Sample records for eccentric overload training

  1. Early-phase musculoskeletal adaptations to different levels of eccentric resistance after 8 weeks of lower body training.

    PubMed

    English, Kirk L; Loehr, James A; Lee, Stuart M C; Smith, Scott M

    2014-11-01

    Eccentric muscle actions are important to the development of muscle mass and strength and may affect bone mineral density (BMD). This study's purpose was to determine the relative effectiveness of five different eccentric:concentric load ratios to increase musculoskeletal parameters during early adaptations to resistance training. Forty male subjects performed a supine leg press and calf press training program 3 days week(-1) for 8 weeks. Subjects were matched for pre-training leg press 1-repetition maximum strength (1-RM) and randomly assigned to one of five training groups. Concentric training load (% 1-RM) was constant across groups, but within groups, eccentric load was 0, 33, 66, 100, or 138% of concentric load. Muscle mass (dual energy X-ray absorptiometry; DXA), strength (1-RM), and BMD (DXA) were measured pre- and post-training. Markers of bone metabolism were assessed pre-, mid- and post-training. The increase in leg press 1-RM in the 138% group (20 ± 4%) was significantly greater (P < 0.05) than the 0% (8 ± 3%), 33% (8 ± 5%) and 66% (8 ± 4%) groups, but not the 100% group (13 ± 6 %; P = 0.15). All groups, except the 0% group, increased calf press 1-RM (P < 0.05). Leg lean mass and greater trochanter BMD were increased only in the 138% group (P < 0.05). Early-phase adaptations to eccentric overload training include increases in muscle mass and site-specific increases in BMD and muscle strength which are not present or are less with traditional and eccentric underload training. Eccentric overload provides a robust musculoskeletal stimulus that may benefit bedridden patients, individuals recovering from injury or illness, and astronauts during spaceflight.

  2. Resistance training using eccentric overload induces early adaptations in skeletal muscle size.

    PubMed

    Norrbrand, Lena; Fluckey, James D; Pozzo, Marco; Tesch, Per A

    2008-02-01

    Fifteen healthy men performed a 5-week training program comprising four sets of seven unilateral, coupled concentric-eccentric knee extensions 2-3 times weekly. While eight men were assigned to training using a weight stack (WS) machine, seven men trained using a flywheel (FW) device, which inherently provides variable resistance and allows for eccentric overload. The design of these apparatuses ensured similar knee extensor muscle use and range of motion. Before and after training, maximal isometric force (MVC) was measured in tasks non-specific to the training modes. Volume of all individual quadriceps muscles was determined by magnetic resonance imaging. Performance across the 12 exercise sessions was measured using the inherent features of the devices. Whereas MVC increased (P < 0.05) at all angles measured in FW, such a change was less consistent in WS. There was a marked increase (P < 0.05) in task-specific performance (i.e., load lifted) in WS. Average work showed a non-significant 8.7% increase in FW. Quadriceps muscle volume increased (P < 0.025) in both groups after training. Although the more than twofold greater hypertrophy evident in FW (6.2%) was not statistically greater than that shown in WS (3.0%), all four individual quadriceps muscles of FW showed increased (P < 0.025) volume whereas in WS only m. rectus femoris was increased (P < 0.025). Collectively the results of this study suggest more robust muscular adaptations following flywheel than weight stack resistance exercise supporting the idea that eccentric overload offers a potent stimuli essential to optimize the benefits of resistance exercise.

  3. Eccentric exercise: mechanisms and effects when used as training regime or training adjunct.

    PubMed

    Vogt, Michael; Hoppeler, Hans H

    2014-06-01

    The aim of the current review is to discuss applications and mechanism of eccentric exercise in training regimes of competitive sports. Eccentric muscle work is important in most sports. Eccentric muscle contractions enhance the performance during the concentric phase of stretch-shortening cycles, which is important in disciplines like sprinting, jumping, throwing, and running. Muscles activated during lengthening movements can also function as shock absorbers, to decelerate during landing tasks or to precisely deal with high external loading in sports like alpine skiing. The few studies available on trained subjects reveal that eccentric training can further enhance maximal muscle strength and power. It can further optimize muscle length for maximal tension development at a greater degree of extension, and has potential to improve muscle coordination during eccentric tasks. In skeletal muscles, these functional adaptations are based on increases in muscle mass, fascicle length, number of sarcomeres, and cross-sectional area of type II fibers. Identified modalities for eccentric loading in athletic populations involve classical isotonic exercises, accentuated jumping exercises, eccentric overloading exercises, and eccentric cycle ergometry. We conclude that eccentric exercise offers a promising training modality to enhance performance and to prevent injuries in athletes. However, further research is necessary to better understand how the neuromuscular system adapts to eccentric loading in athletes. Copyright © 2014 the American Physiological Society.

  4. Reduced firing rates of high threshold motor units in response to eccentric overload.

    PubMed

    Balshaw, Tom G; Pahar, Madhu; Chesham, Ross; Macgregor, Lewis J; Hunter, Angus M

    2017-01-01

    Acute responses of motor units were investigated during submaximal voluntary isometric tasks following eccentric overload (EO) and constant load (CL) knee extension resistance exercise. Ten healthy resistance-trained participants performed four experimental test sessions separated by 5 days over a 20 day period. Two sessions involved constant load and the other two used eccentric overload. EO and CL used both sessions for different target knee eccentric extension phases; one at 2 sec and the other at 4 sec. Maximal voluntary contractions (MVC) and isometric trapezoid efforts for 10 sec at 70% MVC were completed before and after each intervention and decomposed electromyography was used to measure motor unit firing rate. The firing rate of later recruited, high-threshold motor units declined following the 2-sec EO but was maintained following 2sec CL (P < 0.05), whereas MUFR for all motor units were maintained for both loading types following 4-sec extension phases. MVC and rate of force development where maintained following both EO and CL and 2 and 4 sec phases. This study demonstrates a slower firing rate of high-threshold motor units following fast eccentric overload while MVC was maintained. This suggests that there was a neuromuscular stimulus without cost to the force-generating capacity of the knee extensors. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  5. The effects of unilateral and bilateral eccentric overload training on hypertrophy, muscle power and COD performance, and its determinants, in team sport players.

    PubMed

    Núñez, Francisco Javier; Santalla, Alfredo; Carrasquila, Irene; Asian, Jose Antonio; Reina, Jose Ignacio; Suarez-Arrones, Luis Jesús

    2018-01-01

    The study aimed to compare the chronic eccentric-overload training effects of unilateral (lateral lunge) vs bilateral (half-squat) using an inertial device, on hypertrophy and physical performance. Twenty-seven young team sports male players performed a 4 sets of 7 repetitions of inertial eccentric overload training, biweekly for 6 weeks, distributed in unilateral lunge group (UG: age: 22.8 ± 2.9 years; body mass: 75.3 ± 8.8 kg; height: 177.3 ± 3.7 cm) and bilateral squat group (BG: age: 22.6 ± 2.7 years; body mass: 79.5 ± 12.8 kg; height: 164.2 ± 7 cm). Lower limb muscle volume, counter movement jump (CMJ), power with both (POWER), dominant (POWERd) and no-dominant leg (POWERnd), change of direction turn of 90° with dominant (COD90d) and no-dominant leg (COD90nd) and 180° (COD180d and COD180nd), and 10m sprint time (T-10m) were measured pre and post-intervention. The UG obtained an increase of adductor major (+11.1%) and vastus medialis (+12.6%) higher than BG. The BG obtained an increase of vastus lateralis (+9.9%) and lateral gastrocnemius (+9.1%) higher than UG. Both groups improved CMJ, POWER, POWERd, POWERnd, COD90 and DEC-COD90, without changes in T-10m. The UG decrease DEC-COD90nd (-21.1%) and BG increase POWER (+38.6%) substantially more than the other group. Six-weeks of unilateral / bilateral EO training induce substantial improvements in lower limbs muscle volume and functional performance, although unilateral training seems to be more effective in improving COD90 performance.

  6. The effects of unilateral and bilateral eccentric overload training on hypertrophy, muscle power and COD performance, and its determinants, in team sport players

    PubMed Central

    Carrasquila, Irene; Asian, Jose Antonio; Reina, Jose Ignacio

    2018-01-01

    The study aimed to compare the chronic eccentric-overload training effects of unilateral (lateral lunge) vs bilateral (half-squat) using an inertial device, on hypertrophy and physical performance. Twenty-seven young team sports male players performed a 4 sets of 7 repetitions of inertial eccentric overload training, biweekly for 6 weeks, distributed in unilateral lunge group (UG: age: 22.8 ± 2.9 years; body mass: 75.3 ± 8.8 kg; height: 177.3 ± 3.7 cm) and bilateral squat group (BG: age: 22.6 ± 2.7 years; body mass: 79.5 ± 12.8 kg; height: 164.2 ± 7 cm). Lower limb muscle volume, counter movement jump (CMJ), power with both (POWER), dominant (POWERd) and no-dominant leg (POWERnd), change of direction turn of 90° with dominant (COD90d) and no-dominant leg (COD90nd) and 180° (COD180d and COD180nd), and 10m sprint time (T-10m) were measured pre and post-intervention. The UG obtained an increase of adductor major (+11.1%) and vastus medialis (+12.6%) higher than BG. The BG obtained an increase of vastus lateralis (+9.9%) and lateral gastrocnemius (+9.1%) higher than UG. Both groups improved CMJ, POWER, POWERd, POWERnd, COD90 and DEC-COD90, without changes in T-10m. The UG decrease DEC-COD90nd (-21.1%) and BG increase POWER (+38.6%) substantially more than the other group. Six-weeks of unilateral / bilateral EO training induce substantial improvements in lower limbs muscle volume and functional performance, although unilateral training seems to be more effective in improving COD90 performance. PMID:29590139

  7. Resistance Training with Co-ingestion of Anti-inflammatory Drugs Attenuates Mitochondrial Function.

    PubMed

    Cardinale, Daniele A; Lilja, Mats; Mandić, Mirko; Gustafsson, Thomas; Larsen, Filip J; Lundberg, Tommy R

    2017-01-01

    Aim: The current study aimed to examine the effects of resistance exercise with concomitant consumption of high vs. low daily doses of non-steroidal anti-inflammatory drugs (NSAIDs) on mitochondrial oxidative phosphorylation in skeletal muscle. As a secondary aim, we compared the effects of eccentric overload with conventional training. Methods: Twenty participants were randomized to either a group taking high doses (3 × 400 mg/day) of ibuprofen (IBU; 27 ± 5 year; n = 11) or a group ingesting a low dose (1 × 75 mg/day) of acetylsalicylic acid (ASA; 26 ± 4 year; n = 9) during 8 weeks of supervised knee extensor resistance training. Each of the subject's legs were randomized to complete the training program using either a flywheel (FW) device emphasizing eccentric overload, or a traditional weight stack machine (WS). Maximal mitochondrial oxidative phosphorylation (CI+II P ) from permeabilized skeletal muscle bundles was assessed using high-resolution respirometry. Citrate synthase (CS) activity was assessed using spectrophotometric techniques and mitochondrial protein content using western blotting. Results: After training, CI+II P decreased ( P < 0.05) in both IBU (23%) and ASA (29%) with no difference across medical treatments. Although CI+II P decreased in both legs, the decrease was greater (interaction p = 0.015) in WS (33%, p = 0.001) compared with FW (19%, p = 0.078). CS activity increased ( p = 0.027) with resistance training, with no interactions with medical treatment or training modality. Protein expression of ULK1 increased with training in both groups ( p < 0.001). The increase in quadriceps muscle volume was not correlated with changes in CI+II P ( R = 0.16). Conclusion: These results suggest that 8 weeks of resistance training with co-ingestion of anti-inflammatory drugs reduces mitochondrial function but increases mitochondrial content. The observed changes were not affected by higher doses of NSAIDs consumption, suggesting that the resistance training intervention was the prime mediator of the decreased mitochondrial phosphorylation. Finally, we noted that flywheel resistance training, emphasizing eccentric overload, rescued some of the reduction in mitochondrial function seen with conventional resistance training.

  8. Moderate Load Eccentric Exercise; A Distinct Novel Training Modality

    PubMed Central

    Hoppeler, Hans

    2016-01-01

    Over the last 20 years a number of studies have been published using progressive eccentric exercise protocols on motorized ergometers or similar devices that allow for controlled application of eccentric loads. Exercise protocols ramp eccentric loads over an initial 3 weeks period in order to prevent muscle damage and delayed onset muscle soreness. Final training loads reach 400–500 W in rehabilitative settings and over 1200 W in elite athletes. Training is typically carried out three times per week for durations of 20–30 min. This type of training has been characterizes as moderate load eccentric exercise. It has also been denoted RENEW (Resistance Exercise via Negative Eccentric Work by LaStayo et al., 2014). It is distinct from plyometric exercises (i.e., drop jumps) that impose muscle loads of several thousand Watts on muscles and tendons. It is also distinct from eccentric overload training whereby loads in a conventional strength training setting are increased in the eccentric phase of the movement to match concentric loads. Moderate load eccentric exercise (or RENEW) has been shown to be similarly effective as conventional strength training in increasing muscle strength and muscle volume. However, as carried out at higher angular velocities of joint movement, it reduces joint loads. A hallmark of moderate load eccentric exercise is the fact that the energy requirements are typically 4-fold smaller than in concentric exercise of the same load. This makes moderate load eccentric exercise training the tool of choice in medical conditions with limitations in muscle energy supply. The use and effectiveness of moderate load eccentric exercise has been demonstrated mostly in small scale studies for cardiorespiratory conditions, sarcopenia of old age, cancer, diabetes type 2, and neurological conditions. It has also been used effectively in the prevention and rehabilitation of injuries of the locomotor system in particular the rehabilitation after anterior cruciate ligament surgery. PMID:27899894

  9. Effects of adding a weekly eccentric-overload training session on strength and athletic performance in team-handball players.

    PubMed

    Sabido, Rafael; Hernández-Davó, Jose Luis; Botella, Javier; Navarro, Angel; Tous-Fajardo, Julio

    2017-06-01

    To investigate the influence of adding a weekly eccentric-overload training (EOT) session in several athletic performance's tests, 18 team-handball players were assigned either to an EOT (n = 11) or a Control (n = 7) group. Both groups continued to perform the same habitual strength training, but the EOT group added one session/week during a 7-week training programme consisting of four sets of eight repetitions for the bilateral half-squat and unilateral lunge exercises. The test battery included handball throwing velocity, maximum dynamic strength (1RM), countermovement jump (CMJ), 20 m sprint, triple hop for distance, and eccentric/concentric power in both the half-squat and lunge exercises. Data were analysed using magnitude-based inferences. Both groups improved their 1RM in the half squat, 20 m sprint time, and CMJ performance to a similar extent, but the EOT group showed a beneficial effect for both right [(42/58/0), possibly positive] and left [(99/1/0), very likely positive] triple hop for distance performance. In addition, the EOT group showed greater power output improvements in both eccentric and concentric phases of the half-squat (difference in percent of change ranging from 6.5% to 22.0%) and lunge exercises (difference in per cent of change ranging from 13.1% to 24.9%). Nevertheless, no group showed changes in handball throwing velocity. Selected variables related to team-handball performance (i.e. functional jumping performance, power output) can be improved by adding a single EOT session per week, highlighting the usefulness of this low-volume/high-intensity training when aiming at optimizing dynamic athletic performance.

  10. Chronic Achilles tendinopathy: a case study of treatment incorporating active and passive tissue warm-up, Graston Technique®, ART®, eccentric exercise, and cryotherapy

    PubMed Central

    Miners, Andrew L.; Bougie, Tracy L.

    2011-01-01

    Objective To describe the subjective pain and functional improvements of a patient with chronic Achilles tendinopathy following a treatment plan incorporating active and passive tissue warm-up, followed respectively by soft tissue mobilization utilizing both Graston Technique® and Active Release Techniques®, eccentric exercise, and static stretching in combination with cryotherapy. Background The primary characterization of chronic Achilles tendinopathy is gradual onset of pain and dysfunction focused in one or both Achilles tendons arising secondary to a history of repetitive use or excessive overload. Intervention and Outcome Conservative treatment is commonly the initial strategy for patient management. Tissue heating, soft tissue mobilization, eccentric training, and static stretching with cryotherapy were implemented to reduce pain and improve function. Summary A specific protocol of heat, soft tissue mobilization, eccentric exercise, stretching, and cryotherapy appeared to facilitate a rapid and complete recovery from chronic Achilles tendinopathy. PMID:22131563

  11. Different Levels of Eccentric Resistance during Eight Weeks of Training Affect Muscle Strength and Lean Tissue Mass

    NASA Technical Reports Server (NTRS)

    English, K. L.; Loehr, J. A.; Lee, S. M. C.; Laughlin, M. S.; Hagan, R. D.

    2008-01-01

    Coupling concentric and eccentric muscle contractions appears to be important in the development of muscle strength and hypertrophy. The interim Resistive Exercise Device (iRED) currently used aboard the International Space Station does not seem to be as effective as free weight training in ambulatory subjects and has not completely protected against muscular deconditioning due to space flight. The lack of protection during space flight could be caused by iRED's proportionally lower eccentric resistance (60-70%) compared to concentric resistance. PURPOSE: To determine the effects of 8 wks of lower body resistive exercise training using five levels of eccentric resistance on muscle strength and lean tissue mass. METHODS: Forty untrained males (34.9 +/- 7 yrs, 80.9 +/- 9.8 kg, 178.2 +/- 7.1 cm; mean +/- SD) completed three 1-repetition maximum (1-RM) strength tests for both the supine leg press (LP) and supine heel raise (HR) prior to training; subjects were matched for LP strength and randomly assigned to one of five training groups. Concentric load (% 1-RM) was constant across groups during training, but each group trained with different levels of eccentric load (0%, 33%, 66%, 100%, or 138% of concentric). Subjects trained 3 d / wk for 8 wks using a periodized program for LP and HR based on percentages of the highest pre-training 1-RM. LP and HR 1-RM and leg lean mass (LLM; assessed by DEXA) were measured pre- and post-training. A two-way ANOVA was used to analyze all dependent measures. Tukey's post hoc tests were used to test significant main effects. Within group pre- to post-training changes were compared using paired t-tests with a Bonferroni adjustment. Statistical significance was set a priori at p 0.05. All data are expressed as mean +/- SE. RESULTS: LP 1-RM strength increased significantly in all groups pre- to post-training. The 138% group increase (20.1 +/- 3.7%) was significantly greater than the 0% (7.9 +/- 2.8%), 33% (7.7 +/- 4.6%), and 66% (7.5 +/- 4.3%) groups. All groups significantly increased HR strength pre- to posttraining (33%: 7.5 +/- 6.1%; 66%: 6.6 +/- 3.7%; 100%: 12.2 +/- 1.8%; 138%: 11.0 +/- 6.4%) except for the 0% (4.9 +/- 9.1%) group. There were no differences between groups. LLM increased significantly pre- to post-training in only the 138% group; there were no differences between groups. CONCLUSIONS: Eight wks of lower body resistive exercise training with eccentric overload resulted in greater increases in LP strength than training with eccentric loads of 66% or less. Post-training HR strength was not affected by eccentric training load, perhaps because of the predominance of Type I fibers typical in the gastrocnemius. Only 138% eccentric training significantly increased LLM. PRACTICAL APPLICATIONS: For athletes or others desiring to maximize muscle strength and hypertrophy gains, training with eccentric loads greater than 100% of concentric resistance will provide greater increases in muscle strength and lean tissue mass in some muscle groups. In a rehabilitation or geriatric exercise setting that places primary emphasis on program adherence and moderate strength gains, training with an eccentric underload may provide strength increases comparable to those of traditional 1:1 training but with less muscle soreness and physiologic insult to the patient, but this has yet to be proven.

  12. INCREASED MYOCARDIAL STIFFNESS DUE TO CARDIAC TITIN ISOFORM SWITCHING IN A MOUSE MODEL OF VOLUME OVERLOAD LIMITS ECCENTRIC REMODELING

    PubMed Central

    Hutchinson, Kirk R; Saripalli, Chandra; Chung, Charles S.; Granzier, Henk

    2014-01-01

    We investigated the cellular and molecular mechanisms of diastolic dysfunction in pure volume overload induced by aortocaval fistula (ACF) surgery in the mouse. Four weeks of volume overload resulted in significant biventricular hypertrophy; protein expression analysis in left ventricular (LV) tissue showed a marked decrease in titin's N2BA/N2B ratio with no change in phosphorylation of titin's spring region. Titin-based passive tensions were significantly increased; a result of the decreased N2BA/N2B ratio. Conscious echocardiography in ACF mice revealed eccentric remodeling and pressure volume analysis revealed systolic dysfunction: reductions in ejection fraction (EF), +dP/dt, and the slope of the endsystolic pressure volume relationships (ESPVR). ACF mice also had diastolic dysfunction: increased LV end-diastolic pressure and reduced relaxation rates. Additionally, a decrease in the slope of the end diastolic pressure volume relationship (EDPVR) was found. However, correcting for altered geometry of the LV normalized the change in EDPVR and revealed, in line with our skinned muscle data, increased myocardial stiffness in vivo. ACF mice also had increased expression of the signaling proteins FHL-1, FHL-2, and CARP that bind to titin's spring region suggesting that titin stiffening is important to the volume overload phenotype. To test this we investigated the effect of volume overload in the RBM20 heterozygous (HET) mouse model, which exhibits reduced titin stiffness. It was found that LV hypertrophy was attenuated and that LV eccentricity was exacerbated. We propose that pure volume overload induces an increase in titin stiffness that is beneficial and limits eccentric remodeling. PMID:25450617

  13. Conservative management of tendinopathy: an evidence-based approach

    PubMed Central

    Loppini, Mattia; Maffulli, Nicola

    2011-01-01

    Summary Tendinopathy is one of the most frequent overuse injuries associated with sport. It is a failure of a chronic healing response associated with both chronic overloaded and unloaded states. Although several conservative therapeutic options have been proposed, very few of them are supported by randomized controlled trials. Eccentric exercises provide excellent clinical results both in athletic and sedentary patients, with no reported adverse effects. Combining eccentric loading and low-energy shock wave therapy produces higher success rates compared with eccentric training alone or shock wave therapy alone. High-volume injection of normal saline solution, corticosteroids, or anesthetics can reduce pain and improve long-term function in patients with Achilles or patellar tendinopathy. The use of injectable substances such as platelet-rich plasma, autologous blood, polidocanol, and corticosteroids in and around tendons is not support by strong clinical evidence. Further randomized controlled trials are necessary to define the best conservative management of tendinopathy. PMID:23738261

  14. Functional and Muscle-Size Effects of Flywheel Resistance Training with Eccentric-Overload in Professional Handball Players.

    PubMed

    Maroto-Izquierdo, Sergio; García-López, David; de Paz, José A

    2017-12-01

    The aim of the study was to analyse the effects of 6 week (15 sessions) flywheel resistance training with eccentric-overload (FRTEO) on different functional and anatomical variables in professional handball players. Twenty-nine athletes were recruited and randomly divided into two groups. The experimental group (EXP, n = 15) carried out 15 sessions of FRTEO in the leg-press exercise, with 4 sets of 7 repetitions at a maximum-concentric effort. The control group (CON, n = 14) performed the same number of training sessions including 4 sets of 7 maximum repetitions (7RM) using a weight-stack leg-press machine. The results which were measured included maximal dynamic strength (1RM), muscle power at different submaximal loads (PO), vertical jump height (CMJ and SJ), 20 m sprint time (20 m), T-test time (T-test), and Vastus-Lateralis muscle (VL) thickness. The results of the EXP group showed a substantially better improvement (p < 0.05-0.001) in PO, CMJ, 20 m, T-test and VL, compared to the CON group. Moreover, athletes from the EXP group showed significant improvements concerning all the variables measured: 1RM (ES = 0.72), PO (ES = 0.42 - 0.83), CMJ (ES = 0.61), SJ (ES = 0.54), 20 m (ES = 1.45), T-test (ES = 1.44), and VL (ES = 0.63 - 1.64). Since handball requires repeated short, explosive effort such as accelerations and decelerations during sprints with changes of direction, these results suggest that FRTEO affects functional and anatomical changes in a way which improves performance in well-trained professional handball players.

  15. Recovery Kinetics of Knee Flexor and Extensor Strength after a Football Match

    PubMed Central

    Draganidis, Dimitrios; Chatzinikolaou, Athanasios; Avloniti, Alexandra; Barbero-Álvarez, José C.; Mohr, Magni; Malliou, Paraskevi; Gourgoulis, Vassilios; Deli, Chariklia K.; Douroudos, Ioannis I.; Margonis, Konstantinos; Gioftsidou, Asimenia; Fouris, Andreas D.; Jamurtas, Athanasios Z.; Koutedakis, Yiannis; Fatouros, Ioannis G.

    2015-01-01

    We examined the temporal changes of isokinetic strength performance of knee flexor (KF) and extensor (KE) strength after a football match. Players were randomly assigned to a control (N = 14, participated only in measurements and practices) or an experimental group (N = 20, participated also in a football match). Participants trained daily during the two days after the match. Match and training overload was monitored with GPS devices. Venous blood was sampled and muscle damage was assessed pre-match, post-match and at 12h, 36h and 60h post-match. Isometric strength as well as eccentric and concentric peak torque of knee flexors and extensors in both limbs (dominant and non-dominant) were measured on an isokinetic dynamometer at baseline and at 12h, 36h and 60h after the match. Functional (KFecc/KEcon) and conventional (KFcon/KEcon) ratios were then calculated. Only eccentric peak torque of knee flexors declined at 60h after the match in the control group. In the experimental group: a) isometric strength of knee extensors and knee flexors declined (P<0.05) at 12h (both limbs) and 36h (dominant limb only), b) eccentric and concentric peak torque of knee extensors and flexors declined (P<0.05) in both limbs for 36h at 60°/s and for 60h at 180°/s with eccentric peak torque of knee flexors demonstrating a greater (P<0.05) reduction than concentric peak torque, c) strength deterioration was greater (P<0.05) at 180°/s and in dominant limb, d) the functional ratio was more sensitive to match-induced fatigue demonstrating a more prolonged decline. Discriminant and regression analysis revealed that strength deterioration and recovery may be related to the amount of eccentric actions performed during the match and athletes' football-specific conditioning. Our data suggest that recovery kinetics of knee flexor and extensor strength after a football match demonstrate strength, limb and velocity specificity and may depend on match physical overload and players' physical conditioning level. PMID:26043222

  16. Functional and Muscle-Size Effects of Flywheel Resistance Training with Eccentric-Overload in Professional Handball Players

    PubMed Central

    García-López, David; de Paz, José A

    2017-01-01

    Abstract The aim of the study was to analyse the effects of 6 week (15 sessions) flywheel resistance training with eccentric-overload (FRTEO) on different functional and anatomical variables in professional handball players. Twenty-nine athletes were recruited and randomly divided into two groups. The experimental group (EXP, n = 15) carried out 15 sessions of FRTEO in the leg-press exercise, with 4 sets of 7 repetitions at a maximum-concentric effort. The control group (CON, n = 14) performed the same number of training sessions including 4 sets of 7 maximum repetitions (7RM) using a weight-stack leg-press machine. The results which were measured included maximal dynamic strength (1RM), muscle power at different submaximal loads (PO), vertical jump height (CMJ and SJ), 20 m sprint time (20 m), T-test time (T-test), and Vastus-Lateralis muscle (VL) thickness. The results of the EXP group showed a substantially better improvement (p < 0.05-0.001) in PO, CMJ, 20 m, T-test and VL, compared to the CON group. Moreover, athletes from the EXP group showed significant improvements concerning all the variables measured: 1RM (ES = 0.72), PO (ES = 0.42 - 0.83), CMJ (ES = 0.61), SJ (ES = 0.54), 20 m (ES = 1.45), T-test (ES = 1.44), and VL (ES = 0.63 - 1.64). Since handball requires repeated short, explosive effort such as accelerations and decelerations during sprints with changes of direction, these results suggest that FRTEO affects functional and anatomical changes in a way which improves performance in well-trained professional handball players. PMID:29339993

  17. Eccentric-Overload Training in Team-Sport Functional Performance: Constant Bilateral Vertical Versus Variable Unilateral Multidirectional Movements.

    PubMed

    Gonzalo-Skok, Oliver; Tous-Fajardo, Julio; Valero-Campo, Carlos; Berzosa, César; Bataller, Ana Vanessa; Arjol-Serrano, José Luis; Moras, Gerard; Mendez-Villanueva, Alberto

    2017-08-01

    To analyze the effects of 2 different eccentric-overload training (EOT) programs, using a rotational conical pulley, on functional performance in team-sport players. A traditional movement paradigm (ie, squat) including several sets of 1 bilateral and vertical movement was compared with a novel paradigm including a different exercise in each set of unilateral and multi-directional movements. Forty-eight amateur or semiprofessional team-sport players were randomly assigned to an EOT program including either the same bilateral vertical (CBV, n = 24) movement (squat) or different unilateral multidirectional (VUMD, n = 24) movements. Training programs consisted of 6 sets of 1 exercise (CBV) or 1 set of 6 exercises (VUMD) × 6-10 repetitions with 3 min of passive recovery between sets and exercises, biweekly for 8 wk. Functional-performance assessment included several change-of-direction (COD) tests, a 25-m linear-sprint test, unilateral multidirectional jumping tests (ie, lateral, horizontal, and vertical), and a bilateral vertical-jump test. Within-group analysis showed substantial improvements in all tests in both groups, with VUMD showing more robust adaptations in pooled COD tests and lateral/horizontal jumping, whereas the opposite occurred in CBV respecting linear sprinting and vertical jumping. Between-groups analyses showed substantially better results in lateral jumps (ES = 0.21), left-leg horizontal jump (ES = 0.35), and 10-m COD with right leg (ES = 0.42) in VUMD than in CBV. In contrast, left-leg countermovement jump (ES = 0.26) was possibly better in CBV than in VUMD. Eight weeks of EOT induced substantial improvements in functional-performance tests, although the force-vector application may play a key role to develop different and specific functional adaptations.

  18. Force and power characteristics of a resistive exercise device for use in space

    NASA Astrophysics Data System (ADS)

    Berg, Hans E.; Tesch, Per A.

    We have developed a non-gravity dependent mechanical device, which provides resistance during coupled concentric and eccentric muscle actions, through the inertia of a spinning fly-wheel (Fly-Wheel Ergometry; FWE). Our research shows that lower-limb FWE exercise can produce forces and thus muscular stress comparable to what is typical of advanced resistance training using free weights. FWE also offers greater training stimuli during eccentric relative to concentric muscle actions, as evidenced by force and electromyographic (EMG) measurements. Muscle use of specific muscle groups, as assessed by the exercise-induced contrast shift of magnetic resonance images, is similar during lower-limb FWE and the barbell squat. Unlike free-weight exercise, FWE allows for maximal voluntary effort in each repetition of an exercise bout. Likewise, FWE exercise, not unassisted free-weight exercise, produces eccentric "overload". Collectively, the inherent features of this resistive exercise device and the results of the physiological evaluations we have performed, suggest that resistance exercise using FWE could be used as an effective exercise counter-measure in space. The flywheel principle can be employed to any exercise configuration and designed into a compact device allowing for exercises stressing those muscles and bone structures, which are thought to be most affected by long-duration spaceflight.

  19. A single strain-based growth law predicts concentric and eccentric cardiac growth during pressure and volume overload

    PubMed Central

    Kerckhoffs, Roy C.P.; Omens, Jeffrey; McCulloch, Andrew D.

    2011-01-01

    Adult cardiac muscle adapts to mechanical changes in the environment by growth and remodeling (G&R) via a variety of mechanisms. Hypertrophy develops when the heart is subjected to chronic mechanical overload. In ventricular pressure overload (e.g. due to aortic stenosis) the heart typically reacts by concentric hypertrophic growth, characterized by wall thickening due to myocyte radial growth when sarcomeres are added in parallel. In ventricular volume overload, an increase in filling pressure (e.g. due to mitral regurgitation) leads to eccentric hypertrophy as myocytes grow axially by adding sarcomeres in series leading to ventricular cavity enlargement that is typically accompanied by some wall thickening. The specific biomechanical stimuli that stimulate different modes of ventricular hypertrophy are still poorly understood. In a recent study, based on in-vitro studies in micropatterned myocyte cell cultures subjected to stretch, we proposed that cardiac myocytes grow longer to maintain a preferred sarcomere length in response to increased fiber strain and grow thicker to maintain interfilament lattice spacing in response to increased cross-fiber strain. Here, we test whether this growth law is able to predict concentric and eccentric hypertrophy in response to aortic stenosis and mitral valve regurgitation, respectively, in a computational model of the adult canine heart coupled to a closed loop model of circulatory hemodynamics. A non-linear finite element model of the beating canine ventricles coupled to the circulation was used. After inducing valve alterations, the ventricles were allowed to adapt in shape in response to mechanical stimuli over time. The proposed growth law was able to reproduce major acute and chronic physiological responses (structural and functional) when integrated with comprehensive models of the pressure-overloaded and volume-overloaded canine heart, coupled to a closed-loop circulation. We conclude that strain-based biomechanical stimuli can drive cardiac growth, including wall thickening during pressure overload. PMID:22639476

  20. Muscle, functional and cognitive adaptations after flywheel resistance training in stroke patients: a pilot randomized controlled trial.

    PubMed

    Fernandez-Gonzalo, Rodrigo; Fernandez-Gonzalo, Sol; Turon, Marc; Prieto, Cristina; Tesch, Per A; García-Carreira, Maria del Carmen

    2016-04-06

    Resistance exercise (RE) improves neuromuscular function and physical performance after stroke. Yet, the effects of RE emphasizing eccentric (ECC; lengthening) actions on muscle hypertrophy and cognitive function in stroke patients are currently unknown. Thus, this study explored the effects of ECC-overload RE training on skeletal muscle size and function, and cognitive performance in individuals with stroke. Thirty-two individuals with chronic stroke (≥6 months post-stroke) were randomly assigned into a training group (TG; n = 16) performing ECC-overload flywheel RE of the more-affected lower limb (12 weeks, 2 times/week; 4 sets of 7 maximal closed-chain knee extensions; <2 min of contractile activity per session) or a control group (CG; n = 16), maintaining daily routines. Before and after the intervention, quadriceps femoris volume, maximal force and power for each leg were assessed, and functional and dual task performance, and cognitive functions were measured. Quadriceps femoris volume of the more-affected leg increased by 9.4 % in TG. Muscle power of the more-affected, trained (48.2 %), and the less-affected, untrained limb (28.1 %) increased after training. TG showed enhanced balance (8.9 %), gait performance (10.6 %), dual-task performance, executive functions (working memory, verbal fluency tasks), attention, and speed of information processing. CG showed no changes. ECC-overload flywheel resistance exercise comprising 4 min of contractile activity per week offers a powerful aid to regain muscle mass and function, and functional performance in individuals with stroke. While the current intervention improved cognitive functions, the cause-effect relationship, if any, with the concomitant neuromuscular adaptations remains to be explored. Clinical Trials NCT02120846.

  1. Eccentric overload training for patients with chronic Achilles tendon pain--a randomised controlled study with reliability testing of the evaluation methods.

    PubMed

    Silbernagel, K G; Thomeé, R; Thomeé, P; Karlsson, J

    2001-08-01

    The purpose was to examine the reliability of measurement techniques and evaluate the effect of a treatment protocol including eccentric overload for patients with chronic pain from the Achilles tendon. Thirty-two patients with proximal achillodynia (44 involved Achilles tendons) participated in tests for reliability measures. No significant differences and strong (r=0.56-0.72) or very strong (r=0.90-0.93) correlations were found between pre-tests, except for the documentation of pain at rest (P<0.008, r=0.45). To evaluate the effect of a 12-week treatment protocol for patients with chronic proximal achillodynia (pain longer than three months) 40 patients (57 involved Achilles tendons) with a mean age of 45 years (range 19-77) were randomised into an experiment group (n=22) and a control group (n=18). Evaluations were performed after six weeks of treatment and after three and six months. The evaluations (including the pre-tests), performed by a physical therapist unaware of the group the patients belonged to, consisted of a questionnaire, a range of motion test, a jumping test, a toe-raise test, a pain on palpation test and pain evaluation during jumping, toe-raises and at rest. A follow-up was also performed after one year. There were no significant differences between groups at any of the evaluations, except that the experiment group jumped significantly lower than the control group at the six-week evaluation. There was, however, an overall better result for the experiment group with significant improvements in plantar flexion, and reduction in pain on palpation, number of patients having pain during walking, having periods when asymptomatic and having swollen Achilles tendon. The controls did not show such changes. Furthermore, at the one-year follow-up there were significantly more patients in the experiment group, compared with the control group, that were satisfied with their present physical activity level, considered themselves fully recovered, and had no pain during or after physical activity. The measurement techniques and the treatment protocol with eccentric overload used in the present study can be recommended for patients with chronic pain from the Achilles tendon.

  2. Eccentric and concentric cardiac hypertrophy induced by exercise training: microRNAs and molecular determinants.

    PubMed

    Fernandes, T; Soci, U P R; Oliveira, E M

    2011-09-01

    Among the molecular, biochemical and cellular processes that orchestrate the development of the different phenotypes of cardiac hypertrophy in response to physiological stimuli or pathological insults, the specific contribution of exercise training has recently become appreciated. Physiological cardiac hypertrophy involves complex cardiac remodeling that occurs as an adaptive response to static or dynamic chronic exercise, but the stimuli and molecular mechanisms underlying transduction of the hemodynamic overload into myocardial growth are poorly understood. This review summarizes the physiological stimuli that induce concentric and eccentric physiological hypertrophy, and discusses the molecular mechanisms, sarcomeric organization, and signaling pathway involved, also showing that the cardiac markers of pathological hypertrophy (atrial natriuretic factor, β-myosin heavy chain and α-skeletal actin) are not increased. There is no fibrosis and no cardiac dysfunction in eccentric or concentric hypertrophy induced by exercise training. Therefore, the renin-angiotensin system has been implicated as one of the regulatory mechanisms for the control of cardiac function and structure. Here, we show that the angiotensin II type 1 (AT1) receptor is locally activated in pathological and physiological cardiac hypertrophy, although with exercise training it can be stimulated independently of the involvement of angiotensin II. Recently, microRNAs (miRs) have been investigated as a possible therapeutic approach since they regulate the translation of the target mRNAs involved in cardiac hypertrophy; however, miRs in relation to physiological hypertrophy have not been extensively investigated. We summarize here profiling studies that have examined miRs in pathological and physiological cardiac hypertrophy. An understanding of physiological cardiac remodeling may provide a strategy to improve ventricular function in cardiac dysfunction.

  3. Assessment of neuromuscular function after different strength training protocols using tensiomyography.

    PubMed

    de Paula Simola, Rauno Á; Harms, Nico; Raeder, Christian; Kellmann, Michael; Meyer, Tim; Pfeiffer, Mark; Ferrauti, Alexander

    2015-05-01

    The purpose of the study was to analyze tensiomyography (TMG) sensitivity to changes in muscle force and neuromuscular function of the muscle rectus femoris (RF) using TMG muscle properties after 5 different lower-limb strength training protocols (multiple sets; DS = drop sets; eccentric overload; FW = flywheel; PL = plyometrics). After baseline measurements, 14 male strength trained athletes completed 1 squat training protocol per week over a 5-week period in a randomized controlled order. Maximal voluntary isometric contraction (MVIC), TMG measurements of maximal radial displacement of the muscle belly (Dm), contraction time between 10 and 90% of Dm (Tc), and mean muscle contraction velocities from the beginning until 10% (V10) and 90% of Dm (V90) were analyzed up to 0.5 (post-train), 24 (post-24), and 48 hours (post-48) after the training interventions. Significant analysis of variance main effects for measurement points were found for all TMG contractile properties and MVIC (p < 0.01). Dm and V10 post-train values were significantly lower after protocols DS and FW compared with protocol PL (p = 0.032 and 0.012, respectively). Dm, V10, and V90 decrements correlated significantly to the decreases in MVIC (r = 0.64-0.67, p ≤ 0.05). Some TMG muscle properties are sensitive to changes in muscle force, and different lower-limb strength training protocols lead to changes in neuromuscular function of RF. In addition, those protocols involving high and eccentric load and a high total time under tension may induce higher changes in TMG muscle properties.

  4. Minoxidil accelerates heart failure development in rats with ascending aortic constriction.

    PubMed

    Turcani, M; Jacob, R

    1998-06-01

    To test the ability of the heart to express characteristic geometric features of concentric and eccentric hypertrophy concurrently, constriction of the ascending aorta was performed in 4-week-old rats. Simultaneously, these rats were treated with an arteriolar dilator minoxidil. An examination 6 weeks after induction of the hemodynamic overload revealed no signs of congestion in systemic or pulmonary circulation in rats with aortic constriction or minoxidil-treated sham-operated rats. The magnitude of hemodynamic overload caused by aortic constriction or minoxidil treatment could be considered as equivalent, because the same enlargement of left ventricular pressure-volume area was necessary to compensate for either pressure or volume overload. Myocardial contractility decreased in rats with aortic constriction, and the compensation was achieved wholly by the marked concentric hypertrophy. Volume overload in minoxidil-treated rats was compensated partially by the eccentric hypertrophy and partially by the increased myocardial contractility. In contrast, increased lung weight and pleural effusion were found in all minoxidil-treated rats with aortic constriction. Unfavorable changes in left ventricular mass and geometry, relatively high chamber stiffness, and depressed ventricular and myocardial function were responsible for the massive pulmonary congestion.

  5. Overload control of artificial gravity facility using spinning tether system for high eccentricity transfer orbits

    NASA Astrophysics Data System (ADS)

    Gou, Xing-wang; Li, Ai-jun; Tian, Hao-chang; Wang, Chang-qing; Lu, Hong-shi

    2018-06-01

    As the major part of space life supporting systems, artificial gravity requires further study before it becomes mature. Spinning tether system is a good alternative solution to provide artificial gravity for the whole spacecraft other than additional devices, and its longer tether length could significantly reduce spinning velocity and thus enhance comfortability. An approximated overload-based feedback method is proposed to provide estimated spinning velocity signals for controller, so that gravity level could be accurately controlled without complicated GPS modules. System behavior in high eccentricity transfer orbits is also studied to give a complete knowledge of the spinning stabilities. The application range of the proposed method is studied in various orbit cases and spinning velocities, indicating that it is accurate and reliable for most of the mission phases especially for the final constant gravity level phase. In order to provide stable gravity level for transfer orbit missions, a sliding mode controller based on estimated angular signals is designed for closed-loop control. Numerical results indicate that the combination of overload-based feedback and sliding mode controller could satisfy most of the long-term artificial gravity missions. It is capable of forming flexible gravity environment in relatively good accuracy even in the lowest possible orbital radiuses and high eccentricity orbits of crewed space missions. The proposed scheme provides an effective tether solution for the artificial gravity construction in interstellar travel.

  6. Virtual Proprioception for eccentric training.

    PubMed

    LeMoyne, Robert; Mastroianni, Timothy

    2017-07-01

    Wireless inertial sensors enable quantified feedback, which can be applied to evaluate the efficacy of therapy and rehabilitation. In particular eccentric training promotes a beneficial rehabilitation and strength training strategy. Virtual Proprioception for eccentric training applies real-time feedback from a wireless gyroscope platform enabled through a software application for a smartphone. Virtual Proprioception for eccentric training is applied to the eccentric phase of a biceps brachii strength training and contrasted to a biceps brachii strength training scenario without feedback. During the operation of Virtual Proprioception for eccentric training the intent is to not exceed a prescribed gyroscope signal threshold based on the real-time presentation of the gyroscope signal, in order to promote the eccentric aspect of the strength training endeavor. The experimental trial data is transmitted wireless through connectivity to the Internet as an email attachment for remote post-processing. A feature set is derived from the gyroscope signal for machine learning classification of the two scenarios of Virtual Proprioception real-time feedback for eccentric training and eccentric training without feedback. Considerable classification accuracy is achieved through the application of a multilayer perceptron neural network for distinguishing between the Virtual Proprioception real-time feedback for eccentric training and eccentric training without feedback.

  7. Three weeks of eccentric training combined with overspeed exercises enhances power and running speed performance gains in trained athletes.

    PubMed

    Cook, Christian J; Beaven, C Martyn; Kilduff, Liam P

    2013-05-01

    Eccentric and overspeed training modalities are effective in improving components of muscular power. Eccentric training induces specific training adaptations relating to muscular force, whereas overspeed stimuli target the velocity component of power expression. We aimed to compare the effects of traditional or eccentric training with volume-matched training that incorporated overspeed exercises. Twenty team-sport athletes performed 4 counterbalanced 3-week training blocks consecutively as part of a preseason training period: (1) traditional resistance training; (2) eccentric-only resistance training; (3) traditional resistance training with overspeed exercises; and (4) eccentric resistance training with overspeed exercises. The overspeed exercises performed were assisted countermovement jumps and downhill running. Improvements in bench press (15.0 ± 5.1 kg; effect size [ES]: 1.52), squat (19.5 ± 9.1 kg; ES: 1.12), and peak power in the countermovement jump (447 ± 248 W; ES: 0.94) were observed following the 12-week training period. Greater strength increases were observed as a result of the eccentric training modalities (ES: 0.72-1.09) with no effect of the overspeed stimuli on these measures (p > 0.05). Eccentric training with overspeed stimuli was more effective than traditional resistance training in increasing peak power in the countermovement jump (94 ± 55 W; ES: 0.95). Eccentric training induced no beneficial training response in maximal running speed (p > 0.05); however, the addition of overspeed exercises salvaged this relatively negative effect when compared with eccentric training alone (0.03 ± 0.01 seconds; ES: 1.33). These training results achieved in 3-week training blocks suggest that it is important to target-specific aspects of both force and movement velocity to enhance functional measures of power expression.

  8. Superior Effects of Eccentric to Concentric Knee Extensor Resistance Training on Physical Fitness, Insulin Sensitivity and Lipid Profiles of Elderly Men

    PubMed Central

    Chen, Trevor Chung-Ching; Tseng, Wei-Chin; Huang, Guan-Ling; Chen, Hsin-Lian; Tseng, Kuo-Wei; Nosaka, Kazunori

    2017-01-01

    It has been reported that eccentric training of knee extensors is effective for improving blood insulin sensitivity and lipid profiles to a greater extent than concentric training in young women. However, it is not known whether this is also the case for elderly individuals. Thus, the present study tested the hypothesis that eccentric training of the knee extensors would improve physical function and health parameters (e.g., blood lipid profiles) of older adults better than concentric training. Healthy elderly men (60–76 years) were assigned to either eccentric training or concentric training group (n = 13/group), and performed 30–60 eccentric or concentric contractions of knee extensors once a week. The intensity was progressively increased over 12 weeks from 10 to 100% of maximal concentric strength for eccentric training and from 50 to 100% for concentric training. Outcome measures were taken before and 4 days after the training period. The results showed that no sings of muscle damage were observed after any sessions. Functional physical fitness (e.g., 30-s chair stand) and maximal concentric contraction strength of the knee extensors increased greater (P ≤ 0.05) after eccentric training than concentric training. Homeostasis model assessment, oral glucose tolerance test and whole blood glycosylated hemoglobin showed improvement of insulin sensitivity only after eccentric training (P ≤ 0.05). Greater (P ≤ 0.05) decreases in fasting triacylglycerols, total, and low-density lipoprotein cholesterols were evident after eccentric training than concentric training, and high-density lipoprotein cholesterols increased only after eccentric training. These results support the hypothesis and suggest that it is better to focus on eccentric contractions in exercise medicine. PMID:28443029

  9. Motor imagery during action observation increases eccentric hamstring force: an acute non-physical intervention.

    PubMed

    Scott, Matthew; Taylor, Stephen; Chesterton, Paul; Vogt, Stefan; Eaves, Daniel Lloyd

    2018-06-01

    Rehabilitation professionals typically use motor imagery (MI) or action observation (AO) to increase physical strength for injury prevention and recovery. Here we compared hamstring force gains for MI during AO (AO + MI) against two pure MI training groups. Over a 3-week intervention physically fit adults imagined Nordic hamstring exercises in both legs and synchronized this with a demonstration of the same action (AO + MI), or they purely imagined this action (pure MI), or imagined upper-limb actions (pure MI-control). Eccentric hamstring strength gains were assessed using ANOVAs, and magnitude-based inference (MBI) analyses determined the likelihood of clinical/practical benefits for the interventions. Hamstring strength only increased significantly following AO + MI training. This effect was lateralized to the right leg, potentially reflecting a left-hemispheric dominance in motor simulation. MBIs: The right leg within-group treatment effect size for AO + MI was moderate and likely beneficial (d = 0.36), and only small and possibly beneficial for pure MI (0.23). Relative to pure MI-control, effects were possibly beneficial and moderate for AO + MI (0.72), although small for pure MI (0.39). Since hamstring strength predicts injury prevalence, our findings point to the advantage of combined AO + MI interventions, over and above pure MI, for injury prevention and rehabilitation. Implications for rehabilitation While hamstring strains are the most common injury across the many sports involving sprinting and jumping, Nordic hamstring exercises are among the most effective methods for building eccentric hamstring strength, for injury prevention and rehabilitation. In the acute injury phase it is crucial not to overload damaged soft tissues, and so non-physical rehabilitation techniques are well suited to this phase. Rehabilitation professionals typically use either motor imagery or action observation techniques to safely improve physical strength, but our study shows that motor imagery during observation of Nordic hamstring exercises offers a safe, affordable and more effective way to facilitate eccentric hamstring strength gains, compared with pure motor imagery. Despite using bilateral imagery and observation training conditions in the present study, strength gains were restricted to the right leg, potentially due to a left hemispheric dominance in motor simulation.

  10. Greater Strength Gains after Training with Accentuated Eccentric than Traditional Isoinertial Loads in Already Strength-Trained Men

    PubMed Central

    Walker, Simon; Blazevich, Anthony J.; Haff, G. Gregory; Tufano, James J.; Newton, Robert U.; Häkkinen, Keijo

    2016-01-01

    As training experience increases it becomes more challenging to induce further neuromuscular adaptation. Consequently, strength trainers seek alternative training methods in order to further increase strength and muscle mass. One method is to utilize accentuated eccentric loading, which applies a greater external load during the eccentric phase of the lift as compared to the concentric phase. Based upon this practice, the purpose of this study was to determine the effects of 10 weeks of accentuated eccentric loading vs. traditional isoinertial resistance training in strength-trained men. Young (22 ± 3 years, 177 ± 6 cm, 76 ± 10 kg, n = 28) strength-trained men (2.6 ± 2.2 years experience) were allocated to concentric-eccentric resistance training in the form of accentuated eccentric load (eccentric load = concentric load + 40%) or traditional resistance training, while the control group continued their normal unsupervised training program. Both intervention groups performed three sets of 6-RM (session 1) and three sets of 10-RM (session 2) bilateral leg press and unilateral knee extension exercises per week. Maximum force production was measured by unilateral isometric (110° knee angle) and isokinetic (concentric and eccentric 30°.s−1) knee extension tests, and work capacity was measured by a knee extension repetition-to-failure test. Muscle mass was assessed using panoramic ultrasonography and dual-energy x-ray absorptiometry. Surface electromyogram amplitude normalized to maximum M-wave and the twitch interpolation technique were used to examine maximal muscle activation. After training, maximum isometric torque increased significantly more in the accentuated eccentric load group than control (18 ± 10 vs. 1 ± 5%, p < 0.01), which was accompanied by an increase in voluntary activation (3.5 ± 5%, p < 0.05). Isokinetic eccentric torque increased significantly after accentuated eccentric load training only (10 ± 9%, p < 0.05), whereas concentric torque increased equally in both the accentuated eccentric load (10 ± 9%, p < 0.01) and traditional (9 ± 6%, p < 0.01) resistance training groups; however, the increase in the accentuated eccentric load group was significantly greater (p < 0.05) than control (1 ± 7%). Knee extension repetition-to-failure improved in the accentuated eccentric load group only (28%, p < 0.05). Similar increases in muscle mass occurred in both intervention groups. In summary, accentuated eccentric load training led to greater increases in maximum force production, work capacity and muscle activation, but not muscle hypertrophy, in strength-trained individuals. PMID:27199764

  11. Dietary glutamine supplementation partly reverses impaired macrophage function resulting from overload training in rats.

    PubMed

    Xiao, Weihua; Chen, Peijie; Dong, Jingmei; Wang, Ru; Luo, Beibei

    2015-04-01

    The aim of this study was to evaluate the effect of overload training on the function of peritoneal macrophages in rats, and to test the hypothesis that glutamine in vivo supplementation would partly reverse the eventual functional alterations induced by overload training in these cells. Forty male Wistar rats were randomly divided into 5 groups: control group (C), overload training group (E1), overload training and restore one week group (E2), glutamine-supplementation group (EG1), and glutamine-supplementation and restore 1-week group (EG2). All rats, except those placed on sedentary control were subjected to 11 weeks of overload training protocol. Blood hemoglobin, serum testosterone, and corticosterone of rats were measured. Moreover, the functions (chemotaxis, phagocytosis, cytokines synthesis, reactive oxygen species generation) of peritoneal macrophages were determined. Data showed that blood hemoglobin, serum testosterone, corticosterone and body weight in the overload training group decreased significantly as compared with the control group. Meanwhile, the chemotaxis capacity (decreased by 31%, p = .003), the phagocytosis capacity (decreased by 27%, p = .005), the reactive oxygen species (ROS) generation (decreased by 35%, p = .003) and the cytokines response capability of macrophages were inhibited by overload training. However, the hindering of phagocytosis and the cytokines response capability of macrophages induced by overload training could be ameliorated and reversed respectively, by dietary glutamine supplementation. These results suggest that overload training impairs the function of peritoneal macrophages, which is essential for the microbicidal actions of macrophages. This may represent a novel mechanism of immunodepression induced by overload training. Nonetheless, dietary glutamine supplementation could partly reverse the impaired macrophage function resulting from overload training.

  12. THE ROLE AND IMPLEMENTATION OF ECCENTRIC TRAINING IN ATHLETIC REHABILITATION: TENDINOPATHY, HAMSTRING STRAINS, AND ACL RECONSTRUCTION

    PubMed Central

    Reiman, Michael

    2011-01-01

    The benefits and proposed physiological mechanisms of eccentric exercise have previously been elucidated and eccentric exercise has been used for well over seventy years. Traditionally, eccentric exercise has been used as a regular component of strength training. However, in recent years, eccentric exercise has been used in rehabilitation to manage a host of conditions. Of note, there is evidence in the literature supporting eccentric exercise for the rehabilitation of tendinopathies, muscle strains, and in anterior cruciate ligament (ACL) rehabilitation. The purpose of this Clinical Commentary is to discuss the physiologic mechanism of eccentric exercise as well as to review the literature regarding the utilization of eccentric training during rehabilitation. A secondary purpose of this commentary is to provide the reader with a framework for the implementation of eccentric training during rehabilitation of tendinopathies, muscle strains, and after ACL reconstruction. PMID:21655455

  13. Comparing the effects of eccentric training with eccentric training and static stretching exercises in the treatment of patellar tendinopathy. A controlled clinical trial.

    PubMed

    Dimitrios, Stasinopoulos; Pantelis, Manias; Kalliopi, Stasinopoulou

    2012-05-01

    The aim of the present study was to investigate the effectiveness of eccentric training and eccentric training with static stretching exercises in the management of patellar tendinopathy. Controlled clinical trial. Rheumatology and rehabilitation centre. Forty-three patients who had patellar tendinopathy for at least three months. They were allocated to two groups by alternative allocation. Group A (n = 22) was treated with eccentric training of patellar tendon and static stretching exercises of quadriceps and hamstrings and Group B (n = 21) received eccentric training of patellar tendon. All patients received five treatments per week for four weeks. Pain and function were evaluated using the VISA-P score at baseline, at the end of treatment (week 4), and six months (week 24) after the end of treatment. At the end of treatment, there was a rise in VISA-P score in both groups compared with baseline (P<0.0005, paired t test). There were significant differences in the VISA-P score between the groups at the end of treatment (+14; 10 to 18) and at the six-month follow-up (+19; 13 to 24); eccentric training and static stretching exercises produced the largest effect (P<0.0005, one-way ANOVA). Eccentric training and static stretching exercises is superior to eccentric training alone to reduce pain and improve function in patients with patellar tendinopathy at the end of the treatment and at follow-up.

  14. Load Bearing Equipment for Bone and Muscle Project

    NASA Technical Reports Server (NTRS)

    Terrier, Douglas; Clayton, Ronald G.; Shackelford, Linda

    2015-01-01

    Axial skeletal loads coupled with muscle torque forces around joints maintain bone. Astronauts working in pairs to exercise can provide high eccentric loads for each other that are most effective. A prototype of load bearing equipment that will allow astronauts to perform exercises using each other for counter force generation in a controlled fashion and provide eccentric overload is proposed. A frame and attachments that can be rapidly assembled for use and easily stored will demonstrate feasibility of a design that can be adapted for ISS testing and Orion use.

  15. [Systematic review about eccentric training in chronic achilles tendinopathy].

    PubMed

    Krämer, R; Lorenzen, J; Vogt, P M; Knobloch, K

    2010-12-01

    Throughout the recent decade, eccentric training has become a widely accepted therapy option in the conservative treatment of chronic Achilles tendinopathy. Nevertheless, current recommendations are missing regarding dosage and duration of eccentric training as well as standardized training protocols. Is eccentric training as a conservative treatment in chronic Achilles tendinopathy of beneficial effect versus other conservative treatments? According to the current scientific data, is it possible to recommend dosages and duration of training time of eccentric training? Systematic review of the current scientific literature on eccentric training as a conservative treatment in chronic Achilles tendinopathy according to the PRISMA-guidelines (Preferred Reporting Items for Systematic Reviews and Meta-Analyses). National library of Medicine (NLM) between the years 1950 and 2010. Prospective randomised controlled trials (RCT). 8 RCTs included 416 subjects with a median number of 42 subjects and a range of 17 to 116 subjects per trial. Median follow-up duration was 12 weeks with a range from 12 to 54 weeks. 124 papers met the eligibility criteria in the NLM, whereas only eight randomised controlled trials were included in this review after screening titles, abstracts and full texts. All included trials demonstrated an improvement in pain after performing equivalent training protocols of eccentric training in chronic Achilles tendinopathy. A pooled statistical evaluation of the included trials could not be performed due to different study designs as well as limited documentation of subjects' compliance. In spite of different compliance, effects of eccentric training in conservative treatment of chronic mid-portion-Achilles tendinopathy are promising. Because of the heterogeneous outcome variables (ordinal scale, VAS, FAOS, AOFAS, VISA-A) and the methodological limitations of the trials, no definite recommendation can be published concerning dosage and duration of eccentric training in chronic Achilles tendinopathy. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Flexibility training and the repeated-bout effect: priming interventions prior to eccentric training of the knee flexors.

    PubMed

    Leslie, Andrew W; Lanovaz, Joel L; Andrushko, Justin W; Farthing, Jonathan P

    2017-10-01

    Both the repeated-bout effect and increased flexibility have been linked to reduced muscle damage, fatigue, and strength loss after intense eccentric exercise. Our purpose was to compare the eccentric-training (ECC) response after first priming the muscles with either static flexibility training or a single intense bout of eccentric exercise. Twenty-five participants were randomly assigned to flexibility training (n = 8; 3×/week; 30 min/day), a single bout of intense eccentric exercise (n = 9), or no intervention (control; n = 8) during a 4-week priming phase, prior to completing a subsequent 4-week period of eccentric training of the knee flexors. Testing was completed prior to the priming phase, before ECC, during acute ECC (0 h, 24 h, and 48 h after bouts 1 and 4), and after ECC. Measures included muscle thickness (MT; via ultrasound); isometric, concentric, and eccentric strength; muscle power (dynamometer); electromyography; range of motion; optimal angle of peak torque; and soreness (visual analog scale). Flexibility training and single-bout groups had 47% less soreness at 48 h after the first bout of ECC compared with control (p < 0.05). The flexibility training group had 10% less soreness at 48 h after the fourth ECC bout compared with both the single-bout and control groups (p < 0.05). Isometric strength loss was attenuated for the flexibility training group (-9%) after the fourth ECC bout compared with control (-19%; p < 0.05). All groups had similar increases in strength, MT, and power after ECC (p < 0.05). Prior flexibility training may be more effective than a single session of eccentric exercise in reducing adverse symptoms during the acute stages of eccentric training; however, these benefits did not translate into greater performance after training.

  17. Eccentric training as a new approach for rotator cuff tendinopathy: Review and perspectives

    PubMed Central

    Camargo, Paula R; Alburquerque-Sendín, Francisco; Salvini, Tania F

    2014-01-01

    Excessive mechanical loading is considered the major cause of rotator cuff tendinopathy. Although tendon problems are very common, they are not always easy to treat. Eccentric training has been proposed as an effective conservative treatment for the Achilles and patellar tendinopathies, but less evidence exists about its effectiveness for the rotator cuff tendinopathy. The mechanotransduction process associated with an adequate dose of mechanical load might explain the beneficial results of applying the eccentric training to the tendons. An adequate load increases healing and an inadequate (over or underuse) load can deteriorate the tendon structure. Different eccentric training protocols have been used in the few studies conducted for people with rotator cuff tendinopathy. Further, the effects of the eccentric training for rotator cuff tendinopathy were only evaluated on pain, function and strength. Future studies should assess the effects of the eccentric training also on shoulder kinematics and muscle activity. Individualization of the exercise prescription, comprehension and motivation of the patients, and the establishment of specific goals, practice and efforts should all be considered when prescribing the eccentric training. In conclusion, eccentric training should be used aiming improvement of the tendon degeneration, but more evidence is necessary to establish the adequate dose-response and to determine long-term follow-up effects. PMID:25405092

  18. Brain activation associated with eccentric movement: A narrative review of the literature.

    PubMed

    Perrey, Stéphane

    2018-02-01

    The movement occurring when a muscle exerts tension while lengthening is known as eccentric muscle action. Literature contains limited evidence on how our brain controls eccentric movement. However, how the cortical regions in the motor network are activated during eccentric muscle actions may be critical for understanding the underlying control mechanism of eccentric movements encountered in daily tasks. This is a novel topic that has only recently begun to be investigated through advancements in neuroimaging methods (electroencephalography, EEG; functional magnetic resonance imaging, fMRI). This review summarizes a selection of seven studies indicating mainly: longer time and higher cortical signal amplitude (EEG) for eccentric movement preparation and execution, greater magnitude of cortical signals with wider activated brain area (EEG, fMRI), and weaker brain functional connectivity (fMRI) between primary motor cortex (M1) and other cortical areas involved in the motor network during eccentric muscle actions. Only some differences among studies due to the forms of movement with overload were observed in the contralateral (to the active hand) M1 activity during eccentric movement. Altogether, the findings indicate an important challenge to the brain for controlling the eccentric movement. However, our understanding remains limited regarding the acute effects of eccentric exercise on cortical regions and their cooperation as functional networks that support motor functions. Further analysis and standardized protocols will provide deeper insights into how different cortical regions of the underlying motor network interplay with each other in increasingly demanding muscle exertions in eccentric mode.

  19. Panax ginseng and Salvia miltiorrhiza supplementation during eccentric resistance training in middle-aged and older adults: A double-blind randomized control trial.

    PubMed

    Lin, Hsin-Fu; Chou, Chun-Chung; Chao, Hsiao-Han; Tanaka, Hirofumi

    2016-12-01

    Muscle damage induced by an acute bout of eccentric exercise results in transient arterial stiffening. In this study, we sought to determine the effects of progressive eccentric resistance exercise training on vascular functions, and whether herb supplementation would enhance training adaptation by ameliorating the arterial stiffening effects. By using a double-blinded randomized placebo-controlled design, older adults were randomly assigned to either the Panax ginseng and Salvia miltiorrhiza supplementation group (N=12) or the placebo group (N=11). After pre-training testing, all subjects underwent 12 weeks of unilateral eccentric-only exercise training on knee extensor. Maximal leg strength and muscle quality increased in both groups (P<0.05). Relative increases in muscle mass were significantly greater in the placebo group than in the herb supplement group. Eccentric exercise training did not elicit any significant changes in muscle damage, oxidative and inflammatory biomarkers. There were no significant changes in blood pressure or endothelium-dependent vasodilation. None of the measures of arterial stiffness changed significantly with eccentric resistance training in both groups. These results suggest that Chinese herb supplementation does not appear to modulate vascular, and inflammatory adaptations to eccentric exercise training in middle-aged and older adults. However, Chinese herb supplementation abolished the increase in muscle mass induced by eccentric resistance training. (Trial registration: ClinicalTrials.gov: NCT02007304. Registered Dec. 5, 2013). Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Effect of eccentric training on the plantar flexor muscle-tendon tissue properties.

    PubMed

    Mahieu, Nele Nathalie; McNair, Peter; Cools, Ann; D'Haen, Caroline; Vandermeulen, Katrien; Witvrouw, Erik

    2008-01-01

    It has been shown that eccentric training can be effective in the rehabilitation of patients with Achilles tendonopathy. The mechanism behind these results is not clear. However, there is evidence that tendons are able to respond to repeated forces by altering their structure and composition, and, thus, their mechanical properties change. In this regard, the objective of the present study was to investigate whether eccentric training affects the mechanical properties of the plantar flexor's muscle-tendon tissue properties. Seventy-four healthy subjects were randomized into two groups: an eccentric training group and a control group. The eccentric training group performed a 6-wk eccentric training program for the calf muscles. Before and after this period, all subjects were evaluated for dorsiflexion range of motion using universal goniometry, passive resistive torque of the plantar flexors, and stiffness of the Achilles tendon. Passive resistive torque was measured during ankle dorsiflexion on an isokinetic dynamometer. Stiffness of the Achilles tendon was assessed using a dynamometer, in combination with ultrasonography. The results of the study reveal that the dorsiflexion range of motion was significantly increased only in the eccentric training group. The eccentric heel drop program also resulted in a significant decrease of the passive resistive torque of the plantar flexors (from 16.423 +/- 0.827 to 12.651 +/- 0.617 N.m). The stiffness of the Achilles tendon did not change significantly as a result of training. These findings provide evidence that an eccentric training program results in changes to some of the mechanical properties of the plantar flexor muscles. These changes were thought to be associated with modifications to structure rather than to stretch tolerance.

  1. Eccentric Training for Tendon Healing After Acute Lesion: A Rat Model.

    PubMed

    Kaux, Jean-François; Libertiaux, Vincent; Leprince, Pierre; Fillet, Marianne; Denoel, Vincent; Wyss, Clémence; Lecut, Christelle; Gothot, André; Le Goff, Caroline; Croisier, Jean-Louis; Crielaard, Jean-Michel; Drion, Pierre

    2017-05-01

    The tendon is a dynamic entity that remodels permanently. Platelet-rich plasma (PRP) injection has been shown to have a beneficial effect on tendon healing after lesion in rats. Furthermore, eccentric exercise seems to improve the mechanical quality of the tendon. A combination of PRP injection and eccentric training might be more effective than either treatment alone. Controlled laboratory study. Adult male rats were anesthetized, an incision was performed in the middle of their left patellar tendon and an injection of physiological fluid (PF) or homologous PRP was randomly made at the lesion level. The rats were then divided into 2 groups: the eccentric group, undergoing eccentric training 3 times a week, and the untrained group, without any training. Thus, 4 groups were compared. After 5 weeks, the tendons were removed and their ultimate tensile strength and energy were measured. Tendons were frozen for proteomic analyses when all biomechanical tests were completed. Statistical analysis was performed with linear mixed effect models. No significant difference was found between the treatments using PF injection or PRP injection alone. However, the value of the ultimate tensile force at rupture was increased by 4.5 N (108% of control, P = .006) when eccentric training was performed. An intragroup analysis revealed that eccentric training significantly improved the ultimate force values for the PRP group. Proteomic analysis revealed that eccentric training led to an increase in abundance of several cytoskeletal proteins in the PF group, while a decrease in abundance of enzymes of the glycolytic pathway occurred in the PRP-treated groups, indicating that this treatment might redirect the exercise-driven metabolic plasticity of the tendon. Eccentric training altered the metabolic plasticity of tendon and led to an improvement of injured tendon resistance regardless of the treatment injected (PF or PRP). This study demonstrates the necessity of eccentric rehabilitation and training in cases of tendon lesion regardless of the treatment carried out.

  2. Knee Extensor and Flexor Torque Development with Concentric and Eccentric Isokinetic Training

    ERIC Educational Resources Information Center

    Miller, Larry E.; Pierson, Lee M.; Nickols-Richardson, Sharon M.; Wootten, David F.; Selmon, Serah E.; Ramp, Warren K.; Herbert, William G.

    2006-01-01

    This study assessed muscular torque and rate of torque development following concentric (CON) or eccentric (ECC) isokinetic training. Thirty-eight women were randomly assigned to either CON or ECC training groups. Training consisted of knee extension and flexion of the nondominant leg three times per week for 20 weeks (SD = 1). Eccentric training…

  3. [Systematic review about eccentric training in chronic patella tendinopathy].

    PubMed

    Lorenzen, J; Krämer, R; Vogt, P M; Knobloch, K

    2010-12-01

    Eccentric training has become a popular treatment for patellar tendinopathy. Aim of this review is to display different exercise prescriptions for patellar tendinopathy, to help clinicians make appropriate choices and identify areas needing further research. Is eccentric training as a conservative treatment in chronic patellar tendinopathy of beneficial effect versus other conservative treatments? According to the current scientific data, is it possible to recommend dosages and duration of training time of eccentric training? Systematic review of the current scientific literature on eccentric training as a conservative treatment in chronic Achilles tendinopathy according to the PRISMA-guidelines [Preferred Reporting Items for Systematic Reviews and Meta-Analyses]. National library of Medicine [NLM] between the years 1950 and 2010. Prospective randomised controlled trials (RCT). 7 articles with a total of 165 patients and in which eccentric training was one of the interventions, all published after 2000, were included. The median cohort study size was 20 subjects with a range from 15 to 35 subjects. Median follow-up duration was 12 weeks with a range from 4 to 12 weeks. Encouraging results, but variable study quality, with small numbers or short follow-up periods. The content of the different training programmes varied, but most were home-based programmes with twice daily training for 12 weeks. A number of potentially significant differences were identified in the eccentric programmes used: drop squats or slow eccentric movement, squatting on a 25° decline board or level ground, exercising into tendon pain or short of pain, loading the eccentric phase only or both phases, and progressing with speed then loading or simply loading. A pooled statistical evaluation of the included trials could not be performed due to different study designs as well as limited documentation of subjects' compliance. Most studies suggest that eccentric training may have a positive effect, but our ability to recommend a specific protocol is limited. The studies available indicate that the treatment programme should include a 25° decline board and should be performed with some level of discomfort, and that athletes should be removed from sports activity. However, these aspects need further study. Because of the heterogeneous outcome variables (ordinal scale, VAS, VISA-P) and the methodological limitations of the trials, no definite recommendation can be published concerning dosage and duration of eccentric training in chronic Patellar tendinopathy. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Changes in H reflex and neuromechanical properties of the trapezius muscle after 5 weeks of eccentric training: a randomized controlled trial.

    PubMed

    Vangsgaard, Steffen; Taylor, Janet L; Hansen, Ernst A; Madeleine, Pascal

    2014-06-15

    Trapezius muscle Hoffman (H) reflexes were obtained to investigate the neural adaptations induced by a 5-wk strength training regimen, based solely on eccentric contractions of the shoulder muscles. Twenty-nine healthy subjects were randomized into an eccentric training group (n = 15) and a reference group (n = 14). The eccentric training program consisted of nine training sessions of eccentric exercise performed over a 5-wk period. H-reflex recruitment curves, the maximal M wave (Mmax), maximal voluntary contraction (MVC) force, rate of force development (RFD), and electromyographic (EMG) voluntary activity were recorded before and after training. H reflexes were recorded from the middle part of the trapezius muscle by electrical stimulation of the C3/4 cervical nerves; Mmax was measured by electrical stimulation of the accessory nerve. Eccentric strength training resulted in significant increases in the maximal trapezius muscle H reflex (Hmax) (21.4% [5.5-37.3]; P = 0.01), MVC force (26.4% [15.0-37.7]; P < 0.01), and RFD (24.6% [3.2-46.0]; P = 0.025), while no significant changes were observed in the reference group. Mmax remained unchanged in both groups. A significant positive correlation was found between the change in MVC force and the change in EMG voluntary activity in the training group (r = 0.57; P = 0.03). These results indicate that the net excitability of the trapezius muscle H-reflex pathway increased after 5 wk of eccentric training. This is the first study to investigate and document changes in the trapezius muscle H reflex following eccentric strength training. Copyright © 2014 the American Physiological Society.

  5. Eccentric exercise training as a countermeasure to non-weight-bearing soleus muscle atrophy

    NASA Technical Reports Server (NTRS)

    Kirby, Christopher R.; Ryan, Mirelle J.; Booth, Frank W.

    1992-01-01

    This investigation tested whether eccentric resistance training could prevent soleus muscle atrophy during non-weight bearing. Adult female rats were randomly assigned to either weight bearing +/- intramuscular electrodes or non-weight bearing +/- intramuscular electrodes groups. Electrically stimulated maximal eccentric contractions were performed on anesthetized animals at 48-h intervals during the 10-day experiment. Non-weight bearing significantly reduced soleus muscle wet weight (28-31 percent) and noncollagenous protein content (30-31 percent) compared with controls. Eccentric exercise training during non-weight bearing attenuated but did not prevent the loss of soleus muscle wet weight and noncollagenous protein by 77 and 44 percent, respectively. The potential of eccentric exercise training as an effective and highly efficient counter-measure to non-weight-bearing atrophy is demonstrated in the 44 percent attenuation of soleus muscle noncollagenous protein loss by eccentric exercise during only 0.035 percent of the total non-weight-bearing time period.

  6. Visual learning with reduced adaptation is eccentricity-specific.

    PubMed

    Harris, Hila; Sagi, Dov

    2018-01-12

    Visual learning is known to be specific to the trained target location, showing little transfer to untrained locations. Recently, learning was shown to transfer across equal-eccentricity retinal-locations when sensory adaptation due to repetitive stimulation was minimized. It was suggested that learning transfers to previously untrained locations when the learned representation is location invariant, with sensory adaptation introducing location-dependent representations, thus preventing transfer. Spatial invariance may also fail when the trained and tested locations are at different distance from the center of gaze (different retinal eccentricities), due to differences in the corresponding low-level cortical representations (e.g. allocated cortical area decreases with eccentricity). Thus, if learning improves performance by better classifying target-dependent early visual representations, generalization is predicted to fail when locations of different retinal eccentricities are trained and tested in the absence sensory adaptation. Here, using the texture discrimination task, we show specificity of learning across different retinal eccentricities (4-8°) using reduced adaptation training. The existence of generalization across equal-eccentricity locations but not across different eccentricities demonstrates that learning accesses visual representations preceding location independent representations, with specificity of learning explained by inhomogeneous sensory representation.

  7. Effect of different training programs on the velocity of overarm throwing: a brief review.

    PubMed

    van den Tillaar, Roland

    2004-05-01

    Throwing velocity in overarm throwing is of major importance in sports like baseball, team handball, javelin, and water polo. The purpose of this literature review was to give an overview of the effect of different training programs on the throwing velocity in overarm throwing, provide a theoretical framework that explains findings, and give some practical applications based on these findings. The training studies were divided into 4 categories: (a) specific resistance training with an overload of velocity, (b) specific resistance training with an overload of force, (c) specific resistance training with a combination of overload of force and velocity, and (d) general resistance training according to the overload of force. Each category is presented and discussed.

  8. The effect of eccentric and concentric calf muscle training on Achilles tendon stiffness.

    PubMed

    Morrissey, Dylan; Roskilly, Anna; Twycross-Lewis, Richard; Isinkaye, Tomide; Screen, Hazel; Woledge, Roger; Bader, Dan

    2011-03-01

    To compare in vivo effects of eccentric and concentric calf muscle training on Achilles tendon stiffness, in subjects without tendinopathy. Thirty-eight recreational athletes completed 6 weeks eccentric (6 males, 13 females, 21.6  ±  2.2 years) or concentric training (8 males, 11 females, 21.1  ±  2.0 years). Achilles tendon stiffness, tendon modulus and single-leg jump height were measured before and after intervention. Exercise adherence was recorded using a diary. All data are reported as mean  ±  SD. Groups were matched for height and weight but the eccentric training group were more active at baseline (P < 0.05). Tendon stiffness was higher in the eccentrically trained group at baseline compared to the concentrically trained group (20.9  ±  7.3 N/mm v 13.38  ±  4.66 N/mm; P = 0.001) and decreased significantly after eccentric training (to 17.2 ( ±  5.9) N/mm (P = 0.035)). There was no stiffness change in the concentric group (P = 0.405). Stiffness modulus showed similar changes to stiffness. An inverse correlation was found between initial, and subsequent, reduction in stiffness (r = -0.66). Jump height did not change and no correlation between stiffness change and adherence was observed in either group (r = 0.01). Six weeks of eccentric training can alter Achilles tendon stiffness while a matched concentric programme shows no similar effects. Studies in patients with Achilles tendinopathy are warranted.

  9. Eccentric rehabilitation exercise increases peritendinous type I collagen synthesis in humans with Achilles tendinosis.

    PubMed

    Langberg, H; Ellingsgaard, H; Madsen, T; Jansson, J; Magnusson, S P; Aagaard, P; Kjaer, M

    2007-02-01

    It has been shown that 12 weeks of eccentric heavy resistance training can reduce pain in runners suffering from chronic Achilles tendinosis, but the mechanism behind the effectiveness of this treatment is unknown. The present study investigates the local effect of an eccentric training regime on elite soccer players suffering from chronic Achilles tendinosis on the turnover of the peritendinous connective tissue. Twelve elite male soccer players, of whom six suffered from unilateral tendinosis and six were healthy controls, participated in this study. All participants performed 12 weeks of heavy-resistance eccentric training apart from their regular training and soccer activity. Before and after the training period the tissue concentration of indicators of collagen turnover was measured by the use of the microdialysis technique. After training, collagen synthesis was increased in the initially injured tendon (n=6; carboxyterminal propeptide of type I collagen (PICP): pre 3.9+/-2.5 microg/L to post 19.7+/-5.4 microg/L, P<0.05). The collagen synthesis was unchanged in healthy tendons in response to training (n=6; PICP: pre 8.3+/-5.2 microg/L to post 11.5+/-5.0 microg/L, P>0.05). Collagen degradation, measured as carboxyterminal telopeptide region of type I collagen (ICTP), was not affected by training neither in the injured nor in the healthy tendons. The clinical effect of the 12 weeks of eccentric training was determined by using a standardized loading procedure of the Achilles tendons showing a decrease in pain in all the chronic injured tendons (VAS before 44+/-9, after 13+/-9; P<0.05), and all subjects were back playing soccer following the eccentric training regime. The present study demonstrates that chronically injured Achilles tendons respond to 12 weeks of eccentric training by increasing collagen synthesis rate. In contrast, the collagen metabolism in healthy control tendons seems not to be affected by eccentric training. These findings could indicate a relation between collagen metabolism and recovery from injury in human tendons.

  10. Neuromuscular and muscle-tendon system adaptations to isotonic and isokinetic eccentric exercise.

    PubMed

    Guilhem, G; Cornu, C; Guével, A

    2010-06-01

    To present the properties of an eccentric contraction and compare neuromuscular and muscle-tendon system adaptations induced by isotonic and isokinetic eccentric trainings. An eccentric muscle contraction is characterized by the production of muscle force associated to a lengthening of the muscle-tendon system. This muscle solicitation can cause micro lesions followed by a regeneration process of the muscle-tendon system. Eccentric exercise is commonly used in functional rehabilitation for its positive effect on collagen synthesis but also for resistance training to increase muscle strength and muscle mass in athletes. Indeed, eccentric training stimulates muscle hypertrophy, increases the fascicle pennation angle, fascicles length and neural activation, thus inducing greater strength gains than concentric or isometric training programs. Eccentric exercise is commonly performed either against a constant external load (isotonic) or at constant velocity (isokinetic), inducing different mechanical constraints. These different mechanical constraints could induce structural and neural adaptive strategies specific to each type of exercise. The literature tends to show that isotonic mode leads to a greater strength gain than isokinetic mode. This observation could be explained by a greater neuromuscular activation after IT training. However, the specific muscle adaptations induced by each mode remain difficult to determine due to the lack of standardized, comparative studies. 2010 Elsevier Masson SAS. All rights reserved.

  11. The Effects of Eccentric Contraction Duration on Muscle Strength, Power Production, Vertical Jump, and Soreness.

    PubMed

    Mike, Jonathan N; Cole, Nathan; Herrera, Chris; VanDusseldorp, Trisha; Kravitz, Len; Kerksick, Chad M

    2017-03-01

    Mike, JN, Cole, N, Herrera, C, VanDusseldorp, T, Kravitz, L, and Kerksick, CM. The effects of eccentric contraction duration on muscle strength, power production, vertical jump, and soreness. J Strength Cond Res 31(3): 773-786, 2017-Previous research has investigated the effects of either eccentric-only training or comparing eccentric and concentric exercise on changes related to strength and power expression, but no research to date has investigated the impact of altering the duration of either the concentric or the eccentric component on these parameters. Therefore, the purpose of this study was to assess the duration of eccentric (i.e., 2-second, 4-second vs. 6-second) muscle contractions and their effect on muscle strength, power production, vertical jump, and soreness using a plate-loaded barbell Smith squat exercise. Thirty college-aged men (23 ± 3.5 years, 178 ± 6.8 cm, 82 ± 12 kg, and 11.6 ± 5.1% fat) with 3.0 ± 1.0 years of resistance training experience and training frequency of 4.3 ± 0.9 days per week were randomized and assigned to 1 of 3 eccentric training groups that incorporated different patterns of contraction. For every repetition, all 3 groups used 2-second concentric contractions and paused for 1 second between the concentric and eccentric phases. The control group (2S) used 2-second eccentric contractions, whereas the 4S group performed 4-second eccentric contractions and the 6S group performed 6-second eccentric contractions. All repetitions were completed using the barbell Smith squat exercise. All participants completed a 4-week training protocol that required them to complete 2 workouts per week using their prescribed contraction routine for 4 sets of 6 repetitions at an intensity of 80-85% one repetition maximum (1RM). For all performance data, significant group × time (G × T) interaction effects were found for average power production across all 3 sets of a squat jump protocol (p = 0.04) while vertical jump did not reach significance but there was a trend toward a difference (G × T, p = 0.07). No other significant (p > 0.05) G × T interaction effects were found for the performance variables. All groups showed significant main effects for time in 1RM (p < 0.001), vertical jump (p = 0.004), peak power (p < 0.001), and average power (p < 0.001). Peak velocity data indicated that the 6S group experienced a significant reduction in peak velocity during the squat jump protocol as a result of the 4-week training program (p = 0.03). Soreness data revealed significant increases across time in all groups at both week 0 and week 4. Paired sample t-tests revealed greater differences in soreness values across time in the 2S group. The results provide further evidence that resistance training with eccentrically dominated movement patterns can be an effective method to acutely increase maximal strength and power expression in trained college age men. Furthermore, longer eccentric contractions may negatively impact explosive movements such as the vertical jump, whereas shorter eccentric contractions may instigate greater amounts of soreness. These are important considerations for the strength and conditioning professional to more fully understand that expressions of strength and power through eccentric training and varying durations of eccentric activity can have a significant impact for populations ranging from athletes desiring peak performance.

  12. Overload training inhibits phagocytosis and ROS generation of peritoneal macrophages: role of IGF-1 and MGF.

    PubMed

    Xiao, Weihua; Chen, Peijie; Wang, Ru; Dong, Jingmei

    2013-01-01

    We tested the hypothesis that overload training inhibits the phagocytosis and the reactive oxygen species (ROS) generation of peritoneal macrophages (Mϕs), and that insulin-like growth factor-1(IGF-1) and mechano-growth factor (MGF) produced by macrophages may contribute to this process. Rats were randomized to two groups, sedentary control group (n = 10) and overload training group (n = 10). The rats of overload training group were subjected to 11 weeks of experimental training protocol. Blood sample was used to determine the content of hemoglobin, testosterone, and corticosterone. The phagocytosis and the ROS generation of Mϕs were measured by the uptake of neutral red and the flow cytometry, respectively. IGF-1 and MGF mRNA levels in Mϕs were determined by real-time PCR. In addition, we evaluated the effects of IGF-1 and MGF peptide on phagocytosis and ROS generation of Mϕs in vitro. The data showed that overload training significantly decreased the body weight (19.3 %, P < 0.01), the hemoglobin (13.5 %, P < 0.01), the testosterone (55.3 %, P < 0.01) and the corticosterone (40.6 %, P < 0.01) in blood. Moreover, overload training significantly decreased the phagocytosis (27 %, P < 0.05) and the ROS generation (35 %, P < 0.01) of Mϕs. IGF-1 and MGF mRNA levels in Mϕs from overload training group increased significantly compared with the control group (21-fold and 92-fold, respectively; P < 0.01). In vitro experiments showed that IGF-1 had no significant effect on the phagocytosis and the ROS generation of Mϕs. Unlike IGF-1, MGF peptide impaired the phagocytosis of Mϕs in dose-independent manner. In addition, MGF peptide of some concentrations (i.e., 1, 10, 50, 100 ng/ml) significantly inhibited the ROS generation of Mϕs. These results suggest that overload training inhibits the phagocytosis and the ROS generation of peritoneal macrophages, and that MGF produced by macrophages may play a key role in this process. This may represent a novel mechanism of immune suppression induced by overload training.

  13. A Comparison of the Immediate Effects of Eccentric Training vs Static Stretch on Hamstring Flexibility in High School and College Athletes.

    PubMed

    Nelson, Russell T

    2006-05-01

    A pre-event static stretching program is often used to prepare an athlete for competition. Recent studies have suggested that static stretching may not be an effective method for stretching the muscle prior to competition. The intent of this study was to compare the immediate effect of static stretching, eccentric training, and no stretching/training on hamstring flexibility in high school and college athletes. Seventy-five athletes, with a mean age of 17.22 (+/- 1.30) were randomly assigned to one of three groups - thirty- second static stretch one time, an eccentric training protocol through a full range of motion, and a control group. All athletes had limited hamstring flexibility, defined as a 20° loss of knee extension measured with the femur held at 90° of hip flexion. A significant difference was indicated by follow up analysis between the control group (gain = -1.08°) and both the static stretch (gain = 5.05°) and the eccentric training group (gain = 9.48°). In addition, the gains in the eccentric training group were significantly greater than the static stretch group. The findings of this study reveal that one session of eccentrically training through a full range of motion improved hamstring flexibility better than the gains made by a static stretch group or a control group.

  14. A Comparison of the Immediate Effects of Eccentric Training vs Static Stretch on Hamstring Flexibility in High School and College Athletes

    PubMed Central

    2006-01-01

    Background A pre-event static stretching program is often used to prepare an athlete for competition. Recent studies have suggested that static stretching may not be an effective method for stretching the muscle prior to competition. Objective The intent of this study was to compare the immediate effect of static stretching, eccentric training, and no stretching/training on hamstring flexibility in high school and college athletes. Methods Seventy-five athletes, with a mean age of 17.22 (+/- 1.30) were randomly assigned to one of three groups - thirty- second static stretch one time, an eccentric training protocol through a full range of motion, and a control group. All athletes had limited hamstring flexibility, defined as a 20° loss of knee extension measured with the femur held at 90° of hip flexion. Results A significant difference was indicated by follow up analysis between the control group (gain = -1.08°) and both the static stretch (gain = 5.05°) and the eccentric training group (gain = 9.48°). In addition, the gains in the eccentric training group were significantly greater than the static stretch group. Discussion and Conclusion The findings of this study reveal that one session of eccentrically training through a full range of motion improved hamstring flexibility better than the gains made by a static stretch group or a control group. PMID:21522215

  15. The effect of Nordic hamstring strength training on muscle architecture, stiffness, and strength.

    PubMed

    Seymore, Kayla D; Domire, Zachary J; DeVita, Paul; Rider, Patrick M; Kulas, Anthony S

    2017-05-01

    Hamstring strain injury is a frequent and serious injury in competitive and recreational sports. While Nordic hamstring (NH) eccentric strength training is an effective hamstring injury-prevention method, the protective mechanism of this exercise is not understood. Strength training increases muscle strength, but also alters muscle architecture and stiffness; all three factors may be associated with reducing muscle injuries. The purpose of this study was to examine the effects of NH eccentric strength training on hamstring muscle architecture, stiffness, and strength. Twenty healthy participants were randomly assigned to an eccentric training group or control group. Control participants performed static stretching, while experimental participants performed static stretching and NH training for 6 weeks. Pre- and post-intervention measurements included: hamstring muscle architecture and stiffness using ultrasound imaging and elastography, and maximal hamstring strength measured on a dynamometer. The experimental group, but not the control group, increased volume (131.5 vs. 145.2 cm 3 , p < 0.001) and physiological cross-sectional area (16.1 vs. 18.1 cm 2 , p = 0.032). There were no significant changes to muscle fascicle length, stiffness, or eccentric hamstring strength. The NH intervention was an effective training method for muscle hypertrophy, but, contrary to common literature findings for other modes of eccentric training, did not increase fascicle length. The data suggest that the mechanism behind NH eccentric strength training mitigating hamstring injury risk could be increasing volume rather than increasing muscle length. Future research is, therefore, warranted to determine if muscle hypertrophy induced by NH training lowers future hamstring strain injury risk.

  16. How effective is eccentric viewing training? A systematic literature review.

    PubMed

    Gaffney, Allannah J; Margrain, Tom H; Bunce, Catey V; Binns, Alison M

    2014-07-01

    The global prevalence of age-related macular degeneration and associated central vision loss is rising. Central vision loss hinders the performance of many activities of daily living. Adaptive strategies such as eccentric viewing and steady eye strategy may be used to compensate for central vision loss. In order to establish the potential of these rehabilitation strategies, this systematic review evaluates current literature regarding the effectiveness of eccentric viewing and steady eye strategy training in people with central vision loss. The search strategies identified 2605 publications, 36 of which met the inclusion criteria for the review, but only three of which were randomised controlled trials. This literature shows that eccentric viewing and steady eye strategy training can improve near visual acuity, reading speed, and performance of activities of daily living in people with central vision loss. However, there was insufficient literature to establish a relationship between training and distance visual acuity or quality of life. There is no conclusive evidence to show that a particular model of eccentric viewing training is superior to another, little clear evidence of a relationship between participant characteristics and training outcomes and no data regarding the cost effectiveness of training. This report highlights the need for further robust research to establish the true potential and cost effectiveness of eccentric viewing and steady eye strategy training as a rehabilitation strategy for individuals with central vision loss. © 2014 The Authors Ophthalmic & Physiological Optics © 2014 The College of Optometrists.

  17. Eccentric exercise testing and training

    NASA Technical Reports Server (NTRS)

    Clarkson, Priscilla M.

    1994-01-01

    Some researchers and practitioners have touted the benefits of including eccentric exercise in strength training programs. However, others have challenged its use because they believe that eccentric actions are dangerous and lead to injuries. Much of the controversy may be based on a lack of understanding of the physiology of eccentric actions. This review will present data concerning eccentric exercise in strength training, the physiological characteristics of eccentric exercise, and the possible stimulus for strength development. Also a discussion of strength needs for extended exposure to microgravity will be presented. Not only is the use of eccentric exercise controversial, but the name itself is fraught with problems. The correct pronunciation is with a hard 'c' so that the word sounds like ekscentric. The confusion in pronunciation may have been prevented if the spelling that Asmussen used in 1953, excentric, had been adopted. Another problem concerns the expressions used to describe eccentric exercise. Commonly used expressions are negatives, eccentric contractions, lengthening contractions, resisted muscle lengthenings, muscle lengthening actions, and eccentric actions. Some of these terms are cumbersome (i.e., resisted muscle lengthenings), one is slang (negatives), and another is an oxymoron (lengthening contractions). Only eccentric action is appropriate and adoption of this term has been recommended by Cavanagh. Despite the controversy that surrounds eccentric exercise, it is important to note that these types of actions play an integral role in normal daily activities. Eccentric actions are used during most forms of movement, for example, in walking when the foot touches the ground and the center of mass is decelerated and in lowering objects, such as placing a bag of groceries in the car.

  18. Three Weeks of Overload Training Increases Resting Muscle Sympathetic Activity.

    PubMed

    Coates, Alexandra M; Incognito, Anthony V; Seed, Jeremy D; Doherty, Connor J; Millar, Philip J; Burr, Jamie F

    2018-05-01

    Overload training is hypothesized to alter autonomic regulation, although interpretations using indirect measures of heart rate variability are conflicting. The aim of the present study was to examine the effects of overload training on muscle sympathetic nerve activity (MSNA), a direct measure of central sympathetic outflow, in recreational endurance athletes. Measurements of heart rate variability, cardiac baroreflex sensitivity (BRS), MSNA (microneurography), and sympathetic BRS were obtained in 17 healthy triathletes and cyclists after 1 wk of reduced training (baseline) and again after 3 wk of either regular (n = 7) or overload (n = 10) training. After training, the changes (Δ) in peak power output (10 ± 10 vs -12 ± 9 W, P < 0.001), maximal heart rate (-2 ± 4 vs -8 ± 3 bpm, P = 0.006), heart rate variability (SD of normal-to-normal intervals, 27 ± 31 vs -3 ± 25 ms; P = 0.04), and cardiac BRS (7 ± 6 vs -2 ± 8 ms·mm Hg, P = 0.02) differed between the control and overload groups. The change in MSNA burst frequency (-2 ± 2 vs 4 ± 5 bursts per minute, P = 0.02) differed between groups. Across all participants, the changes in resting MSNA and peak power output were correlated negatively (r = -0.51, P = 0.04). No between-group differences in resting heart rate or blood pressure were observed (all P > 0.05). Overload training increased MSNA and attenuated increases in cardiac BRS and heart rate variability observed with regular training. These results support neural adaptations after overload training and suggest that increased central sympathetic outflow may be linked with decreased exercise performance.

  19. Eccentric exercises for the management of tendinopathy of the main body of the Achilles tendon with or without the AirHeel Brace. A randomized controlled trial. A: effects on pain and microcirculation.

    PubMed

    Knobloch, Karsten; Schreibmueller, Louisa; Longo, Umile Giuseppe; Vogt, Peter M

    2008-01-01

    To compare eccentric training and the combination of eccentric training with the AirHeel Brace for the management of tendinopathy of the main body of the Achilles tendon. We recruited 116 subjects with unilateral tendinopathy of the main body of the Achilles tendon, who were randomized in two groups. Group A performed a regimen of daily eccentric training associated with the AirHeel Brace (Donjoy Orthopedics, Vista, CA, USA). Group B performed the same eccentric training without the AirHeel Brace. Tendon microcirculatory mapping was performed using combined Laser-Doppler and spectrophotometry. Pre- and post-operative FAOS score and VAS score were used to evaluate the patients. The FAOS score and the VAS score showed significant improvements from pre-operative to post-operative values in both groups (A 5.1 +/- 2 vs. 2.9 +/- 2.4, 43% reduction and B: 5.4 +/- 2.1 vs. 3.6 +/- 2.4, 33% reduction, both p = 0.0001). There were no statistically significant differences in FAOS score and VAS score when comparing the two groups after the end of the intervention. In Group A, tendon oxygen saturation in the main body of the Achilles tendon showed significant increase from pre- to post-management values (68 +/- 12 vs.74 +/- 8%, p = 0.003). Post-capillary venous filling pressures showed significant reduction from pre- to post-intervention values. Eccentric training, associated or not with the AirHeel Brace, produces the same effect in patients with tendinopathy of the main body of the Achilles tendon. The combination of eccentric training with the AirHeel Brace can optimize tendon microcirculation, but these micro-circulator advantages do not translate into superior clinical performance when compared with eccentric training alone.

  20. Effects of eccentric-focused and conventional resistance training on strength and functional capacity of older adults.

    PubMed

    Dias, Caroline Pieta; Toscan, Rafael; de Camargo, Mainara; Pereira, Evelyn Possobom; Griebler, Nathália; Baroni, Bruno Manfredini; Tiggemann, Carlos Leandro

    2015-10-01

    The aim of the study was to assess the effect of eccentric training using a constant load with longer exposure time at the eccentric phase on knee extensor muscle strength and functional capacity of elderly subjects in comparison with a conventional resistance training program. Twenty-six healthy elderly women (age = 67 ± 6 years) were randomly assigned to an eccentric-focused training group (ETG; n = 13) or a conventional training group (CTG; n = 13). Subjects underwent 12 weeks of resistance training twice a week. For the ETG, concentric and eccentric phases were performed using 1.5 and 4.5 s, respectively, while for CTG, each phase lasted 1.5 s. Maximum dynamic strength was assessed by the one-repetition maximum (1RM) test in the leg press and knee extension exercises, and for functional capacity, subjects performed specific tests (6-m walk test, timed up-and-go test, stair-climbing test, and chair-rising test). Both groups improved knee extension 1RM (24-26 %; p = 0.021), timed up-and-go test (11-16 %; p < 0.001), 6-m walk test (9-12 %; p = 0.004), stair-climbing test (8-13 %; p = 0.007), and chair-rising test (15-16 %; p < 0.001), but there was no significant difference between groups. In conclusion, the strategy of increasing the exposure time at the eccentric phase of movement using the same training volume and intensity does not promote different adaptations in strength or functional capacity compared to conventional resistance training in elderly woman.

  1. Different Muscle Action Training Protocols on Quadriceps-Hamstrings Neuromuscular Adaptations.

    PubMed

    Ruas, Cassio V; Brown, Lee E; Lima, Camila D; Gregory Haff, G; Pinto, Ronei S

    2018-05-01

    The aim of this study was to compare three specific concentric and eccentric muscle action training protocols on quadriceps-hamstrings neuromuscular adaptations. Forty male volunteers performed 6 weeks of training (two sessions/week) of their dominant and non-dominant legs on an isokinetic dynamometer. They were randomly assigned to one of four groups; concentric quadriceps and concentric hamstrings (CON/CON, n=10), eccentric quadriceps and eccentric hamstrings (ECC/ECC, n=10), concentric quadriceps and eccentric hamstrings (CON/ECC, n=10), or no training (CTRL, n=10). Intensity of training was increased every week by decreasing the angular velocity for concentric and increasing it for eccentric groups in 30°/s increments. Volume of training was increased by adding one set every week. Dominant leg quadriceps and hamstrings muscle thickness, muscle quality, muscle activation, muscle coactivation, and electromechanical delay were tested before and after training. Results revealed that all training groups similarly increased MT of quadriceps and hamstrings compared to control (p<0.05). However, CON/ECC and ECC/ECC training elicited a greater magnitude of change. There were no significant differences between groups for all other neuromuscular variables (p>0.05). These findings suggest that different short-term muscle action isokinetic training protocols elicit similar muscle size increases in hamstrings and quadriceps, but not for other neuromuscular variables. Nevertheless, effect sizes indicate that CON/ECC and ECC/ECC may elicit the greatest magnitude of change in muscle hypertrophy. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Chronic Achilles tendinopathy: a prospective randomized study comparing the therapeutic effect of eccentric training, the AirHeel brace, and a combination of both.

    PubMed

    Petersen, Wolf; Welp, Robert; Rosenbaum, Dieter

    2007-10-01

    Previous studies have shown that eccentric training has a positive effect on chronic Achilles tendinopathy. A new strategy for the treatment of chronic Achilles tendinopathy is the AirHeel brace. AirHeel brace treatment improves the clinical outcome of patients with chronic Achilles tendinopathy. The combination of the AirHeel brace and an eccentric training program has a synergistic effect. Randomized controlled clinical trial; Level of evidence, 1. One hundred patients were randomly assigned to 1 of 3 treatment groups: (1) eccentric training, (2) AirHeel brace, and (3) combination of eccentric training and AirHeel brace. Patients were evaluated at 6, 12, and 54 weeks after the beginning of the treatment protocol with ultrasonography, visual analog scale (VAS) for pain, American Orthopaedic Foot and Ankle Society (AOFAS) ankle score, and Short Form-36 (SF-36). The VAS score for pain, AOFAS score, and SF-36 improved significantly in all 3 groups at all 3 follow-up examinations. At the 3 time points (6 weeks, 12 weeks, and 54 weeks) of follow-up, there was no significant difference between all 3 treatment groups. In all 3 groups, there was no significant difference in tendon thickness after treatment. The AirHeel brace is as effective as eccentric training in the treatment of chronic Achilles tendinopathy. There is no synergistic effect when both treatment strategies are combined. The AirHeel brace is an alternative treatment option for chronic Achilles tendinopathy.

  3. Eccentric Training and Static Stretching Improve Hamstring Flexibility of High School Males

    PubMed Central

    Bandy, William D.

    2004-01-01

    Objective: To determine if the flexibility of high-school-aged males would improve after a 6-week eccentric exercise program. In addition, the changes in hamstring flexibility that occurred after the eccentric program were compared with a 6-week program of static stretching and with a control group (no stretching). Design and Setting: We used a test-retest control group design in a laboratory setting. Subjects were assigned randomly to 1 of 3 groups: eccentric training, static stretching, or control. Subjects: A total of 69 subjects, with a mean age of 16.45 ± 0.96 years and with limited hamstring flexibility (defined as 20° loss of knee extension measured with the thigh held at 90° of hip flexion) were recruited for this study. Measurements: Hamstring flexibility was measured using the passive 90/90 test before and after the 6-week program. Results: Differences were significant for test and for the test-by-group interaction. Follow-up analysis indicated significant differences between the control group (gain = 1.67°) and both the eccentric-training (gain = 12.79°) and static-stretching (gain = 12.05°) groups. No difference was found between the eccentric and static-stretching groups. Conclusions: The gains achieved in range of motion of knee extension (indicating improvement in hamstring flexibility) with eccentric training were equal to those made by statically stretching the hamstring muscles. PMID:15496995

  4. Eccentric Training and Static Stretching Improve Hamstring Flexibility of High School Males.

    PubMed

    Nelson, Russell T; Bandy, William D

    2004-09-01

    OBJECTIVE: To determine if the flexibility of high-school-aged males would improve after a 6-week eccentric exercise program. In addition, the changes in hamstring flexibility that occurred after the eccentric program were compared with a 6-week program of static stretching and with a control group (no stretching). DESIGN AND SETTING: We used a test-retest control group design in a laboratory setting. Subjects were assigned randomly to 1 of 3 groups: eccentric training, static stretching, or control. SUBJECTS: A total of 69 subjects, with a mean age of 16.45 +/- 0.96 years and with limited hamstring flexibility (defined as 20 degrees loss of knee extension measured with the thigh held at 90 degrees of hip flexion) were recruited for this study. MEASUREMENTS: Hamstring flexibility was measured using the passive 90/90 test before and after the 6-week program. RESULTS: Differences were significant for test and for the test-by-group interaction. Follow-up analysis indicated significant differences between the control group (gain = 1.67 degrees ) and both the eccentric-training (gain = 12.79 degrees ) and static-stretching (gain = 12.05 degrees ) groups. No difference was found between the eccentric and static-stretching groups. CONCLUSIONS: The gains achieved in range of motion of knee extension (indicating improvement in hamstring flexibility) with eccentric training were equal to those made by statically stretching the hamstring muscles.

  5. Effects of resistance training using known vs unknown loads on eccentric-phase adaptations and concentric velocity.

    PubMed

    Hernández-Davó, J L; Sabido, R; Behm, D G; Blazevich, A J

    2018-02-01

    The aims of this study were to compare both eccentric- and concentric-phase adaptations in highly trained handball players to 4 weeks of twice-weekly rebound bench press throw training with varying loads (30%, 50% and 70% of one-repetition maximum [1-RM]) using either known (KL) or unknown (UL) loads and to examine the relationship between changes in eccentric- and concentric-phase performance. Twenty-eight junior team handball players were divided into two experimental groups (KL or UL) and a control group. KL subjects were told the load prior each repetition, while UL were blinded. For each repetition, the load was dropped and then a rebound bench press at maximum velocity was immediately performed. Both concentric and eccentric velocity as well as eccentric kinetic energy and musculo-articular stiffness prior to the eccentric-concentric transition were measured. Results showed similar increases in both eccentric velocity and kinetic energy under the 30% 1-RM but greater improvements under 50% and 70% 1-RM loads for UL than KL. UL increased stiffness under all loads (with greater magnitude of changes). KL improved concentric velocity only under the 30% 1-RM load while UL also improved under 50% and 70% 1-RM loads. Improvements in concentric movement velocity were moderately explained by changes in eccentric velocity (R 2 =.23-.62). Thus, UL led to greater improvements in concentric velocity, and the improvement is potentially explained by increases in the speed (as well as stiffness and kinetic energy) of the eccentric phase. Unknown load training appears to have significant practical use for the improvement of multijoint stretch-shortening cycle movements. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Eccentric Viewing Training in the Home Environment: Can It Improve the Performance of Activities of Daily Living?

    ERIC Educational Resources Information Center

    Vukicevic, Meri; Fitzmaurice, Kerry

    2009-01-01

    Macular degeneration has a severe impact on a person's ability to perform activities of daily living. This study investigated the impact of in-home training in eccentric viewing on near acuity and performance of activities of daily living. The results suggest that eccentric viewing can ameliorate the impact of the loss of vision that is due to…

  7. Bone mass in the calcaneus after heavy loaded eccentric calf-muscle training in recreational athletes with chronic achilles tendinosis.

    PubMed

    Alfredson, H; Nordström, P; Pietilä, T; Lorentzon, R

    1999-05-01

    In an ongoing prospective study of 14 recreational athletes (12 males and 2 females, mean age 44.2 +/- 7.1 years) with unilateral chronic Achilles tendinosis, we investigated the effect of treatment with heavy-loaded eccentric calf-muscle training. Pain during activity (recorded on a VAS scale) and isokinetic concentric and eccentric calf-muscle strength (peak torque at 90 degrees /second and 225 degrees /second) on the injured and noninjured side were evaluated. In this group of patients, we examined areal bone mineral density (BMD) of the calcaneus after 9 months (range 6-14 months) of training. BMD of the injured side (subjected to heavy-loaded eccentric training) was compared with BMD of the noninjured side. Before onset of heavy-loaded eccentric training, all patients had Achilles tendon pain which prohibited running activity, and significantly lower concentric and eccentric plantar flexion peak torque on the injured compared with the noninjured side. The training program consisted of 12 weeks of daily, heavy-loaded, eccentric calf-muscle training; thereafter the training was continued for 2-3 days/week. The clinical results were excellent-all 14 patients were back at their preinjury level with full running activity at the 3 month follow-up. The concentric and eccentric plantar flexion peak torque had increased significantly and did not significantly differ from the noninjured side at the 3 and 9 month follow-up. There were no significant side-to-side differences in BMD of the calcaneus. There was no significant relationship between BMD of the calcaneus and calf-muscle strength. As a comparison group, we used 10 recreational athletes (5 males and 5 females) mean age 40.9 years (range 26-55 years), who were selected for surgical treatment of chronic Achilles tendinosis localized at the 2-6 cm level. Their duration of symptoms and severity of disease were the same as in the experimental group. There were no significant side-to-side differences in BMD of the calcaneus preoperatively, but 12 months postoperatively BMD of the calcaneus was 16.4% lower at the injured side compared with the noninjured side. Heavy-loaded eccentric calf-muscle training resulted in a fast recovery in all patients, equaled the side-to-side differences in muscle strength, and was not associated with side-to-side differences in BMD of the calcaneus. In this group of middle-aged recreational athletes, BMD of the calcaneus was not related to calf-muscle strength.

  8. New regimen for eccentric calf-muscle training in patients with chronic insertional Achilles tendinopathy: results of a pilot study.

    PubMed

    Jonsson, P; Alfredson, H; Sunding, K; Fahlström, M; Cook, J

    2008-09-01

    Chronic painful insertional Achilles tendinopathy is seen in both physically active and non-active individuals. Painful eccentric training, where the patients load the Achilles tendon into full dorsiflexion, has shown good results in patients with mid-portion Achilles tendinosis. However, only 32% of patients with insertional Achilles tendinopathy had good clinical results with that type of eccentric training regimen. To investigate whether a new model of painful eccentric training had an effect on chronic painful insertional Achilles tendinopathy. 27 patients (12 men, 15 women, mean age 53 years) with a total of 34 painful Achilles tendons with a long duration of pain (mean 26 months), diagnosed as insertional Achilles tendinopathy, were included. The patients performed a new model of painful eccentric training regimen without loading into dorsiflexion. This was done as 3x15 reps, twice a day, 7 days/week, for 12 weeks. Pain during Achilles-tendon-loading activity (VAS) and patient's satisfaction (back to previous activity) were evaluated. At follow-up (mean 4 months) 18 patients (67%, 23/34 tendons) were satisfied and back to their previous tendon-loading activity. Their mean VAS had decreased from 69.9 (SD 18.9) to 21 (SD 20.6) (p<0.001). Nine patients (11 tendons) were not satisfied with the treatment, although their VAS was significantly reduced from 77.5 (8.6) to 58.1 (14.8) (p<0.01). In this short-term pilot study this new model of painful eccentric calf-muscle training showed promising clinical results in 67% of the patients.

  9. Relationships Between Concentric and Eccentric Strength and Countermovement Jump Performance in Resistance Trained Men.

    PubMed

    Bridgeman, Lee A; McGuigan, Michael R; Gill, Nicholas D; Dulson, Deborah K

    2018-01-01

    Bridgeman, LA, McGuigan, MR, Gill, ND, and Dulson, DK. Relationships between concentric and eccentric strength and countermovement jump performance in resistance trained men. J Strength Cond Res 32(1): 255-260, 2018-The purpose of this study was to investigate the relationships between concentric and eccentric peak force (PF) and countermovement jump (CMJ) performance in resistance trained men. Subjects were 12 men (mean ± SD; age: 25.4 ± 3.5 years; height: 177.2 ± 4.5 cm; mass: 84.0 ± 10.1 kg). The men were tested for concentric and eccentric PF using the Exerbotics squat device. Subjects then completed 3 CMJs to allow for the calculation of peak power (PP), peak ground reaction force, and jump height (JH). Correlations between the variables of interest were calculated using Pearson product-moment correlation coefficients. A large relationship was found between absolute concentric PF and absolute CMJ PP (r = 0.66, p ≤ 0.05). Absolute eccentric PF had a very large relationship with absolute CMJ PP and CMJ JH (r = 0.74, p < 0.01 and r = 0.74, p < 0.001, respectively). In addition, absolute eccentric PF was found to have a moderate relationship with relative CMJ PP (r = 0.58, p ≤ 0.05). Relative eccentric PF was had a very large relationship with relative CMJ PP and CMJ JH (r = 0.73, p < 0.001 and r = 0.79, p < 0.001, respectively). Based on these findings, strength and conditioning coaches and athletes who wish to enhance CMJ performance may wish to include exercises, which enhance lower-body eccentric strength within their training.

  10. Heavy-load eccentric calf muscle training for the treatment of chronic Achilles tendinosis.

    PubMed

    Alfredson, H; Pietilä, T; Jonsson, P; Lorentzon, R

    1998-01-01

    We prospectively studied the effect of heavy-load eccentric calf muscle training in 15 recreational athletes (12 men and 3 women; mean age, 44.3 +/- 7.0 years) who had the diagnosis of chronic Achilles tendinosis (degenerative changes) with a long duration of symptoms despite conventional nonsurgical treatment. Calf muscle strength and the amount of pain during activity (recorded on a visual analog scale) were measured before onset of training and after 12 weeks of eccentric training. At week 0, all patients had Achilles tendon pain not allowing running activity, and there was significantly lower eccentric and concentric calf muscle strength on the injured compared with the noninjured side. After the 12-week training period, all 15 patients were back at their preinjury levels with full running activity. There was a significant decrease in pain during activity, and the calf muscle strength on the injured side had increased significantly and did not differ significantly from that of the noninjured side. A comparison group of 15 recreational athletes with the same diagnosis and a long duration of symptoms had been treated conventionally, i.e., rest, nonsteroidal antiinflammatory drugs, changes of shoes or orthoses, physical therapy, and in all cases also with ordinary training programs. In no case was the conventional treatment successful, and all patients were ultimately treated surgically. Our treatment model with heavy-load eccentric calf muscle training has a very good short-term effect on athletes in their early forties.

  11. Nordic hamstring exercise training alters knee joint kinematics and hamstring activation patterns in young men.

    PubMed

    Delahunt, Eamonn; McGroarty, Mark; De Vito, Giuseppe; Ditroilo, Massimiliano

    2016-04-01

    To investigate the kinematic and muscle activation adaptations during performance of the Nordic hamstring exercise (NHE) to a 6-week eccentric hamstring training programme using the NHE as the sole mode of exercise. Twenty-nine healthy males were randomly allocated to a control (CG) or intervention (IG) group. The IG participated in a 6-week eccentric hamstring exercise programme using the NHE. The findings of the present study were that a 6-week eccentric hamstring training programme improved eccentric hamstring muscle strength (202.4 vs. 177.4 nm, p = 0.0002, Cohen's d = 0.97) and optimized kinematic (longer control of the forward fall component of the NHE, 68.1° vs. 73.7°, p = 0.022, Cohen's d = 0.90) and neuromuscular parameters (increased electromyographic activity of the hamstrings, 83.2 vs. 56.6 % and 92.0 vs. 54.2 %, p < 0.05, Cohen's d > 1.25) associated with NHE performance. This study provides some insight into potential mechanisms by which an eccentric hamstring exercise programme utilizing the NHE as the mode of exercise may result in an improvement in hamstring muscle control during eccentric contractions.

  12. Construction of an isokinetic eccentric cycle ergometer for research and training.

    PubMed

    Elmer, Steven J; Martin, James C

    2013-08-01

    Eccentric cycling serves a useful exercise modality in clinical, research, and sport training settings. However, several constraints can make it difficult to use commercially available eccentric cycle ergometers. In this technical note, we describe the process by which we built an isokinetic eccentric cycle ergometer using exercise equipment modified with commonly available industrial parts. Specifically, we started with a used recumbent cycle ergometer and removed all the original parts leaving only the frame and seat. A 2.2 kW electric motor was attached to a transmission system that was then joined with the ergometer. The motor was controlled using a variable frequency drive, which allowed for control of a wide range of pedaling rates. The ergometer was also equipped with a power measurement device that quantified work, power, and pedaling rate and provided feedback to the individual performing the exercise. With these parts along with some custom fabrication, we were able to construct an isokinetic eccentric cycle ergometer suitable for research and training. This paper offers a guide for those individuals who plan to use eccentric cycle ergometry as an exercise modality and wish to construct their own ergometer.

  13. The muscle contraction mode determines lymphangiogenesis differentially in rat skeletal and cardiac muscles by modifying local lymphatic extracellular matrix microenvironments.

    PubMed

    Greiwe, L; Vinck, M; Suhr, F

    2016-05-01

    Lymphatic vessels are of special importance for tissue homeostasis, and increases of their density may foster tissue regeneration. Exercise could be a relevant tool to increase lymphatic vessel density (LVD); however, a significant lack of knowledge remains to understand lymphangiogenesis in skeletal muscles upon training. Interestingly, training-induced lymphangiogenesis has never been studied in the heart. We studied lymphangiogenesis and LVD upon chronic concentric and chronic eccentric muscle contractions in both rat skeletal (Mm. Edl and Sol) and cardiac muscles. We found that LVD decreased in both skeletal muscles specifically upon eccentric training, while this contraction increased LVD in cardiac tissue. These observations were supported by opposing local remodelling of lymphatic vessel-specific extracellular matrix components in skeletal and cardiac muscles and protein levels of lymphatic markers (Lyve-1, Pdpn, Vegf-C/D). Confocal microscopy further revealed transformations of lymphatic vessels into vessels expressing both blood (Cav-1) and lymphatic (Vegfr-3) markers upon eccentric training specifically in skeletal muscles. In addition and phenotype supportive, we found increased inflammation (NF-κB/p65, Il-1β, Ifn-γ, Tnf-α and MPO(+) cells) in eccentrically stressed skeletal, but decreased levels in cardiac muscles. Our data provide novel mechanistic insights into lymphangiogenic processes in skeletal and cardiac muscles upon chronic muscle contraction modes and demonstrate that both tissues adapt in opposing manners specifically to eccentric training. These data are highly relevant for clinical applications, because eccentric training serves as a sufficient strategy to increase LVD and to decrease inflammation in cardiac tissue, for example in order to reduce tissue abortion in transplantation settings. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  14. Exposure to chronic alcohol accelerates development of wall stress and eccentric remodeling in rats with volume overload.

    PubMed

    Mouton, Alan J; Ninh, Van K; El Hajj, Elia C; El Hajj, Milad C; Gilpin, Nicholas W; Gardner, Jason D

    2016-08-01

    Chronic alcohol abuse is one of the leading causes of dilated cardiomyopathy (DCM) in the United States. Volume overload (VO) also produces DCM characterized by left ventricular (LV) dilatation and reduced systolic and diastolic function, eventually progressing to congestive heart failure. For this study, we hypothesized that chronic alcohol exposure would exacerbate cardiac dysfunction and remodeling due to VO. Aortocaval fistula surgery was used to induce VO, and compensatory cardiac remodeling was allowed to progress for either 3days (acute) or 8weeks (chronic). Alcohol was administered via chronic intermittent ethanol vapor (EtOH) for 2weeks before the acute study and for the duration of the 8week chronic study. Temporal alterations in LV function were assessed by echocardiography. At the 8week end point, pressure-volume loop analysis was performed by LV catheterization and cardiac tissue collected. EtOH did not exacerbate LV dilatation (end-systolic and diastolic diameter) or systolic dysfunction (fractional shortening, ejection fraction) due to VO. The combined stress of EtOH and VO decreased the eccentric index (posterior wall thickness to end-diastolic diameter ratio), increased end-diastolic pressure (EDP), and elevated diastolic wall stress. VO also led to increases in posterior wall thickness, which was not observed in the VO+EtOH group, and wall thickness significantly correlated with LV BNP expression. VO alone led to increases in interstitial collagen staining (picrosirius red), which while not statistically significant, tended to be decreased by EtOH. VO increased LV collagen I protein expression, whereas in rats with VO+EtOH, LV collagen I was not elevated relative to Sham. The combination of VO and EtOH also led to increases in LV collagen III expression relative to Sham. Rats with VO+EtOH had significantly lower collagen I/III ratio than rats with VO alone. During the acute remodeling phase of VO (3days), VO significantly increased collagen III expression, whereas this effect was not observed in rats with VO+EtOH. In conclusion, chronic EtOH accelerates the development of elevated wall stress and promotes early eccentric remodeling in rats with VO. Our data indicate that these effects may be due to disruptions in compensatory hypertrophy and extracellular matrix remodeling in response to volume overload. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Patellar tendon load in different types of eccentric squats.

    PubMed

    Frohm, A; Halvorsen, K; Thorstensson, A

    2007-07-01

    Differences in mechanical loading of the patellar tendon have been suggested as a reason for varying effects in rehabilitation of patellar tendinopathy using different eccentric squat exercises and devices. The aim was to characterize the magnitude and pattern of mechanical load at the knee and on the patellar tendon during four types of eccentric squat. Subjects performed squats with a submaximal free weight and with maximal effort in a device for eccentric overloading (Bromsman), on a decline board and horizontal surface. Kinematics was recorded with a motion-capture system, reaction forces with force plates, and electromyography from three leg muscles with surface electrodes. Inverse dynamics was used to calculate knee joint kinetics. Eccentric work, mean and peak patellar tendon force, and angle at peak force were greater (25-30%) for squats on decline board compared to horizontal surface with free weight, but not in Bromsman. Higher knee load forces (60-80%), but not work, were observed with Bromsman than free weight. Angular excursions at the knee and ankle were larger with decline board, particularly with free weight, and smaller in Bromsman than with free weight. Mean electromyography was greater on a decline board for gastrocnemius (13%) and vastus medialis (6%) with free weight, but in Bromsman only for gastrocnemius (7%). The results demonstrated clear differences in the biomechanical loading on the knee during different squat exercises. Quantification of such differences provides information that could be used to explain differences in rehabilitation effects as well as in designing more optimal rehabilitation exercises for patellar tendinopathy.

  16. Acute effects of movement velocity on blood lactate and growth hormone responses after eccentric bench press exercise in resistance-trained men.

    PubMed

    Calixto, Rd; Verlengia, R; Crisp, Ah; Carvalho, Tb; Crepaldi, Md; Pereira, Aa; Yamada, Ak; da Mota, Gr; Lopes, Cr

    2014-12-01

    This study aimed to compare the effects of different velocities of eccentric muscle actions on acute blood lactate and serum growth hormone (GH) concentrations following free weight bench press exercises performed by resistance-trained men. Sixteen healthy men were divided into two groups: slow eccentric velocity (SEV; n = 8) and fast eccentric velocity (FEV; n = 8). Both groups performed four sets of eight eccentric repetitions at an intensity of 70% of their one repetition maximum eccentric (1RMecc) test, with 2-minute rest intervals between sets. The eccentric velocity was controlled to 3 seconds per range of motion for SEV and 0.5 seconds for the FEV group. There was a significant difference (P < 0.001) in the kinetics of blood lactate removal (at 3, 6, 9, 15, and 20 min) and higher mean values for peak blood lactate (P = 0.001) for the SEV group (9.1 ± 0.5 mM) compared to the FEV group (6.1 ± 0.4 mM). Additionally, serum GH concentrations were significantly higher (P < 0.001) at 15 minutes after bench press exercise in the SEV group (1.7 ± 0.6 ng · mL(-1)) relative to the FEV group (0.1 ± 0.0 ng · mL(-1)). In conclusion, the velocity of eccentric muscle action influences acute responses following bench press exercises performed by resistance-trained men using a slow velocity resulting in a greater metabolic stress and hormone response.

  17. ACUTE EFFECTS OF MOVEMENT VELOCITY ON BLOOD LACTATE AND GROWTH HORMONE RESPONSES AFTER ECCENTRIC BENCH PRESS EXERCISE IN RESISTANCE-TRAINED MEN

    PubMed Central

    Calixto, RD; Crisp, AH; Carvalho, TB; Crepaldi, MD; Pereira, AA; Yamada, AK; da Mota, GR; Lopes, CR

    2014-01-01

    This study aimed to compare the effects of different velocities of eccentric muscle actions on acute blood lactate and serum growth hormone (GH) concentrations following free weight bench press exercises performed by resistance-trained men. Sixteen healthy men were divided into two groups: slow eccentric velocity (SEV; n = 8) and fast eccentric velocity (FEV; n = 8). Both groups performed four sets of eight eccentric repetitions at an intensity of 70% of their one repetition maximum eccentric (1RMecc) test, with 2-minute rest intervals between sets. The eccentric velocity was controlled to 3 seconds per range of motion for SEV and 0.5 seconds for the FEV group. There was a significant difference (P < 0.001) in the kinetics of blood lactate removal (at 3, 6, 9, 15, and 20 min) and higher mean values for peak blood lactate (P = 0.001) for the SEV group (9.1 ± 0.5 mM) compared to the FEV group (6.1 ± 0.4 mM). Additionally, serum GH concentrations were significantly higher (P < 0.001) at 15 minutes after bench press exercise in the SEV group (1.7 ± 0.6 ng · mL−1) relative to the FEV group (0.1 ± 0.0 ng · mL−1). In conclusion, the velocity of eccentric muscle action influences acute responses following bench press exercises performed by resistance-trained men using a slow velocity resulting in a greater metabolic stress and hormone response. PMID:25609886

  18. A pilot study of the eccentric decline squat in the management of painful chronic patellar tendinopathy.

    PubMed

    Purdam, C R; Jonsson, P; Alfredson, H; Lorentzon, R; Cook, J L; Khan, K M

    2004-08-01

    This non-randomised pilot study investigated the effect of eccentric quadriceps training on 17 patients (22 tendons) with painful chronic patellar tendinopathy. Two different eccentric exercise regimens were used by subjects with a long duration of pain with activity (more than six months). (a) Nine consecutive patients (10 tendons; eight men, one woman; mean age 22 years) performed eccentric exercise with the ankle joint in a standard (foot flat) position. (b) Eight patients (12 tendons; five men, three women; mean age 28 years) performed eccentric training standing on a 25 degrees decline board, designed to increase load on the knee extensor mechanism. The eccentric training was performed twice daily, with three sets of 15 repetitions, for 12 weeks. Primary outcome measures were (a) 100 mm visual analogue scale (VAS), where the subject recorded the amount of pain during activity, and (b) return to previous activity. Follow up was at 12 weeks, with a further limited follow up at 15 months. Good clinical results were obtained in the group who trained on the decline board, with six patients (nine tendons) returning to sport and showing a significantly reduced amount of pain over the 12 week period. Mean VAS scores fell from 74.2 to 28.5 (p = 0.004). At 15 months, four patients (five tendons) reported satisfactory results (mean VAS 26.2). In the standard squat group the results were poor, with only one athlete returning to previous activity. Mean VAS scores in this group were 79.0 at baseline and 72.3 at 12 weeks (p = 0.144). In a small group of patients with patellar tendinopathy, eccentric squats on a decline board produced encouraging results in terms of pain reduction and return to function in the short term. Eccentric exercise using standard single leg squats in a similar sized group appeared to be a less effective form of rehabilitation in reducing pain and returning subjects to previous levels of activity.

  19. A Computer Program for Training Eccentric Reading in Persons with Central Scotoma

    ERIC Educational Resources Information Center

    Kasten, Erich; Haschke, Peggy; Meinhold, Ulrike; Oertel-Verweyen, Petra

    2010-01-01

    This article explores the effectiveness of a computer program--Xcentric viewing--for training eccentric reading in persons with central scotoma. The authors conducted a small study to investigate whether this program increases the reading capacities of individuals with age-related macular degeneration (AMD). Instead of a control group, they…

  20. Prophylactic training in asymptomatic soccer players with ultrasonographic abnormalities in Achilles and patellar tendons: the Danish Super League Study.

    PubMed

    Fredberg, Ulrich; Bolvig, Lars; Andersen, Niels T

    2008-03-01

    A recent study published in The American Journal of Sports Medicine showed that asymptomatic soccer players with an increased risk of developing Achilles and patellar tendon injuries within the next 12 months can be identified with use of ultrasonography. Prophylactic eccentric training and stretching can reduce both the frequency of asymptomatic ultrasonographic changes in Achilles and patellar tendons in soccer players and the risk of these asymptomatic intratendinous changes becoming symptomatic. Randomized controlled trial; Level of evidence, 1. Two hundred and nine Danish professional soccer players from the best national league (Super League) were followed over 12 months with use of ultrasonography and injury registration. Half the teams were randomized to an intervention group with prophylactic eccentric training and stretching of the Achilles and patellar tendons during the soccer season. The eccentric training and stretching did not reduce the injury risk, and, contrary to all expectations, the injury risk during the season was increased in players with abnormal patellar tendons at the beginning of the study in January. Eccentric training and stretching in players with normal patellar tendons significantly reduced the proportion of players with ultrasonographic changes in the patellar tendons at the end of the season (risk difference [RD] = 12%; 95% confidence interval [CI], 2%-22%; P = .02), but the training had no effect on the Achilles tendons (RD = 1%; 95% CI, -7% to 9%; P = .75). The presence of preseason ultrasonographic abnormalities in the tendons significantly increased the risk of developing tendon symptoms during the season (relative risk = 1.9; 95% CI, 1.2-3.1; P = .009). This study demonstrates that with the use of ultrasonography, tendon changes in soccer players can be diagnosed before they become symptomatic. The prophylactic eccentric training and stretching program reduces the risk of developing ultrasonographic abnormalities in the patellar tendons but has no positive effects on the risk of injury. On the contrary, in asymptomatic players with ultrasonographically abnormal patellar tendons, prophylactic eccentric training and stretching increased the injury risk.

  1. Effect of plyometric training on lower limb biomechanics in females.

    PubMed

    Baldon, Rodrigo de Marche; Moreira Lobato, Daniel F; Yoshimatsu, Andre P; dos Santos, Ana Flávia; Francisco, Andrea L; Pereira Santiago, Paulo R; Serrão, Fábio V

    2014-01-01

    To verify the effects of plyometric training on lower limb kinematics, eccentric hip and knee torques, and functional performance. Cohort study. Research laboratory. Thirty-six females were divided into a training group (TG; n = 18) that carried out the plyometric training for 8 weeks, and a control group (CG; n = 18) that carried out no physical training. Twenty-four plyometric training sessions during approximately 8 weeks with 3 sessions per week on alternate days. Lower limb kinematics (maximum excursion of hip adduction, hip medial rotation, and knee abduction during the single leg squat), eccentric hip (abductor, adductor, medial, and lateral rotator) isokinetic peak torques and knee (flexor and extensor) isokinetic peak torques, and functional performance (triple hop test and the 6-m timed hop test). After 8 weeks, only the TG significantly reduced the values for the maximum excursion of knee abduction (P = 0.01) and hip adduction (P < 0.001). Similarly, only the TG significantly increased the eccentric hip abductor (P < 0.001) and adductor (P = 0.01) torques. Finally, only the TG significantly increased the values in the triple hop test (P < 0.001) and significantly decreased the values in the 6-m timed hop test (P < 0.001) after intervention. Plyometric training alters lower limb kinematics and increases eccentric hip torque and functional performance, suggesting the incorporation of these exercises in preventive programs for ACL injuries.

  2. Plyometric training improves voluntary activation and strength during isometric, concentric and eccentric contractions.

    PubMed

    Behrens, Martin; Mau-Moeller, Anett; Mueller, Karoline; Heise, Sandra; Gube, Martin; Beuster, Nico; Herlyn, Philipp K E; Fischer, Dagmar-C; Bruhn, Sven

    2016-02-01

    This study investigated effects of plyometric training (6 weeks, 3 sessions/week) on maximum voluntary contraction (MVC) strength and neural activation of the knee extensors during isometric, concentric and eccentric contractions. Twenty-seven participants were randomly assigned to the intervention or control group. Maximum voluntary torques (MVT) during the different types of contraction were measured at 110° knee flexion (180°=full extension). The interpolated twitch technique was applied at the same knee joint angle during isometric, concentric and eccentric contractions to measure voluntary activation. In addition, normalized root mean square of the EMG signal at MVT was calculated. The twitch torque signal induced by electrical nerve stimulation at rest was used to evaluate training-related changes at the muscle level. In addition, jump height in countermovement jump was measured. After training, MVT increased by 20Nm (95% CI: 5-36Nm, P=0.012), 24Nm (95% CI: 9-40Nm, P=0.004) and 27Nm (95% CI: 7-48Nm, P=0.013) for isometric, concentric and eccentric MVCs compared to controls, respectively. The strength enhancements were associated with increases in voluntary activation during isometric, concentric and eccentric MVCs by 7.8% (95% CI: 1.8-13.9%, P=0.013), 7.0% (95% CI: 0.4-13.5%, P=0.039) and 8.6% (95% CI: 3.0-14.2%, P=0.005), respectively. Changes in the twitch torque signal of the resting muscle, induced by supramaximal electrical stimulation of the femoral nerve, were not observed, indicating no alterations at the muscle level, whereas jump height was increased. Given the fact that the training exercises consisted of eccentric muscle actions followed by concentric contractions, it is in particular relevant that the plyometric training increased MVC strength and neural activation of the quadriceps muscle regardless of the contraction mode. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  3. Monitoring training load, recovery-stress state, immune-endocrine responses, and physical performance in elite female basketball players during a periodized training program.

    PubMed

    Nunes, João A; Moreira, Alexandre; Crewther, Blair T; Nosaka, Ken; Viveiros, Luis; Aoki, Marcelo S

    2014-10-01

    This study investigated the effect of a periodized training program on internal training load (ITL), recovery-stress state, immune-endocrine responses, and physical performance in 19 elite female basketball players. The participants were monitored across a 12-week period before an international championship, which included 2 overloading and tapering phases. The first overloading phase (fourth to sixth week) was followed by a 1-week tapering, and the second overloading phase (eighth to 10th week) was followed by a 2-week tapering. ITL (session rating of perceived exertion method) and recovery-stress state (RESTQ-76 Sport questionnaire) were assessed weekly and bi-weekly, respectively. Pretraining and posttraining assessments included measures of salivary IgA, testosterone and cortisol concentrations, strength, jumping power, running endurance, and agility. Internal training load increased across all weeks from 2 to 11 (p ≤ 0.05). After the first tapering period (week 7), a further increase in ITL was observed during the second overloading phase (p ≤ 0.05). After the second tapering period, a decrease in ITL was detected (p ≤ 0.05). A disturbance in athlete stress-recovery state was noted during the second overloading period (p ≤ 0.05), before returning to baseline level in end of the second tapering period. The training program led to significant improvements in the physical performance parameters evaluated. The salivary measures did not change despite the fluctuations in ITL. In conclusion, a periodized training program evoked changes in ITL in elite female basketball players, which appeared to influence their recovery-stress state. The training plan was effective in preparing participants for competition, as indicated by improvements in recovery-stress state and physical performance after tapering.

  4. Short-term strength training and the expression of myostatin and IGF-I isoforms in rat muscle and tendon: differential effects of specific contraction types.

    PubMed

    Heinemeier, K M; Olesen, J L; Schjerling, P; Haddad, F; Langberg, H; Baldwin, K M; Kjaer, M

    2007-02-01

    In skeletal muscle, an increased expression of insulin like growth factor-I isoforms IGF-IEa and mechano-growth factor (MGF) combined with downregulation of myostatin is thought to be essential for training-induced hypertrophy. However, the specific effects of different contraction types on regulation of these factors in muscle are still unclear, and in tendon the functions of myostatin, IGF-IEa, and MGF in relation to training are unknown. Female Sprague-Dawley rats were subjected to 4 days of concentric, eccentric, or isometric training (n = 7-9 per group) of the medial gastrocnemius, by stimulation of the sciatic nerve during general anesthesia. mRNA levels for myostatin, IGF-IEa, and MGF in muscle and Achilles' tendon were measured by real-time RT-PCR. Muscle myostatin mRNA decreased in response to all types of training (2- to 8-fold) (P < 0.05), but the effect of eccentric training was greater than concentric and isometric training (P < 0.05). In tendon, myostatin mRNA was detected, but no changes were seen after exercise. IGF-IEa and MGF increased in muscle (up to 15-fold) and tendon (up to 4-fold) in response to training (P < 0.01). In tendon no difference was seen between training types, but in muscle the effect of eccentric training was greater than concentric training for both IGF-IEa and MGF (P < 0.05), and for IGF-IEa isometric training had greater effect than concentric (P < 0.05). The results indicate a possible role for IGF-IEa and MGF in adaptation of tendon to training, and the combined changes in myostatin and IGF-IEa/MGF expression could explain the important effect of eccentric actions for muscle hypertrophy.

  5. Skeletal Adaptations to Different Levels of Eccentric Resistance Following Eight Weeks of Training

    NASA Technical Reports Server (NTRS)

    English, Kirk L.; Loehr, James A.; Lee, Stuart M. C.; Maddocks, Mary J.; Laughlin, Mitzi S.; Hagan, R. Donald

    2007-01-01

    Coupled concentric-eccentric resistive exercise maintains bone mineral density (BMD) during bed rest and aging. PURPOSE: We hypothesized that 8 wks of lower body resistive exercise training with higher ratios of eccentric to concentric loading would enhance hip and lumbar BMD. METHODS: Forty untrained male volunteers (34.9+/-7.0 yrs, 80.9+/-9.8 kg, 178.2+/-7.1 cm; mean+/-SD) were matched for leg press (LP) 1-Repetition Maximum (1-RM) strength and randomly assigned to one of 5 training groups. Concentric load (% 1-RM) was constant across groups, but each group trained with different levels of eccentric load (0, 33, 66, 100, or 138% of concentric) for all training sessions. Subjects performed a periodized supine LP and heel raise (HR) training program 3 d wk-1 for 8 wks using a modified Agaton Fitness System (Agaton Fitness AB, Boden, Sweden). Hip and lumbar BMD (g/sq cm) was measured in triplicate pre- and post-training using DXA (Hologic Discovery ). Pre- and post-training means were compared using the appropriate ANOVA and Tukey's post hoc tests. Within group pre- to post-training BMD was compared using paired t-tests with a Bonferroni adjustment. RESULTS: There was a main effect of training on L1, L2, L3, L4, total lumbar, and greater trochanter BMD, but there were no differences between groups. CONCLUSION: Eights wks of lower body resistive exercise increased greater trochanter and lumbar BMD. Inability to detect group differences may have been influenced by a potentially osteogenic vibration associated with device operation in the 0, 33, and 66% groups.

  6. Strength and endurance training reduces the loss of eccentric hamstring torque observed after soccer specific fatigue.

    PubMed

    Matthews, Martyn J; Heron, Kate; Todd, Stefanie; Tomlinson, Andrew; Jones, Paul; Delextrat, Anne; Cohen, Daniel D

    2017-05-01

    To investigate the effect of two hamstring training protocols on eccentric peak torque before and after soccer specific fatigue. Twenty-two university male soccer players. Isokinetic strength tests were performed at 60°/s pre and post fatigue, before and after 2 different training interventions. A 45-min soccer specific fatigue modified BEAST protocol (M-BEAST) was used to induce fatigue. Players were randomly assigned to a 4 week hamstrings conditioning intervention with either a maximum strength (STR) or a muscle endurance (END) emphasis. The following parameters were evaluated: Eccentric peak torque (EccPT), angle of peak torque (APT), and angle specific torques at knee joint angles of 10°, 20°, 30°, 40°, 50°, 60°, 70°, 80° and 90°. There was a significant effect of the M-BEAST on the Eccentric torque angle profile before training as well as significant improvements in post-fatigue torque angle profile following the effects of both strength and muscle endurance interventions. Forty-five minutes of simulated soccer activity leads to reduced eccentric hamstring torque at longer muscle lengths. Short-term conditioning programs (4-weeks) with either a maximum strength or a muscular endurance emphasis can equally reduce fatigue induced loss of strength over this time period. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Chronic high-fat diet-induced obesity decreased survival and increased hypertrophy of rats with experimental eccentric hypertrophy from chronic aortic regurgitation.

    PubMed

    Dhahri, Wahiba; Drolet, Marie-Claude; Roussel, Elise; Couet, Jacques; Arsenault, Marie

    2014-09-24

    The composition of a diet can influence myocardial metabolism and development of left ventricular hypertrophy (LVH). The impact of a high-fat diet in chronic left ventricular volume overload (VO) causing eccentric LVH is unknown. This study examined the effects of chronic ingestion of a high-fat diet in rats with chronic VO caused by severe aortic valve regurgitation (AR) on LVH, function and on myocardial energetics and survival. Male Wistar rats were divided in four groups: Shams on control or high-fat (HF) diet (15 rats/group) and AR rats fed with the same diets (ARC (n = 56) and ARHF (n = 32)). HF diet was started one week before AR induction and the protocol was stopped 30 weeks later. As expected, AR caused significant LV dilation and hypertrophy and this was exacerbated in the ARHF group. Moreover, survival in the ARHF group was significantly decreased compared the ARC group. Although the sham animals on HF also developed significant obesity compared to those on control diet, this was not associated with heart hypertrophy. The HF diet in AR rats partially countered the expected shift in myocardial energy substrate preference usually observed in heart hypertrophy (from fatty acids towards glucose). Systolic function was decreased in AR rats but HF diet had no impact on this parameter. The response to HF diet of different fatty acid oxidation markers as well as the increase in glucose transporter-4 translocation to the plasma membrane compared to ARC was blunted in AR animals compared to those on control diet. HF diet for 30 weeks decreased survival of AR rats and worsened eccentric hypertrophy without affecting systolic function. The expected adaptation of myocardial energetics to volume-overload left ventricle hypertrophy in AR animals seemed to be impaired by the high-fat diet suggesting less metabolic flexibility.

  8. Concentrically trained cyclists are not more susceptible to eccentric exercise-induced muscle damage than are stretch-shortening exercise-trained runners.

    PubMed

    Snieckus, Audrius; Kamandulis, Sigitas; Venckūnas, Tomas; Brazaitis, Marius; Volungevičius, Gintautas; Skurvydas, Albertas

    2013-03-01

    Here, we test the hypothesis that continuous concentric exercise training renders skeletal muscles more susceptible to damage in response to eccentric exercise. Elite road cyclists (CYC; n = 10, training experience 8.1 ± 2.0 years, age 22.9 ± 3.7 years), long-distance runners (LDR; n = 10, 9.9 ± 2.3 years, 24.4 ± 2.5 years), and healthy untrained (UT) men (n = 10; 22.4 ± 1.7 years) performed 100 submaximal eccentric contractions at constant angular velocity of 60° s(-1). Concentric isokinetic peak torque, isometric maximal voluntary contraction (MVC), and electrically induced knee extension torque were measured at baseline and immediately and 48 h after an eccentric exercise bout. Muscle soreness was assessed and plasma creatine kinase (CK) activity was measured at baseline and 48 h after exercise. Voluntary and electrically stimulated knee extension torque reduction were significantly greater (p < 0.05) in UT than in LDR and CYC. Immediately and 48 h after exercise, MVC decreased by 32 % and 20 % in UT, 20 % and 5 % in LDR, and 25 % and 6 % in CYC. Electrically induced 20 Hz torque decreased at the same times by 61 and 29 % in UT, 40 and 17 % in LDR, and 26 and 14 % in CYC. Muscle soreness and plasma CK activity 48 h after exercise did not differ significantly between athletes and UT subjects. In conclusion, even though elite endurance athletes are more resistant to eccentric exercise-induced muscle damage than are UT people, stretch-shortening exercise-trained LDR have no advantage over concentrically trained CYC.

  9. Effects of a Six-Week Strength Training Programme on Change of Direction Performance in Youth Team Sport Athletes

    PubMed Central

    Bourgeois, Frank A.; Gamble, Paul; Gill, Nic D.; McGuigan, Mike R.

    2017-01-01

    This study investigated the effects of eccentric phase-emphasis strength training (EPE) on unilateral strength and performance in 180- and 45-degree change of direction (COD) tasks in rugby union players. A 12-week cross-over design was used to compare the efficacy of resistance training executed with 3 s eccentric duration (EPE, n = 12) against conventional strength training, with no constraints on tempo (CON, n = 6). Players in each condition were categorised as ‘fast’ (FAST) or ‘slow’ (SLOW) using median trial times from baseline testing. Players recorded greater isometric strength improvements following EPE (ES = −0.54 to 1.80). Whilst these changes were not immediate, players improved in strength following cessation. Improvements in 180-degree COD performance was recorded at all test-points following EPE (ES = −1.32 to −0.15). Improvements in 45-degree COD performance were apparent for FAST following CON (ES = −0.96 to 0.10), but CON was deleterious for SLOW (ES = −0.60 to 1.53). Eccentric phase-emphasis strength training shows potential for sustained strength enhancement. Positive performance changes in COD tasks were category- and condition-specific. The data indicate the greatest improvement occurred at nine weeks following resistance training in these players. Performance benefits may also be specific to COD task, player category, and relative to emphasis on eccentric phase activity. PMID:29910443

  10. Isokinetic peak torque and flexibility changes of the hamstring muscles after eccentric training: Trained versus untrained subjects.

    PubMed

    Abdel-Aziem, Amr Almaz; Soliman, Elsadat Saad; Abdelraouf, Osama Ragaa

    2018-05-23

    The aim of this study was to examine the effect of eccentric isotonic training on hamstring flexibility and eccentric and concentric isokinetic peak torque in trained and untrained subjects. Sixty healthy subjects (mean age: 21.66 ± 2.64) were divided into three equal groups, each with 20 voluntary participants. Two experimental groups (untrained and trained groups) participated in a hamstring eccentric isotonic strengthening program (five days/week) for a six-week period and one control group that was not involved in the training program. The passive knee extension range of motion and hamstring eccentric and concentric isokinetic peak torque were measured at angular velocities 60° and 120°/s for all groups before and after the training period. Two-way analysis of variance showed that there was a significant increase in the hamstring flexibility of the untrained and trained groups (25.65 ± 6.32°, 26.55 ± 5.99°, respectively), (p < 0.05) without a significant increase in the control group (31.55 ± 5.84°), (p > 0.05). Moreover, there was a significant increase in eccentric isokinetic peak torque of both the untrained and trained groups (127.25 ± 22.60Nm, 139.65 ± 19.15Nm, 125.40 ± 21.61Nm, 130.90 ± 18.71Nm, respectively), (p < 0.05) without a significant increase in the control group (109.15 ± 20.89Nm, 105.70 ± 21.31Nm, respectively), (p > 0.05) at both angular velocities. On the other hand, there was no significant increase in the concentric isokinetic peak torque of the three groups (92.50 ± 20.50Nm, 79.05 ± 18.95Nm, 92.20 ± 21.96Nm, 79.85 ± 18.97Nm, 100.45 ± 25.78Nm, 83.40 ± 23.73Nm, respectively), (p > 0.05) at both angular velocities. The change scores in the hamstring flexibility (06.25 ± 1.86°) and eccentric peak torque of the untrained group (16.60 ± 4.81Nm, 17.45 ± 5.40Nm, respectively) were significantly higher (p < 0.05) than those of the trained group (03.40 ± 1.14°, 9.90 ± 5.14Nm, 9.80 ± 7.57Nm, respectively), and the control group (00.90 ± 2.10°, 0.60 ± 2.93Nm, 1.40 ± 3.53Nm, respectively), at both angular velocities. Meanwhile, the change scores of the concentric peak torques of the three groups (1.15 ± 1.50Nm, -0.15 ± 2.16Nm, 1.35 ± 1.63Nm, 0.20 ± 2.95Nm, 0.60 ± 2.28Nm, -0.30 ± 2.25Nm) were statistically insignificant (p > 0.05). After a six-week period of eccentric isotonic training, the hamstring eccentric peak torque and flexibility of trained and untrained groups improved without changes in the concentric peak torque. Moreover, the improvement of untrained subjects was higher than trained subjects. These findings may be helpful in designing the hamstring rehabilitation program. Copyright © 2018 Turkish Association of Orthopaedics and Traumatology. Production and hosting by Elsevier B.V. All rights reserved.

  11. Mouse Plantar Flexor Muscle Size and Strength After Inactivity and Training

    DTIC Science & Technology

    2010-07-01

    suspension. Keywords: eccentric contraction , microgravity , exercise . SPACEFLIGHT CAUSES atrophy and strength loss in antigravity skeletal muscles...isometric, concentric, and eccentric contractions pre- served muscle mass in the rat medial gastrocnemius ( 2 ), the use of isometric resistance exercise ...Adams GR , Haddad F , Bodell PW , Tran PD , Baldwin KM . Com- bined isometric, concentric, and eccentric resistance exercise prevents

  12. Tendinous tissue properties after short- and long-term functional overload: Differences between controls, 12 weeks and 4 years of resistance training.

    PubMed

    Massey, G J; Balshaw, T G; Maden-Wilkinson, T M; Folland, J P

    2018-04-01

    The potential for tendinous tissues to adapt to functional overload, especially after several years of exposure to heavy-resistance training, is largely unexplored. This study compared the morphological and mechanical characteristics of the patellar tendon and knee extensor tendon-aponeurosis complex between young men exposed to long-term (4 years; n = 16), short-term (12 weeks; n = 15) and no (untrained controls; n = 39) functional overload in the form of heavy-resistance training. Patellar tendon cross-sectional area, vastus lateralis aponeurosis area and quadriceps femoris volume, plus patellar tendon stiffness and Young's modulus, and tendon-aponeurosis complex stiffness, were quantified with MRI, dynamometry and ultrasonography. As expected, long-term trained had greater muscle strength and volume (+58% and +56% vs untrained, both P < .001), as well as a greater aponeurosis area (+17% vs untrained, P < .01), but tendon cross-sectional area (mean and regional) was not different between groups. Only long-term trained had reduced patellar tendon elongation/strain over the whole force/stress range, whilst both short-term and long-term overload groups had similarly greater stiffness/Young's modulus at high force/stress (short-term +25/22%, and long-term +17/23% vs untrained; all P < .05). Tendon-aponeurosis complex stiffness was not different between groups (ANOVA, P = .149). Despite large differences in muscle strength and size, years of resistance training did not induce tendon hypertrophy. Both short-term and long-term overload demonstrated similar increases in high-force mechanical and material stiffness, but reduced elongation/strain over the whole force/stress range occurred only after years of overload, indicating a force/strain specific time-course to these adaptations. © 2017 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  13. Neuromuscular Adaptations to Eccentric Strength Training in Children and Adolescents with Cerebral Palsy

    ERIC Educational Resources Information Center

    Reid, Siobhan; Hamer, Peter; Alderson, Jacqueline; Lloyd, David

    2010-01-01

    Aim: To determine the neuromuscular outcomes of an eccentric strength-training programme for children and adolescents with cerebral palsy (CP). Method: In this randomised, parallel-group trial with waiting control, 14 participants with CP (six males, eight females; mean age 11y, SD 2y range 9-15y), diagnosed with upper-limb spasticity were…

  14. Physiological Mechanisms of Eccentric Contraction and Its Applications: A Role for the Giant Titin Protein

    PubMed Central

    Hessel, Anthony L.; Lindstedt, Stan L.; Nishikawa, Kiisa C.

    2017-01-01

    When active muscles are stretched, our understanding of muscle function is stretched as well. Our understanding of the molecular mechanisms of concentric contraction has advanced considerably since the advent of the sliding filament theory, whereas mechanisms for increased force production during eccentric contraction are only now becoming clearer. Eccentric contractions play an important role in everyday human movements, including mobility, stability, and muscle strength. Shortly after the sliding filament theory of muscle contraction was introduced, there was a reluctant recognition that muscle behaved as if it contained an “elastic” filament. Jean Hanson and Hugh Huxley referred to this structure as the “S-filament,” though their concept gained little traction. This additional filament, the giant titin protein, was identified several decades later, and its roles in muscle contraction are still being discovered. Recent research has demonstrated that, like activation of thin filaments by calcium, titin is also activated in muscle sarcomeres by mechanisms only now being elucidated. The mdm mutation in mice appears to prevent activation of titin, and is a promising model system for investigating mechanisms of titin activation. Titin stiffness appears to increase with muscle force production, providing a mechanism that explains two fundamental properties of eccentric contractions: their high force and low energetic cost. The high force and low energy cost of eccentric contractions makes them particularly well suited for athletic training and rehabilitation. Eccentric exercise is commonly prescribed for treatment of a variety of conditions including sarcopenia, osteoporosis, and tendinosis. Use of eccentric exercise in rehabilitation and athletic training has exploded to include treatment for the elderly, as well as muscle and bone density maintenance for astronauts during long-term space travel. For exercise intolerance and many types of sports injuries, experimental evidence suggests that interventions involving eccentric exercise are demonstrably superior to conventional concentric interventions. Future work promises to advance our understanding of the molecular mechanisms that confer high force and low energy cost to eccentric contraction, as well as signaling mechanisms responsible for the beneficial effects of eccentric exercise in athletic training and rehabilitation. PMID:28232805

  15. Is there really an eccentric action of the hamstrings during the swing phase of high-speed running? Part II: Implications for exercise.

    PubMed

    Van Hooren, Bas; Bosch, Frans

    2017-12-01

    We have previously argued that there may actually be no significant eccentric, but rather predominantly an isometric action of the hamstring muscle fibres during the swing phase of high-speed running when the attachment points of the hamstrings are moving apart. Based on this we suggested that isometric rather than eccentric exercises are a more specific way of conditioning the hamstrings for high-speed running. In this review we argue that some of the presumed beneficial adaptations following eccentric training may actually not be related to the eccentric muscle fibre action, but to other factors such as exercise intensity. Furthermore, we discuss several disadvantages associated with commonly used eccentric hamstring exercises. Subsequently, we argue that high-intensity isometric exercises in which the series elastic element stretches and recoils may be equally or even more effective at conditioning the hamstrings for high-speed running, since they also avoid some of the negative side effects associated with eccentric training. We provide several criteria that exercises should fulfil to effectively condition the hamstrings for high-speed running. Adherence to these criteria will guarantee specificity with regards to hamstrings functioning during running. Practical examples of isometric exercises that likely meet several criteria are provided.

  16. A methodologic approach for normalizing angular work and velocity during isotonic and isokinetic eccentric training.

    PubMed

    Guilhem, Gaël; Cornu, Christophe; Guével, Arnaud

    2012-01-01

    Resistance exercise training commonly is performed against a constant external load (isotonic) or at a constant velocity (isokinetic). Researchers comparing the effectiveness of isotonic and isokinetic resistance-training protocols need to equalize the mechanical stimulus (work and velocity) applied. To examine whether the standardization protocol could be adjusted and applied to an eccentric training program. Controlled laboratory study. Controlled research laboratory. Twenty-one sport science male students (age = 20.6 ± 1.5 years, height = 178.0 ± 4.0 cm, mass = 74.5 ± 9.1 kg). Participants performed 9 weeks of isotonic (n = 11) or isokinetic (n = 10) eccentric training of knee extensors that was designed so they would perform the same amount of angular work at the same mean angular velocity. Angular work and angular velocity. The isotonic and isokinetic groups performed the same total amount of work (-185.2 ± 6.5 kJ and -184.4 ± 8.6 kJ, respectively) at the same angular velocity (21 ± 1°/s and 22°/s, respectively) with the same number of repetitions (8.0 and 8.0, respectively). Bland-Altman analysis showed that work (bias = 2.4%) and angular velocity (bias = 0.2%) were equalized over 9 weeks between the modes of training. The procedure developed allows angular work and velocity to be standardized over 9 weeks of isotonic and isokinetic eccentric training of the knee extensors. This method could be useful in future studies in which researchers compare neuromuscular adaptations induced by each type of training mode with respect to rehabilitating patients after musculoskeletal injury.

  17. Plantar-flexor Static Stretch Training Effect on Eccentric and Concentric Peak Torque – A comparative Study of Trained versus Untrained Subjects

    PubMed Central

    Abdel-aziem, Amr Almaz; Mohammad, Walaa Sayed

    2012-01-01

    The aim of this study was to examine the long-term effects of static stretching of the plantar-flexor muscles on eccentric and concentric torque and ankle dorsiflexion range of motion in healthy subjects. Seventy five healthy male volunteers, with no previous history of trauma to the calf that required surgery, absence of knee flexion contracture and no history of neurologic dysfunction or disease, systemic disease affecting the lower extremities were selected for this study. The participants were divided into three equal groups. The control group did not stretch the plantar-flexor muscles. Two Experimental groups (trained and untrained) were instructed to perform static stretching exercise of 30 second duration and 5 repetitions twice daily. The stretching sessions were carried out 5 days a week for 6 weeks. The dorsiflexion range of motion was measured in all subjects. Also measured was the eccentric and concentric torque of plantar-flexors at angular velocities of 30 and 120°/s pre and post stretching. Analysis of variance showed a significant increase in plantar-flexor eccentric and concentric torque (p < 0.05) of trained and untrained groups, and an increase in dorsiflexion range of motion (p < 0.05) at both angular velocities for the untrained group only. The static stretching program of plantar-flexors was effective in increasing the concentric and eccentric plantarflexion torque at angular velocities of 30 and 120°/s. Increases in plantar-flexors flexibility were observed in untrained subjects. PMID:23486840

  18. Skeletal Muscle Remodeling in Response to Eccentric vs. Concentric Loading: Morphological, Molecular, and Metabolic Adaptations

    PubMed Central

    Franchi, Martino V.; Reeves, Neil D.; Narici, Marco V.

    2017-01-01

    Skeletal muscle contracts either by shortening or lengthening (concentrically or eccentrically, respectively); however, the two contractions substantially differ from one another in terms of mechanisms of force generation, maximum force production and energy cost. It is generally known that eccentric actions generate greater force than isometric and concentric contractions and at a lower metabolic cost. Hence, by virtue of the greater mechanical loading involved in active lengthening, eccentric resistance training (ECC RT) is assumed to produce greater hypertrophy than concentric resistance training (CON RT). Nonetheless, prevalence of either ECC RT or CON RT in inducing gains in muscle mass is still an open issue, with some studies reporting greater hypertrophy with eccentric, some with concentric and some with similar hypertrophy within both training modes. Recent observations suggest that such hypertrophic responses to lengthening vs. shortening contractions are achieved by different adaptations in muscle architecture. Whilst the changes in muscle protein synthesis in response to acute and chronic concentric and eccentric exercise bouts seem very similar, the molecular mechanisms regulating the myogenic adaptations to the two distinct loading stimuli are still incompletely understood. Thus, the present review aims to, (a) critically discuss the literature on the contribution of eccentric vs. concentric loading to muscular hypertrophy and structural remodeling, and, (b) clarify the molecular mechanisms that may regulate such adaptations. We conclude that, when matched for either maximum load or work, similar increase in muscle size is found between ECC and CON RT. However, such hypertrophic changes appear to be achieved through distinct structural adaptations, which may be regulated by different myogenic and molecular responses observed between lengthening and shortening contractions. PMID:28725197

  19. Exercise-induced cardiac remodeling in non-elite endurance athletes: Comparison of 2-tiered and 4-tiered classification of left ventricular hypertrophy

    PubMed Central

    De Marchi, Stefano; Seiler, Christian; Brugger, Nicolas; Eser, Prisca

    2018-01-01

    Background Long-term endurance sport practice leads to eccentric left ventricular hypertrophy (LVH). We aimed to compare the new 4-tiered classification (4TC) for LVH with the established 2-tiered classification (2TC) in a cohort of normotensive non-elite endurance athletes. Methods Male participants of a 10-mile race were recruited and included when blood pressure (BP) was normal (<140/90 mmHg). Phenotypic characterization of LVH was based on relative wall thickness (2TC), and on LV concentricity2/3 (LV mass/end-diastolic volume [LVM/EDV]2/3) plus LVEDV index (4TC). Parameters of LV geometry, BP, cumulative training hours, and race time were compared between 2TC and 4TC by analysis of variance, and post-hoc analysis. Results Of 198 athletes recruited, 174 were included. Mean age was 41.6±7.5 years. Forty-two (24%) athletes had LVH. Allocation in the 2TC was: 32 (76%) eccentric LVH and 10 (24%) concentric LVH. Using the 4TC 12 were reclassified to concentric LVH, and 2 to eccentric LVH, resulting in 22 (52%) eccentric LVH (7 non-dilated, 15 dilated), and 20 (48%) concentric LVH (all non-dilated). Based on the 2TC, markers of endurance training did not differ between eccentric and concentric LVH. Based on the 4TC, athletes with eccentric LVH had more cumulative training hours and faster race times, with highest values thereof in athletes with eccentric dilated LVH. Conclusions In our cohort of normotensive endurance athletes, the new 4TC demonstrated a superior discrimination of exercise-induced LVH patterns, compared to the established 2TC, most likely because it takes three-dimensional information of the ventricular geometry into account. PMID:29462182

  20. Effectiveness of Shockwave Treatment Combined With Eccentric Training for Patellar Tendinopathy: A Double-Blinded Randomized Study.

    PubMed

    Thijs, Karin M; Zwerver, Johannes; Backx, Frank J G; Steeneken, Victor; Rayer, Stephan; Groenenboom, Petra; Moen, Maarten H

    2017-03-01

    To evaluate the effectiveness of a combined treatment of focused shockwave therapy (ESWT) and eccentric training compared with sham-shockwave therapy (placebo) and eccentric training in participants with patellar tendinopathy (PT) after 24 weeks. Randomized controlled trial. Sports medicine departments of a university hospital and a general hospital in the Netherlands. Fifty-two physically active male and female participants with a clinical diagnosis of PT (mean age: 28.6 years; range, 18-45) were randomly allocated to the ESWT (n = 22) or sham shockwave (n = 30). Extracorporeal shockwave therapy and sham shockwave were applied in 3 sessions at 1-week intervals with a piezoelectric device. All participants were instructed to perform eccentric exercises (3 sets of 15 repetitions twice a day) for 3 months on a decline board at home. The Victorian Institute of Sport Assessment-Patella (VISA-P) scores (primary), pain scores during functional knee loading tests, and Likert score (secondary) were registered at baseline and at 6, 12, and 24 weeks after the start with the ESWT or sham-shockwave treatment. No significant differences for the primary and secondary outcome measures were found between the groups. In the ESWT/eccentric group, the VISA-P increased from 54.5 ± 15.4 to 70.9 ± 17.8, whereas the VISA-P in the sham-shockwave/eccentric group increased from 58.9 ± 14.6 to 78.2 ± 15.8 (between-group change in VISA-P at 24 weeks -4.8; 95% confidence interval, -12.7 to 3.0, P = 0.150). This study showed no additional effect of 3 sessions ESWT in participants with PT treated with eccentric exercises. The results should be interpreted with caution because of small sample size and considerable loss to follow-up, particularly in the ESWT group.

  1. The Experience of a Randomized Clinical Trial of Closed-Circuit Television versus Eccentric Viewing Training for People with Age-Related Macular Degeneration

    ERIC Educational Resources Information Center

    Leat, Susan J.; Si, Francis Fengqin; Gold, Deborah; Pickering, Dawn; Gordon, Keith; Hodge, William

    2017-01-01

    Introduction: In addition to optical devices, closed-circuit televisions (CCTVs) and eccentric viewing training are both recognized interventions to improve reading performance in individuals with vision loss secondary to age-related macular degeneration. Both are relatively expensive, however, either in the cost of the device or in the amount of…

  2. Eccentric Viewing Training and Its Effect on the Reading Rates of Individuals with Absolute Central Scotomas: A Meta-Analysis

    ERIC Educational Resources Information Center

    Howe, Jon

    2012-01-01

    Introduction: Eccentric viewing training has been a strategy, used by rehabilitation professionals, to help individuals with central vision loss move their eyes in such a way that they focus the incoming light on parts of the retina located away from the center area that has been damaged and improve visual functioning. A number of studies have…

  3. Effects of manipulating the duration and intensity of aerobic training sessions on the physical performance of rats.

    PubMed

    Teixeira-Coelho, Francisco; Fonseca, Cletiana Gonçalves; Barbosa, Nicolas Henrique Santos; Vaz, Filipe Ferreira; Cordeiro, Letícia Maria de Souza; Coimbra, Cândido Celso; Pires, Washington; Soares, Danusa Dias; Wanner, Samuel Penna

    2017-01-01

    This study investigated the effects of manipulating the load components of aerobic training sessions on the physical performance of rats. To achieve this purpose, adult male Wistar rats were divided into four groups: an untrained control (CON) group and training groups with a predominant overload in intensity (INT) or duration (DUR) or alternating and similar overloads in intensity and duration (ID). Prior to, during, and after 8 weeks of the control or training protocols, the performance of the rats (evaluated by their workload) was determined during fatiguing, incremental-speed treadmill running. Two additional incremental running tests were performed prior to and at the end of the protocols to measure the peak rate of oxygen consumption (VO2peak). As expected, the rats in the trained groups exhibited increased performance, whereas the untrained rats showed stable performance throughout the 8 weeks. Notably, the performance gain exhibited by the DUR rats reached a plateau after the 4th week. This plateau was not present in the INT or ID rats, which exhibited increased performance at the end of training protocol compared with the DUR rats. None of the training protocols changed the VO2peak values; however, these values were attained at faster speeds, which indicated increased running economy. In conclusion, our findings demonstrate that the training protocols improved the physical performance of rats, likely resulting from enhanced running economy. Furthermore, compared with overload in duration, overload in the intensity of training sessions was more effective at inducing performance improvements across the 8 weeks of the study.

  4. Effects of manipulating the duration and intensity of aerobic training sessions on the physical performance of rats

    PubMed Central

    Teixeira-Coelho, Francisco; Fonseca, Cletiana Gonçalves; Barbosa, Nicolas Henrique Santos; Vaz, Filipe Ferreira; Cordeiro, Letícia Maria de Souza; Coimbra, Cândido Celso; Pires, Washington; Soares, Danusa Dias

    2017-01-01

    This study investigated the effects of manipulating the load components of aerobic training sessions on the physical performance of rats. To achieve this purpose, adult male Wistar rats were divided into four groups: an untrained control (CON) group and training groups with a predominant overload in intensity (INT) or duration (DUR) or alternating and similar overloads in intensity and duration (ID). Prior to, during, and after 8 weeks of the control or training protocols, the performance of the rats (evaluated by their workload) was determined during fatiguing, incremental-speed treadmill running. Two additional incremental running tests were performed prior to and at the end of the protocols to measure the peak rate of oxygen consumption (VO2peak). As expected, the rats in the trained groups exhibited increased performance, whereas the untrained rats showed stable performance throughout the 8 weeks. Notably, the performance gain exhibited by the DUR rats reached a plateau after the 4th week. This plateau was not present in the INT or ID rats, which exhibited increased performance at the end of training protocol compared with the DUR rats. None of the training protocols changed the VO2peak values; however, these values were attained at faster speeds, which indicated increased running economy. In conclusion, our findings demonstrate that the training protocols improved the physical performance of rats, likely resulting from enhanced running economy. Furthermore, compared with overload in duration, overload in the intensity of training sessions was more effective at inducing performance improvements across the 8 weeks of the study. PMID:28841706

  5. A Methodologic Approach for Normalizing Angular Work and Velocity During Isotonic and Isokinetic Eccentric Training

    PubMed Central

    Guilhem, Gaël; Cornu, Christophe; Guével, Arnaud

    2012-01-01

    Context: Resistance exercise training commonly is performed against a constant external load (isotonic) or at a constant velocity (isokinetic). Researchers comparing the effectiveness of isotonic and isokinetic resistance-training protocols need to equalize the mechanical stimulus (work and velocity) applied. Objective: To examine whether the standardization protocol could be adjusted and applied to an eccentric training program. Design: Controlled laboratory study. Setting: Controlled research laboratory. Patients or Other Participants: Twenty-one sport science male students (age = 20.6 ± 1.5 years, height = 178.0 ± 4.0 cm, mass = 74.5 ± 9.1 kg). Intervention(s): Participants performed 9 weeks of isotonic (n = 11) or isokinetic (n = 10) eccentric training of knee extensors that was designed so they would perform the same amount of angular work at the same mean angular velocity. Main Outcome Measure(s): Angular work and angular velocity. Results: The isotonic and isokinetic groups performed the same total amount of work (−185.2 ± 6.5 kJ and −184.4 ± 8.6 kJ, respectively) at the same angular velocity (21 ± 1°/s and 22°/s, respectively) with the same number of repetitions (8.0 and 8.0, respectively). Bland-Altman analysis showed that work (bias = 2.4%) and angular velocity (bias = 0.2%) were equalized over 9 weeks between the modes of training. Conclusions: The procedure developed allows angular work and velocity to be standardized over 9 weeks of isotonic and isokinetic eccentric training of the knee extensors. This method could be useful in future studies in which researchers compare neuromuscular adaptations induced by each type of training mode with respect to rehabilitating patients after musculoskeletal injury. PMID:22488276

  6. Cost Analysis and Effectiveness of Using the Indoor Simulated Marksmanship Trainer (ISMT) for United States Marine Corps (USMC) Marksmanship Training

    DTIC Science & Technology

    2011-06-01

    training continuum. Each table of training requires a minimum amount of ammunition and targets. All of these materials are expensive for the Marine...charge by weight to prevent damage due to overloading. Damage by overloading is still possible with black powder. In the 1300s, handguns from...portable firearm and a forerunner of the handgun , are from several 14th Century Arabic manuscripts (Wuxia Society, n.d.). Today, modern warfare relies

  7. Eccentric action of muscles: physiology, injury, and adaptation.

    PubMed

    Stauber, W T

    1989-01-01

    Eccentric muscle action deserves special consideration from the standpoint of physiology, adaptation, and training. The function of muscles as shock absorbers or springs seems to be quite different from other actions described in classical descriptions of muscle biology. This uniqueness certainly requires a more careful understanding of muscle as a unit consisting of myofibers and fascia which may work together or in opposition in response to chronic or acute stimuli. In addition, the stretch-shortening cycle is a special case of its own. However, from the standpoint of maximum human performance, there remain tremendous gaps in our understanding of the role of eccentric muscle action and its use in athletic training. How much is good? Does microfibrosis represent a problem of overtraining and eventually limit performance, or is it advantageous for success? Is the body-builder really developing muscle or connective tissue separating muscles? How does eccentric muscle action sometimes produce pain but not always? It would appear that much work is needed before a complete understanding of eccentric muscle action is obtained. This brief review has been designed to encourage research, argument, and discussion.

  8. Test-Retest Reliability of a Novel Isokinetic Squat Device With Strength-Trained Athletes.

    PubMed

    Bridgeman, Lee A; McGuigan, Michael R; Gill, Nicholas D; Dulson, Deborah K

    2016-11-01

    Bridgeman, LA, McGuigan, MR, Gill, ND, and Dulson, DK. Test-retest reliability of a novel isokinetic squat device with strength-trained athletes. J Strength Cond Res 30(11): 3261-3265, 2016-The aim of this study was to investigate the test-retest reliability of a novel multijoint isokinetic squat device. The subjects in this study were 10 strength-trained athletes. Each subject completed 3 maximal testing sessions to assess peak concentric and eccentric force (N) over a 3-week period using the Exerbotics squat device. Mean differences between eccentric and concentric force across the trials were calculated. Intraclass correlation coefficients (ICCs) and coefficients of variation (CVs) for the variables of interest were calculated using an excel reliability spreadsheet. Between trials 1 and 2 an 11.0 and 2.3% increase in mean concentric and eccentric forces, respectively, was reported. Between trials 2 and 3 a 1.35% increase in the mean concentric force production and a 1.4% increase in eccentric force production was reported. The mean concentric peak force CV and ICC across the 3 trials was 10% (7.6-15.4) and 0.95 (0.87-0.98) respectively. However, the mean eccentric peak force CV and ICC across the trials was 7.2% (5.5-11.1) and 0.90 (0.76-0.97), respectively. Based on these findings it is suggested that the Exerbotics squat device shows good test-retest reliability. Therefore practitioners and investigators may consider its use to monitor changes in concentric and eccentric peak force.

  9. An investigation into the immediate effects of pelvic taping on hamstring eccentric force in an elite male sprinter - A case report.

    PubMed

    Macdonald, Ben

    2017-11-01

    Hamstring Injuries commonly cause missed training and competition time in elite sports. Injury surveillance studies have demonstrated high injury and re-injury rates, which have not improved across sports despite screening and prevention programmes being commonplace. The most commonly suggested intervention for hamstring prevention and rehabilitation is eccentric strength assessment and training. This case study describes the management of an elite sprinter with a history of hamstring injury. A multi-variate screening process based around lumbar-pelvic dysfunction and hamstring strength assessment using the Nordbord is employed. The effect of external pelvic compression using a taping technique, on eccentric hamstring strength is evaluated. A persistent eccentric strength asymmetry of 17% was recorded as well as lumbar-pelvic control deficits. Pelvic taping appears to improve load transfer capability across the pelvis, resulting in correction of eccentric strength asymmetry. Screening strategies and interventions to prevent hamstring injury have failed to consistently improve injury rates across various sports. In this case study external pelvic compression resulted in normalising eccentric strength deficits assessed using the Nordbord. The inclusion of lumbar-pelvic motor control assessment, in relation to hamstring strength and function, as part of a multi-variate screening strategy requires further research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Lengthening our perspective: morphological, cellular, and molecular responses to eccentric exercise.

    PubMed

    Hyldahl, Robert D; Hubal, Monica J

    2014-02-01

    The response of skeletal muscle to unaccustomed eccentric exercise has been studied widely, yet it is incompletely understood. This review is intended to provide an up-to-date overview of our understanding of how skeletal muscle responds to eccentric actions, with particular emphasis on the underlying molecular and cellular mechanisms of damage and recovery. This review begins by addressing the question of whether eccentric actions result in physical damage to muscle fibers and/or connective tissue. We next review the symptomatic manifestations of eccentric exercise (i.e., indirect damage markers, such as delayed onset muscle soreness), with emphasis on their relatively poorly understood molecular underpinnings. We then highlight factors that potentially modify the muscle damage response following eccentric exercise. Finally, we explore the utility of using eccentric training to improve muscle function in populations of healthy and aging individuals, as well as those living with neuromuscular disorders. Copyright © 2013 Wiley Periodicals, Inc.

  11. The Use of Session RPE to Monitor the Intensity of Weight Training in Older Women: Acute Responses to Eccentric, Concentric, and Dynamic Exercises

    PubMed Central

    Ferreira, Sandro S.; Krinski, Kleverton; Alves, Ragami C.; Benites, Mariana L.; Redkva, Paulo E.; Elsangedy, Hassan M.; Buzzachera, Cosme F.; Souza-Junior, Tácito P.; da Silva, Sergio G.

    2014-01-01

    The rating of perceived exertion (RPE) is ability to detect and interpret organic sensations while performing exercises. This method has been used to measure the level of effort that is felt during weight-training at a given intensity. The purpose of this investigation was to compare session RPE values with those of traditional RPE measurements for different weight-training muscle actions, performed together or separately. Fourteen women with no former weight-training experience were recruited for the investigation. All participants completed five sessions of exercise: familiarization, maximum force, concentric-only (CONC-only), eccentric-only (ECC-only), and dynamic (DYN = CONC + ECC). The traditional RPE method was measured after each series of exercises, and the session RPE was measured 30 min after the end of the training session. The statistical analyses used were the paired t-test, one-way analysis of variance, and repeated measures analysis of variance. Significant differences between traditional RPE and session RPE for DYN, CONC, and ECC exercises were not found. This investigation demonstrated that session RPE is similar to traditional RPE in terms of weight-training involving concentric, eccentric, or dynamic muscle exercises, and that it can be used to prescribe and monitor weight-training sessions in older subjects. PMID:24834354

  12. The Impact of a Targeted Training Program on E-Mail System Processing Capabilities and Self-Perception of E-Mail Overload

    ERIC Educational Resources Information Center

    Einstein, Michael M.

    2014-01-01

    As business e-mail volumes continue to grow and employees spend increasingly larger portions of their day processing e-mail, there is strong evidence of the negative impacts of e-mail processing, especially with respect to e-mail overload. This study sought to determine whether a training program focused on select e-mail features and processing…

  13. Effect of eccentric exercise on the healing process of injured patellar tendon in rats.

    PubMed

    Nakamura, Kenichi; Kitaoka, Katsuhiko; Tomita, Katsuro

    2008-07-01

    Earlier studies have reported positive results from eccentric training in patients with tendon disorders. The reasons for the beneficial clinical effects of eccentric training are not known. Vascularization followed by regression of the vasculature enhances the healing response of injured tendons. Eccentric exercise induces a more beneficial healing response than concentric exercise. Sixty rats with patellar tendon injuries were divided into three groups: nonexercise controls (group N; n = 20); concentric exercise group (group C; n = 20); eccentric exercise group (group E; n = 20). Each rat was taught to run uphill or downhill for 14 days. Patellar tendons were removed 1, 4, 7, 10, and 14 days following injury. Vascular endothelial growth factor (VEGF), angiopoietin-1, and angiopoietin-2 were measured by reverse transcription polymerase chain reaction. In group C, VEGF mRNA was increased 1 and 4 days following injury but was decreased on days 7, 10, and 14. In group E, VEGF mRNA was elevated only on day 1. In group N, VEGF mRNA remained at a low level throughout all 14 days. The angiopoietin-2/angiopoietin-1 ratio was higher for group C than for group E. In the presence of VEGF, angiopoietin-1 promotes vessel stability, whereas angiopoietin-2 has the opposite effect. Eccentric exercise contributes to stabilized angiogenesis during the early phase of tendon injury. Conversely, concentric exercise, which induces destabilized angiogenesis, leads to a delayed healing response. Initiation of eccentric exercise immediately after tendon injury may help improve healing by reducing vascularity.

  14. Acute neuromuscular and performance responses to Nordic hamstring exercises completed before or after football training.

    PubMed

    Lovell, Ric; Siegler, Jason C; Knox, Michael; Brennan, Scott; Marshall, Paul W M

    2016-12-01

    The optimal scheduling of Nordic Hamstring exercises (NHEs) relative to football training sessions is unknown. We examined the acute neuromuscular and performance responses to NHE undertaken either before (BT) or after (AT) simulated football training. Twelve amateur players performed six sets of five repetitions of the NHE either before or after 60 min of standardised football-specific exercise (SAFT 60 ). Surface electromyography signals (EMG) of the hamstring muscles were recorded during both the NHE, and maximum eccentric actions of the knee flexors (0.52 rad · s -1 ) performed before and after the NHE programme, and at 15 min intervals during SAFT 60 . Ten-metre sprint times were recorded on three occasions during each 15 min SAFT 60 segment. Greater eccentric hamstring fatigue following the NHE programme was observed in BT versus AT (19.8 %; very likely small effect), which was particularly apparent in the latter range of knee flexion (0-15°; 39.6%; likely moderate effect), and synonymous with hamstring EMG declines (likely small-likely moderate effects). Performing NHE BT attenuated sprint performance declines (2.0-3.2%; likely small effects), but decreased eccentric hamstring peak torque (-14.1 to -18.9%; likely small effects) during football-specific exercise. Performing NHE prior to football training reduces eccentric hamstring strength and may exacerbate hamstring injury risk.

  15. Strength Training. A Key to Athletic Training.

    ERIC Educational Resources Information Center

    Whiteside, Patricia W.

    Characteristics of an effective strength training program are analyzed and descriptions are offered of different kinds of weight training activities. Comparisons are made between concentric, isometric, eccentric, and isokinetic training methods. The fundamentals and techniques of an exemplary training program are outlined and the organization and…

  16. Muscle changes with eccentric exercise: Implications on earth and in space

    NASA Technical Reports Server (NTRS)

    Hargens, Alan R.; Parazynski, Scott; Aratow, Michael; Friden, Jan

    1989-01-01

    Recent investigations of fluid pressure, morpholo gy, and enzyme activities of skeletal muscle exercised eccentrically or concentrically in normal human subjects are reviewed. Intramuscular pressures were measured before, during, and after submaximal exercise and correlated with subjective muscle soreness, fiber size, water content, and blood indices of muscle enzymes. High intensity eccentric exercise is characterized by post exercise pain, elevated intramuscular pressures, and swelling of both type 1 and 2 fibers as compared to concentric exercise. Thus, long periods of unaccustomed, high level eccentric contraction may cause muscle injury, fiber swelling, fluid accumulation, elevated intramuscular pressure, and delayed muscle soreness. Training regimens of progressively increasing eccentric exercise, however, cause less soreness and are extremely efficacious in increasing muscle mass and strength. It is proposed that on Earth, postural muscles are uniquely adapted to low levels of prolonged eccentric contraction that are absent during weightlessness. The almost complete absence of eccentric exercise in space may be an important contributor to muscle atrophy and therefore equipment should be designed to integrate eccentric contractions into exercise protocols for long-term spaceflight.

  17. Unstable force analysis for induction motor eccentricity

    NASA Astrophysics Data System (ADS)

    Han, Xu; Palazzolo, Alan

    2016-05-01

    The increasing popularity of motors in machinery trains has led to an intensified interest in the forces they produce that may influence machinery vibration. Motor design typically assumes a uniform air gap, however in practice all motors operate with the rotor slightly displaced from the motor centerline in what is referred to as an eccentric position. Rotor center eccentricity can cause a radially unbalanced magnetic field when the motor is operating. This will results in both a radial force pulling the motor further away from the center, and a tangential force which can induce a vibration stability problem. In this paper, a magnetic equivalent circuit MEC modeling method is proposed to calculate both the radial and tangential motor eccentric force. The treatment of tangential force determination is rarely addressed, but it is very important for rotordynamic vibration stability evaluation. The proposed model is also coupled with the motor electric circuit model to provide capability for transient vibration simulations. FEM is used to verify the MEC model. A parametric study is performed on the motor radial and tangential eccentric forces. Also a Jeffcott rotor model is used to study the influence of the motor eccentric force on mechanical vibration stability and nonlinear behavior. Furthermore, a stability criteria for the bearing damping is provided. The motor radial and tangential eccentric forces are both curved fitted to include their nonlinearity in time domain transient simulation for both a Jeffcott rotor model and a geared machinery train with coupled torsional-lateral motion. Nonlinear motions are observed, including limit cycles and bifurcation induced vibration amplitude jumps.

  18. Importance of eccentric actions in performance adaptations to resistance training

    NASA Technical Reports Server (NTRS)

    Dudley, Gary A.; Miller, Bruce J.; Buchanan, Paul; Tesch, Per A.

    1991-01-01

    The importance of eccentric (ecc) muscle actions in resistance training for the maintenance of muscle strength and mass in hypogravity was investigated in experiments in which human subjects, divided into three groups, were asked to perform four-five sets of 6 to 12 repetitions (rep) per set of three leg press and leg extension exercises, 2 days each weeks for 19 weeks. One group, labeled 'con', performed each rep with only concentric (con) actions, while group con/ecc with performed each rep with only ecc actions; the third group, con/con, performed twice as many sets with only con actions. Control subjects did not train. It was found that resistance training wih both con and ecc actions induced greater increases in muscle strength than did training with only con actions.

  19. Eccentric resistance training intensity may affect the severity of exercise induced muscle damage.

    PubMed

    Hasenoehrl, Timothy; Wessner, Barbara; Tschan, Harald; Vidotto, Claudia; Crevenna, Richard; Csapo, Robert

    2017-09-01

    The aim of the present study was to assess the role of eccentric exercise intensity in the development of and recovery from delayed onset muscle soreness (DOMS). Using a cross-over study design, 15 healthy, male college students were tested on two occasions. The training stimulus consisted of an exhaustive series of eccentric muscle contractions of the elbow flexors at either 100% (high intensity) or 50% (low intensity) of the individual concentric one-repetition maximum. Blood samples were taken at baseline as well as 24, 48, 72 and 96 hours postexercise, and analyzed for creatine kinase, myoglobin, interleukin-6 and prostaglandin-2. Additionally, upper arm circumference (CIRC) and DOMS-related sensation of pain (PAIN) were measured. Following high intensity training, CIRC was significantly greater (P=0.007). Further, creatine kinase, myoglobin and interleukin-6 tended to be higher, although the main effect of the factor "intensity" just failed to reach significance (creatine kinase: P=0.056, myoglobin: P=0.064, interleukin-6: P=0.091). No differences were found for prostaglandin-2 (P=0.783) and PAIN (P=0.147). When performed at greater intensity, fatiguing eccentric resistance exercise of the elbow flexors leads to greater muscle swelling and, potentially, increases in serum markers reflecting lesions in the muscle's cellular membrane.

  20. An approach to counteracting long-term microgravity-induced muscle atrophy

    NASA Technical Reports Server (NTRS)

    Tesch, P. A.; Buchanan, P.; Dudley, G. A.

    1990-01-01

    To find means of alleviating muscle atrophy induced by long-term microgravity, the effects of a 19-week-long heavy-resistance training regime (using either concentric muscle actions only or concentric and eccentric muscle actions) on the strengths of the exercised knee extensor muscle group were investigated in two groups of male human subjects performing two types of training exercises: supine leg press or/and seated knee extension. Results show that a training program in which both the concentric and the eccentric muscle action was performed led to substantially greater increases in maximal muscle strength than when only concentric exercises were performed.

  1. The Importance of Muscular Strength: Training Considerations.

    PubMed

    Suchomel, Timothy J; Nimphius, Sophia; Bellon, Christopher R; Stone, Michael H

    2018-04-01

    This review covers underlying physiological characteristics and training considerations that may affect muscular strength including improving maximal force expression and time-limited force expression. Strength is underpinned by a combination of morphological and neural factors including muscle cross-sectional area and architecture, musculotendinous stiffness, motor unit recruitment, rate coding, motor unit synchronization, and neuromuscular inhibition. Although single- and multi-targeted block periodization models may produce the greatest strength-power benefits, concepts within each model must be considered within the limitations of the sport, athletes, and schedules. Bilateral training, eccentric training and accentuated eccentric loading, and variable resistance training may produce the greatest comprehensive strength adaptations. Bodyweight exercise, isolation exercises, plyometric exercise, unilateral exercise, and kettlebell training may be limited in their potential to improve maximal strength but are still relevant to strength development by challenging time-limited force expression and differentially challenging motor demands. Training to failure may not be necessary to improve maximum muscular strength and is likely not necessary for maximum gains in strength. Indeed, programming that combines heavy and light loads may improve strength and underpin other strength-power characteristics. Multiple sets appear to produce superior training benefits compared to single sets; however, an athlete's training status and the dose-response relationship must be considered. While 2- to 5-min interset rest intervals may produce the greatest strength-power benefits, rest interval length may vary based an athlete's training age, fiber type, and genetics. Weaker athletes should focus on developing strength before emphasizing power-type training. Stronger athletes may begin to emphasize power-type training while maintaining/improving their strength. Future research should investigate how best to implement accentuated eccentric loading and variable resistance training and examine how initial strength affects an athlete's ability to improve their performance following various training methods.

  2. Effects of Velocity on Electromyographic, Mechanomyographic, and Torque Responses to Repeated Eccentric Muscle Actions.

    PubMed

    Hill, Ethan C; Housh, Terry J; Camic, Clayton L; Smith, Cory M; Cochrane, Kristen C; Jenkins, Nathaniel D M; Cramer, Joel T; Schmidt, Richard J; Johnson, Glen O

    2016-06-01

    The purposes of this study were to examine the effects of the velocity of repeated eccentric muscle actions on the torque and neuromuscular responses during maximal isometric and eccentric muscle actions. Twelve resistance-trained men performed 30 repeated, maximal, eccentric, isokinetic muscle actions at randomly ordered velocities of 60, 120, or 180°·s on separate days. Maximal voluntary isometric contractions (MVICs) were performed before (pretest) and after (posttest) the repeated eccentric muscle actions on each day. Eccentric isokinetic peak torque (EIPT) values were the averages of the first 3 and last 3 repetitions of the 30 repeated eccentric muscle actions. During the EIPT and MVIC muscle actions, electromyographic (EMG) and mechanomyographic (MMG) amplitude (EMG AMP and MMG AMP) and mean power frequency (EMG MPF and MMG MPF) values were assessed. These results indicated that the repeated eccentric muscle actions had no effects on EIPT, or the EMG AMP, EMG MPF, or MMG MPF values assessed during the EIPT muscle actions, but decreased MMG AMP. The repeated eccentric muscle actions, however, decreased MVIC torque, and also the EMG AMP and MMG MPF values assessed during the MVIC muscle actions, but increased MMG AMP. The results indicated that the velocity of the repeated eccentric muscle actions affected the MVIC torque responses, but not EIPT or any of the neuromuscular parameters. Furthermore, there are differences in the torque and neuromuscular responses for isometric vs. eccentric muscle actions after repeated eccentric muscle actions.

  3. HAMSTRING INJURY REHABILITATION AND PREVENTION OF REINJURY USING LENGTHENED STATE ECCENTRIC TRAINING: A NEW CONCEPT

    PubMed Central

    Tim, Tyler; McHugh, Malachy

    2012-01-01

    Back ground and Purpose: Hamstring injury is a common occurrence in sport and there has been limited success in reducing this rate of recurrence to date. Description of Topic with Related Evidence: High speed running requires eccentric strength when the hamstring muscles are in a lengthened state. The lengthened state occurs when the hip is in flexion and the lower leg moves into extension, thus lengthening the two joint hamstring muscle over both articulations upon which they act. There is evidence to suggest that athletes who have sustained a hamstring strain lack strength when the muscle is utilized during performance in a lengthened state. Purpose: To examine the risk factors contributing to such a high recurrence rate and propose a unique rehabilitation strategy addressing these factors in order to decrease the rate of reinjury. Discussion/Relation to Clinical Practice: Failing to increase an athlete's eccentric strength in a lengthened position after a hamstring injury may predispose an athlete to subsequent reinjury. Incorporating lengthened state eccentric training may help reduce the rate of reinjury. Level of Evidence: Level 5 PMID:22666648

  4. Hypertrophic Effects of Concentric vs. Eccentric Muscle Actions: A Systematic Review and Meta-analysis.

    PubMed

    Schoenfeld, Brad J; Ogborn, Dan I; Vigotsky, Andrew D; Franchi, Martino V; Krieger, James W

    2017-09-01

    Schoenfeld, BJ, Ogborn, DI, Vigotsky, AD, Franchi, MV, and Krieger, JW. Hypertrophic effects of concentric vs. eccentric muscle actions: A systematic review and meta-analysis. J Strength Cond Res 31(9): 2599-2608, 2017-Controversy exists as to whether different dynamic muscle actions produce divergent hypertrophic responses. The purpose of this paper was to conduct a systematic review and meta-analysis of randomized controlled trials comparing the hypertrophic effects of concentric vs. eccentric training in healthy adults after regimented resistance training (RT). Studies were deemed eligible for inclusion if they met the following criteria: (a) were an experimental trial published in an English-language refereed journal; (b) directly compared concentric and eccentric actions without the use of external implements (i.e., blood pressure cuffs) and all other RT variables equivalent; (c) measured morphologic changes using biopsy, imaging (magnetic resonance imaging, computerized tomography, or ultrasound), bioelectrical impedance, and/or densitometry; (d) had a minimum duration of 6 weeks; and (e) used human participants without musculoskeletal injury or any health condition that could directly, or through the medications associated with the management of said condition, be expected to impact the hypertrophic response to resistance exercise. A systematic literature search determined that 15 studies met inclusion criteria. Results showed that eccentric muscle actions resulted in a greater effect size (ES) compared with concentric actions, but results did not reach statistical significance (ES difference = 0.25 ± 0.13; 95% confidence interval: -0.03 to 0.52; p = 0.076). The mean percent change in muscle growth across studies favored eccentric compared with concentric actions (10.0% vs. 6.8, respectively). The findings indicate the importance of including eccentric and concentric actions in a hypertrophy-oriented RT program, as both have shown to be effective in increasing muscle hypertrophy.

  5. Eccentric, nonspinning, inspiral, Gaussian-process merger approximant for the detection and characterization of eccentric binary black hole mergers

    NASA Astrophysics Data System (ADS)

    Huerta, E. A.; Moore, C. J.; Kumar, Prayush; George, Daniel; Chua, Alvin J. K.; Haas, Roland; Wessel, Erik; Johnson, Daniel; Glennon, Derek; Rebei, Adam; Holgado, A. Miguel; Gair, Jonathan R.; Pfeiffer, Harald P.

    2018-01-01

    We present ENIGMA, a time domain, inspiral-merger-ringdown waveform model that describes nonspinning binary black holes systems that evolve on moderately eccentric orbits. The inspiral evolution is described using a consistent combination of post-Newtonian theory, self-force and black hole perturbation theory. Assuming eccentric binaries that circularize prior to coalescence, we smoothly match the eccentric inspiral with a stand-alone, quasicircular merger, which is constructed using machine learning algorithms that are trained with quasicircular numerical relativity waveforms. We show that ENIGMA reproduces with excellent accuracy the dynamics of quasicircular compact binaries. We validate ENIGMA using a set of Einstein Toolkit eccentric numerical relativity waveforms, which describe eccentric binary black hole mergers with mass-ratios between 1 ≤q ≤5.5 , and eccentricities e0≲0.2 ten orbits before merger. We use this model to explore in detail the physics that can be extracted with moderately eccentric, nonspinning binary black hole mergers. In particular, we use ENIGMA to show that the gravitational wave transients GW150914, GW151226, GW170104, GW170814 and GW170608 can be effectively recovered with spinning, quasicircular templates if the eccentricity of these events at a gravitational wave frequency of 10 Hz satisfies e0≤{0.175 ,0.125 ,0.175 ,0.175 ,0.125 }, respectively. We show that if these systems have eccentricities e0˜0.1 at a gravitational wave frequency of 10 Hz, they can be misclassified as quasicircular binaries due to parameter space degeneracies between eccentricity and spin corrections. Using our catalog of eccentric numerical relativity simulations, we discuss the importance of including higher-order waveform multipoles in gravitational wave searches of eccentric binary black hole mergers.

  6. Effects of partial-body cryotherapy (- 110°C) on muscle recovery between high-intensity exercise bouts.

    PubMed

    Ferreira-Junior, J B; Bottaro, M; Vieira, C A; Soares, S R S; Vieira, A; Cleto, V A; Cadore, E L; Coelho, D B; Simoes, H G; Brown, L E

    2014-12-01

    The aim of this study was to evaluate the effects of a single partial-body cryotherapy bout between training sessions on strength recovery. 12 young men (23.9±5.9 years) were randomly exposed to 2 different conditions separated by 7 days: 1) Partial-body cryotherapy (subjects were exposed to 3 min of partial-body cryotherapy at - 110 °C between 2 high-intensity training sessions); 2) Control (subjects were not exposed to partial-body cryotherapy between 2 high-intensity training sessions). Subjects were exposed to partial-body cryotherapy after the first training session. The 2 knee extension high-intensity training sessions were separated by a 40-min rest interval. Knee extension training consisted of 6 sets of 10 repetitions at 60°.s(-1) for concentric actions and 6 sets of 10 at 180.s(-1) for eccentric actions. The decrease in eccentric peak torque and total work was significantly (p<0.05) less after partial-body cryotherapy (5.6 and 2%, respectively) when compared to control (16 and 11.6%, respectively). However, the decrease in concentric peak torque and total work was not different (p>0.05) between partial-body cryotherapy (9.4 and 6.5%, respectively) and control (7.5 and 5.2%, respectively). These results indicate that the use of partial-body cryotherapy between-training sessions can enhance eccentric muscle performance recovery. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Evaluation of an exercise concept focusing on eccentric strength training of the rotator cuff for patients with subacromial impingement syndrome.

    PubMed

    Bernhardsson, Susanne; Klintberg, Ingrid Hultenheim; Wendt, Gunilla Kjellby

    2011-01-01

    To evaluate the effect on pain intensity and function of an exercise concept focusing on specific eccentric strength training of the rotator cuff in patients with subacromial impingement syndrome. Single-subject research design with baseline and treatment phases (AB design). Home-based training programme supervised and supported by visits to physiotherapy clinic. Ten patients, mean (SD) age 54 (8.6) years, symptom duration 12 (9.1) months. Daily eccentric strengthening exercises of the rotator cuff during 12 weeks. Pain intensity, assessed with a visual analogue scale, and function, using the Patient-Specific Functional Scale. Shoulder function evaluated with the Constant score, and shoulder-related quality of life evaluated with the Western Ontario Rotator Cuff Index. Pain intensity decreased significantly in eight of the ten subjects. Function improved significantly in all ten subjects. Constant score increased in nine subjects and Western Ontario Rotator Cuff Index increased in seven subjects. Mean Constant score for the whole group increased significantly from 44 to 69 points (P = 0.008). Mean Western Ontario Rotator Cuff Index increased from 51 to 71% (P = 0.021). A 12-week eccentric strengthening programme targeting the rotator cuff and incorporating scapular control and correct movement pattern can be effective in decreasing pain and increasing function in patients with subacromial impingement syndrome. A randomized controlled trial is necessary to provide stronger evidence of the method.

  8. Black Tea High-Molecular-Weight Polyphenol-Rich Fraction Promotes Hypertrophy during Functional Overload in Mice.

    PubMed

    Aoki, Yuki; Ozawa, Tetsuo; Takemasa, Tohru; Numata, Osamu

    2017-03-29

    Mitochondria activation factor (MAF) is a high-molecular-weight polyphenol extracted from black tea that stimulates training-induced 5' adenosine monophosphate-activated protein kinase (AMPK) activation and improves endurance capacity. Originally, MAF was purified from black tea using butanol and acetone, making it unsuitable for food preparation. Hence, we extracted a MAF-rich sample "E80" from black tea, using ethanol and water only. Here, we examined the effects of E80 on resistance training. Eight-week old C57BL/6 mice were fed with a normal diet or a diet containing 0.5% E80 for 4, 7 and 14 days under conditions of functional overload. It was found that E80 administration promoted overload-induced hypertrophy and induced phosphorylation of the Akt/mammalian target of rapamycin (mTOR) pathway proteins, such as Akt, P70 ribosomal protein S6 kinase (p70S6K), and S6 in the plantaris muscle. Therefore, functional overload and E80 administration accelerated mTOR signaling and increased protein synthesis in the muscle, thereby inducing hypertrophy.

  9. The time course of short-term hypertrophy in the absence of eccentric muscle damage.

    PubMed

    Stock, Matt S; Mota, Jacob A; DeFranco, Ryan N; Grue, Katherine A; Jacobo, A Unique; Chung, Eunhee; Moon, Jordan R; DeFreitas, Jason M; Beck, Travis W

    2017-05-01

    It has been proposed that the increase in skeletal muscle mass observed during the initial weeks of initiating a resistance training program is concomitant with eccentric muscle damage and edema. We examined the time course of muscle hypertrophy during 4 weeks of concentric-only resistance training. Thirteen untrained men performed unilateral concentric-only dumbbell curls and shoulder presses twice per week for 4 weeks. Sets of 8-12 repetitions were performed to failure, and training loads were increased during each session. Subjects consumed 500 ml of whole milk during training. Assessments of soreness, lean mass, echo intensity, muscle thickness, relaxed and flexed arm circumference, and isokinetic strength were performed every 72 or 96 h. Soreness, echo intensity, relaxed circumference, and peak torque data did not significantly change. Significant increases in lean mass, muscle thickness, and flexed circumference were observed within seven training sessions. Lean mass was elevated at tests #7 (+109.3 g, p = .002) and #8 (+116.1 g, p = .035), with eight different subjects showing changes above the minimal difference of 139.1 g. Muscle thickness was elevated at tests #6 (+0.23 cm, p = .004), #7 (+0.31 cm, p < .001), and #8 (+0.27 cm, p < .001), with ten subjects exceeding the minimal difference of 0.24 cm. There were no changes for the control arm. In individuals beginning a resistance training program, small but detectable increases in hypertrophy may occur in the absence of eccentric muscle damage within seven training sessions.

  10. Protective role of alpha-actinin-3 in the response to an acute eccentric exercise bout.

    PubMed

    Vincent, Barbara; Windelinckx, An; Nielens, Henri; Ramaekers, Monique; Van Leemputte, Marc; Hespel, Peter; Thomis, Martine A

    2010-08-01

    The ACTN3 gene encodes for the alpha-actinin-3 protein, which has an important structural function in the Z line of the sarcomere in fast muscle fibers. A premature stop codon (R577X) polymorphism in the ACTN3 gene causes a complete loss of the protein in XX homozygotes. This study investigates a possible role for the alpha-actinin-3 protein in protecting the fast fiber from eccentric damage and studies repair mechanisms after a single eccentric exercise bout. Nineteen healthy young men (10 XX, 9 RR) performed 4 series of 20 maximal eccentric knee extensions with both legs. Blood (creatine kinase; CK) and muscle biopsy samples were taken to study differential expression of several anabolic (MyoD1, myogenin, MRF4, Myf5, IGF-1), catabolic (myostatin, MAFbx, and MURF-1), and contraction-induced muscle damage marker genes [cysteine- and glycine-rich protein 3 (CSRP3), CARP, HSP70, and IL-6] as well as a calcineurin signaling pathway marker (RCAN1). Baseline mRNA content of CSRP3 and MyoD1 was 49 + or - 12 and 67 + or - 25% higher in the XX compared with the RR group (P = 0.01-0.045). However, satellite cell number was not different between XX and RR individuals. After eccentric exercise, XX individuals tended to have higher serum CK activity (P = 0.10) and had higher pain scores than RR individuals. However, CSRP3 (P = 0.058) and MyoD1 (P = 0.08) mRNA expression tended to be higher after training in RR individuals compared with XX alpha-actinin-3-deficient subjects. This study suggests a protective role of alpha-actinin-3 protein in muscle damage after eccentric training and an improved stress-sensor signaling, although effects are small.

  11. Progressive-overload whole-body vibration training as part of periodized, off-season strength training in trained women athletes.

    PubMed

    Jones, Margaret T

    2014-09-01

    The purpose was to examine the effects of progressive-overload, whole-body vibration (WBV) training on strength and power as part of a 15-week periodized, strength training (ST) program. Eighteen collegiate women athletes with ≥1 year of ST and no prior WBV training participated in the crossover design. Random assignment to 1 of the 2 groups followed pretests of seated medicine ball throw (SMBT), single-leg hop for distance (LSLH, RSLH), countermovement jump (CMJ), 3 repetition maximum (3RM) front squat (FS), pull-up (PU), and 3RM bench press (BP). Whole-body vibration was two 3-week phases of dynamic and static hold body weight exercises administered 2 d·wk in ST sessions throughout the 15-week off-season program. Total WBV exposure was 6 minutes broken into 30-second bouts with 60-second rest (1:2 work-to-relief ratio). Exercises, frequency, and amplitude progressed in intensity from the first 3-week WBV training to the second 3-week phase. Repeated-measures analysis of variances were used to analyze the SMBT, CMJ, LSLH, RSLH, FS, PU, and BP tests. Alpha level was p ≤ 0.05. Front squat, LSLH, and RSLH increased (p = 0.001) from pre- to posttest; FS increased from mid- to posttest. Pull-up increased (p = 0.008) from pre- to posttest. Seated medicine ball throw and BP showed a trend of increased performance from pre- to posttest (p = 0.11). Two 3-week phases of periodized, progressive-overload WBV + ST training elicited gains in strength and power during a 15-week off-season program. Greatest improvements in performance tests occurred in the initial WBV phase. Implementing WBV in conjunction with ST appears to be more effective in the early phases of training.

  12. Relationships between eccentric hip isokinetic torque and functional performance.

    PubMed

    Baldon, Rodrigo de Marche; Lobato D, Ferreira Moreira; Carvalho, Lívia Pinheiro; Wun P, Yan Lam; Presotti, Cátia Valéria; Serrão, Fábio Viadanna

    2012-02-01

    Recently, attention in sports has been given to eccentric hip-muscle function, both in preventing musculoskeletal injuries and improving performance. To determine the key isokinetic variables of eccentric hip torque that predict the functional performance of women in the single-leg triple long jump (TLJ) and the timed 6-m single-leg hop (TH). Within-subject correlational study. Musculoskeletal laboratory. 32 healthy women age 18-25 y. The participants performed 2 sets of 5 eccentric hip-abductor/adductor and lateral/medial-rotator isokinetic contractions (30°/s) and 3 attempts in the TLJ and TH. The independent variables were the eccentric hip-abductor and -adductor and medial- and lateral-rotator isokinetic peak torque, normalized according to body mass (Nm/kg). The dependent variables were the longest distance achieved in the TLJ normalized according to body height and the shortest time spent during the execution of the TH. The forward-stepwise-regression analysis showed that the combination of the eccentric hip lateral-rotator and -abductor isokinetic peak torque provided the most efficient estimate of both functional tests, explaining 65% of the TLJ variance (P < .001) and 55% of the TH variance (P < .001). Higher values for eccentric hip lateral-rotator and hip-abductor torques reflected better performance. Thus, the eccentric action of these muscles should be considered in the development of physical training programs that aim to increase functional performance.

  13. Battling the challenges of training nurses to use information systems through theory-based training material design.

    PubMed

    Galani, Malatsi; Yu, Ping; Paas, Fred; Chandler, Paul

    2014-01-01

    The attempts to train nurses to effectively use information systems have had mixed results. One problem is that training materials are not adequately designed to guide trainees to gradually learn to use a system without experiencing a heavy cognitive load. This is because training design often does not take into consideration a learner's cognitive ability to absorb new information in a short training period. Given the high cost and difficulty of organising training in healthcare organisations, there is an urgent need for information system trainers to be aware of how cognitive overload or information overload affect a trainee's capability to acquire new knowledge and skills, and what instructional techniques can be used to facilitate effective learning. This paper introduces the concept of cognitive load and how it affects nurses when learning to use a new health information system. This is followed by the relevant strategies for instructional design, underpinned by the principles of cognitive load theory, which may be helpful for the development of effective instructional materials and activities for training nurses to use information systems.

  14. Importance of Standardized DXA Protocol for Assessing Physique Changes in Athletes.

    PubMed

    Nana, Alisa; Slater, Gary J; Hopkins, Will G; Halson, Shona L; Martin, David T; West, Nicholas P; Burke, Louise M

    2016-06-01

    The implications of undertaking DXA scans using best practice protocols (subjects fasted and rested) or a less precise but more practical protocol in assessing chronic changes in body composition following training and a specialized recovery technique were investigated. Twenty-one male cyclists completed an overload training program, in which they were randomized to four sessions per week of either cold water immersion therapy or control groups. Whole-body DXA scans were undertaken with best practice protocol (Best) or random activity protocol (Random) at baseline, after 3 weeks of overload training, and after a 2-week taper. Magnitudes of changes in total, lean and fat mass from baseline-overload, overload-taper and baseline-taper were assessed by standardization (Δmean/SD). The standard deviations of change scores for total and fat-free soft tissue mass (FFST) from Random scans (2-3%) were approximately double those observed in the Best (1-2%), owing to extra random errors associated with Random scans at baseline. There was little difference in change scores for fat mass. The effect of cold water immersion therapy on baseline-taper changes in FFST was possibly harmful (-0.7%; 90% confidence limits ±1.2%) with Best scans but unclear with Random scans (0.9%; ±2.0%). Both protocols gave similar possibly harmful effects of cold water immersion therapy on changes in fat mass (6.9%; ±13.5% and 5.5%; ±14.3%, respectively). An interesting effect of cold water immersion therapy on training-induced changes in body composition might have been missed with a less precise scanning protocol. DXA scans should be undertaken with Best.

  15. Changes in power and force generation during coupled eccentric-concentric versus concentric muscle contraction with training and aging.

    PubMed

    Caserotti, Paolo; Aagaard, Per; Puggaard, Lis

    2008-05-01

    Age-related decline in maximal concentric muscle power is associated with frailty and functional impairments in the elderly. Compared to concentric contraction, mechanical muscle output is generally enhanced when muscles are rapidly pre-stretched (eccentric contraction), albeit less pronounced with increasing age. Exercise has been recommended to prevent loss of muscle power and function and recent guidelines indicate training program for increasing muscle power highly relevant for elderly subjects. This study examined the differences in muscle power, force and movement pattern during concentric-alone and coupled eccentric-concentric contraction and selected functional motor performances before and after 36-week multicomponent training including aerobic, strength, balance, flexibility and coordination components in elderly males. Vertical force, excursion, velocity, power and acceleration of the body center of mass were measured in two standardised vertical jumps (squatting jump, SQJ; countermovement jump, CMJ). Pre-stretch enhancement during CMJ did not improve performance [i.e., no enhanced maximal muscle power (Ppeak) and jump height (JH)] compared to concentric-alone muscle contraction (SQJ). Nevertheless, pre-stretch enhancement occurred as for similar SQJ and CMJ maximal performance, elderly people employed lower mechanical work, higher mean muscle power (Pmean), shorter concentric phase duration and shorter body center of mass displacement during CMJ. Post training, CMJ Ppeak, Pmean and JH increased in training group (P<0.05) while Ppeak and JH decreased in control group during the CMJ and SQJ (P<0.05). In conclusion, long-term training counteracted the age-related decline in muscle power and functional performance observed in the control subjects, while substantial gains in muscular performance were observed in the trained elderly.

  16. Plasma Actin, Gelsolin and Orosomucoid Levels after Eccentric Exercise.

    PubMed

    Tékus, Éva; Váczi, Márk; Horváth-Szalai, Zoltán; Ludány, Andrea; Kőszegi, Tamás; Wilhelm, Márta

    2017-02-01

    The present study investigated the acute effect of eccentric exercise on blood plasma actin, gelsolin (GSN) and orosomucoid (AGP) levels in untrained and moderately trained individuals, and their correlation with exercise induced muscle damage (EIMD) markers (CK, intensity of muscle soreness and maximal voluntary contraction torque deficit). Healthy physical education students (6 untrained, 12 moderately trained) participated in this research. Actin, GSN, AGP and CK levels were measured in blood plasma at baseline, immediately, 1 h, 6 h and 24 h post-exercise comprising 90 eccentric quadriceps contractions performed on a dynamometer. There was significant time main effect for GSN, AGP, CK and significant difference was found between baseline and the lowest value of post-exercise GSN (p < 0.05), as well as baseline and the highest value of post-exercise AGP (p < 0.05). Relationships were found between GSN levels and other indirect EIMD markers (between all GSN levels at post-exercise and CK activity at 6 h, p < 0.05; GSNMIN and muscle soreness at post-exercise, p < 0.04), GSN and AGP; however, actin did not correlate at any time points with GSN. Actin, GSN, AGP and CK responses after eccentric exercise do not seem sensitive to training status. The plasma actin level is used as an indicator of injury, however, our results suggest that it is not an accurate marker of EIMD, while plasma GSN concentrations show a better relationship with EIMD and the post-exercise inflammatory process. The elevated plasma AGP and the correlation between GSN and AGP seem to be promising for assessment of exercise-induced muscle injury.

  17. Plasma Actin, Gelsolin and Orosomucoid Levels after Eccentric Exercise

    PubMed Central

    Váczi, Márk; Horváth-Szalai, Zoltán; Ludány, Andrea; Kőszegi, Tamás; Wilhelm, Márta

    2017-01-01

    Abstract The present study investigated the acute effect of eccentric exercise on blood plasma actin, gelsolin (GSN) and orosomucoid (AGP) levels in untrained and moderately trained individuals, and their correlation with exercise induced muscle damage (EIMD) markers (CK, intensity of muscle soreness and maximal voluntary contraction torque deficit). Healthy physical education students (6 untrained, 12 moderately trained) participated in this research. Actin, GSN, AGP and CK levels were measured in blood plasma at baseline, immediately, 1 h, 6 h and 24 h post-exercise comprising 90 eccentric quadriceps contractions performed on a dynamometer. There was significant time main effect for GSN, AGP, CK and significant difference was found between baseline and the lowest value of post-exercise GSN (p < 0.05), as well as baseline and the highest value of post-exercise AGP (p < 0.05). Relationships were found between GSN levels and other indirect EIMD markers (between all GSN levels at post-exercise and CK activity at 6 h, p < 0.05; GSNMIN and muscle soreness at post-exercise, p < 0.04), GSN and AGP; however, actin did not correlate at any time points with GSN. Actin, GSN, AGP and CK responses after eccentric exercise do not seem sensitive to training status. The plasma actin level is used as an indicator of injury, however, our results suggest that it is not an accurate marker of EIMD, while plasma GSN concentrations show a better relationship with EIMD and the post-exercise inflammatory process. The elevated plasma AGP and the correlation between GSN and AGP seem to be promising for assessment of exercise-induced muscle injury. PMID:28469748

  18. Decline eccentric squats increases patellar tendon loading compared to standard eccentric squats.

    PubMed

    Kongsgaard, M; Aagaard, P; Roikjaer, S; Olsen, D; Jensen, M; Langberg, H; Magnusson, S P

    2006-08-01

    Recent studies have shown excellent clinical results using eccentric squat training on a 25 degrees decline board to treat patellar tendinopathy. It remains unknown why therapeutic management of patellar tendinopathy using decline eccentric squats offer superior clinical efficacy compared to standard horizontal eccentric squats. This study aimed to compare electromyography activity, patellar tendon strain and joint angle kinematics during standard and decline eccentric squats. Thirteen subjects performed unilateral eccentric squats on flat-and a 25 degrees decline surface. During the squats, electromyography activity was obtained in eight representative muscles. Also, ankle, knee and hip joint goniometry was obtained. Additionally, patellar tendon strain was measured in vivo using ultrasonography as subjects maintained a unilateral isometric 90 degrees knee angle squat position on either flat or 25 degrees decline surface. Patellar tendon strain was significantly greater (P<0.05) during the squat position on the decline surface compared to the standard surface. The stop angles of the ankle and hip joints were significantly smaller during the decline compared to the standard squats (P<0.001, P<0.05). Normalized mean electromyography amplitudes of the knee extensor muscles were significantly greater during the decline compared to the standard squats (P<0.05). Hamstring and calf muscle mean electromyography did not differ, respectively, between standard and decline squats. The use of a 25 degrees decline board increases the load and the strain of the patellar tendon during unilateral eccentric squats. This finding likely explains previous reports of superior clinical efficacy of decline eccentric squats in the rehabilitative management of patellar tendinopathy.

  19. Muscle activity during knee-extension strengthening exercise performed with elastic tubing and isotonic resistance.

    PubMed

    Jakobsen, Markus Due; Sundstrup, Emil; Andersen, Christoffer H; Bandholm, Thomas; Thorborg, Kristian; Zebis, Mette K; Andersen, Lars L

    2012-12-01

    While elastic resistance training, targeting the upper body is effective for strength training, the effect of elastic resistance training on lower body muscle activity remains questionable. The purpose of this study was to evaluate the EMG-angle relationship of the quadriceps muscle during 10-RM knee-extensions performed with elastic tubing and an isotonic strength training machine. 7 women and 9 men aged 28-67 years (mean age 44 and 41 years, respectively) participated. Electromyographic (EMG) activity was recorded in 10 muscles during the concentric and eccentric contraction phase of a knee extension exercise performed with elastic tubing and in training machine and normalized to maximal voluntary isometric contraction (MVC) EMG (nEMG). Knee joint angle was measured during the exercises using electronic inclinometers (range of motion 0-90°). When comparing the machine and elastic resistance exercises there were no significant differences in peak EMG of the rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM) during the concentric contraction phase. However, during the eccentric phase, peak EMG was significantly higher (p<0.01) in RF and VM when performing knee extensions using the training machine. In VL and VM the EMG-angle pattern was different between the two training modalities (significant angle by exercise interaction). When using elastic resistance, the EMG-angle pattern peaked towards full knee extension (0°), whereas angle at peak EMG occurred closer to knee flexion position (90°) during the machine exercise. Perceived loading (Borg CR10) was similar during knee extensions performed with elastic tubing (5.7±0.6) compared with knee extensions performed in training machine (5.9±0.5). Knee extensions performed with elastic tubing induces similar high (>70% nEMG) quadriceps muscle activity during the concentric contraction phase, but slightly lower during the eccentric contraction phase, as knee extensions performed using an isotonic training machine. During the concentric contraction phase the two different conditions displayed reciprocal EMG-angle patterns during the range of motion. 5.

  20. Early phase adaptations in muscle strength and hypertrophy as a result of low-intensity blood flow restriction resistance training.

    PubMed

    Hill, Ethan C; Housh, Terry J; Keller, Joshua L; Smith, Cory M; Schmidt, Richard J; Johnson, Glen O

    2018-06-22

    Low-intensity venous blood flow restriction (vBFR) resistance training has been shown to promote increases in muscle strength and size. Eccentric-only muscle actions are typically a more potent stimulus to increase muscle strength and size than concentric-only muscle actions performed at the same relative intensities. Therefore, the purpose of this investigation was to examine the time-course of changes in muscle strength, hypertrophy, and neuromuscular adaptations following 4 weeks of unilateral forearm flexion low-intensity eccentric vBFR (Ecc-vBFR) vs. low-intensity concentric vBFR (Con-vBFR) resistance training performed at the same relative intensity. Thirty-six women were randomly assigned to either Ecc-vBFR (n = 12), Con-vBFR (n = 12) or control (no intervention, n = 12) group. Ecc-vBFR trained at 30% of eccentric peak torque and Con-vBFR trained at 30% of concentric peak torque. All training and testing procedures were performed at an isokinetic velocity of 120° s - ¹. Muscle strength increased similarly from 0 to 2 and 4 weeks of training as a result of Ecc-vBFR (13.9 and 35.0%) and Con-vBFR (13.4 and 31.2%), but there were no changes in muscle strength for the control group. Muscle thickness increased similarly from 0 to 2 and 4 weeks of training as a result of Ecc-vBFR (11.4 and 12.8%) and Con-vBFR (9.1 and 9.9%), but there were no changes for the control group. In addition, there were no changes in any of the neuromuscular responses. The Ecc-vBFR and Con-vBFR low-intensity training induced comparable increases in muscle strength and size. The increases in muscle strength, however, were not associated with neuromuscular adaptations.

  1. Eccentric exercise: acute and chronic effects on healthy and diseased tendons.

    PubMed

    Kjaer, Michael; Heinemeier, Katja M

    2014-06-01

    Eccentric exercise can influence tendon mechanical properties and matrix protein synthesis. mRNA for collagen and regulatory factors thereof are upregulated in animal tendons, independent of muscular contraction type, supporting the view that tendon, compared with skeletal muscle, is less sensitive to differences in type and/or amount of mechanical stimulus with regard to expression of collagen, regulatory factors for collagen, and cross-link regulators. In overused (tendinopathic) human tendon, eccentric exercise training has a beneficial effect, but the mechanism by which this is elicited is unknown, and slow concentric loading appears to have similar beneficial effects. It may be that tendinopathic regions, as long as they are subjected to a certain magnitude of load at a slow speed, independent of whether this is eccentric or concentric in nature, can reestablish their normal tendon fibril alignment and cell morphology. Copyright © 2014 the American Physiological Society.

  2. Mechanical efficiency and force–time curve variation during repetitive jumping in trained and untrained jumpers.

    PubMed

    McBride, Jeffrey M; Snyder, James G

    2012-10-01

    Mechanical efficiency (ME), the ratio between work performed and energy expenditure, is a useful criterion in determining the roles of stored elastic energy and chemically deduced energy contributing to concentric performance in stretch-shortening cycle movements. Increased force production during the eccentric phase has been shown to relate to optimal muscle-tendon unit (MTU) length change and thus optimization of usage of stored elastic energy. This phenomenon, as previously reported, is reflected by higher jump heights and ME. The purpose of this investigation was to determine if ME may be different between trained and untrained jumpers and thus be accounted for by variation in force production in the eccentric phase as a reflection of usage of stored elastic energy during various jump types. This investigation involved 9 trained (age 20.7 ± 3.2 years, height 178.6 ± 5.3 cm, body mass 79.0 ± 5.5 kg) and 7 untrained (age 21.43 ± 2.37 years, height 176.17 ± 10.89 cm, body mass 78.8 ± 12.5 kg) male jumpers. Trained subjects were Division I track and field athletes who compete in the horizontal or vertical jumping or running events. Force-time and displacement-time curves were obtained during jumping to determine jump height and to calculate work performed and to observe possible differences in force production in the eccentric phase. Respiratory gases with a metabolic cart were obtained during jumping to calculate energy expenditure. ME was calculated as the ratio between work performed and energy expenditure. The subjects completed four sessions involving 20 repetitions of countermovement jumps (CMJ) and drop jumps from 40 cm (DJ40), 60 cm (DJ60) and 80 cm (DJ80). The trained jumpers jumped significantly higher in the CMJ, DJ40, DJ60 and DJ80 conditions than their untrained counterparts (p ≤ 0.05). ME was significantly higher in the trained in comparison to the untrained jumpers during DJ40. The amount of negative work during all jump types was significantly greater in the trained jumpers. There was a significant correlation between negative work and ME in the trained jumpers (r = 0.82) but not in the untrained jumpers (r = 0.54). The present study indicates that trained jumpers jump higher and have greater ME, possibly as a result of increased for production in the eccentric phase as a reflection of optimal MTU length change and thus increased usage of storage of elastic energy.

  3. [Muscle injuries: diagnostics and treatments].

    PubMed

    Kieb, M; Lorbach, O; Engelhardt, M

    2010-12-01

    Muscle injuries are common in sports. They are usually caused by either acute (mostly eccentric mechanisms) or chronic overloading with a lack of muscle coordination. They present in clinical practice as bruises and muscle sprains. Due to the rigours of a modern society and the high economic cost of time off work, an effective treatment needs to be employed. The key to an optimised therapy rests in the appropriate timing between immobilisation and mobilisation. The interval to muscle repair might be shortened by certain adjuvant therapies. In doing so, it is important that no physiological phases of wound healing are overlooked. Muscle healing can be accelerated by externally induced higher metabolic turnover. Surgical therapy is sometimes necessary in selected cases and in serious injuries.

  4. Vulnerability to dysfunction and muscle injury after unloading

    NASA Technical Reports Server (NTRS)

    Ploutz-Snyder, L. L.; Tesch, P. A.; Hather, B. M.; Dudley, G. A.

    1996-01-01

    OBJECTIVE: To test whether unloading increases vulnerability to eccentric exercise-induced dysfunction and muscle injury. DESIGN: Before-after trial. SETTING: General community. PATIENTS OR OTHER PARTICIPANTS: Two women and 5 men (73 +/- 3kg [mean +/- SE]) who were active college students but were not trained in lower body resistance exercise volunteered. INTERVENTION: Five weeks of unilateral lower limb suspension (ULLS), which has been shown to decrease strength and size of the unloaded, left, but not load-bearing, right quadriceps femoris muscle group (QF) by 20% and 14%, respectively; performance of 10 sets of ten eccentric actions with each QF immediately after the ULLS strength tests with a load equivalent to 65% of the post-ULLS eccentric 1-repetition maximum. MAIN OUTCOME MEASURE(S): Concentric and eccentric 1-repetition maximum for the left, unloaded and the right, load-bearing QF measured immediately after ULLS and 1,4,7,9, and 11 days later; cross-sectional area and spin-spin relaxation time (T2) of each QF as determined by magnetic resonance imaging and measured the last day of ULLS and 3 days later. RESULTS: The mean load used for eccentric exercise was 23 +/- 2 and 30 +/- 3kg for the left, unloaded and right, load-bearing QF, respectively. The concentric and eccentric 1-repetition maximum for the unloaded and already weakened left QF was further decreased by 18% (p = .000) and 27% (p = .000), respectively, 1 day after eccentric exercise. Strength did not return to post-ULLS levels until 7 days of recovery. The right, load-bearing QF showed a 4% decrease (p = .002) in the eccentric 1-repetition maximum 1 day after eccentric exercise. The left, unloaded QF showed an increase in T2 (p = .002) in 18% of its cross-sectional area 3 days after the eccentric exercise, thus indicating muscle injury. The right, load-bearing QF showed no elevation in T2 (p = .280). CONCLUSION: Unloading increases vulnerability to eccentric exercise-induced dysfunction and muscle injury, even at relatively light loads.

  5. Sensorimotor Exercises and Enhanced Trunk Function: A Randomized Controlled Trial.

    PubMed

    Mueller, Steffen; Engel, Tilman; Mueller, Juliane; Stoll, Josefine; Baur, Heiner; Mayer, Frank

    2018-05-18

    The aim of this study was to investigate the effect of a 6-week sensorimotor or resistance training on maximum trunk strength and response to sudden, high-intensity loading in athletes.Forty-three healthy, well-trained participants were randomized into sensorimotor (SMT; n=11), resistance training (RT; n=16) and control groups (CG; n=16). Treatment groups received either sensorimotor training (SMT) or resistance training (RT) for 6 weeks, 3 times a week. At baseline and after 6 weeks of intervention, participants' maximum isokinetic strength in trunk rotation and extension was tested (concentric/eccentric 30°/s). In addition, sudden, high-intensity trunk loading was assessed for eccentric extension and rotation, with additional perturbation. Peak torque [Nm] was calculated as the outcome.Interventions showed no significant difference for maximum strength in concentric and eccentric testing (p>0.05). For perturbation compensation, higher peak torque response following SMT (Extension: +24 Nm 95%CI±19 Nm; Rotation: +19 Nm 95%CI±13 Nm) and RT (Extension: +35 Nm 95%CI±16 Nm; Rotation: +5 Nm 95%CI±4 Nm) compared to CG (Extension: -4 Nm 95%CI±16 Nm; Rotation: -2 Nm 95%CI±4 Nm) was present (p<0.05).This study showed that isokinetic strength gains were small, but that significant improvements in high-intensity trunk loading response could be shown for both interventions. Therefore, depending on the individual's preference, therapists have two treatment options to enhance trunk function for back pain prevention. © Georg Thieme Verlag KG Stuttgart · New York.

  6. The Influence of Professional Training and Personal Factors on Technostress: A Correlational Study

    ERIC Educational Resources Information Center

    Nagarajah, Bertram A.

    2017-01-01

    This study investigated the influence of professional training and personal factors on five categories of technostress: techno-overload, techno-invasion, techno-complexity, techno-insecurity, and techno-uncertainty. The goal of the study was to determine whether experience and knowledge gained during professional training influenced the level of…

  7. Does the Dumbbell-Carrying Position Change the Muscle Activity in Split Squats and Walking Lunges?

    PubMed

    Stastny, Petr; Lehnert, Michal; Zaatar, Amr M Z; Svoboda, Zdenek; Xaverova, Zuzana

    2015-11-01

    The forward walking lunge (WL) and split squat (SSq) are similar exercises that have differences in the eccentric phase, and both can be performed in the ipsilateral or contralateral carrying conditions. This study aimed to determine the effects of dumbbell-carrying position on the kinematics and electromyographic (EMG) amplitudes of the gluteus medius (Gmed), vastus medialis (VM), vastus lateralis (VL), and biceps femoris during WLs and SSqs. The resistance-trained (RT) and the non-resistance-trained (NT) groups (both n = 14) performed ipsilateral WLs, contralateral WLs, ipsilateral SSqs, and contralateral SSqs in a randomized order in a simulated training session. The EMG amplitude, expressed as a percentage of the maximal voluntary isometric contraction (%MVIC), and the kinematics, expressed as the range of motion (ROM) of the hip and knee, were measured during 5 repetition maximum for both legs. The repeated measure analyses of variance showed significant differences between the RT and NT groups. The NT group showed a smaller knee flexion ROM (p < 0.001, η = 0.36) during both types of WLs, whereas the RT group showed a higher eccentric Gmed amplitude (p < 0.001, η = 0.46) during all exercises and a higher eccentric VL amplitude (p < 0.001, η = 0.63) during contralateral WLs. Further differences were found between contralateral and ipsilateral WLs in both the RT (p < 0.001, η = 0.69) and NT groups (p < 0.001, η = 0.80), and contralateral WLs resulted in higher eccentric Gmed amplitudes. Contralateral WLs highly activated the Gmed (90% MVIC); therefore, this exercise can increase the Gmed maximal strength. The ipsilateral loading condition did not increase the Gmed or VM activity in the RT or NT group.

  8. Improving glucose tolerance by muscle-damaging exercise.

    PubMed

    Ho, Chien-Te; Otaka, Machiko; Kuo, Chia-Hua

    2017-04-01

    Tissue damage is regarded as an unwanted medical condition to be avoided. However, introducing tolerable tissue damages has been used as a therapeutic intervention in traditional and complementary medicine to cure discomfort and illness. Eccentric exercise is known to cause significant necrosis and insulin resistance of skeletal muscle. The purpose of this study was to determine the magnitude of muscle damage and blood glucose responses during an oral glucose tolerance test (OGTT) after eccentric training in 21 young participants. They were challenged by 5 times of 100-meter downhill sprinting and 20 times of squats training at 30 pounds weight load for 3 days, which resulted in a wide spectrum of muscle creatine kinase (CK) surges in plasma, 48 h after the last bout of exercise. Participants were then divided into two groups according the magnitude of CK increases (low CK: +48% ± 0.3; high CK: +137% ± 0.5, P < 0.05). Both groups show comparable decreases in blood glucose levels in OGTT, suggesting that this muscle-damaging exercise does not appear to decrease but rather improve glycemic control in men. The result of the study rejects the hypothesis that eccentric exercise decreases glucose tolerance. Improved glucose tolerance with CK increase implicates a beneficial effect of replacing metabolically weaker muscle fibers by eccentric exercise in Darwinian natural selection fashion.

  9. Eccentric Exercises Reduce Hamstring Strains in Elite Adult Male Soccer Players: A Critically Appraised Topic.

    PubMed

    Shadle, Ian B; Cacolice, Paul A

    2017-11-01

    Clinical Scenario: Hamstring strains are a common sport-related injury, which may limit athletic performance for an extended period of time. These injuries are common in the soccer setting. As such, it is important to determine an appropriate prevention program to minimize the risk of such an injury for these athletes. Eccentric hamstring training may be an effective and practical hamstring strain prevention strategy. What is the effect of eccentric exercises on hamstring strain prevention in adult male soccer players? Summary of Key Findings: Current literature was searched for studies of level 2 evidence or higher that investigated the effect of eccentric exercises in preventing hamstring strains in adult male soccer players. Three articles returned from the literature search met the inclusion criteria. A fourth article looked at differences in strength gains between eccentric and concentric hamstring strengthening exercises, but did not record hamstring strain incidence. A fifth article, a systematic review, met all the criteria except for the correct population. Of the 3 studies, 2 were randomized control trails and 1 was a cohort study. Clinical Bottom Line: There is robust supportive evidence that eccentric hamstring exercises can prevent a hamstring injury to an elite adult male soccer player. Therefore, it is recommended that athletic trainers and other sports medicine providers evaluate current practices relating to reducing hamstring strains and consider implementing eccentric exercise based prevention programs. Strength of Recommendation: All evidence was attained from articles with a level of evidence 2b or higher, based on the Center for Evidence-Based Medicine (CEBM) criteria, stating that eccentric exercises can decrease hamstring strains.

  10. Exercise training modulates the hepatic renin-angiotensin system in fructose-fed rats.

    PubMed

    Frantz, Eliete Dalla Corte; Medeiros, Renata Frauches; Giori, Isabele Gomes; Lima, Juliana Bittencourt Silveira; Bento-Bernardes, Thais; Gaique, Thaiane Gadioli; Fernandes-Santos, Caroline; Fernandes, Tiago; Oliveira, Edilamar Menezes; Vieira, Carla Paulo; Conte-Junior, Carlos Adam; Oliveira, Karen Jesus; Nobrega, Antonio Claudio Lucas

    2017-09-01

    What is the central question of this study? What are the effects of exercise training on the hepatic renin-angiotensin system and their contribution to damage resulting from fructose overload in rats? What is the main finding and its importance? Exercise training attenuated the deleterious actions of the angiotensin-converting enzyme/angiotensin II/angiotensin II type 1 receptor axis and increased expression of the counter-regulatory (angiotensin-converting enzyme 2/angiotensin (1-7)/Mas receptor) axis in the liver. Therefore, our study provides evidence that exercise training modulates the hepatic renin-angiotensin system, which contributes to reducing the progression of metabolic dysfunction and non-alcoholic fatty liver disease in fructose-fed rats. The renin-angiotensin system (RAS) has been implicated in the development of metabolic syndrome. We investigated whether the hepatic RAS is modulated by exercise training and whether this modulation improves the deleterious effects of fructose overload in rats. Male Wistar rats were divided into (n = 8 each) control (CT), exercise control (CT-Ex), high-fructose (HFr) and exercise high-fructose (HFr-Ex) groups. Fructose-drinking rats received d-fructose (100 g l -1 ). After 2 weeks, CT-Ex and HFr-Ex rats were assigned to a treadmill training protocol at moderate intensity for 8 weeks (60 min day -1 , 4 days per week). We assessed body mass, glucose and lipid metabolism, hepatic histopathology, angiotensin-converting enzyme (ACE) and angiotensin-converting enzyme 2 (ACE2) activity, the angiotensin concentration and the expression profile of proteins affecting the hepatic RAS, gluconeogenesis and inflammation. Neither fructose overload nor exercise training influenced body mass gain and serum ACE and ACE2 activity. The HFr group showed hyperinsulinaemia, but exercise training normalized this parameter. Exercise training was effective in preventing hepatic steatosis and in preventing triacylglycerol and glycogen accumulation. Furthermore, exercise improved the response to the deleterious effects of HFr overload by normalizing the gluconeogenesis pathway and the protein levels of interleukin-6 and tumour necrosis factor-α. The HFr rats displayed increased hepatic ACE activity and protein expression and angiotensin II concentration, which were attenuated by exercise training. Exercise training restored the ACE2/angiotensin-(1-7)/Mas receptor axis. Exercise training may favour the counter-regulatory ACE2/angiotensin-(1-7)/Mas receptor axis over the classical RAS (ACE/angiotensin II/angiotensin II type 1 receptor axis), which could be responsible for the reduction of metabolic dysfunction and the prevention of non-alcoholic fatty liver disease. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  11. Undulatory physical resistance training program increases maximal strength in elderly type 2 diabetics.

    PubMed

    Santos, Gilberto Monteiro dos; Montrezol, Fábio Tanil; Pauli, Luciana Santos Souza; Sartori-Cintra, Angélica Rossi; Colantonio, Emilson; Gomes, Ricardo José; Marinho, Rodolfo; Moura, Leandro Pereira de; Pauli, José Rodrigo

    2014-01-01

    To investigate the effects of a specific protocol of undulatory physical resistance training on maximal strength gains in elderly type 2 diabetics. The study included 48 subjects, aged between 60 and 85 years, of both genders. They were divided into two groups: Untrained Diabetic Elderly (n=19) with those who were not subjected to physical training and Trained Diabetic Elderly (n=29), with those who were subjected to undulatory physical resistance training. The participants were evaluated with several types of resistance training's equipment before and after training protocol, by test of one maximal repetition. The subjects were trained on undulatory resistance three times per week for a period of 16 weeks. The overload used in undulatory resistance training was equivalent to 50% of one maximal repetition and 70% of one maximal repetition, alternating weekly. Statistical analysis revealed significant differences (p<0.05) between pre-test and post-test over a period of 16 weeks. The average gains in strength were 43.20% (knee extension), 65.00% (knee flexion), 27.80% (supine sitting machine), 31.00% (rowing sitting), 43.90% (biceps pulley), and 21.10% (triceps pulley). Undulatory resistance training used with weekly different overloads was effective to provide significant gains in maximum strength in elderly type 2 diabetic individuals.

  12. Analysis of concentric and eccentric contractions in biceps brachii muscles using surface electromyography signals and multifractal analysis.

    PubMed

    Marri, Kiran; Swaminathan, Ramakrishnan

    2016-06-23

    Muscle contractions can be categorized into isometric, isotonic (concentric and eccentric) and isokinetic contractions. The eccentric contractions are very effective for promoting muscle hypertrophy and produce larger forces when compared to the concentric or isometric contractions. Surface electromyography signals are widely used for analyzing muscle activities. These signals are nonstationary, nonlinear and exhibit self-similar multifractal behavior. The research on surface electromyography signals using multifractal analysis is not well established for concentric and eccentric contractions. In this study, an attempt has been made to analyze the concentric and eccentric contractions associated with biceps brachii muscles using surface electromyography signals and multifractal detrended moving average algorithm. Surface electromyography signals were recorded from 20 healthy individuals while performing a single curl exercise. The preprocessed signals were divided into concentric and eccentric cycles and in turn divided into phases based on range of motion: lower (0°-90°) and upper (>90°). The segments of surface electromyography signal were subjected to multifractal detrended moving average algorithm, and multifractal features such as strength of multifractality, peak exponent value, maximum exponent and exponent index were extracted in addition to conventional linear features such as root mean square and median frequency. The results show that surface electromyography signals exhibit multifractal behavior in both concentric and eccentric cycles. The mean strength of multifractality increased by 15% in eccentric contraction compared to concentric contraction. The lowest and highest exponent index values are observed in the upper concentric and lower eccentric contractions, respectively. The multifractal features are observed to be helpful in differentiating surface electromyography signals along the range of motion as compared to root mean square and median frequency. It appears that these multifractal features extracted from the concentric and eccentric contractions can be useful in the assessment of surface electromyography signals in sports medicine and training and also in rehabilitation programs. © IMechE 2016.

  13. Swimming and cycling overloaded training in triathlon has no effect on running kinematics and economy.

    PubMed

    Palazzetti, S; Margaritis, I; Guezennec, C Y

    2005-04-01

    The aim of the study was to verify whether an overloaded training (OT) in triathlon deteriorates running kinematics (RK) and running economy (RE). Thirteen well-trained male long-distance triathletes (age: 28.1 +/- 4.3 yrs; V.O (2max): 65.0 +/- 3.1 ml O (2) . min (-1) . kg (-1)) were divided into two groups: completed an individualized OT program (OG; n = 7) or maintained a normal level of training (NT) (CG; n = 6) for a duration of 3 weeks. Every week, each triathlete completed a standardized questionnaire to quantify the influence of training loads on mood state. To reach OT, total training load (h . 3 wk (-1)) was increased by 24 %; swimming and cycling total volumes were increased by 46 and 57 %, respectively, but the distance run was not modified in order to limit the risk of injuries. RK and RE were determined on treadmill test at 12 km . h (-1) before and after the 3 weeks. The 3-week swimming and cycling OT in triathlon was sufficiently stressful to alter mood state but not to deteriorate the running kinematics and economy parameters in our previously well-trained male long-distance triathletes.

  14. The effects of a repeated bout of eccentric exercise on indices of muscle damage and delayed onset muscle soreness.

    PubMed

    Paddon-Jones, D; Muthalib, M; Jenkins, D

    2000-03-01

    This study examined markers of muscle damage following a repeated bout of maximal isokinetic eccentric exercise performed prior to full recovery from a previous bout. Twenty non-resistance trained volunteers were randomly assigned to a control (CON, n=10) or experimental (EXP, n=10) group. Both groups performed 36 maximal isokinetic eccentric contractions of the elbow flexors of the non-dominant arm (ECC1). The EXP group repeated the same eccentric exercise bout two days later (ECC2). Total work and peak eccentric torque were recorded during each set of ECC1 and ECC2. Isometric torque, delayed onset muscle soreness (DOMS), flexed elbow angle and plasma creatine kinase (CK) activity were measured prior to and immediately following ECC1 and ECC2. at 24h intervals for 7 days following ECC1 and finally on day 11. In both groups, all dependent variables changed significantly during the 2 days following ECC1. A further acute post-exercise impairment in isometric torque (30 +/- 5%) and flexed elbow angle (20 +/- 4%) was observed following ECC2 (p<0.05), despite EXP subjects producing uniformly lower work and peak eccentric torque values during ECC2 (p<0.05). No other significant differences between the CON and EXP groups were observed throughout the study (p>0.05). These findings suggest that when maximal isokinetic eccentric exercise is repeated two days after experiencing of contraction-induced muscle damage, the recovery time course is not significantly altered.

  15. Defense Planning for National Security: Navigation Aids for the Mystery Tour

    DTIC Science & Technology

    2014-03-01

    to provide in the necessary quantity. 2. Training: superior training regimes are not en- tirely reliable as keys to victory. Although rigorous... eccentric misbehavior, the question of how much tolerance is permissible should not be ignored. The reason is not simply academic pedant- ry. A single

  16. Undulatory physical resistance training program increases maximal strength in elderly type 2 diabetics

    PubMed Central

    dos Santos, Gilberto Monteiro; Montrezol, Fábio Tanil; Pauli, Luciana Santos Souza; Sartori-Cintra, Angélica Rossi; Colantonio, Emilson; Gomes, Ricardo José; Marinho, Rodolfo; de Moura, Leandro Pereira; Pauli, José Rodrigo

    2014-01-01

    Objective To investigate the effects of a specific protocol of undulatory physical resistance training on maximal strength gains in elderly type 2 diabetics. Methods The study included 48 subjects, aged between 60 and 85 years, of both genders. They were divided into two groups: Untrained Diabetic Elderly (n=19) with those who were not subjected to physical training and Trained Diabetic Elderly (n=29), with those who were subjected to undulatory physical resistance training. The participants were evaluated with several types of resistance training’s equipment before and after training protocol, by test of one maximal repetition. The subjects were trained on undulatory resistance three times per week for a period of 16 weeks. The overload used in undulatory resistance training was equivalent to 50% of one maximal repetition and 70% of one maximal repetition, alternating weekly. Statistical analysis revealed significant differences (p<0.05) between pre-test and post-test over a period of 16 weeks. Results The average gains in strength were 43.20% (knee extension), 65.00% (knee flexion), 27.80% (supine sitting machine), 31.00% (rowing sitting), 43.90% (biceps pulley), and 21.10% (triceps pulley). Conclusion Undulatory resistance training used with weekly different overloads was effective to provide significant gains in maximum strength in elderly type 2 diabetic individuals. PMID:25628192

  17. Effects of calisthenics and Pilates exercises on coordination and proprioception in adult women: a randomized controlled trial.

    PubMed

    Ozer Kaya, Derya; Duzgun, Irem; Baltaci, Gul; Karacan, Selma; Colakoglu, Filiz

    2012-08-01

    To assess and compare the effects of 6 mo of Pilates and calisthenics on multijoint coordination and proprioception of the lower limbs at the 3rd and 6th mo of training. Randomized, controlled, assessor-blinded, repeated-measures. University research laboratory. Healthy, sedentary, female participants age 25-50 y were recruited and randomly divided into 3 groups: a calisthenic exercise group (n = 34, mean age ± SD 40 ± 8 y, body-mass index [BMI] 31.04 ± 4.83 kg/m2), a Pilates exercise group (n = 32, mean age ± SD 37 ± 8 y, BMI 31.04 ± 4.83 kg/m2), and a control group (n = 41, mean age ± SD 41 ± 7 y, BMI 27.09 ± 4.77 kg/m2). The calisthenics and Pilates groups underwent related training programs for 6 mo, while the controls had no specific training. Coordination and proprioception of the lower extremities with concentric and eccentric performances in the closed kinetic chain assessed with the monitored rehab functional squat system at baseline and at the 3rd and 6th mo of training. For the within-group comparison, coordinative concentric and eccentric deviation values were significantly decreased for both dominant and nondominant lower limbs at pretraining and at the 3rd and 6th mo posttraining in the calisthenics group (P < .05). In contrast, there was no improvement in the Pilates group throughout the training. However, for comparisons between groups, the baseline values of coordinative concentric and eccentric deviations were different in the calisthenics group than in Pilates and the controls (P < .05). There were no differences in the proprioception values of either visible or nonvisible movement in any group throughout the training (P > .05). It seems that calisthenic exercises are more likely to improve coordination of the lower extremity after 3 and 6 mo of training than Pilates exercises. Calisthenic exercises may be useful for individuals who require improved coordination.

  18. An overload behavior detection system for engineering transport vehicles based on deep learning

    NASA Astrophysics Data System (ADS)

    Zhou, Libo; Wu, Gang

    2018-04-01

    This paper builds an overloaded truck detect system called ITMD to help traffic department automatically identify the engineering transport vehicles (commonly known as `dirt truck') in CCTV and determine whether the truck is overloaded or not. We build the ITMD system based on the Single Shot MultiBox Detector (SSD) model. By constructing the image dataset of the truck and adjusting hyper-parameters of the original SSD neural network, we successfully trained a basic network model which the ITMD system depends on. The basic ITMD system achieves 83.01% mAP on classifying overload/non-overload truck, which is a not bad result. Still, some shortcomings of basic ITMD system have been targeted to enhance: it is easy for the ITMD system to misclassify other similar vehicle as truck. In response to this problem, we optimized the basic ITMD system, which effectively reduced basic model's false recognition rate. The optimized ITMD system achieved 86.18% mAP on the test set, which is better than the 83.01% mAP of the basic ITMD system.

  19. Hamstring injury prevention in soccer: Before or after training?

    PubMed

    Lovell, R; Knox, M; Weston, M; Siegler, J C; Brennan, S; Marshall, P W M

    2018-02-01

    We examined the effects of a 12-week program of Nordic hamstring exercises (NHE), administered before or after football training, upon eccentric hamstring strength, muscle activity, and architectural adaptations. Amateur soccer players were randomized into three groups. The control group (CON; n=11) undertook core stability exercises, whereas a periodized NHE program was delivered either before (NHE BEF ; n=10) or after (NHE AFT ; n=14) biweekly training sessions. Outcome measures included peak torque and concomitant normalized peak surface electromyography signals (sEMG) of the biceps femoris (BF) and medial hamstring (MH) muscles during knee flexor maximal eccentric contractions, performed at 30°·s -1 . Ultrasonography was used to determine BF muscle thickness, muscle fiber pennation angle, and fascicle length. Performing the NHE derived likely moderate peak torque increases in both NHE BEF (+11.9%; 90% confidence interval: 3.6%-20.9%) and NHE AFT (+11.6%; 2.6%-21.5%) vs CON. Maximum sEMG increases were moderately greater in the BF of both NHE training groups vs CON. There were likely moderate increases in BF muscle thickness (+0.17 cm; 0.05-0.29 cm) and likely small pennation angle increases (+1.03°; -0.08° to 2.14°) in NHE AFT vs CON and NHE BEF . BF fascicle length increases were likely greater in NHE BEF (+1.58 cm; 0.48-2.68 cm; small effect) vs CON and NHE AFT . A 12-week eccentric hamstring strengthening program increased strength and sEMG to a similar magnitude irrespective of its scheduling relative to the football training session. However, architectural adaptations to support the strength gains differed according to the timing of the injury prevention program. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Heavy Slow Resistance Versus Eccentric Training as Treatment for Achilles Tendinopathy: A Randomized Controlled Trial.

    PubMed

    Beyer, Rikke; Kongsgaard, Mads; Hougs Kjær, Birgitte; Øhlenschlæger, Tommy; Kjær, Michael; Magnusson, S Peter

    2015-07-01

    Previous studies have shown that eccentric training has a positive effect on Achilles tendinopathy, but few randomized controlled trials have compared it with other loading-based treatment regimens. To evaluate the effectiveness of eccentric training (ECC) and heavy slow resistance training (HSR) among patients with midportion Achilles tendinopathy. Randomized controlled trial; Level of evidence, 1. A total of 58 patients with chronic (>3 months) midportion Achilles tendinopathy were randomized to ECC or HSR for 12 weeks. Function and symptoms (Victorian Institute of Sports Assessment-Achilles), tendon pain during activity (visual analog scale), tendon swelling, tendon neovascularization, and treatment satisfaction were assessed at 0 and 12 weeks and at the 52-week follow-up. Analyses were performed on an intention-to-treat basis. Both groups showed significant (P < .0001) improvements in Victorian Institute of Sports Assessment-Achilles and visual analog scale from 0 to 12 weeks, and these improvements were maintained at the 52-week follow-up. Concomitant with the clinical improvement, there was a significant reduction in tendon thickness and neovascularization. None of these robust clinical and structural improvements differed between the ECC and HSR groups. However, patient satisfaction tended to be greater after 12 weeks with HSR (100%) than with ECC (80%; P = .052) but not after 52 weeks (HSR, 96%; ECC, 76%; P = .10), and the mean training session compliance rate was 78% in the ECC group and 92% in the HSR group, with a significant difference between groups (P < .005). The results of this study show that both traditional ECC and HSR yield positive, equally good, lasting clinical results in patients with Achilles tendinopathy and that the latter tends to be associated with greater patient satisfaction after 12 weeks but not after 52 weeks. © 2015 The Author(s).

  1. Acute kinematic and kinetic adaptations to wearable resistance during vertical jumping.

    PubMed

    Macadam, Paul; Simperingham, Kim D; Cronin, John B; Couture, Grace; Evison, Chloe

    2017-06-01

    One variation of vertical jump (VJ) training is resisted or weighted jump training, where wearable resistance (WR) enables jumping to be overloaded in a movement specific manner. A two-way analysis of variance with Bonferroni post hoc contrasts was used to determine the acute changes in VJ performance with differing load magnitudes and load placements. Kinematic and kinetic data were quantified using a force plate and contact mat. Twenty sport active subjects (age: 27.8 ± 3.8 years; body mass (BM): 70.2 ± 12.2 kg; height: 1.74 ± 0.78 m) volunteered to participate in the study. Subjects performed the counter movement jump (CMJ), drop jump (DJ) and pogo jump (PJ) wearing no resistance, 3% or 6% BM affixed to the upper or lower body. The main finding in terms of the landing phase was that the effect of WR was non-significant (P > .05) on peak ground reaction force. With regard to the propulsive phase the main findings were that for both the CMJ and DJ, WR resulted in a significant (P < .05) decrease in jump height (CMJ: -12% to -17%, DJ: -10% to -14%); relative peak power (CMJ: -8% to -17%, DJ: -7% to -10%); and peak velocity (CMJ: -4% to -7%, DJ: -3% to -8%); while PJ reactive strength index was significantly reduced (-15% to -21%) with all WR conditions. Consideration should be given to the inclusion of WR in sports where VJ's are important components as it may provide a novel movement specific training stimulus. Highlights WR of 3 or 6 % BM provided a means to overload the subjects in this study resulting in decreased propulsive power and velocity that lead to a reduced jump height and landing force. Specific strength exercises that closely mimic sporting performance are more likely to optimise transference, therefore WR with light loads of 3-6% body mass (BM)appear a suitable tool for movement specific overload training and maximising transference to sporting performance. Practitioners can safely load their athletes with upper or lower body WR of 3-6% BM without fear of overloading the athletesover and above the landing forces they are typically accustomed too. As a training stimulus it would seem the WR loading provides adequate overload and athletes should focus on velocity of movement to improve power output and jump height i.e. take-off velocity.

  2. [Eccentric strength training for the rotator cuff tendinopathies with subacromial impingement. Current evidence].

    PubMed

    Macías-Hernández, Salvador Israel; Pérez-Ramírez, Luis Enrique

    2015-01-01

    Rotator cuff tears are the leading cause of pain and functional disability of the shoulder. Conservative treatment is an essential part of their management. Despite the limited evidence, rehabilitation is the mainstay of the treatment for rotator cuff tears associated to impingement syndrome. There are current reports on the utility of strengthening with resistance, particularly by eccentric exercise. This report aims to present an overview of the efficacy of eccentric exercises in tendinopathies and current evidence of its benefit in rotator cuff tears. We describe the information available in tendinopathy and analyzed four studies published on eccentric strengthening for rotator cuff tears. There is theoretical evidence about its usefulness in this pathology, but only a controlled clinical trial has been published with data on improvement in strength but not in pain or functionality. More studies are needed with better methodological designs in order to generate evidence of their utility and recommendation. Copyright © 2015. Published by Masson Doyma México S.A.

  3. Drop punt kicking induces eccentric knee flexor weakness associated with reductions in hamstring electromyographic activity.

    PubMed

    Duhig, Steven J; Williams, Morgan D; Minett, Geoffrey M; Opar, David; Shield, Anthony J

    2017-06-01

    To examine the effect of 100 drop punt kicks on isokinetic knee flexor strength and surface electromyographic activity of bicep femoris and medial hamstrings. Randomized control study. Thirty-six recreational footballers were randomly assigned to kicking or control groups. Dynamometry was conducted immediately before and after the kicking or 10min of sitting (control). Eccentric strength declined more in the kicking than the control group (p<0.001; d=1.60), with greater reductions in eccentric than concentric strength after kicking (p=0.001; d=0.92). No significant between group differences in concentric strength change were observed (p=0.089; d=0.60). The decline in normalized eccentric hamstring surface electromyographic activity (bicep femoris and medial hamstrings combined) was greater in the kicking than the control group (p<0.001; d=1.78), while changes in concentric hamstring surface electromyographic activity did not differ between groups (p=0.863; d=0.04). Post-kicking reductions in surface electromyographic activity were greater in eccentric than concentric actions for both bicep femoris (p=0.008; d=0.77) and medial hamstrings (p<0.001; d=1.11). In contrast, the control group exhibited smaller reductions in eccentric than concentric hamstring surface electromyographic activity for bicep femoris (p=0.026; d=0.64) and medial hamstrings (p=0.032; d=0.53). Reductions in bicep femoris surface electromyographic activity were correlated with eccentric strength decline (R=0.645; p=0.007). Reductions in knee flexor strength and hamstring surface electromyographic activity are largely limited to eccentric contractions and this should be considered when planning training loads in Australian Football. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  4. Recent advances in the understanding of the repeated bout effect: the protective effect against muscle damage from a single bout of eccentric exercise.

    PubMed

    McHugh, Malachy P

    2003-04-01

    The repeated bout effect refers to the adaptation whereby a single bout of eccentric exercise protects against muscle damage from subsequent eccentric bouts. While the mechanism for this adaptation is poorly understood there have been significant recent advances in the understanding of this phenomenon. The purpose of this review is to provide an update on previously proposed theories and address new theories that have been advanced. The potential adaptations have been categorized as neural, mechanical and cellular. There is some evidence to suggest that the repeated bout effect is associated with a shift toward greater recruitment of slow twitch motor units. However, the repeated bout effect has been demonstrated with electrically stimulated contractions, indicating that a peripheral, non-neural adaptation predominates. With respect to mechanical adaptations there is evidence that both dynamic and passive muscle stiffness increase with eccentric training but there are no studies on passive or dynamic stiffness adaptations to a single eccentric bout. The role of the cytoskeleton in regulating dynamic stiffness is a possible area for future research. With respect to cellular adaptations there is evidence of longitudinal addition of sarcomeres and adaptations in the inflammatory response following an initial bout of eccentric exercise. Addition of sarcomeres is thought to reduce sarcomere strain during eccentric contractions thereby avoiding sarcomere disruption. Inflammatory adaptations are thought to limit the proliferation of damage that typically occurs in the days following eccentric exercise. In conclusion, there have been significant advances in the understanding of the repeated bout effect, however, a unified theory explaining the mechanism or mechanisms for this protective adaptation remains elusive.

  5. Lower limb strength in professional soccer players: profile, asymmetry, and training age.

    PubMed

    Fousekis, Konstantinos; Tsepis, Elias; Vagenas, George

    2010-01-01

    Kicking and cutting skills in soccer are clearly unilateral, require asymmetrical motor patterns and lead to the development of asymmetrical adaptations in the musculoskeletal function of the lower limbs. Assuming that these adaptations constitute a chronicity-dependent process, this study examined the effects of professional training age (PTA) on the composite strength profile of the knee and ankle joint in soccer players. One hundred soccer players (n=100) with short (5-7 years), intermediate (8-10 years) and long (>11 years) PTA were tested bilaterally for isokinetic concentric and eccentric strength of the knee and ankle muscles. Knee flexion-extension was tested concentrically at 60°, 180° and 300 °/sec and eccentrically at 60° and 180 °/sec. Ankle dorsal and plantar flexions were tested at 60 °/sec for both the concentric and eccentric mode of action. Bilaterally averaged muscle strength [(R+L)/2] increased significantly from short training age to intermediate and stabilized afterwards. These strength adaptations were mainly observed at the concentric function of knee extensors at 60°/sec (p = 0. 023), knee flexors at 60°/sec (p = 0.042) and 180°/sec (p = 0.036), and ankle plantar flexors at 60o/sec (p = 0.044). A linear trend of increase in isokinetic strength with PTA level was observed for the eccentric strength of knee flexors at 60°/sec (p = 0.02) and 180°/sec (p = 0.03). Directional (R/L) asymmetries decreased with PTA, with this being mainly expressed in the concentric function of knee flexors at 180°/sec (p = 0.04) and at 300 °/sec (p = 0.03). These findings confirm the hypothesis of asymmetry in the strength adaptations that take place at the knee and ankle joint of soccer players mainly along with short and intermediate PTA. Players with a longer PTA seem to adopt a more balanced use of their lower extremities to cope with previously developed musculoskeletal asymmetries and possibly reduce injury risk. This has certain implications regarding proper training and injury prevention in relation to professional experience in soccer. Key pointsMuscle strength increased from the low (5-7 years) to the intermediate professional training age (8-10 years) and stabilized thereafter.Soccer practicing and competition at the professional level induces critical strength adaptations (asymmetries) regarding the function of the knee and ankle musculature.Soccer players with long professional training age showed a tendency for lower isokinetic strength asymmetries than players with intermediate and short professional training age.

  6. Electromyographic analysis of an eccentric calf muscle exercise in persons with and without Achilles tendinopathy.

    PubMed

    Reid, Duncan; McNair, Peter J; Johnson, Shelley; Potts, Geoff; Witvrouw, Erik; Mahieu, Nele

    2012-08-01

    To compare surface electromyographic (EMG) activity of the gastrocnemius and soleus muscles between persons with and without Achilles tendinopathy (AT) during an eccentric muscle exercise in different knee joint positions. Repeated measures design. Research laboratory. Participants (n = 18) diagnosed with AT and 18 control subjects were recruited. Gastrocnemius and soleus muscle activity was examined by surface (EMG) during extended and flexed knee joint conditions while performing the eccentric training technique. The EMG data were expressed as a percentage of a maximum voluntary contraction (MVC). EMG activity was notably higher (mean difference: 10%, effect size: 0.59) in those subjects with AT. Irrespective of the presence of AT, there was a significant interaction effect between muscle and joint position. The gastrocnemius muscle was significantly more active in the extended knee condition and soleus muscle activity was unchanged across joint positions. The results indicated that the presence of AT influenced calf muscle activity levels during performance of the eccentric exercise. There were differences in muscle activity during the extended and flexed knee conditions. This result does support performing Alfredson, Pietila, Jonsson, and Lorentzon (1998) eccentric exercise in an extended knee position but the specific effects of the knee flexed position on the Achilles tendon during eccentric exercise have yet to be determined, particularly in those with AT. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Neuromuscular Fatigue and Physiological Responses After Five Dynamic Squat Exercise Protocols.

    PubMed

    Raeder, Christian; Wiewelhove, Thimo; Westphal-Martinez, Marc P; Fernandez-Fernandez, Jaime; de Paula Simola, Rauno A; Kellmann, Michael; Meyer, Tim; Pfeiffer, Mark; Ferrauti, Alexander

    2016-04-01

    This aimed to analyze neuromuscular, physiological and perceptual responses to a single bout of 5 different dynamic squat exercise protocols. In a randomized and counterbalanced order, 15 male resistance-trained athletes (mean ± SD; age: 23.1 ± 1.9 years, body mass: 77.4 ± 8.0 kg) completed traditional multiple sets (MS: 4 × 6, 85% 1 repetition maximum [RM]), drop sets (DS: 1 × 6, 85% 1RM + 3 drop sets), eccentric overload (EO: 4 × 6, 70% 1RM concentric, 100% 1RM eccentric), flywheel YoYo squat (FW: 4 × 6, all-out), and a plyometric jump protocol (PJ: 4 × 15, all-out). Blood lactate (La), ratings of perceived exertion (RPE), counter movement jump height (CMJ), multiple rebound jump (MRJ) performance, maximal voluntary isometric contraction force, serum creatine kinase (CK) and delayed onset muscle soreness were measured. Immediately post exercise, La was significantly (p < 0.001) higher in FW (mean ± 95% confidence limit; 12.2 ± 0.9 mmol·L) and lower in PJ (3.0 ± 0.8 mmol·L) compared with MS (7.7 ± 1.5 mmol·L), DS (8.5 ± 0.6 mmol·L), and EO (8.2 ± 1.6 mmol·L), accompanied by similar RPE responses. Neuromuscular performance (CMJ, MRJ) significantly remained decreased (p < 0.001) from 0.5 to 48 hours post exercise in all protocols. There was a significant time × protocol interaction (p ≤ 0.05) in MRJ with a significant lower performance in DS, EO, and FW compared with PJ (0.5 hours post exercise), and in EO compared with all other protocols (24 hours post exercise). A significant main time effect with peak values 24 hours post exercise was observed in CK serum concentrations (p < 0.001), but there was no time × protocol interaction. In conclusion, (a) metabolic and perceptual demands were higher in FW and EO compared with MS, DS and PJ, (b) neuromuscular fatigue was consistent up to 48 hours post exercise in all protocols, and (c) EO induced the greatest neuromuscular fatigue.

  8. Changes in skeletal muscle gene expression consequent to altered weight bearing

    NASA Technical Reports Server (NTRS)

    Booth, F. W.; Kirby, C. R.

    1992-01-01

    Skeletal muscle is a dynamic organ that adapts to alterations in weight bearing. This brief review examines changes in muscle gene expression resulting from the removal of weight bearing by hindlimb suspension and from increased weight bearing due to eccentric exercise. Acute (less than or equal to 2 days) non-weight bearing of adult rat soleus muscle alters only the translational control of muscle gene expression, while chronic (greater than or equal to 7 days) removal of weight bearing appears to influence pretranslational, translational, and posttranslational mechanisms of control. Acute and chronic eccentric exercise are associated with alterations of translational and posttranslational control, while chronic eccentric training also alters the pretranslational control of muscle gene expression. Thus alterations in weight bearing influence multiple sites of gene regulation.

  9. The Influence of Training Phase on Error of Measurement in Jump Performance.

    PubMed

    Taylor, Kristie-Lee; Hopkins, Will G; Chapman, Dale W; Cronin, John B

    2016-03-01

    The purpose of this study was to calculate the coefficients of variation in jump performance for individual participants in multiple trials over time to determine the extent to which there are real differences in the error of measurement between participants. The effect of training phase on measurement error was also investigated. Six subjects participated in a resistance-training intervention for 12 wk with mean power from a countermovement jump measured 6 d/wk. Using a mixed-model meta-analysis, differences between subjects, within-subject changes between training phases, and the mean error values during different phases of training were examined. Small, substantial factor differences of 1.11 were observed between subjects; however, the finding was unclear based on the width of the confidence limits. The mean error was clearly higher during overload training than baseline training, by a factor of ×/÷ 1.3 (confidence limits 1.0-1.6). The random factor representing the interaction between subjects and training phases revealed further substantial differences of ×/÷ 1.2 (1.1-1.3), indicating that on average, the error of measurement in some subjects changes more than in others when overload training is introduced. The results from this study provide the first indication that within-subject variability in performance is substantially different between training phases and, possibly, different between individuals. The implications of these findings for monitoring individuals and estimating sample size are discussed.

  10. The Effects of Eccentric, Velocity-Based Training on Strength and Power in Collegiate Athletes

    PubMed Central

    DOLEZAL, SAMANTHA M.; FRESE, DEREK L.; LLEWELLYN, TAMRA L.

    2016-01-01

    The purpose of this study was to determine if combining velocity-based training with eccentric focus (VEB) and velocity-based training (VBT) results in power and strength gains. Nineteen men and women collegiate track and field athletes participated in this study. The subjects completed a 12-week intervention with either a VEB program or a VBT program. To determine the effectiveness of each program, the subjects completed four exercise tests before and after the training period: vertical jump, medicine ball put test, 1RM projected bench press and 1RM projected squat. There were no significant differences between the VBT results and the VEB results. However, there were significant improvements between the pre-test and post-test measures for each group. There were increases in 1RM projected squat for VEB men, VBT men, and VBT women. There were also significant improvements in the VEB male vertical jump and medicine ball put test pre- to post-intervention. For track and field athletes, both programs may result in strength and power gains, however, the results cannot be used to conclude that one resistance training program is superior. PMID:27990226

  11. The Effects of Eccentric, Velocity-Based Training on Strength and Power in Collegiate Athletes.

    PubMed

    Dolezal, Samantha M; Frese, Derek L; Llewellyn, Tamra L

    2016-01-01

    The purpose of this study was to determine if combining velocity-based training with eccentric focus (VEB) and velocity-based training (VBT) results in power and strength gains. Nineteen men and women collegiate track and field athletes participated in this study. The subjects completed a 12-week intervention with either a VEB program or a VBT program. To determine the effectiveness of each program, the subjects completed four exercise tests before and after the training period: vertical jump, medicine ball put test, 1RM projected bench press and 1RM projected squat. There were no significant differences between the VBT results and the VEB results. However, there were significant improvements between the pre-test and post-test measures for each group. There were increases in 1RM projected squat for VEB men, VBT men, and VBT women. There were also significant improvements in the VEB male vertical jump and medicine ball put test pre- to post-intervention. For track and field athletes, both programs may result in strength and power gains, however, the results cannot be used to conclude that one resistance training program is superior.

  12. Effect of Progressive Volume-Based Overload During Plyometric Training on Explosive and Endurance Performance in Young Soccer Players.

    PubMed

    Ramírez-Campillo, Rodrigo; Henríquez-Olguín, Carlos; Burgos, Carlos; Andrade, David C; Zapata, Daniel; Martínez, Cristian; Álvarez, Cristian; Baez, Eduardo I; Castro-Sepúlveda, Mauricio; Peñailillo, Luis; Izquierdo, Mikel

    2015-07-01

    The purpose of the study was to compare the effects of progressive volume-based overload with constant volume-based overload on muscle explosive and endurance performance adaptations during a biweekly short-term (i.e., 6 weeks) plyometric training intervention in young soccer players. Three groups of young soccer players (age 13.0 ± 2.3 years) were divided into: control (CG; n = 8) and plyometric training with (PPT; n = 8) and without (NPPT; n = 8) a progressive increase in volume (i.e., 16 jumps per leg per week, with an initial volume of 80 jumps per leg each session). Bilateral and unilateral horizontal and vertical countermovement jump with arms (CMJA), 20-cm drop jump reactive strength index (RSI20), maximal kicking velocity (MKV), 10-m sprint, change of direction speed (CODS), and Yo-Yo intermittent recovery level 1 test (Yo-Yo IR1) were measured. Although both experimental groups significantly increased CMJA, RSI20, CODS, and endurance performance, only PPT showed a significant improvement in MKV and 10-m sprint time. In addition, only PPT showed a significantly higher performance improvement in jumping, MKV, and Yo-Yo IR1 compared with CG. Also, PPT showed higher meaningful improvement compared with NPPT in all (except 1) jump performance measures. Furthermore, although PPT involved a higher total volume compared with NPPT, training efficiency (i.e., percentage change in performance/total jump volume) was similar between groups. Our results show that PPT and NPPT ensured significant improvement in muscle explosive and endurance performance measures. However, a progressive increase in plyometric training volume seems more advantageous to induce soccer-specific performance improvements.

  13. Exercise-Induced Skeletal Muscle Damage.

    PubMed

    Evans, W J

    1987-01-01

    In brief: Delayed-onset muscle soreness is most likely caused by structural damage in skeletal muscle after eccentric exercise, in which muscles produce force while lengthening, as in running downhill. This damage may take as long as 12 weeks to repair. Therefore, athletes should allow plenty of time for recovery after events that cause extreme muscle soreness. Because prostaglandin E2 may be important in muscle repair, prostaglandin blockers, such as aspirin, may be useless or even detrimental in the treatment of delayed-onset muscle soreness. Eccentric exercise training may help prevent soreness.

  14. Does the Dumbbell-Carrying Position Change the Muscle Activity in Split Squats and Walking Lunges?

    PubMed Central

    Lehnert, Michal; Zaatar, Amr M.Z.; Svoboda, Zdenek; Xaverova, Zuzana

    2015-01-01

    Abstract Stastny, P, Lehnert, M, Zaatar, AMZ, Svoboda, Z, and Xaverova, Z. Does the dumbbell-carrying position change the muscle activity in split squats and walking lunges? J Strength Cond Res 29(11): 3177–3187, 2015—The forward walking lunge (WL) and split squat (SSq) are similar exercises that have differences in the eccentric phase, and both can be performed in the ipsilateral or contralateral carrying conditions. This study aimed to determine the effects of dumbbell-carrying position on the kinematics and electromyographic (EMG) amplitudes of the gluteus medius (Gmed), vastus medialis (VM), vastus lateralis (VL), and biceps femoris during WLs and SSqs. The resistance-trained (RT) and the non–resistance-trained (NT) groups (both n = 14) performed ipsilateral WLs, contralateral WLs, ipsilateral SSqs, and contralateral SSqs in a randomized order in a simulated training session. The EMG amplitude, expressed as a percentage of the maximal voluntary isometric contraction (%MVIC), and the kinematics, expressed as the range of motion (ROM) of the hip and knee, were measured during 5 repetition maximum for both legs. The repeated measure analyses of variance showed significant differences between the RT and NT groups. The NT group showed a smaller knee flexion ROM (p < 0.001, η2 = 0.36) during both types of WLs, whereas the RT group showed a higher eccentric Gmed amplitude (p < 0.001, η2 = 0.46) during all exercises and a higher eccentric VL amplitude (p < 0.001, η2 = 0.63) during contralateral WLs. Further differences were found between contralateral and ipsilateral WLs in both the RT (p < 0.001, η2 = 0.69) and NT groups (p < 0.001, η2 = 0.80), and contralateral WLs resulted in higher eccentric Gmed amplitudes. Contralateral WLs highly activated the Gmed (90% MVIC); therefore, this exercise can increase the Gmed maximal strength. The ipsilateral loading condition did not increase the Gmed or VM activity in the RT or NT group. PMID:25968228

  15. Consistency of peak and mean concentric and eccentric force using a novel squat testing device.

    PubMed

    Stock, Matt S; Luera, Micheal J

    2014-04-01

    The ability to examine force curves from multiple-joint assessments combines many of the benefits of dynamic constant external resistance exercise and isokinetic dynamometry. The purpose of this investigation was to examine test-retest reliability statistics for peak and mean force using the Exerbotics eSQ during maximal concentric and eccentric squats. Seventeen resistance-trained men (mean±SD age=21±2 years) visited the laboratory on two occasions. For each trial, the subjects performed two maximal concentric and eccentric squats, and the muscle actions with the highest force values were analyzed. There were no mean differences between the trials (P>.05), and the effect sizes were <0.12. When the entire force curve was examined, the intraclass correlation coefficients (model 2,1) and standard errors of measurement, respectively, were concentric peak force=0.743 (8.8%); concentric mean force=0.804 (6.0%); eccentric peak force=0.696 (10.6%); eccentric mean force=0.736 (9.6%). These findings indicated moderate-to-high reliability for the peak and mean force values obtained from the Exerbotics eSQ during maximal squat testing. The analysis of force curves from multiple-joint testing provides researchers and practitioners with a reliable means of assessing performance, especially during concentric muscle actions.

  16. Generalization of vestibular learning to earth-fixed targets is possible but limited when the polarity of afferent vestibular information is changed.

    PubMed

    Mackrous, I; Simoneau, M

    2014-02-28

    To maintain perception of the world around us during body motion, the brain must update the spatial presentation of visual stimuli, known as space updating. Previous studies have demonstrated that vestibular signals contribute to space updating. Nonetheless, when being passively rotated in the dark, the ability to keep track of a memorized earth-fixed target (EFT) involves learning mechanism(s). We tested whether such learning generalizes across different EFT eccentricities. Furthermore, we ascertained whether learning transfers to similar target eccentricities but in the opposite direction. Participants were trained to predict the position of an EFT (located at 45° to their left) while being rotated counterclockwise (i.e., they press a push button when they perceived that their body midline have cross the position of the target). Overall, the results indicated that learning transferred to other target eccentricity (30° and 60°) for identical body rotation direction. In contrast, vestibular learning partly transferred to target location's matching body rotation but in the opposite rotation direction. Generalization of learning implies that participants do not adopt cognitive strategies to improve their performance during training. We argue that the brain learned to use vestibular signals for space updating. Generalization of learning while being rotated in the opposite direction implies that some parts of the neural networks involved in space updating is shared between trained and untrained direction. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  17. Posterior Rotator Cuff Strengthening Using Theraband® in a Functional Diagonal Pattern in Collegiate Baseball Pitchers

    PubMed Central

    Page, Phillip A.; Lamberth, John; Abadie, Ben; Boling, Robert; Collins, Robert; Linton, Russell

    1993-01-01

    The deceleration phase of the pitching mechanism requires forceful eccentric contraction of the posterior rotator cuff. Because traditional isotonic strengthening may not be specific to this eccentric pattern, a more effective and functional means of strengthening the posterior rotator cuff is needed. Twelve collegiate baseball pitchers performed a moderate intensity isotonic dumbbell strengthening routine for 6 weeks. Six of the 12 subjects were randomly assigned to an experimental group and placed on a Theraband® Elastic Band strengthening routine in a functional-diagonal pattern to emphasize the eccentric contraction of the posterior rotator cuff, in addition to the isotonic routine. The control group (n = 6) performed only the isotonic exercises. Both groups were evaluated on a KIN-COM® isokinetic dynamometer in a functional diagonal pattern. Pretest and posttest average eccentric force production of the posterior rotator cuff was compared at two speeds, 60 and 180°/s. Data were analyzed with an analysis of covariance at the .05 level with significance at 60°/s. Values at 180°/s, however, were not significant. Eccentric force production at 60°/s increased more during training in the experimental group (+19.8%) than in the control group (-1.6%). There was no difference in the two groups at 180°/s; both decreased (8 to 15%). Theraband was effective at 60°/s in functional eccentric strengthening of the posterior rotator cuff in the pitching shoulder. ImagesFig 1. PMID:16558251

  18. Exercise-Based Fall Prevention in the Elderly: What About Agility?

    PubMed

    Donath, Lars; van Dieën, Jaap; Faude, Oliver

    2016-02-01

    Annually, one in three seniors aged over 65 years fall. Balance and strength training can reduce neuromuscular fall risk factors and fall rates. Besides conventional balance and strength training, explosive or high-velocity strength training, eccentric exercises, perturbation-based balance training, trunk strength, and trunk control have also been emphasized. In contrast, aerobic exercise has to date not been included in fall-prevention studies. However, well-developed endurance capacity might attenuate fatigue-induced declines in postural control in sports-related or general activities of daily living. Physical performance indices, such as balance, strength, and endurance, are generally addressed independently in exercise guidelines. This approach seems time consuming and may impede integrative training of sensorimotor, neuromuscular, and cardiocirculatory functions required to deal with balance-threatening situations in the elderly. An agility-based conceptual training framework comprising perception and decision making (e.g., visual scanning, pattern recognition, anticipation) and changes of direction (e.g., sudden starts, stops and turns; reactive control; concentric and eccentric contractions) might enable an integrative neuromuscular, cardiocirculatory, and cognitive training. The present paper aims to provide a scientific sketch of how to build such an integrated modular training approach, allowing adaptation of intensity, complexity, and cognitive challenge of the agility tasks to the participant's capacity. Subsequent research should address the (1) link between agility and fall risk factors as well as fall rates, (2) benefit-risk ratios of the proposed approach, (3) psychosocial aspects of agility training (e.g., motivation), and (4) logistical requirements (e.g., equipment needed).

  19. Four Weeks of Nordic Hamstring Exercise Reduce Muscle Injury Risk Factors in Young Adults.

    PubMed

    Ribeiro-Alvares, João Breno; Marques, Vanessa B; Vaz, Marco A; Baroni, Bruno M

    2018-05-01

    Ribeiro-Alvares, JB, Marques, VB, Vaz, MA, and Baroni, BM. Four weeks of Nordic hamstring exercise reduce muscle injury risk factors in young adults. J Strength Cond Res 32(5): 1254-1262, 2018-The Nordic hamstring exercise (NHE) is a field-based exercise designed for knee-flexor eccentric strengthening, aimed at prevention of muscle strains. However, possible effects of NHE programs on other hamstring injury risk factors remain unclear. The purpose of this study was to investigate the effects of a NHE training program on multiple hamstring injury risk factors. Twenty physically active young adults were allocated into 2 equal-sized groups: control group (CG) and training group (TG). The TG was engaged in a 4-week NHE program, twice a week, 3 sets of 6-10 repetitions; while CG received no exercise intervention. The knee flexor and extensor strength were assessed through isokinetic dynamometry, the biceps femoris long head muscle architecture through ultrasound images, and the hamstring flexibility through sit-and-reach test. The results showed that CG subjects had no significant change in any outcome. TG presented higher percent changes than CG for hamstring isometric peak torque (9%; effect size [ES] = 0.27), eccentric peak torque (13%; ES = 0.60), eccentric work (18%; ES = 0.86), and functional hamstring-to-quadriceps torque ratio (13%; ES = 0.80). The NHE program led also to increased fascicle length (22%; ES = 2.77) and reduced pennation angle (-17%; ES = 1.27) in biceps femoris long head of the TG, without significant changes on muscle thickness. In conclusion, a short-term NHE training program (4 weeks; 8 training sessions) counteracts multiple hamstring injury risk factors in physically active young adults.

  20. Supramaximal Eccentrics Versus Traditional Loading in Improving Lower-Body 1RM: A Meta-Analysis.

    PubMed

    Buskard, Andrew N L; Gregg, Heath R; Ahn, Soyeon

    2018-06-11

    Guidelines for improving maximal concentric strength through resistance training (RT) have traditionally included large muscle-group exercises, full ranges of motion, and a load approximating 85% of the 1-repetition maximum (1RM). Supramaximal eccentric training (SME; controlled lowering of loads above the concentric 1RM) has also been shown to be effective at increasing concentric 1RM in the lower body, but concerns regarding injury risk, postexercise soreness, and null benefit over traditional methods (TRAD) may limit the practical utility of this approach. The purpose of this study was to determine whether SME elicits greater lower-body strength improvements than TRAD. Key inclusion criteria were regular exercise modalities typical of nonspecialized exercise facilities (e.g., leg press; key exclusion: isokinetic dynamometer) and at least 6 weeks of RT exposure, leading to 5 studies included in the current meta-analysis. Unbiased effect-size measures that quantify the mean difference in lower-body 1RM between SME and TRAD were extracted. Supramaximal eccentric training did not appear to be more effective than TRAD at increasing lower-body 1RM ([Formula: see text] = .33, SE = .26, z = 1.26, 95% CI [-0.20, 0.79], p = .20, I 2  = 56.78%) under a random-effects model where between-study variance was estimated using maximum likelihood estimation ([Formula: see text] 2 = .25). The selection of SME over TRAD in RT programs designed to increase lower-body 1RM does not appear warranted in all populations. Further research should clarify the merit of periodic SME in TRAD-dominant RT programs as well as whether a differential effect exists in trained individuals.

  1. The effects of short-term exercise training on peak-torque are time- and fiber-type dependent.

    PubMed

    Ureczky, Dóra; Vácz, Gabriella; Costa, Andreas; Kopper, Bence; Lacza, Zsombor; Hortobágyi, Tibor; Tihanyi, József

    2014-08-01

    We examined the susceptibility of fast and slow twitch muscle fibers in the quadriceps muscle to eccentric exercise-induced muscle damage. Nine healthy men (age: 22.5 ± 1.6 years) performed maximal eccentric quadriceps contractions at 120°·s-1 over a 120° of knee joint range of motion for 6 consecutive days. Biopsies were taken from the vastus lateralis muscle before repeated bouts of eccentric exercise on the third and seventh day. Immunohistochemical procedures were used to determine fiber composition and fibronectin activity. Creatine kinase (CK) and lactate dehydrogenase (LDH) were determined in serum. Average torque was calculated in each day for each subject. Relative to baseline, average torque decreased 37.4% till day 3 and increased 43.0% from the day 3 to day 6 (p < 0.001). Creatine kinase and LDH were 70.6 and 1.5 times higher on day 3 and 75.5 and 1.4 times higher on day 6. Fibronectin was found in fast fibers in subjects with high CK level on day 3 and 7 after exercise, but on day 7, fibronectin seemed in both slow and fast fibers except in muscles of 2 subjects with high fast fiber percentage. Peak torque and muscle fiber-type composition measured at baseline showed a strong positive association on day 3 (r = 0.76, p < 0.02) and strong negative association during recovery between day 3 and day 6 (r = -0.76, p < 0.02), and day 1 and day 6 (r = 0.84, p < 0.001). We conclude that the damage of fast fibers preceded the damage of slow fibers, and muscles with slow fiber dominance were more susceptible to repeated bouts of eccentric exercise than fast fiber dominance muscles. The data suggest that the responses to repeated bouts of eccentric exercise are fiber-type-dependent in the quadriceps muscle, which can be the basis for the design of individualized strength training protocols.

  2. Ankle and knee kinetics between strike patterns at common training speeds in competitive male runners.

    PubMed

    Kuhman, Daniel; Melcher, Daniel; Paquette, Max R

    2016-01-01

    The purpose of this study was to investigate the interaction of foot strike and common speeds on sagittal plane ankle and knee joint kinetics in competitive rear foot strike (RFS) runners when running with a RFS pattern and an imposed forefoot strike (FFS) pattern. Sixteen competitive habitual male RFS runners ran at two different speeds (i.e. 8 and 6 min mile(-1)) using their habitual RFS and an imposed FFS pattern. A repeated measures analysis of variance was used to assess a potential interaction between strike pattern and speed for selected ground reaction force (GRF) variables and, sagittal plane ankle and knee kinematic and kinetic variables. No foot strike and speed interaction was observed for any of the kinetic variables. Habitual RFS yielded a greater loading rate of the vertical GRF, peak ankle dorsiflexor moment, peak knee extensor moment, peak knee eccentric extensor power, peak dorsiflexion and sagittal plane knee range of motion compared to imposed FFS. Imposed FFS yielded greater maximum vertical GRF, peak ankle plantarflexor moment, peak ankle eccentric plantarflexor power and sagittal plane ankle ROM compared to habitual RFS. Consistent with previous literature, imposed FFS in habitual RFS reduces eccentric knee extensor and ankle dorsiflexor involvement but produce greater eccentric ankle plantarflexor action compared to RFS. These acute differences between strike patterns were independent of running speeds equivalent to typical easy and hard training runs in competitive male runners. Current findings along with previous literature suggest differences in lower extremity kinetics between habitual RFS and imposed FFS running are consistent among a variety of runner populations.

  3. The Effect of Body Mass on Eccentric Knee-Flexor Strength Assessed With an Instrumented Nordic Hamstring Device (Nordbord) in Football Players.

    PubMed

    Buchheit, Martin; Cholley, Yannick; Nagel, Mark; Poulos, Nicholas

    2016-09-01

    To examine the effect of body mass (BM) on eccentric knee-flexor strength using the Nordbord and offer simple guidelines to control for the effect of BM on knee-flexor strength. Data from 81 soccer players (U17, U19, U21, senior 4th French division, and professionals) and 41 Australian Football League (AFL) players were used for analysis. They all performed 1 set of 3 maximal repetitions of the bilateral Nordic hamstring exercise, with the greatest strength measure used for analysis. The main regression equation obtained from the overall sample was used to predict eccentric knee-flexor strength from a given BM (moderate TEE, 22%). Individual deviations from the BM-predicted score were used as a BM-free index of eccentric knee- flexor strength. There was a large (r = .55, 90% confidence limits .42;.64) correlation between eccentric knee-flexor strength and BM. Heavier and older players (professionals, 4th French division, and AFL) outperformed their lighter and younger (U17-U21) counterparts, with the soccer professionals presenting the highest absolute strength. Professional soccer players were the only ones to show strength values likely slightly greater than those expected for their BM. Eccentric knee-flexor strength, as assessed with the Nordbord, is largely BM-dependent. To control for this effect, practitioners may compare actual test performances with the expected strength for a given BM, using the following predictive equation: Eccentric strength (N) = 4 × BM (kg) + 26.1. Professional soccer players with specific knee-flexor-training history and enhanced neuromuscular performance may show higher than expected values.

  4. Cardiovascular responses to aerobic step dance sessions with and without appendicular overload.

    PubMed

    La Torre, A; Impellizzeri, F M; Rampinini, E; Casanova, F; Alberti, G; Marcora, S M

    2005-09-01

    Several studies showed that exercise intensity during aerobic step dance can be modified varying stepping rate, bench height and manipulating body mass using hand held or adding loads to the torso. The aim of this study was to determine the cardiovascular responses during aerobic step dance using an overload strategy not yet investigated: appendicular overload. Ten healthy and moderately trained women (mean+/-SD: age 27+/-3.4 years, height 167.8+/-4.6 cm, body mass 55.7+/-4.7 kg, body mass index 19.8+/-1.6, VO2max44.4+/-6.1 mLxkg-1xmin-1) performed an incremental treadmill test to determine VO2peak, the VO2-heart rate (HR) and rating of perceived exertion (RPE)-HR relationships. Within 1 week from the laboratory test, the subjects performed two identical aerobic step dance routines: one using a track suit with loads placed in pockets close to the legs and arms and another without overload. The appendicular overload (10% of body mass) significantly increased the exercise intensity from 84.5% to 89.8% of HRmax corresponding to 68.9% and 78.3% of VO2peak, respectively (P<0.01). Similarly, RPE increased from 12.1 to 15.7 (P<0.001). The estimated VO2 and the caloric expenditure rose from 30.3 to 34.7 mLxkg-1xmin-1 and from 251 to 288 kcal, respectively. This study shows that the use of appendicular overload significantly increases the energy cost of aerobic step session similarly to other overload strategies already reported in the literature.

  5. A Simplified Method of Identifying the Trained Retinal Locus for Training in Eccentric Viewing

    ERIC Educational Resources Information Center

    Vukicevic, Meri; Le, Anh; Baglin, James

    2012-01-01

    In the typical human visual system, the macula allows for high visual resolution. Damage to this area from diseases, such as age-related macular degeneration (AMD), causes the loss of central vision in the form of a central scotoma. Since no treatment is available to reverse AMD, providing low vision rehabilitation to compensate for the loss of…

  6. Spontaneous and training-induced cortical plasticity in MD patients: Hints from lateral masking.

    PubMed

    Maniglia, Marcello; Soler, Vincent; Cottereau, Benoit; Trotter, Yves

    2018-01-08

    Macular degeneration (MD) affects central vision and represents the leading cause of visual diseases in elderly population worldwide. As a consequence of central vision loss, MD patients develop a preferred retinal locus (PRL), an eccentric fixation point that replaces the fovea. Here, our aim was to determine whether and to what extent spontaneous plasticity takes place in the cortical regions formerly responding to central vision and whether a visual training based on perceptual learning (PL) can boost this plasticity within the PRL area. Spontaneous and PL-induced cortical plasticity were characterized by using lateral masking, a contrast sensitivity modulation induced by collinear flankers. This configuration is known to be sensitive to neural plasticity and underlies several rehabilitation trainings. Results in a group of 4 MD patients showed that collinear facilitation was similar to what observed in age- and eccentricity-matched controls. However, MD patients exhibited significantly reduced collinear inhibition, a sign of neural plasticity, consistent with the hypothesis of partial cortical reorganization. Three AMD patients from the same group showed a further reduction of inhibition after training, but not controls. This result suggests that PL might further boost neural plasticity, opening promising perspectives for the development of rehabilitation protocols for MD patients.

  7. Effect of acute augmented feedback on between limb asymmetries and eccentric knee flexor strength during the Nordic hamstring exercise.

    PubMed

    Chalker, Wade J; Shield, Anthony J; Opar, David A; Rathbone, Evelyne N; Keogh, Justin W L

    2018-01-01

    Hamstring strain injuries (HSI) are one of the most prevalent and serious injuries affecting athletes, particularly those in team ball sports or track and field. Recent evidence demonstrates that eccentric knee flexor weakness and between limb asymmetries are possible risk factors for HSIs. While eccentric hamstring resistance training, e.g. the Nordic hamstring exercise (NHE) significantly increases eccentric hamstring strength and reduces HSI risk, little research has examined whether between limb asymmetries can be reduced with training. As augmented feedback (AF) can produce significant acute and chronic increases in muscular strength and reduce injury risk, one way to address the limitation in the eccentric hamstring training literature may be to provide athletes real-time visual AF of their NHE force outputs with the goal to minimise the between limb asymmetry. Using a cross over study design, 44 injury free, male cricket players from two skill levels performed two NHE sessions on a testing device. The two NHE sessions were identical with the exception of AF, with the two groups randomised to perform the sessions with and without visual feedback of each limb's force production in real-time. When performing the NHE with visual AF, the participants were provided with the following instructions to 'reduce limb asymmetries as much as possible using the real-time visual force outputs displayed in front them'. Between limb asymmetries and mean peak force outputs were compared between the two feedback conditions (FB1 and FB2) using independent t -tests to ensure there was no carryover effect, and to determine any period and treatment effects. The magnitude of the differences in the force outputs were also examined using Cohen d effect size. There was a significant increase in mean peak force production when feedback was provided (mean difference, 21.7 N; 95% CI [0.2-42.3 N]; P = 0.048; d = 0.61) and no significant difference in between limb asymmetry for feedback or no feedback (mean difference, 5.7%; 95% CI [-2.8% to 14.3%]; P = 0.184; d = 0.41). Increases in force production under feedback were a result of increased weak limb (mean difference, 15.0 N; 95% CI [1.6-28.5 N]; P = 0.029; d = 0.22) force contribution compared to the strong limb. The results of this study further support the potential utility of AF in improving force production and reducing risk in athletic populations. While there are currently some financial limitations to the application of this training approach, even in high-performance sport, such an approach may improve outcomes for HSI prevention programs. Further research with more homogenous populations over greater periods of time that assess the chronic effect of such training practices on injury risk factors and injury rates are also recommended.

  8. Force-Velocity, Impulse-Momentum Relationships: Implications for Efficacy of Purposefully Slow Resistance Training

    PubMed Central

    Schilling, Brian K.; Falvo, Michael J.; Chiu, Loren Z.F.

    2008-01-01

    The purpose of this brief review is to explain the mechanical relationship between impulse and momentum when resistance exercise is performed in a purposefully slow manner (PS). PS is recognized by ~10s concentric and ~4-10s eccentric actions. While several papers have reviewed the effects of PS, none has yet explained such resistance training in the context of the impulse-momentum relationship. A case study of normal versus PS back squats was also performed. An 85kg man performed both normal speed (3 sec eccentric action and maximal acceleration concentric action) and PS back squats over a several loads. Normal speed back squats produced both greater peak and mean propulsive forces than PS action when measured across all loads. However, TUT was greatly increased in the PS condition, with values fourfold greater than maximal acceleration repetitions. The data and explanation herein point to superior forces produced by the neuromuscular system via traditional speed training indicating a superior modality for inducing neuromuscular adaptation. Key pointsAs velocity approaches zero, propulsive force approaches zero, therefore slow moving objects only require force approximately equal to the weight of the resistance.As mass is constant during resistance training, a greater impulse will result in a greater velocity.The inferior propulsive forces accompanying purposefully slow training suggest other methods of resistance training have a greater potential for adaptation. PMID:24149464

  9. Acute effects of dynamic exercises on the relationship between the motor unit firing rate and the recruitment threshold.

    PubMed

    Ye, Xin; Beck, Travis W; DeFreitas, Jason M; Wages, Nathan P

    2015-04-01

    The aim of this study was to compare the acute effects of concentric versus eccentric exercise on motor control strategies. Fifteen men performed six sets of 10 repetitions of maximal concentric exercises or eccentric isokinetic exercises with their dominant elbow flexors on separate experimental visits. Before and after the exercise, maximal strength testing and submaximal trapezoid isometric contractions (40% of the maximal force) were performed. Both exercise conditions caused significant strength loss in the elbow flexors, but the loss was greater following the eccentric exercise (t=2.401, P=.031). The surface electromyographic signals obtained from the submaximal trapezoid isometric contractions were decomposed into individual motor unit action potential trains. For each submaximal trapezoid isometric contraction, the relationship between the average motor unit firing rate and the recruitment threshold was examined using linear regression analysis. In contrast to the concentric exercise, which did not cause significant changes in the mean linear slope coefficient and y-intercept of the linear regression line, the eccentric exercise resulted in a lower mean linear slope and an increased mean y-intercept, thereby indicating that increasing the firing rates of low-threshold motor units may be more important than recruiting high-threshold motor units to compensate for eccentric exercise-induced strength loss. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. A new animal model for modulating myosin isoform expression by altered mechanical activity

    NASA Technical Reports Server (NTRS)

    Caiozzo, V. J.; Ma, E.; McCue, S. A.; Smith, E.; Herrick, R. E.; Baldwin, K. M.

    1992-01-01

    The purpose of this study was to develop a new rodent model that is capable of delineating the importance of mechanical loading on myosin heavy chain (MHC) isoform expression of the plantar and dorsi flexor muscles of the ankle. The essential components of this system include 1) stimulating electrodes that are chronically implanted into a muscle, allowing for the control of the activation pattern of the target muscle(s); 2) a training apparatus that translates the moment of the ankle into a linear force; and 3) a computer-controlled Cambridge 310 ergometer. The isovelocity profile of the ergometer ensured that the medial gastrocnemius (MG) produced forces that were > 90% of maximal isometric force (Po), and the eccentric contractions of the tibialis anterior (TA) were typically 120% of Po. Both the concentric and eccentric training programs produced statistically significant increases in the muscle mass of the MG (approximately 15%) and TA (approximately 7%) as well as a decrease in myofibrillar adenosinetriphosphatase activity. Both the white and red regions of the MG and TA exhibited significant increases in the relative content of the type IIa MHC and concomitant decreases in type IIb MHC expression. Although the red regions of the MG and red TA contained approximately 10% type I MHC, the training programs did not affect this isoform. It appears that when a fast-twitch muscle is stimulated at a high frequency (100 Hz) and required to contract either concentrically or eccentrically under high loading conditions, the expression of the type IIa MHC isoform will be upregulated, whereas that of the type IIb MHC will be concomitantly downregulated.

  11. Effects of High Velocity Elastic Band versus Heavy Resistance Training on Hamstring Strength, Activation, and Sprint Running Performance

    PubMed Central

    Janusevicius, Donatas; Snieckus, Audrius; Skurvydas, Albertas; Silinskas, Viktoras; Trinkunas, Eugenijus; Cadefau, Joan Aureli; Kamandulis, Sigitas

    2017-01-01

    Hamstring muscle injuries occur during high-speed activities, which suggests that muscular strength at high velocities may be more important than maximal strength. This study examined hamstring adaptations to training for maximal strength and for strength at high velocities. Physically active men (n = 25; age, 23.0 ± 3.2 years) were randomly divided into: (1) a resistance training (RT, n = 8) group, which performed high-load, low-velocity concentric–eccentric hamstring contractions; (2) a resistance training concentric (RTC; n = 9) group, which performed high-load, low-velocity concentric-only hamstring contractions; and (3) a high-velocity elastic band training (HVT, n = 8) group, which performed low-load, high-velocity concentric–eccentric hamstring contractions. Pre- and posttraining tests included hamstring strength on a hamstring-curl apparatus, concentric knee extension–flexion at 60°/s, 240°/s, and 450°/s, eccentric knee flexion at 60°/s and 240°/s, hamstring and quadriceps coactivation, knee flexion and extension frequency in the prone position, and 30-m sprint running speed from a stationary start and with a running start. Knee flexor torque increased significantly by 21.1% ± 8.1% in the RTC group and 16.2% ± 4.2% in the RT group (p < 0.05 for both groups). Hamstring coactivation decreased significantly in both groups. In the HVT group, knee flexion and extension frequency increased by 17.8% ± 8.2%, concentric peak torque of the knee flexors at 450°/s increased by 31.0% ± 12.0%, hamstring coactivation decreased, and running performance over 30 m improved (p < 0.05 for all parameters). These findings suggest that resistance training at high velocities is superior to traditional heavy resistance training for increasing knee flexor strength at high velocities, movement frequency, and sprint running performance. These findings also indicate that traditional training approaches are effective for increasing knee flexor strength and reducing knee extensor coactivation, but this outcome is limited to low and moderate speeds. Key points Resistance training performed at high load and low velocities increases knee flexor strength and decreases hamstring coactivation, whereas does not change strength at high velocity. Elastic band training at high velocities increases strength and decreases hamstring coactivation, particularly at high muscle velocities. Elastic band hamstring training at high velocities has positive effects on both knee flexors and knee extensors, and these benefits transfer positively to sprint performance. PMID:28630577

  12. Weight Training: Do's and Don'ts of Proper Technique

    MedlinePlus

    ... may take up extra time and contribute to overload injury. However, the number of sets that you ... Sports Medicine. http://www.acsm.org/access-public-information/brochures-fact-sheets/brochures. Accessed June 24, 2015. ...

  13. Whole-body vibration and the prevention and treatment of delayed-onset muscle soreness.

    PubMed

    Aminian-Far, Atefeh; Hadian, Mohammad-Reza; Olyaei, Gholamreza; Talebian, Saeed; Bakhtiary, Amir Hoshang

    2011-01-01

    Numerous recovery strategies have been used in an attempt to minimize the symptoms of delayed-onset muscle soreness (DOMS). Whole-body vibration (WBV) has been suggested as a viable warm-up for athletes. However, scientific evidence to support the protective effects of WBV training (WBVT) on muscle damage is lacking. To investigate the acute effect of WBVT applied before eccentric exercise in the prevention of DOMS. Randomized controlled trial. University laboratory. A total of 32 healthy, untrained volunteers were randomly assigned to either the WBVT (n  =  15) or control (n  =  17) group. Volunteers performed 6 sets of 10 maximal isokinetic (60°/s) eccentric contractions of the dominant-limb knee extensors on a dynamometer. In the WBVT group, the training was applied using a vibratory platform (35 Hz, 5 mm peak to peak) with 100° of knee flexion for 60 seconds before eccentric exercise. No vibration was applied in the control group. Muscle soreness, thigh circumference, and pressure pain threshold were recorded at baseline and at 1, 2, 3, 4, 7, and 14 days postexercise. Maximal voluntary isometric and isokinetic knee extensor strength were assessed at baseline, immediately after exercise, and at 1, 2, 7, and 14 days postexercise. Serum creatine kinase was measured at baseline and at 1, 2, and 7 days postexercise. The WBVT group showed a reduction in DOMS symptoms in the form of less maximal isometric and isokinetic voluntary strength loss, lower creatine kinase levels, and less pressure pain threshold and muscle soreness (P < .05) compared with the control group. However, no effect on thigh circumference was evident (P < .05). Administered before eccentric exercise, WBVT may reduce DOMS via muscle function improvement. Further investigation should be undertaken to ascertain the effectiveness of WBVT in attenuating DOMS in athletes.

  14. Effects of functional stabilization training on pain, function, and lower extremity biomechanics in women with patellofemoral pain: a randomized clinical trial.

    PubMed

    Baldon, Rodrigo de Marche; Serrão, Fábio Viadanna; Scattone Silva, Rodrigo; Piva, Sara Regina

    2014-04-01

    Randomized clinical trial. To compare the effects of functional stabilization training (FST) versus standard training on knee pain and function, lower-limb and trunk kinematics, trunk muscle endurance, and eccentric hip and knee muscle strength in women with patellofemoral pain. A combination of hip- and knee-strengthening exercise may be more beneficial than quadriceps strengthening alone to improve pain and function in individuals with patellofemoral pain. However, there is limited evidence of the effectiveness of these exercise programs on the biomechanics of the lower extremity. Thirty-one women were randomized to either the FST group or standard-training group. Patients attended a baseline assessment session, followed by an 8-week intervention, and were reassessed at the end of the intervention and at 3 months after the intervention. Assessment measures were a 10-cm visual analog scale for pain, the Lower Extremity Functional Scale, and the single-leg triple-hop test. A global rating of change scale was used to measure perceived improvement. Kinematics were assessed during the single-leg squat. Outcome measures also included trunk endurance and eccentric hip and knee muscle strength assessment. The patients in the FST group had less pain at the 3-month follow-up and greater global improvement and physical function at the end of the intervention compared to those in the standard-training group. Lesser ipsilateral trunk inclination, pelvis contralateral depression, hip adduction, and knee abduction, along with greater pelvis anteversion and hip flexion movement excursions during the single-leg squat, were only observed in the FST group after the intervention. Only those in the FST group had greater eccentric hip abductor and knee flexor strength, as well as greater endurance of the anterior, posterior, and lateral trunk muscles, after training. An intervention program consisting of hip muscle strengthening and lower-limb and trunk movement control exercises was more beneficial in improving pain, physical function, kinematics, and muscle strength compared to a program of quadriceps-strengthening exercises alone.

  15. Cycle training modulates satellite cell and transcriptional responses to a bout of resistance exercise.

    PubMed

    Murach, Kevin A; Walton, R Grace; Fry, Christopher S; Michaelis, Sami L; Groshong, Jason S; Finlin, Brian S; Kern, Philip A; Peterson, Charlotte A

    2016-09-01

    This investigation evaluated whether moderate-intensity cycle ergometer training affects satellite cell and molecular responses to acute maximal concentric/eccentric resistance exercise in middle-aged women. Baseline and 72 h postresistance exercise vastus lateralis biopsies were obtained from seven healthy middle-aged women (56 ± 5 years, BMI 26 ± 1, VO2max 27 ± 4) before and after 12 weeks of cycle training. Myosin heavy chain (MyHC) I- and II-associated satellite cell density and cross-sectional area was determined via immunohistochemistry. Expression of 93 genes representative of the muscle-remodeling environment was also measured via NanoString. Overall fiber size increased ~20% with cycle training (P = 0.052). MyHC I satellite cell density increased 29% in response to acute resistance exercise before endurance training and 50% with endurance training (P < 0.05). Following endurance training, MyHC I satellite cell density decreased by 13% in response to acute resistance exercise (acute resistance × training interaction, P < 0.05). Genes with an interaction effect tracked with satellite cell behavior, increasing in the untrained state and decreasing in the endurance trained state in response to resistance exercise. Similar satellite cell and gene expression response patterns indicate coordinated regulation of the muscle environment to promote adaptation. Moderate-intensity endurance cycle training modulates the response to acute resistance exercise, potentially conditioning the muscle for more intense concentric/eccentric activity. These results suggest that cycle training is an effective endurance exercise modality for promoting growth in middle-aged women, who are susceptible to muscle mass loss with progressing age. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  16. Benefits of dietary phytochemical supplementation on eccentric exercise-induced muscle damage: Is including antioxidants enough?

    PubMed

    Pereira Panza, Vilma Simões; Diefenthaeler, Fernando; da Silva, Edson Luiz

    2015-09-01

    The purpose of this review was to critically discuss studies that investigated the effects of supplementation with dietary antioxidant phytochemicals on recovery from eccentric exercise-induced muscle damage. The performance of physical activities that involve unaccustomed eccentric muscle actions-such as lowering a weight or downhill walking-can result in muscle damage, oxidative stress, and inflammation. These events may be accompanied by muscle weakness and delayed-onset muscle soreness. According to the current evidences, supplementation with dietary antioxidant phytochemicals appears to have the potential to attenuate symptoms associated with eccentric exercise-induced muscle damage. However, there are inconsistencies regarding the relationship between muscle damage and blood markers of oxidative stress and inflammation. Furthermore, the effectiveness of strategies appear to depend on a number of aspects inherent to phytochemical compounds as well as its food matrix. Methodological issues also may interfere with the proper interpretation of supplementation effects. Thus, the study may contribute to updating professionals involved in sport nutrition as well as highlighting the interest of scientists in new perspectives that can widen dietary strategies applied to training. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. A New Technique for Surgical Treatment of Proximal Hamstring Tendinopathy in a Triathlon Athlete.

    PubMed

    Costa, Lincoln Paiva; Barros, Antônio Augusto Guimarães; Vassalo, Carlos Cesar; Sonnery-Cottet, Bertrand; Barbosa, Victor Atsushi Kasuya; Temponi, Eduardo Frois

    2016-01-01

    Proximal hamstring tendinopathy (PHT) is the result of chronic overload caused by repetitive eccentric contraction. Surgical treatment becomes an option for patients with chronic symptoms that do not respond to conservative treatment. This report describes a case of a 48-year-old man, an amateur triathlete, with deep gluteal pain in the left hip for 12 months, leading to a decline in sports performance. Magnetic resonance imaging revealed abnormalities that suggested a PHT. Surgery was indicated following the failure of conservative treatments. Debridement of the conjoint tendon and its reinsertion associated with semimembranosus tenotomy showed good results and is thus an option for the treatment of this pathology after 12 months of follow-up. This article provides surgeons with a new surgical option for this debilitating condition with clinical and functional improvement after 12 months of follow-up.

  18. A New Technique for Surgical Treatment of Proximal Hamstring Tendinopathy in a Triathlon Athlete

    PubMed Central

    Costa, Lincoln Paiva; Barros, Antônio Augusto Guimarães; Vassalo, Carlos Cesar; Sonnery-Cottet, Bertrand; Barbosa, Victor Atsushi Kasuya; Temponi, Eduardo Frois

    2016-01-01

    Introduction: Proximal hamstring tendinopathy (PHT) is the result of chronic overload caused by repetitive eccentric contraction. Surgical treatment becomes an option for patients with chronic symptoms that do not respond to conservative treatment. Case Report: This report describes a case of a 48-year-old man, an amateur triathlete, with deep gluteal pain in the left hip for 12 months, leading to a decline in sports performance. Magnetic resonance imaging revealed abnormalities that suggested a PHT. Surgery was indicated following the failure of conservative treatments. Debridement of the conjoint tendon and its reinsertion associated with semimembranosus tenotomy showed good results and is thus an option for the treatment of this pathology after 12 months of follow-up. Conclusion: This article provides surgeons with a new surgical option for this debilitating condition with clinical and functional improvement after 12 months of follow-up. PMID:28507970

  19. Recurrent hamstring muscle injury: applying the limited evidence in the professional football setting with a seven-point programme

    PubMed Central

    Brukner, Peter; Nealon, Andrew; Morgan, Christopher; Burgess, Darren; Dunn, Andrew

    2014-01-01

    Recurrent hamstring injuries are a major problem in sports such as football. The aim of this paper was to use a clinical example to describe a treatment strategy for the management of recurrent hamstring injuries and examine the evidence for each intervention. A professional footballer sustained five hamstring injuries in a relatively short period of time. The injury was managed successfully with a seven-point programme—biomechanical assessment and correction, neurodynamics, core stability, eccentric strengthening, an overload running programme, injection therapies and stretching/relaxation. The evidence for each of these treatment options is reviewed. It is impossible to be definite about which aspects of the programme contributed to a successful outcome. Only limited evidence is available in most cases; therefore, decisions regarding the use of different treatment modalities must be made by using a combination of clinical experience and research evidence. PMID:23322894

  20. Effect of functional overreaching on executive functions.

    PubMed

    Dupuy, O; Renaud, M; Bherer, L; Bosquet, L

    2010-09-01

    The aim of this study was to investigate whether cognitive performance was a valid marker of overreaching. 10 well-trained male endurance athletes increased their training load by 100% for 2 weeks. They performed a maximal graded test, a constant speed test, a reaction time task and a computerized version of the Stroop color word-test before and after this overload period. Regarding performance results, five participants were considered as overreached and the five remaining were considered as well-trained. We found no significant differences between groups in performing the Stroop test. Noteworthy, we found a small increase in response time in the more complex condition in overreached athletes (1 188+/-261 to 1 297+/-231 ms, effect size=0.44), while it decreased moderately in the well-trained athletes (1 066+/-175 to 963+/-171 ms, effect size=-0.59). Furthermore, we found an interaction between time and group on initiation time of the reaction time task, since it increased in overreached athletes after the overload period (246+/-24 to 264+/-26 ms, p<0.05), while it remained unchanged in well-trained participants. Participants made very few anticipation errors, whatever the group or the period (error rate <2%).We concluded that an unaccustomed increase in training volume which is accompanied by a decrement in physical performance induces a deterioration of some executive functions. Georg Thieme Verlag KG Stuttgart . New York.

  1. Pre-diabetes Modifiable Risk Factors

    MedlinePlus

    ... for example, if you are a highly trained athlete or if you are underweight.) Eating healthy foods in the right amounts Diets that include high levels of sugar, starches and fats often overload the body with more glucose than ...

  2. Resistance exercise prevents plantar flexor deconditioning during bed rest

    NASA Technical Reports Server (NTRS)

    Bamman, M. M.; Hunter, G. R.; Stevens, B. R.; Guilliams, M. E.; Greenisen, M. C.

    1997-01-01

    Because resistance exercise (REX) and unloading induce opposing neuromuscular adaptations, we tested the efficacy of REX against the effects of 14 d of bed rest unloading (BRU) on the plantar flexor muscle group. Sixteen men were randomly assigned to no exercise (NOE, N = 8) or REX (N = 8). REX performed 5 sets x 6-10 repetitions to failure of constant resistance concentric/eccentric plantar flexion every other day during BRU. One-repetition maximum (1RM) strength was tested on the training device. The angle-specific torque-velocity relationship across 5 velocities (0, 0.52, 1.05, 1.75, and 2.97 rad.s-1) and the full range-of-motion power-velocity relationship were assessed on a dynamometer. Torque-position analyses identified strength changes at shortened, neutral, and stretched muscle lengths. Concentric and eccentric contractile work were measured across ten repetitions at 1.05 rad.s-1. Maximal neural activation was measured by surface electromyography (EMG). 1RM decreased 9% in NOE and improved 11% in REX (P < 0.05). Concentric (0.52 and 1.05 rad.s-1), eccentric (0.52 and 2.97 rad.s-1), and isometric angle-specific torques decreased (P < 0.05) in NOE, averaging 18%, 17%, and 13%, respectively. Power dropped (P < 0.05) in NOE at three eccentric (21%) and two concentric (14%) velocities. REX protected angle-specific torque and average power at all velocities. Concentric and eccentric strength decreased at stretched (16%) and neutral (17%) muscle lengths (P < 0.05) in NOE while REX maintained or improved strength at all joint positions. Concentric (15%) and eccentric (11%) contractile work fell in NOE (P < 0.05) but not in REX. Maximal plantar flexor EMG did not change in either group. In summary, constant resistance concentric/eccentric REX completely prevented plantar flexor performance deconditioning induced by BRU. The reported benefits of REX should prove useful in prescribing exercise for astronauts in microgravity and for patients susceptible to functional decline during bed- or chair-bound hospital stays.

  3. Physiological Comparison of Concentric and Eccentric Arm Cycling in Males and Females

    PubMed Central

    Beaven, C. Martyn; Willis, Sarah J.; Cook, Christian J.; Holmberg, Hans-Christer

    2014-01-01

    Lower body eccentric exercise is well known to elicit high levels of muscular force with relatively low cardiovascular and metabolic strain. As a result, eccentric exercise has been successfully utilised as an adaptive stressor to improve lower body muscle function in populations ranging from the frail and debilitated, to highly-trained individuals. Here we investigate the metabolic, cardiorespiratory, and energy costs of upper body eccentric exercise in a healthy population. Seven men and seven women performed 4-min efforts of eccentric (ECC) or concentric (CON) arm cycling on a novel arm ergometer at workloads corresponding to 40, 60, and 80% of their peak workload as assessed in an incremental concentric trial. The heart rate, ventilation, cardiac output, respiratory exchange ratio, and blood lactate concentrations were all clearly greater in CON condition at all of the relative workloads (all p<0.003). Effect size calculations demonstrated that the magnitude of the differences in VO2 and work economy between the ECC and CON exercise ranged from very large to extremely large; however, in no case did mechanical efficiency (ηMECH) differ between the conditions (all p>0.05). In contrast, delta efficiency (ηΔ), as previously defined by Coyle and colleagues in 1992, demonstrated a sex difference (men>women; p<0.05). Sex differences were also apparent in arteriovenous oxygen difference and heart rate during CON. Here, we reinforce the high-force, low cost attributes of eccentric exercise which can be generalised to the muscles of the upper body. Upper body eccentric exercise is likely to form a useful adjunct in debilitative, rehabilitative, and adaptive clinical exercise programs; however, reports of a shift towards an oxidative phenotype should be taken into consideration by power athletes. We suggest delta efficiency as a sensitive measure of efficiency that allowed the identification of sex differences. PMID:25372404

  4. Kinetic and kinematic differences between squats performed with and without elastic bands.

    PubMed

    Israetel, Michael A; McBride, Jeffrey M; Nuzzo, James L; Skinner, Jared W; Dayne, Andrea M

    2010-01-01

    The purpose of this investigation was to compare kinetic and kinematic variables between squats performed with and without elastic bands equalized for total work. Ten recreationally weight trained males completed 1 set of 5 squats without (Wht) and with (Band) elastic bands as resistance. Squats were completed while standing on a force platform with bar displacement measured using 2 potentiometers. Electromyography (EMG) was obtained from the vastus lateralis. Average force-time, velocity-time, power-time, and EMG-time graphs were generated and statistically analyzed for mean differences in values between the 2 conditions during the eccentric and concentric phases. The Band condition resulted in significantly higher forces in comparison to the Wht condition during the first 25% of the eccentric phase and the last 10% of the concentric phase (p < or = 0.05). However, the Wht condition resulted in significantly higher forces during the last 5% of the eccentric phase and the first 5% of the concentric phase in comparison to the Band condition. The Band condition resulted in significantly higher power and velocity values during the first portion of the eccentric phase and the latter portion of the concentric phase. Vastus lateralis muscle activity during the Band condition was significantly greater during the first portion of the eccentric phase and latter portion of the concentric phase as well. This investigation indicates that squats equalized for total work with and without elastic bands significantly alter the force-time, power-time, velocity-time, and EMG-time curves associated with the movements. Specifically, elastic bands seem to increase force, power, and muscle activity during the early portions of the eccentric phase and latter portions of the concentric phase.

  5. Comparison of the Force-, Velocity- and Power-Time Curves Between the Concentric-Only and Eccentric-Concentric Bench Press Exercises.

    PubMed

    Pérez-Castilla, Alejandro; Comfort, Paul; McMahon, John J; Pestaña-Melero, Francisco Luis; García-Ramos, Amador

    2018-01-17

    The aim of this study was to compare the temporal and mechanical variables between the concentric-only and eccentric-concentric bench press (BP) variants. Twenty-one men (age: 22.0±4.2 years, body mass: 73.4±7.7 kg, height: 177.2±8.0 cm; one-repetition maximum [1RM]: 1.12±0.12 kg⋅kg) were evaluated during the concentric-only and eccentric-concentric BP variants using 80% 1RM. Temporal (concentric phase duration, propulsive phase duration, and time to reach the maximum values of force, velocity, and power) and mechanical variables (force, velocity, and power), determined using a linear velocity transducer, were compared between both BP variants. All temporal variables were significantly lower during the eccentric-concentric BP compared to the concentric-only BP (P < 0.05; effect size [ES] range: 0.80-2.52). Maximum force as well as the mean values of velocity and power were significantly higher for the eccentric-concentric BP compared to the concentric-only BP (all P < 0.001; ES range: 2.87-3.58). However, trivial to small differences between both BP variants were observed for mean force (ES: 0.00-0.36) as well as for maximum velocity (ES: 0.40) and power (ES: 0.41). The stretch-shortening cycle (i.e., eccentric-concentric BP) mainly enhanced force production at the early portion of the concentric phase, but this potentiation effect gradually reduced over the latter part of the movement. Finally, force was higher for the concentric-only BP during 49% of the concentric phase duration. These results suggest that both BP variants should be included during resistance training programs in order to optimize force output at different points of the concentric phase.

  6. Eccentric versus conventional exercise therapy in patients with rotator cuff tendinopathy: a randomized, single blinded, clinical trial.

    PubMed

    Dejaco, Beate; Habets, Bas; van Loon, Corné; van Grinsven, Susan; van Cingel, Robert

    2017-07-01

    To investigate the effectiveness of isolated eccentric versus conventional exercise therapy in patients with rotator cuff tendinopathy. Thirty-six patients with rotator cuff tendinopathy, diagnosed by an orthopaedic surgeon, were included and randomly allocated to an isolated eccentric exercise (EE) group (n = 20, mean age = 50.2 ± 10.8 years) or a conventional exercise (CG) group (n = 16, mean age = 48.6 ± 12.3 years). Both groups fulfilled a 12-week daily home-based exercise programme and received a total amount of nine treatment sessions. The Constant Murley score was used to evaluate both objective (e.g. range of motion and strength) and subjective measures (e.g. pain and activities of daily living). A visual analogue scale (VAS) was used to evaluate pain during daily activities. As secondary outcomes, shoulder range of motion and isometric abduction strength in 45° in the scapular plane were evaluated. All measurements were taken at baseline, at 6, 12 and 26 weeks. After 26 weeks, both groups showed a significant increase in the Constant Murley score and a significant decrease in VAS scores. No difference was found between the groups, for any of the evaluated outcome measures. A 12-week-isolated eccentric training programme of the rotator cuff is beneficial for shoulder function and pain after 26 weeks in patients with rotator cuff tendinopathy. However, it is no more beneficial than a conventional exercise programme for the rotator cuff and scapular muscles. Based on the results, clinicians should take into account that performing two eccentric exercises twice a day is as effective as performing six concentric/eccentric exercises once a day in patients with rotator cuff tendinopathy.

  7. Shoulder Muscle Activation of Novice and Resistance Trained Women during Variations of Dumbbell Press Exercises

    PubMed Central

    Luczak, Joshua; Bosak, Andy; Riemann, Bryan L.

    2013-01-01

    Previous research has compared the effects of trunk inclination angle on muscle activation using barbells and Smith machines in men. Whether similar effects occur with the use of dumbbells or in women remains unknown. The purpose was to compare upper extremity surface electromyographical (EMG) activity between dumbbell bench, incline, and shoulder presses. Dominate arm EMG data were recorded for collegiate-aged female resistance trained individuals (n = 12) and novice female resistance trained exercisers (n = 12) from which average EMG amplitude for each repetition phase (concentric, eccentric) was computed. No significant differences were found between experienced and novice resistance trained individuals. For the upper trapezius and anterior deltoid muscles, shoulder press activation was significantly greater than incline press which in turn was significantly greater than bench press across both phases. The bench and incline presses promoted significantly greater pectoralis major sternal activation compared to the shoulder press (both phases). While pectoralis major clavicular activation during the incline press eccentric phase was significantly greater than both the bench and shoulder presses, activation during the bench press concentric phase promoted significantly greater activation than the incline press which in turn was significantly greater than the shoulder press. These results provide evidence for selecting exercises in resistance and rehabilitation programs. PMID:26464884

  8. The effects of topical Arnica on performance, pain and muscle damage after intense eccentric exercise.

    PubMed

    Pumpa, Kate L; Fallon, Kieran E; Bensoussan, Alan; Papalia, Shona

    2014-01-01

    The aim of the study was to determine if topical Arnica is effective in reducing pain, indicators of inflammation and muscle damage, and in turn improve performance in well-trained males experiencing delayed onset muscle soreness (DOMS). Twenty well-trained males matched by maximal oxygen uptake (V̇O2 Max) completed a double-blind, randomised placebo-controlled trial. Topical Arnica was applied to the skin superficial to the quadriceps and gastrocnemius muscles immediately after a downhill running protocol designed to induce DOMS. Topical Arnica was reapplied every 4 waking hours for the duration of the study. Performance measures (peak torque, countermovement and squat jump), pain assessments (visual analogue scale (VAS) and muscle tenderness) and blood analysis (interleukin-1 beta, interleukin-6, tumour necrosis factor-alpha, C-reactive protein, myoglobin and creatine kinase) were assessed at seven time points over five days (pre-, post-, 4, 24, 48, 72 and 96 hours after the downhill run). Participants in the topical Arnica group reported less pain as assessed through muscle tenderness and VAS 72 hours post-exercise. The application of topical Arnica did not affect any performance assessments or markers of muscle damage or inflammation. Topical Arnica used immediately after intense eccentric exercise and for the following 96 hours did not have an effect on performance or blood markers. It did however demonstrate the possibility of providing pain relief three days post-eccentric exercise.

  9. Impact-Induced Muscle Damage and Contact-Sport: Aetiology, Effects on Neuromuscular Function and Recovery, and the Modulating Effects of Adaptation and Recovery Strategies.

    PubMed

    Naughton, Mitchell; Miller, Joanna; Slater, Gary J

    2017-11-28

    Athletes involved in contact-sports are habitually exposed to skeletal muscle damage as part of their training and performance environments. This often leads to exercise-induced muscle damage (EIMD) resulting from repeated eccentric and/or high-intensity exercise, and impact-induced muscle damage (IIMD) resulting from collisions with opponents and the playing surface. Whilst EIMD has been an area of extensive investigation, IIMD has received comparatively little research, with the magnitude and timeframe of alterations following IIMD not presently well understood. It is currently thought that EIMD occurs through an overload of mechanical stress causing ultrastructural damage to the cellular membrane constituents. Damage leads to compromised ability to produce force which manifest immediately and persist for up to 14 days following exercise exposure. IIMD has been implicated in attenuated neuromuscular performance and recovery with inflammatory process implicated, although the underlying time course remains unclear. Exposure to EIMD leads to an adaptation to subsequent exposures, a phenomenon known as the repeated-bout effect. An analogous adaptation has been suggested to occur following IIMD, however, to date this contention remains equivocal. Whilst a considerable body of research has explored the efficacy of recovery strategies following EIMD, strategies promoting recovery from IIMD are limited to investigations using animal contusion models. Strategies such as cryotherapy and antioxidant supplementation, which focus on attenuating the secondary inflammatory response may provide additional benefit in IIMD and are explored herein. Further research is required to firstly establish a model of generating IIMD and then explore broader areas around IIMD in athletic populations.

  10. Effect of an eccentrically biased hamstring strengthening home program on knee flexor strength and the length-tension relationship.

    PubMed

    Orishimo, Karl F; McHugh, Malachy P

    2015-03-01

    The purposes of this study were to document relative activation intensities of the hamstrings and gluteus maximus during 4 eccentric hamstring strengthening exercises and to assess the effects of a short-term strengthening program comprised of these exercises on knee flexor strength and the length-tension relationship. Twelve healthy subjects participated in this study. Electromyographic (EMG) activities from the biceps femoris, semitendinosus, and gluteus maximus were recorded as subjects performed (a) standing hip extension with elastic resistance, (b) trunk flexion in single limb stance (diver), (c) standing split (glider), and (d) supine sliding bridge (slider). Baseline isometric knee flexor strength was measured at 90, 70, 50, and 30° of flexion at the knee with the subject seated and the hip flexed to 50° from horizontal. After completing the 4-week training program, strength tests were repeated. Repeated-measures analysis of variance were used to compare EMG activity between muscles and to assess angle-specific strength improvements. Hamstring activity exceeded gluteus maximus activity for resisted hip extension, glider, and slider exercises (p < 0.001) but not for the diver (p = 0.087). Hamstring activation was greatest during the slider and resisted hip extension and lowest during the glider and the diver. Knee flexor strength improved by 9.0% (p = 0.005) but was not angle specific (training by angle p = 0.874). The short-term home training program effectively targeted the hamstrings and resulted in strength gains that were similar at short and long muscle lengths. These data demonstrate that hamstring strength can be improved using eccentrically biased unilateral exercises without the use of weights or other equipments.

  11. A 3-Arm Randomized Trial for Achilles Tendinopathy: Eccentric Training, Eccentric Training Plus a Dietary Supplement Containing Mucopolysaccharides, or Passive Stretching Plus a Dietary Supplement Containing Mucopolysaccharides.

    PubMed

    Balius, Ramon; Álvarez, Guillermo; Baró, Fernando; Jiménez, Fernando; Pedret, Carles; Costa, Ester; Martínez-Puig, Daniel

    Tendinopathy is an overuse tendon injury that occurs in loaded tendons and results in pain and functional impairment. Although many treatments for painful tendons are described, the scientific evidence for most of the conservative and surgical treatments is not always conclusive. This study was designed to evaluate the efficacy of 3 different interventions in patients with Achilles tendinopathy. The interventions include the combination of 2 physical therapy programs (eccentric training [EC] or passive stretching [PS]) with a supplement containing mucopolisaccharides. The efficacy of the interventions was evaluated depending on the stage of the disease. Fifty-nine patients were randomly assigned to 1 of 3 treatment groups, and classified according to the disease stage: reactive versus degenerative tendinopathy. Treatment groups were EC; EC + a dietary supplement containing mucopolisaccharides, type I collagen, and vitamin C (MCVC); and a passive stretching program + MCVC. Patients were evaluated at baseline, 6 weeks, and 12 weeks with the Victorian Institute of Sports Assessment-Achilles questionnaire for function, a visual analog scale for pain, and ultrasound characterization for the evolution of tendon structure. A significant improvement in Victorian Institute of Sports Assessment-Achilles questionnaire score, pain at rest, and pain during activity were detected in all 3 treatment groups at 6 and 12 weeks' follow-up when compared with baseline. In patients with reactive tendinopathy, the reduction in pain at rest was greater in the groups who took the supplemental MCVC than in the EC alone group ( P < 0.05). MCVC seems to be therapeutically useful for management of tendinopathies, providing some additional benefit to physical therapy. This is especially evident in early stages of the disease, when the tendon does not present severe matrix and vascular changes. NCT01691716.

  12. Precision of spiral-bevel gears

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Goldrich, R. N.; Coy, J. J.; Zaretsky, E. V.

    1982-01-01

    The kinematic errors in spiral bevel gear trains caused by the generation of nonconjugate surfaces, by axial displacements of the gears during assembly, and by eccentricity of the assembled gears were determined. One mathematical model corresponds to the motion of the contact ellipse across the tooth surface, (geometry I) and the other along the tooth surface (geometry II). The following results were obtained: (1) kinematic errors induced by errors of manufacture may be minimized by applying special machine settings, the original error may be reduced by order of magnitude, the procedure is most effective for geometry 2 gears, (2) when trying to adjust the bearing contact pattern between the gear teeth for geometry 1 gears, it is more desirable to shim the gear axially; for geometry II gears, shim the pinion axially; (3) the kinematic accuracy of spiral bevel drives are most sensitive to eccentricities of the gear and less sensitive to eccentricities of the pinion. The precision of mounting accuracy and manufacture are most crucial for the gear, and less so for the pinion.

  13. Neovascularity in patellar tendinopathy and the response to eccentric training: a case report using Power Doppler ultrasound.

    PubMed

    McCreesh, Karen M; Riley, Sara J; Crotty, James M

    2013-12-01

    This report describes the case of an amateur soccer player with chronic patellar tendinopathy who underwent ultrasound imaging before and after engaging in an 8-week programme of eccentric exercise. On initial assessment, greyscale ultrasound imaging demonstrated tendon thickening and reduced echogenicity, while Power Doppler imaging demonstrated a large amount of neovascularity. After 8 weeks of an eccentric loading programme, the patient reported significantly improved symptoms and functional scores, while follow-up imaging demonstrated improvement in the echo appearance of the tendon and complete resolution of the neovascularity. The association between neovascularity and symptoms in tendinopathy research is conflicting, with a paucity of research in the area of patellar tendinopathy. While further research is needed to clarify the significance of greyscale and Power Doppler ultrasound changes in relation to symptoms in patellar tendinopathy, ultrasound imaging was shown to be a useful adjunct to diagnosis and outcome assessment in this case. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Specific Adaptations in Performance and Muscle Architecture After Weighted Jump-Squat vs. Body Mass Squat Jump Training in Recreational Soccer Players.

    PubMed

    Coratella, Giuseppe; Beato, Marco; Milanese, Chiara; Longo, Stefano; Limonta, Eloisa; Rampichini, Susanna; Cè, Emiliano; Bisconti, Angela V; Schena, Federico; Esposito, Fabio

    2018-04-01

    Coratella, G, Beato, M, Milanese, C, Longo, S, Limonta, E, Rampichini, S, Cè, E, Bisconti, AV, Schena, F, and Esposito, F. Specific adaptations in performance and muscle architecture after weighted jump-squat vs. body mass squat jump training in recreational soccer players. J Strength Cond Res 32(4): 921-929, 2018-The aim of the present study was to compare the effects of weighted jump-squat training (WJST) vs. body mass squat jump training (BMSJT) on quadriceps' muscle architecture, lower-limb lean-mass (LM) and muscle strength, performance in change of direction (COD), and sprint and jump in recreational soccer players. Forty-eight healthy soccer players participated in an offseason randomized controlled trial. Before and after an 8-week training intervention, vastus lateralis pennation angle, fascicle length, muscle thickness, LM, squat 1RM, quadriceps and hamstrings isokinetic peak torque, agility T-test, 10-and 30-m sprints, and squat-jump (SJ) were measured. Although similar increases were observed in muscle thickness, fascicle length increased more in WJST (Effect size [ES] = 1.18, 0.82-1.54) than in BMSJT (ES = 0.54, 0.40-0.68), and pennation angle increased only in BMSJT (ES = 1.03, 0.78-1.29). Greater increases in LM were observed in WJST (ES = 0.44, 0.29-0.59) than in BMSJT (ES = 0.21, 0.07-0.37). The agility T-test (ES = 2.95, 2.72-3.18), 10-m (ES = 0.52, 0.22-0.82), and 30-m sprints (ES = 0.52, 0.23-0.81) improved only in WJST, whereas SJ improved in BMSJT (ES = 0.89, 0.43-1.35) more than in WJST (ES = 0.30, 0.03-0.58). Similar increases in squat 1RM and peak torque occurred in both groups. The greater inertia accumulated within the landing phase in WJST vs. BMSJT has increased the eccentric workload, leading to specific eccentric-like adaptations in muscle architecture. The selective improvements in COD in WJST may be related to the increased braking ability generated by the enhanced eccentric workload.

  15. The Effect of Shoulder Plyometric Training on Amortization Time and Upper-Extremity Kinematics.

    PubMed

    Swanik, Kathleen A; Thomas, Stephen J; Struminger, Aaron H; Bliven, Kellie C Huxel; Kelly, John D; Swanik, Charles B

    2016-12-01

    Plyometric training is credited with providing benefits in performance and dynamic restraint. However, limited prospective data exist quantifying kinematic adaptations such as amortization time, glenohumeral rotation, and scapulothoracic position, which may underlie the efficacy of plyometric training for upper-extremity rehabilitation or performance enhancement. To measure upper-extremity kinematics and plyometric phase times before and after an 8-wk upper-extremity strength- and plyometric-training program. Randomized pretest-posttest design. Research laboratory. 40 recreationally active men (plyometric group, age 20.43 ± 1.40 y, height 180.00 ± 8.80 cm, weight 73.07 ± 7.21 kg; strength group, age 21.95 ± 3.40 y, height 173.98 ± 11.91 cm, weight 74.79 ± 13.55 kg). Participants were randomly assigned to either a strength-training group or a strength- and plyometric-training group. Each participant performed the assigned training for 8 wk. Dynamic and static glenohumeral and scapular-rotation measurements were taken before and after the training programs. Dynamic measurement of scapular rotation and time spent in each plyometric phase (concentric, eccentric, and amortization) during a ball-toss exercise were recorded while the subjects were fitted with an electromagnetic tracking system. Static measures included scapular upward rotation at 3 different glenohumeral-abduction angles, glenohumeral internal rotation, and glenohumeral external rotation. Posttesting showed that both groups significantly decreased the time spent in the amortization, concentric, and eccentric phases of a ball-toss exercise (P < .01). Both groups also exhibited significantly decreased static external rotation and increased dynamic scapular upward rotation after the training period (P < .01). The only difference between the training protocols was that the plyometric-training group exhibited an increase in internal rotation that was not present in the strength-training group (P < .01). These findings support the use of both upper-extremity plyometrics and strength training for reducing commonly identified upper-extremity-injury risk factors and improving upper-extremity performance.

  16. Novel approaches for the management of tendinopathy.

    PubMed

    Maffulli, Nicola; Longo, Umile Giuseppe; Denaro, Vincenzo

    2010-11-03

    Tendinopathy is a failed healing response of the tendon. Despite an abundance of therapeutic options, very few randomized prospective, placebo-controlled trials have been carried out to assist physicians in choosing the best evidence-based management. Eccentric exercises have been proposed to promote collagen fiber cross-link formation within the tendon, thereby facilitating tendon remodeling. Overall results suggest a trend for a positive effect of eccentric exercises, with no reported adverse effects. Combining eccentric training and shock wave therapy produces higher success rates compared with eccentric loading alone or shock wave therapy alone. The use of injectable substances such as platelet-rich plasma, autologous blood, polidocanol, corticosteroids, and aprotinin in and around tendons is popular, but there is minimal clinical evidence to support their use. The aim of operative treatment is to excise fibrotic adhesions, remove areas of failed healing, and make multiple longitudinal incisions in the tendon to detect intratendinous lesions and to restore vascularity and possibly stimulate the remaining viable cells to initiate cell matrix response and healing. New operative procedures include endoscopy, electrocoagulation, and minimally invasive stripping. The aim of these techniques is to disrupt the abnormal neoinnervation to interfere with the pain sensation caused by tendinopathy. Randomized controlled trials are necessary to better clarify the best therapeutic options for the management of tendinopathy.

  17. Healthy Campers: The Physical Benefits of Camp.

    ERIC Educational Resources Information Center

    McSwegin, Patricia; And Others

    1991-01-01

    Discusses the importance of planning, implementing, and evaluating camp physical activity programs. Appropriate physical activity programing should consider frequency, intensity, time, and type of activity. Also important are following the principles critical to physical training: specificity, overload, and progression. Two examples of physical…

  18. Exercise training in the aerobic/anaerobic metabolic transition prevents glucose intolerance in alloxan-treated rats.

    PubMed

    Soares de Alencar Mota, Clécia; Ribeiro, Carla; de Araújo, Gustavo Gomes; de Araújo, Michel Barbosa; de Barros Manchado-Gobatto, Fúlvia; Voltarelli, Fabrício Azevedo; de Oliveira, Camila Aparecida Machado; Luciano, Eliete; de Mello, Maria Alice Rostom

    2008-10-02

    Ninety percent of cases of diabetes are of the slowly evolving non-insulin-dependent type, or Type 2 diabetes. Lack of exercise is regarded as one of the main causes of this disorder. In this study we analyzed the effects of physical exercise on glucose homeostasis in adult rats with type 2 diabetes induced by a neonatal injection of alloxan. Female Wistar rats aged 6 days were injected with either 250 mg/kg of body weight of alloxan or citrate buffer 0.01 M (controls). After weaning, half of the animals in each group were subjected to physical training adjusted to meet the aerobic-anaerobic metabolic transition by swimming 1 h/day for 5 days a week with weight overloads. The necessary overload used was set and periodically readjusted for each rat through effort tests based on the maximal lactate steady state procedure. When aged 28, 60, 90, and 120 days, the rats underwent glucose tolerance tests (GTT) and their peripheral insulin sensitivity was evaluated using the HOMA index. The area under the serum glucose curve obtained through GTT was always higher in alloxan-treated animals than in controls. A decrease in this area was observed in trained alloxan-treated rats at 90 and 120 days old compared with non-trained animals. At 90 days old the trained controls showed lower HOMA indices than the non-trained controls. Neonatal administration of alloxan induced a persistent glucose intolerance in all injected rats, which was successfully counteracted by physical training in the aerobic/anaerobic metabolic transition.

  19. Resistance exercise countermeasures for space flight: implications of training specificity

    NASA Technical Reports Server (NTRS)

    Bamman, M. M.; Caruso, J. F.

    2000-01-01

    While resistance exercise should be a logical choice for prevention of strength loss during unloading, the principle of training specificity cannot be overlooked. Our purpose was to explore training specificity in describing the effect of our constant load exercise countermeasure on isokinetic strength performance. Twelve healthy men (mean +/- SD: 28.0 +/- 5.2 years, 179.4 +/- 3.9 cm, 77.5 +/- 13.6 kg) were randomly assigned to no exercise or resistance exercise (REX) during 14 days of bed rest. REX performed five sets of leg press exercise to volitional fatigue (6-10 repetitions) every other day. Unilateral isokinetic concentric-eccentric knee extension testing performed before and on day 15 prior to reambulation included torque-velocity and power-velocity relationships at four velocities (0.52, 1.75, 2.97, and 4.19 rad s-1), torque-position relationship, and contractile work capacity (10 repetitions at 1.05 rad s-1). Two (group) x 2 (time) ANOVA revealed no group x time interactions; thus, groups were combined. Across velocities, angle-specific torque fell 18% and average power fell 20% (p < 0.05). No velocity x time or mode (concentric/eccentric) x time interactions were noted. Torque x position decreased on average 24% (p < 0.05). Total contractile work dropped 27% (p < 0.05). Results indicate bed rest induces rapid and marked reductions in strength and our constant load resistance training protocol did not prevent isokinetic strength losses. Differences between closed-chain training and open-chain testing may explain the lack of protection.

  20. Rehabilitation After Hamstring-Strain Injury Emphasizing Eccentric Strengthening at Long Muscle Lengths: Results of Long-Term Follow-Up.

    PubMed

    Tyler, Timothy F; Schmitt, Brandon M; Nicholas, Stephen J; McHugh, Malachy P

    2017-04-01

    Hamstring-strain injuries have a high recurrence rate. To determine if a protocol emphasizing eccentric strength training with the hamstrings in a lengthened position resulted in a low recurrence rate. Longitudinal cohort study. Sports-medicine physical therapy clinic. Fifty athletes with hamstring-strain injury (age 36 ± 16 y; 30 men, 20 women; 3 G1, 43 G2, 4 G3; 25 recurrent injuries) followed a 3-phase rehabilitation protocol emphasizing eccentric strengthening with the hamstrings in a lengthened position. Injury recurrence; isometric hamstring strength at 80°, 60°, 40°, and 20° knee flexion in sitting with the thigh flexed to 40° above the horizontal and the seat back at 90° to the horizontal (strength tested before return to sport). Four of the 50 athletes sustained reinjuries between 3 and 12 mo after return to sport (8% recurrence rate). The other 42 athletes had not sustained a reinjury at an average of 24 ± 12 mo after return to sport. Eight noncompliant athletes did not complete the rehabilitation and returned to sport before initiating eccentric strengthening in the lengthened state. All 4 reinjuries occurred in these noncompliant athletes. At time of return to sport, compliant athletes had full restoration of strength while noncompliant athletes had significant hamstring weakness, which was progressively worse at longer muscle lengths (compliance × side × angle P = .006; involved vs noninvolved at 20°, compliant 7% stronger, noncompliant 43% weaker). Compliance with rehabilitation emphasizing eccentric strengthening with the hamstrings in a lengthened position resulted in no reinjuries.

  1. Effects of Plyometric Versus Concentric and Eccentric Conditioning Contractions on Upper-Body Postactivation Potentiation.

    PubMed

    Ulrich, Gert; Parstorfer, Mario

    2017-07-01

    There are limited data on postactivation potentiation's (PAP) effects after plyometric conditioning contractions (CCs), especially in the upper body. This study compared plyometric CCs with concentric-eccentric and eccentric CCs aiming to improve upper-body power performance due to a PAP effect. Sixteen resistance-trained males completed 3 experimental trials in a randomized order that comprised either a plyometric (PLY), a concentric-eccentric (CON), or an eccentric-only (ECC) CC. Maximal muscle performance, as determined by a ballistic bench-press throw, was measured before (baseline) and 1, 4, 8, 12, and 16 min after each CC. Compared with baseline, bench-press power was significantly enhanced only in CON (P = .046, ES = 0.21) after 8 min of recovery. However, the results obtained from the comparisons between baseline power performance and the individual best power performance for each subject after each CC stimulus showed significant increases in PLY (P < .001, ES = 0.31) and CON (P < .001, ES = 0.38). There was no significant improvement in ECC (P = .106, ES = 0.11). The results indicate that only CON CCs generated increases in bench-press power after 8 min of rest. However, considering an individual rest interval, PLY CCs led to an enhanced power performance in the bench-press exercise, and this increase was comparable to that induced by CON CCs. Due to the easy practical application before a competition, PLY CCs might be an interesting part of warm-up strategies aiming to improve upper-body power performance by reason of PAP.

  2. Isokinetic Strength Profile of Elite Female Handball Players.

    PubMed

    Xaverova, Zuzana; Dirnberger, Johannes; Lehnert, Michal; Belka, Jan; Wagner, Herbert; Orechovska, Karolina

    2015-12-22

    Systematic assessment of muscle strength of the lower extremities throughout the annual training cycle in athletes is crucial from a performance perspective for the optimization of the training process, as well as a health perspective with regard to injury prevention. The main aim of the present study was to determine isokinetic muscle strength of the knee flexors and extensors in female handball players at the beginning of a preparatory period and to assess whether there were any differences between players of different performance levels. The performance level was expressed by means of membership of the Women's Junior National Handball Team (JNT, n=8) or the Women's National Handball Team (NT, n=9). The isokinetic peak torque during concentric and eccentric single-joint knee flexion and extension was measured at angular velocities of 60, 180, 240°/s (concentric) and 60°/s (eccentric). The Mann-Whitney test showed no significant differences in the peak torques or ipsilateral ratios between the two groups. The bilateral force deficit (BFD) for concentric extension at 240°/s was significantly higher in the JNT compared with the NT (p=0.04; d=1.02). However, the results of individual evaluation show that the BFD was more frequent in the NT in most measurements. A high BFD was evident in the eccentric mode in both groups highlighting a need for particular strengthening. With regard to low strength ratios a prevention programme should be suggested for both observed groups of professional female handball players to reduce the risk of injury.

  3. CD-ROM Stress.

    ERIC Educational Resources Information Center

    Bunge, Charles A.

    1991-01-01

    Discussion of stress in library reference departments focuses on stress caused by CD-ROM reference tools. Topics discussed include work overload; nonreference duties; patron attitudes and behavior; staff attitudes; the need for proper staff training; and the need for library administrators to be sensitive to reference staff needs. (LRW)

  4. Whole-Body Vibration and the Prevention and Treatment of Delayed-Onset Muscle Soreness

    PubMed Central

    Aminian-Far, Atefeh; Hadian, Mohammad-Reza; Olyaei, Gholamreza; Talebian, Saeed; Bakhtiary, Amir Hoshang

    2011-01-01

    Abstract Context: Numerous recovery strategies have been used in an attempt to minimize the symptoms of delayed-onset muscle soreness (DOMS). Whole-body vibration (WBV) has been suggested as a viable warm-up for athletes. However, scientific evidence to support the protective effects of WBV training (WBVT) on muscle damage is lacking. Objective: To investigate the acute effect of WBVT applied before eccentric exercise in the prevention of DOMS. Design: Randomized controlled trial. Setting: University laboratory. Patients or Other Participants: A total of 32 healthy, untrained volunteers were randomly assigned to either the WBVT (n  =  15) or control (n  =  17) group. Intervention(s): Volunteers performed 6 sets of 10 maximal isokinetic (60°/s) eccentric contractions of the dominant-limb knee extensors on a dynamometer. In the WBVT group, the training was applied using a vibratory platform (35 Hz, 5 mm peak to peak) with 100° of knee flexion for 60 seconds before eccentric exercise. No vibration was applied in the control group. Main Outcome Measure(s): Muscle soreness, thigh circumference, and pressure pain threshold were recorded at baseline and at 1, 2, 3, 4, 7, and 14 days postexercise. Maximal voluntary isometric and isokinetic knee extensor strength were assessed at baseline, immediately after exercise, and at 1, 2, 7, and 14 days postexercise. Serum creatine kinase was measured at baseline and at 1, 2, and 7 days postexercise. Results: The WBVT group showed a reduction in DOMS symptoms in the form of less maximal isometric and isokinetic voluntary strength loss, lower creatine kinase levels, and less pressure pain threshold and muscle soreness (P < .05) compared with the control group. However, no effect on thigh circumference was evident (P < .05). Conclusions: Administered before eccentric exercise, WBVT may reduce DOMS via muscle function improvement. Further investigation should be undertaken to ascertain the effectiveness of WBVT in attenuating DOMS in athletes. PMID:21214349

  5. Influence of exercise contraction mode and protein supplementation on human skeletal muscle satellite cell content and muscle fiber growth.

    PubMed

    Farup, Jean; Rahbek, Stine Klejs; Riis, Simon; Vendelbo, Mikkel Holm; Paoli, Frank de; Vissing, Kristian

    2014-10-15

    Skeletal muscle satellite cells (SCs) are involved in remodeling and hypertrophy processes of skeletal muscle. However, little knowledge exists on extrinsic factors that influence the content of SCs in skeletal muscle. In a comparative human study, we investigated the muscle fiber type-specific association between emergence of satellite cells (SCs), muscle growth, and remodeling in response to 12 wk unilateral resistance training performed as eccentric (Ecc) or concentric (Conc) resistance training ± whey protein (Whey, 19.5 g protein + 19.5 g glucose) or placebo (Placebo, 39 g glucose) supplementation. Muscle biopsies (vastus lateralis) were analyzed for fiber type-specific SCs, myonuclei, and fiber cross-sectional area (CSA). Following training, SCs increased with Conc in both type I and type II fibers (P < 0.01) and exhibited a group difference from Ecc (P < 0.05), which did not increase. Myonuclei content in type I fibers increased in all groups (P < 0.01), while a specific accretion of myonuclei in type II fibers was observed in the Whey-Conc (P < 0.01) and Placebo-Ecc (P < 0.01) groups. Similarly, whereas type I fiber CSA increased independently of intervention (P < 0.001), type II fiber CSA increased exclusively with Whey-Conc (P < 0.01) and type II fiber hypertrophy correlated with whole muscle hypertrophy exclusively following Conc training (P < 0.01). In conclusion, isolated concentric knee extensor resistance training appears to constitute a stronger driver of SC content than eccentric resistance training while type II fiber hypertrophy was accentuated when combining concentric resistance training with whey protein supplementation. Copyright © 2014 the American Physiological Society.

  6. Effect of concentric and eccentric velocity during heavy-load non-ballistic elbow flexion resistance exercise.

    PubMed

    Sampson, John A; Donohoe, Alison; Groeller, Herbert

    2014-05-01

    Mechanical and neuromuscular benefits arise during ballistic stretch-shortening cycle muscle activation, yet resistance training regimens are typically non-ballistic, and in contrast to ballistic movement, require a concentric deceleration phase. Twelve healthy males performed a unilateral, six repetition maximum non-ballistic elbow flexion-extension task during; (i) rapid shortening (RS), (ii) stretch-shortening cycle (SSC) and (iii) a 2-s eccentric and 2-s concentric control (C). A load cell and shaft encoder recorded respectively force and velocity. Surface electromyographic root mean square amplitude (EMGRMS) was recorded in the biceps and triceps brachii, and is reported as the relative (%) difference, normalised to control (C). The average lengthening and shortening velocity of SSC (0.57 ± 0.03 ms(-1); 0.43 ± 0.02 ms(-1)) was significantly greater than RS (0.22 ± 0.01 ms(-1); 0.35 ± 0.01 ms(-1)), and C (0.17 ± 0.00 ms(-1), 0.20 ± 0.00 ms(-1)). Peak eccentric force was increased (P<0.0001) and in the first 5% of concentric movement during SSC, in the first and last repetitions respectively (194.7 ± 8.4N, 164.1 ± 7.5 N) when compared to RS (163.3 ± 8.9 N, 152.4 ± 7.5 N) and C (155.9 ± 8.5 N, 152.2 ± 8.7 N). Eccentric EMGRMS in the biceps brachii was significantly increased during the first three and final repetitions of SSC (31.9 ± 10.9%, 46.7 ± 12.4, 69.3 ± 13.6%, 92.0 ± 16.4%), and the third and last repetitions of RS (35.9 ± 7.4%, 50.3 ± 10.9%), compared to C (0.00%, 15.8 ± 4.0%, 23.7 ± 4.1%, 39.2 ± 8.6%). In the current study, eccentric limb velocity potentiated eccentric and concentric force, concentric velocity, and eccentric EMG amplitude during non-ballistic exercise. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  7. Optimal Physical Training During Military Basic Training Period.

    PubMed

    Santtila, Matti; Pihlainen, Kai; Viskari, Jarmo; Kyröläinen, Heikki

    2015-11-01

    The goal for military basic training (BT) is to create a foundation for physical fitness and military skills of soldiers. Thereafter, more advanced military training can safely take place. Large differences in the initial physical performance of conscripts or recruits have led military units to develop more safe and effective training programs. The purpose of this review article was to describe the limiting factors of optimal physical training during the BT period. This review revealed that the high volume of low-intensity physical activity combined with endurance-type military training (like combat training, prolonged physical activity, and field shooting) during BT interferes with optimal development of maximal oxygen uptake and muscle strength of the soldiers. Therefore, more progressive, periodized, and individualized training programs are needed. In conclusion, optimal training programs lead to higher training responses and lower risks for injuries and overloading.

  8. THE REHABILITATION OF A RUNNER WITH ILIOPSOAS TENDINOPATHY USING AN ECCENTRIC-BIASED EXERCISE-A CASE REPORT

    PubMed Central

    2017-01-01

    Background and Purpose While there is much discussion about tendinopathy in the literature, there is little reference to the less common condition of iliopsoas tendinopathy, and no documentation of the condition in runners. The iliopsoas is a major decelerator of the hip and eccentric loading of the iliopsoas is an important component of energy transfer during running. Eccentric training is a thoroughly researched method of treating tendinopathy but has shown mixed results. The purpose of this case report is to describe the rehabilitation of a runner with iliopsoas tendinopathy, and demonstrate in a creative eccentric-biased technique to assist with treatment. A secondary objective is to illustrate how evidence on intervention for other tendinopathies was used to guide rehabilitation of this seldom described condition. Case Description The subject was a 39-year-old female middle distance runner diagnosed with iliopsoas tendinopathy via ultrasound, after sudden onset of left anterior groin pain. Symptoms began after a significant increase in running load, and persisted, despite rest, for three months. The intervention consisted of an eccentric-biased hip flexor exercise, with supportive kinetic chain exercises and progressive loading in a return to running program. Outcomes The Copenhagen Hip and Groin Outcome Score, the Visual Analogue Scale, the Global Rating of Change Scale and manual muscle testing scores all improved after 12 weeks of intervention with further improvement at the five-year follow up. After 12 weeks of intervention, the subject was running without restriction and had returned to her pre-injury running mileage at the five-year follow up. Discussion The eccentric-biased exercise in conjunction with exercises addressing the kinetic chain and a progressive tendon loading program, were successful in the rehabilitation of this subject with iliopsoas tendinopathy. This case report is the first to provide a description on the rehabilitation of iliopsoas tendinopathy, and offers clinicians suggestions and guidance for treatment and exercise choice in the clinical environment. Level of Evidence 5 PMID:29234566

  9. Soccer-Specific Fatigue and Eccentric Hamstrings Muscle Strength

    PubMed Central

    Greig, Matt; Siegler, Jason C

    2009-01-01

    Context: Epidemiologic findings of higher incidences of hamstrings muscle strains during the latter stages of soccer match play have been attributed to fatigue. Objective: To investigate the influence of soccer-specific fatigue on the peak eccentric torque of the knee flexor muscles. Design: Descriptive laboratory study. Setting: Controlled laboratory environment. Patients or Other Participants: Ten male professional soccer players (age  =  24.7 ± 4.4 years, mass  =  77.1 ± 8.3 kg, V̇o2max  =  63.0 ± 4.8 mL·kg−1·min−1). Intervention(s): Participants completed an intermittent treadmill protocol replicating the activity profile of soccer match play, with a passive halftime interval. Before exercise and at 15-minute intervals, each player completed isokinetic dynamometer trials. Main Outcome Measure(s): Peak eccentric knee flexor torque was quantified at isokinetic speeds of 180° · s−1, 300° · s−1, and 60° · s−1, with 5 repetitions at each speed. Results: Peak eccentric knee flexor torque at the end of the game (T300eccH105  =  127 ± 25 Nm) and at the end of the passive halftime interval (T300eccH60  =  133 ± 32 Nm) was reduced relative to T300eccH00 (167 ± 35 Nm, P < .01) and T300eccH15 (161 ± 35 Nm, P  =  .02). Conclusions: Eccentric hamstrings strength decreased as a function of time and after the halftime interval. This finding indicates a greater risk of injuries at these specific times, especially for explosive movements, in accordance with epidemiologic observations. Incorporating eccentric knee flexor exercises into resistance training sessions that follow soccer-specific conditioning is warranted to try to reduce the incidence or recurrence of hamstrings strains. PMID:19295963

  10. Effects of Krankcycle Training on Performance and Body Composition in Wheelchair Users.

    PubMed

    Čichoň, Rostislav; Maszczyk, Adam; Stastny, Petr; Uhlíř, Petr; Petr, Miroslav; Doubrava, Ondřej; Mostowik, Aleksandra; Gołaś, Artur; Cieszczyk, Paweł; Żmijewski, Piotr

    2015-11-22

    Innovation in training equipment is important for increasing training effectiveness, performance and changes in body composition, especially in wheelchair users with paraplegia. The main objective of a workout session is to induce an adaptation stimulus, which requires overload of involved muscles by voluntary effort, yet this overload may be highly influenced by the size of the spinal cord lesion. Krancykl construction is designed to allow exercise on any wheelchair and with adjustable height or width of crank handles, where even the grip handle may be altered. The aim of this study was to determine the differences in body composition, performance and the rate of perceived exertion (RPE) in paraplegics with a different level of paralyses after a 12 week training programme of a unilateral regime on Krankcycle equipment (a crank machine). The study sample included four men and one women at a different spine lesion level. The 12 weeks programme was successfully completed by four participants, while one subject got injured during the intervention process. Three participants were paraplegics and one was quadriplegic with innervation of the biceps humeri, triceps humeri and deltoideus. The Krankcycle 30 min programme was followed by four other exercises, which were performed after themselves rather than in a circuit training manner as the latter would result in much longer rest periods between exercises, because paraplegics have to be fixed by straps during exercise on hydraulic machines. The RPE after the workout decreased following the twelve week adaptation period.

  11. Effects of Krankcycle Training on Performance and Body Composition in Wheelchair Users

    PubMed Central

    Čichoň, Rostislav; Maszczyk, Adam; Stastny, Petr; Uhlíř, Petr; Petr, Miroslav; Doubrava, Ondřej; Mostowik, Aleksandra; Gołaś, Artur; Cieszczyk, Paweł; Żmijewski, Piotr

    2015-01-01

    Innovation in training equipment is important for increasing training effectiveness, performance and changes in body composition, especially in wheelchair users with paraplegia. The main objective of a workout session is to induce an adaptation stimulus, which requires overload of involved muscles by voluntary effort, yet this overload may be highly influenced by the size of the spinal cord lesion. Krancykl construction is designed to allow exercise on any wheelchair and with adjustable height or width of crank handles, where even the grip handle may be altered. The aim of this study was to determine the differences in body composition, performance and the rate of perceived exertion (RPE) in paraplegics with a different level of paralyses after a 12 week training programme of a unilateral regime on Krankcycle equipment (a crank machine). The study sample included four men and one women at a different spine lesion level. The 12 weeks programme was successfully completed by four participants, while one subject got injured during the intervention process. Three participants were paraplegics and one was quadriplegic with innervation of the biceps humeri, triceps humeri and deltoideus. The Krankcycle 30 min programme was followed by four other exercises, which were performed after themselves rather than in a circuit training manner as the latter would result in much longer rest periods between exercises, because paraplegics have to be fixed by straps during exercise on hydraulic machines. The RPE after the workout decreased following the twelve week adaptation period. PMID:26834875

  12. Resistance training interventions across the cancer control continuum: a systematic review of the implementation of resistance training principles.

    PubMed

    Fairman, C M; Hyde, P N; Focht, B C

    2017-04-01

    The primary purpose of this systematic review is to examine the extant resistance training (RT) cancer research to evaluate the proportion of RT interventions that: (1) implemented key RT training principles (specificity, progression, overload) and (2) explicitly reported relevant RT prescription components (frequency, intensity, sets, reps). A qualitative systematic review was performed by two reviewers (CMF and PNH) who inspected the titles and abstracts to determine eligibility for this systematic review. Identified papers were obtained in full and further reviewed. Data were extracted to evaluate the application of principles of training, along with specific RT components. Electronic databases (PubMed, EMBASE, CINAHL, Cochrane, PEDro, PsychInfo, Cancer Lit, Sport Discus, AMED, Cochrane Central Register of Controlled Trials) and reference lists of included articles from inception to May 2016. 37 studies were included. The principle of specificity was used appropriately in all of the studies, progression in 65% and overload in 76% of the studies. The most common exercise prescription (∼50%) implemented in the studies included in this review were 2-3 days/week, focusing on large muscle groups, 60-70% 1 repetition maximum (RM), 1-3 sets of 8-12 repetitions. Reporting of RT principles in an oncology setting varies greatly, with often vague or non-existent references to the principles of training and how the RT prescription was designed. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  13. Muscle preservation in long duration space missions: The eccentric factor

    NASA Technical Reports Server (NTRS)

    Buchanan, Paul; Dudley, Gary A.; Tesch, Per A.; Hather, Bruce M.

    1990-01-01

    In our quest to understand, and eventually prevent, the loss of muscle strength and mass that occurs during prolonged periods in microgravity, we have organized our research approach by systems and useful terrestrial analogs. Our hypothesis was that: The eccentric movement, or lengthening component, of dynamic, resistive exercise, is required for the production of the greatest gains in strength and muscle hypertrophy in the most metabolically efficient, and time effective manner. The exercises selected were leg presses, leg (knee) extensions, and hamstring curls. In this 30 week study, 38 male subjects, between the ages of 25 and 50, were divided into four groups. One group performed 5 sets of 8-12 repetitions per set of conventional concentric/eccentric (CON/ECC) exercises. Another group performed only the concentric (CON) movement on the same schedule. The third group performed twice the number of sets in the concentric only mode (CON/CON), and the last group served as controls. We interpret these data as convincing evidence that the eccentric component of heavy resistance training is required along with the concentric for the most effective increase in strength and muscle fiber size in the least time. We also conclude that such heavy exercise of any such muscle group need not consume inordinately long periods of time, and is quite satisfactorily effective when performed on 72 hour centers.

  14. Arterial stiffness results from eccentrically biased downhill running exercise.

    PubMed

    Burr, J F; Boulter, M; Beck, K

    2015-03-01

    There is increasing evidence that select forms of exercise are associated with vascular changes that are in opposition to the well-accepted beneficial effects of moderate intensity aerobic exercise. To determine if alterations in arterial stiffness occur following eccentrically accentuated aerobic exercise, and if changes are associated with measures of muscle soreness. Repeated measures experimental cohort. Twelve (m=8/f=4) moderately trained (VO₂max=52.2 ± 7.4 ml kg(-1)min(-1)) participants performed a downhill run at -12° grade using a speed that elicited 60% VO₂max for 40 min. Cardiovascular and muscle soreness measures were collected at baseline and up to 72 h post-running. Muscle soreness peaked at 48 h (p=<0.001). Arterial stiffness similarly peaked at 48 h (p=0.04) and remained significantly elevated above baseline through 72 h. Eccentrically accentuated downhill running is associated with arterial stiffening in the absence of an extremely prolonged duration or fast pace. The timing of alterations coincides with the well-documented inflammatory response that occurs from the muscular insult of downhill running, but whether the observed changes are a result of either systemic or local inflammation is yet unclear. These findings may help to explain evidence of arterial stiffening in long-term runners and following prolonged duration races wherein cumulative eccentric loading is high. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  15. Precision of spiral-bevel gears

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Goldrich, R. N.; Coy, J. J.; Zaretsky, E. V.

    1983-01-01

    The kinematic errors in spiral bevel gear trains caused by the generation of nonconjugate surfaces, by axial displacements of the gears during assembly, and by eccentricity of the assembled gears were determined. One mathematical model corresponds to the motion of the contact ellipse across the tooth surface, (geometry I) and the other along the tooth surface (geometry II). The following results were obtained: (1) kinematic errors induced by errors of manufacture may be minimized by applying special machine settings, the original error may be reduced by order of magnitude, the procedure is most effective for geometry 2 gears, (2) when trying to adjust the bearing contact pattern between the gear teeth for geometry I gears, it is more desirable to shim the gear axially; for geometry II gears, shim the pinion axially; (3) the kinematic accuracy of spiral bevel drives are most sensitive to eccentricities of the gear and less sensitive to eccentricities of the pinion. The precision of mounting accuracy and manufacture are most crucial for the gear, and less so for the pinion. Previously announced in STAR as N82-30552

  16. Exercise Science Principles and the Vocal Warm-up: Implications for Singing Voice Pedagogy.

    PubMed

    Hoch, Matthew; Sandage, Mary J

    2018-01-01

    Principles from exercise science literature were applied to singing warm-up pedagogy as a method for examining parallels between athletic and voice training. Analysis of the use of exercise principles in vocal warm-up should illuminate aspects of voice training that may be further developed in the future. A selected canon of standard voice pedagogy texts and well-regarded warm-up methods were evaluated for use of exercise science principles for skill acquisition and fatigue resistance. Exercises were then categorized according to whether they were used for the purpose of skill acquisition (specificity), training up to tasks (overload), or detraining (reversibility). A preliminary review of well-established voice pedagogy programs reveals a strong bias toward the skill acquisition aspects of vocal warm-up, with little commentary on the fatigue management aspects. Further, the small number of vocalises examined that are not skill-acquisition oriented fall into a third "habilitative" category that likewise does not relate to overload but may play a role in offsetting reversibility. Although a systematic pedagogy for skill acquisition has emerged in the literature and practice of voice pedagogy, a parallel pedagogy for fatigue management has yet to be established. Identification of a systematic pedagogy for training up to specific singing genres and development of a singing maintenance program to avoid detraining may help the singer avoid injury. Copyright © 2018 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  17. New classification of geometric ventricular patterns in severe aortic stenosis: Could it be clinically useful?

    PubMed

    Di Nora, Concetta; Cervesato, Eugenio; Cosei, Iulian; Ravasel, Andreea; Popescu, Bogdan A; Zito, Concetta; Carerj, Scipione; Antonini-Canterin, Francesco; Popescu, Andreea C

    2018-04-16

    In severe aortic stenosis, different left ventricle (LV) remodeling patterns as a response to pressure overload have distinct hemodynamic profiles, cardiac function, and outcomes. The most common classification considers LV relative wall thickness and LV mass index to create 4 different groups. A new classification including also end-diastolic volume index has been recently proposed. To describe the prevalence of the newly identified remodeling patterns in patients with severe aortic stenosis and to evaluate their clinical relevance according to symptoms. We analyzed 286 consecutive patients with isolated severe aortic stenosis. Current guidelines were used for echocardiographic evaluation. Symptoms were defined as the presence of angina, syncope, or NYHA class III-IV. The mean age was 75 ± 9 years, 156 patients (54%) were men, while 158 (55%) were symptomatic. According to the new classification, the most frequent remodeling pattern was concentric hypertrophy (57.3%), followed by mixed (18.9%) and dilated hypertrophy (8.4%). There were no patients with eccentric remodeling; only 4 patients had a normalLV geometry. Symptomatic patients showed significantly more mixed hypertrophy (P < .05), while the difference regarding the prevalence of the other patterns was not statistically significant. When we analyzed the distribution of the classic 4 patterns stratified by the presence of symptoms, however, we did not find a significant difference (P = .157). The new classification had refined the description of different cardiac geometric phenotypes that develop as a response to pressure overload. It might be superior to the classic 4 patterns in terms of association with symptoms. © 2018 Wiley Periodicals, Inc.

  18. Physical demands of game-based training drills in women's team handball.

    PubMed

    Luteberget, Live S; Trollerud, Hege P; Spencer, Matt

    2018-03-01

    Game-based training drills are popular in team sports. This study compared two game-based training conditions and official matches in team handball. Thirty-one women players wore inertial measurement units in five training sessions and five official matches. In training, 3vs3 and 6vs6 game-based training conditions were performed with a 5-min duration. PlayerLoad™ and high-intensity events (HIEs; >2.5 m · s -1 ) were extracted from the raw data. Data were analysed using magnitude-based inferences and reported with effect sizes (ESs). PlayerLoad™ · min -1 from all positions combined was 11.37 ± 0.49 (mean ± 90% confidence limits) and 9.71 ± 0.3 for the 3vs3 and 6vs6 conditions, respectively. Backs (ES: 1.63), wings (ES: 1.91), and pivots (ES: 1.58) had greater PlayerLoad™ in 3vs3 than 6vs6. Substantially greater HIE · min -1 in 3vs3 occurred for all positions. There was substantially greater PlayerLoad™ · min -1 in 3vs3 and 6vs6 than match play for backs, wings, and pivots. Wings (ES: 1.95), pivots (ES: 0.70), and goalkeeper (ES: 1.13) had substantially greater HIE · min -1 in 3vs3 than match play. This study shows greater PlayerLoad™ and HIE in 3vs3 than 6vs6. Both game-based training conditions investigated in this study provide an overload in overall PlayerLoad™; however, additional exercises might be needed to overload HIE, especially for backs and pivots.

  19. Functional overreaching: the key to peak performance during the taper?

    PubMed

    Aubry, Anaël; Hausswirth, Christophe; Louis, Julien; Coutts, Aaron J; LE Meur, Yann

    2014-09-01

    The purpose of this study is to examine whether performance supercompensation during taper is maximized in endurance athletes after experiencing overreaching during an overload training (OT) period. Thirty-three trained male triathletes were assigned to either OT (n = 23) or normal training groups (n = 10, CTL) during 8 wk. Cycling performance and maximal oxygen uptake (V˙O2max) were measured after 1 wk of moderate training, a 3-wk period of OT, and then each week during 4-wk taper. Eleven of the 23 subjects from the OT group were diagnosed as functionally overreached (F-OR) after the overload period (decreased performance with concomitant high perceived fatigue), whereas the 12 other subjects were only acutely fatigued (AF) (no decrease in performance). According to qualitative statistical analysis, the AF group demonstrated a small to large greater peak performance supercompensation than the F-OR group (2.6% ± 1.1%) and the CTL group (2.6% ± 1.6%). V˙O2max increased significantly from baseline at peak performance only in the CTL and AF groups. Of the peak performances, 60%, 83%, and 73% occurred within the two first weeks of taper in CTL, AF, and OR, respectively. Ten cases of infection were reported during the study with higher prevalence in F-OR (70%) than that in AF (20%) and CTL (10%). This study showed that 1) greater gains in performance and V˙O2max can be achieved when higher training load is prescribed before the taper but not in the presence of F-OR; 2) peak performance is not delayed during taper when heavy training loads are completed immediately prior; and 3) F-OR provides higher risk for training maladaptation, including increased infection risks.

  20. Lactate response to different volume patterns of power clean.

    PubMed

    Date, Anand S; Simonson, Shawn R; Ransdell, Lynda B; Gao, Yong

    2013-03-01

    The ability to metabolize or tolerate lactate and produce power simultaneously can be an important determinant of performance. Current training practices for improving lactate use include high-intensity aerobic activities or a combination of aerobic and resistance training. Excessive aerobic training may have undesired physiological adaptations (e.g., muscle loss, change in fiber types). The role of explosive power training in lactate production and use needs further clarification. We hypothesized that high-volume explosive power movements such as Olympic lifts can increase lactate production and overload lactate clearance. Hence, the purpose of this study was to assess lactate accumulation after the completion of 3 different volume patterns of power cleans. Ten male recreational athletes (age 24.22 ± 1.39 years) volunteered. Volume patterns consisted of 3 sets × 3 repetition maximum (3RM) (low volume [LV]), 3 sets × 6 reps at 80-85% of 3RM (midvolume [MV]), and 3 sets × 9 reps at 70-75% of 3RM (high volume [HV]). Rest period was identical at 2 minutes. Blood samples were collected immediately before and after each volume pattern. The HV resulted in the greatest lactate accumulation (7.43 ± 2.94 mmol·L) vs. (5.27 ± 2.48 and 4.03 ± 1.78 mmol·L in MV and LV, respectively). Mean relative increase in lactate was the highest in HV (356.34%). The findings indicate that lactate production in power cleans is largely associated with volume, determined by number of repetitions, load, and rest interval. High-volume explosive training may impose greater metabolic demands than low-volume explosive training and may improve ability to produce power in the presence of lactate. The role of explosive power training in overloading the lactate clearance mechanism should be examined further, especially for athletes of intermittent sport.

  1. A Partnership Training Program in Breast Cancer Research Using Molecular Imaging Techniques

    DTIC Science & Technology

    2006-07-01

    Laurence GG, Teos L, Haddad GE. Effects of ACE- Inhibition on ANG II and IGF-1 signaling during development and regression of eccentric cardiac...2274. [33] Morawski AM, Winter PM, Crowder KC , Caruthers SD, Fuhrhop RW, Scott MJ, Robertson JD, Abendschein DR, Lanza GM, Wickline SA (2004). Targeted

  2. The development of a repetition-load scheme for the eccentric-only bench press exercise.

    PubMed

    Moir, Gavin L; Erny, Kyle F; Davis, Shala E; Guers, John J; Witmer, Chad A

    2013-01-01

    The purpose of the present study was to develop a repetition-load scheme for the eccentric-only bench press exercise. Nine resistance trained men (age: 21.6 ± 1.0 years; 1-repetition maximum [RM] bench press: 137.7 ± 30.4 kg) attended four testing sessions during a four week period. During the first session each subject's 1-RM bench press load utilizing the stretch-shortening cycle was determined. During the remaining sessions they performed eccentric-only repetitions to failure using supra-maximal loads equivalent to 110%, 120% and 130% of their 1-RM value with a constant cadence (30 reps·min(-1)). Force plates and a three dimensional motion analysis system were used during these final three sessions in order to evaluate kinematic and kinetic variables. More repetitions were completed during the 110% 1-RM condition compared to the 130% 1-RM condition (p=0.01). Mean total work (p=0.046) as well as vertical force (p=0.049), vertical work (p=0.017), and vertical power output (p=0.05) were significantly greater during the 130% 1-RM condition compared to the 110% 1-RM condition. A linear function was fitted to the number of repetitions completed under each load condition that allowed the determination of the maximum number of repetitions that could be completed under other supra-maximal loads. This linear function predicted an eccentric-only 1-RM in the bench press with a load equivalent to 164.8% 1-RM, producing a load of 227.0 ± 50.0 kg. The repetition-load scheme presented here should provide a starting point for researchers to investigate the kinematic, kinetic and metabolic responses to eccentric-only bench press workouts.

  3. A new device to study isoload eccentric exercise.

    PubMed

    Guilhem, Gaël; Cornu, Christophe; Nordez, Antoine; Guével, Arnaud

    2010-12-01

    This study was designed to develop a new device allowing mechanical analysis of eccentric exercise against a constant load, with a view in mind to compare isoload (IL) and isokinetic (IK) eccentric exercises. A plate-loaded resistance training device was integrated to an IK dynamometer, to perform the acquisition of mechanical parameters (i.e., external torque, angular velocity). To determine the muscular torque produced by the subject, load torque was experimentally measured (TLexp) at 11 different loads from 30° to 90° angle (0° = lever arm in horizontal position). TLexp was modeled to take friction effect and torque variations into account. Validity of modeled load torque (TLmod) was tested by determining the root mean square (RMS) error, bias, and 2SD between the descending part of TLexp (from 30° to 90°) and TLmod. Validity of TLexp was tested by a linear regression and a Passing-Bablok regression. A pilot analysis on 10 subjects was performed to determine the contribution of the torque because of the moment of inertia to the amount of external work (W). Results showed the validity of TLmod (bias = 0%; RMS error = 0.51%) and TLexp SEM = 4.1 N·m; Intraclass correlation coefficient (ICC) = 1.00; slope = 0.99; y-intercept = -0.13). External work calculation showed a satisfactory reproducibility (SEM = 38.3 J; ICC = 0.98) and moment of inertia contribution to W showed a low value (3.2 ± 2.0%). Results allow us to validate the new device developed in this study. Such a device could be used in future work to study IL eccentric exercise and to compare the effect of IL and IK eccentric exercises in standardized conditions.

  4. The Development of a Repetition-Load Scheme for the Eccentric-Only Bench Press Exercise

    PubMed Central

    Moir, Gavin L.; Erny, Kyle F.; Davis, Shala E.; Guers, John J.; Witmer, Chad A.

    2013-01-01

    The purpose of the present study was to develop a repetition-load scheme for the eccentric-only bench press exercise. Nine resistance trained men (age: 21.6 ± 1.0 years; 1-repetition maximum [RM] bench press: 137.7 ± 30.4 kg) attended four testing sessions during a four week period. During the first session each subject’s 1-RM bench press load utilizing the stretch-shortening cycle was determined. During the remaining sessions they performed eccentric-only repetitions to failure using supra-maximal loads equivalent to 110%, 120% and 130% of their 1-RM value with a constant cadence (30 reps·min−1). Force plates and a three dimensional motion analysis system were used during these final three sessions in order to evaluate kinematic and kinetic variables. More repetitions were completed during the 110% 1-RM condition compared to the 130% 1-RM condition (p=0.01). Mean total work (p=0.046) as well as vertical force (p=0.049), vertical work (p=0.017), and vertical power output (p=0.05) were significantly greater during the 130% 1-RM condition compared to the 110% 1-RM condition. A linear function was fitted to the number of repetitions completed under each load condition that allowed the determination of the maximum number of repetitions that could be completed under other supra-maximal loads. This linear function predicted an eccentric-only 1-RM in the bench press with a load equivalent to 164.8% 1-RM, producing a load of 227.0 ± 50.0 kg. The repetition-load scheme presented here should provide a starting point for researchers to investigate the kinematic, kinetic and metabolic responses to eccentric-only bench press workouts. PMID:24235981

  5. Effects of 12-wk eccentric calf muscle training on muscle-tendon glucose uptake and SEMG in patients with chronic Achilles tendon pain.

    PubMed

    Masood, Tahir; Kalliokoski, Kari; Magnusson, S Peter; Bojsen-Møller, Jens; Finni, Taija

    2014-07-15

    High-load eccentric exercises have been a key component in the conservative management of chronic Achilles tendinopathy. This study investigated the effects of a 12-wk progressive, home-based eccentric rehabilitation program on ankle plantar flexors' glucose uptake (GU) and myoelectric activity and Achilles tendon GU. A longitudinal study design with control (n = 10) and patient (n = 10) groups was used. Surface electromyography (SEMG) from four ankle plantar flexors and GU from the same muscles and the Achilles tendon were measured during submaximal intermittent isometric plantar flexion task. The results indicated that the symptomatic leg was weaker (P < 0.05) than the asymptomatic leg at baseline, but improved (P < 0.001) with eccentric rehabilitation. Additionally, the rehabilitation resulted in greater GU in both soleus (P < 0.01) and lateral gastrocnemius (P < 0.001) in the symptomatic leg, while the asymptomatic leg displayed higher uptake for medial gastrocnemius and flexor hallucis longus (P < 0.05). While both patient legs had higher tendon GU than the controls (P < 0.05), there was no rehabilitation effect on the tendon GU. Concerning SEMG, at baseline, soleus showed more relative activity in the symptomatic leg compared with both the asymptomatic and control legs (P < 0.05), probably reflecting an effort to compensate for the decreased force potential. The rehabilitation resulted in greater SEMG activity in the lateral gastrocnemius (P < 0.01) of the symptomatic leg with no other within- or between-group differences. Eccentric rehabilitation was effective in decreasing subjective severity of Achilles tendinopathy. It also resulted in redistribution of relative electrical activity, but not metabolic activity, within the triceps surae muscle. Copyright © 2014 the American Physiological Society.

  6. An Evidence-Based Framework for Strengthening Exercises to Prevent Hamstring Injury.

    PubMed

    Bourne, Matthew N; Timmins, Ryan G; Opar, David A; Pizzari, Tania; Ruddy, Joshua D; Sims, Casey; Williams, Morgan D; Shield, Anthony J

    2018-02-01

    Strength training is a valuable component of hamstring strain injury prevention programmes; however, in recent years a significant body of work has emerged to suggest that the acute responses and chronic adaptations to training with different exercises are heterogeneous. Unfortunately, these research findings do not appear to have uniformly influenced clinical guidelines for exercise selection in hamstring injury prevention or rehabilitation programmes. The purpose of this review was to provide the practitioner with an evidence-base from which to prescribe strengthening exercises to mitigate the risk of hamstring injury. Several studies have established that eccentric knee flexor conditioning reduces the risk of hamstring strain injury when compliance is adequate. The benefits of this type of training are likely to be at least partly mediated by increases in biceps femoris long head fascicle length and improvements in eccentric knee flexor strength. Therefore, selecting exercises with a proven benefit on these variables should form the basis of effective injury prevention protocols. In addition, a growing body of work suggests that the patterns of hamstring muscle activation diverge significantly between different exercises. Typically, relatively higher levels of biceps femoris long head and semimembranosus activity have been observed during hip extension-oriented movements, whereas preferential semitendinosus and biceps femoris short head activation have been reported during knee flexion-oriented movements. These findings may have implications for targeting specific muscles in injury prevention programmes. An evidence-based approach to strength training for the prevention of hamstring strain injury should consider the impact of exercise selection on muscle activation, and the effect of training interventions on hamstring muscle architecture, morphology and function. Most importantly, practitioners should consider the effect of a strength training programme on known or proposed risk factors for hamstring injury.

  7. Cross-education of muscular strength following unilateral resistance training: a meta-analysis.

    PubMed

    Manca, A; Dragone, D; Dvir, Z; Deriu, Franca

    2017-11-01

    Cross-education (CE) of strength is a well-known phenomenon whereby exercise of one limb can induce strength gains in the contralateral untrained limb. The only available meta-analyses on CE, which date back to a decade ago, estimated a modest 7.8% increase in contralateral strength following unilateral training. However, in recent years new evidences have outlined larger contralateral gains, which deserve to be systematically evaluated. Therefore, the aim of this meta-analysis was to appraise current data on CE and determine its overall magnitude of effect. Five databases were searched from inception to December 2016. All randomized controlled trials focusing on unilateral resistance training were carefully checked by two reviewers who also assessed the eligibility of the identified trials and extracted data independently. The risk of bias was assessed using the Cochrane Risk-of-Bias tool. Thirty-one studies entered the meta-analysis. Data from 785 subjects were pooled and subgroup analyses by body region (upper/lower limb) and type of training (isometric/concentric/eccentric/isotonic-dynamic) were performed. The pooled estimate of CE was a significant 11.9% contralateral increase (95% CI 9.1-14.8; p < 0.00001; upper limb: + 9.4%, p < 0.00001; lower limb: + 16.4%, p < 0.00001). Significant CE effects were induced by isometric (8.2%; p = 0.0003), concentric (11.3%; p < 0.00001), eccentric (17.7%; p = 0.003) and isotonic-dynamic training (15.9%; p < 0.00001), although a high risk of bias was detected across the studies. Unilateral resistance training induces significant contraction type-dependent gains in the contralateral untrained limb. Methodological issues in the included studies are outlined to provide guidance for a reliable quantification of CE in future studies.

  8. Eccentric Ergometer Training Promotes Locomotor Muscle Strength but Not Mitochondrial Adaptation in Patients with Severe Chronic Obstructive Pulmonary Disease.

    PubMed

    MacMillan, Norah J; Kapchinsky, Sophia; Konokhova, Yana; Gouspillou, Gilles; de Sousa Sena, Riany; Jagoe, R Thomas; Baril, Jacinthe; Carver, Tamara E; Andersen, Ross E; Richard, Ruddy; Perrault, Hélène; Bourbeau, Jean; Hepple, Russell T; Taivassalo, Tanja

    2017-01-01

    Eccentric ergometer training (EET) is increasingly being proposed as a therapeutic strategy to improve skeletal muscle strength in various cardiorespiratory diseases, due to the principle that lengthening muscle actions lead to high force-generating capacity at low cardiopulmonary load. One clinical population that may particularly benefit from this strategy is chronic obstructive pulmonary disease (COPD), as ventilatory constraints and locomotor muscle dysfunction often limit efficacy of conventional exercise rehabilitation in patients with severe disease. While the feasibility of EET for COPD has been established, the nature and extent of adaptation within COPD muscle is unknown. The aim of this study was therefore to characterize the locomotor muscle adaptations to EET in patients with severe COPD, and compare them with adaptations gained through conventional concentric ergometer training (CET). Male patients were randomized to either EET ( n = 8) or CET ( n = 7) for 10 weeks and matched for heart rate intensity. EET patients trained on average at a workload that was three times that of CET, at a lower perception of leg fatigue and dyspnea. EET led to increases in isometric peak strength and relative thigh mass ( p < 0.01) whereas CET had no such effect. However, EET did not result in fiber hypertrophy, as morphometric analysis of muscle biopsies showed no increase in mean fiber cross-sectional area ( p = 0.82), with variability in the direction and magnitude of fiber-type responses (20% increase in Type 1, p = 0.18; 4% decrease in Type 2a, p = 0.37) compared to CET (26% increase in Type 1, p = 0.04; 15% increase in Type 2a, p = 0.09). EET had no impact on mitochondrial adaptation, as revealed by lack of change in markers of mitochondrial biogenesis, content and respiration, which contrasted to improvements ( p < 0.05) within CET muscle. While future study is needed to more definitively determine the effects of EET on fiber hypertrophy and associated underlying molecular signaling pathways in COPD locomotor muscle, our findings promote the implementation of this strategy to improve muscle strength. Furthermore, contrasting mitochondrial adaptations suggest evaluation of a sequential paradigm of eccentric followed by concentric cycling as a means of augmenting the training response and attenuating skeletal muscle dysfunction in patients with advanced COPD.

  9. Dynamic response of a monorail steel bridge under a moving train

    NASA Astrophysics Data System (ADS)

    Lee, C. H.; Kawatani, M.; Kim, C. W.; Nishimura, N.; Kobayashi, Y.

    2006-06-01

    This study proposes a dynamic response analysis procedure for traffic-induced vibration of a monorail bridge and train. Each car in the monorail train is idealized as a dynamic system of 15-degrees-of-freedom. The governing equations of motion for a three-dimensional monorail bridge-train interaction system are derived using Lagrange's formulation for monorail trains, and a finite-element method for modal analysis of monorail bridges. Analytical results on dynamic response of the monorail train and bridge are compared with field-test data in order to verify the validity of the proposed analysis procedure, and a positive correlation is found. An interesting feature of the monorail bridge response is that sway motion is caused by torsional behavior resulting from eccentricity between the shear center of the bridge section and the train load.

  10. Isokinetic Strength Profile of Elite Female Handball Players

    PubMed Central

    Xaverova, Zuzana; Dirnberger, Johannes; Lehnert, Michal; Belka, Jan; Wagner, Herbert; Orechovska, Karolina

    2015-01-01

    Systematic assessment of muscle strength of the lower extremities throughout the annual training cycle in athletes is crucial from a performance perspective for the optimization of the training process, as well as a health perspective with regard to injury prevention. The main aim of the present study was to determine isokinetic muscle strength of the knee flexors and extensors in female handball players at the beginning of a preparatory period and to assess whether there were any differences between players of different performance levels. The performance level was expressed by means of membership of the Women’s Junior National Handball Team (JNT, n=8) or the Women’s National Handball Team (NT, n=9). The isokinetic peak torque during concentric and eccentric single-joint knee flexion and extension was measured at angular velocities of 60, 180, 240°/s (concentric) and 60°/s (eccentric). The Mann-Whitney test showed no significant differences in the peak torques or ipsilateral ratios between the two groups. The bilateral force deficit (BFD) for concentric extension at 240°/s was significantly higher in the JNT compared with the NT (p=0.04; d=1.02). However, the results of individual evaluation show that the BFD was more frequent in the NT in most measurements. A high BFD was evident in the eccentric mode in both groups highlighting a need for particular strengthening. With regard to low strength ratios a prevention programme should be suggested for both observed groups of professional female handball players to reduce the risk of injury. PMID:26839626

  11. [Effects of massage on delayed-onset muscle soreness].

    PubMed

    Bakowski, Paweł; Musielak, Bartosz; Sip, Paweł; Biegański, Grzegorz

    2008-01-01

    Delayed onset muscle soreness (DOMS) is the pain or discomfort often felt 12 to 24 hours after exercising and subsides generally within 4 to 6 days. Once thought to be caused by lactic acid buildup, a more recent theory is that it is caused by inflammatory process or tiny tears in the muscle fibers caused by eccentric contraction, or unaccustomed training levels. Exercises that involve many eccentric contractions will result in the most severe DOMS. Fourteen healthy men with no history of upper arm injury and no experience in resistance training were recruited. The mean age, height, and mass of the subjects were 22.8 +/- 1.2 years, 178.3 +/- 10.3 cm, and 75.0 +/- 14.2 kg, respectively. Subjects performed 8 sets of concentric and eccentric actions of the elbow flexors with each arm according to Stay protocol. One arm received 10 minutes of massage 30 minutes after exercise, the contralateral arm received no treatment. Measurements were taken at 9 assessment times: pre-exercise and postexercise at 10 min, 6, 12, 24, 36, 48, 72 and 96 hours. Dependent variables were range of motion, perceived soreness and upper arm circumference. There was noticed difference in perceived soreness across time between groups. The analysis indicated that massage resulted in a 10% to 20% decrease in the severity of soreness, but the differences were not significant. Difference in range of motion and arm circumference was not observed. Massage administered 30 minutes after exercises could have a beneficial influence on DOMS but without influence on muscle swelling and range of motion.

  12. Stress and counterproductive work behavior: multiple relationships between demands, control, and soldier indiscipline over time.

    PubMed

    Tucker, Jennifer S; Sinclair, Robert R; Mohr, Cynthia D; Thomas, Jeffrey L; Salvi, Angela D; Adler, Amy B

    2009-07-01

    Cognitive Resource Theory (CRT) suggests that under high levels of stress, employees are more prone to committing indiscipline. As few studies have examined this relationship over time, the authors conducted a six-wave longitudinal study examining the relationship of soldiers' indiscipline with work demands and control. The study included archival data collected quarterly over 2 years from 1,701 soldiers representing 10 units in garrison (Germany and Italy), in training rotations (Grafenwoehr, Germany), and on peacekeeping deployments (Kosovo, Kuwait). No main effects were found for work overload, and the findings for the moderating effects of control were contradictory. Within each time point, as work overload increased, soldiers who felt less control committed more indiscipline, supporting CRT. Over time, however, as work overload increased, soldiers who perceived less control 6 months earlier committed less indiscipline. Additionally, the authors found reverse causal effects for control such that prior perceptions of a lack of control were associated with indiscipline and prior incidents of indiscipline with less control. (c) 2009 APA, all rights reserved.

  13. Hippity Hops Velcroed to the Floor and Other Strategies to Educate Kids with FAS or FAE.

    ERIC Educational Resources Information Center

    Wescott, Siobhan

    1991-01-01

    Children with fetal alcohol syndrome may exhibit hyperactivity, hypersensitivity to touch, attention deficit disorder, stimulus overload, or an overtrusting nature. Educational strategies include consistent routines, multisensory cues to prompt memory, problem-solving training to recognize options, and emphasis on social skills and daily living…

  14. Riding the Information Highway--Towards a New Kind of Learning

    ERIC Educational Resources Information Center

    Aro, Mikko; Olkinuora, Erkki

    2007-01-01

    In the modern world, skimming through information quickly and finding the important nuggets of knowledge from amongst the information overload is an essential skill. One way to train oneself for this kind of literacy is reading on the internet, which requires continuous assessment of search results and specifying searches. In this article a…

  15. Achilles tendinosis and calf muscle strength. The effect of short-term immobilization after surgical treatment.

    PubMed

    Alfredson, H; Pietilä, T; Ohberg, L; Lorentzon, R

    1998-01-01

    We prospectively studied calf muscle strength in 7 men and 4 women (mean age, 40.9 +/- 10.1 years) who had surgical treatment for chronic Achilles tendinosis. Surgery was followed by immobilization in a weightbearing below-the-knee plaster cast for 2 weeks followed by a stepwise increasing strength training program. Strength measurements (peak torque and total work) were done preoperatively (Week 0) and at 16, 26, and 52 weeks postoperatively. We measured isokinetic concentric plantar flexion strength at 90 and 225 deg/sec and eccentric flexion strength at 90 deg/sec on both the injured and noninjured sides. Preoperatively, concentric and eccentric strength were significantly lower on the injured side at 90 and 225 deg/sec. Postoperatively, concentric peak torque on the injured side decreased significantly between Weeks 0 and 16 and increased significantly between Weeks 26 and 52 at 90 deg/sec but was significantly lower than that on the noninjured side at all periods and at both velocities. The eccentric strength was significantly lower on the injured side at Week 26 but increased significantly until at Week 52 no significant differences between the sides could be demonstrated. It seems, therefore, that the recovery in concentric and eccentric calf muscle strength after surgery for Achilles tendinosis is slow. We saw no obvious advantages in recovery of muscle strength with a short immobilization time (2 weeks) versus a longer (6 weeks) period used in a previous study.

  16. Rehabilitation regimes based upon psychophysical studies of prosthetic vision

    NASA Astrophysics Data System (ADS)

    Chen, S. C.; Suaning, G. J.; Morley, J. W.; Lovell, N. H.

    2009-06-01

    Human trials of prototype visual prostheses have successfully elicited visual percepts (phosphenes) in the visual field of implant recipients blinded through retinitis pigmentosa and age-related macular degeneration. Researchers are progressing rapidly towards a device that utilizes individual phosphenes as the elementary building blocks to compose a visual scene. This form of prosthetic vision is expected, in the near term, to have low resolution, large inter-phosphene gaps, distorted spatial distribution of phosphenes, restricted field of view, an eccentrically located phosphene field and limited number of expressible luminance levels. In order to fully realize the potential of these devices, there needs to be a training and rehabilitation program which aims to assist the prosthesis recipients to understand what they are seeing, and also to adapt their viewing habits to optimize the performance of the device. Based on the literature of psychophysical studies in simulated and real prosthetic vision, this paper proposes a comprehensive, theoretical training regime for a prosthesis recipient: visual search, visual acuity, reading, face/object recognition, hand-eye coordination and navigation. The aim of these tasks is to train the recipients to conduct visual scanning, eccentric viewing and reading, discerning low-contrast visual information, and coordinating bodily actions for visual-guided tasks under prosthetic vision. These skills have been identified as playing an important role in making prosthetic vision functional for the daily activities of their recipients.

  17. Investigating the use of pre-training measures of autonomic regulation for assessing functional overreaching in endurance athletes.

    PubMed

    Coates, Alexandra M; Hammond, Sarah; Burr, Jamie F

    2018-04-10

    The use of heart rate variability (HRV) to inform daily training prescription is becoming common in endurance sport. Few studies, however, have investigated the use of pre-training HRV to predict decreased performance or altered exercising autonomic response, typical of functional overreaching (FOR). Further, a new cardiac vagal tone (ProCVT) technology purports to eliminate some of the noise associated with daily HRV, and therefore may be better at predicting same-day performance. The purpose of this investigation was to examine if changes to resting HRV and ProCVT were associated with alterations in performance, maximal heart rate (HRmax), or heart rate recovery (HRrec) in FOR athletes. Twenty-eight recreational cyclists and triathletes were assigned to experimental/control conditions and underwent: 1 week of reduced training, 3 weeks of overload (OL) or regular training (CON), and 1 week of recovery. Testing occurred following the reduced training week (T1), post-3 weeks of training (T2), and following the recovery week (T3). Measures of resting HRV/ProCVT were collected each testing session, followed by maximal incremental exercise tests with HRrec taken 60 s post-exercise. Performance decreased from T1 to T2 in the OL group vs. CON (Δ-9 ± 12 vs. Δ9 ± 11 W, P < .001), as did HRmax (Δ-8 ± 4 vs. Δ-2 ± 4 bpm, P < .001). HRrec increased from T1 to T2 in the OL group vs. CON (Δ10 ± 9 vs. Δ2 ± 5 beats/min, P < .01). HRV and ProCVT did not change in either group. Same-day resting autonomic measures are insufficient in predicting alterations to performance or exercising HR measures following overload training.

  18. Expression of collagen and related growth factors in rat tendon and skeletal muscle in response to specific contraction types

    PubMed Central

    Heinemeier, K M; Olesen, J L; Haddad, F; Langberg, H; Kjaer, M; Baldwin, K M; Schjerling, P

    2007-01-01

    Acute exercise induces collagen synthesis in both tendon and muscle, indicating an adaptive response in the connective tissue of the muscle–tendon unit. However, the mechanisms of this adaptation, potentially involving collagen-inducing growth factors (such as transforming growth factor-β-1 (TGF-β-1)), as well as enzymes related to collagen processing, are not clear. Furthermore, possible differential effects of specific contraction types on collagen regulation have not been investigated. Female Sprague–Dawley rats were subjected to 4 days of concentric, eccentric or isometric training (n = 7–9 per group) of the medial gastrocnemius, by stimulation of the sciatic nerve. RNA was extracted from medial gastrocnemius and Achilles tendon tissue 24 h after the last training bout, and mRNA levels for collagens I and III, TGF-β-1, connective tissue growth factor (CTGF), lysyl oxidase (LOX), metalloproteinases (MMP-2 and -9) and their inhibitors (TIMP-1 and 2) were measured by Northern blotting and/or real-time PCR. In tendon, expression of TGF-β-1 and collagens I and III (but not CTGF) increased in response to all types of training. Similarly, enzymes/factors involved in collagen processing were induced in tendon, especially LOX (up to 37-fold), which could indicate a loading-induced increase in cross-linking of tendon collagen. In skeletal muscle, a similar regulation of gene expression was observed, but in contrast to the tendon response, the effect of eccentric training was significantly greater than the effect of concentric training on the expression of several transcripts. In conclusion, the study supports an involvement of TGF-β-1 in loading-induced collagen synthesis in the muscle–tendon unit and importantly, it indicates that muscle tissue is more sensitive than tendon to the specific mechanical stimulus. PMID:17540706

  19. Expression of collagen and related growth factors in rat tendon and skeletal muscle in response to specific contraction types.

    PubMed

    Heinemeier, K M; Olesen, J L; Haddad, F; Langberg, H; Kjaer, M; Baldwin, K M; Schjerling, P

    2007-08-01

    Acute exercise induces collagen synthesis in both tendon and muscle, indicating an adaptive response in the connective tissue of the muscle-tendon unit. However, the mechanisms of this adaptation, potentially involving collagen-inducing growth factors (such as transforming growth factor-beta-1 (TGF-beta-1)), as well as enzymes related to collagen processing, are not clear. Furthermore, possible differential effects of specific contraction types on collagen regulation have not been investigated. Female Sprague-Dawley rats were subjected to 4 days of concentric, eccentric or isometric training (n = 7-9 per group) of the medial gastrocnemius, by stimulation of the sciatic nerve. RNA was extracted from medial gastrocnemius and Achilles tendon tissue 24 h after the last training bout, and mRNA levels for collagens I and III, TGF-beta-1, connective tissue growth factor (CTGF), lysyl oxidase (LOX), metalloproteinases (MMP-2 and -9) and their inhibitors (TIMP-1 and 2) were measured by Northern blotting and/or real-time PCR. In tendon, expression of TGF-beta-1 and collagens I and III (but not CTGF) increased in response to all types of training. Similarly, enzymes/factors involved in collagen processing were induced in tendon, especially LOX (up to 37-fold), which could indicate a loading-induced increase in cross-linking of tendon collagen. In skeletal muscle, a similar regulation of gene expression was observed, but in contrast to the tendon response, the effect of eccentric training was significantly greater than the effect of concentric training on the expression of several transcripts. In conclusion, the study supports an involvement of TGF-beta-1 in loading-induced collagen synthesis in the muscle-tendon unit and importantly, it indicates that muscle tissue is more sensitive than tendon to the specific mechanical stimulus.

  20. Stretching of Active Muscle Elicits Chronic Changes in Multiple Strain Risk Factors.

    PubMed

    Kay, Anthony David; Richmond, Dominic; Talbot, Chris; Mina, Minas; Baross, Anthony William; Blazevich, Anthony John

    2016-07-01

    The muscle stretch intensity imposed during "flexibility" training influences the magnitude of joint range of motion (ROM) adaptation. Thus, stretching while the muscle is voluntarily activated was hypothesized to provide a greater stimulus than passive stretching. The effect of a 6-wk program of stretch imposed on an isometrically contracting muscle (i.e., qualitatively similar to isokinetic eccentric training) on muscle-tendon mechanics was therefore studied in 13 healthy human volunteers. Before and after the training program, dorsiflexion ROM, passive joint moment, and maximal isometric plantarflexor moment were recorded on an isokinetic dynamometer. Simultaneous real-time motion analysis and ultrasound imaging recorded gastrocnemius medialis muscle and Achilles tendon elongation. Training was performed twice weekly and consisted of five sets of 12 maximal isokinetic eccentric contractions at 10°·s. Significant increases (P < 0.01) in ROM (92.7% [14.7°]), peak passive moment (i.e., stretch tolerance; 136.2%), area under the passive moment curve (i.e., energy storage; 302.6%), and maximal isometric plantarflexor moment (51.3%) were observed after training. Although no change in the slope of the passive moment curve (muscle-tendon stiffness) was detected (-1.5%, P > 0.05), a significant increase in tendon stiffness (31.2%, P < 0.01) and a decrease in passive muscle stiffness (-14.6%, P < 0.05) were observed. The substantial positive adaptation in multiple functional and physiological variables that are cited within the primary etiology of muscle strain injury, including strength, ROM, muscle stiffness, and maximal energy storage, indicate that the stretching of active muscle might influence injury risk in addition to muscle function. The lack of change in muscle-tendon stiffness simultaneous with significant increases in tendon stiffness and decreases in passive muscle stiffness indicates that tissue-specific effects were elicited.

  1. Blood flow restriction attenuates eccentric exercise-induced muscle damage without perceptual and cardiovascular overload.

    PubMed

    Curty, Victor M; Melo, Alexandre B; Caldas, Leonardo C; Guimarães-Ferreira, Lucas; de Sousa, Nuno F; Vassallo, Paula F; Vasquez, Elisardo C; Barauna, Valério G

    2018-05-01

    The aim of this study was to evaluate the acute effects of high-intensity eccentric exercise (HI-ECC) combined with blood flow restriction (BFR) on muscle damage markers, and perceptual and cardiovascular responses. Nine healthy men (26 ± 1 years, BMI 24 ± 1 kg m - ²) underwent unilateral elbow extension in two conditions: without (HI-ECC) and with BFR (HI-ECC+BFR). The HI-ECC protocol corresponded to three sets of 10 repetitions with 130% of maximal strength (1RM). The ratings of perceived exertion (RPE) and pain (RPP) were measured after each set. Muscle damage was evaluated by range of motion (ROM), upper arm circumference (CIR) and muscle soreness using a visual analogue scale at different moments (pre-exercise, immediately after, 24 and 48 h postexercise). Systolic (SBP), diastolic (DBP), mean blood pressure (MBP) and heart rate (HR) were measured before exercise and after each set. RPP was higher in HI-ECC+BFR than in HI-ECC after each set. Range of motion decreased postexercise in both conditions; however, in HI-ECC+BFR group, it returned to pre-exercise condition earlier (post-24 h) than HI-ECC (post-48 h). CIR increased only in HI-ECC, while no difference was observed in HI-ECC+BFR condition. Regarding cardiovascular responses, MBP and SBP did not change at any moment. HR showed similar increases in both conditions during exercise while DBP decreased only in HI-ECC condition. Thus, BFR attenuated HI-ECC-induced muscle damage and there was no increase in cardiovascular responses. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  2. Alfredson versus Silbernagel exercise therapy in chronic midportion Achilles tendinopathy: study protocol for a randomized controlled trial.

    PubMed

    Habets, Bas; van Cingel, Robert E H; Backx, Frank J G; Huisstede, Bionka M A

    2017-07-11

    Midportion Achilles tendinopathy (AT) is a common overuse injury, usually requiring several months of rehabilitation. Exercise therapy of the ankle plantar flexors (i.e. tendon loading) is considered crucial during conservative rehabilitation. Alfredson's isolated eccentric and Silbernagel's combined concentric-eccentric exercise programs have both shown beneficial results, but it is unknown whether any of these programs is superior for use in clinical practice. Therefore, the primary objective of this study is to compare the effectiveness of both programs on clinical symptoms. Secondary objectives are to compare the effectiveness of both programs on quality of life and functional outcome measures, to investigate the prognostic value of baseline characteristics, to investigate differences in cost-effectiveness. Eighty-six recreational athletes (21-60 years of age) with unilateral chronic midportion AT (i.e. ≥ 3 months) will be included in this multicenter assessor blinded randomized controlled trial. They will be randomly allocated to either a group performing the Alfredson isolated eccentric training program (n = 43), or a group performing the Silbernagel combined concentric-eccentric program (n = 43). In the Alfredson group, participants will perform eccentric heel-drops on their injured side, twice daily for 12 weeks, whereas in the Silbernagel group, participants perform various concentric-eccentric heel-raise exercises, once daily for 12 weeks. Primary outcome measure will be the Victorian Institute of Sport Assessment - Achilles (VISA-A) questionnaire. Secondary outcomes will be a visual analogue scale (VAS) for pain during daily activities and sports, duration of morning stiffness, global perceived effect, the 12-item Short Form Health Survey and the Euroqol instrument, and functional performance measured with the heel-raise test and the countermovement jump. Additionally, alongside the RCT, a cost-effectiveness analysis will be performed. Assessments will be performed at baseline and after 12, 26, and 52 weeks. This study is the first to directly compare the Alfredson and the Silbernagel exercise program in a randomized trial. The results can further enlarge the evidence base for choosing the most appropriate exercise program for patients with midportion AT. Dutch Trial register: NTR5638 . Date of registration: 7 January 2016.

  3. Right ventricular failure resulting from pressure overload: role of intra-aortic balloon counterpulsation and vasopressor therapy.

    PubMed

    Liakopoulos, Oliver J; Ho, Jonathan K; Yezbick, Aaron B; Sanchez, Elizabeth; Singh, Vivek; Mahajan, Aman

    2010-11-01

    Augmentation of coronary perfusion may improve right ventricular (RV) failure following acute increases of RV afterload. We investigated whether intra-aortic balloon counterpulsation (IABP) can improve cardiac function by enhancing myocardial perfusion and reversing compromised biventricular interactions using a model of acute pressure overload. In 10 anesthetized pigs, RV failure was induced by pulmonary artery constriction and systemic hypertension strategies with IABP, phenylephrine (PE), or the combination of both were tested. Systemic and ventricular hemodynamics [cardiac index(CI), ventricular pressures, coronary driving pressures (CDP)] were measured and echocardiography was used to assess tricuspid valve regurgitation, septal positioning (eccentricity index (ECI)), and changes in ventricular and septal dimensions and function [myocardial performance index (MPI), peak longitudinal strain]. Pulmonary artery constriction resulted in doubling of RV systolic pressure (54 ± 4mm Hg), RV distension, severe TR (4+) with decreased RV function (strain: -33%; MPI: +56%), septal flattening (Wt%: -35%) and leftward septal shift (ECI:1.36), resulting in global hemodynamic deterioration (CI: -51%; SvO(2): -26%), and impaired CDP (-30%; P<0.05). IABP support alone failed to improve RV function despite higher CDP (+33%; P<0.05). Systemic hypertension by PE improved CDP (+70%), RV function (strain: +22%; MPI: -21%), septal positioning (ECI:1.12) and minimized TR, but LV dysfunction (strain: -25%; MPI: +31%) occurred after LV afterloading (P<0.05). With IABP, less PE (-41%) was needed to maintain hypertension and CDP was further augmented (+25%). IABP resulted in LV unloading and restored LV function, and increased CI (+46%) and SvO(2) (+29%; P<0.05). IABP with minimal vasopressors augments myocardial perfusion pressure and optimizes RV function after pressure-induced failure. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Regulation of the instantaneous inward rectifier and the delayed outward rectifier potassium channels by Captopril and Angiotensin II via the Phosphoinositide-3 kinase pathway in volume-overload-induced hypertrophied cardiac myocytes.

    PubMed

    Alvin, Zikiar V; Laurence, Graham G; Coleman, Bernell R; Zhao, Aiqiu; Hajj-Moussa, Majd; Haddad, Georges E

    2011-07-01

    Early development of cardiac hypertrophy may be beneficial but sustained hypertrophic activation leads to myocardial dysfunction. Regulation of the repolarizing currents can be modulated by the activation of humoral factors, such as angiotensin II (ANG II) through protein kinases. The aim of this work is to assess the regulation of IK and IK1 by ANG II through the PI3-K pathway in hypertrophied ventricular myocytes. Cardiac eccentric hypertrophy was induced through volume-overload in adult male rats by aorto-caval shunt (3 weeks). After one week half of the rats were given captopril (2 weeks; 0.5 g/l/day) and the other half served as control. The voltage-clamp and western blot techniques were used to measure the delayed outward rectifier potassium current (IK) and the instantaneous inward rectifier potassium current (IK1) and Akt activity, respectively. Hypertrophied cardiomyocytes showed reduction in IK and IK1. Treatment with captopril alleviated this difference seen between sham and shunt cardiomyocytes. Acute administration of ANG II (10-6M) to cardiocytes treated with captopril reduced IK and IK1 in shunts, but not in sham. Captopril treatment reversed ANG II effects on IK and IK1 in a PI3-K-independent manner. However in the absence of angiotensin converting enzyme inhibition, ANG II increased both IK and IK1 in a PI3-K-dependent manner in hypertrophied cardiomyocytes. Thus, captopril treatment reveals a negative effect of ANG II on IK and IK1, which is PI3-K independent, whereas in the absence of angiotensin converting enzyme inhibition IK and IK1 regulation is dependent upon PI3-K.

  5. Driving with Hemianopia V: Do Individuals with Hemianopia Spontaneously Adapt Their Gaze Scanning to Differing Hazard Detection Demands?

    PubMed Central

    Alberti, Concetta F.; Goldstein, Robert B.; Peli, Eli; Bowers, Alex R.

    2017-01-01

    Purpose We investigated whether people with homonymous hemianopia (HH) were able to spontaneously (without training or instructions) adapt their blind-side scan magnitudes in response to differing scanning requirements for detection of pedestrians in a driving simulator when differing cues about pedestrian eccentricities and movement behaviors were available in the seeing hemifield. Methods Twelve HH participants completed two sessions in a driving simulator pressing the horn when they detected a pedestrian. Stationary pedestrians outside the driving lane were presented in one session and approaching pedestrians on a collision course in the other. Gaze data were analyzed for pedestrians initially appearing at approximately 14° in the blind hemifield. No instructions were given regarding scanning. Results After appearing, the stationary pedestrians' eccentricity increased rapidly to a median of 31° after 2.5 seconds, requiring increasingly larger blind-side gaze scans for detection, while the approaching pedestrians' eccentricity remained constant at approximately 14°, requiring a more moderate scan (∼14°) for detection. Although median scan magnitudes did not differ between the two conditions (approaching: 14° [IQR 9°–15°]; stationary: 13° [IQR 9°–20°]; P = 0.43), three participants showed evidence of adapting (increasing) their blind-side scan magnitudes in the stationary condition. Conclusions Three participants (25%) appeared to be able to apply voluntary cognitive control to modify their blind-side gaze scanning in response to the differing scanning requirements of the two conditions without explicit training. Translational Relevance Our results suggest that only a minority of people with hemianopia are likely to be able to spontaneously adapt their blind-side scanning in response to rapidly changing and unpredictable situations in on-road driving. PMID:29067219

  6. Do isokinetic angular velocity and contraction types affect the predictors of different anaerobic power tests?

    PubMed

    Yapici, Aysegul; Findikoglu, Gulin; Dundar, Ugur

    2016-04-01

    The purpose of this study was to investigate the most important predictor isokinetic muscle strength determined by different angular velocities and contraction types (i.e. concentric and eccentric) for selected anaerobic power tests in volleyball players. Twenty male and ten female amateur volleyball players participated in this study. Selected anaerobic power tests included Wingate Anaerobic Test (WAnT), squat jump (SJ) and countermovement jump (CMJ). Peak torque values were obtained at 60, 120, 240˚/s for concentric contraction of quadriceps (Qconc) and Hamstring (Hconc) and at 60˚/s for eccentric contraction of quadriceps (Qecc) and Hconc. Moderate to good correlations (r:0.409 to r:0.887) were found between anaerobic tests and isokinetic data including peak torque and total work of both Hconc and Qconc at 60, 120, 240°/s and Qecc at 60°/s (P<0.05). Qconc measured at each of 60, 120, 240°/s was found to be the only significant predictor for anaerobic tests in linear regression models (P<0.05). Correlation coefficient s for Qconc increased with increasing velocity for each of the anaerobic tests. Correlation coefficient of Qconc was highest for CMJ followed by SJ and WAnT at the same angular velocity. As a distinctive feature, both Qecc and Hconc at 60˚/s were significantly predictors for CMJ and SJ. Qconc peak torque was the single significant predictor for WAnT, SJ and CMJ and strength of the relation increases with increasing angular velocity. However, both Qecc and Hconc were significant indicators for CMJ and SJ. Training with higher isokinetic angular velocities and with eccentric contraction is desirable in a training program that has a goal of improving anaerobic performance in volleyball players.

  7. Modulation of mitochondrial biomarkers by intermittent hypobaric hypoxia and aerobic exercise after eccentric exercise in trained rats.

    PubMed

    Rizo-Roca, David; Ríos-Kristjánsson, Juan Gabriel; Núñez-Espinosa, Cristian; Santos-Alves, Estela; Magalhães, José; Ascensão, António; Pagès, Teresa; Viscor, Ginés; Torrella, Joan Ramon

    2017-07-01

    Unaccustomed eccentric contractions induce muscle damage, calcium homeostasis disruption, and mitochondrial alterations. Since exercise and hypoxia are known to modulate mitochondrial function, we aimed to analyze the effects on eccentric exercise-induced muscle damage (EEIMD) in trained rats using 2 recovery protocols based on: (i) intermittent hypobaric hypoxia (IHH) and (ii) IHH followed by exercise. The expression of biomarkers related to mitochondrial biogenesis, dynamics, oxidative stress, and bioenergetics was evaluated. Soleus muscles were excised before (CTRL) and 1, 3, 7, and 14 days after an EEIMD protocol. The following treatments were applied 1 day after the EEIMD: passive normobaric recovery (PNR), 4 h daily exposure to passive IHH at 4000 m (PHR) or IHH exposure followed by aerobic exercise (AHR). Citrate synthase activity was reduced at 7 and 14 days after application of the EEIMD protocol. However, this reduction was attenuated in AHR rats at day 14. PGC-1α and Sirt3 and TOM20 levels had decreased after 1 and 3 days, but the AHR group exhibited increased expression of these proteins, as well as of Tfam, by the end of the protocol. Mfn2 greatly reduced during the first 72 h, but returned to basal levels passively. At day 14, AHR rats had higher levels of Mfn2, OPA1, and Drp1 than PNR animals. Both groups exposed to IHH showed a lower p66shc(ser 36 )/p66shc ratio than PNR animals, as well as higher complex IV subunit I and ANT levels. These results suggest that IHH positively modulates key mitochondrial aspects after EEIMD, especially when combined with aerobic exercise.

  8. The effects of two different frequencies of whole-body vibration on knee extensors strength in healthy young volunteers: a randomized trial

    PubMed Central

    Esmaeilzadeh, S.; Akpinar, M.; Polat, S.; Yildiz, A.; Oral, A.

    2015-01-01

    The aim of this study was to investigate the effects of two different frequencies of whole-body vibration (WBV) training on knee extensors muscle strength in healthy young volunteers. Twenty-two eligible healthy untrained young women aged 22-31 years were allocated randomly to the 30-Hz (n=11) and 50-Hz (n=11) groups. They participated in a supervised WBV training program that consisted of 24 sessions on a synchronous vertical vibration platform (peak-to-peak displacement: 2-4 mm; type of exercises: semi-squat, one-legged squat, and lunge positions on right leg; set numbers: 2-24) three times per week for 8 weeks. Isometric and dynamic strength of the knee extensors were measured prior to and at the end of the 8-week training. In the 30-Hz group, there was a significant increase in the maximal voluntary isometric contraction (p=0.039) and the concentric peak torque (p=0.018) of knee extensors and these changes were significant (p<0.05) compared with the 50-Hz group. In addition, the eccentric peak torque of knee extensors was increased significantly in both groups (p<0.05); however, there was no significant difference between the two groups (p=0.873). We concluded that 8 weeks WBV training in 30 Hz was more effective than 50 Hz to increase the isometric contraction and dynamic strength of knee extensors as measured using peak concentric torque and equally effective with 50 Hz in improving eccentric torque of knee extensors in healthy young untrained women. PMID:26636279

  9. Remembering: forget about forgetting and train your brain instead.

    PubMed

    Sorrell, Jeanne M

    2008-09-01

    As people age, they often become increasingly concerned about their inability to remember names and faces or recall specific words. As their memory seems to decline, they worry about developing Alzheimer's disease. Yet, new research suggests that for most aging adults, failing to remember is because of an overload of information and difficulty in trying to sort through a cluttered "database." Brain-training programs based on evolving research, as well as increased opportunities to reflect on healthy aging experiences, offer important possibilities for working with clients concerned about memory problems.

  10. The Effect of Omega-3 Fatty Acid Supplementation on the Inflammatory Response to eccentric strength exercise.

    PubMed

    Jouris, Kelly B; McDaniel, Jennifer L; Weiss, Edward P

    2011-01-01

    Omega-3 fatty acids (omega-3) have anti-inflammatory properties. However, it is not known if omega-3 supplementation attenuates exercise-induced inflammation. We tested the hypothesis that omega-3 supplementation reduces inflammation that is induced by eccentric arm curl exercise. Healthy adult men and women (n=11; 35 ± 10 y) performed eccentric biceps curls on two occasions, once after 14d of dietary omega-3 restriction (control trial) and again after 7d of 3,000 mg/d omega-3 supplementation (omega-3 trial). Before and 48 h after eccentric exercise, signs of inflammation was assessed by measuring soreness ratings, swelling (arm circumference and arm volume), and temperature (infrared skin sensor). Arm soreness increased (p < 0.0001) in response to eccentric exercise; the magnitude of increase in soreness was 15% less in the omega-3 trial (p = 0.004). Arm circumference increased after eccentric exercise in the control trial (p = 0.01) but not in the omega-3 trial (p = 0.15). However, there was no difference between trials (p = 0.45). Arm volume and skin temperature did not change in response to eccentric exercise in either trial. These findings suggest that omega-3 supplementation decreases soreness, as a marker of inflammation, after eccentric exercise. Based on these findings, omega-3 supplementation could provide benefits by minimizing post-exercise soreness and thereby facilitate exercise training in individuals ranging from athletes undergoing heavy conditioning to sedentary subjects or patients who are starting exercise programs or medical treatments such as physical therapy or cardiac rehabilitation. Key pointsDietary supplementation with omega-3 fatty acids has been shown to reduce inflammation in numerous inflammatory diseases such as rheumatoid arthritis, inflammatory bowel disease, and Chrohn's disease.Although strenuous exercise is known to cause acute increases in inflammation, it is not clear if omega-3 fatty acid supplementation attenuates this adverse response to exercise.Our research demonstrates that 3000 mg·d-1 omega-3 fatty acid supplementation minimizes the severe, delayed-onset muscle soreness that results from strenuous eccentric strength exercise.This information, along with a plethora of information showing that omega-3 fatty acid supplementation has other health benefits, demonstrates that a readily available over the counter nutritional supplement (i.e. omega-3 fatty acids) reduces delayed-onset soreness caused by strenuous strength exercise.This information has obvious relevance to athletic populations but also to other groups such as physical therapy patients and newly admitted cardiac rehabilitation patients, as muscle soreness, if left unchecked, can slow the progress in adapting to a new exercise program.Furthermore, as inflammation is known to be involved in the pathogenesis if numerous diseases, including heart disease, cancer, and diabetes, it is likely prudent for individuals to use inflammation-attenuating interventions, such as omega-3 supplementation, to keep inflammatory responses to physical activity at a minimum.

  11. Effect of High-Volume Injection, Platelet-Rich Plasma, and Sham Treatment in Chronic Midportion Achilles Tendinopathy: A Randomized Double-Blinded Prospective Study.

    PubMed

    Boesen, Anders Ploug; Hansen, Rudi; Boesen, Morten Ilum; Malliaras, Peter; Langberg, Henning

    2017-07-01

    Injection therapies are often considered alongside exercise for chronic midportion Achilles tendinopathy (AT), although evidence of their efficacy is sparse. To determine whether eccentric training in combination with high-volume injection (HVI) or platelet-rich plasma (PRP) injections improves outcomes in AT. Randomized controlled trial; Level of evidence, 1. A total of 60 men (age, 18-59 years) with chronic (>3 months) AT were included and followed for 6 months (n = 57). All participants performed eccentric training combined with either (1) one HVI (steroid, saline, and local anesthetic), (2) four PRP injections each 14 days apart, or (3) placebo (a few drops of saline under the skin). Randomization was stratified for age, function, and symptom severity (Victorian Institute of Sports Assessment-Achilles [VISA-A]). Outcomes included function and symptoms (VISA-A), self-reported tendon pain during activity (visual analog pain scale [VAS]), tendon thickness and intratendinous vascularity (ultrasonographic imaging and Doppler signal), and muscle function (heel-rise test). Outcomes were assessed at baseline and at 6, 12, and 24 weeks of follow-up. VISA-A scores improved in all groups at all time points ( P < .05), with greater improvement in the HVI group (mean ± SEM, 6 weeks = 27 ± 3 points; 12 weeks = 29 ± 4 points) versus PRP (6 weeks = 14 ± 4; 12 weeks = 15 ± 3) and placebo (6 weeks = 10 ± 3; 12 weeks = 11 ± 3) at 6 and 12 weeks ( P < .01) and in the HVI (22 ± 5) and PRP (20 ± 5) groups versus placebo (9 ± 3) at 24 weeks ( P < .01). VAS scores improved in all groups at all time points ( P < .05), with greater decrease in HVI (6 weeks = 49 ± 4 mm; 12 weeks = 45 ± 6 mm; 24 weeks = 34 ± 6 mm) and PRP (6 weeks = 37 ± 7 mm; 12 weeks = 41 ± 7 mm; 24 weeks = 37 ± 6 mm) versus placebo (6 weeks = 23 ± 6 mm; 12 weeks = 30 ± 5 mm; 24 weeks = 18 ± 6 mm) at all time points ( P < .05) and in HVI versus PRP at 6 weeks ( P < .05). Tendon thickness showed a significant decrease only in HVI and PRP groups during the intervention, and this was greater in the HVI versus PRP and placebo groups at 6 and 12 weeks ( P < .05) and in the HVI and PRP groups versus the placebo group at 24 weeks ( P < .05). Muscle function improved in the entire cohort with no difference between the groups. Treatment with HVI or PRP in combination with eccentric training in chronic AT seems more effective in reducing pain, improving activity level, and reducing tendon thickness and intratendinous vascularity than eccentric training alone. HVI may be more effective in improving outcomes of chronic AT than PRP in the short term. Registration: NCT02417987 ( ClinicalTrials.gov identifier).

  12. Cardio-pulmonary responses to incremental eccentric and concentric cycling tests to task failure.

    PubMed

    Lipski, Marcin; Abbiss, Chris R; Nosaka, Kazunori

    2018-05-01

    This study compared cardio-pulmonary responses between incremental concentric and eccentric cycling tests, and examined factors affecting the maximal eccentric cycling capacity. On separate days, nine men and two women (32.6 ± 9.4 years) performed an upright seated concentric (CON) and an eccentric (ECC) cycling test, which started at 75 W and increased 25 W min -1 until task failure. Gas exchange, heart rate (HR) and power output were continuously recorded during the tests. Participants also performed maximal voluntary contractions of the quadriceps (MVC), squat and countermovement jumps. Peak power output was 53% greater (P < 0.001, g = 1.77) for ECC (449 ± 115 W) than CON (294 ± 61 W), but peak oxygen consumption was 43% lower (P < 0.001, g = 2.18) for ECC (30.6 ± 5.6 ml kg min -1 ) than CON (43.9 ± 6.9 ml kg min -1 ). Maximal HR was not different between ECC (175 ± 20 bpm) and CON (182 ± 13 bpm), but the increase in HR relative to oxygen consumption was 33% greater (P = 0.01) during ECC than CON. Moderate to strong correlations (P < 0.05) were observed between ECC peak power output and CON peak power (r = 0.84), peak oxygen consumption (r = 0.54) and MVC (r = 0.53), while no significant relationships were observed between ECC peak power output and squat as well as countermovement jump heights. Unexpectedly, maximal HR was similar between CON and ECC. Although ECC power output can be predicted from CON peak power output, an incremental eccentric cycling test performed after 3-6 familiarisation sessions may be useful in programming ECC training with healthy and accustomed individuals.

  13. Relationship between selected measures of strength and hip and knee excursion during unilateral and bilateral landings in women.

    PubMed

    McCurdy, Kevin; Walker, John; Armstrong, Rusty; Langford, George

    2014-09-01

    The purpose of this study was to compare the relationship between several measures of single-joint, isometric, eccentric, and squat strength and unilateral and bilateral landing mechanics at the hip and knee in women. Twenty six healthy female subjects with previous athletic experience (height, 165.1 ± 7.01 cm; mass, 60.91 ± 7.14 kg; age, 20.9 ± 1.62 years) participated in this study. Hip and knee mechanics were measured using the MotionMonitor capture system (Innovative Sports Training, Inc.) with 3-dimensional electromagnetic sensors during bilateral (60 cm) and unilateral drop jumps (30 cm). On a separate day, isometric hip extension, external rotation, and abduction strength (lbs) were measured using a handheld dynamometer (Hoggan Health Industries, Inc.). Eccentric and isometric knee strength were measured on the Biodex IV Isokinetic Dynamometer (Biodex Medical Systems, Inc.). Free weight was used to measure the bilateral squat and a modified single-leg squat. The strongest correlations were found between squat strength and knee valgus (-0.77 ≤ r ≤ -0.83) and hip adduction (-0.5 ≤ r ≤ -0.65). After controlling for squat strength, hip external rotation strength and unilateral knee valgus (-0.41), hip abduction strength and bilateral knee valgus (-0.43), and knee flexion strength and bilateral hip adduction (-0.57) remained significant. Eccentric knee flexion strength and unilateral knee internal rotation was the only significant correlation for eccentric strength (-0.40). Squat strength seems to be the best predictor of knee valgus and was consistently related to hip adduction. Isometric and eccentric measures demonstrated few significant correlations with hip and knee excursion while demonstrating a low-to-moderate relationship. Hip and knee flexion and rotation do not seem to be related to strength. Squat strength should receive consideration during risk assessment for noncontact knee injury.

  14. Conservative Treatment of Subacute Proximal Hamstring Tendinopathy Using Eccentric Exercises Performed With a Treadmill: A Case Report.

    PubMed

    Cushman, Daniel; Rho, Monica E

    2015-07-01

    Case report. Proximal hamstring tendinopathy in runners is characterized by pain with passive hip flexion with the knee extended, active hip extension, and pain with sitting. Relatively little literature exists on the condition, and publications on nonsurgical treatment protocols are even more scarce. Surgical intervention, which comprises the majority of literature for treatment of this condition, is an option for cases that fail to respond to nonsurgical treatment. The patient was a 34-year-old, otherwise healthy male triathlete with unilateral proximal hamstring tendinopathy diagnosed by ultrasound, who had pain only with running and prolonged sitting. After he failed to respond to 4 weeks of eccentric knee flexion and lumbopelvic musculature strengthening exercises, an eccentric hip extensor strengthening program using a treadmill was initiated. This treadmill exercise was performed on a daily basis, in addition to a lumbopelvic musculature strengthening program. The patient noted a decrease in pain within 2 weeks of initiating the new exercise, and was able to return to gradual running after 4 weeks and to speed training after 12 weeks. He returned to competition shortly thereafter and had no recurrence for 12 months after the initiation of therapy. His score on the Victorian Institute of Sport Assessment-proximal hamstring tendons improved from 23 on initial presentation to 83 at 12 weeks after the initiation of therapy. We described the management of a triathlete with subacute proximal hamstring tendinopathy, who responded well to nonsurgical treatment using eccentric hip extension strengthening using a treadmill. Therapy, level 4.

  15. Treatment for insertional Achilles tendinopathy: a systematic review.

    PubMed

    Wiegerinck, J I; Kerkhoffs, G M; van Sterkenburg, M N; Sierevelt, I N; van Dijk, C N

    2013-06-01

    Systematically search and analyse the results of surgical and non-surgical treatments for insertional Achilles tendinopathy. A structured systematic review of the literature was performed to identify surgical and non-surgical therapeutic studies reporting on ten or more adults with insertional Achilles tendinopathy. MEDLINE, CINAHL, EMBASE (Classic) and the Cochrane database of controlled trials (1945-March 2011) were searched. The Coleman methodology score was used to assess the quality of included articles, and these were analysed with an emphasis on change in pain score, patient satisfaction and complication rate. Of 451 reviewed abstracts, 14 trials met our inclusion criteria evaluating 452 procedures in 433 patients. Five surgical techniques were evaluated; all had a good patient satisfaction (avg. 89 %). The complication ratio differed substantially between techniques. Two studies analysed injections showing significant decrease in visual analogue scale (VAS). Eccentric exercises showed a significant decrease in VAS, but a large group of patients was unsatisfied. Extracorporeal shockwave therapy (ESWT) was superior to both wait-and-see and an eccentric training regime. One study evaluated laser CO(2), TECAR and cryoultrasound, all with significant decrease in VAS. Despite differences in outcome and complication ratio, the patient satisfaction is high in all surgical studies. It is not possible to draw conclusions regarding the best surgical treatment for insertional Achilles tendinopathy. ESWT seems effective in patients with non-calcified insertional Achilles tendinopathy. Although both eccentric exercises resulted in a decrease in VAS score, full range of motion eccentric exercises shows a low patient satisfaction compared to floor level exercises and other conservative treatment modalities.

  16. Omega-3 fatty acids supplementation attenuates inflammatory markers after eccentric exercise in untrained men.

    PubMed

    Tartibian, Bakhtyar; Maleki, Behzad Hajizadeh; Abbasi, Asghar

    2011-03-01

    To examine the effect of ingestion of omega-3 (N-3) fatty acids on the production of interleukin (IL) 6, tumor necrosis factor (TNF) α, prostaglandin (PG) E2, lactate dehydrogenase (LDH), creatine kinase (CK), and myoglobin (Mb) during an eccentric exercise program. A randomized, double-blinded, repeated measures design was used for this study. The study was performed in the Exercise Physiology Laboratory of the Urmia University. Forty-five men, who had not participated in any training program for 60 days before their participation in this study, were recruited. Plasma levels of PGE2, IL-6, TNF-α, CK, LDH, and Mb were taken before supplementation, pre-exercise, and immediately, 24, and 48 hours after eccentric exercise. Subjects were assigned to one of the experimental (1.8 g/d N-3), placebo, or control groups. Plasma levels of PGE2, IL-6, and TNF-α were assessed using enzyme-linked immunosorbent assays kits. Plasma level of LDH, Mb, and CK were measured using an autoanalyzer, a c-counter, and an automatic blood analyzer, respectively. The experimental group showed less elevation in TNF-α and PGE2 immediately, 24, and 48 hours after exercise, when compared with the other groups. Significantly less elevation was shown in the concentration of IL-6, CK, and Mb for the experimental group at 24 and 48 hours after exercise. The experimental group also demonstrated a significant trend toward reduction in the plasma concentration of LDH immediately, 24, and 48 hours after the exercise program. Ingestion of N-3 can be effective in ameliorating, eccentric exercise-induced, inflammatory markers.

  17. Docosahexaenoic acid affects markers of inflammation and muscle damage after eccentric exercise.

    PubMed

    DiLorenzo, Frank M; Drager, Christopher J; Rankin, Janet W

    2014-10-01

    The effect of docosahexaenoic acid (DHA) on inflammatory and muscle damage response to acute eccentric exercise and to the subsequent initiation of a resistance training program was studied in 41 untrained men. Subjects consumed either 2 g·d of either DHA or placebo (PL) for 28 days before a 17-day exercise phase (day 1 to day 17) that began with an eccentric exercise bout of the elbow flexors (day 1). For analysis, the exercise period was further divided into an acute response phase (day 1-4). Isometric muscle strength (STR), range of motion (ROM), and delayed onset muscle soreness (DOMS) were measured on days 1, 2, 3, 4, 7, 12, and 17. Fasted blood was measured for interleukin 6 (IL-6), interleukin 1 receptor antagonist, C-reactive protein (CRP), and creatine kinase (CK) on days 1, 2, and 4. Serum CK and CRP were also measured in blood collected on days 7, 12, and 17. In the acute phase, DHA significantly reduced the serum CK (12.5%) and the IL-6 response (32%) but did not affect STR or DOMS. Over the entire 17-day resistance exercise period, DOMS area under the curve was 183.2 ± 96.2 for DHA and 203.2 ± 120.9 for PL (p = 0.054) and the CK response was numerically lower for DHA (p = 0.093). Docosahexaenoic acid supplementation reduced some but not all indicators of muscle damage and inflammation in the 4 days after an acute eccentric exercise bout but did not significantly affect the response to initiation of resistance exercise.

  18. Conservative Treatment of Subacute Proximal Hamstring Tendinopathy Using Eccentric Exercises Performed With a Treadmill: A Case Report

    PubMed Central

    CUSHMAN, DANIEL; RHO, MONICA E.

    2015-01-01

    STUDY DESIGN Case report. BACKGROUND Proximal hamstring tendinopathy in runners is characterized by pain with passive hip flexion with the knee extended, active hip extension, and pain with sitting. Relatively little literature exists on the condition, and publications on nonsurgical treatment protocols are even more scarce. Surgical intervention, which comprises the majority of literature for treatment of this condition, is an option for cases that fail to respond to nonsurgical treatment. CASE DESCRIPTION The patient was a 34-year-old, otherwise healthy male triathlete with unilateral proximal hamstring tendinopathy diagnosed by ultrasound, who had pain only with running and prolonged sitting. After he failed to respond to 4 weeks of eccentric knee flexion and lumbopelvic musculature strengthening exercises, an eccentric hip extensor strengthening program using a treadmill was initiated. This treadmill exercise was performed on a daily basis, in addition to a lumbopelvic musculature strengthening program. OUTCOMES The patient noted a decrease in pain within 2 weeks of initiating the new exercise, and was able to return to gradual running after 4 weeks and to speed training after 12 weeks. He returned to competition shortly thereafter and had no recurrence for 12 months after the initiation of therapy. His score on the Victorian Institute of Sport Assessment-proximal hamstring tendons improved from 23 on initial presentation to 83 at 12 weeks after the initiation of therapy. DISCUSSION We described the management of a triathlete with subacute proximal hamstring tendinopathy, who responded well to nonsurgical treatment using eccentric hip extension strengthening using a treadmill. LEVEL OF EVIDENCE Therapy, level 4. PMID:25996362

  19. Cardiac Remodeling in Response to 1 Year of Intensive Endurance Training

    PubMed Central

    Arbab-Zadeh, Armin; Perhonen, Merja; Howden, Erin; Peshock, Ronald M.; Zhang, Rong; Adams-Huet, Beverly; Haykowsky, Mark J.; Levine, Benjamin D.

    2017-01-01

    Background It is unclear whether, and to what extent, the striking cardiac morphological manifestations of endurance athletes are a result of exercise training or a genetically determined characteristic of talented athletes. We hypothesized that prolonged and intensive endurance training in previously sedentary healthy young individuals could induce cardiac remodeling similar to that observed cross-sectionally in elite endurance athletes. Methods and Results Twelve previously sedentary subjects (aged 29±6 years; 7 men and 5 women) trained progressively and intensively for 12 months such that they could compete in a marathon. Magnetic resonance images for assessment of right and left ventricular mass and volumes were obtained at baseline and after 3, 6, 9, and 12 months of training. Maximum oxygen uptake (V̇o2 max) and cardiac output at rest and during exercise (C2H2 rebreathing) were measured at the same time periods. Pulmonary artery catheterization was performed before and after 1 year of training, and pressure-volume and Starling curves were constructed during decreases (lower body negative pressure) and increases (saline infusion) in cardiac volume. Mean V̇o2 max rose from 40.3±1.6 to 48.7±2.5 mL/kg per minute after 1 year (P<0.00001), associated with an increase in both maximal cardiac output and stroke volume. Left and right ventricular mass increased progressively with training duration and intensity and reached levels similar to those observed in elite endurance athletes. In contrast, left ventricular volume did not change significantly until 6 months of training, although right ventricular volume increased progressively from the outset; Starling and pressure-volume curves approached but did not match those of elite athletes. Conclusions One year of prolonged and intensive endurance training leads to cardiac morphological adaptations in previously sedentary young subjects similar to those observed in elite endurance athletes; however, it is not sufficient to achieve similar levels of cardiac compliance and performance. Contrary to conventional thinking, the left ventricle responds to exercise with initial concentric but not eccentric remodeling during the first 6 to 9 months after commencement of endurance training depending on the duration and intensity of exercise. Thereafter, the left ventricle dilates and restores the baseline mass-to-volume ratio. In contrast, the right ventricle responds to endurance training with eccentric remodeling at all levels of training. PMID:25281664

  20. Effects of moderate heart failure and functional overload on rat plantaris muscle

    NASA Technical Reports Server (NTRS)

    Spangenburg, Espen E.; Lees, Simon J.; Otis, Jeff S.; Musch, Timothy I.; Talmadge, Robert J.; Williams, Jay H.

    2002-01-01

    It is thought that changes in sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) of skeletal muscle contribute to alterations in skeletal muscle function during congestive heart failure (CHF). It is well established that exercise training can improve muscle function. However, it is unclear whether similar adaptations will result from exercise training in a CHF patient. Therefore, the purpose of this study was to determine whether skeletal muscle during moderate CHF adapts to increased activity, utilizing the functional overload (FO) model. Significant increases in plantaris mass of the CHF-FO and sham-FO groups compared with the CHF and control (sham) groups were observed. Ca(2+) uptake rates were significantly elevated in the CHF group compared with all other groups. No differences were detected in Ca(2+) uptake rates between the CHF-FO, sham, and sham-FO groups. Increases in Ca(2+) uptake rates in moderate-CHF rats were not due to changes in SERCA isoform proportions; however, FO may have attenuated the CHF-induced increases through alterations in SERCA isoform expression. Therefore, changes in skeletal muscle Ca(2+) handling during moderate CHF may be due to alterations in regulatory mechanisms, which exercise may override, by possibly altering SERCA isoform expression.

  1. Learning to identify contrast-defined letters in peripheral vision

    PubMed Central

    Chung, Susana T.L.; Levi, Dennis M.; Li, Roger W.

    2009-01-01

    Performance for identifying luminance-defined letters in peripheral vision improves with training. The purpose of the present study was to examine whether performance for identifying contrast-defined letters also improves with training in peripheral vision, and whether any improvement transfers to luminance-defined letters. Eight observers were trained to identify contrast-defined letters presented singly at 10° eccentricity in the inferior visual field. Before and after training, we measured observers’ thresholds for identifying luminance-defined and contrast-defined letters, embedded within a field of white luminance noise (maximum luminance contrast = 0, 0.25, and 0.5), at the same eccentric location. Each training session consisted of 10 blocks (100 trials per block) of identifying contrast-defined letters at a background noise contrast of 0.5. Letters (x-height = 4.2°) were the 26 lowercase letters of the Times-Roman alphabet. Luminance-defined letters were generated by introducing a luminance difference between the stimulus letter and its mid-gray background. The background noise covered both the letter and its background. Contrast-defined letters were generated by introducing a differential noise contrast between the group of pixels that made up the stimulus letter and the group of pixels that made up the background. Following training, observers showed a significant reduction in threshold for identifying contrast-defined letters (p < 0.0001). Averaged across observers and background noise contrasts, the reduction was 25.8%, with the greatest reduction (32%) occurring at the trained background noise contrast. There was virtually no transfer of improvement to luminance-defined letters, or to an untrained letter size (2× original), or an untrained retinal location (10° superior field). In contrast, learning transferred completely to the untrained contralateral eye. Our results show that training improves performance for identifying contrast-defined letters in peripheral vision. This perceptual learning effect seems to be stimulus-specific, as it shows no transfer to the identification of luminance-defined letters. The complete interocular transfer, and the retinotopic (retinal location) and size specificity of the learning effect are consistent with the properties of neurons in early visual area V2. PMID:16337252

  2. Rehabilitation protocol for patellar tendinopathy applied among 16- to 19-year old volleyball players.

    PubMed

    Biernat, Ryszard; Trzaskoma, Zbigniew; Trzaskoma, Lukasz; Czaprowski, Dariusz

    2014-01-01

    The aim of the study was to investigate the efficacy of rehabilitation protocol applied during competitive period for the treatment of patellar tendinopathy. A total of 28 male volleyball players were divided into two groups. Fifteen from experimental group (E) and 13 from control group (C) fulfilled the same tests 3 times: before the training program started (first measurement), after 12 weeks (second measurement) and after 24 weeks (third measurement). The above-mentioned protocol included the following: USG imagining with color Doppler function, clinical testing, pain intensity evaluation with VISA-P questionnaire, leg muscle strength and power and jumping ability measurements. The key element of the rehabilitation program was eccentric squat on decline board with additional unstable surface. The essential factor of the protocol was a set of preventive functional exercises, with focus on eccentric exercises of hamstrings. Patellar tendinopathy was observed in 18% of the tested young volleyball players. Implementation of the presented rehabilitation protocol with eccentric squat on decline board applied during sports season lowered the pain level of the young volleyball players. Presented rehabilitation protocol applied without interrupting the competitive period among young volleyball players together with functional exercises could be an effective method for the treatment of patellar tendinopathy.

  3. Rehabilitation of proximal hamstring tendinopathy utilizing eccentric training, lumbopelvic stabilization, and trigger point dry needling: 2 case reports.

    PubMed

    Jayaseelan, Dhinu J; Moats, Nick; Ricardo, Christopher R

    2014-03-01

    Case report. Proximal hamstring tendinopathy is a relatively uncommon overuse injury seen in runners. In contrast to the significant amount of literature guiding the evaluation and treatment of hamstring strains, there is little literature about the physical therapy management of proximal hamstring tendinopathy, other than the general recommendations to increase strength and flexibility. Two runners were treated in physical therapy for proximal hamstring tendinopathy. Each presented with buttock pain with running and sitting, as well as tenderness to palpation at the ischial tuberosity. Each patient was prescribed a specific exercise program focusing on eccentric loading of the hamstrings and lumbopelvic stabilization exercises. Trigger point dry needling was also used with both runners to facilitate improved joint motion and to decrease pain. Both patients were treated in 8 to 9 visits over 8 to 10 weeks. Clinically significant improvements were seen in pain, tenderness, and function in each case. Each patient returned to running and sitting without symptoms. Proximal hamstring tendinopathy can be difficult to treat. In these 2 runners, eccentric loading of the hamstrings, lumbopelvic stabilization exercises, and trigger point dry needling provided short- and long-term pain reduction and functional benefits. Further research is needed to determine the effectiveness of this cluster of interventions for this condition. Therapy, level 4.

  4. The organization of orientation selectivity throughout macaque visual cortex.

    PubMed

    Vanduffel, Wim; Tootell, Roger B H; Schoups, Aniek A; Orban, Guy A

    2002-06-01

    A double-label deoxyglucose technique was used to study orientation columns throughout visual cortex in awake behaving macaques. Four macaques were trained to fixate while contrastreversing, stationary gratings or one-dimensional noise of a single orientation or an orthogonal orientation were presented, during uptake of [14C]deoxyglucose ([14C]DG) or [3H]DG, respectively. The two orthogonal stimulus orientations produced DG-labeled columns that were maximally separated in the two isotope maps (inter-digitated) in four areas: V1, V2, V3 and VP. The topographic change from interdigitated to overlapping columns occurred abruptly rather than gradually, at corresponding cortical area borders (e.g. VP and V4v, respectively). In addition, the data suggest that orientation column topography systematically changes with retinotopic eccentricity. In V1, the orientation columns systematically avoided the cytochrome oxidase blobs in the parafoveal representation, but converged closer to the blobs in the foveal representation. A control experiment indicated that this was unlikely to reflect eccentricity-dependent differences in cortical spatial frequency sensitivity. A similar eccentricity-dependent change in the topography of orientation columns occurred in V2. In parafoveal but not foveal visual field representations of V2, the orientation columns were centered on the thick cytochrome oxidase stripes, extended into the adjacent interstripe region, but were virtually absent in the thin stripes.

  5. Whey protein hydrolysate augments tendon and muscle hypertrophy independent of resistance exercise contraction mode.

    PubMed

    Farup, J; Rahbek, S K; Vendelbo, M H; Matzon, A; Hindhede, J; Bejder, A; Ringgard, S; Vissing, K

    2014-10-01

    In a comparative study, we investigated the effects of maximal eccentric or concentric resistance training combined with whey protein or placebo on muscle and tendon hypertrophy. 22 subjects were allocated into either a high-leucine whey protein hydrolysate + carbohydrate group (WHD) or a carbohydrate group (PLA). Subjects completed 12 weeks maximal knee extensor training with one leg using eccentric contractions and the other using concentric contractions. Before and after training cross-sectional area (CSA) of m. quadriceps and patellar tendon CSA was quantified with magnetic resonance imaging and a isometric strength test was used to assess maximal voluntary contraction (MVC) and rate of force development (RFD). Quadriceps CSA increased by 7.3 ± 1.0% (P < 0.001) in WHD and 3.4 ± 0.8% (P < 0.01) in PLA, with a greater increase in WHD compared to PLA (P < 0.01). Proximal patellar tendon CSA increased by 14.9 ± 3.1% (P < 0.001) and 8.1 ± 3.2% (P = 0.054) for WHD and PLA, respectively, with a greater increase in WHD compared to PLA (P < 0.05), with no effect of contraction mode. MVC and RFD increased by 15.6 ± 3.5% (P < 0.001) and 12-63% (P < 0.05), respectively, with no group or contraction mode effects. In conclusion, high-leucine whey protein hydrolysate augments muscle and tendon hypertrophy following 12 weeks of resistance training - irrespective of contraction mode. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. ECCENTRIC JUPITERS VIA DISK–PLANET INTERACTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duffell, Paul C.; Chiang, Eugene, E-mail: duffell@berkeley.edu, E-mail: echiang@astro.berkeley.edu

    2015-10-20

    Numerical hydrodynamics calculations are performed to determine the conditions under which giant planet eccentricities can be excited by parent gas disks. Unlike in other studies, Jupiter-mass planets are found to have their eccentricities amplified—provided their orbits start off as eccentric. We disentangle the web of co-rotation, co-orbital, and external resonances to show that this finite-amplitude instability is consistent with that predicted analytically. Ellipticities can grow until they reach of order of the disk's aspect ratio, beyond which the external Lindblad resonances that excite eccentricity are weakened by the planet's increasingly supersonic epicyclic motion. Forcing the planet to still larger eccentricitiesmore » causes catastrophic eccentricity damping as the planet collides into gap walls. For standard parameters, the range of eccentricities for instability is modest; the threshold eccentricity for growth (∼0.04) is not much smaller than the final eccentricity to which orbits grow (∼0.07). If this threshold eccentricity can be lowered (perhaps by non-barotropic effects), and if the eccentricity driving documented here survives in 3D, it may robustly explain the low-to-moderate eccentricities ≲0.1 exhibited by many giant planets (including Jupiter and Saturn), especially those without planetary or stellar companions.« less

  7. Effects of Short-Term Docosahexaenoic Acid Supplementation on Markers of Inflammation after Eccentric Strength Exercise in Women.

    PubMed

    Corder, Katherine E; Newsham, Katherine R; McDaniel, Jennifer L; Ezekiel, Uthayashanker R; Weiss, Edward P

    2016-03-01

    The omega-3 fatty acid docosahexaenoic acid (DHA) has anti-inflammatory and anti-nociceptive (pain inhibiting) effects. Because strenuous exercise often results in local inflammation and pain, we hypothesized that DHA supplementation attenuates the rise in markers of local muscle inflammation and delayed onset muscle soreness (DOMS) that occur after eccentric strength exercise. Twenty-seven, healthy women (33 ± 2 y, BMI 23.1±1.0 kg·m(-2)) were randomized to receive 9d of 3000 mg/d DHA or placebo in a double-blind fashion. On day 7 of the supplementation period, the participants performed 4 sets of maximal-effort eccentric biceps curl exercise. Before and 48h after the eccentric exercise, markers of inflammation were measured including measures of muscle soreness (10-point visual analog pain scale, VAS), swelling (arm circumference), muscle stiffness (active and passive elbow extension), skin temperature, and salivary C-reactive protein (CRP) concentrations. As expected, muscle soreness and arm circumference increased while active and passive elbow extension decreased. The increase in soreness was 23% less in the DHA group (48h increase in VAS soreness ratings: 4.380.4 vs. 5.600.5, p=0.02). Furthermore, the number of subjects who were able to achieve full active elbow extension 48h after eccentric exercise was greater in the DHA group (71% vs. 15%, p = 0.006), indicating significantly less muscle stiffness. No between-group differences were observed for passive elbow extension (p = 0.78) or arm swelling (p = 0.75). Skin temperature and salivary CRP concentrations did not change from baseline to 48h after exercise in either group. These findings indicate that short-term DHA supplementation reduces exercise-induced muscle soreness and stiffness. Therefore, in addition to other health benefits that n-3 fatty acids have been associated with, DHA supplementation could be beneficial for improving tolerance to new and/or strenuous exercise programs and thereby might facilitate better training adaptations and exercise adherence. Key pointsSeven days of 3000 mg/day supplementation with algae-derived docosahexaenoic acid (DHA) attenuates the delayed onset muscle soreness and stiffness, and protects against the loss of joint range of motion that is caused by strenuous eccentric exercise.This benefit was observed in women, and supports the findings from other studies that were conducted on men or a combination of men and womenThe benefits from algae-derived DHA appear to be similar to those reported in other studies that used a combination of DHA and eicosapentaenoic acid (EPA) derived from fish oilThe findings of better recovery from strenuous exercise with DHA supplementation, paired with other research which demonstrated that DHA and EPA protect against chronic diseases suggest that DHA is an attractive optionThese findings have relevance to athletic populations, in that DHA would be expected to facilitate recovery and allow for better performance during training and competition. However, DHA supplementation might also benefit non-athletic populations, such as individuals starting new exercise programs and patient populations that are prone to muscle soreness (e.g. physical therapy patients).

  8. Does eccentric training of hamstring muscles reduce acute injuries in soccer?

    PubMed

    Nichols, Andrew W

    2013-01-01

    To investigate the effectiveness of a 10-week hamstring exercise training program in reducing the incidence and severity of new and recurrent hamstring injuries among male soccer players. Cluster-randomized (by team)controlled trial, stratified by level of play and geographic location. Sample size was calculated with 80% power to show a relative risk reduction for injury of 50% at P ≤ 0.05. Soccer community study in Denmark during the period January to December 2008. Teams in the top 5 soccer divisions (2 professional and 3 amateur)were invited to participate. The exclusion criterion for teams was that they already used eccentric hamstring exercises, and for participants was that they joined the teams after the beginning of the season. Of 116 teams, 54 were eligible and willing to be randomized and 50 were included in the analysis (942 players). Teams in both the intervention and control groups followed their normal training programs. At the beginning of the study period, the intervention teams added 27 sessions of the Nordicham string exercise (after warm-up) during the 10-week period of the mid-season break. The exercise begins with the player kneeling with the torso upright and rigid, and the feet held down to the ground by a partner. The player lowers his torso forwards toward the ground braking with his hamstring muscles until the chest reaches the ground (eccentric phase). He returns to the upright position, pushing with his hands to minimize the concentric phase load. Sessions per week and sets and repetitions per session increased to 3, 3, and 12, respectively. Team coaches supervised the sessions. A hamstring injury was defined as an acute occurrence of a “physical complaint in the region of the posterior thigh sustained during a soccer match or training, irrespective of the need for medical attention or time loss from soccer activities.” Injuries were recorded by the teams’ medical staff on standardized forms. Only first injuries during the season were included and recorded as first-time injuries or recurrences of injuries sustained before the season.Severity of injury was defined by number of days lost from full participation in games and practices. Injury rates per 100 player sessions were lower for the intervention group (3.8) than for the control group(13.1); thus, the rate ratio (RR) adjusted for age, level of competition, and previous injury was 0.293 (95% confidence interval[CI], 0.150-0.572). Both rates of new and recurrent injuries were lower for the intervention group than for the control group(new injuries: RR, 0.410; 95% CI, 0.180-0.933; recurrent injuries: RR, 0.137; 95% CI, 0.037-0.509). The 15 injuries in the intervention group resulted in absence of 454 days from soccer (mean, 30.3; SD, 18.3; range, 7-64 days per injury), whereas 51 injuries in the control group resulted in 1344 days absent (mean, 26.4; SD, 19.5; range, 4-89 days per injury). Mean severity of injuries (days absent) was not significantly different (P = 0.16) between groups. Delayed onset muscle soreness,but no other adverse effect, was reported by most members of the intervention group during the training period. An eccentric hamstring exercise program was associated with lower rates of new and recurrent hamstring injuries in Danish male soccer players.

  9. Impact of autologous blood injections in treatment of mid-portion Achilles tendinopathy: double blind randomised controlled trial.

    PubMed

    Bell, Kevin J; Fulcher, Mark L; Rowlands, David S; Kerse, Ngaire

    2013-04-18

    To assess the effectiveness of two peritendinous autologous blood injections in addition to a standardised eccentric calf strengthening programme in improving pain and function in patients with mid-portion Achilles tendinopathy. Single centre, participant and single assessor blinded, parallel group, randomised, controlled trial. Single sports medicine clinic in New Zealand. 53 adults (mean age 49, 53% men) with symptoms of unilateral mid-portion Achilles tendinopathy for at least three months. Participants were excluded if they had a history of previous Achilles tendon rupture or surgery or had undergone previous adjuvant treatments such as injectable therapies, glyceryl trinitrate patches, or extracorporeal shockwave therapy. All participants underwent two unguided peritendinous injections one month apart with a standardised protocol. The treatment group had 3 mL of their own whole blood injected while the control group had no substance injected (needling only). Participants in both groups carried out a standardised and monitored 12 week eccentric calf training programme. Follow-up was at one, two, three and six months. The primary outcome measure was the change in symptoms and function from baseline to six months with the Victorian Institute of Sport Assessment-Achilles (VISA-A) score. Secondary outcomes were the participant's perceived rehabilitation and their ability to return to sport. 26 participants were randomly assigned to the treatment group and 27 to the control group. In total, 50 (94%) completed the six month study, with 25 in each group. Clear and clinically worthwhile improvements in the VISA-A score were evident at six months in both the treatment (change in score 18.7, 95% confidence interval 12.3 to 25.1) and control (19.9, 13.6 to 26.2) groups. The overall effect of treatment was not significant (P=0.689) and the 95% confidence intervals at all points precluded clinically meaningful benefit or harm. There was no significant difference between groups in secondary outcomes or in the levels of compliance with the eccentric calf strengthening programme. No adverse events were reported. The administration of two unguided peritendinous autologous blood injections one month apart, in addition to a standardised eccentric training programme, provides no additional benefit in the treatment of mid-portion Achilles tendinopathy. Australian New Zealand Clinical Trials Registry ACTRN12610000824066, WHO U1111-1117-2641.

  10. Intermittent hypobaric hypoxia combined with aerobic exercise improves muscle morphofunctional recovery after eccentric exercise to exhaustion in trained rats.

    PubMed

    Rizo-Roca, D; Ríos-Kristjánsson, J G; Núñez-Espinosa, C; Santos-Alves, E; Gonçalves, I O; Magalhães, J; Ascensão, A; Pagès, T; Viscor, G; Torrella, J R

    2017-03-01

    Unaccustomed eccentric exercise leads to muscle morphological and functional alterations, including microvasculature damage, the repair of which is modulated by hypoxia. We present the effects of intermittent hypobaric hypoxia and exercise on recovery from eccentric exercise-induced muscle damage (EEIMD). Soleus muscles from trained rats were excised before (CTRL) and 1, 3, 7, and 14 days after a double session of EEIMD protocol. A recovery treatment consisting of one of the following protocols was applied 1 day after the EEIMD: passive normobaric recovery (PNR), a 4-h daily exposure to passive hypobaric hypoxia at 4,000 m (PHR), or hypobaric hypoxia exposure followed by aerobic exercise (AHR). EEIMD produced an increase in the percentage of abnormal fibers compared with CTRL, and it affected the microvasculature by decreasing capillary density (CD, capillaries per mm 2 ) and the capillary-to-fiber ratio (CF). After 14 days, AHR exhibited CD and CF values similar to those of CTRL animals (789 and 3.30 vs. 746 and 3.06) and significantly higher than PNR (575 and 2.62) and PHR (630 and 2.92). Furthermore, VEGF expression showed a significant 43% increase in AHR when compared with PNR. Moreover, after 14 days, the muscle fibers in AHR had a more oxidative phenotype than the other groups, with significantly smaller cross-sectional areas (AHR, 3,745; PNR, 4,502; and PHR, 4,790 µm 2 ), higher citrate synthase activity (AHR, 14.8; PNR, 13.1; and PHR, 12 µmol·min -1 ·mg -1 ) and a significant 27% increment in PGC-1α levels compared with PNR. Our data show that hypoxia combined with exercise attenuates or reverses the morphofunctional alterations induced by EEIMD. NEW & NOTEWORTHY Our study provides new insights into the use of intermittent hypobaric hypoxia combined with exercise as a strategy to recover muscle damage induced by eccentric exercise. We analyzed the effects of hypobaric exposure combined with aerobic exercise on histopathological features of muscle damage, fiber morphofunctionality, capillarization, angiogenesis, and the oxidative capacity of damaged soleus muscle. Most of these parameters were improved after a 2-wk protocol of intermittent hypobaric hypoxia combined with aerobic exercise. Copyright © 2017 the American Physiological Society.

  11. Learner Attrition in an Advanced Vocational Online Training: The Role of Computer Attitude, Computer Anxiety, and Online Learning Experience

    ERIC Educational Resources Information Center

    Stiller, Klaus D.; Köster, Annamaria

    2016-01-01

    Online learning has gained importance in education over the last 20 years, but the well-known problem of high dropout rates still persists. According to the multi-dimensional learning tasks model, the cognitive (over)load of learners is essential to attrition when dealing with five challenges (e.g. technology, user interface) of an online training…

  12. Comparison of concentric and eccentric bench press repetitions to failure.

    PubMed

    Kelly, Stephen B; Brown, Lee E; Hooker, Steven P; Swan, Pamela D; Buman, Matthew P; Alvar, Brent A; Black, Laurie E

    2015-04-01

    Eccentric muscle actions (ECC) are characterized by muscle lengthening, despite actin-myosin crossbridge formation. Muscles acting eccentrically are capable of producing higher levels of force compared with muscles acting concentrically. The purpose of this study was to determine whether ECC bench press yields greater strength than concentric (CON) as determined by 1 repetition maximum (1RM). Additionally, a comparison was made examining differences in the number of repetitions to failure at different relative intensities of 1RM. Thirty healthy men (age = 24.63 ± 5.6 years) were tested for 1RM in CON and ECC bench press and the number of repetitions completed at 60, 70, 80, and 90% 1RM. For CON repetitions, the weight was mechanically lowered to the chest, and the participant pressed it up until the elbows were fully extended. The ECC bench press consisted of lowering a barbell from a fully extended elbow position to the chest in a continuous controlled manner for 3 seconds as determined by electronic metronome. Paired t-tests showed that ECC 1RM (115.99 ± 31.08 kg) was significantly (p ≤ 0.05) greater than CON 1RM (93.56 ± 26.56 kg), and the number of repetitions completed at 90% 1RM was significantly (p ≤ 0.05) greater in ECC (7.67 ± 3.24) as compared with CON (4.57 ± 2.21). There were no significant differences in number of completed repetitions during CON and ECC bench press at 60, 70, and 80% 1RM. These data indicate that ECC actions yield increased force capabilities (∼120%) as compared with CON in the bench press and may be less prone to fatigue, especially at higher intensities. These differences suggest a need to develop unique strategies for training eccentrically.

  13. The effects of low and moderate doses of caffeine supplementation on upper and lower body maximal voluntary concentric and eccentric muscle force.

    PubMed

    Tallis, Jason; Yavuz, Harley C M

    2018-03-01

    Despite the growing quantity of literature exploring the effect of caffeine on muscular strength, there is a dearth of data that directly explores differences in erogenicity between upper and lower body musculature and the dose-response effect. The present study sought to investigate the effects of low and moderate doses of caffeine on the maximal voluntary strength of the elbow flexors and knee extensors. Ten nonspecifically strength-trained, recreationally active participants (aged 21 ± 0.3 years) completed the study. Using a randomised, counterbalanced, and double-blind approach, isokinetic concentric and eccentric strength was measured at 60 and 180°/s following administration of a placebo, 3 mg·kg -1 body mass caffeine, and 6 mg·kg -1 body mass caffeine. There was no effect of caffeine on the maximal voluntary concentric and eccentric strength of the elbow flexors, or the eccentric strength of the knee extensors. Both 3 and 6 mg·kg -1 body mass caffeine caused a significant increase in peak concentric force of the knee extensors at 180°/s. No difference was apparent between the 2 concentrations. Only 6 mg·kg -1 body mass caused an increase in peak concentric force during repeated contractions. The results infer that the effective caffeine concentration to evoke improved muscle performance may be related to muscle mass and contraction type. The present work indicates that a relatively low dose of caffeine treatment may be effective for improving lower body muscular strength, but may have little benefit for the strength of major muscular groups of the upper body.

  14. Effect of kinetically altering a repetition via the use of chain resistance on velocity during the bench press.

    PubMed

    Baker, Daniel G; Newton, Robert U

    2009-10-01

    It is theorized that the force and velocity profile of a repetition performed during a standard barbell exercise may be altered by substituting suspended chains for some portion of the total resistance. The purpose of this study was to document the alterations in lifting velocity that occur when the bench press exercise is performed as standard (BP) or with the substitution of resistance via chains draped over the barbell (BP+CH). Thirteen professional rugby league players participated in this study as part of their usual training program. Each subject performed 2 sets of 3 repetitions under the following conditions: The BP+CH condition, where the barbell resistance of 60% 1RM (repetition maximum) was supplemented by 17.5-kg in chains draped over the barbell (total resistance was about 75% 1RM), and the BP condition, where the total resistance was the same but was constituted in the form of standard barbell weights. The BP+CH condition resulted in increases in mean and peak concentric lifting velocities of around 10% in both sets as compared to both BP sets. Eccentric peak velocities were more varied in response, but generally the addition of chain resistance could be said to allow for increased velocities. The result may be partially explained by the eccentric unloading that occurs as the chain links furl upon the floor in the latter stages of the eccentric range. This eccentric unloading precipitates a more rapid stretch-shorten cycle (SSC) transition and possibly a within-repetition postactivation potentiation (PAP) that allows the subject to utilize faster lifting velocities in the initial concentric portion, which flow through to the remainder of the concentric phase. Therefore the use of chains appears warranted when athletes need to lift heavy resistances explosively.

  15. Topical glyceryl trinitrate treatment of chronic patellar tendinopathy: a randomised, double-blind, placebo-controlled clinical trial.

    PubMed

    Steunebrink, Mirjam; Zwerver, Johannes; Brandsema, Ruben; Groenenboom, Petra; van den Akker-Scheek, Inge; Weir, Adam

    2013-01-01

    To assess if continuous topical glyceryl trinitrate (GTN) treatment improves outcome in patients with chronic patellar tendinopathy when compared with eccentric training alone. Randomised double-blind, placebo-controlled clinical trial comparing a 12-week programme of using a GTN or placebo patch in combination with eccentric squats on a decline board. Measurements were performed at baseline, 6, 12 and 24 weeks. Primary outcome measure was the Victorian Institute of Sports Assessment-Patella (VISA-P) questionnaire. Secondary outcome measures were patient satisfaction and pain scores during sports. Generalised estimated equation was used to analyse the treatment, time and treatment×time effect. Analyses were performed following the intention-to-treat principle. VISA-P scores for both groups improved over the study period to 75.0±16.2 and 80.7±22.1 at 24 weeks. Results showed a significant effect for time (p<0.01) but no effect for treatment×time (p=0.80). Mean Visual Analogue Scores pain scores during sports for both groups increased over the study period to 6.6±3 and 7.8±3.1. Results showed a significant effect for time (p<0.01) but no effect for treatment×time (p=0.38). Patient satisfaction showed no difference between GTN and placebo groups (p=0.25) after 24 weeks, but did show a significant difference over time (p=0.01). Three patients in the GTN group reported some rash. It seems that continuous topical GTN treatment in addition to an eccentric exercise programme does not improve clinical outcome compared to placebo patches and an eccentric exercise programme in patients with chronic patellar tendinopathy.

  16. The influence of caffeine ingestion on strength and power performance in female team-sport players.

    PubMed

    Ali, Ajmol; O'Donnell, Jemma; Foskett, Andrew; Rutherfurd-Markwick, Kay

    2016-01-01

    The aim of this study was to examine the influence of caffeine supplementation on knee flexor and knee extensor strength before, during and after intermittent running exercise in female team-sport players taking oral contraceptive steroids (OCS). Ten healthy females (24 ± 4 years; 59.7 ± 3.5 kg; undertaking 2-6 training sessions per week) taking low-dose monophasic oral contraceptives of the same hormonal composition took part in a randomised, double-blind, placebo-controlled crossover-design trial. Sixty minutes following the ingestion of a capsule containing 6 mg∙kg -1 body mass anhydrous caffeine or artificial sweetener (placebo), participants completed a 90-min intermittent treadmill-running protocol. Isometric strength performance and eccentric and concentric strength and power of the knee flexors and knee extensors (using isokinetic dynamometer), as well as countermovement jump (CMJ), was measured before, during and after the exercise protocol, as well as ~12 h post-exercise. Blood samples were taken before, during and post-exercise to measure glucose, insulin and free fatty acids (FFA). Caffeine supplementation significantly increased eccentric strength of the knee flexors ( P  < 0.05) and eccentric power of both the knee flexors ( P  < 0.05) and extensors ( P  < 0.05). However, there was no effect on isometric or concentric parameters, or CMJ performance. FFA was elevated with caffeine supplementation over time ( P  < 0.05) while levels of glucose and insulin were not affected by caffeine intake. Caffeine supplementation increased eccentric strength and power in female team-sport players taking OCS both during an intermittent running protocol and the following morning.

  17. Digital intelligent booster for DCC miniature train networks

    NASA Astrophysics Data System (ADS)

    Ursu, M. P.; Condruz, D. A.

    2017-08-01

    Modern miniature trains are now driven by means of the DCC (Digital Command and Control) system, which allows the human operator or a personal computer to launch commands to each individual train or even to control different features of the same train. The digital command station encodes these commands and sends them to the trains by means of electrical pulses via the rails of the railway network. Due to the development of the miniature railway network, it may happen that the power requirement of the increasing number of digital locomotives, carriages and accessories exceeds the nominal output power of the digital command station. This digital intelligent booster relieves the digital command station from powering the entire railway network all by itself, and it automatically handles the multiple powered sections of the network. This electronic device is also able to detect and process short-circuits and overload conditions, without the intervention of the digital command station.

  18. [E-learning : an effective and necessary complement to the postgraduate training].

    PubMed

    Galland-Decker, Coralie; Gachoud, David; Monti, Matteo

    2016-11-23

    The evolution of modern medicine largely influenced the development of new postgraduate training programs, which requirements are more engaging and constraining. Time dedicated to education more and more often comes into competition with the resident's clinical and administrative activities. In this context, E-learning could be an interesting solution, if used complementary to the classical training which does not further overload the clinical activity. By focusing on the recognition of clinical images, and interpretation of functional tests, we target some well known knowledge gaps of our trainees. Our program allows every participant to be exposed to some important, prototypical or rare situations, independent of the clinical exposure. The quality of our program is ensured by the collaboration with several specialty departments of our hospital.

  19. Hearing, listening, action: Enhancing nursing practice through aural awareness education.

    PubMed

    Collins, Anita; Vanderheide, Rebecca; McKenna, Lisa

    2014-01-01

    Abstract Noise overload within the clinical environment has been found to interfere with the healing process for patients, as well as nurses' ability to assess patients effectively. Awareness and responsibility for noise production begins during initial nursing training and consequently a program to enhance aural awareness skills was designed for graduate entry nursing students in an Australian university. The program utilized an innovative combination of music education activities to develop the students' ability to distinguishing individual sounds (hearing), appreciate patients' experience of sounds (listening) and improve their auscultation skills and reduce the negative effects of noise on patients (action). Using a mixed methods approach, students reported heightened auscultation skills and greater recognition of both patients' and clinicians' aural overload. Results of this pilot suggest that music education activities can assist nursing students to develop their aural awareness and to action changes within the clinical environment to improve the patient's experience of noise.

  20. Hearing, Listening, Action: Enhancing nursing practice through aural awareness education.

    PubMed

    Collins, Anita; Vanderheide, Rebecca; McKenna, Lisa

    2014-03-29

    Abstract Noise overload within the clinical environment has been found to interfere with the healing process for patients, as well as nurses ability to effectively assess patients. Awareness and responsibility for noise production begins during initial nursing training and consequently a program to enhance aural awareness skills was designed for graduate entry nursing students in an Australian university. The program utilised an innovative combination of music education activities to develop the students' ability to distinguishing individual sounds (hearing), appreciate patient's experience of sounds (listening) and improve their auscultation skills and reduce the negative effects of noise on patients (action). Using a mixed methods approach, students' reported heightened auscultation skills and greater recognition of both patients' and clinicians' aural overload. Results of this pilot suggest that music education activities can assist nursing students to develop their aural awareness and to action changes within the clinical environment to improve the patient's experience of noise.

  1. The Effect of Viewing Eccentricity on Enumeration

    PubMed Central

    Palomares, Melanie; Smith, Paul R.; Pitts, Carole Holley; Carter, Breana M.

    2011-01-01

    Visual acuity and contrast sensitivity progressively diminish with increasing viewing eccentricity. Here we evaluated how visual enumeration is affected by visual eccentricity, and whether subitizing capacity, the accurate enumeration of a small number (∼3) of items, decreases with more eccentric viewing. Participants enumerated gratings whose (1) stimulus size was constant across eccentricity, and (2) whose stimulus size scaled by a cortical magnification factor across eccentricity. While we found that enumeration accuracy and precision decreased with increasing eccentricity, cortical magnification scaling of size neutralized the deleterious effects of increasing eccentricity. We found that size scaling did not affect subitizing capacities, which were nearly constant across all eccentricities. We also found that size scaling modulated the variation coefficients, a normalized metric of enumeration precision, defined as the standard deviation divided by the mean response. Our results show that the inaccuracy and imprecision associated with increasing viewing eccentricity is due to limitations in spatial resolution. Moreover, our results also support the notion that the precise number system is restricted to small numerosities (represented by the subitizing limit), while the approximate number system extends across both small and large numerosities (indexed by variation coefficients) at large eccentricities. PMID:21695212

  2. The effect of viewing eccentricity on enumeration.

    PubMed

    Palomares, Melanie; Smith, Paul R; Pitts, Carole Holley; Carter, Breana M

    2011-01-01

    Visual acuity and contrast sensitivity progressively diminish with increasing viewing eccentricity. Here we evaluated how visual enumeration is affected by visual eccentricity, and whether subitizing capacity, the accurate enumeration of a small number (∼3) of items, decreases with more eccentric viewing. Participants enumerated gratings whose (1) stimulus size was constant across eccentricity, and (2) whose stimulus size scaled by a cortical magnification factor across eccentricity. While we found that enumeration accuracy and precision decreased with increasing eccentricity, cortical magnification scaling of size neutralized the deleterious effects of increasing eccentricity. We found that size scaling did not affect subitizing capacities, which were nearly constant across all eccentricities. We also found that size scaling modulated the variation coefficients, a normalized metric of enumeration precision, defined as the standard deviation divided by the mean response. Our results show that the inaccuracy and imprecision associated with increasing viewing eccentricity is due to limitations in spatial resolution. Moreover, our results also support the notion that the precise number system is restricted to small numerosities (represented by the subitizing limit), while the approximate number system extends across both small and large numerosities (indexed by variation coefficients) at large eccentricities.

  3. Eccentricity Effects on the Efficiency of Attentional Networks: Evidence From a Modified Attention Network Test.

    PubMed

    Wang, Bin; Zhao, Jingjing; Wu, Zheng; Shang, Wei; Xiang, Jie; Cao, Rui; Li, Haifang; Chen, Junjie; Zhang, Hui; Yan, Ting

    2016-07-05

    The effects of eccentricity on the attentional modulation of visual discrimination have been widely studied; however, the substrate of this complex phenomenon is poorly understood. Here, we provided a measure of the effects of eccentricity on three attentional networks: alerting, orienting, and executive attention. Participants (N = 63) were tested with a modified attention network test that included an additional eccentricity variation; this test allowed us to investigate the efficiency of the attentional networks at near and far eccentricities. Compared with targets at the near eccentricity, targets at the far eccentricity generally elicited significantly longer reaction times. We also found the far eccentricity was associated with smaller orienting effect scores and larger executive control scores than the near eccentricity. Interestingly, at the near eccentricity, executive control scores were larger when the spatial information was neutral (no cue, center cue, and double cue), but at the far eccentricity, the scores were larger when the spatial information was valid (spatial cue). We propose that the allocation of attentional resources differed among these cue conditions and influenced the interference caused by conflicting information. © The Author(s) 2016.

  4. Overloaded and stressed: A case study of women working in the health care sector.

    PubMed

    Stevenson, Maggie; Duxbury, Linda

    2018-04-23

    Although role overload has been shown to be prevalent and consequential, there has been little attempt to develop the associated theory. The fact that the consequences of role overload can be positive or negative implies that the relationship between role overload and perceived stress depends partly on the environment within which role overload is experienced (i.e., the perceived situation) and how the situation is evaluated (i.e., appraised). Guided by cognitive appraisal theory, this study applies qualitative methodology to identify the situation properties that contribute to variable stress reactions to role overload. In this in-depth examination, overloaded female hospital workers were asked to describe what makes role overload situations potentially stressful, to gain an insight into how role overload is appraised. A taxonomy listing 12 role overload situation properties was developed from the findings, providing the first known classification of the situation properties of role overload that can create the potential for stress. The results also reveal clues as to why some people suffer more stress during role overload than others, increase our understanding of the relationship between role overload and perceived stress, and provide a useful tool for examining the environment of role overload. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  5. Comparison of Combined Aerobic and High-Force Eccentric Resistance Exercise With Aerobic Exercise Only for People With Type 2 Diabetes Mellitus

    PubMed Central

    Marcus, Robin L; Smith, Sheldon; Morrell, Glen; Addison, Odessa; Dibble, Leland E; Wahoff-Stice, Donna; LaStayo, Paul C

    2008-01-01

    Background and Purpose: The purpose of this study was to compare the outcomes between a diabetes exercise training program using combined aerobic and high-force eccentric resistance exercise and a program of aerobic exercise only. Subjects and Methods: Fifteen participants with type 2 diabetes mellitus (T2DM) participated in a 16-week supervised exercise training program: 7 (mean age=50.7 years, SD=6.9) in a combined aerobic and eccentric resistance exercise program (AE/RE group) and 8 (mean age=58.5 years, SD=6.2) in a program of aerobic exercise only (AE group). Outcome measures included thigh lean tissue and intramuscular fat (IMF), glycosylated hemoglobin, body mass index (BMI), and 6-minute walk distance. Results: Both groups experienced decreases in mean glycosylated hemoglobin after training (AE/RE group: −0.59% [95% confidence interval (CI)=−1.5 to 0.28]; AE group: −0.31% [95% CI=−0.60 to −0.03]), with no significant between-group differences. There was an interaction between group and time with respect to change in thigh lean tissue cross-sectional area, with the AE/RE group gaining more lean tissue (AE/RE group: 15.1 cm2 [95% CI=7.6 to 22.5]; AE group: −5.6 cm2 [95% CI=−10.4 to 0.76]). Both groups experienced decreases in mean thigh IMF cross-sectional area (AE/RE group: −1.2 cm2 [95% CI=−2.6 to 0.26]; AE group: −2.2 cm2 [95% CI=−3.5 to −0.84]) and increases in 6-minute walk distance (AE/RE group: 45.5 m [95% CI=7.5 to 83.6]; AE group: 29.9 m [95% CI=−7.7 to 67.5]) after training, with no between-group differences. There was an interaction between group and time with respect to change in BMI, with the AE/RE group experiencing a greater decrease in BMI. Discussion and Conclusion: Significant improvements in long-term glycemic control, thigh composition, and physical performance were demonstrated in both groups after participating in a 16-week exercise program. Subjects in the AE/RE group demonstrated additional improvements in thigh lean tissue and BMI. Improvements in thigh lean tissue may be important in this population as a means to increase resting metabolic rate, protein reserve, exercise tolerance, and functional mobility. PMID:18801851

  6. The Eccentric Behavior of Nearly Frozen Orbits

    NASA Technical Reports Server (NTRS)

    Sweetser, Theodore H.; Vincent, Mark A.

    2013-01-01

    Frozen orbits are orbits which have only short-period changes in their mean eccentricity and argument of periapse, so that they basically keep a fixed orientation within their plane of motion. Nearly frozen orbits are those whose eccentricity and argument of periapse have values close to those of a frozen orbit. We call them "nearly" frozen because their eccentricity vector (a vector whose polar coordinates are eccentricity and argument of periapse) will stay within a bounded distance from the frozen orbit eccentricity vector, circulating around it over time. For highly inclined orbits around the Earth, this distance is effectively constant over time. Furthermore, frozen orbit eccentricity values are low enough that these orbits are essentially eccentric (i.e., off center) circles, so that nearly frozen orbits around Earth are bounded above and below by frozen orbits.

  7. Alterations of Vertical Jump Mechanics after a Half-Marathon Mountain Running Race

    PubMed Central

    Rousanoglou, Elissavet N.; Noutsos, Konstantinos; Pappas, Achilleas; Bogdanis, Gregory; Vagenas, Georgios; Bayios, Ioannis A.; Boudolos, Konstantinos D.

    2016-01-01

    The fatiguing effect of long-distance running has been examined in the context of a variety of parameters. However, there is scarcity of data regarding its effect on the vertical jump mechanics. The purpose of this study was to investigate the alterations of countermovement jump (CMJ) mechanics after a half-marathon mountain race. Twenty-seven runners performed CMJs before the race (Pre), immediately after the race (Post 1) and five minutes after Post 1 (Post 2). Instantaneous and ensemble-average analysis focused on jump height and, the maximum peaks and time-to-maximum peaks of: Displacement, vertical force (Fz), anterior-posterior force (Fx), Velocity and Power, in the eccentric (tECC) and concentric (tCON) phase of the jump, respectively. Repeated measures ANOVAs were used for statistical analysis (p ≤ 0.05). The jump height decrease was significant in Post 2 (-7.9%) but not in Post 1 (-4.1%). Fx and Velocity decreased significantly in both Post 1 (only in tECC) and Post 2 (both tECC and tCON). Α timing shift of the Fz peaks (earlier during tECC and later during tCON) and altered relative peak times (only in tECC) were also observed. Ensemble-average analysis revealed several time intervals of significant post-race alterations and a timing shift in the Fz-Velocity loop. An overall trend of lowered post-race jump output and mechanics was characterised by altered jump timing, restricted anterior-posterior movement and altered force-velocity relations. The specificity of mountain running fatigue to eccentric muscle work, appears to be reflected in the different time order of the post-race reductions, with the eccentric phase reductions preceding those of the concentric one. Thus, those who engage in mountain running should particularly consider downhill training to optimise eccentric muscular action. Key points The 4.1% reduction of jump height immediately after the race is not statistically significant The eccentric phase alterations of jump mechanics precede those of the concentric ones. Force-velocity alterations present a timing shift rather than a change in force or velocity magnitude. PMID:27274665

  8. Alterations of Vertical Jump Mechanics after a Half-Marathon Mountain Running Race.

    PubMed

    Rousanoglou, Elissavet N; Noutsos, Konstantinos; Pappas, Achilleas; Bogdanis, Gregory; Vagenas, Georgios; Bayios, Ioannis A; Boudolos, Konstantinos D

    2016-06-01

    The fatiguing effect of long-distance running has been examined in the context of a variety of parameters. However, there is scarcity of data regarding its effect on the vertical jump mechanics. The purpose of this study was to investigate the alterations of countermovement jump (CMJ) mechanics after a half-marathon mountain race. Twenty-seven runners performed CMJs before the race (Pre), immediately after the race (Post 1) and five minutes after Post 1 (Post 2). Instantaneous and ensemble-average analysis focused on jump height and, the maximum peaks and time-to-maximum peaks of: Displacement, vertical force (Fz), anterior-posterior force (Fx), Velocity and Power, in the eccentric (tECC) and concentric (tCON) phase of the jump, respectively. Repeated measures ANOVAs were used for statistical analysis (p ≤ 0.05). The jump height decrease was significant in Post 2 (-7.9%) but not in Post 1 (-4.1%). Fx and Velocity decreased significantly in both Post 1 (only in tECC) and Post 2 (both tECC and tCON). Α timing shift of the Fz peaks (earlier during tECC and later during tCON) and altered relative peak times (only in tECC) were also observed. Ensemble-average analysis revealed several time intervals of significant post-race alterations and a timing shift in the Fz-Velocity loop. An overall trend of lowered post-race jump output and mechanics was characterised by altered jump timing, restricted anterior-posterior movement and altered force-velocity relations. The specificity of mountain running fatigue to eccentric muscle work, appears to be reflected in the different time order of the post-race reductions, with the eccentric phase reductions preceding those of the concentric one. Thus, those who engage in mountain running should particularly consider downhill training to optimise eccentric muscular action. Key pointsThe 4.1% reduction of jump height immediately after the race is not statistically significantThe eccentric phase alterations of jump mechanics precede those of the concentric ones.Force-velocity alterations present a timing shift rather than a change in force or velocity magnitude.

  9. The role of fluid overload in the prediction of outcome in acute kidney injury.

    PubMed

    Selewski, David T; Goldstein, Stuart L

    2018-01-01

    Our understanding of the epidemiology and the impact of acute kidney injury (AKI) and fluid overload on outcomes has improved significantly over the past several decades. Fluid overload occurs commonly in critically ill children with and without associated AKI. Researchers in pediatric AKI have been at the forefront of describing the impact of fluid overload on outcomes in a variety of populations. A full understanding of this topic is important as fluid overload represents a potentially modifiable risk factor and a target for intervention. In this state-of-the-art review, we comprehensively describe the definition of fluid overload, the impact of fluid overload on kidney function, the impact of fluid overload on the diagnosis of AKI, the association of fluid overload with outcomes, the targeted therapy of fluid overload, and the impact of the timing of renal replacement therapy on outcomes.

  10. INFERRING THE ECCENTRICITY DISTRIBUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogg, David W.; Bovy, Jo; Myers, Adam D., E-mail: david.hogg@nyu.ed

    2010-12-20

    Standard maximum-likelihood estimators for binary-star and exoplanet eccentricities are biased high, in the sense that the estimated eccentricity tends to be larger than the true eccentricity. As with most non-trivial observables, a simple histogram of estimated eccentricities is not a good estimate of the true eccentricity distribution. Here, we develop and test a hierarchical probabilistic method for performing the relevant meta-analysis, that is, inferring the true eccentricity distribution, taking as input the likelihood functions for the individual star eccentricities, or samplings of the posterior probability distributions for the eccentricities (under a given, uninformative prior). The method is a simple implementationmore » of a hierarchical Bayesian model; it can also be seen as a kind of heteroscedastic deconvolution. It can be applied to any quantity measured with finite precision-other orbital parameters, or indeed any astronomical measurements of any kind, including magnitudes, distances, or photometric redshifts-so long as the measurements have been communicated as a likelihood function or a posterior sampling.« less

  11. Muscle recruitment patterns of the subscapularis, serratus anterior and other shoulder girdle muscles during isokinetic internal and external rotations.

    PubMed

    Gaudet, Sylvain; Tremblay, Jonathan; Begon, Mickael

    2018-05-01

    The aims of this study were to investigate the differences in peak muscle activity and recruitment patterns during high- and low-velocity, concentric and eccentric, internal and external isokinetic shoulder rotations. Electromyographic activity of the rotator cuff and eight superficial muscles of the shoulder girdle was recorded on 25 healthy adults during isokinetic internal and external shoulder rotation at 60°/s and 240°/s. Peak muscle activity, electromyographic envelopes and peak isokinetic moments were analyzed using three-factor ANOVA and statistical parametric mapping. The subscapularis and serratus anterior showed moderate to high peak activity levels during each conditions, while the middle and posterior deltoids, upper, middle and lower trapezius, infraspinatus and supraspinatus showed higher peak activity levels during external rotations (+36.5% of maximum voluntary activation (MVA)). The pectoralis major and latissimus dorsi were more active during internal rotations (+40% of MVA). Only middle trapezius and pectoralis major electromyographic activity decreased with increasing velocity. Peak muscle activity was similar or lower during eccentric contractions, although the peak isokinetic moment increased by 35% on average. The subscapularis and serratus anterior appear to be important stabilizers of the glenohumeral joint and scapula. Isokinetic eccentric training at high velocities may allow for faster recruitment of the shoulder girdle muscles, which could improve joint stability during shoulder internal and external rotations.

  12. Independently variable phase and stroke control for a double acting Stirling engine

    DOEpatents

    Berchowitz, David M.

    1983-01-01

    A phase and stroke control apparatus for the pistons of a Stirling engine includes a ring on the end of each piston rod in which a pair of eccentrics is arranged in series, torque transmitting relationship. The outer eccentric is rotatably mounted in the ring and is rotated by the orbiting ring; the inner eccentric is mounted on an output shaft. The two eccentrics are mounted for rotation together within the ring during normal operation. A device is provided for rotating one eccentric with respect to another to change the effective eccentricity of the pair of eccentrics. A separately controlled phase adjustment is provided to null the phase change introduced by the change in the orientation of the outer eccentric, and also to enable the phase of the pistons to be changed independently of the stroke change.

  13. Secular evolution of eccentricity in protoplanetary discs with gap-opening planets

    NASA Astrophysics Data System (ADS)

    Teyssandier, Jean; Ogilvie, Gordon I.

    2017-06-01

    We explore the evolution of the eccentricity of an accretion disc perturbed by an embedded planet whose mass is sufficient to open a large gap in the disc. Various methods for representing the orbit-averaged motion of an eccentric disc are discussed. We characterize the linear instability that leads to the growth of eccentricity by means of hydrodynamical simulations. We numerically recover the known result that eccentricity growth in the disc is possible when the planet-to-star mass ratio exceeds 3 × 10-3. For mass ratios larger than this threshold, the precession rates and growth rates derived from simulations, as well as the shape of the eccentric mode, compare well with the predictions of a linear theory of eccentric discs. We study mechanisms by which the eccentricity growth eventually saturates into a non-linear regime.

  14. Effects of Retinal Eccentricity on Human Manual Control

    NASA Technical Reports Server (NTRS)

    Popovici, Alexandru; Zaal, Peter M. T.

    2017-01-01

    This study investigated the effects of viewing a primary flight display at different retinal eccentricities on human manual control behavior and performance. Ten participants performed a pitch tracking task while looking at a simplified primary flight display at different horizontal and vertical retinal eccentricities, and with two different controlled dynamics. Tracking performance declined at higher eccentricity angles and participants behaved more nonlinearly. The visual error rate gain increased with eccentricity for single-integrator-like controlled dynamics, but decreased for double-integrator-like dynamics. Participants' visual time delay was up to 100 ms higher at the highest horizontal eccentricity compared to foveal viewing. Overall, vertical eccentricity had a larger impact than horizontal eccentricity on most of the human manual control parameters and performance. Results might be useful in the design of displays and procedures for critical flight conditions such as in an aerodynamic stall.

  15. ECCENTRICITY EVOLUTION THROUGH ACCRETION OF PROTOPLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumoto, Yuji; Nagasawa, Makiko; Ida, Shigeru, E-mail: yuji.matsumoto@nao.ac.jp, E-mail: nagasawa.m.ad@m.titech.ac.jp, E-mail: ida@elsi.jp

    2015-09-10

    Most super-Earths detected by the radial velocity (RV) method have significantly smaller eccentricities than the eccentricities corresponding to velocity dispersion equal to their surface escape velocity (“escape eccentricities”). If orbital instability followed by giant impacts among protoplanets that have migrated from outer regions is considered, it is usually considered that eccentricities of the merged bodies become comparable to those of orbital crossing bodies, which are excited up to their escape eccentricities by close scattering. However, the eccentricity evolution in the in situ accretion model has not been studied in detail. Here, we investigate the eccentricity evolution through N-body simulations. Wemore » have found that the merged planets tend to have much smaller eccentricities than escape eccentricities due to very efficient collision damping. If the protoplanet orbits are initially well separated and their eccentricities are securely increased, an inner protoplanet collides at its apocenter with an outer protoplanet at its pericenter. The eccentricity of the merged body is the smallest for such configurations. Orbital inclinations are also damped by this mechanism and planets tend to share a same orbital plane, which is consistent with Kepler data. Such efficient collision damping is not found when we start calculations from densely packed orbits of the protoplanets. If the protoplanets are initially in the mean-motion resonances, which corresponds to well separated orbits, the in situ accretion model well reproduces the features of eccentricities and inclinations of multiple super-Earths/Earth systems discovered by RV and Kepler surveys.« less

  16. Electromyographic analysis of exercise resulting in symptoms of muscle damage.

    PubMed

    McHugh, M P; Connolly, D A; Eston, R G; Gleim, G W

    2000-03-01

    Surface electromyographic (EMG) signals were recorded from the hamstring muscles during six sets of submaximal isokinetic (2.6 rad x s(-1)) eccentric (11 men, 9 women) or concentric (6 men, 4 women) contractions. The EMG per unit torque increased during eccentric (P < 0.01) but not during concentric exercise. Similarly, the median frequency increased during eccentric (P < 0.01) but not during concentric exercise. The EMG per unit torque was lower for submaximal eccentric than maximum isometric contractions (P < 0.001), and lower for submaximal concentric than maximum isometric contractions (P < 0.01). The EMG per unit torque was lower for eccentric than concentric contractions (P < 0.05). The median frequency was higher for submaximal eccentric than maximum isometric contractions (P < 0.001); it was similar, however, between submaximal concentric and maximum isometric contractions (P = 0.07). Eccentric exercise resulted in significant isometric strength loss (P < 0.01), pain (P < 0.01) and muscle tenderness (P < 0.05). The greatest strength loss was seen 1 day after eccentric exercise, while the most severe pain and muscle tenderness occurred 2 days after eccentric exercise. A lower EMG per unit torque is consistent with the selective recruitment of a small number of motor units during eccentric exercise. A higher median frequency during eccentric contractions may be explained by selective recruitment of fast-twitch motor units. The present results are consistent with the theory that muscle damage results from excessive stress on a small number of active fibres during eccentric contractions.

  17. Shin splints. Diagnosis, management, prevention.

    PubMed

    Moore, M P

    1988-01-01

    Our knowledge of the etiology of shin splints is incomplete. Biomechanical abnormalities are likely to be major factors in predisposing certain persons to such injury. Also, training errors are major etiologic factors. Because shin splints result from mechanical overload of various elements of the musculoskeletal system of the leg that exceed their adaptive remodeling capacity, rest and recovery should be emphasized as an important aspect of sports training. Accurate and prompt diagnosis reduces the severity and duration of the injury. Management should consist of measures to reduce inflammation and pain and to identify possible biomechanical factors that may be correctable by strengthening and flexibility exercises or by the use of an orthotic device.

  18. Hypertrophy Stimulation at the Onset of Type I Diabetes Maintains the Soleus but Not the EDL Muscle Mass in Wistar Rats

    PubMed Central

    Fortes, Marco A. S.; Scervino, Maria V. M.; Marzuca-Nassr, Gabriel N.; Vitzel, Kaio F.; da Justa Pinheiro, Carlos H.; Curi, Rui

    2017-01-01

    Diabetes mellitus induces a reduction in skeletal muscle mass and strength. Strength training is prescribed as part of treatment since it improves glycemic control and promotes increase of skeletal muscle mass. The mechanisms involved in overload-induced muscle hypertrophy elicited at the establishment of the type I diabetic state was investigated in Wistar rats. The purpose was to examine whether the overload-induced hypertrophy can counteract the hypotrophy associated to the diabetic state. The experiments were performed in oxidative (soleus) or glycolytic (EDL) muscles. PI3K/Akt/mTOR protein synthesis pathway was evaluated 7 days after overload-induced hypertrophy of soleus and of EDL muscles. The mRNA expression of genes associated with different signaling pathways that control muscle hypertrophy was also evaluated: mechanotransduction (FAK), Wnt/β-catenin, myostatin, and follistatin. The soleus and EDL muscles when submitted to overload had similar hypertrophic responses in control and diabetic animals. The increase of absolute and specific twitch and tetanic forces had the same magnitude as muscle hypertrophic response. Hypertrophy of the EDL muscle from diabetic animals mostly involved mechanical loading-stimulated PI3K/Akt/mTOR pathway besides the reduced activation of AMP-activated protein kinase (AMPK) and decrease of myostatin expression. Hypertrophy was more pronounced in the soleus muscle of diabetic animals due to a more potent activation of rpS6 and increased mRNA expression of insulin-like growth factor-1 (IGF-1), mechano-growth factor (MGF) and follistatin, and decrease of myostatin, MuRF-1 and atrogin-1 contents. The signaling changes enabled the soleus muscle mass and force of the diabetic rats to reach the values of the control group. PMID:29123487

  19. Positive effect of combined exercise training in a model of metabolic syndrome and menopause: autonomic, inflammatory, and oxidative stress evaluations.

    PubMed

    Conti, Filipe Fernandes; Brito, Janaina de Oliveira; Bernardes, Nathalia; Dias, Danielle da Silva; Malfitano, Christiane; Morris, Mariana; Llesuy, Susana Francisca; Irigoyen, Maria-Cláudia; De Angelis, Kátia

    2015-12-15

    It is now well established that after menopause cardiometabolic disorders become more common. Recently, resistance exercise has been recommended as a complement to aerobic (combined training, CT) for the treatment of cardiometabolic diseases. The aim of this study was to evaluate the effects of CT in hypertensive ovariectomized rats undergoing fructose overload in blood pressure variability (BPV), inflammation, and oxidative stress parameters. Female rats were divided into the following groups (n = 8/group): sedentary normotensive Wistar rats (C), and sedentary (FHO) or trained (FHOT) ovariectomized spontaneously hypertensive rats undergoing and fructose overload. CT was performed on a treadmill and ladder adapted to rats in alternate days (8 wk; 40-60% maximal capacity). Arterial pressure (AP) was directly measured. Oxidative stress and inflammation were measured on cardiac and renal tissues. The association of risk factors (hypertension + ovariectomy + fructose) promoted increase in insulin resistance, mean AP (FHO: 174 ± 4 vs. C: 108 ± 1 mmHg), heart rate (FHO: 403 ± 12 vs. C: 352 ± 11 beats/min), BPV, cardiac inflammation (tumor necrosis factor-α-FHO: 65.8 ± 9.9 vs. C: 23.3 ± 4.3 pg/mg protein), and oxidative stress cardiac and renal tissues. However, CT was able to reduce mean AP (FHOT: 158 ± 4 mmHg), heart rate (FHOT: 303 ± 5 beats/min), insulin resistance, and sympathetic modulation. Moreover, the trained rats presented increased nitric oxide bioavailability, reduced tumor necrosis factor-α (FHOT: 33.1 ± 4.9 pg/mg protein), increased IL-10 in cardiac tissue and reduced lipoperoxidation, and increased antioxidant defenses in cardiac and renal tissues. In conclusion, the association of risk factors promoted an additional impairment in metabolic, cardiovascular, autonomic, inflammatory, and oxidative stress parameters and combined exercise training was able to attenuate these dysfunctions. Copyright © 2015 the American Physiological Society.

  20. Iron-overload injury and cardiomyopathy in acquired and genetic models is attenuated by resveratrol therapy.

    PubMed

    Das, Subhash K; Wang, Wang; Zhabyeyev, Pavel; Basu, Ratnadeep; McLean, Brent; Fan, Dong; Parajuli, Nirmal; DesAulniers, Jessica; Patel, Vaibhav B; Hajjar, Roger J; Dyck, Jason R B; Kassiri, Zamaneh; Oudit, Gavin Y

    2015-12-07

    Iron-overload cardiomyopathy is a prevalent cause of heart failure on a world-wide basis and is a major cause of mortality and morbidity in patients with secondary iron-overload and genetic hemochromatosis. We investigated the therapeutic effects of resveratrol in acquired and genetic models of iron-overload cardiomyopathy. Murine iron-overload models showed cardiac iron-overload, increased oxidative stress, altered Ca(2+) homeostasis and myocardial fibrosis resulting in heart disease. Iron-overload increased nuclear and acetylated levels of FOXO1 with corresponding inverse changes in SIRT1 levels in the heart corrected by resveratrol therapy. Resveratrol, reduced the pathological remodeling and improved cardiac function in murine models of acquired and genetic iron-overload at varying stages of iron-overload. Echocardiography and hemodynamic analysis revealed a complete normalization of iron-overload mediated diastolic and systolic dysfunction in response to resveratrol therapy. Myocardial SERCA2a levels were reduced in iron-overloaded hearts and resveratrol therapy restored SERCA2a levels and corrected altered Ca(2+) homeostasis. Iron-mediated pro-oxidant and pro-fibrotic effects in human and murine cardiomyocytes and cardiofibroblasts were suppressed by resveratrol which correlated with reduction in iron-induced myocardial oxidative stress and myocardial fibrosis. Resveratrol represents a clinically and economically feasible therapeutic intervention to reduce the global burden from iron-overload cardiomyopathy at early and chronic stages of iron-overload.

  1. Iron-overload injury and cardiomyopathy in acquired and genetic models is attenuated by resveratrol therapy

    PubMed Central

    Das, Subhash K.; Wang, Wang; Zhabyeyev, Pavel; Basu, Ratnadeep; McLean, Brent; Fan, Dong; Parajuli, Nirmal; DesAulniers, Jessica; Patel, Vaibhav B.; Hajjar, Roger J.; Dyck, Jason R. B.; Kassiri, Zamaneh; Oudit, Gavin Y.

    2015-01-01

    Iron-overload cardiomyopathy is a prevalent cause of heart failure on a world-wide basis and is a major cause of mortality and morbidity in patients with secondary iron-overload and genetic hemochromatosis. We investigated the therapeutic effects of resveratrol in acquired and genetic models of iron-overload cardiomyopathy. Murine iron-overload models showed cardiac iron-overload, increased oxidative stress, altered Ca2+ homeostasis and myocardial fibrosis resulting in heart disease. Iron-overload increased nuclear and acetylated levels of FOXO1 with corresponding inverse changes in SIRT1 levels in the heart corrected by resveratrol therapy. Resveratrol, reduced the pathological remodeling and improved cardiac function in murine models of acquired and genetic iron-overload at varying stages of iron-overload. Echocardiography and hemodynamic analysis revealed a complete normalization of iron-overload mediated diastolic and systolic dysfunction in response to resveratrol therapy. Myocardial SERCA2a levels were reduced in iron-overloaded hearts and resveratrol therapy restored SERCA2a levels and corrected altered Ca2+ homeostasis. Iron-mediated pro-oxidant and pro-fibrotic effects in human and murine cardiomyocytes and cardiofibroblasts were suppressed by resveratrol which correlated with reduction in iron-induced myocardial oxidative stress and myocardial fibrosis. Resveratrol represents a clinically and economically feasible therapeutic intervention to reduce the global burden from iron-overload cardiomyopathy at early and chronic stages of iron-overload. PMID:26638758

  2. Planet Formation in Binaries: Dynamics of Planetesimals Perturbed by the Eccentric Protoplanetary Disk and the Secondary

    NASA Astrophysics Data System (ADS)

    Silsbee, Kedron; Rafikov, Roman R.

    2015-01-01

    Detections of planets in eccentric, close (separations of ~20 AU) binary systems such as α Cen or γ Cep provide an important test of planet formation theories. Gravitational perturbations from the companion are expected to excite high planetesimal eccentricities, resulting in destruction rather than growth of objects with sizes of up to several hundred kilometers in collisions of similar-sized bodies. It was recently suggested that the gravity of a massive axisymmetric gaseous disk in which planetesimals are embedded drives rapid precession of their orbits, suppressing eccentricity excitation. However, disks in binaries are themselves expected to be eccentric, leading to additional planetesimal excitation. Here we develop a secular theory of eccentricity evolution for planetesimals perturbed by the gravity of an elliptical protoplanetary disk (neglecting gas drag) and the companion. For the first time, we derive an expression for the disturbing function due to an eccentric disk, which can be used for a variety of other astrophysical problems. We obtain explicit analytical solutions for planetesimal eccentricity evolution neglecting gas drag and delineate four different regimes of dynamical excitation. We show that in systems with massive (gsim 10-2 M ⊙) disks, planetesimal eccentricity is usually determined by the gravity of the eccentric disk alone, and is comparable to the disk eccentricity. As a result, the latter imposes a lower limit on collisional velocities of solids, making their growth problematic. In the absence of gas drag, this fragmentation barrier can be alleviated if the gaseous disk rapidly precesses or if its own self-gravity is efficient at lowering disk eccentricity.

  3. Can Eccentric Debris Disks Be Long-lived? A First Numerical Investigation and Application to Zeta(exp 2) Reticuli

    NASA Technical Reports Server (NTRS)

    Faramaz, V.; Beust, H.; Thebault, P.; Augereau, J.-C.; Bonsor, A.; delBurgo, C.; Ertel, S.; Marshall, J. P.; Milli, J.; Montesinos, B.; hide

    2014-01-01

    Context. Imaging of debris disks has found evidence for both eccentric and offset disks. One hypothesis is that they provide evidence for massive perturbers, for example, planets or binary companions, which sculpt the observed structures. One such disk was recently observed in the far-IR by the Herschel Space Observatory around Zeta2 Reticuli. In contrast with previously reported systems, the disk is significantly eccentric, and the system is several Gyr old. Aims. We aim to investigate the long-term evolution of eccentric structures in debris disks caused by a perturber on an eccentric orbit around the star. We hypothesise that the observed eccentric disk around Zeta2 Reticuli might be evidence of such a scenario. If so, we are able to constrain the mass and orbit of a potential perturber, either a giant planet or a binary companion. Methods. Analytical techniques were used to predict the effects of a perturber on a debris disk. Numerical N-body simulations were used to verify these results and further investigate the observable structures that may be produced by eccentric perturbers. The long-term evolution of the disk geometry was examined, with particular application to the Zeta2 Reticuli system. In addition, synthetic images of the disk were produced for direct comparison with Herschel observations. Results. We show that an eccentric companion can produce both the observed offsets and eccentric disks. These effects are not immediate, and we characterise the timescale required for the disk to develop to an eccentric state (and any spirals to vanish). For Zeta2 Reticuli, we derive limits on the mass and orbit of the companion required to produce the observations. Synthetic images show that the pattern observed around Zeta2 Reticuli can be produced by an eccentric disk seen close to edge-on, and allow us to bring additional constraints on the disk parameters of our model (disk flux and extent). Conclusions. We conclude that eccentric planets or stellar companions can induce long-lived eccentric structures in debris disks. Observations of such eccentric structures thus provide potential evidence of the presence of such a companion in a planetary system. We considered the specific example of Zeta2 Reticuli, whose observed eccentric disk can be explained by a distant companion (at tens of AU) on an eccentric orbit (ep greater than approx. 0.3).

  4. Strength After Bouts of Eccentric or Concentric Actions

    NASA Technical Reports Server (NTRS)

    Golden, Catherine L.; Dudley, Gary A.

    1992-01-01

    This study examined the influence of an initial bout of eccentric or concentric actions and a subsequent bout of eccentric actions on muscular strength. Twenty-four healthy males, 24-45 yr old, were placed in three groups that performed eccentric actions in bouts 1 and 2 (ECC/ECC, N = 8), concentric actions in bout 1, and eccentric actions in bout 2 (CON/ECC, N = 8) or served as controls (N = 8). Bouts involved unilateral actions with the left and right quadriceps femoris. Ten sets of 10 repetitions with an initial resistance equal to 85% of the eccentric or concentric one repetition maximum (1 RM) were performed for each bout. Three minutes of rest were given between sets and 3 wk between bouts. Two weeks before bout 1 and 1, 4, 7, and 10 d after bouts 1 and 2, eccentric and concentric 1 RM were measured for the right quadriceps femoris and a speed-torque relation established for the left quadriceps femoris. Eccentric and concentric 1 RM decreased (P less than 0.05) 32% 1 d after bout 1 for group ECC/ECC. The speed-torque relation was down-shifted (P less than 0.05) 38%. Eccentric 1 RM and eccentric and isometric torque returned to normal 6 d later. Concentric 1 RM and torque at 3.14 rad-s(exp -1) had not recovered on day 10 (-7% for both, P less than 0.05). Decreases in strength after bout 2 for group ECC/ECC only occurred on day 1 (-9% for concentric 1 RM and 16% downshift of the speed- torque relation). Group CONIECC showed the opposite responses; marked decreases in strength after bout 2 but not bout 1. The results indicate that the initial decrease in strength after performance of a novel bout of eccentric exercise is comparable for eccentric, concentric and isometric muscle actions. Recovery of strength, however, appears to occur more rapidly for eccentric and isometric actions. They suggest that performance of a prior bout of eccentric but not concentric actions, as done in this study, can essentially eradicate decreases in strength after a subsequent bout of eccentric exercise. It is suggested that neural factors are, in part, responsible for adaptations to eccentric exercise.

  5. Army Communicator. Volume 33, Number 1, Winter 2008

    DTIC Science & Technology

    2008-01-01

    1983, with the Cold War still going strong, a movie called “War Games” de- picted an eccentric computer hacker named David Lightman, played by Matthew...After an abbreviated, but successful, reception and staging operations, including another small COMMEX, in the “dustbowl;” the Regiment began a phased...stationed at Fort Riley Kan., STB 3HBCT 1AR Division. JNN training: 25Q, PFC Logan Davis, tests his knowledge on a Ku satellite transportable trailer

  6. On disk-planet interactions and orbital eccentricities

    NASA Technical Reports Server (NTRS)

    Ward, William R.

    1988-01-01

    While Lindblad resonances both within and without a perturber's orbit excite its eccentricity, the present study of the eccentricity evolution due to the density wave interaction between a planetesimal and a Keplerian disk notes that coronation resonances in these regions lose their eccentricity damping effectiveness if the object is embedded in a continuous disk without a gap. Attention is given to another class of Lindblad resonances which, under these conditions, operates on disk material coorbiting with the perturber; these resonances thereby become the most important source of eccentricity damping. A model problem indicates that eccentricity ultimately undergoes decay.

  7. A Special Force: Origin and Development of the Jedburgh Project in Support of Operation Overload

    DTIC Science & Technology

    1991-06-07

    final preparations for de ,ployment. It Includes ai study of the recruitment process used to man the force ad the training prngram undertaken to prepare...le Borgne, Prince Michel de Bourbon de Parme, Colonel (Ret.) Robert Cantais, Joseph Carbuccia, Robert Clause, Rene Esteve, Francois Franceschi, Joe... de Francesco, Maurice Geminel, Adrien Grafeville, Colonel (Ret.) Paul Grall, Claude l’Herbette, Xavier Humblet, Lieutenant Colonel (Ret.) Pierre

  8. Overload effect and fatigue crack propagation in amorphous metallic alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaki, T.K.; Li, J.C.M.

    1984-07-01

    Fatigue crack propagation in amorphous metals has an overload effect which usually increases with the number of overload cycles. The variation of overload effect with delta K is explained by the size of the plastic zone which depends on delta K. A comparison of the spacing between striations and da/dN shows that the crack jumps a step about every hundred cycles. The featureless region is probably due to shear fracture along a shear band during overload. Both crack tip blunting and branching occur during the application of overload. Work hardening is not a necessary factor for the overloading effect.

  9. Eccentric knee flexor torque following anterior cruciate ligament surgery.

    PubMed

    Osternig, L R; James, C R; Bercades, D T

    1996-10-01

    The purposes of this study were to compare eccentric knee flexor torque and muscle activation in the limbs of normal (NOR) subjects and in subjects who had undergone unilateral ACI, autograft surgical reconstruction (INJ) and to assess the effect of movement speed on EMG/ torque ratios and eccentric-concentric actions. Fourteen subjects (7 NOR and 7 INJ) were tested for knee eccentric flexor torque and EMG activity at four isokinetic speeds (15 degrees, 30 degrees, 45 degrees and 60 degrees.s-1). Results revealed that post-surgical limbs (ACL) produced significantly less (P < 0.05) eccentric torque and flexor EMG activity at 60 degrees.s-1 than uninjured (UNI) contralateral limbs. Eccentric torque rose significantly as speed increased from 45 degrees to 60 degrees.s-1 for surgical group uninjured limbs and NOR group left and right limbs. Eccentric flexor torque increased with speed for both groups and approximated equality with concentric extensor torque at 60 degrees.s-1 for INJ group ACL and UNI limbs. Concentric flexor muscle EMG/torque ratios were 30-191% greater than eccentric muscle actions across groups and speeds. The results suggest that ACL dysfunction may result in reduced eccentric flexor torque at rapid movement speeds, that eccentric flexor torque increases with movement speed and may have the capacity to counter forceful extensor concentric torque, and that eccentric muscle actions produce less muscle activation per unit force than concentric actions which may reflect reduced energy cost.

  10. Waveform model for an eccentric binary black hole based on the effective-one-body-numerical-relativity formalism

    NASA Astrophysics Data System (ADS)

    Cao, Zhoujian; Han, Wen-Biao

    2017-08-01

    Binary black hole systems are among the most important sources for gravitational wave detection. They are also good objects for theoretical research for general relativity. A gravitational waveform template is important to data analysis. An effective-one-body-numerical-relativity (EOBNR) model has played an essential role in the LIGO data analysis. For future space-based gravitational wave detection, many binary systems will admit a somewhat orbit eccentricity. At the same time, the eccentric binary is also an interesting topic for theoretical study in general relativity. In this paper, we construct the first eccentric binary waveform model based on an effective-one-body-numerical-relativity framework. Our basic assumption in the model construction is that the involved eccentricity is small. We have compared our eccentric EOBNR model to the circular one used in the LIGO data analysis. We have also tested our eccentric EOBNR model against another recently proposed eccentric binary waveform model; against numerical relativity simulation results; and against perturbation approximation results for extreme mass ratio binary systems. Compared to numerical relativity simulations with an eccentricity as large as about 0.2, the overlap factor for our eccentric EOBNR model is better than 0.98 for all tested cases, including spinless binary and spinning binary, equal mass binary, and unequal mass binary. Hopefully, our eccentric model can be the starting point to develop a faithful template for future space-based gravitational wave detectors.

  11. Varied Practice in Laparoscopy Training: Beneficial Learning Stimulation or Cognitive Overload?

    PubMed

    Spruit, Edward N; Kleijweg, Luca; Band, Guido P H; Hamming, Jaap F

    2016-01-01

    Determining the optimal design for surgical skills training is an ongoing research endeavor. In education literature, varied practice is listed as a positive intervention to improve acquisition of knowledge and motor skills. In the current study we tested the effectiveness of a varied practice intervention during laparoscopy training. Twenty-four trainees (control group) without prior experience received a 3 weeks laparoscopic skills training utilizing four basic and one advanced training task. Twenty-eight trainees (experimental group) received the same training with a random training task schedule, more frequent task switching and inverted viewing conditions on the four basic training tasks, but not the advanced task. Results showed inferior performance of the experimental group on the four basic laparoscopy tasks during training, at the end of training and at a 2 months retention session. We assume the inverted viewing conditions have led to the deterioration of learning in the experimental group because no significant differences were found between groups on the only task that had not been practiced under inverted viewing conditions; the advanced laparoscopic task. Potential moderating effects of inter-task similarity, task complexity, and trainee characteristics are discussed.

  12. Varied Practice in Laparoscopy Training: Beneficial Learning Stimulation or Cognitive Overload?

    PubMed Central

    Spruit, Edward N.; Kleijweg, Luca; Band, Guido P. H.; Hamming, Jaap F.

    2016-01-01

    Determining the optimal design for surgical skills training is an ongoing research endeavor. In education literature, varied practice is listed as a positive intervention to improve acquisition of knowledge and motor skills. In the current study we tested the effectiveness of a varied practice intervention during laparoscopy training. Twenty-four trainees (control group) without prior experience received a 3 weeks laparoscopic skills training utilizing four basic and one advanced training task. Twenty-eight trainees (experimental group) received the same training with a random training task schedule, more frequent task switching and inverted viewing conditions on the four basic training tasks, but not the advanced task. Results showed inferior performance of the experimental group on the four basic laparoscopy tasks during training, at the end of training and at a 2 months retention session. We assume the inverted viewing conditions have led to the deterioration of learning in the experimental group because no significant differences were found between groups on the only task that had not been practiced under inverted viewing conditions; the advanced laparoscopic task. Potential moderating effects of inter-task similarity, task complexity, and trainee characteristics are discussed. PMID:27242599

  13. The origin of the eccentricities of the rings of Uranus

    NASA Technical Reports Server (NTRS)

    Goldreich, P.; Tremaine, S.

    1981-01-01

    The effect of gravitational perturbations from a nearby satellite on the eccentricity e of a narrow particulate ring is considered. The perturbations near a resonance in an eccentric ring may be divided into corotation and Lindblad terms. For small e, the corotation terms damp e, whereas the Lindblad terms excite e. In the absence of saturation the corotation terms win by a small margin, and e damps. However, if the perturbations open gaps at the strongest resonances, then the Lindblad terms win, and e grows. This result offers an explanation for the existence of both circular and eccentric rings around Uranus. It is also shown that eccentricity changes induced by circular rings on eccentric satellite orbits are similar to those induced by satellites with circular orbits on eccentric rings.

  14. Eccentric Exercise Versus Eccentric Exercise and Soft Tissue Treatment (Astym) in the Management of Insertional Achilles Tendinopathy

    PubMed Central

    McCormack, Joshua R.; Underwood, Frank B.; Slaven, Emily J.; Cappaert, Thomas A.

    2016-01-01

    Background: Eccentric exercise is commonly used in the management of Achilles tendinopathy (AT) but its effectiveness for insertional AT has been questioned. Soft tissue treatment (Astym) combined with eccentric exercise could result in better outcomes than eccentric exercise alone. Hypothesis: Soft tissue treatment (Astym) plus eccentric exercise will be more effective than eccentric exercise alone for subjects with insertional AT. Study Design: Prospective randomized controlled trial. Level of Evidence: Level 2. Methods: Sixteen subjects were randomly assigned to either a soft tissue treatment (Astym) and eccentric exercise group or an eccentric exercise–only group. Intervention was completed over a 12-week period, with outcomes assessed at baseline, 4, 8, 12, 26, and 52 weeks. Outcomes included the Victorian Institute of Sport Assessment Achilles-Specific Questionnaire (VISA-A), the numeric pain rating scale (NPRS), and the global rating of change (GROC). Results: Significantly greater improvements on the VISA-A were noted in the soft tissue treatment (Astym) group over the 12-week intervention period, and these differences were maintained at the 26- and 52-week follow-ups. Both groups experienced a similar statistically significant improvement in pain over the short and long term. A significantly greater number of subjects in the soft tissue treatment (Astym) group achieved a successful outcome at 12 weeks. Conclusion: Soft tissue treatment (Astym) plus eccentric exercise was more effective than eccentric exercise only at improving function during both short- and long-term follow-up periods. Clinical Relevance: Soft tissue treatment (Astym) plus eccentric exercise appears to be a beneficial treatment program that clinicians should consider incorporating into the management of their patients with insertional AT. PMID:26893309

  15. PLANET FORMATION IN BINARIES: DYNAMICS OF PLANETESIMALS PERTURBED BY THE ECCENTRIC PROTOPLANETARY DISK AND THE SECONDARY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silsbee, Kedron; Rafikov, Roman R., E-mail: ksilsbee@astro.princeton.edu

    2015-01-10

    Detections of planets in eccentric, close (separations of ∼20 AU) binary systems such as α Cen or γ Cep provide an important test of planet formation theories. Gravitational perturbations from the companion are expected to excite high planetesimal eccentricities, resulting in destruction rather than growth of objects with sizes of up to several hundred kilometers in collisions of similar-sized bodies. It was recently suggested that the gravity of a massive axisymmetric gaseous disk in which planetesimals are embedded drives rapid precession of their orbits, suppressing eccentricity excitation. However, disks in binaries are themselves expected to be eccentric, leading to additionalmore » planetesimal excitation. Here we develop a secular theory of eccentricity evolution for planetesimals perturbed by the gravity of an elliptical protoplanetary disk (neglecting gas drag) and the companion. For the first time, we derive an expression for the disturbing function due to an eccentric disk, which can be used for a variety of other astrophysical problems. We obtain explicit analytical solutions for planetesimal eccentricity evolution neglecting gas drag and delineate four different regimes of dynamical excitation. We show that in systems with massive (≳ 10{sup –2} M {sub ☉}) disks, planetesimal eccentricity is usually determined by the gravity of the eccentric disk alone, and is comparable to the disk eccentricity. As a result, the latter imposes a lower limit on collisional velocities of solids, making their growth problematic. In the absence of gas drag, this fragmentation barrier can be alleviated if the gaseous disk rapidly precesses or if its own self-gravity is efficient at lowering disk eccentricity.« less

  16. Overloading among crash-involved vehicles in China: identification of factors associated with overloading and crash severity.

    PubMed

    Zhang, Guangnan; Li, Yanyan; King, Mark J; Zhong, Qiaoting

    2018-03-21

    Motor vehicle overloading is correlated with the possibility of road crash occurrence and severity. Although overloading of motor vehicles is pervasive in developing nations, few empirical analyses have been performed on factors that might influence the occurrence of overloading. This study aims to address this shortcoming by seeking evidence from several years of crash data from Guangdong province, China. Data on overloading and other factors are extracted for crash-involved vehicles from traffic crash records for 2006-2010 provided by the Traffic Management Bureau in Guangdong province. Logistic regression is applied to identify risk factors for overloading in crash-involved vehicles and within these crashes to identify factors contributing to greater crash severity. Driver, vehicle, road and environmental characteristics and violation types are considered in the regression models. In addition to the basic logistic models, association analysis is employed to identify the potential interactions among different risk factors during fitting the logistic models of overloading and severity. Crash-involved vehicles driven by males from rural households and in an unsafe condition are more likely to be overloaded and to be involved in higher severity overloaded vehicle crashes. If overloaded vehicles speed, the risk of severe traffic crash casualties increases. Young drivers (aged under 25 years) in mountainous areas are more likely to be involved in higher severity overloaded vehicle crashes. This study identifies several factors associated with overloading in crash-involved vehicles and with higher severity overloading crashes and provides an important reference for future research on those specific risk factors. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  17. Females Are Protected From Iron-Overload Cardiomyopathy Independent of Iron Metabolism: Key Role of Oxidative Stress.

    PubMed

    Das, Subhash K; Patel, Vaibhav B; Basu, Ratnadeep; Wang, Wang; DesAulniers, Jessica; Kassiri, Zamaneh; Oudit, Gavin Y

    2017-01-23

    Sex-related differences in cardiac function and iron metabolism exist in humans and experimental animals. Male patients and preclinical animal models are more susceptible to cardiomyopathies and heart failure. However, whether similar differences are seen in iron-overload cardiomyopathy is poorly understood. Male and female wild-type and hemojuvelin-null mice were injected and fed with a high-iron diet, respectively, to develop secondary iron overload and genetic hemochromatosis. Female mice were completely protected from iron-overload cardiomyopathy, whereas iron overload resulted in marked diastolic dysfunction in male iron-overloaded mice based on echocardiographic and invasive pressure-volume analyses. Female mice demonstrated a marked suppression of iron-mediated oxidative stress and a lack of myocardial fibrosis despite an equivalent degree of myocardial iron deposition. Ovariectomized female mice with iron overload exhibited essential pathophysiological features of iron-overload cardiomyopathy showing distinct diastolic and systolic dysfunction, severe myocardial fibrosis, increased myocardial oxidative stress, and increased expression of cardiac disease markers. Ovariectomy prevented iron-induced upregulation of ferritin, decreased myocardial SERCA2a levels, and increased NCX1 levels. 17β-Estradiol therapy rescued the iron-overload cardiomyopathy in male wild-type mice. The responses in wild-type and hemojuvelin-null female mice were remarkably similar, highlighting a conserved mechanism of sex-dependent protection from iron-overload-mediated cardiac injury. Male and female mice respond differently to iron-overload-mediated effects on heart structure and function, and females are markedly protected from iron-overload cardiomyopathy. Ovariectomy in female mice exacerbated iron-induced myocardial injury and precipitated severe cardiac dysfunction during iron-overload conditions, whereas 17β-estradiol therapy was protective in male iron-overloaded mice. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  18. QUADRICEPS LOW FREQUENCY FATIGUE AND MUSCLE PAIN ARE CONTRACTION TYPE DEPENDENT

    PubMed Central

    Iguchi, Masaki; Shields, Richard K.

    2010-01-01

    Introduction Eccentric contractions are thought to induce greater low frequency fatigue (LFF) and delayed onset muscle soreness (DOMS) than concentric contractions. This study induced a similar amount of eccentric quadriceps muscle fatigue during either a concentric or eccentric fatigue task to compare LFF and DOMS. Methods Subjects (n=22) performed concentric or eccentric fatigue tasks using 75% of the pre-fatigue maximal voluntary contraction (MVC) torque, and both tasks ended when the MVC eccentric torque decreased by 25% pre-fatigue. Results When subjects reached the failure criterion during the eccentric and concentric tasks, the concentric MVC was 78 ± 9.8% and 64 ± 8.4% of initial, respectively. LFF was greater after the concentric than the eccentric protocols (22 ± 12.4% and 15 ± 7.6% increase, respectively; p < 0.01). DOMS was over 100% greater for the eccentric protocol. Discussion These results indicate that DOMS is not dependent on the events that contribute to LFF. PMID:20544933

  19. Correlation between Reynolds number and eccentricity effect in stenosed artery models.

    PubMed

    Javadzadegan, Ashkan; Shimizu, Yasutomo; Behnia, Masud; Ohta, Makoto

    2013-01-01

    Flow recirculation and shear strain are physiological processes within coronary arteries which are associated with pathogenic biological pathways. Distinct Quite apart from coronary stenosis severity, lesion eccentricity can cause flow recirculation and affect shear strain levels within human coronary arteries. The aim of this study is to analyse the effect of lesion eccentricity on the transient flow behaviour in a model of a coronary artery and also to investigate the correlation between Reynolds number (Re) and the eccentricity effect on flow behaviour. A transient particle image velocimetry (PIV) experiment was implemented in two silicone based models with 70% diameter stenosis, one with eccentric stenosis and one with concentric stenosis. At different times throughout the flow cycle, the eccentric model was always associated with a greater recirculation zone length, maximum shear strain rate and maximum axial velocity; however, the highest and lowest impacts of eccentricity were on the recirculation zone length and maximum shear strain rate, respectively. Analysis of the results revealed a negative correlation between the Reynolds number (Re) and the eccentricity effect on maximum axial velocity, maximum shear strain rate and recirculation zone length. As Re number increases the eccentricity effect on the flow behavior becomes negligible.

  20. Physical activity behavior and role overload in mothers.

    PubMed

    Lovell, Geoff P; Butler, Frances R

    2015-01-01

    We examined physical activity stages of change, physical activity behavior, and role overload in different stages of motherhood in a predominantly Australian sample. Neither physical activity behavior, stages of physical activity change, nor role overload significantly differed across motherhood groups. Role overload was significantly higher for mothers in the contemplation, planning, and action stages of physical activity than in the maintenance stage of change. Role overload had a weak, although significant, negative correlation with leisure-time physical activity. We conclude that strategies focused upon reducing role overload or perceived role overload have only limited potential to meaningfully increase leisure-time physical activity in mothers.

  1. Can eccentric debris disks be long-lived?. A first numerical investigation and application to ζ2 Reticuli

    NASA Astrophysics Data System (ADS)

    Faramaz, V.; Beust, H.; Thébault, P.; Augereau, J.-C.; Bonsor, A.; del Burgo, C.; Ertel, S.; Marshall, J. P.; Milli, J.; Montesinos, B.; Mora, A.; Bryden, G.; Danchi, W.; Eiroa, C.; White, G. J.; Wolf, S.

    2014-03-01

    Context. Imaging of debris disks has found evidence for both eccentric and offset disks. One hypothesis is that they provide evidence for massive perturbers, for example, planets or binary companions, which sculpt the observed structures. One such disk was recently observed in the far-IR by the Herschel Space Observatory around ζ2 Reticuli. In contrast with previously reported systems, the disk is significantly eccentric, and the system is several Gyr old. Aims: We aim to investigate the long-term evolution of eccentric structures in debris disks caused by a perturber on an eccentric orbit around the star. We hypothesise that the observed eccentric disk around ζ2 Reticuli might be evidence of such a scenario. If so, we are able to constrain the mass and orbit of a potential perturber, either a giant planet or a binary companion. Methods: Analytical techniques were used to predict the effects of a perturber on a debris disk. Numerical N-body simulations were used to verify these results and further investigate the observable structures that may be produced by eccentric perturbers. The long-term evolution of the disk geometry was examined, with particular application to the ζ2 Reticuli system. In addition, synthetic images of the disk were produced for direct comparison with Herschel observations. Results: We show that an eccentric companion can produce both the observed offsets and eccentric disks. These effects are not immediate, and we characterise the timescale required for the disk to develop to an eccentric state (and any spirals to vanish). For ζ2 Reticuli, we derive limits on the mass and orbit of the companion required to produce the observations. Synthetic images show that the pattern observed around ζ2 Reticuli can be produced by an eccentric disk seen close to edge-on, and allow us to bring additional constraints on the disk parameters of our model (disk flux and extent). Conclusions: We conclude that eccentric planets or stellar companions can induce long-lived eccentric structures in debris disks. Observations of such eccentric structures thus provide potential evidence of the presence of such a companion in a planetary system. We considered the specific example of ζ2 Reticuli, whose observed eccentric disk can be explained by a distant companion (at tens of AU) on an eccentric orbit (ep ≳ 0.3). Appendices are available in electronic form at http://www.aanda.orgHerschel Space Observatory is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  2. Orbital Eccentricity and the Stability of Planets in the Alpha Centauri System

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack

    2016-01-01

    Planets on initially circular orbits are typically more dynamically stable than planets initially having nonzero eccentricities. However, the presence of a major perturber that forces periodic oscillations of planetary eccentricity can alter this situation. We investigate the dependance of system lifetime on initial eccentricity for planets orbiting one star within the alpha Centauri system. Our results show that initial conditions chosen to minimize free eccentricity can substantially increase stability compared to planets on circular orbits.

  3. Classification of Tidal Disruption Events Based on Stellar Orbital Properties

    NASA Astrophysics Data System (ADS)

    Hayasaki, Kimitake; Zhong, Shiyan; Li, Shuo; Berczik, Peter; Spurzem, Rainer

    2018-03-01

    We study the rates of tidal disruption of stars on bound to unbound orbits by intermediate-mass to supermassive black holes using high-accuracy direct N-body experiments. Stars from the star cluster approaching the black hole can have three types of orbit: eccentric, parabolic, and hyperbolic. Since the mass fallback rate shows different variabilities depending on the orbital type, we can classify tidal disruption events (TDEs) into three main categories: eccentric, parabolic, and hyperbolic. The respective TDEs are characterized by two critical values of the orbital eccentricity: the lower critical eccentricity is the one below which stars on eccentric orbits cause finite, intense accretion, and the upper critical eccentricity is the one above which stars on hyperbolic orbits cause no accretion. Moreover, we find that parabolic TDEs can be divided into three subclasses: precisely parabolic, marginally eccentric, and marginally hyperbolic. We analytically derive that the mass fallback rate of marginally eccentric TDEs can be flatter and slightly higher than the standard fallback rate proportional to t ‑5/3, whereas it can be flatter and lower for marginally hyperbolic TDEs. We confirm using N-body experiments that only a few eccentric, precisely parabolic, and hyperbolic TDEs can occur in a spherical stellar system with a single intermediate-mass to supermassive black hole. A substantial fraction of the stars approaching the black hole would cause marginally eccentric or marginally hyperbolic TDEs.

  4. The eccentricity effect: target eccentricity affects performance on conjunction searches.

    PubMed

    Carrasco, M; Evert, D L; Chang, I; Katz, S M

    1995-11-01

    The serial pattern found for conjunction visual-search tasks has been attributed to covert attentional shifts, even though the possible contributions of target location have not been considered. To investigate the effect of target location on orientation x color conjunction searches, the target's duration and its position in the display were manipulated. The display was present either until observers responded (Experiment 1), for 104 msec (Experiment 2), or for 62 msec (Experiment 3). Target eccentricity critically affected performance: A pronounced eccentricity effect was very similar for all three experiments; as eccentricity increased, reaction times and errors increased gradually. Furthermore, the set-size effect became more pronounced as target eccentricity increased, and the extent of the eccentricity effect increased for larger set sizes. In addition, according to stepwise regressions, target eccentricity as well as its interaction with set size were good predictors of performance. We suggest that these findings could be explained by spatial-resolution and lateral-inhibition factors. The serial self-terminating hypothesis for orientation x color conjunction searches was evaluated and rejected. We compared the eccentricity effect as well as the extent of the orientation asymmetry in these three conjunction experiments with those found in feature experiments (Carrasco & Katz, 1992). The roles of eye movements, spatial resolution, and covert attention in the eccentricity effect, as well as their implications, are discussed.

  5. Iron overload patients with unknown etiology from national survey in Japan.

    PubMed

    Ikuta, Katsuya; Hatayama, Mayumi; Addo, Lynda; Toki, Yasumichi; Sasaki, Katsunori; Tatsumi, Yasuaki; Hattori, Ai; Kato, Ayako; Kato, Koichi; Hayashi, Hisao; Suzuki, Takahiro; Kobune, Masayoshi; Tsutsui, Miyuki; Gotoh, Akihiko; Aota, Yasuo; Matsuura, Motoo; Hamada, Yuzuru; Tokuda, Takahiro; Komatsu, Norio; Kohgo, Yutaka

    2017-03-01

    Transfusion is believed to be the main cause of iron overload in Japan. A nationwide survey on post-transfusional iron overload subsequently led to the establishment of guidelines for iron chelation therapy in this country. To date, however, detailed clinical information on the entire iron overload population in Japan has not been fully investigated. In the present study, we obtained and studied detailed clinical information on the iron overload patient population in Japan. Of 1109 iron overload cases, 93.1% were considered to have occurred post-transfusion. There were, however, 76 cases of iron overload of unknown origin, which suggest that many clinicians in Japan may encounter some difficulty in correctly diagnosing and treating iron overload. Further clinical data were obtained for 32 cases of iron overload of unknown origin; median of serum ferritin was 1860.5 ng/mL. As occurs in post-transfusional iron overload, liver dysfunction was found to be as high as 95.7% when serum ferritin levels exceeded 1000 ng/mL in these patients. Gene mutation analysis of the iron metabolism-related genes in 27 cases of iron overload with unknown etiology revealed mutations in the gene coding hemojuvelin, transferrin receptor 2, and ferroportin; this indicates that although rare, hereditary hemochromatosis does occur in Japan.

  6. Fluid imbalance

    MedlinePlus

    ... up in the body. This is called fluid overload (volume overload). This can lead to edema (excess fluid in ... Water imbalance; Fluid imbalance - dehydration; Fluid buildup; Fluid overload; Volume overload; Loss of fluids; Edema - fluid imbalance; ...

  7. Quasi-eccentricity error modeling and compensation in vision metrology

    NASA Astrophysics Data System (ADS)

    Shen, Yijun; Zhang, Xu; Cheng, Wei; Zhu, Limin

    2018-04-01

    Circular targets are commonly used in vision applications for its detection accuracy and robustness. The eccentricity error of the circular target caused by perspective projection is one of the main factors of measurement error which needs to be compensated in high-accuracy measurement. In this study, the impact of the lens distortion on the eccentricity error is comprehensively investigated. The traditional eccentricity error turns to a quasi-eccentricity error in the non-linear camera model. The quasi-eccentricity error model is established by comparing the quasi-center of the distorted ellipse with the true projection of the object circle center. Then, an eccentricity error compensation framework is proposed which compensates the error by iteratively refining the image point to the true projection of the circle center. Both simulation and real experiment confirm the effectiveness of the proposed method in several vision applications.

  8. Eccentricity evolution during planet-disc interaction

    NASA Astrophysics Data System (ADS)

    Ragusa, Enrico; Rosotti, Giovanni; Teyssandier, Jean; Booth, Richard; Clarke, Cathie J.; Lodato, Giuseppe

    2018-03-01

    During the process of planet formation, the planet-disc interactions might excite (or damp) the orbital eccentricity of the planet. In this paper, we present two long (t ˜ 3 × 105 orbits) numerical simulations: (a) one (with a relatively light disc, Md/Mp = 0.2), where the eccentricity initially stalls before growing at later times and (b) one (with a more massive disc, Md/Mp = 0.65) with fast growth and a late decrease of the eccentricity. We recover the well-known result that a more massive disc promotes a faster initial growth of the planet eccentricity. However, at late times the planet eccentricity decreases in the massive disc case, but increases in the light disc case. Both simulations show periodic eccentricity oscillations superimposed on a growing/decreasing trend and a rapid transition between fast and slow pericentre precession. The peculiar and contrasting evolution of the eccentricity of both planet and disc in the two simulations can be understood by invoking a simple toy model where the disc is treated as a second point-like gravitating body, subject to secular planet-planet interaction and eccentricity pumping/damping provided by the disc. We show how the counterintuitive result that the more massive simulation produces a lower planet eccentricity at late times can be understood in terms of the different ratios of the disc-to-planet angular momentum in the two simulations. In our interpretation, at late times the planet eccentricity can increase more in low-mass discs rather than in high-mass discs, contrary to previous claims in the literature.

  9. Effects of high-intensity resistance training on strength, mobility, balance, and fatigue in individuals with multiple sclerosis: a randomized controlled trial.

    PubMed

    Hayes, Heather A; Gappmaier, Eduard; LaStayo, Paul C

    2011-03-01

    Resistance exercise via negative, eccentrically induced work (RENEW) has been shown to be associated with improvements in strength, mobility, and balance in multiple clinical populations. However, RENEW has not been reported for individuals with multiple sclerosis (MS). Nineteen individuals with MS (8 men, 11 women; age mean = 49 ± 11 years; Expanded Disability Status Scale [EDSS] mean = 5.2 ± 0.9) were randomized into either standard exercise (STAND) or standard exercise and RENEW training (RENEW) for 3×/week for 12 weeks. Outcome measures were lower extremity strength (hip/knee flexion and extension, ankle plantar and dorsiflexion, and the sum of these individual values [sum strength]); Timed Up and Go (TUG), 10-m walk, self-selected pace (TMWSS) and maximal-pace (TMWMP), stair ascent (S-A) and descent (S-D) and 6-Minute Walk Test (6MWT), Berg Balance Scale (BBS), Fatigue Severity Scale (FSS). No significant time effects or interactions were observed for strength, TUG, TMWSS, TMWMP, or 6MWT. However, the mean difference in sum strength in the RENEW group was 38.60 (representing a 15% increase) compared to the sum strength observed in the STAND group with a mean difference of 5.58 (a 2% increase). A significant interaction was observed for S-A, S-D, and BBS as the STAND group improved whereas the RENEW group did not improve in these measures. Contrary to results in other populations, the addition of eccentric training to standard exercises did not result in significantly greater lower extremity strength gains in this group of individuals with MS. Further this training was not as effective as standard exercise alone in improving balance or the ability to ascend and descend stairs. Following data collection, reassessment of required sample size indicates we were likely underpowered to detect strength differences between groups.

  10. Initial Eccentricity in Deformed 197Au+197Au and 238U+238U Collisions at RHIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filip, Peter; Lednicky, Richard; Masui, Hiroshi

    2010-07-07

    Initial eccentricity and eccentricity fluctuations of the interaction volume created in relativistic collisions of deformed {sup 197}Au and {sup 238}U nuclei are studied using optical and Monte-Carlo (MC) Glauber simulations. It is found that the non-sphericity noticeably influences the average eccentricity in central collisions and eccentricity fluctuations are enhanced due to deformation. Quantitative results are obtained for Au+Au and U+U collisions at energy {radical}s{sub NN} = 200 GeV.

  11. How Obesity Affects Tendons?

    PubMed

    Abate, Michele; Salini, Vincenzo; Andia, Isabel

    Several epidemiological and clinical observations have definitely demonstrated that obesity has harmful effects on tendons. The pathogenesis of tendon damage is multi-factorial. In addition to overload, attributable to the increased body weight, which significantly affects load-bearing tendons, systemic factors play a relevant role. Several bioactive peptides (chemerin, leptin, adiponectin and others) are released by adipocytes, and influence tendon structure by means of negative activities on mesenchymal cells. The ensuing systemic state of chronic, sub-clinic, low-grade inflammation can damage tendon structure. Metabolic disorders (diabetes, impaired glucose tolerance, and dislipidemia), frequently associated with visceral adiposity, are concurrent pathogenetic factors. Indeed, high glucose levels increase the formation of Advanced Glycation End-products, which in turn form stable covalent cross-links within collagen fibers, modifying their structure and functionality.Sport activities, so useful for preventing important cardiovascular complications, may be detrimental for tendons if they are submitted to intense acute or chronic overload. Therefore, two caution rules are mandatory: first, to engage in personalized soft training program, and secondly to follow regular check-up for tendon pathology.

  12. Development of exercise devices to minimize musculoskeletal and cardiovascular deconditioning in microgravity

    NASA Technical Reports Server (NTRS)

    Schwandt, Douglas F.; Whalen, Robert T.; Watenpaugh, Donald E.; Parazynski, Scott E.; Hargens, Alan R.

    1991-01-01

    The paper describes three exercise devices, developed at the NASA-Ames Research Center, for maintaining musculoskeletal and cardiovascular fitness in astronauts during extended space flights. These devices represent the following exercise concepts: (1) exercise against LBNP, (2) instrumented dynamic interlimb resistance, and (3) multiple resistive exercise. The three devices complement each other to provide the aerobic and strength training exercises for different situations. All three devices permit eccentric, concentric, and isometric contractions for a variety of exercises.

  13. Eccentric knee flexor strength profiles of 341 elite male academy and senior Gaelic football players: Do body mass and previous hamstring injury impact performance?

    PubMed

    Roe, Mark; Malone, Shane; Delahunt, Eamonn; Collins, Kieran; Gissane, Conor; Persson, Ulrik McCarthy; Murphy, John C; Blake, Catherine

    2018-05-01

    Report eccentric knee flexor strength values of elite Gaelic football players from underage to adult level whilst examining the influence of body mass and previous hamstring injury. Cross-sectional study. Team's training facility. Elite Gaelic football players (n = 341) from under 14 years to senior age-grades were recruited from twelve teams. Absolute (N) and relative (N·kg -1 ) eccentric hamstring strength as well as corresponding between-limb imbalances (%) were calculated for all players. Mean maximum force was 329.4N (95% CI 319.5-340.2) per limb. No statistically significant differences were observed in relative force values (4.4 N ·kg -1 , 95% CI 4.2-4.5) between age-groups. Body mass had moderate-to-large and weak associations with maximum force in youth (r = 0.597) and adult (r =0 .159) players, respectively. Overall 40% (95 CI 31.4-48.7) presented with a maximum strength between-limb imbalance >10%. Players with a hamstring injury had greater relative maximum force (9.3%, 95% CI 7.0-11.8; p > 0.05) and a 28% (95% CI 10.0-38.0) higher prevalence of between-limb imbalances ≥15% compared to their uninjured counterparts. Overlapping strength profiles across age-groups, combined with greater strength in previously injured players, suggests difficulties for establishing cut-off thresholds associated with hamstring injury risk. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. The effectiveness of extracorporeal shock wave therapy in lower limb tendinopathy: a systematic review.

    PubMed

    Mani-Babu, Sethu; Morrissey, Dylan; Waugh, Charlotte; Screen, Hazel; Barton, Christian

    2015-03-01

    There is accumulating evidence for the effectiveness of extracorporeal shock wave therapy (ESWT) when treating lower limb tendinopathies including greater trochanteric pain syndrome (GTPS), patellar tendinopathy (PT), and Achilles tendinopathy (AT). To evaluate the effectiveness of ESWT for lower limb tendinopathies. Systematic review and meta-analysis. PubMed (Medline), Embase, Web of Knowledge, Cochrane, and CINAHL were searched from inception to February 2013 for studies of any design investigating the effectiveness of ESWT in GTPS, PT, and AT. Citation tracking was performed using PubMed and Google Scholar. Animal and non-English language studies were excluded. A quality assessment was performed by 2 independent reviewers, and effect size calculations were computed when sufficient data were provided. A total of 20 studies were identified, with 13 providing sufficient data to compute effect size calculations. The energy level, number of impulses, number of sessions, and use of a local anesthetic varied between studies. Additionally, current evidence is limited by low participant numbers and a number of methodological weaknesses including inadequate randomization. Moderate evidence indicates that ESWT is more effective than home training and corticosteroid injection in the short (<12 months) and long (>12 months) term for GTPS. Limited evidence indicates that ESWT is more effective than alternative nonoperative treatments including nonsteroidal anti-inflammatory drugs, physical therapy, and an exercise program and equal to patellar tenotomy surgery in the long term for PT. Moderate evidence indicates that ESWT is more effective than eccentric loading for insertional AT and equal to eccentric loading for midportion AT in the short term. Additionally, there is moderate evidence that combining ESWT and eccentric loading in midportion AT may produce superior outcomes to eccentric loading alone. Extracorporeal shock wave therapy is an effective intervention and should be considered for GTPS, PT, and AT particularly when other nonoperative treatments have failed. © 2014 The Author(s).

  15. A Methodological Approach to Quantifying Plyometric Intensity.

    PubMed

    Jarvis, Mark M; Graham-Smith, Phil; Comfort, Paul

    2016-09-01

    Jarvis, MM, Graham-Smith, P, and Comfort, P. A Methodological approach to quantifying plyometric intensity. J Strength Cond Res 30(9): 2522-2532, 2016-In contrast to other methods of training, the quantification of plyometric exercise intensity is poorly defined. The purpose of this study was to evaluate the suitability of a range of neuromuscular and mechanical variables to describe the intensity of plyometric exercises. Seven male recreationally active subjects performed a series of 7 plyometric exercises. Neuromuscular activity was measured using surface electromyography (SEMG) at vastus lateralis (VL) and biceps femoris (BF). Surface electromyography data were divided into concentric (CON) and eccentric (ECC) phases of movement. Mechanical output was measured by ground reaction forces and processed to provide peak impact ground reaction force (PF), peak eccentric power (PEP), and impulse (IMP). Statistical analysis was conducted to assess the reliability intraclass correlation coefficient and sensitivity smallest detectable difference of all variables. Mean values of SEMG demonstrate high reliability (r ≥ 0.82), excluding ECC VL during a 40-cm drop jump (r = 0.74). PF, PEP, and IMP demonstrated high reliability (r ≥ 0.85). Statistical power for force variables was excellent (power = 1.0), and good for SEMG (power ≥0.86) excluding CON BF (power = 0.57). There was no significant difference (p > 0.05) in CON SEMG between exercises. Eccentric phase SEMG only distinguished between exercises involving a landing and those that did not (percentage of maximal voluntary isometric contraction [%MVIC] = no landing -65 ± 5, landing -140 ± 8). Peak eccentric power, PF, and IMP all distinguished between exercises. In conclusion, CON neuromuscular activity does not appear to vary when intent is maximal, whereas ECC activity is dependent on the presence of a landing. Force characteristics provide a reliable and sensitive measure enabling precise description of intensity in plyometric exercises. The present findings provide coaches and scientists with an insightful and precise method of measuring intensity in plyometrics, which will allow for greater control of programming variables.

  16. Force Outputs during Squats Performed Using a Rotational Inertia Device under Stable versus Unstable Conditions with Different Loads.

    PubMed

    Vázquez-Guerrero, Jairo; Moras, Gerard; Baeza, Jennifer; Rodríguez-Jiménez, Sergio

    2016-01-01

    The purpose of the study was to compare the force outputs achieved during a squat exercise using a rotational inertia device in stable versus unstable conditions with different loads and in concentric and eccentric phases. Thirteen male athletes (mean ± SD: age 23.7 ± 3.0 years, height 1.80 ± 0.08 m, body mass 77.4 ± 7.9 kg) were assessed while squatting, performing one set of three repetitions with four different loads under stable and unstable conditions at maximum concentric effort. Overall, there were no significant differences between the stable and unstable conditions at each of the loads for any of the dependent variables. Mean force showed significant differences between some of the loads in stable and unstable conditions (P < 0.010) and peak force output differed between all loads for each condition (P < 0.045). Mean force outputs were greater in the concentric than in the eccentric phase under both conditions and with all loads (P < 0.001). There were no significant differences in peak force between concentric and eccentric phases at any load in either stable or unstable conditions. In conclusion, squatting with a rotational inertia device allowed the generation of similar force outputs under stable and unstable conditions at each of the four loads. The study also provides empirical evidence of the different force outputs achieved by adjusting load conditions on the rotational inertia device when performing squats, especially in the case of peak force. Concentric force outputs were significantly higher than eccentric outputs, except for peak force under both conditions. These findings support the use of the rotational inertia device to train the squatting exercise under unstable conditions for strength and conditioning trainers. The device could also be included in injury prevention programs for muscle lesions and ankle and knee joint injuries.

  17. Force Outputs during Squats Performed Using a Rotational Inertia Device under Stable versus Unstable Conditions with Different Loads

    PubMed Central

    Vázquez-Guerrero, Jairo; Moras, Gerard

    2016-01-01

    The purpose of the study was to compare the force outputs achieved during a squat exercise using a rotational inertia device in stable versus unstable conditions with different loads and in concentric and eccentric phases. Thirteen male athletes (mean ± SD: age 23.7 ± 3.0 years, height 1.80 ± 0.08 m, body mass 77.4 ± 7.9 kg) were assessed while squatting, performing one set of three repetitions with four different loads under stable and unstable conditions at maximum concentric effort. Overall, there were no significant differences between the stable and unstable conditions at each of the loads for any of the dependent variables. Mean force showed significant differences between some of the loads in stable and unstable conditions (P < 0.010) and peak force output differed between all loads for each condition (P < 0.045). Mean force outputs were greater in the concentric than in the eccentric phase under both conditions and with all loads (P < 0.001). There were no significant differences in peak force between concentric and eccentric phases at any load in either stable or unstable conditions. In conclusion, squatting with a rotational inertia device allowed the generation of similar force outputs under stable and unstable conditions at each of the four loads. The study also provides empirical evidence of the different force outputs achieved by adjusting load conditions on the rotational inertia device when performing squats, especially in the case of peak force. Concentric force outputs were significantly higher than eccentric outputs, except for peak force under both conditions. These findings support the use of the rotational inertia device to train the squatting exercise under unstable conditions for strength and conditioning trainers. The device could also be included in injury prevention programs for muscle lesions and ankle and knee joint injuries. PMID:27111766

  18. [Eccentricity-dependent influence of amodal completion on visual search].

    PubMed

    Shirama, Aya; Ishiguchi, Akira

    2009-06-01

    Does amodal completion occur homogeneously across the visual field? Rensink and Enns (1998) found that visual search for efficiently-detected fragments became inefficient when observers perceived the fragments as a partially-occluded version of a distractor due to a rapid completion process. We examined the effect of target eccentricity in Rensink and Enns's tasks and a few additional tasks by magnifying the stimuli in the peripheral visual field to compensate for the loss of spatial resolution (M-scaling; Rovamo & Virsu, 1979). We found that amodal completion disrupted the efficient search for the salient fragments (i.e., target) even when the target was presented at high eccentricity (within 17 deg). In addition, the configuration effect of the fragments, which produced amodal completion, increased with eccentricity while the same target was detected efficiently at the lowest eccentricity. This eccentricity effect is different from a previously-reported eccentricity effect where M-scaling was effective (Carrasco & Frieder, 1997). These findings indicate that the visual system has a basis for rapid completion across the visual field, but the stimulus representations constructed through amodal completion have eccentricity-dependent properties.

  19. An alternative approach for computing seismic response with accidental eccentricity

    NASA Astrophysics Data System (ADS)

    Fan, Xuanhua; Yin, Jiacong; Sun, Shuli; Chen, Pu

    2014-09-01

    Accidental eccentricity is a non-standard assumption for seismic design of tall buildings. Taking it into consideration requires reanalysis of seismic resistance, which requires either time consuming computation of natural vibration of eccentric structures or finding a static displacement solution by applying an approximated equivalent torsional moment for each eccentric case. This study proposes an alternative modal response spectrum analysis (MRSA) approach to calculate seismic responses with accidental eccentricity. The proposed approach, called the Rayleigh Ritz Projection-MRSA (RRP-MRSA), is developed based on MRSA and two strategies: (a) a RRP method to obtain a fast calculation of approximate modes of eccentric structures; and (b) an approach to assemble mass matrices of eccentric structures. The efficiency of RRP-MRSA is tested via engineering examples and compared with the standard MRSA (ST-MRSA) and one approximate method, i.e., the equivalent torsional moment hybrid MRSA (ETM-MRSA). Numerical results show that RRP-MRSA not only achieves almost the same precision as ST-MRSA, and is much better than ETM-MRSA, but is also more economical. Thus, RRP-MRSA can be in place of current accidental eccentricity computations in seismic design.

  20. Eccentric figure-eight coils for transcranial magnetic stimulation.

    PubMed

    Sekino, Masaki; Ohsaki, Hiroyuki; Takiyama, Yoshihiro; Yamamoto, Keita; Matsuzaki, Taiga; Yasumuro, Yoshihiro; Nishikawa, Atsushi; Maruo, Tomoyuki; Hosomi, Koichi; Saitoh, Youichi

    2015-01-01

    Previously we proposed an eccentric figure-eight coil that can cause threshold stimulation in the brain at lower driving currents. In this study, we performed numerical simulations and magnetic stimulations to healthy subjects for evaluating the advantages of the eccentric coil. The simulations were performed using a simplified spherical brain model and a realistic human brain model. We found that the eccentric coil required a driving current intensity of approximately 18% less than that required by the concentric coil to cause comparable eddy current densities within the brain. The eddy current localization of the eccentric coil was slightly higher than that of the concentric coil. A prototype eccentric coil was designed and fabricated. Instead of winding a wire around a bobbin, we cut eccentric-spiral slits on the insulator cases, and a wire was woven through the slits. The coils were used to deliver magnetic stimulation to healthy subjects; among our results, we found that the current slew rate corresponding to motor threshold values for the concentric and eccentric coils were 86 and 78 A/µs, respectively. The results indicate that the eccentric coil consistently requires a lower driving current to reach the motor threshold than the concentric coil. Future development of compact magnetic stimulators will enable the treatment of some intractable neurological diseases at home. © 2014 Wiley Periodicals, Inc.

  1. Loners, Groupies, and Long-term Eccentricity (and Inclination) Behavior: Insights from Secular Theory

    NASA Astrophysics Data System (ADS)

    Van Laerhoven, Christa L.

    2015-05-01

    Considering the secular dynamics of multi-planet systems provides substantial insight into the interactions between planets in those systems. Secular interactions are those that don't involve knowing where a planet is along its orbit, and they dominate when planets are not involved in mean motion resonances. These interactions exchange angular momentum among the planets, evolving their eccentricities and inclinations. To second order in the planets' eccentricities and inclinations, the eccentricity and inclination perturbations are decoupled. Given the right variable choice, the relevant differential equations are linear and thus the eccentricity and inclination behaviors can be described as a sum of eigenmodes. Since the underlying structure of the secular eigenmodes can be calculated using only the planets' masses and semi-major axes, one can elucidate the eccentricity and inclination behavior of planets in exoplanet systems even without knowing the planets' current eccentricities and inclinations. I have calculated both the eccentricity and inclination secular eigenmodes for the population of known multi-planet systems whose planets have well determined masses and periods. Using this catalog of secular character, I will discuss the prevalence of dynamically grouped planets ('groupies') versus dynamically uncoupled planets ('loners') and how this relates to the exoplanets' long-term eccentricity and inclination behavior. I will also touch on the distribution of the secular eigenfreqiencies.

  2. Frequency and time-domain inspiral templates for comparable mass compact binaries in eccentric orbits

    NASA Astrophysics Data System (ADS)

    Tanay, Sashwat; Haney, Maria; Gopakumar, Achamveedu

    2016-03-01

    Inspiraling compact binaries with non-negligible orbital eccentricities are plausible gravitational wave (GW) sources for the upcoming network of GW observatories. In this paper, we present two prescriptions to compute post-Newtonian (PN) accurate inspiral templates for such binaries. First, we adapt and extend the postcircular scheme of Yunes et al. [Phys. Rev. D 80, 084001 (2009)] to obtain a Fourier-domain inspiral approximant that incorporates the effects of PN-accurate orbital eccentricity evolution. This results in a fully analytic frequency-domain inspiral waveform with Newtonian amplitude and 2PN-order Fourier phase while incorporating eccentricity effects up to sixth order at each PN order. The importance of incorporating eccentricity evolution contributions to the Fourier phase in a PN-consistent manner is also demonstrated. Second, we present an accurate and efficient prescription to incorporate orbital eccentricity into the quasicircular time-domain TaylorT4 approximant at 2PN order. New features include the use of rational functions in orbital eccentricity to implement the 1.5PN-order tail contributions to the far-zone fluxes. This leads to closed form PN-accurate differential equations for evolving eccentric orbits, and the resulting time-domain approximant is accurate and efficient to handle initial orbital eccentricities ≤0.9 . Preliminary GW data analysis implications are probed using match estimates.

  3. Baseline Muscle Mass Is a Poor Predictor of Functional Overload-Induced Gain in the Mouse Model

    PubMed Central

    Kilikevicius, Audrius; Bunger, Lutz; Lionikas, Arimantas

    2016-01-01

    Genetic background contributes substantially to individual variability in muscle mass. Muscle hypertrophy in response to resistance training can also vary extensively. However, it is less clear if muscle mass at baseline is predictive of the hypertrophic response. The aim of this study was to examine the effect of genetic background on variability in muscle mass at baseline and in the adaptive response of the mouse fast- and slow-twitch muscles to overload. Males of eight laboratory mouse strains: C57BL/6J (B6, n = 17), BALB/cByJ (n = 7), DBA/2J (D2, n = 12), B6.A-(rs3676616-D10Utsw1)/Kjn (B6.A, n = 9), C57BL/6J-Chr10A/J/NaJ (B6.A10, n = 8), BEH+/+ (n = 11), BEH (n = 12), and DUHi (n = 12), were studied. Compensatory growth of soleus and plantaris muscles was triggered by a 4-week overload induced by synergist unilateral ablation. Muscle weight in the control leg (baseline) varied from 5.2 ± 07 mg soleus and 11.4 ± 1.3 mg plantaris in D2 mice to 18.0 ± 1.7 mg soleus in DUHi and 43.7 ± 2.6 mg plantaris in BEH (p < 0.001 for both muscles). In addition, soleus in the B6.A10 strain was ~40% larger (p < 0.001) compared to the B6. Functional overload increased muscle weight, however, the extent of gain was strain-dependent for both soleus (p < 0.01) and plantaris (p < 0.02) even after accounting for the baseline differences. For the soleus muscle, the BEH strain emerged as the least responsive, with a 1.3-fold increase, compared to a 1.7-fold gain in the most responsive D2 strain, and there was no difference in the gain between the B6.A10 and B6 strains. The BEH strain appeared the least responsive in the gain of plantaris as well, 1.3-fold, compared to ~1.5-fold gain in the remaining strains. We conclude that variation in muscle mass at baseline is not a reliable predictor of that in the overload-induced gain. This suggests that a different set of genes influence variability in muscle mass acquired in the process of normal development, growth, and maintenance, and in the process of adaptive growth of the muscle challenged by overload. PMID:27895593

  4. Dynamical Properties of Eccentric Nuclear Disks: Stability, Longevity, and Implications for Tidal Disruption Rates in Post-merger Galaxies

    NASA Astrophysics Data System (ADS)

    Madigan, Ann-Marie; Halle, Andrew; Moody, Mackenzie; McCourt, Michael; Nixon, Chris; Wernke, Heather

    2018-02-01

    In some galaxies, the stars orbiting the supermassive black hole take the form of an eccentric nuclear disk, in which every star is on a coherent, apsidally aligned orbit. The most famous example of an eccentric nuclear disk is the double nucleus of Andromeda, and there is strong evidence for many more in the local universe. Despite their apparent ubiquity, however, a dynamical explanation for their longevity has remained a mystery: differential precession should wipe out large-scale apsidal-alignment on a short timescale. Here we identify a new dynamical mechanism which stabilizes eccentric nuclear disks, and explain for the first time the negative eccentricity gradient seen in the Andromeda nucleus. The stabilizing mechanism drives oscillations of the eccentricity vectors of individual orbits, both in direction (about the mean body of the disk) and in magnitude. Combined with the negative eccentricity gradient, the eccentricity oscillations push some stars near the inner edge of the disk extremely close to the black hole, potentially leading to tidal disruption events (TDEs). Order of magnitude calculations predict extremely high rates in recently formed eccentric nuclear disks (∼0.1–1 {{yr}}-1 {{gal}}-1). Unless the stellar disks are replenished, these rates should decrease with time as the disk depletes in mass. If eccentric nuclear disks form during gas-rich major mergers, this may explain the preferential occurrence of TDEs in recently merged and post-merger (E+A/K+A) galaxies.

  5. Non-monotonic changes in performance with eccentricity modeled by multiple eccentricity-dependent limitations.

    PubMed

    Poirier, Frédéric J A M; Gurnsey, Rick

    2005-08-01

    Eccentricity-dependent resolution losses are sometimes compensated for in psychophysical experiments by magnifying (scaling) stimuli at each eccentricity. The use of either pre-selected scaling factors or unscaled stimuli sometimes leads to non-monotonic changes in performance as a function of eccentricity. We argue that such non-monotonic changes arise when performance is limited by more than one type of constraint at each eccentricity. Building on current methods developed to investigate peripheral perception [e.g., Watson, A. B. (1987). Estimation of local spatial scale. Journal of the Optical Society of America A, 4 (8), 1579-1582; Poirier, F. J. A. M., & Gurnsey, R. (2002). Two eccentricity dependent limitations on subjective contour discrimination. Vision Research, 42, 227-238; Strasburger, H., Rentschler, I., & Harvey Jr., L. O. (1994). Cortical magnification theory fails to predict visual recognition. European Journal of Neuroscience, 6, 1583-1588], we show how measured scaling can deviate from a linear function of eccentricity in a grating acuity task [Thibos, L. N., Still, D. L., & Bradley, A. (1996). Characterization of spatial aliasing and contrast sensitivity in peripheral vision. Vision Research, 36(2), 249-258]. This framework can also explain the central performance drop [Kehrer, L. (1989). Central performance drop on perceptual segregation tasks. Spatial Vision, 4, 45-62] and a case of "reverse scaling" of the integration window in symmetry [Tyler, C. W. (1999). Human symmetry detection exhibits reverse eccentricity scaling. Visual Neuroscience, 16, 919-922]. These cases of non-monotonic performance are shown to be consistent with multiple sources of resolution loss, each of which increases linearly with eccentricity. We conclude that most eccentricity research, including "oddities", can be explained by multiple-scaling theory as extended here, where the receptive field properties of all underlying mechanisms in a task increase in size with eccentricity, but not necessarily at the same rate.

  6. Comparison of Pathway and Center of Gravity of the Calcaneus on Non-Involved and Involved Sides According to Eccentric and Concentric Strengthening in Patients With Achilles Tendinopathy

    PubMed Central

    Yu, JaeHo; Lee, GyuChang

    2012-01-01

    This study compares the changes in pathway and center of gravity (COG) on the calcaneus of non-involved and involved sides according to eccentric and concentric strengthening in patients with unilateral Achilles tendinopathy. The goal was to define the biomechanical changes according to eccentric strengthening for the development of clinical guidelines. Eighteen patients with Achilles tendinopathy were recruited at the K Rehabilitation Hospital in Seoul. The subjects were instructed to perform 5 sessions of concentric strengthening. The calcaneal pathway was measured using a three-dimensional (3D) motion analyzer, and COG was measured by a force plate. Subsequently, eccentric strengthening was implemented, and identical variables were measured. Concentric and eccentric strengthening was carried out on both the involved and non-involved sides. There was no significant difference in the calcaneal pathway in patients with Achilles tendinopathy during concentric and eccentric strengthening. However, during eccentric strengthening, the calcaneal pathway significantly increased on the involved side compared to the non-involved side for all variables excluding the z-axis. COG significantly decreased on the involved side when compared to the non-involved side in patients with Achilles tendinopathy during eccentric and concentric strengthening. During concentric strengthening, all variables of the COG significantly increased on the involved side compared to the non-involved side. Compared with eccentric strengthening, concentric strengthening decreased the stability of ankle joints and increased the movement distance of the calcaneus in patients with Achilles tendinopathy. Furthermore, eccentric strengthening was verified to be an effective exercise method for prevention of Achilles tendinopathy through the reduction of forward and backward path length of foot pressure. The regular application of eccentric strengthening was found to be effective in the secondary prevention of Achilles tendinopathy in a clinical setting. Key point Compared with eccentric strengthening, concentric strengthening decreased the stability of ankle joints, increasing movement of the calcaneus in patients with Achilles tendinopathy. Eccentric strengthening was shown to be an effective exercise method for preventing Achilles tendinopathy through the reduction of forward and backward path length of foot pressure. It was verified that regular application of eccentric strengthening is effective in secondary prevention of Achilles tendinopathy in the clinical setting. PMID:24149129

  7. PUMPING THE ECCENTRICITY OF EXOPLANETS BY TIDAL EFFECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Correia, Alexandre C. M.; Boue, Gwenaeel; Laskar, Jacques, E-mail: correia@ua.pt

    2012-01-10

    Planets close to their host stars are believed to undergo significant tidal interactions, leading to a progressive damping of the orbital eccentricity. Here we show that when the orbit of the planet is excited by an outer companion, tidal effects combined with gravitational interactions may give rise to a secular increasing drift on the eccentricity. As long as this secular drift counterbalances the damping effect, the eccentricity can increase to high values. This mechanism may explain why some of the moderate close-in exoplanets are observed with substantial eccentricity values.

  8. Interdisciplinary Research and Information Overload.

    ERIC Educational Resources Information Center

    Wilson, Patrick

    1996-01-01

    Discusses information overload and examines several ways in which actual and potential overload affects research choices for the solo researcher in interdisciplinary areas. Topics include information overload and teamwork; entry barriers to certain specialties, including necessary background knowledge; and information utilization and knowledge…

  9. An Evaluation of Overload Retardation Behavior and Overload Retardation Models of Ti-6Al-4V Sheet Titanium Alloy,

    DTIC Science & Technology

    1983-11-17

    Oat"UaL msue.(rm ~10"ee 66147 effe% nowe. 1.12a, **04 VON"* a Poest 46"a of04 ~ ah es ie [Z-3)~ totego~is f ht * g IM M..s~U~ -• - - -- L.. s. K varying...time course.* That £ 5 , the method of combining and considering the overload retardation models on the basis of the successive accumlation method in...Hysteresis stage of overload retardation (B); 3) Maximum retardation point of overload (C); 4) weakened stage of overload retardation’CD); 5 ) Basic

  10. Iron overload promotes erythroid apoptosis through regulating HIF-1a/ROS signaling pathway in patients with myelodysplastic syndrome.

    PubMed

    Zheng, Qing-Qing; Zhao, You-Shan; Guo, Juan; Zhao, Si-da; Song, Lu-Xi; Fei, Cheng-Ming; Zhang, Zheng; Li, Xiao; Chang, Chun-Kang

    2017-07-01

    Erythroid apoptosis increases significantly in myelodysplastic syndrome (MDS) patients with iron overload, but the underlying mechanism is not fully clear. In this study, we aim to explore the effect of HIF-1a/ROS on erythroid apoptosis in MDS patients with iron overload. We found that iron overload injured cellular functions through up-regulating ROS levels in MDS/AML cells, including inhibited cell viability, increased cell apoptosis and blocked cell cycle at G0/G1 phase. Interestingly, overexpression of hypoxia inducible factor-1a (HIF-1a), which was under-expressed in iron overload models, reduced ROS levels and attenuated cell damage caused by iron overload in MDS/AML cells. And gene knockdown of HIF-1a got the similar results as iron overload in MDS/AML cells. Furthermore, iron overload caused high erythroid apoptosis was closely related with ROS in MDS patients. Importantly, the HIF-1a protein levels of erythrocytes elevated obviously after incubation with desferrioxamine (DFO) from MDS patients with iron overload, accompanied by ROS levels inhibited and erythroid apoptosis reduced. Taken together, our findings determine that the HIF-1a/ROS signaling pathway plays a key role in promoting erythroid apoptosis in MDS patients with iron overload. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Burnout and psychiatric disorder among cancer clinicians.

    PubMed Central

    Ramirez, A. J.; Graham, J.; Richards, M. A.; Cull, A.; Gregory, W. M.; Leaning, M. S.; Snashall, D. C.; Timothy, A. R.

    1995-01-01

    The prevalence and causes of 'burnout' and psychiatric disorder among senior oncologists and palliative care specialists have been measured in a national questionnaire-based survey. All consultant non-surgical oncologists in the UK were asked to participate. Sources of work-related stress and satisfaction were measured using study-specific questions which were aggregated into factors. Psychiatric disorder was estimated using the 12-item General Health Questionnaire. The three components of 'burnout'--emotional exhaustion, depersonalisation and low personal accomplishment--were assessed using the Maslach Burnout Inventory. Three hundred and ninety-three out of 476 (83%) consultants returned their questionnaires. The estimated prevalence of psychiatric disorder in cancer clinicians was 28%, and this is similar to the rate among British junior house officers. The study group had equivalent levels of emotional exhaustion and low personal accomplishment to those found in American doctors and nurses, but lower levels of depersonalisation. Among cancer clinicians, 'burnout' was more prevalent among clinical oncologists than among medical oncologists and palliative care specialists. Psychiatric disorder was independently associated with the stress of feeling overloaded (P < 0.0001), dealing with treatment toxicity/errors (P < 0.004) and deriving little satisfaction from professional status/esteem (P = 0.002). 'Burnout' was also related to these factors, and in addition was associated with high stress and low satisfaction from dealing with patients, and with low satisfaction from having adequate resources (each at a level of P < or = 0.002). Clinicians who felt insufficiently trained in communication and management skills had significantly higher levels of distress than those who felt sufficiently trained. If 'burnout' and psychiatric disorder among cancer clinicians are to be reduced, increased resources will be required to lessen overload and to improve training in communication and management skills. PMID:7540037

  12. GLUT4 Is Not Necessary for Overload-Induced Glucose Uptake or Hypertrophic Growth in Mouse Skeletal Muscle

    PubMed Central

    McMillin, Shawna L.; Schmidt, Denise L.; Kahn, Barbara B.

    2017-01-01

    GLUT4 is necessary for acute insulin- and contraction-induced skeletal muscle glucose uptake, but its role in chronic muscle loading (overload)-induced glucose uptake is unknown. Our goal was to determine whether GLUT4 is required for overload-induced glucose uptake. Overload was induced in mouse plantaris muscle by unilateral synergist ablation. After 5 days, muscle weights and ex vivo [3H]-2-deoxy-d-glucose uptake were assessed. Overload-induced muscle glucose uptake and hypertrophic growth were not impaired in muscle-specific GLUT4 knockout mice, demonstrating that GLUT4 is not necessary for these processes. To assess which transporters mediate overload-induced glucose uptake, chemical inhibitors were used. The facilitative GLUT inhibitor cytochalasin B, but not the sodium-dependent glucose cotransport inhibitor phloridzin, prevented overload-induced uptake demonstrating that GLUTs mediate this effect. To assess which GLUT, hexose competition experiments were performed. Overload-induced [3H]-2-deoxy-d-glucose uptake was not inhibited by d-fructose, demonstrating that the fructose-transporting GLUT2, GLUT5, GLUT8, and GLUT12 do not mediate this effect. To assess additional GLUTs, immunoblots were performed. Overload increased GLUT1, GLUT3, GLUT6, and GLUT10 protein levels twofold to fivefold. Collectively, these results demonstrate that GLUT4 is not necessary for overload-induced muscle glucose uptake or hypertrophic growth and suggest that GLUT1, GLUT3, GLUT6, and/or GLUT10 mediate overload-induced glucose uptake. PMID:28279980

  13. GLUT4 Is Not Necessary for Overload-Induced Glucose Uptake or Hypertrophic Growth in Mouse Skeletal Muscle.

    PubMed

    McMillin, Shawna L; Schmidt, Denise L; Kahn, Barbara B; Witczak, Carol A

    2017-06-01

    GLUT4 is necessary for acute insulin- and contraction-induced skeletal muscle glucose uptake, but its role in chronic muscle loading (overload)-induced glucose uptake is unknown. Our goal was to determine whether GLUT4 is required for overload-induced glucose uptake. Overload was induced in mouse plantaris muscle by unilateral synergist ablation. After 5 days, muscle weights and ex vivo [ 3 H]-2-deoxy-d-glucose uptake were assessed. Overload-induced muscle glucose uptake and hypertrophic growth were not impaired in muscle-specific GLUT4 knockout mice, demonstrating that GLUT4 is not necessary for these processes. To assess which transporters mediate overload-induced glucose uptake, chemical inhibitors were used. The facilitative GLUT inhibitor cytochalasin B, but not the sodium-dependent glucose cotransport inhibitor phloridzin, prevented overload-induced uptake demonstrating that GLUTs mediate this effect. To assess which GLUT, hexose competition experiments were performed. Overload-induced [ 3 H]-2-deoxy-d-glucose uptake was not inhibited by d-fructose, demonstrating that the fructose-transporting GLUT2, GLUT5, GLUT8, and GLUT12 do not mediate this effect. To assess additional GLUTs, immunoblots were performed. Overload increased GLUT1, GLUT3, GLUT6, and GLUT10 protein levels twofold to fivefold. Collectively, these results demonstrate that GLUT4 is not necessary for overload-induced muscle glucose uptake or hypertrophic growth and suggest that GLUT1, GLUT3, GLUT6, and/or GLUT10 mediate overload-induced glucose uptake. © 2017 by the American Diabetes Association.

  14. Cognitive Load in Mastoidectomy Skills Training: Virtual Reality Simulation and Traditional Dissection Compared.

    PubMed

    Andersen, Steven Arild Wuyts; Mikkelsen, Peter Trier; Konge, Lars; Cayé-Thomasen, Per; Sørensen, Mads Sølvsten

    2016-01-01

    The cognitive load (CL) theoretical framework suggests that working memory is limited, which has implications for learning and skills acquisition. Complex learning situations such as surgical skills training can potentially induce a cognitive overload, inhibiting learning. This study aims to compare CL in traditional cadaveric dissection training and virtual reality (VR) simulation training of mastoidectomy. A prospective, crossover study. Participants performed cadaveric dissection before VR simulation of the procedure or vice versa. CL was estimated by secondary-task reaction time testing at baseline and during the procedure in both training modalities. The national Danish temporal bone course. A total of 40 novice otorhinolaryngology residents. Reaction time was increased by 20% in VR simulation training and 55% in cadaveric dissection training of mastoidectomy compared with baseline measurements. Traditional dissection training increased CL significantly more than VR simulation training (p < 0.001). VR simulation training imposed a lower CL than traditional cadaveric dissection training of mastoidectomy. Learning complex surgical skills can be a challenge for the novice and mastoidectomy skills training could potentially be optimized by employing VR simulation training first because of the lower CL. Traditional dissection training could then be used to supplement skills training after basic competencies have been acquired in the VR simulation. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  15. The association of lesion eccentricity with plaque morphology and components in the superficial femoral artery: a high-spatial-resolution, multi-contrast weighted CMR study.

    PubMed

    Li, Feiyu; McDermott, Mary McGrae; Li, Debiao; Carroll, Timothy J; Hippe, Daniel S; Kramer, Christopher M; Fan, Zhaoyang; Zhao, Xihai; Hatsukami, Thomas S; Chu, Baocheng; Wang, Jinnan; Yuan, Chun

    2010-07-01

    Atherosclerotic plaque morphology and components are predictors of subsequent cardiovascular events. However, associations of plaque eccentricity with plaque morphology and plaque composition are unclear. This study investigated associations of plaque eccentricity with plaque components and morphology in the proximal superficial femoral artery using cardiovascular magnetic resonance (CMR). Twenty-eight subjects with an ankle-brachial index less than 1.00 were examined with 1.5 T high-spatial-resolution, multi-contrast weighted CMR. One hundred and eighty diseased locations of the proximal superficial femoral artery (about 40 mm) were analyzed. The eccentric lesion was defined as [(Maximum wall thickness- Minimum wall thickness)/Maximum wall thickness] >or= 0.5. The arterial morphology and plaque components were measured using semi-automatic image analysis software. One hundred and fifteen locations were identified as eccentric lesions and sixty-five as concentric lesions. The eccentric lesions had larger wall but similar lumen areas, larger mean and maximum wall thicknesses, and more calcification and lipid rich necrotic core, compared to concentric lesions. For lesions with the same lumen area, the degree of eccentricity was associated with an increased wall area. Eccentricity (dichotomous as eccentric or concentric) was independently correlated with the prevalence of calcification (odds ratio 3.78, 95% CI 1.47-9.70) after adjustment for atherosclerotic risk factors and wall area. Plaque eccentricity is associated with preserved lumen size and advanced plaque features such as larger plaque burden, more lipid content, and increased calcification in the superficial femoral artery.

  16. Relation between calcium burden, echocardiographic stent frame eccentricity and paravalvular leakage after corevalve transcatheter aortic valve implantation.

    PubMed

    Di Martino, Luigi F M; Soliman, Osama I I; van Gils, Lennart; Vletter, Wim B; Van Mieghem, Nicolas M; Ren, Ben; Galema, Tjebbe W; Schultz, Carl; de Jaegere, Peter P T; Di Biase, Matteo; Geleijnse, Marcel L

    2017-06-01

    Paravalvular aortic leakage (PVL) after transcatheter aortic valve implantation (TAVI) is a complication with potentially severe consequences. The relation between native aortic root calcium burden, stent frame eccentricity and PVL was not studied before. Two-hundred-and-twenty-three consecutive patients with severe aortic stenosis who underwent TAVI with a Medtronic CoreValve System© and who had available pre-discharge transthoracic echocardiography were studied. Echocardiographic stent inflow frame eccentricity was defined as major-minor diameter in a short-axis view >2 mm. PVL was scored according to the updated Valve Academic Research Consortium (VARC-2) recommendations. In a subgroup of 162 (73%) patients, the calcium Agatston score was available. Stent frame eccentricity was seen in 77 (35%) of patients. The correlation between the Agatston score and stent frame eccentricity was significant (ρ = 0.241, P = 0.003). Paravalvular leakage was absent in 91 cases (41%), mild in 67 (30%), moderate in 51 (23%), and severe in 14 (6%) cases. The correlation between stent frame eccentricity and PVL severity was significant (ρ = 0.525, P < 0.0001). There was a relation between particular eccentric stent frame shapes and the site of PVL. Calcification of the aortic annulus is associated with a subsequent eccentric shape of the CoreValve prosthesis. This eccentric shape results in more PVL, with the localization of PVL related to the shape of stent frame eccentricity. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  17. Non-linear hydrodynamic instability and turbulence in eccentric astrophysical discs with vertical structure

    NASA Astrophysics Data System (ADS)

    Wienkers, A. F.; Ogilvie, G. I.

    2018-07-01

    Non-linear evolution of the parametric instability of inertial waves inherent to eccentric discs is studied by way of a new local numerical model. Mode coupling of tidal deformation with the disc eccentricity is known to produce exponentially growing eccentricities at certain mean-motion resonances. However, the details of an efficient saturation mechanism balancing this growth still are not fully understood. This paper develops a local numerical model for an eccentric quasi-axisymmetric shearing box which generalizes the often-used Cartesian shearing box model. The numerical method is an overall second-order well-balanced finite volume method which maintains the stratified and oscillatory steady-state solution by construction. This implementation is employed to study the non-linear outcome of the parametric instability in eccentric discs with vertical structure. Stratification is found to constrain the perturbation energy near the mid-plane and localize the effective region of inertial wave breaking that sources turbulence. A saturated marginally sonic turbulent state results from the non-linear breaking of inertial waves and is subsequently unstable to large-scale axisymmetric zonal flow structures. This resulting limit-cycle behaviour reduces access to the eccentric energy source and prevents substantial transport of angular momentum radially through the disc. Still, the saturation of this parametric instability of inertial waves is shown to damp eccentricity on a time-scale of a thousand orbital periods. It may thus be a promising mechanism for intermittently regaining balance with the exponential growth of eccentricity from the eccentric Lindblad resonances and may also help explain the occurrence of 'bursty' dynamics such as the superhump phenomenon.

  18. Eccentricity Evolution of Extrasolar Multiple Planetary Systems Due to the Depletion of Nascent Protostellar Disks

    NASA Astrophysics Data System (ADS)

    Nagasawa, M.; Lin, D. N. C.; Ida, S.

    2003-04-01

    Most extrasolar planets are observed to have eccentricities much larger than those in the solar system. Some of these planets have sibling planets, with comparable masses, orbiting around the same host stars. In these multiple planetary systems, eccentricity is modulated by the planets' mutual secular interaction as a consequence of angular momentum exchange between them. For mature planets, the eigenfrequencies of this modulation are determined by their mass and semimajor axis ratios. However, prior to the disk depletion, self-gravity of the planets' nascent disks dominates the precession eigenfrequencies. We examine here the initial evolution of young planets' eccentricity due to the apsidal libration or circulation induced by both the secular interaction between them and the self-gravity of their nascent disks. We show that as the latter effect declines adiabatically with disk depletion, the modulation amplitude of the planets' relative phase of periapsis is approximately invariant despite the time-asymmetrical exchange of angular momentum between planets. However, as the young planets' orbits pass through a state of secular resonance, their mean eccentricities undergo systematic quantitative changes. For applications, we analyze the eccentricity evolution of planets around υ Andromedae and HD 168443 during the epoch of protostellar disk depletion. We find that the disk depletion can change the planets' eccentricity ratio. However, the relatively large amplitude of the planets' eccentricity cannot be excited if all the planets had small initial eccentricities.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Key, Joey Shapiro; Cornish, Neil J.

    The Laser Interferometer Space Antenna (LISA) is designed to detect gravitational wave signals from astrophysical sources, including those from coalescing binary systems of compact objects such as black holes. Colliding galaxies have central black holes that sink to the center of the merged galaxy and begin to orbit one another and emit gravitational waves. Some galaxy evolution models predict that the binary black hole system will enter the LISA band with significant orbital eccentricity, while other models suggest that the orbits will already have circularized. Using a full 17 parameter waveform model that includes the effects of orbital eccentricity, spinmore » precession, and higher harmonics, we investigate how well the source parameters can be inferred from simulated LISA data. Defining the reference eccentricity as the value one year before merger, we find that for typical LISA sources, it will be possible to measure the eccentricity to an accuracy of parts in a thousand. The accuracy with which the eccentricity can be measured depends only very weakly on the eccentricity, making it possible to distinguish circular orbits from those with very small eccentricities. LISA measurements of the orbital eccentricity can help constraints theories of galaxy mergers in the early universe. Failing to account for the eccentricity in the waveform modeling can lead to a loss of signal power and bias the estimation of parameters such as the black hole masses and spins.« less

  20. Chain hexagonal cacti with the extremal eccentric distance sum.

    PubMed

    Qu, Hui; Yu, Guihai

    2014-01-01

    Eccentric distance sum (EDS), which can predict biological and physical properties, is a topological index based on the eccentricity of a graph. In this paper we characterize the chain hexagonal cactus with the minimal and the maximal eccentric distance sum among all chain hexagonal cacti of length n, respectively. Moreover, we present exact formulas for EDS of two types of hexagonal cacti.

  1. Design and jump phenomenon analysis of an eccentric ring energy harvester

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Jen; Chen, Chung-De

    2013-10-01

    This paper presents the development of a wheel-mounted eccentric ring energy harvester that is driven by centripetal and gravitational forces during wheel rotation. The natural frequency of the eccentric ring matches the wheel rotation frequency at any car speed because its character length is designed equal to the wheel radius. Consequently, the eccentric ring oscillates with a relatively large swing angle at the wheel speed to generate high levels of power. The nonlinear dynamic behavior of the eccentric ring is investigated to ensure that the proposed design produces steady swing angles, especially at high wheel speeds. Herein, the jump phenomenon of the dynamic motion of the eccentric ring is analyzed by using the Duffing equation and the linearization process. The discriminant value obtained from the analysis confirms that no jump phenomenon occurs at all wheel speeds if the eccentric ring is properly designed. In the experiment, the eccentric ring is integrated with magnets and a coil set to generate 318-442 μW at constant wheel speeds between 300 and 500 rpm. This shows that the proposed device is a potential power source for low-power wheel-mounted electronics, such as pressure sensors, accelerometers, and thermometers.

  2. Inhibition of return in the visual field: the eccentricity effect is independent of cortical magnification.

    PubMed

    Bao, Yan; Lei, Quan; Fang, Yuan; Tong, Yu; Schill, Kerstin; Pöppel, Ernst; Strasburger, Hans

    2013-01-01

    Inhibition of return (IOR) as an indicator of attentional control is characterized by an eccentricity effect, that is, the more peripheral visual field shows a stronger IOR magnitude relative to the perifoveal visual field. However, it could be argued that this eccentricity effect may not be an attention effect, but due to cortical magnification. To test this possibility, we examined this eccentricity effect in two conditions: the same-size condition in which identical stimuli were used at different eccentricities, and the size-scaling condition in which stimuli were scaled according to the cortical magnification factor (M-scaling), thus stimuli being larger at the more peripheral locations. The results showed that the magnitude of IOR was significantly stronger in the peripheral relative to the perifoveal visual field, and this eccentricity effect was independent of the manipulation of stimulus size (same-size or size-scaling). These results suggest a robust eccentricity effect of IOR which cannot be eliminated by M-scaling. Underlying neural mechanisms of the eccentricity effect of IOR are discussed with respect to both cortical and subcortical structures mediating attentional control in the perifoveal and peripheral visual field.

  3. The effect of face eccentricity on the perception of gaze direction.

    PubMed

    Todorović, Dejan

    2009-01-01

    The perception of a looker's gaze direction depends not only on iris eccentricity (the position of the looker's irises within the sclera) but also on the orientation of the lookers' head. One among several potential cues of head orientation is face eccentricity, the position of the inner features of the face (eyes, nose, mouth) within the head contour, as viewed by the observer. For natural faces this cue is confounded with many other head-orientation cues, but in schematic faces it can be studied in isolation. Salient novel illustrations of the effectiveness of face eccentricity are 'Necker faces', which involve equal iris eccentricities but multiple perceived gaze directions. In four experiments, iris and face eccentricity in schematic faces were manipulated, revealing strong and consistent effects of face eccentricity on perceived gaze direction, with different types of tasks. An additional experiment confirmed the 'Mona Lisa' effect with this type of stimuli. Face eccentricity most likely acted as a simple but robust cue of head turn. A simple computational account of combined effects of cues of eye and head turn on perceived gaze direction is presented, including a formal condition for the perception of direct gaze. An account of the 'Mona Lisa' effect is presented.

  4. [Numerical simulation of the effect of virtual stent release pose on the expansion results].

    PubMed

    Li, Jing; Peng, Kun; Cui, Xinyang; Fu, Wenyu; Qiao, Aike

    2018-04-01

    The current finite element analysis of vascular stent expansion does not take into account the effect of the stent release pose on the expansion results. In this study, stent and vessel model were established by Pro/E. Five kinds of finite element assembly models were constructed by ABAQUS, including 0 degree without eccentricity model, 3 degree without eccentricity model, 5 degree without eccentricity model, 0 degree axial eccentricity model and 0 degree radial eccentricity model. These models were divided into two groups of experiments for numerical simulation with respect to angle and eccentricity. The mechanical parameters such as foreshortening rate, radial recoil rate and dog boning rate were calculated. The influence of angle and eccentricity on the numerical simulation was obtained by comparative analysis. Calculation results showed that the residual stenosis rates were 38.3%, 38.4%, 38.4%, 35.7% and 38.2% respectively for the 5 models. The results indicate that the pose has less effect on the numerical simulation results so that it can be neglected when the accuracy of the result is not highly required, and the basic model as 0 degree without eccentricity model is feasible for numerical simulation.

  5. Inferred Eccentricity and Period Distributions of Kepler Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Prsa, Andrej; Matijevic, G.

    2014-01-01

    Determining the underlying eccentricity and orbital period distributions from an observed sample of eclipsing binary stars is not a trivial task. Shen and Turner (2008) have shown that the commonly used maximum likelihood estimators are biased to larger eccentricities and they do not describe the underlying distribution correctly; orbital periods suffer from a similar bias. Hogg, Myers and Bovy (2010) proposed a hierarchical probabilistic method for inferring the true eccentricity distribution of exoplanet orbits that uses the likelihood functions for individual star eccentricities. The authors show that proper inference outperforms the simple histogramming of the best-fit eccentricity values. We apply this method to the complete sample of eclipsing binary stars observed by the Kepler mission (Prsa et al. 2011) to derive the unbiased underlying eccentricity and orbital period distributions. These distributions can be used for the studies of multiple star formation, dynamical evolution, and they can serve as a drop-in replacement to prior, ad-hoc distributions used in the exoplanet field for determining false positive occurrence rates.

  6. Rapid measurement and compensation method of eccentricity in automatic profile measurement of the ICF capsule.

    PubMed

    Li, Shaobai; Wang, Yun; Wang, Qi; Ma, Xianxian; Wang, Longxiao; Zhao, Weiqian; Zhang, Xusheng

    2018-05-10

    In this paper, we propose a new measurement and compensation method for the eccentricity of the inertial confinement fusion (ICF) capsule, which combines computer vision and the laser differential confocal method to align the capsule in rotation measurement. This technique measures the eccentricity of the capsule by obtaining the sub-pixel profile with a moment-based algorithm, then performs the preliminary alignment by the two-dimensional adjustment. Next, we use the laser differential confocal sensor to measure the height data of the equatorial surface of the capsule by turning it around, then obtain and compensate the remaining eccentricity ultimately. This method is a non-contact, automatic, rapid, high-precision measurement and compensation technique of eccentricity for the capsule. Theoretical analyses and preliminary experiments indicate that the maximum measurement range of eccentricity of this proposed method is 1.8 mm for the capsule with a diameter of 1 mm, and it could eliminate the eccentricity to less than 0.5 μm in 30 s.

  7. TIMP3 deficiency exacerbates iron overload-mediated cardiomyopathy and liver disease.

    PubMed

    Zhabyeyev, Pavel; Das, Subhash K; Basu, Ratnadeep; Shen, Mengcheng; Patel, Vaibhav B; Kassiri, Zamaneh; Oudit, Gavin Y

    2018-05-01

    Chronic iron overload results in heart and liver diseases and is a common cause of morbidity and mortality in patients with genetic hemochromatosis and secondary iron overload. We investigated the role of tissue inhibitor of metalloproteinase 3 (TIMP3) in iron overload-mediated tissue injury by subjecting male mice lacking Timp3 ( Timp3 -/- ) and wild-type (WT) mice to 12 wk of chronic iron overload. Whereas WT mice with iron overload developed diastolic dysfunction, iron-overloaded Timp3 -/- mice showed worsened cardiac dysfunction coupled with systolic dysfunction. In the heart, loss of Timp3 was associated with increased myocardial fibrosis, greater Timp1, matrix metalloproteinase ( Mmp) 2, and Mmp9 expression, increased active MMP-2 levels, and gelatinase activity. Iron overload in Timp3 -/- mice showed twofold higher iron accumulation in the liver compared with WT mice because of constituently lower levels of ferroportin. Loss of Timp3 enhanced the hepatic inflammatory response to iron overload, leading to greater neutrophil and macrophage infiltration and increased hepatic fibrosis. Expression of inflammation-related MMPs (MMP-12 and MMP-13) and inflammatory cytokines (IL-1β and monocyte chemoattractant protein-1) was elevated to a greater extent in iron-overloaded Timp3 -/- livers. Gelatin zymography demonstrated equivalent increases in MMP-2 and MMP-9 levels in WT and Timp3 -/- iron-overloaded livers. Loss of Timp3 enhanced the susceptibility to iron overload-mediated heart and liver injury, suggesting that Timp3 is a key protective molecule against iron-mediated pathology. NEW & NOTEWORTHY In mice, loss of tissue inhibitor of metalloproteinase 3 ( Timp3) was associated with systolic and diastolic dysfunctions, twofold higher hepatic iron accumulation (attributable to constituently lower levels of ferroportin), and increased hepatic inflammation. Loss of Timp3 enhanced the susceptibility to iron overload-mediated injury, suggesting that Timp3 plays a key protective role against iron-mediated pathology.

  8. Work Overload.

    ERIC Educational Resources Information Center

    Bateman, Thomas S.

    1980-01-01

    To investigate managerial use of work (or role) overload to increase productivity, the author studied 77 nonclerical white-collar employees and found that work overload had negative effects on productivity, supervisors' ratings, employee attitudes, job satisfaction, and health. He recommends ways for managers and employees to reduce work overload.…

  9. 30 CFR 57.12003 - Trailing cable overload protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Trailing cable overload protection. 57.12003... Electricity Surface and Underground § 57.12003 Trailing cable overload protection. Individual overload protection or short circuit protection shall be provided for the trailing cables of mobile equipment. ...

  10. Supplementation with beta-hydroxy-beta-methylbutyrate (HMB) and alpha-ketoisocaproic acid (KIC) reduces signs and symptoms of exercise-induced muscle damage in man.

    PubMed

    van Someren, Ken A; Edwards, Adam J; Howatson, Glyn

    2005-08-01

    This study examined the effects of beta-hydroxyl-beta-methylbutyrate (HMB) and alpha-ketoisocaproic acid (KIC) supplementation on signs and symptoms of exercise-induced muscle damage following a single bout of eccentrically biased resistance exercise. Six non-resistance trained male subjects performed an exercise protocol designed to induce muscle damage on two separate occasions, performed on the dominant or non-dominant arm in a counter-balanced crossover design. Subjects were assigned to an HMB/KIC (3 g HMB and 0.3 g alpha-ketoisocaproic acid, daily) or placebo treatment for 14 d prior to exercise in the counter-balanced crossover design. One repetition maximum (1RM), plasma creatine kinase activity (CK), delayed onset muscle soreness (DOMS), limb girth, and range of motion (ROM) were determined pre-exercise, at 1h, 24 h, 48 h, and 72 h post-exercise. DOMS and the percentage changes in 1RM, limb girth, and ROM all changed over the 72 h period (P < 0.05). HMB//IC supplementation attenuated the CK response, the percentage decrement in 1RM, and the percentage increase in limb girth (P < 0.05). In addition, DOMS was reduced at 24 h post-exercise (P < 0.05) in the HMB/KIC treatment. In conclusion, 14 d of HMB and KIC supplementation reduced signs and symptoms of exercise-induced muscle damage in non-resistance trained males following a single bout of eccentrically biased resistance exercise.

  11. Effects of replacing free weights with elastic band resistance in squats on trunk muscle activation.

    PubMed

    Saeterbakken, Atle H; Andersen, Vidar; Kolnes, Maria K; Fimland, Marius S

    2014-11-01

    The purpose of this study was to assess the effects of adding elastic bands to free-weight squats on the neuromuscular activation of core muscles. Twenty-five resistance trained women with 4.6 ± 2.1 years of resistance training experience participated in the study. In randomized order, the participants performed 6 repetition maximum in free-weight squats, with and without elastic bands (i.e., matched relative intensity between exercises). During free-weight squats with elastic bands, some of the free weights were replaced with 2 elastic bands attached to the lowest part of the squat rack. Surface electromyography (EMG) activity was measured from the erector spinae, external oblique, and rectus abdominis, whereas a linear encoder measured the vertical displacement. The EMG activities were compared between the 2 lifting modalities for the whole repetition and separately for the eccentric, concentric, and upper and lower eccentric and concentric phases. In the upper (greatest stretch of the elastic band), middle, and lower positions in squats with elastic bands, the resistance values were approximately 117, 105, and 93% of the free weight-only trial. Similar EMG activities were observed for the 2 lifting modalities for the erector spinae (p = 0.112-0.782), external oblique (p = 0.225-0.977), and rectus abdominis (p = 0.315-0.729) in all analyzed phases. In conclusion, there were no effects on the muscle activity of trunk muscles of substituting some resistance from free weights with elastic bands in the free-weight squat.

  12. Grinding Method and Error Analysis of Eccentric Shaft Parts

    NASA Astrophysics Data System (ADS)

    Wang, Zhiming; Han, Qiushi; Li, Qiguang; Peng, Baoying; Li, Weihua

    2017-12-01

    RV reducer and various mechanical transmission parts are widely used in eccentric shaft parts, The demand of precision grinding technology for eccentric shaft parts now, In this paper, the model of X-C linkage relation of eccentric shaft grinding is studied; By inversion method, the contour curve of the wheel envelope is deduced, and the distance from the center of eccentric circle is constant. The simulation software of eccentric shaft grinding is developed, the correctness of the model is proved, the influence of the X-axis feed error, the C-axis feed error and the wheel radius error on the grinding process is analyzed, and the corresponding error calculation model is proposed. The simulation analysis is carried out to provide the basis for the contour error compensation.

  13. Extending Interactive Electronic Technical Manuals (IETMs) with Real and Virtual Animated Content for Maintenance Task Training

    DTIC Science & Technology

    2008-12-01

    systems in a compact 2D form. This stylistic decision can give trainees a confusing or incorrect assessment of the actual layout of the corresponding...birth. Replacing these instinctual motions with mappings to a keyboard and a mouse imposes a great cognitive burden on a user; even skilled users often...can cause a situation known as ― cognitive overload,‖ in which a student, overwhelmed by the learning demands being simultaneously placed on him

  14. Eccentric activation and muscle damage: biomechanical and physiological considerations during downhill running.

    PubMed Central

    Eston, R G; Mickleborough, J; Baltzopoulos, V

    1995-01-01

    An eccentric muscle activation is the controlled lengthening of the muscle under tension. Functionally, most leg muscles work eccentrically for some part of a normal gait cycle, to support the weight of the body against gravity and to absorb shock. During downhill running the role of eccentric work of the 'anti-gravity' muscles--knee extensors, muscles of the anterior and posterior tibial compartments and hip extensors--is accentuated. The purpose of this paper is to review the relationship between eccentric muscle activation and muscle damage, particularly as it relates to running, and specifically, downhill running. PMID:7551767

  15. Effects of retinal eccentricity and acuity on global motion processing

    PubMed Central

    Bower, Jeffrey D.; Bian, Zheng; Andersen, George J.

    2012-01-01

    The present study assessed direction discrimination of moving random dot cinematograms (RDCs) at retinal eccentricities of 0, 8, 22 and 40 deg. In addition, Landolt C acuity was assessed at these eccentricities to determine whether changes in motion discrimination performance covaried with acuity in the retinal periphery. The results of the experiment indicated that discrimination thresholds increased with retinal eccentricity and directional variance (noise) independent of acuity. Psychophysical modeling indicated that the results of eccentricity and noise could be explained by an increase in channel bandwidth and an increase in internal multiplicative noise. PMID:22382583

  16. Initial eccentricity in deformed {sup 197}Au+{sup 197}Au and {sup 238}U+{sup 238}U collisions at {radical}(s{sub NN})=200 GeV at the BNL Relativistic Heavy Ion Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filip, Peter; Lednicky, Richard; Masui, Hiroshi

    2009-11-15

    Initial eccentricity and eccentricity fluctuations of the interaction volume created in relativistic collisions of deformed {sup 197}Au and {sup 238}U nuclei are studied using optical and Monte Carlo (MC) Glauber simulations. It is found that the nonsphericity noticeably influences the average eccentricity in central collisions, and eccentricity fluctuations are enhanced from deformation. Quantitative results are obtained for Au+Au and U+U collisions at energy {radical}(s{sub NN})=200 GeV.

  17. Thermal Aging Characteristics of Insulation Paper in Mineral Oil under Overloaded Operating Transformers

    NASA Astrophysics Data System (ADS)

    Miyagi, Katsunori; Oe, Etsuo; Yamagata, Naoki; Miyahara, Hideyuki

    A sudden capacity increase in demand during the summer peak, or in contingencies such as malfunctioning transformers, may cause overload for normal transformers. In this paper, on the basis of examples of overloaded transformer operation in distributing substations, thermal aging testing in oil was carried out under various overload patterns, such as short time overload and long time overload, but with the winding insulation paper's life loss kept constant. From the results, various characteristics such as mean degree of polymerization and productions of furfural and (CO2+CO), and their effects on the life loss of the insulation paper were obtained.

  18. Effect of overload on the fatigue crack propagation in metastable beta Ti-V alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakrabortty, S.B.; Starke, E.A. Jr.; Lee, E.W.

    1984-03-01

    The effects of overload on the fatigue crack propagation behavior of two Ti-V alloys having different deformation mechanisms were studied. The results are explained in terms of residual stress effects associated with the overload and the removal of these stresses during post-overload cycling. An additional effect occurs during multiple cycle overload when the deformation structure representative of the strain amplitude is believed to form in the overload reverse plastic zone. This structure must be rearranged during cycling at Delta Kb before the baseline FCGR is reached and the process is responsible for part of the delay period. 46 references.

  19. Pathological gait in children with Legg-Calvé-Perthes disease and proposal for gait modification to decrease the hip joint loading.

    PubMed

    Svehlík, Martin; Kraus, Tanja; Steinwender, Gerhard; Zwick, Ernst B; Linhart, Wolfgang E

    2012-06-01

    Legg-Calvé-Perthes disease (LCP) severely limits the range of hip motion and hinders a normal gait. Loading of the hip joint is a major consideration in LCP treatment. The aim of this study was to evaluate gait patterns in LCP and identify gait modifications to decrease the load on the affected hip. Forty children with unilateral LCP were divided into three groups based on the time base integral of the hip abductor moments during single stance on the affected side acquired during instrumented 3D gait analysis. X-rays of the affected hip were classified according to Herring and Catterall. Children in the "unloading" group spontaneously adopted a Duchenne-like gait with pelvis elevation, hip abduction and external rotation during single support phase. The "normal-loading" group showed pelvis elevation with a neutral hip position in the frontal plane. In the "overloading" group the pelvis dropped to the swinging limb at the beginning of stance accompanied by prolonged hip adduction. The time base integral of the hip abductor moments during single stance correlated positively with the X-ray classifications of Herring and Catterall, hip abduction angle and age. Older children preferred to walk in hip adduction during single stance, had more impaired hips and tended to overload them. The hip overloading pattern should be avoided in children with LCP. Gait training to unload the hip might become an integral component of conservative treatment in children with LCP.

  20. Energy metabolic reprogramming in the hypertrophied and early stage failing heart: a multisystems approach.

    PubMed

    Lai, Ling; Leone, Teresa C; Keller, Mark P; Martin, Ola J; Broman, Aimee T; Nigro, Jessica; Kapoor, Kapil; Koves, Timothy R; Stevens, Robert; Ilkayeva, Olga R; Vega, Rick B; Attie, Alan D; Muoio, Deborah M; Kelly, Daniel P

    2014-11-01

    An unbiased systems approach was used to define energy metabolic events that occur during the pathological cardiac remodeling en route to heart failure (HF). Combined myocardial transcriptomic and metabolomic profiling were conducted in a well-defined mouse model of HF that allows comparative assessment of compensated and decompensated (HF) forms of cardiac hypertrophy because of pressure overload. The pressure overload data sets were also compared with the myocardial transcriptome and metabolome for an adaptive (physiological) form of cardiac hypertrophy because of endurance exercise training. Comparative analysis of the data sets led to the following conclusions: (1) expression of most genes involved in mitochondrial energy transduction were not significantly changed in the hypertrophied or failing heart, with the notable exception of a progressive downregulation of transcripts encoding proteins and enzymes involved in myocyte fatty acid transport and oxidation during the development of HF; (2) tissue metabolite profiles were more broadly regulated than corresponding metabolic gene regulatory changes, suggesting significant regulation at the post-transcriptional level; (3) metabolomic signatures distinguished pathological and physiological forms of cardiac hypertrophy and served as robust markers for the onset of HF; and (4) the pattern of metabolite derangements in the failing heart suggests bottlenecks of carbon substrate flux into the Krebs cycle. Mitochondrial energy metabolic derangements that occur during the early development of pressure overload-induced HF involve both transcriptional and post-transcriptional events. A subset of the myocardial metabolomic profile robustly distinguished pathological and physiological cardiac remodeling. © 2014 American Heart Association, Inc.

  1. Contemporary Risk Factors and Outcomes of Transfusion-Associated Circulatory Overload.

    PubMed

    Roubinian, Nareg H; Hendrickson, Jeanne E; Triulzi, Darrell J; Gottschall, Jerome L; Michalkiewicz, Michael; Chowdhury, Dhuly; Kor, Daryl J; Looney, Mark R; Matthay, Michael A; Kleinman, Steven H; Brambilla, Donald; Murphy, Edward L

    2018-04-01

    Transfusion-associated circulatory overload is characterized by hydrostatic pulmonary edema following blood transfusion. Restrictive transfusion practice may affect the occurrence and severity of transfusion-associated circulatory overload in critically ill patients. We sought to examine contemporary risk factors and outcomes for transfusion-associated circulatory overload. Case-control study. Four tertiary care hospitals. We prospectively enrolled 200 patients with transfusion-associated circulatory overload identified by active surveillance and 405 controls matched by transfusion intensity. None. Among 20,845 transfused patients who received 128,263 blood components from May 2015 until July 2016, transfusion-associated circulatory overload incidence was one case per 100 transfused patients. In addition to cardiovascular comorbidities, multivariable analysis identified the following independent predictors of transfusion-associated circulatory overload: acute kidney injury, emergency surgery, pretransfusion diuretic use, and plasma transfusion-the latter especially in females. Compared with matched controls, transfusion-associated circulatory overload cases were more likely to require mechanical ventilation (71% vs 49%; p < 0.001), experienced longer intensive care and hospital lengths of stay following transfusion, and had higher mortality (21% vs 11%; p = 0.02) even after adjustment for other potentially confounding variables. Despite restrictive transfusion practice, transfusion-associated circulatory overload remains a frequent complication of transfusion and is an independent risk factor for in-hospital morbidity and mortality. In addition to cardiovascular and renal risk factors, plasma transfusion was associated with transfusion-associated circulatory overload after controlling for other covariates. Additional research is needed to examine the benefit of reduced erythrocyte or plasma exposure in patients at high risk for transfusion-associated circulatory overload.

  2. Study of biomechanical overload in urban gardeners of Barcelona: application of analytical models for risk exposure evaluation in annual working cycle.

    PubMed

    Alvarez-Casado, Enrique; Hernandez-Soto, Aquiles; Tello, Sandoval; Gual, Rosa

    2012-01-01

    Occupational musculoskeletal disorders in the upper limbs and its consequences on the impact and prevalence in the work force are subject of many investigations in almost all the production fields. However, the exposure to this kind of risk factor on urban gardeners has not been well studied so far. The kind of plant varieties used in the parks, the tools that they use, as much as the necessary actions for the maintenance of the park, have an impact on the biomechanical overload of the upper limbs. Additionally, the analysis of the exposure to the biomechanical overload on upper limbs in gardening work is a complex task, mainly because it is an activity highly variable and of annual cycle. For this reason an analytical model for risk exposure evaluation is necessary. During this research the work activity of 29 gardeners in 3 urban parks of Barcelona has been analyzed. Each park has a specific acting plan, in relation with the quantity and the typology of vegetal species, its classification and the season of the year. Work and observation and video recording sessions on-site were conducted. The video-graphic registration was done on workers without any prior musculoskeletal disorder and with a minimum labour experience of 5 years. Moreover, the analysis of saturation time, considered as the relation of the repetitive working hours in reference with the hours of effective work was done. Using the registered tasks on video, the biomechanical overload on upper limbs applying the OCRA Checklist method was analyzed. A methodological procedure to analyze the risk exposure in annual working cycle has been proposed. The results that we got allow us to get information that can help in the assignment of the tasks and in the training of staff, as well as in the recommendations of the urban landscape's design. All these aspects have the goal to decrease the risk to develop work-related musculoskeletal disorders.

  3. Mindfulness, Resilience, and Burnout Subtypes in Primary Care Physicians: The Possible Mediating Role of Positive and Negative Affect.

    PubMed

    Montero-Marin, Jesús; Tops, Mattie; Manzanera, Rick; Piva Demarzo, Marcelo M; Álvarez de Mon, Melchor; García-Campayo, Javier

    2015-01-01

    Primary care health professionals suffer from high levels of burnout. The aim of the present study was to evaluate the associations of mindfulness and resilience with the features of the burnout types (overload, lack of development, neglect) in primary care physicians, taking into account the potential mediating role of negative and positive affect. A cross-sectional design was used. Six hundred and twenty-two Spanish primary care physicians were recruited from an online survey. The Mindful Attention Awareness Scale (MAAS), Connor-Davidson Resilience Scale (CD-RISC), Positive and Negative Affect Schedule (PANAS), and Burnout Clinical Subtype Questionnaire (BCSQ-12) questionnaires were administered. Polychoric correlation matrices were calculated. The unweighted least squares (ULS) method was used for developing structural equation modeling. Mindfulness and resilience presented moderately high associations (φ = 0.46). Links were found between mindfulness and overload (γ = -0.25); resilience and neglect (γ = -0.44); mindfulness and resilience, and negative affect (γ = -0.30 and γ = -0.35, respectively); resilience and positive affect (γ = 0.70); negative affect and overload (β = 0.36); positive affect and lack of development (β = -0.16). The links between the burnout types reached high and positive values between overload and lack of development (β = 0.64), and lack of development and neglect (β = 0.52). The model was a very good fit to the data (GFI = 0.96; AGFI = 0.96; RMSR = 0.06; NFI = 0.95; RFI = 0.95; PRATIO = 0.96). Interventions addressing both mindfulness and resilience can influence burnout subtypes, but their impact may occur in different ways, potentially mediated by positive and negative affect. Both sorts of trainings could constitute possible tools against burnout; however, while mindfulness seems a suitable intervention for preventing its initial stages, resilience may be more effective for treating its advanced stages.

  4. The Effects of Different Passive Static Stretching Intensities on Recovery from Unaccustomed Eccentric Exercise - A Randomized Controlled Trial.

    PubMed

    Apostolopoulos, Nikos C; Lahart, Ian M; Plyley, Michael J; Taunton, Jack; Nevill, Alan M; Koutedakis, Yiannis; Wyon, Matthew; Metsios, George S

    2018-03-12

    Effects of passive static stretching intensity on recovery from unaccustomed eccentric exercise of right knee extensors was investigated in 30 recreationally active males randomly allocated into three groups: high-intensity (70-80% maximum perceived stretch), low-intensity (30-40% maximum perceived stretch), and control. Both stretching groups performed 3 sets of passive static stretching exercises of 60s each for hamstrings, hip flexors, and quadriceps, over 3 consecutive days, post-unaccustomed eccentric exercise. Muscle function (eccentric and isometric peak torque) and blood biomarkers (CK and CRP) were measured before (baseline) and after (24, 48, and 72h) unaccustomed eccentric exercise. Perceived muscle soreness scores were collected immediately (time 0), and after 24, 48, and 72h post-exercise. Statistical time x condition interactions observed only for eccentric peak torque (p=.008). Magnitude-based inference analyses revealed low-intensity stretching had most likely, very likely, or likely beneficial effects on perceived muscle soreness (48-72h and 0-72h) and eccentric peak torque (baseline-24h and baseline-72h), compared with high-intensity stretching. Compared with control, low-intensity stretching had very likely or likely beneficial effects on perceived muscle soreness (0-24h and 0-72h), eccentric peak torque (baseline-48h and baseline-72h), and isometric peak torque (baseline-72h). High-intensity stretching had likely beneficial effects on eccentric peak torque (baseline-48h), but likely harmful effects eccentric peak torque (baseline-24h) and CK (baseline-48h and baseline-72h), compared with control. Therefore, low-intensity stretching is likely to result in small-to-moderate beneficial effects on perceived muscle soreness and recovery of muscle function post-unaccustomed eccentric exercise, but not markers of muscle damage and inflammation, compared with high-intensity or no stretching.

  5. Does Eccentric Exercise Reduce Pain and Improve Strength in Physically Active Adults With Symptomatic Lower Extremity Tendinosis? A Systematic Review

    PubMed Central

    Wasielewski, Noah J; Kotsko, Kevin M

    2007-01-01

    Objective: To critically review evidence for the effectiveness of eccentric exercise to treat lower extremity tendinoses. Data Sources: Databases used to locate randomized controlled trials (RCTs) included PubMed (1980–2006), CINAHL (1982–2006), Web of Science (1995–2006), SPORT Discus (1980–2006), Physiotherapy Evidence Database (PEDro), and the Cochrane Collaboration Database. Key words included tendon, tendonitis, tendinosis, tendinopathy, exercise, eccentric, rehabilitation, and therapy. Study Selection: The criteria for trial selection were (1) the literature was written in English, (2) the research design was an RCT, (3) the study participants were adults with a clinical diagnosis of tendinosis, (4) the outcome measures included pain or strength, and (5) eccentric exercise was used to treat lower extremity tendinosis. Data Extraction: Specific data were abstracted from the RCTs, including eccentric exercise protocol, adjunctive treatments, concurrent physical activity, and treatment outcome. Data Synthesis: The calculated post hoc statistical power of the selected studies (n = 11) was low, and the average methodologic score was 5.3/10 based on PEDro criteria. Eccentric exercise was compared with no treatment (n = 1), concentric exercise (n = 5), an alternative eccentric exercise protocol (n = 1), stretching (n = 2), night splinting (n = 1), and physical agents (n = 1). In most trials, tendinosis-related pain was reduced with eccentric exercise over time, but only in 3 studies did eccentric exercise decrease pain relative to the control treatment. Similarly, the RCTs demonstrated that strength-related measures improved over time, but none revealed significant differences relative to the control treatment. Based on the best evidence available, it appears that eccentric exercise may reduce pain and improve strength in lower extremity tendinoses, but whether eccentric exercise is more effective than other forms of therapeutic exercise for the resolution of tendinosis symptoms remains questionable. PMID:18059998

  6. Comparison of pathway and center of gravity of the calcaneus on non-involved and involved sides according to eccentric and concentric strengthening in patients with achilles tendinopathy.

    PubMed

    Yu, Jaeho; Lee, Gyuchang

    2012-01-01

    This study compares the changes in pathway and center of gravity (COG) on the calcaneus of non-involved and involved sides according to eccentric and concentric strengthening in patients with unilateral Achilles tendinopathy. The goal was to define the biomechanical changes according to eccentric strengthening for the development of clinical guidelines. Eighteen patients with Achilles tendinopathy were recruited at the K Rehabilitation Hospital in Seoul. The subjects were instructed to perform 5 sessions of concentric strengthening. The calcaneal pathway was measured using a three-dimensional (3D) motion analyzer, and COG was measured by a force plate. Subsequently, eccentric strengthening was implemented, and identical variables were measured. Concentric and eccentric strengthening was carried out on both the involved and non-involved sides. There was no significant difference in the calcaneal pathway in patients with Achilles tendinopathy during concentric and eccentric strengthening. However, during eccentric strengthening, the calcaneal pathway significantly increased on the involved side compared to the non-involved side for all variables excluding the z-axis. COG significantly decreased on the involved side when compared to the non-involved side in patients with Achilles tendinopathy during eccentric and concentric strengthening. During concentric strengthening, all variables of the COG significantly increased on the involved side compared to the non-involved side. Compared with eccentric strengthening, concentric strengthening decreased the stability of ankle joints and increased the movement distance of the calcaneus in patients with Achilles tendinopathy. Furthermore, eccentric strengthening was verified to be an effective exercise method for prevention of Achilles tendinopathy through the reduction of forward and backward path length of foot pressure. The regular application of eccentric strengthening was found to be effective in the secondary prevention of Achilles tendinopathy in a clinical setting.

  7. Frequency modulation reveals the phasing of orbital eccentricity during Cretaceous Oceanic Anoxic Event II and the Eocene hyperthermals

    NASA Astrophysics Data System (ADS)

    Laurin, Jiří; Meyers, Stephen R.; Galeotti, Simone; Lanci, Luca

    2016-05-01

    Major advances in our understanding of paleoclimate change derive from a precise reconstruction of the periods, amplitudes and phases of the 'Milankovitch cycles' of precession, obliquity and eccentricity. While numerous quantitative approaches exist for the identification of these astronomical cycles in stratigraphic data, limitations in radioisotopic dating, and instability of the theoretical astronomical solutions beyond ∼50 Myr ago, can challenge identification of the phase relationships needed to constrain climate response and anchor floating astrochronologies. Here we demonstrate that interference patterns accompanying frequency modulation (FM) of short eccentricity provide a robust basis for identifying the phase of long eccentricity forcing in stratigraphic data. One- and two-dimensional models of sedimentary distortion of the astronomical signal are used to evaluate the veracity of the FM method, and indicate that pristine eccentricity FM can be readily distinguished in paleo-records. Apart from paleoclimatic implications, the FM approach provides a quantitative technique for testing and calibrating theoretical astronomical solutions, and for refining chronologies for the deep past. We present two case studies that use the FM approach to evaluate major carbon-cycle perturbations of the Eocene and Late Cretaceous. Interference patterns in the short-eccentricity band reveal that Eocene hyperthermals ETM2 ('Elmo'), H2, I1 and ETM3 (X; ∼52-54 Myr ago) were associated with maxima in the 405-kyr cycle of orbital eccentricity. The same eccentricity configuration favored regional anoxic episodes in the Mediterranean during the Middle and Late Cenomanian (∼94.5-97 Myr ago). The initial phase of the global Oceanic Anoxic Event II (OAE II; ∼93.9-94.5 Myr ago) coincides with maximum and falling 405-kyr eccentricity, and the recovery phase occurs during minimum and rising 405-kyr eccentricity. On a Myr scale, the event overlaps with a node in eccentricity amplitudes. Both studies underscore the importance of seasonality in pacing major climatic perturbations during greenhouse times.

  8. 30 CFR 75.518-2 - Incandescent lamps, overload and short circuit protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Incandescent lamps, overload and short circuit...-General § 75.518-2 Incandescent lamps, overload and short circuit protection. Incandescent lamps installed... or direct current feeder circuits, need not be provided with separate short circuit or overload...

  9. Muscle-Tendon Unit Properties during Eccentric Exercise Correlate with the Creatine Kinase Response

    PubMed Central

    Hicks, Kirsty M.; Onambele-Pearson, Gladys L.; Winwood, Keith; Morse, Christopher I.

    2017-01-01

    Aim: The aim of this paper was to determine whether; (1) patella tendon stiffness, (2) the magnitude of vastus lateralis fascicle lengthening, and (3) eccentric torque correlate with markers of exercise induced muscle damage. Method: Combining dynamometry and ultrasonography, patella tendon properties and vastus lateralis architectural properties were measured pre and during the first of six sets of 12 maximal voluntary eccentric knee extensions. Maximal isometric torque loss and creatine kinase activity were measured pre-damage (−48 h), 48, 96, and 168 h post-damage as markers of exercise-induced muscle damage. Results: A significant increase in creatine kinase (883 ± 667 UL) and a significant reduction in maximal isometric torque loss (21%) was reported post-eccentric contractions. Change in creatine kinase from pre to peak significantly correlated with the relative change in vastus lateralis fascicle length during eccentric contractions (r = 0.53, p = 0.02) and with eccentric torque (r = 0.50, p = 0.02). Additionally, creatine kinase tended to correlate with estimated patella tendon lengthening during eccentric contractions (p < 0.10). However, creatine kinase did not correlate with resting measures of patella tendon properties or vastus lateralis properties. Similarly, torque loss did not correlate with any patella tendon or vastus lateralis properties at rest or during eccentric contractions. Conclusion: The current study demonstrates that the extent of fascicle strain during eccentric contractions correlates with the magnitude of the creatine kinase response. Although at rest, there is no relationship between patella tendon properties and markers of muscle damage; during eccentric contractions however, the patella tendon may play a role in the creatine kinase response following EIMD. PMID:28974931

  10. EXTRACTING PLANET MASS AND ECCENTRICITY FROM TTV DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lithwick, Yoram; Xie Jiwei; Wu Yanqin

    2012-12-20

    Most planet pairs in the Kepler data that have measured transit time variations (TTVs) are near first-order mean-motion resonances. We derive analytical formulae for their TTV signals. We separate planet eccentricity into free and forced parts, where the forced part is purely due to the planets' proximity to resonance. This separation yields simple analytical formulae. The phase of the TTV depends sensitively on the presence of free eccentricity: if the free eccentricity vanishes, the TTV will be in phase with the longitude of conjunctions. This effect is easily detectable in current TTV data. The amplitude of the TTV depends onmore » planet mass and free eccentricity, and it determines planet mass uniquely only when the free eccentricity is sufficiently small. We analyze the TTV signals of six short-period Kepler pairs. We find that three of these pairs (Kepler 18, 24, 25) have a TTV phase consistent with zero. The other three (Kepler 23, 28, 32) have small TTV phases, but ones that are distinctly non-zero. We deduce that the free eccentricities of the planets are small, {approx}< 0.01, but not always vanishing. Furthermore, as a consequence of this, we deduce that the true masses of the planets are fairly accurately determined by the TTV amplitudes, within a factor of {approx}< 2. The smallness of the free eccentricities suggests that the planets have experienced substantial dissipation. This is consistent with the hypothesis that the observed pile-up of Kepler pairs near mean-motion resonances is caused by resonant repulsion. But the fact that some of the planets have non-vanishing free eccentricity suggests that after resonant repulsion occurred there was a subsequent phase in the planets' evolution when their eccentricities were modestly excited, perhaps by interplanetary interactions.« less

  11. Secular Resonance Sweeping of the Main Asteroid Belt During Planet Migration

    NASA Astrophysics Data System (ADS)

    Minton, David A.; Malhotra, Renu

    2011-05-01

    We calculate the eccentricity excitation of asteroids produced by the sweeping ν6 secular resonance during the epoch of planetesimal-driven giant planet migration in the early history of the solar system. We derive analytical expressions for the magnitude of the eccentricity change and its dependence on the sweep rate and on planetary parameters; the ν6 sweeping leads to either an increase or a decrease of eccentricity depending on an asteroid's initial orbit. Based on the slowest rate of ν6 sweeping that allows a remnant asteroid belt to survive, we derive a lower limit on Saturn's migration speed of ~0.15 AU Myr-1 during the era that the ν6 resonance swept through the inner asteroid belt (semimajor axis range 2.1-2.8 AU). This rate limit is for Saturn's current eccentricity and scales with the square of its eccentricity; the limit on Saturn's migration rate could be lower if its eccentricity were lower during its migration. Applied to an ensemble of fictitious asteroids, our calculations show that a prior single-peaked distribution of asteroid eccentricities would be transformed into a double-peaked distribution due to the sweeping of the ν6 resonance. Examination of the orbital data of main belt asteroids reveals that the proper eccentricities of the known bright (H <= 10.8) asteroids may be consistent with a double-peaked distribution. If so, our theoretical analysis then yields two possible solutions for the migration rate of Saturn and for the dynamical states of the pre-migration asteroid belt: a dynamically cold state (single-peaked eccentricity distribution with mean of ~0.05) linked with Saturn's migration speed ~4 AU Myr-1 or a dynamically hot state (single-peaked eccentricity distribution with mean of ~0.3) linked with Saturn's migration speed ~0.8 AU Myr-1.

  12. THE DISTRIBUTION OF TRANSIT DURATIONS FOR KEPLER PLANET CANDIDATES AND IMPLICATIONS FOR THEIR ORBITAL ECCENTRICITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moorhead, Althea V.; Ford, Eric B.; Morehead, Robert C.

    Doppler planet searches have discovered that giant planets follow orbits with a wide range of orbital eccentricities, revolutionizing theories of planet formation. The discovery of hundreds of exoplanet candidates by NASA's Kepler mission enables astronomers to characterize the eccentricity distribution of small exoplanets. Measuring the eccentricity of individual planets is only practical in favorable cases that are amenable to complementary techniques (e.g., radial velocities, transit timing variations, occultation photometry). Yet even in the absence of individual eccentricities, it is possible to study the distribution of eccentricities based on the distribution of transit durations (relative to the maximum transit duration formore » a circular orbit). We analyze the transit duration distribution of Kepler planet candidates. We find that for host stars with T{sub eff} > 5100 K we cannot invert this to infer the eccentricity distribution at this time due to uncertainties and possible systematics in the host star densities. With this limitation in mind, we compare the observed transit duration distribution with models to rule out extreme distributions. If we assume a Rayleigh eccentricity distribution for Kepler planet candidates, then we find best fits with a mean eccentricity of 0.1-0.25 for host stars with T{sub eff} {<=} 5100 K. We compare the transit duration distribution for different subsets of Kepler planet candidates and discuss tentative trends with planetary radius and multiplicity. High-precision spectroscopic follow-up observations for a large sample of host stars will be required to confirm which trends are real and which are the results of systematic errors in stellar radii. Finally, we identify planet candidates that must be eccentric or have a significantly underestimated stellar radius.« less

  13. An Intelligent Harmonic Synthesis Technique for Air-Gap Eccentricity Fault Diagnosis in Induction Motors

    NASA Astrophysics Data System (ADS)

    Li, De Z.; Wang, Wilson; Ismail, Fathy

    2017-11-01

    Induction motors (IMs) are commonly used in various industrial applications. To improve energy consumption efficiency, a reliable IM health condition monitoring system is very useful to detect IM fault at its earliest stage to prevent operation degradation, and malfunction of IMs. An intelligent harmonic synthesis technique is proposed in this work to conduct incipient air-gap eccentricity fault detection in IMs. The fault harmonic series are synthesized to enhance fault features. Fault related local spectra are processed to derive fault indicators for IM air-gap eccentricity diagnosis. The effectiveness of the proposed harmonic synthesis technique is examined experimentally by IMs with static air-gap eccentricity and dynamic air-gap eccentricity states under different load conditions. Test results show that the developed harmonic synthesis technique can extract fault features effectively for initial IM air-gap eccentricity fault detection.

  14. Simple method to set up low eccentricity initial data for moving puncture simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichy, Wolfgang; Marronetti, Pedro

    2011-01-15

    We introduce two new eccentricity measures to analyze numerical simulations. Unlike earlier definitions these eccentricity measures do not involve any free parameters which makes them easy to use. We show how relatively inexpensive grid setups can be used to estimate the eccentricity during the early inspiral phase. Furthermore, we compare standard puncture data and post-Newtonian data in ADMTT gauge. We find that both use different coordinates. Thus low eccentricity initial momentum parameters for a certain separation measured in ADMTT coordinates are hard to use in puncture data, because it is not known how the separation in puncture coordinates is relatedmore » to the separation in ADMTT coordinates. As a remedy we provide a simple approach which allows us to iterate the momentum parameters until our numerical simulations result in acceptably low eccentricities.« less

  15. Motor unit activity after eccentric exercise and muscle damage in humans.

    PubMed

    Semmler, J G

    2014-04-01

    It is well known that unaccustomed eccentric exercise leads to muscle damage and soreness, which can produce long-lasting effects on muscle function. How this muscle damage influences muscle activation is poorly understood. The purpose of this brief review is to highlight the effect of eccentric exercise on the activation of muscle by the nervous system, by examining the change in motor unit activity obtained from surface electromyography (EMG) and intramuscular recordings. Previous research shows that eccentric exercise produces unusual changes in the EMG–force relation that influences motor performance during isometric, shortening and lengthening muscle contractions and during fatiguing tasks. When examining the effect of eccentric exercise at the single motor unit level, there are substantial changes in recruitment thresholds, discharge rates, motor unit conduction velocities and synchronization, which can last for up to 1 week after eccentric exercise. Examining the time course of these changes suggests that the increased submaximal EMG after eccentric exercise most likely occurs through a decrease in motor unit conduction velocity and an increase in motor unit activity related to antagonist muscle coactivation and low-frequency fatigue. Furthermore, there is a commonly held view that eccentric exercise produces preferential damage to high-threshold motor units, but the evidence for this in humans is limited. Further research is needed to establish whether there is preferential damage to high-threshold motor units after eccentric exercise in humans, preferably by linking changes in motor unit activity with estimates of motor unit size using selective intramuscular recording techniques.

  16. Magnetic and quadrupolar studies of the iron storage overload in livers

    NASA Astrophysics Data System (ADS)

    Rimbert, J. N.; Dumas, F.; Richardot, G.; Kellershohn, C.

    1986-02-01

    Absorption57Fe Mössbauer spectra, performed directly on tissues of liver with iron overload due to an excessive intestinal iron absorption or induced by hypertransfusional therapeutics, have pointed out a new high spin ferric storage iron besides the ferritin and hemosiderin. Mössbauer studies, carried out on ferritin and hemosiderin fractions isolated from normal and overloaded livers, show that this compound, only present in the secondary iron overload (transfusional pathway), seems characteristic of the physiological process which induces the iron overload.

  17. Effects of high loading by eccentric triceps surae training on Achilles tendon properties in humans.

    PubMed

    Geremia, Jeam Marcel; Baroni, Bruno Manfredini; Bobbert, Maarten Frank; Bini, Rodrigo Rico; Lanferdini, Fabio Juner; Vaz, Marco Aurélio

    2018-06-01

    To document the magnitude and time course of human Achilles tendon adaptations (i.e. changes in tendon morphological and mechanical properties) during a 12-week high-load plantar flexion training program. Ultrasound was used to determine Achilles tendon cross-sectional area (CSA), length and elongation as a function of plantar flexion torque during voluntary plantar flexion. Tendon force-elongation and stress-strain relationships were determined before the start of training (pre-training) and after 4 (post-4), 8 (post-8) and 12 (post-12) training weeks. At the end of the training program, maximum isometric force had increased by 49% and tendon CSA by 17%, but tendon length, maximal tendon elongation and maximal strain were unchanged. Hence, tendon stiffness had increased by 82%, and so had Young's modulus, by 86%. Significant changes were first detected at post-4 in stiffness (51% increase) and Young's modulus (87% increase), and at post-8 in CSA (15% increase). Achilles tendon material properties already improved after 4 weeks of high-load training: stiffness increased while CSA remained unchanged. Tendon hypertrophy (increased CSA) was observed after 8 training weeks and contributed to a further increase in Achilles tendon stiffness, but tendon stiffness increases were mostly caused by adaptations in tissue properties.

  18. Accuracy of Estimating Highly Eccentric Binary Black Hole Parameters with Gravitational-wave Detections

    NASA Astrophysics Data System (ADS)

    Gondán, László; Kocsis, Bence; Raffai, Péter; Frei, Zsolt

    2018-03-01

    Mergers of stellar-mass black holes on highly eccentric orbits are among the targets for ground-based gravitational-wave detectors, including LIGO, VIRGO, and KAGRA. These sources may commonly form through gravitational-wave emission in high-velocity dispersion systems or through the secular Kozai–Lidov mechanism in triple systems. Gravitational waves carry information about the binaries’ orbital parameters and source location. Using the Fisher matrix technique, we determine the measurement accuracy with which the LIGO–VIRGO–KAGRA network could measure the source parameters of eccentric binaries using a matched filtering search of the repeated burst and eccentric inspiral phases of the waveform. We account for general relativistic precession and the evolution of the orbital eccentricity and frequency during the inspiral. We find that the signal-to-noise ratio and the parameter measurement accuracy may be significantly higher for eccentric sources than for circular sources. This increase is sensitive to the initial pericenter distance, the initial eccentricity, and the component masses. For instance, compared to a 30 {M}ȯ –30 {M}ȯ non-spinning circular binary, the chirp mass and sky-localization accuracy can improve by a factor of ∼129 (38) and ∼2 (11) for an initially highly eccentric binary assuming an initial pericenter distance of 20 M tot (10 M tot).

  19. The mechanism for efficacy of eccentric loading in Achilles tendon injury; an in vivo study in humans.

    PubMed

    Rees, J D; Lichtwark, G A; Wolman, R L; Wilson, A M

    2008-10-01

    Degenerative disorders of tendons present an enormous clinical challenge. They are extremely common, prone to recur and existing medical and surgical treatments are generally unsatisfactory. Recently eccentric, but not concentric, exercises have been shown to be highly effective in managing tendinopathy of the Achilles (and other) tendons. The mechanism for the efficacy of these exercises is unknown although it has been speculated that forces generated during eccentric loading are of a greater magnitude. Our objective was to determine the mechanism for the beneficial effect of eccentric exercise in Achilles tendinopathy. Seven healthy volunteers performed eccentric and concentric loading exercises for the Achilles tendon. Tendon force and length changes were determined using a combination of motion analysis, force plate data and real-time ultrasound. There was no significant difference in peak tendon force or tendon length change when comparing eccentric with concentric exercises. However, high-frequency oscillations in tendon force occurred in all subjects during eccentric exercises but were rare in concentric exercises (P < 0.0001). These oscillations provide a mechanism to explain the therapeutic benefit of eccentric loading in Achilles tendinopathy and parallels recent evidence from bone remodelling, where the frequency of the loading cycles is of more significance than the absolute magnitude of the force.

  20. Eccentricity effect of micropatterned surface on contact angle.

    PubMed

    Kashaninejad, Navid; Chan, Weng Kong; Nguyen, Nam-Trung

    2012-03-13

    This article experimentally shows that the wetting property of a micropatterned surface is a function of the center-to-center offset distance between successive pillars in a column, referred to here as eccentricity. Studies were conducted on square micropatterns which were fabricated on a silicon wafer with pillar eccentricity ranging from 0 to 6 μm for two different pillar diameters and spacing. Measurement results of the static as well as the dynamic contact angles on these surfaces revealed that the contact angle decreases with increasing eccentricity and increasing relative spacing between the pillars. Furthermore, quantification of the contact angle hysteresis (CAH) shows that, for the case of lower pillar spacing, CAH could increase up to 41%, whereas for the case of higher pillar spacing, this increment was up to 35%, both corresponding to the maximum eccentricity of 6 μm. In general, the maximum obtainable hydrophobicity corresponds to micropillars with zero eccentricity. As the pillar relative spacing decreases, the effect of eccentricity on hydrophobicity becomes more pronounced. The dependence of the wettability conditions of the micropatterned surface on the pillar eccentricity is attributed to the contact line deformation resulting from the changed orientation of the pillars. This finding provides additional insights in design and fabrication of efficient micropatterned surfaces with controlled wetting properties.

  1. Working memory overload: fronto-limbic interactions and effects on subsequent working memory function.

    PubMed

    Yun, Richard J; Krystal, John H; Mathalon, Daniel H

    2010-03-01

    The human working memory system provides an experimentally useful model for examination of neural overload effects on subsequent functioning of the overloaded system. This study employed functional magnetic resonance imaging in conjunction with a parametric working memory task to characterize the behavioral and neural effects of cognitive overload on subsequent cognitive performance, with particular attention to cognitive-limbic interactions. Overloading the working memory system was associated with varying degrees of subsequent decline in performance accuracy and reduced activation of brain regions central to both task performance and suppression of negative affect. The degree of performance decline was independently predicted by three separate factors operating during the overload condition: the degree of task failure, the degree of amygdala activation, and the degree of inverse coupling between the amygdala and dorsolateral prefrontal cortex. These findings suggest that vulnerability to overload effects in cognitive functioning may be mediated by reduced amygdala suppression and subsequent amygdala-prefrontal interaction.

  2. Protective effects of deferasirox and N-acetyl-L-cysteine on iron overload-injured bone marrow.

    PubMed

    Shen, J C; Zhang, Y C; Zhao, M F

    2017-10-19

    Using an iron overload mouse model, we explored the protective effect of deferasirox (DFX) and N-acetyl-L-cysteine (NAC) on injured bone marrow hematopoietic stem/progenitor cells (HSPC) induced by iron overload. Mice were intraperitoneally injected with 25 mg iron dextran every 3 days for 4 weeks to establish an iron overload (Fe) model. DFX or NAC were co-administered with iron dextran in two groups of mice (Fe+DFX and Fe+NAC), and the function of HSPCs was then examined. Iron overload markedly decreased the number of murine HSPCs in bone marrow. Subsequent colony-forming cell assays showed that iron overload also decreased the colony forming capacity of HSPCs, the effect of which could be reversed by DFX and NAC. The bone marrow hematopoiesis damage caused by iron overload could be alleviated by DFX and NAC.

  3. The attenuating effect of role overload on relationships linking self-efficacy and goal level to work performance.

    PubMed

    Brown, Steven P; Jones, Eli; Leigh, Thomas W

    2005-09-01

    The reported research examines the moderating effects of role overload on the antecedents and consequences of self-efficacy and personal goal level in a longitudinal study conducted in an industrial selling context. The results indicate that role overload moderates the antecedent effect of perceived organizational resources on self-efficacy beliefs. They also show that role overload moderates the direct effects of both self-efficacy and goal level on performance, such that these relationships are positive when role overload is low but not significant when role overload is high. Further, the results reveal a pattern of moderated mediation, in which goal level mediates the indirect effect of self-efficacy on performance when role overload is low but not when it is high. Implications for theory and managerial practice are discussed. Copyright 2005 APA, all rights reserved.

  4. Evolution of Residual-Strain Distribution through an Overload-Induced Retardation Period during Fatigue Crack Growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S. Y.; Sun, Yinan; An, Ke

    2010-01-01

    Neutron diffraction was employed to investigate the crack-growth retardation phenomenon after a single tensile overload by mapping both one-dimensional and two-dimensional residual-strain distributions around the crack tip in a series of compact-tension specimens representing various crack-growth stages through an overload-induced retardation period. The results clearly show a large compressive residual-strain field near the crack tip immediately after the overload. As the fatigue crack propagates through the overload-induced plastic zone, the compressive residual strains are gradually relaxed, and a new compressive residual-strain field is developed around the propagating crack tip, illustrating that the subsequent fatigue-induced plastic zone grows out of themore » large plastic zone caused by the overloading. The relationship between the overload-induced plastic zone and subsequent fatigue-induced plastic zone, and its influence on the residual-strain distributions in the perturbed plastic zone are discussed.« less

  5. ROS-mediated iron overload injures the hematopoiesis of bone marrow by damaging hematopoietic stem/progenitor cells in mice

    PubMed Central

    Chai, Xiao; Li, Deguan; Cao, Xiaoli; Zhang, Yuchen; Mu, Juan; Lu, Wenyi; Xiao, Xia; Li, Chengcheng; Meng, Juanxia; Chen, Jie; Li, Qing; Wang, Jishi; Meng, Aimin; Zhao, Mingfeng

    2015-01-01

    Iron overload, caused by hereditary hemochromatosis or repeated blood transfusions in some diseases, such as beta thalassemia, bone marrow failure and myelodysplastic syndrome, can significantly induce injured bone marrow (BM) function as well as parenchyma organ dysfunctions. However, the effect of iron overload and its mechanism remain elusive. In this study, we investigated the effects of iron overload on the hematopoietic stem and progenitor cells (HSPCs) from a mouse model. Our results showed that iron overload markedly decreased the ratio and clonogenic function of murine HSPCs by the elevation of reactive oxygen species (ROS). This finding is supported by the results of NAC or DFX treatment, which reduced ROS level by inhibiting NOX4 and p38MAPK and improved the long-term and multi-lineage engrafment of iron overload HSCs after transplantation. Therefore, all of these data demonstrate that iron overload injures the hematopoiesis of BM by enhancing ROS through NOX4 and p38MAPK. This will be helpful for the treatment of iron overload in patients with hematopoietic dysfunction. PMID:25970748

  6. Changes in rat muscle with compensatory overload occur in a sequential manner.

    PubMed

    Macpherson, P C; Thayer, R E; Rodgers, C; Taylor, A W; Noble, E G

    1999-01-01

    The present study was initiated to determine the time course of changes in the profile of selected skeletal muscle myofibril proteins during compensatory overload. Whole muscle isometric contractile properties were measured to assess the physiological consequences of the overload stimulus. Compensatory overload of plantaris muscle of rats was induced by surgical ablation of the synergistic soleus and gastrocnemius muscles. Myosin light chain (LC) and tropomyosin (TM) compositions of control (CP) and overloaded plantaris (OP) muscles were determined by electrophoresis and myofibrillar ATPase assays were performed to assess changes in contractile protein interactions. Within one week of overload decreases in the alpha:beta TM ratio and myofibrillar ATPase activity were observed. Following 30 days of overload, a transition in type II to type I fibres was associated with an increase in slow myosin LC1. Interestingly, after 77 days of overload, the TM subunit ratio returned to one resembling a fast twitch muscle. It is proposed that the early and transitory changes in the TM subunits of OP, as well as the rapid initial depression in maximum tetanic isometric force and myofibrillar ATPase activity may be explained as a result of muscle fibre degeneration-regeneration. We propose that alterations in protein expression induced by compensatory overload reflect both degenerative-regenerative change and increased neuromuscular activity.

  7. Role overload, pain and physical dysfunction in early rheumatoid or undifferentiated inflammatory arthritis in Canada.

    PubMed

    Mustafa, Sally Sabry; Looper, Karl Julian; Zelkowitz, Phyllis; Purden, Margaret; Baron, Murray

    2012-05-03

    Inflammatory arthritis impairs participation in societal roles. Role overload arises when the demands by a given role set exceed the resources; time and energy, to carry out the required tasks. The present study examines the association between role overload and disease outcomes in early inflammatory arthritis (EIA). Patients (n = 104) of 7.61 months mean duration of inflammatory arthritis completed self-report questionnaires on sociodemographics, disease characteristics and role overload. Pain was assessed using the Short Form McGill Pain Questionnaire (MPQ) and physical functioning was measured with the Medical Outcomes Study Short Form 36 (SF-36) physical functioning score. Role overload was measured by the Role Overload Scale. Patients indicated the number of social roles they occupied from a total of the three typical roles; marital, parental and paid work. Participants' mean age was 56 years and 70.2% were female. Role overload was not correlated to the number of social roles, however, it was positively associated with pain (p = 0.004) and negatively associated with physical functioning (p = 0.001). On multivariate analysis, role overload was negatively associated with physical functioning after controlling for the relevant sociodemographic variables. This study identifies a possible reciprocal relationship between role overload and physical functioning in patients with EIA.

  8. Clinical consequences of iron overload in patients with myelodysplastic syndromes: the case for iron chelation therapy.

    PubMed

    Shammo, Jamile M; Komrokji, Rami S

    2018-06-14

    Patients with myelodysplastic syndromes (MDS) are at increased risk of iron overload due to ineffective erythropoiesis and chronic transfusion therapy. The clinical consequences of iron overload include cardiac and/or hepatic failure, endocrinopathies, and infection risk. Areas covered: Iron chelation therapy (ICT) can help remove excess iron and ultimately reduce the clinical consequences of iron overload. The authors reviewed recent (last five years) English-language articles from PubMed on the topic of iron overload-related complications and the use of ICT (primarily deferasirox) to improve outcomes in patients with MDS. Expert Commentary: While a benefit of ICT has been more firmly established in other transfusion-dependent conditions such as thalassemia, its role in reducing iron overload in MDS remains controversial due to the lack of prospective controlled data demonstrating a survival benefit. Orally administered chelation agents (e.g., deferasirox), are now available, and observational and/or retrospective data support a survival benefit of using ICT in MDS. The placebo-controlled TELESTO trial (NCT00940602) is currently examining the use of deferasirox in MDS patients with iron overload, and is evaluating specifically whether use of ICT to alleviate iron overload can also reduce iron overload-related complications in MDS and improve survival.

  9. Orbital dynamics of multi-planet systems with eccentricity diversity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kane, Stephen R.; Raymond, Sean N., E-mail: skane@sfsu.edu

    2014-04-01

    Since exoplanets were detected using the radial velocity method, they have revealed a diverse distribution of orbital configurations. Among these are planets in highly eccentric orbits (e > 0.5). Most of these systems consist of a single planet but several have been found to also contain a longer period planet in a near-circular orbit. Here we use the latest Keplerian orbital solutions to investigate four known systems which exhibit this extreme eccentricity diversity; HD 37605, HD 74156, HD 163607, and HD 168443. We place limits on the presence of additional planets in these systems based on the radial velocity residuals.more » We show that the two known planets in each system exchange angular momentum through secular oscillations of their eccentricities. We calculate the amplitude and timescale for these eccentricity oscillations and associated periastron precession. We further demonstrate the effect of mutual orbital inclinations on the amplitude of high-frequency eccentricity oscillations. Finally, we discuss the implications of these oscillations in the context of possible origin scenarios for unequal eccentricities.« less

  10. Inhibition of Return in the Visual Field

    PubMed Central

    Bao, Yan; Lei, Quan; Fang, Yuan; Tong, Yu; Schill, Kerstin; Pöppel, Ernst; Strasburger, Hans

    2013-01-01

    Inhibition of return (IOR) as an indicator of attentional control is characterized by an eccentricity effect, that is, the more peripheral visual field shows a stronger IOR magnitude relative to the perifoveal visual field. However, it could be argued that this eccentricity effect may not be an attention effect, but due to cortical magnification. To test this possibility, we examined this eccentricity effect in two conditions: the same-size condition in which identical stimuli were used at different eccentricities, and the size-scaling condition in which stimuli were scaled according to the cortical magnification factor (M-scaling), thus stimuli being larger at the more peripheral locations. The results showed that the magnitude of IOR was significantly stronger in the peripheral relative to the perifoveal visual field, and this eccentricity effect was independent of the manipulation of stimulus size (same-size or size-scaling). These results suggest a robust eccentricity effect of IOR which cannot be eliminated by M-scaling. Underlying neural mechanisms of the eccentricity effect of IOR are discussed with respect to both cortical and subcortical structures mediating attentional control in the perifoveal and peripheral visual field. PMID:23820946

  11. Dance as an eccentric form of exercise: practical implications.

    PubMed

    Paschalis, Vassilis; Nikolaidis, Michalis G; Jamurtas, Athanasios Z; Owolabi, Emmanuel O; Kitas, George D; Wyon, Matthew A; Koutedakis, Yiannis

    2012-06-01

    The eccentric action is an integral part of the stretch-shortening (or eccentric-concentric) cycle of muscle movement, especially when repositioning of the centre of gravity is required. Jumps and landing tasks are examples of this cycle and are incorporated in most dance activities. However, unaccustomed eccentric muscle action can cause muscle damage, which is characterised by the development of delayed-onset muscle soreness and swelling, decline of pain-free range of motion, as well as sustained loss of muscle force and range of motion. Furthermore, unaccustomed eccentric muscle action can induce disturbances in movement economy and energy expenditure, so dancers spend more energy during a routine than usual. Such negative effects are gradually reduced and eventually disappear due to physiological adaptations to this form of muscular activity. Given that eccentric exercises also appear to induce greater muscle performance improvements than other forms of muscle conditioning, it is advised that they should be integrated into dancers' weekly schedules. The purpose of the present review is to examine the possible effects of the eccentric component of dance on the performance and health status of dancers.

  12. Does effectiveness of exercise therapy and mobilisation techniques offer guidance for the treatment of lateral and medial epicondylitis? A systematic review.

    PubMed

    Hoogvliet, Peter; Randsdorp, Manon S; Dingemanse, Rudi; Koes, Bart W; Huisstede, Bionka M A

    2013-11-01

    Owing to the change in paradigm of the histological nature of epicondylitis, therapeutic modalities as exercises such as stretching and eccentric loading and mobilisation are considered for its treatment. To assess the evidence for effectiveness of exercise therapy and mobilisation techniques for both medial and lateral epicondylitis. Searches in PubMed, Embase, Cinahl and Pedro were performed to identify relevant randomised clinical trials (RCTs) and systematic reviews. Two reviewers independently extracted data and assessed the methodological quality. One review and 12 RCTs, all studying lateral epicondylitis, were included. Different therapeutic regimes were evaluated: stretching, strengthening, concentric/eccentric exercises and manipulation of the cervical or thoracic spine, elbow or wrist. No statistical pooling of the results could be performed owing to heterogeneity of the included studies. Therefore, a best-evidence synthesis was used to summarise the results. Moderate evidence for the short-term effectiveness was found in favour of stretching plus strengthening exercises versus ultrasound plus friction massage. Moderate evidence for short-term and mid-term effectiveness was found for the manipulation of the cervical and thoracic spine as add-on therapy to concentric and eccentric stretching plus mobilisation of wrist and forearm. For all other interventions only limited, conflicting or no evidence was found. Although not yet conclusive, these results support the belief that strength training decreases symptoms in tendinosis. The short-term analgesic effect of manipulation techniques may allow more vigorous stretching and strengthening exercises resulting in a better and faster recovery process of the affected tendon in lateral epicondylitis.

  13. Shoulder Rotator Muscle Dynamometry Characteristics: Side Asymmetry and Correlations with Ball-Throwing Speed in Adolescent Handball Players

    PubMed Central

    Pontaga, Inese; Zidens, Janis

    2014-01-01

    The aim of the investigation was to: 1) compare shoulder external/internal rotator muscles’ peak torques and average power values and their ratios in the dominant and non-dominant arm; 2) determine correlations between shoulder rotator muscles’ peak torques, average power and ball-throwing speed in handball players. Fourteen 14 to 15-year-old male athletes with injury-free shoulders participated in the study (body height: 176 ± 7 cm, body mass 63 ± 9 kg). The tests were carried out by an isokinetic dynamometer system in the shoulder internal and external rotation movements at angular velocities of 60°/s, 90°/s and 240°/s during concentric contractions. The eccentric external– concentric internal rotator muscle contractions were performed at the velocity of 90°/s. The player threw a ball at maximal speed keeping both feet on the floor. The speed was recorded with reflected light rays. Training in handball does not cause significant side asymmetry in shoulder external/internal rotator muscle peak torques or the average power ratio. Positive correlations between isokinetic characteristics of the shoulder internal and external rotator muscles and ball-throwing speed were determined. The power produced by internal rotator muscles during concentric contractions after eccentric contractions of external rotator muscles was significantly greater in the dominant than in the non-dominant arm. Thus, it may be concluded that the shoulder eccentric external/concentric internal rotator muscle power ratio is significantly greater than this ratio in the concentric contractions of these muscles. PMID:25414738

  14. Electromyographic analysis of three different types of lat pull-down.

    PubMed

    Sperandei, Sandro; Barros, Marcos A P; Silveira-Júnior, Paulo C S; Oliveira, Carlos G

    2009-10-01

    The purpose of this work was to evaluate the activity of the primary motor muscles during the performance of 3 lat pull-down techniques through surface electromyography (EMG). Twenty-four trained adult men performed 5 repetitions of behind-the-neck (BNL), front-of-the-neck (FNL), and V-bar exercises at 80% of 1 repetition maximum. For each technique, the root mean square from the EMG signal was registered from the pectoralis major (PM), latissimus dorsi (LD), posterior deltoid (PD), and biceps brachii (BB) and further normalized in respect to that which presented the highest value of all the techniques. A series of two-way repeated measures analysis of variance was used to compare the results, with Tukey-Kramer as the post hoc test and alpha = 0.05. During the concentric phase, PM value showed the FNL to be significantly higher than V-bar/BNL and V-bar higher than BNL. During the eccentric phase, FNL/V-bar was higher than BNL. For LD, there was no difference between techniques. PD presented BNL higher than FNL/V-bar and FNL higher than V-bar in the concentric phase and BNL higher than V-bar in the eccentric phase. BB exhibited BNL higher than V-bar/FNL and V-bar higher than FNL in both concentric and eccentric phases. Considering the main objectives of lat pull-down, we concluded that FNL is the better choice, whereas BNL is not a good lat pull-down technique and should be avoided. V-bar could be used as an alternative.

  15. Ginger (Zingiber officinale) as an Analgesic and Ergogenic Aid in Sport: A Systemic Review.

    PubMed

    Wilson, Patrick B

    2015-10-01

    Ginger is a popular spice used to treat a variety of maladies, including pain. Nonsteroidal anti-inflammatory drugs (NSAIDs) are frequently used by athletes to manage and prevent pain; unfortunately, NSAIDs contribute to substantial adverse effects, including gastrointestinal (GI) dysfunction, exercise-induced bronchoconstriction, hyponatremia, impairment of connective tissue remodeling, endurance competition withdrawal, and cardiovascular disease. Ginger, however, may act as a promoter of GI integrity and as a bronchodilator. Given these potentially positive effects of ginger, a systematic review of randomized trials was performed to assess the evidence for ginger as an analgesic and ergogenic aid for exercise training and sport. Among 7 studies examining ginger as an analgesic, the evidence indicates that roughly 2 g·d(-1) of ginger may modestly reduce muscle pain stemming from eccentric resistance exercise and prolonged running, particularly if taken for a minimum of 5 days. Among 9 studies examining ginger as an ergogenic aid, no discernable effects on body composition, metabolic rate, oxygen consumption, isometric force generation, or perceived exertion were observed. Limited data suggest that ginger may accelerate recovery of maximal strength after eccentric resistance exercise and reduce the inflammatory response to cardiorespiratory exercise. Major limitations to the research include the use of untrained individuals, insufficient reporting on adverse events, and no direct comparisons with NSAID ingestion. While ginger taken over 1-2 weeks may reduce pain from eccentric resistance exercise and prolonged running, more research is needed to evaluate its safety and efficacy as an analgesic for a wide range of athletic endeavors.

  16. Fatigue History and in-situ Loading Studies of the overload Effect Using High Resolution X-ray Strain Profiling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croft,M.; Jisrawi, N.; Zhong, Z.

    High-energy synchrotron X-ray diffraction experiments are used to perform local crack plane strain profiling of 4140 steel compact tension specimens fatigued at constant amplitude, subjected to a single overload cycle, then fatigued some more at constant amplitude. X-ray strain profiling results on a series of samples employing in-situ load cycling are correlated with the crack growth rate (da/dN) providing insight into the da/dN retardation known as the 'overload effect'. Immediately after the overload, the strain under maximum load is greatly reduced but the range of strain, between zero and maximum load, remains unchanged compared to the pre-overload values. At themore » point of maximum retardation, it is the strain range that is greatly reduced while the maximum-load strain has begun to recover to the pre-overload value. For a sample that has recovered to approximately half of the original da/dN value following the overload, the strain at maximum load is fully recovered while the strain range, though partially recovered, is still substantially reduced. The dominance of the strain range in the overload effect is clearly indicated. Subject to some assumptions, strong quantitative support for a crack growth rate driving force of the suggested form [(K{sub max}){sup -p}({Delta}K){sup p}]{sup {gamma}} is found. A dramatic nonlinear load dependence in the spatial distribution of the strain at maximum retardation is also demonstrated: at low load the response is dominantly at the overload position; whereas at high loads it is dominantly at the crack tip position. This transfer of load response away from the crack tip to the overload position appears fundamental to the overload effect for high R-ratio fatigue as studied here.« less

  17. Enzymatically modified isoquercitrin supplementation intensifies plantaris muscle fiber hypertrophy in functionally overloaded mice.

    PubMed

    Kohara, Akiko; Machida, Masanao; Setoguchi, Yuko; Ito, Ryouichi; Sugitani, Masanori; Maruki-Uchida, Hiroko; Inagaki, Hiroyuki; Ito, Tatsuhiko; Omi, Naomi; Takemasa, Tohru

    2017-01-01

    Enzymatically modified isoquercitrin (EMIQ) is produced from rutin using enzymatic hydrolysis followed by treatment with glycosyltransferase in the presence of dextrin to add glucose residues. EMIQ is absorbed in the same way as quercetin, a powerful antioxidant reported to prevent disused muscle atrophy by targeting mitochondria and to have ergogenic effects. The present study investigated the effect of EMIQ on skeletal muscle hypertrophy induced by functional overload. In Study 1, 6-week-old ICR male mice were divided into 4 groups: sham-operated control, sham-operated EMIQ, overload-operated control, and overload-operated EMIQ groups. In Study 2, mice were divided into 3 groups: overload-operated whey control, overload-operated whey/EMIQ (low dose), and overload-operated whey/EMIQ (high dose) groups. The functional overload of the plantaris muscle was induced by ablation of the synergist (gastrocnemius and soleus) muscles. EMIQ and whey protein were administered with food. Three weeks after the operation, the cross-sectional area and minimal fiber diameter of the plantaris muscle fibers were measured. In Study 1, functional overload increased the cross-sectional area and minimal fiber diameter of the plantaris muscle. EMIQ supplementation significantly increased the cross-sectional area and minimal fiber diameter of the plantaris muscle in both the sham-operated and overload-operated groups. In Study 2, EMIQ supplementation combined with whey protein administration significantly increased the cross-sectional area and minimal fiber diameter of the plantaris muscle. EMIQ, even when administered as an addition to whey protein supplementation, significantly intensified the fiber hypertrophy of the plantaris muscle in functionally overloaded mice. EMIQ supplementation also induced fiber hypertrophy of the plantaris in sham-operated mice.

  18. Volume Overload: Prevalence, Risk Factors, and Functional Outcome in Survivors of Septic Shock

    PubMed Central

    Carlbom, David; Caldwell, Ellen; Himmelfarb, Jonathan; Hough, Catherine L.

    2015-01-01

    Rationale: Survivors of septic shock have impaired functional status. Volume overload is associated with poor outcomes in patients with septic shock, but the impact of volume overload on functional outcome and discharge destination of survivors is unknown. Objectives: This study describes patterns of fluid management both during and after septic shock. We examined factors associated with volume overload upon intensive care unit (ICU) discharge. We then examined associations between volume overload upon ICU discharge, mobility limitation, and discharge to a healthcare facility in septic shock survivors, with the hypothesis that volume overload is associated with increased odds of these outcomes. Methods: We retrospectively reviewed the medical records of 247 patients admitted with septic shock to an academic county hospital between June 2009 and April 2012 who survived to ICU discharge. We defined volume overload as a fluid balance expected to increase the subject’s admission weight by 10%. Statistical methods included unadjusted analyses and multivariable logistic regression. Measurements and Main Results: Eighty-six percent of patients had a positive fluid balance, and 35% had volume overload upon ICU discharge. Factors associated with volume overload in unadjusted analyses included more severe illness, cirrhosis, blood transfusion during shock, and higher volumes of fluid administration both during and after shock. Blood transfusion during shock was independently associated with increased odds of volume overload (odds ratio [OR], 2.65; 95% confidence interval [CI], 1.33–5.27; P = 0.01) after adjusting for preexisting conditions and severity of illness. Only 42% of patients received at least one dose of a diuretic during their hospitalization. Volume overload upon ICU discharge was independently associated with inability to ambulate upon hospital discharge (OR, 2.29; 95% CI, 1.24–4.25; P = 0.01) and, in patients admitted from home, upon discharge to a healthcare facility (OR, 2.34; 95% CI, 1.1–4.98; P = 0.03). Conclusions: Volume overload is independently associated with impaired mobility and discharge to a healthcare facility in survivors of septic shock. Prevention and treatment of volume overload in patients with septic shock warrants further investigation. PMID:26394090

  19. Constraints on the Dynamical Environments of Supermassive Black-Hole Binaries Using Pulsar-Timing Arrays.

    PubMed

    Taylor, Stephen R; Simon, Joseph; Sampson, Laura

    2017-05-05

    We introduce a technique for gravitational-wave analysis, where Gaussian process regression is used to emulate the strain spectrum of a stochastic background by training on population-synthesis simulations. This leads to direct Bayesian inference on astrophysical parameters. For pulsar timing arrays specifically, we interpolate over the parameter space of supermassive black-hole binary environments, including three-body stellar scattering, and evolving orbital eccentricity. We illustrate our approach on mock data, and assess the prospects for inference with data similar to the NANOGrav 9-yr data release.

  20. Eccentric correction for off-axis vision in central visual field loss.

    PubMed

    Gustafsson, Jörgen; Unsbo, Peter

    2003-07-01

    Subjects with absolute central visual field loss use eccentric fixation and magnifying devices to utilize their residual vision. This preliminary study investigated the importance of an accurate eccentric correction of off-axis refractive errors to optimize the residual visual function for these subjects. Photorefraction using the PowerRefractor instrument was used to evaluate the ametropia in eccentric fixation angles. Methods were adapted for measuring visual acuity outside the macula using filtered optotypes from high-pass resolution perimetry. Optical corrections were implemented, and the visual function of subjects with central visual field loss was measured with and without eccentric correction. Of the seven cases reported, five experienced an improvement in visual function in their preferred retinal locus with eccentric refraction. The main result was that optical correction for better image quality on the peripheral retina is important for the vision of subjects with central visual field loss, objectively as well as subjectively.

  1. Biomechanical and structural parameters of tendons in rats subjected to swimming exercise.

    PubMed

    Bezerra, M A; Santos de Lira, K D; Coutinho, M P G; de Mesquita, G N; Novaes, K A; da Silva, R T B; de Brito Nascimento, A K; Inácio Teixeira, M F H B; Moraes, S R A

    2013-12-01

    The aim of this study was to evaluate the effect of swimming exercise, without overloading, on the biomechanical parameters of the calcaneal tendon of rats. 27 male Wistar rats (70 days) were distributed randomly into 2 groups, Control Group (CG; n=15) with restricted movements inside the cage and Swimming Group (SG; n=12), subjected to exercise training in a tank with a water temperature of 30±1°C, for 1 h/day, 5 days/week for 8 weeks. All animals were kept in a reversed light/dark cycle of 12 h with access to food and water ad libitum. After that, they were anesthetized and had their calcaneus tendons collected from their left rear paws. The tendon was submitted to a mechanical test on a conventional test machine. From the stress vs. strain curve, the biomechanical data were analyzed. For the statistical analysis, the Student-T test was used (p<0.05). Of the variables examined, the maximum tension (p=0.009), maximum force (p=0.03), energy of deformation/tendon cross sectional area (p=0.017) and elastic modulus of the tendon (p=0.013) showed positive outcomes in SG. There was no difference in the other parameters. The results indicate that the swimming exercise training, without overloading, was an important stimulus for improving the biomechanical parameters and structural properties of the calcaneal tendon. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Factory overload testing of a large power transformer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas, D.H.; Lawrence, C.O.; Templeton, J.B.

    1985-09-01

    A factory overload test of up to 150% of the nameplate rating was run on a 224 MVA autotransformer. The results of this test were of great value and were used in identifying transformer overload limitations, in evaluating loading guide oil and winding equations, exponents and time constants, and in helping to perfect a factory overload test procedure.

  3. Exoplanet orbital eccentricity: multiplicity relation and the Solar System.

    PubMed

    Limbach, Mary Anne; Turner, Edwin L

    2015-01-06

    The known population of exoplanets exhibits a much wider range of orbital eccentricities than Solar System planets and has a much higher average eccentricity. These facts have been widely interpreted to indicate that the Solar System is an atypical member of the overall population of planetary systems. We report here on a strong anticorrelation of orbital eccentricity with multiplicity (number of planets in the system) among cataloged radial velocity (RV) systems. The mean, median, and rough distribution of eccentricities of Solar System planets fits an extrapolation of this anticorrelation to the eight-planet case rather precisely despite the fact that no more than two Solar System planets would be detectable with RV data comparable to that in the exoplanet sample. Moreover, even if regarded as a single or double planetary system, the Solar System lies in a reasonably heavily populated region of eccentricity-multiplicity space. Thus, the Solar System is not anomalous among known exoplanetary systems with respect to eccentricities when its multiplicity is taken into account. Specifically, as the multiplicity of a system increases, the eccentricity decreases roughly as a power law of index -1.20. A simple and plausible but ad hoc and model-dependent interpretation of this relationship implies that ∼ 80% of the one-planet and 25% of the two-planet systems in our sample have additional, as yet undiscovered, members but that systems of higher observed multiplicity are largely complete (i.e., relatively rarely contain additional undiscovered planets). If low eccentricities indeed favor high multiplicities, habitability may be more common in systems with a larger number of planets.

  4. Different cortical activation patterns during voluntary eccentric and concentric muscle contractions: an fMRI study.

    PubMed

    Kwon, Yong-Hyun; Park, Ji-Won

    2011-01-01

    Concentric and eccentric muscle contractions have distinct differences in their neuromuscular and neurophysiologic characteristics. However, although many evidences regarding the features of these types of muscle contraction have emerged, there have been few neuroimaging studies to compare the two types of contractions. Therefore, we investigated whether cortical activity associated with eccentric contraction of the wrist extensors differed from that of concentric contraction, using functional MRI (fMRI). Fifteen right-handed healthy subjects were enrolled in this study. During 4 repeating blocks of eccentric and concentric muscle contraction paradigms, the brain was scanned with fMRI. The differences in the BOLD signal intensities during the performance of eccentric and concentric exercise were compared in the predetermined regions of interest. Our findings revealed that many cortical areas associated with motor performance were activated, including the primary motor area, the inferior parietal lobe, the pre-supplementary area (pre-SMA), the anterior cingulate cortex, the prefrontal area, and the cerebellum. In addition, lower signal intensities were seen in the right primary motor cortex and right cerebellum during eccentric contractions compared with concentric contractions, whereas higher signal intensities were detected in other cortical areas during eccentric contractions. In the study, we demonstrated that eccentric and concentric muscle contractions induced quite different patterns of cortical activity respectively. These findings might be attributed to different strategy of neuro-motor processing and a higher level of cognitive demand for the performance of motor task with a higher degree of difficulty such as that required during eccentric contractions in comparison of concentric contractions.

  5. Frozen orbit realization using LQR analogy

    NASA Astrophysics Data System (ADS)

    Nagarajan, N.; Rayan, H. Reno

    In the case of remote sensing orbits, the Frozen Orbit concept minimizes altitude variations over a given region using passive means. This is achieved by establishing the mean eccentricity vector at the orbital poles i.e., by fixing the mean argument of perigee at 90 deg with an appropriate eccentricity to balance the perturbations due to zonal harmonics J2 and J3 of the Earth's potential. Eccentricity vector is a vector whose magnitude is the eccentricity and direction is the argument of perigee. The launcher dispersions result in an eccentricity vector which is away from the frozen orbit values. The objective is then to formulate an orbit maneuver strategy to optimize the fuel required to achieve the frozen orbit in the presence of visibility and impulse constraints. It is shown that the motion of the eccentricity vector around the frozen perigee can be approximated as a circle. Combining the circular motion of the eccentricity vector around the frozen point and the maneuver equation, the following discrete equation is obtained. X(k+1) = AX(k) + Bu(k), where X is the state (i.e. eccentricity vector components), A the state transition matrix, u the scalar control force (i.e. dV in this case) and B the control matrix which transforms dV into eccentricity vector change. Based on this, it is shown that the problem of optimizing the fuel can be treated as a Linear Quadratic Regulator (LQR) problem in which the maneuver can be solved by using control system design tools like MATLAB by deriving an analogy LQR design.

  6. Changes in passive tension of muscle in humans and animals after eccentric exercise

    PubMed Central

    Whitehead, N P; Weerakkody, N S; Gregory, J E; Morgan, D L; Proske, U

    2001-01-01

    This is a report of experiments on ankle extensor muscles of human subjects and a parallel series on the medial gastrocnemius of the anaesthetised cat, investigating the origin of the rise in passive tension after a period of eccentric exercise. Subjects exercised their triceps surae of one leg eccentrically by walking backwards on an inclined, forward-moving treadmill. Concentric exercise required walking forwards on a backwards-moving treadmill. For all subjects the other leg acted as a control. Immediately after both eccentric and concentric exercise there was a significant drop in peak active torque, but only after eccentric exercise was this accompanied by a shift in optimum angle for torque generation and a rise in passive torque. In the eccentrically exercised group some swelling and soreness developed but not until 24 h post-exercise. In the animal experiments the contracting muscle was stretched by 6 mm at 50 mm s−1 over a length range symmetrical about the optimum length for tension generation. Measurements of passive tension were made before and after the eccentric contractions, using small stretches to a range of muscle lengths, or with large stretches covering the full physiological range. After 150 eccentric contractions, passive tension was significantly elevated over most of the range of lengths. Measurements of work absorption during stretch-release cycles showed significant increases after the contractions. It is suggested that the rise in passive tension in both human and animal muscles after eccentric contractions is the result of development of injury contractures in damaged muscle fibres. PMID:11389215

  7. NEPTUNE'S WILD DAYS: CONSTRAINTS FROM THE ECCENTRICITY DISTRIBUTION OF THE CLASSICAL KUIPER BELT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawson, Rebekah I.; Murray-Clay, Ruth, E-mail: rdawson@cfa.harvard.edu

    2012-05-01

    Neptune's dynamical history shaped the current orbits of Kuiper Belt objects (KBOs), leaving clues to the planet's orbital evolution. In the 'classical' region, a population of dynamically 'hot' high-inclination KBOs overlies a flat 'cold' population with distinct physical properties. Simulations of qualitatively different histories for Neptune, including smooth migration on a circular orbit or scattering by other planets to a high eccentricity, have not simultaneously produced both populations. We explore a general Kuiper Belt assembly model that forms hot classical KBOs interior to Neptune and delivers them to the classical region, where the cold population forms in situ. First, wemore » present evidence that the cold population is confined to eccentricities well below the limit dictated by long-term survival. Therefore, Neptune must deliver hot KBOs into the long-term survival region without excessively exciting the eccentricities of the cold population. Imposing this constraint, we explore the parameter space of Neptune's eccentricity and eccentricity damping, migration, and apsidal precession. We rule out much of parameter space, except where Neptune is scattered to a moderately eccentric orbit (e > 0.15) and subsequently migrates a distance {Delta}a{sub N} = 1-6 AU. Neptune's moderate eccentricity must either damp quickly or be accompanied by fast apsidal precession. We find that Neptune's high eccentricity alone does not generate a chaotic sea in the classical region. Chaos can result from Neptune's interactions with Uranus, exciting the cold KBOs and placing additional constraints. Finally, we discuss how to interpret our constraints in the context of the full, complex dynamical history of the solar system.« less

  8. Nutrition and training adaptations in aquatic sports.

    PubMed

    Mujika, Iñigo; Stellingwerff, Trent; Tipton, Kevin

    2014-08-01

    The adaptive response to training is determined by the combination of the intensity, volume, and frequency of the training. Various periodized approaches to training are used by aquatic sports athletes to achieve performance peaks. Nutritional support to optimize training adaptations should take periodization into consideration; that is, nutrition should also be periodized to optimally support training and facilitate adaptations. Moreover, other aspects of training (e.g., overload training, tapering and detraining) should be considered when making nutrition recommendations for aquatic athletes. There is evidence, albeit not in aquatic sports, that restricting carbohydrate availability may enhance some training adaptations. More research needs to be performed, particularly in aquatic sports, to determine the optimal strategy for periodizing carbohydrate intake to optimize adaptations. Protein nutrition is an important consideration for optimal training adaptations. Factors other than the total amount of daily protein intake should be considered. For instance, the type of protein, timing and pattern of protein intake and the amount of protein ingested at any one time influence the metabolic response to protein ingestion. Body mass and composition are important for aquatic sport athletes in relation to power-to-mass and for aesthetic reasons. Protein may be particularly important for athletes desiring to maintain muscle while losing body mass. Nutritional supplements, such as b-alanine and sodium bicarbonate, may have particular usefulness for aquatic athletes' training adaptation.

  9. Behaviour of square FRP-Confined High-Strength Concrete Columns under Eccentric Compression

    NASA Astrophysics Data System (ADS)

    Fallah Pour, Ali; Gholampour, Aliakbar; Zheng, Junai; Ozbakkaloglu, Togay

    2018-01-01

    This paper presents the results of an experimental study on the effect of load eccentricity on the axial compressive behaviour of carbon fibre-reinforced polymer (CFRP)- confined high-strength concrete (HSC) columns with a square cross-section. The axial loading was applied to the specimens at six different load eccentricities ranging from zero to 50 mm. The results show that the load eccentricity significantly influences the axial load-displacement and axial stress-strain behaviour of FRP-confined HSC. Increasing the load eccentricity leads to an increase in the ultimate axial strain but a decrease in the ultimate axial stress and second branch slope of the axial stress-strain curve.

  10. On the coplanar eccentric non-restricted co-orbital dynamics

    NASA Astrophysics Data System (ADS)

    Leleu, A.; Robutel, P.; Correia, A. C. M.

    2018-03-01

    We study the phase space of eccentric coplanar co-orbitals in the non-restricted case. Departing from the quasi-circular case, we describe the evolution of the phase space as the eccentricities increase. We find that over a given value of the eccentricity, around 0.5 for equal mass co-orbitals, important topological changes occur in the phase space. These changes lead to the emergence of new co-orbital configurations and open a continuous path between the previously distinct trojan domains near the L_4 and L_5 eccentric Lagrangian equilibria. These topological changes are shown to be linked with the reconnection of families of quasi-periodic orbits of non-maximal dimension.

  11. Interval training attenuates the metabolic disturbances in type 1 diabetes rat model.

    PubMed

    Rocha, Ricelli Endrigo Ruppel; Coelho, Isabela; Pequito, Daniela Cristina T; Yamagushi, Adriana; Borghetti, Gina; Yamazaki, Ricardo Key; Brito, Gleisson Alisson Pereira de; Machado, Juliano; Kryczyk, Marcelo; Nunes, Everson Araújo; Venera, Graciela; Fernandes, Luiz Claudio

    2013-11-01

    This study investigated the effect of interval training on blood biochemistry and immune parameters in type 1 diabetic rats. Male Wistar rats were divided into four groups: sedentary (SE, n = 15), interval training (IT, n = 17), diabetic sedentary (DSE, n = 17), diabetic interval training (DIT, n = 17). Diabetes was induced by i.v. injection of streptozotocin (60 mg/kg). Swimming Interval Training consisted of 30-s exercise with 30-s rest, for 30 minutes, during 6 weeks, four times a week, with an overload of 15% of body mass. Plasma glucose, lactate, triacylglycerol and total cholesterol concentrations, phagocytic capacity, cationic vesicle content, and superoxide anion and hydrogen peroxide production by blood neutrophils and peritoneal macrophages were evaluated. Proliferation of mesenteric lymphocytes was also estimated. Interval training resulted in attenuation of the resting hyperglycemic state and decreased blood lipids in the DIT group. Diabetes increased the functionality of blood neutrophils and peritoneal macrophages in the DSE group. Interval training increased all functionality parameters of peritoneal macrophages in the IT group. Interval training also led to a twofold increase in the proliferation of mesenteric lymphocytes after 6 weeks of exercise in the DIT group. Low-volume high-intensity physical exercise attenuates hyperglycemia and dislipidemia induced by type 1 diabetes, and induces changes in the functionality of innate and acquired immunity.

  12. An analysis of the expected eccentricity perturbations for the second Radio Astronomy Explorer (RAE B)

    NASA Technical Reports Server (NTRS)

    Murphy, J. P.

    1972-01-01

    Analytical prediction of expected eccentricity perturbations for the RAE 2 lunar orbit shows that the eccentricity will grow linearly in time. Parametric inclination studies and analysis of perturbation equations establish a critical retrograde inclination of 116.565 at which the positive perturbation slope vanishes for a circular orbit about 1100 m above the lunar surface with an eccentricity constraint of less than 0.005 during a period of about one year.

  13. Shedding light on the eccentricity valley: Gap heating and eccentricity excitation of giant planets in protoplanetary disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsang, David; Cumming, Andrew; Turner, Neal J., E-mail: dtsang@physics.mcgill.ca

    2014-02-20

    We show that the first order (non-co-orbital) corotation torques are significantly modified by entropy gradients in a non-barotropic protoplanetary disk. Such non-barotropic torques can dramatically alter the balance that, for barotropic cases, results in the net eccentricity damping for giant gap-clearing planets embedded in the disk. We demonstrate that stellar illumination can heat the gap enough for the planet's orbital eccentricity to instead be excited. We also discuss the 'Eccentricity Valley' noted in the known exoplanet population, where low-metallicity stars have a deficit of eccentric planets between ∼0.1 and ∼1 AU compared to metal-rich systems. We show that this featuremore » in the planet distribution may be due to the self-shadowing of the disk by a rim located at the dust sublimation radius ∼0.1 AU, which is known to exist for several T Tauri systems. In the shadowed region between ∼0.1 and ∼1 AU, lack of gap insolation allows disk interactions to damp eccentricity. Outside such shadowed regions stellar illumination can heat the planetary gaps and drive eccentricity growth for giant planets. We suggest that the self-shadowing does not arise at higher metallicity due to the increased optical depth of the gas interior to the dust sublimation radius.« less

  14. Numerical black hole initial data with low eccentricity based on post-Newtonian orbital parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walther, Benny; Bruegmann, Bernd; Mueller, Doreen

    2009-06-15

    Black hole binaries on noneccentric orbits form an important subclass of gravitational wave sources, but it is a nontrivial issue to construct numerical initial data with minimal initial eccentricity for numerical simulations. We compute post-Newtonian orbital parameters for quasispherical orbits using the method of Buonanno, Chen and Damour, (2006) and examine the resulting eccentricity in numerical simulations. Four different methods are studied resulting from the choice of Taylor-expanded or effective-one-body Hamiltonians, and from two choices for the energy flux. For equal-mass, nonspinning binaries the approach succeeds in obtaining low-eccentricity numerical initial data with an eccentricity of about e=0.002 for rathermore » small initial separations of D > or approx. 10M. The eccentricity increases for unequal masses and for spinning black holes, but remains smaller than that obtained from previous post-Newtonian approaches. The effective-one-body Hamiltonian offers advantages for decreasing initial separation as expected, but in the context of this study also performs significantly better than the Taylor-expanded Hamiltonian for binaries with spin. For mass ratio 4 ratio 1 and vanishing spin, the eccentricity reaches e=0.004. For mass ratio 1 ratio 1 and aligned spins of size 0.85M{sup 2} the eccentricity is about e=0.07 for the Taylor method and e=0.014 for the effective-one-body method.« less

  15. Real-time closed-loop control of cognitive load in neurological patients during robot-assisted gait training.

    PubMed

    Koenig, Alexander; Novak, Domen; Omlin, Ximena; Pulfer, Michael; Perreault, Eric; Zimmerli, Lukas; Mihelj, Matjaz; Riener, Robert

    2011-08-01

    Cognitively challenging training sessions during robot-assisted gait training after stroke were shown to be key requirements for the success of rehabilitation. Despite a broad variability of cognitive impairments amongst the stroke population, current rehabilitation environments do not adapt to the cognitive capabilities of the patient, as cognitive load cannot be objectively assessed in real-time. We provided healthy subjects and stroke patients with a virtual task during robot-assisted gait training, which allowed modulating cognitive load by adapting the difficulty level of the task. We quantified the cognitive load of stroke patients by using psychophysiological measurements and performance data. In open-loop experiments with healthy subjects and stroke patients, we obtained training data for a linear, adaptive classifier that estimated the current cognitive load of patients in real-time. We verified our classification results via questionnaires and obtained 88% correct classification in healthy subjects and 75% in patients. Using the pre-trained, adaptive classifier, we closed the cognitive control loop around healthy subjects and stroke patients by automatically adapting the difficulty level of the virtual task in real-time such that patients were neither cognitively overloaded nor under-challenged. © 2011 IEEE

  16. Exercise metabolism in human skeletal muscle exposed to prior eccentric exercise

    PubMed Central

    Asp, Sven; Daugaard, Jens R; Kristiansen, Søren; Kiens, Bente; Richter, Erik A

    1998-01-01

    The effects of unaccustomed eccentric exercise on exercise metabolism during a subsequent bout of graded concentric exercise were investigated in seven healthy male subjects. Arterial and bilateral femoral venous catheters were inserted 2 days after eccentric exercise of one thigh (eccentric thigh) and blood samples were taken before and during graded two-legged concentric knee-extensor exercise. Muscle biopsies were obtained from the eccentric and control vastus lateralis before (rest) and after (post) the concentric exercise bout. Maximal knee-extensor concentric exercise capacity was decreased by an average of 23 % (P < 0.05) in the eccentric compared with the control thigh. The resting muscle glycogen content was lower in the eccentric thigh than in the control thigh (402 ± 30 mmol (kg dry wt)−1vs. 515 ± 26 mmol (kg dry wt)−1, means ± s.e.m., P < 0.05), and following the two-legged concentric exercise this difference substantially increased (190 ± 46 mmol (kg dry wt)−1vs. 379 ± 58 mmol (kg dry wt)−1, P < 0.05) despite identical power and duration of exercise with the two thighs. There was no measurable difference in glucose uptake between the eccentric and control thigh before or during the graded two-legged concentric exercise. Lactate release was higher from the eccentric thigh at rest and, just before termination of the exercise bout, release of lactate decreased from this thigh (suggesting decreased glycogenolysis), whereas no decrease was found from the contralateral control thigh. Lower glycerol release from the eccentric thigh during the first, lighter part of the exercise (P < 0.05) suggested impaired triacylglycerol breakdown. At rest, sarcolemmal GLUT4 glucose transporter content and glucose transport were similar in the two thighs, and concentric exercise increased sarcolemmal GLUT4 content and glucose transport capacity similarly in the two thighs. It is concluded that in muscle exposed to prior eccentric contractions, exercise at a given power output requires a higher relative workload than in undamaged muscle. This increases utilization of the decreased muscle glycogen stores, contributing to decreased endurance. PMID:9547403

  17. Impact of iron overload on interleukin-10 levels, biochemical parameters and oxidative stress in patients with sickle cell anemia

    PubMed Central

    Barbosa, Maritza Cavalcante; dos Santos, Talyta Ellen Jesus; de Souza, Geane Félix; de Assis, Lívia Coêlho; Freitas, Max Victor Carioca; Gonçalves, Romélia Pinheiro

    2013-01-01

    Objective The aim of this study was to evaluate the impact of iron overload on the profile of interleukin-10 levels, biochemical parameters and oxidative stress in sickle cell anemia patients. Methods A cross-sectional study was performed of 30 patients with molecular diagnosis of sickle cell anemia. Patients were stratified into two groups, according to the presence of iron overload: Iron overload (n = 15) and Non-iron overload (n = 15). Biochemical analyses were performed utilizing the Wiener CM 200 automatic analyzer. The interleukin-10 level was measured by capture ELISA using the BD OptEIAT commercial kit. Oxidative stress parameters were determined by spectrophotometry. Statistical analysis was performed using GraphPad Prism software (version 5.0) and statistical significance was established for p-values < 0.05 in all analyses. Results Biochemical analysis revealed significant elevations in the levels of uric acid, triglycerides, very low-density lipoprotein (VLDL), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), urea and creatinine in the Iron overload Group compared to the Non-iron overload Group and significant decreases in the high-density lipoprotein (HDL) and low-density lipoprotein (LDL). Ferritin levels correlated positively with uric acid concentrations (p-value < 0.05). The Iron overload Group showed lower interleukin-10 levels and catalase activity and higher nitrite and malondialdehyde levels compared with the Non-iron overload Group. Conclusion The results of this study are important to develop further consistent studies that evaluate the effect of iron overload on the inflammatory profile and oxidative stress of patients with sickle cell anemia. PMID:23580881

  18. Revaluation of clinical and histological criteria for diagnosis of dysmetabolic iron overload syndrome

    PubMed Central

    Riva, Alessia; Trombini, Paola; Mariani, Raffaella; Salvioni, Alessandra; Coletti, Sabina; Bonfadini, Silvia; Paolini, Valentina; Pozzi, Matteo; Facchetti, Rita; Bovo, Giorgio; Piperno, Alberto

    2008-01-01

    AIM: To re-evaluate the diagnostic criteria of insulin resistance hepatic iron overload based on clinical, biochemical and histopathological findings. METHODS: We studied 81 patients with hepatic iron overload not explained by known genetic and acquired causes. The metabolic syndrome (MS) was defined according to ATPIII criteria. Iron overload was assessed by liver biopsy. Liver histology was evaluated by Ishak’s score and iron accumulation by Deugnier’s score; steatosis was diagnosed when present in ≥ 5% of hepatocytes. RESULTS: According to transferrin saturation levels, we observed significant differences in the amount of hepatic iron overload and iron distribution, as well as the number of metabolic abnormalities. Using Receiving Operating Curve analysis, we found that the presence of two components of the MS differentiated two groups with a statistically significant different hepatic iron overload (P < 0.0001). Patients with ≥ 2 metabolic alterations and steatosis had lower amount of hepatic iron, lower transferrin saturation and higher sinusoidal iron than patients with < 2 MS components and absence of steatosis. CONCLUSION: In our patients, the presence of ≥ 2 alterations of the MS and hepatic steatosis was associated with a moderate form of iron overload with a prevalent sinusoidal distribution and a normal transferrin saturation, suggesting the existence of a peculiar pathogenetic mechanism of iron accumulation. These patients may have the typical dysmetabolic iron overload syndrome. By contrast, patients with transferrin saturation ≥ 60% had more severe iron overload, few or no metabolic abnormalities and a hemochromatosis-like pattern of iron overload. PMID:18720534

  19. Fluid overload and survival in critically ill patients with acute kidney injury receiving continuous renal replacement therapy

    PubMed Central

    Kim, Il Young; Kim, Joo Hui; Lee, Dong Won; Lee, Soo Bong; Rhee, Harin; Seong, Eun Young; Kwak, Ihm Soo

    2017-01-01

    Background Fluid overload is known to be associated with increased mortality in patients with acute kidney injury (AKI) who are critically ill. In this study, we intended to uncover whether the adverse effect of fluid overload on survival could be applied to all of the patients with AKI who received continuous renal replacement therapy (CRRT). Methods We analyzed 341 patients with AKI who received CRRT in our intensive care units. The presence of fluid overload was defined as a minimum 10% increase in body weight from the baseline. Demographics, comorbid diseases, clinical data, severity of illness [the sequential organ failure assessment (SOFA) score, number of vasopressors, diagnosis of sepsis, use of ventilator] upon ICU admission, fluid overload status, and time elapsed from AKI diagnosis until CRRT initiation were reviewed from the medical charts. Results Patients with total fluid overload from 3 days before CRRT initiation to ICU discharge had a significantly lower survival rate after ICU admission, as compared to patients with no fluid overload (P < 0.001). Among patients with sepsis (P < 0.001) or with high SOFA scores (P < 0.001), there was a significant difference in survival of the patients with and without fluid overload. In patients without sepsis or with low SOFA score, there was no significant difference in survival of patients irrespective of fluid overload. Conclusion Our study demonstrates that the adverse effect of fluid overload on survival is more evident in patients with sepsis or with more severe illness, and that it might not apply to patients without sepsis or with less severe illness. PMID:28196107

  20. Systematic review of the synergist muscle ablation model for compensatory hypertrophy.

    PubMed

    Terena, Stella Maris Lins; Fernandes, Kristianne Porta Santos; Bussadori, Sandra Kalill; Deana, Alessandro Melo; Mesquita-Ferrari, Raquel Agnelli

    2017-02-01

    The aim was to evaluate the effectiveness of the experimental synergists muscle ablation model to promote muscle hypertrophy, determine the period of greatest hypertrophy and its influence on muscle fiber types and determine differences in bilateral and unilateral removal to reduce the number of animals used in this model. Following the application of the eligibility criteria for the mechanical overload of the plantar muscle in rats, nineteen papers were included in the review. The results reveal a greatest hypertrophy occurring between days 12 and 15, and based on the findings, synergist muscle ablation is an efficient model for achieving rapid hypertrophy and the contralateral limb can be used as there was no difference between unilateral and bilateral surgery, which reduces the number of animals used in this model. This model differs from other overload models (exercise and training) regarding the characteristics involved in the hypertrophy process (acute) and result in a chronic muscle adaptation with selective regulation and modification of fast-twitch fibers in skeletal muscle. This is an efficient and rapid model for compensatory hypertrophy.

  1. [Ergonomics and productivity: an example applied to a manufacturing industry].

    PubMed

    Battevi, Natale; Vitelli, Nora

    2013-01-01

    The survival of manufacturing in the western world also depends on the ability to increase productivity. To achieve this goal, it is necessary to recover the efficiency of all workers suffering from upper limb biomechanical overload disease. Ergonomic methods can be a valuable tool in solving this apparent conflict: operatives'productivity and health. After carrying out an ergonomic education and training programme for all company employees and risk assessment for upper limb biomechanical overload through the OCRA checklist method, a programme of improvements on a production line was planned and tested, mainly based on international and European standards. Within approximately 2 years, thanks to changes in workplace layout and organization, a significant reduction of 22.7% in risk level was achieved and, at the same time, a 16% increase in productivity. An ergonomic approach based on global, interdisciplinary and participatory principles in the case considered showed that it is possible to match increased productivity with decreased risk. In this specific case application of ergonomic principles during product design was rather poor, which is typical of companies working for third party customers.

  2. Role overload, pain and physical dysfunction in early rheumatoid or undifferentiated inflammatory arthritis in Canada

    PubMed Central

    2012-01-01

    Background Inflammatory arthritis impairs participation in societal roles. Role overload arises when the demands by a given role set exceed the resources; time and energy, to carry out the required tasks. The present study examines the association between role overload and disease outcomes in early inflammatory arthritis (EIA). Methods Patients (n = 104) of 7.61 months mean duration of inflammatory arthritis completed self-report questionnaires on sociodemographics, disease characteristics and role overload. Pain was assessed using the Short Form McGill Pain Questionnaire (MPQ) and physical functioning was measured with the Medical Outcomes Study Short Form 36 (SF-36) physical functioning score. Role overload was measured by the Role Overload Scale. Patients indicated the number of social roles they occupied from a total of the three typical roles; marital, parental and paid work. Results Participants’ mean age was 56 years and 70.2% were female. Role overload was not correlated to the number of social roles, however, it was positively associated with pain (p = 0.004) and negatively associated with physical functioning (p = 0.001). On multivariate analysis, role overload was negatively associated with physical functioning after controlling for the relevant sociodemographic variables. Conclusion This study identifies a possible reciprocal relationship between role overload and physical functioning in patients with EIA. PMID:22554167

  3. Time course of the MAPK and PI3-kinase response within 24 h of skeletal muscle overload

    NASA Technical Reports Server (NTRS)

    Carlson, C. J.; Fan, Z.; Gordon, S. E.; Booth, F. W.

    2001-01-01

    Knowledge of the molecular mechanisms by which skeletal muscle hypertrophies in response to increased mechanical loading may lead to the discovery of novel treatment strategies for muscle wasting and frailty. To gain insight into potential early signaling mechanisms associated with skeletal muscle hypertrophy, the temporal pattern of mitogen-activated protein kinase (MAPK) phosphorylation and phosphatidylinositol 3-kinase (PI3-kinase) activity during the first 24 h of muscle overload was determined in the rat slow-twitch soleus and fast-twitch plantaris muscles after ablation of the gastrocnemius muscle. p38alpha MAPK phosphorylation was elevated for the entire 24-h overload period in both muscles. In contrast, Erk 2 and p54 JNK phosphorylation were transiently increased by overload, returning to the levels of sham-operated controls by 24 h. PI3-kinase activity was increased by muscle overload only at 12 h of overload and only in the plantaris muscle. In summary, sustained elevation of p38alpha MAPK phosphorylation occurred early in response to muscle overload, identifying this pathway as a potential candidate for mediating early hypertrophic signals in response to skeletal muscle overload.

  4. Effect of anabolic steroids on overloaded and overloaded suspended skeletal muscle

    NASA Technical Reports Server (NTRS)

    Tsika, R. W.; Herrick, R. E.; Baldwin, K. M.

    1987-01-01

    The effect of treatment with an anabolic steroid (nandrolone decanoate) on the muscle mass, the subcellular protein content, and the myosin patterns of normal overloaded and suspended overloaded plantaris muscle in female rat was investigated, dividing rats into six groups: normal control (NC), overload (OV), OV steroid (OV-S), normal suspended (N-sus), OV suspended (OV-sus), and OV suspended steroid (OV-sus-S). Relative to control values, overload produced a sparing effect on the muscle weight of the OV-sus group as well as increases of muscle weight of the OV group; increased protein content; and an increased expression of slow myosin in both OV and OV-sus groups. Steroid treatment of OV animals did not after the response of any parameter analyzed for the OV group, but in the OV-sus group steroid treatment induced increases in muscle weight and in protein content of the OV-sus-S group. The treatment did not alter the pattern of isomyosin expression observed in the OV or the OV-sus groups. These result suggest that the steroid acts synergistically with functional overload only under conditions in which the effect of overload is minimized by suspension.

  5. Impact of Volume Management on Volume Overload and Rehospitalization in CAPD Patients.

    PubMed

    Xu, Yi; Yang, Shen-Min; Wang, Xiao-Hua; Wang, Hai-Fang; Niu, Mei-E; Yang, Yi-Qun; Lu, Guo-Yuan; Pang, Jian-Hong; Wang, Fei; Li, Lin

    2018-05-01

    Heart failure due to volume overload is a major reason for rehospitalization in continuous ambulatory peritoneal dialysis patients. Strict volume control provides better cardiac functions and blood pressure in this population. Volume management, which is a volume control strategy, may decrease volume overload and related complications. Using a quasi-experimental design, 66 continuous ambulatory peritoneal dialysis patients were randomly assigned to the intervention group ( n = 34) and control group ( n = 32). The patients were followed up for 6 months with scheduled clinic and/or telephone visits; the intervention group adopted volume management strategy, while the control group adopted conventional care. Volume overload and cardiac function were compared between the two groups at the baseline and at 6 months. At Month 6, the intervention group resulted in significant improvement in volume overloaded status, cardiac function, and volume-overload-related rehospitalization. Volume management strategy allows for better control of volume overload and is associated with fewer volume-related readmissions.

  6. The Effect of Estrogen Usage on Eccentric Exercise-Induced Damage in Rat Testes

    PubMed Central

    Can, Serpil; Selli, Jale; Buyuk, Basak; Aydin, Sergulen; Kocaaslan, Ramazan; Guvendi, Gulname Findik

    2015-01-01

    Background: Recent years, lots of scientific studies are focused on the possible mechanism of inflammatory response and oxidative stress which are the mechanism related with tissue damage and exercise fatigue. It is well-known that free oxygen radicals may be induced under invitro conditions as well as oxidative stress by exhaustive physical exercise. Objectives: The aim of this study was to investigate the effects of anabolic steroids in conjunction with exercise in the process of spermatogenesis in the testes, using histological and stereological methods. Materials and Methods: Thirty-six male Sprague Dawley rats were divided to six groups, including the control group, the eccentric exercise administered group, the estrogen applied group, the estrogen applied and dissected one hour after eccentric exercise group, the no estrogen applied and dissected 48 hours after eccentric exercise group and the estrogen applied and dissected 48 hours after eccentric exercise group. Eccentric exercise was performed on a motorized rodent treadmill and the estrogen applied groups received daily physiological doses by subcutaneous injections. Testicular tissues were examined using specific histopathological, immunohistochemical and stereological methods. Sections of the testes tissue were stained using the TUNEL method to identify apoptotic cells. Apoptosis was calculated as the percentage of positive cells, using stereological analysis. A statistical analysis of the data was carried out with one-way analysis of variance (ANOVA) for the data obtained from stereological analysis. Results: Conventional light microscopic results revealed that testes tissues of the eccentric exercise administered group and the estrogen supplemented group exhibited slight impairment. In groups that were both eccentrically exercised and estrogen supplemented, more deterioration was detected in testes tissues. Likewise, immunohistochemistry findings were also more prominent in the eccentrically exercised and estrogen supplemented groups. Conclusions: The findings suggest that estrogen supplementation increases damage in testicular tissue due to eccentric exercise. PMID:26023337

  7. Effect of proof testing on the flaw growth characteristics of 304 stainless steel. [crack propagation in welded joints

    NASA Technical Reports Server (NTRS)

    Finger, R. W.

    1974-01-01

    The effects of proof overload frequency and magnitude on the cyclic crack growth rates of 304 stainless steel weldments were investigated. The welding procedure employed was typical of those used on over-the-road cryogenic vessels. Tests were conducted at room temperature with an overload ratio of 1.50 to determine the effect of overload frequency. Effect of overload magnitude was determined from tests where a room temperature overload was applied between blocks of 1000 cycles applied at 78 K (-320 F). The cyclic stress level used in all tests was typical of the nominal membrane stress generally encountered in full scale vessels. Test results indicate that judicious selection of proof overload frequency and magnitude can reduce crack growth rates for cyclic stress levels.

  8. Current Review of Iron Overload and Related Complications in Hematopoietic Stem Cell Transplantation

    PubMed Central

    Atilla, Erden; Toprak, Selami K.; Demirer, Taner

    2017-01-01

    Iron overload is an adverse prognostic factor for patients undergoing hematopoietic stem cell transplantation (HSCT). In the HSCT setting, pretransplant and early posttransplant ferritin and transferrin saturation were found to be highly elevated due to high transfusion requirements. In addition to that, post-HSCT iron overload was shown to be related to infections, hepatic sinusoidal obstruction syndrome, mucositis, liver dysfunction, and acute graft-versus-host disease. Hyperferritinemia causes decreased survival rates in both pre- and posttransplant settings. Serum ferritin levels, magnetic resonance imaging, and liver biopsy are diagnostic tools for iron overload. Organ dysfunction due to iron overload may cause high mortality rates and therefore sufficient iron chelation therapy is recommended in this setting. In this review the management of iron overload in adult HSCT is discussed. PMID:27956374

  9. On the eccentricity effects on the intraband optical transitions in two dimensional quantum rings with and without donor impurity

    NASA Astrophysics Data System (ADS)

    Nasri, Djillali

    2018-07-01

    Using the plane wave expansion in the frame of the effective mass approximation, a straightforward method is presented to calculate the energy levels and the corresponding wavefunctions in a two dimensional GaAs/AlxGa1-xAs eccentric quantum rings (QRs) with and without donor impurity. The transition energy and their related optical absorption coefficients are calculated. The obtained results show that the transition energy between the ground state and the first two excited states and their related optical matrix are strongly influenced by the eccentricity and the donor position. The resonant peaks of the absorption coefficients for electron are blueshifted, while for QRs with an off center impurity the resonant peaks are red or blueshifted depending on the donor positions and eccentricity. In addition, we have found that a small eccentricity acts on the QRs qualitatively as a weak radial electric field. Moreover, an electric field is no longer able to reproduce perfectly the eccentricity effect when the eccentricity becomes relatively strong. Finally, our results are qualitatively similar to those reported in recent works dealing with concentric QRs under a radial electric field.

  10. Coevolution of Binaries and Circumbinary Gaseous Disks

    NASA Astrophysics Data System (ADS)

    Fleming, David; Quinn, Thomas R.

    2018-04-01

    The recent discoveries of circumbinary planets by Kepler raise questions for contemporary planet formation models. Understanding how these planets form requires characterizing their formation environment, the circumbinary protoplanetary disk, and how the disk and binary interact. The central binary excites resonances in the surrounding protoplanetary disk that drive evolution in both the binary orbital elements and in the disk. To probe how these interactions impact both binary eccentricity and disk structure evolution, we ran N-body smooth particle hydrodynamics (SPH) simulations of gaseous protoplanetary disks surrounding binaries based on Kepler 38 for 10^4 binary orbital periods for several initial binary eccentricities. We find that nearly circular binaries weakly couple to the disk via a parametric instability and excite disk eccentricity growth. Eccentric binaries strongly couple to the disk causing eccentricity growth for both the disk and binary. Disks around sufficiently eccentric binaries strongly couple to the disk and develop an m = 1 spiral wave launched from the 1:3 eccentric outer Lindblad resonance (EOLR). This wave corresponds to an alignment of gas particle longitude of periastrons. We find that in all simulations, the binary semi-major axis decays due to dissipation from the viscous disk.

  11. Dependence of chromatic responses in V1 on visual field eccentricity and spatial frequency: an fMRI study.

    PubMed

    D'Souza, Dany V; Auer, Tibor; Frahm, Jens; Strasburger, Hans; Lee, Barry B

    2016-03-01

    Psychophysical sensitivity to red-green chromatic modulation decreases with visual eccentricity, compared to sensitivity to luminance modulation, even after appropriate stimulus scaling. This is likely to occur at a central, rather than a retinal, site. Blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) responses to stimuli designed to separately stimulate different afferent channels' [red-green, luminance, and short-wavelength (S)-cone] circular gratings were recorded as a function of visual eccentricity (±10  deg) and spatial frequency (SF) in human primary visual cortex (V1) and further visual areas (V2v, V3v). In V1, the SF tuning of BOLD fMRI responses became coarser with eccentricity. For red-green and luminance gratings, similar SF tuning curves were found at all eccentricities. The pattern for S-cone modulation differed, with SF tuning changing more slowly with eccentricity than for the other two modalities. This may be due to the different retinal distribution with eccentricity of this receptor type. A similar pattern held in V2v and V3v. This would suggest that transformation or spatial filtering of the chromatic (red-green) signal occurs beyond these areas.

  12. Impact of Eccentricity on East-west Stationkeeping for GPS Class of Orbits

    NASA Technical Reports Server (NTRS)

    Ely, Todd A.

    1999-01-01

    There exists a strong relationship between eccentricity and the potential for a repeating groundtrack orbit to exhibit chaotic motion. This is true at all values of eccentricity, but, perhaps most dramatic, is that it is true even for orbits that are nearly circular. These complex motions can have a significant impact on the east-west stationkeeping process for maintaining the repeating groundtrack property of a commensurate orbit. Ely and Howell have shown that traditional stationkeeping (SK) methods are unable to maintain a repeating groundtrack in the presence of complex dynamics, such as with chaotic motion. They developed an alternate SK method that is able to maintain a repeating groundtrack for eccentric, commensurate orbits. The focus of the current study is to investigate orbits with characteristics that are similar to GPS satellites except with modestly larger eccentricities. It will be shown that at eccentricities larger than approx. .01 the chaotic regions become significant, and the need arises for a robust stationkeeping approach, such as developed in. FurtheRmore, the investigation will reveal that the influence of luni-solar perturbations contributes to the growth of eccentricity, thus increasing the probability of encountering chaotic motion during a typical satellite lifetime.

  13. Possible Vascular Injury Due to Screw Eccentricity in Minimally Invasive Total Hip Arthroplasty.

    PubMed

    Singh, Nishant Kumar; Rai, Sanjay Kumar; Rastogi, Amit

    2017-01-01

    Vascular injury during minimally invasive total hip arthroplasty (THA) is uncommon, yet a well-recognized and serious issue. It emerges because of non-visibility of vascular structures proximal to the pelvic bone during reaming, drilling holes, and fixing of screws. Numerous studies have found that screw fixation during cementless THA is beneficial for the initial stability of cup; yet, no anatomical guidelines support angular eccentric screw fixation. In this study, we obtained the pelvic arterial-phase computed tomographic data of thirty eight humans and reconstructed the three-dimensional models of osseous and vessel structures. We performed the surgical simulation to fix these structures with cementless cups and screws with angular eccentricities. The effect of screw eccentricities (angular eccentricities of ±17° and ±34°) on the vascular injury was determined. Measurement between screw and adjoining vessels was performed and analyzed statistically to ascertain a comparative risk study for blood vessels that are not visible during surgery. Authors similarly discussed the significant absence of appreciation of quadrant systems proposed by Wasielewski et al . on eccentric screws. Adjustment of quadrant systems provided by Wasielewski et al . is required for acetabular implants with eccentric holes for fixation of acetabular screws.

  14. Formation of Close-in Super-Earths by Giant Impacts: Effects of Initial Eccentricities and Inclinations of Protoplanets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumoto, Yuji; Kokubo, Eiichiro, E-mail: ymatsumoto@cfca.nao.ac.jp

    Recent observations have revealed the eccentricity and inclination distributions of close-in super-Earths. These distributions have the potential to constrain their formation processes. In the in situ formation scenario, the eccentricities and inclinations of planets are determined by gravitational scattering and collisions between protoplanets on the giant impact stage. We investigate the effect of the initial eccentricities and inclinations of protoplanets on the formation of close-in super-Earths. We perform N -body simulations of protoplanets in gas-free disks, changing the initial eccentricities and inclinations systematically. We find that while the eccentricities of protoplanets are well relaxed through their evolution, the inclinations aremore » not. When the initial inclinations are small, they are not generally pumped up since scattering is less effective and collisions occur immediately after orbital crossing. On the other hand, when the initial inclinations are large, they tend to be kept large since collisional damping is less effective. Not only the resultant inclinations of planets, but also their number, eccentricities, angular momentum deficit, and orbital separations are affected by the initial inclinations of protoplanets.« less

  15. The effects of eccentricities on the fracture of off-axis fiber composites. [carbon fiber reinforced plastics

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1978-01-01

    Finite element analyses were performed to investigate theoretically the effects of in-plane and out-of-plane eccentricities, bending or twisting, and thickness nonuniformity on the axial stress and strain variations across the width of off-axis specimens. The results are compared with measured data and are also used to assess the effects of these eccentricities on the fracture stress of off-axis fiber composites. Guidelines for detecting and minimizing the presence of eccentricities are described.

  16. The effects of eccentricities on the fracture of off-axis fiber composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1978-01-01

    Finite element analyses were performed to investigate theoretically the effects of in-plane and out-of plane eccentricities, bending or twisting, and thickness nonuniformity on the axial stress and strain variations across the width of off-axis specimens. The results are compared with measured data and are also used to access the effects of these eccentricities on the fracture stress of off-axis fiber composites. Guidelines for detecting and minimizing the presence of eccentricities are described.

  17. Achilles tendinopathy modulates force frequency characteristics of eccentric exercise.

    PubMed

    Grigg, Nicole L; Wearing, Scott C; O'Toole, John M; Smeathers, James E

    2013-03-01

    Previous research has demonstrated that ground reaction force (GRF) recorded during eccentric ankle exercise is characterized by greater power in the 8- to 12-Hz bandwidth when compared with that recorded during concentric ankle exercise. Subsequently, it was suggested that vibrations in this bandwidth may underpin the beneficial effect of eccentric loading in tendon repair. However, this observation has been made only in individuals without Achilles tendinopathy. This research compared the force frequency characteristics of eccentric and concentric exercises in individuals with and without Achilles tendinopathy. Eleven male adults with unilateral midportion Achilles tendinopathy and nine control male adults without tendinopathy participated in the research. Kinematics and GRF were recorded while the participants performed a common eccentric rehabilitation exercise protocol and a concentric equivalent. Ankle joint kinematics and the frequency power spectrum of the resultant GRF were calculated. Eccentric exercise was characterized by a significantly greater proportion of spectral power between 4.5 and 11.5 Hz when compared with concentric exercise. There were no significant differences between limbs in the force frequency characteristics of concentric exercise. Eccentric exercise, in contrast, was defined by a shift in the power spectrum of the symptomatic limb, resulting in a second spectral peak at 9 Hz, rather than 10 Hz in the control limb. Compared with healthy tendon, Achilles tendinopathy was characterized by lower frequency vibrations during eccentric rehabilitation exercises. This finding may be associated with changes in neuromuscular activation and tendon stiffness that have been shown to occur with tendinopathy and provides a possible rationale for the previous observation of a different biochemical response to eccentric exercise in healthy and injured Achilles tendons.

  18. Total ellipse of the heart valve: the impact of eccentric stent distortion on the regional dynamic deformation of pericardial tissue leaflets of a transcatheter aortic valve replacement

    PubMed Central

    Gunning, Paul S.; Saikrishnan, Neelakantan; Yoganathan, Ajit P.; McNamara, Laoise M.

    2015-01-01

    Transcatheter aortic valve replacements (TAVRs) are a percutaneous alternative to surgical aortic valve replacements and are used to treat patients with aortic valve stenosis. This minimally invasive procedure relies on expansion of the TAVR stent to radially displace calcified aortic valve leaflets against the aortic root wall. However, these calcium deposits can impede the expansion of the device causing distortion of the valve stent and pericardial tissue leaflets. The objective of this study was to elucidate the impact of eccentric TAVR stent distortion on the dynamic deformation of the tissue leaflets of the prosthesis in vitro. Dual-camera stereophotogrammetry was used to measure the regional variation in strain in a leaflet of a TAVR deployed in nominal circular and eccentric (eccentricity index = 28%) orifices, representative of deployed TAVRs in vivo. It was observed that (i) eccentric stent distortion caused incorrect coaptation of the leaflets at peak diastole resulting in a ‘peel-back’ leaflet geometry that was not present in the circular valve and (ii) adverse bending of the leaflet, arising in the eccentric valve at peak diastole, caused significantly higher commissure strains compared with the circular valve in both normotensive and hypertensive pressure conditions (normotension: eccentric = 13.76 ± 2.04% versus circular = 11.77 ± 1.61%, p = 0.0014, hypertension: eccentric = 15.07 ± 1.13% versus circular = 13.56 ± 0.87%, p = 0.0042). This study reveals that eccentric distortion of a TAVR stent can have a considerable impact on dynamic leaflet deformation, inducing deleterious bending of the leaflet and increasing commissures strains, which might expedite leaflet structural failure compared to leaflets in a circular deployed valve. PMID:26674192

  19. Cardiac complications in beta-thalassemia: From mice to men.

    PubMed

    Kumfu, Sirinart; Fucharoen, Suthat; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2017-06-01

    Beta-thalassemia is an inherited hemoglobin disorder caused by reduced or absent synthesis of the beta globin chains of hemoglobin. This results in variable outcomes ranging from clinically asymptomatic to severe anemia, which then typically requires regular blood transfusion. These regular blood transfusions can result in an iron overload condition. The iron overload condition can lead to iron accumulation in various organs, especially in the heart, leading to iron overload cardiomyopathy, which is the major cause of mortality in patients with thalassemia. In the past decades, there is no doubt that the use of β-thalassemic mice as a study model to investigate the pathophysiology of iron overload cardiomyopathy and the role of various pharmacological interventions, has shed some light in understanding this serious complication and in improving the associated cardiac dysfunction. In this review, the effects that iron overload has on the hearts of β-thalassemic mice under conditions of iron overload as well as the efficacy of pharmacological interventions to combat these adverse effects on the heart are reviewed and discussed. The in-depth understanding of biomolecular alterations in the heart of these iron overload thalassemic mice will help give guidance for more effective therapeutic approaches in the near future. Impact statement Iron overload cardiomyopathy is a major cause of morbidity and mortality in patients with thalassemia. Since investigation of iron overload cardiomyopathy in thalassemia patients has many limitations, a search for an animal model for this condition has been ongoing for decades. In the past decades, there is no doubt that the use of β-thalassemic mice as a study model to investigate the pathophysiology of iron overload cardiomyopathy and the role of various pharmacological interventions, has shed some light in understanding this serious complication and in improving the associated cardiac dysfunction. In this review, the effects of iron overload on the hearts of β-thalassemic mice under conditions of iron overload as well as the efficacy of pharmacological interventions to combat these adverse effects on the heart are reviewed and discussed.

  20. Cardiac complications in beta-thalassemia: From mice to men

    PubMed Central

    Kumfu, Sirinart; Fucharoen, Suthat; Chattipakorn, Siriporn C.

    2017-01-01

    Beta-thalassemia is an inherited hemoglobin disorder caused by reduced or absent synthesis of the beta globin chains of hemoglobin. This results in variable outcomes ranging from clinically asymptomatic to severe anemia, which then typically requires regular blood transfusion. These regular blood transfusions can result in an iron overload condition. The iron overload condition can lead to iron accumulation in various organs, especially in the heart, leading to iron overload cardiomyopathy, which is the major cause of mortality in patients with thalassemia. In the past decades, there is no doubt that the use of β-thalassemic mice as a study model to investigate the pathophysiology of iron overload cardiomyopathy and the role of various pharmacological interventions, has shed some light in understanding this serious complication and in improving the associated cardiac dysfunction. In this review, the effects that iron overload has on the hearts of β-thalassemic mice under conditions of iron overload as well as the efficacy of pharmacological interventions to combat these adverse effects on the heart are reviewed and discussed. The in-depth understanding of biomolecular alterations in the heart of these iron overload thalassemic mice will help give guidance for more effective therapeutic approaches in the near future. Impact statement Iron overload cardiomyopathy is a major cause of morbidity and mortality in patients with thalassemia. Since investigation of iron overload cardiomyopathy in thalassemia patients has many limitations, a search for an animal model for this condition has been ongoing for decades. In the past decades, there is no doubt that the use of β-thalassemic mice as a study model to investigate the pathophysiology of iron overload cardiomyopathy and the role of various pharmacological interventions, has shed some light in understanding this serious complication and in improving the associated cardiac dysfunction. In this review, the effects of iron overload on the hearts of β-thalassemic mice under conditions of iron overload as well as the efficacy of pharmacological interventions to combat these adverse effects on the heart are reviewed and discussed. PMID:28485683

  1. Vane segment support and alignment device

    DOEpatents

    McLaurin, L.D.; Sizemore, J.D.

    1999-07-13

    A support and alignment assembly for supporting and aligning a vane segment is provided. The support and alignment assembly comprises a torque plate which defines an opening for receiving an eccentric pin and a locking end member for receiving a lock socket member. An eccentric pin adjustably supported by the torque plate opening for supporting and aligning a vane segment is provided. A lock socket member adapted to securely receive the eccentric pin and rotated therewith, and adjustably engage the torque plate locking end is provided. The lock socket member receives the eccentric pin, such that when the eccentric pin is adjusted to align the vane segment, the lock socket member engages the torque plate locking end to secure the vane segment in the desired position. 5 figs.

  2. Vane segment support and alignment device

    DOEpatents

    McLaurin, Leroy Dixon; Sizemore, John Derek

    1999-01-01

    A support and alignment assembly for supporting and aligning a vane segment is provided. The support and alignment assembly comprises a torque plate which defines an opening for receiving an eccentric pin and a locking end member for receiving a lock socket member. An eccentric pin adjustably supported by the torque plate opening for supporting and aligning a vane segment is provided. A lock socket member adapted to securely receive the eccentric pin and rotated therewith, and adjustably engage the torque plate locking end is provided. The lock socket member receives the eccentric pin, such that when the eccentric pin is adjusted to align the vane segment, the lock socket member engages the torque plate locking end to secure the vane segment in the desired position.

  3. The effect of glenosphere diameter and eccentricity on deltoid power in reverse shoulder arthroplasty.

    PubMed

    Scalise, J; Jaczynski, A; Jacofsky, M

    2016-02-01

    The eccentric glenosphere was principally introduced into reverse shoulder arthroplasty to reduce the incidence of scapular notching. There is only limited information about the influence of its design on deltoid power and joint reaction forces. The aim of our study was to investigate how the diameter and eccentricity of the glenosphere affect the biomechanics of the deltoid and the resultant joint reaction forces. Different sizes of glenosphere and eccentricity were serially tested in ten cadaveric shoulders using a custom shoulder movement simulator. Increasing the diameter of the glenosphere alone did not alter the deltoid moment arm. However, using an eccentric glenosphere increased the moment arm of the deltoid, lowered the joint reaction force and required less deltoid force to generate movement. Eccentricity is an independent variable which increases deltoid efficiency and lowers joint reaction forces in a reverse shoulder arthroplasty. Cite this article: Bone Joint J 2016;98-B:218-23. ©2016 The British Editorial Society of Bone & Joint Surgery.

  4. Perceptual grouping across eccentricity.

    PubMed

    Tannazzo, Teresa; Kurylo, Daniel D; Bukhari, Farhan

    2014-10-01

    Across the visual field, progressive differences exist in neural processing as well as perceptual abilities. Expansion of stimulus scale across eccentricity compensates for some basic visual capacities, but not for high-order functions. It was hypothesized that as with many higher-order functions, perceptual grouping ability should decline across eccentricity. To test this prediction, psychophysical measurements of grouping were made across eccentricity. Participants indicated the dominant grouping of dot grids in which grouping was based upon luminance, motion, orientation, or proximity. Across trials, the organization of stimuli was systematically decreased until perceived grouping became ambiguous. For all stimulus features, grouping ability remained relatively stable until 40°, beyond which thresholds significantly elevated. The pattern of change across eccentricity varied across stimulus feature, in which stimulus scale, dot size, or stimulus size interacted with eccentricity effects. These results demonstrate that perceptual grouping of such stimuli is not reliant upon foveal viewing, and suggest that selection of dominant grouping patterns from ambiguous displays operates similarly across much of the visual field. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. The origin of the eccentricity of the hot Jupiter in CI Tau

    NASA Astrophysics Data System (ADS)

    Rosotti, G. P.; Booth, R. A.; Clarke, C. J.; Teyssandier, J.; Facchini, S.; Mustill, A. J.

    2017-01-01

    Following the recent discovery of the first radial velocity planet in a star still possessing a protoplanetary disc (CI Tau), we examine the origin of the planet's eccentricity (e ˜0.3). We show through long time-scale (105 orbits) simulations that the planetary eccentricity can be pumped by the disc, even when its local surface density is well below the threshold previously derived from short time-scale integrations. We show that the disc may be able to excite the planet's orbital eccentricity in <1 Myr for the system parameters of CI Tau. We also perform two-planet scattering experiments and show that alternatively the observed planet may plausibly have acquired its eccentricity through dynamical scattering of a migrating lower mass planet, which has either been ejected from the system or swallowed by the central star. In the latter case the present location and eccentricity of the observed planet can be recovered if it was previously stalled within the disc's magnetospheric cavity.

  6. Geometrical theory to predict eccentric photorefraction intensity profiles in the human eye

    NASA Astrophysics Data System (ADS)

    Roorda, Austin; Campbell, Melanie C. W.; Bobier, W. R.

    1995-08-01

    In eccentric photorefraction, light returning from the retina of the eye is photographed by a camera focused on the eye's pupil. We use a geometrical model of eccentric photorefraction to generate intensity profiles across the pupil image. The intensity profiles for three different monochromatic aberration functions induced in a single eye are predicted and show good agreement with the measured eccentric photorefraction intensity profiles. A directional reflection from the retina is incorporated into the calculation. Intensity profiles for symmetric and asymmetric aberrations are generated and measured. The latter profile shows a dependency on the source position and the meridian. The magnitude of the effect of thresholding on measured pattern extents is predicted. Monochromatic aberrations in human eyes will cause deviations in the eccentric photorefraction measurements from traditional crescents caused by defocus and may cause misdiagnoses of ametropia or anisometropia. Our results suggest that measuring refraction along the vertical meridian is preferred for screening studies with the eccentric photorefractor.

  7. Eccentric Contraction-Induced Muscle Injury: Reproducible, Quantitative, Physiological Models to Impair Skeletal Muscle’s Capacity to Generate Force

    PubMed Central

    Call, Jarrod A.; Lowe, Dawn A.

    2018-01-01

    In order to investigate the molecular and cellular mechanisms of muscle regeneration an experimental injury model is required. Advantages of eccentric contraction-induced injury are that it is a controllable, reproducible, and physiologically relevant model to cause muscle injury, with injury being defined as a loss of force generating capacity. While eccentric contractions can be incorporated into conscious animal study designs such as downhill treadmill running, electrophysiological approaches to elicit eccentric contractions and examine muscle contractility, for example before and after the injurious eccentric contractions, allows researchers to circumvent common issues in determining muscle function in a conscious animal (e.g., unwillingness to participate). Herein, we describe in vitro and in vivo methods that are reliable, repeatable, and truly maximal because the muscle contractions are evoked in a controlled, quantifiable manner independent of subject motivation. Both methods can be used to initiate eccentric contraction-induced injury and are suitable for monitoring functional muscle regeneration hours to days to weeks post-injury. PMID:27492161

  8. Curcumin Attenuates Iron Accumulation and Oxidative Stress in the Liver and Spleen of Chronic Iron-Overloaded Rats

    PubMed Central

    Badria, Farid A.; Ibrahim, Ahmed S.; Badria, Adel F.; Elmarakby, Ahmed A.

    2015-01-01

    Objectives Iron overload is now recognized as a health problem in industrialized countries, as excessive iron is highly toxic for liver and spleen. The potential use of curcumin as an iron chelator has not been clearly identified experimentally in iron overload condition. Here, we evaluate the efficacy of curcumin to alleviate iron overload-induced hepatic and splenic abnormalities and to gain insight into the underlying mechanisms. Design and Methods Three groups of male adult rats were treated as follows: control rats, rats treated with iron in a drinking water for 2 months followed by either vehicle or curcumin treatment for 2 more months. Thereafter, we studied the effects of curcumin on iron overload-induced lipid peroxidation and anti-oxidant depletion. Results Treatment of iron-overloaded rats with curcumin resulted in marked decreases in iron accumulation within liver and spleen. Iron-overloaded rats had significant increases in malonyldialdehyde (MDA), a marker of lipid peroxidation and nitric oxide (NO) in liver and spleen when compared to control group. The effects of iron overload on lipid peroxidation and NO levels were significantly reduced by the intervention treatment with curcumin (P<0.05). Furthermore, the endogenous anti-oxidant activities/levels in liver and spleen were also significantly decreased in chronic iron overload and administration of curcumin restored the decrease in the hepatic and splenic antioxidant activities/levels. Conclusion Our study suggests that curcumin may represent a new horizon in managing iron overload-induced toxicity as well as in pathological diseases characterized by hepatic iron accumulation such as thalassemia, sickle cell anemia, and myelodysplastic syndromes possibly via iron chelation, reduced oxidative stress derived lipid peroxidation and improving the body endogenous antioxidant defense mechanism. PMID:26230491

  9. Surprise Realistic Mock Disasters—The Most Effective Means of Disaster Training

    PubMed Central

    Campanale, Ralph P.

    1964-01-01

    Realism introduced in several large scale surprise mock-disaster tests proved to be a real challenge to a disaster-conscious hospital staff that had previously undergone fairly extensive disaster training and testing, utilizing conventional methods. Serious weaknesses, flaws, omissions and deficiencies in disaster capability were dramatically and conclusively revealed by use of what appeared to be a “live” disaster setting with smoke, fire, explosions; adverse weather and light conditions; realistically-simulated “casualites” especially prepared not only to look but to act the part; selected harassment incidents from well-documented disasters, such as utility failures, automobile accident on the main access route, overload of telephone switchboard, and invasion of hospital and disaster site by distraught relatives and the morbidly curious. Imagesp436-ap436-bp436-c PMID:14232161

  10. Quantitative ultrashort echo time imaging for assessment of massive iron overload at 1.5 and 3 Tesla.

    PubMed

    Krafft, Axel J; Loeffler, Ralf B; Song, Ruitian; Tipirneni-Sajja, Aaryani; McCarville, M Beth; Robson, Matthew D; Hankins, Jane S; Hillenbrand, Claudia M

    2017-11-01

    Hepatic iron content (HIC) quantification via transverse relaxation rate (R2*)-MRI using multi-gradient echo (mGRE) imaging is compromised toward high HIC or at higher fields due to the rapid signal decay. Our study aims at presenting an optimized 2D ultrashort echo time (UTE) sequence for R2* quantification to overcome these limitations. Two-dimensional UTE imaging was realized via half-pulse excitation and radial center-out sampling. The sequence includes chemically selective saturation pulses to reduce streaking artifacts from subcutaneous fat, and spatial saturation (sSAT) bands to suppress out-of-slice signals. The sequence employs interleaved multi-echo readout trains to achieve dense temporal sampling of rapid signal decays. Evaluation was done at 1.5 Tesla (T) and 3T in phantoms, and clinical applicability was demonstrated in five patients with biopsy-confirmed massively high HIC levels (>25 mg Fe/g dry weight liver tissue). In phantoms, the sSAT pulses were found to remove out-of-slice contamination, and R2* results were in excellent agreement to reference mGRE R2* results (slope of linear regression: 1.02/1.00 for 1.5/3T). UTE-based R2* quantification in patients with massive iron overload proved successful at both field strengths and was consistent with biopsy HIC values. The UTE sequence provides a means to measure R2* in patients with massive iron overload, both at 1.5T and 3T. Magn Reson Med 78:1839-1851, 2017. © 2017 Wiley Periodicals, Inc. © 2017 International Society for Magnetic Resonance in Medicine.

  11. Effect of eccentricity on searches for gravitational waves from coalescing compact binaries in ground-based detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Duncan A.; Zimmerman, Peter J.

    2010-01-15

    Inspiralling compact binaries are expected to circularize before their gravitational-wave signals reach the sensitive frequency band of ground-based detectors. Current searches for gravitational waves from compact binaries using the LIGO and Virgo detectors therefore use circular templates to construct matched filters. Binary formation models have been proposed which suggest that some systems detectable by the LIGO-Virgo network may have non-negligible eccentricity. We investigate the ability of the restricted 3.5 post-Newtonian order TaylorF2 template bank, used by LIGO and Virgo to search for gravitational waves from compact binaries with masses M{<=}35M{sub {center_dot},} to detect binaries with nonzero eccentricity. We model themore » gravitational waves from eccentric binaries using the x-model post-Newtonian formalism proposed by Hinder et al.[I. Hinder, F. Hermann, P. Laguna, and D. Shoemaker, arXiv:0806.1037v1]. We find that small residual eccentricities (e{sub 0} < or approx. 0.05 at 40 Hz) do not significantly affect the ability of current LIGO searches to detect gravitational waves from coalescing compact binaries with total mass 2M{sub {center_dot}<}M<15M{sub {center_dot}.} For eccentricities e{sub 0} > or approx. 0.1, the loss in matched filter signal-to-noise ratio due to eccentricity can be significant and so templates which include eccentric effects will be required to perform optimal searches for such systems.« less

  12. Secular dynamics of the triple system harboring PSR J0337+1715 and implications for the origin of its orbital configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rafikov, Roman R., E-mail: rrr@astro.princeton.edu

    2014-10-10

    We explore secular dynamics of a recently discovered hierarchical triple system consisting of the radio pulsar PSR J0337+1715 and two white dwarfs (WDs). We show that three-body interactions endow the inner binary with a large forced eccentricity and suppress its apsidal precession, to about 24% of the rate due to the general relativity. However, precession rate is still quite sensitive to the non-Newtonian effects and may be used to constrain gravity theories if measured accurately. A small value of the free eccentricity of the inner binary e{sub i}{sup free}≈2.6×10{sup −5} and vanishing forced eccentricity of the outer, relatively eccentric binarymore » naturally result in their apsidal near-alignment. In addition, this triple system provides a unique opportunity to explore excitation of both eccentricity and inclination in neutron star-WD binaries, e.g., due to random torques caused by convective eddies in the WD progenitor. We show this process to be highly anisotropic and more effective at driving eccentricity rather than inclination. The outer binary eccentricity and e{sub i}{sup free} exceed by more than an order of magnitude the predictions of the eccentricity-period relation of Phinney, which is not uncommon. We also argue that the non-zero mutual inclination of the two binaries emerges at the end of the Roche lobe overflow of the outer (rather than the inner) binary.« less

  13. RESONANT POST-NEWTONIAN ECCENTRICITY EXCITATION IN HIERARCHICAL THREE-BODY SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naoz, Smadar; Kocsis, Bence; Loeb, Abraham

    2013-08-20

    We study the secular, hierarchical three-body problem to first-order in a post-Newtonian expansion of general relativity (GR). We expand the first-order post-Newtonian Hamiltonian to leading-order in the ratio of the semi-major axis of the two orbits. In addition to the well-known terms that correspond to the GR precession of the inner and outer orbits, we find a new secular post-Newtonian interaction term that can affect the long-term evolution of the triple. We explore the parameter space for highly inclined and eccentric systems, where the Kozai-Lidov mechanism can produce large-amplitude oscillations in the eccentricities. The standard lore, i.e., that GR effectsmore » suppress eccentricity, is only consistent with the parts of phase space where the GR timescales are several orders of magnitude shorter than the secular Newtonian one. In other parts of phase space, however, post-Newtonian corrections combined with the three-body ones can excite eccentricities. In particular, for systems where the GR timescale is comparable to the secular Newtonian timescales, the three-body interactions give rise to a resonant-like eccentricity excitation. Furthermore, for triples with a comparable-mass inner binary, where the eccentric Kozai-Lidov mechanism is suppressed, post-Newtonian corrections can further increase the eccentricity and lead to orbital flips even when the timescale of the former is much longer than the timescale of the secular Kozai-Lidov quadrupole perturbations.« less

  14. CORRELATIONS BETWEEN COMPOSITIONS AND ORBITS ESTABLISHED BY THE GIANT IMPACT ERA OF PLANET FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawson, Rebekah I.; Lee, Eve J.; Chiang, Eugene, E-mail: rdawson@psu.edu

    The giant impact phase of terrestrial planet formation establishes connections between super-Earths’ orbital properties (semimajor axis spacings, eccentricities, mutual inclinations) and interior compositions (the presence or absence of gaseous envelopes). Using N -body simulations and analytic arguments, we show that spacings derive not only from eccentricities, but also from inclinations. Flatter systems attain tighter spacings, a consequence of an eccentricity equilibrium between gravitational scatterings, which increase eccentricities, and mergers, which damp them. Dynamical friction by residual disk gas plays a critical role in regulating mergers and in damping inclinations and eccentricities. Systems with moderate gas damping and high solid surfacemore » density spawn gas-enveloped super-Earths with tight spacings, small eccentricities, and small inclinations. Systems in which super-Earths coagulate without as much ambient gas, in disks with low solid surface density, produce rocky planets with wider spacings, larger eccentricities, and larger mutual inclinations. A combination of both populations can reproduce the observed distributions of spacings, period ratios, transiting planet multiplicities, and transit duration ratios exhibited by Kepler super-Earths. The two populations, both formed in situ, also help to explain observed trends of eccentricity versus planet size, and bulk density versus method of mass measurement (radial velocities versus transit timing variations). Simplifications made in this study—including the limited time span of the simulations, and the approximate treatments of gas dynamical friction and gas depletion history—should be improved on in future work to enable a detailed quantitative comparison to the observations.« less

  15. Melatonin protects bone marrow mesenchymal stem cells against iron overload-induced aberrant differentiation and senescence.

    PubMed

    Yang, Fan; Yang, Lei; Li, Yuan; Yan, Gege; Feng, Chao; Liu, Tianyi; Gong, Rui; Yuan, Ye; Wang, Ning; Idiiatullina, Elina; Bikkuzin, Timur; Pavlov, Valentin; Li, Yang; Dong, Chaorun; Wang, Dawei; Cao, Yang; Han, Zhenbo; Zhang, Lai; Huang, Qi; Ding, Fengzhi; Bi, Zhengang; Cai, Benzhi

    2017-10-01

    Bone marrow mesenchymal stem cells (BMSCs) are an expandable population of stem cells which can differentiate into osteoblasts, chondrocytes and adipocytes. Dysfunction of BMSCs in response to pathological stimuli contributes to bone diseases. Melatonin, a hormone secreted from pineal gland, has been proved to be an important mediator in bone formation and mineralization. The aim of this study was to investigate whether melatonin protected against iron overload-induced dysfunction of BMSCs and its underlying mechanisms. Here, we found that iron overload induced by ferric ammonium citrate (FAC) caused irregularly morphological changes and markedly reduced the viability in BMSCs. Consistently, osteogenic differentiation of BMSCs was significantly inhibited by iron overload, but melatonin treatment rescued osteogenic differentiation of BMSCs. Furthermore, exposure to FAC led to the senescence in BMSCs, which was attenuated by melatonin as well. Meanwhile, melatonin was able to counter the reduction in cell proliferation by iron overload in BMSCs. In addition, protective effects of melatonin on iron overload-induced dysfunction of BMSCs were abolished by its inhibitor luzindole. Also, melatonin protected BMSCs against iron overload-induced ROS accumulation and membrane potential depolarization. Further study uncovered that melatonin inhibited the upregulation of p53, ERK and p38 protein expressions in BMSCs with iron overload. Collectively, melatonin plays a protective role in iron overload-induced osteogenic differentiation dysfunction and senescence through blocking ROS accumulation and p53/ERK/p38 activation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Extreme secular excitation of eccentricity inside mean motion resonance. Small bodies driven into star-grazing orbits by planetary perturbations

    NASA Astrophysics Data System (ADS)

    Pichierri, Gabriele; Morbidelli, Alessandro; Lai, Dong

    2017-09-01

    Context. It is well known that asteroids and comets fall into the Sun. Metal pollution of white dwarfs and transient spectroscopic signatures of young stars like β-Pic provide growing evidence that extra solar planetesimals can attain extreme orbital eccentricities and fall into their parent stars. Aims: We aim to develop a general, implementable, semi-analytical theory of secular eccentricity excitation of small bodies (planetesimals) in mean motion resonances with an eccentric planet valid for arbitrary values of the eccentricities and including the short-range force due to General Relativity. Methods: Our semi-analytic model for the restricted planar three-body problem does not make use of series expansion and therefore is valid for any eccentricity value and semi-major axis ratio. The model is based on the application of the adiabatic principle, which is valid when the precession period of the longitude of pericentre of the planetesimal is much longer than the libration period in the mean motion resonance. In resonances of order larger than 1 this is true except for vanishingly small eccentricities. We provide prospective users with a Mathematica notebook with implementation of the model allowing direct use. Results: We confirm that the 4:1 mean motion resonance with a moderately eccentric (e' ≲ 0.1) planet is the most powerful one to lift the eccentricity of planetesimals from nearly circular orbits to star-grazing ones. However, if the planet is too eccentric, we find that this resonance is unable to pump the planetesimal's eccentricity to a very high value. The inclusion of the General Relativity effect imposes a condition on the mass of the planet to drive the planetesimals into star-grazing orbits. For a planetesimal at 1 AU around a solar mass star (or white dwarf), we find a threshold planetary mass of about 17 Earth masses. We finally derive an analytical formula for this critical mass. Conclusions: Planetesimals can easily fall into the central star even in the presence of a single moderately eccentric planet, but only from the vicinity of the 4:1 mean motion resonance. For sufficiently high planetary masses the General Relativity effect does not prevent the achievement of star-grazing orbits. The Mathematica notebook is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/605/A23

  17. ANG II is required for optimal overload-induced skeletal muscle hypertrophy

    NASA Technical Reports Server (NTRS)

    Gordon, S. E.; Davis, B. S.; Carlson, C. J.; Booth, F. W.

    2001-01-01

    ANG II mediates the hypertrophic response of overloaded cardiac muscle, likely via the ANG II type 1 (AT(1)) receptor. To examine the potential role of ANG II in overload-induced skeletal muscle hypertrophy, plantaris and/or soleus muscle overload was produced in female Sprague-Dawley rats (225-250 g) by the bilateral surgical ablation of either the synergistic gastrocnemius muscle (experiment 1) or both the gastrocnemius and plantaris muscles (experiment 2). In experiment 1 (n = 10/group), inhibiting endogenous ANG II production by oral administration of an angiotensin-converting enzyme (ACE) inhibitor during a 28-day overloading protocol attenuated plantaris and soleus muscle hypertrophy by 57 and 96%, respectively (as measured by total muscle protein content). ACE inhibition had no effect on nonoverloaded (sham-operated) muscles. With the use of new animals (experiment 2; n = 8/group), locally perfusing overloaded soleus muscles with exogenous ANG II (via osmotic pump) rescued the lost hypertrophic response in ACE-inhibited animals by 71%. Furthermore, orally administering an AT(1) receptor antagonist instead of an ACE inhibitor produced a 48% attenuation of overload-induced hypertrophy that could not be rescued by ANG II perfusion. Thus ANG II may be necessary for optimal overload-induced skeletal muscle hypertrophy, acting at least in part via an AT(1) receptor-dependent pathway.

  18. Studies on deflection area vectors of QRS and T and ventricular gradient in right ventricular hypertrophy.

    PubMed

    Kawaguchi, Y

    1985-04-01

    QRS deflection area vector (Aqrs), T deflection area vector (At) and ventricular gradient (G) in right ventricular hypertrophy were studied in 53 subjects divided on the basis of cardiac catheterization data into four subgroups; normal controls, mild MS group, right ventricular pressure overload group and right ventricular volume overload group. Aqrs, At and G of the four subgroups were calculated using a microcomputer and compared. Aqrs in right ventricular pressure overload group and volume overload group was shifted to the right and slightly anteriorly from that in normal control group. At in right ventricular pressure overload group and volume overload group was shifted slightly upwards and significantly posteriorly from that in the normal control and mild MS groups. G in right ventricular pressure overload group and volume overload group was shifted to the right and significantly posteriorly from that in normal control and mild MS groups. Using multivariative analysis, we developed criteria for diagnosing right ventricular hypertrophy with At: 0.059At(Z) - 0.0145 [At] - 0.2608 less than or equal to 0. Application of this criteria achieved 82.4% (28 of 34) sensitivity in the patients with right ventricular hypertrophy and 90.9% (10 of 11) specificity in the normal control subjects.

  19. Non-HFE iron overload as a surrogate marker of disease severity in patients of liver cirrhosis.

    PubMed

    Noor, Mohd Talha; Tiwari, Manish; Kumar, Ravindra

    2016-01-01

    Decompensated liver cirrhosis is an important cause of mortality worldwide. Various modifiable and non-modifiable factors are involved in the pathogenesis of cirrhosis and its complications. This study was aimed to evaluate the association of iron overload and disease severity in patients of liver cirrhosis and its association with HFE gene mutation. Forty-nine patients with decompensated liver cirrhosis were recruited. Clinical and laboratory parameters were compared in patients with and without iron overload. C282Y and H63D gene mutation analysis was performed in all patients with iron overload. Iron overload was found in 20 (40.82%) patients. A significant positive correlation of transferrin saturation with Child-Turcotte-Pugh (CTP) score (r = 0.705, p < 0.001) and model for end-stage liver disease (MELD) score (r = 0.668, p < 0.001) was found. Transferrin saturation was also independently associated with high CTP and MELD score on multivariate analysis. Mortality over 3 months was significantly more common in iron-overloaded patients (p = 0.028). C282Y homozygosity or C282Y/H63D compound heterozygosity was not found in any of the patients with iron overload. Iron overload was significantly associated with disease severity and reduced survival in patients of decompensated liver cirrhosis.

  20. Comparison of posture among adolescent male volleyball players and non-athletes

    PubMed Central

    2014-01-01

    Due to high training loads and frequently repeated unilateral exercises, several types of sports training can have an impact on the process of posture development in young athletes. The objective of the study was to assess and compare the postures of adolescent male volleyball players and their non-training peers. The study group comprised 104 volleyball players while the control group consisted of 114 non-training individuals aged 14-16 years. Body posture was assessed by the Moiré method. The volleyball players were significantly taller, and had greater body weight and fat-free mass. The analysis of posture relative to symmetry in the frontal and transverse planes did not show any significant differences between the volleyball players and non-athletes. Postural asymmetries were observed in both the volleyball players and the control participants. Lumbar lordosis was significantly less defined in the volleyball players compared to non-training individuals while no difference was observed in thoracic kyphosis. All athletes demonstrated a loss of lumbar lordosis and an increase in thoracic kyphosis. Significant differences in anteroposterior curvature of the spine between the volleyball players and the non-athletes might be associated with both training and body height. Considering the asymmetric spine overloads which frequently occur in sports training, meticulous posture assessment in young athletes seems well justified. PMID:25729154

Top