudes are examined based on daily total ozone data from seven stations having long records (four decades or more) of ozone observations. The various threshold methods for accepting and rejecting the ozone minima as mini-holes are examined. Mini-hole event activity is seen to be rather stable when averaged over a decadal time scale if the mini-holes are selected as large negative departures (exceeding 20%) relative to the moving long-term total ozone reference. The results are compared with a previous ozone mini-hole climatology derived from satellite data (TOMS measurements on board the Nimbus-7 satellite for the period 1978-93). A nonlinear statistical model (MARS), which takes into account various total ozone dynamical proxies (from NCEP-NCAR reanalysis), is used to study dynamical factors responsible for the ozone extremes over Arosa in the period 1950-99. The model explains as much as 95% of the total variance of the ozone extremes. The model-observation differences averaged over the decadal intervals are rather smooth throughout the whole period analysed. It is suggested that the short-term dynamical processes controlling the appearance of ozone extremes influenced the ozone field in a similar way before and after the onset of abrupt ozone depletion in the early 1980s. The analysis of the ozone profile and the tropopause pressure (from the ozonesondings over Hohenpeissenberg, 1966-99) during mini-hole events shows 60% ozone reduction in the lower stratosphere and an approximately 50 hPa upward shift of the thermal tropopause there.

  7. Implications of Lactobacillus collinoides and Brettanomyces/Dekkera anomala in phenolic off-flavour defects of ciders.

    PubMed

    Buron, Nicolas; Coton, Monika; Legendre, Patrick; Ledauphin, Jérôme; Kientz-Bouchart, Valérie; Guichard, Hugues; Barillier, Daniel; Coton, Emmanuel

    2012-02-01

    Different Lactobacillus collinoides and Brettanomyces/Dekkera anomala cider strains were studied for their ability to produce volatile phenols in synthetic medium. All strains were able to produce 4-ethylcatechol (4-EC), 4-ethylphenol (4-EP) and 4-ethylguaiacol (4-EG) from caffeic, p-coumaric and ferulic acids, respectively. Interestingly, D. anomala and L. collinoides were also able to produce 4-EC, 4-EP and 4-EG in cider conditions. The quantities of ethylphenols produced by these two species were similar in both tested ciders. The impact of precursor quantities was studied and it showed that the addition of caffeic and p-coumaric acids in ciders allowed for higher 4-EC and 4-EP production by D. anomala and L. collinoides. In parallel, D. anomala and L. collinoides strains were isolated from a phenolic off-flavour defective bottled cider after ethylphenol production hence confirming the implication of these two species in this cider spoilage. Finally, detection thresholds of the main ethylphenols were determined in ciders by orthonasal and retronasal sampling. The 4-EC and 4-EP detection thresholds (close to 20-25mg/l and 1.5-2.0mg/l, respectively) were matrix dependant. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Exceedance of PM10 and ozone concentration limits in Germany - Spatial variability and influence of climate

    NASA Astrophysics Data System (ADS)

    Heidenreich, Majana; Bernhofer, Christian

    2014-05-01

    High concentrations of particulate matter (PM) and ground-level ozone (O3) have negative impacts on human health, e.g., increased risk of respiratory disease, and the environment. European Union (EU) air policy and air quality standards led to continuously reduced air pollution problems in recent decades. Nevertheless, the limit values for PM10 (particles with diameter of 10 micrometers or less) and ozone - defined by the directive 2008/50/EC of the European Parliament - are still exceeded frequently. Poor air quality and the exceedance of limits result mainly from the combination of high emissions and unfavourable weather conditions. Datasets from German monitoring stations are used to describe the spatial and temporal variability of the exceedance of concentration limits for PM10 and ozone for the federal states of Germany. Time series are analysed for the period 2000-2012 for PM10 and for the period 1990-2012 for ozone. Furthermore, the influence of weather patterns on the exceedance of concentration limits on a regional scale was investigated. Here, the "objective weather types" of the German Weather Service were used. As expected, for most regions anticyclonic weather types (with a negative cyclonality index for the two levels 950 and 500 hPa) show a high frequency on exeedance days, both for PM10 and ozone. The results could contribute to estimate the future exceedance frequency of concentration limits and to develop possible countermeasures.

  9. Climate Suite Study for the National Polar-Orbiting Operational Environmental Satellite System Internal Concepts Study. Part A; Ozone Sensors

    NASA Technical Reports Server (NTRS)

    Lucke, R. L.; Planet, Walter G.; Hudson, R. D.

    1995-01-01

    Our recommendations to NPOESS for the sensors it should adopt to meet threshold requirements for global monitoring of ozone and, to some extent, of aerosols and of atmospheric temperature, pressure, and water vapor content are summarized in this report. The degree to which these sensors fulfill other NPOESS requirements than ozone is also summarized. The number of sensors that should be in the constellation is discussed in terms of desired reliability, continuity of coverage, and the ability to cross-calibrate successive sensors. Our recommendations for specific ozone measurement requirements, IORD item 4.1.6.2.28, are given. We make the case that the monitoring of three minor constituents in the upper atmosphere (N20, ClO or ClONO2, and HNO3) should be added to the list of NPOESS requirements because of their importance to long-term ozone studies and the small additional cost required (ozone sensors are already designed to measure them). Specific measurement requirements, which should be regarded as supplementary to the ozone requirement, are given here. The necessity of using two types of sensors, nadir-viewers and limb-scanners, for atmospheric studies is discussed.

  10. Compensation and persistent photocapacitance in homoepitaxial Sn-doped β-Ga2O3

    NASA Astrophysics Data System (ADS)

    Polyakov, A. Y.; Smirnov, N. B.; Shchemerov, I. V.; Gogova, D.; Tarelkin, S. A.; Pearton, S. J.

    2018-03-01

    The electrical properties of epitaxial β-Ga2O3 doped with Sn (1016-9 × 1018 cm-3) and grown by metalorganic chemical vapor deposition on semi-insulating β-Ga2O3 substrates are reported. Shallow donors attributable to Sn were observed only in a narrow region near the film/substrate interface and with a much lower concentration than the total Sn density. For heavily Sn doped films (Sn concentration, 9 × 1018 cm-3), the electrical properties in the top portion of the layer were determined by deep centers with a level at Ec-0.21 eV not described previously. In more lightly doped layers, the Ec-0.21 eV centers and deeper traps at Ec-0.8 eV were present, with the latter pinning the Fermi level. Low temperature photocapacitance and capacitance voltage measurements of illuminated samples indicated the presence of high densities (1017-1018 cm-3) of deep acceptors with an optical ionization threshold of 2.3 eV. Optical deep level transient spectroscopy (ODLTS) and photoinduced current transient spectroscopy (PICTS) detected electron traps at Ec-0.8 eV and Ec-1.1 eV. For lightly doped layers, the compensation of film conductivity was mostly provided by the Ec-2.3 eV acceptors. For heavily Sn doped films, deep acceptor centers possibly related to Ga vacancies were significant. The photocapacitance and the photocurrent caused by illumination at low temperatures were persistent, with an optical threshold of 1.9 eV and vanished only at temperatures of ˜400 K. The capture barrier for electrons causing the persistent photocapacitance effect was estimated from ODLTS and PICTS to be 0.25-0.35 eV.

  11. A synthesis of AOT40-based response functions and critical levels of ozone for agricultural and horticultural crops

    NASA Astrophysics Data System (ADS)

    Mills, G.; Buse, A.; Gimeno, B.; Bermejo, V.; Holland, M.; Emberson, L.; Pleijel, H.

    Crop-response data from over 700 published papers and conference proceedings have been analysed with the aim of establishing ozone dose-response functions for a wide range of European agricultural and horticultural crops. Data that met rigorous selection criteria (e.g. field-based, ozone concentrations within European range, full season exposure period) were used to derive AOT40-yield response functions for 19 crops by first converting the published ozone concentration data into AOT40 (AOT40 is the hourly mean ozone concentration accumulated over a threshold ozone concentration of 40 ppb during daylight hours, units ppm h). For any individual crop, there were no significant differences in the linear response functions derived for experiments conducted in the USA or Europe, or for individual cultivars. Three statistically independent groups were identified: ozone sensitive crops (wheat, water melon, pulses, cotton, turnip, tomato, onion, soybean and lettuce); moderately sensitive crops (sugar beet, potato, oilseed rape, tobacco, rice, maize, grape and broccoli) and ozone resistant (barley and fruit represented by plum and strawberry). Critical levels of a 3 month AOT40 of 3 ppm h and a 3.5 month AOT40 of 6 ppm h were derived from the functions for wheat and tomato, respectively.

  12. 76 FR 75845 - Approval and Promulgation of Implementation Plans; State of Tennessee: Prevention of Significant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-05

    ... major stationary thresholds (marginal, moderate, serious, severe, and extreme NAA classifications) and... offset ratios for marginal, moderate, serious, severe, and extreme ozone NAA. EPA finalized regulations...

  13. Improved Potential Energy Surface of Ozone Constructed Using the Fitting by Permutationally Invariant Polynomial Function

    DOE PAGES

    Ayouz, Mehdi; Babikov, Dmitri

    2012-01-01

    New global potential energy surface for the ground electronic state of ozone is constructed at the complete basis set level of the multireference configuration interaction theory. A method of fitting the data points by analytical permutationally invariant polynomial function is adopted. A small set of 500 points is preoptimized using the old surface of ozone. In this procedure the positions of points in the configuration space are chosen such that the RMS deviation of the fit is minimized. New ab initio calculations are carried out at these points and are used to build new surface. Additional points are added tomore » the vicinity of the minimum energy path in order to improve accuracy of the fit, particularly in the region where the surface of ozone exhibits a shallow van der Waals well. New surface can be used to study formation of ozone at thermal energies and its spectroscopy near the dissociation threshold.« less

  14. Lead toxicity thresholds in 17 Chinese soils based on substrate-induced nitrification assay.

    PubMed

    Li, Ji; Huang, Yizong; Hu, Ying; Jin, Shulan; Bao, Qiongli; Wang, Fei; Xiang, Meng; Xie, Huiting

    2016-06-01

    The influence of soil properties on toxicity threshold values for Pb toward soil microbial processes is poorly recognized. The impact of leaching on the Pb threshold has not been assessed systematically. Lead toxicity was screened in 17 Chinese soils using a substrate-induced nitrification (SIN) assay under both leached and unleached conditions. The effective concentration of added Pb causing 50% inhibition (EC50) ranged from 185 to >2515mg/kg soil for leached soil and 130 to >2490mg/kg soil for unleached soil. These results represented >13- and >19-fold variations among leached and unleached soils, respectively. Leaching significantly reduced Pb toxicity for 70% of both alkaline and acidic soils tested, with an average leaching factor of 3.0. Soil pH and CEC were the two most useful predictors of Pb toxicity in soils, explaining over 90% of variance in the unleached EC50 value. The relationships established in the present study predicted Pb toxicity within a factor of two of measured values. These relationships between Pb toxicity and soil properties could be used to establish site-specific guidance on Pb toxicity thresholds. Copyright © 2016. Published by Elsevier B.V.

  15. Interactions involving ozone, Botrytis cinerea, and B. squamosa on onion leaves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rist, D.L.

    1983-01-01

    Interactions involving Botrytis cinerea Pers., B. squamosa Walker, and ozone on onion (alium cepae L.) were investigated. Initially, threshold dosages of ozone required to predispose onion leaves to greater infection by B. cinerea and B. squamosa were determined under controlled conditions in an ozone-exposure chamber. Subsequent experiments supported the hypothesis that nutrients leaking out of ozone-injured cells stimulated lesion production by B. cinerea. The electrical conductivity of, and carbohydrate concentration in, dew collected from leaves of onion plants which had been exposed to ozone were greater than the electrical conductivity of, and carbohydrate concentration in, dew collected from leaves ofmore » other, non-exposed onion plants. When conidia of B. cinerea were suspended in dew collected from leaves of plants which had been exposed to ozone and the resulting suspension atomized onto leaves of non-exposed plants, more lesions were induced than on leaves of other non-exposed plants inoculated with conidia suspended in dew collected from plants which had not been exposed to ozone. EDU protected onion leaves from ozone-induced predisposition to these fungi under controlled conditions. Experiments designed to detect interaction between B. cinerea and B. squamosa in onion leaf blighting indicated that such interaction did not occur. Leaves were blighted rapidly when inoculated with B. squamosa whether B. cinerea was present or absent.« less

  16. Modeling drain current of indium zinc oxide thin film transistors prepared by solution deposition technique

    NASA Astrophysics Data System (ADS)

    Qiang, Lei; Liang, Xiaoci; Cai, Guangshuo; Pei, Yanli; Yao, Ruohe; Wang, Gang

    2018-06-01

    Indium zinc oxide (IZO) thin film transistor (TFT) deposited by solution method is of considerable technological interest as it is a key component for the fabrication of flexible and cheap transparent electronic devices. To obtain a principal understanding of physical properties of solution-processed IZO TFT, a new drain current model that account for the charge transport is proposed. The formulation is developed by incorporating the effect of gate voltage on mobility and threshold voltage with the carrier charges. It is demonstrated that in IZO TFTs the below threshold regime should be divided into two sections: EC - EF > 3kT and EC - EF ≤ 3kT, where kT is the thermal energy, EF and EC represent the Fermi level and the conduction band edge, respectively. Additionally, in order to describe conduction mechanisms more accurately, the extended mobility edge model is conjoined, which can also get rid of the complicated and lengthy computations. The good agreement between measured and calculated results confirms the efficiency of this model for the design of integrated large-area thin film circuits.

  17. Condensed nitrate, sulfate, and chloride in Antarctic stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Snetsinger, K. G.; Toon, O. B.; Ferry, G. V.; Oberbeck, V. R.; Starr, W. L.; Chan, K. R.; Goodman, J. K.

    1989-01-01

    The 1987 Airborne Antarctic Ozone Experiment, in which the NO3, Cl, and SO4 contents of stratospheric aerosols were estimated, is discussed. The aerosol size and chemical composition measurements were carried out on samples collected during August 17 to September 4, 1987. The data indicate that condensed nitrate is found below a threshold temperature of 193.6 + or - 3.0 K, which is generally found at latitudes exceeding 64 deg S. A negative correlation exists between condensed nitrate and ozone correlation.

  18. Ozone-initiated chemistry in an occupied simulated aircraft cabin.

    PubMed

    Weschler, Charles J; Wisthaler, Armin; Cowlin, Shannon; Tamás, Gyöngyi; Strøm-Tejsen, Peter; Hodgson, Alfred T; Destaillats, Hugo; Herrington, Jason; Zhang, Junfeng; Nazaroff, William W

    2007-09-01

    We have used multiple analytical methods to characterize the gas-phase products formed when ozone was added to cabin air during simulated 4-hour flights that were conducted in a reconstructed section of a B-767 aircraft containing human occupants. Two separate groups of 16 females were each exposed to four conditions: low air exchange (4.4 (h-1)), <2 ppb ozone; low air exchange, 61-64 ppb ozone; high air exchange (8.8 h(-1)), <2 ppb ozone; and high air exchange, 73-77 ppb ozone. The addition of ozone to the cabin air increased the levels of identified byproducts from approximately 70 to 130 ppb at the lower air exchange rate and from approximately 30 to 70 ppb at the higher air exchange rate. Most of the increase was attributable to acetone, nonanal, decanal, 4-oxopentanal (4-OPA), 6-methyl-5-hepten-2-one (6-MHO), formic acid, and acetic acid, with 0.25-0.30 mol of quantified product volatilized per mol of ozone consumed. Several of these compounds reached levels above their reported odor thresholds. Most byproducts were derived from surface reactions with occupants and their clothing, consistent with the inference that occupants were responsible for the removal of >55% of the ozone in the cabin. The observations made in this study have implications for other indoor settings. Whenever human beings and ozone are simultaneously present, one anticipates production of acetone, nonanal, decanal, 6-MHO, geranyl acetone, and 4-OPA.

  19. Effects of ozone on ecosystems -- ecosystem indicators of concern

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Innes, J.L.

    1998-12-31

    Ozone has been recognized as an important cause of damage to crops since the 1950s. Damage to trees was first identified in the 1960s and is now known to be widespread in both North America and Europe. Most impact studies have emphasized the importance of determining growth losses attributable to ozone and as a result have concentrated on species of commercial importance. This is illustrated by the critical loads approach to ozone risk assessment in Europe, which is currently based on the AOT40 -- 10 ppmh threshold. At higher levels, it has been argued that a 10% growth reduction occursmore » in European beech (Fagus sylvatica). Such an approach suffers from a number of serious limitations, not least the widespread impacts on ecosystems that may occur at lower ozone exposures and the very poor quantitative basis for setting this threshold. In Europe, there has been increasing emphasis on the conservation and management of species without any direct economic importance. This has arisen from a growing environmental awareness of the general public. The trend has been accelerated by the perceived environmental benefits of the large amounts of land that has been taken out of agricultural production (as a result of the ``set-aside`` policy of the European Union) and the public concern about the ecological and environmental impacts of industrial forestry. In agricultural landscapes, hedgerow species and weed species are being looked at as important parts of the agricultural ecosystem. In particular, weed species are an important part of the food chain for the wildlife present in such ecosystems. In forests, much greater emphasis is being given to the authenticity of the forest ecosystems. Particular emphasis is being given to ecosystem management techniques such as continuous cover forestry and the furthering of natural regeneration.« less

  20. Efficient method for calculations of ro-vibrational states in triatomic molecules near dissociation threshold: Application to ozone

    NASA Astrophysics Data System (ADS)

    Teplukhin, Alexander; Babikov, Dmitri

    2016-09-01

    A method for calculations of rotational-vibrational states of triatomic molecules up to dissociation threshold (and scattering resonances above it) is devised, that combines hyper-spherical coordinates, sequential diagonalization-truncation procedure, optimized grid DVR, and complex absorbing potential. Efficiency and accuracy of the method and new code are tested by computing the spectrum of ozone up to dissociation threshold, using two different potential energy surfaces. In both cases good agreement with results of previous studies is obtained for the lower energy states localized in the deep (˜10 000 cm-1) covalent well. Upper part of the bound state spectrum, within 600 cm-1 below dissociation threshold, is also computed and is analyzed in detail. It is found that long progressions of symmetric-stretching and bending states (up to 8 and 11 quanta, respectively) survive up to dissociation threshold and even above it, whereas excitations of the asymmetric-stretching overtones couple to the local vibration modes, making assignments difficult. Within 140 cm-1 below dissociation threshold, large-amplitude vibrational states of a floppy complex O⋯O2 are formed over the shallow van der Waals plateau. These are assigned using two local modes: the rocking-motion and the dissociative-motion progressions, up to 6 quanta in each, both with frequency ˜20 cm-1. Many of these plateau states are mixed with states of the covalent well. Interestingly, excitation of the rocking-motion helps keeping these states localized within the plateau region, by raising the effective barrier.

  1. Potency values from the local lymph node assay: application to classification, labelling and risk assessment.

    PubMed

    Loveless, S E; Api, A-M; Crevel, R W R; Debruyne, E; Gamer, A; Jowsey, I R; Kern, P; Kimber, I; Lea, L; Lloyd, P; Mehmood, Z; Steiling, W; Veenstra, G; Woolhiser, M; Hennes, C

    2010-02-01

    Hundreds of chemicals are contact allergens but there remains a need to identify and characterise accurately skin sensitising hazards. The purpose of this review was fourfold. First, when using the local lymph node assay (LLNA), consider whether an exposure concentration (EC3 value) lower than 100% can be defined and used as a threshold criterion for classification and labelling. Second, is there any reason to revise the recommendation of a previous ECETOC Task Force regarding specific EC3 values used for sub-categorisation of substances based upon potency? Third, what recommendations can be made regarding classification and labelling of preparations under GHS? Finally, consider how to integrate LLNA data into risk assessment and provide a rationale for using concentration responses and corresponding no-effect concentrations. Although skin sensitising chemicals having high EC3 values may represent only relatively low risks to humans, it is not possible currently to define an EC3 value below 100% that would serve as an appropriate threshold for classification and labelling. The conclusion drawn from reviewing the use of distinct categories for characterising contact allergens was that the most appropriate, science-based classification of contact allergens according to potency is one in which four sub-categories are identified: 'extreme', 'strong', 'moderate' and 'weak'. Since draining lymph node cell proliferation is related causally and quantitatively to potency, LLNA EC3 values are recommended for determination of a no expected sensitisation induction level that represents the first step in quantitative risk assessment. 2009 Elsevier Inc. All rights reserved.

  2. Study of air pollution: Effects of ozone on neuropeptide-mediated responses in human subjects. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boushey, H.A.

    1991-11-01

    The study examined the hypothesis that ozone inactivates the enzyme, neutral endopeptidase, responsible for limiting the effects of neuropeptides released from afferent nerve endings. Cough response of capsaicin solution delivered from a nebulizer at 2 min. intervals until two or more coughs were produced. Other endpoints measured included irritative symptoms as rated by the subjects on a nonparametric scale, spirometry, of each concentration of ozone were compared to those of filtered air in a single-blind randomized sequence. The results indicate that a 2 h. exposure to 0.4 ppm of ozone with intermittent light exercise alters the sensitivity of airway nervesmore » that mediate the cough response to inhaled materials. This dose of ozone also caused a change in FEV1. A lower level of ozone, 0.02 ppm, caused a change in neither cough threshold nor FEV1, even when the duration of exposure was extended to three hours. The findings are consistent with the author's hypothesis that ozone may sensitize nerve endings in the airways by inactivating neutral endopeptidase, an enzyme that regulates their activity, but they do not demonstrate that directly examining an effect directly mediated by airway nerves allows detection of effects of ozone at doses below those causing effects detected by standard tests of pulmonary function.« less

  3. Techno-economic evaluation of the application of ozone-oxidation in a full-scale aerobic digestion plant.

    PubMed

    Chiavola, Agostina; D'Amato, Emilio; Gori, Riccardo; Lubello, Claudio; Sirini, Piero

    2013-04-01

    This paper deals with the application of the ozone-oxidation in a full scale aerobic sludge digester. Ozonation was applied continuously to a fraction of the biological sludge extracted from the digestion unit; the ozonated sludge was then recirculated to the same digester. Three different ozone flow rates were tested (60,500 and 670g O3 h(-1)) and their effects evaluated in terms of variation of the total and soluble fractions of COD, nitrogen and phosphorous, of total and volatile suspended solids concentrations and Sludge Volume Index in the aerobic digestion unit. During the 7-month operation of the ozonation process, it was observed an appreciable improvement of the aerobic digestion efficiency (up to about 20% under the optimal conditions) and of the sludge settleability properties. These results determined an average reduction of about 60% in the biological sludge extracted from the plant and delivered to final disposal. A thorough economic analysis showed that this reduction allowed to achieve a significant cost saving for the plant with respect to the previous years operated without ozonation. Furthermore, it was determined the threshold disposal cost above which implementation of the ozone oxidation in the aerobic digestion units of similar WWTPs becomes economically convenient (about 60€t(-1) of sludge). Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Optimization of artificial neural network models through genetic algorithms for surface ozone concentration forecasting.

    PubMed

    Pires, J C M; Gonçalves, B; Azevedo, F G; Carneiro, A P; Rego, N; Assembleia, A J B; Lima, J F B; Silva, P A; Alves, C; Martins, F G

    2012-09-01

    This study proposes three methodologies to define artificial neural network models through genetic algorithms (GAs) to predict the next-day hourly average surface ozone (O(3)) concentrations. GAs were applied to define the activation function in hidden layer and the number of hidden neurons. Two of the methodologies define threshold models, which assume that the behaviour of the dependent variable (O(3) concentrations) changes when it enters in a different regime (two and four regimes were considered in this study). The change from one regime to another depends on a specific value (threshold value) of an explanatory variable (threshold variable), which is also defined by GAs. The predictor variables were the hourly average concentrations of carbon monoxide (CO), nitrogen oxide, nitrogen dioxide (NO(2)), and O(3) (recorded in the previous day at an urban site with traffic influence) and also meteorological data (hourly averages of temperature, solar radiation, relative humidity and wind speed). The study was performed for the period from May to August 2004. Several models were achieved and only the best model of each methodology was analysed. In threshold models, the variables selected by GAs to define the O(3) regimes were temperature, CO and NO(2) concentrations, due to their importance in O(3) chemistry in an urban atmosphere. In the prediction of O(3) concentrations, the threshold model that considers two regimes was the one that fitted the data most efficiently.

  5. Scientific Studies in Association with the Halogen Occultation Experiment

    NASA Technical Reports Server (NTRS)

    Mickley, Lorretta J.; Frederick, John E.

    1996-01-01

    This work examines measurements of ozone, NO, NO2, and HCl made by the Halogen Occultation Experiment (HALOE) to track chemical change in the stratosphere. In addition, HALOE observations of two long-lived species, HF and CH4, are used as tracers to distinguish between change due to transport processes and change due to chemistry. The first study investigates the response of NO(x), (NO and NO2) and ozone to the presence of large amounts of sulfate aerosol in the stratosphere following the 1991 eruption of Mount Pinatubo. As the Pinatubo aerosol cleared the atmosphere at 17 mb (about 27-28 km), the partitioning of total reactive nitrogen shifted more toward NO(x), and ozone amounts declined. This trend is opposite that observed at lower altitudes. The second study examines the chemical aftermath of severe ozone depletion over Antarctica in spring. When ozone levels drop to a threshold amount (about 1 ppm near 20 km), the partitioning of the total chlorine family shifts rapidly from reactive species to the reservoir molecule HCl. This sudden repartitioning shuts down further ozone loss and may be significant as filaments of air peel off the polar vortex and mix with mid-latitude air.

  6. Simulation of tropospheric chemistry and aerosols with the climate model EC-Earth

    NASA Astrophysics Data System (ADS)

    van Noije, T. P. C.; Le Sager, P.; Segers, A. J.; van Velthoven, P. F. J.; Krol, M. C.; Hazeleger, W.; Williams, A. G.; Chambers, S. D.

    2014-10-01

    We have integrated the atmospheric chemistry and transport model TM5 into the global climate model EC-Earth version 2.4. We present an overview of the TM5 model and the two-way data exchange between TM5 and the IFS model from the European Centre for Medium-Range Weather Forecasts (ECMWF), the atmospheric general circulation model of EC-Earth. In this paper we evaluate the simulation of tropospheric chemistry and aerosols in a one-way coupled configuration. We have carried out a decadal simulation for present-day conditions and calculated chemical budgets and climatologies of tracer concentrations and aerosol optical depth. For comparison we have also performed offline simulations driven by meteorological fields from ECMWF's ERA-Interim reanalysis and output from the EC-Earth model itself. Compared to the offline simulations, the online-coupled system produces more efficient vertical mixing in the troposphere, which reflects an improvement of the treatment of cumulus convection. The chemistry in the EC-Earth simulations is affected by the fact that the current version of EC-Earth produces a cold bias with too dry air in large parts of the troposphere. Compared to the ERA-Interim driven simulation, the oxidizing capacity in EC-Earth is lower in the tropics and higher in the extratropics. The atmospheric lifetime of methane in EC-Earth is 9.4 years, which is 7% longer than the lifetime obtained with ERA-Interim but remains well within the range reported in the literature. We further evaluate the model by comparing the simulated climatologies of surface radon-222 and carbon monoxide, tropospheric and surface ozone, and aerosol optical depth against observational data. The work presented in this study is the first step in the development of EC-Earth into an Earth system model with fully interactive atmospheric chemistry and aerosols.

  7. Vulnerability to extreme-heat-associated hospitalization in three counties in Michigan, USA, 2000-2009

    NASA Astrophysics Data System (ADS)

    Ogbomo, Adesuwa S.; Gronlund, Carina J.; O'Neill, Marie S.; Konen, Tess; Cameron, Lorraine; Wahl, Robert

    2017-05-01

    With climate change, extreme heat (EH) events are increasing, so it is important to understand who is vulnerable to heat-associated morbidity. We determined the association between EH and hospitalizations for all natural causes; cardiovascular, respiratory, and renal diseases; diabetes mellitus; and acute myocardial infarction in Michigan, USA, at different intensities and durations. We assessed confounding by ozone and how individual characteristics and health insurance payer (a proxy for income) modified these associations. We obtained Michigan Inpatient Database, National Climatic Data Center, and US Environmental Protection Agency ozone data for May-September, 2000-2009 for three Michigan counties. We employed a case-crossover design and modeled EH as an indicator for temperature above the 95th, 97th, or 99th percentile thresholds for 1, 2, 3, or 4 days. We examined effect modification by patient age, race, sex, and health insurance payer and pooled the county results. Among non-whites, the pooled odds ratio for hospitalization on EH (97th percentile threshold) vs. non-EH days for renal diseases was 1.37 (95 % CI = 1.13-1.66), which increased with increasing EH intensity, but was null among whites (OR = 1.00, 95 % CI = 0.81, 1.25). We observed a null association between EH and cardiovascular hospitalization. EH (99th percentile threshold) was associated with myocardial infarction hospitalizations. Confounding by ozone was minimal. EH was associated with hospitalizations for renal disease among non-whites. This information on vulnerability to heat-associated morbidity helps characterize the public health burden of EH and target interventions including patient education.

  8. Subliminal influence on preferences? A test of evaluative conditioning for brief visual conditioned stimuli using auditory unconditioned stimuli

    PubMed Central

    2017-01-01

    In the field of evaluative conditioning (EC), two opposing theories—propositional single-process theory versus dual-process theory—are currently being discussed in the literature. The present set of experiments test a crucial prediction to adjudicate between these two theories: Dual-process theory postulates that evaluative conditioning can occur without awareness of the contingency between conditioned stimulus (CS) and unconditioned stimulus (US); in contrast, single-process propositional theory postulates that EC requires CS-US contingency awareness. In a set of three studies, we experimentally manipulate contingency awareness by presenting the CSs very briefly, thereby rendering it unlikely to be processed consciously. We address potential issues with previous studies on EC with subliminal or near-threshold CSs that limited their interpretation. Across two experiments, we consistently found an EC effect for CSs presented for 1000 ms and consistently failed to find an EC effect for briefly presented CSs. In a third pre-registered experiment, we again found evidence for an EC effect with CSs presented for 1000 ms, and we found some indication for an EC effect for CSs presented for 20 ms. PMID:28989730

  9. Subliminal influence on preferences? A test of evaluative conditioning for brief visual conditioned stimuli using auditory unconditioned stimuli.

    PubMed

    Heycke, Tobias; Aust, Frederik; Stahl, Christoph

    2017-09-01

    In the field of evaluative conditioning (EC), two opposing theories-propositional single-process theory versus dual-process theory-are currently being discussed in the literature. The present set of experiments test a crucial prediction to adjudicate between these two theories: Dual-process theory postulates that evaluative conditioning can occur without awareness of the contingency between conditioned stimulus (CS) and unconditioned stimulus (US); in contrast, single-process propositional theory postulates that EC requires CS-US contingency awareness. In a set of three studies, we experimentally manipulate contingency awareness by presenting the CSs very briefly, thereby rendering it unlikely to be processed consciously. We address potential issues with previous studies on EC with subliminal or near-threshold CSs that limited their interpretation. Across two experiments, we consistently found an EC effect for CSs presented for 1000 ms and consistently failed to find an EC effect for briefly presented CSs. In a third pre-registered experiment, we again found evidence for an EC effect with CSs presented for 1000 ms, and we found some indication for an EC effect for CSs presented for 20 ms.

  10. Estimation of seasonal diurnal variations in primary and secondary organic carbon concentrations in the urban atmosphere: EC tracer and multiple regression approaches

    NASA Astrophysics Data System (ADS)

    Kim, Woogyung; Lee, Hanlim; Kim, Jhoon; Jeong, Ukkyo; Kweon, Jung

    2012-09-01

    In order to investigate seasonal and diurnal variation of primary organic carbon (POC) and secondary organic carbon (SOC) concentrations in a megacity, hourly measurements of particulate and gaseous pollutants were carried out in Seoul from January to December 2010. The EC Tracer Method (ECTM) and the Multiple Regression Method (MRM) have been used to estimate seasonal and diurnal concentrations of POC and SOC concentrations. Annual mean SOC concentrations estimated by ECTM (SOCECTM) and MRM (SOCMRM) accounted for 14.61 and 17.21% of TOC concentrations, respectively. Seasonal patterns in SOCMRM were comparable to those of SOCECTM, but the annual average SOCMRM was about 15% greater than that of SOCECTM. In spring, however, a large discrepancy was observed between SOCECTM and SOCMRM, which is thought to be due to a high ozone concentration and primary TOC/EC ratio. Regarding the annual mean diurnal characteristics, POC concentration showed peaks around 10:00 and 00:00 local time that were also observed in diurnal variations of TOC and EC concentrations. Annual mean SOC concentration, however, showed peaks at around 15:00. In the morning over all seasons, we found discrepancies between SOCECTM and SOCMRM due to overestimated SOCECTM concentration. The diurnal variations in SOC concentrations were found to have seasonal characteristics. The diurnal pattern of SOC concentration in spring was similar to that in autumn, and SOC concentrations in all seasons with the exception of winter showed a peak at around 15:00. In summer, however, the SOC concentration peak at around 15:00 was greater by 70%, 81%, and 54% than the peaks seen in spring, autumn, and winter, respectively, which could be explained by the high ozone concentration and strong UV radiation in summer. From 10:00 to 15:00 in summer, the average increase rates in SOCECTM and SOCMRM were 0.39 and 0.24 μg m-3 h-1, respectively. In winter, negligible diurnal variations of estimated SOC concentrations demonstrate that SOC formation is less active than in other seasons. The high concentration level of mean SOC in winter could be attributed to a low mixing height or stagnant atmospheric condition.

  11. Control of dangerous substances in discharges and microbiological abatement: European framework and a case study of an ozone disinfection system.

    PubMed

    Ostoich, M; Serena, F; Falletti, L; Fantoni, A

    2013-01-01

    Directive 2000/60/EC requires the achievement of a 'good chemical status' for surface water within pre-established dates. Disinfection is needed to achieve compulsory final microbial limit values (in Italy for wastewater discharges the parameter Escherichia coli - EC - is imposed by law with a maximum limit value of 5,000 cfu/100 mL). Liquid waste and disinfection by-products must be considered when designing appropriate monitoring of dangerous substances; the specific classes of substances must be investigated according to the typology of received wastewaters and liquid wastes (where applicable) and specific analytical techniques, with Limit of Detection (LOD) lower than the limit values, must be applied; the difficulties faced by national and regional environmental control Agencies is that these techniques have to be applied during ordinary activity and not only for research purposes. The study aims to present the control of dangerous substances, as a screening view, in wastewater treatment plant (WWTP) discharges in the province of Venice (Northern Italy) for the period 2007-2010 based on available data from institutional controls. In addition, the wastewater disinfection process with ozone applied to a medium size WWTP (45,000 Population Equivalents) is presented as a case study, with a view to assessing the microbiological abatement efficacy and the presence of dangerous substances. Discharge quality of the WWTPs in the province of Venice presented mean values that were higher than the LOD, but only for certain metals. For the Paese plant, zinc and chloroform were the only micro-pollutants detected with a higher level than the LOD. From microbiological data in the period 2006-2011 the disinfection abatement efficiency for Paese was, in most cases above 99% for EC, faecal coliform (FC), faecal streptococci (FS) while efficiency was slightly lower for total coliform (TC); however, the proposed criterion aimed at respecting 99.99% abatement was not completely satisfied. Therefore, despite the high organic and industrial load of the considered plant and the need to find an alternative system for chlorine, as chlorine disinfection has been banned in the Veneto region since December 2012, ozone efficiency is not completely satisfactory and other systems such as peracetic or performic acids and UV systems must be considered.

  12. Influence of ozonation and biodegradation on toxicity of industrial textile wastewater.

    PubMed

    Paździor, Katarzyna; Wrębiak, Julita; Klepacz-Smółka, Anna; Gmurek, Marta; Bilińska, Lucyna; Kos, Lech; Sójka-Ledakowicz, Jadwiga; Ledakowicz, Stanisław

    2017-06-15

    The textile industry demands huge volumes of high quality water which converts into wastewater contaminated by wide spectrum of chemicals. Estimation of textile wastewater influence on the aquatic systems is a very important issue. Therefore, closing of the water cycle within the factories is a promising method of decreasing its environmental impact as well as operational costs. Taking both reasons into account, the aim of this work was to establish the acute toxicity of the textile wastewater before and after separate chemical, biological as well as combined chemical-biological treatment. For the first time the effects of three different combinations of chemical and biological methods were investigated. The acute toxicity analysis were evaluated using the Microtox ® toxicity test. Ozonation in two reactors of working volume 1 dm 3 (stirred cell) and 20 dm 3 (bubble column) were tested as chemical process, while biodegradation was conducted in two, different systems - Sequence Batch Reactors (SBR; working volume 1.5 dm 3 ) and Horizontal Continuous Flow Bioreactor (HCFB; working volume 12 dm 3 ). The untreated wastewater had the highest toxicity (EC50 value in range: 3-6%). Ozonation caused lower reduction of the toxicity than biodegradation. In the system with SBR the best results were obtained for the biodegradation followed by the ozonation and additional biodegradation - 96% of the toxicity removal. In the second system (with HCFB) two-stage treatment (biodegradation followed by the ozonation) led to the highest toxicity reduction (98%). Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Photochemical Transformation of Munitions Constituents in Marine Waters

    DTIC Science & Technology

    2012-05-01

    include catalysts such as TiO2 or additives such peroxide, Fenton’s reagent (peroxide and iron (II)), and peroxide and ozone, which are meant to speed...photoproducts. The product mixture formed by the photolysis of 2,4- and 2,6-DNT is yellow in color , while the original DNTs are colorless in solution. The...The organisms shown in Figure 12 include one marine fish (Sciaenops ocellatus, 48-hr EC-50 for embryo survival), one marine arthropod (Artemia

  14. Detection of Celiac Disease and Lymphocytic Enteropathy by Parallel Serology and Histopathology in a Population-Based Study

    PubMed Central

    Walker, Marjorie M.; Murray, Joseph A.; Ronkainen, Jukka; Aro, Pertti; Storskrubb, Tom; D’Amato, Mauro; Lahr, Brian; Talley, Nicholas J.; Agreus, Lars

    2010-01-01

    Background & Aims Although serological analysis is used in diagnosis of celiac disease, histopathology is considered most reliable. We performed a prospective study to determine the clinical, pathological and serological spectrum of celiac disease in a general population (Kalixanda study). Methods A random sample of an adult general population (n=1000) was analyzed by upper endoscopy, duodenal biopsy, and serological analysis of tissue transglutaminase (tTg) levels; endomysial antibody (EMA) levels were analyzed in samples that were tTg+. The cutoff values for diagnosis of celiac disease were villous atrophy with 40 intraepithelial lymphocytes (IELs)/100 enterocytes (ECs). Results Samples from 33 subjects were tTg+ and 16 were EMA+. Histological analysis identified 7/1000 subjects (0.7%) with celiac disease; all were tTg+ and 6/7 were EMA+. Another 26 subjects were tTg+ (7/26 EMA+). This was addressed by a second quantitative pathology study, (nested case-control design) using a threshold of 25 IELS/100 ECs. In this analysis, all 13 samples that were tTg+ and EMA+ had ≥25 IELs/100ECs. In total, 16 subjects (1.6%) had serological and histological evidence of gluten-sensitive enteropathy. IELs were quantified in duodenal biopsy samples from seronegative individuals (n=500); 19 (3.8%) had >25 IELs and lymphocytic duodenosis (LD). Conclusions Measurement of ≥25 IELs/100 ECs correlated with serological indicators of celiac disease; a higher IEL threshold could miss 50% of cases. Quantification of tTg is a sensitive test for celiac disease; diagnosis can be confirmed by observation of ≥25 IELs/100ECs in duodenal biopsies. Lymphocytic enteropathy (celiac disease and LD) is common in the population (5.4%). PMID:20398668

  15. Assessment of ambient air quality in Eskişehir, Turkey.

    PubMed

    Ozden, O; Döğeroğlu, T; Kara, S

    2008-07-01

    This paper presents an assessment of air quality of the city Eskişehir, located 230 km southwest to the capital of Turkey. Only five of the major air pollutants, most studied worldwide and available for the region, were considered for the assessment. Available sulphur dioxide (SO(2)), particulate matter (PM), nitrogen dioxide (NO(2)), ozone (O(3)), and non-methane volatile organic carbons (NMVOCs) data from local emission inventory studies provided relative source contributions of the selected pollutants to the region. The contributions of these typical pollution parameters, selected for characterizing such an urban atmosphere, were compared with the data established for other cities in the nation and world countries. Additionally, regional ambient SO(2) and PM concentrations, determined by semi-automatic monitoring at two sites, were gathered from the National Ambient Air Monitoring Network (NAAMN). Regional data for ambient NO(2) (as a precursor of ozone as VOCs) and ozone concentrations, through the application of the passive sampling method, were provided by the still ongoing local air quality monitoring studies conducted at six different sites, as representatives of either the traffic-dense-, or coal/natural gas burning residential-, or industrial/rural-localities of the city. Passively sampled ozone data at a single rural site were also verified with the data from a continuous automatic ozone monitoring system located at that site. Effects of variations in seasonal-activities, newly established railway system, and switching to natural gas usage on the temporal changes of air quality were all considered for the assessment. Based on the comparisons with the national [AQCR (Air Quality Control Regulation). Ministry of Environment (MOE), Ankara. Official Newspaper 19269; 1986.] and a number of international [WHO (World Health Organization). Guidelines for Air Quality. Geneva; 2000. Downloaded in January 2006, website: http://www.who.int/peh/; EU (European Union). Council Directive 1999/30/EC relating to limit values for sulfur dioxide, nitrogen dioxide and lead in ambient air. Of J Eur Communities L 163: 14-30; 29.6.1999; EU (European Union). Council Directive 2002/3/EC relating to ozone in ambient air. Of J Eur Communities. L 67: 14-30; 9.3.2002.; USEPA (U.S. Environmental Protection Agency). National Ambient Air Quality Standards (NAAQS). Downloaded in January 2006, website: http://www.epa.gov/ttn/naaqs/] ambient air standards, among all the pollutants studied, only the annual average SO(2) concentration was found to exceed one specific limit value (EU limit for protection of the ecosystem). A part of the data (VOC/NO(x) ratio), for determining the effects of photochemical interactions, indicated that VOC-limited regime was prevailing throughout the city.

  16. Volcanic eruption detection with TOMS

    NASA Technical Reports Server (NTRS)

    Krueger, Arlin J.

    1987-01-01

    The Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) is designed for mapping of the atmospheric ozone distribution. Absorption by sulfur dioxide at the same ultraviolet spectral wavelengths makes it possible to observe and resolve the size of volcanic clouds. The sulfur dioxide absorption is discriminated from ozone and water clouds in the data processing by their spectral signatures. Thus, the sulfur dioxide can serve as a tracer which appears in volcanic eruption clouds because it is not present in other clouds. The detection limit with TOMS is close to the theoretical limit due to telemetry signal quantization of 1000 metric tons (5-sigma threshold) within the instrument field of view (50 by 50 km near the nadir). Requirements concerning the use of TOMS in detection of eruptions, geochemical cycles, and volcanic climatic effects are discussed.

  17. Comparison of Wintertime Ozone Production Associated With Oil and Gas Extraction Activity in Wyoming and Utah

    NASA Astrophysics Data System (ADS)

    Oltmans, S. J.; Schnell, R. C.; Mefford, T. K.; Neely, R. R., III

    2012-12-01

    The wintertime cold, reduced sunlight conditions of the mid-latitudes of continental interior locations are normally not considered to be conducive to significant ozone production. Recent observations have shattered this expectation with hourly ozone mixing ratios regularly exceeding 100 ppb measured in January, February and March in the states of Wyoming and Utah in the United States. Maximum daily eight hour average ozone mixing ratios have exceeded 100 ppb, far exceeding the U.S. threshold of 75 ppb. Conditions under which this dramatic ozone production takes place include a mix of high levels of ozone precursors (NOx and VOCs), a very stable and shallow boundary layer, snow cover providing enhanced UV radiation, and air confining terrain features. The high levels of precursors have been tied to oil and gas extraction activities in the affected regions. Under the requisite meteorological conditions where high pressure, low winds, and snow-covered ground are present extremely stable and shallow (~50-200 m) boundary layers persist. The highly reflective snow cover provides enhanced photolysis rates that in February can exceed those in June. For several winters in Utah and Wyoming with large ozone enhancements, the time series of various meteorological (wind, temperature, solar radiation, snow cover) and chemical parameters (ozone and NOx) show a somewhat different progression of high ozone events between the two locations. In the Unitah Basin of Utah high ozone formation conditions are more persistent throughout the winter than in the Pinedale Anticline region of Wyoming. This is likely a function of the differing topography of the two areas. However, for individual events the two sites show a similar progression of rapid ozone formation each day. Sites in both Utah and Wyoming just outside the oil and gas extraction activity areas show little or no enhanced ozone. Winters without the requisite meteorological conditions also do not experience high ozone events.

  18. Thresholds of arsenic toxicity to Eisenia fetida in field-collected agricultural soils exposed to copper mining activities in Chile.

    PubMed

    Bustos, Víctor; Mondaca, Pedro; Verdejo, José; Sauvé, Sébastien; Gaete, Hernán; Celis-Diez, Juan L; Neaman, Alexander

    2015-12-01

    Several previous studies highlighted the importance of using field-collected soils-and not artificially-contaminated soils-for ecotoxicity tests. However, the use of field-collected soils presents several difficulties for interpretation of results, due to the presence of various contaminants and unavoidable differences in the physicochemical properties of the tested soils. The objective of this study was to estimate thresholds of metal toxicity in topsoils of 24 agricultural areas historically contaminated by mining activities in Chile. We performed standardized earthworm reproduction tests (OECD 222 and ISO 11268-2) with Eisenia fetida. Total soil concentrations of Cu, As, Zn, and Pb were in the ranges of 82-1295 mg kg(-1), 7-41 mg kg(-1), 86-345 mg kg(-1), and 25-97 mg kg(-1), respectively. In order to differentiate between the effects of different metals, we used regression analysis between soil metal concentrations and earthworm responses, as well as between metal concentrations in earthworm tissues and earthworm responses. Based on regression analysis, we concluded that As was a metal of prime concern for Eisenia fetida in soils affected by Cu mining activities, while Cu exhibited a secondary effect. In contrast, the effects of Zn and Pb were not significant. Soil electrical conductivity was another significant contributor to reproduction toxicity in the studied soils, forcing its integration in the interpretation of the results. By using soils with electrical conductivity ≤ 0.29 dS m(-1) (which corresponds to EC50 of salt toxicity to Eisenia fetida), it was possible to isolate the effect of soil salinity on earthworm reproduction. Despite the confounding effects of Cu, it was possible to determine EC10, EC25 and EC50 values for total soil As at 8 mg kg(-1), 14 mg kg(-1) and 22 mg kg(-1), respectively, for the response of the cocoon production. However, it was not possible to determine these threshold values for juvenile production. Likewise, we were able to determine EC10, EC25 and EC50 of earthworm tissue As of 38 mg kg(-1), 47 mg kg(-1), and 57 mg kg(-1), respectively, for the response of the cocoon production. Finally, we determined the no-observed effect concentration of tissue As in E. fetida of 24 mg kg(-1). Thus, earthworm reproduction test is applicable for assessment of metal toxicity in field-collected soils with low electrical conductivity, while it might have a limited applicability in soils with high electrical conductivity because the salinity-induced toxicity will hinder the interpretation of the results. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Real-time monitoring of ozone in air using substrate-integrated hollow waveguide mid-infrared sensors

    NASA Astrophysics Data System (ADS)

    da Silveira Petruci, João Flávio; Fortes, Paula Regina; Kokoric, Vjekoslav; Wilk, Andreas; Raimundo, Ivo Milton; Cardoso, Arnaldo Alves; Mizaikoff, Boris

    2013-11-01

    Ozone is a strong oxidant that is globally used as disinfection agent for many purposes including indoor building air cleaning, during food preparation procedures, and for control and killing of bacteria such as E. coli and S. aureus. However, it has been shown that effective ozone concentrations for controlling e.g., microbial growth need to be higher than 5 ppm, thereby exceeding the recommended U.S. EPA threshold more than 10 times. Consequently, real-time monitoring of such ozone concentration levels is essential. Here, we describe the first online gas sensing system combining a compact Fourier transform infrared (FTIR) spectrometer with a new generation of gas cells, a so-called substrate-integrated hollow waveguide (iHWG). The sensor was calibrated using an UV lamp for the controlled generation of ozone in synthetic air. A calibration function was established in the concentration range of 0.3-5.4 mmol m-3 enabling a calculated limit of detection (LOD) at 0.14 mmol m-3 (3.5 ppm) of ozone. Given the adaptability of the developed IR sensing device toward a series of relevant air pollutants, and considering the potential for miniaturization e.g., in combination with tunable quantum cascade lasers in lieu of the FTIR spectrometer, a wide range of sensing and monitoring applications of beyond ozone analysis are anticipated.

  20. Assessing groundwater quality for irrigation using indicator kriging method

    NASA Astrophysics Data System (ADS)

    Delbari, Masoomeh; Amiri, Meysam; Motlagh, Masoud Bahraini

    2016-11-01

    One of the key parameters influencing sprinkler irrigation performance is water quality. In this study, the spatial variability of groundwater quality parameters (EC, SAR, Na+, Cl-, HCO3 - and pH) was investigated by geostatistical methods and the most suitable areas for implementation of sprinkler irrigation systems in terms of water quality are determined. The study was performed in Fasa county of Fars province using 91 water samples. Results indicated that all parameters are moderately to strongly spatially correlated over the study area. The spatial distribution of pH and HCO3 - was mapped using ordinary kriging. The probability of concentrations of EC, SAR, Na+ and Cl- exceeding a threshold limit in groundwater was obtained using indicator kriging (IK). The experimental indicator semivariograms were often fitted well by a spherical model for SAR, EC, Na+ and Cl-. For HCO3 - and pH, an exponential model was fitted to the experimental semivariograms. Probability maps showed that the risk of EC, SAR, Na+ and Cl- exceeding the given critical threshold is higher in lower half of the study area. The most proper agricultural lands for sprinkler irrigation implementation were identified by evaluating all probability maps. The suitable areas for sprinkler irrigation design were determined to be 25,240 hectares, which is about 34 percent of total agricultural lands and are located in northern and eastern parts. Overall the results of this study showed that IK is an appropriate approach for risk assessment of groundwater pollution, which is useful for a proper groundwater resources management.

  1. Concentration-response of short-term ozone exposure and hospital admissions for asthma in Texas.

    PubMed

    Zu, Ke; Liu, Xiaobin; Shi, Liuhua; Tao, Ge; Loftus, Christine T; Lange, Sabine; Goodman, Julie E

    2017-07-01

    Short-term exposure to ozone has been associated with asthma hospital admissions (HA) and emergency department (ED) visits, but the shape of the concentration-response (C-R) curve is unclear. We conducted a time series analysis of asthma HAs and ambient ozone concentrations in six metropolitan areas in Texas from 2001 to 2013. Using generalized linear regression models, we estimated the effect of daily 8-hour maximum ozone concentrations on asthma HAs for all ages combined, and for those aged 5-14, 15-64, and 65+years. We fit penalized regression splines to evaluate the shape of the C-R curves. Using a log-linear model, estimated risk per 10ppb increase in average daily 8-hour maximum ozone concentrations was highest for children (relative risk [RR]=1.047, 95% confidence interval [CI]: 1.025-1.069), lower for younger adults (RR=1.018, 95% CI: 1.005-1.032), and null for older adults (RR=1.002, 95% CI: 0.981-1.023). However, penalized spline models demonstrated significant nonlinear C-R relationships for all ages combined, children, and younger adults, indicating the existence of thresholds. We did not observe an increased risk of asthma HAs until average daily 8-hour maximum ozone concentrations exceeded approximately 40ppb. Ozone and asthma HAs are significantly associated with each other; susceptibility to ozone is age-dependent, with children at highest risk. C-R relationships between average daily 8-hour maximum ozone concentrations and asthma HAs are significantly curvilinear for all ages combined, children, and younger adults. These nonlinear relationships, as well as the lack of relationship between average daily 8-hour maximum and peak ozone concentrations, have important implications for assessing risks to human health in regulatory settings. Copyright © 2017. Published by Elsevier Ltd.

  2. Responsiveness of Viburnum lantana L. to tropospheric ozone: field evidence under contrasting site conditions in Trentino, northern Italy.

    PubMed

    Gottardini, Elena; Cristofori, Antonella; Cristofolini, Fabiana; Bussotti, Filippo; Ferretti, Marco

    2010-12-01

    Specific visible foliar injuries were demonstrated to occur on plants of Viburnum lantana L. (wayfaring tree) when exposed to ozone in open-top chamber experiments. However, although evidence of visible injury was reported even for native plants, no comprehensive testing has been carried out under real field conditions. Thus, the extent to which V. lantana may match the requirements to be used as an in situ bioindicator is not fully known. To investigate the actual responsiveness of native V. lantana plants to ozone under field condition, two 1 × 1 km quadrates (named "Margone" and "Lasino"), for which the occurrence of different ozone levels was known, were considered. There, a fully randomized design was adopted to ensure within-quadrate replications and to select V. lantana plants. Measurements confirmed different exposure levels (Margone, Accumulated ozone concentrations Over a Threshold of 40 ppb h (AOT40): 31 952 ppb h; Lasino, AOT40: 23 259 ppb h). Ozone visible foliar symptoms (i) matched the known symptomatology, (ii) were easy to be identified, (iii) confirmed by microscopical validation, and (iv) observed at both quadrates. However, higher frequency of symptoms, earlier date of onset and faster development occurred at the quadrate with the highest ozone exposure (Margone), although not always proportionally with the difference in ozone exposure. This may be partly due to inherent covariation of environmental variables (higher ozone exposure occurred at the sites with higher relative humidity and cooler air temperature, a set of conditions that may promote ozone uptake), and partly due to a set of (unmeasured) other factors that may cause additional oxidative stress to plants. Implications for biomonitoring are discussed.

  3. High ozone levels in the northeast of Portugal: Analysis and characterization

    NASA Astrophysics Data System (ADS)

    Carvalho, A.; Monteiro, A.; Ribeiro, I.; Tchepel, O.; Miranda, A. I.; Borrego, C.; Saavedra, S.; Souto, J. A.; Casares, J. J.

    2010-03-01

    Each summer period extremely high ozone levels are registered at the rural background station of Lamas d'Olo, located in the Northeast of Portugal. In average, 30% of the total alert threshold registered in Portugal is detected at this site. The main purpose of this study is to characterize the atmospheric conditions that lead to the ozone-rich episodes at this site. Synoptic patterns anomalies and back trajectories cluster analysis were performed, for the period between 2004 and 2007, considering 76 days when ozone maximum hourly concentrations were above 200 μg m -3. The obtained atmospheric anomaly fields suggested that a positive temperature anomaly is visible above the Iberian Peninsula. A strong wind flow pattern from NE is observable in the North of Portugal and Galicia, in Spain. These two features may lead to an enhancement of the photochemical production and to the transport of pollutants from Spain to Portugal. In addition, the 3D mean back trajectories associated to the ozone episode days were analysed. A clustering method has been applied to the obtained back trajectories. Four main clusters of ozone-rich episodes were identified, with different frequencies of occurrence: north-westerly flows (11%); north-easterly flows (45%), southern flow (4%) and westerly flows (40%). Both analyses highlight the NE flow as a dominant pattern over the North of Portugal during summer. The analysis of the ozone concentrations for each selected cluster indicates that this northeast circulation pattern, together with the southern flow, are responsible for the highest ozone peak episodes. This also suggests that long-range transport of atmospheric pollutants is the main contributor to the ozone levels registered at Lamas d'Olo. This is also highlighted by the correlation of the ozone time-series with the meteorological parameters analysed in the frequency domain.

  4. ANALYSIS AND CHARACTERIZATION OF OZONE-RICH EPISODES IN NORTHEAST PORTUGAL

    NASA Astrophysics Data System (ADS)

    Carvalho, A.; Monteiro, A.; Ribeiro, I.; Tchepel, O.; Miranda, A.; Borrego, C.; Saavedra, S.; Souto, J. A.; Casares, J. J.

    2009-12-01

    Each summer period extremely high ozone levels are registered at the rural background station of Lamas d’Olo, located in the Northeast of Portugal. In average, 30% of the total alert threshold registered in Portugal is detected at this site. The main purpose of this study is to characterize the atmospheric conditions that lead to the ozone-rich episodes. Synoptic patterns anomalies and back trajectories cluster analysis were performed for a period of 76 days where ozone maximum concentrations were above 200 µg.m-3. This analysis was performed for the period between 2004 and 2007. The obtained anomaly fields suggested that a positive temperature anomaly is visible above the Iberian Peninsula. In addition, a strong wind flow pattern from NE is visible in the North of Portugal and Galicia, in Spain. These two features may lead to an enhancement of the photochemical production and to the transport of pollutants from Spain to Portugal. In addition, the 3D mean back trajectories associated to the ozone episode days were analysed. A clustering method has been applied to the obtained back trajectories. Four main clusters of ozone-rich episodes were identified, with different frequencies of occurrence: north-westerly flows (11%); north-easterly flows (45%), southern flow (4%) and westerly flows (40%). Both analyses highlight the NE flow as a dominant pattern over the North of Portugal. The analysis of the ozone concentrations for each selected cluster indicates that this northeast circulation pattern, together with the southern flow, is responsible for the highest ozone peak episodes. This also suggests that long-range transport of atmospheric pollutants may be the main contributor to the ozone levels registered at Lamas d’Olo. This is also highlighted by the correlation of the ozone time series with the meteorological parameters analysed in the frequency domain.

  5. Integrated biomonitoring of air quality with plants and lichens: a case study on ambient ozone from central Italy.

    PubMed

    Nali, C; Balducci, E; Frati, L; Paoli, L; Loppi, S; Lorenzini, G

    2007-05-01

    A biennial integrated survey, based on the use of vascular plants for the bioindication of the effects of tropospheric ozone together with the use of automatic analysers of ozone, as well as the mapping of lichen biodiversity was performed in the area of Castelfiorentino (Tuscany, central Italy). Photochemically produced ozone proved to be a fundamental presence during the warm season, with maximum hourly means reaching 114 ppb, exceeding the information threshold as fixed by EU: the use of supersensitive tobacco Bel-W3 confirmed the opportunity of carrying out detailed cost-effective monitoring surveys. The potential for didactical and educational implications of this methodology are appealing. Critical levels set up for the protection of vegetation have exceeded considerably. The comparison of biomass productivity in sensitive and resistant individuals (NC-S and NC-R white clover clones, in the framework of an European network) provided evidence that ambient ozone levels are associated with relevant reduction (up to 30%) in the performance of sensitive material; effects on flowering were also pronounced. The economic assessment of such an impact deserves attention. Mapping of epiphytic lichen biodiversity--which has been used to monitor air quality worldwide--was not related to ozone geographical distribution as depicted by tobacco response.

  6. Vulnerability to extreme-heat-associated hospitalization in three counties in Michigan, USA, 2000–2009

    PubMed Central

    Ogbomo, Adesuwa S.; Gronlund, Carina J.; O’Neill, Marie S.; Konen, Tess; Cameron, Lorraine; Wahl, Robert

    2016-01-01

    Background With climate change, extreme heat (EH) events are increasing, so it is important to understand who is vulnerable to heat-associated morbidity. We determined the association between EH and hospitalizations for all natural causes, cardiovascular, respiratory, and renal diseases, diabetes mellitus, and acute myocardial infarction in Michigan, USA at different intensities and durations. We assessed confounding by ozone and how individual characteristics and health insurance payer (a proxy for income) modified these associations. Methods We obtained Michigan Inpatient Database, National Climatic Data Center, and U.S. Environmental Protection Agency ozone data for May–September, 2000–2009 for three Michigan counties. We employed a case-crossover design and modeled EH as an indicator for temperature above the 95th, 97th or 99th percentile thresholds for 1, 2, 3 or 4 days. We examined effect modification by patient age, race, sex, and health insurance payer and pooled the county results. Results Among non-whites, the pooled odds ratio for hospitalization on EH (97th-percentile threshold) vs. non-EH days for renal diseases was 1.37 (95% CI = 1.13–1.66), which increased with increasing EH intensity, but was null among whites (OR = 1.00, 95% CI = 0.81, 1.25). We observed a null association between EH and cardiovascular hospitalization. EH (99th-percentile threshold) was associated with myocardial infarction hospitalizations. Confounding by ozone was minimal. Conclusions EH was associated with hospitalizations for renal disease among non-whites. This information on vulnerability to heat-associated morbidity helps characterize the public health burden of EH and target interventions including patient education. PMID:27796569

  7. Geographic setting influences Great Lakes beach microbiological water quality

    USGS Publications Warehouse

    Haack, Sheridan K.; Fogarty, Lisa R.; Stelzer, Erin A.; Fuller, Lori M.; Brennan, Angela K.; Isaacs, Natasha M.; Johnson, Heather E.

    2013-01-01

    Understanding of factors that influence Escherichia coli (EC) and enterococci (ENT) concentrations, pathogen occurrence, and microbial sources at Great Lakes beaches comes largely from individual beach studies. Using 12 representative beaches, we tested enrichment cultures from 273 beach water and 22 tributary samples for EC, ENT, and genes indicating the bacterial pathogens Shiga-toxin producing E. coli (STEC), Shigella spp., Salmonella spp, Campylobacter jejuni/coli, and methicillin-resistant Staphylococcus aureus, and 108–145 samples for Bacteroides human, ruminant, and gull source-marker genes. EC/ENT temporal patterns, general Bacteroides concentration, and pathogen types and occurrence were regionally consistent (up to 40 km), but beach catchment variables (drains/creeks, impervious surface, urban land cover) influenced exceedances of EC/ENT standards and detections of Salmonella and STEC. Pathogen detections were more numerous when the EC/ENT Beach Action Value (but not when the Geometric Mean and Statistical Threshold Value) was exceeded. EC, ENT, and pathogens were not necessarily influenced by the same variables. Multiple Bacteroides sources, varying by date, occurred at every beach. Study of multiple beaches in different geographic settings provided new insights on the contrasting influences of regional and local variables, and a broader-scale perspective, on significance of EC/ENT exceedances, bacterial sources, and pathogen occurrence.

  8. On ozone trend detection: using coupled chemistry-climate simulations to investigate early signs of total column ozone recovery

    NASA Astrophysics Data System (ADS)

    Keeble, James; Brown, Hannah; Abraham, N. Luke; Harris, Neil R. P.; Pyle, John A.

    2018-06-01

    Total column ozone values from an ensemble of UM-UKCA model simulations are examined to investigate different definitions of progress on the road to ozone recovery. The impacts of modelled internal atmospheric variability are accounted for by applying a multiple linear regression model to modelled total column ozone values, and ozone trend analysis is performed on the resulting ozone residuals. Three definitions of recovery are investigated: (i) a slowed rate of decline and the date of minimum column ozone, (ii) the identification of significant positive trends and (iii) a return to historic values. A return to past thresholds is the last state to be achieved. Minimum column ozone values, averaged from 60° S to 60° N, occur between 1990 and 1995 for each ensemble member, driven in part by the solar minimum conditions during the 1990s. When natural cycles are accounted for, identification of the year of minimum ozone in the resulting ozone residuals is uncertain, with minimum values for each ensemble member occurring at different times between 1992 and 2000. As a result of this large variability, identification of the date of minimum ozone constitutes a poor measure of ozone recovery. Trends for the 2000-2017 period are positive at most latitudes and are statistically significant in the mid-latitudes in both hemispheres when natural cycles are accounted for. This significance results largely from the large sample size of the multi-member ensemble. Significant trends cannot be identified by 2017 at the highest latitudes, due to the large interannual variability in the data, nor in the tropics, due to the small trend magnitude, although it is projected that significant trends may be identified in these regions soon thereafter. While significant positive trends in total column ozone could be identified at all latitudes by ˜ 2030, column ozone values which are lower than the 1980 annual mean can occur in the mid-latitudes until ˜ 2050, and in the tropics and high latitudes deep into the second half of the 21st century.

  9. Responses of subjects with chronic obstructive pulmonary disease after exposures to 0. 3 ppm ozone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kehrl, H.R.; Hazucha, M.J.; Solic, J.J.

    1985-05-01

    The authors previously reported that the respiratory mechanics of intermittently exercising persons with chronic obstructive pulmonary disease (COPD) were unaffected by a 2-h exposure to 0.2 ppm ozone. Employing a single-blind, cross-over design protocol, 13 white men with nonreversible COPD (9 current smokers; mean FEV1/FVC, 56%) were randomly exposed on 2 consecutive days for 2 h to air and 0.3 ppm ozone. During exposures, subjects exercised (minute ventilation, 26.4 +/- 3.0 L/min) for 7.5 min every 30 min; ventilation and gas exchange measured during exercise showed no difference between exposure days. Pulmonary function tests (spirometry, body plethysmography) obtained before andmore » after exposures were unchanged on the air day. On the ozone day the mean airway resistance and specific airway resistance showed the largest (25 and 22%) changes (p = 0.086 and 0.058, respectively). Arterial oxygen saturation (SaO/sub 2/) obtained in 8 subjects during the last exercise interval showed a mean decrement of 0.95% on the ozone exposure day; this change did not attain significance (p = 0.074). Nevertheless, arterial oxygen desaturation may be a true consequence of low-level ozone exposure in this compromised patient group. As normal subjects undergoing exposures to ozone with slightly higher exercise intensities show a threshold for changes in their respiratory mechanics at approximately 0.3 ppm, these data indicate that persons with COPD are not unduly sensitive to the effects of low-level ozone exposure.« less

  10. EC power management and NTM control in ITER

    NASA Astrophysics Data System (ADS)

    Poli, Francesca; Fredrickson, E.; Henderson, M.; Bertelli, N.; Farina, D.; Figini, L.; Nowak, S.; Poli, E.; Sauter, O.

    2016-10-01

    The suppression of Neoclassical Tearing Modes (NTMs) is an essential requirement for the achievement of the demonstration baseline in ITER. The Electron Cyclotron upper launcher is specifically designed to provide highly localized heating and current drive for NTM stabilization. In order to assess the power management for shared applications, we have performed time-dependent simulations for ITER scenarios covering operation from half to full field. The free-boundary TRANSP simulations evolve the magnetic equilibrium and the pressure profiles in response to the heating and current drive sources and are interfaced with a GRE for the evolution of size and frequency of the magnetic islands. Combined with a feedback control of the EC power and the steering angle, these simulations are used to model the plasma response to NTM control, accounting for the misalignment of the EC deposition with the resonant surfaces, uncertainties in the magnetic equilibrium reconstruction and in the magnetic island detection threshold. Simulations indicate that the threshold for detection of the island should not exceed 2-3cm, that pre-emptive control is a preferable option, and that for safe operation the power needed for NTM control should be reserved, rather than shared with other applications. Work supported by ITER under IO/RFQ/13/9550/JTR and by DOE under DE-AC02-09CH11466.

  11. Toxicology

    NASA Technical Reports Server (NTRS)

    Macewen, J. W.

    1973-01-01

    Oxygen toxicity is examined, including the effects of oxygen partial pressure variations on toxicity and oxygen effects on ozone and nitrogen dioxide toxicity. Toxicity of fuels and oxidizers, such as hydrazines, are reported. Carbon monoxide, spacecraft threshold limit values, emergency exposure limits, spacecraft contaminants, and water quality standards for space missions are briefly summarized.

  12. Ground-level ozone pollution and its health impacts in China

    NASA Astrophysics Data System (ADS)

    Liu, Huan; Liu, Shuai; Xue, Boru; Lv, Zhaofeng; Meng, Zhihang; Yang, Xiaofan; Xue, Tao; Yu, Qiao; He, Kebin

    2018-01-01

    In recent years, ground-level ozone pollution in China has become an increasingly prominent problem. This study simulated and analyzed spatiotemporal distribution of ozone and exposure level by the Weather Research and Forecasting (WRF)-Community Multiscale Air Quality (CMAQ) models and monitoring data from 1516 national air quality monitoring stations in China during 2015. The simulation results show that the Sichuan Basin, Shandong, Shanxi, Henan, Anhui, Qinghai-Tibetan Plateau, Yangtze River Delta (YRD), Pearl River Delta (PRD) and Beijing-Tianjin-Hebei (BTH) region had relatively high average annual concentrations of ozone. The regions with more than 10% nonattainment days of 160 μg/m3 (daily maximum 8-h) are mainly concentrated in BTH, Shandong Peninsula and YRD, where large seasonal variations were also found. Exposure levels were calculated based on population data and simulated ozone concentrations. The cumulative population exposed to daily maximum 8-h concentration greater than or equal to 100 μg/m3 was 816.04 million, 61.17% of the total. Three methods were used to estimate the mortality of chronic obstructive pulmonary disease (COPD) attributable to ozone. A comparative study using different exposure concentrations and threshold concentrations found large variations among these methods, although they were all peer-reviewed methods. The estimated mortality of COPD caused by ozone in China in 2015 ranged from 55341 to 80280, which mainly distributed in Beijing, Shandong, Henan, Hubei and Sichuan Province, the YRD and PRD region.

  13. Improving of local ozone forecasting by integrated models.

    PubMed

    Gradišar, Dejan; Grašič, Boštjan; Božnar, Marija Zlata; Mlakar, Primož; Kocijan, Juš

    2016-09-01

    This paper discuss the problem of forecasting the maximum ozone concentrations in urban microlocations, where reliable alerting of the local population when thresholds have been surpassed is necessary. To improve the forecast, the methodology of integrated models is proposed. The model is based on multilayer perceptron neural networks that use as inputs all available information from QualeAria air-quality model, WRF numerical weather prediction model and onsite measurements of meteorology and air pollution. While air-quality and meteorological models cover large geographical 3-dimensional space, their local resolution is often not satisfactory. On the other hand, empirical methods have the advantage of good local forecasts. In this paper, integrated models are used for improved 1-day-ahead forecasting of the maximum hourly value of ozone within each day for representative locations in Slovenia. The WRF meteorological model is used for forecasting meteorological variables and the QualeAria air-quality model for gas concentrations. Their predictions, together with measurements from ground stations, are used as inputs to a neural network. The model validation results show that integrated models noticeably improve ozone forecasts and provide better alert systems.

  14. Physiological and biochemical aspects of ozone toxicity to rainbow trout (Salmo gairdneri)

    USGS Publications Warehouse

    Wedemeyer, Gary A.; Nelson, Nancy C.; Yasutake, William T.

    1979-01-01

    An acute toxicity curve for dissolved ozone (O3) in soft water at 10 °C, using 10–13-cm rainbow trout (Salmo gairdneri) as the test species was calculated. The 96-h LC50 (95%, confidence interval) was 9.3 (8.1–10.6) μg/L. The lethal threshold level was about 8 μg/L mandating that a conservative margin of safety be used if ozone is employed as a fish disease control agent. Death apparently results from massive destruction of the gill lamellar epithelium together with a severe hydromineral imbalance. In partial chronic (3-mo) testing, 2 μg/L caused no significant biological damage while 5 μg/L caused some gill pathological changes and reduced feeding behavior. Accordingly, 2 μg/L is suggested as a provisional maximum safe exposure level, pending completion of life cycle studies. Thus, if ozone-treated water is discharged into the environment, dissolved O3 should be reduced to at least the 2 μg/L level to minimize adverse impacts on salmonids in receiving waters.

  15. Monitoring emerging contaminants in the drinking water of Milan and assessment of the human risk.

    PubMed

    Riva, Francesco; Castiglioni, Sara; Fattore, Elena; Manenti, Angela; Davoli, Enrico; Zuccato, Ettore

    2018-04-01

    Emerging Contaminants (ECs) are ubiquitous in waters, arousing concern because of their potential risks for human health and the environment. This study investigated the presence of multiple classes of ECs in 21 wells over the drinking water network of Milan, in the most inhabited and industrialized area of Italy, and assessed the risks for consumers. Samples were analyzed using liquid chromatography coupled to mass spectrometry. Human risk assessment (HRA) was conducted by comparing the measured concentrations with drinking water thresholds from guidelines or calculated in this study; first considering the exposure to each single EC and then the entire mixture. Thirteen ECs were measured in the low ng/L range, and were generally detected in less than half of the wells. Pharmaceuticals, perfluorinated substances, personal care products, and anthropogenic markers were the most frequently detected. The results of the HRA excluded any risks for consumers in each scenario considered. This is one of the most comprehensive studies assessing the presence of a large number of ECs in the whole drinking water network of a city, and the risks for human health. Results improve the limited information on ECs sources and occurrence in drinking water and help establishing guidelines for regulatory purposes. Copyright © 2018 Elsevier GmbH. All rights reserved.

  16. 21st Century Trends in the Potential for Ozone Depletion

    NASA Astrophysics Data System (ADS)

    Hurwitz, M. M.; Newman, P. A.

    2009-05-01

    We find robust trends in the area where Antarctic stratospheric temperatures are below the threshold for polar stratospheric cloud (PSC) formation in Goddard Earth Observing System (GEOS) chemistry-climate model (CCM) simulations of the 21st century. In late winter (September-October-November), cold area trends are consistent with the respective trends in equivalent effective stratospheric chlorine (EESC), i.e. negative cold area trends in 'realistic future' simulations where EESC decreases and the ozone layer recovers. In the early winter (April through June), regardless of EESC scenario, we find an increasing cold area trend in all simulations; multiple linear regression analysis shows that this early winter cooling trend is associated with the predicted increase in greenhouse gas concentrations in the future. We compare the seasonality of the potential for Antarctic ozone depletion in two versions of the GEOS CCM and assess the impact of the above-mentioned cold area trends on polar stratospheric chemistry.

  17. Large scale variability, long-term trends and extreme events in total ozone over the northern mid-latitudes based on satellite time series

    NASA Astrophysics Data System (ADS)

    Rieder, H. E.; Staehelin, J.; Maeder, J. A.; Ribatet, M.; Davison, A. C.

    2009-04-01

    Various generations of satellites (e.g. TOMS, GOME, OMI) made spatial datasets of column ozone available to the scientific community. This study has a special focus on column ozone over the northern mid-latitudes. Tools from geostatistics and extreme value theory are applied to analyze variability, long-term trends and frequency distributions of extreme events in total ozone. In a recent case study (Rieder et al., 2009) new tools from extreme value theory (Coles, 2001; Ribatet, 2007) have been applied to the world's longest total ozone record from Arosa, Switzerland (e.g. Staehelin 1998a,b), in order to describe extreme events in low and high total ozone. Within the current study this analysis is extended to satellite datasets for the northern mid-latitudes. Further special emphasis is given on patterns and spatial correlations and the influence of changes in atmospheric dynamics (e.g. tropospheric and lower stratospheric pressure systems) on column ozone. References: Coles, S.: An Introduction to Statistical Modeling of Extreme Values, Springer Series in Statistics, ISBN:1852334592, Springer, Berlin, 2001. Ribatet, M.: POT: Modelling peaks over a threshold, R News, 7, 34-36, 2007. Rieder, H.E., Staehelin, J., Maeder, J.A., Ribatet, M., Stübi, R., Weihs, P., Holawe, F., Peter, T., and Davison, A.C.: From ozone mini holes and mini highs towards extreme value theory: New insights from extreme events and non stationarity, submitted to J. Geophys. Res., 2009. Staehelin, J., Kegel, R., and Harris, N. R.: Trend analysis of the homogenized total ozone series of Arosa (Switzerland), 1929-1996, J. Geophys. Res., 103(D7), 8389-8400, doi:10.1029/97JD03650, 1998a. Staehelin, J., Renaud, A., Bader, J., McPeters, R., Viatte, P., Hoegger, B., Bugnion, V., Giroud, M., and Schill, H.: Total ozone series at Arosa (Switzerland): Homogenization and data comparison, J. Geophys. Res., 103(D5), 5827-5842, doi:10.1029/97JD02402, 1998b.

  18. Formation and emissions of carbonyls during and following gas-phase ozonation of indoor materials

    NASA Astrophysics Data System (ADS)

    Poppendieck, D. G.; Hubbard, H. F.; Weschler, C. J.; Corsi, R. L.

    Ozone concentrations that are several orders of magnitude greater than typical urban ambient concentrations are necessary for gas-phase ozonation of buildings, either for deodorization or for disinfection of biological agents. However, there is currently no published literature on the interaction of building materials and ozone under such extreme conditions. It would be useful to understand, for example in the case of building re-occupation planning, what types and amounts of reaction products may form and persist in a building after ozonation. In this study, 24 materials were exposed to ozone at concentrations of 1000 ppm in the inlet stream of experimental chambers. Fifteen target carbonyls were selected and measured as building ozonation by-products (BOBPs). During the 36 h that include the 16 h ozonation and 20 h persistence phase, the total BOBP mass released from flooring and wall coverings ranged from 1 to 20 mg m -2, with most of the carbonyls being of lower molecular weight (C 1-C 4). In contrast, total BOBP mass released from wood-based products ranged from 20 to 100 mg m -2, with a greater fraction of the BOBPs being heavier carbonyls (C 5-C 9). The total BOBP mass released during an ozonation event is a function of both the total surface area of the material and the BOBP emission rate per unit area of material. Ceiling tile, carpet, office partition, and gypsum wallboard with flat latex paint often have large surface areas in commercial buildings and these same materials exhibited relatively high BOBP releases. The greatest overall BOBP mass releases were observed for three materials that building occupants might have significant contact with: paper, office partition, and medium density fiberboard, e.g., often used in office furniture. These materials also exhibited extended BOBP persistence following ozonation; some BOBPs (e.g., nonanal) persist for months or more at emission rates large enough to result in indoor concentrations that exceed their odor threshold.

  19. Probabilistic Forecasting of Surface Ozone with a Novel Statistical Approach

    NASA Technical Reports Server (NTRS)

    Balashov, Nikolay V.; Thompson, Anne M.; Young, George S.

    2017-01-01

    The recent change in the Environmental Protection Agency's surface ozone regulation, lowering the surface ozone daily maximum 8-h average (MDA8) exceedance threshold from 75 to 70 ppbv, poses significant challenges to U.S. air quality (AQ) forecasters responsible for ozone MDA8 forecasts. The forecasters, supplied by only a few AQ model products, end up relying heavily on self-developed tools. To help U.S. AQ forecasters, this study explores a surface ozone MDA8 forecasting tool that is based solely on statistical methods and standard meteorological variables from the numerical weather prediction (NWP) models. The model combines the self-organizing map (SOM), which is a clustering technique, with a step wise weighted quadratic regression using meteorological variables as predictors for ozone MDA8. The SOM method identifies different weather regimes, to distinguish between various modes of ozone variability, and groups them according to similarity. In this way, when a regression is developed for a specific regime, data from the other regimes are also used, with weights that are based on their similarity to this specific regime. This approach, regression in SOM (REGiS), yields a distinct model for each regime taking into account both the training cases for that regime and other similar training cases. To produce probabilistic MDA8 ozone forecasts, REGiS weighs and combines all of the developed regression models on the basis of the weather patterns predicted by an NWP model. REGiS is evaluated over the San Joaquin Valley in California and the northeastern plains of Colorado. The results suggest that the model performs best when trained and adjusted separately for an individual AQ station and its corresponding meteorological site.

  20. Genetic dissection of ozone tolerance in rice (Oryza sativa L.) by a genome-wide association study

    PubMed Central

    Ueda, Yoshiaki; Frimpong, Felix; Qi, Yitao; Matthus, Elsa; Wu, Linbo; Höller, Stefanie; Kraska, Thorsten; Frei, Michael

    2015-01-01

    Tropospheric ozone causes various negative effects on plants and affects the yield and quality of agricultural crops. Here, we report a genome-wide association study (GWAS) in rice (Oryza sativa L.) to determine candidate loci associated with ozone tolerance. A diversity panel consisting of 328 accessions representing all subgroups of O. sativa was exposed to ozone stress at 60 nl l–1 for 7h every day throughout the growth season, or to control conditions. Averaged over all genotypes, ozone significantly affected biomass-related traits (plant height –1.0%, shoot dry weight –15.9%, tiller number –8.3%, grain weight –9.3%, total panicle weight –19.7%, single panicle weight –5.5%) and biochemical/physiological traits (symptom formation, SPAD value –4.4%, foliar lignin content +3.4%). A wide range of genotypic variance in response to ozone stress were observed in all phenotypes. Association mapping based on more than 30 000 single-nucleotide polymorphism (SNP) markers yielded 16 significant markers throughout the genome by applying a significance threshold of P<0.0001. Furthermore, by determining linkage disequilibrium blocks associated with significant SNPs, we gained a total of 195 candidate genes for these traits. The following sequence analysis revealed a number of novel polymorphisms in two candidate genes for the formation of visible leaf symptoms, a RING and an EREBP gene, both of which are involved in cell death and stress defence reactions. This study demonstrated substantial natural variation of responses to ozone in rice and the possibility of using GWAS in elucidating the genetic factors underlying ozone tolerance. PMID:25371505

  1. Isoprene and its degradation products as strong ozone precursors in Insubria, Northern Italy

    NASA Astrophysics Data System (ADS)

    Duane, M.; Poma, B.; Rembges, D.; Astorga, C.; Larsen, B. R.

    Frequent smog episodes occur during spring, summer, and autumn in Insubria, Northern Italy. On a test site in this area the atmospheric concentration of the photo-oxidants ozone and peroxyacetyl nitrate has been monitored over a year (2000) together with ozone precursors listed in the European Union Air Quality Directive 2002/3/EC, such as nitrous oxides (NO X) and volatile organic compounds (VOC) including hydrocarbons and carbonyls. The results of this study revealed a strong impact of biogenic isoprene on the air quality. In winter isoprene was detected at the ppt level and correlated with anthropogenic VOC. However, during the growing season isoprene exhibited a distinct diurnal variation with maximum concentrations late in the afternoon reaching up 70 ppbC attributed to strong emissions from the abundant vegetation of broad-leaf deciduous trees in this area. A new HPLC-MS method was developed for the determination of isoprene's primary atmospheric oxidation products methacrolein as its 2,4-dinitrophenylhydrazone and methyl vinyl ketone as an unusual double derivative with 2,4-dinitrophenylhydrazine. Methacrolein and methyl vinyl ketone followed the same diurnal and annual trends as isoprene. The average monthly concentration of isoprene and these products ranged from around 10 ppbC in June, July and September to 20 ppbC in August, which constitutes 15-30% of C 3-C 9 VOCs. The contribution from isoprene photo-oxidation to the ambient air formaldehyde concentrations was also found to be high during this period ranging from 30% to 60% in May, June, July and August. From the atmospheric VOC and NO X concentrations the local photochemical ozone formation was estimated by the incremental reactivity approach. The calculations showed that in summer isoprene's contribution to the local ozone formation was as high as 50-75%.

  2. New stomatal flux-based critical levels for ozone effects on vegetation

    NASA Astrophysics Data System (ADS)

    Mills, Gina; Pleijel, Håkan; Braun, Sabine; Büker, Patrick; Bermejo, Victoria; Calvo, Esperanza; Danielsson, Helena; Emberson, Lisa; Fernández, Ignacio González; Grünhage, Ludger; Harmens, Harry; Hayes, Felicity; Karlsson, Per-Erik; Simpson, David

    2011-09-01

    The critical levels for ozone effects on vegetation have been reviewed and revised by the LRTAP Convention. Eight new or revised critical levels based on the accumulated stomatal flux of ozone (POD Y, the Phytotoxic Ozone Dose above a threshold flux of Y nmol m -2 PLA s -1, where PLA is the projected leaf area) have been agreed. For each receptor, data were combined from experiments conducted under naturally fluctuating environmental conditions in 2-4 countries, resulting in linear dose-response relationships with response variables specific to each receptor ( r2 = 0.49-0.87, p < 0.001 for all). For crops, critical levels were derived for effects on wheat (grain yield, grain mass, and protein yield), potato (tuber yield) and tomato (fruit yield). For forest trees, critical levels were derived for effects on changes in annual increment in whole tree biomass for beech and birch, and Norway spruce. For (semi-)natural vegetation, the critical level for effects on productive and high conservation value perennial grasslands was based on effects on important component species of the genus Trifolium (clover species). These critical levels can be used to assess protection against the damaging effects of ozone on food security, important ecosystem services provided by forest trees (roundwood production, C sequestration, soil stability and flood prevention) and the vitality of pasture.

  3. Can artificial neural networks be used to predict the origin of ozone episodes?

    PubMed

    Fontes, T; Silva, L M; Silva, M P; Barros, N; Carvalho, A C

    2014-08-01

    Tropospheric ozone is a secondary pollutant having a negative impact on health and environment. To control and minimize such impact the European Community established regulations to promote a clean air all over Europe. However, when an episode is related with natural mechanisms as Stratosphere-Troposphere Exchanges (STE), the benefits of an action plan to minimize precursor emissions are inefficient. Therefore, this work aims to develop a tool to identify the sources of ozone episodes in order to minimize misclassification and thus avoid the implementation of inappropriate air quality plans. For this purpose, an artificial neural network model - the Multilayer Perceptron - is used as a binary classifier of the source of an ozone episode. Long data series, between 2001 and 2010, considering the ozone precursors, (7)Be activity and meteorological conditions were used. With this model, 2-7% of a mean error was achieved, which is considered as a good generalization. Accuracy measures for imbalanced data are also discussed. The MCC values show a good performance of the model (0.65-0.92). Precision and F1-measure indicate that the model specifies a little better the rare class. Thus, the results demonstrate that such a tool can be used to help authorities in the management of ozone, namely when its thresholds are exceeded due natural causes, as the above mentioned STE. Therefore, the resources used to implement an action plan to minimize ozone precursors could be better managed avoiding the implementation of inappropriate measures. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. New analytical model for the ozone electronic ground state potential surface and accurate ab initio vibrational predictions at high energy range.

    PubMed

    Tyuterev, Vladimir G; Kochanov, Roman V; Tashkun, Sergey A; Holka, Filip; Szalay, Péter G

    2013-10-07

    An accurate description of the complicated shape of the potential energy surface (PES) and that of the highly excited vibration states is of crucial importance for various unsolved issues in the spectroscopy and dynamics of ozone and remains a challenge for the theory. In this work a new analytical representation is proposed for the PES of the ground electronic state of the ozone molecule in the range covering the main potential well and the transition state towards the dissociation. This model accounts for particular features specific to the ozone PES for large variations of nuclear displacements along the minimum energy path. The impact of the shape of the PES near the transition state (existence of the "reef structure") on vibration energy levels was studied for the first time. The major purpose of this work was to provide accurate theoretical predictions for ozone vibrational band centres at the energy range near the dissociation threshold, which would be helpful for understanding the very complicated high-resolution spectra and its analyses currently in progress. Extended ab initio electronic structure calculations were carried out enabling the determination of the parameters of a minimum energy path PES model resulting in a new set of theoretical vibrational levels of ozone. A comparison with recent high-resolution spectroscopic data on the vibrational levels gives the root-mean-square deviations below 1 cm(-1) for ozone band centres up to 90% of the dissociation energy. New ab initio vibrational predictions represent a significant improvement with respect to all previously available calculations.

  5. Variation of surface ozone in Campo Grande, Brazil: meteorological effect analysis and prediction.

    PubMed

    Pires, J C M; Souza, A; Pavão, H G; Martins, F G

    2014-09-01

    The effect of meteorological variables on surface ozone (O3) concentrations was analysed based on temporal variation of linear correlation and artificial neural network (ANN) models defined by genetic algorithms (GAs). ANN models were also used to predict the daily average concentration of this air pollutant in Campo Grande, Brazil. Three methodologies were applied using GAs, two of them considering threshold models. In these models, the variables selected to define different regimes were daily average O3 concentration, relative humidity and solar radiation. The threshold model that considers two O3 regimes was the one that correctly describes the effect of important meteorological variables in O3 behaviour, presenting also a good predictive performance. Solar radiation, relative humidity and rainfall were considered significant for both O3 regimes; however, wind speed (dispersion effect) was only significant for high concentrations. According to this model, high O3 concentrations corresponded to high solar radiation, low relative humidity and wind speed. This model showed to be a powerful tool to interpret the O3 behaviour, being useful to define policy strategies for human health protection regarding air pollution.

  6. Differential neurophysiological effects of magnetic seizure therapy (MST) and electroconvulsive shock (ECS) in non-human primates.

    PubMed

    Cycowicz, Yael M; Luber, Bruce; Spellman, Timothy; Lisanby, Sarah H

    2008-07-01

    Magnetic seizure therapy (MST) is under development as a means of reducing the side effects of electroconvulsive therapy (ECT) through enhanced control over patterns of seizure induction and spread. We previously reported that chronic treatment with MST resulted in less impairment in cognitive function than electroconvulsive shock (ECS) in a non-human primate model of convulsive therapy. Here we present quantitative analyses of ictal expression and post-ictal suppression following ECS, MST, and anesthesia-alone sham in the same model to test whether differential neurophysiological characteristics of the seizures could be identified. Rhesus monkeys received 4 weeks of daily treatment with ECS, MST, and anesthesia-alone sham in a counterbalanced order separated by a recovery period. Both ECS and MST were given bilaterally at 2.5 x seizure threshold. Neurophysiological characteristics were derived from two scalp EEG electrode recording sites during and immediately following the ictal period, and were compared to sham treatment. EEG power within four frequencies (delta, theta, alpha and beta) was calculated. Our results support earlier findings from intracerebral electrode recordings demonstrating that MST- and ECS- induced seizures elicit differential patterns of EEG activation. Specifically, we found that ECS shows significantly more marked ictal expression, and more intense post-ictal suppression than MST in the theta, alpha, and beta frequency bands (Ps < .05). However, the ECS and MST were indistinguishable in the delta frequency band during both ictal and post-ictal periods. These results demonstrate that magnetic seizure induction can result in seizures that differ in some neurophysiological respects compared with ECS, but that these modalities share some aspects of seizure expression. The clinical significance of these similarities and differences awaits clinical correlation.

  7. Ozone Induced Premature Mortality and Crop Yield Loss in China

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Jiang, F.; Wang, H.

    2017-12-01

    Exposure to ambient ozone is a major risk factor for health impacts such as chronic obstructive pulmonary disease (COPD) and cause damage to plant and agricultural crops. But these impacts were usually evaluated separately in earlier studies. We apply Community Multi-scale Air Quality model to simulate the ambient O3 concentration at a resolution of 36 km×36 km across China. Then, we follow Global Burden of Diseases approach and AOT40 (i.e., above a threshold of 40 ppb) metric to estimate the premature mortalities and yield losses of major grain crops (i.e., winter wheat, rice and corn) across China due to surface ozone exposure, respectively. Our results show that ozone exposure leads to nearly 67,700 premature mortalities and 145 billion USD losses in 2014. The ozone induced yield losses of all crop production totaled 78 (49.9-112.6)million metric tons, worth 5.3 (3.4-7.6)billion USD, in China. The relative yield losses ranged from 8.5-14% for winter wheat, 3.9-15% for rice, and 2.2-5.5% for maize. We can see that the top four health affected provinces (Sichuan, Henan, Shandong, Jiangsu) are also ranking on the winter wheat and rice crop yield loss. Our results provide further evidence that surface ozone pollution is becoming urgent air pollution in China, and have important policy implications for China to alleviate the impacts of air pollution.

  8. Large prospective birth cohort studies on environmental contaminants and child health - goals, challenges, limitations and needs.

    PubMed

    Luo, Zhong-Cheng; Liu, Jian-Meng; Fraser, William D

    2010-02-01

    The adverse health effects of environmental contaminants (ECs) are a rising public health concern, and a major threat to sustainable socioeconomic development. The developing fetuses and growing children are particularly vulnerable to the adverse effects of ECs. However, assessing the health impact of ECs presents a major challenge, given that multiple outcomes may arise from one exposure, multiple exposures may result in one outcome, and the complex interactions between ECs, and between ECs, nutrients and genetic factors, and the dynamic temporal changes in EC exposures during the life course. Large-scale prospective birth cohort studies collecting extensive data and specimen starting from the prenatal or pre-conception period, although costly, hold promise as a means to more clearly quantify the health effects of ECs, and to unravel the complex interactions between ECs, nutrients and genotypes. A number of such large-scale studies have been launched in some developed counties. We present an overview of "why", "what" and "how" behind these efforts with an objective to uncover major unidentified limitations and needs. Three major limitations were identified: (1) limited data and bio-specimens regarding early life EC exposure assessments in some birth cohort studies; (2) heavy participant burdens in some birth cohort studies may bias participant recruitment, and risk substantial loss to follow-up, protocol deviations limiting the quality of data and specimens collection, with an overall potential bias towards the null effect; (3) lack of concerted efforts in building comparable birth cohorts across countries to take advantage of natural "experiments" (large EC exposure level differences between countries) for more in-depth assessments of dose-response relationships, threshold exposure levels, and positive and negative effect modifiers. Addressing these concerns in current or future large-scale birth cohort studies may help to produce better evidence on the health effects of ECs.

  9. Products of ozone-initiated chemistry in a simulated aircraft environment.

    PubMed

    Wisthaler, Armin; Tamás, Gyöngyi; Wyon, David P; Strøm-Tejsen, Peter; Space, David; Beauchamp, Jonathan; Hansel, Armin; Märk, Tilmann D; Weschler, Charles J

    2005-07-01

    We used proton-transfer-reaction mass spectrometry (PTR-MS) to examine the products formed when ozone reacted with the materials in a simulated aircraft cabin, including a loaded high-efficiency particulate air (HEPA) filter in the return air system. Four conditions were examined: cabin (baseline), cabin plus ozone, cabin plus soiled T-shirts (surrogates for human occupants), and cabin plus soiled T-shirts plus ozone. The addition of ozone to the cabin without T-shirts, at concentrations typically encountered during commercial air travel, increased the mixing ratio (v:v concentration) of detected pollutants from 35 ppb to 80 ppb. Most of this increase was due to the production of saturated and unsaturated aldehydes and tentatively identified low-molecular-weight carboxylic acids. The addition of soiled T-shirts, with no ozone present, increased the mixing ratio of pollutants in the cabin air only slightly, whereas the combination of soiled T-shirts and ozone increased the mixing ratio of detected pollutants to 110 ppb, with more than 20 ppb originating from squalene oxidation products (acetone, 4-oxopentanal, and 6-methyl-5-hepten-2-one). For the two conditions with ozone present, the more-abundant oxidation products included acetone/propanal (8-20 ppb), formaldehyde (8-10 ppb), nonanal (approximately 6 ppb), 4-oxopentanal (3-7 ppb), acetic acid (approximately 7 ppb), formic acid (approximately 3 ppb), and 6-methyl-5-hepten-2-one (0.5-2.5 ppb), as well as compounds tentatively identified as acrolein (0.6-1 ppb) and crotonaldehyde (0.6-0.8 ppb). The odor thresholds of certain products were exceeded. With an outdoor air exchange of 3 h(-1) and a recirculation rate of 20 h(-1), the measured ozone surface removal rate constant was 6.3 h(-1) when T-shirts were not present, compared to 11.4 h(-1) when T-shirts were present.

  10. Effects of ozone exposure on human epithelial adenocarcinoma and normal fibroblasts cells.

    PubMed

    Poma, Anna; Colafarina, Sabrina; Aruffo, Eleonora; Zarivi, Osvaldo; Bonfigli, Antonella; Di Bucchianico, Sebastiano; Di Carlo, Piero

    2017-01-01

    Previous studies show variable ozone cytotoxicity and genotoxicity in cell cultures, laboratory animals and humans directly exposed to tropospheric ozone. The aim of this study was therefore to investigate and compare the cyto and genotoxic effects of ozone using adenocarcinoma human alveolar basal epithelial cells A549 and normal human fibroblasts Hs27. A cell culture chamber with controlled atmosphere (a simulation reactor) was built to inject a flow of 120 ppb of ozone, which is two times the threshold value for the protection of human health, fixed by the EU legislation. Cell proliferation was evaluated by a luminescent cell viability assay while we assessed the genotoxic potential of ozone by the induction of micronuclei as well as evaluating DNA strand breaks by the induction of micronuclei evaluated by means of the cytokinesis-block micronucleus (CBMN) assay as well as evaluating DNA strand breaks by Alkaline Comet Assay (CA) or Comet Assay. A549 cells viability decreases significantly at 24 hours treatment with 120 ppb of O3 while at 48 hours and 72 hours O3 treated cells viability doesn't differ in respect to the control. However a significative decrease of A549 viability is shown at 72 hours vs. 48 hours in both treated and not-treated cells. The viability trend in the Hs27 cells did not show any significant changes in treated samples compared to the control in all conditions. The two genotoxicity biomarkers, the micronucleus and the comet tests, showed in both the cell types exposed to ozone, a significant increase in the number of micronuclei and in the tail DNA % in respect to the control even if at different times/cell type. Moreover, we found that O3 provokes genotoxic effects more evident in A549 cancer cells than in normal fibroblasts Hs27 ones. We applied a cell growth simulation model referred to ozone treated or not cell lines to confirm that the ozone exposure causes a slackening in the cells replication.

  11. Economic valuation of environmental benefits of removing pharmaceutical and personal care products from WWTP effluents by ozonation.

    PubMed

    Molinos-Senante, M; Reif, R; Garrido-Baserba, M; Hernández-Sancho, F; Omil, F; Poch, M; Sala-Garrido, R

    2013-09-01

    Continuous release of pharmaceutical and personal care products (PPCPs) present in effluents from wastewater treatment plants (WWTPs) is nowadays leading to the adoption of specific measures within the framework of the Directive 2000/60/EC (Water Framework Directive). The ozonation process, normally employed for drinking water production, has also proven its potential to eliminate PPCPs from secondary effluents in spite of their low concentrations. However, there is a significant drawback related with the costs associated with its implementation. This lack of studies is especially pronounced regarding the economic valuation of the environmental benefits associated to avoid the discharge of these pollutants into water bodies. For the first time the shadow prices of 5 PPCPs which are ethynilestradiol, sulfamethoxazole, diclofenac, tonalide and galaxolide from treated effluent using a pilot-scale ozonation reactor have been estimated. From non-sensitive areas their values are -73.73; -34.95; -42.20; -10.98; and -8.67 respectively and expressed in €/kg. They represent a proxy to the economic value of the environmental benefits arisen from undischarged pollutants. This paper contributes to value the environmental benefits of implementing post-treatment processes aimed to achieve the quality standards required by the Priority Substances Directive. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Tobacco smoke modulates ozone-induced toxicity in rat lungs and central nervous system.

    PubMed

    Bhoopalan, Vanitha; Han, Sung Gu; Shah, Mrudang M; Thomas, David M; Bhalla, Deepak K

    2013-01-01

    Adult Sprague-Dawley (SD) male rats were exposed for a single 3 h period to air, ozone (O₃) or O₃) followed by tobacco smoke (O₃/TS). For pulmonary effects, bronchoalveolar lavage (BAL) cells and fluid were analyzed. Data revealed a significant increase in polymorphonuclear leukocytes (PMN), total protein and albumin concentrations in the O₃ group, reflecting inflammatory and toxic responses. A subsequent exposure to TS attenuated PMN infiltration into the airspaces and their recovery in the BAL. A similar reduction was observed for BAL protein and albumin in the O₃/TS group, but it was not statistically significant. We also observed a significant increase in BAL total antioxidant capacity following O₃ exposure, suggesting development of protective mechanisms for oxidative stress damage from O₃. Exposure to TS attenuated the levels of total antioxidant capacity. Lung tissue protein analysis showed a significant reduction of extracellular superoxide dismutase (EC-SOD) in the O₃ or O₃/TS group and catalase in the O₃/TS group. TS further altered O₃-induced EC-SOD and catalase protein expression, but the reductions were not significant. For effects in the central nervous system (CNS), we measured striatal dopamine levels by HPLC with electrochemical detection. O₃ exposure produced a nonsignificant decrease in the striatal dopamine content. The effect was partially reversed in the O₃/TS group. Overall, the results show that the toxicity of O₃ in the lung is modulated by TS exposure, and the attenuating trend, though nonsignificant in many cases, is contrary to the synergistic toxicity predicted for TS and O₃, suggesting limited cross-tolerance following such exposures.

  13. External-cavity beam combining of 4-channel quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Zhang, Jin-Chuan; Zhou, Yu-Hong; Jia, Zhi-Wei; Zhuo, Ning; Zhai, Shen-Qiang; Wang, Li-Jun; Liu, Jun-Qi; Liu, Shu-Man; Liu, Feng-Qi; Wang, Zhan-Guo

    2017-09-01

    We demonstrate an external-cavity (EC) beam combining of 4-channel quantum cascade lasers (QCLs) with an output coupler which makes different QCL beams propagating coaxially. A beam combining efficiency of 35% (up to 75% near threshold) is obtained with a beam quality M2 of 5.5. A peak power of 0.64 W is achieved at a wavelength of 4.7 μm. The differences of spot characteristic between coupled and uncoupled are also showed in this letter. The QCLs in this EC system do not have heat crosstalk so that the system can be used for high power beam combining of QCLs.

  14. Effects of acidic rain and ozone on nitrogen fixation and photosynthesis in the lichen lobaria pulmonaria (L. ) Hoffm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sigal, L.L.; Johnston, J.W.

    1986-01-01

    The lichen Lobaria pulmonaria was subjected to ozone fumigations at 118, 235 and 353 mcg/cu m and simulated acidic rain at pH levels of 2.6, 4.2 and 5.6 for 5 days (M,W,F,M,W) during a 10-day period. Acidic rain at pH 2.6 caused significant reduction in nitrogen fixation and gross photosynthesis of 100 and 90%, respectively, and thallus bleaching was apparent. There were no significant differences between the pH 5.6 and 4.2 treatments in either gross photosynthesis or nitrogen fixation, and the color of the lichen thalli was unchanged. The effect of ozone on nitrogen fixation and photosynthesis over the rangemore » of concentrations used was not significant, but there was a trend toward reduced nitrogen fixation with increasing O/sub 3/ concentration. There were no significant ozone-acidic rain interactions. The threshold for response to rain acidity for L. pulmonaria lies between pH 2.6 and 4.2, and the acidity of wet deposition in parts of the United States may fall in the range.« less

  15. Ozone-induced foliar injury in saplings of Psidium guajava 'Paluma' in São Paulo, Brazil.

    PubMed

    Pina, J M; Moraes, R M

    2007-01-01

    Psidium guajava 'Paluma' was evaluated under field conditions as a tropical bioindicator species of ozone (O(3)). Three exposures of 90 days each were performed (June 21, 2004-March 19, 2005). In each one of them, saplings of 'Paluma' (n=30) were exposed to ambient air at a site in São Paulo (Brazil) with high ozone concentrations, and in a greenhouse with charcoal-filtered air. Ozone-like visible foliar injuries were observed during the winter, spring and summer exposures, when AOT40 reached 6166ppbh, 3504ppbh and 4828ppbh, respectively. No injuries were observed in the plants kept under filtered air. The injuries consisted in red stippling on adaxial leaf surfaces. They did not cover the veins and appeared first in older leaves, becoming more intense as the exposure period increased. Injury incidence, severity, and the cumulative exposure threshold at injury onset varied among the exposure periods. AOT40 explained partly the incidence, severity and leaf injury index LII (r(2)=0.52, 0.39, 0.38, respectively, p=0.002). The results confirm the potential of the species as an O(3)-sensitive bioindicator.

  16. Acute effects of 0. 2 ppm ozone in patients with chronic obstructive pulmonary disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solic, J.J.; Hazucha, M.J.; Bromberg, P.A.

    1982-06-01

    Epidemiologic data suggest that patients with chronic obstructive pulmonary disease (COPD) might be more sensitive than normal persons to the respiratory effects of oxidant pollutant exposure. Our study was designed to determine the response of patients with COPD to ozone. Thirteen white men with nonreversible airways obstruction (mean FEV1/FVC, 58%), of whom 8 were current smokers, were randomly exposed for 2 h to air and to 0.2 ppm ozone on 2 consecutive days using a single-blind crossover design. During either exposure, subjects exercised for 7.5 min every 30 min. Measures of respiratory mechanics obtained pre-exposure and postexposure were not significantlymore » affected by either exposure. Similarly, ventilation and gas exchange measured during exercise showed no difference either between exercise periods or exposure days. However, arterial O/sub 2/ saturation (SaO/sub 2/), measured by ear oximetry during the final exercise period each day was lower (94.8%) at the end of O/sub 2/ exposure, than SaO/sub 2/ obtained at the end of air exposure (95.3%), the difference (0.48%) being significant (p . 0.008). Because normal subjects undergoing comparable exposures show a threshold for respiratory mechanical effects at about 0.3 ppm ozone, our data suggest that mild to moderate COPD is not associated with increased sensitivity to low ozone concentrations. However, our data do not rule out the possibility that the response of such subjects might be exaggerated at higher ozone concentrations. The consistent (in 11 of 13 subjects), though small, decrease in SaO/sub 2/ may indicate that indexes of ventilation/perfusion distribution might be more sensitive measures of ozone effect in this compromised patient group than are conventional respiratory mechanics measures.« less

  17. Snapshot of the Antarctic Ozone Hole 2010

    NASA Image and Video Library

    2017-12-08

    Image acquired September 12, 2010 The yearly depletion of stratospheric ozone over Antarctica – more commonly referred to as the “ozone hole” – started in early August 2010 and is now expanding toward its annual maximum. The hole in the ozone layer typically reaches its maximum area in late September or early October, though atmospheric scientists must wait a few weeks after the maximum to pinpoint when the trend of ozone depletion has slowed down and reversed. The hole isn’t literal; no part of the stratosphere — the second layer of the atmosphere, between 8 and 50 km (5 and 31 miles) — is empty of ozone. Scientists use "hole" as a metaphor for the area in which ozone concentrations drop below the historical threshold of 220 Dobson Units. Historical levels of ozone were much higher than 220 Dobson Units, according to NASA atmospheric scientist Paul Newman, so this value shows a very large ozone loss. Earth's ozone layer protects life by absorbing ultraviolet light, which damages DNA in plants and animals (including humans) and leads to skin cancer. The Ozone Monitoring Instrument (OMI) on NASA’s Aura satellite acquired data for this map of ozone concentrations over Antarctica on September 12, 2010. OMI is a spectrometer that measures the amount of sunlight scattered by Earth’s atmosphere and surface, allowing scientists to assess how much ozone is present at various altitudes — particularly the stratosphere — and near the ground. So far in 2010, the size and depth of the ozone hole has been slightly below the average for 1979 to 2009, likely because of warmer temperatures in the stratosphere over the far southern hemisphere. However, even slight changes in the meteorology of the region this month could affect the rate of depletion of ozone and how large an area the ozone hole might span. You can follow the progress of the ozone hole by visiting NASA’s Ozone Hole Watch page. September 16 is the International Day for the Preservation of the Ozone Layer, a commemoration of the day in 1987 when nations commenced the signing of the Montreal Protocol to limit and eventually ban ozone-depleting substances such as chlorofluorocarbons (CFCs) and other chlorine and bromine-containing compounds. The ozone scientific assessment panel for the United Nations Environment Program, which monitors the effectiveness of the Montreal Protocol, is expected to release its latest review of the state of the world’s ozone layer by the end of 2010. (The last assessment was released in 2006.) Paul Newman is one of the four co-chairs of the assessment panel. NASA image courtesy Ozone Hole Watch. Caption by Michael Carlowicz. Instrument: Aura - OMI To learn more go to: ozonewatch.gsfc.nasa.gov/ Credit: NASA’s Earth Observatory NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  18. Ethylene Synthesis Regulated by Biphasic Induction of 1-Aminocyclopropane-1-Carboxylic Acid Synthase and 1-Aminocyclopropane-1-Carboxylic Acid Oxidase Genes Is Required for Hydrogen Peroxide Accumulation and Cell Death in Ozone-Exposed Tomato1

    PubMed Central

    Moeder, Wolfgang; Barry, Cornelius S.; Tauriainen, Airi A.; Betz, Christian; Tuomainen, Jaana; Utriainen, Merja; Grierson, Donald; Sandermann, Heinrich; Langebartels, Christian; Kangasjärvi, Jaakko

    2002-01-01

    We show that above a certain threshold concentration, ozone leads to leaf injury in tomato (Lycopersicon esculentum). Ozone-induced leaf damage was preceded by a rapid increase in 1-aminocyclopropane-1-carboxylic acid (ACC) synthase activity, ACC content, and ethylene emission. Changes in mRNA levels of specific ACC synthase, ACC oxidase, and ethylene receptor genes occurred within 1 to 5 h. Expression of the genes encoding components of ethylene biosynthesis and perception, and biochemistry of ethylene synthesis suggested that ozone-induced ethylene synthesis in tomato is under biphasic control. In transgenic plants containing an LE-ACO1 promoter-β-glucuronidase fusion construct, β-glucuronidase activity increased rapidly at the beginning of the O3 exposure and had a spatial distribution resembling the pattern of extracellular H2O2 production at 7 h, which coincided with the cell death pattern after 24 h. Ethylene synthesis and perception were required for active H2O2 production and cell death resulting in visible tissue damage. The results demonstrate a selective ozone response of ethylene biosynthetic genes and suggest a role for ethylene, in combination with the burst of H2O2 production, in regulating the spread of cell death. PMID:12481074

  19. Coupled channel effects on resonance states of positronic alkali atom

    NASA Astrophysics Data System (ADS)

    Yamashita, Takuma; Kino, Yasushi

    2018-01-01

    S-wave Feshbach resonance states belonging to dipole series in positronic alkali atoms (e+Li, e+Na, e+K, e+Rb and e+Cs) are studied by coupled-channel calculations within a three-body model. Resonance energies and widths below a dissociation threshold of alkali-ion and positronium are calculated with a complex scaling method. Extended model potentials that provide positronic pseudo-alkali-atoms are introduced to investigate the relationship between the resonance states and dissociation thresholds based on a three-body dynamics. Resonances of the dipole series below a dissociation threshold of alkali-atom and positron would have some associations with atomic energy levels that results in longer resonance lifetimes than the prediction of the analytical law derived from the ion-dipole interaction.

  20. Identification of unique release kinetics of serotonin from guinea-pig and human enterochromaffin cells

    PubMed Central

    Raghupathi, Ravinarayan; Duffield, Michael D; Zelkas, Leah; Meedeniya, Adrian; Brookes, Simon J H; Sia, Tiong Cheng; Wattchow, David A; Spencer, Nick J; Keating, Damien J

    2013-01-01

    The major source of serotonin (5-HT) in the body is the enterochromaffin (EC) cells lining the intestinal mucosa of the gastrointestinal tract. Despite the fact that EC cells synthesise ∼95% of total body 5-HT, and that this 5-HT has important paracrine and endocrine roles, no studies have investigated the mechanisms of 5-HT release from single primary EC cells. We have developed a rapid primary culture of guinea-pig and human EC cells, allowing analysis of single EC cell function using electrophysiology, electrochemistry, Ca2+ imaging, immunocytochemistry and 3D modelling. Ca2+ enters EC cells upon stimulation and triggers quantal 5-HT release via L-type Ca2+ channels. Real time amperometric techniques reveal that EC cells release 5-HT at rest and this release increases upon stimulation. Surprisingly for an endocrine cell storing 5-HT in large dense core vesicles (LDCVs), EC cells release 70 times less 5-HT per fusion event than catecholamine released from similarly sized LDCVs in endocrine chromaffin cells, and the vesicle release kinetics instead resembles that observed in mammalian synapses. Furthermore, we measured EC cell density along the gastrointestinal tract to create three-dimensional (3D) simulations of 5-HT diffusion using the minimal number of variables required to understand the physiological relevance of single cell 5-HT release in the whole-tissue milieu. These models indicate that local 5-HT levels are likely to be maintained around the activation threshold for mucosal 5-HT receptors and that this is dependent upon stimulation and location within the gastrointestinal tract. This is the first study demonstrating single cell 5-HT release in primary EC cells. The mode of 5-HT release may represent a unique mode of exocytosis amongst endocrine cells and is functionally relevant to gastrointestinal sensory and motor function. PMID:24099799

  1. Ecosystem-scale trade-offs between impacts of ozone and reactive nitrogen

    NASA Astrophysics Data System (ADS)

    Rowe, Ed; Hayes, Felicity; Sawicka, Kasia; Mills, Gina; Jones, Laurence; Moldan, Filip; Sereina, Bassin; van Dijk, Netty; Evans, Chris

    2015-04-01

    Nitrogen (N) deposition stimulates plant productivity in many terrestrial ecosystems. This is clearly beneficial for production agriculture and forestry, but increased litterfall and decreased ground-level light availability reduce the suitability of habitats for many biota (Jones et al., 2014). This mechanism (Hautier et al., 2009), together with the acidifying effects of N (Stevens et al., 2010), has caused considerable biodiversity loss at global scale. Ozone, by contrast, has the effect of reducing plant production, and a simple assessment would suggest that this might mitigate the effects of N pollution. We explored the interactions between ozone and nitrogen at mechanistic level using a version of the MADOC model (Rowe et al., 2014) modified to include effects of ozone. The model was tested against data from long-term monitoring and experimental sites with a focus on nitrogen and/or ozone effects. Effects on biodiversity were assessed by coupling the MADOC model to the MultiMOVE plant species model. We used this model-chain to explore trade-offs and synergies between the impacts of nitrogen and ozone on biodiversity and ecosystem biogeochemistry. In a review of the effects of ozone on ecosystem processes, two consistent effects were found: decreased net primary production due to damage to photosynthetic mechanisms; and an increase in litter nitrogen apparently caused by interference of ozone with the retranslocation process (Mills, in prep.). Insufficient evidence was found to justify inclusion of posited interactive mechanisms such as increased ozone susceptibility with greater nitrogen supply. However, the MADOC model illustrated emergent ozone-nitrogen interactions at ecosystem scale, for example an increase in N leaching due to decreased plant demand and greater litter N content. Empirical evidence for interactive effects of nitrogen and ozone at ecosystem scale is severely lacking, but simulated results were consistent with soil and soil solution observations from long-term experiments with N addition (bog at Whim Moss and coniferous forest at Gårdsjön) and ozone treatments (alpine grassland at Alp Flix). Effects of N pollution on biodiversity were well illustrated by the model chain. Acidification and eutrophication both tended to have negative effects on "positive indicator" species i.e. those that are distinctive for particular habitats, and neutral or positive effects on more ubiquitous species. Simulations suggested that ozone is likely to have beneficial effects on these distinctive species, principally because of decreased productivity. However, this may not occur in reality since responses of individual species to ozone vary considerably, and are not currently included in the model chain. We identify knowledge gaps which would be a useful focus for future experimental studies and surveys. Using relatively simple models of ecosystem biogeochemistry and species responses, together with an awareness of where simplifications might lead to unreliable conclusions, can help clarify research questions to be addressed in experimental studies. Hautier, Y. et al. 2009. Science 324, 636-638. Jones, L. et al. 2014. Ecosystem Services 7, 76-88. Mills, G. et al. in prep. Environmental Pollution. Rowe, E.C. et al. 2014. Environmental Pollution 184, 271-282. Stevens, C.J. et al. 2010. Functional Ecology 24, 478-484.

  2. Water quality assessment using the AREc32 reporter gene assay indicative of the oxidative stress response pathway.

    PubMed

    Escher, Beate I; Dutt, Mriga; Maylin, Erin; Tang, Janet Y M; Toze, Simon; Wolf, C Roland; Lang, Matti

    2012-11-01

    The reporter gene assay AREc32 is based on the induction of the Nrf2 mediated oxidative stress response pathway in the human breast cancer cell line MCF7, where eight copies of the antioxidant response element (ARE) are linked to a reporter gene encoding for luciferase. The Nrf2-ARE pathway is responsive to many chemicals that cause oxidative stress, among them a large number of pesticides and skin irritants. We adopted and validated the AREc32 bioassay for water quality testing. tert-Butylhydroquinone served as the positive control, phenol as the negative control and other reactive chemicals were assessed for their specificity. An environmentally relevant reference chemical, benzo(a)pyrene was the most potent inducer of all tested chemicals. The concentration causing an induction ratio (IR) of 1.5 (EC(IR1.5)) was chosen as the effect benchmark value. The assay was applied to 21 water samples ranging from sewage to drinking water, including secondary treatment and various tertiary treatment options (ozonation, biologically activated carbon filtration, membrane filtration, reverse osmosis, advanced oxidation, chlorination, chloramination). The samples were enriched by solid phase extraction. In most samples the oxidative stress response was far more sensitive than cytotoxicity. The primary and secondary treated effluent exceeded the effect threshold IR 1.5 at a relative enrichment factor (REF) of 1, i.e., the native samples were active. All tertiary treated samples were less potent and their EC(IR1.5) lay between REF 1 and 10. The Nrf2 pathway was induced at a REF of approximately 10 for surface waters and drinking water, and above this enrichment cytotoxicity took over in most samples and quenched the induction. The blank (ultrapure water run through the sample enrichment process) was cytotoxic at an REF of 100, which is the limit of concentrations range that can be evaluated. Treatment typically decreased both the cytotoxicity and oxidative stress response apart from drinking water treatment where chlorination caused an increase in oxidative stress response, presumably due to the formation of disinfection by-products. This study demonstrates the relevance and applicability of the oxidative stress response pathway for water quality monitoring.

  3. Interannual variability of the Antarctic ozone hole in a GCM. Part 2: A comparison of unforced and QBO-induced variability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shindell, D.T.; Rind, D.; Balachandran, N.

    1999-06-15

    Simulations were performed with the Goddard Institute for Space Studies GCM including a prescribed quasi-biennial oscillation (QBO), applied at a constant maximum value, and a physically realistic parameterization of the heterogeneous chemistry responsible for severe polar ozone loss. While the QBO is primarily a stratospheric phenomenon, in this model the QBO modulates the amount and propagation of planetary wave energy in the troposphere as well as in the stratosphere. Dynamical activity is greater in the easterly than in the unforced case, while westerly years are dynamically more quiescent. By altering zonal winds and potential vorticity, the QBO forcing changes themore » refraction of planetary waves beginning in midwinter, causing the lower-stratospheric zonal average temperatures at Southern Hemisphere high latitudes to be [approximately]3--5 K warmer in the easterly phase than in the westerly during the late winter and early spring. Ozone loss varies nonlinearly with temperature, due to the sharp threshold for formation of heterogeneous chemistry surfaces, so that the mean daily total mass of ozone depleted in this region during September was 8.7 [times] 10[sup 10] kg in the QBO easterly maximum, as compared with 12.0 [times] 10[sup 10] kg in the westerly maximum and 10.3 [times] 10[sup 10] kg in the unforced case. Through this mechanism, the midwinter divergence of the Eliassen-Palm flux is well correlated with the subsequent springtime total ozone loss (R[sup 2] = 0.6). The chemical ozone loss differences are much larger than QBO-induced transport differences in the authors' model. Inclusion of the QBO forcing also increased the maximum variability in total ozone loss from the [approximately]20% value found in the unforced runs to [approximately]50%. These large variations in ozone depletion are very similar in size to the largest observed variations in the severity of the ozone hole. The results suggest that both random variability and periodic QBO forcing are important components, perhaps explaining some of the difficulties encountered in previous attempts to correlate the severity of the ozone hole with the QBO phase.« less

  4. Cost-effectiveness analysis of smoking cessation interventions using cell phones in a low-income population.

    PubMed

    Daly, Allan T; Deshmukh, Ashish A; Vidrine, Damon J; Prokhorov, Alexander V; Frank, Summer G; Tahay, Patricia D; Houchen, Maggie E; Cantor, Scott B

    2018-06-09

    The prevalence of cigarette smoking is significantly higher among those living at or below the federal poverty level. Cell phone-based interventions among such populations have the potential to reduce smoking rates and be cost-effective. We performed a cost-effectiveness analysis of three smoking cessation interventions: Standard Care (SC) (brief advice to quit, nicotine replacement therapy and self-help written materials), Enhanced Care (EC) (SC plus cell phone-delivered messaging) and Intensive Care (IC) (EC plus cell phone-delivered counselling). Quit rates were obtained from Project ACTION (Adult smoking Cessation Treatment through Innovative Outreach to Neighborhoods). We evaluated shorter-term outcomes of cost per quit and long-term outcomes using cost per quality-adjusted life year (QALY). For men, EC cost an additional $541 per quit vs SC; however, IC cost an additional $5232 per quit vs EC. For women, EC was weakly dominated by IC-IC cost an additional $1092 per quit vs SC. Similarly, for men, EC had incremental cost-effectiveness ratio (ICER) of $426 per QALY gained vs SC; however, IC resulted in ICER of $4127 per QALY gained vs EC. For women, EC was weakly dominated; the ICER of IC vs SC was $1251 per QALY gained. The ICER was below maximum acceptable willingness-to-pay threshold of $50 000 per QALY under all alternative modelling assumptions. Cell phone interventions for low socioeconomic groups are a cost-effective use of healthcare resources. Intensive Care was the most cost-effective strategy both for men and women. NCT00948129; Results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Short-term memory of TiO2-based electrochemical capacitors: empirical analysis with adoption of a sliding threshold

    NASA Astrophysics Data System (ADS)

    Lim, Hyungkwang; Kim, Inho; Kim, Jin-Sang; Hwang, Cheol Seong; Jeong, Doo Seok

    2013-09-01

    Chemical synapses are important components of the large-scaled neural network in the hippocampus of the mammalian brain, and a change in their weight is thought to be in charge of learning and memory. Thus, the realization of artificial chemical synapses is of crucial importance in achieving artificial neural networks emulating the brain’s functionalities to some extent. This kind of research is often referred to as neuromorphic engineering. In this study, we report short-term memory behaviours of electrochemical capacitors (ECs) utilizing TiO2 mixed ionic-electronic conductor and various reactive electrode materials e.g. Ti, Ni, and Cr. By experiments, it turned out that the potentiation behaviours did not represent unlimited growth of synaptic weight. Instead, the behaviours exhibited limited synaptic weight growth that can be understood by means of an empirical equation similar to the Bienenstock-Cooper-Munro rule, employing a sliding threshold. The observed potentiation behaviours were analysed using the empirical equation and the differences between the different ECs were parameterized.

  6. Intracavity widely-tunable quantum cascade laser spectrometer.

    PubMed

    Brownsword, Richard A; Weidmann, Damien

    2013-01-28

    A grating-tuned extended-cavity quantum cascade laser (EC-QCL) operating around 7.6 µm was assembled to provide a tuning range of ~80 cm⁻¹ with output power of up to 30 mW. The EC-QCL output power was shown to be sensitive to the presence of a broadband absorbing gas mixture contained in a 2-cm cell introduced inside the extended laser cavity. In this arrangement, enhanced absorption relative to single path linear absorption was observed. To describe observations, in the QCL rate-equation model was included the effect of intracavity absorption. The model qualitatively reproduced the absorption behavior observed. In addition, it allowed quantitative measurements of mixing ratio of dimethyl carbonate, which was used as a test broadband absorber. A number of alternative data acquisition and reduction methods were identified. As the intracavity absorber modifies the laser threshold current, phase-sensitive detection of the laser threshold current was found to be the most attractive way to determine the mixing ratio of the absorber. The dimethyl carbonate detection limit was estimated to be 1.4 ppmv for 10 second integration. Limitations and possible ways of improvements were also identified.

  7. What strategy is needed for attaining the EU air quality regulations under future climate change scenarios? A sensitivity analysis over Europe

    NASA Astrophysics Data System (ADS)

    Jiménez-Guerrero, P.; Baró, R.; Gómez-Navarro, J. J.; Lorente-Plazas, R.; García-Valero, J. A.; Hernández, Z.; Montávez, J. P.

    2012-04-01

    A wide number of studies show that several areas over Europe exceed some of the air quality thresholds established in the legislation. These exceedances will become more frequent under future climate change scenarios, since the policies aimed at improving air quality in the EU directives have not accounted for the variations in the climate. Climate change alone will influence the future concentrations of atmospheric pollutants through modifications of gas-phase chemistry, transport, removal, and natural emissions. In this sense, chemistry transport models (CTMs) play a key role in assessing and understanding the emissions abatement plans through the use of sensitivity analysis strategies. These sensitivity analyses characterize the change in model output due to variations in model input parameters. Since the management strategies of air pollutant emission is one of the predominant factors for controlling urban air quality, this work assesses the impact of various emission reduction scenarios in air pollution levels over Europe under two climate change scenarios. The methodology includes the use of a climate version of the meteorological model MM5 coupled with the CHIMERE chemistry transport model. Experiments span the periods 1971-2000, as a reference, and 2071-2100, as two future enhanced greenhouse gas and aerosol scenarios (SRES A2 and B2). The atmospheric simulations have an horizontal resolution of 25 km and 23 vertical layers up to 100 hPa, and are driven by the global climate model ECHO-G . In order to represent the sensitivity of the chemistry and transport of aerosols, tropospheric ozone and other photochemical species, several hypothetical scenarios of emission control have been implemented to quantify the influence of diverse emission sources in the area, such as on-road traffic, port and industrial emissions, among others. The modeling strategy lies on a sensitivity analysis to determine the emission reduction and strategy needed in the target area in order to attain the standards and thresholds set in the European Directive 2008/50/EC. Results depict that the system is able to characterize the exceedances occurring in Europe, mainly related to the maximum 8h moving average exceeding the target value of 120 μg/m3, mainly over southern Europe. Also, compliance of the PM10 daily limit values (50 μg/m3) is not achieved over wide areas in Europe. The sensitivity analysis indicates that large reductions of precursors emissions are needed in all the scenarios examined for attaining the thresholds set in the European Directive. In most cases this abatement strategy is hard to take into practice (e.g. unrealistic percentage of emission reductions in on-road traffic, industry or harbor activity); however, ozone and particulate matter air pollution improve considerably in most of the scenarios included. Results also unveil the propagation of uncertainties from the meteorological projections into future air quality and claim for future studies aimed at deepening the knowledge about the parameterized processes, the definition of emissions and, last, reducing uncertainties.

  8. Relationship between surface and free tropospheric ozone in the Western U.S.

    PubMed

    Jaffe, Dan

    2011-01-15

    Ozone is an important air pollutant that affects lung function. In the U.S., the EPA has reduced the allowable O(3) concentrations several times over the last few decades. This puts greater emphasis on understanding the interannual variability and the contributions to surface O(3) from all sources. We have examined O(3) data from 11 rural CASTNET sites in the western US for the period 1995-2009. The 11 surface sites show a similar seasonal cycle and generally a good correlation in the deseasonalized monthly means, indicating that there are large scale influences on O(3) that operate across the entire western US. These sites also show a good correlation between site elevation and annual mean O(3), indicating a significant contribution from the free troposphere. We examined the number of exceedance days for each site, defined as a day when the Maximum Daily 8-h Average (MDA8) exceeds a threshold value. Over this time period, more than half of these sites exceeded an MDA8 threshold of 70 ppbv at least 4 times per year, and all sites exceeded a threshold value of 65 ppbv at least 4 times per year. The transition to lower threshold values increases substantially the number of exceedance days, especially during spring, reflecting the fact that background O(3) peaks during spring. We next examined the correlation between surface O(3) and free tropospheric O(3) in the same region, as measured by routine balloon launches from Boulder, CO. Using ozone measured by the balloon sensor in the range of 3-6 km above sea level we find statistically significant correlations between surface and free tropospheric O(3) in spring and summer months using both monthly means, daily MDA8 values, and the number of surface exceedance days. We suggest that during spring this correlation reflects variations in the flux of O(3) transport from the free troposphere to the surface. In summer, free tropospheric and surface concentrations of O(3) and the number of exceedance days are all significantly correlated with emissions from biomass burning in the western US. This indicates that wildfires significantly increase the number of exceedance days across the western U.S.

  9. Photochemical Grid Modelling Study to Assess Potential Air Quality Impacts Associated with Energy Development in Colorado and Northern New Mexico.

    NASA Astrophysics Data System (ADS)

    Parker, L. K.; Morris, R. E.; Zapert, J.; Cook, F.; Koo, B.; Rasmussen, D.; Jung, J.; Grant, J.; Johnson, J.; Shah, T.; Pavlovic, T.

    2015-12-01

    The Colorado Air Resource Management Modeling Study (CARMMS) was funded by the Bureau of Land Management (BLM) to predict the impacts from future federal and non-federal energy development in Colorado and Northern New Mexico. The study used the Comprehensive Air Quality Model with extensions (CAMx) photochemical grid model (PGM) to quantify potential impacts from energy development from BLM field office planning areas. CAMx source apportionment technology was used to track the impacts from multiple (14) different emissions source regions (i.e. field office areas) within one simulation, as well as to assess the cumulative impact of emissions from all source regions combined. The energy development emissions estimates were for the year 2021 for three different development scenarios: (1) low; (2) high; (3) high with emissions mitigation. Impacts on air quality (AQ) including ozone, PM2.5, PM10, NO2, SO2, and air quality related values (AQRVs) such as atmospheric deposition, regional haze and changes in Acid Neutralizing Capacity (ANC) of lakes were quantified, and compared to establish threshold levels. In this presentation, we present a brief summary of the how the emission scenarios were developed, we compare the emission totals for each scenario, and then focus on the ozone impacts for each scenario to assess: (1). the difference in potential ozone impacts under the different development scenarios and (2). to establish the sensitivity of the ozone impacts to different emissions levels. Region-wide ozone impacts will be presented as well as impacts at specific locations with ozone monitors.

  10. Influence of low ozone episodes on erythemal UV-B radiation in Austria

    NASA Astrophysics Data System (ADS)

    Schwarz, Matthias; Baumgartner, Dietmar J.; Pietsch, Helga; Blumthaler, Mario; Weihs, Philipp; Rieder, Harald E.

    2017-06-01

    This study investigates the influence of low ozone episodes on UV-B radiation in Austria during the period 1999 to 2015. To this aim observations of total column ozone (TCO) in the Greater Alpine Region (Arosa, Switzerland; Hohenpeissenberg, Germany; Hradec Kralove, Czech Republic; Sonnblick, Austria), and erythemal UV-B radiation, available from 12 sites of the Austrian UV-B monitoring network, are analyzed. As previous definitions for low ozone episodes are not particularly suited to investigate effects on UV radiation, a novel threshold approach—considering anomalies—is developed to provide a joint framework for the analysis of extremes. TCO and UV extremes are negatively correlated, although modulating effects of sunshine duration impact the robustness of the statistical relationship. Therefore, information on relative sunshine duration (SDrel), available at (or nearby) UV-B monitoring sites, is included as explanatory variable in the analysis. The joint analysis of anomalies of both UV index (UVI) and total ozone (∆UVI, ∆TCO) and SDrel across sites shows that more than 65% of observations with strongly negative ozone anomalies (∆TCO < -1) led to positive UVI anomalies. Considering only days with strongly positive UVI anomaly (∆UVI > 1), we find (across all sites) that about 90% correspond to negative ∆TCO. The remaining 10% of days occurred during fair weather conditions (SDrel ≥ 80%) explaining the appearance of ∆UVI > 1 despite positive TCO anomalies. Further, we introduce an anomaly amplification factor (AAF), which quantifies the expected change of the ∆UVI for a given change in ∆TCO.

  11. The effects of two different swimming training periodization on physiological parameters at various exercise intensities.

    PubMed

    Clemente-Suárez, Vicente Javier; Dalamitros, Athanasios; Ribeiro, João; Sousa, Ana; Fernandes, Ricardo J; Vilas-Boas, J Paulo

    2017-05-01

    This study analysed the effects of two different periodization strategies on physiological parameters at various exercise intensities in competitive swimmers. Seventeen athletes of both sexes were divided to two groups, the traditional periodization (TPG, n = 7) and the reverse periodization group (RPG, n = 10). Each group followed a 10-week training period based on the two different periodization strategies. Before and after training, swimming velocity (SV), energy expenditure (EE), energy cost (EC) and percentage of aerobic (%Aer) and anaerobic (%An) energy contribution to the swimming intensities corresponding to the aerobic threshold (AerT), the anaerobic threshold (AnT) and the velocity at maximal oxygen uptake (vVO 2 max) were measured. Both groups increased the %An at the AerT and AnT intensity (P ≤ .05). In contrast, at the AnT intensity, EE and EC were only increased in TPG. Complementary, %Aer, %An, EE and EC at vVO 2 max did not alter in both groups (P > .05); no changes were observed in SV in TPG and RPG at all three intensities. These results indicate that both periodization schemes confer almost analogous adaptations in specific physiological parameters in competitive swimmers. However, given the large difference in the total training volume between the two groups, it is suggested that the implementation of the reverse periodization model is an effective and time-efficient strategy to improve performance mainly for swimming events where the AnT is an important performance indicator.

  12. Vanadium bioavailability and toxicity to soil microorganisms and plants.

    PubMed

    Larsson, Maja A; Baken, Stijn; Gustafsson, Jon Petter; Hadialhejazi, Golshid; Smolders, Erik

    2013-10-01

    Vanadium, V, is a redox-sensitive metal that in solution, under aerobic conditions, prevails as the oxyanion vanadate(V). There is little known regarding vanadium toxicity to soil biota, and the present study was set up to determine the toxicity of added vanadate to soil organisms and to investigate the relationship between toxicity and vanadium sorption in soils. Five soils with contrasting properties were spiked with 7 different doses (3.2-3200 mg V kg(-1)) of dissolved vanadate, and toxicity was measured with 2 microbial and 3 plant assays. The median effective concentration (EC50) thresholds of the microbial assays ranged from 28 mg added V kg(-1) to 690 mg added V kg(-1), and the EC50s in the plant assays ranged from 18 mg added V kg(-1) to 510 mg added V kg(-1). The lower thresholds were in the concentration range of the background vanadium in the untreated control soils (15-58 mg V kg(-1)). The vanadium toxicity to plants decreased with a stronger soil vanadium sorption strength. The EC50 values for plants expressed on a soil solution basis ranged from 0.8 mg V L(-1) to 15 mg V L(-1) and were less variable among soils than corresponding values based on total vanadium in soil. It is concluded that sorption decreases the toxicity of added vanadate and that soil solution vanadium is a more robust measure to determine critical vanadium concentrations across soils. © 2013 SETAC.

  13. Identification and characterisation of regional ozone episodes in the southwest of the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Domínguez-López, D.; Vaca, F.; Hernández-Ceballos, M. A.; Bolívar, J. P.

    2015-02-01

    Tropospheric ozone is considered one of the most significant air pollutants due to its negative effects on human health, agricultural crops, ecosystems and climate. The features of the southwest of the Iberian Peninsula (high temperatures and high solar radiation, the presence of the Guadalquivir basin and sources of precursors) favour the occurrence of episodes of high concentrations that cause exceedances of legal thresholds with relative frequency. Despite this, no study examining regional ozone episodes has been carried out in this region until now. In the present work a surface hourly ozone dataset (2003-2006) measured at 11 representative stations located in the southwest of the Iberian Peninsula (western Andalusia) was analysed in order to identify and characterise, for the first time, the regional ozone episodes that occur in this area. Using a statistical criterion, eight regional episodes were identified and analysed. The analysis of synoptic weather patterns revealed that these episodes occur in conjunction with two different synoptic conditions (high surface pressure either close to the British Isles or over the Atlantic Ocean). Both conditions generate weak isobaric surface pressure over the Iberian Peninsula, favouring the establishment of easterly winds at 500 m and the development of winds with two main prevailing directions (southwest-northwest, following the Guadalquivir basin) in the study area. During episodic days ozone follows a similar daily cycle to that observed on non-episode summer days, although the levels reached during the former are higher. In both cases, a direct relationship between the daily ozone cycle and the local wind regimen was not observed. This therefore seems to indicate that the daily cycle followed by ozone is mainly regulated by the precursor emissions produced in the environment, by the temperature changes taking place during the day and by the influence of the lower troposphere during anticyclonic weather conditions.

  14. Application of empirical predictive modeling using conventional and alternative fecal indicator bacteria in eastern North Carolina waters

    USGS Publications Warehouse

    Gonzalez, Raul; Conn, Kathleen E.; Crosswell, Joey; Noble, Rachel

    2012-01-01

    Coastal and estuarine waters are the site of intense anthropogenic influence with concomitant use for recreation and seafood harvesting. Therefore, coastal and estuarine water quality has a direct impact on human health. In eastern North Carolina (NC) there are over 240 recreational and 1025 shellfish harvesting water quality monitoring sites that are regularly assessed. Because of the large number of sites, sampling frequency is often only on a weekly basis. This frequency, along with an 18–24 h incubation time for fecal indicator bacteria (FIB) enumeration via culture-based methods, reduces the efficiency of the public notification process. In states like NC where beach monitoring resources are limited but historical data are plentiful, predictive models may offer an improvement for monitoring and notification by providing real-time FIB estimates. In this study, water samples were collected during 12 dry (n = 88) and 13 wet (n = 66) weather events at up to 10 sites. Statistical predictive models for Escherichiacoli (EC), enterococci (ENT), and members of the Bacteroidales group were created and subsequently validated. Our results showed that models for EC and ENT (adjusted R2 were 0.61 and 0.64, respectively) incorporated a range of antecedent rainfall, climate, and environmental variables. The most important variables for EC and ENT models were 5-day antecedent rainfall, dissolved oxygen, and salinity. These models successfully predicted FIB levels over a wide range of conditions with a 3% (EC model) and 9% (ENT model) overall error rate for recreational threshold values and a 0% (EC model) overall error rate for shellfish threshold values. Though modeling of members of the Bacteroidales group had less predictive ability (adjusted R2 were 0.56 and 0.53 for fecal Bacteroides spp. and human Bacteroides spp., respectively), the modeling approach and testing provided information on Bacteroidales ecology. This is the first example of a set of successful statistical predictive models appropriate for assessment of both recreational and shellfish harvesting water quality in estuarine waters.

  15. The COST733 circulation type classification software: an example for surface ozone concentrations in Central Europe

    NASA Astrophysics Data System (ADS)

    Demuzere, Matthias; Kassomenos, P.; Philipp, A.

    2011-08-01

    In the framework of the COST733 Action "Harmonisation and Applications of Weather Types Classifications for European Regions" a new circulation type classification software (hereafter, referred to as cost733class software) is developed. The cost733class software contains a variety of (European) classification methods and is flexible towards choice of domain of interest, input variables, time step, number of circulation types, sequencing and (weighted) target variables. This work introduces the capabilities of the cost733class software in which the resulting circulation types (CTs) from various circulation type classifications (CTCs) are applied on observed summer surface ozone concentrations in Central Europe. Firstly, the main characteristics of the CTCs in terms of circulation pattern frequencies are addressed using the baseline COST733 catalogue (cat 2.0), at present the latest product of the new cost733class software. In a second step, the probabilistic Brier skill score is used to quantify the explanatory power of all classifications in terms of the maximum 8 hourly mean ozone concentrations exceeding the 120-μg/m3 threshold; this was based on ozone concentrations from 130 Central European measurement stations. Averaged evaluation results over all stations indicate generally higher performance of CTCs with a higher number of types. Within the subset of methodologies with a similar number of types, the results suggest that the use of CTCs based on optimisation algorithms are performing slightly better than those which are based on other algorithms (predefined thresholds, principal component analysis and leader algorithms). The results are further elaborated by exploring additional capabilities of the cost733class software. Sensitivity experiments are performed using different domain sizes, input variables, seasonally based classifications and multiple-day sequencing. As an illustration, CTCs which are also conditioned towards temperature with various weights are derived and tested similarly. All results exploit a physical interpretation by adapting the environment-to-circulation approach, providing more detailed information on specific synoptic conditions prevailing on days with high surface ozone concentrations. This research does not intend to bring forward a favourite classification methodology or construct a statistical ozone forecasting tool but should be seen as an introduction to the possibilities of the cost733class software. It this respect, the results presented here can provide a basic user support for the cost733class software and the development of a more user- or application-specific CTC approach.

  16. The North American ozone air quality standard: efficacy and performance with two northern hardwood forest tree species

    Treesearch

    K. Percy; M. Nosal; W. Heilman; T. Dann; J. Sober; D. Karnosky

    2005-01-01

    In many forested regions of North America, background O3 levels have been rising despite the fact that hourly maximum concentrations have been decreasing. Unlike Europe, where critical levels based on a response threshold are used to assess risk, Canada and the United States use the best available scientific knowledge balanced by social, economic...

  17. Stratospheric Ozone Loss Over the US in Summer: Recent Advances in Observations of Temperatures, Convective Injection of Condensed Phase Water, and Analyses of Volcanic Injections That are Used to Inform Model Calculations of Catalytic Mechanisms that Control the Response of O3.

    NASA Astrophysics Data System (ADS)

    Anderson, J. G.

    2016-12-01

    In the context of changes to the structure of the Earth's climate, consequences to stratospheric ozone over the US in summer are considered. Key advances in observations directly related to the catalytic loss of ozone in the lower stratosphere include: Analysis of high resolution temperature observations over the central US in July and August from both SEAC4RS in situ observations and radio occultation (RO) observations, Inclusion of gravity wave observations from both SEAC4RS and RO measurements, Climatology of NEXRAD weather radar mapping of the 3D convective injection of condensed phase water over the central US in summer, Analysis of the impact on ozone in the lower stratosphere over the US in summer using the AER 2D model calculations of the key rate limiting radicals and rate limiting catalytic loss rates as a function of water vapor, temperature and sulfate loading in the lower stratosphere, Analysis of the impact on ozone in summer over the US under conditions of volcanic injection, overt sulfate addition for solar radiation management, and/or convective injection of water vapor, Emphasis in the analysis is placed specifically on the geographic region over the Great Plains of the US in summer because of the confluence of temperatures and water vapor concentrations that initiate the heterogeneous catalytic conversion of inorganic chlorine, primarily HCl and ClONO2, to free radical form, ClO. The ClO radical in turn engages gas phase catalytic cycles that remove ozone via the photochemical reaction mechanisms virtually identical to the catalytic photochemical processes that remove ozone over the Arctic each year in late spring. In situ observations, in the lower stratosphere of the Arctic, of the principal reaction networks that establish the relationship between observed ozone loss and the threshold in temperature, water vapor and sulfate loading is used to establish the photochemical coordinate system required to analyze ozone loss in the lower stratosphere globally. Analysis is also presented of observed ozone loss resulting from the eruption of Mt. Pinatubo that tests the photochemical structure of large ozone loss at mid-latitude for the range in sulfate loading that accompanies a volcanic eruption.

  18. Distinct Spatiotemporal Activation Patterns of the Perirhinal-Entorhinal Network in Response to Cortical and Amygdala Input

    PubMed Central

    Willems, Janske G. P.; Wadman, Wytse J.; Cappaert, Natalie L. M.

    2016-01-01

    The perirhinal (PER) and entorhinal cortex (EC) receive input from the agranular insular cortex (AiP) and the subcortical lateral amygdala (LA) and the main output area is the hippocampus. Information transfer through the PER/EC network however, is not always guaranteed. It is hypothesized that this network actively regulates the (sub)cortical activity transfer to the hippocampal network and that the inhibitory system is involved in this function. This study determined the recruitment by the AiP and LA afferents in PER/EC network with the use of voltage sensitive dye (VSD) imaging in horizontal mouse brain slices. Electrical stimulation (500 μA) of the AiP induced activity that gradually propagated predominantly in the rostro-caudal direction: from the PER to the lateral EC (LEC). In the presence of 1 μM of the competitive γ-aminobutyric acid (GABAA) receptor antagonist bicuculline, AiP stimulation recruited the medial EC (MEC) as well. In contrast, LA stimulation (500 μA) only induced activity in the deep layers of the PER. In the presence of bicuculline, the initial population activity in the PER propagated further towards the superficial layers and the EC after a delay. The latency of evoked responses decreased with increasing stimulus intensities (50–500 μA) for both the AiP and LA stimuli. The stimulation threshold for evoking responses in the PER/EC network was higher for the LA than for the AiP. This study showed that the extent of the PER/EC network activation depends on release of inhibition. When GABAA dependent inhibition is reduced, both the AiP and the LA activate spatially overlapping regions, although in a distinct spatiotemporal fashion. It is therefore hypothesized that the inhibitory network regulates excitatory activity from both cortical and subcortical areas that has to be transmitted through the PER/EC network. PMID:27378860

  19. Interaction between isoprene and ozone fluxes at ecosystem level in a poplar plantation and its impact at European level

    NASA Astrophysics Data System (ADS)

    Zenone, T.; Hendriks, C.; Brilli, F.; Gioli, B.; Portillo Estrada, M.; Schaap, M.; Ceulemans, R.

    2015-12-01

    The emissions of Biogenic volatile organic compounds (BVOCs) from vegetation, mainly in form of isoprenoids, play an important role in the tropospheric ozone (O3) formation. The potential large expansion of isoprene emitter species (e.g. poplar) as biofuels feedstock might impact the ground level O3 formation. Here we report the simultaneous observations, using the eddy covariance (EC) technique, of isoprene, O3 and CO2 fluxes in a short rotation coppice (SRC) of poplar. The impact of current poplar plantations and associated isoprene emissions on ground level ozone concentrations for Europe was evaluated using a chemistry transport model (CTM) LOTOS-EUROS. The isoprene fluxes showed a well-defined seasonal and daily cycle that mirrored with the stomata O3 uptake. The isoprene emission and the stomata O3 uptake showed significant statistical relationship especially at elevated temperature. Isoprene was characterized by a remarkable peak of emissions (e.g. 38 nmol m-2s-1) occurring for few days as a consequence of the rapid variation of the air and surface temperature. During these days the photosynthetic apparatus (i.e. the CO2 fluxes) and transpiration rates did not show significant variation while we did observe a variation of the energy exchange and a reduction of the bowen ratio. The response of isoprene emissions to ambient O3 concentration follows the common form of the hormetic dose-response curve with a considerable reduction of the isoprene emissions at [O3] > 80 ppbv indicating a potential damping effect of the O3 levels on isoprene. Under the current condition the impact of SRC plantations on ozone concentrations / formation is very limited in Europe. Our findings indicate that, even with future scenarios with more SRC, or conventional poplar plantations, the impact on Ozone formation is negligible.

  20. Effects of ozone exposure on human epithelial adenocarcinoma and normal fibroblasts cells

    PubMed Central

    Colafarina, Sabrina; Aruffo, Eleonora; Zarivi, Osvaldo; Bonfigli, Antonella; Di Bucchianico, Sebastiano; Di Carlo, Piero

    2017-01-01

    Previous studies show variable ozone cytotoxicity and genotoxicity in cell cultures, laboratory animals and humans directly exposed to tropospheric ozone. The aim of this study was therefore to investigate and compare the cyto and genotoxic effects of ozone using adenocarcinoma human alveolar basal epithelial cells A549 and normal human fibroblasts Hs27. A cell culture chamber with controlled atmosphere (a simulation reactor) was built to inject a flow of 120 ppb of ozone, which is two times the threshold value for the protection of human health, fixed by the EU legislation. Cell proliferation was evaluated by a luminescent cell viability assay while we assessed the genotoxic potential of ozone by the induction of micronuclei as well as evaluating DNA strand breaks by the induction of micronuclei evaluated by means of the cytokinesis-block micronucleus (CBMN) assay as well as evaluating DNA strand breaks by Alkaline Comet Assay (CA) or Comet Assay. A549 cells viability decreases significantly at 24 hours treatment with 120 ppb of O3 while at 48 hours and 72 hours O3 treated cells viability doesn’t differ in respect to the control. However a significative decrease of A549 viability is shown at 72 hours vs. 48 hours in both treated and not-treated cells. The viability trend in the Hs27 cells did not show any significant changes in treated samples compared to the control in all conditions. The two genotoxicity biomarkers, the micronucleus and the comet tests, showed in both the cell types exposed to ozone, a significant increase in the number of micronuclei and in the tail DNA % in respect to the control even if at different times/cell type. Moreover, we found that O3 provokes genotoxic effects more evident in A549 cancer cells than in normal fibroblasts Hs27 ones. We applied a cell growth simulation model referred to ozone treated or not cell lines to confirm that the ozone exposure causes a slackening in the cells replication. PMID:28886142

  1. Ensemble Statistical Post-Processing of the National Air Quality Forecast Capability: Enhancing Ozone Forecasts in Baltimore, Maryland

    NASA Technical Reports Server (NTRS)

    Garner, Gregory G.; Thompson, Anne M.

    2013-01-01

    An ensemble statistical post-processor (ESP) is developed for the National Air Quality Forecast Capability (NAQFC) to address the unique challenges of forecasting surface ozone in Baltimore, MD. Air quality and meteorological data were collected from the eight monitors that constitute the Baltimore forecast region. These data were used to build the ESP using a moving-block bootstrap, regression tree models, and extreme-value theory. The ESP was evaluated using a 10-fold cross-validation to avoid evaluation with the same data used in the development process. Results indicate that the ESP is conditionally biased, likely due to slight overfitting while training the regression tree models. When viewed from the perspective of a decision-maker, the ESP provides a wealth of additional information previously not available through the NAQFC alone. The user is provided the freedom to tailor the forecast to the decision at hand by using decision-specific probability thresholds that define a forecast for an ozone exceedance. Taking advantage of the ESP, the user not only receives an increase in value over the NAQFC, but also receives value for An ensemble statistical post-processor (ESP) is developed for the National Air Quality Forecast Capability (NAQFC) to address the unique challenges of forecasting surface ozone in Baltimore, MD. Air quality and meteorological data were collected from the eight monitors that constitute the Baltimore forecast region. These data were used to build the ESP using a moving-block bootstrap, regression tree models, and extreme-value theory. The ESP was evaluated using a 10-fold cross-validation to avoid evaluation with the same data used in the development process. Results indicate that the ESP is conditionally biased, likely due to slight overfitting while training the regression tree models. When viewed from the perspective of a decision-maker, the ESP provides a wealth of additional information previously not available through the NAQFC alone. The user is provided the freedom to tailor the forecast to the decision at hand by using decision-specific probability thresholds that define a forecast for an ozone exceedance. Taking advantage of the ESP, the user not only receives an increase in value over the NAQFC, but also receives value for

  2. Activation of the adenylyl cyclase/cyclic AMP/protein kinase A pathway in endothelial cells exposed to cyclic strain

    NASA Technical Reports Server (NTRS)

    Cohen, C. R.; Mills, I.; Du, W.; Kamal, K.; Sumpio, B. E.

    1997-01-01

    The aim of this study was to assess the involvement of the adenylyl cyclase/cyclic AMP/protein kinase A pathway (AC) in endothelial cells (EC) exposed to different levels of mechanical strain. Bovine aortic EC were seeded to confluence on flexible membrane-bottom wells. The membranes were deformed with either 150 mm Hg (average 10% strain) or 37.5 mm Hg (average 6% strain) vacuum at 60 cycles per minute (0.5 s strain; 0.5 s relaxation) for 0-60 min. The results demonstrate that at 10% average strain (but not 6% average strain) there was a 1.5- to 2.2-fold increase in AC, cAMP, and PKA activity by 15 min when compared to unstretched controls. Further studies revealed an increase in cAMP response element binding protein in EC subjected to the 10% average strain (but not 6% average strain). These data support the hypothesis that cyclic strain activates the AC/cAMP/PKA signal transduction pathway in EC which may occur by exceeding a strain threshold and suggest that cyclic strain may stimulate the expression of genes containing cAMP-responsive promoter elements.

  3. Wheat phytotoxicity from arsenic and cadmium separately and together in solution culture and in a calcareous soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Q; Hu, Q; Khan, S

    2007-03-05

    The toxicity effect of two deleterious elements of arsenic (As) and cadmium (Cd) (individually or in combination) on root elongation of wheat seedlings (Triticum aestivum, L.) were investigated both in hydroponics and in soils freshly spiked with the toxic elements. Median effective concentration (EC{sub 50}) and non-observed effect concentration (NOEC) were used to investigate the toxic thresholds and potencies of the two elements. The EC{sub 50} for As was 0.97 {mu}M in hydroponics and 196 mg {center_dot} kg{sup -1} in soil, and 4.32 {mu}M and 449 mg {center_dot} kg{sup -1} for Cd, respectively. Toxic unit (TU) and additive index (AI)more » concepts were introduced to determine the combined outcomes, and different behaviors were obtained: synergism in solution culture (EC{sub 50mix} = 0.36 TU{sub mix} and AI: 1.76) and antagonism in soil experiments (EC{sub 50mix} = 1.49 TU{sub mix} and AI: -0.33). Furthermore, the data of soil bioavailable As and Cd can not explain the discrepancy between the results derived from soil and hydroponics experiments.« less

  4. The race to learn: spike timing and STDP can coordinate learning and recall in CA3.

    PubMed

    Nolan, Christopher R; Wyeth, Gordon; Milford, Michael; Wiles, Janet

    2011-06-01

    The CA3 region of the hippocampus has long been proposed as an autoassociative network performing pattern completion on known inputs. The dentate gyrus (DG) region is often proposed as a network performing the complementary function of pattern separation. Neural models of pattern completion and separation generally designate explicit learning phases to encode new information and assume an ideal fixed threshold at which to stop learning new patterns and begin recalling known patterns. Memory systems are significantly more complex in practice, with the degree of memory recall depending on context-specific goals. Here, we present our spike-timing separation and completion (STSC) model of the entorhinal cortex (EC), DG, and CA3 network, ascribing to each region a role similar to that in existing models but adding a temporal dimension by using a spiking neural network. Simulation results demonstrate that (a) spike-timing dependent plasticity in the EC-CA3 synapses provides a pattern completion ability without recurrent CA3 connections, (b) the race between activation of CA3 cells via EC-CA3 synapses and activation of the same cells via DG-CA3 synapses distinguishes novel from known inputs, and (c) modulation of the EC-CA3 synapses adjusts the learned versus test input similarity required to evoke a direct CA3 response prior to any DG activity, thereby adjusting the pattern completion threshold. These mechanisms suggest that spike timing can arbitrate between learning and recall based on the novelty of each individual input, ensuring control of the learn-recall decision resides in the same subsystem as the learned memories themselves. The proposed modulatory signal does not override this decision but biases the system toward either learning or recall. The model provides an explanation for empirical observations that a reduction in novelty produces a corresponding reduction in the latency of responses in CA3 and CA1. Copyright © 2010 Wiley-Liss, Inc.

  5. Preoperative CA125 and fibrinogen in patients with endometrial cancer: a risk model for predicting lymphovascular space invasion

    PubMed Central

    2017-01-01

    Objective The aim of this study was to build a model to predict the risk of lymphovascular space invasion (LVSI) in women with endometrial cancer (EC). Methods From December 2010 to June 2013, 211 patients with EC undergoing surgery at Shanghai First Maternity and Infant Hospital were enrolled in this retrospective study. Those patients were divided into a positive LVSI group and a negative LVSI group. The clinical and pathological characteristics were compared between the two groups; logistic regression was used to explore risk factors associated with LVSI occurrence. The threshold values of significant factors were calculated to build a risk model and predict LVSI. Results There were 190 patients who were negative for LVSI and 21 patients were positive for LVSI out of 211 patients with EC. It was found that tumor grade, depth of myometrial invasion, number of pelvic lymph nodes, and International Federation of Gynecology and Obstetrics (FIGO) stage (p<0.05) were associated with LVSI occurrence. However, cervical involvement and age (p>0.05) were not associated with LVSI. Receiver operating characteristic (ROC) curves revealed that the threshold values of the following factors were correlated with positive LVSI: 28.1 U/mL of CA19-9, 21.2 U/mL of CA125, 2.58 mg/dL of fibrinogen (Fn), 1.84 U/mL of carcinoembryonic antigen (CEA) and (6.35×109)/L of white blood cell (WBC). Logistic regression analysis indicated that CA125 ≥21.2 (p=0.032) and Fn ≥2.58 mg/dL (p=0.014) were significantly associated with LVSI. Conclusion Positive LVSI could be predicted by CA125 ≥21.2 U/mL and Fn ≥2.58 mg/dL in women with EC. It could help gynecologists better adapt surgical staging and adjuvant therapies. PMID:27894164

  6. Combined processes of ozonation and supercritical water oxidation for landfill leachate degradation.

    PubMed

    Scandelai, Ana Paula Jambers; Cardozo Filho, Lúcio; Martins, Danielly Cruz Campos; Freitas, Thabata Karoliny Formicoli de Souza; Garcia, Juliana Carla; Tavares, Célia Regina Granhen

    2018-04-25

    Leachate is a highly variable, heterogeneous and recalcitrant wastewater generated in landfills which may contain high concentrations of many organic and inorganic compounds, hampering the application of a single technique in its treatment. Therefore, this paper assessed leachate degradation through supercritical water oxidation (ScWO) as well as combined processes of ozonation and supercritical water oxidation (O 3 /ScWO and ScWO/O 3 ), a yet innovative combination. Ozonation was carried out at different reaction times (30-120 min). ScWO was developed at 600 °C, 23 MPa, and spatial time (τ) from 29 to 52 s. A combination of ozonation (30 min) and supercritical water oxidation process (O 3 -30'/ScWO) was the most efficient technique for the degradation of the leachate assessed. These conditions enabled to remove high values of apparent and true color (92% and 97%, respectively), biochemical oxygen demand (BOD 5,20 ) (95%), chemical oxygen demand (COD) (92%), total organic carbon (TOC) (79%), nitrite (78%), nitrate (84%), total (96%), dissolved (96%) and suspended (94%) solids. In addition, the combined process presented significant decrease in electric conductivity (EC) (68%) and less leachate turbidity removal (43%). Except for ammonia and nitrite, all parameters of the leachate treated by O 3 -30'/ScWO met the specifications of Brazilian legislation (CONAMA Resolutions No. 357/2005 and No. 430/2011) for the disposal of wastewater in water bodies. Besides, both processes are considered to be clean technologies. This shows the great possibility of applying the O 3 /ScWO combination to landfills leachates. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Removal of geosmin and 2-methylisoborneol by biological filtration.

    PubMed

    Elhadi, S L N; Huck, P M; Slawson, R M

    2004-01-01

    The quality of drinking water is sometimes diminished by the presence of certain compounds that can impart particular tastes or odours. One of the most common and problematic types of taste and odour is the earthy/musty odour produced by geosmin (trans-1, 10-dimethyl-trans-9-decalol) and MIB (2-methylisoborneol). Taste and odour treatment processes including powdered activated carbon, and oxidation using chlorine, chloramines, potassium permanganate, and sometimes even ozone are largely ineffective for reducing these compounds to below their odour threshold concentration levels. Ozonation followed by biological filtration, however, has the potential to provide effective treatment. Ozone provides partial removal of geosmin and MIB but also creates other compounds more amenable to biodegradation and potentially undesirable biological instability. Subsequent biofiltration can remove residual geosmin and MIB in addition to removing these other biodegradable compounds. Bench scale experiments were conducted using two parallel filter columns containing fresh and exhausted granular activated carbon (GAC) media and sand. Source water consisted of dechlorinated tap water to which geosmin and MIB were added, as well as, a cocktail of easily biodegradable organic matter (i.e. typical ozonation by-products) in order to simulate water that had been subjected to ozonation prior to filtration. Using fresh GAC, total removals of geosmin ranged from 76 to 100% and total MIB removals ranged from 47% to 100%. The exhausted GAC initially removed less geosmin and MIB but removals increased over time. Overall the results of these experiments are encouraging for the use of biofiltration following ozonation as a means of geosmin and MIB removal. These results provide important information with respect to the role biofilters play during their startup phase in the reduction of these particular compounds. In addition, the results demonstrate the potential biofilters have in responding to transient geosmin and MIB episodes.

  8. Ozone phytotoxicity evaluation and prediction of crops production in tropical regions

    NASA Astrophysics Data System (ADS)

    Mohammed, Nurul Izma; Ramli, Nor Azam; Yahya, Ahmad Shukri

    2013-04-01

    Increasing ozone concentration in the atmosphere can threaten food security due to its effects on crop production. Since the 1980s, ozone has been believed to be the most damaging air pollutant to crops. In Malaysia, there is no index to indicate the reduction of crops due to the exposure of ozone. Therefore, this study aimed to identify the accumulated exposure over a threshold of X ppb (AOTX) indexes in assessing crop reduction in Malaysia. In European countries, crop response to ozone exposure is mostly expressed as AOT40. This study was designed to evaluate and predict crop reduction in tropical regions and in particular, the Malaysian climate, by adopting the AOT40 index method and modifying it based on Malaysian air quality and crop data. Nine AOTX indexes (AOT0, AOT5, AOT10, AOT15, AOT20, AOT25, AOT30, AOT40, and AOT50) were analyzed, crop responses tested and reduction in crops predicted. The results showed that the AOT50 resulted in the highest reduction in crops and the highest R2 value between the AOT50 and the crops reduction from the linear regression analysis. Hence, this study suggests that the AOT50 index is the most suitable index to estimate the potential ozone impact on crops in tropical regions. The result showed that the critical level for AOT50 index if the estimated crop reduction is 5% was 1336 ppb h. Additionally, the results indicated that the AOT40 index in Malaysia gave a minimum percentage of 6% crop reduction; as contrasted with the European guideline of 5% (due to differences in the climate e.g., average amount of sunshine).

  9. Development of a Qcl-Based Spectrometer for Spectroscopic Analysis of Biogenic Volatile Organic Compounds

    NASA Astrophysics Data System (ADS)

    Iranpour, Michael Cyrus; Tran, Minh Nhat; Stewart, Jacob

    2017-06-01

    Biogenic volatile organic compounds (BVOCs) are naturally occurring molecules that are emitted into the atmosphere by plants. BVOCs have an important role in atmospheric chemistry as they react readily with ozone, hydroxyl radicals, and nitric oxides to form aerosols and pollutants such as ozone in the troposphere. We are developing an IR spectrometer with the aim of measuring spectra of atmospheric samples of BVOCs to determine their concentrations. Using an external cavity quantum cascade laser (EC-QCL), we have acquired IR spectra of isoprene (C_{5}H_{8}) near 993 cm^{-1}. Isoprene represents an ideal target, as it is the simplest and most abundant BVOC. IR spectra of standard samples of isoprene were acquired in order to determine the detection limit of the spectrometer. We have also been working to improve the capabilities of the spectrometer by implementing wavelength modulation spectroscopy and increasing the path length through our samples by using a multipass cell. In this talk, we will present data from our initial measurements of the standard isoprene samples using a simple direct absorption setup as well as measurements using the improved spectrometer.

  10. Ozone decrease outside Arctic polar vortex due to polar vortex processing in 1997

    NASA Astrophysics Data System (ADS)

    Akiyoshi, H.; Sugata, S.; Yoshiki, M.; Sugita, T.

    2006-11-01

    We examine the effect of polar vortex processing on ozone concentrations outside the 1997 Arctic polar vortex. The Arctic vortex in this year was well isolated, cold, and circumpolar, and it broke up unusually late. However, time threshold diagnostics (TTD) analysis using a middle vortex boundary defined by the first derivative of the equivalent latitude gradient of potential vorticity and calculations using the nudging chemical transport model (CTM) of the Center for Climate System Research/National Institute for Environmental Studies (CCSR/NIES) show that there were intermittently several relatively large transport events from the vortex to the outside region in the lower stratosphere, with timescales and spatial scales that can be resolved at T42 CTM horizontal resolution (2.8° by 2.8° grid). These intermittent outflow events of polar air are also identified in TTD analysis using an outer vortex boundary defined by the second derivative of potential vorticity and a boundary defined by the N2O concentration. These intermittent events had a significant effect on the ozone concentration outside the vortex near the boundary in this year. A CTM calculation with a polar chemical ozone tracer shows that the effect on the ozone concentration outside the polar vortex near the vortex boundary in the equivalent latitude band of 55°-65°N and 450 K is 0.3 ppmv (15-20% of the ozone concentration at this height) and that on the total ozone is 12-15 Dobson units (1 DU = 0.001 atm cm) (3-4% of the total ozone) by the end of April just before the final vortex breakup. The effect in the equivalent latitude band of 30°-60°N is much smaller, with a reduction of 2 DU at the end of March and 4 DU by the end of April (less than 1% of the total ozone). The effect is about the half if we use the inner boundary or a boundary of 73°N equivalent latitude for the polar tracer calculations. The CTM calculations also show that these polar vortex processing effects might be masked at midlatitudes by the local gas phase chemical ozone production/loss reactions after mid-April at 450 K and earlier than those at 500 K.

  11. Wildlife toxicity extrapolations: NOAEL versus LOAEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fairbrother, A.; Berg, M. van den

    1995-12-31

    Ecotoxicological assessments must rely on the extrapolation of toxicity data from a few indicator species to many species of concern. Data are available from laboratory studies (e.g., quail, mallards, rainbow trout, fathead minnow) and some planned or serendipitous field studies of a broader, but by no means comprehensive, suite of species. Yet all ecological risk assessments begin with an estimate of risk based on information gleaned from the literature. One is then confronted with the necessity of extrapolating toxicity information from a limited number of indicator species to all organisms of interest. This is a particularly acute problem when tryingmore » to estimate hazards to wildlife in terrestrial systems as there is an extreme paucity of data for most chemicals in all but a handful of species. This section continues the debate by six panelists of the ``correct`` approach for determining wildlife toxicity thresholds by debating which toxicity value should be used for setting threshold criteria. Should the lowest observable effect level (LOAEL) be used or is it more appropriate to use the no observable effect level (NOAEL)? What are the short-comings of using either of these point estimates? Should a ``benchmark`` approach, similar to that proposed for human health risk assessments, be used instead, where an EC{sub 5} or EC{sub 10} and associated confidence limits are determined and then divided by a safety factor? How should knowledge of the slope of the dose-response curve be incorporated into determination of toxicity threshold values?« less

  12. Gridded global surface ozone metrics for atmospheric chemistry model evaluation

    NASA Astrophysics Data System (ADS)

    Sofen, E. D.; Bowdalo, D.; Evans, M. J.; Apadula, F.; Bonasoni, P.; Cupeiro, M.; Ellul, R.; Galbally, I. E.; Girgzdiene, R.; Luppo, S.; Mimouni, M.; Nahas, A. C.; Saliba, M.; Tørseth, K.; Wmo Gaw, Epa Aqs, Epa Castnet, Capmon, Naps, Airbase, Emep, Eanet Ozone Datasets, All Other Contributors To

    2015-07-01

    The concentration of ozone at the Earth's surface is measured at many locations across the globe for the purposes of air quality monitoring and atmospheric chemistry research. We have brought together all publicly available surface ozone observations from online databases from the modern era to build a consistent dataset for the evaluation of chemical transport and chemistry-climate (Earth System) models for projects such as the Chemistry-Climate Model Initiative and Aer-Chem-MIP. From a total dataset of approximately 6600 sites and 500 million hourly observations from 1971-2015, approximately 2200 sites and 200 million hourly observations pass screening as high-quality sites in regional background locations that are appropriate for use in global model evaluation. There is generally good data volume since the start of air quality monitoring networks in 1990 through 2013. Ozone observations are biased heavily toward North America and Europe with sparse coverage over the rest of the globe. This dataset is made available for the purposes of model evaluation as a set of gridded metrics intended to describe the distribution of ozone concentrations on monthly and annual timescales. Metrics include the moments of the distribution, percentiles, maximum daily eight-hour average (MDA8), SOMO35, AOT40, and metrics related to air quality regulatory thresholds. Gridded datasets are stored as netCDF-4 files and are available to download from the British Atmospheric Data Centre (doi:10.5285/08fbe63d-fa6d-4a7a-b952-5932e3ab0452). We provide recommendations to the ozone measurement community regarding improving metadata reporting to simplify ongoing and future efforts in working with ozone data from disparate networks in a consistent manner.

  13. On the robustness of EC-PC spike detection method for online neural recording.

    PubMed

    Zhou, Yin; Wu, Tong; Rastegarnia, Amir; Guan, Cuntai; Keefer, Edward; Yang, Zhi

    2014-09-30

    Online spike detection is an important step to compress neural data and perform real-time neural information decoding. An unsupervised, automatic, yet robust signal processing is strongly desired, thus it can support a wide range of applications. We have developed a novel spike detection algorithm called "exponential component-polynomial component" (EC-PC) spike detection. We firstly evaluate the robustness of the EC-PC spike detector under different firing rates and SNRs. Secondly, we show that the detection Precision can be quantitatively derived without requiring additional user input parameters. We have realized the algorithm (including training) into a 0.13 μm CMOS chip, where an unsupervised, nonparametric operation has been demonstrated. Both simulated data and real data are used to evaluate the method under different firing rates (FRs), SNRs. The results show that the EC-PC spike detector is the most robust in comparison with some popular detectors. Moreover, the EC-PC detector can track changes in the background noise due to the ability to re-estimate the neural data distribution. Both real and synthesized data have been used for testing the proposed algorithm in comparison with other methods, including the absolute thresholding detector (AT), median absolute deviation detector (MAD), nonlinear energy operator detector (NEO), and continuous wavelet detector (CWD). Comparative testing results reveals that the EP-PC detection algorithm performs better than the other algorithms regardless of recording conditions. The EC-PC spike detector can be considered as an unsupervised and robust online spike detection. It is also suitable for hardware implementation. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, L.; Hill, W.J.

    A method is proposed to estimate the effect of long-term variations in total ozone on the error incurred in determining a trend in total ozone due to man-made effects. When this method is applied to data from Arosa, Switzerland over the years 1932--1980, a component of the standard error of the trend estimate equal to 0.6 percent per decade is obtained. If this estimate of long-term trend variability at Arosa is not too different from global long-term trend variability, then the threshold ( +- 2 standard errors) for detecting an ozone trend in the 1970's that is outside of whatmore » could be expected from natural variation alone and hence be man-made would range from 1.35% (Reinsel et al, 1981) to 1.8%. The latter value is obtained by combining the Reinsel et al result with the result here, assuming that the error variations that both studies measure are independent and additive. Estimates for long-term trend variation over other time periods are also derived. Simulations that measure the precision of the estimate of long-term variability are reported.« less

  15. Developing air quality forecasts

    NASA Astrophysics Data System (ADS)

    Lee, Pius; Saylor, Rick; Meagher, James

    2012-05-01

    Third International Workshop on Air Quality Forecasting Research; Potomac, Maryland, 29 November to 1 December 2011 Elevated concentrations of both near-surface ozone (O3) and fine particulate matter smaller than 2.5 micrometers in diameter have been implicated in increased mortality and other human health impacts. In light of these known influences on human health, many governments around the world have instituted air quality forecasting systems to provide their citizens with advance warning of impending poor air quality so that they can take actions to limit exposure. In an effort to improve the performance of air quality forecasting systems and provide a forum for the exchange of the latest research in air quality modeling, the International Workshop on Air Quality Forecasting Research (IWAQFR) was established in 2009 and is cosponsored by the U.S. National Oceanic and Atmospheric Administration (NOAA), Environment Canada (EC), and the World Meteorological Organization (WMO). The steering committee for IWAQFR's establishment was composed of Véronique Bouchet, Mike Howe, and Craig Stoud (EC); Greg Carmichael (University of Iowa); Paula Davidson and Jim Meagher (NOAA); and Liisa Jalkanen (WMO). The most recent workshop took place in Maryland.

  16. Rilpivirine exposure in plasma and sanctuary site compartments after switching from nevirapine-containing combined antiretroviral therapy.

    PubMed

    Mora-Peris, Borja; Watson, Victoria; Vera, Jaime H; Weston, Rosy; Waldman, Adam D; Kaye, Steve; Khoo, Saye; Mackie, Nicola E; Back, David; Winston, Alan

    2014-06-01

    Pharmacokinetic parameters following modifications to antiretroviral therapy and sanctuary site exposure are often unknown for recently licensed antiretrovirals. We assessed plasma, CSF and seminal plasma (SP) exposure of rilpivirine after switching from nevirapine. HIV-infected male subjects receiving tenofovir/emtricitabine/nevirapine (245/200/400 mg) once daily switched to tenofovir/emtricitabine/rilpivirine (245/200/25 mg) once daily for 60 days when CSF and semen samples were collected. Mean and individual plasma concentrations of nevirapine and rilpivirine were compared with the proposed plasma target concentration for nevirapine (3000 ng/mL) and the protein binding-adjusted EC90 for rilpivirine (12.1 ng/mL). Mean rilpivirine CSF and SP concentrations were calculated and individual values compared with the EC50 and EC90 for wild-type virus (0.27 and 0.66 ng/mL, respectively). Of 13 subjects completing study procedures including CSF examination, 8 provided seminal samples. By day 3, the mean plasma rilpivirine trough concentration was 29.7 ng/mL (95% CI: 23.8-37). No patient presented rilpivirine plasma concentrations under the proposed threshold. The mean rilpivirine concentration in CSF was 0.8 ng/mL (95% CI: 0.7-1.0), representing a CSF : plasma ratio of 1.4%, with concentrations above the EC90 in 85% (11/13) of patients. In SP, the mean rilpivirine concentration was 4.9 ng/mL (95% CI: 3.3-7.2), representing an SP : plasma ratio of 9.5%, with all concentrations above the EC90. Switching from nevirapine- to rilpivirine-containing antiretroviral therapy was safe and well tolerated, with plasma rilpivirine concentrations above the protein binding-adjusted EC90 in all subjects. Rilpivirine concentrations were always above the EC50 in the CSF and the EC90 in SP. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Numerical study on seasonal variations of gaseous pollutants and particulate matters in Hong Kong/Pearl River Delta Region

    NASA Astrophysics Data System (ADS)

    Kwok, Roger Hiu Fung

    Air pollution in Hong Kong (HK) causes problems in visibility and public health, which are worsening over past few years. Out of particulate matters (PM) inhalable into respiratory system, 30% is contributed by sulfate (SO4), 40% by organic carbon (OC), and 10% by elemental carbon (EC). A meso-scale numerical modeling system CMAQ is devised to simulate the air quality in January (winter), April (spring), July (summer) and October (autumn) 2004, driven by meteorology simulated by MM5 and emission sources in China including Hong Kong. Observational and measurement data from Hong Kong Environmental Protection Department Air Quality network are compared with the model results. With respect to pollutant concentration level, model-observation agreement is reasonably well, especially in PM species sulfate, organic carbon (OC) and elemental carbon (EC); and gaseous species SO2, NOx and ozone. In terms of PM composition, the model agrees with the measurement in fractions of sulfate, OC and EC. Higher PM level in autumn and winter is associated with northeasterly winds due to continental outflow. To further investigate emission sources contributing to HK, a source apportioning method called Tagged Species Source Apportionment (TSSA) algorithm is applied to study contributions to level of SO4, SO2 and EC in HK. It is found that while sources beyond PRD are observed in entire HK during January and October 2004, emitting sectors are different among western HK, downtown area, and the east countryside. Specifically, power plants and vehicles from HK and Shenzhen affect the western new towns, while power plants, vehicles and ships within HK determine the downtown pollutants' level. The countryside is mainly influenced by sources beyond PRD.

  18. The decolorization and mineralization of acid orange 6 azo dye in aqueous solution by advanced oxidation processes: a comparative study.

    PubMed

    Hsing, Hao-Jan; Chiang, Pen-Chi; Chang, E-E; Chen, Mei-Yin

    2007-03-06

    The comparison of different advanced oxidation processes (AOPs), i.e. ultraviolet (UV)/TiO(2), O(3), O(3)/UV, O(3)/UV/TiO(2), Fenton and electrocoagulation (EC), is of interest to determine the best removal performance for the destruction of the target compound in an Acid Orange 6 (AO6) solution, exploring the most efficient experimental conditions as well; on the other hand, the results may provide baseline information of the combination of different AOPs in treating industrial wastewater. The following conclusions can be drawn: (1) in the effects of individual and combined ozonation and photocatalytic UV irradiation, both O(3)/UV and O(3)/UV/TiO(2) processes exhibit remarkable TOC removal capability that can achieve a 65% removal efficiency at pH 7 and O(3) dose=45mg/L; (2) the optimum pH and ratio of [H(2)O(2)]/[Fe(2+)] found for the Fenton process, are pH 4 and [H(2)O(2)]/[Fe(2+)]=6.58. The optimum [H(2)O(2)] and [Fe(2+)] under the same HF value are 58.82 and 8.93mM, respectively; (3) the optimum applied voltage found in the EC experiment is 80V, and the initial pH will affect the AO6 and TOC removal rates in that acidic conditions may be favorable for a higher removal rate; (4) the AO6 decolorization rate ranking was obtained in the order of O(3)

  19. Total ozone patterns over the northern mid-latitudes: spatial correlations, extreme events and dynamical contributions

    NASA Astrophysics Data System (ADS)

    Rieder, H. E.; Staehelin, J.; Maeder, J. A.; Ribatet, M.; Bodeker, G. E.; Davison, A. C.

    2009-04-01

    Tools from geostatistics and extreme value theory are applied to analyze spatial correlations in total ozone for the northern mid-latitudes. The dataset used in this study is the NIWA combined total ozone dataset (Bodeker et al., 2001; Müller et al., 2008). New tools from extreme value theory (Coles, 2001; Ribatet, 2007) have recently been applied to the world's longest total ozone record from Arosa, Switzerland (e.g. Staehelin 1998a,b), in order to describe extreme events in low and high total ozone (Rieder et al., 200x). Within the current study, patterns in spatial correlation and frequency distributions of extreme events (e.g. ELOs and EHOs) are studied for the northern mid-latitudes. New insights in spatial patterns of total ozone for the northern mid-latitudes are presented. Koch et al. (2005) found that the increase in fast isentropic transport of tropical air to northern mid-latitudes contributed significantly to ozone changes between 1980 and 1989. Within this study the influence of changes in atmospheric dynamics (e.g. tropospheric and lower stratospheric pressure systems) on column ozone over the northern mid-latitudes is analyzed for the time period 1979-2007. References: Bodeker, G.E., J.C. Scott, K. Kreher, and R.L. McKenzie, Global ozone trends in potential vorticity coordinates using TOMS and GOME intercompared against the Dobson network: 1978-1998, J. Geophys. Res., 106 (D19), 23029-23042, 2001. Coles, S.: An Introduction to Statistical Modeling of Extreme Values, Springer Series in Statistics, ISBN:1852334592, Springer, Berlin, 2001. Koch, G., H. Wernli, C. Schwierz, J. Staehelin, and T. Peter (2005), A composite study on the structure and formation of ozone miniholes and minihighs over central Europe, Geophys. Res. Lett., 32, L12810, doi:10.1029/2004GL022062. Müller, R., Grooß, J.-U., Lemmen, C., Heinze, D., Dameris, M., and Bodeker, G.: Simple measures of ozone depletion in the polar stratosphere, Atmos. Chem. Phys., 8, 251-264, 2008. Ribatet, M.: POT: Modelling peaks over a threshold, R News, 7, 34-36, 2007. Rieder, H.E., Staehelin, J., Maeder, J.A., Ribatet, M., Stübi, R., Weihs, P., Holawe, F., Peter, T., and Davison, A.C.: From ozone mini holes and mini highs towards extreme value theory: New insights from extreme events and non stationarity, submitted to J. Geophys. Res., 200x. Staehelin, J., Kegel, R., and Harris, N. R.: Trend analysis of the homogenized total ozone series of Arosa (Switzerland), 1929-1996, J. Geophys. Res., 103(D7), 8389-8400, doi:10.1029/97JD03650, 1998a. Staehelin, J., Renaud, A., Bader, J., McPeters, R., Viatte, P., Hoegger, B., Bugnion, V., Giroud, M., and Schill, H.: Total ozone series at Arosa (Switzerland): Homogenization and data comparison, J. Geophys. Res., 103(D5), 5827-5842, doi:10.1029/97JD02402, 1998b.

  20. Soil Salinity Mapping in Everglades National Park Using Remote Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Su, H.; Khadim, F. K.; Blankenship, J.; Sobhan, K.

    2017-12-01

    The South Florida Everglades is a vast subtropical wetland with a globally unique hydrology and ecology, and it is designated as an International Biosphere Reserve and a Wetland of International Importance. Everglades National Park (ENP) is a hydro-ecologically enriched wetland with varying salinity contents, which is a concern for terrestrial ecosystem balance and sustainability. As such, in this study, time series soil salinity mapping was carried out for the ENP area. The mapping first entailed a maximum likelihood classification of seven land cover classes for the ENP area—namely mangrove forest, mangrove scrub, low-density forest, sawgrass, prairies and marshes, barren lands with woodland hammock and water—for the years 1996, 2000, 2006, 2010 and 2015. The classifications for 1996-2010 yielded accuracies of 82%-94%, and the 2015 classification was supported through ground truthing. Afterwards, electric conductivity (EC) tolerance thresholds for each vegetation class were established,which yielded soil salinity maps comprising four soil salinity classes—i.e., the non- (EC = 0 2 dS/m), low- (EC = 2 4 dS/m), moderate- (EC = 4 8 dS/m) and high-saline (EC = >8 dS/m) areas. The soil salinity maps visualized the spatial distribution of soil salinity with no significant temporal variations. The innovative approach of "land cover identification to salinity estimation" used in the study is pragmatic and application oriented, and the study upshots are also useful, considering the diversifying ecological context of the ENP area.

  1. Constraining Night Time Ecosystem Respiration by Inverse Approaches

    NASA Astrophysics Data System (ADS)

    Juang, J.; Stoy, P. C.; Siqueira, M. B.; Katul, G. G.

    2004-12-01

    Estimating nighttime ecosystem respiration remains a key challenge in quantifying ecosystem carbon budgets. Currently, nighttime eddy-covariance (EC) flux measurements are plagued by uncertainties often attributed to poor mixing within the canopy volume, non-turbulent transport of CO2 into and out of the canopy, and non-stationarity and intermittency. Here, we explore the use of second-order closure models to estimate nighttime ecosystem respiration by mathematically linking sources of CO2 to mean concentration profiles via the continuity and the CO2 flux budget equation modified to include thermal stratification. By forcing this model to match, in a root-mean squared sense, the nighttime measured mean CO2 concentration profiles within the canopy the above ground CO2 production and forest floor respiration can be estimated via multi-dimensional optimization techniques. We show that in a maturing pine and a mature hardwood forest, these optimized CO2 sources are (1) consistently larger than the eddy covariance flux measurements above the canopy, and (2) agree well with chamber-based measurements. We also show that by linking the optimized nighttime ecosystem respiration to temperature measurements, the estimated annual ecosystem respiration from this approach agrees well with biometric estimates, at least when compared to eddy-covariance methods conditioned on a friction velocity threshold. The difference between the annual ecosystem respiration obtained by this optimization method and the friction-velocity thresholded night-time EC fluxes can be as large as 700 g C m-2 (in 2003) for the maturing pine forest, which is about 40% of the ecosystem respiration. For 2001 and 2002, the annual ecosystem respiration differences between the EC-based and the proposed approach were on the order of 300 to 400 g C m-2.

  2. Impact of Canopy Decoupling and Subcanopy Advection on the Annual Carbon Balance of a Boreal Scots Pine Forest as Derived From Eddy Covariance

    NASA Astrophysics Data System (ADS)

    Jocher, Georg; Marshall, John; Nilsson, Mats B.; Linder, Sune; De Simon, Giuseppe; Hörnlund, Thomas; Lundmark, Tomas; Näsholm, Torgny; Ottosson Löfvenius, Mikaell; Tarvainen, Lasse; Wallin, Göran; Peichl, Matthias

    2018-02-01

    Apparent net uptake of carbon dioxide (CO2) during wintertime by an ˜ 90 year old Scots pine stand in northern Sweden led us to conduct canopy decoupling and subcanopy advection investigations over an entire year. Eddy covariance (EC) measurements ran simultaneously above and within the forest canopy for that purpose. We used the correlation of above- and below-canopy standard deviation of vertical wind speed (σw) as decoupling indicator. We identified 0.33 m s-1 and 0.06 m s-1 as site-specific σw thresholds for above- and below-canopy coupling during nighttime (global radiation <20 W m-2) and 0.23 m s-1 and 0.06 m s-1 as daytime (global radiation >20 W m-2) σw thresholds. Decoupling occurred in 53% of the annual nighttime and 14% of the annual daytime. The annual net ecosystem exchange (NEE), gross ecosystem exchange (GEE), and ecosystem respiration (Reco) derived via two-level filtered EC data were -357 g C m-2, -1,138 g C m-2, and 781 g C m-2, respectively. In comparison, both single-level friction velocity (u*) and quality filtering resulted in 22% higher NEE, mainly caused by 16% lower Reco. GEE remained similar among filtering regimes. Accounting for changes of CO2 storage across the canopy in the single-level filtered data could only marginally decrease these discrepancies. Consequently, advection appears to be responsible for the major part of this divergence. We conclude that the two-level filter is necessary to adequately address decoupling and subcanopy advection at our site, and we recommend this filter for all forested EC sites.

  3. Assessment of crop yield losses in Punjab and Haryana using 2 years of continuous in situ ozone measurements

    NASA Astrophysics Data System (ADS)

    Sinha, B.; Singh Sangwan, K.; Maurya, Y.; Kumar, V.; Sarkar, C.; Chandra, B. P.; Sinha, V.

    2015-08-01

    In this study we use a high-quality data set of in situ ozone measurements at a suburban site called Mohali in the state of Punjab to estimate ozone-related crop yield losses for wheat, rice, cotton and maize for Punjab and the neighbouring state Haryana for the years 2011-2013. We intercompare crop yield loss estimates according to different exposure metrics, such as AOT40 (accumulated ozone exposure over a threshold of 40) and M7 (mean 7-hour ozone mixing ratio from 09:00 to 15:59), for the two major crop growing seasons of kharif (June-October) and rabi (November-April) and establish a new crop-yield-exposure relationship for southern Asian wheat, maize and rice cultivars. These are a factor of 2 more sensitive to ozone-induced crop yield losses compared to their European and American counterparts. Relative yield losses based on the AOT40 metrics ranged from 27 to 41 % for wheat, 21 to 26 % for rice, 3 to 5 % for maize and 47 to 58 % for cotton. Crop production losses for wheat amounted to 20.8 ± 10.4 million t in the fiscal year of 2012-2013 and 10.3 ± 4.7 million t in the fiscal year of 2013-2014 for Punjab and Haryana taken together. Crop production losses for rice totalled 5.4 ± 1.2 million t in the fiscal year of 2012-2013 and 3.2 ± 0.8 million t in the year 2013-2014 for Punjab and Haryana taken together. The Indian National Food Security Ordinance entitles ~ 820 million of India's poor to purchase about 60 kg of rice or wheat per person annually at subsidized rates. The scheme requires 27.6 Mt of wheat and 33.6 Mt of rice per year. The mitigation of ozone-related crop production losses in Punjab and Haryana alone could provide > 50 % of the wheat and ~ 10 % of the rice required for the scheme. The total economic cost losses in Punjab and Haryana amounted to USD 6.5 ± 2.2 billion in the fiscal year of 2012-2013 and USD 3.7 ± 1.2 billion in the fiscal year of 2013-2014. This economic loss estimate represents a very conservative lower limit based on the minimum support price of the crop, which is lower than the actual production costs. The upper limit for ozone-related crop yield losses in all of India currently amounts to 3.5-20 % of India's GDP. The mitigation of high surface ozone would require relatively little investment in comparison to the economic losses incurred presently. Therefore, ozone mitigation can yield massive benefits in terms of ensuring food security and boosting the economy. The co-benefits of ozone mitigation also include a decrease in the ozone-related mortality and morbidity and a reduction of the ozone-induced warming in the lower troposphere.

  4. Indoor air purification by dielectric barrier discharge combined with ionic wind: physical and microbiological investigations

    NASA Astrophysics Data System (ADS)

    Timmermann, E.; Prehn, F.; Schmidt, M.; Höft, H.; Brandenburg, R.; Kettlitz, M.

    2018-04-01

    A non-thermal plasma source based on a surface dielectric barrier discharge (DBD) is developed for purification of recirculating air in operating theatres in hospitals. This is a challenging application due to high flow rates, short treatment times and the low threshold for ozone in the ventilated air. Therefore, the surface DBD was enhanced in order to generate an ionic wind, which can deflect and thus, filter out airborne microorganisms. Electrical and gas diagnostics as well as microbiological experiments were performed in a downscaled plasma source under variation of various electrical parameters, but application-oriented airflow velocity and humidity. The dependence of electrical power and ozone concentration as well as charged particles in the plasma treated air on frequency, voltage and relative humidity is presented and discussed. The presence of humidity causes a more conductive dielectric surface and thus a weaker plasma formation, especially at low frequency. The airborne test bacteria, Escherichia coli, showed significant effect to plasma treatment (up to 20% reduction) and to plasma with ionic wind (up to 90% removal); especially a configuration with 70% removal and an accompanying ozone concentration of only 360 ppb is promising for future application.

  5. Monitoring air quality in mountains: Designing an effective network

    USGS Publications Warehouse

    Peterson, D.L.

    2000-01-01

    A quantitatively robust yet parsimonious air-quality monitoring network in mountainous regions requires special attention to relevant spatial and temporal scales of measurement and inference. The design of monitoring networks should focus on the objectives required by public agencies, namely: 1) determine if some threshold has been exceeded (e.g., for regulatory purposes), and 2) identify spatial patterns and temporal trends (e.g., to protect natural resources). A short-term, multi-scale assessment to quantify spatial variability in air quality is a valuable asset in designing a network, in conjunction with an evaluation of existing data and simulation-model output. A recent assessment in Washington state (USA) quantified spatial variability in tropospheric ozone distribution ranging from a single watershed to the western third of the state. Spatial and temporal coherence in ozone exposure modified by predictable elevational relationships ( 1.3 ppbv ozone per 100 m elevation gain) extends from urban areas to the crest of the Cascade Range. This suggests that a sparse network of permanent analyzers is sufficient at all spatial scales, with the option of periodic intensive measurements to validate network design. It is imperative that agencies cooperate in the design of monitoring networks in mountainous regions to optimize data collection and financial efficiencies.

  6. Influence of future cropland expansion on regional and global tropospheric ozone

    NASA Astrophysics Data System (ADS)

    Squire, Oliver; Archibald, Alex; Telford, Paul; Pyle, John

    2013-04-01

    With the global population set to rise over the next 100 years, the fraction of land used for crop cultivation is likely to increase, the trend being most pronounced in developing regions such as Brazil and South East Asia. In these regions currently there stands natural rainforest, a high emitter of isoprene. As many staple crops, such as soy bean, are low emitters of isoprene, increasing the crop fraction in these regions will decrease isoprene emissions. Ozone over ~35 ppb has been shown to be damaging to plants, and as ground level ozone is sensitive to isoprene concentrations, altering isoprene emissions could increase ground level ozone, potentially resulting in crop damage. This mechanism was investigated by comparing two configurations of an atmospheric chemistry-climate model (UM-UKCA) under a 2100 climate following an IPCC scenario of moderate climate change. The first run had a present day crop distribution but isoprene emissions concurrent with 2100 temperatures and climatic conditions. The second run had isoprene emissions representative of both a 2100 climate and a 2100 crop distribution in accordance with the IMAGE model. By comparing these runs it was established that ozone increased by up to 8 ppb (~30%) due to crop land expansion. Over the Amazon (the most affected region) it was found that crops were exposed to a daily maximum 8-hour (DM8H) ozone above the 35 ppb threshold for up to 65 days more per year than in the base case. These conclusions suggest that increasing the crop fraction in current areas of natural rainforest could increase regional ground level ozone, having a significant effect on crop yield and air quality. The sensitivity of such conclusions to isoprene chemistry was examined by varying the isoprene chemistry scheme within the model. The CheT isoprene scheme used here (50 reactions) was compared with the AQUM (23 reactions) and CESM Superfast (2 reactions) isoprene schemes, all of which are currently used in Earth-system models. It was found that the effect of transplanting these isoprene schemes into the base CheT chemistry scheme lead, in both cases, to higher ozone over isoprene rich regions by up to ~40 ppb. Furthermore, upon repeating the land use change experiment with these other isoprene schemes, it was found that the AQUM scheme produced more ozone (up to ~20 ppb more) in isoprene rich regions due to crop expansion than CheT. However the CESM Superfast scheme showed the opposite effect, producing less ozone than the CheT scheme in isoprene-rich regions. These varied responses highlight the sensitivity of future trends in surface ozone to isoprene chemistry within the range of some currently used chemical schemes, and suggest that further research is needed in order to most effectively parameterise this complex chemistry.

  7. Simultaneously Mitigating Near-Term Climate Change and Improving Human Health and Food Security

    NASA Astrophysics Data System (ADS)

    Shindell, Drew; Kuylenstierna, Johan C. I.; Vignati, Elisabetta; van Dingenen, Rita; Amann, Markus; Klimont, Zbigniew; Anenberg, Susan C.; Muller, Nicholas; Janssens-Maenhout, Greet; Raes, Frank; Schwartz, Joel; Faluvegi, Greg; Pozzoli, Luca; Kupiainen, Kaarle; Höglund-Isaksson, Lena; Emberson, Lisa; Streets, David; Ramanathan, V.; Hicks, Kevin; Oanh, N. T. Kim; Milly, George; Williams, Martin; Demkine, Volodymyr; Fowler, David

    2012-01-01

    Tropospheric ozone and black carbon (BC) contribute to both degraded air quality and global warming. We considered ~400 emission control measures to reduce these pollutants by using current technology and experience. We identified 14 measures targeting methane and BC emissions that reduce projected global mean warming ~0.5°C by 2050. This strategy avoids 0.7 to 4.7 million annual premature deaths from outdoor air pollution and increases annual crop yields by 30 to 135 million metric tons due to ozone reductions in 2030 and beyond. Benefits of methane emissions reductions are valued at $700 to $5000 per metric ton, which is well above typical marginal abatement costs (less than $250). The selected controls target different sources and influence climate on shorter time scales than those of carbon dioxide-reduction measures. Implementing both substantially reduces the risks of crossing the 2°C threshold.

  8. Candidates to replace R-12 as a radiator gas in Cherenkov detectors

    NASA Astrophysics Data System (ADS)

    Harvey, Allan H.; Paulechka, Eugene; Egan, Patrick F.

    2018-06-01

    Dichlorodifluoromethane (R-12) has been widely used as a radiator gas in pressure threshold Cherenkov detectors for high-energy particle physics. However, that compound is becoming unavailable due to the Montreal Protocol. To find a replacement with suitably high refractive index, we use a combination of theory and experiment to examine the polarizability and refractivity of several non-ozone-depleting compounds. Our measurements show that the fourth-generation refrigerants R-1234yf (2,3,3,3-tetrafluoropropene) and R-1234ze(E) (trans-1,3,3,3-tetrafluoropropene) have sufficient refractivity to replace R-12 in this application. If the slight flammability of these compounds is a problem, two nonflammable alternatives are R-218 (octafluoropropane), which has a high Global Warming Potential, and R-13I1 (trifluoroiodomethane), which has low Ozone Depletion Potential and Global Warming Potential but may not be sufficiently inert.

  9. 77 FR 30087 - Air Quality Designations for the 2008 Ozone National Ambient Air Quality Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ...This rule establishes initial air quality designations for most areas in the United States, including areas of Indian country, for the 2008 primary and secondary national ambient air quality standards (NAAQS) for ozone. The designations for several counties in Illinois, Indiana, and Wisconsin that the EPA is considering for inclusion in the Chicago nonattainment area will be designated in a subsequent action, no later than May 31, 2012. Areas designated as nonattainment are also being classified by operation of law according to the severity of their air quality problems. The classification categories are Marginal, Moderate, Serious, Severe, and Extreme. The EPA is establishing the air quality thresholds that define the classifications in a separate rule that the EPA is signing and publishing in the Federal Register on the same schedule as these designations. In accordance with that separate rule, six nonattainment areas in California are being reclassified to a higher classification.

  10. Small-world network properties in prefrontal cortex correlate with predictors of psychopathology risk in young children: a NIRS study.

    PubMed

    Fekete, Tomer; Beacher, Felix D C C; Cha, Jiook; Rubin, Denis; Mujica-Parodi, Lilianne R

    2014-01-15

    Near infrared spectroscopy (NIRS) is an emerging imaging technique that is relatively inexpensive, portable, and particularly well suited for collecting data in ecological settings. Therefore, it holds promise as a potential neurodiagnostic for young children. We set out to explore whether NIRS could be utilized in assessing the risk of developmental psychopathology in young children. A growing body of work indicates that temperament at young age is associated with vulnerability to psychopathology later on in life. In particular, it has been shown that low effortful control (EC), which includes the focusing and shifting of attention, inhibitory control, perceptual sensitivity, and a low threshold for pleasure, is linked to conditions such as anxiety, depression and attention deficit hyperactivity disorder (ADHD). Physiologically, EC has been linked to a control network spanning among other sites the prefrontal cortex. Several psychopathologies, such as depression and ADHD, have been shown to result in compromised small-world network properties. Therefore we set out to explore the relationship between EC and the small-world properties of PFC using NIRS. NIRS data were collected from 44 toddlers, ages 3-5, while watching naturalistic stimuli (movie clips). Derived complex network measures were then correlated to EC as derived from the Children's Behavior Questionnaire (CBQ). We found that reduced levels of EC were associated with compromised small-world properties of the prefrontal network. Our results suggest that the longitudinal NIRS studies of complex network properties in young children hold promise in furthering our understanding of developmental psychopathology. © 2013.

  11. Ozone and hydrogen peroxide as strategies to control biomass in a trickling filter to treat methanol and hydrogen sulfide under acidic conditions.

    PubMed

    García-Pérez, Teresa; Le Borgne, Sylvie; Revah, Sergio

    2016-12-01

    The operation and performance of a biotrickling filter for methanol (MeOH) and hydrogen sulfide (H 2 S) removal at acid pH was studied. Excess biomass in the filter bed, causing performance loss and high pressure drop, was controlled by intermittent addition, of ozone (O 3 ) and hydrogen peroxide (H 2 O 2 ). The results showed that after adaptation to acid pH, the maximum elimination capacity (EC) reached for MeOH was 565 g m -3  h -1 (97 % RE). High MeOH loads resulted in increased biomass concentration within the support, triggering reductions in the removal efficiency (RE) for both compounds close to 50 %, and high pressure drop. At this stage, an inlet load of 150.2 ± 16.7 g m -3  h -1 of O 3 was fed by 38 days favoring biomass detachment, and EC recovery and lower pressure dropped with a maximum elimination capacity of 587 g m -3  h -1 (81 % RE) and 15.8 g m -3  h -1 (97 % RE) for MeOH and H 2 S, respectively. After O 3 addition, a rapid increase in biomass content and higher fluctuations in pressure drop were observed reducing the system performance. A second treatment with oxidants was implemented feeding a O 3 load of 4.8 ± 0.1 g m -3  h -1 for 7 days, followed by H 2 O 2 addition for 23 days, registering 607.5 g biomass  L -1 packing before and 367.5 g biomass  L -1 packing after the oxidant addition. PCR-DGGE analysis of different operating stages showed a clear change in the bacterial populations when O 3 was present while the fungal population was less affected.

  12. Climatic variability of the column ozone over the Iranian plateau

    NASA Astrophysics Data System (ADS)

    Mousavi, Seyyed Shafi; Farajzadeh, Manuchehr; Rahimi, Yousef Ghavidel; Bidokhti, Abbasali Aliakbari

    2017-06-01

    This study analyzes the total ozone column (TOC) variability over the Iranian plateau (Esfahan) from 1978 to 2011. Results show that the annual average of TOC in Esfahan tends to decrease with time, which is strongly dependent on the season, with maximum values during the winter-spring months (more than 2.2 %/decade). By applying a defined threshold that includes the TOC monthly -2 σ, it is found that the maximum occurrence of low ozone events (LOEs) tends to be more frequent in the second half of year with about four-fifth of the observed LOEs (last summer, autumn, and early winter). During two cases of LOE, the tropopause height (TH) was uplifted 2-4 km with temperature of 10 °C colder than the long-term mean, and the synoptic pattern was characterized by high-pressure systems in UTLS region. The extreme LOEs were consistent with the horizontal transport of ozone-poor air toward the Iranian plateau and vertical advection in UTLS region. The former mechanism plays a primary role in formation of extreme LOEs based on the observed TOC reductions during previous days over the source regions (Sahara desert and Himalaya region). Day-to-day variations of maximum UV index during LOEs show that by a decrease in TOC 14 %, while the aerosol optical depth (AOD) in the cloudless condition reach their lowest rates (lower than 0.3), UV radiation exceeds very high and extreme levels in late winter and mid-spring, respectively.

  13. Co-benefits of air quality and climate change policies on air quality of the Mediterranean

    NASA Astrophysics Data System (ADS)

    Pozzoli, Luca; Mert Gokturk, Ozan; Unal, Alper; Kindap, Tayfun; Janssens-Maenhout, Greet

    2015-04-01

    The Mediterranean basin is one of the regions of the world where significant impacts due to climate changes are predicted to occur in the future. Observations and model simulations are used to provide to the policy makers scientifically based estimates of the necessity to adjust national emission reductions needed to achieve air quality objectives in the context of a changing climate, which is not only driven by GHGs, but also by short lived climate pollutants, such as tropospheric ozone and aerosols. There is an increasing interest and need to design cost-benefit emission reduction strategies, which could improve both regional air quality and global climate change. In this study we used the WRF-CMAQ air quality modelling system to quantify the contribution of anthropogenic emissions to ozone and particulate matter concentrations in Europe and the Eastern Mediterranean and to understand how this contribution could change in different future scenarios. We have investigated four different future scenarios for year 2050 defined during the European Project CIRCE: a "business as usual" scenario (BAU) where no or just actual measures are taken into account; an "air quality" scenario (BAP) which implements the National Emission Ceiling directive 2001/81/EC member states of the European Union (EU-27); a "climate change" scenario (CC) which implements global climate policies decoupled from air pollution policies; and an "integrated air quality and climate policy" scenario (CAP) which explores the co-benefit of global climate and EU-27 air pollution policies. The BAP scenario largely decreases summer ozone concentrations over almost the entire continent, while the CC and CAP scenarios similarly determine lower decreases in summer ozone but extending all over the Mediterranean, the Middle East countries and Russia. Similar patterns are found for winter PM concentrations; BAP scenario improves pollution levels only in the Western EU countries, and the CAP scenario determines the largest PM reductions over the entire continent and the Mediterranean basin.

  14. Influence of altitude on ozone levels and variability in the lower troposphere: a ground-based study for western Europe over the period 2001-2004

    NASA Astrophysics Data System (ADS)

    Chevalier, A.; Gheusi, F.; Delmas, R.; Ordóñez, C.; Sarrat, C.; Zbinden, R.; Thouret, V.; Athier, G.; Cousin, J.-M.

    2007-08-01

    The PAES (French acronym for synoptic scale atmospheric pollution) network focuses on the chemical composition (ozone, CO, NOx/y and aerosols) of the lower troposphere (0-3000 m). Its high-altitude surface stations located in different mountainous areas in France complete the low-altitude rural MERA stations (the French contribution to the european program EMEP, European Monitoring and Evaluation Program). They are representative of pollution at the scale of the French territory because they are away from any major source of pollution. This study deals with ozone observations between 2001 and 2004 at 11 stations from PAES and MERA, in addition to 16 elevated stations located in mountainous areas of Switzerland, Germany, Austria, Italy and Spain. The set of stations covers a range of altitudes between 115 and 3550 m. The comparison between recent ozone mixing ratios to those of the last decade at Pic du Midi (2877 m), as well as trends calculated over 14-year data series at three high-altitude sites in the Alps (Jungfraujoch, Sonnblick and Zugspitze) reveal that ozone is still increasing but at a slower rate than in the 1980s and 1990s. The 2001-2004 mean levels of ozone from surface stations capture the ozone stratification revealed by climatological profiles from the airborne observation system MOZAIC (Measurement of OZone and water vapour by Airbus In-service airCraft) and from ozone soundings above Payerne (Switzerland). In particular all data evidence a clear transition at about 1000-1200 m a.s.l. between a sharp gradient below (of the order of +30 ppb/km) and a gentler gradient (+3 ppb/km) above. The same altitude (1200 m) is also found to be a threshold regarding how well the ozone levels at the surface stations agree with the free-tropospheric reference (MOZAIC or soundings). Below the departure can be as large as 40%, but suddenly drops within 15% above. For stations above 2000 m, the departure is even less than 8%. Ozone variability also reveals a clear transition between boundary-layer and free-tropospheric regimes around 1000 m a.s.l. Below, diurnal photochemistry accounts for about the third of the variability in summer, but less than 20% above - and at all levels in winter - where ozone variability is mostly due to day-to-day changes (linked to weather conditions or synoptic transport). In summary, the altitude range 1000-1200 m clearly turns out in our study to be an upper limit below which specific surface effects dominate the ozone content. Monthly-mean ozone mixing-ratios show at all levels a minimum in winter and the classical summer broad maximum in spring and summer - which is actually the superposition of the tropospheric spring maximum (April-May) and regional pollution episodes linked to persistent anticyclonic conditions that may occur from June to September. To complement this classical result it is shown that summer maxima are associated with considerably more variability than the spring maximum. This ensemble of findings support the relevance of mountain station networks such as PAES for the long-term observation of free-tropospheric ozone over Europe.

  15. Research Investigation Directed Toward Extending the Useful Range of the Electromagnetic Spectrum. Appendix.

    DTIC Science & Technology

    1987-12-31

    CuCl Excimer Si x Ge Quadropole mass spectrometer ions photoionic emission, threshold low temperature processing low energy ion beam silicon oxidation ...Etching," ECS Proceedings, 1986. C. F. Yu, M. T. Schmidt, D. V. Podlesnik, and R. M. Osgood, "Optically-Induced, Room- Temperature Oxidation of Gallium...MOS transistors with gate dielectrics obtained by ion beam oxidation at room temperature . Introduction control over the process parameters and

  16. Simulating the impacts of chronic ozone exposure on plant conductance and photosynthesis, and on the regional hydroclimate using WRF/Chem

    NASA Astrophysics Data System (ADS)

    Li, Jialun; Mahalov, Alex; Hyde, Peter

    2016-11-01

    The Noah-Multiparameterization land surface model in the Weather Research and Forecasting (WRF) with Chemistry (WRF/Chem) is modified to include the effects of chronic ozone exposure (COE) on plant conductance and photosynthesis (PCP) found from field experiments. Based on the modified WRF/Chem, the effects of COE on regional hydroclimate have been investigated over the continental United States. Our results indicate that the model with/without modification in its current configuration can reproduce the rainfall and temperature patterns of the observations and reanalysis data, although it underestimates rainfall in the central Great Plains and overestimates it in the eastern coast states. The experimental tests on the effects of COE include setting different thresholds of ambient ozone concentrations ([O3]) and using different linear regressions to quantify PCP against the COE. Compared with the WRF/Chem control run (i.e., without considering the effects of COE), the modified model at different experiment setups improves the simulated estimates of rainfall and temperatures in Texas and regions to the immediate north. The simulations in June, July and August of 2007-2012 show that surface [O3] decrease latent heat fluxes (LH) by 10-27 W m-2, increase surface air temperatures (T 2) by 0.6 °C-2.0 °C, decrease rainfall by 0.9-1.4 mm d-1, and decrease runoff by 0.1-0.17 mm d-1 in Texas and surrounding areas, all of which highly depends on the precise experiment setup, especially the [O3] threshold. The mechanism producing these results is that COE decreases the LH and increases sensible heat fluxes, which in turn increases the Bowen ratios and air temperatures. This lowering of the LH also results in the decrease of convective potential and finally decreases convective rainfall. Employing this modified WRF/Chem model in any high [O3] region can improve the understanding of the interactions of vegetation, meteorology, chemistry/emissions, and crop productivity.

  17. A dose-response relationship for marketable yield reduction of two lettuce (Lactuca sativa L.) cultivars exposed to tropospheric ozone in Southern Europe.

    PubMed

    Marzuoli, Riccardo; Finco, Angelo; Chiesa, Maria; Gerosa, Giacomo

    2017-12-01

    The present study investigated the response to ozone (O 3 ) of two cultivars (cv.'Romana' and cv. 'Canasta') of irrigated lettuce grown in an open-top chamber (OTC) experiment in Mediterranean conditions. Two different levels of O 3 were applied, ambient O 3 in non-filtered OTCs (NF-OTCs) and -40% of ambient O 3 in charcoal-filtered OTCs (CF-OTCs), during four consecutive growing cycles. At the end of each growing cycle, the marketable yield (fresh biomass) was assessed while during the growing periods, measurements of the stomatal conductance at leaf level were performed and used to define a stomatal conductance model for calculation of the phytotoxic ozone dose (POD) absorbed by the plants.Results showed that O 3 caused statistically significant yield reductions in the first and in the last growing cycle. In general, the marketable yield of the NF-OTC plants was always lower than the CF-OTC plants for both cultivars, with mean reductions of -18.5 and -14.5% for 'Romana' and 'Canasta', respectively. On the contrary, there was no statistically significant difference in marketable yield due to the cultivar factor or to the interaction between O 3 and cultivar in any of the growing cycle performed.Dose-response relationships for the marketable relative yield based on the POD values were calculated according to different flux threshold values (Y). The best regression fit was obtained using an instantaneous flux threshold of 6 nmol O 3 m -2  s -1 (POD 6 ); the same value was obtained also for other crops. According to the generic lettuce dose-response relationship, an O 3 critical level of 1 mmol O 3 m -2 of POD 6 for a 15% of marketable yield loss was found.

  18. Original non-stationary eddy current imaging process for the evaluation of defects in metallic structures

    NASA Astrophysics Data System (ADS)

    Placko, Dominique; Bore, Thierry; Rivollet, Alain; Joubert, Pierre-Yves

    2015-10-01

    This paper deals with the problem of imaging defects in metallic structures through eddy current (EC) inspections, and proposes an original process for a possible tomographical crack evaluation. This process is based on a semi analytical modeling, called "distributed point source method" (DPSM) which is used to describe and equate the interactions between the implemented EC probes and the structure under test. Several steps will be successively described, illustrating the feasibility of this new imaging process dedicated to the quantitative evaluation of defects. The basic principles of this imaging process firstly consist in creating a 3D grid by meshing the volume potentially inspected by the sensor. As a result, a given number of elemental volumes (called voxels) are obtained. Secondly, the DPSM modeling is used to compute an image for all occurrences in which only one of the voxels has a different conductivity among all the other ones. The assumption consists to consider that a real defect may be truly represented by a superimposition of elemental voxels: the resulting accuracy will naturally depend on the density of space sampling. On other hand, the excitation device of the EC imager has the capability to be oriented in several directions, and driven by an excitation current at variable frequency. So, the simulation will be performed for several frequencies and directions of the eddy currents induced in the structure, which increases the signal entropy. All these results are merged in a so-called "observation matrix" containing all the probe/structure interaction configurations. This matrix is then used in an inversion scheme in order to perform the evaluation of the defect location and geometry. The modeled EC data provided by the DPSM are compared to the experimental images provided by an eddy current imager (ECI), implemented on aluminum plates containing some buried defects. In order to validate the proposed inversion process, we feed it with computed images of various acquisition configurations. Additive noise was added to the images so that they are more representative of actual EC data. In the case of simple notch type defects, for which the relative conductivity may only take two extreme values (1 or 0), a threshold was introduced on the inverted images, in a post processing step, taking advantage of a priori knowledge of the statistical properties of the restored images. This threshold allowed to enhance the image contrast and has contributed to eliminate both the residual noise and the pixels showing non-realistic values.

  19. Decoupling peroxyacetyl nitrate from ozone in Chinese outflows observed at Gosan Climate Observatory

    NASA Astrophysics Data System (ADS)

    Han, Jihyun; Lee, Meehye; Shang, Xiaona; Lee, Gangwoong; Emmons, Louisa K.

    2017-09-01

    We measured peroxyacetyl nitrate (PAN) and other reactive species such as O3, NO2, CO, and SO2 with aerosols including mass, organic carbon (OC), and elemental carbon (EC) in PM2. 5 and K+ in PM1. 0 at Gosan Climate Observatory in Korea (33.17° N, 126.10° E) during 19 October-6 November 2010. PAN was determined through fast gas chromatography with luminol chemiluminescence detection at 425 nm every 2 min. The PAN mixing ratios ranged from 0.1 (detection limit) to 2.4 ppbv with a mean of 0.6 ppbv. For all measurements, PAN was unusually better correlated with PM2. 5 (Pearson correlation coefficient, γ = 0.79) than with O3 (γ = 0.67). In particular, the O3 level was highly elevated with SO2 at midnight, along with a typical midday peak when air was transported rapidly from the Beijing areas. The PAN enhancement was most noticeable during the occurrence of haze under stagnant conditions. In Chinese outflows slowly transported over the Yellow Sea, PAN gradually increased up to 2.4 ppbv at night, in excellent correlation with a concentration increase in PM2. 5 OC and EC, PM2. 5 mass, and PM1. 0 K+. The high K+ concentration and OC / EC ratio indicated that the air mass was impacted by biomass combustion. This study highlights PAN decoupling with O3 in Chinese outflows and suggests PAN as a useful indicator for diagnosing continental outflows and assessing their perturbation of regional air quality in northeast Asia.

  20. Modelled air pollution levels versus EC air quality legislation - results from high resolution simulation.

    PubMed

    Chervenkov, Hristo

    2013-12-01

    An appropriate method for evaluating the air quality of a certain area is to contrast the actual air pollution levels to the critical ones, prescribed in the legislative standards. The application of numerical simulation models for assessing the real air quality status is allowed by the legislation of the European Community (EC). This approach is preferable, especially when the area of interest is relatively big and/or the network of measurement stations is sparse, and the available observational data are scarce, respectively. Such method is very efficient for similar assessment studies due to continuous spatio-temporal coverage of the obtained results. In the study the values of the concentration of the harmful substances sulphur dioxide, (SO2), nitrogen dioxide (NO2), particulate matter - coarse (PM10) and fine (PM2.5) fraction, ozone (O3), carbon monoxide (CO) and ammonia (NH3) in the surface layer obtained from modelling simulations with resolution 10 km on hourly bases are taken to calculate the necessary statistical quantities which are used for comparison with the corresponding critical levels, prescribed in the EC directives. For part of them (PM2.5, CO and NH3) this is done for first time with such resolution. The computational grid covers Bulgaria entirely and some surrounding territories and the calculations are made for every year in the period 1991-2000. The averaged over the whole time slice results can be treated as representative for the air quality situation of the last decade of the former century.

  1. Inductive reasoning and forecasting of population dynamics of Cylindrospermopsis raciborskii in three sub-tropical reservoirs by evolutionary computation.

    PubMed

    Recknagel, Friedrich; Orr, Philip T; Cao, Hongqing

    2014-01-01

    Seven-day-ahead forecasting models of Cylindrospermopsis raciborskii in three warm-monomictic and mesotrophic reservoirs in south-east Queensland have been developed by means of water quality data from 1999 to 2010 and the hybrid evolutionary algorithm HEA. Resulting models using all measured variables as inputs as well as models using electronically measurable variables only as inputs forecasted accurately timing of overgrowth of C. raciborskii and matched well high and low magnitudes of observed bloom events with 0.45≤r 2 >0.61 and 0.4≤r 2 >0.57, respectively. The models also revealed relationships and thresholds triggering bloom events that provide valuable information on synergism between water quality conditions and population dynamics of C. raciborskii. Best performing models based on using all measured variables as inputs indicated electrical conductivity (EC) within the range of 206-280mSm -1 as threshold above which fast growth and high abundances of C. raciborskii have been observed for the three lakes. Best models based on electronically measurable variables for the Lakes Wivenhoe and Somerset indicated a water temperature (WT) range of 25.5-32.7°C within which fast growth and high abundances of C. raciborskii can be expected. By contrast the model for Lake Samsonvale highlighted a turbidity (TURB) level of 4.8 NTU as indicator for mass developments of C. raciborskii. Experiments with online measured water quality data of the Lake Wivenhoe from 2007 to 2010 resulted in predictive models with 0.61≤r 2 >0.65 whereby again similar levels of EC and WT have been discovered as thresholds for outgrowth of C. raciborskii. The highest validity of r 2 =0.75 for an in situ data-based model has been achieved after considering time lags for EC by 7 days and dissolved oxygen by 1 day. These time lags have been discovered by a systematic screening of all possible combinations of time lags between 0 and 10 days for all electronically measurable variables. The so-developed model performs seven-day-ahead forecasts and is currently implemented and tested for early warning of C. raciborskii blooms in the Wivenhoe reservoir. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Lifetimes and wave functions of ozone metastable vibrational states near the dissociation limit in a full-symmetry approach

    NASA Astrophysics Data System (ADS)

    Lapierre, David; Alijah, Alexander; Kochanov, Roman; Kokoouline, Viatcheslav; Tyuterev, Vladimir

    2016-10-01

    Energies and lifetimes (widths) of vibrational states above the lowest dissociation limit of O163 were determined using a previously developed efficient approach, which combines hyperspherical coordinates and a complex absorbing potential. The calculations are based on a recently computed potential energy surface of ozone determined with a spectroscopic accuracy [Tyuterev et al., J. Chem. Phys. 139, 134307 (2013), 10.1063/1.4821638]. The effect of permutational symmetry on rovibrational dynamics and the density of resonance states in O3 is discussed in detail. Correspondence between quantum numbers appropriate for short- and long-range parts of wave functions of the rovibrational continuum is established. It is shown, by symmetry arguments, that the allowed purely vibrational (J =0 ) levels of O163 and O183, both made of bosons with zero nuclear spin, cannot dissociate on the ground-state potential energy surface. Energies and wave functions of bound states of the ozone isotopologue O163 with rotational angular momentum J =0 and 1 up to the dissociation threshold were also computed. For bound levels, good agreement with experimental energies is found: The rms deviation between observed and calculated vibrational energies is 1 cm-1. Rotational constants were determined and used for a simple identification of vibrational modes of calculated levels.

  3. The effect of pair cascades on the high-energy spectral cut-off in gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Gill, Ramandeep; Granot, Jonathan

    2018-03-01

    The highly luminous and variable prompt emission in gamma-ray bursts (GRBs) arises in an ultra-relativistic outflow. The exact underlying radiative mechanism shaping its non-thermal spectrum is still uncertain, making it hard to determine the outflow's bulk Lorentz factor Γ. GRBs with spectral cut-off due to pair production (γγ → e+e-) at energies Ec ≳ 10 MeV are extremely useful for inferring Γ. We find that when the emission region has a high enough compactness, then as it becomes optically thick to scattering, Compton downscattering by non-relativistic e±-pairs can shift the spectral cut-off energy well below the self-annihilation threshold, Esa = Γmec2/(1 + z). We treat this effect numerically and show that Γ obtained assuming Ec = Esa can underpredict its true value by as much as an order of magnitude.

  4. Evaluation of emission control strategies to reduce ozone pollution in the Paso del Norte region using a photochemical air quality modeling system

    NASA Astrophysics Data System (ADS)

    Valenzuela, Victor Hugo

    Air pollution emissions control strategies to reduce ozone precursor pollutants are analyzed by applying a photochemical modeling system. Simulations of air quality conditions during an ozone episode which occurred in June, 2006 are undertaken by increasing or reducing area source emissions in Ciudad Juarez, Chihuahua, Mexico. Two air pollutants are primary drivers in the formation of tropospheric ozone. Oxides of nitrogen (NOx) and volatile organic compounds (VOC) undergo multiple chemical reactions under favorable meteorological conditions to form ozone, which is a secondary pollutant that irritates respiratory systems in sensitive individuals especially the elderly and young children. The U.S. Environmental Protection Agency established National Ambient Air Quality Standards (NAAQS) to limit ambient air pollutants such as ozone by establishing an 8-hour average concentration of 0.075 ppm as the threshold at which a violation of the standard occurs. Ozone forms primarily due reactions in the troposphere of NOx and VOC emissions generated primarily by anthropogenic sources in urban regions. Data from emissions inventories indicate area sources account for ˜15 of NOx and ˜45% of regional VOC emissions. Area sources include gasoline stations, automotive paint bodyshops and nonroad mobile sources. Multiplicity of air pollution emissions sources provides an opportunity to investigate and potentially implement air quality improvement strategies to reduce emissions which contribute to elevated ozone concentrations. A baseline modeling scenario was established using the CAMx photochemical air quality model from which a series of sensitivity analyses for evaluating air quality control strategies were conducted. Modifications to area source emissions were made by varying NOx and / or VOC emissions in the areas of particular interest. Model performance was assessed for each sensitivity analysis. Normalized bias (NB) and normalized error (NE) were used to identify variability of the PREDICTED to OBSERVED ozone concentrations of both BASELINE model and simulations with modified emissions assessed by the sensitivity analysis. All simulations were found to vary within acceptable ranges of these two criteria variables. Simulation results indicate ozone formation in the PdN region is VOC-limited. Under VOC-limited conditions, modifications to NOx emissions do not produce a marked increase or decrease in ozone concentrations. Modifications to VOC emissions generated the highest variability in ozone concentrations. Increasing VOC emissions by 75% produced results which minimized model bias and error when comparing PREDICTED and OBSERVED ozone concentrations. Increasing VOC emissions by 75% either alone or in combination with a 75% increase in NOx emissions generated PREDICTED ozone concentrations very near to OBSERVED ozone. By evaluating the changes in ambient ozone concentrations through photochemical modeling, air quality planners may identify the most efficient or effective VOC emissions control strategies for area sources. Among the strategies to achieve emissions reductions are installation of gasoline vapor recovery systems, replacing high-pressure low-volume surface coating paint spray guns with high-volume low-pressure spray paint guns, requiring emissions control booths for surface coating operations as well as undertaking solvent management practices, requiring the sale of low VOC paint solvents in the surface-coating industry, and requiring low-VOC solvents in the dry cleaning industry. Other strategies to reduce VOC emissions include initiating Eco-Driving strategies to reduce fuel consumption from mobile sources and minimize vehicle idling at the international ports of entry by reducing bridge wait times. This dissertation depicts a tool for evaluating impacts of emissions on regional air quality by addressing the highly unresolved fugitive emissions in the Paso del Norte region. It provides a protocol for decision makers to assess the effects of various emission control strategies in the region. Impacts of specific source categories such as the international ports of entry, gasoline stations, paint body shops, truck stops, and military installations on the regional air quality can be easily and systematically addressed in a timely manner in the future.

  5. Measurements of Ozone Precursors in the Lake Tahoe Basin, USA

    NASA Astrophysics Data System (ADS)

    Zielinska, B.; Bytnerowicz, A.; Gertler, A.; McDaniel, M.; Rayne, S.; Burley, J. D.

    2014-12-01

    Lake Tahoe, located at 6,225 ft. (1,897 m) in the Sierra Nevada mountain range, is the largest alpine lake in North America. Known for the clarity of its water and the panorama of surrounding mountains on all sides, Lake Tahoe is a prime tourist attraction in the California - Nevada area. However, the Lake Tahoe Basin is facing significant environmental pollution problems, including declining water clarity and air quality issues. During the period of July 21 - 26, 2012, we conducted a field study in the Basin designed to characterize the precursors and pathways of secondary pollutant formation, including ozone and secondary organic aerosol (SOA). Four sites were selected; two were located at high elevations (one each on the western and eastern sides of the Basin) and two were positioned near the Lake level. Ozone and NO/NO2 concentrations were continuously measured. With a resolution of several hours over a 6-day sampling period canister samples were collected for detailed speciation of volatile organic compounds (VOC), 2,4-dinitrophenylhydrazine (DNPH) impregnated Sep-Pak cartridges for analysis of carbonyl compounds, PM2.5 Teflon and quartz filter samples for determination of mass, organic and elemental carbon (OC/EC) concentrations and speciation of organic compounds. Whereas the concentrations of lower molecular weight (mw) C2 - C3 hydrocarbons were generally the highest at all sampling sites, ranging from 25 to 76% of the total measured VOC (over 70 species from C2 to C10), the concentrations of biogenic hydrocarbons, isoprene and α-pinene were significant, ranging from 1.4 to 26% and 1.5 to 30%, respectively, of the total VOC. For comparison, the sum of benzene, toluene, ethylbenzene and xylenes (BTEX) constituted from 2.5 to 37% of the total VOC. All four sites showed maximum ozone concentrations in the range of 60 ppb. However, the lower sites show a pronounced diurnal pattern (i.e. maximum concentrations during the daytime hours, 0900 to 1700, with minimum values at night and in the early morning hours), whereas the upper sites shows much less variability over the 24-hour diurnal period. NO/NO2 concentrations were generally low, in the range of a few ppb. This presentation will discuss VOC and NOx patterns at these four sites in terms of their relevance to local ozone formation and/or regional transport.

  6. Quantifying the relationship between extreme air pollution events and extreme weather events

    NASA Astrophysics Data System (ADS)

    Zhang, Henian; Wang, Yuhang; Park, Tae-Won; Deng, Yi

    2017-05-01

    Extreme weather events can strongly affect surface air quality, which has become a major environmental factor to affect human health. Here, we examined the relationship between extreme ozone and PM2.5 (particular matter with an aerodynamic diameter less than 2.5 μm) events and the representative meteorological parameters such as daily maximum temperature (Tmax), minimum relative humidity (RHmin), and minimum wind speed (Vmin), using the location-specific 95th or 5th percentile threshold derived from historical reanalysis data (30 years for ozone and 10 years for PM2.5). We found that ozone and PM2.5 extremes were decreasing over the years, reflecting EPA's tightened standards and effort on reducing the corresponding precursor's emissions. Annual ozone and PM2.5 extreme days were highly correlated with Tmax and RHmin, especially in the eastern U.S. They were positively (negatively) correlated with Vmin in urban (rural and suburban) stations. The overlapping ratios of ozone extreme days with Tmax were fairly constant, about 32%, and tended to be high in fall and low in winter. Ozone extreme days were most sensitive to Tmax, then RHmin, and least sensitive to Vmin. The majority of ozone extremes occurred when Tmax was between 300 K and 320 K, RHmin was less than 40%, and Vmin was less than 3 m/s. The number of annual extreme PM2.5 days was highly positively correlated with the extreme RHmin/Tmax days, with correlation coefficient between PM2.5/RHmin highest in urban and suburban regions and the correlation coefficient between PM2.5/Tmax highest in rural area. Tmax has more impact on PM2.5 extreme over the eastern U.S. Extreme PM2.5 days were more likely to occur at low RH conditions in the central and southeastern U.S., especially during spring time, and at high RH conditions in the northern U.S. and the Great Plains. Most extreme PM2.5 events occurred when Tmax was between 300 K and 320 K and RHmin was between 10% and 50%. Extreme PM2.5 days usually occurred when Vmin was under 2 m/s. However, during spring season in the Southeast and fall season in Northwest, high winds were found to accompany extreme PM2.5 days, likely reflecting the impact of fire emissions.

  7. Ozone exposure- and flux-based response relationships with photosynthesis of winter wheat under fully open air condition.

    PubMed

    Feng, Zhaozhong; Calatayud, Vicent; Zhu, Jianguo; Kobayashi, Kazuhiko

    2018-04-01

    Five winter wheat cultivars were exposed to ambient (A-O 3 ) and elevated (E-O 3 , 1.5 ambient) O 3 in a fully open-air fumigation system in China. Ozone exposure- and flux based response relationships were established for seven physiological variables related to photosynthesis. The performance of the fitting of the regressions in terms of R 2 increased when second order regressions instead of first order ones were used, suggesting that effects of O 3 were more pronounced towards the last developmental stages of the wheat. The more robust indicators were those related with CO 2 assimilation, Rubisco activity and RuBP regeneration capacity (A sat , J max and Vc max ), and chlorophyll content (Chl). Flux-based metrics (POD y , Phytotoxic O 3 Dose over a threshold ynmolO 3 m -2 s -1 ) predicted slightly better the responses to O 3 than exposure metrics (AOTX, Accumulated O 3 exposure over an hourly Threshold of X ppb) for most of the variables. The best performance was observed for metrics POD 1 ( A sat , J max and Vc max ) and POD 3 (Chl). For this crop, the proposed response functions could be used for O 3 risk assessment based on physiological effects and also to include the influence of O 3 on yield or other variables in models with a photosynthetic component. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Effect of high-frequency bio-oxidative ozone therapy for masticatory muscle pain: a double-blind randomised clinical trial.

    PubMed

    Celakil, T; Muric, A; Gokcen Roehlig, B; Evlioglu, G; Keskin, H

    2017-06-01

    To evaluate the effect of bio-oxidative ozone application at the points of greatest pain in patients with chronic masticatory muscle pain. A total number of 40 (40 women, with a mean age of 31·7) were selected after the diagnosis of myofacial pain dysfunction syndrome according to the Research Diagnostic Criteria for temporomandibular disorder (RDC/TMD). The patients were randomly divided into two groups: patients received the ozone therapy at the point of greatest pain, ozone group (OG; n = 20); patients received the sham ozone therapy at the point of greatest pain, placebo group (PG; n = 20). Ozone and placebo were applied three times per week, for a total of six sessions. Mandibular movements were examined, masticator muscles tenderness were assessed and pressure pain threshold (PPT) values were obtained. Subjective pain levels were evaluated using visual analogue sale (VAS). These assessments were performed at baseline, 1 month and 3 months. Ozono therapy decreased pain intensity and increased PPT values significantly from baseline to 1 month and 3 months in OG compared with PG. PPTs of the temporal (OG = 24·85 ± 6·65, PG = 20·65 ± 5·43, P = 0.035) and masseter (OG = 19·03 ± 6·42, PG = 14·23 ± 2·95, P = 0.007) muscles at 3 months of control (T2) were significantly higher in the OG group. PPT value of the lateral pole was also significantly higher at T2 in the OG group (OG = 21·25 ± 8·43, PG = 15·35 ± 4·18, P = 0.012). Mandibular movements did not show significant differences between treatment groups except right lateral excursion values at T2 (OG = 8·90 ± 1·77, PG = 6·85 ± 2·41, P = 0.003); however, OG demonstrated significantly better results over time. Overall improvements in VAS scores from baseline to 3 months were OG 67·7%; PG 48·4%. Although ozone therapy can be accepted as an alternative treatment modality in the management of masticatory muscle pain, sham ozone therapy (placebo) showed significant improvements in the tested parameters. © 2017 John Wiley & Sons Ltd.

  9. A Patient-Centered, Provider-Facilitated Approach to the Refinement of Nonlinear Frequency Compression Parameters Based on Subjective Preference Ratings of Amplified Sound Quality.

    PubMed

    Johnson, Earl E; Light, Keri C

    2015-09-01

    To evaluate sound quality preferences of participants wearing hearing aids with different strengths of nonlinear frequency compression (NFC) processing versus no NFC processing. Two analysis methods, one without and one with a qualifier as to the magnitude of preferences, were compared for their percent agreement to differentiate a small difference in perceived sound quality as a result of applied NFC processing. A single-blind design was used with participants unaware of the presence or strength of NFC processing (independent variable). The National Acoustic Laboratories-Nonlinear 2 (NAL-NL2) prescription of amplification was chosen because audibility is intentionally not prescribed in the presence of larger sensorineural hearing loss thresholds. A lack of prescribed audibility, when present, was deemed an objective qualifier for NFC. NFC is known to improve the input bandwidth available to listeners when high-frequency audibility is not otherwise available and increasing strengths of NFC were examined. Experimental condition 3 (EC3) was stronger than the manufacturer default (EC2). More aggressive strengths (e.g., EC4 and EC5), however, were expected to include excessive distortion and even reduce the output bandwidth that had been prescribed as audible by NAL-NL2 (EC1). A total of 14 male Veterans with severe high-frequency sensorineural hearing loss. Participant sound quality preference ratings (dependent variable) without a qualifier as to the magnitude of preference were analyzed based on binomial probability theory, as is traditional with paired comparison data. The ratings with a qualifier as to the magnitude of preference were analyzed based on the nonparametric statistic of the Wilcoxon signed rank test. The binomial probability analysis method identified a sound quality preference as well as the nonparametric probability test method. As the strength of NFC increased, more participants preferred the EC with less NFC. Fourteen of 14 participants showed equal preference between EC1 and EC2 perhaps, in part, because EC2 showed no objective improvement in audibility for six of the 14 participants (42%). Thirteen of the 14 participants showed no preference between NAL-NL2 and EC3, but all participants had an objective improvement in audibility. With more NFC than EC3, more and more participants preferred the other EC with less NFC in the paired comparison. By referencing the recommended sensation levels of amplitude compression (e.g., NAL-NL2) in the ear canal of hearing aid wearers, the targeting of NFC parameters can likely be optimized with respect to improvements in effective audibility that may contribute to speech recognition without adversely impacting sound quality. After targeting of NFC parameters, providers can facilitate decisions about the use of NFC parameters (strengths of processing) via sound quality preference judgments using paired comparisons. American Academy of Audiology.

  10. French Multicenter Study Evaluating the Risk of Lymph Node Metastases in Early-Stage Endometrial Cancer: Contribution of a Risk Scoring System.

    PubMed

    Bendifallah, Sofiane; Canlorbe, Geoffroy; Arsène, Emmanuelle; Collinet, Pierre; Huguet, Florence; Coutant, Charles; Hudry, Delphine; Graesslin, Olivier; Raimond, Emilie; Touboul, Cyril; Daraï, Emile; Ballester, Marcos

    2015-08-01

    This study was designed to develop a risk scoring system (RSS) for predicting lymph node (LN) metastases in patients with early-stage endometrial cancer (EC). Data of 457 patients with early-stage EC who received primary surgical treatment between January 2001 and December 2012 were abstracted from a prospective, multicentre database (training set). A risk model based on factors impacting LN metastases was developed. To assess the discrimination of the RSS, both internal by the bootstrap approach and external validation (validation set) were adopted. Overall the LN metastasis rate was 11.8 % (54/457). LN metastases were associated with five variables: age ≥60 years, histological grade 3 and/or type 2, primary tumor diameter ≥1.5 cm, depth of myometrial invasion ≥50 %, and the positive lymphovascular space involvement status. These variables were included in the RSS and assigned scores ranging from 0 to 9. The discrimination of the RSS was 0.81 [95 % confidence interval (CI) 0.78-0.84] in the training set. The area under the curve of the receiver-operating characteristics for predicting LN metastases after internal and external validation was 0.80 (95 % CI 0.77-0.83) and 0.85 (95 % CI 0.81-0.89), respectively. A total score of 6 points corresponded to the optimal threshold of the RSS with a rate of LN metastases of 7.5 % (29/385) and 34.7 % (25/72) for low-risk (≤6 points) and high-risk patients (>6 points), respectively. At this threshold, the diagnostic accuracy was 83 %. This RSS could be useful in clinical practice to determine which patients with early-stage EC should benefit from secondary surgical staging including complete lymphadenectomy.

  11. Total ozone patterns over the southern mid-latitudes: spatial correlations, extreme events and dynamical contributions

    NASA Astrophysics Data System (ADS)

    Rieder, Harald E.; di Rocco, Stefania; Staehelin, Johannes; Maeder, Jörg A.; Ribatet, Mathieu; Peter, Thomas; Davison, Anthony C.

    2010-05-01

    Tools from geostatistics and extreme value theory are applied to analyze spatial correlations in total ozone for the southern mid-latitudes. The dataset used in this study is the NIWA-assimilated total ozone dataset (Bodeker et al., 2001; Müller et al., 2008). Recently new tools from extreme value theory (Coles, 2001; Ribatet, 2007) have been applied to the world's longest total ozone record from Arosa, Switzerland (e.g. Staehelin 1998a,b) and 5 other long-term ground based stations to describe extreme events in low and high total ozone (Rieder et al., 2010a,b,c). Excursions in the frequency of extreme events reveal "fingerprints" of dynamical factors such as ENSO or NAO, and chemical factors, such as cold Arctic vortex ozone losses, as well as major volcanic eruptions of the 20th century (e.g. Gunung Agung, El Chichón, Mt. Pinatubo). Furthermore, atmospheric loading in ozone depleting substances lead to a continuous modification of column ozone in the northern hemisphere also with respect to extreme values (partly again in connection with polar vortex contributions). It is shown that application of extreme value theory allows the identification of many more of such fingerprints than conventional time series analysis on basis of annual and seasonal mean values. Especially, the analysis shows the strong influence of dynamics, revealing that even moderate ENSO and NAO events have a discernible effect on total ozone (Rieder et al., 2010b,c). Within the current study patterns in spatial correlation and frequency distributions of extreme events (e.g. ELOs and EHOs) are studied for the southern mid-latitudes. It is analyzed if "fingerprints"found for features in the northern hemisphere occur also in the southern mid-latitudes. New insights in spatial patterns of total ozone for the southern mid-latitudes are presented. Within this study the influence of changes in atmospheric dynamics (e.g. tropospheric and lower stratospheric pressure systems, ENSO) as well as influence of major volcanic eruptions (e.g. Mt. Pinatubo) and ozone depleting substances (ODS) on column ozone over the southern mid-latitudes is analyzed for the time period 1979-2007. References: Bodeker, G.E., J.C. Scott, K. Kreher, and R.L. McKenzie, Global ozone trends in potential vorticity coordinates using TOMS and GOME intercompared against the Dobson network: 1978-1998, J. Geophys. Res., 106 (D19), 23029-23042, 2001. Coles, S.: An Introduction to Statistical Modeling of Extreme Values, Springer Series in Statistics, ISBN:1852334592, Springer, Berlin, 2001. Müller, R., Grooß, J.-U., Lemmen, C., Heinze, D., Dameris, M., and Bodeker, G.: Simple measures of ozone depletion in the polar stratosphere, Atmos. Chem. Phys., 8, 251-264, 2008. Ribatet, M.: POT: Modelling peaks over a threshold, R News, 7, 34-36, 2007. Rieder ,H.E., Staehelin, J., Maeder, J.A., Ribatet, M., Stübi, R., Weihs, P., Holawe, F., Peter, T., and A.D., Davison (2010): Extreme events in total ozone over Arosa - Part I: Application of extreme value theory, to be submitted to ACPD. Rieder, H.E., Staehelin, J., Maeder, J.A., Ribatet, M., Stübi, R., Weihs, P., Holawe, F., Peter, T., and A.D., Davison (2010): Extreme events in total ozone over Arosa - Part II: Fingerprints of atmospheric dynamics and chemistry and effects on mean values and long-term changes, to be submitted to ACPD. Rieder, H.E., Jancso, L.M., Staehelin, J., Maeder, J.A., Ribatet, Peter, T., and A.D., Davison (2010): Extreme events in total ozone over the northern mid-latitudes: A case study based on long-term data sets from 5 ground-based stations, in preparation. Staehelin, J., Kegel, R., and Harris, N. R.: Trend analysis of the homogenized total ozone series of Arosa (Switzerland), 1929-1996, J. Geophys. Res., 103(D7), 8389-8400, doi:10.1029/97JD03650, 1998a. Staehelin, J., Renaud, A., Bader, J., McPeters, R., Viatte, P., Hoegger, B., Bugnion, V., Giroud, M., and Schill, H.: Total ozone series at Arosa (Switzerland): Homogenization and data comparison, J. Geophys. Res., 103(D5), 5827-5842, doi:10.1029/97JD02402, 1998b.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calderon-Garciduenas, L.; Osnaya-Brizuela, N.; Ramirez-Martinez, L.

    All organisms have the ability to respond and adapt to a myriad of environmental insults. The human respiratory epithelium, when exposed to oxidant gases in photochemical smog, is at risk of DNA damage and requires efficient cellular adaptative responses to resist the environmentally induced cell damage. Ozone and its reaction products induce in vitro and in vivo DNA single strand breaks (SSBs) in respiratory epithelial cells and alveolar macrophages. To determine if exposure to a polluted atmosphere with ozone as the main criteria pollutant of 19 children and 13 adult males who lived in a low-polluted Pacific port, 69 malesmore » and 16 children who were permanent residents of Southwest Metropolitan Mexico City (SWMMC), and 22 young males newly arrived to SWMMC and followed for 12 weeks. Respiratory symptoms, nasal cytology and histopathology, cell viabilities, and single-cell gel electrophoresis were investigated. Atmospheric pollutant data were obtained from a fixed-site monitoring station. SWMMC volunteers spent >7 hr/day outdoors and all had upper respiratory symptoms. A significant difference in the numbers of DNA-damaged nasal cells was observed between control and chronically exposed subjects, both in children (p<0.00001) and in adults (p>0.01). SSBs in newly arrived subjects quickly increased upon arrival to the city, from 39.8 {+-}8.34% in the first week to 67.29 {+-}2.35 by week 2. Thereafter, the number of cells with SSBs remained stable in spite of the continuous increase in cumulative ozone, suggesting a threshold for cumulative DNA nasal damage. Exposure to a polluted urban atmosphere induces SSBs in human nasal respiratory epithelium, and nasal SSBs could serve as a biomarker of ozone exposure. Further, because DNA strand breaks are a threat to cell viability and genome integrity and appear to be a critical lesion responsible for p53 induction, nasal SSBs should be evaluated in ozone-exposed individuals. 43 refs., 5 figs., 4 tabs.« less

  13. Synergistic action of tropospheric ozone and carbon dioxide on yield and nutritional quality of Indian mustard (Brassica juncea (L.) Czern.).

    PubMed

    Singh, Satyavan; Bhatia, Arti; Tomer, Ritu; Kumar, Vinod; Singh, B; Singh, S D

    2013-08-01

    Field experiments were conducted in open top chamber during rabi seasons of 2009-10 and 2010-11 at the research farm of the Indian Agricultural Research Institute, New Delhi to study the effect of tropospheric ozone (O3) and carbon dioxide (CO2) interaction on yield and nutritional quality of Indian mustard (Brassica juncea (L.) Czern.). Mustard plants were grown from emergence to maturity under different treatments: charcoal-filtered air (CF, 80-85 % less O3 than ambient O3 and ambient CO2), nonfiltered air (NF, 5-10 % less O3 than ambient O3 and ambient CO2 ), nonfiltered air with elevated carbon dioxide (NF + CO2, NF air and 550 ± 50 ppm CO2), elevated ozone (EO, NF air and 25-35 ppb elevated O3), elevated ozone along with elevated carbon dioxide (EO + CO2, NF air, 25-35 ppb O3 and 550 ± 50 ppm CO2), and ambient chamber less control (AC, ambient O3 and CO2). Elevated O3 exposure led to reduced photosynthesis and leaf area index resulting in decreased seed yield of mustard. Elevated ozone significantly decreased the oil and micronutrient content in mustard. Thirteen to 17 ppm hour O3 exposure (accumulated over threshold of 40 ppm, AOT 40) reduced the oil content by 18-20 %. Elevated CO2 (500 ± 50 ppm) along with EO was able to counter the decline in oil content in the seed, and it increased by 11 to 13 % over EO alone. Elevated CO2, however, decreased protein, calcium, zinc, iron, magnesium, and sulfur content in seed as compared to the nonfiltered control, whereas removal of O3 from air in the charcoal-filtered treatment resulted in a significant increase in the same.

  14. Investigating Over Critical Thresholds of Forest Megafires Danger Conditions in Europe Utilising the ECMWF ERA-Interim Reanalysis

    NASA Astrophysics Data System (ADS)

    Petroliagkis, Thomas I.; Camia, Andrea; Liberta, Giorgio; Durrant, Tracy; Pappenberger, Florian; San-Miguel-Ayanz, Jesus

    2014-05-01

    The European Forest Fire Information System (EFFIS) has been established by the Joint Research Centre (JRC) and the Directorate General for Environment (DG ENV) of the European Commission (EC) to support the services in charge of the protection of forests against fires in the EU and neighbour countries, and also to provide the EC services and the European Parliament with information on forest fires in Europe. Within its applications, EFFIS provides current and forecast meteorological fire danger maps up to 6 days. Weather plays a key role in affecting wildfire occurrence and behaviour. Meteorological parameters can be used to derive meteorological fire weather indices that provide estimations of fire danger level at a given time over a specified area of interest. In this work, we investigate the suitability of critical thresholds of fire danger to provide an early warning for megafires (fires > 500 ha) over Europe. Past trends of fire danger are analysed computing daily fire danger from weather data taken from re-analysis fields for a period of 31 years (1980 to 2010). Re-analysis global data sets coming from the construction of high-quality climate records, which combine past observations collected from many different observing and measuring platforms, are capable of describing how Fire Danger Indices have evolved over time at a global scale. The latest and most updated ERA-Interim dataset of the European Centre for Medium-Range Weather Forecast (ECMWF) was used to extract meteorological variables needed to compute daily values of the Canadian Fire Weather Index (CFWI) over Europe, with a horizontal resolution of about 75x75 km. Daily time series of CFWI were constructed and analysed over a total of 1,071 European NUTS3 centroids, resulting in a set of percentiles and critical thresholds. Such percentiles could be used as thresholds to help fire services establish a measure of the significance of CFWI outputs as they relate to levels of fire potential, fuel conditions and fire danger. Median percentile values of fire days accumulated over the 31-year period were compared to median values of all days from that period. As expected, the CWFI time series exhibit different values on fire days than on all days. In addition, a percentile analysis was performed in order to determine the behaviour of index values corresponding to fire events falling into the megafire category. This analysis resulted in a set of critical thresholds based on percentiles. By utilising such thresholds, an initial framework of an early warning system has being established. By lowering the value of any of these thresholds, the number of hits could be increased until all extremes were captured (resulting in zero misses). However, in doing so, the number of false alarms tends to increase significantly. Consequently, an optimal trade-off between hits and false alarms has to be established when setting different (critical) CFWI thresholds.

  15. Chloride interference in the determination of bromate in drinking water by reagent free ion chromatography with mass spectrometry detection.

    PubMed

    Cavalli, Silvano; Polesello, Stefano; Valsecchi, Sara

    2005-08-26

    Bromate, a well known by-product of the ozonation of drinking water, has been included among the substances which have to be monitored in the drinking water according to the last EC Directive 251/98 on potable water with a regulated limit of 10 microg l(-1). The need of performing routine analysis at this limit is a driving force for the developing of new simple and sensitive methods of detection, which should be also able to overcome the effect of matrix composition. This work explored the use of mass spectrometry detection with electrospray ionisation hyphenated to a reagent free ion chromatograph with hydroxide gradient elution for the determination of bromate in drinking water. The use of a high capacity hydroxide selective column operated in gradient mode allowed to avoid the interference by carbonate peak, which moved to longer retention times. The effect of increasing chloride concentrations from 0 to 250 mg l(-1), which is the guideline limit for drinking water in Directive 251/98/EC, was to decrease absolute mass spectrometric response and chromatographic efficiency and, on the consequence, to increase the effective detection limits. The effect of the chloride concentration on the detection of bromate is discussed.

  16. Nitric acid in polar stratospheric clouds - Similar temperature of nitric acid condensation and cloud formation

    NASA Technical Reports Server (NTRS)

    Pueschel, Rudolf F.; Snetsinger, Kenneth G.; Hamill, Patrick; Goodman, Jindra K.; Mccormick, M. Patrick

    1990-01-01

    As shown independently by two different techniques, nitric acid aerosols and polar stratospheric clouds (PSCs) both form below similar threshold temperatures. This supports the idea that the PSC particles involved in chlorine activation and ozone depletion in the winter polar stratosphere are composed of nitric acid. One technique used to show this is the inertial impaction of nitric acid aerosols using an Er-2 aircraft; the other method is remote sensing of PSCs by the Stratospheric Aerosol Measurement (SAM II) satellite borne optical sensor. Both procedures were in operation during the Arctic Airborne Stratospheric Expedition in 1989, and the Airborne Antarctic Ozone Experiment in 1987. Analysis of Arctic particles gathered in situ indicates the presence of nitric acid below a 'first appearance' temperature Tfa = 202 K. This is the same highest temperature at which PSCs are seen by the SAM II satellite. In comparison, a 'first appearance' temperature Tfa = 198 K as found for the Antarctic samples.

  17. Unregulated gaseous exhaust emission from modern ethanol fuelled light duty vehicles in cold ambient condition

    NASA Astrophysics Data System (ADS)

    Clairotte, M.; Adam, T. W.; Zardini, A. A.; Astorga, C.

    2011-12-01

    According to Directive 2003/30/EC and 2009/28/EC of the European Parliament and the Council, Member States should promote the use of biofuel. Consequently, all petrol and diesel used for transport purpose available on the market since the 1st of January 2011 must contain a reference value of 5.75% of renewable energy. Ethanol in gasoline could be a promising alternative to comply with this objective, and is actually available in higher proportion in Sweden and Brazil. In addition to a lower dependence on fossil fuel, it is well established that ethanol contributes to reduce air pollutant emissions during combustion (CO, THC), and presents a beneficial effect on the greenhouse gas emissions. However, these statements rely on numerous chassis dynamometer emission studies performed in warm condition (22°C), and very few emission data are available at cold ambient condition encountered in winter, particularly in the north of Europe. In this present study, the effects of ethanol (E75-E85) versus gasoline (E5) have been investigated at cold ambient temperature (-7°C). Experiments have been carried out in a chassis dynamometer at the Vehicle Emission Laboratory (VELA) of the European Commission's Joint Research Centre (JRC - Ispra, Italy). Emissions of modern passenger cars complying with the latest European standard (Euro4 and Euro5a) were tracked over the New European Driving Cycle (NEDC). Unregulated gaseous compounds like greenhouse gases (carbon dioxide, methane, nitrous oxide), and air quality related compounds (ammonia, formaldehyde, acetaldehyde) were monitored by an online Fourier Transformed Infra-Red spectrometer with 1 Hz acquisition frequency. In addition, a number of ozone precursors (carbonyls and volatile organic hydrocarbons) were collected in order to assess the ozone formation potential (OFP) of the exhaust. Results showed higher unregulated emissions at -7°C, regardless of the ethanol content in the fuel blend. Most of the emissions occurred during the first minutes of the cycle, before the light-off of the Three-Way Catalyst (TWC). Less ammonia has been emitted with ethanol fuel, in particular in low ambient condition (E75 versus E5). Ammonia is a harmful compound for human health and vegetation, and is a precursor of secondary aerosol. Even if agricultural activities are the main source of anthropogenic ammonia, the contribution from the transport sector increases significantly during the cold season. Consequently, using high concentrated ethanol as fuel may have a positive impact on ammonia emission in urban area. However, ethanol fuel had a negative impact on formaldehyde and acetaldehyde. The latter together with methane was notably emitted in low ambient temperature, in comparison with gasoline fuel (E5). Moreover, the OFP at -7°C was influenced by the amount of ethanol in gasoline, mainly because of the increase of ozone precursors linked to ethanol (ethylene, acetylene, and acetaldehyde). Even if ozone concentration levels are generally lower during the cold seasons these results show that the issue should be considered globally before promoting the use of high concentrated ethanol fuel in a large scale.

  18. Extreme events in total ozone: Spatio-temporal analysis from local to global scale

    NASA Astrophysics Data System (ADS)

    Rieder, Harald E.; Staehelin, Johannes; Maeder, Jörg A.; Ribatet, Mathieu; di Rocco, Stefania; Jancso, Leonhardt M.; Peter, Thomas; Davison, Anthony C.

    2010-05-01

    Recently tools from extreme value theory (e.g. Coles, 2001; Ribatet, 2007) have been applied for the first time in the field of stratospheric ozone research, as statistical analysis showed that previously used concepts assuming a Gaussian distribution (e.g. fixed deviations from mean values) of total ozone data do not address the internal data structure concerning extremes adequately (Rieder et al., 2010a,b). A case study the world's longest total ozone record (Arosa, Switzerland - for details see Staehelin et al., 1998a,b) illustrates that tools based on extreme value theory are appropriate to identify ozone extremes and to describe the tails of the total ozone record. Excursions in the frequency of extreme events reveal "fingerprints" of dynamical factors such as ENSO or NAO, and chemical factors, such as cold Arctic vortex ozone losses, as well as major volcanic eruptions of the 20th century (e.g. Gunung Agung, El Chichón, Mt. Pinatubo). Furthermore, atmospheric loading in ozone depleting substances led to a continuous modification of column ozone in the northern hemisphere also with respect to extreme values (partly again in connection with polar vortex contributions). It is shown that application of extreme value theory allows the identification of many more such fingerprints than conventional time series analysis of annual and seasonal mean values. Especially, the extremal analysis shows the strong influence of dynamics, revealing that even moderate ENSO and NAO events have a discernible effect on total ozone (Rieder et al., 2010b). Overall the extremes concept provides new information on time series properties, variability, trends and the influence of dynamics and chemistry, complementing earlier analyses focusing only on monthly (or annual) mean values. Findings described above could be proven also for the total ozone records of 5 other long-term series (Belsk, Hohenpeissenberg, Hradec Kralove, Potsdam, Uccle) showing that strong influence of atmospheric dynamics (NAO, ENSO) on total ozone is a global feature in the northern mid-latitudes (Rieder et al., 2010c). In a next step frequency distributions of extreme events are analyzed on global scale (northern and southern mid-latitudes). A specific focus here is whether findings gained through analysis of long-term European ground based stations can be clearly identified as a global phenomenon. By showing results from these three types of studies an overview of extreme events in total ozone (and the dynamical and chemical features leading to those) will be presented from local to global scales. References: Coles, S.: An Introduction to Statistical Modeling of Extreme Values, Springer Series in Statistics, ISBN:1852334592, Springer, Berlin, 2001. Ribatet, M.: POT: Modelling peaks over a threshold, R News, 7, 34-36, 2007. Rieder, H.E., Staehelin, J., Maeder, J.A., Ribatet, M., Stübi, R., Weihs, P., Holawe, F., Peter, T., and A.D., Davison (2010): Extreme events in total ozone over Arosa - Part I: Application of extreme value theory, to be submitted to ACPD. Rieder, H.E., Staehelin, J., Maeder, J.A., Ribatet, M., Stübi, R., Weihs, P., Holawe, F., Peter, T., and A.D., Davison (2010): Extreme events in total ozone over Arosa - Part II: Fingerprints of atmospheric dynamics and chemistry and effects on mean values and long-term changes, to be submitted to ACPD. Rieder, H.E., Jancso, L., Staehelin, J., Maeder, J.A., Ribatet, Peter, T., and A.D., Davison (2010): Extreme events in total ozone over the northern mid-latitudes: A case study based on long-term data sets from 5 ground-based stations, in preparation. Staehelin, J., Renaud, A., Bader, J., McPeters, R., Viatte, P., Hoegger, B., Bugnion, V., Giroud, M., and Schill, H.: Total ozone series at Arosa (Switzerland): Homogenization and data comparison, J. Geophys. Res., 103(D5), 5827-5842, doi:10.1029/97JD02402, 1998a. Staehelin, J., Kegel, R., and Harris, N. R.: Trend analysis of the homogenized total ozone series of Arosa (Switzerland), 1929-1996, J. Geophys. Res., 103(D7), 8389-8400, doi:10.1029/97JD03650, 1998b.

  19. Exposure to Elemental Carbon, Organic Carbon, Nitrate, and Sulfate Fractions of Fine Particulate Matter and Risk of Preterm Birth in New Jersey, Ohio, and Pennsylvania (2000–2005)

    PubMed Central

    Daniels, Julie L.; Messer, Lynne C.; Poole, Charles; Lobdell, Danelle T.

    2015-01-01

    Background Particulate matter ≤ 2.5 μm in aerodynamic diameter (PM2.5) has been consistently associated with preterm birth (PTB) to varying degrees, but roles of PM2.5 species have been less studied. Objective We estimated risk differences (RD) of PTB (reported per 106 pregnancies) associated with change in ambient concentrations of elemental carbon (EC), organic carbon (OC), nitrates (NO3), and sulfates (SO4). Methods From live birth certificates from three states, we constructed a cohort of singleton pregnancies at or beyond 20 weeks of gestation from 2000 through 2005 (n = 1,771,225; 8% PTB). We estimated mean species exposures for each week of gestation from monitor-corrected Community Multi-Scale Air Quality modeling data. RDs and 95% confidence intervals (CIs) for four PTB categories were estimated for each exposure using linear regression, adjusted for maternal race/ethnicity, marital status, education, age, smoking, maximum temperature, ozone, and season of conception. We also adjusted for other species in multi-species models. Results RDs varied by exposure window and outcome period. EC was positively associated with PTB after 27 and before 35 weeks of gestation. For example, for a 0.25-μg/m3 increase in EC exposure during gestational week 9, RD = 96 (95% CI: –20, 213) and RD = 145 (95% CI: –50, 341) for PTB during weeks 28–31 and 32–34, respectively. Associations with OCs were null or negative. RDs for NO3 were elevated with exposure in early weeks of gestation, and null in later weeks. RDs for SO4 exposure were positively associated with PTB, though magnitude varied across gestational weeks. We observed effect measure modification for associations between EC and PTB by race/ethnicity and smoking status. Conclusion EC and SO4 may contribute to associations between PM2.5 and PTB. Associations varied according to the timing of exposure and the timing of PTB. Citation Rappazzo KM, Daniels JL, Messer LC, Poole C, Lobdell DT. 2015. Exposure to elemental carbon, organic carbon, nitrate, and sulfate fractions of fine particulate matter and risk of preterm birth in New Jersey, Ohio, and Pennsylvania (2000–2005). Environ Health Perspect 123:1059–1065; http://dx.doi.org/10.1289/ehp.1408953 PMID:25910280

  20. Polar processing in a split vortex: early winter Arctic ozone loss in 2012/13

    NASA Astrophysics Data System (ADS)

    Manney, G. L.; Lawrence, Z. D.; Santee, M. L.; Livesey, N. J.; Lambert, A.; Pitts, M. C.

    2015-02-01

    A sudden stratospheric warming (SSW) in early January 2013 caused the polar vortex to split. After the lower stratospheric vortex split on 8 January, the two offspring vortices - one over Canada and the other over Siberia - remained intact, well-confined, and largely at latitudes that received sunlight until they reunited at the end of January. As the SSW began, temperatures abruptly rose above chlorine activation thresholds throughout the lower stratosphere. The vortex was very disturbed prior to the SSW, and was exposed to much more sunlight than usual in December 2012 and January 2013. Aura Microwave Limb Sounder (MLS) nitric acid (HNO3) data and observations from CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) indicate extensive polar stratospheric cloud (PSC) activity, with evidence of PSCs containing solid nitric acid trihydrate particles during much of December 2012. Consistent with the sunlight exposure and PSC activity, MLS observations show that chlorine monoxide (ClO) became enhanced early in December. Despite the cessation of PSC activity with the onset of the SSW, enhanced vortex ClO persisted until mid-February, indicating lingering chlorine activation. The smaller Canadian offspring vortex had lower temperatures, lower HNO3, lower hydrogen chloride (HCl), and higher ClO in late January than the Siberian vortex. Chlorine deactivation began later in the Canadian than in the Siberian vortex. HNO3 remained depressed within the vortices after temperatures rose above the PSC existence threshold, and passive transport calculations indicate vortex-averaged denitrification of about 4 ppbv; the resulting low HNO3 values persisted until the vortex dissipated in mid-February. Consistent with the strong chlorine activation and exposure to sunlight, MLS measurements show rapid ozone loss commencing in mid-December and continuing through January. Lagrangian transport estimates suggest ~ 0.7-0.8 ppmv (parts per million by volume) vortex-averaged chemical ozone loss by late January near 500 K (~ 21 km), with substantial loss occurring from ~ 450 to 550 K. The surface area of PSCs in December 2012 was larger than that in any other December observed by CALIPSO. As a result of denitrification, HNO3 abundances in 2012/13 were among the lowest in the MLS record for the Arctic. ClO enhancement was much greater in December 2012 through mid-January 2013 than that at the corresponding time in any other Arctic winter observed by MLS. Furthermore, reformation of HCl appeared to play a greater role in chlorine deactivation than in more typical Arctic winters. Ozone loss in December 2012 and January 2013 was larger than any previously observed in those months. This pattern of exceptional early winter polar processing and ozone loss resulted from the unique combination of dynamical conditions associated with the early January 2013 SSW, namely unusually low temperatures in December 2012 and offspring vortices that remained well-confined and largely in sunlit regions for about a month after the vortex split.

  1. Gamma Low-Dose-Rate Ionizing Radiation Stimulates Adaptive Functional and Molecular Response in Human Aortic Endothelial Cells in a Threshold-, Dose-, and Dose Rate–Dependent Manner

    PubMed Central

    Vieira Dias, Juliana; Gloaguen, Celine; Kereselidze, Dimitri; Manens, Line; Tack, Karine; Ebrahimian, Teni G

    2018-01-01

    A central question in radiation protection research is whether low-dose and low-dose-rate (LDR) exposures to ionizing radiation play a role in progression of cardiovascular disease. The response of endothelial cells to different LDR exposures may help estimate risk of cardiovascular disease by providing the biological mechanism involved. We investigated the effect of chronic LDR radiation on functional and molecular responses of human aorta endothelial cells (HAoECs). Human aorta endothelial cells were continuously irradiated at LDR (6 mGy/h) for 15 days and analyzed at time points when the cumulative dose reached 0.05, 0.5, 1.0, and 2.0 Gy. The same doses were administered acutely at high-dose rate (HDR; 1 Gy/min). The threshold for the loss of angiogenic capacity for both LDR and HDR radiations was between 0.5 and 1.0 Gy. At 2.0 Gy, angiogenic capacity returned to normal only for HAoEC exposed to LDR radiation, associated with increased expression of antioxidant and anti-inflammatory genes. Pre-LDR, but not pre-HDR, radiation, followed by a single acute 2.0 Gy challenge dose sustained the expression of antioxidant and anti-inflammatory genes and stimulated angiogenesis. Our results suggest that dose rate is important in cellular response and that a radioadaptive response is involved for a 2.0 Gy dose at LDR. PMID:29531508

  2. Gamma Low-Dose-Rate Ionizing Radiation Stimulates Adaptive Functional and Molecular Response in Human Aortic Endothelial Cells in a Threshold-, Dose-, and Dose Rate-Dependent Manner.

    PubMed

    Vieira Dias, Juliana; Gloaguen, Celine; Kereselidze, Dimitri; Manens, Line; Tack, Karine; Ebrahimian, Teni G

    2018-01-01

    A central question in radiation protection research is whether low-dose and low-dose-rate (LDR) exposures to ionizing radiation play a role in progression of cardiovascular disease. The response of endothelial cells to different LDR exposures may help estimate risk of cardiovascular disease by providing the biological mechanism involved. We investigated the effect of chronic LDR radiation on functional and molecular responses of human aorta endothelial cells (HAoECs). Human aorta endothelial cells were continuously irradiated at LDR (6 mGy/h) for 15 days and analyzed at time points when the cumulative dose reached 0.05, 0.5, 1.0, and 2.0 Gy. The same doses were administered acutely at high-dose rate (HDR; 1 Gy/min). The threshold for the loss of angiogenic capacity for both LDR and HDR radiations was between 0.5 and 1.0 Gy. At 2.0 Gy, angiogenic capacity returned to normal only for HAoEC exposed to LDR radiation, associated with increased expression of antioxidant and anti-inflammatory genes. Pre-LDR, but not pre-HDR, radiation, followed by a single acute 2.0 Gy challenge dose sustained the expression of antioxidant and anti-inflammatory genes and stimulated angiogenesis. Our results suggest that dose rate is important in cellular response and that a radioadaptive response is involved for a 2.0 Gy dose at LDR.

  3. Quality Aware Compression of Electrocardiogram Using Principal Component Analysis.

    PubMed

    Gupta, Rajarshi

    2016-05-01

    Electrocardiogram (ECG) compression finds wide application in various patient monitoring purposes. Quality control in ECG compression ensures reconstruction quality and its clinical acceptance for diagnostic decision making. In this paper, a quality aware compression method of single lead ECG is described using principal component analysis (PCA). After pre-processing, beat extraction and PCA decomposition, two independent quality criteria, namely, bit rate control (BRC) or error control (EC) criteria were set to select optimal principal components, eigenvectors and their quantization level to achieve desired bit rate or error measure. The selected principal components and eigenvectors were finally compressed using a modified delta and Huffman encoder. The algorithms were validated with 32 sets of MIT Arrhythmia data and 60 normal and 30 sets of diagnostic ECG data from PTB Diagnostic ECG data ptbdb, all at 1 kHz sampling. For BRC with a CR threshold of 40, an average Compression Ratio (CR), percentage root mean squared difference normalized (PRDN) and maximum absolute error (MAE) of 50.74, 16.22 and 0.243 mV respectively were obtained. For EC with an upper limit of 5 % PRDN and 0.1 mV MAE, the average CR, PRDN and MAE of 9.48, 4.13 and 0.049 mV respectively were obtained. For mitdb data 117, the reconstruction quality could be preserved up to CR of 68.96 by extending the BRC threshold. The proposed method yields better results than recently published works on quality controlled ECG compression.

  4. Interhemispheric differences in polar stratospheric HNO3, H2O, ClO, and O3

    NASA Technical Reports Server (NTRS)

    Santee, M. L.; Read, W. G.; Waters, J. W.; Froidevaux, L.; Manney, G. L.; Flower, D. A.; Jarnot, R. F.; Harwood, R. S.; Peckham, G. E.

    1995-01-01

    Simultaneous global measurements of nitric acid (HNO3), water (H2O), chlorine monoxide (ClO), and ozone (O3) in the stratosphere have been obtained over complete annual cycles in both hemispheres by the Microwave Limb Sounder on the Upper Atmosphere Research Satellite. A sizeable decrease in gas-phase HNO3 was evident in the lower stratospheric vortex over Antarctica by early June 1992, followed by a significant reduction in gas-phase H2O after mid-July. By mid-August, near the time of peak ClO, abundances of gas-phase HNO3 and H2O were extremely low. The concentrations of HNO3 and H2O over Antarctica remained depressed into November, well after temperatures in the lower stratosphere had risen above the evaporation threshold for polar stratospheric clouds, implying that denitrification and dehydration had occurred. No large decreases in either gas-phase HNO3 or H2O were observed in the 1992-1993 Arctic winter vortex. Although ClO was enhanced over the Arctic as it was over the Antarctic, Arctic O3 depletion was substantially smaller than that over Antarctica. A major factor currently limiting the formation of an Arctic ozone 'hole' is the lack of denitrification in the northern polar vortex, but future cooling of the lower stratosphere could lead to more intense denitrification and consequently larger losses of Arctic ozone.

  5. Extreme events in total ozone over the northern mid-latitudes: A case study based on long-term data sets from 5 ground-based stations

    NASA Astrophysics Data System (ADS)

    Rieder, Harald E.; Jancso, Leonhardt M.; Staehelin, Johannes; Maeder, Jörg A.; Ribatet, Mathieu; Peter, Thomas; Davison, Anthony C.

    2010-05-01

    In this study we analyze the frequency distribution of extreme events in low and high total ozone (termed ELOs and EHOs) for 5 long-term stations in the northern mid-latitudes in Europe (Belsk, Poland; Hradec Kralove, Czech Republic; Hohenpeissenberg and Potsdam, Germany; and Uccle, Belgium). Further, the influence of these extreme events on annual and seasonal mean values and trends is analysed. The applied method follows the new "ozone extreme concept", which is based on tools from extreme value theory [Coles, 2001; Ribatet, 2007], recently developed by Rieder et al. [2010a, b]. Mathematically seen the decisive feature within the extreme concept is the Generalized Pareto Distribution (GPD). In this analysis, the long-term trends needed to be removed first, differently to the treatment of Rieder et al. [2010a, b], in which the time series of Arosa was analysed, covering many decades of measurements in the anthropogenically undisturbed stratosphere. In contrast to previous studies only focusing on so called ozone mini-holes and mini-highs the "ozone extreme concept" provides a statistical description of the tails in total ozone distributions (i.e. extreme low and high values). It is shown that this concept is not only an appropriate method to describe the frequency and distribution of extreme events, it also provides new information on time series properties and internal variability. Furthermore it allows detection of fingerprints of physical (e.g. El Niño, NAO) and chemical (e.g. polar vortex ozone loss) features in the Earth's atmosphere as well as major volcanic eruptions (e.g. El Chichón, Mt. Pinatubo). It is shown that mean values and trends in total ozone are strongly influenced by extreme events. Trend calculations (for the period 1970-1990) are performed for the entire as well as the extremes-removed time series. The results after excluding extremes show that annual trends are most reduced at Hradec Kralove (about a factor of 3), followed by Potsdam (factor of 2.5), and Hohenpeissenberg and Belsk (both about a factor of 2). In general the reduction of trend is strongest during winter and spring. Throughout all stations the influence of ELOs on observed trends is larger than those of EHOs. Especially from the 1990s on ELOs dominate the picture as only a relatively small fraction of EHOs can be observed in the records (due to strong influence of Mt. Pinatubo eruption and polar vortex ozone loss contributions). Additionally it is evidenced that the number of observed mini-holes can be estimated highly accurate by the GPD-model. Overall the results of this thesis show that extreme events play a major role in total ozone and the "ozone extremes concept" provides deeper insight in the influence of chemical and physical features on column ozone. References: Coles, S.: An Introduction to Statistical Modeling of Extreme Values, Springer Series in Statistics, ISBN:1852334592, Springer, Berlin, 2001. Ribatet, M.: POT: Modelling peaks over a threshold, R News, 7, 34-36, 2007. Rieder ,H.E., Staehelin, J., Maeder, J.A., Ribatet, M., Stübi, R., Weihs, P., Holawe, F., Peter, T., and A.D., Davison (2010): Extreme events in total ozone over Arosa - Part I: Application of extreme value theory, to be submitted to ACPD. Rieder, H.E., Staehelin, J., Maeder, J.A., Ribatet, M., Stübi, R., Weihs, P., Holawe, F., Peter, T., and A.D., Davison (2010): Extreme events in total ozone over Arosa - Part II: Fingerprints of atmospheric dynamics and chemistry and effects on mean values and long-term changes, to be submitted to ACPD.

  6. Nonlinearity and Scaling Behavior in Lead Zirconate Titanate Piezoceramic

    NASA Astrophysics Data System (ADS)

    Mueller, V.

    1998-03-01

    The results of a comprehensive study of the nonlinear dielectric and electromechanical response of lead zirconate titanate (PZT) piezoceramics are presented. The piezoelectric strain of a series of donor doped (soft PZT) and acceptor doped (hard PZT) polycrystalline systems was measured under quasistatic (nonresonant) conditions. The measuring field was applied both parallel and perpendicular to the poling direction of the ceramic in order to investigate the influence of different symmetry conditions. Dielectric properties were studied in addition to the electromechanical measurements which enables us to compare piezoelectric and dielectric nonlinearities. Due to the different level and type of dopants, the piezoceramics examined differ significantly with regard to its Curie temperature (190^o CE_c2 the nonlinearity can be described in the same way as in soft PZT. The results indicate that irreversible motion of (ferroelastic) non-180^o walls causes the nonlinearity of PZT and that the contribution of (non-ferroelastic) 180^o walls to the linear and nonlinear coefficients is negligibly small. The experimentally observed non-analytic scaling behavior is qualitatively inconsistent with the assumption that the nonlinearity is related to the anharmonicity of the domain wall potential. We suggest that the dynamics of the domain wall in a randomly pinned medium dominates the piezoelectric and dielectric nonlinearity at field strengths well below the limiting field necessary to depole the piezoceramic. The analysis of results obtained at different ceramic systems indicates that linear and nonlinear coefficients are not independent from each other. The observed relationship between linear and nonlinear properties leads us to the suggestion that another extrinsic contribution to the permittivity exists in PZT which may not be attributed to domain wall motion but related to the dielectric dispersion at microwave frequencies.

  7. Net ecosystem exchange of CO2 and H2O fluxes from irrigated grain sorghum and maize in the Texas High Plains.

    PubMed

    Wagle, Pradeep; Gowda, Prasanna H; Moorhead, Jerry E; Marek, Gary W; Brauer, David K

    2018-05-08

    Net ecosystem exchange (NEE) of carbon dioxide (CO 2 ) and water vapor (H 2 O) fluxes from irrigated grain sorghum (Sorghum bicolor L. Moench) and maize (Zea mays L.) fields in the Texas High Plains were quantified using the eddy covariance (EC) technique during 2014-2016 growing seasons and examined in terms of relevant controlling climatic variables. Eddy covariance measured evapotranspiration (ET EC ) was also compared against lysimeter measured ET (ET Lys ). Daily peak (7-day averages) NEE reached approximately -12 g C m -2 for sorghum and -14.78 g C m -2 for maize. Daily peak (7-day averages) ET EC reached approximately 6.5 mm for sorghum and 7.3 mm for maize. Higher leaf area index (5.7 vs 4-4.5 m 2  m -2 ) and grain yield (14 vs 8-9 t ha -1 ) of maize compared to sorghum caused larger magnitudes of NEE and ET EC in maize. Comparisons of ET EC and ET Lys showed a strong agreement (R 2  = 0.93-0.96), while the EC system underestimated ET by 15-24% as compared to lysimeter without any corrections or energy balance adjustments. Both NEE and ET EC were not inhibited by climatic variables during peak photosynthetic period even though diurnal peak values (~2-weeks average) of photosynthetic photon flux density (PPFD), air temperature (T a ), and vapor pressure deficit (VPD) had reached over 2000 μmol m -2  s -1 , 30 °C, and 2.5 kPa, respectively, indicating well adaptation of both C 4 crops in the Texas High Plains under irrigation. However, more sensitivity of NEE and H 2 O fluxes beyond threshold T a and VPD for maize than for sorghum indicated higher adaptability of sorghum for the region. These findings provide baseline information on CO 2 fluxes and ET for a minimally studied grain sorghum and offer a robust geographic comparison for maize outside the United States Corn Belt. However, longer-term measurements are required for assessing carbon and water dynamics of these globally important agro-ecosystems. Copyright © 2018. Published by Elsevier B.V.

  8. Leaf photosynthetic characteristics of silver birch during three years of exposure to elevated concentrations of CO2 and O3 in the field.

    PubMed

    Riikonen, Johanna; Holopainen, Toini; Oksanen, Elina; Vapaavuori, Elina

    2005-05-01

    Effects of elevated concentrations of carbon dioxide ([CO2]) and ozone ([O3]) on photosynthesis and related biochemistry of two European silver birch (Betula pendula Roth) clones were studied under field conditions during 1999-2001. Seven-year-old trees of Clones 4 and 80 were exposed for 3 years to the following treatments in an open-top chamber experiment: outside control (OC), chamber control (CC), 2x ambient [CO2] (EC), 2x ambient [O3] (EO) and 2x ambient [CO2] + 2x ambient [O3] (EC+EO). During the experiment, gas exchange, chlorophyll fluorescence, amount and activity of Rubisco, concentrations of chlorophyll, soluble protein, soluble sugars, starch, nitrogen (N) and carbon:nitrogen (C:N) ratio were determined in short- and long-shoot leaves. Elevated [CO2] increased photosynthetic rate by around 30% when measurements were made at the growth [CO2]. When measured at ambient [CO2], photosynthesis was around 15% lower in EC trees than in CC trees. This was related to a approximately 10% decrease in total leaf N, to 26 and 20% decreases in the amount and activity of Rubisco, respectively, and to a 49% increase in starch concentration in elevated [CO2]. Elevated [O3] had no significant effect on gas exchange parameters and its effect on biochemistry was small in both clones. However, elevated [O3] decreased the proportion of Rubisco in total soluble proteins and the apparent quantum yield of photosystem II (PSII) photochemistry in light and increased non-photochemical quenching in 2000. The interactive effect of CO2 and O3 was variable. Elevated [O3] decreased chlorophyll concentration only in EO trees, and the EC+EO treatment decreased the total activity of Rubisco and increased the C:N ratio more than the EO treatment alone. The small effect of elevated [O3] on photosynthesis indicates that these young silver birches were fairly tolerant to annual [O3] exposures that were 2-3 times higher than the AOT40 value of 10 ppm.h. set as a critical dose for forest trees.

  9. Point defect induced degradation of electrical properties of Ga2O3 by 10 MeV proton damage

    NASA Astrophysics Data System (ADS)

    Polyakov, A. Y.; Smirnov, N. B.; Shchemerov, I. V.; Yakimov, E. B.; Yang, Jiancheng; Ren, F.; Yang, Gwangseok; Kim, Jihyun; Kuramata, A.; Pearton, S. J.

    2018-01-01

    Deep electron and hole traps in 10 MeV proton irradiated high-quality β-Ga2O3 films grown by Hydride Vapor Phase Epitaxy (HVPE) on bulk β-Ga2O3 substrates were measured by deep level transient spectroscopy with electrical and optical injection, capacitance-voltage profiling in the dark and under monochromatic irradiation, and also electron beam induced current. Proton irradiation caused the diffusion length of charge carriers to decrease from 350-380 μm in unirradiated samples to 190 μm for a fluence of 1014 cm-2, and this was correlated with an increase in density of hole traps with optical ionization threshold energy near 2.3 eV. These defects most likely determine the recombination lifetime in HVPE β-Ga2O3 epilayers. Electron traps at Ec-0.75 eV and Ec-1.2 eV present in as-grown samples increase in the concentration after irradiation and suggest that these centers involve native point defects.

  10. Evaluation and comparison of 50 Hz current threshold of electrocutaneous sensations using different methods

    PubMed Central

    Lindenblatt, G.; Silny, J.

    2006-01-01

    Leakage currents, tiny currents flowing from an everyday-life appliance through the body to the ground, can cause a non-adequate perception (called electrocutaneous sensation, ECS) or even pain and should be avoided. Safety standards for low-frequency range are based on experimental results of current thresholds of electrocutaneous sensations, which however show a wide range between about 50 μA (rms) and 1000 μA (rms). In order to be able to explain these differences, the perception threshold was measured repeatedly in experiments with test persons under identical experimental setup, but by means of different methods (measuring strategies), namely: direct adjustment, classical threshold as amperage of 50% perception probability, and confidence rating procedure of signal detection theory. The current is injected using a 1 cm2 electrode at the highly touch sensitive part of the index fingertip. These investigations show for the first time that the threshold of electrocutaneous sensations is influenced both by adaptation to the non-adequate stimulus and individual, emotional factors. Therefore, classical methods, on which the majority of the safety investigations are based, cannot be used to determine a leakage current threshold. The confidence rating procedure of the modern signal detection theory yields a value of 179.5 μA (rms) at 50 Hz power supply net frequency as the lower end of the 95% confidence range considering the variance in the investigated group. This value is expected to be free of adaptation influences, and is distinctly lower than the European limits and supports the stricter regulations of Canada and USA. PMID:17111461

  11. Is the tier-1 effect assessment for herbicides protective for aquatic algae and vascular plant communities?

    PubMed

    van Wijngaarden, René P A; Arts, Gertie H P

    2018-01-01

    In the aquatic tier-1 effect assessment for plant protection products with an herbicidal mode of action in Europe, it is usually algae and/or vascular plants that determine the environmental risks. This tier includes tests with at least 2 algae and 1 macrophyte (Lemna). Although such tests are considered to be of a chronic nature (based on the duration of the test in relation to the life cycle of the organism), the measurement endpoints derived from the laboratory tests with plants (including algae) and used in the first-tier effect assessment for herbicides are acute effect concentrations affecting 50% of the test organisms (EC50 values) and not no-observed-effect concentrations (NOECs) or effect concentrations affecting 10% of the test organisms (EC10) values. Other European legislative frameworks (e.g., the Water Framework Directive) use EC10 values. The present study contributes to a validation of the tiered herbicide risk assessment approach by comparing the standard first-tier effect assessment with results of microcosm and mesocosm studies. We evaluated EC50 and EC10 values for standard test algae and macrophytes based on either the growth rate endpoint (E r C50) or the lowest available endpoint for growth rate or biomass/yield (E r /E y C50). These values were compared with the regulatory acceptable concentrations for the threshold option as derived from microcosm and mesocosm studies. For these studies, protection is maintained if growth rate is taken as the regulatory endpoint instead of the lowest value of either growth rate or biomass/yield in conjunction with the standard assessment factor of 10. Based on a limited data set of 14 herbicides, we did not identify a need to change the current practice. Environ Toxicol Chem 2018;37:175-183. © 2017 SETAC. © 2017 SETAC.

  12. Occupational health concerns in the welding industry.

    PubMed

    Korczynski, R E

    2000-12-01

    The Workplace Safety and Health Branch initiated a proactive study in the welding industry in Manitoba. Eight welding companies participated in this study. Health concerns raised by welders were welders' flash, sore/red/teary eyes, headaches, nosebleeds, and a black mucous discharge from their nasal membrane. Most welders expressed concern regarding excessive smoke levels in the workplace and inadequate ventilation. Types of welding identified were MIG mild steel, MIG stainless steel, and TIG aluminum. Monitoring involved an assessment of noise levels, fume composition, and carbon monoxide and ozone concentrations. Metal analyses were according to National Institute for Occupational Safety and Health (NIOSH) Method 7300. Noise dosimeters used were the Quest model 100 and Micro 14 & 15. Carbon monoxide was monitored using the Gastech Model 4700 and ozone using the AID Portable Ozone Meter Model 560. In Manitoba, a hearing conservation program is required when the equivalent sound exposure level (normalized Lex 8-hr) exceeds 80 dBA-weighted. The American Conference of Governmental Industrial Hygienists' threshold limit value-time weighted average (ACGIH TLV-TWA) for iron is 5.0 mg/m3, manganese is 0.2 mg/m3, carbon monoxide is 25 ppm, and ozone is 0.05 ppm (heavy work), 0.08 ppm (moderate work), and 0.1 ppm (light work). Welders' personal exposures to manganese ranged from 0.01-4.93 mg/m3 (N = 42; AM = 0.5; GM = 0.2; SD +/- 0.9; GSD +/- 3.2) and to iron ranged from 0.04-16.29 mg/m3 (N = 42; AM = 3.0; GM = 1.4; SD +/- 3.5; GSD +/- 2.5). Noise exposures ranged from 79-98 dBA (N = 44; AM = 88.9; GM = 88.8; SD +/- 4.2; GSD +/- 1.0). Carbon monoxide levels were less than 5.0 ppm (at source) and ozone levels varied from 0.4-0.6 ppm (at source). Ventilation upgrades in the workplace were required in most welding shops. Only 7 percent of the welders wore respiratory protection. A hearing conservation program and hearing protection were required at all monitored workplaces.

  13. Increased endothelial apoptotic cell density in human diabetic erectile tissue--comparison with clinical data.

    PubMed

    Costa, Carla; Soares, Raquel; Castela, Angela; Adães, Sara; Hastert, Véronique; Vendeira, Pedro; Virag, Ronald

    2009-03-01

    Erectile dysfunction (ED) is a common complication of diabetes. Endothelial cell (EC) dysfunction is one of the main mechanisms of diabetic ED. However, loss of EC integrity has never been assessed in human diabetic corpus cavernosum. To identify and quantify apoptotic cells in human diabetic and normal erectile tissue and to compare these results with each patient's clinical data and erection status. Eighteen cavernosal samples were collected, 13 from diabetics with ED and 5 from nondiabetic individuals. Cavernosal structure and cell proliferation status were evaluated by immunohistochemistry. Tissue integrity was assessed by terminal transferase dUTP nick end labeling assay, an index of apoptotic cell density (ACD) established and compared with each patient age, type of diabetes, arterial risk factors number, arterial/veno-occlusive disease, response to intracavernous vasoactive injections (ICI), and penile nitric oxide release test (PNORT). Establish an index of ACD and correlate those results with patient clinical data. Nondiabetic samples presented few scattered cells in apoptosis and an ACD of 7.15 +/- 0.44 (mean apoptotic cells/tissue area mm(2) +/- standard error). The diabetic group showed an increased ACD of 23.82 +/- 1.53, and apoptotic cells were located specifically at vascular sites. Rehabilitation of these endothelial lesions seemed impaired, as no evidence of EC proliferation was observed. Furthermore, higher ACD in diabetic individuals correlated to poor response to PNORT and to ICI. We provided evidence for the first time that loss of cavernosal EC integrity is a crucial event involved in diabetic ED. Furthermore, we were able to establish a threshold between ACD values and cavernosal tissue functionality, as assessed by PNORT and vasoactive ICI.

  14. Trajectories and energy transfer of saltating particles onto rock surfaces : application to abrasion and ventifact formation on Earth and Mars

    NASA Technical Reports Server (NTRS)

    Bridges, Nathan T.; Phoreman, James; White, Bruce R.; Greeley, Ronald; Eddlemon, Eric E.; Wilson, Gregory R.; Meyer, Christine J.

    2005-01-01

    The interaction between saltating sand grains and rock surfaces is assessed to gauge relative abrasion potential as a function of rock shape, wind speed, grain size, and planetary environment. Many kinetic energy height profiles for impacts exhibit a distinctive increase, or kink, a few centimeters above the surface, consistent with previous field, wind tunnel, and theoretical investigations. The height of the kink observed in natural and wind tunnel settings is greater than predictions by a factor of 2 or more, probably because of enhanced bouncing off hard ground surfaces. Rebounded grains increase the effective flux and relative kinetic energy for intermediate slope angles. Whether abrasion occurs, as opposed to simple grain impact with little or no mass lost from the rock, depends on whether the grain kinetic energy (EG) exceeds a critical value (EC), as well as the flux of grains with energies above EC. The magnitude of abrasion and the shape change of the rock over time depends on this flux and the value of EG > EC. Considering the potential range of particle sizes and wind speeds, the predicted kinetic energies of saltating sand hitting rocks overlap on Earth and Mars. However, when limited to the most likely grain sizes and threshold conditions, our results agree with previous work and show that kinetic energies are about an order of magnitude greater on Mars.

  15. Quantification of ozone exposure- and stomatal uptake-yield response relationships for soybean in Northeast China.

    PubMed

    Zhang, Weiwei; Feng, Zhaozhong; Wang, Xiaoke; Liu, Xiaobing; Hu, Enzhu

    2017-12-01

    High ground-level O 3 is a new threat to agricultural production in Northeast China with the increasing ambient O 3 concentration. Little is known about its impacts on soybean production in this key agricultural region. Accumulated O 3 exposure-response and stomatal O 3 flux-response relationships were developed during two continuous growing seasons to evaluate O 3 -induced yield reduction of four typical soybean cultivars in Northeast China. Results showed that critical levels of AOT40 (accumulated hourly O 3 concentrations over a threshold of 40nmol·mol -1 ), SUM06 (sum of all hourly average O 3 concentrations over 0.06μmol·mol -1 ) and W126 (sum of O 3 concentrations weighted by a sigmoidal function) in relation to 5% reduction in relative seed yield were 4.2, 7.6 and 6.8μmol·mol -1 ·h, respectively. The effect of O 3 on plants was influenced by leaf position in canopy. An improved Jarvis stomatal conductance model including leaf (node) position fitted well with field measurements. The best linear relationship between stomatal O 3 flux and relative soybean yield was obtained when phytotoxic ozone dose was integrated over a threshold of 9.6nmol·m -2 ·s -1 (POD 9.6 ) to represent the detoxification capacity of soybean. POD 9.6 and the commonly used POD 6 in relation to 5% reduction in relative seed yield of soybean were 0.9mmol·m -2 and 1.8mmol·m -2 , respectively. O 3 concentrations above ~38nmol·mol -1 contributed to POD 9.6 and caused seed yield loss in soybean. Current annual yield loss of soybean at ambient O 3 was estimated to range between 23.4% and 30.2%. The O 3 dose-response relationships and corresponding thresholds obtained here will benefit regional O 3 risk assessment on soybean production in Northeast China. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Association of Short-term Exposure to Air Pollution With Mortality in Older Adults.

    PubMed

    Di, Qian; Dai, Lingzhen; Wang, Yun; Zanobetti, Antonella; Choirat, Christine; Schwartz, Joel D; Dominici, Francesca

    2017-12-26

    The US Environmental Protection Agency is required to reexamine its National Ambient Air Quality Standards (NAAQS) every 5 years, but evidence of mortality risk is lacking at air pollution levels below the current daily NAAQS in unmonitored areas and for sensitive subgroups. To estimate the association between short-term exposures to ambient fine particulate matter (PM2.5) and ozone, and at levels below the current daily NAAQS, and mortality in the continental United States. Case-crossover design and conditional logistic regression to estimate the association between short-term exposures to PM2.5 and ozone (mean of daily exposure on the same day of death and 1 day prior) and mortality in 2-pollutant models. The study included the entire Medicare population from January 1, 2000, to December 31, 2012, residing in 39 182 zip codes. Daily PM2.5 and ozone levels in a 1-km × 1-km grid were estimated using published and validated air pollution prediction models based on land use, chemical transport modeling, and satellite remote sensing data. From these gridded exposures, daily exposures were calculated for every zip code in the United States. Warm-season ozone was defined as ozone levels for the months April to September of each year. All-cause mortality in the entire Medicare population from 2000 to 2012. During the study period, there were 22 433 862 million case days and 76 143 209 control days. Of all case and control days, 93.6% had PM2.5 levels below 25 μg/m3, during which 95.2% of deaths occurred (21 353 817 of 22 433 862), and 91.1% of days had ozone levels below 60 parts per billion, during which 93.4% of deaths occurred (20 955 387 of 22 433 862). The baseline daily mortality rates were 137.33 and 129.44 (per 1 million persons at risk per day) for the entire year and for the warm season, respectively. Each short-term increase of 10 μg/m3 in PM2.5 (adjusted by ozone) and 10 parts per billion (10-9) in warm-season ozone (adjusted by PM2.5) were statistically significantly associated with a relative increase of 1.05% (95% CI, 0.95%-1.15%) and 0.51% (95% CI, 0.41%-0.61%) in daily mortality rate, respectively. Absolute risk differences in daily mortality rate were 1.42 (95% CI, 1.29-1.56) and 0.66 (95% CI, 0.53-0.78) per 1 million persons at risk per day. There was no evidence of a threshold in the exposure-response relationship. In the US Medicare population from 2000 to 2012, short-term exposures to PM2.5 and warm-season ozone were significantly associated with increased risk of mortality. This risk occurred at levels below current national air quality standards, suggesting that these standards may need to be reevaluated.

  17. Linear operating region in the ozone dial photon counting system

    NASA Technical Reports Server (NTRS)

    Andrawis, Madeleine

    1995-01-01

    Ozone is a relatively unstable molecule found in Earth's atmosphere. An ozone molecule is made up of three atoms of oxygen. Depending on where ozone resides, it can protect or harm life on Earth. High in the atmosphere, about 15 miles up, ozone acts as a shield to protect Earth's surface from the sun's harmful ultraviolet radiation. Without this shield, we would be more susceptible to skin cancer, cataracts, and impaired immune systems. Closer to Earth, in the air we breathe, ozone is a harmful pollutant that causes damage to lung tissue and plants. Since the early 1980's, airborne lidar systems have been used for making measurements of ozone. The differential absorption lidar (DIAL) technique is used in the remote measurement of O3. This system allows the O3 to be measured as function of the range in the atmosphere. Two frequency-doubled Nd:YAG lasers are used to pump tunable dye lasers. The lasers are operating at 289 nm for the DIAL on-line wavelength of O3, and the other one is operated at 300 nm for the off-line wavelength. The DIAL wavelengths are produced in sequential laser pulses with a time separation of 300 micro s. The backscattered laser energy is collected by telescopes and measured using photon counting systems. The photon counting system measures the light signal by making use of the photon nature of light. The output pulse from the Photo-Multiplier Tube (PE), caused by a photon striking the PMT photo-cathode, is amplified and passed to a pulse height discriminator. The peak value of the pulse is compared to a reference voltage (discrimination level). If the pulse amplitude exceeds the discrimination level, the discriminator generates a standard pulse which is counted by the digital counter. Non-linearity in the system is caused by the overlapping of pulses and the finite response time of the electronics. At low count rates one expects the system to register one event for each output pulse from the PMT corresponding to a photon incident upon the photocathode, however, at higher rates the limitations of the discrimination/counting system will cause the observed count rate to be non-linear with respect to the true count rate. Depending on the pulse height distribution and the discriminator level, the overlapping of pulses (pulse pile-up) can cause count loss or even an additional apparent count gain as the signal levels increase. Characterization of the system, including the pulse height distribution, the signal to noise ratio, and the effect of the discriminator threshold level, is critical in maximizing the linear operating region of the system, thus greatly increasing the useful dynamic range of the system.

  18. Mercury bonds with carbon (OC and EC) in small aerosols (PM1) in the urbanized coastal zone of the Gulf of Gdansk (southern Baltic).

    PubMed

    Lewandowska, A U; Bełdowska, M; Witkowska, A; Falkowska, L; Wiśniewska, K

    2018-08-15

    PM1 aerosols were collected at the coastal station in Gdynia between 1st January and 31st December 2012. The main purpose of the study was to determine the variability in concentrations of mercury Hg(p), organic carbon (OC) and elemental carbon (EC) in PM1 aerosols under varying synoptic conditions in heating and non-heating periods. Additionally, sources of origin and bonds of mercury with carbon species were identified. The highest concentrations of Hg(p), OC and EC were found during the heating period. Then all analyzed PM1 components had a common, local origin related to the consumption of fossil fuels for heating purposes under conditions of lower air temperatures and poor dispersion of pollutants. Long periods without precipitation also led to the increase in concentration of all measured PM1 compounds. In heating period mercury correlated well with elemental carbon and primary and secondary organic carbon when air masses were transported from over the land. At that time, the role of transportation was of minor importance. In the non-heating period, the concentration of all analyzed compounds were lower than in the heating period, which could be associated with the reduced influence of combustion processes, higher precipitation and, in the case of mercury, also the evaporation of aerosols at higher air temperatures. However, when air masses were transported from over the sea or from the port/shipyard areas the mercury concentration increased significantly. In the first case higher air humidity, solar radiation and ozone concentration as well as the presence of marine aerosols could further facilitate the conversion of gaseous mercury into particulate mercury and its concentration increase. In the second case Hg(p) could be adsorbed on particles rich in elemental carbon and primary organic carbon emitted from ships. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Improved Satellite Retrievals of NO2 and SO2 over the Canadian Oil Sands and Comparisons with Surface Measurements

    NASA Technical Reports Server (NTRS)

    McLinden, C. A.; Fioletov, V.; Boersma, K. F.; Kharol, S. K.; Krotkov, N.; Lamsal, L.; Makar, P. A.; Martin, R. V.; Veefkind, J. P.; Yang, K.

    2014-01-01

    Satellite remote sensing is increasingly being used to monitor air quality over localized sources such as the Canadian oil sands. Following an initial study, significantly low biases have been identified in current NO2 and SO2 retrieval products from the Ozone Monitoring Instrument (OMI) satellite sensor over this location resulting from a combination of its rapid development and small spatial scale. Air mass factors (AMFs) used to convert line-of-sight "slant" columns to vertical columns were re-calculated for this region based on updated and higher resolution input information including absorber profiles from a regional-scale (15 km × 15 km resolution) air quality model, higher spatial and temporal resolution surface reflectivity, and an improved treatment of snow. The overall impact of these new Environment Canada (EC) AMFs led to substantial increases in the peak NO2 and SO2 average vertical column density (VCD), occurring over an area of intensive surface mining, by factors of 2 and 1.4, respectively, relative to estimates made with previous AMFs. Comparisons are made with long-term averages of NO2 and SO2 (2005-2011) from in situ surface monitors by using the air quality model to map the OMI VCDs to surface concentrations. This new OMI-EC product is able to capture the spatial distribution of the in situ instruments (slopes of 0.65 to 1.0, correlation coefficients of greater than 0.9). The concentration absolute values from surface network observations were in reasonable agreement, with OMI-EC NO2 and SO2 biased low by roughly 30%. Several complications were addressed including correction for the interference effect in the surface NO2 instruments and smoothing and clear-sky biases in the OMI measurements. Overall these results highlight the importance of using input information that accounts for the spatial and temporal variability of the location of interest when performing retrievals.

  20. A WRF-Chem model study of the impact of VOCs emission of a huge petro-chemical industrial zone on the summertime ozone in Beijing, China

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Lv, Zhao Feng; Li, Yue; Wang, Li Tao; Cheng, Shuiyuan; Liu, Huan

    2018-02-01

    In China, petro-chemical manufacturing plants generally gather in the particular industrial zone defined as PIZ in some cities, and distinctly influence the air quality of these cities for their massive VOCs emissions. This study aims to quantify the local and regional impacts of PIZ VOCs emission and its relevant reduction policy on the surface ozone based on WRF-Chem model, through the case study of Beijing. Firstly, the model simulation under the actual precursors' emissions over Beijing region for July 2010 is conducted and evaluated, which meteorological and chemical predictions both within the thresholds for satisfactory model performance. Then, according to simulated H2O2/HNO3 ratio, the nature of photochemical ozone formation over Beijing is decided, the VOCs-sensitive regime over the urban areas, NOx-sensitive regime over the northern and western rural areas, and both VOCssbnd and NOx-mixed sensitive regime over the southern and eastern rural areas. Finally, a 30% VOCs reduction scenario (RS) and a 100% VOCs reduction scenario (ZS) for Beijing PIZ are additional simulated by WRF-Chem. The sensitivity simulations imply that the current 30% reduction policy would bring about an O3 increase in the southern and western areas (by +4.7 ppb at PIZ site and +2.1 ppb at LLH station), and an O3 decrease in the urban center (by -1.7 ppb at GY station and -2.5 ppb at DS station) and in the northern and eastern areas (by -1.2 ppb at MYX station), mainly through interfering with the circulation of atmospheric HOx radicals. While the contribution of the total VOCs emission of PIZ to ozone is greatly prominent in the PIZ and its surrounding areas along south-north direction (12.7% at PIZ site on average), but slight in the other areas of Beijing (<3% in other four stations on average).

  1. Rat lung metallothionein and heme oxygenase gene expression following ozone and zinc oxide exposure.

    PubMed

    Cosma, G; Fulton, H; DeFeo, T; Gordon, T

    1992-11-01

    We have conducted exposures in rats to determine pulmonary responses following inhalation of two common components of welding fumes, zinc oxide and ozone. To examine their effects on target-inducible gene expression, we measured mRNA levels of two metal-responsive genes, metallothionein (MT) and heme oxygenase (HO), in lung tissue by RNA slot-blot analysis. A 3-hr exposure to ZnO fume via a combustion furnace caused a substantial elevation in lung MT mRNA at all concentrations tested. Exposures to 5 and 2.5 mg/m3 ZnO resulted in peak 8-fold increases in MT mRNA levels (compared to air-exposed control animal values) immediately after exposure, while 1 mg/m3 ZnO exposure caused a 3.5-fold elevation in MT mRNA. These levels returned to approximate control gene expression values 24 hr after exposure. In addition, ZnO exposure caused an immediate elevation in lung HO gene expression levels, with 8-, 11-, and 5-fold increases observed after the same ZnO exposure levels (p < 0.05). Like MT gene induction, HO mRNA values returned to approximate control levels 24 hr after exposure. In striking contrast to the induction of MT and HO gene expression after ZnO exposures, there was no elevation in gene expression following a 6-hr exposure to 0.5 and 1 ppm ozone, even when lungs were examined as late as 72 hr after exposure. Our results demonstrate the induction of target gene expression following the inhalation of ZnO at concentrations equal to, and below, the current recommended threshold limit value of 5 mg/m3 ZnO. Furthermore, the lack of effect of ozone exposure on MT and HO gene expression suggests no involvement of these genes in the acute respiratory response to this oxidant compound.

  2. Exposure- and flux-based assessment of ozone risk to sugarcane plants

    NASA Astrophysics Data System (ADS)

    Moura, Bárbara Baêsso; Hoshika, Yasutomo; Ribeiro, Rafael Vasconcelos; Paoletti, Elena

    2018-03-01

    Ozone (O3) is a toxic oxidative air pollutant, with significant detrimental effects on crops. Sugarcane (Saccharum spp.) is an important crop with no O3 risk assessment performed so far. This study aimed to assess O3 risk to sugarcane plants by using exposure-based indices (AOT40 and W126) based on O3 concentrations in the air, and the flux-based index (PODy, where y is a threshold of uptake) that considers leaf O3 uptake and the influence of environmental conditions on stomatal conductance (gsto). Two sugarcane genotypes (IACSP94-2094 and IACSP95-5000) were subjected to a 90-day Free-Air Controlled Experiment (FACE) exposure at three levels of O3 concentrations: ambient (Amb); Amb x1.2; and Amb x1.4. Total above-ground biomass (AGB), stalk biomass (SB) and leaf biomass (LB) were evaluated and the potential biomass production in a clean air was estimated by assuming a theoretical clean atmosphere at 10 ppb as 24 h O3 average. The Jarvis-type multiplicative algorithm was used to parametrize gsto including environmental factors i.e. air temperature, light intensity, air vapor pressure deficit, and minimum night-time temperature. Ozone exposure caused a negative impact on AGB, SB and LB. The O3 sensitivity of sugarcane may be related to its high gsto (∼535 mmol H2O m-2 s-1). As sugarcane is adapted to hot climate conditions, gsto was restricted when the current minimum air temperature (Tmin) was below ∼14 °C and the minimum night-time air temperature of the previous day (Tnmin) was below ∼7.5 °C. The flux-based index (PODy) performed better than the exposure-based indices in estimating O3 effect on biomass losses. We recommend a y threshold of 2 nmol m-2 s-1 to incorporate O3 effects on both AGB and SB and 1 nmol m-2 s-1 on LB. In order not to exceed 4% reduction in the growth of these two sugarcane genotypes, we recommend the following critical levels: 1.09 and 1.04 mmol m-2 POD2 for AGB, 0.91 and 0.96 mmol m-2 POD2 for SB, and 3.00 and 2.36 mmol m-2 POD1 for LB of IACSP95-5000 and IACSP94-2094, respectively.

  3. Efficacy of Insecticide and Bioinsecticide Ground Sprays to Control Metisa plana Walker (Lepidoptera: Psychidae) in Oil Palm Plantations, Malaysia.

    PubMed

    Salim, Hasber; Rawi, Che Salmah Md; Ahmad, Abu Hassan; Al-Shami, Salman Abdo

    2015-12-01

    The effectiveness of the synthetic insecticides trichlorfon, lambda-cyhalothrin, cypermethrin emulsion concentrated (EC) and cypermethrin emulsion water based (EW) and a bio-insecticide, Bacillus thuringiensis subsp. kurstaki (Btk), was evaluated at 3, 7, 14 and 30 days after treatment (DAT) for the control of Metisa plana larvae in an oil palm (Elaeis guineensis) plantation in Malaysia. Although all synthetic insecticides effectively reduced the larval population of M. plana, trichlorfon, lambda-cyhalothrin and cypermethrin EC were the fastest-acting. The larval population dropped below the economic threshold level (ETL) 30 days after a single application of the synthetic insecticides. Application of Btk, however, gave poor results, with the larval population remaining above the ETL post treatment. In terms of operational productivity, ground spraying using power spray equipment was time-consuming and resulted in poor coverage. Power spraying may not be appropriate for controlling M. plana infestations in large fields. Using a power sprayer, one man could cover 2-3 ha per day. Hence, power spraying is recommended during outbreaks of infestation in areas smaller than 50 ha.

  4. Efficacy of Insecticide and Bioinsecticide Ground Sprays to Control Metisa plana Walker (Lepidoptera: Psychidae) in Oil Palm Plantations, Malaysia

    PubMed Central

    Salim, Hasber; Rawi, Che Salmah Md.; Ahmad, Abu Hassan; Al-Shami, Salman Abdo

    2015-01-01

    The effectiveness of the synthetic insecticides trichlorfon, lambda-cyhalothrin, cypermethrin emulsion concentrated (EC) and cypermethrin emulsion water based (EW) and a bio-insecticide, Bacillus thuringiensis subsp. kurstaki (Btk), was evaluated at 3, 7, 14 and 30 days after treatment (DAT) for the control of Metisa plana larvae in an oil palm (Elaeis guineensis) plantation in Malaysia. Although all synthetic insecticides effectively reduced the larval population of M. plana, trichlorfon, lambda-cyhalothrin and cypermethrin EC were the fastest-acting. The larval population dropped below the economic threshold level (ETL) 30 days after a single application of the synthetic insecticides. Application of Btk, however, gave poor results, with the larval population remaining above the ETL post treatment. In terms of operational productivity, ground spraying using power spray equipment was time-consuming and resulted in poor coverage. Power spraying may not be appropriate for controlling M. plana infestations in large fields. Using a power sprayer, one man could cover 2–3 ha per day. Hence, power spraying is recommended during outbreaks of infestation in areas smaller than 50 ha. PMID:26868711

  5. Trehalose-producing enzymes MTSase and MTHase in Anabaena 7120 under NaCl stress.

    PubMed

    Asthana, Ravi K; Nigam, Subhasha; Maurya, Archana; Kayastha, Arvind M; Singh, Sureshwar P

    2008-05-01

    Salt tolerance, a multigenic trait, necessitates knowledge about biosynthesis and function of candidate gene(s) at the cellular level. Among the osmolytes, trehalose biosynthesis in cyanobacteria facing NaCl stress is little understood. Anabaena 7120 filaments exposed to 150 mM: NaCl fragmented and recovered on transfer to -NaCl medium with the increased heterocysts frequency (7%) over the control (4%). Cells failed to retain Na+ beyond a threshold [2.19 mM/cm3 (PCV)]. Whereas NaCl-stressed cells exhibited a marginal rise in K+ (1.1-fold) only at 30 h, for Na+ it was 130-fold at 48 h over cells in control. A time-course study (0-54 h) revealed reduction in intracellular Na+ beyond 48 h [0.80 mM/cm3 (PCV)] suggestive of ion efflux. The NaCl-stressed cells showed differential expression of maltooligosyltrehalose synthase (MTSase; EC 5.4.99.15) and maltooligosyltrehalose trehalohydrolase (MTHase; EC 3.2.1.141) depending on the time and the extent of intracellular Na+ buildup.

  6. Long-term associations of morbidity with air pollution: A catalog and synthesis.

    PubMed

    Lipfert, Frederick W

    2018-01-01

    I searched the National Institutes of Health MEDLINE database through January 2017 for long-term studies of morbidity and air pollution and cataloged them with respect to cardiovascular, respiratory, cancer, diabetes, hospitalization, neurological, and pregnancy-birth endpoints. The catalog is presented as an online appendix. Associations with PM 2.5 (particulate matter with an aerodynamic diameter <2.5 μm), PM 10 (PM with an aerodynamic diameter <10 μm), and nitrogen dioxide (NO 2 ) were evaluated most frequently among the 417 ambient air quality studies identified. Associations with total suspended particles (TSP), carbon, ozone, sulfur, vehicular traffic, radon, and indoor air quality were also reported. I evaluated each study in terms of pollutant significance (yes, no), duration of exposure, and publication date. I found statistically significant pollutant relationships (P < 0.05) in 224 studies; 220 studies indicated adverse effects. Among 795 individual pollutant effect estimates, 396 are statistically significant. Pollutant associations with cardiovascular indicators, lung function, respiratory symptoms, and low birth weight are more likely to be significant than with disease incidence, heart attacks, diabetes, or neurological endpoints. Elemental carbon (EC), traffic, and PM 2.5 are most likely to be significant for cardiovascular outcomes; TSP, EC, and ozone (O 3 ) for respiratory outcomes; NO 2 for neurological outcomes; and PM 10 for birth/pregnancy outcomes. Durations of exposure range from 60 days to 35 yr, but I found no consistent relationships with the likelihood of statistical significance. Respiratory studies began ca. 1975; studies of diabetes, cardiovascular, and neurological effects increased after about 2005. I found 72 studies of occupational air pollution exposures; 40 reported statistically significant adverse health effects, especially for respiratory conditions. I conclude that the aggregate of these studies supports the existence of nonlethal physiological effects of various pollutants, more so for non-life-threatening endpoints and for noncriteria pollutants (TSP, EC, PM 2.5 metals). However, most studies were cross-sectional analyses over limited time spans with no consideration of lag or disease latency. Further longitudinal studies are thus needed to investigate the progress of disease incidence in association with air pollution exposure. Relationships of air pollution with excess mortality are better known than with long-term antecedent morbidity. I cataloged 489 studies of cardiovascular, respiratory, cancer, and neurological effects, diabetes, and birth outcomes with respect to 12 air pollutants. About half of the studies reported statistically significant relationships, more frequently with noncriteria than with criteria pollutants. Indoor and cumulative exposures, coarse or ultrafine particles, and organic carbon were seldom considered. Significant relationships were more likely with less-severe endpoints such as blood pressure, lung function, or respiratory symptoms than with incidence of cancer, chronic obstructive pulmonary disease (COPD), heart failure, or diabetes. Most long-term studies are based on spatial relationships; longitudinal studies are needed to link the progression of pollution-related morbidity to mortality, especially for the cardiovascular system.

  7. N2O fluxes over a corn field from an open-path, laser-based eddy covariance system and static chambers

    NASA Astrophysics Data System (ADS)

    Tao, L.; Pan, D.; Gelfand, I.; Abraha, M.; Moyer, R.; Poe, A.; Sun, K.; Robertson, P.; Zondlo, M. A.

    2015-12-01

    Nitrous oxide (N2O) is important greenhouse and ozone-depleting gase. Although many efforts have been paid to N2O emissions, the spatial and temporal variability of N2O emissions still subject to large uncertainty. Application of the eddy covariance method for N2O emissions research would allow continuous ecosystem level flux measurements. The caveat, however, is need for high precision and high frequency measurements in field. In this study, an open-path, quantum cascade-laser-based eddy covariance N2O sensor has been deployed nearly continuously since May 2015 over a corn field at the W.K. Kellogg Biological Station site in SW Michigan. The field precision of the N2O sensor was assessed to be 0.1 ppbv at 10 Hz, and the total consumption was ~ 40 W, allowing the system to be powered solely by solar panels. The stability of the sensor under different temperature and humidity was tested within an environmental chamber. Spectroscopic experiments and cospectra analyses were carried out to study specific corrections associated with the sensor for eddy covariance techniques, including the line broadening effect due to water vapor and high frequency flux attenuation owning to sample path averaging. Ogive analyses indicated that the high-frequency N2O flux loss due to various damping effects was comparable to those of the CO2 flux. The detection limit of flux was estimated to be 0.3 ng N s-1 m-2 with a flux averaging interval of 30 minutes. The results from the EC system were also compared with ground measurements by standard static chambers (SC). Overall, more than 150 individual chamber measurements were taken within the footprint of the EC system. We found good correlation between the EC and SC methods given the spatiotemporal differences between the two techniques (R2 = 0.75). Both methods detected increased emissions during afternoon as compared to morning and night hours. Differences between EC and SC were also studied by investigating spatial variability with a footprint model. Our results indicate diurnality of ecosystem level N2O emissions may have important consequences for both field and global scale budgets and highlight the need of more continuous measurements for future investigation.

  8. Potential Impacts of Urban Land Expansion on Asian Outflows of Air Pollutants

    NASA Astrophysics Data System (ADS)

    Wei, T.; Liu, J.; Tao, S.; Ban-Weiss, G. A.

    2016-12-01

    We investigate the impacts of urban land expansion over Eastern China (EC) on the export of black carbon (BC), carbon monoxide (CO) and ozone (O3) to the West Pacific during the January, April, July and October of 2009, using WRF/Chem model coupled with the tracers tagging technique and an up-to-date single layer urban canopy scheme updated with the treatment of urban hydrological processes. Our model simulations could reproduce well the vertical profiles of Asian outflows of BC and CO observed during the A-FORCE period (March to April of 2009). Over urbanizing areas, increment in urban land fraction could linearly elevate primary pollutants from the lower boundary layer to higher altitudes, and perturb the thermal, hydrological, and kinetic exchange processes between land surface and the atmosphere aloft through all seasons (such local impacts highest in July but lowest in January). Furthermore, we find robust linear relationships exist between urban land fraction (averaged over EC) and export of BC emitted from EC across meridional planes over the western Pacific (e.g., 140 °E). Specifically, each 10% increase in urban land fraction over EC enhances the eastward mass fluxes of BC by about 5%-10% in January and July, and 10%-20% in April and October, respectively, in the free troposphere, which is the dominant pathway for Asian outflows. Such a linear relationship is relatively weaker for CO and only appears in April and October. The different response patterns between BC and CO arise from their distinct physical and chemical properties. Even with decreased vegetation (and reduced biogenic emissions), the O3­ concentrations at the surface and 800 hPa over urbanizing areas both tend to increase. However, no clear trend is observed for the export of O3 over West Pacific for all four months. Urban land expansion facilitates the uplift of local pollutants, but also changes the large-scale circulation pattern (the perturbation cyclone over the downwind Pacific acts to impede the eastward transpacific transport), both playing important roles on the efficiency that Asian emissions are exported. Our finding indicates that the extensive urban land expansion would significantly impact the local climate and air quality, which also have a large impact on long-range transboundary transport.

  9. Systematic influences of gamma-ray spectrometry data near the decision threshold for radioactivity measurements in the environment.

    PubMed

    Zorko, Benjamin; Korun, Matjaž; Mora Canadas, Juan Carlos; Nicoulaud-Gouin, Valerie; Chyly, Pavol; Blixt Buhr, Anna Maria; Lager, Charlotte; Aquilonius, Karin; Krajewski, Pawel

    2016-07-01

    Several methods for reporting outcomes of gamma-ray spectrometric measurements of environmental samples for dose calculations are presented and discussed. The measurement outcomes can be reported as primary measurement results, primary measurement results modified according to the quantification limit, best estimates obtained by the Bayesian posterior (ISO 11929), best estimates obtained by the probability density distribution resembling shifting, and the procedure recommended by the European Commission (EC). The annual dose is calculated from the arithmetic average using any of these five procedures. It was shown that the primary measurement results modified according to the quantification limit could lead to an underestimation of the annual dose. On the other hand the best estimates lead to an overestimation of the annual dose. The annual doses calculated from the measurement outcomes obtained according to the EC's recommended procedure, which does not cope with the uncertainties, fluctuate between an under- and overestimation, depending on the frequency of the measurement results that are larger than the limit of detection. In the extreme case, when no measurement results above the detection limit occur, the average over primary measurement results modified according to the quantification limit underestimates the average over primary measurement results for about 80%. The average over best estimates calculated according the procedure resembling shifting overestimates the average over primary measurement results for 35%, the average obtained by the Bayesian posterior for 85% and the treatment according to the EC recommendation for 89%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Evaluating Micrometeorological Estimates of Groundwater Discharge from Great Basin Desert Playas.

    PubMed

    Jackson, Tracie R; Halford, Keith J; Gardner, Philip M

    2018-03-06

    Groundwater availability studies in the arid southwestern United States traditionally have assumed that groundwater discharge by evapotranspiration (ET g ) from desert playas is a significant component of the groundwater budget. However, desert playa ET g rates are poorly constrained by Bowen ratio energy budget (BREB) and eddy-covariance (EC) micrometeorological measurement approaches. Best attempts by previous studies to constrain ET g from desert playas have resulted in ET g rates that are within the measurement error of micrometeorological approaches. This study uses numerical models to further constrain desert playa ET g rates that are within the measurement error of BREB and EC approaches, and to evaluate the effect of hydraulic properties and salinity-based groundwater density contrasts on desert playa ET g rates. Numerical models simulated ET g rates from desert playas in Death Valley, California and Dixie Valley, Nevada. Results indicate that actual ET g rates from desert playas are significantly below the uncertainty thresholds of BREB- and EC-based micrometeorological measurements. Discharge from desert playas likely contributes less than 2% of total groundwater discharge from Dixie and Death Valleys, which suggests discharge from desert playas also is negligible in other basins. Simulation results also show that ET g from desert playas primarily is limited by differences in hydraulic properties between alluvial fan and playa sediments and, to a lesser extent, by salinity-based groundwater density contrasts. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

  11. A Binaural Grouping Model for Predicting Speech Intelligibility in Multitalker Environments

    PubMed Central

    Colburn, H. Steven

    2016-01-01

    Spatially separating speech maskers from target speech often leads to a large intelligibility improvement. Modeling this phenomenon has long been of interest to binaural-hearing researchers for uncovering brain mechanisms and for improving signal-processing algorithms in hearing-assistive devices. Much of the previous binaural modeling work focused on the unmasking enabled by binaural cues at the periphery, and little quantitative modeling has been directed toward the grouping or source-separation benefits of binaural processing. In this article, we propose a binaural model that focuses on grouping, specifically on the selection of time-frequency units that are dominated by signals from the direction of the target. The proposed model uses Equalization-Cancellation (EC) processing with a binary decision rule to estimate a time-frequency binary mask. EC processing is carried out to cancel the target signal and the energy change between the EC input and output is used as a feature that reflects target dominance in each time-frequency unit. The processing in the proposed model requires little computational resources and is straightforward to implement. In combination with the Coherence-based Speech Intelligibility Index, the model is applied to predict the speech intelligibility data measured by Marrone et al. The predicted speech reception threshold matches the pattern of the measured data well, even though the predicted intelligibility improvements relative to the colocated condition are larger than some of the measured data, which may reflect the lack of internal noise in this initial version of the model. PMID:27698261

  12. A Binaural Grouping Model for Predicting Speech Intelligibility in Multitalker Environments.

    PubMed

    Mi, Jing; Colburn, H Steven

    2016-10-03

    Spatially separating speech maskers from target speech often leads to a large intelligibility improvement. Modeling this phenomenon has long been of interest to binaural-hearing researchers for uncovering brain mechanisms and for improving signal-processing algorithms in hearing-assistive devices. Much of the previous binaural modeling work focused on the unmasking enabled by binaural cues at the periphery, and little quantitative modeling has been directed toward the grouping or source-separation benefits of binaural processing. In this article, we propose a binaural model that focuses on grouping, specifically on the selection of time-frequency units that are dominated by signals from the direction of the target. The proposed model uses Equalization-Cancellation (EC) processing with a binary decision rule to estimate a time-frequency binary mask. EC processing is carried out to cancel the target signal and the energy change between the EC input and output is used as a feature that reflects target dominance in each time-frequency unit. The processing in the proposed model requires little computational resources and is straightforward to implement. In combination with the Coherence-based Speech Intelligibility Index, the model is applied to predict the speech intelligibility data measured by Marrone et al. The predicted speech reception threshold matches the pattern of the measured data well, even though the predicted intelligibility improvements relative to the colocated condition are larger than some of the measured data, which may reflect the lack of internal noise in this initial version of the model. © The Author(s) 2016.

  13. TRPV2 is activated by cannabidiol and mediates CGRP release in cultured rat dorsal root ganglion neurons.

    PubMed

    Qin, Ning; Neeper, Michael P; Liu, Yi; Hutchinson, Tasha L; Lubin, Mary Lou; Flores, Christopher M

    2008-06-11

    Transient receptor potential V2 (TRPV2) has been proposed to be a high-threshold thermosensor. However, further elucidation of the channel properties and physiological role of TRPV2 have been hindered by the lack of selective pharmacological tools as well as by the species-dependent differences in the activation of this channel. In the present study, we have used cell-based calcium mobilization and electrophysiological assays to identify and characterize several novel cannabinoid TRPV2 agonists. Among these, cannabidiol was found to be the most robust and potent (EC(50) = 3.7 microM), followed by Delta(9)-tetrahydrocannabinol (EC(50) = 14 microM) and cannabinol (EC(50) = 77.7 microM). We also demonstrated that cannabidiol evoked a concentration-dependent release of calcitonin gene-related peptide (CGRP) from cultured rat dorsal root ganglion neurons in a cannabinoid receptor- and TRPV1-independent manner. Moreover, the cannabidiol-evoked CGRP release depended on extracellular calcium and was blocked by the nonselective TRP channel blocker, ruthenium red. We further provide evidence through the use of small interfering RNA knockdown and repetitive stimulation studies, to show that cannabidiol-evoked CGRP release is mediated, at least in part, by TRPV2. Together, these data suggest not only that TRPV2 may comprise a mechanism whereby cannabidiol exerts its clinically beneficial effects in vivo, but also that TRPV2 may constitute a viable, new drug target.

  14. Phytotoxicity of trace metals in spiked and field-contaminated soils: Linking soil-extractable metals with toxicity.

    PubMed

    Hamels, Fanny; Malevé, Jasmina; Sonnet, Philippe; Kleja, Dan Berggren; Smolders, Erik

    2014-11-01

    Soil tests have been widely developed to predict trace metal uptake by plants. The prediction of metal toxicity, however, has rarely been tested. The present study was set up to compare 8 established soil tests for diagnosing phytotoxicity in contaminated soils. Nine soils contaminated with Zn or Cu by metal mining, smelting, or processing were collected. Uncontaminated reference soils with similar soil properties were sampled, and series of increasing contamination were created by mixing each with the corresponding soil. In addition, each reference soil was spiked with either ZnCl2 or CuCl2 at several concentrations. Total metal toxicity to barley seedling growth in the field-contaminated soils was up to 30 times lower than that in corresponding spiked soils. Total metal (aqua regia-soluble) toxicity thresholds of 50% effective concentrations (EC50) varied by factors up to 260 (Zn) or 6 (Cu) among soils. For Zn, variations in EC50 thresholds decreased as aqua regia > 0.43 M HNO3  > 0.05 M ethylenediamine tetraacetic acid (EDTA) > 1 M NH4 NO3  > cobaltihexamine > diffusive gradients in thin films (DGT) > 0.001 M CaCl2 , suggesting that the last extraction is the most robust phytotoxicity index for Zn. The EDTA extraction was the most robust for Cu-contaminated soils. The isotopically exchangeable fraction of the total soil metal in the field-contaminated soils markedly explained the lower toxicity compared with spiked soils. The isotope exchange method can be used to translate soil metal limits derived from soils spiked with metal salts to site-specific soil metal limits. © 2014 SETAC.

  15. Evaluation of pro-convulsant risk in the rat: spontaneous and provoked convulsions.

    PubMed

    Esneault, Elise; Peyon, Guillaume; Froger-Colléaux, Christelle; Castagné, Vincent

    2015-01-01

    The aim of the present study was to evaluate the utility of different tests performed in the absence or presence of factors promoting seizures in order to evaluate the pro-convulsant effects of drugs. We studied the effects of theophylline in the rat since this is a well-known pro-convulsant substance in humans. The occurrence of spontaneous convulsions following administration of theophylline was evaluated by observation in the Irwin Test and by measuring brain activity using video-EEG recording in conscious telemetered animals. Theophylline was also tested in the electroconvulsive shock (ECS) threshold and pentylenetetrazole (PTZ)-induced convulsions tests, two commonly used models of provoked convulsions. In the Irwin test, theophylline induced convulsions in 1 out of 6 rats at 128 mg/kg. Paroxysmal/seizure activity was also observed by video-EEG recording in 4 out of the 12 animals tested at 128 mg/kg, in presence of clonic convulsions in 3 out of the 4 rats. Paroxysmal activity was observed in two rats in the absence of clear behavioral symptoms, indicating that some precursor signs can be detected using video-EEG. Clear pro-convulsant activity was shown over the dose-range 32-128 mg/kg in the ECS threshold and PTZ-induced convulsions tests. Evaluation of spontaneous convulsions provides information on the therapeutic window of a drug and the translational value of the approach is increased by the use of video-EEG. Tests based on provoked convulsions further complement the evaluation since they try to mimic high risk situations. Measurement of both spontaneous and provoked convulsions improves the evaluation of the pro-convulsant risk of novel pharmacological substances. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Activation of muscarinic cholinergic receptors on human SH-SY5Y neuroblastoma cells enhances both the influx and efflux of K+ under conditions of hypo-osmolarity.

    PubMed

    Foster, Daniel J; Heacock, Anne M; Keep, Richard F; Fisher, Stephen K

    2008-05-01

    The ability of receptor activation to regulate osmosensitive K+ fluxes (monitored as 86Rb+) in SH-SY5Y neuroblastoma has been examined. Incubation of SH-SY5Y cells in buffers rendered increasingly hypotonic by a reduction in NaCl concentration resulted in an enhanced basal efflux of Rb+ (threshold of release, 200 mOsM) but had no effect on Rb(+) influx. Addition of the muscarinic cholinergic agonist, oxotremorine-M (Oxo-M), potently enhanced Rb+ efflux (EC50 = 0.45 microM) and increased the threshold of release to 280 mOsM. Oxo-M elicited a similarly potent, but osmolarity-independent, enhancement of Rb+ influx (EC50 = 1.35 microM). However, when incubated under hypotonic conditions in which osmolarity was varied by the addition of sucrose to a fixed concentration of NaCl, basal- and Oxo-M-stimulated Rb+ influx and efflux were demonstrated to be dependent upon osmolarity. Basal- and Oxo-M-stimulated Rb+ influx (but not Rb+ efflux) were inhibited by inclusion of ouabain or furosemide. Both Rb+ influx and efflux were inhibited by removal of intracellular Ca2+ and inhibition of protein kinase C activity. In addition to Oxo-M, agonists acting at other cell surface receptors previously implicated in organic osmolyte release enhanced both Rb+ efflux and influx under hypotonic conditions. Oxo-M had no effect on cellular K+ concentration in SH-SY5Y cells under physiologically relevant reductions in osmolarity (0-15%) unless K+ influx was blocked. Thus, although receptor activation enhances the osmosensitive efflux of K+, it also stimulates K+ influx, and the latter permits retention of K+ by the cells.

  17. Data Verification Tools for Minimizing Management Costs of Dense Air-Quality Monitoring Networks.

    PubMed

    Miskell, Georgia; Salmond, Jennifer; Alavi-Shoshtari, Maryam; Bart, Mark; Ainslie, Bruce; Grange, Stuart; McKendry, Ian G; Henshaw, Geoff S; Williams, David E

    2016-01-19

    Aiming at minimizing the costs, both of capital expenditure and maintenance, of an extensive air-quality measurement network, we present simple statistical methods that do not require extensive training data sets for automated real-time verification of the reliability of data delivered by a spatially dense hybrid network of both low-cost and reference ozone measurement instruments. Ozone is a pollutant that has a relatively smooth spatial spread over a large scale although there can be significant small-scale variations. We take advantage of these characteristics and demonstrate detection of instrument calibration drift within a few days using a rolling 72 h comparison of hourly averaged data from the test instrument with that from suitably defined proxies. We define the required characteristics of the proxy measurements by working from a definition of the network purpose and specification, in this case reliable determination of the proportion of hourly averaged ozone measurements that are above a threshold in any given day, and detection of calibration drift of greater than ±30% in slope or ±5 parts-per-billion in offset. By analyzing results of a study of an extensive deployment of low-cost instruments in the Lower Fraser Valley, we demonstrate that proxies can be established using land-use criteria and that simple statistical comparisons can identify low-cost instruments that are not stable and therefore need replacing. We propose that a minimal set of compliant reference instruments can be used to verify the reliability of data from a much more extensive network of low-cost devices.

  18. Consequences of human modification of the global nitrogen cycle.

    PubMed

    Erisman, Jan Willem; Galloway, James N; Seitzinger, Sybil; Bleeker, Albert; Dise, Nancy B; Petrescu, A M Roxana; Leach, Allison M; de Vries, Wim

    2013-07-05

    The demand for more food is increasing fertilizer and land use, and the demand for more energy is increasing fossil fuel combustion, leading to enhanced losses of reactive nitrogen (Nr) to the environment. Many thresholds for human and ecosystem health have been exceeded owing to Nr pollution, including those for drinking water (nitrates), air quality (smog, particulate matter, ground-level ozone), freshwater eutrophication, biodiversity loss, stratospheric ozone depletion, climate change and coastal ecosystems (dead zones). Each of these environmental effects can be magnified by the 'nitrogen cascade': a single atom of Nr can trigger a cascade of negative environmental impacts in sequence. Here, we provide an overview of the impact of Nr on the environment and human health, including an assessment of the magnitude of different environmental problems, and the relative importance of Nr as a contributor to each problem. In some cases, Nr loss to the environment is the key driver of effects (e.g. terrestrial and coastal eutrophication, nitrous oxide emissions), whereas in some other situations nitrogen represents a key contributor exacerbating a wider problem (e.g. freshwater pollution, biodiversity loss). In this way, the central role of nitrogen can remain hidden, even though it actually underpins many trans-boundary pollution problems.

  19. Regulating emission of air pollutants for near-term relief from global warming

    NASA Astrophysics Data System (ADS)

    Ramanathan, V.; Xu, Y.

    2011-12-01

    The manmade greenhouse gases that are now blanketing the planet is thick enough to warm the system beyond the 20C threshold. Even with a targeted reduction in CO2 emission of 50% by 2050, we will still be adding more than 50 ppm of CO2 and add another 10C to the warming. Fortunately, there are still ways to contain the warming by reducing non-CO2 climate warmers (methane, lower atmosphere ozone, black carbon and HFCs), using available and field tested technologies. The major advantage of going for these 'low-hanging fruits' is that this approach will clean up the air and improve health and food security of south and east Asia, thus engaging developing nations more effectively in climate negotiations. These non-CO2 mitigation actions will have significant (beneficial) impacts on the chemistry, clouds and precipitation of the atmosphere and these have to be quantified adequately. For example, reducing black and organic carbon emissions (through cleaner cooking technologies in developing countries) will also lead to significant reductions in carbon monoxide, which is an ozone precursor. The institutional infrastructure for reducing non-CO2 climate warmers already exist and have a proven track record for successful climate mitigation.

  20. Effect of UV/ozone treatment on polystyrene dielectric and its application on organic field-effect transistors

    PubMed Central

    2014-01-01

    The influence of UV/ozone treatment on the property of polystyrene (PS) dielectric surface was investigated, and pentacene organic field-effect transistors (OFETs) based on the treated dielectric was fabricated. The dielectric and pentacene active layers were characterized by atomic force microscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy. The results showed that, at short UVO exposure time (<10 s), the chemical composition of PS dielectric surface remained the same. While at long UVO exposure time (>60 s), new chemical groups, including alcohol/ether, carbonyl, and carboxyl/ester groups, were formed. By adjusting the UVO exposure time to 5 s, the hole mobility of the OFETs increased to 0.52 cm2/Vs, and the threshold voltage was positively shifted to -12 V. While the time of UVO treatment exceeded 30 s, the mobility started to shrink, and the off-current was enlarged. These results indicate that, as a simple surface treatment method, UVO treatment could quantitatively modulate the property of PS dielectric surface by controlling the exposure time, and thus, pioneered a new way to modulate the characteristics of organic electronic devices. PMID:25258603

  1. A Novel Data-Driven Approach to Preoperative Mapping of Functional Cortex Using Resting-State Functional Magnetic Resonance Imaging

    PubMed Central

    Mitchell, Timothy J.; Hacker, Carl D.; Breshears, Jonathan D.; Szrama, Nick P.; Sharma, Mohit; Bundy, David T.; Pahwa, Mrinal; Corbetta, Maurizio; Snyder, Abraham Z.; Shimony, Joshua S.

    2013-01-01

    BACKGROUND: Recent findings associated with resting-state cortical networks have provided insight into the brain's organizational structure. In addition to their neuroscientific implications, the networks identified by resting-state functional magnetic resonance imaging (rs-fMRI) may prove useful for clinical brain mapping. OBJECTIVE: To demonstrate that a data-driven approach to analyze resting-state networks (RSNs) is useful in identifying regions classically understood to be eloquent cortex as well as other functional networks. METHODS: This study included 6 patients undergoing surgical treatment for intractable epilepsy and 7 patients undergoing tumor resection. rs-fMRI data were obtained before surgery and 7 canonical RSNs were identified by an artificial neural network algorithm. Of these 7, the motor and language networks were then compared with electrocortical stimulation (ECS) as the gold standard in the epilepsy patients. The sensitivity and specificity for identifying these eloquent sites were calculated at varying thresholds, which yielded receiver-operating characteristic (ROC) curves and their associated area under the curve (AUC). RSNs were plotted in the tumor patients to observe RSN distortions in altered anatomy. RESULTS: The algorithm robustly identified all networks in all patients, including those with distorted anatomy. When all ECS-positive sites were considered for motor and language, rs-fMRI had AUCs of 0.80 and 0.64, respectively. When the ECS-positive sites were analyzed pairwise, rs-fMRI had AUCs of 0.89 and 0.76 for motor and language, respectively. CONCLUSION: A data-driven approach to rs-fMRI may be a new and efficient method for preoperative localization of numerous functional brain regions. ABBREVIATIONS: AUC, area under the curve BA, Brodmann area BOLD, blood oxygen level dependent ECS, electrocortical stimulation fMRI, functional magnetic resonance imaging ICA, independent component analysis MLP, multilayer perceptron MP-RAGE, magnetization-prepared rapid gradient echo ROC, receiver-operating characteristic rs-fMRI, resting-state functional magnetic resonance imaging RSN, resting-state network PMID:24264234

  2. Chronic toxicity of nickel-spiked freshwater sediments: variation in toxicity among eight invertebrate taxa and eight sediments

    USGS Publications Warehouse

    Besser, John M.; Brumbaugh, William G.; Ingersoll, Christopher G.; Ivey, Chris D.; Kunz, James L.; Kemble, Nile E.; Schlekat, Christian E.; Garman, Emily R.

    2013-01-01

    This study evaluated the chronic toxicity of Ni-spiked freshwater sediments to benthic invertebrates. A 2-step spiking procedure (spiking and sediment dilution) and a 2-stage equilibration period (10 wk anaerobic and 1 wk aerobic) were used to spike 8 freshwater sediments with wide ranges of acid-volatile sulfide (AVS; 0.94–38 µmol/g) and total organic carbon (TOC; 0.42–10%). Chronic sediment toxicity tests were conducted with 8 invertebrates (Hyalella azteca, Gammarus pseudolimnaeus, Chironomus riparius, Chironomus dilutus, Hexagenia sp., Lumbriculus variegatus, Tubifex tubifex, and Lampsilis siliquoidea) in 2 spiked sediments. Nickel toxicity thresholds estimated from species-sensitivity distributions were 97 µg/g and 752 µg/g (total recoverable Ni; dry wt basis) for sediments with low and high concentrations of AVS and TOC, respectively. Sensitive species were tested with 6 additional sediments. The 20% effect concentrations (EC20s) for Hyalella and Gammarus, but not Hexagenia, were consistent with US Environmental Protection Agency benchmarks based on Ni in porewater and in simultaneously extracted metals (SEM) normalized to AVS and TOC. For Hexagenia, sediment EC20s increased at less than an equimolar basis with increased AVS, and toxicity occurred in several sediments with Ni concentrations in SEM less than AVS. The authors hypothesize that circulation of oxygenated water by Hexagenia led to oxidation of AVS in burrows, creating microenvironments with high Ni exposure. Despite these unexpected results, a strong relationship between Hexagenia EC20s and AVS could provide a basis for conservative site-specific sediment quality guidelines for Ni.

  3. Modeling Sluggishness in Binaural Unmasking of Speech for Maskers With Time-Varying Interaural Phase Differences

    PubMed Central

    Brand, Thomas

    2018-01-01

    In studies investigating binaural processing in human listeners, relatively long and task-dependent time constants of a binaural window ranging from 10 ms to 250 ms have been observed. Such time constants are often thought to reflect “binaural sluggishness.” In this study, the effect of binaural sluggishness on binaural unmasking of speech in stationary speech-shaped noise is investigated in 10 listeners with normal hearing. In order to design a masking signal with temporally varying binaural cues, the interaural phase difference of the noise was modulated sinusoidally with frequencies ranging from 0.25 Hz to 64 Hz. The lowest, that is the best, speech reception thresholds (SRTs) were observed for the lowest modulation frequency. SRTs increased with increasing modulation frequency up to 4 Hz. For higher modulation frequencies, SRTs remained constant in the range of 1 dB to 1.5 dB below the SRT determined in the diotic situation. The outcome of the experiment was simulated using a short-term binaural speech intelligibility model, which combines an equalization–cancellation (EC) model with the speech intelligibility index. This model segments the incoming signal into 23.2-ms time frames in order to predict release from masking in modulated noises. In order to predict the results from this study, the model required a further time constant applied to the EC mechanism representing binaural sluggishness. The best agreement with perceptual data was achieved using a temporal window of 200 ms in the EC mechanism. PMID:29338577

  4. Results of Prospective Cohort Study on Symptomatic Cerebrovascular Occlusive Disease Showing Mild Hemodynamic Compromise [Japanese Extracranial-Intracranial Bypass Trial (JET)-2 Study

    PubMed Central

    KATAOKA, Hiroharu; MIYAMOTO, Susumu; OGASAWARA, Kuniaki; IIHARA, Koji; TAKAHASHI, Jun C.; NAKAGAWARA, Jyoji; INOUE, Tooru; MORI, Etsuro; OGAWA, Akira

    The purpose of this study is to determine the true threshold of cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) for subsequent ischemic stroke without extracranial-intracranial (EC-IC) bypass surgery in patients with hemodynamic ischemia due to symptomatic major cerebral arterial occlusive diseases. Patients were categorized based on rest CBF and CVR into four subgroups as follows: Group A, 80% < CBF < 90% and CVR < 10%; Group B, CBF < 80% and 10% < CVR < 20%; Group C, 80% < CBF < 90% and 10% < CVR < 20%; and Group D, CBF < 90% and 20% < CVR < 30%. Patients were followed up for 2 years under best medical treatment by the stroke neurologists. Primary and secondary end points were defined as all adverse events and ipsilateral stroke recurrence respectively. A total of 132 patients were enrolled. All adverse events were observed in 9 patients (3.5%/year) and ipsilateral stroke recurrence was observed only in 2 patients (0.8%/year). There was no significant difference among the four subgroups in terms of the rate of both primary and secondary end points. Compared with the medical arm of the Japanese EC-IC bypass trial (JET) study including patients with CBF < 80% and CVR < 10% as a historical control, the incidence of ipsilateral stroke recurrence was significantly lower in the present study. Patients with symptomatic major cerebral arterial occlusive diseases and mild hemodynamic compromise have a good prognosis under medical treatment. EC-IC bypass surgery is unlikely to benefit patients with CBF > 80% or CVR > 10%. PMID:26041628

  5. Modeling Sluggishness in Binaural Unmasking of Speech for Maskers With Time-Varying Interaural Phase Differences.

    PubMed

    Hauth, Christopher F; Brand, Thomas

    2018-01-01

    In studies investigating binaural processing in human listeners, relatively long and task-dependent time constants of a binaural window ranging from 10 ms to 250 ms have been observed. Such time constants are often thought to reflect "binaural sluggishness." In this study, the effect of binaural sluggishness on binaural unmasking of speech in stationary speech-shaped noise is investigated in 10 listeners with normal hearing. In order to design a masking signal with temporally varying binaural cues, the interaural phase difference of the noise was modulated sinusoidally with frequencies ranging from 0.25 Hz to 64 Hz. The lowest, that is the best, speech reception thresholds (SRTs) were observed for the lowest modulation frequency. SRTs increased with increasing modulation frequency up to 4 Hz. For higher modulation frequencies, SRTs remained constant in the range of 1 dB to 1.5 dB below the SRT determined in the diotic situation. The outcome of the experiment was simulated using a short-term binaural speech intelligibility model, which combines an equalization-cancellation (EC) model with the speech intelligibility index. This model segments the incoming signal into 23.2-ms time frames in order to predict release from masking in modulated noises. In order to predict the results from this study, the model required a further time constant applied to the EC mechanism representing binaural sluggishness. The best agreement with perceptual data was achieved using a temporal window of 200 ms in the EC mechanism.

  6. Chronic toxicity of nickel-spiked freshwater sediments: variation in toxicity among eight invertebrate taxa and eight sediments.

    PubMed

    Besser, John M; Brumbaugh, William G; Ingersoll, Christopher G; Ivey, Chris D; Kunz, James L; Kemble, Nile E; Schlekat, Christian E; Garman, Emily Rogevich

    2013-11-01

    This study evaluated the chronic toxicity of Ni-spiked freshwater sediments to benthic invertebrates. A 2-step spiking procedure (spiking and sediment dilution) and a 2-stage equilibration period (10 wk anaerobic and 1 wk aerobic) were used to spike 8 freshwater sediments with wide ranges of acid-volatile sulfide (AVS; 0.94-38 µmol/g) and total organic carbon (TOC; 0.42-10%). Chronic sediment toxicity tests were conducted with 8 invertebrates (Hyalella azteca, Gammarus pseudolimnaeus, Chironomus riparius, Chironomus dilutus, Hexagenia sp., Lumbriculus variegatus, Tubifex tubifex, and Lampsilis siliquoidea) in 2 spiked sediments. Nickel toxicity thresholds estimated from species-sensitivity distributions were 97 µg/g and 752 µg/g (total recoverable Ni; dry wt basis) for sediments with low and high concentrations of AVS and TOC, respectively. Sensitive species were tested with 6 additional sediments. The 20% effect concentrations (EC20s) for Hyalella and Gammarus, but not Hexagenia, were consistent with US Environmental Protection Agency benchmarks based on Ni in porewater and in simultaneously extracted metals (SEM) normalized to AVS and TOC. For Hexagenia, sediment EC20s increased at less than an equimolar basis with increased AVS, and toxicity occurred in several sediments with Ni concentrations in SEM less than AVS. The authors hypothesize that circulation of oxygenated water by Hexagenia led to oxidation of AVS in burrows, creating microenvironments with high Ni exposure. Despite these unexpected results, a strong relationship between Hexagenia EC20s and AVS could provide a basis for conservative site-specific sediment quality guidelines for Ni. © 2013 SETAC.

  7. Mechanical stimuli differentially control stem cell behavior: morphology, proliferation, and differentiation

    PubMed Central

    Maul, Timothy M.; Chew, Douglas W.; Nieponice, Alejandro

    2011-01-01

    Mesenchymal stem cell (MSC) therapy has demonstrated applications in vascular regenerative medicine. Although blood vessels exist in a mechanically dynamic environment, there has been no rigorous, systematic analysis of mechanical stimulation on stem cell differentiation. We hypothesize that mechanical stimuli, relevant to the vasculature, can differentiate MSCs toward smooth muscle (SMCs) and endothelial cells (ECs). This was tested using a unique experimental platform to differentially apply various mechanical stimuli in parallel. Three forces, cyclic stretch, cyclic pressure, and laminar shear stress, were applied independently to mimic several vascular physiologic conditions. Experiments were conducted using subconfluent MSCs for 5 days and demonstrated significant effects on morphology and proliferation depending upon the type, magnitude, frequency, and duration of applied stimulation. We have defined thresholds of cyclic stretch that potentiate SMC protein expression, but did not find EC protein expression under any condition tested. However, a second set of experiments performed at confluence and aimed to elicit the temporal gene expression response of a select magnitude of each stimulus revealed that EC gene expression can be increased with cyclic pressure and shear stress in a cell-contact-dependent manner. Further, these MSCs also appear to express genes from multiple lineages simultaneously which may warrant further investigation into post-transcriptional mechanisms for controlling protein expression. To our knowledge, this is the first systematic examination of the effects of mechanical stimulation on MSCs and has implications for the understanding of stem cell biology, as well as potential bioreactor designs for tissue engineering and cell therapy applications. PMID:21253809

  8. Reanalysis of and attribution to near-surface ozone concentrations in Sweden during 1990-2013

    NASA Astrophysics Data System (ADS)

    Andersson, Camilla; Alpfjord, Heléne; Robertson, Lennart; Karlsson, Per Erik; Engardt, Magnuz

    2017-11-01

    We have constructed two data sets of hourly resolution reanalyzed near-surface ozone (O3) concentrations for the period 1990-2013 for Sweden. Long-term simulations from a chemistry-transport model (CTM) covering Europe were combined with hourly ozone concentration observations at Swedish and Norwegian background measurement sites using retrospective variational data analysis. The reanalysis data sets show improved performance over the original CTM when compared to independent observations. In one of the reanalyses, we included all available hourly near-surface O3 observations, whilst in the other we carefully selected time-consistent observations. Based on the second reanalysis we investigated statistical aspects of the distribution of the near-surface O3 concentrations, focusing on the linear trend over the 24-year period. We show that high near-surface O3 concentrations are decreasing and low O3 concentrations are increasing, which is reflected in observed improvement of many health and vegetation indices (apart from those with a low threshold). Using the CTM we also conducted sensitivity simulations to quantify the causes of the observed change, focusing on three factors: change in hemispheric background concentrations, meteorology and anthropogenic emissions. The rising low concentrations of near-surface O3 in Sweden are caused by a combination of all three factors, whilst the decrease in the highest O3 concentrations is caused by European O3 precursor emissions reductions. While studying the impact of anthropogenic emissions changes, we identified systematic differences in the modeled trend compared to observations that must be caused by incorrect trends in the utilized emissions inventory or by too high sensitivity of our model to emissions changes.

  9. Assessment of indoor air quality in office buildings across Europe - The OFFICAIR study.

    PubMed

    Mandin, Corinne; Trantallidi, Marilena; Cattaneo, Andrea; Canha, Nuno; Mihucz, Victor G; Szigeti, Tamás; Mabilia, Rosanna; Perreca, Erica; Spinazzè, Andrea; Fossati, Serena; De Kluizenaar, Yvonne; Cornelissen, Eric; Sakellaris, Ioannis; Saraga, Dikaia; Hänninen, Otto; De Oliveira Fernandes, Eduardo; Ventura, Gabriela; Wolkoff, Peder; Carrer, Paolo; Bartzis, John

    2017-02-01

    The European project OFFICAIR aimed to broaden the existing knowledge regarding indoor air quality (IAQ) in modern office buildings, i.e., recently built or refurbished buildings. Thirty-seven office buildings participated in the summer campaign (2012), and thirty-five participated in the winter campaign (2012-2013). Four rooms were investigated per building. The target pollutants were twelve volatile organic compounds, seven aldehydes, ozone, nitrogen dioxide and particulate matter with aerodynamic diameter <2.5μm (PM 2.5 ). Compared to other studies in office buildings, the benzene, toluene, ethylbenzene, and xylene concentrations were lower in OFFICAIR buildings, while the α-pinene and d-limonene concentrations were higher, and the aldehyde, nitrogen dioxide and PM 2.5 concentrations were of the same order of magnitude. When comparing summer and winter, significantly higher concentrations were measured in summer for formaldehyde and ozone, and in winter for benzene, α-pinene, d-limonene, and nitrogen dioxide. The terpene and 2-ethylhexanol concentrations showed heterogeneity within buildings regardless of the season. Considering the average of the summer and winter concentrations, the acetaldehyde and hexanal concentrations tended to increase by 4-5% on average with every floor level increase, and the nitrogen dioxide concentration tended to decrease by 3% on average with every floor level increase. A preliminary evaluation of IAQ in terms of potential irritative and respiratory health effects was performed. The 5-day median and maximum indoor air concentrations of formaldehyde and ozone did not exceed their respective WHO air quality guidelines, and those of acrolein, α-pinene, and d-limonene were lower than their estimated thresholds for irritative and respiratory effects. PM 2.5 indoor concentrations were higher than the 24-h and annual WHO ambient air quality guidelines. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Water stress mitigates the negative effects of ozone on photosynthesis and biomass in poplar plants.

    PubMed

    Gao, Feng; Catalayud, Vicent; Paoletti, Elena; Hoshika, Yasutomo; Feng, Zhaozhong

    2017-11-01

    Tropospheric ozone (O 3 ) pollution frequently overlaps with drought episodes but the combined effects are not yet understood. We investigated the physiological and biomass responses of an O 3 sensitive hybrid poplar clone ('546') under three O 3 levels (charcoal-filtered ambient air, non-filtered ambient air (NF), and NF plus 40 ppb) and two watering regimes (well-watered (WW) and reduced watering (RW), i.e. 40% irrigation) for one growing season. Water stress increased chlorophyll and carotenoid contents, protecting leaves from pigment degradation by O 3 . Impairment of photosynthesis by O 3 was also reduced by stomatal closure due to water stress, which preserved light-saturated CO 2 assimilation rate, and the maximum carboxylation efficiency. Water stress increased water use efficiency of the leaves while O 3 decreased it, showing significant interactions. Effects were more evident in older leaves than in younger leaves. Water stress reduced biomass production, but the negative effects of O 3 were less in RW than in WW for total biomass per plant. A stomatal O 3 flux-based dose-response relationship was parameterized considering water stress effects, which explained biomass losses much better than a concentration-based approach. The O 3 critical level of Phytotoxic Ozone Dose over a threshold of 7 nmol O 3 .m -2 .s -1 (POD 7 ) for a 4% biomass loss in this poplar clone under different water regimes was 4.1 mmol m -2 . Our results suggest that current O 3 levels in most parts of China threaten poplar growth and that interaction with water availability is a key factor for O 3 risk assessment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Impact of downward-mixing ozone on surface ozone accumulation in southern Taiwan.

    PubMed

    Lin, Ching-Ho

    2008-04-01

    The ozone that initially presents in the previous day's afternoon mixing layer can remain in the nighttime atmosphere and then be carried over to the next morning. Finally, this ozone can be brought to the ground by downward mixing as mixing depth increases during the daytime, thereby increasing surface ozone concentrations. Variation of ozone concentration during each of these periods is investigated in this work. First, ozone concentrations existing in the daily early morning atmosphere at the altitude range of the daily maximum mixing depth (residual ozone concentrations) were measured using tethered ozonesondes on 52 experimental days during 2004-2005 in southern Taiwan. Daily downward-mixing ozone concentrations were calculated by a box model coupling the measured daily residual ozone concentrations and daily mixing depth variations. The ozone concentrations upwind in the previous day's afternoon mixing layer were estimated by the combination of back air trajectory analysis and known previous day's surface ozone distributions. Additionally, the relationship between daily downward-mixing ozone concentration and daily photochemically produced ozone concentration was examined. The latter was calculated by removing the former from daily surface maximum ozone concentration. The measured daily residual ozone concentrations distributed at 12-74 parts per billion (ppb) with an average of 42 +/- 17 ppb are well correlated with the previous upwind ozone concentration (R2 = 0.54-0.65). Approximately 60% of the previous upwind ozone was estimated to be carried over to the next morning and became the observed residual ozone. The daily downward-mixing ozone contributes 48 +/- 18% of the daily surface maximum ozone concentration, indicating that the downward-mixing ozone is as important as daily photochemically produced ozone to daily surface maximum ozone accumulation. The daily downward-mixing ozone is poorly correlated with the daily photochemically produced ozone and contributes significantly to the daily variation of surface maximum ozone concentrations (R2 = 0.19). However, the contribution of downward-mixing ozone to daily ozone variation is not included in most existing statistical models developed for predicting daily ozone variation. Finally, daily surface maximum ozone concentration is positively correlated with daily afternoon mixing depth, attributable to the downward-mixing ozone.

  12. Antioxidant responses of damiana (Turnera diffusa Willd) to exposure to artificial ultraviolet (UV) radiation in an in vitro model; part I; UV-C radiation.

    PubMed

    Soriano-Melgar, Lluvia de Abril Alexandra; Alcaraz-Meléndez, Lilia; Méndez-Rodríguez, Lía C; Puente, María Esther; Rivera-Cabrera, Fernando; Zenteno-Savín, Tania

    2014-05-01

    Ultraviolet type C (UV-C) radiation has higher energy than the UV-B radiation and has been less studied because it is completely absorbed by the ozone layer. However, artificial UV-C radiation can generate diverse modifications in the plants. Given that exposure to UV-C for short periods of time increases the antioxidant content, improving the appearance and shelf-life of products, its potential application in postharvest treatments to modify the antioxidant content of medicinal plants, such as damiana (Turnera diffusa), is novel and relevant. To determine the effects of UV-C radiation on enzymatic and non-enzymatic antioxidant defenses, as well as oxidative damage levels, in damiana (Turnera diffusa) plants in vitro. UV-C radiation decreased superoxide dismutase (SOD, EC 1.15.1.1) and total peroxidases (POX, EC 1.11.1) activities, the concentration of chlorophylls (a and b), carotenes, vitamin C, and total antioxidant capacity. UV-C radiation increased the phenolic compound levels in damiana. Loss of antioxidant defenses was higher in damiana plants exposed to higher UV-C doses and/or for longer periods. This study suggests that UV-C radiation induces oxidative stress, evidenced as increased protein carbonyls and phenolic compound content, in damiana (T. diffusa). Low dose, short exposure to UV-C stimulates phenolic compound content in damiana. Thus, controlled UV-C treatments could be used as postharvest treatment to increase phenolic compound content in damiana plants. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  13. Unequivocal detection of ozone recovery in the Antarctic Ozone Hole through significant increases in atmospheric layers with minimum ozone

    NASA Astrophysics Data System (ADS)

    de Laat, Jos; van Weele, Michiel; van der A, Ronald

    2015-04-01

    An important new landmark in present day ozone research is presented through MLS satellite observations of significant ozone increases during the ozone hole season that are attributed unequivocally to declining ozone depleting substances. For many decades the Antarctic ozone hole has been the prime example of both the detrimental effects of human activities on our environment as well as how to construct effective and successful environmental policies. Nowadays atmospheric concentrations of ozone depleting substances are on the decline and first signs of recovery of stratospheric ozone and ozone in the Antarctic ozone hole have been observed. The claimed detection of significant recovery, however, is still subject of debate. In this talk we will discuss first current uncertainties in the assessment of ozone recovery in the Antarctic ozone hole by using multi-variate regression methods, and, secondly present an alternative approach to identify ozone hole recovery unequivocally. Even though multi-variate regression methods help to reduce uncertainties in estimates of ozone recovery, great care has to be taken in their application due to the existence of uncertainties and degrees of freedom in the choice of independent variables. We show that taking all uncertainties into account in the regressions the formal recovery of ozone in the Antarctic ozone hole cannot be established yet, though is likely before the end of the decade (before 2020). Rather than focusing on time and area averages of total ozone columns or ozone profiles, we argue that the time evolution of the probability distribution of vertically resolved ozone in the Antarctic ozone hole contains a better fingerprint for the detection of ozone recovery in the Antarctic ozone hole. The advantages of this method over more tradition methods of trend analyses based on spatio-temporal average ozone are discussed. The 10-year record of MLS satellite measurements of ozone in the Antarctic ozone hole shows a significant change in the distribution of ozone. The occurrence of extremely low ozone (near 100% ozone depletion) has been declining significantly in favor of the occurrence of low ozone (80-90% ozone depletion). Finally the potential for continuation of this attribution method in the light of the currently available and future planned satellite remote sensing capacity will be shortly addressed.

  14. Effects of stratospheric ozone recovery on photochemistry and ozone air quality in the troposphere

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Wu, S.; Huang, Y.; Wang, Y.

    2014-04-01

    There has been significant stratospheric ozone depletion since the late 1970s due to ozone-depleting substances (ODSs). With the implementation of the Montreal Protocol and its amendments and adjustments, stratospheric ozone is expected to recover towards its pre-1980 level in the coming decades. In this study, we examine the implications of stratospheric ozone recovery for the tropospheric chemistry and ozone air quality with a global chemical transport model (GEOS-Chem). With a full recovery of the stratospheric ozone, the projected increases in ozone column range from 1% over the low latitudes to more than 10% over the polar regions. The sensitivity factor of troposphere ozone photolysis rate, defined as the percentage changes in surface ozone photolysis rate for 1% increase in stratospheric ozone column, shows significant seasonal variation but is always negative with absolute value larger than one. The expected stratospheric ozone recovery is found to affect the tropospheric ozone destruction rates much more than the ozone production rates. Significant decreases in surface ozone photolysis rates due to stratospheric ozone recovery are simulated. The global average tropospheric OH decreases by 1.7%, and the global average lifetime of tropospheric ozone increases by 1.5%. The perturbations to tropospheric ozone and surface ozone show large seasonal and spatial variations. General increases in surface ozone are calculated for each season, with increases by up to 0.8 ppbv in the remote areas. Increases in ozone lifetime by up to 13% are found in the troposphere. The increased lifetimes of tropospheric ozone in response to stratospheric ozone recovery enhance the intercontinental transport of ozone and global pollution, in particular for the summertime. The global background ozone attributable to Asian emissions is calculated to increase by up to 15% or 0.3 ppbv in the Northern Hemisphere in response to the projected stratospheric ozone recovery.

  15. SHARD - a SeisComP3 module for Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Weber, B.; Becker, J.; Ellguth, E.; Henneberger, R.; Herrnkind, S.; Roessler, D.

    2016-12-01

    Monitoring building and structure response to strong earthquake ground shaking or human-induced vibrations in real-time forms the backbone of modern structural health monitoring (SHM). The continuous data transmission, processing and analysis reduces drastically the time decision makers need to plan for appropriate response to possible damages of high-priority buildings and structures. SHARD is a web browser based module using the SeisComp3 framework to monitor the structural health of buildings and other structures by calculating standard engineering seismology parameters and checking their exceedance in real-time. Thresholds can be defined, e.g. compliant with national building codes (IBC2000, DIN4149 or EC8), for PGA/PGV/PGD, response spectra and drift ratios. In case thresholds are exceeded automatic or operator driven reports are generated and send to the decision makers. SHARD also determines waveform quality in terms of data delay and variance to report sensor status. SHARD is the perfect tool for civil protection to monitor simultaneously multiple city-wide critical infrastructure as hospitals, schools, governmental buildings and structures as bridges, dams and power substations.

  16. Effect of high concentrations of inorganic seed aerosols on secondary organic aerosol formation in the m-xylene/NO x photooxidation system

    NASA Astrophysics Data System (ADS)

    Lu, Zifeng; Hao, Jiming; Takekawa, Hideto; Hu, Lanhua; Li, Junhua

    High concentrations (>15 μm 3 cm -3) of CaSO 4, Ca(NO 3) 2 and (NH 4) 2SO 4 were selected as surrogates of dry neutral, aqueous neutral and dry acidic inorganic seed aerosols, respectively, to study the effects of inorganic seeds on secondary organic aerosol (SOA) formation in irradiated m-xylene/NO x photooxidation systems. The results indicate that neither ozone formation nor SOA formation is significantly affected by the presence of neutral aerosols (both dry CaSO 4 and aqueous Ca(NO 3) 2), even at elevated concentrations. The presence of high concentrations of (NH 4) 2SO 4 aerosols (dry acidic) has no obvious effect on ozone formation, but it does enhance SOA generation and increase SOA yields. In addition, the effect of dry (NH 4) 2SO 4 on SOA yield is found to be positively correlated with the (NH 4) 2SO 4 surface concentration, and the effect is pronounced only when the surface concentration reaches a threshold value. Further, it is proposed that the SOA generation enhancement is achieved by particle-phase heterogeneous reactions induced and catalyzed by the acidity of dry (NH 4) 2SO 4 seed aerosols.

  17. Consequences of human modification of the global nitrogen cycle

    PubMed Central

    Erisman, Jan Willem; Galloway, James N.; Seitzinger, Sybil; Bleeker, Albert; Dise, Nancy B.; Petrescu, A. M. Roxana; Leach, Allison M.; de Vries, Wim

    2013-01-01

    The demand for more food is increasing fertilizer and land use, and the demand for more energy is increasing fossil fuel combustion, leading to enhanced losses of reactive nitrogen (Nr) to the environment. Many thresholds for human and ecosystem health have been exceeded owing to Nr pollution, including those for drinking water (nitrates), air quality (smog, particulate matter, ground-level ozone), freshwater eutrophication, biodiversity loss, stratospheric ozone depletion, climate change and coastal ecosystems (dead zones). Each of these environmental effects can be magnified by the ‘nitrogen cascade’: a single atom of Nr can trigger a cascade of negative environmental impacts in sequence. Here, we provide an overview of the impact of Nr on the environment and human health, including an assessment of the magnitude of different environmental problems, and the relative importance of Nr as a contributor to each problem. In some cases, Nr loss to the environment is the key driver of effects (e.g. terrestrial and coastal eutrophication, nitrous oxide emissions), whereas in some other situations nitrogen represents a key contributor exacerbating a wider problem (e.g. freshwater pollution, biodiversity loss). In this way, the central role of nitrogen can remain hidden, even though it actually underpins many trans-boundary pollution problems. PMID:23713116

  18. Dielectric properties of carbon nanotubes/epoxy composites.

    PubMed

    Peng, Jin-Ping; Zhang, Hui; Tang, Long-Cheng; Jia, Yu; Zhang, Zhong

    2013-02-01

    Material with high dielectric properties possesses the effect of energy storage and electric field homogenization, which plays an important role in the electrical and electronics domain, especially in the capacitor, electrical machinery and cable realm. In this paper, epoxy-based nanocomposites with high dielectric constant were fabricated by adding pristine and ozone functionalized multi-wall carbon nanotubes (MWCNTs). In the process-related aspect, the favorable technological parameter was obtained via reasonable arrangement and consideration of the dispersing methods including high-speed stirring and three-roller mill. As a result, a uniform dispersion status of MWCNTs in matrix has been guaranteed, which was observed by scanning and transmission electron microscopy. Meanwhile, the influence of different MWCNTs contents and diverse frequencies on the dielectric properties was compared. It was found that the dielectric constant of nano-composites decreased gradually with the increasing of frequency (10(3)-10(6) Hz). Moreover, as the content of MWCNTs increasing, the dielectric constant reached to a maximum of about 1,328 at 10(3) Hz when the pristine MWCNTs content was 0.5 wt.%. Accordingly, the DC conductivity results could interpret the peak value phenomenon by percolation threshold of MWCNTs. In addition, at the fixed content, the dielectric constant of epoxy-based nano-composites with ozone functionalized MWCNTs was lower than that of pristine ones.

  19. Electrical properties of GaN-based metal-insulator-semiconductor structures with Al2O3 deposited by atomic layer deposition using water and ozone as the oxygen precursors

    NASA Astrophysics Data System (ADS)

    Kubo, Toshiharu; Freedsman, Joseph J.; Iwata, Yasuhiro; Egawa, Takashi

    2014-04-01

    Al2O3 deposited by atomic layer deposition (ALD) was used as an insulator in metal-insulator-semiconductor (MIS) structures for GaN-based MIS-devices. As the oxygen precursors for the ALD process, water (H2O), ozone (O3), and both H2O and O3 were used. The chemical characteristics of the ALD-Al2O3 surfaces were investigated by x-ray photoelectron spectroscopy. After fabrication of MIS-diodes and MIS-high-electron-mobility transistors (MIS-HEMTs) with the ALD-Al2O3, their electrical properties were evaluated by current-voltage (I-V) and capacitance-voltage (C-V) measurements. The threshold voltage of the C-V curves for MIS-diodes indicated that the fixed charge in the Al2O3 layer is decreased when using both H2O and O3 as the oxygen precursors. Furthermore, MIS-HEMTs with the H2O + O3-based Al2O3 showed good dc I-V characteristics without post-deposition annealing of the ALD-Al2O3, and the drain leakage current in the off-state region was suppressed by seven orders of magnitude.

  20. Developmental and Persistent Toxicities of Maternally Deposited Selenomethionine in Zebrafish (Danio rerio).

    PubMed

    Thomas, Jith K; Janz, David M

    2015-08-18

    The objectives of this study were (1) to establish egg selenium (Se) toxicity thresholds for mortality and deformities in early life stages of zebrafish (Danio rerio) after exposure to excess selenomethionine (SeMet, the dominant chemical species of Se in diets) via in ovo maternal transfer and (2) to investigate the persistent effects of developmental exposure to excess SeMet on swim performance and metabolic capacities in F1-generation adult zebrafish. Adult zebrafish were fed either control food (1.3 μg Se/g, dry mass or d.m.) or food spiked with increasing measured concentrations of Se (3.4, 9.8, or 27.5 μg Se/g, d.m.) in the form of SeMet for 90 d. In ovo exposure to SeMet increased mortality and deformities in larval zebrafish in a concentration-dependent fashion with threshold egg Se concentrations (EC10s) of 7.5 and 7.0 μg Se/g d.m., respectively. Impaired swim performance and greater respiration and metabolic rates were observed in F1-generation zebrafish exposed in ovo to 6.8 and 12.7 μg Se/g d.m and raised to adulthood in clean water. A species sensitivity distribution (SSD) based on egg Se developmental toxicity thresholds suggests that zebrafish are the most sensitive fish species studied to date.

  1. The Hole in the Ozone Layer.

    ERIC Educational Resources Information Center

    Hamers, Jeanne S.; Jacob, Anthony T.

    This document contains information on the hole in the ozone layer. Topics discussed include properties of ozone, ozone in the atmosphere, chlorofluorocarbons, stratospheric ozone depletion, effects of ozone depletion on life, regulation of substances that deplete the ozone layer, alternatives to CFCs and Halons, and the future of the ozone layer.…

  2. A Total Ozone Dependent Ozone Profile Climatology Based on Ozone-Sondes and Aura MLS Data

    NASA Astrophysics Data System (ADS)

    Labow, G. J.; McPeters, R. D.; Ziemke, J. R.

    2014-12-01

    A new total ozone-based ozone profile climatology has been created for use in satellite and/or ground based ozone retrievals. This climatology was formed by combining data from the Microwave Limb Sounder (MLS) with data from balloon sondes and binned by zone and total ozone. Because profile shape varies with total column ozone, this climatology better captures the ozone variations than the previously used seasonal climatologies, especially near the tropopause. This is significantly different than ozone climatologies used in the past as there is no time component. The MLS instrument on Aura has excellent latitude coverage and measures ozone profiles daily from the upper troposphere to the lower mesosphere at ~3.5 km resolution. Almost a million individual MLS ozone measurements are merged with data from over 55,000 ozonesondes which are then binned as a function of total ozone. The climatology consists of average ozone profiles as a function of total ozone for six 30 degree latitude bands covering altitudes from 0-75 km (in Z* pressure altitude coordinates). This new climatology better represents the profile shape as a function of total ozone than previous climatologies and shows some remarkable and somewhat unexpected correlations between total ozone and ozone in the lower altitudes, particularly in the lower and middle troposphere. These data can also be used to infer biases and errors in either the MLS retrievals or ozone sondes.

  3. RNA-Seq study reveals genetic responses of diverse wild soybean accessions to increased ozone levels.

    PubMed

    Waldeck, Nathan; Burkey, Kent; Carter, Thomas; Dickey, David; Song, Qijian; Taliercio, Earl

    2017-06-29

    Ozone is an air pollutant widely known to cause a decrease in productivity in many plant species, including soybean (Glycine max (L.) Merr). While the response of cultivated soybean to ozone has been studied, very little information is available regarding the ozone response of its wild relatives. Ozone-resistant wild soybean accessions were identified by measuring the response of a genetically diverse group of 66 wild soybean (Glycine soja Zucc. and Sieb.) accessions to elevated ozone levels. RNA-Seq analyses were performed on leaves of different ages from selected ozone-sensitive and ozone-resistant accessions that were subjected to treatment with an environmentally relevant level of ozone. Many more genes responded to elevated ozone in the two ozone-sensitive accessions than in the ozone-resistant accessions. Analyses of the ozone response genes indicated that leaves of different ages responded differently to ozone. Older leaves displayed a consistent reduction in expression of genes involved in photosynthesis in response to ozone, while changes in expression of defense genes dominated younger leaf tissue in response to ozone. As expected, there is a substantial difference between the response of ozone-sensitive and ozone-resistant accessions. Genes associated with photosystem 2 were substantially reduced in expression in response to ozone in the ozone-resistant accessions. A decrease in peptidase inhibitors was one of several responses specific to one of the ozone resistant accessions. The decrease in expression in genes associated with photosynthesis confirms that the photosynthetic apparatus may be an early casualty in response to moderate levels of ozone. A compromise of photosynthesis would substantially impact plant growth and seed production. However, the resistant accessions may preserve their photosynthetic apparatus in response to the ozone levels used in this study. Older leaf tissue of the ozone-resistant accessions showed a unique down-regulation of genes associated with endopeptidase inhibitor activity. This study demonstrates the existence of significant diversity in wild soybean for ozone response. Wild soybean accessions characterized in this study can be used by soybean breeders to enhance ozone tolerance of this important food crop.

  4. 16 CFR 260.11 - Ozone-safe and ozone-friendly claims.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Ozone-safe and ozone-friendly claims. 260.11... THE USE OF ENVIRONMENTAL MARKETING CLAIMS § 260.11 Ozone-safe and ozone-friendly claims. It is... friendly to, the ozone layer or the atmosphere. Example 1: A product is labeled “ozone-friendly.” The claim...

  5. 16 CFR 260.11 - Ozone-safe and ozone-friendly claims.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Ozone-safe and ozone-friendly claims. 260.11... THE USE OF ENVIRONMENTAL MARKETING CLAIMS § 260.11 Ozone-safe and ozone-friendly claims. It is... friendly to, the ozone layer or the atmosphere. Example 1: A product is labeled “ozone-friendly.” The claim...

  6. Tropospheric and stratospheric ozone from assimilation of Aura data

    NASA Technical Reports Server (NTRS)

    Stajner, I.; Wargan, K.; Chang, L.-P.; Hayashi, H.; Pawwson, S.; Froidevaux, L.; Livesey, N.; Bhartia, P. K.

    2006-01-01

    Ozone is an atmospheric trace gas with multiple impacts on the environment. Global ozone fields are needed for air quality predictions, estimation of the ultraviolet radiation reaching the surface, climate-radiation studies, and may also have an impact on longer-term weather predictions. We estimate global ozone fields in the stratosphere and troposphere by combining the data from EOS Aura satellite with an ozone model using data assimilation. Ozone exhibits a large temporal variability in the lower stratosphere. Our previous work showed that assimilation of satellite data from limb-sounding geometry helps constrain ozone profiles in that region. We assimilated ozone data from the Aura Microwave Limb Sounder (MLS) and the Ozone Monitoring Instrument (OMI) into the ozone system at NASA's Global Modeling and Assimilation Office (GMAO). Ozone is transported within a general circulation model (GCM) which includes parameterizations for stratospheric photochemistry, tropospheric chemistry, and a simple scheme for heterogeneous ozone loss. The focus of this study is on the representation of ozone in the lower stratosphere and tropospheric ozone columns. We plan to extend studies of tropospheric ozone distribution through assimilation of ozone data from the Tropospheric Emission Spectrometer (TES). Comparisons with ozone sondes and occultation data show that assimilation of Aura data reproduces ozone gradients and variability in the lower stratosphere well. We proceed by separating the contributions to temporal changes in the ozone field into those that are due to the model and those that are due to the assimilation of Aura data. The impacts of Aura data are illustrated and their role in the representation of ozone variability in the lower stratosphere and troposphere is shown.

  7. Leveraging cell type specific regulatory regions to detect SNPs associated with tissue factor pathway inhibitor plasma levels.

    PubMed

    Dennis, Jessica; Medina-Rivera, Alejandra; Truong, Vinh; Antounians, Lina; Zwingerman, Nora; Carrasco, Giovana; Strug, Lisa; Wells, Phil; Trégouët, David-Alexandre; Morange, Pierre-Emmanuel; Wilson, Michael D; Gagnon, France

    2017-07-01

    Tissue factor pathway inhibitor (TFPI) regulates the formation of intravascular blood clots, which manifest clinically as ischemic heart disease, ischemic stroke, and venous thromboembolism (VTE). TFPI plasma levels are heritable, but the genetics underlying TFPI plasma level variability are poorly understood. Herein we report the first genome-wide association scan (GWAS) of TFPI plasma levels, conducted in 251 individuals from five extended French-Canadian Families ascertained on VTE. To improve discovery, we also applied a hypothesis-driven (HD) GWAS approach that prioritized single nucleotide polymorphisms (SNPs) in (1) hemostasis pathway genes, and (2) vascular endothelial cell (EC) regulatory regions, which are among the highest expressers of TFPI. Our GWAS identified 131 SNPs with suggestive evidence of association (P-value < 5 × 10 -8 ), but no SNPs reached the genome-wide threshold for statistical significance. Hemostasis pathway genes were not enriched for TFPI plasma level associated SNPs (global hypothesis test P-value = 0.147), but EC regulatory regions contained more TFPI plasma level associated SNPs than expected by chance (global hypothesis test P-value = 0.046). We therefore stratified our genome-wide SNPs, prioritizing those in EC regulatory regions via stratified false discovery rate (sFDR) control, and reranked the SNPs by q-value. The minimum q-value was 0.27, and the top-ranked SNPs did not show association evidence in the MARTHA replication sample of 1,033 unrelated VTE cases. Although this study did not result in new loci for TFPI, our work lays out a strategy to utilize epigenomic data in prioritization schemes for future GWAS studies. © 2017 WILEY PERIODICALS, INC.

  8. Probability-based nitrate contamination map of groundwater in Kinmen.

    PubMed

    Liu, Chen-Wuing; Wang, Yeuh-Bin; Jang, Cheng-Shin

    2013-12-01

    Groundwater supplies over 50% of drinking water in Kinmen. Approximately 16.8% of groundwater samples in Kinmen exceed the drinking water quality standard (DWQS) of NO3 (-)-N (10 mg/L). The residents drinking high nitrate-polluted groundwater pose a potential risk to health. To formulate effective water quality management plan and assure a safe drinking water in Kinmen, the detailed spatial distribution of nitrate-N in groundwater is a prerequisite. The aim of this study is to develop an efficient scheme for evaluating spatial distribution of nitrate-N in residential well water using logistic regression (LR) model. A probability-based nitrate-N contamination map in Kinmen is constructed. The LR model predicted the binary occurrence probability of groundwater nitrate-N concentrations exceeding DWQS by simple measurement variables as independent variables, including sampling season, soil type, water table depth, pH, EC, DO, and Eh. The analyzed results reveal that three statistically significant explanatory variables, soil type, pH, and EC, are selected for the forward stepwise LR analysis. The total ratio of correct classification reaches 92.7%. The highest probability of nitrate-N contamination map presents in the central zone, indicating that groundwater in the central zone should not be used for drinking purposes. Furthermore, a handy EC-pH-probability curve of nitrate-N exceeding the threshold of DWQS was developed. This curve can be used for preliminary screening of nitrate-N contamination in Kinmen groundwater. This study recommended that the local agency should implement the best management practice strategies to control nonpoint nitrogen sources and carry out a systematic monitoring of groundwater quality in residential wells of the high nitrate-N contamination zones.

  9. Raf-1 levels determine the migration rate of primary endometrial stromal cells of patients with endometriosis

    PubMed Central

    Yotova, Iveta; Quan, Ping; Gaba, Aulona; Leditznig, Nadja; Pateisky, Petra; Kurz, Christine; Tschugguel, Walter

    2012-01-01

    Endometriosis is a disease characterized by the localization of endometrial tissue outside the uterine cavity. The differences observed in migration of human endometrial stromal cells (hESC) obtained from patients with endometriosis versus healthy controls were proposed to correlate with the abnormal activation of Raf-1/ROCKII signalling pathway. To evaluate the mechanism by which Raf-1 regulates cytoskeleton reorganization and motility, we used primary eutopic (Eu-, n = 16) and ectopic (Ec-, n = 8; isolated from ovarian cysts) hESC of patients with endometriosis and endometriosis-free controls (Co-hESC, n = 14). Raf-1 siRNA knockdown in Co- and Eu-hESC resulted in contraction and decreased migration versus siRNA controls. This phenotype was reversed following the re-expression of Raf-1 in these cells. Lowest Raf-1 levels in Ec-hESC were associated with hyperactivated ROCKII and ezrin/radixin/moesin (E/R/M), impaired migration and a contracted phenotype similar to Raf-1 knockdown in Co- and Eu-hESC. We further show that the mechanism by which Raf-1 mediates migration in hESC includes direct myosin light chain phosphatase (MYPT1) phosphorylation and regulation of the levels of E/R/M, paxillin, MYPT1 and myosin light chain (MLC) phosphorylation indirectly via the hyperactivation of ROCKII kinase. Furthermore, we suggest that in contrast to Co-and Eu-hESC, where the cellular Raf-1 levels regulate the rate of migration, the low cellular Raf-1 content in Ec-hESC, might ensure their restricted migration by preserving the contracted cellular phenotype. In conclusion, our findings suggest that cellular levels of Raf-1 adjust the threshold of hESC migration in endometriosis. PMID:22225925

  10. Investigating the Response of Loop Plasma to Nanoflare Heating Using RADYN Simulations

    NASA Astrophysics Data System (ADS)

    Polito, V.; Testa, P.; Allred, J.; De Pontieu, B.; Carlsson, M.; Pereira, T. M. D.; Gošić, Milan; Reale, Fabio

    2018-04-01

    We present the results of 1D hydrodynamic simulations of coronal loops that are subject to nanoflares, caused by either in situ thermal heating or nonthermal electron (NTE) beams. The synthesized intensity and Doppler shifts can be directly compared with Interface Region Imaging Spectrograph (IRIS) and Atmospheric Imaging Assembly (AIA) observations of rapid variability in the transition region (TR) of coronal loops, associated with transient coronal heating. We find that NTEs with high enough low-energy cutoff ({E}{{C}}) deposit energy in the lower TR and chromosphere, causing blueshifts (up to ∼20 km s‑1) in the IRIS Si IV lines, which thermal conduction cannot reproduce. The {E}{{C}} threshold value for the blueshifts depends on the total energy of the events (≈5 keV for 1024 erg, up to 15 keV for 1025 erg). The observed footpoint emission intensity and flows, combined with the simulations, can provide constraints on both the energy of the heating event and {E}{{C}}. The response of the loop plasma to nanoflares depends crucially on the electron density: significant Si IV intensity enhancements and flows are observed only for initially low-density loops (<109 cm‑3). This provides a possible explanation of the relative scarcity of observations of significant moss variability. While the TR response to single heating episodes can be clearly observed, the predicted coronal emission (AIA 94 Å) for single strands is below current detectability and can only be observed when several strands are heated closely in time. Finally, we show that the analysis of the IRIS Mg II chromospheric lines can help further constrain the properties of the heating mechanisms.

  11. Disruption avoidance by means of electron cyclotron waves

    NASA Astrophysics Data System (ADS)

    Esposito, B.; Granucci, G.; Maraschek, M.; Nowak, S.; Lazzaro, E.; Giannone, L.; Gude, A.; Igochine, V.; McDermott, R.; Poli, E.; Reich, M.; Sommer, F.; Stober, J.; Suttrop, W.; Treutterer, W.; Zohm, H.; ASDEX Upgrade, the; FTU Teams

    2011-12-01

    Disruptions are very challenging to ITER operation as they may cause damage to plasma facing components due to direct plasma heating, forces on structural components due to halo and eddy currents and the production of runaway electrons. Electron cyclotron (EC) waves have been demonstrated as a tool for disruption avoidance by a large set of recent experiments performed in ASDEX Upgrade and FTU using various disruption types, plasma operating scenarios and power deposition locations. The technique is based on the stabilization of magnetohydrodynamic (MHD) modes (mainly m/n = 2/1) through the localized injection of EC power on the resonant surface. This paper presents new results obtained in ASDEX Upgrade regarding stable operation above the Greenwald density achieved after avoidance of density limit disruptions by means of ECRH and suitable density feedback control (L-mode ohmic plasmas, Ip = 0.6 MA, Bt = 2.5 T) and NTM-driven disruptions at high-β limit delayed/avoided by means of both co-current drive (co-ECCD) and pure heating (ECRH) with power <=1.7 MW (H-mode NBI-heated plasmas, PNBI ~ 7.5 MW, Ip = 1 MA, Bt = 2.1 T, q95 ~ 3.6). The localized perpendicular injection of ECRH/ECCD onto a resonant surface leads to the delay and/or complete avoidance of disruptions. The experiments indicate the existence of a power threshold for mode stabilization to occur. An analysis of the MHD mode evolution using the generalized Rutherford equation coupled to the frequency and phase evolution equations shows that control of the modes is due to EC heating close to the resonant surface. The ECRH contribution (Δ'H term) is larger than the co-ECCD one in the initial and more important phase when the discharge is 'saved'. Future research and developments of the disruption avoidance technique are also discussed.

  12. Validation of site-specific soil Ni toxicity thresholds with independent ecotoxicity and biogeochemistry data for elevated soil Ni.

    PubMed

    Hale, Beverley; Gopalapillai, Yamini; Pellegrino, Amanda; Jennett, Tyson; Kikkert, Julie; Lau, Wilson; Schlekat, Christian; McLaughlin, Mike J

    2017-12-01

    The Existing Substances Regulation Risk Assessments by the European Union (EU RA) generated new toxicity data for soil organisms exposed to Ni added to sixteen field-collected soils with low background concentration of metals and varying physico-chemical soil characteristics. Using only effective cation exchange capacity (eCEC) as a bioavailability correction, chronic toxicity of Ni in soils with a wide range of characteristics could be predicted within a factor of two. The objective of the present study was to determine whether this was also the case for three independent data sets of Ni toxicity thresholds. Two of the data sets were from Community Based Risk Assessments in Port Colborne ON, and Sudbury ON (Canada) for soils containing elevated concentrations of Ni, Co and Cu arising from many decades of Ni mining, smelting and refining. The third data set was the Metals in Asia study of soluble Ni added to field soils in China. These data yielded 72 leached and aged EC 10 /NOEC values for soil Ni, for arthropods, higher plants and woodlot structure and function. These were reduced to nine most sensitive single or geometric mean species/function endpoints, none of which were lower than the HC 5 predicted for a soil with an eCEC of 20 cmol/kg. Most of these leached and aged EC 10 /NOEC values were from soils co-contaminated with Cu, in some cases at its median HC 5 as predicted by the EU RA from soil characteristics. We conclude that the EU RA is protective of Ni toxicity to higher-tier ecological endpoints, including in mixture with Cu, before the assessment factor of 2 is applied. We suggest that for prospective risk assessment, the bioavailability based PNEC (HC 5 /2) be used as a conservative screen, but for retrospective and site-specific risk assessment, the bioavailability based HC 5 is sufficient. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Assessment of metal sensitizer potency with the reconstructed human epidermis IL-18 assay.

    PubMed

    Gibbs, Susan; Kosten, Ilona; Veldhuizen, Rosalien; Spiekstra, Sander; Corsini, Emanuela; Roggen, Erwin; Rustemeyer, Thomas; Feilzer, Albert J; Kleverlaan, Cees J

    2018-01-15

    According to the new EU Medical Devices (MDR) legislation coming into effect in 2017, manufactures will have to comply with higher standards of quality and safety for medical devices in order to meet common safety concerns regarding such products. Metal alloys are extensively used in dentistry and medicine (e.g. orthopedic surgery and cardiology) even though clinical experience suggests that many metals are sensitizers. The aim of this study was to further test the applicability domain of the in vitro reconstructed human epidermis (RhE) IL-18 assay developed to identify contact allergens and in doing so: i) determine whether different metal salts, representing leachables from metal alloys used in medical devices, could be correctly labelled and classified; and ii) assess the ability of different salts for the same metal to penetrate the skin stratum corneum. Twenty eight chemicals including 15 metal salts were topically exposed to RhE. Nickel, chrome, gold, palladium were each tested in two different salt forms, and titanium in 4 different salt forms. Metal salts were labelled (YES/NO) as sensitizer if a threshold of more than 5 fold IL18 release was reached. The in vitro estimation of expected sensitization induction level (potency) was assessed by interpolating in vitro EC50 and IL-18 SI2 with LLNA EC3 and human NOEL values from standard reference curves generated using DNCB (extreme) and benzocaine (weak). Metal salts, in contrast to other chemical sensitizers and with the exception of potassium dichromate (VI) and cobalt (II) chloride, were not identified as contact allergens since they only induced a small or no increase in IL-18 production. This finding was not related to a lack of stratum corneum skin penetration since EC50 values (decrease in metabolic activity; MTT assay) were obtained after topical RhE exposure to 8 of the 15 metal salts. For nickel, gold and palladium salts, differences in EC50 values between two salts for the same metal could not be attributed to differences in molarity or valency. For chrome salts the difference in EC50 values may be explained by different valencies (VI vs. III), but not by molarity. In general, metal salts were classified as weaker sensitizers than was indicated from in vivo LLNA EC3 and NOEL data. Our in vitro results show that metals are problematic chemicals to test, in line with the limited number of standardized human and animal studies, which are not currently considered adequate to predict systemic hypersensitivity or autoimmunity, and despite clinical experience, which clearly shows that many metals are indeed a risk to human health. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  14. Ozone Layer Protection

    MedlinePlus

    ... Offices Labs and Research Centers Contact Us Share Ozone Layer Protection The stratospheric ozone layer is Earth’s “ ... to ozone-depleting substances, and sun safety. Stratospheric Ozone Layer Basic Ozone Layer Science Health and Environmental ...

  15. 78 FR 37164 - Revisions to the Air Emissions Reporting Requirements: Revisions to Lead (Pb) Reporting Threshold...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-20

    ...Today's action proposes changes to the existing EPA emission inventory reporting requirements on state, local, and tribal agencies in the current Air Emissions Reporting Requirements rule published on December 17, 2008. The proposed amendments would lower the current threshold for reporting Pb sources as point sources; eliminate the requirement for reporting emissions from wildfires and prescribed fires; and replace a requirement for reporting mobile source emissions with a requirement for reporting the input parameters that can be used to run the EPA models that generate the emissions estimates. In addition, the proposed amendments would reduce the reporting burden on state, local, and tribal agencies by removing the requirements to report daily and seasonal emissions associated with carbon monoxide (CO), ozone (O3), and particulate matter up to 10 micrometers in size (PM10) nonattainment areas and nitrogen oxides (NOX) State Implementation Plan (SIP) call areas, although reporting requirements for those emissions would remain in other regulations. Lastly, the proposed amendments would clarify, remove, or simplify some current emissions reporting requirements which we believe are not necessary or are not clearly aligned with current inventory terminology and practices.

  16. Annual and Seasonal Global Variation in Total Ozone and Layer-Mean Ozone, 1958-1987 (1991)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angell, J. K.; Korshover, J.; Planet, W. G.

    For 1958 through 1987, this data base presents total ozone variations and layer mean ozone variations expressed as percent deviations from the 1958 to 1977 mean. The total ozone variations were derived from mean monthly ozone values published in Ozone Data for the World by the Atmospheric Environment Service in cooperation with the World Meteorological Organization. The layer mean ozone variations are derived from ozonesonde and Umkehr observations. The data records include year, seasonal and annual total ozone variations, and seasonal and annual layer mean ozone variations. The total ozone data are for four regions (Soviet Union, Europe, North America,more » and Asia); five climatic zones (north and south polar, north and south temperate, and tropical); both hemispheres; and the world. Layer mean ozone data are for four climatic zones (north and south temperate and north and south polar) and for the stratosphere, troposphere, and tropopause layers. The data are in two files [seasonal and year-average total ozone (13.4 kB) and layer mean ozone variations (24.2 kB)].« less

  17. A Study on Generation Ice Containing Ozone

    NASA Astrophysics Data System (ADS)

    Yoshimura, Kenji; Koyama, Shigeru; Yamamoto, Hiromi

    Ozone has the capability of sterilization and deodorization due to high oxidation power. It is also effective for the conservation of perishable foods and purification of water. However, ozone has a disadvantage, that is, conservation of ozone is difficult because it changes back into oxygen. Recently, ice containing ozone is taken attention for the purpose of its conservation. The use of ice containing ozone seems to keep food fresher when we conserve and transport perishable foods due to effects of cooling and sterilization of ice containing ozone. In the present study, we investigated the influence of temperatures of water dissolving ozone on the timewise attenuations of ozone concentration in water. We also investigated the influence of cooling temperature, ice diameter, initial temperatures of water dissolving ozone and container internal pressure of the water dissolving ozone on ozone concentration in the ice. In addition, we investigated the influence of the ice diameter on the timewise attenuations of ozone concentration in the ice. It was confirmed that the solidification experimental data can be adjusted by a correlation between ozone concentration in the ice and solidification time.

  18. Population exposure to trace elements in the Kilembe copper mine area, Western Uganda: A pilot study.

    PubMed

    Mwesigye, Abraham R; Young, Scott D; Bailey, Elizabeth H; Tumwebaze, Susan B

    2016-12-15

    The mining and processing of copper in Kilembe, Western Uganda, from 1956 to 1982 left over 15 Mt. of tailings containing cupriferous and cobaltiferous pyrite dumped within a mountain river valley. This pilot study was conducted to assess the nature and extent of risk to local populations from metal contamination arising from those mining activities. We determined trace element concentrations in mine tailings, soils, locally cultivated foods, house dust, drinking water and human biomarkers (toenails) using ICP-MS analysis of acid digested samples. The results showed that tailings, containing higher concentrations of Co, Cu, Ni and As compared with world average crust values had eroded and contaminated local soils. Pollution load indices revealed that 51% of agricultural soils sampled were contaminated with trace elements. Local water supplies were contaminated, with Co concentrations that exceeded Wisconsin (US) thresholds in 25% of domestic water supplies and 40% of Nyamwamba river water samples. Zinc exceeded WHO/FAO thresholds of 99.4mgkg -1 in 36% of Amaranthus vegetable samples, Cu exceeded EC thresholds of 20mgkg -1 in 19% of Amaranthus while Pb exceeded WHO thresholds of 0.3mgkg -1 in 47% of Amaranthus vegetables. In bananas, 20% of samples contained Pb concentrations that exceeded the WHO/FAO recommended threshold of 0.3mgkg -1 . However, risk assessment of local foods and water, based on hazard quotients (HQ values) revealed no potential health effects. The high external contamination of volunteers' toenails with some elements (even after a washing process) calls into question their use as a biomarker for metal exposure in human populations where feet are frequently exposed to soil dust. Any mitigation of Kilembe mine impacts should be aimed at remediation of agricultural soils, regulating the discharge of underground contaminated water but also containment of tailing erosion. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. The latitudinal distribution of ozone to 35 km altitude from ECC ozonesonde observations, 1982-1990

    NASA Technical Reports Server (NTRS)

    Komhyr, W. D.; Oltmans, S. J.; Lathrop, J. A.; Kerr, J. B.; Matthews, W. A.

    1994-01-01

    Electrochemical concentration cell (ECC) ozone-sonde observations, made in recent years at ten stations whose locations range from the Arctic to Antarctica, have yielded a self-consistent ozone data base from which mean seasonal and annual latitudinal ozone vertical distributions to 35 km have been derived. Ozone measurement uncertainties are estimated, and results are presented in the Bass-Paur (1985) ozone absorption coefficient scale adopted for use with Dobson ozone spectrophotometers January 1, 1992. The data should be useful for comparison with model calculations of the global distribution of atmospheric ozone, for serving as apriori statistical information in deriving ozone vertical distributions from satellite and Umkehr observations, and for improving the satellite and Umkehr ozone inversion algorithms. Attention is drawn to similar results based on a less comprehensive data set published in Ozone in the Atmosphere, Proceedings of the 1988 Quadrennial Ozone Symposium where errors in data tabulations occurred for three of the stations due to inadvertent transposition of ozone partial pressure and air temperature values.

  20. Building-related symptoms are linked to the in vitro toxicity of indoor dust and airborne microbial propagules in schools: A cross-sectional study.

    PubMed

    Salin, J T; Salkinoja-Salonen, M; Salin, P J; Nelo, K; Holma, T; Ohtonen, P; Syrjälä, H

    2017-04-01

    Indoor microbial toxicity is suspected to cause some building-related symptoms, but supporting epidemiological data are lacking. We examined whether the in vitro toxicity of indoor samples from school buildings was associated with work-related health symptoms (building-related symptoms, BRS). Administrators of the Helsinki City Real Estate Department selected 15 schools for the study, and a questionnaire on symptoms connected to work was sent to the teachers in the selected schools for voluntary completion. The cellular toxicity of classroom samples was determined by testing substances extracted from wiped indoor dust and by testing microbial biomass that was cultured on fallout plates. Boar sperm cells were used as indicator cells, and motility loss was the indicator for toxic effects. The effects were expressed as the half maximal effective concentration (EC 50 ) at which >50% of the exposed boar sperm cells were immobile compared to vehicle control. Completed symptom questionnaires were received from 232 teachers [median age, 43 years; 190 (82.3%) women] with a median time of 6 years working at their school. Samples from their classrooms were available and were assessed for cellular toxicity. The Poisson regression model showed that the impact of extracts of surface-wiped school classroom dust on teacher work-related BRS was 2.8-fold (95% CI: 1.6-4.9) higher in classrooms with a toxic threshold EC 50 of 6µgml -1 versus classrooms with insignificant EC 50 values (EC 50 >50µgml -1 ); P<0.001. The number of symptoms that were alleviated during vacation was higher in school classrooms with high sperm toxicity compared to less toxic sites; the RR was 1.9 (95% CI: 1.1-3.3, P=0.03) for wiped dust extracts. Teachers working in classrooms where the samples showed high sperm toxicity had more BRS. The boar sperm cell motility inhibition assay appears promising as a tool for demonstrating the presence of indoor substances associated with BRS. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Tropospheric Ozone from the TOMS TDOT (TOMS-Direct-Ozone-in-Troposphere) Technique During SAFARI-2000

    NASA Technical Reports Server (NTRS)

    Stone, J. B.; Thompson, A. M.; Frolov, A. D.; Hudson, R. D.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    There are a number of published residual-type methods for deriving tropospheric ozone from TOMS (Total Ozone Mapping Spectrometer). The basic concept of these methods is that within a zone of constant stratospheric ozone, the tropospheric ozone column can be computed by subtracting stratospheric ozone from the TOMS Level 2 total ozone column, We used the modified-residual method for retrieving tropospheric ozone during SAFARI-2000 and found disagreements with in-situ ozone data over Africa in September 2000. Using the newly developed TDOT (TOMS-Direct-Ozone-in-Troposphere) method that uses TOMS radiances and a modified lookup table based on actual profiles during high ozone pollution periods, new maps were prepared and found to compare better to soundings over Lusaka, Zambia (15.5 S, 28 E), Nairobi and several African cities where MOZAIC aircraft operated in September 2000. The TDOT technique and comparisons are described in detail.

  2. Antarctic Ozone Hole, 2000

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Each spring the ozone layer over Antarctica nearly disappears, forming a 'hole' over the entire continent. The hole is created by the interaction of some man-made chemicals-freon, for example-with Antarctica's unique weather patterns and extremely cold temperatures. Ozone in the stratosphere absorbs ultraviolet radiation from the sun, thereby protecting living things. Since the ozone hole was discovered many of the chemicals that destroy ozone have been banned, but they will remain in the atmosphere for decades. In 2000, the ozone hole grew quicker than usual and exceptionally large. By the first week in September the hole was the largest ever-11.4 million square miles. The top image shows the average total column ozone values over Antarctica for September 2000. (Total column ozone is the amount of ozone from the ground to the top of the atmosphere. A relatively typical measurement of 300 Dobson Units is equivalent to a layer of ozone 0.12 inches thick on the Earth's surface. Levels below 220 Dobson Units are considered to be significant ozone depletion.) The record-breaking hole is likely the result of lower than average ozone levels during the Antarctic fall and winter, and exceptionally cold temperatures. In October, however (bottom image), the hole shrank dramatically, much more quickly than usual. By the end of October, the hole was only one-third of it's previous size. In a typical year, the ozone hole does not collapse until the end of November. NASA scientists were surprised by this early shrinking and speculate it is related to the region's weather. Global ozone levels are measured by the Total Ozone Mapping Spectrometer (TOMS). For more information about ozone, read the Earth Observatory's ozone fact sheet, view global ozone data and see these ozone images. Images by Greg Shirah, NASA GSFC Scientific Visualization Studio.

  3. Formation of Ozonic Compound and Used as Therapeutic Agent in Medicine

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; Ye, Chunyong; Min, Xinmin

    2018-03-01

    It has some encouraging results to use ozone in medicine. However, as ozone is usually in gas state, unstable and strong oxidability, it is difficult to be stored and used commonly. Ozone, ethylene, acrylic acid and the ozonic compounds were calculated to study the interaction between ozone and carrier material to form ozonide. The stability of the ozonide, or the bond strength between ozone and ions of carrier are controlled felicitously to release ozone from the ozonide with proper velocity. Ozone antimicrobial has been composed on the above principle. It can be used conveniently, especially for common families. There are some characteristics of ozone antimicrobial or ozone, such as universal applicability, efficiency and rapidity, security, strong penetrability, no drug resistance and sterilization and treatment simultaneity.

  4. Assimilation of MLS and OMI Ozone Data

    NASA Technical Reports Server (NTRS)

    Stajner, I.; Wargan, K.; Chang, L.-P.; Hayashi, H.; Pawson, S.; Froidevaux, L.; Livesey, N.

    2005-01-01

    Ozone data from Aura Microwave Limb Sounder (MLS) and Ozone Monitoring Instrument (OMI) were assimilated into the ozone model at NASA's Global Modeling and Assimilation Office (GMAO). This assimilation produces ozone fields that are superior to those from the operational GMAO assimilation of Solar Backscatter Ultraviolet (SBUV/2) instrument data. Assimilation of Aura data improves the representation of the "ozone hole" and the agreement with independent Stratospheric Aerosol and Gas Experiment (SAGE) III and ozone sonde data. Ozone in the lower stratosphere is captured better: mean state, vertical gradients, spatial and temporal variability are all improved. Inclusion of OMI and MLS data together, or separately, in the assimilation system provides a way of checking how consistent OMI and MLS data are with each other, and with the ozone model. We found that differences between OMI total ozone column data and model forecasts decrease after MLS data are assimilated. This indicates that MLS stratospheric ozone profiles are consistent with OMI total ozone columns. The evaluation of error characteristics of OMI and MLS ozone will continue as data from newer versions of retrievals becomes available. We report on the initial step in obtaining global assimilated ozone fields that combine measurements from different Aura instruments, the ozone model at the GMAO, and their respective error characteristics. We plan to use assimilated ozone fields in estimation of tropospheric ozone. We also plan to investigate impacts of assimilated ozone fields on numerical weather prediction through their use in radiative models and in the assimilation of infrared nadir radiance data from NASA's Advanced Infrared Sounder (AIRS).

  5. Ozone: What Would It Be Like to Live in a World Where the Sun Was Dangerous?

    ERIC Educational Resources Information Center

    Clearing, 1992

    1992-01-01

    Defines ozone layer and the meaning, evidence, causes, and significance of ozone depletion. Summarizes solutions to the problem of ozone depletion and government action concerning the issue. Graphically depicts ozone depletion, global ozone loss, and how ozone is destroyed. Provides a lesson plan and listing for additional educational resources.…

  6. Ozone Contamination in Aircraft Cabins. Appendix B: Overview papers. Flight 8 planning to avoid high ozone

    NASA Technical Reports Server (NTRS)

    Belmont, A. D.

    1979-01-01

    The problem of preventing cabin ozone from exceeding a given standard was investigated. Statistical analysis of vertical distribution of ozone is summarized. The cost, logistics, maintenance, ability to forecast ozone, and avoiding high ozone concentrations are presented. Filtering approaches and the requirements to remove ozone toxicity are discussed.

  7. Ozonation of Canadian Athabasca asphaltene

    NASA Astrophysics Data System (ADS)

    Cha, Zhixiong

    Application of ozonation in the petrochemical industry for heavy hydrocarbon upgrading has not been sufficiently explored. Among heavy hydrocarbons, asphaltenes are the heaviest and the most difficult fractions for analysis and treatment. Therefore, ozonation of asphaltenes presents an interesting application in the petrochemical industry. Commercial application of ozonation in the petrochemical industry has three obstacles: availability of an ozone-resistant and environmentally friendly solvent, the precipitation of ozonation intermediates during reaction, and recovery of the solvent and separation of the ozonation products. Preliminary ozonation of Athabasca oil sands asphaltene in nonparticipating solvents encountered serious precipitation of the ozonation intermediates. The precipitated intermediates could be polymeric ozonides and intermolecular ozonides or polymeric peroxides. Because the inhomogeneous reaction medium caused low ozone efficiency, various participating solvents such as methanol and acetic acid were added to form more soluble hydroperoxides. The mass balance results showed that on average, one asphaltene molecule reacted with 12 ozone molecules through the electrophilic reaction and the subsequent decomposition of ozonation intermediates generated acetone extractable products. GC/MS analysis of these compounds indicated that the free radical reactions could be important for generation of volatile products. The extensively ozonated asphaltene in the presence of participating solvents were refluxed with methanol to generate more volatile products. GC/MS analysis of the methanol-esterified ozonation products indicated that most volatile products were aliphatic carboxylic acid esters generated through cleavage of substituents. Reaction kinetics study showed that asphaltene ozonation was initially a diffusion rate-controlled reaction and later developed to a chemical reaction rate-controlled reaction after depletion of the reactive aromatic sites. Two new solvent systems, a self-sustaining ozonation system and a cyclohexane/acetone/water or a cyclohexane/acetone/methanol system, were studied to overcome the drawback of using halogenated solvents. The self-sustaining ozonation process employed the final ozonation products as the reaction solvent. Compared to the self-sustaining ozonation, the cyclohexane solvent system showed higher ozone efficiency; however, it required dynamic adjustment of the solvent system during ozonation. An extensively ozonated asphaltene's weight would be doubled. Distillation of the products separated about 45% volatile products having biodiesel-style chemical structures. Compared to distillation, more than 90% of the ozonation products were extractable by acetone. The remaining acetone-insoluble part was further classified by dichloromethane and other solvents of different polarities. The separated ozonation products were good fuel additives or materials for other products.

  8. [Plant protection products and their residues : Aspects of consumer safety in context of the new EU regulations].

    PubMed

    Banasiak, U; Michalski, B; Pfeil, R; Solecki, R

    2010-06-01

    The law regulating plant protection products (PPP) in the European Union (EU) was fundamentally revised through the introduction of Regulation (EC) No. 1107/2009 which is due to enter into force on 14 June 2011. EU-wide harmonized maximum residue levels (MRLs) for the active substances of PPP in foods are laid down in Regulation (EC) No. 396/2005 and apply since entry into force of the regulation on 1 September 2008. The goal of both regulations is to strengthen the level of consumer protection. PPP are subject to a strict assessment of active substances, which is regulated at the EU level as well as an authorization procedure in the EU Member States. Prior to application for authorization of a PPP, the active substance(s) it contains must be included in a positive list. Tests regarding the toxicity and residue behavior of PPP must be conducted by the applicant, and the respective documents must be submitted to the authorities for evaluation. Following review of the required data, toxicological threshold values are derived, consumer exposure is assessed, and the risk to health is evaluated. The goal of this evaluation is to ensure that the use of PPP according to good plant protection practice does not have any harmful effects on human health.

  9. High-frequency stimulation of the temporoammonic pathway induces input-specific long-term potentiation in subicular bursting cells.

    PubMed

    Fidzinski, Pawel; Wawra, Matthias; Bartsch, Julia; Heinemann, Uwe; Behr, Joachim

    2012-01-09

    The subiculum (Sub) as a part of the hippocampal formation is thought to play a functional role in learning and memory. In addition to its major input from CA1 pyramidal cells, the subiculum receives input from the entorhinal cortex (EC) via the temporoammonic pathway. Thus far, synaptic plasticity in the subiculum was mainly investigated at CA1-Sub synapses. According to their spiking pattern, pyramidal cells in the subiculum were classified as bursting cells and non-bursting cells. In the present study, we demonstrate that subicular bursting cells show input-specific forms of long-term potentiation (LTP). At CA1-Sub synapses, bursting cells have been shown to express a presynaptic NMDA receptor-dependent LTP that depends on the activation of a cAMP-PKA cascade (Wozny et al., Journal of Physiology 2008). In contrast, at EC-Sub synapses the induction of LTP in bursting cells shows a high induction-threshold and relies on the activation of postsynaptic NMDA receptors, postsynaptic depolarization and postsynaptic Ca(2+) influx. Each form of LTP is input-specific and fails to induce heterosynaptic plasticity. Taken together, our data suggest that distinct, input-specific mechanisms govern high frequency-induced LTP at subicular bursting cells' synapses. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. A 16-Channel Nonparametric Spike Detection ASIC Based on EC-PC Decomposition.

    PubMed

    Wu, Tong; Xu, Jian; Lian, Yong; Khalili, Azam; Rastegarnia, Amir; Guan, Cuntai; Yang, Zhi

    2016-02-01

    In extracellular neural recording experiments, detecting neural spikes is an important step for reliable information decoding. A successful implementation in integrated circuits can achieve substantial data volume reduction, potentially enabling a wireless operation and closed-loop system. In this paper, we report a 16-channel neural spike detection chip based on a customized spike detection method named as exponential component-polynomial component (EC-PC) algorithm. This algorithm features a reliable prediction of spikes by applying a probability threshold. The chip takes raw data as input and outputs three data streams simultaneously: field potentials, band-pass filtered neural data, and spiking probability maps. The algorithm parameters are on-chip configured automatically based on input data, which avoids manual parameter tuning. The chip has been tested with both in vivo experiments for functional verification and bench-top experiments for quantitative performance assessment. The system has a total power consumption of 1.36 mW and occupies an area of 6.71 mm (2) for 16 channels. When tested on synthesized datasets with spikes and noise segments extracted from in vivo preparations and scaled according to required precisions, the chip outperforms other detectors. A credit card sized prototype board is developed to provide power and data management through a USB port.

  11. Determination of background levels on water quality of groundwater bodies: a methodological proposal applied to a Mediterranean River basin (Guadalhorce River, Málaga, southern Spain).

    PubMed

    Urresti-Estala, Begoña; Carrasco-Cantos, Francisco; Vadillo-Pérez, Iñaki; Jiménez-Gavilán, Pablo

    2013-03-15

    Determine background levels are a key element in the further characterisation of groundwater bodies, according to Water Framework Directive 2000/60/EC and, more specifically, Groundwater Directive 2006/118/EC. In many cases, these levels present very high values for some parameters and types of groundwater, which is significant for their correct estimation as a prior step to establishing thresholds, assessing the status of water bodies and subsequently identifying contaminant patterns. The Guadalhorce River basin presents widely varying hydrogeological and hydrochemical conditions. Therefore, its background levels are the result of the many factors represented in the natural chemical composition of water bodies in this basin. The question of determining background levels under objective criteria is generally addressed as a statistical problem, arising from the many aspects involved in its calculation. In the present study, we outline the advantages of applying two statistical techniques applied specifically for this purpose: (1) the iterative 2σ technique and (2) the distribution function, and examine whether the conclusions reached by these techniques are similar or whether they differ considerably. In addition, we identify the specific characteristics of each approach and the circumstances under which they should be used. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Model-based analysis of avoidance of ozone stress by stomatal closure in Siebold's beech (Fagus crenata)

    PubMed Central

    Hoshika, Yasutomo; Watanabe, Makoto; Inada, Naoki; Koike, Takayoshi

    2013-01-01

    Background and Aims Resistance of plants to ozone stress can be classified as either avoidance or tolerance. Avoidance of ozone stress may be explained by decreased stomatal conductance during ozone exposure because stomata are the principal interface for entry of ozone into plants. In this study, a coupled photosynthesis–stomatal model was modified to test whether the presence of ozone can induce avoidance of ozone stress by stomatal closure. Methods The response of Siebold's beech (Fagus crenata), a representative deciduous tree species, to ozone was studied in a free-air ozone exposure experiment in Japan. Photosynthesis and stomatal conductance were measured under ambient and elevated ozone. An optimization model of stomata involving water, CO2 and ozone flux was tested using the leaf gas exchange data. Key Results The data suggest that there are two phases in the avoidance of ozone stress via stomatal closure for Siebold's beech: (1) in early summer ozone influx is efficiently limited by a reduction in stomatal conductance, without any clear effect on photosynthetic capacity; and (2) in late summer and autumn the efficiency of ozone stress avoidance was decreased because the decrease in stomatal conductance was small and accompanied by an ozone-induced decline of photosynthetic capacity. Conclusions Ozone-induced stomatal closure in Siebold's beech during early summer reduces ozone influx and allows the maximum photosynthetic capacity to be reached, but is not sufficient in older leaves to protect the photosynthetic system. PMID:23904447

  13. Effect of an ozone injury-retardant chemical on isozyme profiles from alfalfa callus in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rier, J.P.; Sood, V.K.; Whitaker, A.

    1983-01-01

    Plant ozone injury retardant (EDU or ethylenediurea) at 1.0 ppm inhibited growth of callus of alfalfa cultivars Williamsburg (ozone-sensitive) and MSB-CW5An2(ozone-insensitive) germplasm of Medicago sative. The presence of EDU(0.1 ppm) in growth medium increased the number of protein and peroxidase isozyme bands in alfalfa cultivar stem callus and ozone modified their intensities. Protein profiles of MSB stem callus from media containing EDU or exposed to ozone were unchanged. Marked differences were observed between the peroxidase profiles of ozonated and control ozone-insensitive stem callus from media containing EDU. Protein profiles of ozonated ozone-insensitive leaf callus differed slightly from controls.

  14. Tropical tropospheric ozone and biomass burning.

    PubMed

    Thompson, A M; Witte, J C; Hudson, R D; Guo, H; Herman, J R; Fujiwara, M

    2001-03-16

    New methods for retrieving tropospheric ozone column depth and absorbing aerosol (smoke and dust) from the Earth Probe-Total Ozone Mapping Spectrometer (EP/TOMS) are used to follow pollution and to determine interannual variability and trends. During intense fires over Indonesia (August to November 1997), ozone plumes, decoupled from the smoke below, extended as far as India. This ozone overlay a regional ozone increase triggered by atmospheric responses to the El Niño and Indian Ocean Dipole. Tropospheric ozone and smoke aerosol measurements from the Nimbus 7 TOMS instrument show El Niño signals but no tropospheric ozone trend in the 1980s. Offsets between smoke and ozone seasonal maxima point to multiple factors determining tropical tropospheric ozone variability.

  15. Air pollution exposure and preeclampsia among US women with and without asthma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendola, Pauline, E-mail: pauline.mendola@nih.gov; Wallace, Maeve; Liu, Danping

    Maternal asthma and air pollutants have been independently associated with preeclampsia but rarely studied together. Our objective was to comprehensively evaluate preeclampsia risk based on the interaction of maternal asthma and air pollutants. Preeclampsia and asthma diagnoses, demographic and clinical data came from electronic medical records for 210,508 singleton deliveries. Modified Community Multiscale Air Quality models estimated preconception, first and second trimester and whole pregnancy exposure to: particulate matter (PM)<2.5 and <10 µm, ozone, nitrogen oxides (NO{sub x}), sulfur dioxide (SO{sub 2}) and carbon monoxide (CO); PM{sub 2.5} constituents; volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs). Asthma-pollutant interactionmore » adjusted relative risks (RR) and 95% confidence intervals (CI) for preeclampsia were calculated by interquartile range for criteria pollutants and high exposure (≥75th percentile) for PAHs and VOCs. Asthmatics had higher risk associated with first trimester NO{sub x} and SO{sub 2} and whole pregnancy elemental carbon (EC) exposure than non-asthmatics, but only EC significantly increased risk (RR=1.11, CI:1.03–1.21). Asthmatics also had a 10% increased risk associated with second trimester CO. Significant interactions were observed for nearly all VOCs and asthmatics had higher risk during all time windows for benzene, ethylbenzene, m-xylene, o-xylene, p-xylene and toluene while most PAHs did not increase risk. - Highlights: • Asthma is common in pregnancy and asthmatic women have increased preeclampsia risk. • Air pollution could differentially increase preeclampsia risk for asthmatic women. • Preeclampsia risk was higher for asthmatics than non-asthmatics after VOC exposure. • Asthmatics also had higher risk after whole pregnancy exposure to elemental carbon. • Pregnant women with asthma appear to be particularly vulnerable to air pollutants.« less

  16. Prefrontal white matter pathology in air pollution exposed Mexico City young urbanites and their potential impact on neurovascular unit dysfunction and the development of Alzheimer's disease.

    PubMed

    Calderón-Garcidueñas, Lilian; Reynoso-Robles, Rafael; Vargas-Martínez, Javier; Gómez-Maqueo-Chew, Aline; Pérez-Guillé, Beatriz; Mukherjee, Partha S; Torres-Jardón, Ricardo; Perry, George; Gónzalez-Maciel, Angélica

    2016-04-01

    Millions of urban children are chronically exposed to high concentrations of air pollutants, i.e., fine particulate matter (PM2.5) and ozone, associated with increased risk for Alzheimer's disease. Compared with children living with clear air those in Mexico City (MC) exhibit systemic, brain and intrathecal inflammation, low CSF Aβ42, breakdown of the BBB, attention and short-term memory deficits, prefrontal white matter hyperintensities, damage to epithelial and endothelial barriers, tight junction and neural autoantibodies, and Alzheimer and Parkinson's hallmarks. The prefrontal white matter is a target of air pollution. We examined by light and electron microscopy the prefrontal white matter of MC dogs (n: 15, age 3.17±0.74 years), children and teens (n: 34, age: 12.64±4.2 years) versus controls. Major findings in MC residents included leaking capillaries and small arterioles with extravascular lipids and erythrocytes, lipofuscin in pericytes, smooth muscle and endothelial cells (EC), thickening of cerebrovascular basement membranes with small deposits of amyloid, patchy absence of the perivascular glial sheet, enlarged Virchow-Robin spaces and nanosize particles (20-48nm) in EC, basement membranes, axons and dendrites. Tight junctions, a key component of the neurovascular unit (NVU) were abnormal in MC versus control dogs (χ(2)<0.0001), and white matter perivascular damage was significantly worse in MC dogs (p=0.002). The integrity of the NVU, an interactive network of vascular, glial and neuronal cells is compromised in MC young residents. Characterizing the early NVU damage and identifying biomarkers of neurovascular dysfunction may provide a fresh insight into Alzheimer pathogenesis and open opportunities for pediatric neuroprotection. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Analysis of major air pollutants and submicron particles in New York City and Long Island

    NASA Astrophysics Data System (ADS)

    Masiol, M.; Hopke, P. K.; Felton, H. D.; Frank, B. P.; Rattigan, O. V.; Wurth, M. J.; LaDuke, G. H.

    2017-01-01

    A year-long sampling campaign of major air pollutants and submicron particle number size distributions was conducted at two sites taken as representative of city-wide air quality in New York City and Long Island, respectively. A number of species were quantified with hourly time resolution, including particle number concentrations in 6 size ranges (20-30 nm, 30-50 nm, 50-70 nm, 70-100 nm, 100-200 nm, and >200 nm), nitrogen oxides, sulfur dioxide, ozone, carbon monoxide, methane, non-methane hydrocarbons, PM2.5 mass concentration and some PM major components (sulfate, organic and elemental carbon). Hourly concentrations of primary and secondary organic carbon were estimated using the EC tracer method. Data were matched with weather parameters and air parcel back-trajectories. A series of tools were thus applied to: (i) study the seasonal, weekly, diurnal cycles of pollutants; (ii) investigate the relationships amongst pollutants through correlation and lagged correlation analyses; (iii) depict the role of atmospheric photochemical processes; (iv) examine the location of the potential sources by mean of conditional bivariate probability function analysis and (v) investigate the role of regional transport of air masses to the concentrations of analyzed species. Results indicate that concentrations of NOx, SO2, CO, non-methane hydrocarbons, primary OC and EC are predominantly determined by local sources, but are also affected by regional transports of polluted air masses. On the contrary, the transport of continental polluted air masses has a main effect in raising the concentrations of secondary PM2.5 (sulfate and secondary organic carbon). By providing direct information on the concentrations and trends of key pollutants and submicron particle number concentrations, this study finally enables some general considerations about air quality status and atmospheric processes over the New York City metropolitan area.

  18. Comparison of PAN and Black Carbon Levels in Mexico City: 1997 and 2003

    NASA Astrophysics Data System (ADS)

    Gaffney, J. S.; Marley, N. A.

    2004-12-01

    Peroxyacetyl nitrate (PAN) is a secondary oxidant formed by the oxidation of hydrocarbons in the presence of nitrogen dioxide. PAN is a good indicator compound for hydrocarbon reactivity that leads to ozone formation. Black carbon (BC) is formed by incomplete combustion processes such as diesel soot formation and is a good indicator of primary carbonaceous aerosols in urban areas. We used a fast-response luminol method to measure PAN and BC during the Mexico City Metropolitan Area 2003/Mexico City Megacity 2003 field study in April 2003. We compare these results with our previous PAN measurements in Mexico City during February 1997, made with a gas chromatograph-electron capture detector system. The decreased PAN levels observed in 2003 are consistent with the application of emissions controls on spark ignition gasoline-fueled vehicles, leading to lower levels of the nitrogen oxides and reactive volatile hydrocarbons needed to form PAN. Black carbon data for Mexico City in 2003, taken with a seven-channel aethalometer, are compared with data from 1997, estimated from thermal analyses as elemental carbon (EC). The comparison indicates little change in the levels of BC/EC over the six-year period. This observation is consistent with the application of minimal controls to diesel engines, the likely major source of BC in the Mexico City megacity complex during this period. The authors wish to thank the researchers at Centro Nacional de Investigación en Calidad Ambiental (CENICA), Mexico City. This work was supported by the U.S. Department of Energy, Atmospheric Science Program. We also wish to acknowledge Drs. Mario and Luisa Molina for their help in organizing and directing the Mexico City Metropolitan Area 2003 field study, during which these data were collected.

  19. Application of Satellite and Ozonesonde Data to the Study of Nighttime Tropospheric Ozone Impacts and Relationship to Air Quality

    NASA Astrophysics Data System (ADS)

    Osterman, G. B.; Eldering, A.; Neu, J. L.; Tang, Y.; McQueen, J.; Pinder, R. W.

    2011-12-01

    To help protect human health and ecosystems, regional-scale atmospheric chemistry models are used to forecast high ozone events and to design emission control strategies to decrease the frequency and severity of ozone events. Despite the impact that nighttime aloft ozone can have on surface ozone, regional-scale atmospheric chemistry models often do not simulate the nighttime ozone concentrations well and nor do they sufficiently capture the ozone transport patterns. Fully characterizing the importance of the nighttime ozone has been hampered by limited measurements of the vertical distribution of ozone and ozone-precursors. The main focus of this work is to begin to utilize remote sensing data sets to characterize the impact of nighttime aloft ozone to air quality events. We will describe our plans to use NASA satellite data sets, transport models and air quality models to study ozone transport, focusing primarily on nighttime ozone and provide initial results. We will use satellite and ozonesonde data to help understand how well the air quality models are simulating ozone in the lower free troposphere and attempt to characterize the impact of nighttime ozone to air quality events. Our specific objectives are: 1) Characterize nighttime aloft ozone using remote sensing data and sondes. 2) Evaluate the ability of the Community Multi-scale Air Quality (CMAQ) model and the National Air Quality Forecast Capability (NAQFC) model to capture the nighttime aloft ozone and its relationship to air quality events. 3) Analyze a set of air quality events and determine the relationship of air quality events to the nighttime aloft ozone. We will achieve our objectives by utilizing the ozone profile data from the NASA Earth Observing System (EOS) Tropospheric Emission Spectrometer (TES) and other sensors, ozonesonde data collected during the Aura mission (IONS), EPA AirNow ground station ozone data, the CMAQ continental-scale air quality model, and the National Air Quality Forecast model.

  20. Improvement of the basic knowledge of the climatology of the vertical ozone layer by enhanced balloon sounding

    NASA Technical Reports Server (NTRS)

    Attmannspacher, W.; Hartmannsgrubber, R.; Lang, P.

    1984-01-01

    Balloon sounding of the ozone in the Earth atmosphere was performed in order to determine the natural behavior of ozone and its recognizable deviations. The importance of ozone in the Earth atmosphere and the orographic situation of observatories and ozone sounding statistics since 1966 are explained. The physical processes governing the total amount of ozone, and the behavior of stratospheric ozone are described. Measurements in the upper stratosphere show a decrease of the ozone partial pressure above 26 km altitude since 1977. The behavior of tropospheric ozone is discussed. Data since 1977 show increasing ozone values in the troposphere, up to 50% to 70%. This increase is independent of the solar radiation intensity and the reinforced transport of stratospheric ozone into the troposphere. The increase in the troposphere cannot compensate the stratospheric decrease.

  1. Ozone in the Atmosphere: II. The Lower Atmosphere.

    ERIC Educational Resources Information Center

    Phillips, Paul; Pickering, Pam

    1991-01-01

    Described are the problems caused by the increased concentration of ozone in the lower atmosphere. Photochemical pollution, mechanisms of ozone production, ozone levels in the troposphere, effects of ozone on human health and vegetation, ozone standards, and control measures are discussed. (KR)

  2. Physicochemical patterns of ozone absorption by wood

    NASA Astrophysics Data System (ADS)

    Mamleeva, N. A.; Lunin, V. V.

    2016-11-01

    Results from studying aspen and pine wood ozonation are presented. The effect the concentration of ozone, the reagent residence time, and the content of water in a sample of wood has on ozone consumption rate and ozone demand are analyzed. The residence time is shown to determine the degree of ozone conversion degree and the depth of substrate destruction. The main patterns of ozone absorption by wood with different moisture content are found. Ways of optimizing the ozonation of plant biomass are outlined.

  3. Stomatal uptake and stomatal deposition of ozone in isoprene and monoterpene emitting plants.

    PubMed

    Fares, S; Loreto, F; Kleist, E; Wildt, J

    2008-01-01

    Volatile isoprenoids were reported to protect plants against ozone. To understand whether this could be the result of a direct scavenging of ozone by these molecules, the stomatal and non-stomatal uptake of ozone was estimated in plants emitting isoprene or monoterpenes. Ozone uptake by holm oak (Quercus ilex, a monoterpene emitter) and black poplar (Populus nigra, an isoprene emitter) was studied in whole plant enclosures (continuously stirred tank reactors, CSTR). The ozone uptake by plants was estimated measuring ozone concentration at the inlet and outlet of the reactors, after correcting for the uptake of the enclosure materials. Destruction of ozone at the cuticle or at the plant stems was found to be negligible compared to the ozone uptake through the stomata. For both plant species, a relationship between stomatal conductance and ozone uptake was found. For the poplar, the measured ozone losses were explained by the uptake of ozone through the stomata only, and ozone destruction by gas phase reactions with isoprene was negligible. For the oak, gas phase reactions of ozone with the monoterpenes emitted by the plants contributed significantly to ozone destruction. This was confirmed by two different experiments showing a) that in cases of high stomatal conductance but under low CO(2) concentration, a reduction of monoterpene emission was still associated with reduced O(3) uptake; and b) that ozone losses due to the gas phase reactions only can be measured when using the exhaust from a plant chamber to determine the gas phase reactivity in an empty reaction chamber. Monoterpenes can therefore relevantly scavenge ozone at leaf level contributing to protection against ozone.

  4. Impacts of Ozone-vegetation Interactions and Biogeochemical Feedbacks on Atmospheric Composition and Air Quality Under Climate Change

    NASA Astrophysics Data System (ADS)

    Sadeke, M.; Tai, A. P. K.; Lombardozzi, D.; Val Martin, M.

    2015-12-01

    Surface ozone pollution is one of the major environmental concerns due to its damaging effects on human and vegetation. One of the largest uncertainties of future surface ozone prediction comes from its interaction with vegetation under a changing climate. Ozone can be modulated by vegetation through, e.g., biogenic emissions, dry deposition and transpiration. These processes are in turn affected by chronic exposure to ozone via lowered photosynthesis rate and stomatal conductance. Both ozone and vegetation growth are expected to be altered by climate change. To better understand these climate-ozone-vegetation interactions and possible feedbacks on ozone itself via vegetation, we implement an online ozone-vegetation scheme [Lombardozzi et al., 2015] into the Community Earth System Model (CESM) with active atmospheric chemistry, climate and land surface components. Previous overestimation of surface ozone in eastern US, Canada and Europe is shown to be reduced by >8 ppb, reflecting improved model-observation comparison. Simulated surface ozone is lower by 3.7 ppb on average globally. Such reductions (and improvements) in simulated ozone are caused mainly by lower isoprene emission arising from reduced leaf area index in response to chronic ozone exposure. Effects via transpiration are also potentially significant but require better characterization. Such findings suggest that ozone-vegetation interaction may substantially alter future ozone simulations, especially under changing climate and ambient CO2 levels, which would further modulate ozone-vegetation interactions. Inclusion of such interactions in Earth system models is thus necessary to give more realistic estimation and prediction of surface ozone. This is crucial for better policy formulation regarding air quality, land use and climate change mitigation. Reference list: Lombardozzi, D., et al. "The Influence of Chronic Ozone Exposure on Global Carbon and Water Cycles." Journal of Climate 28.1 (2015): 292-305.

  5. Ozone Layer Observations

    NASA Technical Reports Server (NTRS)

    McPeters, Richard; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    The US National Aeronautics and Space Administration (NASA) has been monitoring the ozone layer from space using optical remote sensing techniques since 1970. With concern over catalytic destruction of ozone (mid-1970s) and the development of the Antarctic ozone hole (mid-1980s), long term ozone monitoring has become the primary focus of NASA's series of ozone measuring instruments. A series of TOMS (Total Ozone Mapping Spectrometer) and SBUV (Solar Backscatter Ultraviolet) instruments has produced a nearly continuous record of global ozone from 1979 to the present. These instruments infer ozone by measuring sunlight backscattered from the atmosphere in the ultraviolet through differential absorption. These measurements have documented a 15 Dobson Unit drop in global average ozone since 1980, and the declines in ozone in the antarctic each October have been far more dramatic. Instruments that measure the ozone vertical distribution, the SBUV and SAGE (Stratospheric Aerosol and Gas Experiment) instruments for example, show that the largest changes are occurring in the lower stratosphere and upper troposphere. The goal of ozone measurement in the next decades will be to document the predicted recovery of the ozone layer as CFC (chlorofluorocarbon) levels decline. This will require a continuation of global measurements of total column ozone on a global basis, but using data from successor instruments to TOMS. Hyperspectral instruments capable of measuring in the UV will be needed for this purpose. Establishing the relative roles of chemistry and dynamics will require instruments to measure ozone in the troposphere and in the stratosphere with good vertical resolution. Instruments that can measure other chemicals important to ozone formation and destruction will also be needed.

  6. Reconciliation of Halogen-Induced Ozone Loss with the Total-Column Ozone Record

    NASA Technical Reports Server (NTRS)

    Shepherd, T. G.; Plummer, D. A.; Scinocca, J. F.; Hegglin, M. I.; Fioletov, V. E.; Reader, M. C.; Remsberg, E.; von Clarmann, T.; Wang, H. J.

    2014-01-01

    The observed depletion of the ozone layer from the 1980s onwards is attributed to halogen source gases emitted by human activities. However, the precision of this attribution is complicated by year-to-year variations in meteorology, that is, dynamical variability, and by changes in tropospheric ozone concentrations. As such, key aspects of the total-column ozone record, which combines changes in both tropospheric and stratospheric ozone, remain unexplained, such as the apparent absence of a decline in total-column ozone levels before 1980, and of any long-term decline in total-column ozone levels in the tropics. Here we use a chemistry-climate model to estimate changes in halogen-induced ozone loss between 1960 and 2010; the model is constrained by observed meteorology to remove the eects of dynamical variability, and driven by emissions of tropospheric ozone precursors to separate out changes in tropospheric ozone. We show that halogen-induced ozone loss closely followed stratospheric halogen loading over the studied period. Pronounced enhancements in ozone loss were apparent in both hemispheres following the volcanic eruptions of El Chichon and, in particular, Mount Pinatubo, which significantly enhanced stratospheric aerosol loads. We further show that approximately 40% of the long-term non-volcanic ozone loss occurred before 1980, and that long-term ozone loss also occurred in the tropical stratosphere. Finally, we show that halogeninduced ozone loss has declined by over 10% since stratospheric halogen loading peaked in the late 1990s, indicating that the recovery of the ozone layer is well underway.

  7. Investigations of Stratosphere-Troposphere Exchange of Ozone Derived From MLS Observations

    NASA Technical Reports Server (NTRS)

    Olsen, Mark A.; Schoeberl, Mark R.; Ziemke, Jerry R.

    2006-01-01

    Daily high-resolution maps of stratospheric ozone have been constructed using observations by MLS combined with trajectory information. These fields are used to determine the extratropical stratosphere-troposphere exchange (STE) of ozone for the year 2005 using two diagnostic methods. The resulting two annual estimates compare well with past model- and observational-based estimates. Initial analyses of the seasonal characteristics indicate that significant STE of ozone in the polar regions occurs only during spring and early summer. We also examine evidence that the Antarctic ozone hole is responsible for a rapid decrease in the rate of ozone STE during the SH spring. Subtracting the high-resolution stratospheric ozone fiom OMI total column measurements creates a high-resolution tropospheric ozone residual (HTOR) product. The HTOR fields are compared to the spatial distribution of the ozone STE. We show that the mean tropospheric ozone maxima tend to occur near locations of significant ozone STE. This suggests that STE may be responsible for a significant fraction of many mean tropospheric ozone anomalies.

  8. Effect of an ozone injury retardant chemical on isozyme profiles from alfalfa callus in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rier, J.P. Jr.; Sood, V.K.; Whitaker, A.

    1983-01-01

    Plant ozone injury retardant N-(2-(2-oxo-1-imidazolidinyl)-ethyl)-N'-phenylurea (EDU or ethylenediurea) at 1.0 ppm inhibited growth of callus of alfalfa cultivars Williamsburg (ozone-sensitive) and MSB-CW5An2 (ozone-insensitive) germplasm of Medicago sativa. The presence of EDU (0.1 ppm)in the growth medium increased the number of protein and peroxidase isozyme bands in alfalfa cultivar Williamsburg stem callus and ozone modified their intensities. Protein profiles of MSB stem callus from media containing EDU or exposed to ozone were unchanged. Marked differences were observed between the peroxidase profiles of ozonated and control ozone-insensitive stem callus from media containing EDU. Protein profiles of ozonated ozone-sensitive leaf callus differed slightlymore » from controls. The peroxidase profile of ozonated ozone-sensitive leaf callus was not altered when its growth medium contained EDU, but when it was absent, changes were observed in these profiles.« less

  9. Impact of Ozone Radiative Feedbacks on Global Weather Forecasting

    NASA Astrophysics Data System (ADS)

    Ivanova, I.; de Grandpré, J.; Rochon, Y. J.; Sitwell, M.

    2017-12-01

    A coupled Chemical Data Assimilation system for ozone is being developed at Environment and Climate Change Canada (ECCC) with the goals to improve the forecasting of UV index and the forecasting of air quality with the Global Environmental Multi-scale (GEM) Model for Air quality and Chemistry (MACH). Furthermore, this system provides an opportunity to evaluate the benefit of ozone assimilation for improving weather forecasting with the ECCC Global Deterministic Prediction System (GDPS) for Numerical Weather Prediction (NWP). The present UV index forecasting system uses a statistical approach for evaluating the impact of ozone in clear-sky and cloudy conditions, and the use of real-time ozone analysis and ozone forecasts is highly desirable. Improving air quality forecasting with GEM-MACH further necessitates the development of integrated dynamical-chemical assimilation system. Upon its completion, real-time ozone analysis and ozone forecasts will also be available for piloting the regional air quality system, and for the computation of ozone heating rates, in replacement of the monthly mean ozone distribution currently used in the GDPS. Experiments with ozone radiative feedbacks were run with the GDPS at 25km resolution and 84 levels with a lid at 0.1 hPa and were initialized with ozone analysis that has assimilated total ozone column from OMI, OMPS, and GOME satellite instruments. The results show that the use of prognostic ozone for the computation of the heating/cooling rates has a significant impact on the temperature distribution throughout the stratosphere and upper troposphere regions. The impact of ozone assimilation is especially significant in the tropopause region, where ozone heating in the infrared wavelengths is important and ozone lifetime is relatively long. The implementation of the ozone radiative feedback in the GDPS requires addressing various issues related to model biases (temperature and humidity) and biases in equilibrium state (ozone mixing ratio, air temperature and overhead column ozone) used for the calculation of the linearized photochemical production and loss of ozone. Furthermore the radiative budget in the tropopause region is strongly affected by water vapor cooling, which impact requires further evaluation for the use in chemically coupled operational NWP systems.

  10. Source Attribution of Tropospheric Ozone using a Global Model

    NASA Astrophysics Data System (ADS)

    Coates, J.; Lupascu, A.; Butler, T. M.; Zhu, S.

    2016-12-01

    Tropospheric ozone is both a short-lived climate forcing pollutant and a radiatively active greenhouse gas. Ozone is not directly emitted into the troposphere but photochemically produced from chemical reactions involving nitrogen oxides (NOx) and volatile organic compounds (VOCs). Emissions of ozone precursors (NOx and VOCs) have both natural and anthropogenic sources and may be transported away from their sources to produce ozone downwind. Also, transport of ozone from the stratosphere into the troposphere also influences tropospheric ozone levels in some regions. Attributing ozone concentrations to the contributions from different sources would indicate the effects of locally emitted or transported precursors on ozone levels in specific regions. This information could be used to inform the emission reduction strategies of ozone precursors by indicating which emission sources could be targeted for effective reductions thus reducing the burden of ozone pollution. We use a "tagging" approach within the CESM global model to attribute ozone levels to their source emissions. We use different tags to quantify the impact from natural (soils, lightning, stratospheric transport) and anthropogenic (aircraft, biomass burning) sources of NOx and VOCs (including methane) on ozone levels. These source sectors of different global regions are assigned based on the global emissions specified by HTAPv2.2. Using these results, we develop a transboundary source-receptor relationship of ozone concentration to its precursor emission regions. Additionally, the transport of ozone precursors from regional anthropogenic sources is analysed to illustrate the extent to which mitigation strategies of regional emissions aid in mitigating global ozone levels.

  11. Potential For Stratospheric Ozone Depletion During Carboniferous

    NASA Astrophysics Data System (ADS)

    Bill, M.; Goldstein, A. H.

    Methyl bromide (CH3Br) constitutes the largest source of bromine atoms to the strato- sphere whereas methyl chloride (CH3Cl) is the most abundant halocarbon in the tro- posphere. Both gases play an important role in stratospheric ozone depletion. For in- stance, Br coupled reactions are responsible for 30 to 50 % of total ozone loss in the polar vortex. Currently, the largest natural sources of CH3Br and CH3Cl appear to be biological production in the oceans, inorganic production during biomass burning and plant production in salt marsh ecosystems. Variations of paleofluxes of CH3Br and CH3Cl can be estimated by analyses of oceanic paleoproductivity, stratigraphic analyses of frequency and distribution of fossil charcoal indicating the occurrence of wildfires, and/or by paleoreconstruction indicating the extent of salt marshes. Dur- ing the lower Carboniferous time (Tournaisian-Visean), the southern margin of the Laurasian continent was characterized by charcoal deposits. Estimation on frequency of charcoal layers indicates that wildfires occur in a range of 3-35 years (Falcon-Lang 2000). This suggests that biomass burning could be an important source of CH3Br and CH3Cl during Tournaisian-Viesan time. During Tounaisian and until Merame- cian carbon and oxygen isotope records have short term oscillations (Bruckschen et al. 1999, Mii et al. 1999). Chesterian time (mid- Carboniferous) is marked by an in- crease in delta18O values ( ~ 2 permil) and an increase of glacial deposit frequency suggesting lower temperatures. The occurrence of glacial deposits over the paleopole suggests polar conditions and the associated special features of polar mete- orology such as strong circumpolar wind in the stratosphere (polar vortex) and polar stratospheric clouds. Thus, conditions leading to polar statospheric ozone depletion can be found. Simultaneously an increase in delta13C values is documented. We interpret the positive shift in delta13C as a result of higher bioproductivity. This interpretation is coherent with higher productivity as a result of an increasing nutrient transfer from the continent to the ocean which occurs during cold and humid climates. We have estimated the effective amount of active chlorine and bromine released to the atmosphere by an increase of the paleobiological production needed to cause ozone depletion. This estimation indicates that the threshold for the onset of ozone strato- spheric depletion is reached if the current day natural source is increased by a factor 2. It is also likely that some of the major methyl halide loss processes such as hydolysis in the ocean and soil uptake were inhibited by lower temperatures, resulting in higher atmospheric concentrations. The increase of methyl halide, by biological sources and 1 the polar conditons in south pole, are compatible with a possible paleoozone layer depletion. Together ozone layer depletion with cold temperatures could be the factors which triggered the mid-Carboniferous (Serpukhovian) extinction. References: Bruckschen, P. ,Oesmann, S.., Veizer, J., 1999. Isotope stratigraphy of the European Carboneferous: Proxy signals for ocean chemistry, climate and tectonics, Chem. Geol., 161, 127-163. Falcon-Lang, H.J., 2000. Fire ecology of the Carbonifer- ous tropical zone, Palaeogeogr. Palaeoclimatol. Palaeoecol., 164, 355-371. Mii, H.S., Grossman, E.L., Yancey, T.E., 1999. Carboniferous isotope stratigraphies of North America: implications for Carboniferous paleoceanography and Mississippian glacia- tion, Geol. Soc. Am. Bull. 111, 960-973. 2

  12. Analysis of Ozone in Cloudy Versus Clear Sky Conditions

    NASA Technical Reports Server (NTRS)

    Strode, Sarah; Douglass, Anne; Ziemke, Jerald

    2016-01-01

    Convection impacts ozone concentrations by transporting ozone vertically and by lofting ozone precursors from the surface, while the clouds and lighting associated with convection affect ozone chemistry. Observations of the above-cloud ozone column (Ziemke et al., 2009) derived from the OMI instrument show geographic variability, and comparison of the above-cloud ozone with all-sky tropospheric ozone columns from OMI indicates important regional differences. We use two global models of atmospheric chemistry, the GMI chemical transport model (CTM) and the GEOS-5 chemistry climate model, to diagnose the contributions of transport and chemistry to observed differences in ozone between areas with and without deep convection, as well as differences in clean versus polluted convective regions. We also investigate how the above-cloud tropospheric ozone from OMI can provide constraints on the relationship between ozone and convection in a free-running climate simulation as well as a CTM.

  13. Climate Change Impacts on Projections of Excess Mortality at 2030 using Spatially-Varying Ozone-Temperature Risk Surfaces

    PubMed Central

    Wilson, Ander; Reich, Brian J.; Nolte, Christopher G.; Spero, Tanya L.; Hubbell, Bryan; Rappold, Ana G.

    2017-01-01

    We project the change in ozone-related mortality burden attributable to changes in climate between a historical (1995–2005) and near-future (2025–2035) time period while incorporating a nonlinear and synergistic effect of ozone and temperature on mortality. We simulate air quality from climate projections varying only biogenic emissions and holding anthropogenic emissions constant, thus attributing changes in ozone only to changes in climate and independent of changes in air pollutant emissions. We estimate nonlinear, spatially-varying, ozone-temperature risk surfaces for 94 US urban areas using observed data. Using the risk surfaces and climate projections we estimate daily mortality attributable to ozone exceeding 40 ppb (moderate level) and 75 ppb (US ozone NAAQS) for each time period. The average increases in city-specific median April-October ozone and temperature between time periods are 1.02 ppb and 1.94°F; however, the results varied by region. Increases in ozone due to climate change result in an increase in ozone-mortality burden. Mortality attributed to ozone exceeding 40 ppb increases by 7.7% (1.6%, 14.2%). Mortality attributed to ozone exceeding 75 ppb increases by 14.2% (1.6%, 28.9%). The absolute increase in excess ozone mortality is larger for changes in moderate ozone levels, reflecting the larger number of days with moderate ozone levels. PMID:27005744

  14. A Comparative Study on Ozone Photochemical Formation in the Megacities of Tianjin and Shanghai, China

    NASA Astrophysics Data System (ADS)

    Ran, L.; Zhao, C.; Xu, W.; Geng, F.; Lu, X.; Han, M.; Lin, W.; Xu, X.

    2011-12-01

    As one of the most widespread and stubborn environmental issues, the ozone problem has been of particular concern for many years, given the potential adverse effects of high ozone concentrations on public health and agricultural productivity. In the past decades, rapid urbanization and industrialization have given rise to a significant increase in ozone precursor emissions in many regions of China, especially in the densely populated megacities. Due to the highly nonlinear impacts of ozone precursors including nitrogen oxides (NOx) and various volatile organic compounds (VOCs) on ozone photochemistry, formation of ozone affected by different precursor emission patterns in those megacities has exhibited different characteristics. A comparative analysis of ozone photochemical production in the megacities of Tianjin and Shanghai has thus been carried out, using the data sets of surface ozone and its precursors measured respectively at an urban and a suburban site of the two megacities during the summertime. Observation-based analysis indicated an elevated ozone daily peak under photochemistry dominant conditions from the urban center to the suburb in both regions, nevertheless bearing different reasons. Ozone production was generally sensitive to VOCs in the Tianjin region, leading to a relatively higher level of ozone in the suburb where reactive VOCs were abundantly released from a number of industrial facilities, whereas a sensitivity of ozone production to NOx was found in Shanghai. The high level of NOx emitted mainly by motor vehicles in urban Shanghai largely inhibited ozone formation and resulted in a much more rapid decrease in ozone concentrations after reaching the daily maximum around midday compared with the other three areas. Ozone pollution in the megacity of Tianjin was more representative of the regional condition, implying that combined efforts would be needed to bring the ozone problem under control within this region. Improved understanding of ozone formation in the two megacities would be quite imperative and critical to provide a solid scientific basis for designing effective ozone control strategies.

  15. 2009 Antarctic Ozone Hole

    NASA Image and Video Library

    2009-09-16

    The annual ozone hole has started developing over the South Pole, and it appears that it will be comparable to ozone depletions over the past decade. This composite image from September 10 depicts ozone concentrations in Dobson units, with purple and blues depicting severe deficits of ozone. "We have observed the ozone hole again in 2009, and it appears to be pretty average so far," said ozone researcher Paul Newman of NASA's Goddard Space Flight Center in Greenbelt, Md. "However, we won't know for another four weeks how this year's ozone hole will fully develop." Scientists are tracking the size and depth of the ozone hole with observations from the Ozone Monitoring Instrument on NASA's Aura spacecraft, the Global Ozone Monitoring Experiment on the European Space Agency's ERS-2 spacecraft, and the Solar Backscatter Ultraviolet instrument on the National Oceanic and Atmospheric Administration's NOAA-16 satellite. The depth and area of the ozone hole are governed by the amount of chlorine and bromine in the Antarctic stratosphere. Over the southern winter, polar stratospheric clouds (PSCs) form in the extreme cold of the atmosphere, and chlorine gases react on the cloud particles to release chlorine into a form that can easily destroy ozone. When the sun rises in August after months of seasonal polar darkness, the sunlight heats the clouds and catalyzes the chemical reactions that deplete the ozone layer. The ozone hole begins to grow in August and reaches its largest area in late September to early October. Recent observations and several studies have shown that the size of the annual ozone hole has stabilized and the level of ozone-depleting substances has decreased by 4 percent since 2001. But since chlorine and bromine compounds have long lifetimes in the atmosphere, a recovery of atmospheric ozone is not likely to be noticeable until 2020 or later. Visit NASA's Ozone Watch page for current imagery and data: ozonewatch.gsfc.nasa.gov/index.html

  16. The Antarctic Ozone Hole

    ERIC Educational Resources Information Center

    Jones, Anna E.

    2008-01-01

    Since the mid 1970s, the ozone layer over Antarctica has experienced massive destruction during every spring. In this article, we will consider the atmosphere, and what ozone and the ozone layer actually are. We explore the chemistry responsible for the ozone destruction, and learn about why conditions favour ozone destruction over Antarctica. For…

  17. Simultaneous measurements of ozone outside and inside cabins of two B-747 airliners and a Gates Learjet business jet

    NASA Technical Reports Server (NTRS)

    Perkins, P. J.; Briehl, D.

    1978-01-01

    Recently, passengers and crew members on long-distance commercial flights have filed complaints after suffering symptoms of ozone sickness. Studies were conducted to determine the frequency and concentration of ozone in commercial jet transports. The airliner problem with ozone prompted NASA to determine the ozone concentrations that might be encountered in the cabin of a small business jet. Simultaneous measurements of atmospheric ozone levels and ozone levels in the cabins of jet aircraft were necessary because of the wide and rapid variability of atmospheric ozone in flight. It was found that the atmospheric ozone concentrations in the case of B-747 airliners vary widely during a flight. A constant difference, or ratio, between ozone concentrations outside and inside the cabin does not exist.

  18. The efficacy of ozone therapy in neonatal rats with hypoxic ischemic brain injury.

    PubMed

    Resitoglu, B; Celik, Y; Komur, M; Polat, A; Erdogan, S; Arslankoylu, A E; Beydagi, H

    2018-01-01

    This study is aimed to determine the effect of ozone therapy in neonatal rats with experimentally induced hypoxic ischemic brain injury (HIBI). The study included 7-d-old male Wistar rats that were randomized to the sham, control, ozone 1, and ozone 2 groups. All rats except those in the sham group were kept in a hypoxia chamber, and then the rats in the control group were given 0.5 mL of saline. Those in the ozone 1 group were given ozone 1 mg kg-1 intraperitoneally, and those in the ozone 2 group were given ozone 2 mg kg-1 intraperitoneally. There were significantly fewer apoptotic neurons in the right hemispheres of the rats in the ozone 1 and ozone 2 groups than in the control group (p < 0.001 and p < 0.001, respectively). There were significantly fewer apoptotic neurons in the right hemispheres of the rats in the ozone 2 group than in the ozone 1 group (p < 0.001). Morris Water Maze (MWM) test results were similar in the ozone 2 and sham groups. The present study's findings show that ozone therapy reduced neuronal apoptosis and improved cognitive function in neonatal rats with experimentally induced HIBI (Tab. 2, Ref. 30).

  19. Ensemble simulations of the role of the stratosphere in the attribution of northern extratropical tropospheric ozone variability

    NASA Astrophysics Data System (ADS)

    Hess, P.; Kinnison, D.; Tang, Q.

    2015-03-01

    Despite the need to understand the impact of changes in emissions and climate on tropospheric ozone, the attribution of tropospheric interannual ozone variability to specific processes has proven difficult. Here, we analyze the stratospheric contribution to tropospheric ozone variability and trends from 1953 to 2005 in the Northern Hemisphere (NH) mid-latitudes using four ensemble simulations of the free running (FR) Whole Atmosphere Community Climate Model (WACCM). The simulations are externally forced with observed time-varying (1) sea-surface temperatures (SSTs), (2) greenhouse gases (GHGs), (3) ozone depleting substances (ODS), (4) quasi-biennial oscillation (QBO), (5) solar variability (SV) and (6) stratospheric sulfate surface area density (SAD). A detailed representation of stratospheric chemistry is simulated, including the ozone loss due to volcanic eruptions and polar stratospheric clouds. In the troposphere, ozone production is represented by CH4-NOx smog chemistry, where surface chemical emissions remain interannually constant. Despite the simplicity of its tropospheric chemistry, at many NH measurement locations, the interannual ozone variability in the FR WACCM simulations is significantly correlated with the measured interannual variability. This suggests the importance of the external forcing applied in these simulations in driving interannual ozone variability. The variability and trend in the simulated 1953-2005 tropospheric ozone from 30 to 90° N at background surface measurement sites, 500 hPa measurement sites and in the area average are largely explained on interannual timescales by changes in the 30-90° N area averaged flux of ozone across the 100 hPa surface and changes in tropospheric methane concentrations. The average sensitivity of tropospheric ozone to methane (percent change in ozone to a percent change in methane) from 30 to 90° N is 0.17 at 500 hPa and 0.21 at the surface; the average sensitivity of tropospheric ozone to the 100 hPa ozone flux (percent change in ozone to a percent change in the ozone flux) from 30 to 90° N is 0.19 at 500 hPa and 0.11 at the surface. The 30-90° N simulated downward residual velocity at 100 hPa increased by 15% between 1953 and 2005. However, the impact of this on the 30-90° N 100 hPa ozone flux is modulated by the long-term changes in stratospheric ozone. The ozone flux decreases from 1965 to 1990 due to stratospheric ozone depletion, but increases again by approximately 7% from 1990 to 2005. The first empirical orthogonal function of interannual ozone variability explains from 40% (at the surface) to over 80% (at 150 hPa) of the simulated ozone interannual variability from 30 to 90° N. This identified mode of ozone variability shows strong stratosphere-troposphere coupling, demonstrating the importance of the stratosphere in an attribution of tropospheric ozone variability. The simulations, with no change in emissions, capture almost 50% of the measured ozone change during the 1990s at a variety of locations. This suggests that a large portion of the measured change is not due to changes in emissions, but can be traced to changes in large-scale modes of ozone variability. This emphasizes the difficulty in the attribution of ozone changes, and the importance of natural variability in understanding the trends and variability of ozone. We find little relation between the El Niño-Southern Oscillation (ENSO) index and large-scale tropospheric ozone variability over the long-term record.

  20. Decreased diacylglycerol metabolism enhances ERK activation and augments CD8+ T cell functional responses.

    PubMed

    Riese, Matthew J; Grewal, Jashanpreet; Das, Jayajit; Zou, Tao; Patil, Vineet; Chakraborty, Arup K; Koretzky, Gary A

    2011-02-18

    Modulation of T cell receptor signal transduction in CD8(+) T cells represents a novel strategy toward enhancing the immune response to tumor. Recently, levels of guanine exchange factors, RasGRP and SOS, within T cells have been shown to represent a key determinant in the regulation of the analog to the digital activation threshold of Ras. One important for regulating activation levels of RasGRP is diacylglycerol (DAG), and its levels are influenced by diacylglycerol kinase-ζ (DGKζ), which metabolizes DAG into phosphatidic acid, terminating DAG-mediated Ras signaling. We sought to determine whether DGKζ-deficient CD8(+) T cells demonstrated enhanced in vitro responses in a manner predicted by the current model of Ras activation and to evaluate whether targeting this threshold confers enhanced CD8(+) T cell responsiveness to tumor. We observed that DGKζ-deficient CD8(+) T cells conform to most predictions of the current model of how RasGRP levels influence Ras activation. But our results differ in that the EC(50) value of stimulation is not altered for any T cell receptor stimulus, a finding that suggests a further degree of complexity to how DGKζ deficiency affects signals important for Ras and ERK activation. Additionally, we found that DGKζ-deficient CD8(+) T cells demonstrate enhanced responsiveness in a subcutaneous lymphoma model, implicating the analog to a digital conversion threshold as a novel target for potential therapeutic manipulation.

  1. Ozone from Wildfires: Peering through the Smog

    NASA Astrophysics Data System (ADS)

    Jaffe, D. A.; Baylon, P.; Wigder, N. L.; Collier, S.; Zhou, S.; Zhang, Q.; Alvarado, M. J.

    2014-12-01

    In the western US, many areas are near the current air quality standard for O3. Yet there is substantial inter-annual variability (IAV) in the number of days that exceed the O3 air quality threshold (currently 75 ppbv for an 8-hour average). We propose that wildfires are the dominant cause for this IAV. However there are large uncertainties around O3 production from wildfires due to numerous complicating factors. Ozone formation in wildfire plumes differs substantially from urban O3 production in several ways: substantial variations in the emissions, much larger aerosol loadings, a much greater variety of reactive and oxygenated VOCs, rapid and substantial formation of PAN and very different sources of HOx in the plume. These factors make it challenging to model wildfire impacts on photochemistry in the usual way. In this presentation we will show examples of three common situations based on data from the Mt. Bachelor Observatory: Rapid O3 formation (within one day) in a wildfire plume. Slow, but substantial, O3 formation (over days to a week) in a wildfire plume. No detectable O3 formation in a wildfire plume. We will interpret these results with respect to the observed NOy mixing ratios, the photochemical environment, the combustion efficiency, the plume transport and other factors and suggest some key experiments and modeling studies that can help further our understanding of wildfire O3 production.

  2. Comparison of crop yield sensitivity to ozone between open-top chamber and free-air experiments.

    PubMed

    Feng, Zhaozhong; Uddling, Johan; Tang, Haoye; Zhu, Jianguo; Kobayashi, Kazuhiko

    2018-02-02

    Assessments of the impacts of ozone (O 3 ) on regional and global food production are currently based on results from experiments using open-top chambers (OTCs). However, there are concerns that these impact estimates might be biased due to the environmental artifacts imposed by this enclosure system. In this study, we collated O 3 exposure and yield data for three major crop species-wheat, rice, and soybean-for which O 3 experiments have been conducted with OTCs as well as the ecologically more realistic free-air O 3 elevation (O 3 -FACE) exposure system; both within the same cultivation region and country. For all three crops, we found that the sensitivity of crop yield to the O 3 metric AOT40 (accumulated hourly O 3 exposure above a cut-off threshold concentration of 40 ppb) significantly differed between OTC and O 3 -FACE experiments. In wheat and rice, O 3 sensitivity was higher in O 3 -FACE than OTC experiments, while the opposite was the case for soybean. In all three crops, these differences could be linked to factors influencing stomatal conductance (manipulation of water inputs, passive chamber warming, and cultivar differences in gas exchange). Our study thus highlights the importance of accounting for factors that control stomatal O 3 flux when applying experimental data to assess O 3 impacts on crops at large spatial scales. © 2018 John Wiley & Sons Ltd.

  3. Increasing springtime ozone mixing ratios in the free troposphere over western North America.

    PubMed

    Cooper, O R; Parrish, D D; Stohl, A; Trainer, M; Nédélec, P; Thouret, V; Cammas, J P; Oltmans, S J; Johnson, B J; Tarasick, D; Leblanc, T; McDermid, I S; Jaffe, D; Gao, R; Stith, J; Ryerson, T; Aikin, K; Campos, T; Weinheimer, A; Avery, M A

    2010-01-21

    In the lowermost layer of the atmosphere-the troposphere-ozone is an important source of the hydroxyl radical, an oxidant that breaks down most pollutants and some greenhouse gases. High concentrations of tropospheric ozone are toxic, however, and have a detrimental effect on human health and ecosystem productivity. Moreover, tropospheric ozone itself acts as an effective greenhouse gas. Much of the present tropospheric ozone burden is a consequence of anthropogenic emissions of ozone precursors resulting in widespread increases in ozone concentrations since the late 1800s. At present, east Asia has the fastest-growing ozone precursor emissions. Much of the springtime east Asian pollution is exported eastwards towards western North America. Despite evidence that the exported Asian pollution produces ozone, no previous study has found a significant increase in free tropospheric ozone concentrations above the western USA since measurements began in the late 1970s. Here we compile springtime ozone measurements from many different platforms across western North America. We show a strong increase in springtime ozone mixing ratios during 1995-2008 and we have some additional evidence that a similar rate of increase in ozone mixing ratio has occurred since 1984. We find that the rate of increase in ozone mixing ratio is greatest when measurements are more heavily influenced by direct transport from Asia. Our result agrees with previous modelling studies, which indicate that global ozone concentrations should be increasing during the early part of the twenty-first century as a result of increasing precursor emissions, especially at northern mid-latitudes, with western North America being particularly sensitive to rising Asian emissions. We suggest that the observed increase in springtime background ozone mixing ratio may hinder the USA's compliance with its ozone air quality standard.

  4. Increasing Springtime Ozone Mixing Ratios in the Free Troposphere Over Western North America

    NASA Technical Reports Server (NTRS)

    Cooper, O. R.; Parrish, D. D.; Stohl, A.; Trainer, M.; Nedelec, P.; Thouret, V.; Cammas, J. P.; Oltmans, S. J.; Johnson, B. J.; Tarasick, D.; hide

    2010-01-01

    In the lowermost layer of the atmosphere - the troposphere - ozone is an important source of the hydroxyl radical, an oxidant that breaks down most pollutants and some greenhouse gases. High concentrations of tropospheric ozone are toxic, however, and have a detrimental effect on human health and ecosystem productivity1. Moreover, tropospheric ozone itself acts as an effective greenhouse gas. Much of the present tropospheric ozone burden is a consequence of anthropogenic emissions of ozone precursors resulting in widespread increases in ozone concentrations since the late 1800s. At present, east Asia has the fastest-growing ozone precursor emissions. Much of the springtime east Asian pollution is exported eastwards towards western North America. Despite evidence that the exported Asian pollution produces ozone, no previous study has found a significant increase in free tropospheric ozone concentrations above the western USA since measurements began in the late 1970s. Here we compile springtime ozone measurements from many different platforms across western North America. We show a strong increase in springtime ozone mixing ratios during 1995-2008 and we have some additional evidence that a similar rate of increase in ozone mixing ratio has occurred since 1984. We find that the rate of increase in ozone mixing ratio is greatest when measurements are more heavily influenced by direct transport from Asia. Our result agrees with previous modelling studies, which indicate that global ozone concentrations should be increasing during the early part of the twenty-first century as a result of increasing precursor emissions, especially at northern mid-latitudes, with western North America being particularly sensitive to rising Asian emissions. We suggest that the observed increase in springtime background ozone mixing ratio may hinder the USA s compliance with its ozone air quality standard.

  5. Fate of return activated sludge after ozonation: an optimization study for sludge disintegration.

    PubMed

    Demir, Ozlem; Filibeli, Ayse

    2012-09-01

    The effects of ozonation on sludge disintegration should be investigated before the application of ozone during biological treatment, in order to minimize excess sludge production. In this study, changes in sludge and supernatant after ozonation of return activated sludge were investigated for seven different ozone doses. The optimum ozone dose to avoid inhibition of ozonation and high ozone cost was determined in terms of disintegration degree as 0.05 g O3/gTS. Suspended solid and volatile suspended solid concentrations of sludge decreased by 77.8% and 71.6%, respectively, at the optimum ozone dose. Ozonation significantly decomposed sludge flocs. The release of cell contents was proved by the increase of supernatant total nitrogen (TN) and phosphorus (TP). While TN increased from 7 mg/L to 151 mg/L, TP increased from 8.8 to 33 mg/L at the optimum ozone dose. The dewaterability and filterability characteristics of the ozonated sludge were also examined. Capillary suction time increased with increasing ozone dosage, but specific resistance to filtration increased to a specific value and then decreased dramatically. The particle size distribution changed significantly as a result of floc disruption at an optimum dose of 0.05 gO3/gTS.

  6. [The two ozone problems: too much in the troposphere, too little in the stratosphere].

    PubMed

    Staehelin, J

    1992-03-10

    Trends analysis based on the long-term Swiss ozone measurements from Arosa and Payerne operationally performed by the Swiss Meteorological Institute are presented. These measurement include stratospheric ozone (approximately 90% of total ozone) and tropospheric ozone. The total ozone measurements from Arosa, the world longest series started at 1926, indicate, that total ozone has declined since about 1970 by approximately 5%. The ozone balloon soundings, operationally performed at Payerne since 1969 (2-3 ascents per week) show, that stratospheric ozone has decreased strongly in the last 20 years, whereas tropospheric ozone, remarkably has increased during this period. The relative change was strongest in the troposphere (more than 10% per decade, 3-4% increase per year during 1982-1988). However, on an absolute scale, changes in the stratosphere were strongest (relative decrease: 6 to 7% per decade at 20-22 km). The present scientific theories of the two ozone problems are reviewed: stratospheric ozone decrease was caused by the anthropogenic emissions of fluorochlorocarbons and other compounds mainly released from the earth surface. Tropospheric ozone has increased due to photochemical production of mainly anthropogenically emitted nitrogen oxides, volatile organic compounds and CO.

  7. Aircraft cabin ozone measurements on B747-100 and B747-SP aircraft: Correlations with atmospheric ozone and ozone encounter statistics

    NASA Technical Reports Server (NTRS)

    Perkins, P. J.; Holdeman, J. D.; Gauntner, D. J.

    1978-01-01

    Simultaneous measurements of atmospheric (outside) ozone concentration and ozone levels in the cabin of the B747-100 and B747-SP airliners were made by NASA to evaluate the aircraft cabin ozone contamination problem. Instrumentation on these aircraft measured ozone from an outside probe and at one point in the cabin. Average ozone in the cabin of the B747-100 was 39 percent of the outside. Ozone in the cabin of the B747-SP measured 82 percent of the outside, before corrective measures. Procedures to reduce the ozone in this aircraft included changes in the cabin air circulation system, use of the high-temperature 15th stage compressor bleed, and charcoal filters in the inlet cabin air ducting, which as separate actions reduced the ozone to 58, 19 and 5 percent, respectively. The potential for the NASA instrumented B747 aircraft to encounter high levels of cabin ozone was derived from atmospheric oxone measurements on these aircraft. Encounter frequencies for two B747-100's were comparable even though the route structures were different. The B747-SP encountered high ozone than did the B747-100's.

  8. Impacts of ozone-vegetation coupling and feedbacks on global air quality, ecosystems and food security

    NASA Astrophysics Data System (ADS)

    Tai, A. P. K.

    2016-12-01

    Surface ozone is an air pollutant of significant concerns due to its harmful effects on human health, vegetation and crop productivity. Chronic ozone exposure is shown to reduce photosynthesis and interfere with gas exchange in plants, thereby influencing surface energy balance and biogeochemical fluxes with important ramifications for climate and atmospheric composition, including possible feedbacks onto ozone itself that are not well understood. Ozone damage on crops has been well documented, but a mechanistic understanding is not well established. Here we present several results pertaining to the effects of ozone-vegetation coupling on air quality, ecosystems and agriculture. Using the Community Earth System Model (CESM), we find that inclusion of ozone damage on plants reduces the global land carbon sink by up to 5%, while simulated ozone is enhanced by up to 6 ppbv North America, Europe and East Asia. This strong positive feedback on ozone air quality via ozone-vegetation coupling arises mainly from reduced stomatal conductance, which induces two feedback pathways: 1) reduced dry deposition and ozone uptake; and 2) reduced evapotranspiration that enhances vegetation temperature and thus isoprene emission. Using the same ozone-vegetation scheme in a crop model within CESM, we further examine the impacts of historical ozone exposure on global crop production. We contrast our model results with a separate statistical analysis designed to characterize the spatial variability of crop-ozone-temperature relationships and account for the confounding effect of ozone-temperature covariation, using multidecadal global datasets of crop yields, agroclimatic variables and ozone exposures. We find that several crops (especially C4 crops such as maize) exhibit stronger sensitivities to ozone than found by field studies or in CESM simulations. We also find a strong anticorrelation between crop sensitivities and average ozone levels, reflecting biological adaptive ozone resistance that is not accounted for in current generation of crop models. Our results show that a more complete understanding of ozone-vegetation interactions is necessary to derive more realistic future projections of climate, air quality, ecosystem functions and food security.

  9. Surface ozone in China: present-day distribution and long-term changes

    NASA Astrophysics Data System (ADS)

    Xu, X.; Lin, W.; Xu, W.

    2017-12-01

    Reliable knowledge of spatio-temporal variations of surface ozone is highly needed to assess the impacts of ozone on human health, ecosystem and climate. Although regional distributions and trends of surface ozone in European and North American countries have been well characterized, little is known about the variability of surface ozone in many other countries, including China, where emissions of ozone precursors have been changing rapidly in recent decades. Here we present the first comprehensive description of present-day (2013-2017) distribution and long-term changes of surface ozone in mainland China. Recent ozone measurements from China's air quality monitoring network (AQMN) are analyzed to show present-day distributions of a few ozone exposure metrics for urban environment. Long-term measurements of ozone at six background sites, a rural site and an urban are used to study the trends of ozone in background, rural and urban air, respectively. The average levels of ozone at the AQMN sites (mainly urban) are close to those found at many European and North American sites. However, ozone at most of the sites shows very large diurnal and seasonal variations so that ozone nonattainment can occur in many cities, particularly those in the North China Plain (NCP), the south of Northeast China (NEC), the Yangtze River Delta (YRD), the Pearl River Delta (PRD), and the Sichuan Basin-Chongqing region (SCB). In all these regions, particularly in the NCP, the maximum daily 8-h average (MDA8) ozone concentration can significantly exceed the national limit (75 ppb). High annual sum of ozone means over 35 ppb (SOMO35) exist mainly in the NCP, NEC and YRD, with regional averages over 4000 ppb·d. Surface ozone has significantly increased at Waliguan (a baseline site in western China) and Shangdianzi (a background site in the NCP), and decreased in winter and spring at Longfengshan (a background site in Northeast China). No clear trend can be derived from long-term measurements of ozone at other sites. Further attention should be paid to future changes of ozone in populated regions of China. Actions are urgently needed to control ozone pollution in the NCP and YRD.

  10. Effects of black carbon and boundary layer interaction on surface ozone in Nanjing, China

    NASA Astrophysics Data System (ADS)

    Gao, Jinhui; Zhu, Bin; Xiao, Hui; Kang, Hanqing; Pan, Chen; Wang, Dongdong; Wang, Honglei

    2018-05-01

    As an important solar radiation absorbing aerosol, the effect of black carbon (BC) on surface ozone, via reducing photolysis rate, has been widely discussed by offline model studies. However, BC-boundary layer (BL) interactions also influence surface ozone. Using the online model simulations and process analysis, we demonstrate the significant impact of BC-BL interaction on surface ozone in Nanjing. The absorbing effect of BC heats the air above the BL and suppresses and delays the development of the BL, which eventually leads to a change in surface ozone via a change in the contributions from chemical and physical processes (photochemistry, vertical mixing and advection). For chemical processes, the suppression of the BL leads to large amounts of ozone precursors being confined below the BL which has an increased effect on ozone chemical production and offsets the decrease caused by the reduction of the photolysis rate, thus enhancing ozone chemical formation from 10:00 to 12:00 LT. Furthermore, changes in physical processes, especially the vertical mixing process, show a more significant influence on surface ozone. The weakened turbulence, caused by the suppressed BL, entrains much less ozone aloft down to the surface. Finally, summing-up the changes in the processes, surface ozone reduces before noon and the maximum reduction reaches 16.4 ppb at 12:00 LT. In the afternoon, the changes in chemical process are small which inconspicuously influence surface ozone. However, change in the vertical mixing process still influences surface ozone significantly. Due to the delayed development of the BL, there are obvious ozone gradients around the top of BL. Therefore, high concentrations of ozone aloft can still be entrained down to the surface which offsets the reduction of surface ozone. Comparing the changes in the processes, the change in vertical mixing plays the most important role in impacting surface ozone. Our results highlight the great impacts BC-BL interactions have on surface ozone by influencing the ozone contribution from physical process. This suggests that more attention should be paid to the mechanism of aerosol-BL interactions when controlling ozone pollution.

  11. The Total Ozone Series of Arosa: History, Homogenization and new results using statistical extreme value theory

    NASA Astrophysics Data System (ADS)

    Staehelin, J.; Rieder, H. E.; Maeder, J. A.; Ribatet, M.; Davison, A. C.; Stübi, R.

    2009-04-01

    Atmospheric ozone protects the biota living at the Earth's surface from harmful solar UV-B and UV-C radiation. The global ozone shield is expected to gradually recover from the anthropogenic disturbance of ozone depleting substances (ODS) in the coming decades. The stratospheric ozone layer at extratropics might significantly increase above the thickness of the chemically undisturbed atmosphere which might enhance ozone concentrations at the tropopause altitude where ozone is an important greenhouse gas. At Arosa, a resort village in the Swiss Alps, total ozone measurements started in 1926 leading to the longest total ozone series of the world. One Fery spectrograph and seven Dobson spectrophotometers were operated at Arosa and the method used to homogenize the series will be presented. Due to its unique length the series allows studying total ozone in the chemically undisturbed as well as in the ODS loaded stratosphere. The series is particularly valuable to study natural variability in the period prior to 1970, when ODS started to affect stratospheric ozone. Concepts developed by extreme value statistics allow objective definitions of "ozone extreme high" and "ozone extreme low" values by fitting the (daily mean) time series using the Generalized Pareto Distribution (GPD). Extreme high ozone events can be attributed to effects of ElNino and/or NAO, whereas in the chemically disturbed stratosphere high frequencies of extreme low total ozone values simultaneously occur with periods of strong polar ozone depletion (identified by statistical modeling with Equivalent Stratospheric Chlorine times Volume of Stratospheric Polar Clouds) and volcanic eruptions (such as El Chichon and Pinatubo).

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newchurch, M.

    The objectives of this research were to: (1) examine empirically the aerosol effect on Umkehr ozone profiles using SAGE II aerosol and ozone data; (2) examine theoretically the aerosol effect on Umkehr ozone profiles; (3) examine the differences between SAGE II ozone profiles and both old- and new-format Umkehr ozone profiles for ozone-trend information; (4) reexamine SAGE I-Umkehr ozone differences with the most recent version of SAGE I data; and (5) contribute to the SAGE II science team.

  13. Method for automatic determination of soybean actual evapotranspiration under open top chambers (OTC) subjected to effects of water stress and air ozone concentration.

    PubMed

    Rana, Gianfranco; Katerji, Nader; Mastrorilli, Marcello

    2012-10-01

    The present study describes an operational method, based on the Katerji et al. (Eur J Agron 33:218-230, 2010) model, for determining the daily evapotranspiration (ET) for soybean inside open top chambers (OTCs). It includes two functions, calculated day par day, making it possible to separately take into account the effects of concentrations of air ozone and plant water stress. This last function was calibrated in function of the daily values of actual water reserve in the soil. The input variables of the method are (a) the diurnal values of global radiation and temperature, usually measured routinely in a standard weather station; (b) the daily values of the AOT40 index accumulated (accumulated ozone over a threshold of 40 ppb during daylight hours, when global radiation exceeds 50 Wm(-2)) determined inside the OTC; and (c) the actual water reserve in the soil, at the beginning of the trial. The ensemble of these input variables can be automatable; thus, the proposed method could be applied in routine. The ability of the method to take into account contrasting conditions of ozone air concentration and water stress was evaluated over three successive years, for 513 days, in ten crop growth cycles, excluding the days employed to calibrate the method. Tests were carried out in several chambers for each year and take into account the intra- and inter-year variability of ET measured inside the OTCs. On the daily scale, the slope of the linear regression between the ET measured by the soil water balance and that calculated by the proposed method, under different water conditions, are 0.98 and 1.05 for the filtered and unfiltered (or enriched) OTCs with root mean square error (RMSE) equal to 0.77 and 1.07 mm, respectively. On the seasonal scale, the mean difference between measured and calculated ET is equal to +5% and +11% for the filtered and unfiltered OTCs, respectively. The ability of the proposed method to estimate the daily and seasonal ET inside the OTCs is therefore satisfactory following inter- and intra-annual tests. Finally, suggestions about the applications of the proposed method for other species, different from soybean, were also discussed.

  14. Microplastic Effect Thresholds for Freshwater Benthic Macroinvertebrates

    PubMed Central

    2018-01-01

    Now that microplastics have been detected in lakes, rivers, and estuaries all over the globe, evaluating their effects on biota has become an urgent research priority. This is the first study that aims at determining the effect thresholds for a battery of six freshwater benthic macroinvertebrates with different species traits, using a wide range of microplastic concentrations. Standardized 28 days single species bioassays were performed under environmentally relevant exposure conditions using polystyrene microplastics (20–500 μm) mixed with sediment at concentrations ranging from 0 to 40% sediment dry weight (dw). Microplastics caused no effects on the survival of Gammarus pulex, Hyalella azteca, Asellus aquaticus, Sphaerium corneum, and Tubifex spp. and no effects were found on the reproduction of Lumbriculus variegatus. No significant differences in growth were found for H. azteca, A. aquaticus, S. corneum, L. variegatus, and Tubifex spp. However, G. pulex showed a significant reduction in growth (EC10 = 1.07% sediment dw) and microplastic uptake was proportional with microplastic concentrations in sediment. These results indicate that although the risks of environmentally realistic concentrations of microplastics may be low, they still may affect the biodiversity and the functioning of aquatic communities which after all also depend on the sensitive species. PMID:29337537

  15. Microplastic Effect Thresholds for Freshwater Benthic Macroinvertebrates.

    PubMed

    Redondo-Hasselerharm, Paula E; Falahudin, Dede; Peeters, Edwin T H M; Koelmans, Albert A

    2018-02-20

    Now that microplastics have been detected in lakes, rivers, and estuaries all over the globe, evaluating their effects on biota has become an urgent research priority. This is the first study that aims at determining the effect thresholds for a battery of six freshwater benthic macroinvertebrates with different species traits, using a wide range of microplastic concentrations. Standardized 28 days single species bioassays were performed under environmentally relevant exposure conditions using polystyrene microplastics (20-500 μm) mixed with sediment at concentrations ranging from 0 to 40% sediment dry weight (dw). Microplastics caused no effects on the survival of Gammarus pulex, Hyalella azteca, Asellus aquaticus, Sphaerium corneum, and Tubifex spp. and no effects were found on the reproduction of Lumbriculus variegatus. No significant differences in growth were found for H. azteca, A. aquaticus, S. corneum, L. variegatus, and Tubifex spp. However, G. pulex showed a significant reduction in growth (EC 10 = 1.07% sediment dw) and microplastic uptake was proportional with microplastic concentrations in sediment. These results indicate that although the risks of environmentally realistic concentrations of microplastics may be low, they still may affect the biodiversity and the functioning of aquatic communities which after all also depend on the sensitive species.

  16. Urban and agricultural sources of pyrethroid insecticides to the Sacramento-San Joaquin Delta of California.

    PubMed

    Weston, Donald P; Lydy, Michael J

    2010-03-01

    While studies have documented the presence of pyrethroid insecticides at acutely toxic concentrations in sediments, little quantitative data on sources exist. Urban runoff, municipal wastewater treatment plants and agricultural drains in California's Sacramento-San Joaquin River Delta were sampled to understand their importance as contributors of these pesticides to surface waters. Nearly all residential runoff samples were toxic to the amphipod, Hyalella azteca, and contained pyrethroids at concentrations exceeding acutely toxic thresholds, in many cases by 10-fold. Toxicity identification evaluation data were consistent with pyrethroids, particularly bifenthrin and cyfluthrin, as the cause of toxicity. Pyrethroids passed through secondary treatment systems at municipal wastewater treatment facilities and were commonly found in the final effluent, usually near H. azteca 96-h EC(50) thresholds. Agricultural discharges in the study area only occasionally contained pyrethroids and were also occasional sources of toxicity related to the organophosphate insecticide chlorpyrifos. Discharge of the pyrethroid bifenthrin via urban stormwater runoff was sufficient to cause water column toxicity in two urban creeks, over at least a 30 km reach of the American River, and at one site in the San Joaquin River, though not in the Sacramento River.

  17. 77 FR 46755 - Notification of a Public Meeting of the Clean Air Scientific Advisory Committee (CASAC) Ozone...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-06

    ... Scientific Advisory Committee (CASAC) Ozone Review Panel AGENCY: Environmental Protection Agency (EPA... the CASAC Ozone Review Panel to conduct a peer review of EPA's Integrated Science Assessment for Ozone... Assessment for Ozone--First External Review Draft (July 2012), Welfare Risk and Exposure Assessment for Ozone...

  18. Understanding Ozone: Exploring the Good and Bad Facets of a Famous Gas.

    ERIC Educational Resources Information Center

    Hanif, Muhammad

    1995-01-01

    Presents activities that help students distinguish between the beneficial layer of stratospheric ozone and the dangerous ground-level or tropospheric ozone, understand the chemical processes of ozone breakdown in the stratosphere, find the sources of ground-level ozone, and explore the differences in the patterns of ozone concentration over the…

  19. Ozone in Sequoia National Park: Linking Ozone Production in the San Joaquin Valley to Trends in Vegetative Impacts in Sequoia National Park from 2000-2016

    NASA Astrophysics Data System (ADS)

    Buysse, C. E.; Pusede, S.; Kotsakis, A.

    2016-12-01

    Sequoia National Park (SNP) has the worst ozone air pollution of any National Park in the United States. Ozone pollution levels in SNP are high enough to exert damaging impacts on humans, animals, and vegetation. The major source of ozone to SNP is chemical production within the nearby and ozone-polluted San Joaquin Valley (SJV), which is then transported out of the valley into the park. Emission controls to reduce ozone in the SJV have been in place for the last two decades and these controls should have had the effect of altering ozone levels within SNP. This work has two aims. First, we investigate the chemistry driving trends in ozone in SNP and link these changes to trends in ozone in the SJV. Second, we consider both the metrics and time frames that best capture ozone trends contributing to vegetative damage, as these are not well represented in assessments of human health-based ambient air quality standards over an entire ozone season.

  20. Ozone trends over the United States at different times of day

    NASA Astrophysics Data System (ADS)

    Yan, Yingying; Lin, Jintai; He, Cenlin

    2018-01-01

    In the United States, the decline of summertime daytime peak ozone in the last 20 years has been clearly connected to reductions in anthropogenic emissions. However, questions remain about how and through what mechanisms ozone at other times of day have changed over recent decades. Here we analyze the interannual variability and trends of ozone at different hours of day, using observations from about 1000 US sites during 1990-2014. We find a clear diurnal cycle both in the magnitude of ozone trends and in the relative importance of climate variability versus anthropogenic emissions to ozone changes. Interannual climate variability has mainly been associated with the detrended fluctuation in the US annual daytime ozone over 1990-2014, with a much smaller effect on the nighttime ozone. Reductions in anthropogenic emissions of nitrogen oxides have led to substantial growth in the US annual average nighttime ozone due to reduced ozone titration, while the summertime daytime ozone has declined. Environmental policymaking might consider further improvements to reduce ozone levels at night and other non-peak hours.

  1. Quantification of Mesophyll Resistance and Apoplastic Ascorbic Acid as an Antioxidant for Tropospheric Ozone in Durum Wheat (Triticum durum Desf. cv. Camacho)

    PubMed Central

    de la Torre, Daniel

    2008-01-01

    The daily variations in cellular and apoplastic ascorbic acid and dehydroascorbic acid levels in a Mediterranean durum wheat cultivar (Triticum durum Desf. cv. Camacho) were analyzed in order to relate them to ambient ozone exposure and to subsequent stomatally absorbed ozone fluxes. The aim of this study is to prove the effectiveness and accuracy of a computer model (SODA) to calculate the mesophyll resistance (rm) to ozone uptake, the percentage of ozone detoxification by apoplastic ascorbic acid, and the ozone flux to the plasmalemma (Fm) in a Mediterranean durum wheat cultivar. These calculated factors were related to apoplastic ascorbic acid levels and to ambient ozone concentrations. These relationships were obtained with a view to explaining the detoxification of ozone by apoplastic ascorbic acid. Ozone detoxifications of up to 52% were found at midday, when maximum ozone concentrations and maximum apoplastic ascorbic acid are seen. Mesophyll resistance was minimum at this time, and ozone flux to the plasmalemma was reduced because of the reaction of ozone with apoplastic ascorbic acid. PMID:19082416

  2. Quantification of mesophyll resistance and apoplastic ascorbic acid as an antioxidant for tropospheric ozone in durum wheat (Triticum durum Desf. cv. Camacho).

    PubMed

    de la Torre, Daniel

    2008-12-14

    The daily variations in cellular and apoplastic ascorbic acid and dehydroascorbic acid levels in a Mediterranean durum wheat cultivar (Triticum durum Desf. cv. Camacho) were analyzed in order to relate them to ambient ozone exposure and to subsequent stomatally absorbed ozone fluxes. The aim of this study is to prove the effectiveness and accuracy of a computer model (SODA) to calculate the mesophyll resistance (rm) to ozone uptake, the percentage of ozone detoxification by apoplastic ascorbic acid, and the ozone flux to the plasmalemma (Fm) in a Mediterranean durum wheat cultivar. These calculated factors were related to apoplastic ascorbic acid levels and to ambient ozone concentrations. These relationships were obtained with a view to explaining the detoxification of ozone by apoplastic ascorbic acid. Ozone detoxifications of up to 52% were found at midday, when maximum ozone concentrations and maximum apoplastic ascorbic acid are seen. Mesophyll resistance was minimum at this time, and ozone flux to the plasmalemma was reduced because of the reaction of ozone with apoplastic ascorbic acid.

  3. Analysis of year-to-year ozone variation over the subtropical western Pacific region using EP_TOMS data and CCSR/NIES nudging CTM

    NASA Astrophysics Data System (ADS)

    Zhou, L. B.; Akiyoshi, H.; Kawahira, K.

    2003-10-01

    The year-to-year ozone variation over the subtropical western Pacific region is studied, especially the ozone lows in the 1996/1997, 1998/1999, and 2001/2002 winters, using the Earth Probe Total Ozone Mapping Spectrometer (EP_TOMS) ozone data from August 1996 to July 2002. Regression analyses show that dynamical signals, such as the quasi-biennial oscillation, play an important role in determining total ozone variation. A nudging chemical transport model (CTM) is used to simulate the year-to-year ozone variation and explain the mechanism for producing ozone lows in a three-dimensional distribution of ozone. The CTM was developed using the Center for Climate System Research/National Institute for Environmental Studies (CCSR/NIES) atmospheric general circulation model and introducing a nudging process for temperature and horizontal wind velocity. The year-to-year ozone variation, especially the winter ozone low, is well simulated by the model excluding heterogeneous reaction processes between 45°S and 45°N latitude. Results show that the year-to-year ozone variation is mainly controlled by dynamical transport processes.

  4. Ozone trends over the United States at different times of day

    NASA Astrophysics Data System (ADS)

    Lin, J.; Yan, Y.

    2017-12-01

    In the United States, the decline of summertime daytime peak ozone in the last 20 years has been clearly connected to reductions in anthropogenic emissions. Yet questions remain on how and through what mechanisms ozone at other times of day have changed over the recent decades. Here we analyze the interannual variability and trends of ozone at different hours of day, using observations from about 1000 US sites during 1990-2014. We find a clear diurnal cycle both in the magnitude of ozone trends and in the relative importance of climate variability versus anthropogenic emissions to ozone changes. Interannual climate variability has mainly been associated with the de-trended fluctuation in the US annual daytime ozone over 1990-2014, with a much smaller effect on the nighttime ozone. Reductions in anthropogenic emissions of nitrogen oxides have led to substantial growth in the US annual average nighttime ozone due to reduced ozone titration, while the summertime daytime ozone has declined. Environmental policymaking might consider further improvements to reduce ozone levels at night and other non-peak hours.

  5. Ozone, ozone production rates and NO observations on the outskirts of Quito, Ecuador

    NASA Astrophysics Data System (ADS)

    Cazorla, M.

    2014-12-01

    Air quality measurements of ambient ozone, ozone production rates and nitrogen oxides, in addition to baseline meterology observations, are being taken at a recently built roof-top facility on the campus of Universidad San Francisco de Quito, in Ecuador. The measurement site is located in Cumbayá, a densely populated valley adjacent to the city of Quito. Time series of ozone and NO are being obtained with commercial air quality monitors. Rush-hour peaks of NO, above 100 ppb, have been observed, while daytime ozone levels are low. In addition, ozone production rates are being measured with the Ecuadorian version of the MOPS, Measurement of Ozone Production Sensor, originally built at Penn State University in 2010. NO and ozone observations and test results of measured ozone production rates will be presented.

  6. Distribution and urban-suburban differences in ground-level ozone and its precursors over Shenyang, China

    NASA Astrophysics Data System (ADS)

    Liu, Ningwei; Ren, Wanhui; Li, Xiaolan; Ma, Xiaogang; Zhang, Yunhai; Li, Bingkun

    2018-03-01

    Hourly mixing ratio data of ground-level ozone and its main precursors at ambient air quality monitoring sites in Shenyang during 2013-2015 were used to survey spatiotemporal variations in ozone. Then, the transport of ozone and its precursors among urban, suburban, and rural sites was examined. The correlations between ozone and some key meteorological factors were also investigated. Ozone and O x mixing ratios in Shenyang were higher during warm seasons and lower during cold ones, while ozone precursors followed the opposite cycle. Ozone mixing ratios reached maximum and minimum values in the afternoon and morning, respectively, reflecting the significant influence of photochemical production during daytime and depletion via titration during nighttime. Compared to those in downtown Shenyang, ozone mixing ratios were higher and the occurrence of peak values were later in suburban and rural areas downwind of the prevailing wind. The differences were most significant in summer, when the ozone mixing ratios at one suburban downwind site reached a maximum value of 35.6 ppb higher than those at the downtown site. This suggests that photochemical production processes were significant during the transport of ozone precursors, particularly in warm seasons with sufficient sunlight. Temperature, total radiation, and wind speed all displayed positive correlations with ozone concentration, reflecting their important role in accelerating ozone formation. Generally, the correlations between ozone and meteorological factors were slightly stronger at suburban sites than in urban areas, indicating that ozone levels in suburban areas were more sensitive to these meteorological factors.

  7. Climate change impacts on projections of excess mortality at ...

    EPA Pesticide Factsheets

    We project the change in ozone-related mortality burden attributable to changes in climate between a historical (1995-2005) and near-future (2025-2035) time period while incorporating a non-linear and synergistic effect of ozone and temperature on mortality. We simulate air quality from climate projections varying only biogenic emissions and holding anthropogenic emissions constant, thus attributing changes in ozone only to changes in climate and independent of changes in air pollutant emissions. We estimate non-linear, spatially varying, ozone-temperature risk surfaces for 94 US urban areas using observeddata. Using the risk surfaces and climate projections we estimate daily mortality attributable to ozone exceeding 40 p.p.b. (moderate level) and 75 p.p.b. (US ozone NAAQS) for each time period. The average increases in city-specific median April-October ozone and temperature between time periods are 1.02 p.p.b. and 1.94 °F; however, the results variedby region . Increases in ozone because of climate change result in an increase in ozone mortality burden. Mortality attributed to ozone exceeding 40 p.p.b. increases by 7.7% (1 .6-14.2%). Mortality attributed to ozone exceeding 75 p.p.b. increases by 14.2% (1.628.9%). The absolute increase in excess ozone mortality is larger for changes in moderate ozone levels, reflecting the larger number of days with moderate ozone levels. In this study we evaluate changes in ozone related mortality due to changes in biogenic f

  8. The Tropospheric Ozone Assessment Report (TOAR): A community-wide effort to quantify tropospheric ozone in a rapidly changing world

    NASA Astrophysics Data System (ADS)

    Cooper, O. R.; Schultz, M.; Paoletti, E.; Galbally, I. E.; Naja, M. K.; Tarasick, D. W.; Evans, M. J.; Thompson, A. M.

    2017-12-01

    Tropospheric ozone is a greenhouse gas and pollutant detrimental to human health and crop and ecosystem productivity. Since 1990 a large portion of the anthropogenic emissions that react in the atmosphere to produce ozone has shifted from North America and Europe to Asia. This rapid shift, coupled with limited ozone monitoring in developing nations, left scientists unable to answer the most basic questions: Which regions of the world have the greatest human and plant exposure to ozone pollution? Is ozone continuing to decline in nations with strong emissions controls? To what extent is ozone increasing in the developing world? How can the atmospheric sciences community facilitate access to the ozone metrics necessary for quantifying ozone's impact on human health and crop/ecosystem productivity? To answer these questions the International Global Atmospheric Chemistry Project (IGAC) initiated the Tropospheric Ozone Assessment Report (TOAR). With over 220 member scientists and air quality specialists from 36 nations, TOAR's mission is to provide the research community with an up-to-date scientific assessment of tropospheric ozone's global distribution and trends from the surface to the tropopause. TOAR has also built the world's largest database of surface ozone observations and generated ozone exposure and dose metrics at thousands of measurement sites around the world, freely accessible for research on the global-scale impact of ozone on climate, human health and crop/ecosystem productivity. Plots of these metrics show the regions of the world with the greatest ozone exposure for humans and crops/ecosystems, at least in areas where observations are available. The results also highlight regions where air quality is improving and where it has degraded. TOAR has also conducted the first intercomparison of tropospheric column ozone from ozonesondes and multiple satellite instruments, which provide similar estimates of the present-day tropospheric ozone burden.

  9. Ozone reaction with interior building materials: Influence of diurnal ozone variation, temperature and humidity

    NASA Astrophysics Data System (ADS)

    Rim, Donghyun; Gall, Elliott T.; Maddalena, Randy L.; Nazaroff, William W.

    2016-01-01

    Elevated tropospheric ozone concentrations are associated with increased morbidity and mortality. Indoor ozone chemistry affects human exposure to ozone and reaction products that also may adversely affect health and comfort. Reactive uptake of ozone has been characterized for many building materials; however, scant information is available on how diurnal variation of ambient ozone influences ozone reaction with indoor surfaces. The primary objective of this study is to investigate ozone-surface reactions in response to a diurnally varying ozone exposure for three common building materials: ceiling tile, painted drywall, and carpet tile. A secondary objective is to examine the effects of air temperature and humidity. A third goal is to explore how conditioning of materials in an occupied office building might influence subsequent ozone-surface reactions. Experiments were performed at bench-scale with inlet ozone concentrations varied to simulate daytime (ozone elevated) and nighttime (ozone-free in these experiments) periods. To simulate office conditions, experiments were conducted at two temperatures (22 °C and 28 °C) and three relative humidity values (25%, 50%, 75%). Effects of indoor surface exposures were examined by placing material samples in an occupied office and repeating bench-scale characterization after exposure periods of 1 and 2 months. Deposition velocities were observed to be highest during the initial hour of ozone exposure with slow decrease in the subsequent hours of simulated daytime conditions. Daily-average ozone reaction probabilities for fresh materials are in the respective ranges of (1.7-2.7) × 10-5, (2.8-4.7) × 10-5, and (3.0-4.5) × 10-5 for ceiling tile, painted drywall, and carpet tile. The reaction probability decreases by 7%-47% across the three test materials after two 8-h periods of ozone exposure. Measurements with the samples from an occupied office reveal that deposition velocity can decrease or increase with time. Influence of temperature and humidity on ozone-surface reactivity was not strong.

  10. Children's and adults' knowledge and models of reasoning about the ozone layer and its depletion

    NASA Astrophysics Data System (ADS)

    Leighton, Jacqueline P.; Bisanz, Gay L.

    2003-01-01

    As environmental concepts, the ozone layer and ozone hole are important to understand because they can profoundly influence our health. In this paper, we examined: (a) children's and adults' knowledge of the ozone layer and its depletion, and whether this knowledge increases with age' and (b) how the 'ozone layer' and 'ozone hole' might be structured as scientific concepts. We generated a standardized set of questions and used it to interview 24 kindergarten students, 48 Grade 3 students, 24 Grade 5 students, and 24 adults in university, in Canada. An analysis of participants' responses revealed that adults have more knowledge than children about the ozone layer and ozone hole, but both adults and children exhibit little knowledge about protecting themselves from the ozone hole. Moreover, only some participants exhibited 'mental models' in their conceptual understanding of the ozone layer and ozone hole. The implications of these results for health professionals, educators, and scientists are discussed.

  11. Simultaneous measurements of ozone outside and inside cabins of two B-747 airliners and a Gates Learjet business jet

    NASA Technical Reports Server (NTRS)

    Perkins, P. J.; Briel, D.

    1978-01-01

    The average amount of ozone measured in the cabins of two B-747 airliners varied from 40 percent to 80 percent of the atmospheric concentrations without special ozone destruction systems. A charcoal filter in the cabin air inlet system of one B-747 reduced the ozone to about 5 percent of the atmospheric concentration. A Learjet 23 was also instrumented with monitors to measure simultaneously the atmospheric and ozone concentrations. Results indicate that a significant portion of the atmospheric ozone is not destroyed in the pressurization system and remains in the aircraft cabin of the Learjet. For the two cabin configurations tested, the ozone retentions were 63 and 41 percent of the atmospheric ozone concentrations. Ozone concentrations measured in the cabin near the conditioned-air outlets were reduced only slightly from atmospheric ozone concentrations. It is concluded that a constant difference between ozone concentrations inside and outside the cabin does not exist.

  12. Ozone-initiated disinfection kinetics of Escherichia coli in water.

    PubMed

    Zuma, Favourite; Lin, Johnson; Jonnalagadda, Sreekanth B

    2009-01-01

    The effect of ozonation on the rate of disinfection of Escherichia coli was investigated as a function of ozone concentration, ozonation duration and flow rates. Ozone was generated in situ using Corona discharge method using compressed oxygen stream and depending on the oxygen flux the ozone concentrations ranged from 0.91-4.72 mg/L. The rate of disinfection of all the three microbes followed pseudo-first-order kinetics with respect to the microbe count and first order with respect to ozone concentration. The influence of pH and temperature the aqueous systems on the rate of ozone initiated disinfection of the microbe was investigated. The inactivation was faster at lower pH than at basic pH. Molecular ozone is found more effective in disinfection than hydroxyl radicals. Two reported mechanisms for antimicrobial activity of ozone in water systems from the literature are discussed. Based on the experimental findings a probable rate law and mechanism are proposed. Ozonation of natural waters significantly decreased the BOD levels of the control and microbe contaminated waters.

  13. The Application of TOMS Ozone, Aerosol and UV-B Data to Madagascar Air Quality Determination

    NASA Technical Reports Server (NTRS)

    Aikin, A.C.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Total Ozone Mapping Spectrometer (TOMS) data products for the area of Madagascar are presented. In addition to total ozone, aerosols and UV-B tropospheric ozone results are shown from 1979 to the present. Tropospheric ozone over Africa and Madagascar is enhanced by 10 to 15 DU in October. This maximum coincides with the time of maximum biomass area burning in Africa and Madagascar. Ozone observations were made from 1979 to 1999 using the TOMS tropospheric ozone convective cloud differential method. As a result of easterly trade winds, ozone originating on Madagascar is transported to the west over the Mozambique Channel. In El Nino years higher level westerly winds descend to transport low level ozone easterly. This results in African continental ozone being transported east of Madagascar. Long range transport of African ozone is observed during El Nino periods. The potential of TOMS and other space data for use in public education and research on Madagascar air quality is demonstrated.

  14. The Transition of Atmospheric Infrared Sounder Total Ozone Products to Operations

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Zavodsky, B. T.; Jedlovec, G. J.

    2014-01-01

    The National Aeronautics and Space Administration Short-term Prediction Research and Transition Center (NASA SPoRT) has transitioned a total column ozone product from the Atmospheric Infrared Sounder (AIRS) retrievals to the Weather Prediction Center and Ocean Prediction Center. The total column ozone product is used to diagnose regions of warm, dry, ozone-rich, stratospheric air capable of descending to the surface to create high-impact non-convective winds. Over the past year, forecasters have analyzed the Red, Green, Blue (RGB) Air Mass imagery in conjunction with the AIRS total column ozone to aid high wind forecasts. One of the limitations of the total ozone product is that it is difficult for forecasters to determine whether elevated ozone concentrations are related to stratospheric air or climatologically high values of ozone in certain regions. During the summer of 2013, SPoRT created an AIRS ozone anomaly product which calculates the percent of normal ozone based on a global stratospheric ozone mean climatology. With the knowledge that ozone values 125 percent of normal and greater typically represent stratospheric air; the anomaly product can be used with the total column ozone product to confirm regions of stratospheric air. This paper describes the generation of these products along with forecaster feedback concerning the use of the AIRS ozone products in conjunction with the RGB Air Mass product to access the utility and transition of the products.

  15. LaRC Modeling of Ozone Formation in San Antonio, Texas

    NASA Astrophysics Data System (ADS)

    Guo, F.; Griffin, R. J.; Bui, A.; Schulze, B.; Wallace, H. W., IV; Flynn, J. H., III; Erickson, M.; Kotsakis, A.; Alvarez, S. L.; Usenko, S.; Sheesley, R. J.; Yoon, S.

    2017-12-01

    Ozone (O3) is one of the most important trace species within the troposphere and results from photochemistry involving emissions from a complex array of sources. Ground-level O3 is detrimental to ecosystems and causes a variety of human health problems including respiratory irritation, asthma and reduction in lung capacity. However, the O3 Design Value in San Antonio, Texas, was in violation of the federal threshold set by the EPA (70 ppb, 8-hr max) based on the average for the most recent three-year period (2014-2016). To understand the sources of high O3 concentrations in this nonattainment area, we assembled and deployed a mobile air quality laboratory and operated it in two locations in the southeast (Traveler's World RV Park) and northwest (University of Texas at San Antonio) of downtown San Antonio during summer 2017 to measure O3 and its precursors, including total nitrogen oxides (NOx) and volatile organic compounds (VOCs). Additional measurements included temperature, relative humidity, pressure, solar radiation, wind speed, wind direction, total reactive nitrogen (NOy), carbon monoxide (CO), and aerosol composition and concentration. We will use the campaign data and the NASA Langley Research Center (LaRC) Zero-Dimensional Box Model (Crawford et al., 1999; Olson et al., 2006) to calculate O3 production rate, NOx and hydroxyl radical chain length, and NOx versus VOCs sensitivity at different times of a day with different photochemical and meteorological conditions. A key to our understanding is to combine model results with measurements of precursor gases, particle chemistry and particle size to support the identification of O3 sources, its major formation pathways, and how the ozone production efficiency (OPE) depends on various factors. The resulting understanding of the causes of high O3 concentrations in the San Antonio area will provide insight into future air quality protection.

  16. Ground based characterization of biomass burning aerosols during the South American Biomass Burning Analysis (SAMBBA) field experiment in Brazil during Sept - Oct 2012

    NASA Astrophysics Data System (ADS)

    Artaxo, Paulo; Ferreira de Brito, Joel; Varanda Rizzo, Luciana; Johnson, Ben; Haywood, Jim; Longo, Karla; Freitas, Saulo; Coe, Hugh

    2013-04-01

    Biomass burning is one of the major drivers for atmospheric composition in the Southern hemisphere. In Amazonia, deforestation rates have been steadily decreasing, from 27,000 Km² in 2004 to about 5,000 Km² in 2011. This large reduction (by factor 5) was not followed by similar reduction in aerosol loading in the atmosphere due to the increase in agricultural fires. AERONET measurements from 5 sites show a large year-to year variability due to climatic and socio-economic issues. Besides this strong reduction in deforestation rate, biomass burning emissions in Amazonia increases concentrations of aerosol particles, CO, ozone and other species, and also change the surface radiation balance in a significant way. To complement the long term biomass burning measurements in Amazonia, it was organized in 2012 the intensive campaign of the South American Biomass Burning Analysis (SAMBBA) experiment with an airborne and a ground based components. A sampling site was set up at Porto Velho, with measurements of aerosol size distribution, optical properties such as absorption and scattering at several wavelengths, organic aerosol characterization with an ACSM - Aerosol Chemical Speciation Monitor. CO, CO2 and O3 were also measured to characterize combustion efficiency and photochemical processes. Filters for trace elements measured by XRF and for OC/EC determined using a Sunset instrument were also collected. An AERONET CIMEL sunphotometer was operated in parallel with a multifilter radiometer (MFR). A large data set was collected from August to October 2012. PM2.5 aerosol concentrations up to 250 ug/m3 were measured, with up to 20 ug/m3 of black carbon. Ozone went up to 60 ppb at mid-day in August. At night time ozone was consumed completely most of the time. ACSM shows that more than 85% of the aerosol mass was organic with a clear diurnal pattern. The organic aerosol volatility was very variable depending on the air mass sampled over Porto Velho. Aerosol optical depth at the site was lower than previous years due to an early arrival of the wet season. Comparison between ground based measurements with aircraft observations will provide a detailed view of biomass burning aerosol properties in Amazonia.

  17. Development of KRISS standard reference photometer (SRP) for ambient ozone measurement

    NASA Astrophysics Data System (ADS)

    Lee, S.; Lee, J.

    2014-12-01

    Surface ozone has adverse impacts on human health and ecosystem. Accurate measurement of ambient ozone concentration is essential for developing effective mitigation strategies and understanding atmospheric chemistry. Korea Research Institute of Standards and Science (KRISS) has developed new ozone standard reference photometers (SRPs) for the calibration of ambient ozone instruments. The basic principle of the KRISS ozone SRPs is to determine the absorption of ultraviolet radiation at a specific wavelength, 253.7 nm, by ozone in the atmosphere. Ozone concentration is calculated by converting UV transmittance through the Beer-Lambert Law. This study introduces the newly developed ozone SRPs and characterizes their performance through uncertainty analysis and comparison with BIPM (International Bureau of Weights and Measures) SRP.

  18. Development of Compact Ozonizer with High Ozone Output by Pulsed Power

    NASA Astrophysics Data System (ADS)

    Tanaka, Fumiaki; Ueda, Satoru; Kouno, Kanako; Sakugawa, Takashi; Akiyama, Hidenori; Kinoshita, Youhei

    Conventional ozonizer with a high ozone output using silent or surface discharges needs a cooling system and a dielectric barrier, and therefore becomes a large machine. A compact ozonizer without the cooling system and the dielectric barrier has been developed by using a pulsed power generated discharge. The wire to plane electrodes made of metal have been used. However, the ozone output was low. Here, a compact and high repetition rate pulsed power generator is used as an electric source of a compact ozonizer. The ozone output of 6.1 g/h and the ozone yield of 86 g/kWh are achieved at 500 pulses per second, input average power of 280 W and an air flow rate of 20 L/min.

  19. Parameterizing the impacts of ozone-vegetation coupling and feedbacks on ozone air quality in a chemical transport model

    NASA Astrophysics Data System (ADS)

    Zhou, S.; Tai, A. P. K.; Lombardozzi, D.

    2016-12-01

    Apart from being an important greenhouse gas, tropospheric ozone is a significant air pollutant that is shown to have harmful effects both on human health and vegetation. Ozone damages vegetation mainly through reducing plant photosynthesis and stomatal conductance. Meanwhile, ozone is also strongly dependent on vegetation via various biogeochemical and physical processes. These interdependences between ozone and vegetation would constitute feedback mechanisms that can potentially alter ozone concentration itself, and should be considered in future climate and air quality projections. In this study, we first implement an empirical scheme for ozone damage on vegetation in the Community Land Model (CLM), and simulate the relative changes in leaf area indices (LAI) and stomatal conductance for three plant groups (consolidated from 15 plant functional types) at various prescribed ozone levels (from 0 ppb to 100 ppb). We find that all plant groups suffer the greatest decreases in LAI and stomatal conductance in regions with their greatest abundance, and grasses and crops show the most severe damage from ozone exposure compared with broadleaf and needleleaf groups, with an LAI reduction of as much as 50% in some areas even at an ozone level of 30 ppb. Using the CLM-simulated results, we develop a semi-empirical parameterization scheme to link prescribed ozone levels to the spatially varying simulated relative changes in LAI and stomatal conductance at model steady state. We implement the scheme in the GEOS-Chem chemical transport model so that ozone-vegetation chemical coupling via ozone dry deposition and biogenic volatile organic compound (VOC) emissions can be simulated online. Model simulations indicate that ozone effect on stomatal conductance (which modifies dry deposition) appears to be the dominant feedback pathway influencing surface ozone, whereas ozone-mediated LAI changes (which affects biogenic VOC emissions) appear to play a lesser role. This work is the first attempt to account for online ozone-vegetation coupling in a chemical transport model, with important ramifications for more realistic assessment of ozone air quality under a constantly evolving climate and land cover.

  20. Quantitative analysis of interaction between the free troposphere and planetary boundary layer using multiple measurements and large eddy simulation model

    NASA Astrophysics Data System (ADS)

    Huang, Guanyu

    We investigate the interaction between the free troposphere (FT) and planetary boundary layer (PBL) using multiple measurements and Dutch Atmospheric Large Eddy Simulation (DALES) coupled with a chemical module. A residual layer (RL) storing high ozone concentrations can significantly influence ground ozone concentration through the entrainment process whereby the RL aloft is incorporated into the growing convective boundary layer (CBL) during the morning transition. We use DALES model coupled with a chemical module to simultaneously study the dynamical and chemical impacts of a RL (200-1200 m above ground level (AGL)) on ground-level (0-200 m AGL) ozone concentrations. Four numerical experiments test these interactions: 1) a RL with high ozone (100 ppb); 2) a RL with low ozone (50 ppb); 3) no RL with high ozone above the NBL (100 ppb from 200-1200 m AGL); and 4) no RL with low ozone above the NBL (50 ppb). The results indicate that ozone stored in the RL can contribute up to 86% of the ozone concentration in the CBL during the following day in Case 1. Even in Case 2, 64% of the ozone in the developed CBL results from intrusions from the RL. Additionally, a RL also increases the enhancement rate of ozone in the CBL. Furthermore, we investigate the ozone diurnal variation on September 6, 2013 in Huntsville AL. The ozone variation in the CBL is mainly caused by local emissions due to the weather conditions being controlled by an anticyclonic system. The local chemical production contributes over 67% of the ozone enhancement in the CBL. The dynamical processes contribute the rest. The numerical experiments show good agreement with our ozone lidar observations. However, our simulation results and ozone lidar observations fail to reproduce a declining trend of surface ozone measured by an Environment Protection Agency (EPA) surface monitoring station that is 6 km south of our facilities, which is very likely due to the large ozone horizontal variation and the diurnal variation of ozone dry deposition under urban environment.

  1. [Effect of ozone on membrane fouling in water and wastewater treatment: a research review].

    PubMed

    Zhu, Hong-tao; Wen, Xiang-hua; Huang, Xia

    2009-01-01

    As a high efficient water and wastewater treatment technology, membrane filtration has been mainly used in wastewater treatment as membrane bioreactor, in reclaiming secondary effluent,treating surface water and potable water, and etc. Membrane fouling is a main obstacle to the wide application of membrane technology. Ozone has strong oxidizing power and has been utilized widely in water and wastewater treatment. In recent years, researches on combined process of ozone-membrane filtration are increasing. This paper does reviews and analysis of these researches. It is noticed that there has been a few of researches on the ozone treatment plus MBR process. Pre-ozonation of feed to MBR and slight ozonation of the mixed liquid in MBR may be used to relieve membrane fouling.Combined processes of ozone-membrane filtration can be divided into three classes in terms of the function of ozone and the system configuration: (1) cleaning the fouled membrane with ozone; (2) separate ozone-membrane filtration process; (3) integrated ozone-membrane filtration process. Although most reports supported that ozonation can control membrane fouling development,there were contrary results. At present, researches on the mechanisms of ozone's effect on membrane fouling control concentrated on the change of organic composition of the filtration influent under ozonation, however, particulate substances, microbial and inorganic substances may also be affected and then play roles in membrane fouling, depending on source water quality and process configuration. Moreover, there have not been common parameters to evaluate the ozone diffusion equipment and efficiency. The authors suggest that further researches should emphasize on integrated ozone-membrane process, and more attention should be paid to the cost-effectiveness of the combined process.

  2. A cloud-ozone data product from Aura OMI and MLS satellite measurements

    NASA Astrophysics Data System (ADS)

    Ziemke, Jerald R.; Strode, Sarah A.; Douglass, Anne R.; Joiner, Joanna; Vasilkov, Alexander; Oman, Luke D.; Liu, Junhua; Strahan, Susan E.; Bhartia, Pawan K.; Haffner, David P.

    2017-11-01

    Ozone within deep convective clouds is controlled by several factors involving photochemical reactions and transport. Gas-phase photochemical reactions and heterogeneous surface chemical reactions involving ice, water particles, and aerosols inside the clouds all contribute to the distribution and net production and loss of ozone. Ozone in clouds is also dependent on convective transport that carries low-troposphere/boundary-layer ozone and ozone precursors upward into the clouds. Characterizing ozone in thick clouds is an important step for quantifying relationships of ozone with tropospheric H2O, OH production, and cloud microphysics/transport properties. Although measuring ozone in deep convective clouds from either aircraft or balloon ozonesondes is largely impossible due to extreme meteorological conditions associated with these clouds, it is possible to estimate ozone in thick clouds using backscattered solar UV radiation measured by satellite instruments. Our study combines Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) satellite measurements to generate a new research product of monthly-mean ozone concentrations in deep convective clouds between 30° S and 30° N for October 2004-April 2016. These measurements represent mean ozone concentration primarily in the upper levels of thick clouds and reveal key features of cloud ozone including: persistent low ozone concentrations in the tropical Pacific of ˜ 10 ppbv or less; concentrations of up to 60 pphv or greater over landmass regions of South America, southern Africa, Australia, and India/east Asia; connections with tropical ENSO events; and intraseasonal/Madden-Julian oscillation variability. Analysis of OMI aerosol measurements suggests a cause and effect relation between boundary-layer pollution and elevated ozone inside thick clouds over landmass regions including southern Africa and India/east Asia.

  3. Understanding Differences in Chemistry Climate Model Projections of Stratospheric Ozone

    NASA Technical Reports Server (NTRS)

    Douglass, A. R.; Strahan, S. E.; Oman, L. D.; Stolarski, R. S.

    2014-01-01

    Chemistry climate models (CCMs) are used to project future evolution of stratospheric ozone as concentrations of ozone-depleting substances (ODSs) decrease and greenhouse gases increase, cooling the stratosphere. CCM projections exhibit not only many common features but also a broad range of values for quantities such as year of ozone return to 1980 and global ozone level at the end of the 21st century. Multiple linear regression is applied to each of 14 CCMs to separate ozone response to ODS concentration change from that due to climate change. We show that the sensitivity of lower stratospheric ozone to chlorine change Delta Ozone/Delta inorganic chlorine is a near-linear function of partitioning of total inorganic chlorine into its reservoirs; both inorganic chlorine and its partitioning are largely controlled by lower stratospheric transport. CCMs with best performance on transport diagnostics agree with observations for chlorine reservoirs and produce similar ozone responses to chlorine change. After 2035, differences in Delta Ozone/Delta inorganic chlorine contribute little to the spread in CCM projections as the anthropogenic contribution to inorganic chlorine becomes unimportant. Differences among upper stratospheric ozone increases due to temperature decreases are explained by differences in ozone sensitivity to temperature change Delta Ozone/Delta T due to different contributions from various ozone loss processes, each with its own temperature dependence. Ozone decrease in the tropical lower stratosphere caused by a projected speedup in the Brewer-Dobson circulation may or may not be balanced by ozone increases in the middle- and high-latitude lower stratosphere and upper troposphere. This balance, or lack thereof, contributes most to the spread in late 21st century projections.

  4. Effects of ozone-vegetation coupling on surface ozone air quality via biogeochemical and meteorological feedbacks

    NASA Astrophysics Data System (ADS)

    Sadiq, Mehliyar; Tai, Amos P. K.; Lombardozzi, Danica; Martin, Maria Val

    2017-02-01

    Tropospheric ozone is one of the most hazardous air pollutants as it harms both human health and plant productivity. Foliage uptake of ozone via dry deposition damages photosynthesis and causes stomatal closure. These foliage changes could lead to a cascade of biogeochemical and biogeophysical effects that not only modulate the carbon cycle, regional hydrometeorology and climate, but also cause feedbacks onto surface ozone concentration itself. In this study, we implement a semi-empirical parameterization of ozone damage on vegetation in the Community Earth System Model to enable online ozone-vegetation coupling, so that for the first time ecosystem structure and ozone concentration can coevolve in fully coupled land-atmosphere simulations. With ozone-vegetation coupling, present-day surface ozone is simulated to be higher by up to 4-6 ppbv over Europe, North America and China. Reduced dry deposition velocity following ozone damage contributes to ˜ 40-100 % of those increases, constituting a significant positive biogeochemical feedback on ozone air quality. Enhanced biogenic isoprene emission is found to contribute to most of the remaining increases, and is driven mainly by higher vegetation temperature that results from lower transpiration rate. This isoprene-driven pathway represents an indirect, positive meteorological feedback. The reduction in both dry deposition and transpiration is mostly associated with reduced stomatal conductance following ozone damage, whereas the modification of photosynthesis and further changes in ecosystem productivity are found to play a smaller role in contributing to the ozone-vegetation feedbacks. Our results highlight the need to consider two-way ozone-vegetation coupling in Earth system models to derive a more complete understanding and yield more reliable future predictions of ozone air quality.

  5. The characteristics of tropospheric ozone seasonality observed from ozone soundings at Pohang, Korea.

    PubMed

    Kim, Jae H; Lee, H J; Lee, S H

    2006-07-01

    This paper presents the first analysis of vertical ozone sounding measurements over Pohang, Korea. The main focus is to analyze the seasonal variation of vertical ozone profiles and determine the mechanisms controlling ozone seasonality. The maxima ozone at the surface and in the free troposphere are observed in May and June, respectively. In comparison with the ozone seasonality at Oki (near sea level) and Happo (altitude of 1840 m) in Japan, which are located at the same latitude as of Pohang, we have found that the time of the ozone maximum at the Japanese sites is always a month earlier than at Pohang. Analysis of the wind flow at the surface shows that the wind shifts from westerly to southerly in May over Japan, but in June over Pohang. However, this wind shift above boundary layer occurs a month later. This wind shift results in significantly smaller amounts of ozone because the southerly wind brings clean wet tropical air. It has been suggested that the spring ozone maximum in the lower troposphere is due to polluted air transported from China. However, an enhanced ozone amount over the free troposphere in June appears to have a different origin. A tongue-like structure in the time-height cross-section of ozone concentrations, which starts from the stratosphere and extends to the middle troposphere, suggests that the ozone enhancement occurs due to a gradual migration of ozone from the stratosphere. The high frequency of dry air with elevated ozone concentrations in the upper troposphere in June suggests that the air is transported from the stratosphere. HYSPLIT trajectory analysis supports the hypothesis that enhanced ozone in the free troposphere is not likely due to transport from sources of anthropogenic activity.

  6. Passive ozone network of Dallas: a modeling opportunity with community involvement. 2.

    PubMed

    Sather, M E; Varns, J L; Mulik, J D; Glen, G; Smith, L; Stallings, C

    2001-11-15

    Attaining the current lower tropospheric U.S. ozone standards continues to be a difficult task for many areas in the U.S. Concentrations of ozone above the standards negatively affects human health, agricultural crops, forests, and other ecosystem elements. This paper describes year two (1999) of a regional networking of passive and continuous ozone monitoring sites in the Dallas-Fort Worth (DFW) Metroplex region. The objectives of the second year of study were to (1) validate conclusions of the 1998 Passive Ozone Network of Dallas (POND) I study, (2) define the value of taking 12-h diurnal samples in addition to 24-h samples, and (3) add to the scientific knowledge base of rural/urban ozone comparison studies. Results of the POND II (1999) study demonstrated that ozone concentrations exceeding the new 8-h ozone standard could be recorded at least 130 km, or 80 miles, from the DFW Metroplex core in more rural areas. In addition, results of the POND II study indicated that ozone concentrations exceeding the 8-h standard probably occurred in areas recording a 12-h daytime ozone concentration above 60 parts per billion (ppb). The 12-h passive ozone data from POND II also suggests the relative magnitude of anthropogenic pollution influence could be assessed for rural passive ozone sites. The data from the POND II study provide modelers a rich database for future photochemical subgrid development for the DFW ozone nonattainment area. Indeed, the POND database provides a great amount of additional ozone ambient data covering 26 8-h and 13 1-h ozone standard exceedance days over an approximate 25000 km2 region. These data should help decrease uncertainties derived from future DFW ozone model exercises.

  7. Tropospheric Ozone Pollution Transport Traced from the TOMS (Total Ozone Mapping Spectrometer) Instrument During the Nashville-1999 Campaign

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Frolov, A. D.; Hudson, R. D.; Witte, J. C.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Over the past several years, we have developed two new tropospheric ozone retrievals from the TOMS (Total Ozone Mapping Spectrometer) satellite instrument that are of sufficient resolution to follow pollution episodes. The modified-residual technique [Hudson and Thompson, 1998; Thompson and Hudson, 1999] uses v. 7 TOMS total ozone and is applicable to tropical regimes in which the wave-one pattern in total ozone is observed. The TOMS-direct method [("TDOT" = TOMS Direct Ozone in the Troposphere; Frolov et al., 2000] represents a new algorithm that uses TOMS radiances directly (i.e., not previously processed for TOMS ozone) to extract tropospheric ozone in regions of constant stratospheric ozone and tropospheric ozone displaying high mixing ratios and variability characteristic of pollution. These events tend to occur in certain meteorological regimes. For example, mid-latitude pollution usually occurs on the backside of subtropical fronts, as low pv, usually moist air intrudes to the extra-tropics. July 1999 was a month characterized by robust pollution in the eastern US, with high ozone, as detected by TOMS, originating over south central states and moving up the Atlantic seaboard. This corresponds to 50-80 DU in tropospheric ozone column depth. In most cases, further transport occurred to the North Atlantic, with ozone plumes traveling to western Europe in 4-5 days. Examples of high ozone and transit across boundaries within the US, as well as US->Europe, give a regional context for model results and field measurements taken in the SE US during the Nashville-1999 campaign period. Validation of the TDOT maps is made with ozonesondes taken during that time. TDOT maps also show ozone pollution from Asia traveling to the western US in July 1999.

  8. A Cloud-Ozone Data Product from Aura OMI and MLS Satellite Measurements.

    PubMed

    Ziemke, Jerald R; Strode, Sarah A; Douglass, Anne R; Joiner, Joanna; Vasilkov, Alexander; Oman, Luke D; Liu, Junhua; Strahan, Susan E; Bhartia, Pawan K; Haffner, David P

    2017-01-01

    Ozone within deep convective clouds is controlled by several factors involving photochemical reactions and transport. Gas-phase photochemical reactions and heterogeneous surface chemical reactions involving ice, water particles, and aerosols inside the clouds all contribute to the distribution and net production and loss of ozone. Ozone in clouds is also dependent on convective transport that carries low troposphere/boundary layer ozone and ozone precursors upward into the clouds. Characterizing ozone in thick clouds is an important step for quantifying relationships of ozone with tropospheric H 2 O, OH production, and cloud microphysics/transport properties. Although measuring ozone in deep convective clouds from either aircraft or balloon ozonesondes is largely impossible due to extreme meteorological conditions associated with these clouds, it is possible to estimate ozone in thick clouds using backscattered solar UV radiation measured by satellite instruments. Our study combines Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) satellite measurements to generate a new research product of monthly-mean ozone concentrations in deep convective clouds between 30°S to 30°N for October 2004 - April 2016. These measurements represent mean ozone concentration primarily in the upper levels of thick clouds and reveal key features of cloud ozone including: persistent low ozone concentrations in the tropical Pacific of ~10 ppbv or less; concentrations of up to 60 pphv or greater over landmass regions of South America, southern Africa, Australia, and India/east Asia; connections with tropical ENSO events; and intra-seasonal/Madden-Julian Oscillation variability. Analysis of OMI aerosol measurements suggests a cause and effect relation between boundary layer pollution and elevated ozone inside thick clouds over land-mass regions including southern Africa and India/east Asia.

  9. Three days after a single exposure to ozone, the mechanism of airway hyperreactivity is dependent on substance P and nerve growth factor.

    PubMed

    Verhein, Kirsten C; Hazari, Mehdi S; Moulton, Bart C; Jacoby, Isabella W; Jacoby, David B; Fryer, Allison D

    2011-02-01

    Ozone causes persistent airway hyperreactivity in humans and animals. One day after ozone exposure, airway hyperreactivity is mediated by release of eosinophil major basic protein that inhibits neuronal M(2) muscarinic receptors, resulting in increased acetylcholine release and increased smooth muscle contraction in guinea pigs. Three days after ozone, IL-1β, not eosinophils, mediates ozone-induced airway hyperreactivity, but the mechanism at this time point is largely unknown. IL-1β increases NGF and the tachykinin substance P, both of which are involved in neural plasticity. These experiments were designed to test whether there is a role for NGF and tachykinins in sustained airway hyperreactivity following a single ozone exposure. Guinea pigs were exposed to filtered air or ozone (2 parts per million, 4 h). In anesthetized and vagotomized animals, ozone potentiated vagally mediated airway hyperreactivity 24 h later, an effect that was sustained over 3 days. Pretreatment with antibody to NGF completely prevented ozone-induced airway hyperreactivity 3 days, but not 1 day, after ozone and significantly reduced the number of substance P-positive airway nerve bundles. Three days after ozone, NK(1) and NK(2) receptor antagonists also blocked this sustained hyperreactivity. Although the effect of inhibiting NK(2) receptors was independent of ozone, the NK(1) receptor antagonist selectively blocked vagal hyperreactivity 3 days after ozone. These data confirm mechanisms of ozone-induced airway hyperreactivity change over time and demonstrate 3 days after ozone that there is an NGF-mediated role for substance P, or another NK(1) receptor agonist, that enhances acetylcholine release and was not present 1 day after ozone.

  10. Three days after a single exposure to ozone, the mechanism of airway hyperreactivity is dependent on substance P and nerve growth factor

    PubMed Central

    Verhein, Kirsten C.; Hazari, Mehdi S.; Moulton, Bart C.; Jacoby, Isabella W.; Jacoby, David B.

    2011-01-01

    Ozone causes persistent airway hyperreactivity in humans and animals. One day after ozone exposure, airway hyperreactivity is mediated by release of eosinophil major basic protein that inhibits neuronal M2 muscarinic receptors, resulting in increased acetylcholine release and increased smooth muscle contraction in guinea pigs. Three days after ozone, IL-1β, not eosinophils, mediates ozone-induced airway hyperreactivity, but the mechanism at this time point is largely unknown. IL-1β increases NGF and the tachykinin substance P, both of which are involved in neural plasticity. These experiments were designed to test whether there is a role for NGF and tachykinins in sustained airway hyperreactivity following a single ozone exposure. Guinea pigs were exposed to filtered air or ozone (2 parts per million, 4 h). In anesthetized and vagotomized animals, ozone potentiated vagally mediated airway hyperreactivity 24 h later, an effect that was sustained over 3 days. Pretreatment with antibody to NGF completely prevented ozone-induced airway hyperreactivity 3 days, but not 1 day, after ozone and significantly reduced the number of substance P-positive airway nerve bundles. Three days after ozone, NK1 and NK2 receptor antagonists also blocked this sustained hyperreactivity. Although the effect of inhibiting NK2 receptors was independent of ozone, the NK1 receptor antagonist selectively blocked vagal hyperreactivity 3 days after ozone. These data confirm mechanisms of ozone-induced airway hyperreactivity change over time and demonstrate 3 days after ozone that there is an NGF-mediated role for substance P, or another NK1 receptor agonist, that enhances acetylcholine release and was not present 1 day after ozone. PMID:21056958

  11. Ozone-vegetation interaction in the Earth system: implications for air quality, ecosystems and agriculture

    NASA Astrophysics Data System (ADS)

    Tai, A. P. K.; Lombardozzi, D.; Val Martin, M.; Heald, C. L.

    2015-12-01

    Surface ozone is one of the most significant air pollutants due to its damaging effects not only on human health, but also on vegetation and crop productivity. Chronic ozone exposure has been shown to reduce photosynthesis and interfere with gas exchange in plants, which in turn affect the surface energy balance, carbon sink and other biogeochemical fluxes. Ozone damage on vegetation can thus have major ramifications on climate and atmospheric composition, including possible feedbacks onto ozone itself (see figure) that are not well understood. The damage of ozone on crops has been well documented, but a mechanistic understanding is not well established. Here we present several results pertaining to ozone-vegetation interaction. Using the Community Earth System Model, we find that inclusion of ozone damage on plants reduces the global land carbon sink by up to 5%, while simulated ozone is modified by -20 to +4 ppbv depending on the relative importance of competing mechanisms in different regions. We also perform a statistical analysis of multidecadal global datasets of crop yields, agroclimatic variables and ozone exposures to characterize the spatial variability of crop sensitivity to ozone and temperature extremes, specifically accounting for the confounding effect of ozone-temperature covariation. We find that several crops exhibit stronger sensitivity to ozone than found by previous field studies, with a strong anticorrelation between the sensitivity and average ozone levels that reflects biological adaptive ozone resistance. Our results show that a more complete understanding of ozone-vegetation interaction is necessary to derive more realistic future projections of climate, air quality and agricultural production, and thereby to formulate optimal strategies to safeguard public health and food security.

  12. Inquiry Based Projects Using Student Ozone Measurements and the Status of Using Plants as Bio-Indicators

    NASA Astrophysics Data System (ADS)

    Ladd, I. H.; Fishman, J.; Pippin, M.; Sachs, S.; Skelly, J.; Chappelka, A.; Neufeld, H.; Burkey, K.

    2006-05-01

    Students around the world work cooperatively with their teachers and the scientific research community measuring local surface ozone levels using a hand-held optical scanner and ozone sensitive chemical strips. Through the GLOBE (Global Learning and Observations to Benefit the Environment) Program, students measuring local ozone levels are connected with the chemistry of the air they breathe and how human activity impacts air quality. Educational tools have been developed and correlated with the National Science and Mathematics Standards to facilitate integrating the study of surface ozone with core curriculum. Ozone air pollution has been identified as the major pollutant causing foliar injury to plants when they are exposed to concentrations of surface ozone. The inclusion of native and agricultural plants with measuring surface ozone provides an Earth system approach to understanding surface ozone. An implementation guide for investigating ozone induced foliar injury has been developed and field tested. The guide, Using Sensitive Plants as Bio-Indicators of Ozone Pollution, provides: the background information and protocol for implementing an "Ozone Garden" with native and agricultural plants; and, a unique opportunity to involve students in a project that will develop and increase their awareness of surface ozone air pollution and its impact on plants.

  13. Plasmachemical and heterogeneous processes in ozonizers with oxygen activation by a dielectric barrier discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mankelevich, Yu. A., E-mail: ymankelevich@mics.msu.su; Voronina, E. N.; Poroykov, A. Yu.

    Plasmachemical and heterogeneous processes of generation and loss of ozone in the atmosphericpressure dielectric barrier discharge in oxygen are studied theoretically. Plasmachemical and electronic kinetics in the stage of development and decay of a single plasma filament (microdischarge) are calculated numerically with and without allowance for the effects of ozone vibrational excitation and high initial ozone concentration. The developed analytical approach is applied to determine the output ozone concentration taking into account ozone heterogeneous losses on the Al{sub 2}O{sub 3} dielectric surface. Using the results of quantummechanical calculations by the method of density functional theory, a multistage catalytic mechanism ofmore » heterogeneous ozone loss based on the initial passivation of a pure Al{sub 2}O{sub 3} surface by ozone and the subsequent interaction of O{sub 3} molecules with the passivated surface is proposed. It is shown that the conversion reaction 2O{sub 3} → 3O{sub 2} of a gas-phase ozone molecule with a physically adsorbed ozone molecule can result in the saturation of the maximum achievable ozone concentration at high specific energy depositions, the nonstationarity of the output ozone concentration, and its dependence on the prehistory of ozonizer operation.« less

  14. Impact of biogenic very short-lived bromine on the Antarctic ozone hole during the 21st century

    NASA Astrophysics Data System (ADS)

    Fernandez, Rafael Pedro; Kinnison, Douglas E.; Lamarque, Jean-Francois; Tilmes, Simone; Saiz-Lopez, Alfonso

    2017-04-01

    Active bromine released from the photochemical decomposition of biogenic very short-lived bromocarbons (VSLBr) enhances stratospheric ozone depletion. Based on a dual set of 1960-2100 coupled chemistry-climate simulations (i.e. with and without VSLBr), we show that the maximum Antarctic ozone hole depletion increases by up to 14% when natural VSLBr are considered, in better agreement with ozone observations. The impact of the additional 5 pptv VSLBr on Antarctic ozone is most evident in the periphery of the ozone hole, producing an expansion of the ozone hole area of 5 million km2, which is equivalent in magnitude to the recently estimated Antarctic ozone healing due to the implementation of the Montreal Protocol. We find that the inclusion of VSLBr in CAM-Chem does not introduce a significant delay of the modelled ozone return date to 1980 October levels, but instead affect the depth and duration of the simulated ozone hole. Our analysis further shows that total bromine-catalysed ozone destruction in the lower stratosphere surpasses that of chlorine by year 2070, and indicates that natural VSLBr chemistry would dominate Antarctic ozone seasonality before the end of the 21st century. This work suggests a large influence of biogenic bromine on the future Antarctic ozone layer.

  15. Phenols removal using ozonation-adsorption with granular activated carbon (GAC) in rotating packed bed reactor

    NASA Astrophysics Data System (ADS)

    Karamah, E. F.; Leonita, S.; Bismo, S.

    2018-01-01

    Synthetic wastewater containing phenols was treated using combination method of ozonation-adsorption with GAC (Granular Activated Carbon) in a packed bed rotating reactor. Ozone reacts quickly with phenol and activated carbon increases the oxidation process by producing hydroxyl radicals. Performance parameters evaluated are phenol removal percentage, the quantity of hydroxyl radical formed, changes in pH and ozone utilization, dissolved ozone concentration and ozone concentration in off gas. The performance of the combination method was compared with single ozonation and single adsorption. The influence of GAC dose and initial pH of phenols were evaluated in ozonation-adsorption method. The results show that ozonation-adsorption method generates more OH radicals than a single ozonation. Quantity of OH radical formation increases with increasing pH and quantity of the GAC. The combination method prove better performance in removing phenols. At the same operation condition, ozonation-adsorption method is capable of removing of 78.62% phenols as compared with single ozonation (53.15%) and single adsorption (36.67%). The increasing percentage of phenol removal in ozonation-adsorption method is proportional to the addition of GAC dose, solution pH, and packed bed rotator speed. Maximum percentage of phenol removal is obtained under alkaline conditions (pH 10) and 125 g of GAC

  16. Ozone: Good Up High, Bad Nearby

    MedlinePlus

    ... How Does the Depletion of “Good” Ozone Affect Human Health and the Environment? Ozone depletion can cause increased ... their original sources. How Does “Bad” Ozone Affect Human Health and the Environment? Breathing ozone can trigger a ...

  17. Characteristics of ozone vertical profile observed in the boundary layer around Beijing in autumn.

    PubMed

    Ma, Zhiqiang; Zhang, Xiaoling; Xu, Jing; Zhao, Xiujuan; Meng, Wei

    2011-01-01

    In the autumn of 2008, the vertical profiles of ozone and meteorological parameters in the low troposphere (0-1000 m) were observed at two sites around Beijing, specifically urban Nanjiao and rural Shangdianzi. At night and early morning, the lower troposphere divided into two stratified layers due to temperature inversion. Ozone in the lower layer showed a large gradient due to the titration of NO. Air flow from the southwest brought ozone-rich air to Beijing, and the ozone profiles were marked by a continuous increase in the residual layer at night. The accumulated ozone in the upper layer played an important role in the next day's surface peak ozone concentration, and caused a rapid increase in surface ozone in the morning. Wind direction shear and wind speed shear exhibited different influences on ozone profiles and resulted in different surface ozone concentrations in Beijing.

  18. Direct Measurements of the Ozone Production Rate: Methods, Measurements, and Implications for Air Quality Monitoring

    NASA Astrophysics Data System (ADS)

    Brune, W. H.; Baier, B.; Miller, D. O.; Apel, E. C.; Wisthaler, A.; Fried, A.; Cantrell, C. A.; Blake, D. R.; Brown, S. S.; McDuffie, E. E.; Kaser, L.; Long, R.; Weinheimer, A. J.

    2017-12-01

    Ground level ozone pollution remains a health hazard in the United States despite dramatic reductions due to regulatory actions over the past three decades. The key to understanding the link between the ozone precursor gases, nitrogen oxides (NOx) and volatile organic compounds (VOCs), and ozone pollution is the ozone production rate. However, in air quality models, uncertainties in emissions and meteorology hide the true sensitivity of modeled ozone to the chemistry of the ozone production rate. A better way to understand the ozone production rate is to measure it directly. We devised a method for measuring the ozone production rate directly and have deployed it in a few field studies. In this presentation, we will discuss some fairly recent observations, the strengths and weaknesses of the current method, and a path toward routine monitoring of the ozone production rate.

  19. Effect of ozonation on the reactivity of lignocellulose substrates in enzymatic hydrolyses to sugars

    NASA Astrophysics Data System (ADS)

    Ben'ko, E. M.; Manisova, O. R.; Lunin, V. V.

    2013-07-01

    The efficiency of pre-treatment of aspen wood with ozone for subsequent enzymatic hydrolysis into sugars is determined by the amount of absorbed ozone. The ozone absorption rate depended on the water content in the sample being ozonized and was maximum at a relative humidity of wood of ˜40%. As a result of ozone pre-treatment, the initial rate of the enzymatic hydrolysis of wood under the action of a cellulase complex increased eightfold, and the maximum yield of sugars increased tenfold depending on the ozone dose. The ozonation at ozone doses of more than 3 mol/PPU (phenylpropane structural unit of lignin) led to a decrease in the yield of sugars because of the oxidative destruction of cellulose and hemicellulose. The alkaline ozonation in 2 and 12% NaOH was inefficient because of the accompanying oxidation of carbohydrates and considerably decreased the yield of sugars.

  20. Development and Performance Evaluation of an Ozone-Contained Ice Making Machine Employing Pressurized Air Tight Containers

    NASA Astrophysics Data System (ADS)

    Yoshimura, Kenji; Akiyama, Tomoaki; Hirofuji, Yushi; Koyama, Shigeru

    Ozone has the capability of sterilization and deodorization due to high oxidation power. It is also effective for the conservation of perishable foods and purification of water. However, ozone has a disadvantage, that is, conservation of ozone is difficult because it reacts to oxygen. Recently, ozone-contained ice is taken attention for the purpose of its conservation. The use of ozone-contained ice seems to keep food fresher when we conserve and transport perishable foods due to the effects of cooling and sterilization of ozone-contained ice. In the present study, we have developed an ozone-contained ice making machine employing pressurized air tight containers with commercially available size. And the performance evaluation of the system is also carried out. Furthermore, we investigated the sterilization effect of ozone-contained ice on conservation of fish. It was seen that ozone-contained ice is effective for sterilization of surface of fish.

  1. Local fluctuations of ozone from 16 km to 45 km deduced from in situ vertical ozone profile

    NASA Technical Reports Server (NTRS)

    Moreau, G.; Robert, C.

    1994-01-01

    A vertical ozone profile obtained by an in situ ozone sonde from 16 km to 45 km, has allowed to observe local ozone concentration variations. These variations can be observed, thanks to a fast measurement system based on a UV absorption KrF excimer laser beam in a multipass cell. Ozone standard deviation versus altitude calculated from the mean is derived. Ozone variations or fluctuations are correlated with the different dynamic zones of the stratosphere.

  2. A Review of Atmospheric Ozone and Current Thinking on the Antarctic Ozone Hole.

    DTIC Science & Technology

    1987-01-01

    UNIVERSITY OF CALIFORNIA 0 A Review of Atmospheric ozone and Current Thinking on the Antartic Ozone Hole A thesis submitted in partial satisfaction of the...4. TI TLE (Pit 5,1tlfie) S. TYPE OF REPORT & PFRIOO COVERED A Review of Atmospheric Ozone and Current THESIS/DA/;J.At1AAU00 Thinking on the Antartic ...THESIS A Review of Atmospheric Ozone and Current Thinking on the Antartic Ozone Hole by Randolph Antoine Fix Master of Science in Atmospheric Science

  3. Effect of Pulse Width on Oxygen-fed Ozonizer

    NASA Astrophysics Data System (ADS)

    Okada, Sho; Wang, Douyan; Namihira, Takao; Katsuki, Sunao; Akiyama, Hidenori

    Though general ozonizers based on silent discharge (barrier discharge) have been used to supply ozone at many industrial situations, there is still some problem, such as improvements of ozone yield. In this work, ozone was generated by pulsed discharge in order to improve the characteristics of ozone generation. It is known that a pulse width gives strong effect to the improvement of energy efficiency in exhaust gas processing. In this paper, the effect of pulse duration on ozone generation by pulsed discharge in oxygen would be reported.

  4. Evidence for a Continuous Decline in Lower Stratospheric Ozone Offsetting Ozone Layer Recovery

    NASA Technical Reports Server (NTRS)

    Ball, William T.; Alsing, Justin; Mortlock, Daniel J.; Staehelin, Johannes; Haigh, Joanna D.; Peter, Thomas; Tummon, Fiona; Stuebi, Rene; Stenke, Andrea; Anderson, John; hide

    2018-01-01

    Ozone forms in the Earth's atmosphere from the photodissociation of molecular oxygen, primarily in the tropical stratosphere. It is then transported to the extratropics by the Brewer-Dobson circulation (BDC), forming a protective "ozone layer" around the globe. Human emissions of halogen-containing ozone-depleting substances (hODSs) led to a decline in stratospheric ozone until they were banned by the Montreal Protocol, and since 1998 ozone in the upper stratosphere is rising again, likely the recovery from halogen-induced losses. Total column measurements of ozone between the Earth's surface and the top of the atmosphere indicate that the ozone layer has stopped declining across the globe, but no clear increase has been observed at latitudes between 60degS and 60degN outside the polar regions (60-90deg). Here we report evidence from multiple satellite measurements that ozone in the lower stratosphere between 60degS and 60degN has indeed continued to decline since 1998. We find that, even though upper stratospheric ozone is recovering, the continuing downward trend in the lower stratosphere prevails, resulting in a downward trend in stratospheric column ozone between 60degS and 60degN. We find that total column ozone between 60degS and 60degN appears not to have decreased only because of increases in tropospheric column ozone that compensate for the stratospheric decreases. The reasons for the continued reduction of lower stratospheric ozone are not clear; models do not reproduce these trends, and thus the causes now urgently need to be established.

  5. California Baseline Ozone Transport Study (CABOTS): Ozonesonde Measurements

    NASA Astrophysics Data System (ADS)

    Eiserloh, A. J., Jr.; Chiao, S.; Spitze, J.; Cauley, S.; Clark, J.; Roberts, M.

    2016-12-01

    Because the EPA recently lowered the ambient air quality standard for the 8-hr average of ozone (O3) to70 ppbv, California must continue to achieve significant reductions in ozone precursor emissions and prepare for new State Implementation Plans (SIP) to demonstrate how ground-level ambient ozone will be reduced below the new health-based standard. Prior studies suggest that background levels of ozone traveling across the Pacific Ocean can significantly influence surface ozone throughout California, particularly during the spring. Evidence has been presented indicating that background levels of ozone continue to increase in the western United States over the recent few decades, implying more ozone exceedances in the future. To better understand the contributions of the external natural and anthropogenic pollution sources as well as atmospheric processes for surface ozone concentrations in California during the spring and summer months, the California Baseline Ozone Transport Study (CABOTS) has been established. One major goal of CABOTS is to implement near daily ozonesonde measurements along the California Coast to quantify background ozone aloft before entering the State during high ozone season. CABOTS has been ongoing from May through August of 2016 launching ozonesondes from Bodega Bay and Half Moon Bay, California. The temporal progression of ozonesonde measurements and subsequent analysis of the data will be discussed with a focus on the contribution of background ozone to surface ozone sites inland as well as likely origins of layers aloft. Comparisons of current ozonesondes versus prior ozonesonde studies of California will also be performed. A few selected cases of high ozone layers moving onshore from different sources will be discussed as well.

  6. Evidence for a continuous decline in lower stratospheric ozone offsetting ozone layer recovery

    NASA Astrophysics Data System (ADS)

    Ball, William T.; Alsing, Justin; Mortlock, Daniel J.; Staehelin, Johannes; Haigh, Joanna D.; Peter, Thomas; Tummon, Fiona; Stübi, Rene; Stenke, Andrea; Anderson, John; Bourassa, Adam; Davis, Sean M.; Degenstein, Doug; Frith, Stacey; Froidevaux, Lucien; Roth, Chris; Sofieva, Viktoria; Wang, Ray; Wild, Jeannette; Yu, Pengfei; Ziemke, Jerald R.; Rozanov, Eugene V.

    2018-02-01

    Ozone forms in the Earth's atmosphere from the photodissociation of molecular oxygen, primarily in the tropical stratosphere. It is then transported to the extratropics by the Brewer-Dobson circulation (BDC), forming a protective ozone layer around the globe. Human emissions of halogen-containing ozone-depleting substances (hODSs) led to a decline in stratospheric ozone until they were banned by the Montreal Protocol, and since 1998 ozone in the upper stratosphere is rising again, likely the recovery from halogen-induced losses. Total column measurements of ozone between the Earth's surface and the top of the atmosphere indicate that the ozone layer has stopped declining across the globe, but no clear increase has been observed at latitudes between 60° S and 60° N outside the polar regions (60-90°). Here we report evidence from multiple satellite measurements that ozone in the lower stratosphere between 60° S and 60° N has indeed continued to decline since 1998. We find that, even though upper stratospheric ozone is recovering, the continuing downward trend in the lower stratosphere prevails, resulting in a downward trend in stratospheric column ozone between 60° S and 60° N. We find that total column ozone between 60° S and 60° N appears not to have decreased only because of increases in tropospheric column ozone that compensate for the stratospheric decreases. The reasons for the continued reduction of lower stratospheric ozone are not clear; models do not reproduce these trends, and thus the causes now urgently need to be established.

  7. 40 CFR 97.521 - Recordation of TR NOX Ozone Season allowance allocations and auction results.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Recordation of TR NOX Ozone Season... SO2 TRADING PROGRAMS TR NOX Ozone Season Trading Program § 97.521 Recordation of TR NOX Ozone Season... Ozone Season source's compliance account the TR NOX Ozone Season allowances allocated to the TR NOX...

  8. 40 CFR 97.521 - Recordation of TR NOX Ozone Season allowance allocations and auction results.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Recordation of TR NOX Ozone Season... SO2 TRADING PROGRAMS TR NOX Ozone Season Trading Program § 97.521 Recordation of TR NOX Ozone Season... Ozone Season source's compliance account the TR NOX Ozone Season allowances allocated to the TR NOX...

  9. 40 CFR 97.521 - Recordation of TR NOX Ozone Season allowance allocations and auction results.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Recordation of TR NOX Ozone Season... SO2 TRADING PROGRAMS TR NOX Ozone Season Trading Program § 97.521 Recordation of TR NOX Ozone Season... Ozone Season source's compliance account the TR NOX Ozone Season allowances allocated to the TR NOX...

  10. Satellite Observations of Enhanced Tropospheric Ozone Associated with Biomass Burning in Africa and Madagascar

    NASA Technical Reports Server (NTRS)

    Aikin, A. C.; Ziemke, J. R.; Thorpe, A.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Tropospheric ozone over Africa and Madagascar is enhanced by 10 to 15 DU in October. This maximum coincides with the time of maximum biomass area burning in Africa and Madagascar. Ozone observations were made from 1979 to 1999 using the TOMS tropospheric ozone convective cloud differential method. As a result of easterly trade winds, ozone originating on Madagascar is transported to the west over the Mozambique Channel. In El Nino years higher level westerly winds descend to transport low level ozone easterly. This results in African continental ozone being transported east of Madagascar. Long range transport of African ozone is observed during El Nino periods.

  11. Ozone and the stratosphere

    NASA Technical Reports Server (NTRS)

    Shimazaki, Tatsuo

    1987-01-01

    It is shown that the stratospheric ozone is effective in absorbing almost all radiation below 300 nm at heights below 300 km. The distribution of global ozone in the troposphere and the lower stratosphere, and the latitudinal variations of the total ozone column over four seasons are considered. The theory of the ozone layer production is discussed together with catalytic reactions for ozone loss and the mechanisms of ozone transport. Special attention is given to the anthropogenic perturbations, such as SST exhaust gases and freon gas from aerosol cans and refrigerators, that may cause an extensive destruction of the stratospheric ozone layer and thus have a profound impact on the world climate and on life.

  12. Scientific assessment of stratospheric ozone: 1989, volume 1

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A scientific review is presented of the current understanding of stratospheric ozone. There have been highly significant advances in the understanding of the impact of human activities on the Earth's protective ozone layer. There are four major findings that each heighten the concern that chlorine and bromine containing chemicals can lead to a significant depletion of stratospheric ozone: (1) Antarctic ozone hole (the weight of evidence indicates that chlorinated and brominated chemicals are responsible for the ozone hole; (2) Perturbed arctic chemistry (the same potentially ozone destroying processes were identified in the Arctic stratosphere); (3) Long term ozone decreases; and (4) Model limitations (gaps in theoretical models used for assessment studies).

  13. Inactivation of H1N1 viruses exposed to acidic ozone water

    NASA Astrophysics Data System (ADS)

    Uhm, Han S.; Lee, Kwang H.; Seong, Baik L.

    2009-10-01

    The inactivation of H1N1 viruses upon exposure to acidic ozone water was investigated using chicken allantoic fluids of different dilutions, pH values, and initial ozone concentrations. The inactivation effect of the acidic ozone water was found to be stronger than the inactivation effect of the ozone water combined with the degree of acidity, indicating a synergic effect of acidity on ozone decay in water. It is also shown that acidic ozone water with a pH value of 4 or less is very effective means of virus inactivation if provided in conjunction with an ozone concentration of 20 mg/l or higher.

  14. The 1988 Antarctic ozone monitoring Nimbus-7 TOMS data atlas

    NASA Technical Reports Server (NTRS)

    Krueger, Arlin J.; Penn, Lanning M.; Larko, David E.; Doiron, Scott D.; Guimaraes, Patricia T.

    1989-01-01

    Because of the great environmental significance of ozone and to support continuing research at McMurdo, Syowa, and other Southern Hemisphere stations, the development of the 1988 ozone hole was monitored using data from the Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) instrument, produced in near-real-time. This Atlas provides a complete set of daily polar orthographic projections of the TOMS total ozone measurements over the Southern Hemisphere for the period August 1 through November 17, 1988. Although total ozone in mini-holes briefly dropped below 150 DU in late August, the main ozone hole is seen to be much less pronounced than in 1987. Minimum values, observed in late September and early October 1988, were seldom less than 175 DU. Compared with the same period in 1987, when a pronounced ozone hole whose minimum value of 109 Dobson Units (DU) was the lowest total ozone ever observed, the 1988 ozone hole is displaced from the South Pole, opposing a persistent maximum with values consistently above 500 DU. Daily ozone values above selected Southern Hemisphere stations are presented, along with comparisons of the 1988 ozone distribution to that of other years.

  15. Airliner cabin ozone: An updated review. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melton, C.E.

    1989-12-01

    The recent literature pertaining to ozone contamination of airliner cabins is reviewed. Measurements in airliner cabins without filters showed that ozone levels were about 50 percent of atmospheric ozone. Filters were about 90 percent effective in destroying ozone. Ozone (0.12 to 0.14 ppmv) caused mild subjective respiratory irritation in exercising men, but 0.20 to 0.30 ppmv did not have adverse effects on patients with chronic heart or lung disease. Ozone (1.0 to 2.0 ppmv) decreased survival time of influenza-infected rats and mice and suppressed the capacity of lung macrophages to destroy Listeria. Airway responses to ozone are divided into anmore » early parasympathetically mediated bronchoconstrictive phase and a later histamine-mediated congestive phase. Evidence indicates that intracellular free radicals are responsible for ozone damage and that the damage may be spread to other cells by toxic intermediate products: Antioxidants provide some protection to cells in vitro from ozone but dietary intake of antioxidant vitamins by humans has only a weak effect, if any. This review indicates that earlier findings regarding ozone toxicity do not need to be corrected. Compliance with existing FAA ozone standards appears to provide adequate protection to aircrews and passengers.« less

  16. Understanding global tropospheric ozone and its impacts on human health

    NASA Astrophysics Data System (ADS)

    West, J. J.

    2017-12-01

    Ozone is an important air pollutant for human health, one that has proven difficult to manage locally, nationally, and globally. Here I will present research on global ozone and its impacts on human health, highlighting several studies from my lab over the past decade. I will discuss the drivers of global tropospheric ozone, and the importance of the equatorward shift of emissions over recent decades. I will review estimates of the global burden of ozone on premature mortality, the contributions of different emission sectors to that burden, estimates of how the ozone health burden will change in the future under the Representative Concentration Pathway scenarios, and estimates of the contribution of projected climate change to ozone-related deaths. I will also discuss the importance of the intercontinental transport of ozone, and of methane as a driver of global ozone, from the human health perspective. I will present estimates of trends in the ozone mortality burden in the United States since 1990. Finally, I will discuss our project currently underway to estimate global ozone concentrations at the surface based on data gathered by the Tropospheric Ozone Assessment Report, combined statistically with atmospheric modeling results.

  17. The search for signs of recovery of the ozone layer.

    PubMed

    Weatherhead, Elizabeth C; Andersen, Signe Bech

    2006-05-04

    Evidence of mid-latitude ozone depletion and proof that the Antarctic ozone hole was caused by humans spurred policy makers from the late 1980s onwards to ratify the Montreal Protocol and subsequent treaties, legislating for reduced production of ozone-depleting substances. The case of anthropogenic ozone loss has often been cited since as a success story of international agreements in the regulation of environmental pollution. Although recent data suggest that total column ozone abundances have at least not decreased over the past eight years for most of the world, it is still uncertain whether this improvement is actually attributable to the observed decline in the amount of ozone-depleting substances in the Earth's atmosphere. The high natural variability in ozone abundances, due in part to the solar cycle as well as changes in transport and temperature, could override the relatively small changes expected from the recent decrease in ozone-depleting substances. Whatever the benefits of the Montreal agreement, recovery of ozone is likely to occur in a different atmospheric environment, with changes expected in atmospheric transport, temperature and important trace gases. It is therefore unlikely that ozone will stabilize at levels observed before 1980, when a decline in ozone concentrations was first observed.

  18. A reanalysis of ozone on Mars from assimilation of SPICAM observations

    NASA Astrophysics Data System (ADS)

    Holmes, James A.; Lewis, Stephen R.; Patel, Manish R.; Lefèvre, Franck

    2018-03-01

    We have assimilated for the first time SPICAM retrievals of total ozone into a Martian global circulation model to provide a global reanalysis of the ozone cycle. Disagreement in total ozone between model prediction and assimilation is observed between 45°S-10°S from LS = 135-180° and at northern polar (60°N-90°N) latitudes during northern fall (LS = 150-195°). Large percentage differences in total ozone at northern fall polar latitudes identified through the assimilation process are linked with excessive northward transport of water vapour west of Tharsis and over Arabia Terra. Modelling biases in water vapour can also explain the underestimation of total ozone between 45°S-10°S from LS = 135-180°. Heterogeneous uptake of odd hydrogen radicals are unable to explain the outstanding underestimation of northern polar total ozone in late northern fall. Assimilation of total ozone retrievals results in alterations of the modelled spatial distribution of ozone in the southern polar winter high altitude ozone layer. This illustrates the potential use of assimilation methods in constraining total ozone where SPICAM cannot observe, in a region where total ozone is especially important for potential investigations of the polar dynamics.

  19. Monitoring of Observation Errors in the Assimilation of Satellite Ozone Data

    NASA Technical Reports Server (NTRS)

    Stajner, Ivanka; Winslow, Nathan; Rood, Richard B.; Pawson, Steven

    2003-01-01

    The stratospheric ozone layer protects life on Earth from the harmful effects of solar ultravioiet radiation. The ozone layer is currently in a fragile state because of depletion caused by man-made chemicals, especially chlorofluorocarbons. The state of the ozone layer is being monitored and evaluated by scientific experts around the world, in order to help policy makers assess the impacts of international protocols that control the production and release of ozone depleting chemicals. Scientists use a variety ozone measurements and models in order to form a comprehensive picture about the current state of the ozone layer, and to predict the future behavior (expected to be a recovery, as the abundance of the depleting chemicals decreases). Among the data sets used, those from satellite-borne instruments have the advantage of providing a wealth of information about the ozone distribution over most of the globe. Several instruments onboard American and international satellites make measurements of the properties of the atmosphere, from which atmospheric ozone amounts are estimated; long-term measurement programs enable monitoring of trends in ozone. However, the characteristics of satellite instruments change in time. For example, the instrument lenses through which measurements are made may deteriorate over time, or the satellite orbit may drift so that measurements over each location are made later and later in the day. These changes may increase the errors in the retrieved ozone amounts, and degrade the quality of estimated ozone amounts and of their variability. Our work focuses on combining the satellite ozone data with global models that capture atmospheric motion and ozone chemistry, using advanced statistical techniques: this is known as data assimilation. Our method provides a three-dimensional global ozone distribution that is consistent with both the satellite measurements and with our understanding of processes (described in the models) that control ozone distribution. Through the monitoring of statistical properties of the agreement between the data and the model, this approach also enables us to detect changes in the quality of ozone data retrieved from satellite-borne instrument measurements. This paper demonstrates that calculations of the changes in satellite data quality, and the impact these changes on the estimates of the global ozone distribution, can assist in maintaining the uniform quality of the satellite ozone data throughout the lifetime of these instruments, thus contributing to our understanding of long-term ozone change.

  20. Near-ground ozone source attributions and outflow in central eastern China during MTX2006

    NASA Astrophysics Data System (ADS)

    Li, J.; Wang, Z.; Akimoto, H.; Yamaji, K.; Takigawa, M.; Pochanart, P.; Liu, Y.; Tanimoto, H.; Kanaya, Y.

    2008-12-01

    A 3-D regional chemical transport model, the Nested Air Quality Prediction Model System (NAQPMS), with an on-line tracer tagging module was used to study the source of the near-ground (<1.5 km above ground level) ozone at Mt. Tai (36.25° N, 117.10° E, 1534 m a.s.l.) in Central Eastern China (CEC) during the Mount Tai eXperiment 2006 (MTX2006). The model reproduced the temporal and spatial variations of near-ground ozone and other pollutants, and it captured highly polluted and clean cases well. The simulated near-ground ozone level over CEC was 60-85 ppbv (parts per billion by volume), which was higher than values in Japan and over the North Pacific (20-50 ppbv). The simulated tagged tracer data indicated that the regional-scale transport of chemically produced ozone over other areas in CEC contributed to the greatest fraction (49%) of the near-ground mean ozone at Mt. Tai in June; in situ photochemistry contributed only 12%. Due to high anthropogenic and biomass burning emissions that occurred in the southern part of the CEC, the contribution to ground ozone levels from this area played the most important role (32.4 ppbv, 37.9% of total ozone) in the monthly mean ozone concentration at Mt. Tai; values reached 59 ppbv (62%) on 6-7 June 2006. The monthly mean horizontal distribution of chemically produced ozone from various ozone production regions indicated that photochemical reactions controlled the spatial distribution of O3 over CEC. The regional-scale transport of pollutants also played an important role in the spatial and temporal distribution of ozone over CEC. Chemically produced ozone from the southern part of the study region can be transported northeastwardly to the northern rim of CEC; the mean contribution was 5-10 ppbv, and it reached 25 ppbv during high ozone events. Studies of the outflow of CEC ozone and its precursors, as well as their influences and contributions to the ozone level over adjacent regions/countries, revealed that the contribution of CEC ozone to mean ozone mixing ratios over the Korean Peninsula and Japan was 5-15 ppbv, of which about half was due to the direct transport of ozone from CEC and half was produced locally by ozone precursors transported from CEC.

  1. Spatial patterns of tropospheric ozone in the mount rainier region of the cascade mountains, USA

    NASA Astrophysics Data System (ADS)

    Brace, Sarah; Peterson, David L.

    Few data exist on tropospheric ozone concentrations in rural and wildland areas of western Washington, U.S.A. We measured tropospheric ozone in Mount Rainier National Park and the Puget Sound region of Washington using electronic analyzers and passive samplers during the summers of 1994 and 1995. Electronic analyzers recorded hourly ozone concentrations from five locations between Seattle and Mount Rainier. Ozone concentrations generally increased with distance from Seattle, with maximum hourly concentrations recorded at Enumclaw (319 m elevation, 50 km SE of Seattle). Paradise (1650 m elevation, 100 km SE of Seattle) had the highest monthly mean concentration of all sites measured with analyzers. Diurnal patterns on high-ozone days indicate that concentrations at Paradise remain near 60 ppbv throughout the day, whereas ozone concentrations closer to Seattle had higher peaks during the afternoon but dropped to near zero at night. Passive ozone samplers were used to measure weekly average ozone exposures in four river drainages within Mount Rainier National Park, across an elevation gradient (420 -2100 m). In most drainages, ozone levels increased with elevation, with highest average weekly ozone exposure (47 ppbv) recorded at 2100 m. Ozone concentrations are significantly higher in the western portion of the park, indicating that ozone exposure varies considerably over short distances. These data provide a reference point for air quality in western Washington and indicate that intensive sampling is necessary to quantify spatial patterns of tropospheric ozone in mountainous regions.

  2. Spatial patterns of tropospheric ozone in the Mount Rainier region of the Cascade Mountains, USA

    USGS Publications Warehouse

    Brace, S.; Peterson, D.L.

    1998-01-01

    Few data exist on tropospheric ozone concentrations in rural and wildland areas of western Washington, U.S.A. We measured tropospheric ozone in Mount Rainier National Park and the Puget Sound region of Washington using electronic analyzers and passive samplers during the summers of 1994 and 1995. Electronic analyzers recorded hourly ozone concentrations from five locations between Seattle and Mount Rainier. Ozone concentrations generally increased with distance from Seattle, with maximum hourly concentrations recorded at Enumclaw (319 m elevation, 50 km SE of Seattle). Paradise (1650 m elevation, 100 km SE of Seattle) had the highest monthly mean concentration of all sites measured with analyzers. Diurnal patterns on high-ozone days indicate that concentrations at Paradise remain near 60 ppbv throughout the day, whereas ozone concentrations closer to Seattle had higher peaks during the afternoon but dropped to near zero at night. Passive ozone samplers were used to measure weekly average ozone exposures in four river drainages within Mount Rainier National Park, across an elevation gradient (420 a??2100 m). In most drainages, ozone levels increased with elevation, with highest average weekly ozone exposure (47 ppbv) recorded at 2100 m. Ozone concentrations are significantly higher in the western portion of the park, indicating that ozone exposure varies considerably over short distances. These data provide a reference point for air quality in western Washington and indicate that intensive sampling is necessary to quantify spatial patterns of tropospheric ozone in mountainous regions.

  3. The efficacy of gaseous ozone against different forms of Candida albicans

    PubMed Central

    Zargaran, M; Fatahinia, M; Zarei Mahmoudabadi, A

    2017-01-01

    Background and Purpose: Ozone is an inorganic molecule with effective antimicrobial properties. Clinical treatment of ozonated water was used for the elimination of Candida albicans, Enterococcus faecalis, endotoxins, and biofilms from root canals. In addition, its therapeutic effects for tinea pedis, ulcers, and leishmaniasis were investigated. The purpose of the present study was to evaluate the fungicidal effects of ozone on different forms of C. albicans. In addition, antifungal susceptibility profile of strains was assessed before and after exposure to ozone. Materials and Methods: Fifty strains of C. albicans were exposed to gaseous ozone at different times. Furthermore, biofilm formation and germ tube production were evaluated when yeast suspensions were exposed to ozone. In addition, antifungal susceptibility of ozone resistant colonies was investiagted as compared to controls. Results: Ozone was highly effective in killing C. albicans in yeast form and inhibition of germ tube formation during 210 and 180 s, respectively. Although with increasing exposure time biofilm production was considerably decreased, resistance to ozone was much higher among vaginal and nail isolates even after 60 min. All the strains were sensitive to fluconazole, caspofungin, and terbinafine pre- and post-ozone exposure. Resistance to amphotericin B was significantly enhanced after exposure to ozone. Conclusion: Although ozone was highly effective on the yeast form of C. albicans and it can inhibit the formation of germ tubes in C. albicans, the complete removal of biofilms did not happen even after 60 min. It seems that ozone therapy induces resistance to amphotericin B. PMID:29354778

  4. Seasonal Changes in Tropospheric Ozone Concentrations over South Korea and Its Link to Ozone Precursors

    NASA Astrophysics Data System (ADS)

    Jung, H. C.; Moon, B. K.; Wie, J.

    2017-12-01

    Concentration of tropospheric ozone over South Korea has steadily been on the rise in the last decades, mainly due to rapid industrializing and urbanizing in the Eastern Asia. To identify the characteristics of tropospheric ozone in South Korea, we fitted a sine function to the surface ozone concentration data from 2005 to 2014. Based on fitted sine curves, we analyzed the shifts in the dates on which ozone concentration reached its peak in the calendar year. Ozone monitoring sites can be classified into type types: where the highest annual ozone concentration kept occurring sooner (Esites) and those that kept occurring later (Lsites). The seasonal analysis shows that the surface ozone had increased more rapidly in Esites than in Lsites in the past decade during springtime and vice-versa during summertime. We tried to find the reason for the different seasonal trends with the relationship between ozone and ozone precursors. As a result, it was found that the changes in the ground-level ozone concentration in the spring and summer times are considerably influenced by changes in nitrogen dioxide concentration, and this is closely linked to the destruction (production) process of ozone by nitrogen dioxide in spring (summer). The link between tropospheric ozone and nitrogen dioxide discussed in this study will have to be thoroughly examined through climate-chemistry modeling in the future. Acknowledgements This research was supported by the Korea Ministry of Environment (MOE) as "Climate Change Correspondence Program."

  5. Regional-scale modeling of near-ground ozone in the Central East China, source attributions and an assessment of outflow to East Asia The role of regional-scale transport during MTX2006

    NASA Astrophysics Data System (ADS)

    Li, J.; Wang, Z.; Akimoto, H.; Yamaji, K.; Takigawa, M.; Pochanart, P.; Liu, Y.; Kanaya, Y.

    2008-07-01

    A 3-D regional chemical transport model, the Nested Air Quality Prediction Model System (NAQPMS), with an on-line tracer tagging module was applied to study the source of the near-ground (<1.5 km above ground level) ozone at Mt. Tai (36.25°N, 117.10°E, 1534 m a.s.l.) in Central East China (CEC) during the Mount Tai eXperiment 2006 (MTX2006): regional ozone photochemistry and aerosol studies in Central East China in June, 2006. The model reproduced the temporal and spatial variations of near-ground ozone and other pollutants. In particular, the model captured highly polluted and clean cases well. The simulated near-ground ozone over CEC is 60 85 ppbv (parts per billion by volume), higher than those (20 50 ppbv) in Japan and over the North Pacific. The simulated tagged tracer indicates that the regional-scale transport of chemically produced ozone over other areas in CEC contributes to the most fractions (49%) of the near-ground mean ozone at Mt. Tai in June, rather than the in-situ photochemistry (12%). Due to high anthropogenic and biomass burning emissions, the contributions of the ground ozone from the southern part of CEC plays the most important role (32.4 ppbv, 37.9% of total ozone) in the monthly mean ozone concentration at Mt. Tai, which even reached 59 ppbv (62%) on 6 7 June 2006. The monthly mean horizontal distribution of chemically produced ozone from various source regions indicates that the spatial distribution of O3 over CEC is controlled by the photochemical reactions. In addition, the regional-scale transport of pollutants also plays an important role in the spatial and temporal distribution of ozone over CEC. The chemically produced ozone from the southern part of the study region can be transported northeastwardly to the northern rim of CEC. The mean contribution is 5 10 ppbv, and it can reach 25 ppbv during high ozone events. This work also studied the outflow of CEC ozone and its precursors, as well as their influences and contributions to the ozone level over adjacent regions/countries. It shows that the contribution of CEC ozone to mean ozone mixing ratios over Korea Peninsula and Japan is 5 15 ppbv, of which about half was due to the direct transport of ozone from CEC and half was contributed by the ozone produced locally by the transported ozone precursors from CEC.

  6. Ozone layer depletion simulation in an Environmental Chemistry course.

    NASA Astrophysics Data System (ADS)

    Cano, G. S.; Gavilán, I. C.; Garcia-Reynoso, J. A.; Santos, E.; Mendoza, A.; Perea, B.

    2015-12-01

    The reactions taking place between the ozone (O3) and various compounds present in the stratosphere has been studied extensively. When the balance between these reactions breakdown, destruction of ozone is favored. Here we create an experiment for and Environmental Chemistry laboratory course where students evaluate the ozone behavior by comparing its reactivity to various physical and chemical conditions; and observe the destruction of ozone by the action of halogenated compounds by means of volumetric technic. The conditions used are: (1) Ozone vs. Time; (2) Ozone + UV vs. Time; (3) Ozone + halogenated compound vs. Time; and (4) Ozone + UV + halogenated compound vs. Time. The results show that the O3 breaks down rapidly within about 25 min (Fig). They also explain the chemical reactions that occur in the destruction and generation of the ozone layer and demonstrate ozone depletion through the presence of halogenated compounds. The aim of this work is to bring the knowledge gained from theory into practice and thus the possibility of developing a critical attitude towards various environmental problems that arise today.

  7. Meta-analysis of the relative sensitivity of semi-natural vegetation species to ozone.

    PubMed

    Hayes, F; Jones, M L M; Mills, G; Ashmore, M

    2007-04-01

    This study identified 83 species from existing publications suitable for inclusion in a database of sensitivity of species to ozone (OZOVEG database). An index, the relative sensitivity to ozone, was calculated for each species based on changes in biomass in order to test for species traits associated with ozone sensitivity. Meta-analysis of the ozone sensitivity data showed a wide inter-specific range in response to ozone. Some relationships in comparison to plant physiological and ecological characteristics were identified. Plants of the therophyte lifeform were particularly sensitive to ozone. Species with higher mature leaf N concentration were more sensitive to ozone than those with lower leaf N concentration. Some relationships between relative sensitivity to ozone and Ellenberg habitat requirements were also identified. In contrast, no relationships between relative sensitivity to ozone and mature leaf P concentration, Grime's CSR strategy, leaf longevity, flowering season, stomatal density and maximum altitude were found. The relative sensitivity of species and relationships with plant characteristics identified in this study could be used to predict sensitivity to ozone of untested species and communities.

  8. The reservoir of ozone in the boundary layer of the eastern United States and its potential impact on the global tropospheric ozone budget

    NASA Technical Reports Server (NTRS)

    Vukovich, F. M.; Fishman, J.; Browell, E. V.

    1985-01-01

    An analysis of available ozone data in the eastern two-thirds of the United States indicates that a substantial reservoir of ozone is present in the summertime. Five-year mean concentrations range from 40 to 65 ppbv. The reservoir covered an area of several million square kilometers and extends vertically from the surface to 1 to 2 km. The vertical distribution of ozone in the reservoir during midday supports a transport of additional ozone from the boundary layer to the free troposphere. Data are presented demonstrating the potential effect of transport by convective clouds and by the sea breeze circulation - mechanisms by which ozone may be transported out of the boundary layer into the free troposphere. The potential impact of this reservoir on the tropospheric ozone budget is discussed. It is shown that if less than half of the ozone mass in this reservoir is transported to the free troposphere, then the amount of ozone transported out of the boundary layer approximates the amount of ozone transported downward during a tropopause fold event.

  9. Ozone Bioindicator Gardens: an Educational Tool to Raise Awareness about Environmental Pollution and its Effects on Living Systems

    NASA Astrophysics Data System (ADS)

    Lapina, K.; Lombardozzi, D.

    2014-12-01

    High concentrations of ground-level ozone cause health problems in humans and a number of negative effects on plants, from reduced yield for major agricultural crops to reduced amounts of carbon stored in trees. The Denver Metro/Colorado Front Range is exceeding the National Ambient Air Quality Standard for ozone on a regular basis in summer and the efforts to reduce the ozone levels are hampered by the presence of diverse pollution sources and complex meteorology in the region. To raise public awareness of air quality in the Colorado Front Range and to educate all age groups about ground-level ozone, two ozone bioindicator gardens were planted in Boulder in Spring 2014. The gardens contain ozone-sensitive plants that develop a characteristic ozone injury when exposed to high levels of ozone. The ozone gardens are providing the general public with a real-life demonstration of the negative effects of ozone pollution through observable plant damage. Additionally, the gardens are useful in teaching students how to collect and analyze real-world scientific data.

  10. 40 CFR 97.388 - CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units. 97.388 Section 97.388 Protection of Environment... NOX AND SO2 TRADING PROGRAMS CAIR NOX Ozone Season Opt-in Units § 97.388 CAIR NOX Ozone Season...

  11. 40 CFR 97.388 - CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units. 97.388 Section 97.388 Protection of Environment... NOX AND SO2 TRADING PROGRAMS CAIR NOX Ozone Season Opt-in Units § 97.388 CAIR NOX Ozone Season...

  12. 40 CFR 97.388 - CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units. 97.388 Section 97.388 Protection of Environment... NOX AND SO2 TRADING PROGRAMS CAIR NOX Ozone Season Opt-in Units § 97.388 CAIR NOX Ozone Season...

  13. 40 CFR 97.388 - CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units. 97.388 Section 97.388 Protection of Environment... NOX AND SO2 TRADING PROGRAMS CAIR NOX Ozone Season Opt-in Units § 97.388 CAIR NOX Ozone Season...

  14. 40 CFR 97.388 - CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units. 97.388 Section 97.388 Protection of Environment... NOX AND SO2 TRADING PROGRAMS CAIR NOX Ozone Season Opt-in Units § 97.388 CAIR NOX Ozone Season...

  15. Ozone contamination in aircraft cabins: Objectives and approach

    NASA Technical Reports Server (NTRS)

    Perkins, P. J.

    1979-01-01

    Three panels were developed to solve the problem of ozone contamination in aircraft cabins. The problem is defined from direct in-flight measurements of ozone concentrations inside and outside airliners in their normal operations. Solutions to the cabin ozone problem are discussed under two areas: (1) flight planning to avoid high ozone concentrations, and (2) ozone destruction techniques installed in the cabin air systems.

  16. Impacts of ozone air pollution and temperature extremes on crop yields: Spatial variability, adaptation and implications for future food security

    NASA Astrophysics Data System (ADS)

    Tai, Amos P. K.; Val Martin, Maria

    2017-11-01

    Ozone air pollution and climate change pose major threats to global crop production, with ramifications for future food security. Previous studies of ozone and warming impacts on crops typically do not account for the strong ozone-temperature correlation when interpreting crop-ozone or crop-temperature relationships, or the spatial variability of crop-to-ozone sensitivity arising from varietal and environmental differences, leading to potential biases in their estimated crop losses. Here we develop an empirical model, called the partial derivative-linear regression (PDLR) model, to estimate the spatial variations in the sensitivities of wheat, maize and soybean yields to ozone exposures and temperature extremes in the US and Europe using a composite of multidecadal datasets, fully correcting for ozone-temperature covariation. We find generally larger and more spatially varying sensitivities of all three crops to ozone exposures than are implied by experimentally derived concentration-response functions used in most previous studies. Stronger ozone tolerance is found in regions with high ozone levels and high consumptive crop water use, reflecting the existence of spatial adaptation and effect of water constraints. The spatially varying sensitivities to temperature extremes also indicate stronger heat tolerance in crops grown in warmer regions. The spatial adaptation of crops to ozone and temperature we find can serve as a surrogate for future adaptation. Using the PDLR-derived sensitivities and 2000-2050 ozone and temperature projections by the Community Earth System Model, we estimate that future warming and unmitigated ozone pollution can combine to cause an average decline in US wheat, maize and soybean production by 13%, 43% and 28%, respectively, and a smaller decline for European crops. Aggressive ozone regulation is shown to offset such decline to various extents, especially for wheat. Our findings demonstrate the importance of considering ozone regulation as well as ozone and climate change adaptation (e.g., selecting heat- and ozone-tolerant cultivars, irrigation) as possible strategies to enhance future food security in response to imminent environmental threats.

  17. Traffic congestion and ozone precursor emissions in Bilbao, Spain.

    PubMed

    Ibarra-Berastegi, Gabriel; Madariaga, Imanol

    2003-01-01

    In urban environments, the measured levels of ozone are the result of the interaction between emissions of precursors (mainly VOCs and NOx) and meteorological effects. In this work, time series of daily values of ozone, measured at three locations in Bilbao (Spain), have been built. Then, after removing meteorological effects from them, ozone and traffic data have been analyzed jointly. The goal was to identify traffic situations and link them to ozone levels in the area of Bilbao. To remove meteorological effects from the selected ozone time series, the technique developed by Rao and Zurbenko was used. This is a widely used technique and, after its application, the fraction obtained from a given ozone time series represents an ozone forming capability attributable to emissions of precursors. This fraction is devoid of any meteorological influence and includes only the apportion of periodicities above 1.7 years. In the case of Bilbao, the ozone fractions obtained at three locations have been compared on that time scale with traffic data from the area. For the 1993-1996 period, a regression analysis of the ozone and traffic fractions due to periodicities above 1.7 years (long-term fractions), shows that traffic is the main explanatory factor for ozone with R2 ranging from 0.916 to 0.996 at the three locations studied. Analysis of these longterm fractions has made it possible to identify two traffic regimes for the whole area, associated to different profiles of ozone forming capability. The first one favors low ozone forming capability, and is associated with a situation of fluent traffic. The second one shows high ozone forming capability and represents congestion. Joint analysis of raw data of ozone and traffic do not show any clear pattern due to the strong masking effects that seasonal-meteorological effects (mainly radiation) have on the measured ozone signal. If only immission data of ozone are available, as in this case, a comparison between ozone and traffic can only be made on the long-term time scale, since that is the only fraction embedded in the ozone time series that can exclusively be attributed to emissions of precursors. This fact stresses the need to study the different fractions embedded in the time series of ozone measured levels separately. Though the coefficients obtained in the regression are only valid for the 1993-1996 period, these traffic regimes represent long-term targets (congestion or fluent traffic) that can inspire policies for a joint management of the traffic and pollution by ozone in the area of Bilbao beyond that period. The results of this work show the need of a joint management of ozone and traffic in Bilbao. Since an accurate knowledge of traffic was not available, the use of emission factors to relate traffic and actual ozone levels has not been possible. For this reason, this study has focused on the long-term fractions of traffic and ozone. In the future, if a more accurate knowledge of traffic is available, it will be possible to find relationships between traffic and ozone on all time scales.

  18. Removal of disinfection by-products from contaminated water using a synthetic goethite catalyst via catalytic ozonation and a biofiltration system.

    PubMed

    Wang, Yu-Hsiang; Chen, Kuan-Chung

    2014-09-10

    The effects of synthetic goethite (α-FeOOH) used as the catalyst in catalytic ozonation for the degradation of disinfection by-product (DBP) precursors are investigated. A biofiltration column applied following the catalytic ozonation process is used to evaluate the efficiency of removing DBP precursors via biotreatment. Ozone can rapidly react with aromatic compounds and oxidize organic compounds, resulting in a decrease in the fluorescence intensity of dissolved organic matter (DOM). In addition, catalytic ozonation can break down large organic molecules, which causes a blue shift in the emission-excitation matrix spectra. Water treated with catalytic ozonation is composed of low-molecular structures, including soluble microbial products (SMPs) and other aromatic proteins (APs). The DOM in SMPs and APs is removed by subsequent biofiltration. Catalytic ozonation has a higher removal efficiency for dissolved organic carbon and higher ultraviolet absorbance at 254 nm compared to those of ozonation without a catalyst. The use of catalytic ozonation and subsequent biofiltration leads to a lower DBP formation potential during chlorination compared to that obtained using ozonation and catalytic ozonation alone. Regarding DBP species during chlorination, the bromine incorporation factor (BIF) of trihalomethanes and haloacetic acids increases with increasing catalyst dosage in catalytic ozonation. Moreover, the highest BIF is obtained for catalytic ozonation and subsequent biofiltration.

  19. Removal of Disinfection By-Products from Contaminated Water Using a Synthetic Goethite Catalyst via Catalytic Ozonation and a Biofiltration System·

    PubMed Central

    Wang, Yu-Hsiang; Chen, Kuan-Chung

    2014-01-01

    The effects of synthetic goethite (α-FeOOH) used as the catalyst in catalytic ozonation for the degradation of disinfection by-product (DBP) precursors are investigated. A biofiltration column applied following the catalytic ozonation process is used to evaluate the efficiency of removing DBP precursors via biotreatment. Ozone can rapidly react with aromatic compounds and oxidize organic compounds, resulting in a decrease in the fluorescence intensity of dissolved organic matter (DOM). In addition, catalytic ozonation can break down large organic molecules, which causes a blue shift in the emission-excitation matrix spectra. Water treated with catalytic ozonation is composed of low-molecular structures, including soluble microbial products (SMPs) and other aromatic proteins (APs). The DOM in SMPs and APs is removed by subsequent biofiltration. Catalytic ozonation has a higher removal efficiency for dissolved organic carbon and higher ultraviolet absorbance at 254 nm compared to those of ozonation without a catalyst. The use of catalytic ozonation and subsequent biofiltration leads to a lower DBP formation potential during chlorination compared to that obtained using ozonation and catalytic ozonation alone. Regarding DBP species during chlorination, the bromine incorporation factor (BIF) of trihalomethanes and haloacetic acids increases with increasing catalyst dosage in catalytic ozonation. Moreover, the highest BIF is obtained for catalytic ozonation and subsequent biofiltration. PMID:25211774

  20. Analysis of the breakdown of the Antarctic circumpolar vortex using TOMS ozone data

    NASA Technical Reports Server (NTRS)

    Bowman, Kenneth P.

    1987-01-01

    Climatological analysis of data from the Total Ozone Mapping Spectrometer (TOMS) on the Nimbus 7 satellite has shown that the annual cycles of ozone are very different in the Arctic and Antarctic. The annual cycle in the Arctic is a relatively smooth annual sine wave; but in the Antarctic the circumpolar vortex breaks down rapidly during the Southern Hemisphere spring (September through November), producing a rapid rise in total ozone and a sawtooth-shaped annual cycle. The evolution of the Antarctic total ozone field during the vortex breakdown was studied by computing areally-integrated ozone amounts from the TOMS data. This technique avoids substantial difficulties with using zonally-averaged ozone amounts to study the asymmetric breakdown phenomenon. Variability of total ozone is found to be large both within an individual year and between different years. During the last decade monthly-mean total ozone values in the Antarctic during the springtime vortex breakdown period have decreased dramatically. The ozone-area statistics indicate that the decrease has resulted in part from changes in the timing of the vortex breakdown and resultant ozone increase, which have occurred later during recent years. Analysis of the spatial scales involved in the ozone transport and mixing that occur during the vortex breakdown is now underway. Reliable calculation of diagnostic quantities like areally-integrated ozone is possible only with the high-resolution, two-dimensional, daily coverage provided by the TOMS instrument.

  1. Impact of biogenic very short-lived bromine on the Antarctic ozone hole during the 21st century

    NASA Astrophysics Data System (ADS)

    Fernandez, Rafael P.; Kinnison, Douglas E.; Lamarque, Jean-Francois; Tilmes, Simone; Saiz-Lopez, Alfonso

    2017-02-01

    Active bromine released from the photochemical decomposition of biogenic very short-lived bromocarbons (VSLBr) enhances stratospheric ozone depletion. Based on a dual set of 1960-2100 coupled chemistry-climate simulations (i.e. with and without VSLBr), we show that the maximum Antarctic ozone hole depletion increases by up to 14 % when natural VSLBr are considered, which is in better agreement with ozone observations. The impact of the additional 5 pptv VSLBr on Antarctic ozone is most evident in the periphery of the ozone hole, producing an expansion of the ozone hole area of ˜ 5 million km2, which is equivalent in magnitude to the recently estimated Antarctic ozone healing due to the implementation of the Montreal Protocol. We find that the inclusion of VSLBr in CAM-Chem (Community Atmosphere Model with Chemistry, version 4.0) does not introduce a significant delay of the modelled ozone return date to 1980 October levels, but instead affects the depth and duration of the simulated ozone hole. Our analysis further shows that total bromine-catalysed ozone destruction in the lower stratosphere surpasses that of chlorine by the year 2070 and indicates that natural VSLBr chemistry would dominate Antarctic ozone seasonality before the end of the 21st century. This work suggests a large influence of biogenic bromine on the future Antarctic ozone layer.

  2. Scientific assessment of ozone depletion: 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Over the past few years, there have been highly significant advances in the understanding of the impact of human activities on the Earth's stratospheric ozone layer and the influence of changes in chemical composition of the radiative balance of the climate system. Specifically, since the last international scientific review (1989), there have been five major advances: (1) global ozone decreases; (2) polar ozone; (3) ozone and industrial halocarbons; (4) ozone and climate relations; and (5) ozone depletion potentials (ODP's) and global warming potentials (GWP's). These topics and others are discussed.

  3. LuminoTox as a tool to optimize ozone doses for the removal of contaminants and their associated toxicity.

    PubMed

    Marshall, Meghan; Yargeau, Viviane

    2018-03-01

    New treatment technologies and quality monitoring tools are needed for Contaminants of Emerging Concern (CECs) in wastewater. The purpose of this work was to assess the LuminoTox as a monitoring tool for CEC-associated toxicity in municipal wastewater during ozone treatment, and to evaluate the impact of different ozone feed concentrations at equivalent ozone doses for removing toxicity. The LuminoTox was sensitive at monitoring changes in toxicity of atrazine (ATZ) in synthetic wastewater (SWW) and in a 14 CECs mix in secondary effluent (SE) during ozone treatment. In both experiments, a decrease in toxicity was observed with increasing transferred ozone dose, which corresponded to a decrease in CEC concentration. For ATZ in SWW, a 5 ppm ozone feed showed better toxicity removal, up to 25% and 35% inhibition for LuminoTox algae biosensors SAPS I and SAPS II, respectively, for statistically equivalent ozone dose pairs of 43 mg (5 ppm ozone feed) and 36 mg (15 ppm ozone feed). The opposite was true for the 14 CECs in SE; the 15 ppm ozone feed showed better toxicity removal, up to a reduction of 37% and 40% for SAPS I and SAPS II inhibition, respectively, for statistically equivalent ozone dose pairs of 42 mg (5 ppm ozone feed) and 42 mg (15 ppm ozone feed). Different feed applications had an impact on the efficiency of toxicity removal for equivalent ozone doses; this efficiency appears to depend on the type of contaminants and/or wastewater matrix. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. On Relations Between the Ozonosphere and the General Atmospheric Circulation in Tropics

    NASA Astrophysics Data System (ADS)

    Kuznetsov, G. I.; Kramarova, N. A.

    2006-05-01

    The main features of temporal and spatial ozone distribution over tropics and their relations with peculiarities of the general atmospheric circulation are obtained using the total ozone data for the tropical region (Ozone Data for the World and TOMS (version 8)). Among the factors influencing ozone regime in tropics the properties of the region, like intertropical convergence zone and a structure of tropical tropopause, and processes such as stratosphere-troposphere exchange, migration of ozone equator, Quasi Biennial Oscillation are analyzed. To investigate the long term variability of tropical ozone detrended and de-seasonalized fields of TOMS observations are analyzed by means of EOF method. The first four EOFs explain about 75% of residual total ozone variability in tropical region. Spatial patterns of EOFs and corresponding time coefficients are closely connected with the Quasi-Biennial Oscillation (EOF-1), the 11-years Solar Cycle (EOF-2), the QBO-annual beat (EOF-3) and with the South Oscillation (EOF-4) correspondingly. The detailed analyses of temporal and spatial distribution of ozone EOF patterns reveals a distinct change of ozone fields to the both sides of equator at 10-15 latitude as well as at the zones of tropical tropopause break. A time delay of ozone QBO phase is observed while moving towards higher latitudes. Some features of the tropical ozone regime manifest themselves in the peculiarities of Antarctic Ozone Anomalies. A time variability of ozone QBO passes three months ahead of the Singapore 30 mbar zonal wind. Obtained relations let us to construct a linear regression model based on EOF decomposition to estimate total ozone monthly means over tropics. This model is successfully applied to predict 30 mbar zonal wind in dependence on tropical ozone behavior.

  5. Estimating the Tropospheric Ozone Distribution by the Assimilation of Satellite Data

    NASA Technical Reports Server (NTRS)

    Hayashi, Hiroo; Stajner, Ivanka; Winslow, Nathan; Jones, Dylan B. A.; Pawson, Steven; Thompson, Anne M.

    2003-01-01

    Tropospheric ozone is important to the environment, because it acts as a strong oxidant to control the concentrations of many reduced gases (methane, carbon monoxide, ... ), its radiative forcing plays a significant role in the greenhouse effect, and direct contact with ozone is harmful to human health. Tropospheric ozone, whose main sources are intrusion from the stratosphere and chemical production from source gases associated with urban pollution or biomass burning, varies on a wide range of spatial and temporal scales. Its transport and chemistry can be influenced by weather, seasonal, or multiannual variability. Despite the importance of tropospheric ozone, it contributes only about 10% of the total ozone loading in the atmosphere. Consequently, satellite instruments lose sensitivity below the stratospheric ozone peak, and provide little information about middle and lower tropospheric ozone. This talk will discuss recent modifications made to the satellite ozone data assimilation system at NASA's Data Assimilation Office (DAO) in order to provide better tropospheric ozone columns and profiles. We use a version of the system that assimilates only the data from the Solar Backscatter UltraViolet/2 (SBUV/2) instrument. The quality of the assimilated ozone in the tropical troposphere is evaluated by comparison with independent observations obtained from the Southern Hemispheric Additional Ozonesondes (SHADOZ) network. It is shown that the quality of ozone fields is sensitive to the winds used in the transport model. Increasing the vertical resolution of the model also has a beneficial impact. The assimilated ozone in the lower troposphere was substantially improved by inclusion of tropospheric ozone production, loss, and dry deposition rates from the Harvard GEOS-CHEM model. The mechanisms behind these results will be examined and the implications for our understanding of tropospheric ozone will be discussed.

  6. THE IMPACT OF OZONE ON THE LOWER FLAMMABLE LIMIT OF HYDROGEN IN VESSELS CONTAINING SAVANNAH RIVER SITE HIGH LEVEL WASTE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherburne, Carol; Osterberg, Paul; Johnson, Tom

    The Savannah River Site, in conjunction with AREVA Federal services, has designed a process to treat dissolved radioactive waste solids with ozone. It is known that in this radioactive waste process, radionuclides radiolytically break down water into gaseous hydrogen and oxygen, which presents a well defined flammability hazard. Flammability limits have been established for both ozone and hydrogen separately; however, there is little information on mixtures of hydrogen and ozone. Therefore, testing was designed to provide critical flammability information necessary to support safety related considerations for the development of ozone treatment and potential scale-up to the commercial level. Since informationmore » was lacking on flammability issues at low levels of hydrogen and ozone, a testing program was developed to focus on filling this portion of the information gap. A 2-L vessel was used to conduct flammability tests at atmospheric pressure and temperature using a fuse wire ignition source at 1 percent ozone intervals spanning from no ozone to the Lower Flammable Limit (LFL) of ozone in the vessel, determined as 8.4%(v/v) ozone. An ozone generator and ozone detector were used to generate and measure the ozone concentration within the vessel in situ, since ozone decomposes rapidly on standing. The lower flammability limit of hydrogen in an ozone-oxygen mixture was found to decrease from the LFL of hydrogen in air, determined as 4.2 % (v/v) in this vessel. From the results of this testing, Savannah River was able to develop safety procedures and operating parameters to effectively minimize the formation of a flammable atmosphere.« less

  7. First Reprocessing of Southern Hemisphere Additional Ozonesondes (SHADOZ) Ozone Profiles (1998-2016): 2. Comparisons With Satellites and Ground-Based Instruments

    NASA Astrophysics Data System (ADS)

    Thompson, Anne M.; Witte, Jacquelyn C.; Sterling, Chance; Jordan, Allen; Johnson, Bryan J.; Oltmans, Samuel J.; Fujiwara, Masatomo; Vömel, Holger; Allaart, Marc; Piters, Ankie; Coetzee, Gert J. R.; Posny, Françoise; Corrales, Ernesto; Diaz, Jorge Andres; Félix, Christian; Komala, Ninong; Lai, Nga; Ahn Nguyen, H. T.; Maata, Matakite; Mani, Francis; Zainal, Zamuna; Ogino, Shin-ya; Paredes, Francisco; Penha, Tercio Luiz Bezerra; da Silva, Francisco Raimundo; Sallons-Mitro, Sukarni; Selkirk, Henry B.; Schmidlin, F. J.; Stübi, Rene; Thiongo, Kennedy

    2017-12-01

    The Southern Hemisphere ADditional OZonesonde (SHADOZ) network was assembled to validate a new generation of ozone-monitoring satellites and to better characterize the vertical structure of tropical ozone in the troposphere and stratosphere. Beginning with nine stations in 1998, more than 7,000 ozone and P-T-U profiles are available from 14 SHADOZ sites that have operated continuously for at least a decade. We analyze ozone profiles from the recently reprocessed SHADOZ data set that is based on adjustments for inconsistencies caused by varying ozonesonde instruments and operating techniques. First, sonde-derived total ozone column amounts are compared to the overpasses from the Earth Probe/Total Ozone Mapping Spectrometer, Ozone Monitoring Instrument, and Ozone Mapping and Profiler Suite satellites that cover 1998-2016. Second, characteristics of the stratospheric and tropospheric columns are examined along with ozone structure in the tropical tropopause layer (TTL). We find that (1) relative to our earlier evaluations of SHADOZ data, in 2003, 2007, and 2012, sonde-satellite total ozone column offsets at 12 stations are 2% or less, a significant improvement; (2) as in prior studies, the 10 tropical SHADOZ stations, defined as within ±19° latitude, display statistically uniform stratospheric column ozone, 229 ± 3.9 DU (Dobson units), and a tropospheric zonal wave-one pattern with a 14 DU mean amplitude; (3) the TTL ozone column, which is also zonally uniform, masks complex vertical structure, and this argues against using satellites for lower stratospheric ozone trends; and (4) reprocessing has led to more uniform stratospheric column amounts across sites and reduced bias in stratospheric profiles. As a consequence, the uncertainty in total column ozone now averages 5%.

  8. Use of AIRS, OMI, MLS, and TES Data in Assessing Forest Ecosystem Exposure to Ozone

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.

    2007-01-01

    Ground-level ozone at high levels poses health threats to exposed flora and fauna, including negative impacts to human health. While concern is common regarding depletion of ozone in the stratosphere, portions of the urban and rural United States periodically have high ambient levels of tropospheric ozone on the ground. Ozone pollution can cause a variety of impacts to susceptible vegetation (e.g., Ponderosa and Jeffrey pine species in the southwestern United States), such as stunted growth, alteration of growth form, needle or leaf chlorosis, and impaired ability to withstand drought-induced water stress. In addition, Southern Californian forests with high ozone exposures have been recently subject to multiyear droughts that have led to extensive forest overstory mortality from insect outbreaks and increased incidence of wildfires. Residual forests in these impacted areas may be more vulnerable to high ozone exposures and to other forest threats than ever before. NASA sensors collect a wealth of atmospheric data that have been used recently for mapping and monitoring regional tropospheric ozone levels. AIRS (Atmospheric Infrared Sounder), OMI (Ozone Monitoring Instrument), MLS (Microwave Limb Sounder), and TES (Tropospheric Emission Spectrometer) data could be used to assess forest ecosystem exposure to ozone. Such NASA data hold promise for providing better or at least complementary synoptic information on ground-level ozone levels that Federal agency partners can use to assess forest health trends and to mitigate the threats as needed in compliance with Federal laws and mandates. NASA data products on ozone concentrations may be able to aid applications of DSTs (decision support tools) adopted by the USDA FS (U.S. Department of Agriculture Forest Service) and by the NPS (National Park Service), such as the Ozone Calculator, in which ground ozone estimates are employed to assess ozone impacts to forested vegetation.

  9. Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects.

    PubMed

    Wang, Tao; Xue, Likun; Brimblecombe, Peter; Lam, Yun Fat; Li, Li; Zhang, Li

    2017-01-01

    High concentrations of ozone in urban and industrial regions worldwide have long been a major air quality issue. With the rapid increase in fossil fuel consumption in China over the past three decades, the emission of chemical precursors to ozone-nitrogen oxides and volatile organic compounds-has increased sharply, surpassing that of North America and Europe and raising concerns about worsening ozone pollution in China. Historically, research and control have prioritized acid rain, particulate matter, and more recently fine particulate matter (PM 2.5 ). In contrast, less is known about ozone pollution, partly due to a lack of monitoring of atmospheric ozone and its precursors until recently. This review summarizes the main findings from published papers on the characteristics and sources and processes of ozone and ozone precursors in the boundary layer of urban and rural areas of China, including concentration levels, seasonal variation, meteorology conducive to photochemistry and pollution transport, key production and loss processes, ozone dependence on nitrogen oxides and volatile organic compounds, and the effects of ozone on crops and human health. Ozone concentrations exceeding the ambient air quality standard by 100-200% have been observed in China's major urban centers such as Jing-Jin-Ji, the Yangtze River delta, and the Pearl River delta, and limited studies suggest harmful effect of ozone on human health and agricultural corps; key chemical precursors and meteorological conditions conductive to ozone pollution have been investigated, and inter-city/region transport of ozone is significant. Several recommendations are given for future research and policy development on ground-level ozone. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Tropospheric Ozone Near-Nadir-Viewing IR Spectral Sensitivity and Ozone Measurements from NAST-I

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Smith, William L.; Larar, Allen M.

    2001-01-01

    Infrared ozone spectra from near nadir observations have provided atmospheric ozone information from the sensor to the Earth's surface. Simulations of the NPOESS Airborne Sounder Testbed-Interferometer (NAST-I) from the NASA ER-2 aircraft (approximately 20 km altitude) with a spectral resolution of 0.25/cm were used for sensitivity analysis. The spectral sensitivity of ozone retrievals to uncertainties in atmospheric temperature and water vapor is assessed in order to understand the relationship between the IR emissions and the atmospheric state. In addition, ozone spectral radiance sensitivity to its ozone layer densities and radiance weighting functions reveals the limit of the ozone profile retrieval accuracy from NAST-I measurements. Statistical retrievals of ozone with temperature and moisture retrievals from NAST-I spectra have been investigated and the preliminary results from NAST-I field campaigns are presented.

  11. Space observations of aerosols and ozone; Proceedings of the Topical Meeting, Ottawa, Canada, May 16-June 2, 1982

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P. (Editor); Lovill, J. E.

    1982-01-01

    The measurement of aerosols from space is discussed, taking into account the role of aerosols in climate, instrumentation and further measurement systems, retrieval procedures, measurements and observations, ground truth measurements, and effects on remote sensing and on climate. Aspects of ozone variability in the middle atmosphere are explored, giving attention to the quasi-biennial oscillation in equatorial stratospheric temperatures and total ozone, global pictures on the ozone field from high altitudes from DE-1, measurements of atmospheric ozone from aircraft and from balloons, a mesospheric ozone profile at sunset, periodic and aperiodic ozone variations in the middle and upper stratosphere, solar eclipse induced variations in mesospheric ozone concentrations, and solar UV and ozone balloon measurements. The determination of aerosol optical depth is considered along with a method for estimating cross radiance.

  12. Impact of synoptic controls and boundary layer processes on ground-level ozone evolution at an urban site

    NASA Astrophysics Data System (ADS)

    Haman, Christine Lanier

    Houston, Texas frequently exceeds the standard for ground-level ozone during the spring and fall. The large commuting population and vast number of industrial sources provide the necessary ingredients for photochemical ozone production in the presence of favorable meteorological conditions. The lack of continuous boundary layer (BL) observations prevents a comprehensive understanding of its role in ozone evolution. In this study, almost two years of BL observations are utilized to investigate the impacts of synoptic and micrometeorological-scale forcings on ozone. Aerosol gradients derived from ceilometer backscatter retrievals are used to identify the BL and residual layers (RL). Overall agreement is found between ceilometer and sonde estimates of the RL and BL heights (BLH), but difficulty detecting the layers occurs during cloud periods or immediately following precipitation. Large monthly variability is present in the peak afternoon BLH (e.g. mean August and December peaks are ˜2000 and 1100 m, respectively). Monthly nocturnal BLHs display much smaller differences. The majority of ozone exceedances occur during large-scale subsidence and weak winds in a postfrontal environment. These conditions result in turbulent kinetic energy, mechanical mixing, and ventilation processes that are 2--3 times weaker on exceedance days, which inhibit morning BL growth by an average of ˜100 m·hr-1 compared to low ozone days. The spring has higher nocturnal ozone levels, which is likely attributable to longer day lengths (˜78 minutes), stronger winds (˜0.78 m·s -1), and higher background ozone (˜5 ppbv) compared to the fall. Boundary layer entrainment plays an important role in ozone evolution. Exceedance days show a characteristic early morning rapid rise of ozone. Vertical ozone profiles indicate the RL ozone peak is ˜60 ppbv on exceedance days, which is ˜25 ppbv (+/- 10 ppbv) greater than low ozone days. The Integrated Profile Mixing (IPM) and Photochemical Budget (PB) methods are used to quantify ozone transport and photochemical production. On low ozone days, both the IPM and PB methods indicate ozone entrainment is ˜3--4 ppbv·hr-1 in this low photochemical environment of ˜1--4 ppbv·hr-1. During the rapid early morning ozone rise on exceedance days, RL entrainment and photochemical ozone production rates are 5--10 and 10--15 ppbv·hr -1, respectively.

  13. Antarctic ozone loss in 1989-2010: evidence for ozone recovery?

    NASA Astrophysics Data System (ADS)

    Kuttippurath, J.; Lefèvre, F.; Pommereau, J.-P.; Roscoe, H. K.; Goutail, F.; Pazmiño, A.; Shanklin, J. D.

    2012-04-01

    We present a detailed estimation of chemical ozone loss in the Antarctic polar vortex from 1989 to 2010. The analyses include ozone loss estimates for 12 Antarctic ground-based (GB) stations. All GB observations show minimum ozone in the late September-early October period. Among the stations, the lowest minimum ozone values are observed at South Pole and the highest at Dumont d'Urville. The ozone loss starts by mid-June at the vortex edge and then progresses towards the vortex core with time. The loss intensifies in August-September, peaks by the end of September-early October, and recovers thereafter. The average ozone loss in the Antarctic is revealed to be about 33-50% in 1989-1992 in agreement with the increase in halogens during this period, and then stayed at around 48% due to saturation of the loss. The ozone loss in the warmer winters (e.g. 2002, and 2004) is lower (37-46%) and in the colder winters (e.g. 2003, and 2006) is higher (52-55%). Because of small inter-annual variability, the correlation between ozone loss and the volume of polar stratospheric clouds yields ~0.51. The GB ozone and ozone loss values are in good agreement with those found from the space-based observations of the Total Ozone Mapping Spectrometer/Ozone Monitoring Instrument (TOMS/OMI), the Global Ozone Monitoring Experiment (GOME), the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY), and the Aura Microwave Limb Sounder (MLS), where the differences are within ±5% and are mostly within the error bars of the measurements. The piece-wise linear trends computed from the September-November vortex average GB and TOMS/OMI ozone show about -4 to -5.6 DU (Dobson Unit) yr-1 in 1989-1996 and about +1 DU yr-1 in 1997-2010. The trend during the former period is significant at 95% confidence intervals, but the trend in 1997-2010 is significant only at 85% confidence intervals. Our analyses suggest a period of about 9-10 yr to get the first detectable ozone recovery signal at the 95% confidence intervals with the current ozone trends in the Antarctic. Thus, this study reveals that the recovery of the Antarctic ozone is well on course.

  14. Fundamentals of ISCO Using Ozone

    EPA Science Inventory

    In situ chemical oxidation (ISCO) using ozone involves the introduction of ozone gas (O3) into the subsurface to degrade organic contaminants of concern. Ozone is tri-molecular oxygen (O2) that is a gas under atmospheric conditions and is a strong oxidant. Ozone may react with ...

  15. The Two Faces of Ozone.

    ERIC Educational Resources Information Center

    Monastersky, Richard

    1989-01-01

    Provides answers to questions regarding the ozone problem: (1) nature of ozone in the troposphere and stratosphere; (2) possibility of sending the excess ozone at ground level to the stratosphere; (3) possibility of producing pure ozone and carrying it to the stratosphere; and (4) banning chlorofluorocarbons. (YP)

  16. Selected Measurements of Total Arctic Column Ozone Amounts from Aura Ozone Monitoring Instrument, 2004-2005 Arctic Winter

    NASA Image and Video Library

    2005-06-02

    Images from the Ozone Monitoring Instrument onboard NASA Aura spacecraft shows the average total column ozone during the months of January and March, and the total column ozone on the single day of 11 March, 2005.

  17. Urban Summertime Ozone of China: Peak Ozone Hour and Nighttime Mixing

    NASA Astrophysics Data System (ADS)

    Qu, H.; Wang, Y.; Zhang, R.

    2017-12-01

    We investigate the observed diurnal cycle of summertime ozone in the cities of China using a regional chemical transport model. The simulated daytime ozone is in general agreement with the observations. Model simulations suggest that the ozone peak time and peak concentration are a function of NOx (NO + NO2) and volatile organic compound (VOC) emissions. The differences between simulated and observed ozone peak time and peak concentration in some regions can be applied to understand biases in the emission inventories. For example, the VOCs emissions are underestimated over the Pearl River Delta (PRD) region, and either NOx emissions are underestimated or VOC emissions are overestimated over the Yangtze River Delta (YRD) regions. In contrast to the general good daytime ozone simulations, the simulated nighttime ozone has a large low bias of up to 40 ppbv. Nighttime ozone in urban areas is sensitive to the nocturnal boundary-layer mixing, and enhanced nighttime mixing (from the surface to 200-500 m) is necessary for the model to reproduce the observed level of ozone.

  18. Spatio-temporal assessment and seasonal variation of tropospheric ozone in Pakistan during the last decade.

    PubMed

    Noreen, Asma; Khokhar, Muhammad Fahim; Zeb, Naila; Yasmin, Naila; Hakeem, Khalid Rehman

    2018-03-01

    This study uses the tropospheric ozone data derived from combined observations of Ozone Monitoring Instrument/Microwave Limb Sounder instruments by using the tropospheric ozone residual method. The main objective was to study the spatial distribution and temporal evolution in the troposphere ozone columns over Pakistan during the time period of 2004 to 2014. Results showed an overall increase of 3.2 ± 1.1 DU in tropospheric ozone columns over Pakistan. Spatial distribution showed enhanced ozone columns in the Punjab and southern Sindh consistent to high population, urbanization, and extensive anthropogenic activities, and exhibited statistically significant temporal increase. Seasonal variations in tropospheric ozone columns are driven by various factors such as seasonality in UV-B fluxes, seasonality in ozone precursor gases such as NO x and volatile organic compounds (caused by temperature dependent biogenic emission) and agricultural fire activities in Pakistan. A strong correlation of 96% (r = 0.96) was found between fire events and tropospheric ozone columns in Pakistan.

  19. Forests and ozone: productivity, carbon storage, and feedbacks.

    PubMed

    Wang, Bin; Shugart, Herman H; Shuman, Jacquelyn K; Lerdau, Manuel T

    2016-02-22

    Tropospheric ozone is a serious air-pollutant, with large impacts on plant function. This study demonstrates that tropospheric ozone, although it damages plant metabolism, does not necessarily reduce ecosystem processes such as productivity or carbon sequestration because of diversity change and compensatory processes at the community scale ameliorate negative impacts at the individual level. This study assesses the impact of ozone on forest composition and ecosystem dynamics with an individual-based gap model that includes basic physiology as well as species-specific metabolic properties. Elevated tropospheric ozone leads to no reduction of forest productivity and carbon stock and to increased isoprene emissions, which result from enhanced dominance by isoprene-emitting species (which tolerate ozone stress better than non-emitters). This study suggests that tropospheric ozone may not diminish forest carbon sequestration capacity. This study also suggests that, because of the often positive relationship between isoprene emission and ozone formation, there is a positive feedback loop between forest communities and ozone, which further aggravates ozone pollution.

  20. Overview for the reanalysis of Mariner 9 UV spectrometer data for ozone, cloud, and dust abundances, and their interaction over climate timescales

    NASA Technical Reports Server (NTRS)

    Lindner, Bernhard Lee

    1992-01-01

    Mariner 9 UV spectrometer data were reinverted for the ozone abundance, cloud abundance, dust abundance, and polar-cap albedo. The original reduction of the spectra ignored the presence of atmospheric dust and clouds, even though their abundance is substantial and can mask appreciable amounts of ozone if not accounted for (Lindner, 1988). The Mariner 9 ozone data has been used as a benchmark in all theoretical models of atmospheric composition, escape, and photochemistry. A second objective is to examine the data for the interrelationship of the ozone cycle, dust cycle, and cloud cycle, on an annual, inter-annual, and climatic basis, testing predictions by Lindner (1988). This also has implications for many terrestrial ozone studies, such as the ozone hole, acid rain, and ozone-smog. A third objective is to evaluate the efficacy of the reflectance spectroscopy technique at retrieving the ozone abundance on Mars. This would be useful for planning ozone observations on future Mars missions or the terrestrial troposphere.

  1. Comparing Model Ozone Loss during the SOLVE and SOLVE-2 Winters

    NASA Technical Reports Server (NTRS)

    Drdla, K.

    2003-01-01

    Model simulations have been used to analyze the factors influencing ozone loss during the 1999-2000 and 2002-2003 js. For both winters, the evolution of the Arctic vortex from November to April has been simulated using a trajectory-based microphysical and photochemical model. Extensive PSC formation and strong ozone depletion are evident in both winters. However, the ozone loss begins earlier in the 2002-2003 winter, with significant ozone depletion by early January. Analysis of the model results shows that during December 2002 not only cold temperatures but also the vortex structure was critical, allowing PSC-processed air parcels to experience significant solar exposure. The resultant ozone loss can be differentiated from ozone loss that occurs in the springtime, in particular because of the continued exposure to PSCs. For example, chlorine reactivation by the PSCs causes ozone loss to be insensitive to denitrification. Therefore, diagnosing the extent of ozone loss early in the winter is critical In understanding the overall winter-long ozone depletion.

  2. Using Ozone Lidar to Investigate Sources of High Ozone Concentrations in the Western United States

    NASA Astrophysics Data System (ADS)

    Senff, C. J.; Langford, A. O.; Alvarez, R. J.; Brewer, Wm. A.; Banta, R. M.; Marchbanks, R. D.; Sandberg, S. P.; Weickmann, A. M.; Holloway, J. S.; Williams, E. J.

    2016-06-01

    We have used NOAA's Tunable Optical Profiler for Aerosol and oZone (TOPAZ) ozone lidar to investigate the sources of high surface ozone concentrations in two different regions of the western United States (US): the Uintah Basin in northeast Utah and Clark County in southern Nevada, which includes the city of Las Vegas. The Uintah Basin is a booming oil and gas producing region that often suffers from very high wintertime ozone concentrations. Clark County experiences violations of the US ozone standard primarily in spring and early summer despite a lack of any major local pollution sources. TOPAZ lidar observations, in conjunction with surface in situ measurements and model results, provided strong evidence that the high wintertime ozone concentrations in the Uintah Basin are primarily driven by local emissions associated with oil and gas exploration, whereas the Clark County ozone exceedances are often caused by ozone-rich air that is transported from the lower stratosphere all the way down to the earth's surface.

  3. Emission factors of fine particles, carbonaceous aerosols and traces gases from road vehicles: Recent tests in an urban tunnel in the Pearl River Delta, China

    NASA Astrophysics Data System (ADS)

    Zhang, Yanli; Wang, Xinming; Li, Guanghui; Yang, Weiqiang; Huang, Zhonghui; Zhang, Zhou; Huang, Xinyu; Deng, Wei; Liu, Tengyu; Huang, Zuzhao; Zhang, Zhanyi

    2015-12-01

    Motor vehicles contribute primarily and secondarily to air quality problems due to fine particle (PM2.5) and ozone (O3) pollution in China's megacities. Characterizing vehicle emission with the rapid change of vehicle numbers and fleet compositions is vital for both bottom-up emission survey and top-down source apportioning. To obtain emission factors (EFs) of PM2.5, carbonaceous aerosols and trace gases for road vehicles, in urban Guangzhou we conducted a field campaign in 2014 in the Zhujiang Tunnel, a heavily burdened tunnel with about 40,000 motor vehicles passing through each of its two separated bores per day. PM2.5 and volatile organic compounds (VOCs) were sampled for offline analysis while trace gases including SO2, NOx and CO were measured online and in situ. An eddy covariance system with an integrated 3-D sonic anemometer was also adopted to measure CO2 and winds inside the tunnel. We recorded an average fleet composition of 61% light-duty gasoline vehicles (LDVs) + 12% heavy-duty diesel vehicles (HDVs) + 27% liquefied petroleum gas vehicles (LPGVs), and EFs of 82.7 ± 28.3, 19.3 ± 4.7 and 13.3 ± 3.3 mg veh-1 km-1, respectively, for PM2.5, organic carbon (OC) and elemental carbon (EC). These EFs were respectively 23.4%, 18.3% and 72.3% lower when compared to that measured in the same tunnel in 2004. EFs of PM2.5, OC and EC were higher at night time (148 ± 126, 29 ± 24 and 21 ± 18 mg veh-1 km-1, respectively) due to significantly elevated fractions of HDVs in the traffic fleets. An average ratio of OC to EC 1.45 from this tunnel study was much higher than that of ∼0.5 in previous tunnel studies. The EFs of SO2, NOx, CO, CO2 and NMHCs for road traffic were also obtained from our tunnel tests, and they were 20.7 ± 2.9, (1.29 ± 0.2)E+03, (3.10 ± 0.68)E+03, (3.90 ± 0.49)E+05, and 448 ± 39 mg veh-1 km-1, respectively.

  4. Estimating contribution of wildland fires to ambient ozone levels in National Parks in the Sierra Nevada, California

    Treesearch

    Haiganoush K. Preisler; Shiyuan (Sharon) Zhong; Annie Esperanza; Timothy J. Brown; Andrzej Bytnerowicz; Leland Tarnay

    2010-01-01

    Data from four continuous ozone and weather monitoring sites operated by the National Park Service in Sierra Nevada, California, are used to develop an ozone forecasting model and to estimate the contribution of wildland fires on ambient ozone levels. The analyses of weather and ozone data pointed to the transport of ozone precursors from the Central Valley as an...

  5. Assimilation of Satellite Ozone Observations

    NASA Technical Reports Server (NTRS)

    Stajner, I.; Winslow, N.; Wargan, K.; Hayashi, H.; Pawson, S.; Rood, R.

    2003-01-01

    This talk will discuss assimilation of ozone data from satellite-borne instruments. Satellite observations of ozone total columns and profiles have been measured by a series of Total Ozone Mapping Spectrometer (TOMS), Solar Backscatter Ultraviolet (SBUV) instruments, and more recently by the Global Ozone Monitoring Experiment. Additional profile data are provided by instruments on NASA's Upper Atmosphere Research Satellite and by occultation instruments on other platforms. Instruments on Envisat' and future EOS Aura satellite will supply even more comprehensive data about the ozone distribution. Satellite data contain a wealth of information, but they do not provide synoptic global maps of ozone fields. These maps can be obtained through assimilation of satellite data into global chemistry and transport models. In the ozone system at NASA's Data Assimilation Office (DAO) any combination of TOMS, SBUV, and Microwave Limb sounder (MLS) data can be assimilated. We found that the addition of MLS to SBUV and TOMS data in the system helps to constrain the ozone distribution, especially in the polar night region and in the tropics. The assimilated ozone distribution in the troposphere and lower stratosphere is sensitive also to finer changes in the SBUV and TOMS data selection and to changes in error covariance models. All results are established by comparisons of assimilated ozone with independent profiles from ozone sondes and occultation instruments.

  6. Meteorology-induced variations in the spatial behavior of summer ozone pollution in Central California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Ling; Harley, Robert A.; Brown, Nancy J.

    Cluster analysis was applied to daily 8 h ozone maxima modeled for a summer season to characterize meteorology-induced variations in the spatial distribution of ozone. Principal component analysis is employed to form a reduced dimension set to describe and interpret ozone spatial patterns. The first three principal components (PCs) capture {approx}85% of total variance, with PC1 describing a general spatial trend, and PC2 and PC3 each describing a spatial contrast. Six clusters were identified for California's San Joaquin Valley (SJV) with two low, three moderate, and one high-ozone cluster. The moderate ozone clusters are distinguished by elevated ozone levels inmore » different parts of the valley: northern, western, and eastern, respectively. The SJV ozone clusters have stronger coupling with the San Francisco Bay area (SFB) than with the Sacramento Valley (SV). Variations in ozone spatial distributions induced by anthropogenic emission changes are small relative to the overall variations in ozone amomalies observed for the whole summer. Ozone regimes identified here are mostly determined by the direct and indirect meteorological effects. Existing measurement sites are sufficiently representative to capture ozone spatial patterns in the SFB and SV, but the western side of the SJV is under-sampled.« less

  7. Ozone kinetics in low-pressure discharges: vibrationally excited ozone and molecule formation on surfaces

    NASA Astrophysics Data System (ADS)

    Marinov, Daniil; Guerra, Vasco; Guaitella, Olivier; Booth, Jean-Paul; Rousseau, Antoine

    2013-10-01

    A combined experimental and modeling investigation of the ozone kinetics in the afterglow of pulsed direct current discharges in oxygen is carried out. The discharge is generated in a cylindrical silica tube of radius 1 cm, with short pulse durations between 0.5 and 2 ms, pressures in the range 1-5 Torr and discharge currents ˜40-120 mA. Time-resolved absolute concentrations of ground-state atoms and ozone molecules were measured simultaneously in situ, by two-photon absorption laser-induced fluorescence and ultraviolet absorption, respectively. The experiments were complemented by a self-consistent model developed to interpret the results and, in particular, to evaluate the roles of vibrationally excited ozone and of ozone formation on surfaces. It is found that vibrationally excited ozone, O_3^{*} , plays an important role in the ozone kinetics, leading to a decrease in the ozone concentration and an increase in its formation time. In turn, the kinetics of O_3^{*} is strongly coupled with those of atomic oxygen and O2(a 1Δg) metastables. Ozone formation at the wall does not contribute significantly to the total ozone production under the present conditions. Upper limits for the effective heterogeneous recombination probability of O atoms into ozone are established.

  8. Characterization of ozone in the lower troposphere during the 2016 G20 conference in Hangzhou.

    PubMed

    Su, Wenjing; Liu, Cheng; Hu, Qihou; Fan, Guangqiang; Xie, Zhouqing; Huang, Xin; Zhang, Tianshu; Chen, Zhenyi; Dong, Yunsheng; Ji, Xiangguang; Liu, Haoran; Wang, Zhuang; Liu, Jianguo

    2017-12-12

    Recently, atmospheric ozone pollution has demonstrated an aggravating tendency in China. To date, most research about atmospheric ozone has been confined near the surface, and an understanding of the vertical ozone structure is limited. During the 2016 G20 conference, strict emission control measures were implemented in Hangzhou, a megacity in the Yangtze River Delta, and its surrounding regions. Here, we monitored the vertical profiles of ozone concentration and aerosol extinction coefficients in the lower troposphere using an ozone lidar, in addition to the vertical column densities (VCDs) of ozone and its precursors in the troposphere through satellite-based remote sensing. The ozone concentrations reached a peak near the top of the boundary layer. During the control period, the aerosol extinction coefficients in the lower lidar layer decreased significantly; however, the ozone concentration fluctuated frequently with two pollution episodes and one clean episode. The sensitivity of ozone production was mostly within VOC-limited or transition regimes, but entered a NOx-limited regime due to a substantial decline of NOx during the clean episode. Temporary measures took no immediate effect on ozone pollution in the boundary layer; instead, meteorological conditions like air mass sources and solar radiation intensities dominated the variations in the ozone concentration.

  9. Ozonation of oil sands process-affected water accelerates microbial bioremediation.

    PubMed

    Martin, Jonathan W; Barri, Thaer; Han, Xiumei; Fedorak, Phillip M; El-Din, Mohamed Gamal; Perez, Leonidas; Scott, Angela C; Jiang, Jason Tiange

    2010-11-01

    Ozonation can degrade toxic naphthenic acids (NAs) in oil sands process-affected water (OSPW), but even after extensive treatment a residual NA fraction remains. Here we hypothesized that mild ozonation would selectively oxidize the most biopersistent NA fraction, thereby accelerating subsequent NA biodegradation and toxicity removal by indigenous microbes. OSPW was ozonated to achieve approximately 50% and 75% NA degradation, and the major ozonation byproducts included oxidized NAs (i.e., hydroxy- or keto-NAs). However, oxidized NAs are already present in untreated OSPW and were shown to be formed during the microbial biodegradation of NAs. Ozonation alone did not affect OSPW toxicity, based on Microtox; however, there was a significant acceleration of toxicity removal in ozonated OSPW following inoculation with native microbes. Furthermore, all residual NAs biodegraded significantly faster in ozonated OSPW. The opposite trend was found for ozonated commercial NAs, which are known to contain no significant biopersistent fraction. Thus, we suggest that ozonation preferentially degraded the most biopersistent OSPW NA fraction, and that ozonation is complementary to the biodegradation capacity of microbial populations in OSPW. The toxicity of ozonated OSPW to higher organisms needs to be assessed, but there is promise that this technique could be applied to accelerate the bioremediation of large volumes of OSPW in Northern Alberta, Canada.

  10. Ozone from fireworks: Chemical processes or measurement interference?

    PubMed

    Xu, Zheng; Nie, Wei; Chi, Xuguang; Huang, Xin; Zheng, Longfei; Xu, Zhengning; Wang, Jiaping; Xie, Yuning; Qi, Ximeng; Wang, Xinfeng; Xue, Likun; Ding, Aijun

    2018-08-15

    Fireworks have been identified as one ozone source by photolyzing NO 2 or O 2 and are believed to potentially be important for the nighttime ozone during firework events. In this study, we conducted both lab and field experiments to test two types of fireworks with low and high energy with the goal to distinguish whether the visible ozone signal during firework displays is real. The results suggest that previous understanding of the ozone formation mechanism during fireworks is misunderstood. Ultraviolet ray (UV)-based ozone monitors are interfered by aerosols and some specific VOCs. High-energy fireworks emit high concentrations of particular matters and low VOCs that the artificial ozone can be easily removed by an aerosol filter. Low-energy fireworks emit large amounts of VOCs mostly from the combustion of the cardboard from fireworks that largely interferes with the ozone monitor. Benzene and phenol might be major contributors to the artificial ozone signal. We further checked the nighttime ozone concentration in Jinan and Beijing, China, during Chinese New Year, a period with intense fireworks. A signal of 3-8ppbv ozone was detected and positively correlated to NO and SO 2 , suggesting a considerable influence of these chemicals in interfering with ambient ozone monitoring. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Ozone Quenching Properties of Isoprene and Its Antioxidant Role in Leaves1

    PubMed Central

    Loreto, Francesco; Mannozzi, Michela; Maris, Christophe; Nascetti, Pamela; Ferranti, Francesco; Pasqualini, Stefania

    2001-01-01

    Isoprene is formed in and emitted by plants and the reason for this apparent carbon waste is still unclear. It has been proposed that isoprene stabilizes cell and particularly chloroplast thylakoid membranes. We tested if membrane stabilization or isoprene reactivity with ozone induces protection against acute ozone exposures. The reduction of visible, physiological, anatomical, and ultrastructural (chloroplast) damage shows that clones of plants sensitive to ozone and unable to emit isoprene become resistant to acute and short exposure to ozone if they are fumigated with exogenous isoprene, and that isoprene-emitting plants that are sensitive to ozone do not suffer damage when exposed to ozone. Isoprene-induced ozone resistance is associated with the maintenance of photochemical efficiency and with a low energy dissipation, as indicated by fluorescence quenching. This suggests that isoprene effectively stabilizes thylakoid membranes. However, when isoprene reacts with ozone within the leaves or in a humid atmosphere, it quenches the ozone concentration to levels that are less or non-toxic for plants. Thus, protection from ozone in plants fumigated with isoprene may be due to a direct ozone quenching rather than to an induced resistance at membrane level. Irrespective of the mechanism, isoprene is one of the most effective antioxidants in plants. PMID:11457950

  12. Vertical distribution of ozone and the variation of tropopause heights based on ozonesonde and satellite observations. [Contract title: Internal Wave Motion

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Liu, J. M.

    1986-01-01

    The distribution of atmospheric ozone is nonuniform both in space and time. Local ozone concentration vary with altitude, latitude, longitude, and season. Two year ozonesonde data, January 1981 to December 1982, observed at four Canadian stations and 2.5 year backscattered ultraviolet experiment data on the Nimbus-4 satellite, April 1970 to August 1972, observed over five American stations were used to study the relationship between the total ozone, vertical height distribution of the ozone mixing ratio, vertical height distribution of half total ozone, and the local tropopause height. The results show that there is a postive correlation between total ozone in Dobson Units and the tropopause height in terms of atmospheric pressure. This result suggests that local intrusion of the statosphere into the troposphere, or the local decreasing of tropopause height could occur if there is a local increasing of total ozone. A comparison of the vertical height distribution of the ozone mixing ratio, the modified pressure height of half total ozone and the tropopause height shows that the pressure height of an ozone mixing ratio of 0.3 micrograms/g, and the modified pressure height of half total ozone are very well correlated with the tropopause pressure height.

  13. Development of a Climate Record of Tropospheric and Stratospheric Column Ozone from Satellite Remote Sensing: Evidence of an Early Recovery of Global Stratospheric Ozone

    NASA Technical Reports Server (NTRS)

    Ziemke, Jerald R.; Chandra, Sushil

    2012-01-01

    Ozone data beginning October 2004 from the Aura Ozone Monitoring Instrument (OMI) and Aura Microwave Limb Sounder (MLS) are used to evaluate the accuracy of the Cloud Slicing technique in effort to develop long data records of tropospheric and stratospheric ozone and for studying their long-term changes. Using this technique, we have produced a 32-yr (1979-2010) long record of tropospheric and stratospheric column ozone from the combined Total Ozone Mapping Spectrometer (TOMS) and OMI. Analyses of these time series suggest that the quasi-biennial oscillation (QBO) is the dominant source of inter-annual variability of stratospheric ozone and is clearest in the Southern Hemisphere during the Aura time record with related inter-annual changes of 30- 40 Dobson Units. Tropospheric ozone for the long record also indicates a QBO signal in the tropics with peak-to-peak changes varying from 2 to 7 DU. The most important result from our study is that global stratospheric ozone indicates signature of a recovery occurring with ozone abundance now approaching the levels of year 1980 and earlier. The negative trends in stratospheric ozone in both hemispheres during the first 15 yr of the record are now positive over the last 15 yr and with nearly equal magnitudes. This turnaround in stratospheric ozone loss is occurring about 20 yr earlier than predicted by many chemistry climate models. This suggests that the Montreal Protocol which was first signed in 1987 as an international agreement to reduce ozone destroying substances is working well and perhaps better than anticipated.

  14. The Ecophysiology Of A Pinus Ponderosa Ecosystem Exposed To High Tropospheric Ozone: Implications For Stomatal And Non-Stomatal Ozone Fluxes

    NASA Astrophysics Data System (ADS)

    Fares, S.; McKay, M.; Goldstein, A.

    2008-12-01

    Ecosystems remove ozone from the troposphere through both stomatal and non-stomatal deposition. The portion of ozone taken up through stomata has an oxidative effect causing damage. We used a multi-year dataset to assess the physiological controls over ozone deposition. Environmental parameters, CO2 and ozone fluxes were measured continuously from January 2001 to December 2006 above a ponderosa pine plantation near Blodgett Forest, Georgetown, California. We studied the dynamic of NEE (Net Ecosystem Exchange, -838 g C m-2 yr-1) and water evapotranspiration on an annual and daily basis. These processes are tightly coupled to stomatal aperture which also controlled ozone fluxes. High levels of ozone concentrations (~ 100 ppb) were observed during the spring-summer period, with corresponding high levels of ozone fluxes (~ 30 μmol m-2 h-1). During the summer season, a large portion of the total ozone flux was due to non-stomatal processes, and we propose that a plant physiological control, releasing BVOC (Biogenic Volatile Organic Compounds), is mainly responsible. We analyzed the correlations of common ozone exposure metrics based on accumulation of concentrations (AOT40 and SUM0) with ozone fluxes (total, stomatal and non-stomatal). Stomatal flux showed poorer correlation with ozone concentrations than non-stomatal flux during summer and fall seasons, which largely corresponded to the growing period. We therefore suggest that AOT40 and SUM0 are poor predictors of ozone damage and that a physiologically based metric would be more effective.

  15. Determination of oxidant exposure during ozonation of secondary effluent to predict contaminant removal.

    PubMed

    Zucker, Ines; Avisar, Dror; Mamane, Hadas; Jekel, Martin; Hübner, Uwe

    2016-09-01

    The use of kinetic models to predict oxidation performance in wastewater is limited due to fast ozone depletion during the first milliseconds of the reaction. This paper introduces the Quench Flow Module (QFM), a bench-scale experimental technique developed to measure the first 5-500 milliseconds of ozone depletion for accurate determination of ozone exposure in wastewater-ozonation processes. Calculated ozone exposure in QFM experiments was up to 24% lower than in standard batch experiments, strongly depending on the initial sampling point for measurement in batch experiments. However, oxidation rates of slowly- and moderately-reacting trace organic compounds (TrOCs) were accurately predicted from batch experiments based on integration of ozone depletion and removal of an ozone-resistant probe compound to calculate oxidant exposures. An alternative concept, where ozone and hydroxyl radical exposures are back-calculated from the removal of two probe compounds, was tested as well. Although the QFM was suggested to be an efficient mixing reactor, ozone exposure ranged over three orders of magnitude when different probe compounds reacting moderately with ozone were used for the calculation. These effects were beyond uncertainty ranges for apparent second order rate constants and consistently observed with different ozone-injection techniques, i.e. QFM, batch experiments, bubble columns and venturi injection. This indicates that previously suggested mixing effects are not responsible for the difference and other still unknown factors might be relevant. Results furthermore suggest that ozone exposure calculations from the relative residual concentration of a probe compound are not a promising option for evaluation of ozonation of secondary effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. A Composite View of Ozone Evolution in the 1995-1996 Northern Winter Polar Vortex Developed from Airborne Lidar and Satellite Observations

    NASA Technical Reports Server (NTRS)

    Douglass, A. R.; Schoeberl, M. R.; Kawa, S. R.; Browell, E. V.

    2000-01-01

    The processes which contribute to the ozone evolution in the high latitude northern lower stratosphere are evaluated using a three dimensional model simulation and ozone observations. The model uses winds and temperatures from the Goddard Earth Observing System Data Assimilation System. The simulation results are compared with ozone observations from three platforms: the differential absorption lidar (DIAL) which was flown on the NASA DC-8 as part of the Vortex Ozone Transport Experiment; the Microwave Limb Sounder (MLS); the Polar Ozone and Aerosol Measurement (POAM II) solar occultation instrument. Time series for the different data sets are consistent with each other, and diverge from model time series during December and January. The model ozone in December and January is shown to be much less sensitive to the model photochemistry than to the model vertical transport, which depends on the model vertical motion as well as the model vertical gradient. We evaluate the dependence of model ozone evolution on the model ozone gradient by comparing simulations with different initial conditions for ozone. The modeled ozone throughout December and January most closely resembles observed ozone when the vertical profiles between 12 and 20 km within the polar vortex closely match December DIAL observations. We make a quantitative estimate of the uncertainty in the vertical advection using diabatic trajectory calculations. The net transport uncertainty is significant, and should be accounted for when comparing observations with model ozone. The observed and modeled ozone time series during December and January are consistent when these transport uncertainties are taken into account.

  17. Factors affecting ozone removal rates in a simulated aircraft cabin environment

    NASA Astrophysics Data System (ADS)

    Tamás, Gyöngyi; Weschler, Charles J.; Bakó-Biró, Zsolt; Wyon, David P.; Strøm-Tejsen, Peter

    Ozone concentrations were measured concurrently inside a simulated aircraft cabin and in the airstream providing ventilation air to the cabin. Ozone decay rates were also measured after cessation of ozone injection into the supply airstream. By systematically varying the presence or absence of people, soiled T-shirts, aircraft seats and a used HEPA filter, we have been able in the course of 24 experiments to isolate the contributions of these and other factors to the removal of ozone from the cabin air. In the case of this simulated aircraft, people were responsible for almost 60% of the ozone removal occurring within the cabin and recirculation system; respiration can only have been responsible for about 4% of this removal. The aircraft seats removed about 25% of the ozone; the loaded HEPA filter, 7%; and the other surfaces, 10%. A T-shirt that had been slept in overnight removed roughly 70% as much ozone as a person, indicating the importance of skin oils in ozone removal. The presence of the used HEPA filter in the recirculated airstream reduced the perceived air quality. Over a 5-h period, the overall ozone removal rate by cabin surfaces decreased at ˜3% h -1. With people present, the measured ratio of ozone's concentration in the cabin versus that outside the cabin was 0.15-0.21, smaller than levels reported in the literature. The results reinforce the conclusion that the optimal way to reduce people's exposure to both ozone and ozone oxidation products is to efficiently remove ozone from the air supply system of an aircraft.

  18. Response of giant sequoia canopy foliage to elevated concentrations of atmospheric ozone.

    PubMed

    Grulke, N E; Miller, P R; Scioli, D

    1996-06-01

    We examined the physiological response of foliage in the upper third of the canopy of 125-year-old giant sequoia (Sequoiadendron giganteum Buchholz.) trees to a 61-day exposure to 0.25x, 1x, 2x or 3x ambient ozone concentration. Four branch exposure chambers, one per ozone treatment, were installed on 1-m long secondary branches of each tree at a height of 34 m. No visible symptoms of foliar ozone damage were apparent throughout the 61-day exposure period and none of the ozone treatments affected branch growth. Despite the similarity in ozone concentrations in the branch chambers within a treatment, the trees exhibited different physiological responses to increasing ozone uptake. Differences in diurnal and seasonal patterns of g(s) among the trees led to a 2-fold greater ozone uptake in tree No. 2 compared with trees Nos. 1 and 3. Tree No. 3 had significantly higher CER and g(s) at 0.25x ambient ozone than trees Nos. 1 and 2, and g(s) and CER of tree No. 3 declined with increasing ozone uptake. The y-intercept of the regression for dark respiration versus ozone uptake was significantly lower for tree No. 2 than for trees Nos. 1 and 3. In the 0.25x and 1x ozone treatments, the chlorophyll concentration of current-year foliage of trees Nos. 1 and 2 was significantly higher than that of current-year foliage of tree No. 3. Chlorophyll concentration of current-year foliage on tree No. 1 did not decline with increasing ozone uptake. In all trees, total needle water potential decreased with increasing ozone uptake, but turgor was constant. Although tree No. 2 had the greatest ozone uptake, g(s) was highest and foliar chlorophyll concentration was lowest in tree No. 3 in the 0.25x and 1x ambient atmospheric ozone treatments.

  19. Advanced treatment of biotreated textile industry wastewater with ozone, virgin/ozonated granular activated carbon and their combination.

    PubMed

    Arslan-Alaton, Idil; Seremet, Ozden

    2004-01-01

    Biotreated textile wastewater (CODo = 248 mg L(-1); TOCo = 58 mg L(-1); A620 = 0.007 cm(-1); A525 = 0.181 cm(-1); A436 = 0.198 cm(-1)) was subjected to advanced treatment with ozonation, granular activated carbon (GAC) adsorption in serial and simultaneous applications. Experiments were conducted to investigate the effects of applied ozone dose, ozone absorption rate, specific ozone absorption efficiency, GAC dose, and reaction pH on the treatment performance of the selected tertiary treatment scheme. In separate experiments, the impact of virgin GAC ozonation on its adsorptive capacity for biotreated and biotreated + ozonated textile effluent was also investigated. Ozonation appeared to be more effective for decolorization (kd = 0.15 min(-1) at pH = 3), whereas GAC adsorption yielded higher COD removal rates (54% at pH = 3). It was also found that GAC addition (4 g/L) at pH = 7 and 9 enhanced the COD abatement rate of the ozonation process significantly and that the sequential application of ozonation (at pH = 3-11, 675 mg L(-1) O3) followed by GAC adsorption (at pH = 3-7, 10 g L(-1) GAC) resulted in the highest treatment performances both in terms of color and COD reduction. Simultaneous application of GAC and ozone at acidic and alkaline pH seriously inhibited COD abatement rates as a consequence of competitive adsorption and partial oxidation of textile components and GAC. It could also be established that ozone absorption efficiency decreased after color removal was complete. Ozonation of biotreated textile wastewater with 113 mg L(-1) ozone resulted in an appreciable enhancement of GAC adsorptive capacity in terms of residual color removal. Ozonation of GAC at relatively low doses (= 10.8 mg/g GAC) did not improve its overall adsorption capacity.

  20. The changing oxidizing environment in London - trends in ozone precursors and their contribution to ozone production

    NASA Astrophysics Data System (ADS)

    von Schneidemesser, E.; Vieno, M.; Monks, P. S.

    2014-01-01

    Ground-level ozone is recognized to be a threat to human health (WHO, 2003), have a deleterious impact on vegetation (Fowler et al., 2009), is also an important greenhouse gas (IPCC, 2007) and key to the oxidative ability of the atmosphere (Monks et al., 2009). Owing to its harmful effect on health, much policy and mitigation effort has been put into reducing its precursors - the nitrogen oxides (NOx) and non-methane volatile organic compounds (NMVOCs). The non-linear chemistry of tropospheric ozone formation, dependent mainly on NOx and NMVOC concentrations in the atmosphere, makes controlling tropospheric ozone complex. Furthermore, the concentration of ozone at any given point is a complex superimposition of in-situ produced or destroyed ozone and transported ozone on the regional and hemispheric-scale. In order to effectively address ozone, a more detailed understanding of its origins is needed. Here we show that roughly half (5 μg m-3) of the observed increase in urban (London) ozone (10 μg m-3) in the UK from 1998 to 2008 is owing to factors of local origin, in particular, the change in NO : NO2 ratio, NMVOC : NOx balance, NMVOC speciation, and emission reductions (including NOx titration). In areas with previously higher large concentrations of nitrogen oxides, ozone that was previously suppressed by high concentrations of NO has now been "unmasked", as in London and other urban areas of the UK. The remaining half (approximately 5 μg m-3) of the observed ozone increase is attributed to non-local factors such as long-term transport of ozone, changes in background ozone, and meteorological variability. These results show that a two-pronged approach, local action and regional-to-hemispheric cooperation, is needed to reduce ozone and thereby population exposure, which is especially important for urban ozone.

Top