The future of remote ECG monitoring systems.
Guo, Shu-Li; Han, Li-Na; Liu, Hong-Wei; Si, Quan-Jin; Kong, De-Feng; Guo, Fu-Su
2016-09-01
Remote ECG monitoring systems are becoming commonplace medical devices for remote heart monitoring. In recent years, remote ECG monitoring systems have been applied in the monitoring of various kinds of heart diseases, and the quality of the transmission and reception of the ECG signals during remote process kept advancing. However, there remains accompanying challenges. This report focuses on the three components of the remote ECG monitoring system: patient (the end user), the doctor workstation, and the remote server, reviewing and evaluating the imminent challenges on the wearable systems, packet loss in remote transmission, portable ECG monitoring system, patient ECG data collection system, and ECG signals transmission including real-time processing ST segment, R wave, RR interval and QRS wave, etc. This paper tries to clarify the future developmental strategies of the ECG remote monitoring, which can be helpful in guiding the research and development of remote ECG monitoring.
Kwonjoon Lee; Kiseok Song; Taehwan Roh; Hoi-Jun Yoo
2016-08-01
The wrist patch-type ECG/APW sensor system is proposed for continuous and comprehensive monitoring of the patient's cardiovascular system. The wrist patch-type ECG/APW sensor system is consists of ECG/APW sensor, ECG/APW electrodes, and base station for real-time monitoring of the patient's status. The ECG/APW sensor and electrodes are composed of wrist patch, bandage-type ECG electrode and fabric APW electrode, respectively so that the patient's cardiovascular system can be continuously monitored in daily life with free hand-movement. Since the proposed wrist patchtype ECG/APW sensor simultaneously measures ECG/APW, the cardiac indicators, such as HR and PAT, can be extracted for comprehensive and accurate monitoring of the patient's cardiovascular system. The proposed wrist patch-type ECG/APW sensor system is successfully verified using the commercial PPG sensor (RP520) and demonstrated with the customized Android application on the smart phone.
Software design of a remote real-time ECG monitoring system
NASA Astrophysics Data System (ADS)
Yu, Chengbo; Tao, Hongyan
2005-12-01
Heart disease is one of the main diseases that threaten the health and lives of human beings. At present, the normal remote ECG monitoring system has the disadvantages of a short testing distance and limitation of monitoring lines. Because of accident and paroxysmal disease, ECG monitoring has extended from the hospital to the family. Therefore, remote ECG monitoring through the Internet has the actual value and significance. The principle and design method of software of the remote dynamic ECG monitor was presented and discussed. The monitoring software is programmed with Delphi software based on client-sever interactive mode. The application program of the system, which makes use of multithreading technology, is shown to perform in an excellent manner. The program includes remote link users and ECG processing, i.e. ECG data's receiving, real-time displaying, recording and replaying. The system can connect many clients simultaneously and perform real-time monitoring to patients.
[Implementation of ECG Monitoring System Based on Internet of Things].
Lu, Liangliang; Chen, Minya
2015-11-01
In order to expand the capabilities of hospital's traditional ECG device and enhance medical staff's work efficiency, an ECG monitoring system based on internet of things is introduced. The system can monitor ECG signals in real time and analyze data using ECG sensor, PDA, Web servers, which embeds C language, Android systems, .NET, wireless network and other technologies. After experiments, it can be showed that the system has high reliability and stability and can bring the convenience to medical staffs.
The Development of a Portable ECG Monitor Based on DSP
NASA Astrophysics Data System (ADS)
Nan, CHI Jian; Tao, YAN Yan; Meng Chen, LIU; Li, YANG
With the advent of global information, researches of Smart Home system are in the ascendant, the ECG real-time detection, and wireless transmission of ECG become more useful. In order to achieve the purpose we developed a portable ECG monitor which achieves the purpose of cardiac disease remote monitoring, and will be used in the physical and psychological disease surveillance in smart home system, we developed this portable ECG Monitor, based on the analysis of existing ECG Monitor, using TMS320F2812 as the core controller, which complete the signal collection, storage, processing, waveform display and transmission.
Chung, Seungmin; Yi, Joohee
2013-01-01
Electromagnetic interference (EMI) can affect various medical devices. Herein, we report the case of EMI from wireless local area network (WLAN) on an electrocardiogram (ECG) monitoring system. A patient who had a prior myocardial infarction participated in the cardiac rehabilitation program in the sports medicine center of our hospital under the wireless ECG monitoring system. After WLAN was installed, wireless ECG monitoring system failed to show a proper ECG signal. ECG signal was distorted when WLAN was turned on, but it was normalized after turning off the WLAN. PMID:23613696
Design and implementation of a 3-lead ECG wireless remote monitoring system
NASA Astrophysics Data System (ADS)
Zhang, Shi; Jia, Xiaonan; Shang, Shuai
2006-11-01
Cardiovascular disease is one of the main diseases that menaces human health. It is necessary to monitor the patient's real-time electrocardiograph (ECG) for a long time to realize diagnosis and salvage. Remote ECG monitoring system is the solution. This paper introduces the design and implement of a 3-lead ECG wireless remote monitoring system. It collects, stores and transmits user's ECG which can be received by hospital and diagnosed by doctors. The development of the whole system contains three parts, the hardware and embedded software implementation of MONITOR, software of the MONITORING CENTER, and the routing software of NETWORK CENTER. According to the clinic experimentation, this system has high reliability and utility. There will be great social and economic benefit if this system is put into use.
Internet based ECG medical information system.
James, D A; Rowlands, D; Mahnovetski, R; Channells, J; Cutmore, T
2003-03-01
Physiological monitoring of humans for medical applications is well established and ready to be adapted to the Internet. This paper describes the implementation of a Medical Information System (MIS-ECG system) incorporating an Internet based ECG acquisition device. Traditionally clinical monitoring of ECG is largely a labour intensive process with data being typically stored on paper. Until recently, ECG monitoring applications have also been constrained somewhat by the size of the equipment required. Today's technology enables large and fixed hospital monitoring systems to be replaced by small portable devices. With an increasing emphasis on health management a truly integrated information system for the acquisition, analysis, patient particulars and archiving is now a realistic possibility. This paper describes recent Internet and technological advances and presents the design and testing of the MIS-ECG system that utilises those advances.
A remote access ecg monitoring system - biomed 2009.
Ogawa, Hidekuni; Yonezawa, Yoshiharu; Maki, Hiromichi; Iwamoto, Junichi; Hahn, Allen W; Caldwell, W Morton
2009-01-01
We have developed a remotely accessible telemedicine system for monitoring a patient's electrocardiogram (ECG). The system consists of an ECG recorder mounted on chest electrodes and a physician's laptop personal computer. This ECG recorder is designed with a variable gain instrumentation amplifier; a low power 8-bit single-chip microcomputer; two 128KB EEPROMs and 2.4 GHz low transmit power mobile telephone. When the physician wants to monitor the patient's ECG, he/she calls directly from the laptop PC to the ECG recorder's phone and the recorder sends the ECG to the computer. The electrode-mounted recorder continuously samples the ECG. Additionally, when the patient feels a heart discomfort, he/she pushes a data transmission switch on the recorder and the recorder sends the recorded ECG waveforms of the two prior minutes, and for two minutes after the switch is pressed. The physician can display and monitor the data on the computer's liquid crystal display.
A mobile phone-based ECG monitoring system.
Iwamoto, Junichi; Yonezawa, Yoshiharu; Maki, Hiromichi; Ogawa, Hidekuni; Ninomiya, Ishio; Sada, Kouji; Hamada, Shingo; Hahn, Allen W; Caldwell, W Morton
2006-01-01
We have developed a telemedicine system for monitoring a patient's electrocardiogram during daily activities. The recording system consists of three ECG chest electrodes, a variable gain instrumentation amplifier, a low power 8-bit single-chip microcomputer, a 256 KB EEPROM and a 2.4 GHz low transmitting power mobile phone (PHS). The complete system is mounted on a single, lightweight, chest electrode array. When a heart discomfort is felt, the patient pushes the data transmission switch on the recording system. The system sends the recorded ECG waveforms of the two prior minutes and ECG waveforms of the two minutes after the switch is pressed, directly in the hospital server computer via the PHS. The server computer sends the data to the physician on call. The data is displayed on the doctor's Java mobile phone LCD (Liquid Crystal Display), so he or she can monitor the ECG regardless of their location. The developed ECG monitoring system is not only applicable to at-home patients, but should also be useful for monitoring hospital patients.
Miao, Fen; Cheng, Yayu; He, Yi; He, Qingyun; Li, Ye
2015-05-19
Continuously monitoring the ECG signals over hours combined with activity status is very important for preventing cardiovascular diseases. A traditional ECG holter is often inconvenient to carry because it has many electrodes attached to the chest and because it is heavy. This work proposes a wearable, low power context-aware ECG monitoring system integrated built-in kinetic sensors of the smartphone with a self-designed ECG sensor. The wearable ECG sensor is comprised of a fully integrated analog front-end (AFE), a commercial micro control unit (MCU), a secure digital (SD) card, and a Bluetooth module. The whole sensor is very small with a size of only 58 × 50 × 10 mm for wearable monitoring application due to the AFE design, and the total power dissipation in a full round of ECG acquisition is only 12.5 mW. With the help of built-in kinetic sensors of the smartphone, the proposed system can compute and recognize user's physical activity, and thus provide context-aware information for the continuous ECG monitoring. The experimental results demonstrated the performance of proposed system in improving diagnosis accuracy for arrhythmias and identifying the most common abnormal ECG patterns in different activities. In conclusion, we provide a wearable, accurate and energy-efficient system for long-term and context-aware ECG monitoring without any extra cost on kinetic sensor design but with the help of the widespread smartphone.
An IoT-cloud Based Wearable ECG Monitoring System for Smart Healthcare.
Yang, Zhe; Zhou, Qihao; Lei, Lei; Zheng, Kan; Xiang, Wei
2016-12-01
Public healthcare has been paid an increasing attention given the exponential growth human population and medical expenses. It is well known that an effective health monitoring system can detect abnormalities of health conditions in time and make diagnoses according to the gleaned data. As a vital approach to diagnose heart diseases, ECG monitoring is widely studied and applied. However, nearly all existing portable ECG monitoring systems cannot work without a mobile application, which is responsible for data collection and display. In this paper, we propose a new method for ECG monitoring based on Internet-of-Things (IoT) techniques. ECG data are gathered using a wearable monitoring node and are transmitted directly to the IoT cloud using Wi-Fi. Both the HTTP and MQTT protocols are employed in the IoT cloud in order to provide visual and timely ECG data to users. Nearly all smart terminals with a web browser can acquire ECG data conveniently, which has greatly alleviated the cross-platform issue. Experiments are carried out on healthy volunteers in order to verify the reliability of the entire system. Experimental results reveal that the proposed system is reliable in collecting and displaying real-time ECG data, which can aid in the primary diagnosis of certain heart diseases.
Microprocessor Based Real-Time Monitoring of Multiple ECG Signals
Nasipuri, M.; Basu, D.K.; Dattagupta, R.; Kundu, M.; Banerjee, S.
1987-01-01
A microprocessor based system capable of realtime monitoring of multiple ECG signals has been described. The system consists of a number of microprocessors connected in a hierarchical fashion and capable of working concurrently on ECG data collected from different channels. The system can monitor different arrhythmic abnormalities for at least 36 patients even for a heart rate of 500 beats/min.
Sinabro: A Smartphone-Integrated Opportunistic Electrocardiogram Monitoring System
Kwon, Sungjun; Lee, Dongseok; Kim, Jeehoon; Lee, Youngki; Kang, Seungwoo; Seo, Sangwon; Park, Kwangsuk
2016-01-01
In our preliminary study, we proposed a smartphone-integrated, unobtrusive electrocardiogram (ECG) monitoring system, Sinabro, which monitors a user’s ECG opportunistically during daily smartphone use without explicit user intervention. The proposed system also monitors ECG-derived features, such as heart rate (HR) and heart rate variability (HRV), to support the pervasive healthcare apps for smartphones based on the user’s high-level contexts, such as stress and affective state levels. In this study, we have extended the Sinabro system by: (1) upgrading the sensor device; (2) improving the feature extraction process; and (3) evaluating extensions of the system. We evaluated these extensions with a good set of algorithm parameters that were suggested based on empirical analyses. The results showed that the system could capture ECG reliably and extract highly accurate ECG-derived features with a reasonable rate of data drop during the user’s daily smartphone use. PMID:26978364
Sinabro: A Smartphone-Integrated Opportunistic Electrocardiogram Monitoring System.
Kwon, Sungjun; Lee, Dongseok; Kim, Jeehoon; Lee, Youngki; Kang, Seungwoo; Seo, Sangwon; Park, Kwangsuk
2016-03-11
In our preliminary study, we proposed a smartphone-integrated, unobtrusive electrocardiogram (ECG) monitoring system, Sinabro, which monitors a user's ECG opportunistically during daily smartphone use without explicit user intervention. The proposed system also monitors ECG-derived features, such as heart rate (HR) and heart rate variability (HRV), to support the pervasive healthcare apps for smartphones based on the user's high-level contexts, such as stress and affective state levels. In this study, we have extended the Sinabro system by: (1) upgrading the sensor device; (2) improving the feature extraction process; and (3) evaluating extensions of the system. We evaluated these extensions with a good set of algorithm parameters that were suggested based on empirical analyses. The results showed that the system could capture ECG reliably and extract highly accurate ECG-derived features with a reasonable rate of data drop during the user's daily smartphone use.
Cleal, J K; Thomas, M; Hanson, M A; Paterson-Brown, S; Gardiner, H M; Green, L R
2010-03-01
To investigate whether a noninvasive fetal electrocardiography (fECG) system can identify cardiovascular responses to fetal hypoxaemia and validate the results using standard invasive fECG monitoring techniques. Prospective cohort study. Biological research facilities at The University of Southampton. Late gestation ovine fetuses; n = 5. Five fetal lambs underwent implantation of vascular catheters, umbilical cord occluder and invasive ECG chest electrodes under general anaesthesia (3% halothane/O(2)) at 119 days of gestation (term approximately 147 days of gestation). After 5 days of recovery blood pressure, blood gases, glucose and pH were monitored. At 124 and 125 days of gestation following a 10-minute baseline period a 90-second cord occlusion was applied. Noninvasive fetal ECG was recorded from maternal transabdominal electrodes using advanced signal-processing techniques, concurrently with invasive fECG recordings. Comparison of T:QRS ratios of the ECG waveform from noninvasive and invasive fECG monitoring systems. Our fECG monitoring system is able to demonstrate changes in waveforms during periods of hypoxaemia similar to those obtained invasively, which could indicate fetal distress. These findings may indicate a future use for noninvasive electrocardiography during human fetal monitoring both before and during labour in term and preterm pregnancies.
Development of a portable Linux-based ECG measurement and monitoring system.
Tan, Tan-Hsu; Chang, Ching-Su; Huang, Yung-Fa; Chen, Yung-Fu; Lee, Cheng
2011-08-01
This work presents a portable Linux-based electrocardiogram (ECG) signals measurement and monitoring system. The proposed system consists of an ECG front end and an embedded Linux platform (ELP). The ECG front end digitizes 12-lead ECG signals acquired from electrodes and then delivers them to the ELP via a universal serial bus (USB) interface for storage, signal processing, and graphic display. The proposed system can be installed anywhere (e.g., offices, homes, healthcare centers and ambulances) to allow people to self-monitor their health conditions at any time. The proposed system also enables remote diagnosis via Internet. Additionally, the system has a 7-in. interactive TFT-LCD touch screen that enables users to execute various functions, such as scaling a single-lead or multiple-lead ECG waveforms. The effectiveness of the proposed system was verified by using a commercial 12-lead ECG signal simulator and in vivo experiments. In addition to its portability, the proposed system is license-free as Linux, an open-source code, is utilized during software development. The cost-effectiveness of the system significantly enhances its practical application for personal healthcare.
Design and Development of Intelligent Electrodes for Future Digital Health Monitoring: A Review
NASA Astrophysics Data System (ADS)
Khairuddin, A. M.; Azir, K. N. F. Ku; Kan, P. Eh
2018-03-01
Electrodes are sensors used in electrocardiography (ECG) monitoring system to diagnose heart diseases. Over the years, diverse types of electrodes have been designed and developed to improve ECG monitoring system. However, more recently, with the technological advances and capabilities from the Internet of Things (IoT), cloud computing and data analytics in personalized healthcare, researchers are attempting to design and develop more effective as well as flexible ECG devices by using intelligent electrodes. This paper reviews previous works on electrodes used in electrocardiography (ECG) monitoring devices to identify the key ftures for designing and developing intelligent electrodes in digital health monitoring devices.
Pit-a-Pat: A Smart Electrocardiogram System for Detecting Arrhythmia.
Park, Juyoung; Lee, Kuyeon; Kang, Kyungtae
2015-10-01
Electrocardiogram (ECG) telemonitoring is one of the most promising applications of medical telemetry. However, previous approaches to ECG telemonitoring have largely relied on public databases of ECG results. In this article we propose a smart ECG system called Pit-a-Pat, which extracts features from ECG signals and detects arrhythmia. It is designed to run on an Android™ (Google, Mountain View, CA) device, without requiring modifications to other software. We implemented the Pit-a-Pat system using a commercial ECG device, and the experimental results demonstrate the effectiveness and accuracy of Pit-a-Pat for monitoring the ECG signal and analyzing the cardiac activity of a mobile patient. The proposed system allows monitoring of cardiac activity with automatic analysis, thereby providing a convenient, inexpensive, and ubiquitous adjunct to personal healthcare.
A Primary Study of Indirect ECG Monitor Embedded in a Bed for Home Health Care
NASA Astrophysics Data System (ADS)
Ueno, Akinori; Shiogai, Yuuki; Ishiyama, Yoji
A system for monitoring electrocardiogram (ECG) through clothes inserted between the measuring electrodes and the body surface of a subject when lying on a mattress has been proposed. The principle of the system is based on capacitive coupling involving the electrode, the clothes, and the skin. Validation of the system revealed the following: (1) In spite of the gain attenuation in the pass band of the system, distortion of the detected signal was subtle even when clothes thicker than 1mm were inserted, (2) The system was able to yield a stable ECG from a subject particularly during sound sleep, (3) The system succeeded in detecting ECG after changing the posture into any of supine, right lateral, or left lateral positions by adopting a newly devised electrode configuration. Therefore, the proposed system appears promising for application to bedding as a non-invasive and awareness-free system for ECG monitoring during sleep.
An ultra-high input impedance ECG amplifier for long-term monitoring of athletes.
Gargiulo, Gaetano; Bifulco, Paolo; Cesarelli, Mario; Ruffo, Mariano; Romano, Maria; Calvo, Rafael A; Jin, Craig; van Schaik, André
2010-01-01
We present a new, low-power electrocardiogram (ECG) recording system with an ultra-high input impedance that enables the use of long-lasting, dry electrodes. The system incorporates a low-power Bluetooth module for wireless connectivity and is designed to be suitable for long-term monitoring during daily activities. The new system using dry electrodes was compared with a clinically approved ECG reference system using gelled Ag/AgCl electrodes and performance was found to be equivalent. In addition, the system was used to monitor an athlete during several physical tasks, and a good quality ECG was obtained in all cases, including when the athlete was totally submerged in fresh water.
Magnusson, Peter; Koyi, Hirsh; Mattsson, Gustav
2018-04-03
Atrial fibrillation (AF) causes ischaemic stroke and based on risk factor evaluation warrants anticoagulation therapy. In stroke survivors, AF is typically detected with short-term ECG monitoring in the stroke unit. Prolonged continuous ECG monitoring requires substantial resources while insertable cardiac monitors are invasive and costly. Chest and thumb ECG could provide an alternative for AF detection poststroke.The primary objective of our study is to assess the incidence of newly diagnosed AF during 28 days of chest and thumb ECG monitoring in cryptogenic stroke. Secondary objectives are to assess health-related quality of life (HRQoL) using short-form health survey (SF-36) and the feasibility of the Coala Heart Monitor in patients who had a stroke. Stroke survivors in Region Gävleborg, Sweden, will be eligible for the study from October 2017. Patients with a history of ischaemic stroke without documented AF before or during ECG evaluation in the stroke unit will be evaluated by the chest and thumb ECG system Coala Heart Monitor. The monitoring system is connected to a smartphone application which allows for remote monitoring and prompt advice on clinical management. Over a period of 28 days, patients will be monitored two times a day and may activate the ECG recording at symptoms. On completion, the system is returned by mail. This system offers a possibility to evaluate the presence of AF poststroke, but the feasibility of this system in patients who recently suffered from a stroke is unknown. In addition, HRQoL using SF-36 in comparison to Swedish population norms will be assessed. The feasibility of the Coala Heart Monitor will be assessed by a self-developed questionnaire. The study was approved by The Regional Ethical Committee in Uppsala (2017/321). The database will be closed after the last follow-up, followed by statistical analyses, interpretation of results and dissemination to a scientific journal. NCT03301662; Pre-results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
[Monitor of ECG signal and heart rate using a mobile phone with Bluetooth communication protocol].
Becerra-Luna, Brayans; Dávila-García, Rodrigo; Salgado-Rodríguez, Paola; Martínez-Memije, Raúl; Infante-Vázquez, Oscar
2012-01-01
To develop a portable signal monitoring equipment for electrocardiography (ECG) and heart rate (HR), communicated with a mobile phone using the Bluetooth (BT) communication protocol for display of the signal on screen. A monitoring system was designed in which the electronic section performs the ECG signal acquisition, as well as amplification, filtering, analog to digital conversion and transmission of the ECG and HR using BT. Two programs were developed for the system. The first one calculates HR through QRS identification and sends the ECG signals and HR to the mobile, and the second program is an application to acquire and display them on the mobile screen. We developed a portable electronic system powered by a 9 volt battery, with amplification and bandwidth meeting the international standards for ECG monitoring. The QRS complex identification was performed using the second derivative algorithm, while the programs allow sending and receiving information from the ECG and HR via BT, and viewing it on the mobile screen. The monitoring is feasible within distances of 15 m and it has been tested in various mobiles telephones of brands Nokia®, Sony Ericsson® and Samsung®. This system shows an alternative for mobile monitoring using BT and Java 2 Micro Edition (J2ME) programming. It allows the register of the ECG trace and HR, and it can be implemented in different phones. Copyright © 2011 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.
Fuchs, Tomasz; Pomorski, Michał; Grobelak, Krzysztof; Tomiałowicz, Marek; Zimmer, Mariusz
2014-01-01
Fetal electrocardiography is one of the methods for monitoring the well-being of the fetus. Signal loss limits the proper interpretation of electrocardiogram traces. The aim of this study was to assess the average signal loss in non-invasive abdominal fetal electrocardiogram (fECG) monitoring using the KOMPOREL fetal monitoring system (ITAM, Zabrze, Poland) in women between 28 and 42 week of pregnancy. The results were compared to FIGO (International Federation of Gynaecology and Obstetric) and DGGG (Deutsche Gesellschaft für Gynäkologie und Geburtshilfe e.V.) recommendations concerning fetal heart monitoring. The correlation between fetal ECG signal quality, week of pregnancy and patient BMI was evaluated. 773 pregnant women, hospitalized and diagnosed in the Department of Gynecology and Obstetrics, Wroclaw Medical University, underwent 30 min of abdominal fECG recordings using the KOMPOREL fetal monitoring system. The average signal loss in abdominal fECG monitoring in the study group was 32%. FIGO recommendations describe an acceptable fetal signal loss of 20%. In our study, 46% (357/773) of the recordings were up to FIGO standards, with fetal heart rate success rates above 80%. According to DGGG guidelines, with acceptable fetal signal loss of 15%, only 39% (303/773) of the recordings could be assessed as accurate. No correlation between fECG signal quality, week of pregnancy and patient BMI was proved. The average signal loss in abdominal fECG monitoring in our study group was 32%. Low fECG signal quality may constitute a potentially limiting factor of the described fetal heart monitoring system. No relationship between fECG signal quality, week of pregnancy and patient BMI was proved.
Cai, Zhipeng; Luo, Kan; Liu, Chengyu; Li, Jianqing
2017-08-09
A smart electrocardiogram (ECG) garment system was designed for continuous, non-invasive and comfortable ECG monitoring, which mainly consists of four components: Conductive textile electrode, garment, flexible printed circuit board (FPCB)-based ECG processing module and android application program. Conductive textile electrode and FPCB-based ECG processing module (6.8 g, 55 mm × 53 mm × 5 mm) are identified as two key techniques to improve the system's comfort and flexibility. Preliminary experimental results verified that the textile electrodes with circle shape, 40 mm size in diameter, and 5 mm thickness sponge are best suited for the long-term ECG monitoring application. The tests on the whole system confirmed that the designed smart garment can obtain long-term ECG recordings with high signal quality.
Near Field Communication-based telemonitoring with integrated ECG recordings.
Morak, J; Kumpusch, H; Hayn, D; Leitner, M; Scherr, D; Fruhwald, F M; Schreier, G
2011-01-01
Telemonitoring of vital signs is an established option in treatment of patients with chronic heart failure (CHF). In order to allow for early detection of atrial fibrillation (AF) which is highly prevalent in the CHF population telemonitoring programs should include electrocardiogram (ECG) signals. It was therefore the aim to extend our current home monitoring system based on mobile phones and Near Field Communication technology (NFC) to enable patients acquiring their ECG signals autonomously in an easy-to-use way. We prototypically developed a sensing device for the concurrent acquisition of blood pressure and ECG signals. The design of the device equipped with NFC technology and Bluetooth allowed for intuitive interaction with a mobile phone based patient terminal. This ECG monitoring system was evaluated in the course of a clinical pilot trial to assess the system's technical feasibility, usability and patient's adherence to twice daily usage. 21 patients (4f, 54 ± 14 years) suffering from CHF were included in the study and were asked to transmit two ECG recordings per day via the telemonitoring system autonomously over a monitoring period of seven days. One patient dropped out from the study. 211 data sets were transmitted over a cumulative monitoring period of 140 days (overall adherence rate 82.2%). 55% and 8% of the transmitted ECG signals were sufficient for ventricular and atrial rhythm assessment, respectively. Although ECG signal quality has to be improved for better AF detection the developed communication design of joining Bluetooth and NFC technology in our telemonitoring system allows for ambulatory ECG acquisition with high adherence rates and system usability in heart failure patients.
Gulizia, Michele Massimo; Casolo, Giancarlo; Zuin, Guerrino; Morichelli, Loredana; Calcagnini, Giovanni; Ventimiglia, Vincenzo; Censi, Federica; Caldarola, Pasquale; Russo, Giancarmine; Leogrande, Lorenzo; Franco Gensini, Gian
2017-05-01
The electrocardiogram (ECG) signal can be derived from different sources. These include systems for surface ECG, Holter monitoring, ergometric stress tests, and telemetry systems and bedside monitoring of vital parameters, which are useful for rhythm and ST-segment analysis and ECG screening of electrical sudden cardiac death predictors. A precise ECG diagnosis is based upon correct recording, elaboration, and presentation of the signal. Several sources of artefacts and potential external causes may influence the quality of the original ECG waveforms. Other factors that may affect the quality of the information presented depend upon the technical solutions employed to improve the signal. The choice of the instrumentations and solutions used to offer a high-quality ECG signal are, therefore, of paramount importance. Some requirements are reported in detail in scientific statements and recommendations. The aim of this consensus document is to give scientific reference for the choice of systems able to offer high quality ECG signal acquisition, processing, and presentation suitable for clinical use.
Casolo, Giancarlo; Zuin, Guerrino; Morichelli, Loredana; Calcagnini, Giovanni; Ventimiglia, Vincenzo; Censi, Federica; Caldarola, Pasquale; Russo, Giancarmine; Leogrande, Lorenzo; Franco Gensini, Gian
2017-01-01
Abstract The electrocardiogram (ECG) signal can be derived from different sources. These include systems for surface ECG, Holter monitoring, ergometric stress tests, and telemetry systems and bedside monitoring of vital parameters, which are useful for rhythm and ST-segment analysis and ECG screening of electrical sudden cardiac death predictors. A precise ECG diagnosis is based upon correct recording, elaboration, and presentation of the signal. Several sources of artefacts and potential external causes may influence the quality of the original ECG waveforms. Other factors that may affect the quality of the information presented depend upon the technical solutions employed to improve the signal. The choice of the instrumentations and solutions used to offer a high-quality ECG signal are, therefore, of paramount importance. Some requirements are reported in detail in scientific statements and recommendations. The aim of this consensus document is to give scientific reference for the choice of systems able to offer high quality ECG signal acquisition, processing, and presentation suitable for clinical use. PMID:28751842
Flexible Graphene Electrodes for Prolonged Dynamic ECG Monitoring
Lou, Cunguang; Li, Ruikai; Li, Zhaopeng; Liang, Tie; Wei, Zihui; Run, Mingtao; Yan, Xiaobing; Liu, Xiuling
2016-01-01
This paper describes the development of a graphene-based dry flexible electrocardiography (ECG) electrode and a portable wireless ECG measurement system. First, graphene films on polyethylene terephthalate (PET) substrates and graphene paper were used to construct the ECG electrode. Then, a graphene textile was synthesized for the fabrication of a wearable ECG monitoring system. The structure and the electrical properties of the graphene electrodes were evaluated using Raman spectroscopy, scanning electron microscopy (SEM), and alternating current impedance spectroscopy. ECG signals were then collected from healthy subjects using the developed graphene electrode and portable measurement system. The results show that the graphene electrode was able to acquire the typical characteristics and features of human ECG signals with a high signal-to-noise (SNR) ratio in different states of motion. A week-long continuous wearability test showed no degradation in the ECG signal quality over time. The graphene-based flexible electrode demonstrates comfortability, good biocompatibility, and high electrophysiological detection sensitivity. The graphene electrode also combines the potential for use in long-term wearable dynamic cardiac activity monitoring systems with convenience and comfort for use in home health care of elderly and high-risk adults. PMID:27809270
Kwon, Sungjun; Kim, Jeehoon; Kang, Seungwoo; Lee, Youngki; Baek, Hyunjae
2014-01-01
Abstract We propose CardioGuard, a brassiere-based reliable electrocardiogram (ECG) monitoring sensor system, for supporting daily smartphone healthcare applications. It is designed to satisfy two key requirements for user-unobtrusive daily ECG monitoring: reliability of ECG sensing and usability of the sensor. The system is validated through extensive evaluations. The evaluation results showed that the CardioGuard sensor reliably measure the ECG during 12 representative daily activities including diverse movement levels; 89.53% of QRS peaks were detected on average. The questionnaire-based user study with 15 participants showed that the CardioGuard sensor was comfortable and unobtrusive. Additionally, the signal-to-noise ratio test and the washing durability test were conducted to show the high-quality sensing of the proposed sensor and its physical durability in practical use, respectively. PMID:25405527
Remote health monitoring system for detecting cardiac disorders.
Bansal, Ayush; Kumar, Sunil; Bajpai, Anurag; Tiwari, Vijay N; Nayak, Mithun; Venkatesan, Shankar; Narayanan, Rangavittal
2015-12-01
Remote health monitoring system with clinical decision support system as a key component could potentially quicken the response of medical specialists to critical health emergencies experienced by their patients. A monitoring system, specifically designed for cardiac care with electrocardiogram (ECG) signal analysis as the core diagnostic technique, could play a vital role in early detection of a wide range of cardiac ailments, from a simple arrhythmia to life threatening conditions such as myocardial infarction. The system that the authors have developed consists of three major components, namely, (a) mobile gateway, deployed on patient's mobile device, that receives 12-lead ECG signals from any ECG sensor, (b) remote server component that hosts algorithms for accurate annotation and analysis of the ECG signal and (c) point of care device of the doctor to receive a diagnostic report from the server based on the analysis of ECG signals. In the present study, their focus has been toward developing a system capable of detecting critical cardiac events well in advance using an advanced remote monitoring system. A system of this kind is expected to have applications ranging from tracking wellness/fitness to detection of symptoms leading to fatal cardiac events.
Smith, Warren M; Riddell, Fiona; Madon, Morag; Gleva, Marye J
2017-03-01
To compare simultaneous recordings from an external patch system specifically designed to ensure better P-wave recordings and standard Holter monitor to determine diagnostic efficacy. Holter monitors are a mainstay of clinical practice, but are cumbersome to access and wear and P-wave signal quality is frequently inadequate. This study compared the diagnostic efficacy of the P-wave centric electrocardiogram (ECG) patch (Carnation Ambulatory Monitor) to standard 3-channel (leads V1, II, and V5) Holter monitor (Northeast Monitoring, Maynard, MA). Patients were referred to a hospital Holter clinic for standard clinical indications. Each patient wore both devices simultaneously and served as their own control. Holter and Patch reports were read in a blinded fashion by experienced electrophysiologists unaware of the findings in the other corresponding ECG recording. All patients, technicians, and physicians completed a questionnaire on comfort and ease of use, and potential complications. In all 50 patients, the P-wave centric patch recording system identified rhythms in 23 patients (46%) that altered management, compared to 6 Holter patients (12%), P<.001. The patch ECG intervals PR, QRS and QT correlated well with the Holter ECG intervals having correlation coefficients of 0.93, 0.86, and 0.94, respectively. Finally, 48 patients (96%) preferred wearing the patch monitor. A single-channel ambulatory patch ECG monitor, designed specifically to ensure that the P-wave component of the ECG be visible, resulted in a significantly improved rhythm diagnosis and avoided inaccurate diagnoses made by the standard 3-channel Holter monitor. Copyright © 2016 Elsevier Inc. All rights reserved.
A Real-Time Cardiac Arrhythmia Classification System with Wearable Sensor Networks
Hu, Sheng; Wei, Hongxing; Chen, Youdong; Tan, Jindong
2012-01-01
Long term continuous monitoring of electrocardiogram (ECG) in a free living environment provides valuable information for prevention on the heart attack and other high risk diseases. This paper presents the design of a real-time wearable ECG monitoring system with associated cardiac arrhythmia classification algorithms. One of the striking advantages is that ECG analog front-end and on-node digital processing are designed to remove most of the noise and bias. In addition, the wearable sensor node is able to monitor the patient's ECG and motion signal in an unobstructive way. To realize the real-time medical analysis, the ECG is digitalized and transmitted to a smart phone via Bluetooth. On the smart phone, the ECG waveform is visualized and a novel layered hidden Markov model is seamlessly integrated to classify multiple cardiac arrhythmias in real time. Experimental results demonstrate that the clean and reliable ECG waveform can be captured in multiple stressed conditions and the real-time classification on cardiac arrhythmia is competent to other workbenches. PMID:23112746
Near Field Communication-based telemonitoring with integrated ECG recordings
Morak, J.; Kumpusch, H.; Hayn, D.; Leitner, M.; Scherr, D.; Fruhwald, F.M.; Schreier, G.
2011-01-01
Objectives Telemonitoring of vital signs is an established option in treatment of patients with chronic heart failure (CHF). In order to allow for early detection of atrial fibrillation (AF) which is highly prevalent in the CHF population telemonitoring programs should include electrocardiogram (ECG) signals. It was therefore the aim to extend our current home monitoring system based on mobile phones and Near Field Communication technology (NFC) to enable patients acquiring their ECG signals autonomously in an easy-to-use way. Methods We prototypically developed a sensing device for the concurrent acquisition of blood pressure and ECG signals. The design of the device equipped with NFC technology and Bluetooth allowed for intuitive interaction with a mobile phone based patient terminal. This ECG monitoring system was evaluated in the course of a clinical pilot trial to assess the system’s technical feasibility, usability and patient’s adherence to twice daily usage. Results 21 patients (4f, 54 ± 14 years) suffering from CHF were included in the study and were asked to transmit two ECG recordings per day via the telemonitoring system autonomously over a monitoring period of seven days. One patient dropped out from the study. 211 data sets were transmitted over a cumulative monitoring period of 140 days (overall adherence rate 82.2%). 55% and 8% of the transmitted ECG signals were sufficient for ventricular and atrial rhythm assessment, respectively. Conclusions Although ECG signal quality has to be improved for better AF detection the developed communication design of joining Bluetooth and NFC technology in our telemonitoring system allows for ambulatory ECG acquisition with high adherence rates and system usability in heart failure patients. PMID:23616890
Sahoo, Prasan Kumar; Thakkar, Hiren Kumar; Lin, Wen-Yen; Chang, Po-Cheng; Lee, Ming-Yih
2018-01-28
Cardiovascular disease (CVD) is a major public concern and socioeconomic problem across the globe. The popular high-end cardiac health monitoring systems such as magnetic resonance imaging (MRI), computerized tomography scan (CT scan), and echocardiography (Echo) are highly expensive and do not support long-term continuous monitoring of patients without disrupting their activities of daily living (ADL). In this paper, the continuous and non-invasive cardiac health monitoring using unobtrusive sensors is explored aiming to provide a feasible and low-cost alternative to foresee possible cardiac anomalies in an early stage. It is learned that cardiac health monitoring based on sole usage of electrocardiogram (ECG) signals may not provide powerful insights as ECG provides shallow information on various cardiac activities in the form of electrical impulses only. Hence, a novel low-cost, non-invasive seismocardiogram (SCG) signal along with ECG signals are jointly investigated for the robust cardiac health monitoring. For this purpose, the in-laboratory data collection model is designed for simultaneous acquisition of ECG and SCG signals followed by mechanisms for the automatic delineation of relevant feature points in acquired ECG and SCG signals. In addition, separate feature points based novel approach is adopted to distinguish between normal and abnormal morphology in each ECG and SCG cardiac cycle. Finally, a combined analysis of ECG and SCG is carried out by designing a Naïve Bayes conditional probability model. Experiments on Institutional Review Board (IRB) approved licensed ECG/SCG signals acquired from real subjects containing 12,000 cardiac cycles show that the proposed feature point delineation mechanisms and abnormal morphology detection methods consistently perform well and give promising results. In addition, experimental results show that the combined analysis of ECG and SCG signals provide more reliable cardiac health monitoring compared to the standalone use of ECG and SCG.
Lin, Wen-Yen; Chang, Po-Cheng
2018-01-01
Cardiovascular disease (CVD) is a major public concern and socioeconomic problem across the globe. The popular high-end cardiac health monitoring systems such as magnetic resonance imaging (MRI), computerized tomography scan (CT scan), and echocardiography (Echo) are highly expensive and do not support long-term continuous monitoring of patients without disrupting their activities of daily living (ADL). In this paper, the continuous and non-invasive cardiac health monitoring using unobtrusive sensors is explored aiming to provide a feasible and low-cost alternative to foresee possible cardiac anomalies in an early stage. It is learned that cardiac health monitoring based on sole usage of electrocardiogram (ECG) signals may not provide powerful insights as ECG provides shallow information on various cardiac activities in the form of electrical impulses only. Hence, a novel low-cost, non-invasive seismocardiogram (SCG) signal along with ECG signals are jointly investigated for the robust cardiac health monitoring. For this purpose, the in-laboratory data collection model is designed for simultaneous acquisition of ECG and SCG signals followed by mechanisms for the automatic delineation of relevant feature points in acquired ECG and SCG signals. In addition, separate feature points based novel approach is adopted to distinguish between normal and abnormal morphology in each ECG and SCG cardiac cycle. Finally, a combined analysis of ECG and SCG is carried out by designing a Naïve Bayes conditional probability model. Experiments on Institutional Review Board (IRB) approved licensed ECG/SCG signals acquired from real subjects containing 12,000 cardiac cycles show that the proposed feature point delineation mechanisms and abnormal morphology detection methods consistently perform well and give promising results. In addition, experimental results show that the combined analysis of ECG and SCG signals provide more reliable cardiac health monitoring compared to the standalone use of ECG and SCG. PMID:29382098
Community-Based ECG Monitoring System for Patients with Cardiovascular Diseases.
Lin, Bor-Shyh; Wong, Alice M; Tseng, Kevin C
2016-04-01
This study aims to develop a community-based electrocardiogram (ECG) monitoring system for cardiac outpatients to wirelessly detect heart rate, provide personalized healthcare, and enhance interactive social contact because of the prevalence of deaths from cardiovascular disease and the growing problem of aging in the world. The system not only strengthens the performance of the ECG monitoring system but also emphasizes the ergonomic design of wearable devices and user interfaces. In addition, it enables medical professionals to diagnose cardiac symptoms remotely and electronically manage medical reports and suggestions. The experimental result shows high performance of the dry electrode, even in dynamic conditions. The comparison result with different ECG healthcare systems shows the essential factors that the system should possess and the capability of the proposed system. Finally, a user survey was conducted based on the unified theory of acceptance and users of technology (UTAUT) model.
[Study for portable dynamic ECG monitor and recorder].
Yang, Pengcheng; Li, Yongqin; Chen, Bihua
2012-09-01
This Paper presents a portable dynamic ECG monitor system based on MSP430F149 microcontroller. The electrocardiogram detecting system consists of ECG detecting circuit, man-machine interaction module, MSP430F149 and upper computer software. The ECG detecting circuit including a preamplifier, second-order Butterworth low-pass filter, high-pass filter, and 50Hz trap circuit to detects electrocardiogram and depresses various kinds of interference effectively. A microcontroller is used to collect three channel analog signals which can be displayed on TFT LCD. A SD card is used to record real-time data continuously and implement the FTA16 file system. In the end, a host computer system interface is also designed to analyze the ECG signal and the analysis results can provide diagnosis references to clinical doctors.
A configurable and low-power mixed signal SoC for portable ECG monitoring applications.
Kim, Hyejung; Kim, Sunyoung; Van Helleputte, Nick; Artes, Antonio; Konijnenburg, Mario; Huisken, Jos; Van Hoof, Chris; Yazicioglu, Refet Firat
2014-04-01
This paper describes a mixed-signal ECG System-on-Chip (SoC) that is capable of implementing configurable functionality with low-power consumption for portable ECG monitoring applications. A low-voltage and high performance analog front-end extracts 3-channel ECG signals and single channel electrode-tissue-impedance (ETI) measurement with high signal quality. This can be used to evaluate the quality of the ECG measurement and to filter motion artifacts. A custom digital signal processor consisting of 4-way SIMD processor provides the configurability and advanced functionality like motion artifact removal and R peak detection. A built-in 12-bit analog-to-digital converter (ADC) is capable of adaptive sampling achieving a compression ratio of up to 7, and loop buffer integration reduces the power consumption for on-chip memory access. The SoC is implemented in 0.18 μm CMOS process and consumes 32 μ W from a 1.2 V while heart beat detection application is running, and integrated in a wireless ECG monitoring system with Bluetooth protocol. Thanks to the ECG SoC, the overall system power consumption can be reduced significantly.
Balsam, Paweł; Lodziński, Piotr; Tymińska, Agata; Ozierański, Krzysztof; Januszkiewicz, Łukasz; Główczyńska, Renata; Wesołowska, Katarzyna; Peller, Michał; Pietrzak, Radosław; Książczyk, Tomasz; Borodzicz, Sonia; Kołtowski, Łukasz; Borkowski, Mariusz; Werner, Bożena; Opolski, Grzegorz; Grabowski, Marcin
2018-01-01
Today, the main challenge for researchers is to develop new technologies which may help to improve the diagnoses of cardiovascular disease (CVD), thereby reducing healthcare costs and improving the quality of life for patients. This study aims to show the utility of biomedical shirt-based electrocardiography (ECG) monitoring of patients with CVD in different clinical situations using the Nuubo® ECG (nECG) system. An investigator-initiated, multicenter, prospective observational study was carried out in a cardiology (adult and pediatric) and cardiac rehabilitation wards. ECG monitoring was used with the biomedical shirt in the following four independent groups of patients: 1) 30 patients after pulmonary vein isolation (PVI), 2) 30 cardiac resynchronization therapy (CRT) recipients, 3) 120 patients during cardiac rehabilitation after myocardial infarction, and 4) 40 pediatric patients with supraventricular tachycardia (SVT) before electrophysiology study. Approval for all study groups was obtained from the institutional review board. The biomedical shirt captures the electrocardiographic signal via textile electrodes integrated into a garment. The software allows the visualization and analysis of data such as ECG, heart rate, arrhythmia detecting algorithm and relative position of the body is captured by an electronic device. The major advantages of the nECG system are continuous ECG monitoring during daily activities, high quality of ECG recordings, as well as assurance of a proper adherence due to adequate comfort while wearing the shirt. There are only a few studies that have examined wearable systems, especially in pediatric populations. This study is registered in ClinicalTrials.gov: Identifier NCT03068169. (Cardiol J 2018; 25, 1: 52-59).
Issues in implementing a knowledge-based ECG analyzer for personal mobile health monitoring.
Goh, K W; Kim, E; Lavanya, J; Kim, Y; Soh, C B
2006-01-01
Advances in sensor technology, personal mobile devices, and wireless broadband communications are enabling the development of an integrated personal mobile health monitoring system that can provide patients with a useful tool to assess their own health and manage their personal health information anytime and anywhere. Personal mobile devices, such as PDAs and mobile phones, are becoming more powerful integrated information management tools and play a major role in many people's lives. We focus on designing a health-monitoring system for people who suffer from cardiac arrhythmias. We have developed computer simulation models to evaluate the performance of appropriate electrocardiogram (ECG) analysis techniques that can be implemented on personal mobile devices. This paper describes an ECG analyzer to perform ECG beat and episode detection and classification. We have obtained promising preliminary results from our study. Also, we discuss several key considerations when implementing a mobile health monitoring solution. The mobile ECG analyzer would become a front-end patient health data acquisition module, which is connected to the Personal Health Information Management System (PHIMS) for data repository.
Saturation of the right-leg drive amplifier in low-voltage ECG monitors.
Freeman, Daniel K; Gatzke, Ronald D; Mallas, Georgios; Chen, Yu; Brouse, Chris J
2015-01-01
Electrocardiogram (ECG) monitoring is a critical tool in patient care, but its utility is often balanced with frustration from clinicians who are constantly distracted by false alarms. This has motivated the need to readdress the major factors that contribute to ECG noise with the goal of reducing false alarms. In this study, we describe a previously unreported phenomenon in which ECG noise can result from an unintended interaction between two systems: 1) the dc lead-off circuitry that is used to detect whether electrodes fall off the patient; and 2) the right-leg drive (RLD) system that is responsible for reducing ac common-mode noise that couples into the body. Using a circuit model to study this interaction, we found that in the presence of a dc lead-off system, even moderate increases in the right-leg skin-electrode resistance can cause the RLD amplifier to saturate. Such saturation can produce ECG noise because the RLD amplifier will no longer be capable of attenuating ac common-mode noise on the body. RLD saturation is particularly a problem for modern ECG monitors that use low-voltage supply levels. For example, for a 12-lead ECG and a 2 V power supply, saturation will occur when the right-leg electrode resistance reaches only 2 MΩ. We discuss several design solutions that can be used in low-voltage monitors to avoid RLD saturation.
A new mobile phone-based ECG monitoring system.
Iwamoto, Junichi; Yonezawa, Yoshiharu; Ogawa, Hiromichi Maki Hidekuni; Ninomiya, Ishio; Sada, Kouji; Hamada, Shingo; Hahn, Allen W; Caldwell, W Morton
2007-01-01
We have developed a system for monitoring a patient's electrocardiogram (ECG) and movement during daily activities. The complete system is mounted on chest electrodes and continuously samples the ECG and three axis accelerations. When the patient feels a heart discomfort, he or she pushes the data transmission switch on the recording system and the system sends the recorded ECG waveforms and three axis accelerations of the two prior minutes, and for two minutes after the switch is pressed. The data goes directly to a hospital server computer via a 2.4 GHz low power mobile phone. These data are stored on a server computer and downloaded to the physician's Java mobile phone. The physician can display the data on the phone's liquid crystal display.
Dai, Ming; Xiao, Xueliang; Chen, Xin; Lin, Haoming; Wu, Wanqing; Chen, Siping
2016-12-01
With the increasing aging population as well as health concerns, chronic heart disease has become the focus of public attention. A comfortable, low-powered, and wearable electrocardiogram (ECG) system for continuously monitoring the elderly's ECG signals over several hours is important for preventing cardiovascular diseases. Traditional ECG monitoring apparatus is often inconvenient to carry, has many electrodes to attach to the chest, and has a high-power consumption. There is also a challenge to design an electrocardiograph that satisfies requirements such as comfort, confinement, and compactness. Based on these considerations, this study presents a biosensor acquisition system for wearable, ubiquitous healthcare applications using three textile electrodes and a recording circuit specialized for ECG monitoring. In addition, several methods were adopted to reduce the power consumption of the device. The proposed system is composed of three parts: (1) an ECG analog front end (AFE), (2) digital signal processing and micro-control circuits, and (3) system software. Digital filter methods were used to eliminate the baseline wander, skin contact noise, and other interfering signals. A comparative study was conducted using this system to observe its performance with two commercial Holter monitors. The experimental results demonstrated that the total power consumption of this proposed system in a full round of ECG acquisition was only 29.74 mW. In addition, this low-power system performed well and stably measured the heart rate with an accuracy of 98.55 %. It can also contain a real-time dynamic display with organic light-emitting diodes (OLED) and wirelessly transmit information via a Bluetooth 4.0 module.
Heo, Jin-Chul; Kim, Beomjoon; Kim, Yoon-Nyun; Kim, Dae-Kwang; Lee, Jong-Ha
2017-12-14
Prolonged monitoring by cardiac electrocardiogram (ECG) sensors is useful for patients with emergency heart conditions. However, implant monitoring systems are limited by lack of tissue biocompatibility. Here, we developed an implantable ECG sensor for real-time monitoring of ventricular fibrillation and evaluated its biocompatibility using an animal model. The implantable sensor comprised transplant sensors with two electrodes, a wireless power transmission system, and a monitoring system. The sensor was inserted into the subcutaneous tissue of the abdominal area and operated for 1 h/day for 5 days using a wireless power system. Importantly, the sensor was encapsulated by subcutaneous tissue and induced angiogenesis, inflammation, and phagocytosis. In addition, we observed that the levels of inflammation-related markers increased with wireless-powered transmission via the ECG sensor; in particular, levels of the Th-1 cytokine interleukin-12 were significantly increased. The results showed that induced tissue damage was associated with the use of wireless-powered sensors. We also investigated research strategies for the prevention of adverse effects caused by lack of tissue biocompatibility of a wireless-powered ECG monitoring system and provided information on the clinical applications of inflammatory reactions in implant treatment using the wireless-powered transmission system.
Heo, Jin-Chul; Kim, Beomjoon; Kim, Yoon-Nyun; Kim, Dae-Kwang; Lee, Jong-Ha
2017-01-01
Prolonged monitoring by cardiac electrocardiogram (ECG) sensors is useful for patients with emergency heart conditions. However, implant monitoring systems are limited by lack of tissue biocompatibility. Here, we developed an implantable ECG sensor for real-time monitoring of ventricular fibrillation and evaluated its biocompatibility using an animal model. The implantable sensor comprised transplant sensors with two electrodes, a wireless power transmission system, and a monitoring system. The sensor was inserted into the subcutaneous tissue of the abdominal area and operated for 1 h/day for 5 days using a wireless power system. Importantly, the sensor was encapsulated by subcutaneous tissue and induced angiogenesis, inflammation, and phagocytosis. In addition, we observed that the levels of inflammation-related markers increased with wireless-powered transmission via the ECG sensor; in particular, levels of the Th-1 cytokine interleukin-12 were significantly increased. The results showed that induced tissue damage was associated with the use of wireless-powered sensors. We also investigated research strategies for the prevention of adverse effects caused by lack of tissue biocompatibility of a wireless-powered ECG monitoring system and provided information on the clinical applications of inflammatory reactions in implant treatment using the wireless-powered transmission system. PMID:29240666
A Wearable Healthcare System With a 13.7 μA Noise Tolerant ECG Processor.
Izumi, Shintaro; Yamashita, Ken; Nakano, Masanao; Kawaguchi, Hiroshi; Kimura, Hiromitsu; Marumoto, Kyoji; Fuchikami, Takaaki; Fujimori, Yoshikazu; Nakajima, Hiroshi; Shiga, Toshikazu; Yoshimoto, Masahiko
2015-10-01
To prevent lifestyle diseases, wearable bio-signal monitoring systems for daily life monitoring have attracted attention. Wearable systems have strict size and weight constraints, which impose significant limitations of the battery capacity and the signal-to-noise ratio of bio-signals. This report describes an electrocardiograph (ECG) processor for use with a wearable healthcare system. It comprises an analog front end, a 12-bit ADC, a robust Instantaneous Heart Rate (IHR) monitor, a 32-bit Cortex-M0 core, and 64 Kbyte Ferroelectric Random Access Memory (FeRAM). The IHR monitor uses a short-term autocorrelation (STAC) algorithm to improve the heart-rate detection accuracy despite its use in noisy conditions. The ECG processor chip consumes 13.7 μA for heart rate logging application.
A Cardiac Early Warning System with Multi Channel SCG and ECG Monitoring for Mobile Health
Sahoo, Prasan Kumar; Thakkar, Hiren Kumar; Lee, Ming-Yih
2017-01-01
Use of information and communication technology such as smart phone, smart watch, smart glass and portable health monitoring devices for healthcare services has made Mobile Health (mHealth) an emerging research area. Coronary Heart Disease (CHD) is considered as a leading cause of death world wide and an increasing number of people die prematurely due to CHD. Under such circumstances, there is a growing demand for a reliable cardiac monitoring system to catch the intermittent abnormalities and detect critical cardiac behaviors which lead to sudden death. Use of mobile devices to collect Electrocardiography (ECG), Seismocardiography (SCG) data and efficient analysis of those data can monitor a patient’s cardiac activities for early warning. This paper presents a novel cardiac data acquisition method and combined analysis of Electrocardiography (ECG) and multi channel Seismocardiography (SCG) data. An early warning system is implemented to monitor the cardiac activities of a person and accuracy assessment of the early warning system is conducted for the ECG data only. The assessment shows 88% accuracy and effectiveness of our proposed analysis, which implies the viability and applicability of the proposed early warning system. PMID:28353681
A Cardiac Early Warning System with Multi Channel SCG and ECG Monitoring for Mobile Health.
Sahoo, Prasan Kumar; Thakkar, Hiren Kumar; Lee, Ming-Yih
2017-03-29
Use of information and communication technology such as smart phone, smart watch, smart glass and portable health monitoring devices for healthcare services has made Mobile Health (mHealth) an emerging research area. Coronary Heart Disease (CHD) is considered as a leading cause of death world wide and an increasing number of people die prematurely due to CHD. Under such circumstances, there is a growing demand for a reliable cardiac monitoring system to catch the intermittent abnormalities and detect critical cardiac behaviors which lead to sudden death. Use of mobile devices to collect Electrocardiography (ECG), Seismocardiography (SCG) data and efficient analysis of those data can monitor a patient's cardiac activities for early warning. This paper presents a novel cardiac data acquisition method and combined analysis of Electrocardiography (ECG) and multi channel Seismocardiography (SCG) data. An early warning system is implemented to monitor the cardiac activities of a person and accuracy assessment of the early warning system is conducted for the ECG data only. The assessment shows 88% accuracy and effectiveness of our proposed analysis, which implies the viability and applicability of the proposed early warning system.
Yang, Shu; Qiu, Yuyan; Shi, Bo
2016-09-01
This paper explores the methods of building the internet of things of a regional ECG monitoring, focused on the implementation of ECG monitoring center based on cloud computing platform. It analyzes implementation principles of automatic identifi cation in the types of arrhythmia. It also studies the system architecture and key techniques of cloud computing platform, including server load balancing technology, reliable storage of massive smalfi les and the implications of quick search function.
Cho, Gyoun-Yon; Lee, Seo-Joon; Lee, Tae-Ro
2015-01-01
Recent medical information systems are striving towards real-time monitoring models to care patients anytime and anywhere through ECG signals. However, there are several limitations such as data distortion and limited bandwidth in wireless communications. In order to overcome such limitations, this research focuses on compression. Few researches have been made to develop a specialized compression algorithm for ECG data transmission in real-time monitoring wireless network. Not only that, recent researches' algorithm is not appropriate for ECG signals. Therefore this paper presents a more developed algorithm EDLZW for efficient ECG data transmission. Results actually showed that the EDLZW compression ratio was 8.66, which was a performance that was 4 times better than any other recent compression method widely used today.
Motion artifact removal algorithm by ICA for e-bra: a women ECG measurement system
NASA Astrophysics Data System (ADS)
Kwon, Hyeokjun; Oh, Sechang; Varadan, Vijay K.
2013-04-01
Wearable ECG(ElectroCardioGram) measurement systems have increasingly been developing for people who suffer from CVD(CardioVascular Disease) and have very active lifestyles. Especially, in the case of female CVD patients, several abnormal CVD symptoms are accompanied with CVDs. Therefore, monitoring women's ECG signal is a significant diagnostic method to prevent from sudden heart attack. The E-bra ECG measurement system from our previous work provides more convenient option for women than Holter monitor system. The e-bra system was developed with a motion artifact removal algorithm by using an adaptive filter with LMS(least mean square) and a wandering noise baseline detection algorithm. In this paper, ICA(independent component analysis) algorithms are suggested to remove motion artifact factor for the e-bra system. Firstly, the ICA algorithms are developed with two kinds of statistical theories: Kurtosis, Endropy and evaluated by performing simulations with a ECG signal created by sgolayfilt function of MATLAB, a noise signal including 0.4Hz, 1.1Hz and 1.9Hz, and a weighed vector W estimated by kurtosis or entropy. A correlation value is shown as the degree of similarity between the created ECG signal and the estimated new ECG signal. In the real time E-Bra system, two pseudo signals are extracted by multiplying with a random weighted vector W, the measured ECG signal from E-bra system, and the noise component signal by noise extraction algorithm from our previous work. The suggested ICA algorithm basing on kurtosis or entropy is used to estimate the new ECG signal Y without noise component.
Evaluation of an electrocardiogram on QR code.
Nakayama, Masaharu; Shimokawa, Hiroaki
2013-01-01
An electrocardiogram (ECG) is an indispensable tool to diagnose cardiac diseases, such as ischemic heart disease, myocarditis, arrhythmia, and cardiomyopathy. Since ECG patterns vary depend on patient status, it is also used to monitor patients during treatment and comparison with ECGs with previous results is important for accurate diagnosis. However, the comparison requires connection to ECG data server in a hospital and the availability of data connection among hospitals is limited. To improve the portability and availability of ECG data regardless of server connection, we here introduce conversion of ECG data into 2D barcodes as text data and decode of the QR code for drawing ECG with Google Chart API. Fourteen cardiologists and six general physicians evaluated the system using iPhone and iPad. Overall, they were satisfied with the system in usability and accuracy of decoded ECG compared to the original ECG. This new coding system may be useful in utilizing ECG data irrespective of server connections.
Noncontact ECG system for unobtrusive long-term monitoring.
McDonald, Neil J; Anumula, Harini A; Duff, Eric; Soussou, Walid
2012-01-01
This paper describes measurements made using an ECG system with QUASAR's capacitive bioelectrodes integrated into a pad system that is placed over a chair. QUASAR's capacitive bioelectrode has the property of measuring bioelectric potentials at a small separation from the body. This enables the measurement of ECG signals through fabric, without the removal of clothing or preparation of skin. The ECG was measured through the subject's clothing while the subject sat in the chair without any supporting action from the subject. The ECG pad system is an example of a high compliance system that places minimal requirements upon the subject and, consequently, can be used to generate a long-term record from ECG segments collected on a daily basis, providing valuable information on long-term trends in cardiac health.
An Interoperable System toward Cardiac Risk Stratification from ECG Monitoring
Mora-Jiménez, Inmaculada; Ramos-López, Javier; Quintanilla Fernández, Teresa; García-García, Antonio; Díez-Mazuela, Daniel; García-Alberola, Arcadi
2018-01-01
Many indices have been proposed for cardiovascular risk stratification from electrocardiogram signal processing, still with limited use in clinical practice. We created a system integrating the clinical definition of cardiac risk subdomains from ECGs and the use of diverse signal processing techniques. Three subdomains were defined from the joint analysis of the technical and clinical viewpoints. One subdomain was devoted to demographic and clinical data. The other two subdomains were intended to obtain widely defined risk indices from ECG monitoring: a simple-domain (heart rate turbulence (HRT)), and a complex-domain (heart rate variability (HRV)). Data provided by the three subdomains allowed for the generation of alerts with different intensity and nature, as well as for the grouping and scrutinization of patients according to the established processing and risk-thresholding criteria. The implemented system was tested by connecting data from real-world in-hospital electronic health records and ECG monitoring by considering standards for syntactic (HL7 messages) and semantic interoperability (archetypes based on CEN/ISO EN13606 and SNOMED-CT). The system was able to provide risk indices and to generate alerts in the health records to support decision-making. Overall, the system allows for the agile interaction of research and clinical practice in the Holter-ECG-based cardiac risk domain. PMID:29494497
Cloud-ECG for real time ECG monitoring and analysis.
Xia, Henian; Asif, Irfan; Zhao, Xiaopeng
2013-06-01
Recent advances in mobile technology and cloud computing have inspired numerous designs of cloud-based health care services and devices. Within the cloud system, medical data can be collected and transmitted automatically to medical professionals from anywhere and feedback can be returned to patients through the network. In this article, we developed a cloud-based system for clients with mobile devices or web browsers. Specially, we aim to address the issues regarding the usefulness of the ECG data collected from patients themselves. Algorithms for ECG enhancement, ECG quality evaluation and ECG parameters extraction were implemented in the system. The system was demonstrated by a use case, in which ECG data was uploaded to the web server from a mobile phone at a certain frequency and analysis was performed in real time using the server. The system has been proven to be functional, accurate and efficient. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
FPGA Implementation of Heart Rate Monitoring System.
Panigrahy, D; Rakshit, M; Sahu, P K
2016-03-01
This paper describes a field programmable gate array (FPGA) implementation of a system that calculates the heart rate from Electrocardiogram (ECG) signal. After heart rate calculation, tachycardia, bradycardia or normal heart rate can easily be detected. ECG is a diagnosis tool routinely used to access the electrical activities and muscular function of the heart. Heart rate is calculated by detecting the R peaks from the ECG signal. To provide a portable and the continuous heart rate monitoring system for patients using ECG, needs a dedicated hardware. FPGA provides easy testability, allows faster implementation and verification option for implementing a new design. We have proposed a five-stage based methodology by using basic VHDL blocks like addition, multiplication and data conversion (real to the fixed point and vice-versa). Our proposed heart rate calculation (R-peak detection) method has been validated, using 48 first channel ECG records of the MIT-BIH arrhythmia database. It shows an accuracy of 99.84%, the sensitivity of 99.94% and the positive predictive value of 99.89%. Our proposed method outperforms other well-known methods in case of pathological ECG signals and successfully implemented in FPGA.
ECG Holter monitor with alert system and mobile application
NASA Astrophysics Data System (ADS)
Teron, Abigail C.; Rivera, Pedro A.; Goenaga, Miguel A.
2016-05-01
This paper proposes a new approach on the Holter monitor by creating a portable Electrocardiogram (ECG) Holter monitor that will alert the user by detecting abnormal heart beats using a digital signal processing software. The alarm will be triggered when the patient experiences arrhythmias such as bradycardia and tachycardia. The equipment is simple, comfortable and small in size that fit in the hand. It can be used at any time and any moment by placing three leads to the person's chest which is connected to an electronic circuit. The ECG data will be transmitted via Bluetooth to the memory of a selected mobile phone using an application that will store the collected data for up to 24 hrs. The arrhythmia is identified by comparing the reference signals with the user's signal. The diagnostic results demonstrate that the ECG Holter monitor alerts the user when an arrhythmia is detected thru the Holter monitor and mobile application.
[An ultra-low power, wearable, long-term ECG monitoring system with mass storage].
Liu, Na; Chen, Yingmin; Zhang, Wenzan; Luo, Zhangyuan; Jin, Xun; Ying, Weihai
2012-01-01
In this paper, we described an ultra-low power, wearable ECG system capable of long term monitoring and mass storage. This system is based on micro-chip PIC18F27J13 with consideration of its high level of integration and low power consumption. The communication with the micro-SD card is achieved through SPI bus. Through the USB, it can be connected to the computer for replay and disease diagnosis. Given its low power cost, lithium cells are used to support continuous ECG acquiring and storage for up to 15 days. Meanwhile, the wearable electrodes avoid the pains and possible risks in implanting. Besides, the mini size of the system makes long wearing possible for patients and meets the needs of long-term dynamic monitoring and mass storage requirements.
Development of Novel Non-Contact Electrodes for Mobile Electrocardiogram Monitoring System
Chou, Willy; Wang, Hsing-Yu; Huang, Yan-Jun; Pan, Jeng-Shyang
2013-01-01
Real-time monitoring of cardiac health is helpful for patients with cardiovascular disease. Many telemedicine systems based on ubiquitous computing and communication techniques have been proposed for monitoring the user's electrocardiogram (ECG) anywhere and anytime. Usually, wet electrodes are used in these telemedicine systems. However, wet electrodes require conduction gels and skin preparation that can be inconvenient and uncomfortable for users. In order to overcome this issue, a new non-contact electrode circuit was proposed and applied in developing a mobile electrocardiogram monitoring system. The proposed non-contact electrode can measure bio-potentials across thin clothing, allowing it to be embedded in a user's normal clothing to monitor ECG in daily life. We attempted to simplify the design of these non-contact electrodes to reduce power consumption while continuing to provide good signal quality. The electrical specifications and the performance of monitoring arrhythmia in clinical settings were also validated to investigate the reliability of the proposed design. Experimental results show that the proposed non-contact electrode provides good signal quality for measuring ECG across thin clothes. PMID:27170853
Privacy-Preserving Electrocardiogram Monitoring for Intelligent Arrhythmia Detection.
Son, Junggab; Park, Juyoung; Oh, Heekuck; Bhuiyan, Md Zakirul Alam; Hur, Junbeom; Kang, Kyungtae
2017-06-12
Long-term electrocardiogram (ECG) monitoring, as a representative application of cyber-physical systems, facilitates the early detection of arrhythmia. A considerable number of previous studies has explored monitoring techniques and the automated analysis of sensing data. However, ensuring patient privacy or confidentiality has not been a primary concern in ECG monitoring. First, we propose an intelligent heart monitoring system, which involves a patient-worn ECG sensor (e.g., a smartphone) and a remote monitoring station, as well as a decision support server that interconnects these components. The decision support server analyzes the heart activity, using the Pan-Tompkins algorithm to detect heartbeats and a decision tree to classify them. Our system protects sensing data and user privacy, which is an essential attribute of dependability, by adopting signal scrambling and anonymous identity schemes. We also employ a public key cryptosystem to enable secure communication between the entities. Simulations using data from the MIT-BIH arrhythmia database demonstrate that our system achieves a 95.74% success rate in heartbeat detection and almost a 96.63% accuracy in heartbeat classification, while successfully preserving privacy and securing communications among the involved entities.
Privacy-Preserving Electrocardiogram Monitoring for Intelligent Arrhythmia Detection †
Son, Junggab; Park, Juyoung; Oh, Heekuck; Bhuiyan, Md Zakirul Alam; Hur, Junbeom; Kang, Kyungtae
2017-01-01
Long-term electrocardiogram (ECG) monitoring, as a representative application of cyber-physical systems, facilitates the early detection of arrhythmia. A considerable number of previous studies has explored monitoring techniques and the automated analysis of sensing data. However, ensuring patient privacy or confidentiality has not been a primary concern in ECG monitoring. First, we propose an intelligent heart monitoring system, which involves a patient-worn ECG sensor (e.g., a smartphone) and a remote monitoring station, as well as a decision support server that interconnects these components. The decision support server analyzes the heart activity, using the Pan–Tompkins algorithm to detect heartbeats and a decision tree to classify them. Our system protects sensing data and user privacy, which is an essential attribute of dependability, by adopting signal scrambling and anonymous identity schemes. We also employ a public key cryptosystem to enable secure communication between the entities. Simulations using data from the MIT-BIH arrhythmia database demonstrate that our system achieves a 95.74% success rate in heartbeat detection and almost a 96.63% accuracy in heartbeat classification, while successfully preserving privacy and securing communications among the involved entities. PMID:28604628
Implementation of a WAP-based telemedicine system for patient monitoring.
Hung, Kevin; Zhang, Yuan-Ting
2003-06-01
Many parties have already demonstrated telemedicine applications that use cellular phones and the Internet. A current trend in telecommunication is the convergence of wireless communication and computer network technologies, and the emergence of wireless application protocol (WAP) devices is an example. Since WAP will also be a common feature found in future mobile communication devices, it is worthwhile to investigate its use in telemedicine. This paper describes the implementation and experiences with a WAP-based telemedicine system for patient-monitoring that has been developed in our laboratory. It utilizes WAP devices as mobile access terminals for general inquiry and patient-monitoring services. Authorized users can browse the patients' general data, monitored blood pressure (BP), and electrocardiogram (ECG) on WAP devices in store-and-forward mode. The applications, written in wireless markup language (WML), WMLScript, and Perl, resided in a content server. A MySQL relational database system was set up to store the BP readings, ECG data, patient records, clinic and hospital information, and doctors' appointments with patients. A wireless ECG subsystem was built for recording ambulatory ECG in an indoor environment and for storing ECG data into the database. For testing, a WAP phone compliant with WAP 1.1 was used at GSM 1800 MHz by circuit-switched data (CSD) to connect to the content server through a WAP gateway, which was provided by a mobile phone service provider in Hong Kong. Data were successfully retrieved from the database and displayed on the WAP phone. The system shows how WAP can be feasible in remote patient-monitoring and patient data retrieval.
Reconfigurable wearable to monitor physiological variables and movement
NASA Astrophysics Data System (ADS)
Romero, Francisco J.; Morales, Diego P.; Castillo, Encarnación; García, Antonio; Tahmassebi, Amirhessam; Meyer-Baese, Anke
2017-05-01
This article presents a preliminary prototype of a wearable instrument for oxygen saturation and ECG monitoring. The proposed measuring system is based on the light reflection variability of a LED emission on the subject temple. Besides, the system has the capacity to incorporate electrodes to obtain ECG measurements. All measurements are stored and transmitted to a mobile device (tablet or smartphone) through a Bluetooth link.
Trigo, Jesús Daniel; Martínez, Ignacio; Alesanco, Alvaro; Kollmann, Alexander; Escayola, Javier; Hayn, Dieter; Schreier, Günter; García, José
2012-07-01
This paper investigates the application of the enterprise information system (EIS) paradigm to standardized cardiovascular condition monitoring. There are many specifications in cardiology, particularly in the ECG standardization arena. The existence of ECG formats, however, does not guarantee the implementation of homogeneous, standardized solutions for ECG management. In fact, hospital management services need to cope with various ECG formats and, moreover, several different visualization applications. This heterogeneity hampers the normalization of integrated, standardized healthcare information systems, hence the need for finding an appropriate combination of ECG formats and a suitable EIS-based software architecture that enables standardized exchange and homogeneous management of ECG formats. Determining such a combination is one objective of this paper. The second aim is to design and develop the integrated healthcare information system that satisfies the requirements posed by the previous determination. The ECG formats selected include ISO/IEEE11073, Standard Communications Protocol for Computer-Assisted Electrocardiography, and an ECG ontology. The EIS-enabling techniques and technologies selected include web services, simple object access protocol, extensible markup language, or business process execution language. Such a selection ensures the standardized exchange of ECGs within, or across, healthcare information systems while providing modularity and accessibility.
A compact ECG R-R interval, respiration and activity recording system.
Yoshimura, Takahiro; Yonezawa, Yoshiharu; Maki, Hiromichi; Ogawa, Hidekuni; Hahn, Allen W; Thayer, Julian F; Caldwell, W Morton
2003-01-01
An ECG R-R interval, respiration and activity recording system has been developed for monitoring variability of heart rate and respiratory frequency during daily life. The recording system employs a variable gain instrumentation amplifier, an accelerometer, a low power 8-bit single-chip microcomputer and a 1024 KB EEPROM. It is constructed on three ECG chest electrodes. The R-R interval and respiration are detected from the ECG. Activity during walking and running is calculated from an accelerator. The detected data are stored in an EEPROM and after recording, are downloaded to a desktop computer for analysis.
NASA Technical Reports Server (NTRS)
Scheuring, Richard A.; Hamilton, Doug; Jones, Jeffrey A.; Alexander, David
2009-01-01
There are currently several physiological monitoring requirements for EVA in the Human-Systems Interface Requirements (HSIR) document. There are questions as to whether the capability to monitor heart rhythm in the lunar surface space suit is a necessary capability for lunar surface operations. Similarly, there are questions as to whether the capability to monitor heart rhythm during a cabin depressurization scenario in the launch/landing space suit is necessary. This presentation seeks to inform space medicine personnel of recommendations made by an expert panel of cardiovascular medicine specialists regarding in-suit ECG heart rhythm monitoring requirements during lunar surface operations. After a review of demographic information and clinical cases and panel discussion, the panel recommended that ECG monitoring capability as a clinical tool was not essential in the lunar space suit; ECG monitoring was not essential in the launch/landing space suit for contingency scenarios; the current hear rate monitoring capability requirement for both launch/landing and lunar space suits should be maintained; lunar vehicles should be required to have ECG monitoring capability with a minimum of 5-lead ECG for IVA medical assessments; and, exercise stress testing for astronaut selection and retention should be changed from the current 85% maximum heart rate limit to maximal, exhaustive 'symptom-limited' testing to maximize diagnostic utility as a screening tool for evaluating the functional capacity of astronauts and their cardiovascular health.
Labview Based ECG Patient Monitoring System for Cardiovascular Patient Using SMTP Technology.
Singh, Om Prakash; Mekonnen, Dawit; Malarvili, M B
2015-01-01
This paper leads to developing a Labview based ECG patient monitoring system for cardiovascular patient using Simple Mail Transfer Protocol technology. The designed device has been divided into three parts. First part is ECG amplifier circuit, built using instrumentation amplifier (AD620) followed by signal conditioning circuit with the operation amplifier (lm741). Secondly, the DAQ card is used to convert the analog signal into digital form for the further process. Furthermore, the data has been processed in Labview where the digital filter techniques have been implemented to remove the noise from the acquired signal. After processing, the algorithm was developed to calculate the heart rate and to analyze the arrhythmia condition. Finally, SMTP technology has been added in our work to make device more communicative and much more cost-effective solution in telemedicine technology which has been key-problem to realize the telediagnosis and monitoring of ECG signals. The technology also can be easily implemented over already existing Internet.
Labview Based ECG Patient Monitoring System for Cardiovascular Patient Using SMTP Technology
Singh, Om Prakash; Mekonnen, Dawit; Malarvili, M. B.
2015-01-01
This paper leads to developing a Labview based ECG patient monitoring system for cardiovascular patient using Simple Mail Transfer Protocol technology. The designed device has been divided into three parts. First part is ECG amplifier circuit, built using instrumentation amplifier (AD620) followed by signal conditioning circuit with the operation amplifier (lm741). Secondly, the DAQ card is used to convert the analog signal into digital form for the further process. Furthermore, the data has been processed in Labview where the digital filter techniques have been implemented to remove the noise from the acquired signal. After processing, the algorithm was developed to calculate the heart rate and to analyze the arrhythmia condition. Finally, SMTP technology has been added in our work to make device more communicative and much more cost-effective solution in telemedicine technology which has been key-problem to realize the telediagnosis and monitoring of ECG signals. The technology also can be easily implemented over already existing Internet. PMID:27006940
Closed-Loop Control of Humidification for Artifact Reduction in Capacitive ECG Measurements.
Leicht, Lennart; Eilebrecht, Benjamin; Weyer, Soren; Leonhardt, Steffen; Teichmann, Daniel
2017-04-01
Recording biosignals without the need for direct skin contact offers new opportunities for ubiquitous health monitoring. Electrodes with capacitive coupling have been shown to be suitable for the monitoring of electrical potentials on the body surface, in particular ECG. However, due to triboelectric charge generation and motion artifacts, signal and thus diagnostic quality is inferior to galvanic coupling. Active closed-loop humidification of capacitive electrodes is proposed in this work as a new concept to improve signal quality. A capacitive ECG recording system integrated into a common car seat is presented. It can regulate the micro climate at the interface of electrode and patient by actively dispensing water vapour and monitoring humidity in a closed-loop approach. As a regenerative water reservoir, silica gel is used. The system was evaluated with respect to subjective and objective ECG signal quality. Active humidification was found to have a significant positive effect in case of previously poor quality. Also, it had no diminishing effect in case of already good signal quality.
Lancia, Loreto; Toccaceli, Andrea; Petrucci, Cristina; Romano, Silvio; Penco, Maria
2018-05-01
The purpose of the study was to compare the EASI system with the standard 12-lead surface electrocardiogram (ECG) for the accuracy in detecting the main electrocardiographic parameters (J point, PR, QT, and QRS) commonly monitored in patients with acute coronary syndromes or heart failure. In this observational comparative study, 253 patients who were consecutively admitted to the coronary care unit with acute coronary syndrome or heart failure were evaluated. In all patients, two complete 12-lead ECGs were acquired simultaneously. A total of 6,072 electrocardiographic leads were compared (3,036 standard and 3,036 EASI). No significant differences were found between the investigate parameters of the two measurement methods, either in patients with acute coronary syndrome or in those with heart failure. This study confirmed the accuracy of the EASI system in monitoring the main ECG parameters in patients admitted to the coronary care unit with acute coronary syndrome or heart failure.
Lucani, Daniel; Cataldo, Giancarlos; Cruz, Julio; Villegas, Guillermo; Wong, Sara
2006-01-01
A prototype of a portable ECG-monitoring device has been developed for clinical and non-clinical environments as part of a telemedicine system to provide remote and continuous surveillance of patients. The device can acquire, store and/or transmit ECG signals to computer-based platforms or specially configured access points (AP) with Intranet/Internet capabilities in order to reach remote monitoring stations. Acquired data can be stored in a flash memory card in FAT16 format for later recovery, or transmitted via Bluetooth or USB to a local station or AP. This data acquisition module (DAM) operates in two modes: Holter and on-line transmission.
Development of a portable wireless system for bipolar concentric ECG recording
NASA Astrophysics Data System (ADS)
Prats-Boluda, G.; Ye-Lin, Y.; Bueno Barrachina, J. M.; Senent, E.; Rodriguez de Sanabria, R.; Garcia-Casado, J.
2015-07-01
Cardiovascular diseases (CVDs) remain the biggest cause of deaths worldwide. ECG monitoring is a key tool for early diagnosis of CVDs. Conventional monitors use monopolar electrodes resulting in poor spatial resolution surface recordings and requiring extensive wiring. High-spatial resolution surface electrocardiographic recordings provide valuable information for the diagnosis of a wide range of cardiac abnormalities, including infarction and arrhythmia. The aim of this work was to develop and test a wireless recording system for acquiring high spatial resolution ECG signals, based on a flexible tripolar concentric electrode (TCE) without cable wiring or external reference electrode which would make more comnfortable its use in clinical practice. For this, a portable, wireless sensor node for analogue conditioning, digitalization and transmission of a bipolar concentric ECG signal (BC-ECG) using a TCE and a Mason-likar Lead-I ECG (ML-Lead-I ECG) signal was developed. Experimental results from a total of 32 healthy volunteers showed that the ECG fiducial points in the BC-ECG signals, recorded with external and internal reference electrode, are consistent with those of simultaneous ML-Lead-I ECG. No statistically significant difference was found in either signal amplitude or morphology, regardless of the reference electrode used, being the signal-to-noise similar to that of ML-Lead-I ECG. Furthermore, it has been observed that BC-ECG signals contain information that could not available in conventional records, specially related to atria activity. The proposed wireless sensor node provides non-invasive high-local resolution ECG signals using only a TCE without additional wiring, which would have great potential in medical diagnosis of diseases such as atrial or ventricular fibrillations or arrhythmias that currently require invasive diagnostic procedures (catheterization).
Telefetalcare: a first prototype of a wearable fetal electrocardiograph.
Fanelli, A; Signorini, M G; Ferrario, M; Perego, P; Piccini, L; Andreoni, G; Magenes, G
2011-01-01
Fetal heart rate monitoring is fundamental to infer information about fetal health state during pregnancy. The cardiotocography (CTG) is the most common antepartum monitoring technique. Abdominal ECG recording represents the most valuable alternative to cardiotocography, as it allows passive, non invasive and long term fetal monitoring. Unluckily fetal ECG has low SNR and needs to be extracted from abdominal recordings using ad hoc algorithms. This work describes a prototype of a wearable fetal ECG electrocardiograph. The system has flat band frequency response between 1-60 Hz and guarantees good signal quality. It was tested on pregnant women between the 30(th) and 34(th) gestational week. Several electrodes configurations were tested, in order to identify the best solution. Implementation of a simple algorithm for FECG extraction permitted the reliable detection of maternal and fetal QRS complexes. The system will allow continuative and deep screening of fetal heart rate, introducing the possibility of home fetal monitoring.
A Remote Health Monitoring System for the Elderly Based on Smart Home Gateway
Shao, Minggang
2017-01-01
This paper proposed a remote health monitoring system for the elderly based on smart home gateway. The proposed system consists of three parts: the smart clothing, the smart home gateway, and the health care server. The smart clothing collects the elderly's electrocardiogram (ECG) and motion signals. The home gateway is used for data transmission. The health care server provides services of data storage and user information management; it is constructed on the Windows-Apache-MySQL-PHP (WAMP) platform and is tested on the Ali Cloud platform. To resolve the issues of data overload and network congestion of the home gateway, an ECG compression algorithm is applied. System demonstration shows that the ECG signals and motion signals of the elderly can be monitored. Evaluation of the compression algorithm shows that it has a high compression ratio and low distortion and consumes little time, which is suitable for home gateways. The proposed system has good scalability, and it is simple to operate. It has the potential to provide long-term and continuous home health monitoring services for the elderly. PMID:29204258
A Remote Health Monitoring System for the Elderly Based on Smart Home Gateway.
Guan, Kai; Shao, Minggang; Wu, Shuicai
2017-01-01
This paper proposed a remote health monitoring system for the elderly based on smart home gateway. The proposed system consists of three parts: the smart clothing, the smart home gateway, and the health care server. The smart clothing collects the elderly's electrocardiogram (ECG) and motion signals. The home gateway is used for data transmission. The health care server provides services of data storage and user information management; it is constructed on the Windows-Apache-MySQL-PHP (WAMP) platform and is tested on the Ali Cloud platform. To resolve the issues of data overload and network congestion of the home gateway, an ECG compression algorithm is applied. System demonstration shows that the ECG signals and motion signals of the elderly can be monitored. Evaluation of the compression algorithm shows that it has a high compression ratio and low distortion and consumes little time, which is suitable for home gateways. The proposed system has good scalability, and it is simple to operate. It has the potential to provide long-term and continuous home health monitoring services for the elderly.
Custom FPGA processing for real-time fetal ECG extraction and identification.
Torti, E; Koliopoulos, D; Matraxia, M; Danese, G; Leporati, F
2017-01-01
Monitoring the fetal cardiac activity during pregnancy is of crucial importance for evaluating fetus health. However, there is a lack of automatic and reliable methods for Fetal ECG (FECG) monitoring that can perform this elaboration in real-time. In this paper, we present a hardware architecture, implemented on the Altera Stratix V FPGA, capable of separating the FECG from the maternal ECG and to correctly identify it. We evaluated our system using both synthetic and real tracks acquired from patients beyond the 20th pregnancy week. This work is part of a project aiming at developing a portable system for FECG continuous real-time monitoring. Its characteristics of reduced power consumption, real-time processing capability and reduced size make it suitable to be embedded in the overall system, that is the first proposed exploiting Blind Source Separation with this technology, to the best of our knowledge. Copyright © 2016 Elsevier Ltd. All rights reserved.
A wearable 12-lead ECG acquisition system with fabric electrodes.
Haoshi Zhang; Lan Tian; Huiyang Lu; Ming Zhou; Haiqing Zou; Peng Fang; Fuan Yao; Guanglin Li
2017-07-01
Continuous electrocardiogram (ECG) monitoring is significant for prevention of heart disease and is becoming an important part of personal and family health care. In most of the existing wearable solutions, conventional metal sensors and corresponding chips are simply integrated into clothes and usually could only collect few leads of ECG signals that could not provide enough information for diagnosis of cardiac diseases such as arrhythmia and myocardial ischemia. In this study, a wearable 12-lead ECG acquisition system with fabric electrodes was developed and could simultaneously process 12 leads of ECG signals. By integrating the fabric electrodes into a T-shirt, the wearable system would provide a comfortable and convenient user interface for ECG recording. For comparison, the proposed fabric electrode and the gelled traditional metal electrodes were used to collect ECG signals on a subject, respectively. The approximate entropy (ApEn) of ECG signals from both types of electrodes were calculated. The experimental results show that the fabric electrodes could achieve similar performance as the gelled metal electrodes. This preliminary work has demonstrated that the developed ECG system with fabric electrodes could be utilized for wearable health management and telemedicine applications.
Nonintrusive biosignal measurement system in a vehicle.
Lee, Haet Bit; Choi, Jong Min; Kim, Jung Soo; Kim, Yun Seong; Baek, Hyun Jae; Ryu, Myung Suk; Sohn, Ryang Hee; Park, Kwang Suk
2007-01-01
Measurement of driver's state is important in both daily healthcare and prevention of car accidents. Existing measurement methods, however, are too complex and uncomfortable to measure for everyday. A nonintrusive biosignal monitoring system is demanded for increasing the accessibility. In this paper, we proposed a nonintrusive measurement system integrated in a vehicle for recording electrocardiographic (ECG) signals and tested the performance of the system. The system consists of dry electrodes attached to the steering wheel and a wireless communication module using a Bluetooth device. ECG signals measured by our system were compared with those by a conventional system employing wet electrodes during real city road driving. Various parameters used for HRV analysis in time and frequency domain showed no significant differences between the two simultaneously measured ECG signals. The result implies the possibility that developed system could have a potential to monitor health information in a vehicle instead of commercial equipments.
Liang, Lijun; Hu, Yao; Liu, Hao; Li, Xiaojiu; Li, Jin; He, Yin
2017-04-01
In order to reduce the mortality rate of cardiovascular disease patients effectively, improve the electrocardiogram (ECG) accuracy of signal acquisition, and reduce the influence of motion artifacts caused by the electrodes in inappropriate location in the clothing for ECG measurement, we in this article present a research on the optimum place of ECG electrodes in male clothing using three-lead monitoring methods. In the 3-lead ECG monitoring clothing for men we selected test points. Comparing the ECG and power spectrum analysis of the acquired ECG signal quality of each group of points, we determined the best location of ECG electrodes in the male monitoring clothing. The electrode motion artifacts caused by improper location had been significantly improved when electrodes were put in the best position of the clothing for men. The position of electrodes is crucial for ECG monitoring clothing. The stability of the acquired ECG signal could be improved significantly when electrodes are put at optimal locations.
NASA Astrophysics Data System (ADS)
Kwon, Hyeokjun; Oh, Sechang; Kumar, Prashanth S.; Varadan, Vijay K.
2012-10-01
CardioVascular Disease(CVD)s lead the sudden cardiac death due to irregular phenomenon of the cardiac signal by the abnormal case of blood vessel and cardiac structure. For last two decades, cardiac disease research for man is under active discussion. As a result, the death rate by cardiac disease in men has been falling gradually compared with relatively increasing the women death rate due to CVD[2]. The main reason of this phenomenon causes the lack a sense of the seriousness to female CVD and different symptom of female CVD compared with the symptoms of male CVD. Usually, because the women CVD accompanies with ordinary symptoms unrecognizing the heart abnormality signal such as unusual fatigue, sleep disturbances, shortness of breath, anxiety, chest discomfort, and indigestion dyspepsia, most women CVD patients do not realize that these symptoms are related to the CVD symptoms. Therefore, periodic ECG signal observation is required for women cardiac disease patients. ElectroCardioGram(ECG) detection, treadmill test/exercise ECG, nuclear scan, coronary angiography, and intracoronary ultrasound are used to diagnose abnormality of heart. Among the medical checkup methods for CVDs checkup, it is very effective method for the diagnosis of cardiac disease and the early detection of heart abnormality to monitor ECG periodically. This paper suggests the effective ECG monitoring system for woman by attaching the system on woman's brassiere by using augmented chest lead attachment method. The suggested system in this paper consists of ECG signal transmission system and a server program to display and analyze the transmitted ECG. The ECG signal transmission system consists of three parts such as ECG physical signal detection part with two electrodes made by gold nanowire structure, data acquisition with AD converter, and data transmission part with GPRS(General Packet Radio Service) communication. Usually, to detect human bio signal, Ag/AgCl or gold cup electrodes are used with conductive gel. However, the gel can be dried when taking long time monitoring. The gold nanowire structure electrodes without consideration of uncomfortable usage of gel are attached on beneath the chest position of a brassiere, and the electrodes convert the physical ECG signal to voltage potential signal. The voltage potential ECG signal is converted to digital signal by AD converter included in microprocessor. The converted ECG signal by AD converter is saved on every 1 sec period in the internal RAM in microprocessor. For transmission of the saved data in the internal RAM to a server computer locating at remote area, the system uses the GPRS communication technology, which can develop the wide area network(WAP) without any gateway and repeater. In addition, the transmission system is operated on client mode of GPRS communication. The remote server is installed a program including the functions of displaying and analyzing the transmitted ECG. To display the ECG data, the program is operated with TCP/IP server mode and static IP address, and to analyze the ECG data, the paper suggests motion artifact remove algorithm including adaptive filter with LMS(least mean square), baseline detection algorithm using predictability estimation theory, a filter with moving weighted factor, low pass filter, peak to peak detection, and interpolation.
[Development of a portable ambulatory ECG monitor based on embedded microprocessor unit].
Wang, Da-xiong; Wang, Guo-jun
2005-06-01
To develop a new kind of portable ambulatory ECG monitor. The hardware and software were designed based on RCA-CDP1802. New methods of ECG data compression and feature extraction of QRS complexes were applied to software design. A model for automatic arrhythmia analysis was established for real-time ambulatory ECG Data analysis. Compact, low power consumption and low cost were emphasized in the hardware design. This compact and light-weight monitor with low power consumption and high intelligence was capable of real-time monitoring arrhythmia for more than 48 h. More than ten types of arrhythmia could be detected, only the compressed abnormal ECG data was recorded and could be transmitted to the host if required. The monitor meets the design requirements and can be used for ambulatory ECG monitoring.
Potential Cost-Effectiveness of Ambulatory Cardiac Rhythm Monitoring After Cryptogenic Stroke.
Yong, Jean Hai Ein; Thavorn, Kednapa; Hoch, Jeffrey S; Mamdani, Muhammad; Thorpe, Kevin E; Dorian, Paul; Sharma, Mike; Laupacis, Andreas; Gladstone, David J
2016-09-01
Prolonged ambulatory ECG monitoring after cryptogenic stroke improves detection of covert atrial fibrillation, but its long-term cost-effectiveness is uncertain. We estimated the cost-effectiveness of noninvasive ECG monitoring in patients aged ≥55 years after a recent cryptogenic stroke and negative 24-hour ECG. A Markov model used observed rates of atrial fibrillation detection and anticoagulation from a randomized controlled trial (EMBRACE) and the published literature to predict lifetime costs and effectiveness (ischemic strokes, hemorrhages, life-years, and quality-adjusted life-years [QALYs]) for 30-day ECG (primary analysis) and 7-day or 14-day ECG (secondary analysis), when compared with a repeat 24-hour ECG. Prolonged ECG monitoring (7, 14, or 30 days) was predicted to prevent more ischemic strokes, decrease mortality, and improve QALYs. If anticoagulation reduced stroke risk by 50%, 30-day ECG (at a cost of USD $447) would be highly cost-effective ($2000 per QALY gained) for patients with a 4.5% annual ischemic stroke recurrence risk. Cost-effectiveness was sensitive to stroke recurrence risk and anticoagulant effectiveness, which remain uncertain, especially at higher costs of monitoring. Shorter duration (7 or 14 days) monitoring was cost saving and more effective than an additional 24-hour ECG; its cost-effectiveness was less sensitive to changes in ischemic stroke risk and treatment effect. After a cryptogenic stroke, 30-day ECG monitoring is likely cost-effective for preventing recurrent strokes; 14-day monitoring is an attractive value alternative, especially for lower risk patients. These results strengthen emerging recommendations for prolonged ECG monitoring in secondary stroke prevention. Cost-effectiveness in practice will depend on careful patient selection. © 2016 American Heart Association, Inc.
PIC microcontroller-based RF wireless ECG monitoring system.
Oweis, R J; Barhoum, A
2007-01-01
This paper presents a radio-telemetry system that provides the possibility of ECG signal transmission from a patient detection circuit via an RF data link. A PC then receives the signal through the National Instrument data acquisition card (NIDAQ). The PC is equipped with software allowing the received ECG signals to be saved, analysed, and sent by email to another part of the world. The proposed telemetry system consists of a patient unit and a PC unit. The amplified and filtered ECG signal is sampled 360 times per second, and the A/D conversion is performed by a PIC16f877 microcontroller. The major contribution of the final proposed system is that it detects, processes and sends patients ECG data over a wireless RF link to a maximum distance of 200 m. Transmitted ECG data with different numbers of samples were received, decoded by means of another PIC microcontroller, and displayed using MATLAB program. The designed software is presented in a graphical user interface utility.
Implementation of a wireless ECG acquisition SoC for IEEE 802.15.4 (ZigBee) applications.
Wang, Liang-Hung; Chen, Tsung-Yen; Lin, Kuang-Hao; Fang, Qiang; Lee, Shuenn-Yuh
2015-01-01
This paper presents a wireless biosignal acquisition system-on-a-chip (WBSA-SoC) specialized for electrocardiogram (ECG) monitoring. The proposed system consists of three subsystems, namely, 1) the ECG acquisition node, 2) the protocol for standard IEEE 802.15.4 ZigBee system, and 3) the RF transmitter circuits. The ZigBee protocol is adopted for wireless communication to achieve high integration, applicability, and portability. A fully integrated CMOS RF front end containing a quadrature voltage-controlled oscillator and a 2.4-GHz low-IF (i.e., zero-IF) transmitter is employed to transmit ECG signals through wireless communication. The low-power WBSA-SoC is implemented by the TSMC 0.18-μm standard CMOS process. An ARM-based displayer with FPGA demodulation and an RF receiver with analog-to-digital mixed-mode circuits are constructed as verification platform to demonstrate the wireless ECG acquisition system. Measurement results on the human body show that the proposed SoC can effectively acquire ECG signals.
Mobile cloud-computing-based healthcare service by noncontact ECG monitoring.
Fong, Ee-May; Chung, Wan-Young
2013-12-02
Noncontact electrocardiogram (ECG) measurement technique has gained popularity these days owing to its noninvasive features and convenience in daily life use. This paper presents mobile cloud computing for a healthcare system where a noncontact ECG measurement method is employed to capture biomedical signals from users. Healthcare service is provided to continuously collect biomedical signals from multiple locations. To observe and analyze the ECG signals in real time, a mobile device is used as a mobile monitoring terminal. In addition, a personalized healthcare assistant is installed on the mobile device; several healthcare features such as health status summaries, medication QR code scanning, and reminders are integrated into the mobile application. Health data are being synchronized into the healthcare cloud computing service (Web server system and Web server dataset) to ensure a seamless healthcare monitoring system and anytime and anywhere coverage of network connection is available. Together with a Web page application, medical data are easily accessed by medical professionals or family members. Web page performance evaluation was conducted to ensure minimal Web server latency. The system demonstrates better availability of off-site and up-to-the-minute patient data, which can help detect health problems early and keep elderly patients out of the emergency room, thus providing a better and more comprehensive healthcare cloud computing service.
Mobile Cloud-Computing-Based Healthcare Service by Noncontact ECG Monitoring
Fong, Ee-May; Chung, Wan-Young
2013-01-01
Noncontact electrocardiogram (ECG) measurement technique has gained popularity these days owing to its noninvasive features and convenience in daily life use. This paper presents mobile cloud computing for a healthcare system where a noncontact ECG measurement method is employed to capture biomedical signals from users. Healthcare service is provided to continuously collect biomedical signals from multiple locations. To observe and analyze the ECG signals in real time, a mobile device is used as a mobile monitoring terminal. In addition, a personalized healthcare assistant is installed on the mobile device; several healthcare features such as health status summaries, medication QR code scanning, and reminders are integrated into the mobile application. Health data are being synchronized into the healthcare cloud computing service (Web server system and Web server dataset) to ensure a seamless healthcare monitoring system and anytime and anywhere coverage of network connection is available. Together with a Web page application, medical data are easily accessed by medical professionals or family members. Web page performance evaluation was conducted to ensure minimal Web server latency. The system demonstrates better availability of off-site and up-to-the-minute patient data, which can help detect health problems early and keep elderly patients out of the emergency room, thus providing a better and more comprehensive healthcare cloud computing service. PMID:24316562
A method of ECG template extraction for biometrics applications.
Zhou, Xiang; Lu, Yang; Chen, Meng; Bao, Shu-Di; Miao, Fen
2014-01-01
ECG has attracted widespread attention as one of the most important non-invasive physiological signals in healthcare-system related biometrics for its characteristics like ease-of-monitoring, individual uniqueness as well as important clinical value. This study proposes a method of dynamic threshold setting to extract the most stable ECG waveform as the template for the consequent ECG identification process. With the proposed method, the accuracy of ECG biometrics using the dynamic time wraping for difference measures has been significantly improved. Analysis results with the self-built electrocardiogram database show that the deployment of the proposed method was able to reduce the half total error rate of the ECG biometric system from 3.35% to 1.45%. Its average running time on the platform of android mobile terminal was around 0.06 seconds, and thus demonstrates acceptable real-time performance.
Yongsu Lee; Hyeonwoo Lee; Seunghyup Yoo; Hoi-Jun Yoo
2016-08-01
The sticker-type sensor system is proposed targeting ECG/PPG concurrent monitoring for cardiovascular diseases. The stickers are composed of two types: Hub and Sensor-node (SN) sticker. Low-power CMOS SoC for measuring ECG and PPG signal is hybrid integrated with organic light emitting diodes (OLEDs) and organic photo detector (OPD). The sticker has only 2g weight and only consumes 141μW. The optical calibration loop is adopted for maintaining SNR of PPG signal higher than 30dB. The pulse arrival time (PAT) and SpO2 value can be extracted from various body parts and verified comparing with the reference device from 20 people in-vivo experiments.
Nayan, Nazrul Anuar; Risman, Nur Sabrina; Jaafar, Rosmina
2016-07-27
Among vital signs of acutely ill hospital patients, respiratory rate (RR) is a highly accurate predictor of health deterioration. This study proposes a system that consists of a passive and non-invasive single-lead electrocardiogram (ECG) acquisition module and an ECG-derived respiratory (EDR) algorithm in the working prototype of a mobile application. Before estimating RR that produces the EDR rate, ECG signals were evaluated based on the signal quality index (SQI). The SQI algorithm was validated quantitatively using the PhysioNet/Computing in Cardiology Challenge 2011 training data set. The RR extraction algorithm was validated by adopting 40 MIT PhysioNet Multiparameter Intelligent Monitoring in Intensive Care II data set. The estimated RR showed a mean absolute error (MAE) of 1.4 compared with the ``gold standard'' RR. The proposed system was used to record 20 ECGs of healthy subjects and obtained the estimated RR with MAE of 0.7 bpm. Results indicate that the proposed hardware and algorithm could replace the manual counting method, uncomfortable nasal airflow sensor, chest band, and impedance pneumotachography often used in hospitals. The system also takes advantage of the prevalence of smartphone usage and increase the monitoring frequency of the current ECG of patients with critical illnesses.
Development of a wearable multi-frequency impedance cardiography device.
Weyer, Sören; Menden, Tobias; Leicht, Lennart; Leonhardt, Steffen; Wartzek, Tobias
2015-02-01
Cardiovascular diseases as well as pulmonary oedema can be early diagnosed using vital signs and thoracic bio-impedance. By recording the electrocardiogram (ECG) and the impedance cardiogram (ICG), vital parameters are captured continuously. The aim of this study is the continuous monitoring of ECG and multi-frequency ICG by a mobile system. A mobile measuring system, based on 'low-power' ECG, ICG and an included radio transmission is described. Due to the high component integration, a board size of only 6.5 cm×5 cm could be realized. The measured data can be transmitted via Bluetooth and visualized on a portable monitor. By using energy-efficient hardware, the system can operate for up to 18 hs with a 3 V battery, continuously sending data via Bluetooth. Longer operating times can be realized by decreased transfer rates. The relative error of the impedance measurement was less than 1%. The ECG and ICG measurements allow an approximate calculation of the heart stroke volume. The ECG and the measured impedance showed a high correlation to commercial devices (r=0.83, p<0.05). In addition to commercial devices, the developed system allows a multi-frequency measurement of the thoracic impedance between 5-150 kHz.
MS-QI: A Modulation Spectrum-Based ECG Quality Index for Telehealth Applications.
Tobon V, Diana P; Falk, Tiago H; Maier, Martin
2016-08-01
As telehealth applications emerge, the need for accurate and reliable biosignal quality indices has increased. One typical modality used in remote patient monitoring is the electrocardiogram (ECG), which is inherently susceptible to several different noise sources, including environmental (e.g., powerline interference), experimental (e.g., movement artifacts), and physiological (e.g., muscle and breathing artifacts). Accurate measurement of ECG quality can allow for automated decision support systems to make intelligent decisions about patient conditions. This is particularly true for in-home monitoring applications, where the patient is mobile and the ECG signal can be severely corrupted by movement artifacts. In this paper, we propose an innovative ECG quality index based on the so-called modulation spectral signal representation. The representation quantifies the rate of change of ECG spectral components, which are shown to be different from the rate of change of typical ECG noise sources. The proposed modulation spectral-based quality index, MS-QI, was tested on 1) synthetic ECG signals corrupted by varying levels of noise, 2) single-lead recorded data using the Hexoskin garment during three activity levels (sitting, walking, running), 3) 12-lead recorded data using conventional ECG machines (Computing in Cardiology 2011 dataset), and 4) two-lead ambulatory ECG recorded from arrhythmia patients (MIT-BIH Arrhythmia Database). Experimental results showed the proposed index outperforming two conventional benchmark quality measures, particularly in the scenarios involving recorded data in real-world environments.
Experimental evaluations of wearable ECG monitor.
Ha, Kiryong; Kim, Youngsung; Jung, Junyoung; Lee, Jeunwoo
2008-01-01
Healthcare industry is changing with ubiquitous computing environment and wearable ECG measurement is one of the most popular approaches in this healthcare industry. Reliability and performance of healthcare device is fundamental issue for widespread adoptions, and interdisciplinary perspectives of wearable ECG monitor make this more difficult. In this paper, we propose evaluation criteria considering characteristic of both ECG measurement and ubiquitous computing. With our wearable ECG monitors, various levels of experimental analysis are performed based on evaluation strategy.
Live ECG readings using Google Glass in emergency situations.
Schaer, Roger; Salamin, Fanny; Jimenez Del Toro, Oscar Alfonso; Atzori, Manfredo; Muller, Henning; Widmer, Antoine
2015-01-01
Most sudden cardiac problems require rapid treatment to preserve life. In this regard, electrocardiograms (ECG) shown on vital parameter monitoring systems help medical staff to detect problems. In some situations, such monitoring systems may display information in a less than convenient way for medical staff. For example, vital parameters are displayed on large screens outside the field of view of a surgeon during cardiac surgery. This may lead to losing time and to mistakes when problems occur during cardiac operations. In this paper we present a novel approach to display vital parameters such as the second derivative of the ECG rhythm and heart rate close to the field of view of a surgeon using Google Glass. As a preliminary assessment, we run an experimental study to verify the possibility for medical staff to identify abnormal ECG rhythms from Google Glass. This study compares 6 ECG rhythms readings from a 13.3 inch laptop screen and from the prism of Google Glass. Seven medical residents in internal medicine participated in the study. The preliminary results show that there is no difference between identifying these 6 ECG rhythms from the laptop screen versus Google Glass. Both allow close to perfect identification of the 6 common ECG rhythms. This shows the potential of connected glasses such as Google Glass to be useful in selected medical applications.
Rundo, Francesco; Ortis, Alessandro
2018-01-01
Physiological signals are widely used to perform medical assessment for monitoring an extensive range of pathologies, usually related to cardio-vascular diseases. Among these, both PhotoPlethysmoGraphy (PPG) and Electrocardiography (ECG) signals are those more employed. PPG signals are an emerging non-invasive measurement technique used to study blood volume pulsations through the detection and analysis of the back-scattered optical radiation coming from the skin. ECG is the process of recording the electrical activity of the heart over a period of time using electrodes placed on the skin. In the present paper we propose a physiological ECG/PPG “combo” pipeline using an innovative bio-inspired nonlinear system based on a reaction-diffusion mathematical model, implemented by means of the Cellular Neural Network (CNN) methodology, to filter PPG signal by assigning a recognition score to the waveforms in the time series. The resulting “clean” PPG signal exempts from distortion and artifacts is used to validate for diagnostic purpose an EGC signal simultaneously detected for a same patient. The multisite combo PPG-ECG system proposed in this work overpasses the limitations of the state of the art in this field providing a reliable system for assessing the above-mentioned physiological parameters and their monitoring over time for robust medical assessment. The proposed system has been validated and the results confirmed the robustness of the proposed approach. PMID:29385774
Rundo, Francesco; Conoci, Sabrina; Ortis, Alessandro; Battiato, Sebastiano
2018-01-30
Physiological signals are widely used to perform medical assessment for monitoring an extensive range of pathologies, usually related to cardio-vascular diseases. Among these, both PhotoPlethysmoGraphy (PPG) and Electrocardiography (ECG) signals are those more employed. PPG signals are an emerging non-invasive measurement technique used to study blood volume pulsations through the detection and analysis of the back-scattered optical radiation coming from the skin. ECG is the process of recording the electrical activity of the heart over a period of time using electrodes placed on the skin. In the present paper we propose a physiological ECG/PPG "combo" pipeline using an innovative bio-inspired nonlinear system based on a reaction-diffusion mathematical model, implemented by means of the Cellular Neural Network (CNN) methodology, to filter PPG signal by assigning a recognition score to the waveforms in the time series. The resulting "clean" PPG signal exempts from distortion and artifacts is used to validate for diagnostic purpose an EGC signal simultaneously detected for a same patient. The multisite combo PPG-ECG system proposed in this work overpasses the limitations of the state of the art in this field providing a reliable system for assessing the above-mentioned physiological parameters and their monitoring over time for robust medical assessment. The proposed system has been validated and the results confirmed the robustness of the proposed approach.
Android based self-diagnostic electrocardiogram system for mobile healthcare.
Choo, Kan-Yeep; Ling, Huo-Chong; Lo, Yew-Chiong; Yap, Zuo-Han; Pua, Jun-Sheng; Phan, Raphael C-W; Goh, Vik-Tor
2015-01-01
Cardiovascular diseases are the most common cause of death worldwide and are characterized by arrhythmia (i.e. irregular rhythm of heartbeat). Arrhythmia occasionally happens under certain conditions, such as stress. Therefore, it is difficult to be diagnosed using electrocardiogram (ECG) devices available in hospitals for just a few minutes. Constant diagnosis and monitoring of heartbeat is required to reduce death caused by cardiovascular diseases. Mobile healthcare system has emerged as a potential solution to assist patients in monitoring their own heart condition, especially those who are isolated from the reference hospital. This paper proposes a self-diagnostic electrocardiogram system for mobile healthcare that has the capability to perform a real-time ECG diagnostic. The self-diagnostic capability of a real-time ECG signal is achieved by implementing a detrended fluctuation analysis (DFA) method. The result obtained from DFA is used to display the patient's health condition on a smartphone anytime and anywhere. If the health condition is critical, the system will alert the patient and his medical practitioner for further diagnosis. Experimental results verified the validity of the developed ECG diagnostic application on a smartphone. The proposed system can potentially reduce death caused by cardiovascular diseases by alerting the patient possibly undergoing a heart attack.
Yoshimatsu, Yu; Ishizaka, Tomomichi; Chiba, Katsuyoshi; Mori, Kazuhiko
2018-05-10
Drug-induced cardiac electrophysiological abnormalities accompanied by hypoglycemia or hyperglycemia increase the risk for life-threatening arrhythmia. To assess the drug-induced cardiotoxic potential associated with extraordinary blood glucose (GLU) levels, the effect of gatifloxacin (GFLX) which was frequently associated with GLU abnormality and QT/QTc prolongations in the clinic on blood GLU and electrocardiogram (ECG) parameters was investigated in cynomolgus monkeys (n=4) given GFLX orally in an ascending dose regimen (10, 30, 60 and 100 mg/kg). Simultaneous and sequential GLU and ECG monitoring with a continuous GLU monitoring system and Holter ECG, respectively, were conducted for 24 h under free-moving conditions. Consequently, GFLX at 30 and 60 mg/kg dose-dependently induced a transient decrease in GLU without any ECG abnormality 2-4 h postdose. Highest dose of 100 mg/kg caused severe hypoglycemia with a mean GLU of <30 mg/dL, accompanied by remarkable QT/QTc prolongations by 20-30% in all animals. In contrast, hyperglycemia without QT/QTc prolongations was noted 24 h after dosing in one animal. A close correlation between GLU and QTc values was observed in animals treated with 100 mg/kg, suggesting that GFLX-induced hypoglycemia enhanced QT/QTc prolongations. Furthermore, the 24-h sequential GLU monitoring data clearly distinguished between GFLX-induced GLU abnormality and physiological GLU changes influenced by feeding throughout the day. In conclusion, the combined assessment of continuous GLU and ECG monitoring is valuable in predicting the drug-induced cardio-electrophysiological risk associated with both GLU and ECG abnormalities.
Dry electrode bio-potential recordings.
Gargiulo, Gaetano; Bifulco, Paolo; McEwan, Alistair; Nasehi Tehrani, Joubin; Calvo, Rafael A; Romano, Maria; Ruffo, Mariano; Shephard, Richard; Cesarelli, Mario; Jin, Craig; Mohamed, Armin; van Schaik, André
2010-01-01
As wireless bio-medical long term monitoring moves towards personal monitoring it demands very high input impedance systems capable to extend the reading of bio-signal during the daily activities offering a kind of "stress free", convenient connection, with no need for skin preparation. In particular we highlight the development and broad applications of our own circuits for wearable bio-potential sensor systems enabled by the use of an FET based amplifier circuit with sufficiently high impedance to allow the use of passive dry electrodes which overcome the significant barrier of gel based contacts. In this paper we present the ability of dry electrodes in long term monitoring of ECG, EEG and fetal ECG.
An ECG ambulatory system with mobile embedded architecture for ST-segment analysis.
Miranda-Cid, Alejandro; Alvarado-Serrano, Carlos
2010-01-01
A prototype of a ECG ambulatory system for long term monitoring of ST segment of 3 leads, low power, portability and data storage in solid state memory cards has been developed. The solution presented is based in a mobile embedded architecture of a portable entertainment device used as a tool for storage and processing of bioelectric signals, and a mid-range RISC microcontroller, PIC 16F877, which performs the digitalization and transmission of ECG. The ECG amplifier stage is a low power, unipolar voltage and presents minimal distortion of the phase response of high pass filter in the ST segment. We developed an algorithm that manages access to files through an implementation for FAT32, and the ECG display on the device screen. The records are stored in TXT format for further processing. After the acquisition, the system implemented works as a standard USB mass storage device.
Home-based mobile cardio-pulmonary rehabilitation consultant system.
Lee, Hsu-En; Wang, Wen-Chih; Lu, Shao-Wei; Wu, Bo-Yuan; Ko, Li-Wei
2011-01-01
Cardiovascular diseases are the most popular cause of death in the world recently. For postoperatives, cardiac rehabilitation is still asked to maintain at home (phase II) to improve cardiac function. However, only one third of outpatients do the exercise regularly, reflecting the difficulty for home-based healthcare: lacking of monitoring and motivation. Hence, a cardio-pulmonary rehabilitation system was proposed in this research to improve rehabilitation efficiency for better prognosis. The proposed system was built on mobile phone and receiving electrocardiograph (ECG) signal from a wireless ECG holter via Bluetooth connection. Apart from heart rate (HR) monitor, an ECG derived respiration (EDR) technique is also included to provide respiration rate (RR). Both HR and RR are the most important vital signs during exercise but only used one physiological signal recorder in this system. In clinical test, there were 15 subjects affording Bruce Task (treadmill) to simulate rehabilitation procedure. Correlation between this system and commercial product (Custo-Med) was up to 98% in HR and 81% in RR. Considering the prevention of sudden heart attack, an arrhythmia detection expert system and healthcare server at the backend were also integrated to this system for comprehensive cardio-pulmonary monitoring whenever and wherever doing the exercise.
A Wearable Cardiac Monitor for Long-Term Data Acquisition and Analysis
Winokur, Eric S.; Delano, Maggie K.; Sodini, Charles G.
2015-01-01
A low-power wearable ECG monitoring system has been developed entirely from discrete electronic components and a custom PCB. This device removes all loose wires from the system and minimizes the footprint on the user. The monitor consists of five electrodes, which allow a cardiologist to choose from a variety of possible projections. Clinical tests to compare our wearable monitor with a commercial clinical ECG recorder are conducted on ten healthy adults under different ambulatory conditions, with nine of the datasets used for analysis. Data from both monitors were synchronized and annotated with PhysioNet's waveform viewer WAVE (physionet.org) [1]. All gold standard annotations are compared to the results of the WQRS detection algorithm [2] provided by PhysioNet. QRS sensitivity and QRS positive predictability are extracted from both monitors to validate the wearable monitor. PMID:22968205
Kim, Hyejung; Van Hoof, Chris; Yazicioglu, Refet Firat
2011-01-01
This paper describes a mixed-signal ECG processing platform with an 12-bit ADC architecture that can adapt its sampling rate according to the input signals rate of change. This enables the sampling of ECG signals with significantly reduced data rate without loss of information. The presented adaptive sampling scheme reduces the ADC power consumption, enables the processing of ECG signals with lower power consumption, and reduces the power consumption of the radio while streaming the ECG signals. The test results show that running a CWT-based R peak detection algorithm using the adaptively sampled ECG signals consumes only 45.6 μW and it leads to 36% less overall system power consumption.
The chaos and order in human ECG under the influence of the external perturbations
NASA Astrophysics Data System (ADS)
Ragulskaya, Maria; Valeriy, Pipin
The results of the many-year telecommunication heliomedical monitoring "Heliomed" show, that space weather and geophysical factor variations serve as a training factor for the adaptation-resistant member of the human population. Here we discuss the specific properties of the human ECG discovered in our experiment. The program "Heliomed" is carried out simultaneously at the different geographical areas that cover the different latitudes. The daily registered param-eters include: the psycho-emotional tests and the 1-st lead ECG, the arterial pressure, the variability cardiac contraction, the electric conduction of bioactive points on skin. The results time series compared with daily values of space weather and geomagnetic parameters. The analysis of ECG signal proceeds as follows. At first step we construct the ECG embedding into 3D phase space using the first 3 Principal Components of the ECG time series. Next, we divide ECG on the separate cycles using the maxima of the ECG's QRS complex. Then, we filter out the non-typical ECG beats by means of the Housdorff distance. Finally, we average the example of the ECG time series along the reference trajectory and study of the dynamical characteristics of the averaged ECG beat. It is found, that the ECG signal embeded in 3D phase space can be considered as a mix of a few states. At the rest, the occurrence of the primary ECG state compare to additional ones is about 8:2. The occurrence of the primary state increases after the stress. The main effect of the external perturbation is observed in structural change of the cardio-cycle and not in the variability of the R-R interval. The num-ber of none-typical cycles increase during an isolated magnetic storm. At the all monitoring centers participating experiment the same type of changes in the cardiac activity parameters is detected to go nearly simultaneously during an isolated magnetic storm. To understand the origin of the standard cardio-cycle changes we use the dynamical model reconstruction of the individual cardiac beat. It is found that the positions of the stationary points of the typical ECG attractor are in vicinities of Q and T waves. Additionally, we find that the stiffness of the beat is important for the general stability of ECG. The given results agues for the increase the relative disorder of the human cardiac system under external perturbations due to changes in the space weather and climatic factors. Also, the results of monitoring show that cardiac system can be stabilized by "internal" (physical) stress. The given difference in the cardiac sys-tem behavior under the different types of stress is obtained in the earth labaratory conditions. However, it should be considered as important factors influencing on the health of cosmonauts during the space missions, as well.
Comparison between pulse oximetry and transthoracic impedance alarm traces during home monitoring.
Nassi, N; Piumelli, R; Lombardi, E; Landini, L; Donzelli, G; de Martino, M
2008-02-01
To compare transthoracic impedance (TTI/ECG) and pulse oximetry alarm traces detected during home monitoring in infants at risk of apnoea, bradycardia and hypoxaemia. A retrospective evaluation of the monitor downloads of 67 infants who had undergone either TTI/ECG or pulse oximetry home monitoring using a device which can detect both parameters. The patients were categorised as: apparent life-threatening events (n = 39), preterm infants (n = 21) and miscellaneous (n = 7). TTI/ECG and pulse oximetry alarm traces were scored as either true or false alarms. Classification criteria were based on visual analysis of the impedance and plethysmographic waveforms captured by the memory monitor every time alarm thresholds were violated. 5242 alarms occurred over 3452 days of monitoring: 4562 (87%) were false and 680 (13%) true. The mean duration of monitoring was 51 days (range 5-220 days). There were 2982 TTI/ECG false alarms (65% of the total) and 1580 pulse oximetry false alarms (35%) (p = 0.0042). Of the 680 true alarms, 507 (74%) were desaturations not attributable to central apnoea and 173 (26%) were true TTI/ECG alarms (p = 0.0013). Comparison of pulse oximetry and TTI/ECG alarm traces shows that true events were mostly attributable to desaturations, while false alarms were mainly provoked by TTI/ECG. The total number of false alarms is lower than reported in other studies using TTI/ECG only, thus indicating that monitoring using both pulse oximetry and TTI/ECG is suitable for home use. When the combination of both techniques is not feasible or not required, we recommend the use of motion resistant pulse oximetry alone.
[Advances of portable electrocardiogram monitor design].
Ding, Shenping; Wang, Yinghai; Wu, Weirong; Deng, Lingli; Lu, Jidong
2014-06-01
Portable electrocardiogram monitor is an important equipment in the clinical diagnosis of cardiovascular diseases due to its portable, real-time features. It has a broad application and development prospects in China. In the present review, previous researches on the portable electrocardiogram monitors have been arranged, analyzed and summarized. According to the characteristics of the electrocardiogram (ECG), this paper discusses the ergonomic design of the portable electrocardiogram monitor, including hardware and software. The circuit components and software modules were parsed from the ECG features and system functions. Finally, the development trend and reference are provided for the portable electrocardiogram monitors and for the subsequent research and product design.
Doppler radar sensing of fish physiological motion
NASA Astrophysics Data System (ADS)
Hafner, Noah
The monitoring vital of signs for fish is critical for advancing the study of trophic and energetic strategies, distributions and behavior, environmental impact, and aquaculture approaches. Presented here is a new approach for monitoring fish metabolic state without the trauma and stress associated with capture, surgical ECG, or other implanted sensing systems. Original research contributions include analysis for radar operation under water, development of radar systems for aquatic operation, and application of these systems to non invasively sense the heart and gill motion of fish. Tilapia and Sturgeon were studied to test the efficacy across varied fish body shapes and sizes, ranging from 0.1 to 1.3m in snout to tail length. Monitoring experiments were conducted with eleven tilapia and three sturgeons to assess activity level participated in these experiments, the results from which include activity level monitoring (tilapia: still or fidgeting 94% of time observed), ventilation rate (tilapia: 42 bpm, sturgeon: 145 bpm), and heart rate (tilapia: 41 bpm, sturgeon: 35 bpm). Bland-Altman analysis of radar and ECG measured heart rate indicate agreement between the two measurement techniques and the suitability of radar as an alternative to ECG. The initial steps for developing a system for practical application is also presented including designs for radar system miniaturization and discussion on further characterization steps with less constrained environments.
Extrasystoles: side effect of kangaroo care?
Kluthe, Christof; Wauer, Roland R; Rüdiger, Mario
2004-09-01
To present an unpublished reason for an arrhythmic electrocardiogram (ECG) recording during kangaroo care in a preterm infant. Case report. Preterm infant. A preterm infant exhibited cardiac arrhythmia on the ECG monitor during kangaroo care, leading to interruption of kangarooing. Arrhythmia disappeared after placing the baby back into the incubator. The most likely reasons for arrhythmia were excluded. However, arrhythmia reappeared upon continuation of kangaroo care. ECG monitoring revealed the reason for the monitoring error. ECG monitoring during kangaroo care should cause error because of superimposed electric activity from the parent. Oxygen saturation represents a more reliable method of monitoring during kangaroo care.
[Development of a wearable electrocardiogram monitor with recognition of physical activity scene].
Wang, Zihong; Wu, Baoming; Yin, Jian; Gong, Yushun
2012-10-01
To overcome the problems of current electrocardiogram (ECG) tele-monitoring devices used for daily life, according to information fusion thought and by means of wearable technology, we developed a new type of wearable ECG monitor with the capability of physical activity recognition in this paper. The ECG monitor synchronously detected electrocardiogram signal and body acceleration signal, and recognized the scene information of physical activity, and finally determined the health status of the heart. With the advantages of accuracy for measurement, easy to use, comfort to wear, private feelings and long-term continuous in monitoring, this ECG monitor is quite fit for the heart-health monitoring in daily life.
Tu, Hans T; Chen, Ziyuan; Swift, Corey; Churilov, Leonid; Guo, Ruibing; Liu, Xinfeng; Jannes, Jim; Mok, Vincent; Freedman, Ben; Davis, Stephen M; Yan, Bernard
2017-10-01
Rationale Paroxysmal atrial fibrillation is a common and preventable cause of devastating strokes. However, currently available monitoring methods, including Holter monitoring, cardiac telemetry and event loop recorders, have drawbacks that restrict their application in the general stroke population. AliveCor™ heart monitor, a novel device that embeds miniaturized electrocardiography (ECG) in a smartphone case coupled with an application to record and diagnose the ECG, has recently been shown to provide an accurate and sensitive single lead ECG diagnosis of atrial fibrillation. This device could be used by nurses to record a 30-s ECG instead of manual pulse taking and automatically provide a diagnosis of atrial fibrillation. Aims To compare the proportion of patients with paroxysmal atrial fibrillation detected by AliveCor™ ECG monitoring with current standard practice. Sample size 296 Patients. Design Consecutive ischemic stroke and transient ischemic attack patients presenting to participating stroke units without known atrial fibrillation will undergo intermittent AliveCor™ ECG monitoring administered by nursing staff at the same frequency as the vital observations of pulse and blood pressure until discharge, in addition to the standard testing paradigm of each participating stroke unit to detect paroxysmal atrial fibrillation. Study outcome Proportion of patients with paroxysmal atrial fibrillation detected by AliveCor™ ECG monitoring compared to 12-lead ECG, 24-h Holter monitoring and cardiac telemetry. Discussion Use of AliveCor™ heart monitor as part of routine stroke unit nursing observation has the potential to be an inexpensive non-invasive method to increase paroxysmal atrial fibrillation detection, leading to improvement in stroke secondary prevention.
Prototype of a wearable system for remote fetal monitoring during pregnancy.
Fanelli, Andrea; Ferrario, Manuela; Piccini, Luca; Andreoni, Giuseppe; Matrone, Giulia; Magenes, Giovanni; Signorini, Maria G
2010-01-01
Fetal Heart Rate (FHR) monitoring gives important information about the fetus health state during pregnancy. This paper presents a new prototype for remote fetal monitoring. The device will allow to monitor FHR in a domiciliary context and to send fetal ECG traces to a hospital facility, where clinicians can interpret them. In this way the mother could receive prompt feedback about fetal wellbeing. The system is characterized by two units: (i) a wearable unit endowed with textile electrodes for abdominal ECG recordings and with a Field Programmable Gate Array (FPGA) board for fetal heart rate (FHR) extraction; (ii) a dock station for the transmission of the data through the telephone line. The system will allow to reduce costs in fetal monitoring, improving the assessment of fetal conditions. The device is actually in development state. In this paper, the most crucial aspects behind its fulfillment are discussed.
Mobile messaging services-based personal electrocardiogram monitoring system.
Tahat, Ashraf A
2009-01-01
A mobile monitoring system utilizing Bluetooth and mobile messaging services (MMS/SMSs) with low-cost hardware equipment is proposed. A proof of concept prototype has been developed and implemented to enable transmission of an Electrocardiogram (ECG) signal and body temperature of a patient, which can be expanded to include other vital signs. Communication between a mobile smart-phone and the ECG and temperature acquisition apparatus is implemented using the popular personal area network standard specification Bluetooth. When utilizing MMS for transmission, the mobile phone plots the received ECG signal and displays the temperature using special application software running on the client mobile phone itself, where the plot can be captured and saved as an image before transmission. Alternatively, SMS can be selected as a transmission means, where in this scenario, dedicated application software is required at the receiving device. The experimental setup can be operated for monitoring from anywhere in the globe covered by a cellular network that offers data services.
Mobile Messaging Services-Based Personal Electrocardiogram Monitoring System
Tahat, Ashraf A.
2009-01-01
A mobile monitoring system utilizing Bluetooth and mobile messaging services (MMS/SMSs) with low-cost hardware equipment is proposed. A proof of concept prototype has been developed and implemented to enable transmission of an Electrocardiogram (ECG) signal and body temperature of a patient, which can be expanded to include other vital signs. Communication between a mobile smart-phone and the ECG and temperature acquisition apparatus is implemented using the popular personal area network standard specification Bluetooth. When utilizing MMS for transmission, the mobile phone plots the received ECG signal and displays the temperature using special application software running on the client mobile phone itself, where the plot can be captured and saved as an image before transmission. Alternatively, SMS can be selected as a transmission means, where in this scenario, dedicated application software is required at the receiving device. The experimental setup can be operated for monitoring from anywhere in the globe covered by a cellular network that offers data services. PMID:19707531
The non-contact heart rate measurement system for monitoring HRV.
Huang, Ji-Jer; Yu, Sheng-I; Syu, Hao-Yi; See, Aaron Raymond
2013-01-01
A noncontact ECG monitoring and analysis system was developed using capacitive-coupled device integrated to a home sofa. Electrodes were placed on the backrest of a sofa separated from the body with only the chair covering and the user's clothing. The study also incorporates measurements using different fabric materials, and a pure cotton material was chosen to cover the chair's backrest. The material was chosen to improve the signal to noise ratio. The system is initially implemented on a home sofa and is able to measure non-contact ECG through thin cotton clothing and perform heart rate analysis to calculate the heart rate variability (HRV) parameters. It was also tested under different conditions and results from reading and sleeping exhibited a stable ECG. Subsequently, results from our calculated HRV were found to be identical to those of a commercially available HRV analyzer. However, HRV parameters are easily affected by motion artifacts generated during drinking or eating with the latter producing a more severe disturbance. Lastly, parameters measured are saved on a cloud database, providing users with a long-term monitoring and recording for physiological information.
[Extension of cardiac monitoring function by used of ordinary ECG machine].
Chen, Zhencheng; Jiang, Yong; Ni, Lili; Wang, Hongyan
2002-06-01
This paper deals with a portable monitor system on liquid crystal display (LCD) based on this available ordinary ECG machine, which is low power and suitable for China's specific condition. Apart from developing the overall scheme of the system, this paper also has completed the design of the hardware and the software. The 80c196 single chip microcomputer is taken as the central microprocessor and real time electrocardiac single is data treated and analyzed in the system. With the performance of ordinary monitor, this machine also possesses the following functions: five types of arrhythmia analysis, alarm, freeze, and record of automatic pappering, convenient in carrying, with alternate-current (AC) or direct-current (DC) powered. The hardware circuit is simplified and the software structure is optimized in this paper. Multiple low power designs and LCD unit design are adopted and completed in it. Popular in usage, low in cost price, the portable monitor system will have a valuable influence on China's monitor system field.
Hayashi, Risa; Nakai, Kenji; Fukushima, Akimune; Itoh, Manabu; Sugiyama, Toru
2009-03-01
Although ultrasonic diagnostic imaging and fetal heart monitors have undergone great technological improvements, the development and use of fetal electrocardiograms to evaluate fetal arrhythmias and autonomic nervous activity have not been fully established. We verified the clinical significance of the novel signal-averaged vector-projected high amplification ECG (SAVP-ECG) method in fetuses from 48 gravidas at 32-41 weeks of gestation and in 34 neonates. SAVP-ECGs from fetuses and newborns were recorded using a modified XYZ-leads system. Once noise and maternal QRS waves were removed, the P, QRS, and T wave intervals were measured from the signal-averaged fetal ECGs. We also compared fetal and neonatal heart rates (HRs), coefficients of variation of heart rate variability (CV) as a parasympathetic nervous activity, and the ratio of low to high frequency (LF/HF ratio) as a sympathetic nervous activity. The rate of detection of a fetal ECG by SAVP-ECG was 72.9%, and the fetal and neonatal QRS and QTc intervals were not significantly different. The neonatal CVs and LF/HF ratios were significantly increased compared with those in the fetus. In conclusion, we have developed a fetal ECG recording method using the SAVP-ECG system, which we used to evaluate autonomic nervous system development.
An RFID tag system-on-chip with wireless ECG monitoring for intelligent healthcare systems.
Wang, Cheng-Pin; Lee, Shuenn-Yuh; Lai, Wei-Chih
2013-01-01
This paper presents a low-power wireless ECG acquisition system-on-chip (SoC), including an RF front-end circuit, a power unit, an analog front-end circuit, and a digital circuitry. The proposed RF front-end circuit can provide the amplitude shift keying demodulation and distance to digital conversion to accurately receive the data from the reader. The received data will wake up the power unit to provide the required supply voltages of analog front-end (AFE) and digital circuitry. The AFE, including a pre-amplifier, an analog filter, a post-amplifier, and an analog-to-digital converter, is used for the ECG acquisition. Moreover, the EPC Class I Gen 2 UHF standard is employed in the digital circuitry for the handshaking of communication and the control of the system. The proposed SoC has been implemented in 0.18-µm standard CMOS process and the measured results reveal the communication is compatible to the RFID protocol. The average power consumption for the operating chip is 12 µW. Using a Sony PR44 battery to the supply power (605mAh@1.4V), the RFID tag SoC operates continuously for about 50,000 hours (>5 years), which is appropriate for wireless wearable ECG monitoring systems.
Kabali, Conrad; Xie, Xuanqian; Higgins, Caroline
2017-01-01
Background Ambulatory electrocardiography (ECG) monitors are often used to detect cardiac arrhythmia. For patients with symptoms, an external cardiac loop recorder will often be recommended. The improved recording capacity of newer Holter monitors and similar devices, collectively known as longterm continuous ambulatory ECG monitors, suggests that they will perform just as well as, or better than, external loop recorders. This health technology assessment aimed to evaluate the effectiveness, cost-effectiveness, and budget impact of longterm continuous ECG monitors compared with external loop recorders in detecting symptoms of cardiac arrhythmia. Methods Based on our systematic search for studies published up to January 15, 2016, we did not identify any studies directly comparing the clinical effectiveness of longterm continuous ECG monitors and external loop recorders. Therefore, we conducted an indirect comparison, using a 24-hour Holter monitor as a common comparator. We used a meta-regression model to control for bias due to variation in device-wearing time and baseline syncope rate across studies. We conducted a similar systematic search for cost-utility and cost-effectiveness studies comparing the two types of devices; none were found. Finally, we used historical claims data (2006–2014) to estimate the future 5-year budget impact in Ontario, Canada, of continued public funding for both types of longterm ambulatory ECG monitors. Results Our clinical literature search yielded 7,815 non-duplicate citations, of which 12 cohort studies were eligible for indirect comparison. Seven studies assessed the effectiveness of longterm continuous monitors and five assessed external loop recorders. Both types of devices were more effective than a 24-hour Holter monitor, and we found no substantial difference between them in their ability to detect symptoms (risk difference 0.01; 95% confidence interval −0.18, 0.20). Using GRADE for network meta-analysis, we evaluated the quality of the evidence as low. Our budget impact analysis showed that use of the longterm continuous monitors has grown steadily in Ontario since they became publicly funded in 2006, particularly since 2011 when monitors that can record for 14 days or longer became funded, and the use of external cardiac loop recorders has correspondingly declined. The analysis suggests that, with these trends, continued public funding of both types of longterm ambulatory ECG testing will result in additional costs ranging from $130,000 to $370,000 per year over the next 5 years. Conclusions Although both longterm continuous ambulatory ECG monitors and external cardiac loop recorders were more effective than a 24-hour Holter monitor in detecting symptoms of cardiac arrhythmia, we found no evidence to suggest that these two devices differ in effectiveness. Assuming that the use of longterm continuous monitors will continue to increase in the next 5 years, the public health care system in Ontario can expect to see added costs of $130,000 to $370,000 per year. PMID:28194254
Performance study of the wearable one-lead wireless electrocardiographic monitoring system.
Hong, Sungyoup; Yang, Yougmo; Kim, Seunghwan; Shin, Seungcheol; Lee, Inbum; Jang, Yongwon; Kim, Kiseong; Yi, Hwayeon
2009-03-01
This study attempts to compare and assess the performance of a wearable electrocardiogram (ECG) using a sensing fabric electrode and a Bluetooth network with a conventional ECG. A one-lead ECG examination was performed using Bioshirt and an iWorx 214 while walking or running at 3, 6, and 9 km per hour. A correlation coefficient of a heart rate variability (HRV) between these two devices was higher than 0.96 and power spectral density of HRV measured also showed an excellent agreement. Thus, both of these two ECG devices showed similar detection capability for R peaks. The measured values for wave duration and intervals of both devices concur with each other. The intensity of noise is controversial. The ECG device using a sensing fabric electrode and a wireless network showed an ECG signal detection and transmission capability similar to that of a conventional ECG device.
Accurate Interpretation of the 12-Lead ECG Electrode Placement: A Systematic Review
ERIC Educational Resources Information Center
Khunti, Kirti
2014-01-01
Background: Coronary heart disease (CHD) patients require monitoring through ECGs; the 12-lead electrocardiogram (ECG) is considered to be the non-invasive gold standard. Examples of incorrect treatment because of inaccurate or poor ECG monitoring techniques have been reported in the literature. The findings that only 50% of nurses and less than…
Rauf, Zubair; O'Brien, Ediri; Stampalija, Tamara; Ilioniu, Florin P; Lavender, Tina; Alfirevic, Zarko
2011-01-01
To evaluate the feasibility of continuous telemetric trans-abdominal fetal electrocardiogram (a-fECG) in women undergoing labour induction at home. Low risk women with singleton term pregnancy undergoing labour induction with retrievable, slow-release dinoprostone pessaries (n = 70) were allowed home for up to 24 hours, while a-fECG and uterine activity were monitored in hospital via wireless technology. Semi-structured diaries were analysed using a combined descriptive and interpretive approach. 62/70 women (89%) had successful home monitoring; 8 women (11%) were recalled because of signal loss. Home monitoring lasted between 2-22 hours (median 10 hours). Good quality signal was achieved most of the time (86%, SD 10%). 3 women were recalled back to hospital for suspicious a-fECG. In 2 cases suspicious a-fECG persisted, requiring Caesarean section after recall to hospital. 48/51 women who returned the diary coped well (94%); 46/51 were satisfied with home monitoring (90%). Continuous telemetric trans-abdominal fetal ECG monitoring of ambulatory women undergoing labour induction is feasible and acceptable to women.
Cho, Hakyung; Lee, Joo Hyeon
2015-09-01
Smart clothing is a sort of wearable device used for ubiquitous health monitoring. It provides comfort and efficiency in vital sign measurements and has been studied and developed in various types of monitoring platforms such as T-shirt and sports bra. However, despite these previous approaches, smart clothing for electrocardiography (ECG) monitoring has encountered a serious shortcoming relevant to motion artifacts caused by wearer movement. In effect, motion artifacts are one of the major problems in practical implementation of most wearable health-monitoring devices. In the ECG measurements collected by a garment, motion artifacts are usually caused by improper location of the electrode, leading to lack of contact between the electrode and skin with body motion. The aim of this study was to suggest a design for ECG-monitoring clothing contributing to reduction of motion artifacts. Based on the clothing science theory, it was assumed in this study that the stability of the electrode in a dynamic state differed depending on the electrode location in an ECG-monitoring garment. Founded on this assumption, effects of 56 electrode positions were determined by sectioning the surface of the garment into grids with 6 cm intervals in the front and back of the bodice. In order to determine the optimal locations of the ECG electrodes from the 56 positions, ECG measurements were collected from 10 participants at every electrode position in the garment while the wearer was in motion. The electrode locations indicating both an ECG measurement rate higher than 80.0 % and a large amplitude during motion were selected as the optimal electrode locations. The results of this analysis show four electrode locations with consistently higher ECG measurement rates and larger amplitudes amongst the 56 locations. These four locations were abstracted to be least affected by wearer movement in this research. Based on this result, a design of the garment-formed ECG monitoring platform reflecting the optimal positions of the electrode was suggested.
[A Smart Low-Power-Consumption ECG Monitor Based on MSP430F5529 and CC2540].
Gong, Yuan; Cao, Jin; Luo, Zehui; Zhou, Guohui
2015-07-01
A design of ECG monitor was presented in this paper. It is based on the latest MCU and BLE4.0 technologies and can interact with multi-platform smart devices with extra low power consumption. Besides, a clinical expansion part can realize functions including displaying the real-time ECG and heart rate curve, reading abnormal ECG signals stored in the monitor, and setting alarm threshold. These functions are suitable for follow-up use.
Predictable and reliable ECG monitoring over IEEE 802.11 WLANs within a hospital.
Park, Juyoung; Kang, Kyungtae
2014-09-01
Telecardiology provides mobility for patients who require constant electrocardiogram (ECG) monitoring. However, its safety is dependent on the predictability and robustness of data delivery, which must overcome errors in the wireless channel through which the ECG data are transmitted. We report here a framework that can be used to gauge the applicability of IEEE 802.11 wireless local area network (WLAN) technology to ECG monitoring systems in terms of delay constraints and transmission reliability. For this purpose, a medical-grade WLAN architecture achieved predictable delay through the combination of a medium access control mechanism based on the point coordination function provided by IEEE 802.11 and an error control scheme based on Reed-Solomon coding and block interleaving. The size of the jitter buffer needed was determined by this architecture to avoid service dropout caused by buffer underrun, through analysis of variations in transmission delay. Finally, we assessed this architecture in terms of service latency and reliability by modeling the transmission of uncompressed two-lead electrocardiogram data from the MIT-BIH Arrhythmia Database and highlight the applicability of this wireless technology to telecardiology.
An ECG electrode-mounted heart rate, respiratory rhythm, posture and behavior recording system.
Yoshimura, Takahiro; Yonezawa, Yoshiharu; Maki, Hiromichi; Ogawa, Hidekuni; Ninomiya, Ishio; Morton Caldwell, W
2004-01-01
R-R interval, respiration rhythm, posture and behavior recording system has been developed for monitoring a patient's cardiovascular regulatory system in daily life. The recording system consists of three ECG chest electrodes, a variable gain instrumentation amplifier, a dual axis accelerometer, a low power 8-bit single-chip microcomputer and a 1024 KB EEPROM. The complete system is mounted on the chest electrodes. R-R interval and respiration rhythm are calculated by the R waves detected from the ECG. Posture and behavior such as walking and running are detected from the body movements recorded by the accelerometer. The detected data are stored by the EEPROM and, after recording, are downloaded to a desktop computer for analysis.
Bluetooth telemetry system for a wearable electrocardiogram
NASA Astrophysics Data System (ADS)
Green, Ryan B.
The rise of wireless networks has led to a new market in medicine: remote patient monitoring. Practitioners now desire to monitor the health conditions of their patients after hospital release. With the large number of cardiac related deaths and this new demand in medicine being the motivation, this study developed a BluetoothRTM telemetry system for a wearable Electrocardiogram. This study also developed a compression t-shirt to hold the ECG and telemetry system. This device communicates the ECG signal of a patient to an Android device within the ISM frequency bands (2.4-2.48 GHz) where the data is displayed and stored in real time. This study is a stepping stone toward more portable heart monitoring that can communicate with the doctor in real time from remote locations.
Automatic detection of respiration rate from ambulatory single-lead ECG.
Boyle, Justin; Bidargaddi, Niranjan; Sarela, Antti; Karunanithi, Mohan
2009-11-01
Ambulatory electrocardiography is increasingly being used in clinical practice to detect abnormal electrical behavior of the heart during ordinary daily activities. The utility of this monitoring can be improved by deriving respiration, which previously has been based on overnight apnea studies where patients are stationary, or the use of multilead ECG systems for stress testing. We compared six respiratory measures derived from a single-lead portable ECG monitor with simultaneously measured respiration air flow obtained from an ambulatory nasal cannula respiratory monitor. Ten controlled 1-h recordings were performed covering activities of daily living (lying, sitting, standing, walking, jogging, running, and stair climbing) and six overnight studies. The best method was an average of a 0.2-0.8 Hz bandpass filter and RR technique based on lengthening and shortening of the RR interval. Mean error rates with the reference gold standard were +/-4 breaths per minute (bpm) (all activities), +/-2 bpm (lying and sitting), and +/-1 breath per minute (overnight studies). Statistically similar results were obtained using heart rate information alone (RR technique) compared to the best technique derived from the full ECG waveform that simplifies data collection procedures. The study shows that respiration can be derived under dynamic activities from a single-lead ECG without significant differences from traditional methods.
An innovative nonintrusive driver assistance system for vital signal monitoring.
Sun, Ye; Yu, Xiong Bill
2014-11-01
This paper describes an in-vehicle nonintrusive biopotential measurement system for driver health monitoring and fatigue detection. Previous research has found that the physiological signals including eye features, electrocardiography (ECG), electroencephalography (EEG) and their secondary parameters such as heart rate and HR variability are good indicators of health state as well as driver fatigue. A conventional biopotential measurement system requires the electrodes to be in contact with human body. This not only interferes with the driver operation, but also is not feasible for long-term monitoring purpose. The driver assistance system in this paper can remotely detect the biopotential signals with no physical contact with human skin. With delicate sensor and electronic design, ECG, EEG, and eye blinking can be measured. Experiments were conducted on a high fidelity driving simulator to validate the system performance. The system was found to be able to detect the ECG/EEG signals through cloth or hair with no contact with skin. Eye blinking activities can also be detected at a distance of 10 cm. Digital signal processing algorithms were developed to decimate the signal noise and extract the physiological features. The extracted features from the vital signals were further analyzed to assess the potential criterion for alertness and drowsiness determination.
A novel low-complexity digital filter design for wearable ECG devices
Mehrnia, Alireza
2017-01-01
Wearable and implantable Electrocardiograph (ECG) devices are becoming prevailing tools for continuous real-time personal health monitoring. The ECG signal can be contaminated by various types of noise and artifacts (e.g., powerline interference, baseline wandering) that must be removed or suppressed for accurate ECG signal processing. Limited device size, power consumption and cost are critical issues that need to be carefully considered when designing any portable health monitoring device, including a battery-powered ECG device. This work presents a novel low-complexity noise suppression reconfigurable finite impulse response (FIR) filter structure for wearable ECG and heart monitoring devices. The design relies on a recently introduced optimally-factored FIR filter method. The new filter structure and several of its useful features are presented in detail. We also studied the hardware complexity of the proposed structure and compared it with the state-of-the-art. The results showed that the new ECG filter has a lower hardware complexity relative to the state-of-the-art ECG filters. PMID:28384272
A novel low-complexity digital filter design for wearable ECG devices.
Asgari, Shadnaz; Mehrnia, Alireza
2017-01-01
Wearable and implantable Electrocardiograph (ECG) devices are becoming prevailing tools for continuous real-time personal health monitoring. The ECG signal can be contaminated by various types of noise and artifacts (e.g., powerline interference, baseline wandering) that must be removed or suppressed for accurate ECG signal processing. Limited device size, power consumption and cost are critical issues that need to be carefully considered when designing any portable health monitoring device, including a battery-powered ECG device. This work presents a novel low-complexity noise suppression reconfigurable finite impulse response (FIR) filter structure for wearable ECG and heart monitoring devices. The design relies on a recently introduced optimally-factored FIR filter method. The new filter structure and several of its useful features are presented in detail. We also studied the hardware complexity of the proposed structure and compared it with the state-of-the-art. The results showed that the new ECG filter has a lower hardware complexity relative to the state-of-the-art ECG filters.
Preliminary results from BCG and ECG measurements in the heart failure clinic.
Giovangrandi, Laurent; Inan, Omer T; Banerjee, Dipanjan; Kovacs, Gregory T A
2012-01-01
We report on the preliminary deployment of a bathroom scale-based ballistocardiogram (BCG) system for the in-hospital monitoring of patients with heart failure. These early trials provided valuable insights into the challenges and opportunities for such monitoring. In particular, the need for robust algorithms and adapted BCG metric is suggested. The system was designed to be robust and user-friendly, with dual ballistocardiogram (BCG) and electrocardiogram (ECG) capabilities. The BCG was measured from a modified bathroom scale, while the ECG (used as timing reference) was measured using dry handlebar electrodes. The signal conditioning and digitization circuits were USB-powered, and data acquisition performed using a netbook. Four patients with a NYHA class III at admission were measured daily for the duration of their treatment at Stanford hospital. A measure of BCG quality, in essence a quantitative implementation of the BCG classes originally defined in the 1950s, is proposed as a practical parameter.
Jasemian, Yousef; Arendt-Nielsen, Lars
2005-01-01
A generic, realtime wireless telemedicine system has been developed that uses the Bluetooth protocol and the general packet radio service for mobile phones. The system was tested on 10 healthy volunteers, by continuous monitoring of their electrocardiograms (ECGs). Under realistic conditions, the system had 96.5% uptime, a data throughput of 3.3 kbit/s, a mean packet error rate of 8.5x10(-3) packet/s and a mean packet loss rate of 8.2x10(-3) packet/s. During 24 h testing, the total average downtime was 66 min and 90% of the periods of downtime were of only 1-3 min duration. Less than 10% of the ECGs were of unacceptable quality. Thus, the generic telemedicine system showed high reliability and performance, and the design may provide a foundation for realtime monitoring in clinical practice, for example in cardiology.
How Will I Be Monitored After Heart Surgery?
... monitor you are described below. What is an ECG? •An electrocardiogram, or ECG or EKG machine, records your heartbeat. • Tiny wires, ... normally. •A highly trained nurse will watch the ECG at all times. •You’ll be hooked up ...
NASA Technical Reports Server (NTRS)
Scheuring, Richard A.; Hamilton, D.; Jones, J. A.; Alexander, D.
2008-01-01
Currently there are several physiological monitoring requirements for Extravehicular Activity (EVA) in the Human-Systems Interface Requirements (HSIR) document, including continuous heart rhythm monitoring. However, it is not known whether heart rhythm monitoring in the lunar surface space suit is a necessary capability for lunar surface operations or in launch/landing suit the event of a cabin depressurization enroute to or from the moon. Methods: Current US astronaut corps demographic information was provided to an expert panel of cardiovascular medicine experts, including specialists in electrophysiology, exercise physiology, interventional cardiology and arrhythmia. This information included averages for male/female age, body mass index (BMI), blood pressure, cholesterol, inflammatory markers, echocardiogram, ranges for coronary artery calcium (CAC) scores for long duration astronauts, and ranges for heart rate (HR) and metabolic (MET) rates obtained during microgravity and lunar EVA. Results: The panel determined that no uncontrolled hazard was likely to occur in the suit during lunar surface or contingency microgravity ops that would require ECG monitoring in the highly screened US astronaut population. However having the capability for rhythm monitoring inside the vehicle (IVA) was considered critical to manage an astronaut in distress. Discussion: Heart rate (HR) monitoring alone allows effective monitoring of astronaut health and function. Consequently, electrocardiographic (ECG) monitoring capability as a clinical tool is not essential in the lunar or launch/landing space suit. However, the panel considered that rhythm monitoring could be useful in certain clinical situations, it was not considered required for safe operations. Also, lunar vehicles should be required to have ECG monitoring capability with a minimum of 5-lead ECG (derived 12- lead) for IVA medical assessments.
NASA Technical Reports Server (NTRS)
Schlegel, Todd T.; Kulecz, Walter B.; DePalma, Jude L.; Feiveson, Alan H.; Wilson, John S.; Rahman, M. Atiar; Bungo, Michael W.
2004-01-01
Several studies have shown that diminution of the high-frequency (HF; 150-250 Hz) components present within the central portion of the QRS complex of an electrocardiogram (ECG) is a more sensitive indicator for the presence of myocardial ischemia than are changes in the ST segments of the conventional low-frequency ECG. However, until now, no device has been capable of displaying, in real time on a beat-to-beat basis, changes in these HF QRS ECG components in a continuously monitored patient. Although several software programs have been designed to acquire the HF components over the entire QRS interval, such programs have involved laborious off-line calculations and postprocessing, limiting their clinical utility. We describe a personal computer-based ECG software program developed recently at the National Aeronautics and Space Administration (NASA) that acquires, analyzes, and displays HF QRS components in each of the 12 conventional ECG leads in real time. The system also updates these signals and their related derived parameters in real time on a beat-to-beat basis for any chosen monitoring period and simultaneously displays the diagnostic information from the conventional (low-frequency) 12-lead ECG. The real-time NASA HF QRS ECG software is being evaluated currently in multiple clinical settings in North America. We describe its potential usefulness in the diagnosis of myocardial ischemia and coronary artery disease.
Noise Maps for Quantitative and Clinical Severity Towards Long-Term ECG Monitoring.
Everss-Villalba, Estrella; Melgarejo-Meseguer, Francisco Manuel; Blanco-Velasco, Manuel; Gimeno-Blanes, Francisco Javier; Sala-Pla, Salvador; Rojo-Álvarez, José Luis; García-Alberola, Arcadi
2017-10-25
Noise and artifacts are inherent contaminating components and are particularly present in Holter electrocardiogram (ECG) monitoring. The presence of noise is even more significant in long-term monitoring (LTM) recordings, as these are collected for several days in patients following their daily activities; hence, strong artifact components can temporarily impair the clinical measurements from the LTM recordings. Traditionally, the noise presence has been dealt with as a problem of non-desirable component removal by means of several quantitative signal metrics such as the signal-to-noise ratio (SNR), but current systems do not provide any information about the true impact of noise on the ECG clinical evaluation. As a first step towards an alternative to classical approaches, this work assesses the ECG quality under the assumption that an ECG has good quality when it is clinically interpretable. Therefore, our hypotheses are that it is possible (a) to create a clinical severity score for the effect of the noise on the ECG, (b) to characterize its consistency in terms of its temporal and statistical distribution, and (c) to use it for signal quality evaluation in LTM scenarios. For this purpose, a database of external event recorder (EER) signals is assembled and labeled from a clinical point of view for its use as the gold standard of noise severity categorization. These devices are assumed to capture those signal segments more prone to be corrupted with noise during long-term periods. Then, the ECG noise is characterized through the comparison of these clinical severity criteria with conventional quantitative metrics taken from traditional noise-removal approaches, and noise maps are proposed as a novel representation tool to achieve this comparison. Our results showed that neither of the benchmarked quantitative noise measurement criteria represent an accurate enough estimation of the clinical severity of the noise. A case study of long-term ECG is reported, showing the statistical and temporal correspondences and properties with respect to EER signals used to create the gold standard for clinical noise. The proposed noise maps, together with the statistical consistency of the characterization of the noise clinical severity, paves the way towards forthcoming systems providing us with noise maps of the noise clinical severity, allowing the user to process different ECG segments with different techniques and in terms of different measured clinical parameters.
Golzar, Mina; Fotouhi-Ghazvini, Faranak; Rabbani, Hossein; Zakeri, Fahimeh Sadat
2017-01-01
The increasing trend of heart disease has turned the attention of researchers toward the use of portable connected technologies. The necessity of continuous special care for cardiovascular patients is an inevitable fact. In this research, a new wireless electrocardiographic (ECG) signal-monitoring system based on smartphone is presented. This system has two main sections. The first section consists of a sensor which receives ECG signals via an amplifier, then filters and digitizes the signal, and prepares it to be transmitted. The signals are stored, processed, and then displayed in a mobile application. The application alarms in dangerous situations and sends the location of the cardiac patient to family or health-care staff. The results obtained from the analysis of the electrocardiogram signals on 20 different people have been compared with the traditional ECG in hospital by a cardiologist. The signal is instantly transmitted by 200 sample per second to mobile phone. The raw data are processed, the anomaly is detected, and the signal is drawn on the interface in about 70 s. Therefore, the delay is not noticeable by the patient. With respect to rate of data transmission to hospital, different internet connections such as 2G, 3G, 4G, WiFi, WiMax, or Long-Term Evolution (LTE) could be used. Data transmission ranges from 9.6 kbps to 20 Mbps. Therefore, the physician could receive data with no delay. A performance accuracy of 91.62% is obtained from the wireless ECG system. It conforms to the hospital's diagnostic standard system while providing a portable monitoring anywhere at anytime.
Surface 12 lead electrocardiogram recordings using smart phone technology.
Baquero, Giselle A; Banchs, Javier E; Ahmed, Shameer; Naccarelli, Gerald V; Luck, Jerry C
2015-01-01
AliveCor ECG is an FDA approved ambulatory cardiac rhythm monitor that records a single channel (lead I) ECG rhythm strip using an iPhone. In the past few years, the use of smartphones and tablets with health related applications has significantly proliferated. In this initial feasibility trial, we attempted to reproduce the 12 lead ECG using the bipolar arrangement of the AliveCor monitor coupled to smart phone technology. We used the AliveCor heart monitor coupled with an iPhone cellular phone and the AliveECG application (APP) in 5 individuals. In our 5 individuals, recordings from both a standard 12 lead ECG and the AliveCor generated 12 lead ECG had the same interpretation. This study demonstrates the feasibility of creating a 12 lead ECG with a smart phone. The validity of the recordings would seem to suggest that this technology could become an important useful tool for clinical use. This new hand held smart phone 12 lead ECG recorder needs further development and validation. Copyright © 2015 Elsevier Inc. All rights reserved.
Computer analysis of Holter electrocardiogram.
Yanaga, T; Adachi, M; Sato, Y; Ichimaru, Y; Otsuka, K
1994-10-01
Computer analysis is indispensable for the interpretation of Holter ECG, because it includes a large quantity of data. Computer analysis of Holter ECG is similar to that of conventional ECG, however, in computer analysis of Holter ECG, there are some difficulties such as many noise, limited analyzing time and voluminous data. The main topics in computer analysis of Holter ECG will be arrhythmias, ST-T changes, heart rate variability, QT interval, late potential and construction of database. Although many papers have been published on the computer analysis of Holter ECG, some of the papers was reviewed briefly in the present paper. We have studied on computer analysis of VPCs, ST-T changes, heart rate variability, QT interval and Cheyne-Stokes respiration during 24-hour ambulatory ECG monitoring. Further, we have studied on ambulatory palmar sweating for the evaluation of mental stress during a day. In future, the development of "the integrated Holter system", which enables the evaluation of ventricular vulnerability and modulating factor such as psychoneural hypersensitivity may be important.
Telecardiology for effective healthcare services.
Saxena, S C; Kumar, V; Giri, V K
2003-01-01
Continuous monitoring of the electrocardiogram (ECG) and other signals related to current heart activity are necessary for patients who are suffering from cardiac diseases. This paper deals with the work that has been carried out to transmit ECGs from remote sites. Software has been developed which enables the uploading of ECG data from a patient so that the physician can monitor the state of the patient from a distance and at the same time may consult other experts for a second opinion. Records can only be examined by the authorized physician after proper registration and diagnosis or prescription may be sent back to the referring site. Further consultation with the patient through a 'chat' facility is also possible. The suitability of the system over transport control protocol (TCP), internet protocol (IP), local area network (LAN), wide area network (WAN) and World Wide Web (WWW) has been assessed. The bandwidth, latency, availability, security and ubiquity have also been discussed. A study has also been undertaken in order to make the system compatible with available bandwidths and to find out which one out of a number of available techniques is most efficient for ECG data compression. The results indicate that the scheme is suitable for telecardiology and can form part of an overall telemedicine system in a health care network.
A mobile device system for early warning of ECG anomalies.
Szczepański, Adam; Saeed, Khalid
2014-06-20
With the rapid increase in computational power of mobile devices the amount of ambient intelligence-based smart environment systems has increased greatly in recent years. A proposition of such a solution is described in this paper, namely real time monitoring of an electrocardiogram (ECG) signal during everyday activities for identification of life threatening situations. The paper, being both research and review, describes previous work of the authors, current state of the art in the context of the authors' work and the proposed aforementioned system. Although parts of the solution were described in earlier publications of the authors, the whole concept is presented completely for the first time along with the prototype implementation on mobile device-a Windows 8 tablet with Modern UI. The system has three main purposes. The first goal is the detection of sudden rapid cardiac malfunctions and informing the people in the patient's surroundings, family and friends and the nearest emergency station about the deteriorating health of the monitored person. The second goal is a monitoring of ECG signals under non-clinical conditions to detect anomalies that are typically not found during diagnostic tests. The third goal is to register and analyze repeatable, long-term disturbances in the regular signal and finding their patterns.
Zhang, Qingxue; Zhou, Dian; Zeng, Xuan
2017-02-06
Long-term continuous systolic blood pressure (SBP) and heart rate (HR) monitors are of tremendous value to medical (cardiovascular, circulatory and cerebrovascular management), wellness (emotional and stress tracking) and fitness (performance monitoring) applications, but face several major impediments, such as poor wearability, lack of widely accepted robust SBP models and insufficient proofing of the generalization ability of calibrated models. This paper proposes a wearable cuff-less electrocardiography (ECG) and photoplethysmogram (PPG)-based SBP and HR monitoring system and many efforts are made focusing on above challenges. Firstly, both ECG/PPG sensors are integrated into a single-arm band to provide a super wearability. A highly convenient but challenging single-lead configuration is proposed for weak single-arm-ECG acquisition, instead of placing the electrodes on the chest, or two wrists. Secondly, to identify heartbeats and estimate HR from the motion artifacts-sensitive weak arm-ECG, a machine learning-enabled framework is applied. Then ECG-PPG heartbeat pairs are determined for pulse transit time (PTT) measurement. Thirdly, a PTT&HR-SBP model is applied for SBP estimation, which is also compared with many PTT-SBP models to demonstrate the necessity to introduce HR information in model establishment. Fourthly, the fitted SBP models are further evaluated on the unseen data to illustrate the generalization ability. A customized hardware prototype was established and a dataset collected from ten volunteers was acquired to evaluate the proof-of-concept system. The semi-customized prototype successfully acquired from the left upper arm the PPG signal, and the weak ECG signal, the amplitude of which is only around 10% of that of the chest-ECG. The HR estimation has a mean absolute error (MAE) and a root mean square error (RMSE) of only 0.21 and 1.20 beats per min, respectively. Through the comparative analysis, the PTT&HR-SBP models significantly outperform the PTT-SBP models. The testing performance is 1.63 ± 4.44, 3.68, 4.71 mmHg in terms of mean error ± standard deviation, MAE and RMSE, respectively, indicating a good generalization ability on the unseen fresh data. The proposed proof-of-concept system is highly wearable, and its robustness is thoroughly evaluated on different modeling strategies and also the unseen data, which are expected to contribute to long-term pervasive hypertension, heart health and fitness management.
Cheng, Li-Fang; Chen, Tung-Chien; Chen, Liang-Gee
2012-01-01
Most of the abnormal cardiac events such as myocardial ischemia, acute myocardial infarction (AMI) and fatal arrhythmia can be diagnosed through continuous electrocardiogram (ECG) analysis. According to recent clinical research, early detection and alarming of such cardiac events can reduce the time delay to the hospital, and the clinical outcomes of these individuals can be greatly improved. Therefore, it would be helpful if there is a long-term ECG monitoring system with the ability to identify abnormal cardiac events and provide realtime warning for the users. The combination of the wireless body area sensor network (BASN) and the on-sensor ECG processor is a possible solution for this application. In this paper, we aim to design and implement a digital signal processor that is suitable for continuous ECG monitoring and alarming based on the continuous wavelet transform (CWT) through the proposed architectures--using both programmable RISC processor and application specific integrated circuits (ASIC) for performance optimization. According to the implementation results, the power consumption of the proposed processor integrated with an ASIC for CWT computation is only 79.4 mW. Compared with the single-RISC processor, about 91.6% of the power reduction is achieved.
Multi-purpose ECG telemetry system.
Marouf, Mohamed; Vukomanovic, Goran; Saranovac, Lazar; Bozic, Miroslav
2017-06-19
The Electrocardiogram ECG is one of the most important non-invasive tools for cardiac diseases diagnosis. Taking advantage of the developed telecommunication infrastructure, several approaches that address the development of telemetry cardiac devices were introduced recently. Telemetry ECG devices allow easy and fast ECG monitoring of patients with suspected cardiac issues. Choosing the right device with the desired working mode, signal quality, and the device cost are still the main obstacles to massive usage of these devices. In this paper, we introduce design, implementation, and validation of a multi-purpose telemetry system for recording, transmission, and interpretation of ECG signals in different recording modes. The system consists of an ECG device, a cloud-based analysis pipeline, and accompanied mobile applications for physicians and patients. The proposed ECG device's mechanical design allows laypersons to easily record post-event short-term ECG signals, using dry electrodes without any preparation. Moreover, patients can use the device to record long-term signals in loop and holter modes, using wet electrodes. In order to overcome the problem of signal quality fluctuation due to using different electrodes types and different placements on subject's chest, customized ECG signal processing and interpretation pipeline is presented for each working mode. We present the evaluation of the novel short-term recorder design. Recording of an ECG signal was performed for 391 patients using a standard 12-leads golden standard ECG and the proposed patient-activated short-term post-event recorder. In the validation phase, a sample of validation signals followed peer review process wherein two experts annotated the signals in terms of signal acceptability for diagnosis.We found that 96% of signals allow detecting arrhythmia and other signal's abnormal changes. Additionally, we compared and presented the correlation coefficient and the automatic QRS delineation results of both short-term post-event recorder and 12-leads golden standard ECG recorder. The proposed multi-purpose ECG device allows physicians to choose the working mode of the same device according to the patient status. The proposed device was designed to allow patients to manage the technical requirements of both working modes. Post-event short-term ECG recording using the proposed design provide physicians reliable three ECG leads with direct symptom-rhythm correlation.
Personalized USB Biosensor Module for Effective ECG Monitoring.
Sladojević, Srdjan; Arsenović, Marko; Lončar-Turukalo, Tatjana; Sladojević, Miroslava; Ćulibrk, Dubravko
2016-01-01
The burden of chronic disease and associated disability present a major threat to financial sustainability of healthcare delivery systems. The need for cost-effective early diagnosis and disease prevention is evident driving the development of personalized home health solutions. The proposed solution presents an easy to use ECG monitoring system. The core hardware component is a biosensor dongle with sensing probes at one end, and micro USB interface at the other end, offering reliable and unobtrusive sensing, preprocessing and storage. An additional component is a smart phone, providing both the biosensor's power supply and an intuitive user application for the real-time data reading. The system usage is simplified, with innovative solutions offering plug and play functionality avoiding additional driver installation. Personalized needs could be met with different sensor combinations enabling adequate monitoring in chronic disease, during physical activity and in the rehabilitation process.
Real-time ECG monitoring and arrhythmia detection using Android-based mobile devices.
Gradl, Stefan; Kugler, Patrick; Lohmuller, Clemens; Eskofier, Bjoern
2012-01-01
We developed an application for Android™-based mobile devices that allows real-time electrocardiogram (ECG) monitoring and automated arrhythmia detection by analyzing ECG parameters. ECG data provided by pre-recorded files or acquired live by accessing a Shimmer™ sensor node via Bluetooth™ can be processed and evaluated. The application is based on the Pan-Tompkins algorithm for QRS-detection and contains further algorithm blocks to detect abnormal heartbeats. The algorithm was validated using the MIT-BIH Arrhythmia and MIT-BIH Supraventricular Arrhythmia databases. More than 99% of all QRS complexes were detected correctly by the algorithm. Overall sensitivity for abnormal beat detection was 89.5% with a specificity of 80.6%. The application is available for download and may be used for real-time ECG-monitoring on mobile devices.
The Normal Electrocardiogram: Resting 12-Lead and Electrocardiogram Monitoring in the Hospital.
Harris, Patricia R E
2016-09-01
The electrocardiogram (ECG) is a well-established diagnostic tool extensively used in clinical settings. Knowledge of cardiac rhythm and mastery of cardiac waveform interpretation are fundamental for intensive care nurses. Recognition of the normal findings for the 12-lead ECG and understanding the significance of changes from baseline in continuous cardiac monitoring are essential steps toward ensuring safe patient care. This article highlights historical developments in electrocardiography, describes the normal resting 12-lead ECG, and discusses the need for continuous cardiac monitoring. In addition, future directions for the ECG are explored briefly. Copyright © 2016 Elsevier Inc. All rights reserved.
Challenges of ECG monitoring and ECG interpretation in dialysis units.
Poulikakos, Dimitrios; Malik, Marek
Patients on hemodialysis (HD) suffer from high cardiovascular morbidity and mortality due to high rates of coronary artery disease and arrhythmias. Electrocardiography (ECG) is often performed in the dialysis units as part of routine clinical assessment. However, fluid and electrolyte changes have been shown to affect all ECG morphologies and intervals. ECG interpretation thus depends on the time of the recording in relation to the HD session. In addition, arrhythmias during HD are common, and dialysis-related ECG artifacts mimicking arrhythmias have been reported. Studies using advanced ECG analyses have examined the impact of the HD procedure on selected repolarization descriptors and heart rate variability indices. Despite the challenges related to the impact of the fluctuant fluid and electrolyte status on conventional and advanced ECG parameters, further research in ECG monitoring during dialysis has the potential to provide clinically meaningful and practically useful information for diagnostic and risk stratification purposes. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.
Wang, Yishan; Doleschel, Sammy; Wunderlich, Ralf; Heinen, Stefan
2015-03-01
This paper presents a wearable wireless ECG monitoring system based on novel 3-Lead electrode placements for long-term homecare. The experiment for novel 3-Lead electrode placements is carried out, and the results show that the distance between limb electrodes can be significantly reduced. Based on the new electrode position, a small size sensor node, which is powered by a rechargeable battery, is designed to detect, amplify, filter and transmit the ECG signals. The coordinator receives the data and sends it to PC. Finally the signals are displayed on the GUI. In order to control the power consumption of sensor node, a dynamic power adjustment method is applied to automatically adjust the transmission power of the sensor node according to the received signal strength indicator (RSSI), which is related to the distance and obstacle between sensor node and coordinator. The system is evaluated when the user, who wears the sensor, is walking and running. A promising performance is achieved even under body motion. The power consumption can be significantly reduced with this dynamic power adjustment method.
Smart healthcare textile sensor system for unhindered-pervasive health monitoring
NASA Astrophysics Data System (ADS)
Rai, Pratyush; Kumar, Prashanth S.; Oh, Sechang; Kwon, Hyeokjun; Mathur, Gyanesh N.; Varadan, Vijay K.; Agarwal, M. P.
2012-04-01
Simultaneous monitoring of physiological parameters- multi-lead Electrocardiograph (ECG), Heart rate variability, and blood pressure- is imperative to all forms of medical treatments. Using an array of signal recording devices imply that the patient will have to be confined to a bed. Textiles offer durable platform for embedded sensor and communication systems. The smart healthcare textile, presented here, is a mobile system for remote/wireless data recording and conditioning. The wireless textile system has been designed to monitor a patient in a non-obstructive way. It has a potential for facilitating point of care medicine and streamlining ambulatory medicine. The sensor systems were designed and fabricated with textile based components for easy integration on textile platform. An innovative plethysmographic blood pressure monitoring system was designed and tested as an alternative to inflatable blood pressure sphygmomanometer. Flexible dry electrodes technology was implemented for ECG. The sensor systems were tested and conditioned to daily activities of patients, which is not permissible with halter type systems. The signal quality was assessed for it applicability to medical diagnosis. The results were used to corroborate smart textile sensor system's ability to function as a point of care system that can provide quality healthcare.
Tanantong, Tanatorn; Nantajeewarawat, Ekawit; Thiemjarus, Surapa
2015-02-09
False alarms in cardiac monitoring affect the quality of medical care, impacting on both patients and healthcare providers. In continuous cardiac monitoring using wireless Body Sensor Networks (BSNs), the quality of ECG signals can be deteriorated owing to several factors, e.g., noises, low battery power, and network transmission problems, often resulting in high false alarm rates. In addition, body movements occurring from activities of daily living (ADLs) can also create false alarms. This paper presents a two-phase framework for false arrhythmia alarm reduction in continuous cardiac monitoring, using signals from an ECG sensor and a 3D accelerometer. In the first phase, classification models constructed using machine learning algorithms are used for labeling input signals. ECG signals are labeled with heartbeat types and signal quality levels, while 3D acceleration signals are labeled with ADL types. In the second phase, a rule-based expert system is used for combining classification results in order to determine whether arrhythmia alarms should be accepted or suppressed. The proposed framework was validated on datasets acquired using BSNs and the MIT-BIH arrhythmia database. For the BSN dataset, acceleration and ECG signals were collected from 10 young and 10 elderly subjects while they were performing ADLs. The framework reduced the false alarm rate from 9.58% to 1.43% in our experimental study, showing that it can potentially assist physicians in diagnosing a vast amount of data acquired from wireless sensors and enhance the performance of continuous cardiac monitoring.
Feasibility of in utero telemetric fetal ECG monitoring in a lamb model.
Hermans, Bart; Lewi, Liesbeth; Jani, Jacques; De Buck, Frederik; Deprest, Jan; Puers, Robert
2008-01-01
If fetal ECG (fECG) devices could be miniaturized sufficiently, one could consider their implantation at the time of fetal surgery to allow permanent monitoring of the fetus and timely intervention in the viable period. We set up an experiment to evaluate the feasibility of in utero direct fECG monitoring and telemetric transmission using a small implantable device in a lamb model. A 2-lead miniature ECG sensor (volume 1.9 cm(3); weight 3.9 g) was subcutaneously implanted in 2 fetal lambs at 122 days gestation (range 119-125; term 145 days). The ECG sensor can continuously register and transmit fECG. The signal is captured by an external receiving antenna taped to the maternal abdominal wall. We developed dedicated software running on a commercial laptop for on-line analysis of the transmitted fECG signal. This was a noninterventional study, i.e. daily readings of the fECG signal were done without clinical consequences to the observations. fECG could be successfully registered, transmitted by telemetry and analyzed from the moment of implantation till term birth in one case (24 days). In the second case, unexplained in utero fetal death occurred 12 days after implantation. In this subject, agonal fECG changes were recorded. An implanted miniature (<2 ml) ECG sensor can be used to retrieve, process and transmit continuously a qualitative fECG signal in third-trimester fetal lambs. The telemetric signal could be picked up by an external antenna located within a 20-cm range. In this experiment, this was achieved through taping the external receiver to the maternal abdomen. Any acquired signal could be transmitted to a commercially available laptop that could perform on-line analysis of the signal. (c) 2008 S. Karger AG, Basel.
Lin, Chin-Teng; Chang, Kuan-Cheng; Lin, Chun-Ling; Chiang, Chia-Cheng; Lu, Shao-Wei; Chang, Shih-Sheng; Lin, Bor-Shyh; Liang, Hsin-Yueh; Chen, Ray-Jade; Lee, Yuan-Teh; Ko, Li-Wei
2010-05-01
This study presents a novel wireless, ambulatory, real-time, and autoalarm intelligent telecardiology system to improve healthcare for cardiovascular disease, which is one of the most prevalent and costly health problems in the world. This system consists of a lightweight and power-saving wireless ECG device equipped with a built-in automatic warning expert system. This device is connected to a mobile and ubiquitous real-time display platform. The acquired ECG signals are instantaneously transmitted to mobile devices, such as netbooks or mobile phones through Bluetooth, and then, processed by the expert system. An alert signal is sent to the remote database server, which can be accessed by an Internet browser, once an abnormal ECG is detected. The current version of the expert system can identify five types of abnormal cardiac rhythms in real-time, including sinus tachycardia, sinus bradycardia, wide QRS complex, atrial fibrillation (AF), and cardiac asystole, which is very important for both the subjects who are being monitored and the healthcare personnel tracking cardiac-rhythm disorders. The proposed system also activates an emergency medical alarm system when problems occur. Clinical testing reveals that the proposed system is approximately 94% accurate, with high sensitivity, specificity, and positive prediction rates for ten normal subjects and 20 AF patients. We believe that in the future a business-card-like ECG device, accompanied with a mobile phone, can make universal cardiac protection service possible.
Golzar, Mina; Fotouhi-Ghazvini, Faranak; Rabbani, Hossein; Zakeri, Fahimeh Sadat
2017-01-01
Background: The increasing trend of heart disease has turned the attention of researchers toward the use of portable connected technologies. The necessity of continuous special care for cardiovascular patients is an inevitable fact. Methods: In this research, a new wireless electrocardiographic (ECG) signal-monitoring system based on smartphone is presented. This system has two main sections. The first section consists of a sensor which receives ECG signals via an amplifier, then filters and digitizes the signal, and prepares it to be transmitted. The signals are stored, processed, and then displayed in a mobile application. The application alarms in dangerous situations and sends the location of the cardiac patient to family or health-care staff. Results: The results obtained from the analysis of the electrocardiogram signals on 20 different people have been compared with the traditional ECG in hospital by a cardiologist. The signal is instantly transmitted by 200 sample per second to mobile phone. The raw data are processed, the anomaly is detected, and the signal is drawn on the interface in about 70 s. Therefore, the delay is not noticeable by the patient. With respect to rate of data transmission to hospital, different internet connections such as 2G, 3G, 4G, WiFi, WiMax, or Long-Term Evolution (LTE) could be used. Data transmission ranges from 9.6 kbps to 20 Mbps. Therefore, the physician could receive data with no delay. Conclusions: A performance accuracy of 91.62% is obtained from the wireless ECG system. It conforms to the hospital's diagnostic standard system while providing a portable monitoring anywhere at anytime. PMID:29204376
Bashir, Mohamed Ezzeldin A; Lee, Dong Gyu; Li, Meijing; Bae, Jang-Whan; Shon, Ho Sun; Cho, Myung Chan; Ryu, Keun Ho
2012-07-01
Coronary heart disease is being identified as the largest single cause of death along the world. The aim of a cardiac clinical information system is to achieve the best possible diagnosis of cardiac arrhythmias by electronic data processing. Cardiac information system that is designed to offer remote monitoring of patient who needed continues follow up is demanding. However, intra- and interpatient electrocardiogram (ECG) morphological descriptors are varying through the time as well as the computational limits pose significant challenges for practical implementations. The former requires that the classification model be adjusted continuously, and the latter requires a reduction in the number and types of ECG features, and thus, the computational burden, necessary to classify different arrhythmias. We propose the use of adaptive learning to automatically train the classifier on up-to-date ECG data, and employ adaptive feature selection to define unique feature subsets pertinent to different types of arrhythmia. Experimental results show that this hybrid technique outperforms conventional approaches and is, therefore, a promising new intelligent diagnostic tool.
NASA Astrophysics Data System (ADS)
Ragulskaya, Maria; Obridko, Vladimir; Samsonov, Sergey; Vitaliy, Vishnevskey; Grigoryev, Pavel; Valeriy, Pipin; Khabarova, Olga
We discuss the results of the long-term telecommunicative biogeophysical monitoring "Geliomed" (2003-2010). The purpose is to explore the effects of spatial and temporal variations in space weather and climatic factors on the human health state. The monitoring is carried out simultaneously at the different geographical areas that covers the different latitudes. The project developed in the joint collaboration the Ukrainian National Academy of Science and the Russian Academy of Science. The experiment carried out simultaneously in Moscow, Yakutsk, Kiev and Simferopol. The principal components of the experiment can be summarized as follows: 1. Equipments and data gathering methods are the same for all the scientific cen-ters which are involved in experiment. Research centers working with the same equipment and using the same protocols with on-line registration of current data on same portal server (http//geliomed.immsp.kiev.ua) 2. The groups of patients involved in the program are kept the same for the whole observational period of time. 3. The daily registered parameters in-clude: psycho-emotional tests and 1-st lead ECG (contain 25 000 measurements for the whole period), arterial pressure (100 000 measurements), variability cardiac contraction (25000 mea-surements), electric conduction of bioactive points on skin (more than 500 000 measurements for the whole period ). 4. The every patient in the monitoring group is examined at the 4 functional states. Registration is done at rest, after standard psychology test, Roufiet test, and after 10 min relax. 5. The data of the ECG measurements are analyzed in the phase space constructed from the signal and its derivative. 6. The results time series were compared with daily values of space weather and geomagnetic parameters. Results. In the all monitoring centers all the patients involved in the monitoring show the same type of changes in the cardiac activity parameters during an isolated magnetic storm. Such a change of the ECG parameters occurs nearly simultaneously for all the centers. The higher latitude, the greater amplitude of the ECG parameters change. The properties of the detected phenomena can be summarized as follows: -The dynamics of adaptation programs changes during the storm. The maximum amplitude of change is observed for the healthy patients. -The number of none-typical ECG beats increase; -There are no clear evidences for variations of RR intervals during geomagnetic storms. -Man are more sensitive to magnetic storms, while endogenous rhythms predominate for females; Additionally, we find, that the embedding of ECG time series in 3D phase space can be considered as a mix of a few states. At the rest, the occurrence of the basic ECG state compare to additional ones is about 8:2. The occurrence of the basic state increases after the stress. Thus, the external stress may change the relative disorder of the system. To understand the origin of the standard cardio-cycle changes we reconstruct of the dynamical model of the individual cardiac beat. The reconstruction reveals that the typical evolution of the cardiac rhythm includes the drift of attractor in the embedding space and the sudden change between a few basic patterns of attractor. However one of pattern is always dominating. These several pattern of ECG beat attractor can be ascribed to a several states of the system. Qualitatively, the nonlinear ECG dynamics is defined by the stationary points, which are inside into Q and T waves. Conclusions: many-year telecommunication heliomedical monitoring in different lat-itudes showed, that space and geophysical factor act as a training factor for the adaptation-resistant member of the population. It serve as a channel for rejection of nonviable members of the population, synchronize the total populations rhythms, create conditions for generation of new information in the process of evolution adaptation of biological systems in general.
Novel technical solutions for wireless ECG transmission & analysis in the age of the internet cloud.
Al-Zaiti, Salah S; Shusterman, Vladimir; Carey, Mary G
2013-01-01
Current guidelines recommend early reperfusion therapy for ST-elevation myocardial infarction (STEMI) within 90 min of first medical encounter. Telecardiology entails the use of advanced communication technologies to transmit the prehospital 12-lead electrocardiogram (ECG) to offsite cardiologists for early triage to the cath lab; which has been shown to dramatically reduce door-to-balloon time and total mortality. However, hospitals often find adopting ECG transmission technologies very challenging. The current review identifies seven major technical challenges of prehospital ECG transmission, including: paramedics inconvenience and transport delay; signal noise and interpretation errors; equipment malfunction and transmission failure; reliability of mobile phone networks; lack of compliance with the standards of digital ECG formats; poor integration with electronic medical records; and costly hardware and software pre-requisite installation. Current and potential solutions to address each of these technical challenges are discussed in details and include: automated ECG transmission protocols; annotatable waveform-based ECGs; optimal routing solutions; and the use of cloud computing systems rather than vendor-specific processing stations. Nevertheless, strategies to monitor transmission effectiveness and patient outcomes are essential to sustain initial gains of implementing ECG transmission technologies. © 2013.
Improving Remote Health Monitoring: A Low-Complexity ECG Compression Approach
Al-Ali, Abdulla; Mohamed, Amr; Ward, Rabab
2018-01-01
Recent advances in mobile technology have created a shift towards using battery-driven devices in remote monitoring settings and smart homes. Clinicians are carrying out diagnostic and screening procedures based on the electrocardiogram (ECG) signals collected remotely for outpatients who need continuous monitoring. High-speed transmission and analysis of large recorded ECG signals are essential, especially with the increased use of battery-powered devices. Exploring low-power alternative compression methodologies that have high efficiency and that enable ECG signal collection, transmission, and analysis in a smart home or remote location is required. Compression algorithms based on adaptive linear predictors and decimation by a factor B/K are evaluated based on compression ratio (CR), percentage root-mean-square difference (PRD), and heartbeat detection accuracy of the reconstructed ECG signal. With two databases (153 subjects), the new algorithm demonstrates the highest compression performance (CR=6 and PRD=1.88) and overall detection accuracy (99.90% sensitivity, 99.56% positive predictivity) over both databases. The proposed algorithm presents an advantage for the real-time transmission of ECG signals using a faster and more efficient method, which meets the growing demand for more efficient remote health monitoring. PMID:29337892
Improving Remote Health Monitoring: A Low-Complexity ECG Compression Approach.
Elgendi, Mohamed; Al-Ali, Abdulla; Mohamed, Amr; Ward, Rabab
2018-01-16
Recent advances in mobile technology have created a shift towards using battery-driven devices in remote monitoring settings and smart homes. Clinicians are carrying out diagnostic and screening procedures based on the electrocardiogram (ECG) signals collected remotely for outpatients who need continuous monitoring. High-speed transmission and analysis of large recorded ECG signals are essential, especially with the increased use of battery-powered devices. Exploring low-power alternative compression methodologies that have high efficiency and that enable ECG signal collection, transmission, and analysis in a smart home or remote location is required. Compression algorithms based on adaptive linear predictors and decimation by a factor B / K are evaluated based on compression ratio (CR), percentage root-mean-square difference (PRD), and heartbeat detection accuracy of the reconstructed ECG signal. With two databases (153 subjects), the new algorithm demonstrates the highest compression performance ( CR = 6 and PRD = 1.88 ) and overall detection accuracy (99.90% sensitivity, 99.56% positive predictivity) over both databases. The proposed algorithm presents an advantage for the real-time transmission of ECG signals using a faster and more efficient method, which meets the growing demand for more efficient remote health monitoring.
Revolutionary optical sensor for physiological monitoring in the battlefield
NASA Astrophysics Data System (ADS)
Kingsley, Stuart A.; Sriram, Sriram; Pollick, Andrea; Marsh, John
2004-09-01
SRICO has developed a revolutionary approach to physiological status monitoring using state-of-the-art optical chip technology. The company"s patent pending Photrode is a photonic electrode that uses unique optical voltage sensing technology to measure and monitor electrophysiological parameters. The optical-based monitoring system enables dry-contact measurements of EEG and ECG signals that require no surface preparation or conductive gel and non-contact measurements of ECG signals through the clothing. The Photrode applies high performance optical integrated circuit technology, that has been successfully implemented in military & commercial aerospace, missile, and communications applications for sensing and signal transmission. SRICO"s award winning Photrode represents a new paradigm for the measurement of biopotentials in a reliable, convenient, and non-intrusive manner. Photrode technology has significant applications on the battlefield for rapid triage to determine the brain dead from those with viable brain function. An ECG may be obtained over the clothing without any direct skin contact. Such applications would enable the combat medic to receive timely medical information and to make important decisions regarding identification, location, triage priority and treatment of casualties. Other applications for the Photrode include anesthesia awareness monitoring, sleep medicine, mobile medical monitoring for space flight, emergency patient care, functional magnetic resonance imaging, various biopotential signal acquisition (EMG, EOG), and routine neuro and cardio diagnostics.
Differences in alarm events between disposable and reusable electrocardiography lead wires.
Albert, Nancy M; Murray, Terri; Bena, James F; Slifcak, Ellen; Roach, Joel D; Spence, Jackie; Burkle, Alicia
2015-01-01
Disposable electrocardiographic lead wires (ECG-LWs) may not be as durable as reusable ones. To examine differences in alarm events between disposable and reusable ECG-LWs. Two cardiac telemetry units were randomized to reusable ECG-LWs, and 2 units alternated between disposable and reusable ECG-LWs for 4 months. A remote monitoring team, blinded to ECG-LW type, assessed frequency and type of alarm events by using total counts and rates per 100 patient days. Event rates were compared by using generalized linear mixed-effect models for differences and noninferiority between wire types. In 1611 patients and 9385.5 patient days of ECG monitoring, patient characteristics were similar between groups. Rates of alarms for no telemetry, leads fail, or leads off were lower in disposable ECG-LWs (adjusted relative risk [95% CI], 0.71 [0.53-0.96]; noninferiority P < .001; superiority P = .03) and monitoring (artifact) alarms were significantly noninferior (adjusted relative risk [95% CI]: 0.88, [0.62-1.24], P = .02; superiority P = .44). No between-group differences existed in false or true crisis alarms. Disposable ECG-LWs were noninferior to reusable ECG-LWs for all false-alarm events (N [rate per 100 patient days], disposable 2029 [79.1] vs reusable 6673 [97.9]; adjusted relative risk [95% CI]: 0.81 [0.63-1.06], P = .002; superiority P = .12.) Disposable ECG-LWs with patented push-button design had superior performance in reducing alarms created by no telemetry, leads fail, or leads off and significant noninferiority in all false-alarm rates compared with reusable ECG-LWs. Fewer ECG alarms may save nurses time, decrease alarm fatigue, and improve patient safety. ©2015 American Association of Critical-Care Nurses.
Smartphone home monitoring of ECG
NASA Astrophysics Data System (ADS)
Szu, Harold; Hsu, Charles; Moon, Gyu; Landa, Joseph; Nakajima, Hiroshi; Hata, Yutaka
2012-06-01
A system of ambulatory, halter, electrocardiography (ECG) monitoring system has already been commercially available for recording and transmitting heartbeats data by the Internet. However, it enjoys the confidence with a reservation and thus a limited market penetration, our system was targeting at aging global villagers having an increasingly biomedical wellness (BMW) homecare needs, not hospital related BMI (biomedical illness). It was designed within SWaP-C (Size, Weight, and Power, Cost) using 3 innovative modules: (i) Smart Electrode (lowpower mixed signal embedded with modern compressive sensing and nanotechnology to improve the electrodes' contact impedance); (ii) Learnable Database (in terms of adaptive wavelets transform QRST feature extraction, Sequential Query Relational database allowing home care monitoring retrievable Aided Target Recognition); (iii) Smartphone (touch screen interface, powerful computation capability, caretaker reporting with GPI, ID, and patient panic button for programmable emergence procedure). It can provide a supplementary home screening system for the post or the pre-diagnosis care at home with a build-in database searchable with the time, the place, and the degree of urgency happened, using in-situ screening.
Pant, Jeevan K; Krishnan, Sridhar
2018-03-15
To present a new compressive sensing (CS)-based method for the acquisition of ECG signals and for robust estimation of heart-rate variability (HRV) parameters from compressively sensed measurements with high compression ratio. CS is used in the biosensor to compress the ECG signal. Estimation of the locations of QRS segments is carried out by applying two algorithms on the compressed measurements. The first algorithm reconstructs the ECG signal by enforcing a block-sparse structure on the first-order difference of the signal, so the transient QRS segments are significantly emphasized on the first-order difference of the signal. Multiple block-divisions of the signals are carried out with various block lengths, and multiple reconstructed signals are combined to enhance the robustness of the localization of the QRS segments. The second algorithm removes errors in the locations of QRS segments by applying low-pass filtering and morphological operations. The proposed CS-based method is found to be effective for the reconstruction of ECG signals by enforcing transient QRS structures on the first-order difference of the signal. It is demonstrated to be robust not only to high compression ratio but also to various artefacts present in ECG signals acquired by using on-body wireless sensors. HRV parameters computed by using the QRS locations estimated from the signals reconstructed with a compression ratio as high as 90% are comparable with that computed by using QRS locations estimated by using the Pan-Tompkins algorithm. The proposed method is useful for the realization of long-term HRV monitoring systems by using CS-based low-power wireless on-body biosensors.
A Non-Invasive Multichannel Hybrid Fiber-Optic Sensor System for Vital Sign Monitoring
Fajkus, Marcel; Nedoma, Jan; Martinek, Radek; Vasinek, Vladimir; Nazeran, Homer; Siska, Petr
2017-01-01
In this article, we briefly describe the design, construction, and functional verification of a hybrid multichannel fiber-optic sensor system for basic vital sign monitoring. This sensor uses a novel non-invasive measurement probe based on the fiber Bragg grating (FBG). The probe is composed of two FBGs encapsulated inside a polydimethylsiloxane polymer (PDMS). The PDMS is non-reactive to human skin and resistant to electromagnetic waves, UV absorption, and radiation. We emphasize the construction of the probe to be specifically used for basic vital sign monitoring such as body temperature, respiratory rate and heart rate. The proposed sensor system can continuously process incoming signals from up to 128 individuals. We first present the overall design of this novel multichannel sensor and then elaborate on how it has the potential to simplify vital sign monitoring and consequently improve the comfort level of patients in long-term health care facilities, hospitals and clinics. The reference ECG signal was acquired with the use of standard gel electrodes fixed to the monitored person’s chest using a real-time monitoring system for ECG signals with virtual instrumentation. The outcomes of these experiments have unambiguously proved the functionality of the sensor system and will be used to inform our future research in this fast developing and emerging field. PMID:28075341
Chandraratna, P Anthony N; Mohar, Dilbahar S; Sidarous, Peter F; Brar, Prabhjyot; Miller, Jeffrey; Shah, Nissar; Kadis, John; Ali, Ashgar; Mohar, Prabhsimran
2012-09-01
This investigation was designed to test the hypothesis that continuous cardiac imaging using an ultrasound transducer developed in our laboratory (ContiScan) is superior to electrocardiogram (ECG) monitoring in the diagnosis of coronary artery disease (CAD) in patients with acute non-ST segment elevation chest pain syndromes. Seventy patients with intermediate to high probability of CAD who presented with typical anginal chest pain and no evidence of ST segment elevation on the ECG were studied. The 2.5-MHz transducer is spherical in its distal part mounted in an external housing to permit steering in 360 degrees. The transducer was placed at the left sternal border to image the left ventricular short-axis view and recorded on video tape at baseline, during and after episodes of chest pain. Two ECG leads were continuously monitored. The presence of CAD was confirmed by coronary arteriography or nuclear or echocardiographic stress testing. Twenty-four patients had regional wall motion abnormalities (RWMA) on their initial echo which were unchanged during the period of monitoring. All had evidence of CAD. Twenty-eight patients had transient RWMA. All had evidence of CAD. Eighteen patients had normal wall motion throughout the monitoring period, 14 of these had no evidence of CAD, and four had evidence of CAD. These four patients did not have chest pain during monitoring. The sensitivity, specificity, and accuracy of echocardiographic monitoring for diagnosing non-ST elevation myocardial infarction was 88%, 100%, and 91% respectively. The sensitivity, specificity, and accuracy of the ECG for diagnosis of CAD were 31%, 100%, and 52%, respectively. Echocardiography was superior to ECG (P < 0.001). The data indicate that continuous cardiac imaging is superior to ECG monitoring for the diagnosis of CAD in patients presenting with acute non-ST segment elevation chest pain syndromes. This technique could be a useful adjunct to ECG monitoring for myocardial ischemia in the acute care setting. © 2012, Wiley Periodicals, Inc.
An Autonomous Wireless Sensor Node With Asynchronous ECG Monitoring in 0.18 μ m CMOS.
Mansano, Andre L; Li, Yongjia; Bagga, Sumit; Serdijn, Wouter A
2016-06-01
The design of a 13.56 MHz/402 MHz autonomous wireless sensor node with asynchronous ECG monitoring for near field communication is presented. The sensor node consists of an RF energy harvester (RFEH), a power management unit, an ECG readout, a data encoder and an RF backscattering transmitter. The energy harvester supplies the system with 1.25 V and offers a power conversion efficiency of 19% from a -13 dBm RF source at 13.56 MHz. The power management unit regulates the output voltage of the RFEH to supply the ECG readout with VECG = 0.95 V and the data encoder with VDE = 0.65 V . The ECG readout comprises an analog front-end (low noise amplifier and programmable voltage to current converter) and an asynchronous level crossing ADC with 8 bits resolution. The ADC output is encoded by a pulse generator that drives a backscattering transmitter at 402 MHz. The total power consumption of the sensor node circuitry is 9.7 μ W for a data rate of 90 kb/s and a heart rate of 70 bpm. The chip has been designed in a 0.18 μm CMOS process and shows superior RF input power sensitivity and lower power consumption when compared to previous works.
[Low-power Wireless Micro Ambulatory Electrocardiogram Node].
Cai, Zhipeng; Luo, Kan; Li, Jianqing
2016-02-01
Ambulatory electrocardiogram (ECG) monitoring can effectively reduce the risk and death rate of patients with cardiovascular diseases (CVDs). The Body Sensor Network (BSN) based ECG monitoring is a new and efficien method to protect the CVDs patients. To meet the challenges of miniaturization, low power and high signal quality of the node, we proposed a novel 50 mmX 50 mmX 10 mm, 30 g wireless ECG node, which includes the single-chip an alog front-end AD8232, ultra-low power microprocessor MSP430F1611 and Bluetooth module HM-11. The ECG signal quality is guaranteed by the on-line digital filtering. The difference threshold algorithm results in accuracy of R-wave detection and heart rate. Experiments were carried out to test the node and the results showed that the pro posed node reached the design target, and it has great potential in application of wireless ECG monitoring.
Biomedical Equipment Maintenance Career Ladder, AFSC 918X0
1989-01-01
incubators, fetal heart monitors, and vital sign monitors. In comparison, higher percent- ages of the 5-skill level group maintain x-ray equipment...ECG) Monitors 87 Hypo/Hyperthermia Units 85 Incubators 85 Audiometer Systems 84 Blood Pressure Monitors, Automatic 81 Fetal Heart Monitors 80 X-Ray...01462 VERIFY CALIBRATION OF FETAL HEART MONITORS 100 G281 PERFORM OPERATIONAL INSPECTIONS OF VITAL SIGN MONITORS 100 01435 PERFORM PREVENTIVE
Adaptive noise canceling of electrocardiogram artifacts in single channel electroencephalogram.
Cho, Sung Pil; Song, Mi Hye; Park, Young Cheol; Choi, Ho Seon; Lee, Kyoung Joung
2007-01-01
A new method for estimating and eliminating electrocardiogram (ECG) artifacts from single channel scalp electroencephalogram (EEG) is proposed. The proposed method consists of emphasis of QRS complex from EEG using least squares acceleration (LSA) filter, generation of synchronized pulse with R-peak and ECG artifacts estimation and elimination using adaptive filter. The performance of the proposed method was evaluated using simulated and real EEG recordings, we found that the ECG artifacts were successfully estimated and eliminated in comparison with the conventional multi-channel techniques, which are independent component analysis (ICA) and ensemble average (EA) method. From this we can conclude that the proposed method is useful for the detecting and eliminating the ECG artifacts from single channel EEG and simple to use for ambulatory/portable EEG monitoring system.
Ubiquitous health monitoring and real-time cardiac arrhythmias detection: a case study.
Li, Jian; Zhou, Haiying; Zuo, Decheng; Hou, Kun-Mean; De Vaulx, Christophe
2014-01-01
As the symptoms and signs of heart diseases that cause sudden cardiac death, cardiac arrhythmia has attracted great attention. Due to limitations in time and space, traditional approaches to cardiac arrhythmias detection fail to provide a real-time continuous monitoring and testing service applicable in different environmental conditions. Integrated with the latest technologies in ECG (electrocardiograph) analysis and medical care, the pervasive computing technology makes possible the ubiquitous cardiac care services, and thus brings about new technical challenges, especially in the formation of cardiac care architecture and realization of the real-time automatic ECG detection algorithm dedicated to care devices. In this paper, a ubiquitous cardiac care prototype system is presented with its architecture framework well elaborated. This prototype system has been tested and evaluated in all the clinical-/home-/outdoor-care modes with a satisfactory performance in providing real-time continuous cardiac arrhythmias monitoring service unlimitedly adaptable in time and space.
Diagnostic value of prehospital ECG in acute stroke patients.
Bobinger, Tobias; Kallmünzer, Bernd; Kopp, Markus; Kurka, Natalia; Arnold, Martin; Heider, Stefan; Schwab, Stefan; Köhrmann, Martin
2017-05-16
To investigate the diagnostic yield of prehospital ECG monitoring provided by emergency medical services in the case of suspected stroke. Consecutive patients with acute stroke admitted to our tertiary stroke center via emergency medical services and with available prehospital ECG were prospectively included during a 12-month study period. We assessed prehospital ECG recordings and compared the results to regular 12-lead ECG on admission and after continuous ECG monitoring at the stroke unit. Overall, 259 patients with prehospital ECG recording were included in the study (90.3% ischemic stroke, 9.7% intracerebral hemorrhage). Atrial fibrillation (AF) was detected in 25.1% of patients, second-degree or greater atrioventricular block in 5.4%, significant ST-segment elevation in 5.0%, and ventricular ectopy in 9.7%. In 18 patients, a diagnosis of new-onset AF with direct clinical consequences for the evaluation and secondary prevention of stroke was established by the prehospital recordings. In 2 patients, the AF episodes were limited to the prehospital period and were not detected by ECG on admission or during subsequent monitoring at the stroke unit. Of 126 patients (48.6%) with relevant abnormalities in the prehospital ECG, 16.7% received medical antiarrhythmic therapy during transport to the hospital, and 6.4% were transferred to a cardiology unit within the first 24 hours in the hospital. In a selected cohort of patients with stroke, the in-field recordings of the ECG detected a relevant rate of cardiac arrhythmia. The results can add to the in-hospital evaluation and should be considered in prehospital care of acute stroke. © 2017 American Academy of Neurology.
A real-time approach for heart rate monitoring using a Hilbert transform in seismocardiograms.
Jafari Tadi, Mojtaba; Lehtonen, Eero; Hurnanen, Tero; Koskinen, Juho; Eriksson, Jonas; Pänkäälä, Mikko; Teräs, Mika; Koivisto, Tero
2016-11-01
Heart rate monitoring helps in assessing the functionality and condition of the cardiovascular system. We present a new real-time applicable approach for estimating beat-to-beat time intervals and heart rate in seismocardiograms acquired from a tri-axial microelectromechanical accelerometer. Seismocardiography (SCG) is a non-invasive method for heart monitoring which measures the mechanical activity of the heart. Measuring true beat-to-beat time intervals from SCG could be used for monitoring of the heart rhythm, for heart rate variability analysis and for many other clinical applications. In this paper we present the Hilbert adaptive beat identification technique for the detection of heartbeat timings and inter-beat time intervals in SCG from healthy volunteers in three different positions, i.e. supine, left and right recumbent. Our method is electrocardiogram (ECG) independent, as it does not require any ECG fiducial points to estimate the beat-to-beat intervals. The performance of the algorithm was tested against standard ECG measurements. The average true positive rate, positive prediction value and detection error rate for the different positions were, respectively, supine (95.8%, 96.0% and ≃0.6%), left (99.3%, 98.8% and ≃0.001%) and right (99.53%, 99.3% and ≃0.01%). High correlation and agreement was observed between SCG and ECG inter-beat intervals (r > 0.99) for all positions, which highlights the capability of the algorithm for SCG heart monitoring from different positions. Additionally, we demonstrate the applicability of the proposed method in smartphone based SCG. In conclusion, the proposed algorithm can be used for real-time continuous unobtrusive cardiac monitoring, smartphone cardiography, and in wearable devices aimed at health and well-being applications.
Wearable technology and ECG processing for fall risk assessment, prevention and detection.
Melillo, Paolo; Castaldo, Rossana; Sannino, Giovanna; Orrico, Ada; de Pietro, Giuseppe; Pecchia, Leandro
2015-01-01
Falls represent one of the most common causes of injury-related morbidity and mortality in later life. Subjects with cardiovascular disorders (e.g., related to autonomic dysfunctions and postural hypotension) are at higher risk of falling. Autonomic dysfunctions increasing the risk of falling in the short and mid-term could be assessed by Heart Rate Variability (HRV) extracted by electrocardiograph (ECG). We developed three trials for assessing the usefulness of ECG monitoring using wearable devices for: risk assessment of falling in the next few weeks; prevention of imminent falls due to standing hypotension; and fall detection. Statistical and data-mining methods are adopted to develop classification and regression models, validated with the cross-validation approach. The first classifier based on HRV features enabled to identify future fallers among hypertensive patients with an accuracy of 72% (sensitivity: 51.1%, specificity: 80.2%). The regression model to predict falls due to orthostatic dropdown from HRV recorded before standing achieved an overall accuracy of 80% (sensitivity: 92%, specificity: 90%). Finally, the classifier to detect simulated falls using ECG achieved an accuracy of 77.3% (sensitivity: 81.8%, specificity: 72.7%). The evidence from these three studies showed that ECG monitoring and processing could achieve satisfactory performances compared to other system for risk assessment, fall prevention and detection. This is interesting as differently from other technologies actually employed to prevent falls, ECG is recommended for many other pathologies of later life and is more accepted by senior citizens.
Cardiac Computed Tomography (Multidetector CT, or MDCT)
... other tests, such as chest X-rays , electrocardiograms (ECG) , echocardiograms (echocardiography) , or stress tests , don’t give ... be attached to your chest to monitor your ECG. The ECG is also needed to help the ...
Sutha, P; Jayanthi, V E
2017-12-08
Birth defect-related demise is mainly due to congenital heart defects. In the earlier stage of pregnancy, fetus problem can be identified by finding information about the fetus to avoid stillbirths. The gold standard used to monitor the health status of the fetus is by Cardiotachography(CTG), cannot be used for long durations and continuous monitoring. There is a need for continuous and long duration monitoring of fetal ECG signals to study the progressive health status of the fetus using portable devices. The non-invasive method of electrocardiogram recording is one of the best method used to diagnose fetal cardiac problem rather than the invasive methods.The monitoring of the fECG requires development of a miniaturized hardware and a efficient signal processing algorithms to extract the fECG embedded in the mother ECG. The paper discusses a prototype hardware developed to monitor and record the raw mother ECG signal containing the fECG and a signal processing algorithm to extract the fetal Electro Cardiogram signal. We have proposed two methods of signal processing, first is based on the Least Mean Square (LMS) Adaptive Noise Cancellation technique and the other method is based on the Wavelet Transformation technique. A prototype hardware was designed and developed to acquire the raw ECG signal containing the mother and fetal ECG and the signal processing techniques were used to eliminate the noises and extract the fetal ECG and the fetal Heart Rate Variability was studied. Both the methods were evaluated with the signal acquired from a fetal ECG simulator, from the Physionet database and that acquired from the subject. Both the methods are evaluated by finding heart rate and its variability, amplitude spectrum and mean value of extracted fetal ECG. Also the accuracy, sensitivity and positive predictive value are also determined for fetal QRS detection technique. In this paper adaptive filtering technique uses Sign-sign LMS algorithm and wavelet techniques with Daubechies wavelet, employed along with de noising techniques for the extraction of fetal Electrocardiogram.Both the methods are having good sensitivity and accuracy. In adaptive method the sensitivity is 96.83, accuracy 89.87, wavelet sensitivity is 95.97 and accuracy is 88.5. Additionally, time domain parameters from the plot of heart rate variability of mother and fetus are analyzed.
Mishra, Vikas; Gautier, Nicole M; Glasscock, Edward
2018-01-29
In epilepsy, seizures can evoke cardiac rhythm disturbances such as heart rate changes, conduction blocks, asystoles, and arrhythmias, which can potentially increase risk of sudden unexpected death in epilepsy (SUDEP). Electroencephalography (EEG) and electrocardiography (ECG) are widely used clinical diagnostic tools to monitor for abnormal brain and cardiac rhythms in patients. Here, a technique to simultaneously record video, EEG, and ECG in mice to measure behavior, brain, and cardiac activities, respectively, is described. The technique described herein utilizes a tethered (i.e., wired) recording configuration in which the implanted electrode on the head of the mouse is hard-wired to the recording equipment. Compared to wireless telemetry recording systems, the tethered arrangement possesses several technical advantages such as a greater possible number of channels for recording EEG or other biopotentials; lower electrode costs; and greater frequency bandwidth (i.e., sampling rate) of recordings. The basics of this technique can also be easily modified to accommodate recording other biosignals, such as electromyography (EMG) or plethysmography for assessment of muscle and respiratory activity, respectively. In addition to describing how to perform the EEG-ECG recordings, we also detail methods to quantify the resulting data for seizures, EEG spectral power, cardiac function, and heart rate variability, which we demonstrate in an example experiment using a mouse with epilepsy due to Kcna1 gene deletion. Video-EEG-ECG monitoring in mouse models of epilepsy or other neurological disease provides a powerful tool to identify dysfunction at the level of the brain, heart, or brain-heart interactions.
A PDA-based electrocardiogram/blood pressure telemonitor for telemedicine.
Bolanos, Marcos; Nazeran, Homayoun; Gonzalez, Izzac; Parra, Ricardo; Martinez, Christopher
2004-01-01
An electrocardiogram (ECG) / blood pressure (BP) telemonitor consisting of comprehensive integration of various electrical engineering concepts, devices, and methods was developed. This personal digital assistant-based (PDAbased) system focused on integration of biopotential amplifiers, photoplethysmographic measurement of blood pressure, microcontroller devices, programming methods, wireless transmission, signal filtering and analysis, interfacing, and long term memory devices (24 hours) to develop a state-of-the-art ECG/BP telemonitor. These instrumentation modules were developed and tested to realize a complete and compact system that could be deployed to assist in telemedicine applications and heart rate variability studies. The specific objective of this device was to facilitate the long term monitoring and recording of ECG and blood pressure signals. This device was able to acquire ECG/BP waveforms, transmit them wirelessly to a PDA, save them onto a compact flash memory, and display them on the LCD screen of the PDA. It was also capable of calculating the heart rate (HR) in beats per minute, and providing systolic and diastolic blood pressure values.
Fletcher, Richard Ribón; Tam, Sharon; Omojola, Olufemi; Redemske, Richard; Kwan, Joyce
2011-01-01
We present a wearable sensor platform designed for monitoring and studying autonomic nervous system (ANS) activity for the purpose of mental health treatment and interventions. The mobile sensor system consists of a sensor band worn on the ankle that continuously monitors electrodermal activity (EDA), 3-axis acceleration, and temperature. A custom-designed ECG heart monitor worn on the chest is also used as an optional part of the system. The EDA signal from the ankle bands provides a measure sympathetic nervous system activity and used to detect arousal events. The optional ECG data can be used to improve the sensor classification algorithm and provide a measure of emotional "valence." Both types of sensor bands contain a Bluetooth radio that enables communication with the patient's mobile phone. When a specific arousal event is detected, the phone automatically presents therapeutic and empathetic messages to the patient in the tradition of Cognitive Behavioral Therapy (CBT). As an example of clinical use, we describe how the system is currently being used in an ongoing study for patients with drug-addiction and post-traumatic stress disorder (PTSD).
Research of the Heart Information Monitoring Robert Based on the 3G Wireless Communication Platform
NASA Astrophysics Data System (ADS)
Zhang, Fuli; Yang, Huazhe; Li, Gensong; Hong, Yang; Hu, Qingzhe
Electrocardiogram (ECG) of a person can be recorded and the diagnostic results can be displayed through touching the heart information monitoring Robert. In addition, the heart rate, phonocardiogram (PCG) and the dynamic three-dimensional echocardiography can also be displayed synchronously. Then the difficult ECG can be transmitted to the service center through 3G wireless communication center, followed by diagnosing the ECG by doctors and transmitting the feedback diagnostic results. I-lead ECG of the person can be recorded by the amplification circuit with high gain and low noise. Then, the heart rate and output phonocardiogram are displayed and the model of heart beat are started to trace through the recognition of R wave. Finally, the difficult ECG is transmitted to the service center via 3G communication chips. The displayed ECG is clear, and the stimulated heart beat is synchronous with that of the person. Furthermore, ECG received by the service center is in accordance with the one recorded by the Robert.
CNT/PDMS composite flexible dry electrodes for long-term ECG monitoring.
Jung, Ha-Chul; Moon, Jin-Hee; Baek, Dong-Hyun; Lee, Jae-Hee; Choi, Yoon-Young; Hong, Joung-Sook; Lee, Sang-Hoon
2012-05-01
We fabricated a carbon nanotube (CNT)/ polydimethylsiloxane (PDMS) composite-based dry ECG electrode that can be readily connected to conventional ECG devices, and showed its long-term wearable monitoring capability and robustness to motion and sweat. While the dispersion of CNTs in PDMS is challenging, we optimized the process to disperse untreated CNTs within PDMS by mechanical force only. The electrical and mechanical characteristics of the CNT/PDMS electrode were tested according to the concentration of CNTs and its thickness. The performances of ECG electrodes were evaluated by using 36 types of electrodes which were fabricated with different concentrations of CNTs, and with a differing diameter and thickness. The ECG signals were obtained by using electrodes of diverse sizes to observe the effects of motion and sweat, and the proposed electrode was shown to be robust to both factors. The CNT concentration and diameter of the electrodes were critical parameters in obtaining high-quality ECG signals. The electrode was shown to be biocompatible from the cytotoxicity test. A seven-day continuous wearability test showed that the quality of the ECG signal did not degrade over time, and skin reactions such as itching or erythema were not observed. This electrode could be used for the long-term measurement of other electrical biosignals for ubiquitous health monitoring including EMG, EEG, and ERG.
Seamless personal health information system in cloud computing.
Chung, Wan-Young; Fong, Ee May
2014-01-01
Noncontact ECG measurement has gained popularity these days due to its noninvasive and conveniences to be applied on daily life. This approach does not require any direct contact between patient's skin and sensor for physiological signal measurement. The noncontact ECG measurement is integrated with mobile healthcare system for health status monitoring. Mobile phone acts as the personal health information system displaying health status and body mass index (BMI) tracking. Besides that, it plays an important role being the medical guidance providing medical knowledge database including symptom checker and health fitness guidance. At the same time, the system also features some unique medical functions that cater to the living demand of the patients or users, including regular medication reminders, alert alarm, medical guidance, appointment scheduling. Lastly, we demonstrate mobile healthcare system with web application for extended uses, thus health data are clouded into web server system and web database storage. This allows remote health status monitoring easily and so forth it promotes a cost effective personal healthcare system.
ECG-derived respiration based on iterated Hilbert transform and Hilbert vibration decomposition.
Sharma, Hemant; Sharma, K K
2018-06-01
Monitoring of the respiration using the electrocardiogram (ECG) is desirable for the simultaneous study of cardiac activities and the respiration in the aspects of comfort, mobility, and cost of the healthcare system. This paper proposes a new approach for deriving the respiration from single-lead ECG based on the iterated Hilbert transform (IHT) and the Hilbert vibration decomposition (HVD). The ECG signal is first decomposed into the multicomponent sinusoidal signals using the IHT technique. Afterward, the lower order amplitude components obtained from the IHT are filtered using the HVD to extract the respiration information. Experiments are performed on the Fantasia and Apnea-ECG datasets. The performance of the proposed ECG-derived respiration (EDR) approach is compared with the existing techniques including the principal component analysis (PCA), R-peak amplitudes (RPA), respiratory sinus arrhythmia (RSA), slopes of the QRS complex, and R-wave angle. The proposed technique showed the higher median values of correlation (first and third quartile) for both the Fantasia and Apnea-ECG datasets as 0.699 (0.55, 0.82) and 0.57 (0.40, 0.73), respectively. Also, the proposed algorithm provided the lowest values of the mean absolute error and the average percentage error computed from the EDR and reference (recorded) respiration signals for both the Fantasia and Apnea-ECG datasets as 1.27 and 9.3%, and 1.35 and 10.2%, respectively. In the experiments performed over different age group subjects of the Fantasia dataset, the proposed algorithm provided effective results in the younger population but outperformed the existing techniques in the case of elderly subjects. The proposed EDR technique has the advantages over existing techniques in terms of the better agreement in the respiratory rates and specifically, it reduces the need for an extra step required for the detection of fiducial points in the ECG for the estimation of respiration which makes the process effective and less-complex. The above performance results obtained from two different datasets validate that the proposed approach can be used for monitoring of the respiration using single-lead ECG.
A web-based approach for electrocardiogram monitoring in the home.
Magrabi, F; Lovell, N H; Celler, B G
1999-05-01
A Web-based electrocardiogram (ECG) monitoring service in which a longitudinal clinical record is used for management of patients, is described. The Web application is used to collect clinical data from the patient's home. A database on the server acts as a central repository where this clinical information is stored. A Web browser provides access to the patient's records and ECG data. We discuss the technologies used to automate the retrieval and storage of clinical data from a patient database, and the recording and reviewing of clinical measurement data. On the client's Web browser, ActiveX controls embedded in the Web pages provide a link between the various components including the Web server, Web page, the specialised client side ECG review and acquisition software, and the local file system. The ActiveX controls also implement FTP functions to retrieve and submit clinical data to and from the server. An intelligent software agent on the server is activated whenever new ECG data is sent from the home. The agent compares historical data with newly acquired data. Using this method, an optimum patient care strategy can be evaluated, a summarised report along with reminders and suggestions for action is sent to the doctor and patient by email.
NASA Technical Reports Server (NTRS)
1972-01-01
The design and verification tests for the biomedical ground lead system of Apollo biomedical monitors are presented. Major efforts were made to provide a low impedance path to ground, reduce noise and artifact of ECG signals, and limit the current flowing in the ground electrode of the system.
[Telemetry in the clinical setting].
Hilbel, Thomas; Helms, Thomas M; Mikus, Gerd; Katus, Hugo A; Zugck, Christian
2008-09-01
Telemetric cardiac monitoring was invented in 1949 by Norman J Holter. Its clinical use started in the early 1960s. In the hospital, biotelemetry allows early mobilization of patients with cardiovascular risk and addresses the need for arrhythmia or oxygen saturation monitoring. Nowadays telemetry either uses vendor-specific UHF band broadcasting or the digital ISM band (Industrial, Scientific, and Medical Band) standardized Wi-Fi network technology. Modern telemetry radio transmitters can measure and send multiple physiological parameters like multi-channel ECG, NIPB and oxygen saturation. The continuous measurement of oxygen saturation is mandatory for the remote monitoring of patients with cardiac pacemakers. Real 12-lead ECG systems with diagnostic quality are an advantage for monitoring patients with chest pain syndromes or in drug testing wards. Modern systems are light-weight and deliver a maximum of carrying comfort due to optimized cable design. Important for the system selection is a sophisticated detection algorithm with a maximum reduction of artifacts. Home-monitoring of implantable cardiac devices with telemetric functionalities are becoming popular because it allows remote diagnosis of proper device functionality and also optimization of the device settings. Continuous real-time monitoring at home for patients with chronic disease may be possible in the future using Digital Video Broadcasting Terrestrial (DVB-T) technology in Europe, but is currently not yet available.
Sodhro, Ali Hassan; Sodhro, Gul Hassan; Lohano, Sonia; Pirbhulal, Sandeep
2018-01-01
Rapid progress and emerging trends in miniaturized medical devices have enabled the un-obtrusive monitoring of physiological signals and daily activities of everyone’s life in a prominent and pervasive manner. Due to the power-constrained nature of conventional wearable sensor devices during ubiquitous sensing (US), energy-efficiency has become one of the highly demanding and debatable issues in healthcare. This paper develops a single chip-based wearable wireless electrocardiogram (ECG) monitoring system by adopting analog front end (AFE) chip model ADS1292R from Texas Instruments. The developed chip collects real-time ECG data with two adopted channels for continuous monitoring of human heart activity. Then, these two channels and the AFE are built into a right leg drive right leg drive (RLD) driver circuit with lead-off detection and medical graded test signal. Human ECG data was collected at 60 beats per minute (BPM) to 120 BPM with 60 Hz noise and considered throughout the experimental set-up. Moreover, notch filter (cutoff frequency 60 Hz), high-pass filter (cutoff frequency 0.67 Hz), and low-pass filter (cutoff frequency 100 Hz) with cut-off frequencies of 60 Hz, 0.67 Hz, and 100 Hz, respectively, were designed with bilinear transformation for rectifying the power-line noise and artifacts while extracting real-time ECG signals. Finally, a transmission power control-based energy-efficient (ETPC) algorithm is proposed, implemented on the hardware and then compared with the several conventional TPC methods. Experimental results reveal that our developed chip collects real-time ECG data efficiently, and the proposed ETPC algorithm achieves higher energy savings of 35.5% with a slightly larger packet loss ratio (PLR) as compared to conventional TPC (e.g., constant TPC, Gao’s, and Xiao’s methods). PMID:29558433
Sodhro, Ali Hassan; Sangaiah, Arun Kumar; Sodhro, Gul Hassan; Lohano, Sonia; Pirbhulal, Sandeep
2018-03-20
Rapid progress and emerging trends in miniaturized medical devices have enabled the un-obtrusive monitoring of physiological signals and daily activities of everyone's life in a prominent and pervasive manner. Due to the power-constrained nature of conventional wearable sensor devices during ubiquitous sensing (US), energy-efficiency has become one of the highly demanding and debatable issues in healthcare. This paper develops a single chip-based wearable wireless electrocardiogram (ECG) monitoring system by adopting analog front end (AFE) chip model ADS1292R from Texas Instruments. The developed chip collects real-time ECG data with two adopted channels for continuous monitoring of human heart activity. Then, these two channels and the AFE are built into a right leg drive right leg drive (RLD) driver circuit with lead-off detection and medical graded test signal. Human ECG data was collected at 60 beats per minute (BPM) to 120 BPM with 60 Hz noise and considered throughout the experimental set-up. Moreover, notch filter (cutoff frequency 60 Hz), high-pass filter (cutoff frequency 0.67 Hz), and low-pass filter (cutoff frequency 100 Hz) with cut-off frequencies of 60 Hz, 0.67 Hz, and 100 Hz, respectively, were designed with bilinear transformation for rectifying the power-line noise and artifacts while extracting real-time ECG signals. Finally, a transmission power control-based energy-efficient (ETPC) algorithm is proposed, implemented on the hardware and then compared with the several conventional TPC methods. Experimental results reveal that our developed chip collects real-time ECG data efficiently, and the proposed ETPC algorithm achieves higher energy savings of 35.5% with a slightly larger packet loss ratio (PLR) as compared to conventional TPC (e.g., constant TPC, Gao's, and Xiao's methods).
Halcox, Julian P J; Wareham, Kathie; Cardew, Antonia; Gilmore, Mark; Barry, James P; Phillips, Ceri; Gravenor, Michael B
2017-11-07
Asymptomatic atrial fibrillation (AF) is increasingly common in the aging population and implicated in many ischemic strokes. Earlier identification of AF with appropriate anticoagulation may decrease stroke morbidity and mortality. We conducted a randomized controlled trial of AF screening using an AliveCor Kardia monitor attached to a WiFi-enabled iPod to obtain ECGs (iECGs) in ambulatory patients. Patients ≥65 years of age with a CHADS-VASc score ≥2 free from AF were randomized to the iECG arm or routine care (RC). iECG participants acquired iECGs twice weekly over 12 months (plus additional iECGs if symptomatic) onto a secure study server with overread by an automated AF detection algorithm and by a cardiac physiologist and/or consultant cardiologist. Time to diagnosis of AF was the primary outcome measure. The overall cost of the devices, ECG interpretation, and patient management were captured and used to generate the cost per AF diagnosis in iECG patients. Clinical events and patient attitudes/experience were also evaluated. We studied 1001 patients (500 iECG, 501 RC) who were 72.6±5.4 years of age; 534 were female. Mean CHADS-VASc score was 3.0 (heart failure, 1.4%; hypertension, 54%; diabetes mellitus, 30%; prior stroke/transient ischemic attack, 6.5%; arterial disease, 15.9%; all CHADS-VASc risk factors were evenly distributed between groups). Nineteen patients in the iECG group were diagnosed with AF over the 12-month study period versus 5 in the RC arm (hazard ratio, 3.9; 95% confidence interval=1.4-10.4; P =0.007) at a cost per AF diagnosis of $10 780 (£8255). There was a similar number of stroke/transient ischemic attack/systemic embolic events (6 versus 10, iECG versus RC; hazard ratio=0.61; 95% confidence interval=0.22-1.69; P =0.34). The majority of iECG patients were satisfied with the device, finding it easy to use without restricting activities or causing anxiety. Screening with twice-weekly single-lead iECG with remote interpretation in ambulatory patients ≥65 years of age at increased risk of stroke is significantly more likely to identify incident AF than RC over a 12-month period. This approach is also highly acceptable to this group of patients, supporting further evaluation in an appropriately powered, event-driven clinical trial. URL: https://www.isrctn.com. Unique identifier: ISRCTN10709813. © 2017 American Heart Association, Inc.
Design of electrocardiography measurement system with an algorithm to remove noise
NASA Astrophysics Data System (ADS)
Kwon, Hyeokjun; Oh, Sechang; Kumar, Prashanth; Varadan, Vijay K.
2011-04-01
Electrocardiography (ECG) is an important diagnostic tool that can provide vital information about diseases that may not be detectable with other biological signals like, SpO2(Oxygen Saturation), pulse rate, respiration, and blood pressure. For this reason, EKG measurement is mandatory for accurate diagnosis. Recent development in information technology has facilitated remote monitoring systems which can check patient's current status. Moreover, remote monitoring systems can obviate the need for patients to go to hospitals periodically. Such representative wireless communication system is Zigbee sensor network because Zigbee sensor network provides low power consumption and multi-device connection. When we measure EKG signal, another important factor that we should consider is about unexpected signals mixed to EKG signal. The unexpected signals give a severe impact in distorting original EKG signal. There are three kinds of types in noise elements such as muscle noise, movement noise, and respiration noise. This paper describes the design method for EKG measurement system with Zigbee sensor network and proposes an algorithm to remove noises from measured ECG signal.
Kumar Thakur, Rupak; Anoop, C S
2015-08-01
Cardio-vascular health monitoring has gained considerable attention in the recent years. Principle of non-contact capacitive electrocardiograph (ECG) and its applicability as a valuable, low-cost, easy-to-use scheme for cardio-vascular health monitoring has been demonstrated in some recent research papers. In this paper, we develop a complete non-contact ECG system using a suitable front-end electronic circuit and a heart-rate (HR) measurement unit using enhanced Fourier interpolation technique. The front-end electronic circuit is realized using low-cost, readily available components and the proposed HR measurement unit is designed to achieve fairly accurate results. The entire system has been extensively tested to verify its efficacy and test results show that the developed system can estimate HR with an accuracy of ±2 beats. Detailed tests have been conducted to validate the performance of the system for different cloth thicknesses of the subject. Some basic tests which illustrate the application of the proposed system for heart-rate variability estimation has been conducted and results reported. The developed system can be used as a portable, reliable, long-term cardiac health monitoring device and can be extended to human drowsiness detection.
Microcontroller-based underwater acoustic ECG telemetry system.
Istepanian, R S; Woodward, B
1997-06-01
This paper presents a microcontroller-based underwater acoustic telemetry system for digital transmission of the electrocardiogram (ECG). The system is designed for the real time, through-water transmission of data representing any parameter, and it was used initially for transmitting in multiplexed format the heart rate, breathing rate and depth of a diver using self-contained underwater breathing apparatus (SCUBA). Here, it is used to monitor cardiovascular reflexes during diving and swimming. The programmable capability of the system provides an effective solution to the problem of transmitting data in the presence of multipath interference. An important feature of the paper is a comparative performance analysis of two encoding methods, Pulse Code Modulation (PCM) and Pulse Position Modulation (PPM).
E-healthcare at an experimental welfare techno house in Japan.
Tamura, Toshiyo; Kawarada, Atsushi; Nambu, Masayuki; Tsukada, Akira; Sasaki, Kazuo; Yamakoshi, Ken-Ichi
2007-01-01
An automated monitoring system for home health care has been designed for an experimental house in Japan called the Welfare Techno House (WTH). Automated electrocardiogram (ECG) measurements can be taken while in bed, in the bathtub, and on the toilet, without the subject's awareness, and without using body surface electrodes. In order to evaluate this automated health monitoring system, overnight measurements were performed to monitor health status during the daily lives of both young and elderly subjects.
A biotechnological T-shirt monitors the patient's heart during hemodialysis.
Lacquaniti, Antonio; Donato, Valentina; Lucisano, Silvia; Buemi, Antoine; Buemi, Michele
2012-01-01
Uremic patients are characterized by a "pro-arrhythmic substrate." Arrhythmia appearance during hemodialysis (HD) is an unexpected event with a high incidence of mortality and morbidity and difficult to record in patients repeatedly checked using electrocardiogram (ECG). Furthermore the carrying out of this important examination by classical devices during HD is uncomfortable and sometimes stressful for the patient. It may be very useful to monitor the patient's cardiac activity during the whole HD session. We tried to overcome these difficulties using Whealthy(®) (Wearable Health Care System), a wearable system in a T-shirt composed of conductors and piezoresistive materials, integrated to form fibers and threads connected to tissular sensors, electrodes, and connectors. ECG and pneumographic impedance signals are acquired by the electrodes in the tissue, and the data are registered by a small computer and transmitted via GPRS or Bluetooth.
Compressed ECG biometric: a fast, secured and efficient method for identification of CVD patient.
Sufi, Fahim; Khalil, Ibrahim; Mahmood, Abdun
2011-12-01
Adoption of compression technology is often required for wireless cardiovascular monitoring, due to the enormous size of Electrocardiography (ECG) signal and limited bandwidth of Internet. However, compressed ECG must be decompressed before performing human identification using present research on ECG based biometric techniques. This additional step of decompression creates a significant processing delay for identification task. This becomes an obvious burden on a system, if this needs to be done for a trillion of compressed ECG per hour by the hospital. Even though the hospital might be able to come up with an expensive infrastructure to tame the exuberant processing, for small intermediate nodes in a multihop network identification preceded by decompression is confronting. In this paper, we report a technique by which a person can be identified directly from his / her compressed ECG. This technique completely obviates the step of decompression and therefore upholds biometric identification less intimidating for the smaller nodes in a multihop network. The biometric template created by this new technique is lower in size compared to the existing ECG based biometrics as well as other forms of biometrics like face, finger, retina etc. (up to 8302 times lower than face template and 9 times lower than existing ECG based biometric template). Lower size of the template substantially reduces the one-to-many matching time for biometric recognition, resulting in a faster biometric authentication mechanism.
Funk, Marjorie; Fennie, Kristopher P; Stephens, Kimberly E; May, Jeanine L; Winkler, Catherine G; Drew, Barbara J
2017-02-01
Although continuous electrocardiographic (ECG) monitoring is ubiquitous in hospitals, monitoring practices are inconsistent. We evaluated implementation of American Heart Association practice standards for ECG monitoring on nurses' knowledge, quality of care, and patient outcomes. The PULSE (Practical Use of the Latest Standards of Electrocardiography) Trial was a 6-year multisite randomized clinical trial with crossover that took place in 65 cardiac units in 17 hospitals. We measured outcomes at baseline, time 2 after group 1 hospitals received the intervention, and time 3 after group 2 hospitals received the intervention. Measurement periods were 15 months apart. The 2-part intervention consisted of an online ECG monitoring education program and strategies to implement and sustain change in practice. Nurses' knowledge (N=3013 nurses) was measured by a validated 20-item online test, quality of care related to ECG monitoring (N=4587 patients) by on-site observation, and patient outcomes (mortality, in-hospital myocardial infarction, and not surviving a cardiac arrest; N=95 884 hospital admissions) by review of administrative, laboratory, and medical record data. Nurses' knowledge improved significantly immediately after the intervention in both groups but was not sustained 15 months later. For most measures of quality of care (accurate electrode placement, accurate rhythm interpretation, appropriate monitoring, and ST-segment monitoring when indicated), the intervention was associated with significant improvement, which was sustained 15 months later. Of the 3 patient outcomes, only in-hospital myocardial infarction declined significantly after the intervention and was sustained. Online ECG monitoring education and strategies to change practice can lead to improved nurses' knowledge, quality of care, and patient outcomes. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01269736. © 2017 American Heart Association, Inc.
Funk, Marjorie; Fennie, Kristopher P.; Stephens, Kimberly E.; May, Jeanine L.; Winkler, Catherine G.; Drew, Barbara J.
2017-01-01
Background Although continuous electrocardiographic (ECG) monitoring is ubiquitous in hospitals, monitoring practices are inconsistent. We evaluated implementation of American Heart Association practice standards for ECG monitoring on nurses’ knowledge, quality of care, and patient outcomes. Methods and Results The PULSE Trial was a 6-year multi-site randomized clinical trial with crossover that took place in 65 cardiac units in 17 hospitals. We measured outcomes at baseline, Time 2 after Group 1 hospitals received the intervention, and Time 3 after Group 2 hospitals received the intervention. Measurement periods were 15 months apart. The 2-part intervention consisted of an online ECG monitoring education program and strategies to implement and sustain change in practice. Nurses’ knowledge (N=3,013 nurses) was measured by a validated 20-item online test, quality of care related to ECG monitoring (N=4,587 patients) by on-site observation, and patient outcomes (mortality, in-hospital myocardial infarction, and not surviving a cardiac arrest) (N=95,884 hospital admissions) by review of administrative, laboratory, and medical record data. Nurses’ knowledge improved significantly immediately following the intervention in both groups, but was not sustained 15 months later. For most measures of quality of care (accurate electrode placement, accurate rhythm interpretation, appropriate monitoring, and ST-segment monitoring when indicated), the intervention was associated with significant improvement, which was sustained 15 months later. Of the 3 patient outcomes, only in-hospital myocardial infarction declined significantly after the intervention, and was sustained. Conclusions Online ECG monitoring education and strategies to change practice can lead to improved nurses’ knowledge, quality of care, and patient outcomes. PMID:28174175
Ambulatory ECG monitoring in atrial fibrillation management.
Rosero, Spencer Z; Kutyifa, Valentina; Olshansky, Brian; Zareba, Wojciech
2013-01-01
Ambulatory ECG monitoring technology has rapidly evolved over the last few decades and has been shown to identify life-threatening and non-life threatening arrhythmias and provide actionable data to guide clinical decision making. Atrial fibrillation episodes can often be asymptomatic, even after catheter ablation for atrial fibrillation, creating a disconnect between symptoms and actual arrhythmia burden which may alter clinical management. In this review, we aim to provide a comprehensive overview of invasive and non-invasive ECG monitoring strategies in patients with atrial fibrillation, with a special focus on the diagnosis of atrial fibrillation, and on follow-up of patients after catheter ablation for atrial fibrillation ablation. © 2013.
Bedside identification of patients at risk for PVC-induced cardiomyopathy: Is ECG useful?
Garster, Noelle C; Henrikson, Charles A
2017-07-01
Premature ventricular complexes (PVCs) are an underrecognized cause of cardiomyopathy. Standard 12-lead electrocardiogram (ECG) has potential to direct attention toward at-risk patients. We performed a single-center, retrospective chart review of 1,240 patients who completed ECG and Holter monitoring at Oregon Health and Science University Hospital between January 1, 2011 and December 31, 2013 to investigate the relationship of PVC frequency on ECG with burden on Holter. Primary outcome measures included PVC quantity on ECG, mean PVC quantity on Holter, and percentage of total beats on Holter recorded as PVCs. High PVC burden was defined as ≥10% of total beats. Weighted mean percentages of total beats on Holter monitor recorded as PVCs were calculated for 0, 1, 2, and ≥3 PVCs on ECG and found to be 1.4% (n = 1,128), 3.5% (n = 32), 4.3% (n = 25), and 16.6% (n = 55), respectively, which represent statistically significant differences (P < 0.001). The positive predictive value of at least three PVCs on ECG for ≥10% PVC Holter burden was 58%. Negative predictive value for 0 PVCs on ECG was 98%. The sensitivity and specificity of ECG to identify high PVC burden on Holter was 72% and 93.6%, respectively, when utilizing a positive ECG result as one PVC or more, and 44% and 98.9%, respectively, with ≥3 PVCs on ECG. The positive likelihood ratio corresponding to ≥3 PVCs on ECG was 40. These findings demonstrate that the number of PVCs on ECG can be utilized for quick bedside estimation of high PVC burden. © 2017 Wiley Periodicals, Inc.
Ankhili, Amale; Tao, Xuyuan; Cochrane, Cédric; Coulon, David; Koncar, Vladan
2018-01-01
A medical quality electrocardiogram (ECG) signal is necessary for permanent monitoring, and an accurate heart examination can be obtained from instrumented underwear only if it is equipped with high-quality, flexible, textile-based electrodes guaranteeing low contact resistance with the skin. The main objective of this article is to develop reliable and washable ECG monitoring underwear able to record and wirelessly send an ECG signal in real time to a smart phone and further to a cloud. The article focuses on textile electrode design and production guaranteeing optimal contact impedance. Therefore, different types of textile fabrics were coated with modified poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) in order to develop and manufacture reliable and washable textile electrodes assembled to female underwear (bras), by sewing using commercially available conductive yarns. Washability tests of connected underwear containing textile electrodes and conductive threads were carried out up to 50 washing cycles. The influence of standardized washing cycles on the quality of ECG signals and the electrical properties of the textile electrodes were investigated and characterized. PMID:29414849
Ankhili, Amale; Tao, Xuyuan; Cochrane, Cédric; Coulon, David; Koncar, Vladan
2018-02-07
A medical quality electrocardiogram (ECG) signal is necessary for permanent monitoring, and an accurate heart examination can be obtained from instrumented underwear only if it is equipped with high-quality, flexible, textile-based electrodes guaranteeing low contact resistance with the skin. The main objective of this article is to develop reliable and washable ECG monitoring underwear able to record and wirelessly send an ECG signal in real time to a smart phone and further to a cloud. The article focuses on textile electrode design and production guaranteeing optimal contact impedance. Therefore, different types of textile fabrics were coated with modified poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) in order to develop and manufacture reliable and washable textile electrodes assembled to female underwear (bras), by sewing using commercially available conductive yarns. Washability tests of connected underwear containing textile electrodes and conductive threads were carried out up to 50 washing cycles. The influence of standardized washing cycles on the quality of ECG signals and the electrical properties of the textile electrodes were investigated and characterized.
Schreck, David M; Fishberg, Robert D
2014-01-01
Objective A new cardiac “electrical” biomarker (CEB) for detection of 12-lead electrocardiogram (ECG) changes indicative of acute myocardial ischemic injury has been identified. Objective was to test CEB diagnostic accuracy. Methods This is a blinded, observational retrospective case-control, noninferiority study. A total of 508 ECGs obtained from archived digital databases were interpreted by cardiologist and emergency physician (EP) blinded reference standards for presence of acute myocardial ischemic injury. CEB was constructed from three ECG cardiac monitoring leads using nonlinear modeling. Comparative active controls included ST voltage changes (J-point, ST area under curve) and a computerized ECG interpretive algorithm (ECGI). Training set of 141 ECGs identified CEB cutoffs by receiver-operating-characteristic (ROC) analysis. Test set of 367 ECGs was analyzed for validation. Poor-quality ECGs were excluded. Sensitivity, specificity, and negative and positive predictive values were calculated with 95% confidence intervals. Adjudication was performed by consensus. Results CEB demonstrated noninferiority to all active controls by hypothesis testing. CEB adjudication demonstrated 85.3–94.4% sensitivity, 92.5–93.0% specificity, 93.8–98.6% negative predictive value, and 74.6–83.5% positive predictive value. CEB was superior against all active controls in EP analysis, and against ST area under curve and ECGI by cardiologist. Conclusion CEB detects acute myocardial ischemic injury with high diagnostic accuracy. CEB is instantly constructed from three ECG leads on the cardiac monitor and displayed instantly allowing immediate cost-effective identification of patients with acute ischemic injury during cardiac rhythm monitoring. PMID:24118724
Optimization of wireless Bluetooth sensor systems.
Lonnblad, J; Castano, J; Ekstrom, M; Linden, M; Backlund, Y
2004-01-01
Within this study, three different Bluetooth sensor systems, replacing cables for transmission of biomedical sensor data, have been designed and evaluated. The three sensor architectures are built on 1-, 2- and 3-chip solutions and depending on the monitoring situation and signal character, different solutions are optimal. Essential parameters for all systems have been low physical weight and small size, resistance to interference and interoperability with other technologies as global- or local networks, PC's and mobile phones. Two different biomedical input signals, ECG and PPG (photoplethysmography), have been used to evaluate the three solutions. The study shows that it is possibly to continuously transmit an analogue signal. At low sampling rates and slowly varying parameters, as monitoring the heart rate with PPG, the 1-chip solution is the most suitable, offering low power consumption and thus a longer battery lifetime or a smaller battery, minimizing the weight of the sensor system. On the other hand, when a higher sampling rate is required, as an ECG, the 3-chip architecture, with a FPGA or micro-controller, offers the best solution and performance. Our conclusion is that Bluetooth might be useful in replacing cables of medical monitoring systems.
Hypoxia, Monitoring, and Mitigation System
2014-02-01
CO- Oximeter SpO2 Arterial Oxygen Saturation Measured via Pulse - Oximeter TAILSS Tactical Aircrew Integrated Life Support System TUC Time of Useful...SpO2, pulse / pulse rate, ECG, and skin temperature will be researched and evaluated for integration feasibility with a tactile vibrator for alerting
ECG Monitoring in Cardiac Rehabilitation: Is It Needed?
ERIC Educational Resources Information Center
Greenland, Philip; Pomilla, Paul V.
1989-01-01
Discusses the controversial use of continuous electrocardiogram (ECG) monitoring as a safety measure in cardiac rehabilitation exercise programs. Little evidence substantiates its value for all patients during exercise. In the absence of empirical evidence documenting the worth of this expensive procedure, it is recommended for use with high-risk…
Kroll, Ryan R; Boyd, J Gordon; Maslove, David M
2016-09-20
As the sensing capabilities of wearable devices improve, there is increasing interest in their application in medical settings. Capabilities such as heart rate monitoring may be useful in hospitalized patients as a means of enhancing routine monitoring or as part of an early warning system to detect clinical deterioration. To evaluate the accuracy of heart rate monitoring by a personal fitness tracker (PFT) among hospital inpatients. We conducted a prospective observational study of 50 stable patients in the intensive care unit who each completed 24 hours of heart rate monitoring using a wrist-worn PFT. Accuracy of heart rate recordings was compared with gold standard measurements derived from continuous electrocardiographic (cECG) monitoring. The accuracy of heart rates measured by pulse oximetry (Spo2.R) was also measured as a positive control. On a per-patient basis, PFT-derived heart rate values were slightly lower than those derived from cECG monitoring (average bias of -1.14 beats per minute [bpm], with limits of agreement of 24 bpm). By comparison, Spo2.R recordings produced more accurate values (average bias of +0.15 bpm, limits of agreement of 13 bpm, P<.001 as compared with PFT). Personal fitness tracker device performance was significantly better in patients in sinus rhythm than in those who were not (average bias -0.99 bpm vs -5.02 bpm, P=.02). Personal fitness tracker-derived heart rates were slightly lower than those derived from cECG monitoring in real-world testing and not as accurate as Spo2.R-derived heart rates. Performance was worse among patients who were not in sinus rhythm. Further clinical evaluation is indicated to see if PFTs can augment early warning systems in hospitals. ClinicalTrials.gov NCT02527408; https://clinicaltrials.gov/ct2/show/NCT02527408 (Archived by WebCite at http://www.webcitation.org/6kOFez3on).
Clark, Matthew T.; Calland, James Forrest; Enfield, Kyle B.; Voss, John D.; Lake, Douglas E.; Moorman, J. Randall
2017-01-01
Background Charted vital signs and laboratory results represent intermittent samples of a patient’s dynamic physiologic state and have been used to calculate early warning scores to identify patients at risk of clinical deterioration. We hypothesized that the addition of cardiorespiratory dynamics measured from continuous electrocardiography (ECG) monitoring to intermittently sampled data improves the predictive validity of models trained to detect clinical deterioration prior to intensive care unit (ICU) transfer or unanticipated death. Methods and findings We analyzed 63 patient-years of ECG data from 8,105 acute care patient admissions at a tertiary care academic medical center. We developed models to predict deterioration resulting in ICU transfer or unanticipated death within the next 24 hours using either vital signs, laboratory results, or cardiorespiratory dynamics from continuous ECG monitoring and also evaluated models using all available data sources. We calculated the predictive validity (C-statistic), the net reclassification improvement, and the probability of achieving the difference in likelihood ratio χ2 for the additional degrees of freedom. The primary outcome occurred 755 times in 586 admissions (7%). We analyzed 395 clinical deteriorations with continuous ECG data in the 24 hours prior to an event. Using only continuous ECG measures resulted in a C-statistic of 0.65, similar to models using only laboratory results and vital signs (0.63 and 0.69 respectively). Addition of continuous ECG measures to models using conventional measurements improved the C-statistic by 0.01 and 0.07; a model integrating all data sources had a C-statistic of 0.73 with categorical net reclassification improvement of 0.09 for a change of 1 decile in risk. The difference in likelihood ratio χ2 between integrated models with and without cardiorespiratory dynamics was 2158 (p value: <0.001). Conclusions Cardiorespiratory dynamics from continuous ECG monitoring detect clinical deterioration in acute care patients and improve performance of conventional models that use only laboratory results and vital signs. PMID:28771487
Moss, Travis J; Clark, Matthew T; Calland, James Forrest; Enfield, Kyle B; Voss, John D; Lake, Douglas E; Moorman, J Randall
2017-01-01
Charted vital signs and laboratory results represent intermittent samples of a patient's dynamic physiologic state and have been used to calculate early warning scores to identify patients at risk of clinical deterioration. We hypothesized that the addition of cardiorespiratory dynamics measured from continuous electrocardiography (ECG) monitoring to intermittently sampled data improves the predictive validity of models trained to detect clinical deterioration prior to intensive care unit (ICU) transfer or unanticipated death. We analyzed 63 patient-years of ECG data from 8,105 acute care patient admissions at a tertiary care academic medical center. We developed models to predict deterioration resulting in ICU transfer or unanticipated death within the next 24 hours using either vital signs, laboratory results, or cardiorespiratory dynamics from continuous ECG monitoring and also evaluated models using all available data sources. We calculated the predictive validity (C-statistic), the net reclassification improvement, and the probability of achieving the difference in likelihood ratio χ2 for the additional degrees of freedom. The primary outcome occurred 755 times in 586 admissions (7%). We analyzed 395 clinical deteriorations with continuous ECG data in the 24 hours prior to an event. Using only continuous ECG measures resulted in a C-statistic of 0.65, similar to models using only laboratory results and vital signs (0.63 and 0.69 respectively). Addition of continuous ECG measures to models using conventional measurements improved the C-statistic by 0.01 and 0.07; a model integrating all data sources had a C-statistic of 0.73 with categorical net reclassification improvement of 0.09 for a change of 1 decile in risk. The difference in likelihood ratio χ2 between integrated models with and without cardiorespiratory dynamics was 2158 (p value: <0.001). Cardiorespiratory dynamics from continuous ECG monitoring detect clinical deterioration in acute care patients and improve performance of conventional models that use only laboratory results and vital signs.
Quick detection of QRS complexes and R-waves using a wavelet transform and K-means clustering.
Xia, Yong; Han, Junze; Wang, Kuanquan
2015-01-01
Based on the idea of telemedicine, 24-hour uninterrupted monitoring on electrocardiograms (ECG) has started to be implemented. To create an intelligent ECG monitoring system, an efficient and quick detection algorithm for the characteristic waveforms is needed. This paper aims to give a quick and effective method for detecting QRS-complexes and R-waves in ECGs. The real ECG signal from the MIT-BIH Arrhythmia Database is used for the performance evaluation. The method proposed combined a wavelet transform and the K-means clustering algorithm. A wavelet transform is adopted in the data analysis and preprocessing. Then, based on the slope information of the filtered data, a segmented K-means clustering method is adopted to detect the QRS region. Detection of the R-peak is based on comparing the local amplitudes in each QRS region, which is different from other approaches, and the time cost of R-wave detection is reduced. Of the tested 8 records (total 18201 beats) from the MIT-BIH Arrhythmia Database, an average R-peak detection sensitivity of 99.72 and a positive predictive value of 99.80% are gained; the average time consumed detecting a 30-min original signal is 5.78s, which is competitive with other methods.
Piezoelectric extraction of ECG signal
NASA Astrophysics Data System (ADS)
Ahmad, Mahmoud Al
2016-11-01
The monitoring and early detection of abnormalities or variations in the cardiac cycle functionality are very critical practices and have significant impact on the prevention of heart diseases and their associated complications. Currently, in the field of biomedical engineering, there is a growing need for devices capable of measuring and monitoring a wide range of cardiac cycle parameters continuously, effectively and on a real-time basis using easily accessible and reusable probes. In this paper, the revolutionary generation and extraction of the corresponding ECG signal using a piezoelectric transducer as alternative for the ECG will be discussed. The piezoelectric transducer pick up the vibrations from the heart beats and convert them into electrical output signals. To this end, piezoelectric and signal processing techniques were employed to extract the ECG corresponding signal from the piezoelectric output voltage signal. The measured electrode based and the extracted piezoelectric based ECG traces are well corroborated. Their peaks amplitudes and locations are well aligned with each other.
A reference architecture for telemonitoring.
Clarke, Malcolm
2004-01-01
The Telecare Interactive Continuous Monitoring System exploits GPRS to provide an ambulatory device that monitors selected vital signs on a continuous basis. Alarms are sent when parameters fall outside preset limits, and accompanying physiological data may also be transmitted. The always-connected property of GPRS allows continuous interactive control of the device and its sensors, permitting changes to monitoring parameters or even enabling continuous monitoring of a sensor in emergency. A new personal area network (PAN) has been developed to support short-range wireless connection to sensors worn on the body including ECG and finger worn SpO2. Most notable is use of ultra low radio frequency to reduce power to minimum. The system has been designed to use a hierarchical architecture for sensors and "derived" signals, such as HR from ECG, so that each can be independently controlled and managed. Sensors are treated as objects, and functions are defined to control aspects of behaviour. These are refined in order to define a generic set of abstract functions to handle the majority of functions, leaving a minimum of sensor specific commands. The intention is to define a reference architecture in order to research the functionality and system architecture of a telemonitoring system. The Telecare project is funded through a grant from the European Commission (IST programme).
Electrocardiography (ECG) is one of the standard technologies used to monitor and assess cardiac function, and provide insight into the mechanisms driving myocardial pathology. Increased understanding of the effects of cardiovascular disease on rat ECG may help make ECG assessmen...
Matched Filtering for Heart Rate Estimation on Compressive Sensing ECG Measurements.
Da Poian, Giulia; Rozell, Christopher J; Bernardini, Riccardo; Rinaldo, Roberto; Clifford, Gari D
2017-09-14
Compressive Sensing (CS) has recently been applied as a low complexity compression framework for long-term monitoring of electrocardiogram signals using Wireless Body Sensor Networks. Long-term recording of ECG signals can be useful for diagnostic purposes and to monitor the evolution of several widespread diseases. In particular, beat to beat intervals provide important clinical information, and these can be derived from the ECG signal by computing the distance between QRS complexes (R-peaks). Numerous methods for R-peak detection are available for uncompressed ECG. However, in case of compressed sensed data, signal reconstruction can be performed with relatively complex optimisation algorithms, which may require significant energy consumption. This article addresses the problem of hearth rate estimation from compressive sensing electrocardiogram (ECG) recordings, avoiding the reconstruction of the entire signal. We consider a framework where the ECG signals are represented under the form of CS linear measurements. The QRS locations are estimated in the compressed domain by computing the correlation of the compressed ECG and a known QRS template. Experiments on actual ECG signals show that our novel solution is competitive with methods applied to the reconstructed signals. Avoiding the reconstruction procedure, the proposed method proves to be very convenient for real-time, low-power applications.
Niedrig, David; Maechler, Sarah; Hoppe, Liesa; Corti, Natascia; Kovari, Helen; Russmann, Stefan
2016-07-01
Some macrolide and quinolone antibiotics (MQABs) are associated with QT prolongation and life-threatening torsade de pointes (TdP) arrhythmia. MQAB may also inhibit cytochrome P450 isoenzymes and thereby cause pharmacokinetic drug interactions (DDIs). There is limited data on the frequency and management of such risks in clinical practice. We aimed to quantify co-administration of MQAB with interacting drugs and associated adverse drug reactions. We conducted an observational study within our pharmacoepidemiological database derived from electronic medical records of a tertiary care hospital. Among all users of MQAB associated with TdP, we determined the prevalence of additional QT-prolonging drugs and risk factors and identified contraindicated co-administrations of simvastatin, atorvastatin, or tizanidine. Electrocardiographic (ECG) monitoring and associated adverse events were validated in medical records. Among 3444 administered courses of clarithromycin, erythromycin, azithromycin, ciprofloxacin, levofloxacin, or moxifloxacin, there were 1332 (38.7 %) with concomitant use of additional QT-prolonging drugs. Among those, we identified seven cases of drug-related QT prolongation, but 49.1 % had no ECG monitoring. Of all MQAB users, 547 (15.9 %) had hypokalemia. Forty-four MQAB users had contraindicated co-administrations of simvastatin, atorvastatin, or tizanidine and three of those related adverse drug reactions. In the studied real-life setting, we found a considerable number of MQAB users with additional risk factors for TdP but no ECG monitoring. However, adverse drug reactions were rarely found, and costs vs. benefits of ECG monitoring have to be weighted. In contrast, avoidable risk factors and selected contraindicated pharmacokinetic interactions are clear targets for implementation as automated alerts in electronic prescribing systems.
Remote Arrhythmia Monitoring System Developed
NASA Technical Reports Server (NTRS)
York, David W.; Mackin, Michael A.; Liszka, Kathy J.; Lichter, Michael J.
2004-01-01
Telemedicine is taking a step forward with the efforts of team members from the NASA Glenn Research Center, the MetroHealth campus of Case Western University, and the University of Akron. The Arrhythmia Monitoring System is a completed, working test bed developed at Glenn that collects real-time electrocardiogram (ECG) signals from a mobile or homebound patient, combines these signals with global positioning system (GPS) location data, and transmits them to a remote station for display and monitoring. Approximately 300,000 Americans die every year from sudden heart attacks, which are arrhythmia cases. However, not all patients identified at risk for arrhythmias can be monitored continuously because of technological and economical limitations. Such patients, who are at moderate risk of arrhythmias, would benefit from technology that would permit long-term continuous monitoring of electrical cardiac rhythms outside the hospital environment. Embedded Web Technology developed at Glenn to remotely command and collect data from embedded systems using Web technology is the catalyst for this new telemetry system (ref. 1). In the end-to-end system architecture, ECG signals are collected from a patient using an event recorder and are transmitted to a handheld personal digital assistant (PDA) using Bluetooth, a short-range wireless technology. The PDA concurrently tracks the patient's location via a connection to a GPS receiver. A long distance link is established via a standard Internet connection over a 2.5-generation Global System for Mobile Communications/General Packet Radio Service (GSM/GPRS)1 cellular, wireless infrastructure. Then, the digital signal is transmitted to a call center for monitoring by medical professionals.
Development of living body information monitoring system
NASA Astrophysics Data System (ADS)
Sakamoto, Hidetoshi; Ohbuchi, Yoshifumi; Torigoe, Ippei; Miyagawa, Hidekazu; Murayama, Nobuki; Hayashida, Yuki; Igasaki, Tomohiko
2010-03-01
The easy monitoring systems of contact and non-contact living body information for preventing the the Sudden Infant Death Syndrome (SIDS) were proposed as an alternative monitoring system of the infant's vital information. As for the contact monitoring system, respiration sensor, ECG electrodes, thermistor and IC signal processor were integrated into babies' nappy holder. This contact-monitoring unit has RF transmission function and the obtained data are analyzed in real time by PC. In non-contact mortaring system, the infrared thermo camera was used. The surrounding of the infant's mouth and nose is monitored and the respiration rate is obtained by thermal image processing of its temperature change image of expired air. This proposed system of in-sleep infant's vital information monitoring system and unit are very effective as not only infant's condition monitoring but also nursing person's one.
Development of living body information monitoring system
NASA Astrophysics Data System (ADS)
Sakamoto, Hidetoshi; Ohbuchi, Yoshifumi; Torigoe, Ippei; Miyagawa, Hidekazu; Murayama, Nobuki; Hayashida, Yuki; Igasaki, Tomohiko
2009-12-01
The easy monitoring systems of contact and non-contact living body information for preventing the the Sudden Infant Death Syndrome (SIDS) were proposed as an alternative monitoring system of the infant's vital information. As for the contact monitoring system, respiration sensor, ECG electrodes, thermistor and IC signal processor were integrated into babies' nappy holder. This contact-monitoring unit has RF transmission function and the obtained data are analyzed in real time by PC. In non-contact mortaring system, the infrared thermo camera was used. The surrounding of the infant's mouth and nose is monitored and the respiration rate is obtained by thermal image processing of its temperature change image of expired air. This proposed system of in-sleep infant's vital information monitoring system and unit are very effective as not only infant's condition monitoring but also nursing person's one.
Smartphone ECG aids real time diagnosis of palpitations in the competitive college athlete.
Peritz, David C; Howard, Austin; Ciocca, Mario; Chung, Eugene H
2015-01-01
Rapidly detecting dangerous arrhythmias in a symptomatic athlete continues to be an elusive goal. The use of handheld smartphone electrocardiogram (ECG) monitors could represent a helpful tool connecting the athletic trainer to the cardiologist. Six college athletes presented to their athletic trainers complaining of palpitations during exercise. A single lead ECG was performed using the AliveCor Heart Monitor and sent wirelessly to the Team Cardiologist who confirmed an absence of dangerous arrhythmia. AliveCor monitoring has the potential to enhance evaluation of symptomatic athletes by allowing trainers and team physicians to make diagnosis in real-time and facilitate faster return to play. Copyright © 2015 Elsevier Inc. All rights reserved.
Mobile Monitoring Stations and Web Visualization of Biotelemetric System - Guardian II
NASA Astrophysics Data System (ADS)
Krejcar, Ondrej; Janckulik, Dalibor; Motalova, Leona; Kufel, Jan
The main area of interest of our project is to provide solution which can be used in different areas of health care and which will be available through PDAs (Personal Digital Assistants), web browsers or desktop clients. The realized system deals with an ECG sensor connected to mobile equipment, such as PDA/Embedded, based on Microsoft Windows Mobile operating system. The whole system is based on the architecture of .NET Compact Framework, and Microsoft SQL Server. Visualization possibilities of web interface and ECG data are also discussed and final suggestion is made to Microsoft Silverlight solution along with current screenshot representation of implemented solution. The project was successfully tested in real environment in cryogenic room (-136OC).
Rooijakkers, Michiel; Rabotti, Chiara; Bennebroek, Martijn; van Meerbergen, Jef; Mischi, Massimo
2011-01-01
Non-invasive fetal health monitoring during pregnancy has become increasingly important. Recent advances in signal processing technology have enabled fetal monitoring during pregnancy, using abdominal ECG recordings. Ubiquitous ambulatory monitoring for continuous fetal health measurement is however still unfeasible due to the computational complexity of noise robust solutions. In this paper an ECG R-peak detection algorithm for ambulatory R-peak detection is proposed, as part of a fetal ECG detection algorithm. The proposed algorithm is optimized to reduce computational complexity, while increasing the R-peak detection quality compared to existing R-peak detection schemes. Validation of the algorithm is performed on two manually annotated datasets, the MIT/BIH Arrhythmia database and an in-house abdominal database. Both R-peak detection quality and computational complexity are compared to state-of-the-art algorithms as described in the literature. With a detection error rate of 0.22% and 0.12% on the MIT/BIH Arrhythmia and in-house databases, respectively, the quality of the proposed algorithm is comparable to the best state-of-the-art algorithms, at a reduced computational complexity.
A novel ultra-wideband 80 GHz FMCW radar system for contactless monitoring of vital signs.
Wang, Siying; Pohl, Antje; Jaeschke, Timo; Czaplik, Michael; Köny, Marcus; Leonhardt, Steffen; Pohl, Nils
2015-01-01
In this paper an ultra-wideband 80 GHz FMCW-radar system for contactless monitoring of respiration and heart rate is investigated and compared to a standard monitoring system with ECG and CO(2) measurements as reference. The novel FMCW-radar enables the detection of the physiological displacement of the skin surface with submillimeter accuracy. This high accuracy is achieved with a large bandwidth of 10 GHz and the combination of intermediate frequency and phase evaluation. This concept is validated with a radar system simulation and experimental measurements are performed with different radar sensor positions and orientations.
Daluwatte, C; Johannesen, L; Galeotti, L; Vicente, J; Strauss, D G; Scully, C G
2016-08-01
False and non-actionable alarms in critical care can be reduced by developing algorithms which assess the trueness of an arrhythmia alarm from a bedside monitor. Computational approaches that automatically identify artefacts in ECG signals are an important branch of physiological signal processing which tries to address this issue. Signal quality indices (SQIs) derived considering differences between artefacts which occur in ECG signals and normal QRS morphology have the potential to discriminate pathologically different arrhythmic ECG segments as artefacts. Using ECG signals from the PhysioNet/Computing in Cardiology Challenge 2015 training set, we studied previously reported ECG SQIs in the scientific literature to differentiate ECG segments with artefacts from arrhythmic ECG segments. We found that the ability of SQIs to discriminate between ECG artefacts and arrhythmic ECG varies based on arrhythmia type since the pathology of each arrhythmic ECG waveform is different. Therefore, to reduce the risk of SQIs classifying arrhythmic events as noise it is important to validate and test SQIs with databases that include arrhythmias. Arrhythmia specific SQIs may also minimize the risk of misclassifying arrhythmic events as noise.
Smartphone-based Continuous Blood Pressure Measurement Using Pulse Transit Time.
Gholamhosseini, Hamid; Meintjes, Andries; Baig, Mirza; Linden, Maria
2016-01-01
The increasing availability of low cost and easy to use personalized medical monitoring devices has opened the door for new and innovative methods of health monitoring to emerge. Cuff-less and continuous methods of measuring blood pressure are particularly attractive as blood pressure is one of the most important measurements of long term cardiovascular health. Current methods of noninvasive blood pressure measurement are based on inflation and deflation of a cuff with some effects on arteries where blood pressure is being measured. This inflation can also cause patient discomfort and alter the measurement results. In this work, a mobile application was developed to collate the PhotoPlethysmoGramm (PPG) waveform provided by a pulse oximeter and the electrocardiogram (ECG) for calculating the pulse transit time. This information is then indirectly related to the user's systolic blood pressure. The developed application successfully connects to the PPG and ECG monitoring devices using Bluetooth wireless connection and stores the data onto an online server. The pulse transit time is estimated in real time and the user's systolic blood pressure can be estimated after the system has been calibrated. The synchronization between the two devices was found to pose a challenge to this method of continuous blood pressure monitoring. However, the implemented continuous blood pressure monitoring system effectively serves as a proof of concept. This combined with the massive benefits that an accurate and robust continuous blood pressure monitoring system would provide indicates that it is certainly worthwhile to further develop this system.
Clarke, Malcolm; Bratan, Tanja; Kulkarni, Sadhana; Jones, Russell
2007-07-01
We describe the impact of a remote patient monitoring (RPM) system implemented in residential care homes. The service was designed to support the staff in managing patients that presented with non-specific symptoms. The system allows vital signs to be transmitted to a central server. The medical professional may then observe the data and provide advice to the staff on optimum management. Our system has been evaluated for 18 months and largely provided routine measurements. During this period, three residents presented with non specific symptoms that were investigated using the RPM system. One patient had symptoms over a weekend, and the problem remained unresolved on Monday. The resident continued to only complain of feeling unwell, but reported no specific symptoms. Vital signs data were then sent and the doctor consulted. The electrocardiogram (ECG) showed significant ST segment changes. Repetitive measurements of the ECG, heart rate, and oxygen saturation of the blood (SpO2) were made every 5 minutes. The resident had a history angina and CHF. The staff was asked to give the patient aspirin and anti-angina drug. The ECG was seen to resolve after 40 minutes, but the SpO2 was falling. The decision to send to hospital was taken at this point. Two further patients with significant ECG changes were observed during the period of the project, and again both were asymptomatic, but in these cases the condition resolved and hospital admission was avoided. Feedback from users has been very positive. Staff found that the system gave them support to make better informed decisions on patient management, especially when determining whether to admit the person to hospital when reaching end of life. Further comments were that the system also proved useful to reassure relatives during these final stages. Our project demonstrated that significant cardiac events occur in the elderly population of residential homes without symptoms; and that RPM can be used by non medical staff to manage asymptomatic patients in the community.
[Practical experience about the compatibility of PDF converter in ECG information system].
Yang, Gang; Lu, Weishi; Zhou, Jiacheng
2009-11-01
To find a way to view ECG from different manufacturers in electrocardiogram information system. Different format ECG data were transmitted to ECG center by different ways. Corresponding analysis software was used to make the diagnosis reports in the center. Then we use PDF convert to change all ECG reports into PDF format. The electrocardiogram information system manage these PDF format ECG data for clinic user. The ECG reports form several major ECG manufacturers were transformed to PDF format successfully. In the electrocardiogram information system it is freely to view the ECG figure. PDF format ECG report is a practicable way to solve the compatibility problem in electrocardiogram information system.
Diagnostic grade wireless ECG monitoring.
Garudadri, Harinath; Chi, Yuejie; Baker, Steve; Majumdar, Somdeb; Baheti, Pawan K; Ballard, Dan
2011-01-01
In remote monitoring of Electrocardiogram (ECG), it is very important to ensure that the diagnostic integrity of signals is not compromised by sensing artifacts and channel errors. It is also important for the sensors to be extremely power efficient to enable wearable form factors and long battery life. We present an application of Compressive Sensing (CS) as an error mitigation scheme at the application layer for wearable, wireless sensors in diagnostic grade remote monitoring of ECG. In our previous work, we described an approach to mitigate errors due to packet losses by projecting ECG data to a random space and recovering a faithful representation using sparse reconstruction methods. Our contributions in this work are twofold. First, we present an efficient hardware implementation of random projection at the sensor. Second, we validate the diagnostic integrity of the reconstructed ECG after packet loss mitigation. We validate our approach on MIT and AHA databases comprising more than 250,000 normal and abnormal beats using EC57 protocols adopted by the Food and Drug Administration (FDA). We show that sensitivity and positive predictivity of a state-of-the-art ECG arrhythmia classifier is essentially invariant under CS based packet loss mitigation for both normal and abnormal beats even at high packet loss rates. In contrast, the performance degrades significantly in the absence of any error mitigation scheme, particularly for abnormal beats such as Ventricular Ectopic Beats (VEB).
Validity of a heart rate monitor during work in the laboratory and on the Space Shuttle
NASA Technical Reports Server (NTRS)
Moore, A. D. Jr; Lee, S. M.; Greenisen, M. C.; Bishop, P.
1997-01-01
Accurate heart rate measurement during work is required for many industrial hygiene and ergonomics situations. The purpose of this investigation was to determine the validity of heart rate measurements obtained by a simple, lightweight, commercially available wrist-worn heart rate monitor (HRM) during work (cycle exercise) sessions conducted in the laboratory and also during the particularly challenging work environment of space flight. Three different comparisons were made. The first compared HRM data to simultaneous electrocardiogram (ECG) recordings of varying heart rates that were generated by an ECG simulator. The second compared HRM data to ECG recordings collected during work sessions of 14 subjects in the laboratory. Finally, ECG downlink and HRM data were compared in four astronauts who performed cycle exercise during space flight. The data were analyzed using regression techniques. The results were that the HRM recorded virtually identical heart rates compared with ECG recordings for the data set generated by an ECG simulator. The regression equation for the relationship between ECG versus HRM heart rate data during work in the laboratory was: ECG HR = 0.99 x (HRM) + 0.82 (r2 = 0.99). Finally, the agreement between ECG downlink data and HRM data during space flight was also very high, with the regression equation being: Downlink ECG HR = 1.05 x (HRM) -5.71 (r2 = 0.99). The results of this study indicate that the HRM provides accurate data and may be used to reliably obtain valid data regarding heart rate responses during work.
Usefulness of Maintaining a Normal Electrocardiogram Over Time for Predicting Cardiovascular Health.
Soliman, Elsayed Z; Zhang, Zhu-Ming; Chen, Lin Y; Tereshchenko, Larisa G; Arking, Dan; Alonso, Alvaro
2017-01-15
We hypothesized that maintaining a normal electrocardiogram (ECG) status over time is associated with low cardiovascular (CV) disease in a dose-response fashion and subsequently could be used to monitor programs aimed at promoting CV health. This analysis included 4,856 CV disease-free participants from the Atherosclerosis Risk in Communities study who had a normal ECG at baseline (1987 to 1989) and complete electrocardiographic data in subsequent 3 visits (1990 to 1992, 1993 to 1995, and 1996 to 1998). Participants were classified based on maintaining their normal ECG status during these 4 visits into "maintained," "not maintained," or "inconsistent" normal ECG status as defined by the Minnesota ECG classification. CV disease events (coronary heart disease, heart failure, and stroke) were adjudicated from Atherosclerosis Risk in Communities visit-4 through 2010. Over a median follow-up of 13.2 years, 885 CV disease events occurred. The incidence rate of CV disease events was lowest among study participants who maintained a normal ECG status, followed by those with an inconsistent pattern, and then those who did not maintain their normal ECG status (trend p value <0.001). Similarly, the greater the number of visits with a normal ECG status, the lower was the incidence rate of CV disease events (trend p value <0.001). Maintaining (vs not maintaining) a normal ECG status was associated with a lower risk of CV disease, which was lower than that observed in those with inconsistent normal ECG pattern (trend p value <0.01). In conclusion, maintaining a normal ECG status over time is associated with low risk of CV disease in a dose-response fashion, suggesting its potential use as a monitoring tool for programs promoting CV health. Copyright © 2016 Elsevier Inc. All rights reserved.
Feasibility of noninvasive fetal electrocardiographic monitoring in a clinical setting.
Arya, Bhawna; Govindan, Rathinaswamy; Krishnan, Anita; Duplessis, Adre; Donofrio, Mary T
2015-06-01
Cardiac rhythm is an essential component of fetal cardiac evaluation. The Monica AN24 is a fetal heart rate monitor that may provide a quick, inexpensive modality for obtaining a noninvasive fetal electrocardiogram (fECG) in a clinical setting. The fECG device has the ability to acquire fECG signals and allow calculation of fetal cardiac time intervals between 16- and 42-week gestational age (GA). We aimed to demonstrate the feasibility of fECG acquisition in a busy fetal cardiology clinic using the Monica fetal heart rate monitor. This is a prospective observational pilot study of fECG acquired from fetuses referred for fetal echocardiography. Recordings were performed for 5-15 min. Maternal signals were attenuated and fECG averaged. fECG and fetal cardiac time intervals (PR, QRS, RR, and QT) were evaluated by two cardiologists independently and inter-observer reliability was assessed using intraclass coefficient (ICC). Sixty fECGs were collected from 50 mothers (mean GA 28.1 ± 6.1). Adequate signal-averaged waveforms were obtained in 20 studies with 259 cardiac cycles. Waveforms could not be obtained between 26 and 30 weeks. Fetal cardiac time intervals were measured and were reproducible for PR (ICC = 0.89; CI 0.77-0.94), QRS (ICC = 0.79; CI 0.51-0.91), and RR (ICC = 0.77; CI 0.53-0.88). QT ICC was poor due to suboptimal T-wave tracings. Acquisition of fECG and measurement of fetal cardiac time intervals is feasible in a clinical setting between 19- and 42-week GA, though tracings are difficult to obtain, especially between 26 and 30 weeks. There was high reliability in fetal cardiac time intervals measurements, except for QT. The device may be useful for assessing atrioventricular/intraventricular conduction in fetuses from 20 to 26 and >30 weeks. Techniques to improve signal acquisition, namely T-wave amplification, are ongoing.
Morita, Plinio P; Tallevi, Kevin; Armour, Kevin; Li, John; Nolan, Robert P; Cafazzo, Joseph A
2016-01-01
Background Elevated blood pressure is one of the main risk factors for death globally. Behavioral neurocardiac training (BNT) is a complementary approach to blood pressure and stress management that is intended to exercise the autonomic reflexes, improve stress recovery, and lower blood pressure. BNT involves cognitive-behavioral therapy with a paced breathing technique and heart rate variability biofeedback. BNT is limited to in-clinic delivery and faces an accessibility barrier because of the need for clinical oversight and the use of complex monitoring tools. Objective The objective of this project was to design, develop, and evaluate a wearable electrocardiographic (ECG) sensor system for the delivery of BNT in a home setting. Methods The wearable sensor system, Beat, consists of an ECG sensor and a mobile app. It was developed iteratively using the principles of test-driven Agile development and user-centered design. A usability study was conducted at Toronto General Hospital to evaluate feasibility and user experience and identify areas of improvement. Results The Beatsensor was designed as a modular patch to be worn on the user’s chest and uses standard ECG electrodes. It streams a single-lead ECG wirelessly to a mobile phone using Bluetooth Low Energy. The use of small, low-power electronics, a low device profile, and a tapered enclosure allowed for a device that can be unobtrusively worn under clothing. The sensor was designed to operate with a mobile app that guides users through the BNT exercises to train them to a slow-paced breathing technique for stress recovery. The BNT app uses the ECG captured by the sensor to provide heart rate variability biofeedback in the form of a real-time heart rate waveform to complement and reinforce the impact of the training. Usability testing (n=6) indicated that the overall response to the design and user experience of the system was perceived positively. All participants indicated that the system had a positive effect on stress management and that they would use it at home. Areas of improvement were identified, which focused primarily on the delivery of training and education on BNT through the app. Conclusions The outcome of this project was a wearable sensor system to deliver BNT at home. The system has the potential to offer a complementary approach to blood pressure and stress management at home and reduce current accessibility barriers. PMID:27106171
Uddin, Akib A; Morita, Plinio P; Tallevi, Kevin; Armour, Kevin; Li, John; Nolan, Robert P; Cafazzo, Joseph A
2016-04-22
Elevated blood pressure is one of the main risk factors for death globally. Behavioral neurocardiac training (BNT) is a complementary approach to blood pressure and stress management that is intended to exercise the autonomic reflexes, improve stress recovery, and lower blood pressure. BNT involves cognitive-behavioral therapy with a paced breathing technique and heart rate variability biofeedback. BNT is limited to in-clinic delivery and faces an accessibility barrier because of the need for clinical oversight and the use of complex monitoring tools. The objective of this project was to design, develop, and evaluate a wearable electrocardiographic (ECG) sensor system for the delivery of BNT in a home setting. The wearable sensor system, Beat, consists of an ECG sensor and a mobile app. It was developed iteratively using the principles of test-driven Agile development and user-centered design. A usability study was conducted at Toronto General Hospital to evaluate feasibility and user experience and identify areas of improvement. The Beat sensor was designed as a modular patch to be worn on the user's chest and uses standard ECG electrodes. It streams a single-lead ECG wirelessly to a mobile phone using Bluetooth Low Energy. The use of small, low-power electronics, a low device profile, and a tapered enclosure allowed for a device that can be unobtrusively worn under clothing. The sensor was designed to operate with a mobile app that guides users through the BNT exercises to train them to a slow-paced breathing technique for stress recovery. The BNT app uses the ECG captured by the sensor to provide heart rate variability biofeedback in the form of a real-time heart rate waveform to complement and reinforce the impact of the training. Usability testing (n=6) indicated that the overall response to the design and user experience of the system was perceived positively. All participants indicated that the system had a positive effect on stress management and that they would use it at home. Areas of improvement were identified, which focused primarily on the delivery of training and education on BNT through the app. The outcome of this project was a wearable sensor system to deliver BNT at home. The system has the potential to offer a complementary approach to blood pressure and stress management at home and reduce current accessibility barriers.
An ultra-low power (ULP) bandage-type ECG sensor for efficient cardiac disease management.
Shin, Kunsoo; Park, G G; Kim, J P; Lee, T H; Ko, B H; Kim, Y H
2013-01-01
This paper proposed an ultra-low power bandage-type ECG sensor (the size: 76 × 34 × 3 (mm(3)) and the power consumption: 1 mW) which allows for a continuous and real-time monitoring of a user's ECG signals over 24h during daily activities. For its compact size and lower power consumption, we designed the analog front-end, the SRP (Samsung Reconfigurable Processor) based DSP of 30 uW/MHz, and the ULP wireless RF of 1 nJ/bit. Also, to tackle motion artifacts(MA), a MA monitoring technique based on the HCP (Half-cell Potential) is proposed which resulted in the high correlation between the MA and the HCP, the correlation coefficient of 0.75 ± 0.18. To assess its feasibility and validity as a wearable health monitor, we performed the comparison of two ECG signals recorded form it and a conventional Holter device. As a result, the performance of the former is a little lower as compared with the latter, although showing no statistical significant difference (the quality of the signal: 94.3% vs 99.4%; the accuracy of arrhythmia detection: 93.7% vs 98.7%). With those results, it has been confirmed that it can be used as a wearable health monitor due to its comfortability, its long operation lifetime and the good quality of the measured ECG signal.
Rossetti, Francesca; Pittiruti, Mauro; Lamperti, Massimo; Graziano, Ugo; Celentano, Davide; Capozzoli, Giuseppe
2015-01-01
The Italian Group for Venous Access Devices (GAVeCeLT) has carried out a multicenter study investigating the safety and accuracy of intracavitary electrocardiography (IC-ECG) in pediatric patients. We enrolled 309 patients (age 1 month-18 years) candidate to different central venous access devices (VAD) - 56 peripherally inserted central catheters (PICC), 178 short term centrally inserted central catheters (CICC), 65 long term VADs, 10 VADs for dialysis - in five Italian Hospitals. Three age groups were considered: A (<4 years, n = 157), B (4-11 years, n = 119), and C (12-18 years, n = 31). IC-ECG was applicable in 307 cases. The increase of the P wave on IC-ECG was detected in all cases but two. The tip of the catheter was positioned at the cavo-atrial junction (CAJ) (i.e., at the maximal height of the P wave on IC-ECG) and the position was checked during the procedure by fluoroscopy or chest x-ray, considering the CAJ at 1-2 cm (group A), 1.5-3 cm (group B), or 2-4 cm (group C) below the carina. There were no complications related to IC-ECG. The overall match between IC-ECG and x-ray was 95.8% (96.2% in group A, 95% in group B, and 96.8% in group C). In 95 cases, the IC-ECG was performed with a dedicated ECG monitor, specifically designed for IC-ECG (Nautilus, Romedex): in this group, the match between IC-ECG and x-ray was 98.8%. We conclude that the IC-ECG method is safe and accurate in the pediatric patients. The applicability of the method is 99.4% and its feasibility is 99.4%. The accuracy is 95.8% and even higher (98.8%) when using a dedicated ECG monitor.
Characterization of dry biopotential electrodes.
Xie, Li; Yang, Geng; Xu, Linlin; Seoane, Fernando; Chen, Qiang; Zheng, Lirong
2013-01-01
Driven by the increased interest in wearable long-term healthcare monitoring systems, varieties of dry electrodes are proposed based on different materials with different patterns and structures. Most of the studies reported in the literature focus on proposing new electrodes and comparing its performance with commercial electrodes. Few papers are about detailed comparison among different dry electrodes. In this paper, printed metal-plate electrodes, textile based electrodes, and spiked electrodes are for the first time evaluated and compared under the same experimental setup. The contact impedance and noise characterization are measured. The in-vivo electrocardiogram (ECG) measurement is applied to evaluate the overall performance of different electrodes. Textile electrodes and printed electrodes gain comparable high-quality ECG signals. The ECG signal obtained by spiked electrodes is noisier. However, a clear ECG envelope can be observed and the signal quality can be easily improved by backend signal processing. The features of each type of electrodes are analyzed and the suitable application scenario is addressed.
... x-ray CT scan of the chest Electrocardiogram (ECG or EKG) Echocardiogram These tests may show: Problems ... monitored for at least 24 hours. An electrocardiogram (ECG) will be done continually to check your heart ...
Compressed domain ECG biometric with two-lead features
NASA Astrophysics Data System (ADS)
Lee, Wan-Jou; Chang, Wen-Whei
2016-07-01
This study presents a new method to combine ECG biometrics with data compression within a common JPEG2000 framework. We target the two-lead ECG configuration that is routinely used in long-term heart monitoring. Incorporation of compressed-domain biometric techniques enables faster person identification as it by-passes the full decompression. Experiments on public ECG databases demonstrate the validity of the proposed method for biometric identification with high accuracies on both healthy and diseased subjects.
Wireless remote monitoring of myocardial ischemia using reconstructed 12-lead ECGs.
Vukcevic, Vladan; Panescu, Dorin; Bojovic, Bosko; George, Samuel; Gussak, Ihor; Giga, Vojislav; Stankovic, Ivana
2010-01-01
CardioBip (CB) is a hand-held patient-activated device for recording and wireless transmission of reconstructed 12-lead ECG (12CB) based on patient specific matrices. It has 5 contact points: 3 precordial and 2 on the device top serving as limb leads when touched by index fingers. To determine whether CB could be used to monitor coronary disease (CAD) patients, we compared 12CB to simultaneous 12-lead ECGs (12L) in patients with CAD, pre-and post-exercise treadmill testing (ETT). The study goals were to assess: (1) whether 12CB can accurately reconstruct and wirelessly transmit 12-lead ECGs in CAD patients during ETT recovery; (2) whether 12CB can be used to evaluate ST segment changes in patients with exercise-induced ischemia.
Automated acquisition system for routine, noninvasive monitoring of physiological data.
Ogawa, M; Tamura, T; Togawa, T
1998-01-01
A fully automated, noninvasive data-acquisition system was developed to permit long-term measurement of physiological functions at home, without disturbing subjects' normal routines. The system consists of unconstrained monitors built into furnishings and structures in a home environment. An electrocardiographic (ECG) monitor in the bathtub measures heart function during bathing, a temperature monitor in the bed measures body temperature, and a weight monitor built into the toilet serves as a scale to record weight. All three monitors are connected to one computer and function with data-acquisition programs and a data format rule. The unconstrained physiological parameter monitors and fully automated measurement procedures collect data noninvasively without the subject's awareness. The system was tested for 1 week by a healthy male subject, aged 28, in laboratory-based facilities.
[Current status of the development of wireless sensors for medical applications].
Moor, C; Braecklein, M; Jörns, N
2005-01-01
Wireless near-field transmission has been a challenge for scientists developing medical sensors for a long time. Here, instruments which measure a patient's ECG, oxygen saturation, blood pressure, peak flow, weight, blood glucose etc. are to be equipped with suitable transmission technology. Application scenarios for these sensors can be found in all medical areas where cable connections are irritating for the doctor, patient and other care personnel. This problem is especially common in sport medicine, sleep medicine, emergency medicine and intensive care. Based on its beneficial properties with regard to power consumption, range, data security and network capability, the worldwide standard radio technology Bluetooth was selected to transmit measurements. Since digital data is sent to a receiving station via Bluetooth, the measurement pre-processing now takes place in the patient sensor itself, instead of being processed by the monitor. In this article, a Bluetooth ECG, Bluetooth pulse oximeter, Bluetooth peak flow meter and Bluetooth event recorder will be introduced. On the one hand, systems can be realized with these devices, which allow patients to be monitored online (ECG, pulse oximeter). These devices can also be integrated in disease management programs (peak flow meter) and can be used to monitor high-risk patients in their home environment (event recorder).
Design of a wearable device for ECG continuous monitoring using wireless technology.
Led, Santiago; Fernández, Jorge; Serrano, Luis
2004-01-01
This project focuses on the design and implementation of an intelligent wearable device for ECG continuous acquisition and transmission to some remote gateway using Bluetooth technology. The acquisition device has been designed for having very low power consumption and reduced size. The Analog Devices' ADuC831 Micro-Converter for achieving the analog to digital conversion and the CSR's BlueCore2 chip for the Bluetooth transmission are the core of the device. The designed device is an important component of a complete prototype for remote ECG continuous monitoring of patients with diverse cardiac diseases.
Oresko, Joseph J; Duschl, Heather; Cheng, Allen C
2010-05-01
Cardiovascular disease (CVD) is the single leading cause of global mortality and is projected to remain so. Cardiac arrhythmia is a very common type of CVD and may indicate an increased risk of stroke or sudden cardiac death. The ECG is the most widely adopted clinical tool to diagnose and assess the risk of arrhythmia. ECGs measure and display the electrical activity of the heart from the body surface. During patients' hospital visits, however, arrhythmias may not be detected on standard resting ECG machines, since the condition may not be present at that moment in time. While Holter-based portable monitoring solutions offer 24-48 h ECG recording, they lack the capability of providing any real-time feedback for the thousands of heart beats they record, which must be tediously analyzed offline. In this paper, we seek to unite the portability of Holter monitors and the real-time processing capability of state-of-the-art resting ECG machines to provide an assistive diagnosis solution using smartphones. Specifically, we developed two smartphone-based wearable CVD-detection platforms capable of performing real-time ECG acquisition and display, feature extraction, and beat classification. Furthermore, the same statistical summaries available on resting ECG machines are provided.
Fetal electrocardiogram (ECG) for fetal monitoring during labour.
Neilson, James P
2015-12-21
Hypoxaemia during labour can alter the shape of the fetal electrocardiogram (ECG) waveform, notably the relation of the PR to RR intervals, and elevation or depression of the ST segment. Technical systems have therefore been developed to monitor the fetal ECG during labour as an adjunct to continuous electronic fetal heart rate monitoring with the aim of improving fetal outcome and minimising unnecessary obstetric interference. To compare the effects of analysis of fetal ECG waveforms during labour with alternative methods of fetal monitoring. The Cochrane Pregnancy and Childbirth Group's Trials Register (latest search 23 September 2015) and reference lists of retrieved studies. Randomised trials comparing fetal ECG waveform analysis with alternative methods of fetal monitoring during labour. One review author independently assessed trials for inclusion and risk of bias, extracted data and checked them for accuracy. One review author assessed the quality of the evidence using the GRADE approach. Seven trials (27,403 women) were included: six trials of ST waveform analysis (26,446 women) and one trial of PR interval analysis (957 women). The trials were generally at low risk of bias for most domains and the quality of evidence for ST waveform analysis trials was graded moderate to high. In comparison to continuous electronic fetal heart rate monitoring alone, the use of adjunctive ST waveform analysis made no obvious difference to primary outcomes: births by caesarean section (risk ratio (RR) 1.02, 95% confidence interval (CI) 0.96 to 1.08; six trials, 26,446 women; high quality evidence); the number of babies with severe metabolic acidosis at birth (cord arterial pH less than 7.05 and base deficit greater than 12 mmol/L) (average RR 0.72, 95% CI 0.43 to 1.20; six trials, 25,682 babies; moderate quality evidence); or babies with neonatal encephalopathy (RR 0.61, 95% CI 0.30 to 1.22; six trials, 26,410 babies; high quality evidence). There were, however, on average fewer fetal scalp samples taken during labour (average RR 0.61, 95% CI 0.41 to 0.91; four trials, 9671 babies; high quality evidence) although the findings were heterogeneous and there were no data from the largest trial (from the USA). There were marginally fewer operative vaginal births (RR 0.92, 95% CI 0.86 to 0.99; six trials, 26,446 women); but no obvious difference in the number of babies with low Apgar scores at five minutes or babies requiring neonatal intubation, or babies requiring admission to the special care unit (RR 0.96, 95% CI 0.89 to 1.04, six trials, 26,410 babies; high quality evidence). There was little evidence that monitoring by PR interval analysis conveyed any benefit of any sort. The modest benefits of fewer fetal scalp samplings during labour (in settings in which this procedure is performed) and fewer instrumental vaginal births have to be considered against the disadvantages of needing to use an internal scalp electrode, after membrane rupture, for ECG waveform recordings. We found little strong evidence that ST waveform analysis had an effect on the primary outcome measures in this systematic review.There was a lack of evidence showing that PR interval analysis improved any outcomes; and a larger future trial may possibly demonstrate beneficial effects.There is little information about the value of fetal ECG waveform monitoring in preterm fetuses in labour. Information about long-term development of the babies included in the trials would be valuable.
Fujii, Takahide; Nakano, Masanao; Yamashita, Ken; Konishi, Toshihiro; Izumi, Shintaro; Kawaguchi, Hiroshi; Yoshimoto, Masahiko
2013-01-01
This paper describes a robust method of Instantaneous Heart Rate (IHR) and R-peak detection from noisy electrocardiogram (ECG) signals. Generally, the IHR is calculated from the R-wave interval. Then, the R-waves are extracted from the ECG using a threshold. However, in wearable bio-signal monitoring systems, noise increases the incidence of misdetection and false detection of R-peaks. To prevent incorrect detection, we introduce a short-term autocorrelation (STAC) technique and a small-window autocorrelation (SWAC) technique, which leverages the similarity of QRS complex waveforms. Simulation results show that the proposed method improves the noise tolerance of R-peak detection.
Hamer, M E; Clair, W K; Wilkinson, W E; Greenfield, R A; Pritchett, E L; Page, R L
1994-05-01
Patients receiving minimally symptomatic shocks from their implantable cardioverter defibrillators were studied prospectively using transtelephonic ECG loop monitoring. The time course to the first subsequent shock was evaluated. Twenty-nine consecutive patients who received a shock preceded by mild palpitations or no symptoms were given a transtelephonic ECG loop monitor and instructed to activate the monitor if a subsequent shock occurred. Kaplan-Meier analysis was used to quantitate the time to first shock during the study period. The point estimate +/- standard error of patients receiving a shock during the study period was 31% +/- 9% at 30 days, 41% +/- 9% at 60 days, and 60% +/- 9% at 120 days. The ECG was successfully transmitted in 7 of 13 patients who had shocks in the 60-day monitoring period, and demonstrated inappropriate shocks in 6 of 7. Determination of the cause of shock led to a change in subsequent management in all 7 patients. We conclude that the incidence of inappropriate shocks may be higher than estimated previously in patients with minimal symptoms prior to the shock. There are thousands of patients with implantable cardioverter defibrillators that have no storage function for treated tachycardias; transtelephonic ECG loop monitoring can determine the cause of implantable cardioverter defibrillator discharge in these patients, and the diagnosis is invaluable in their management.
Monitoring and detection platform to prevent anomalous situations in home care.
Villarrubia, Gabriel; Bajo, Javier; De Paz, Juan F; Corchado, Juan M
2014-06-05
Monitoring and tracking people at home usually requires high cost hardware installations, which implies they are not affordable in many situations. This study/paper proposes a monitoring and tracking system for people with medical problems. A virtual organization of agents based on the PANGEA platform, which allows the easy integration of different devices, was created for this study. In this case, a virtual organization was implemented to track and monitor patients carrying a Holter monitor. The system includes the hardware and software required to perform: ECG measurements, monitoring through accelerometers and WiFi networks. Furthermore, the use of interactive television can moderate interactivity with the user. The system makes it possible to merge the information and facilitates patient tracking efficiently with low cost.
NASA Astrophysics Data System (ADS)
Yan, Hua-Wen; Huang, Xiao-Lin; Zhao, Ying; Si, Jun-Feng; Liu, Tie-Bing; Liu, Hong-Xing
2014-11-01
A series of experiments are conducted to confirm whether the vectors calculated for an early section of a continuous non-invasive fetal electrocardiogram (fECG) recording can be directly applied to subsequent sections in order to reduce the computation required for real-time monitoring. Our results suggest that it is generally feasible to apply the initial optimal maternal and fetal ECG combination vectors to extract the fECG and maternal ECG in subsequent recorded sections.
Is 50 Hz high enough ECG sampling frequency for accurate HRV analysis?
Mahdiani, Shadi; Jeyhani, Vala; Peltokangas, Mikko; Vehkaoja, Antti
2015-01-01
With the worldwide growth of mobile wireless technologies, healthcare services can be provided at anytime and anywhere. Usage of wearable wireless physiological monitoring system has been extensively increasing during the last decade. These mobile devices can continuously measure e.g. the heart activity and wirelessly transfer the data to the mobile phone of the patient. One of the significant restrictions for these devices is usage of energy, which leads to requiring low sampling rate. This article is presented in order to investigate the lowest adequate sampling frequency of ECG signal, for achieving accurate enough time domain heart rate variability (HRV) parameters. For this purpose the ECG signals originally measured with high 5 kHz sampling rate were down-sampled to simulate the measurement with lower sampling rate. Down-sampling loses information, decreases temporal accuracy, which was then restored by interpolating the signals to their original sampling rates. The HRV parameters obtained from the ECG signals with lower sampling rates were compared. The results represent that even when the sampling rate of ECG signal is equal to 50 Hz, the HRV parameters are almost accurate with a reasonable error.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shanes, J.G.; Krone, R.J.; Fisher, K.
1983-01-01
We administered ergonovine and used both electrocardiographic monitoring and thallium-/sup 201/ (/sup 201/Tl) imaging to detect reversible ischemia in 100 patients. Patients already established as having coronary artery spasm and those with nonbypassed, proximal, high-grade coronary artery stenosis were excluded. No complication occurred in any patient. The use of thallium imaging in addition to electrocardiographic monitoring resulted in a higher degree of sensitivity than did ECG monitoring alone. Fourteen patients demonstrated evidence of coronary artery spasm as documented by /sup 201/Tl imaging but of the 14, significant ECG changes occurred in only 50%, and classic ST segment elevation in 21%.more » Thus, in carefully selected patients the noninvasive provocation of coronary spasm can be accomplished safely, but ECG monitoring must be combined with thallium-/sup 201/ imaging to achieve an acceptable degree of sensitivity.« less
Loss of serum IGF-I input to the brain as an early biomarker of disease onset in Alzheimer mice
Trueba-Sáiz, A; Cavada, C; Fernandez, A M; Leon, T; González, D A; Fortea Ormaechea, J; Lleó, A; Del Ser, T; Nuñez, A; Torres-Aleman, I
2013-01-01
Circulating insulin-like growth factor I (IGF-I) enters the brain and promotes clearance of amyloid peptides known to accumulate in Alzheimer's disease (AD) brains. Both patients and mouse models of AD show decreased level of circulating IGF-I enter the brain as evidenced by a lower ratio of cerebrospinal fluid/plasma IGF-I. Importantly, in presymptomatic AD mice this reduction is already manifested as a decreased brain input of serum IGF-I in response to environmental enrichment. To explore a potential diagnostic use of this early loss of IGF-I input, we monitored electrocorticogram (ECG) responses to systemic IGF-I in mice. Whereas control mice showed enhanced ECG activity after IGF-I, presymptomatic AD mice showed blunted ECG responses. Because nonhuman primates showed identically enhanced electroencephalogram (EEG) activity in response to systemic IGF-I, loss of the EEG signature of serum IGF-I may be exploited as a disease biomarker in AD patients. PMID:24301648
Ganne, Chaitanya; Talkad, Sathyaprabha N; Srinivas, Dwarakanath; Somanna, Sampath
2016-08-01
In this study, we intend to evaluate the autonomic changes occurring in neurosurgeons and thus the stress during microsurgical clipping of aneurysms. The aim of the current study is to evaluate the heart rate variability (HRV) of the neurosurgeons during microsurgical clipping of aneurysm by using continuous real time monitoring of the ECG intraoperatively. Lead II ECG was recorded using Bioharness(®) (Zephyr Technologies, Annapolis, MD) in 4 healthy neurosurgeons who performed 29 microsurgical clipping of aneurysms. ECG from 21 surgeries was analysed (LabChart(®) software, ADInstruments, Dunedin, New Zealand) across five stages: Baseline (BL), sylvian fissure dissection (SFD), perianeurysmal dissection (PAD), clipping of the aneurysm (CLIP) and haemostasis (HEMO). There was a reduction in TP and an increased LF/HF ratio in spite of suppression of both LF and HF powers. Contrary to the common understanding that the sympathetic limb of the autonomic system mostly mediates responses during stress and anxiety, we found that there was a significant contribution of the parasympathetic system too.
NASA Technical Reports Server (NTRS)
1972-01-01
Electrocardiographic and vectorcardiographic bioinstrumentation work centered on the development of a new electrode system harness for Project Skylab. Evaluation of several silver electrode configurations proved superior impedance voltage performance for silver/silver chloride electrodes mounted flush by using a paste adhesive. A portable ECG processor has been designed and a breadboard unit has been built to sample ECG input data at a rate of 500 samples per second for arrhythmia detection. A small real time display driver program has been developed for statistical analysis on selected QPS features. Engineering work on a sleep monitoring cap assembly continued.
Martinek, Radek; Kelnar, Michal; Koudelka, Petr; Vanus, Jan; Bilik, Petr; Janku, Petr; Nazeran, Homer; Zidek, Jan
2016-02-01
This paper describes the design, construction, and testing of a multi-channel fetal electrocardiogram (fECG) signal generator based on LabVIEW. Special attention is paid to the fetal heart development in relation to the fetus' anatomy, physiology, and pathology. The non-invasive signal generator enables many parameters to be set, including fetal heart rate (FHR), maternal heart rate (MHR), gestational age (GA), fECG interferences (biological and technical artifacts), as well as other fECG signal characteristics. Furthermore, based on the change in the FHR and in the T wave-to-QRS complex ratio (T/QRS), the generator enables manifestations of hypoxic states (hypoxemia, hypoxia, and asphyxia) to be monitored while complying with clinical recommendations for classifications in cardiotocography (CTG) and fECG ST segment analysis (STAN). The generator can also produce synthetic signals with defined properties for 6 input leads (4 abdominal and 2 thoracic). Such signals are well suited to the testing of new and existing methods of fECG processing and are effective in suppressing maternal ECG while non-invasively monitoring abdominal fECG. They may also contribute to the development of a new diagnostic method, which may be referred to as non-invasive trans-abdominal CTG + STAN. The functional prototype is based on virtual instrumentation using the LabVIEW developmental environment and its associated data acquisition measurement cards (DAQmx). The generator also makes it possible to create synthetic signals and measure actual fetal and maternal ECGs by means of bioelectrodes.
Lee, Kwang Jin; Lee, Boreom
2016-01-01
Fetal heart rate (FHR) is an important determinant of fetal health. Cardiotocography (CTG) is widely used for measuring the FHR in the clinical field. However, fetal movement and blood flow through the maternal blood vessels can critically influence Doppler ultrasound signals. Moreover, CTG is not suitable for long-term monitoring. Therefore, researchers have been developing algorithms to estimate the FHR using electrocardiograms (ECGs) from the abdomen of pregnant women. However, separating the weak fetal ECG signal from the abdominal ECG signal is a challenging problem. In this paper, we propose a method for estimating the FHR using sequential total variation denoising and compare its performance with that of other single-channel fetal ECG extraction methods via simulation using the Fetal ECG Synthetic Database (FECGSYNDB). Moreover, we used real data from PhysioNet fetal ECG databases for the evaluation of the algorithm performance. The R-peak detection rate is calculated to evaluate the performance of our algorithm. Our approach could not only separate the fetal ECG signals from the abdominal ECG signals but also accurately estimate the FHR. PMID:27376296
Lee, Kwang Jin; Lee, Boreom
2016-07-01
Fetal heart rate (FHR) is an important determinant of fetal health. Cardiotocography (CTG) is widely used for measuring the FHR in the clinical field. However, fetal movement and blood flow through the maternal blood vessels can critically influence Doppler ultrasound signals. Moreover, CTG is not suitable for long-term monitoring. Therefore, researchers have been developing algorithms to estimate the FHR using electrocardiograms (ECGs) from the abdomen of pregnant women. However, separating the weak fetal ECG signal from the abdominal ECG signal is a challenging problem. In this paper, we propose a method for estimating the FHR using sequential total variation denoising and compare its performance with that of other single-channel fetal ECG extraction methods via simulation using the Fetal ECG Synthetic Database (FECGSYNDB). Moreover, we used real data from PhysioNet fetal ECG databases for the evaluation of the algorithm performance. The R-peak detection rate is calculated to evaluate the performance of our algorithm. Our approach could not only separate the fetal ECG signals from the abdominal ECG signals but also accurately estimate the FHR.
Discussion of "Computational Electrocardiography: Revisiting Holter ECG Monitoring".
Baumgartner, Christian; Caiani, Enrico G; Dickhaus, Hartmut; Kulikowski, Casimir A; Schiecke, Karin; van Bemmel, Jan H; Witte, Herbert
2016-08-05
This article is part of a For-Discussion-Section of Methods of Information in Medicine about the paper "Computational Electrocardiography: Revisiting Holter ECG Monitoring" written by Thomas M. Deserno and Nikolaus Marx. It is introduced by an editorial. This article contains the combined commentaries invited to independently comment on the paper of Deserno and Marx. In subsequent issues the discussion can continue through letters to the editor.
Locati, E T; Moya, A; Oliveira, M; Tanner, H; Willems, R; Lunati, M; Brignole, M
2016-08-01
SYNARR-Flash study (Monitoring of SYNcopes and/or sustained palpitations of suspected ARRhythmic origin) is an international, multicentre, observational, prospective trial designed to evaluate the role of external 4-week electrocardiogram (ECG) monitoring in clinical work-up of unexplained syncope and/or sustained palpitations of suspected arrhythmic origin. Consecutive patients were enrolled within 1 month after unexplained syncope or palpitations (index event) after being discharged from emergency room or hospitalization without a conclusive diagnosis. A 4-week ECG monitoring was obtained by external high-capacity loop recorder (SpiderFlash-T(®), Sorin) storing patient-activated and auto-triggered tracings. Diagnostic monitorings included (i) conclusive events with reoccurrence of syncope or palpitation with concomitant ECG recording (with/without arrhythmias) and (ii) events with asymptomatic predefined significant arrhythmias (sustained supraventricular or ventricular tachycardia, advanced atrio-ventricular block, sinus bradycardia <30 b.p.m., pauses >6 s). SYNARR-Flash study enrolled 395 patients (57.7% females, 56.9 ± 18.7 years, 28.1% with syncope, and 71.9% with palpitations) from 10 European centres. For syncope, the 4-week diagnostic yield was 24.5%, and predictors of diagnostic events were early start of recording (0-15 vs. >15 days after index event) (OR 6.2, 95% CI 1.3-29.6, P = 0.021) and previous history of supraventricular arrhythmias (OR 3.6, 95% CI 1.4-9.7, P = 0.018). For palpitations, the 4-week diagnostic yield was 71.6% and predictors of diagnostic events were history of recurrent palpitations (P < 0.001) and early start of recording (P = 0.001). The 4-week external ECG monitoring can be considered as first-line tool in the diagnostic work-up of syncope and palpitation. Early recorder use, history of supraventricular arrhythmia, and frequent previous events increased the likelihood of diagnostic events during the 4-week external ECG monitoring. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Cardiology.
Comparison of HRV parameters derived from photoplethysmography and electrocardiography signals.
Jeyhani, Vala; Mahdiani, Shadi; Peltokangas, Mikko; Vehkaoja, Antti
2015-01-01
Heart rate variability (HRV) has become a useful tool in analysis of cardiovascular system in both research and clinical fields. HRV has been also used in other applications such as stress level estimation in wearable devices. HRV is normally obtained from ECG as the time interval of two successive R waves. Recently PPG has been proposed as an alternative for ECG in HRV analysis to overcome some difficulties in measurement of ECG. In addition, PPG-HRV is also used in some commercial devices such as modern optical wrist-worn heart rate monitors. However, some researches have shown that PPG is not a surrogate for heart rate variability analysis. In this work, HRV analysis was applied on beat-to-beat intervals obtained from ECG and PPG in 19 healthy male subjects. Some important HRV parameters were calculated from PPG-HRV and ECG-HRV. Maximum of PPG and its second derivative were considered as two methods for obtaining the beat-to-beat signals from PPG and the results were compared with those achieved from ECG-HRV. Our results show that the smallest error happens in SDNN and SD2 with relative error of 2.46% and 2%, respectively. The most affected parameter is pNN50 with relative error of 29.89%. In addition, in our trial, using the maximum of PPG gave better results than its second derivative.
Nanocomposite electrodes for smartphone enabled healthcare garments: e-bra and smart vest
NASA Astrophysics Data System (ADS)
Kumar, Prashanth S.; Rai, Pratyush; Oh, Sechang; Kwon, Hyeokjun; Varadan, Vijay K.
2012-10-01
The financial burden of hospital readmissions and treatment of chronic cardiac diseases are global concerns. Point of Care (POC) has been presented as an elegant solution for healthcare cost reduction. However, large scale adoption of POC systems requires an intuitive, unobtrusive and easy to use health monitoring system from patient's perspective. Healthcare textiles are sensor systems mounted on textile platform that function as wearable unobtrusive health monitoring systems. Although much work has been done in the development and demonstration of textile mounted monitoring systems, material and production costs are still high. Nanomaterials based devices and technology can be employed in these healthcare textiles for improved electrical characteristics of the sensors, lowered cost due to less material consumption and compatibility to varied manufacturing techniques. Carbon nanotube composite ink based printable conductive electrodes is such a textile adaptable nanomaterial technology. Screen printed Nanocomposite electrodes made of carbon nanotubes and an acrylic polymer can be used in undergarments like vests and brassieres, for cardiac biopotential (Electrocardiography, ECG) sensing. A Bluetooth module and a smartphone can then be used to provide cyber-infrastructure connectivity for the healthcare data from these healthcare garments. They can be used to monitor young or elderly recuperating /convalescent patients either in hospital or at home, or they can be used by young athletes to monitor important physiological parameters to better design their training or fitness program. In this study, we evaluate screen printed CNT-acrylic Nanocomposite electrodes for ECG signal quality and any CNT leaching hazard that might lead to skin toxicity.
Development of a fully automated network system for long-term health-care monitoring at home.
Motoi, K; Kubota, S; Ikarashi, A; Nogawa, M; Tanaka, S; Nemoto, T; Yamakoshi, K
2007-01-01
Daily monitoring of health condition at home is very important not only as an effective scheme for early diagnosis and treatment of cardiovascular and other diseases, but also for prevention and control of such diseases. From this point of view, we have developed a prototype room for fully automated monitoring of various vital signs. From the results of preliminary experiments using this room, it was confirmed that (1) ECG and respiration during bathing, (2) excretion weight and blood pressure, and (3) respiration and cardiac beat during sleep could be monitored with reasonable accuracy by the sensor system installed in bathtub, toilet and bed, respectively.
An introduction to the reading of electrocardiograms.
Woodrow, P
This article introduces the basic principles of reading electrocardiograms (ECGs) for nurses who are unfamiliar with reading them. For more experienced practitioners there are a number of useful articles and books (e.g. Hampton, 1992a, b) that will help further their knowledge. The ECG records cardiac electrical activity as a graph; interpretation is illustrated here by sinus rhythm. A single ECG lead (lead II) is used throughout this article. Atrial fibrillation is described to show a contrasting dysrhythmia. Specific nursing care is suggested for patients being monitored or having ECGs taken.
The Use of Continuous Electrocardiographic Holter Monitoring in Pediatric Cardiology
Begic, Zijo; Begic, Edin; Mesihovic-Dinarevic, Senka; Masic, Izet; Pesto, Senad; Halimic, Mirza; Kadic, Almira; Dobraca, Amra
2016-01-01
Objective: To show the place and role of continuous electrocardiographic twenty-four-hour ECG monitoring in daily clinical practice of pediatric cardiologists. Methods: According to protocol, 2753 patients underwent dynamic continuous ECG Holter monitoring (data collected from the “Register of ECG Holter monitoring” of Pediatric Clinic, UCC Sarajevo in period April 2003- April 2015). Results: There were 50,5% boys and 49,5% girls, aged from birth to 19 years (1,63% - neonates and infants, 2,6% - toddlers, 9,95% - preschool children, 35,5% - gradeschoolers and 50,3% children in puberty and adolescence). In 68,1% of patients Holter was performed for the first time. Indications for conducting Holter were: arrhythmias in 42,2% cases, precordial pain in 23,5%, suspicion of pre-excitation and/or pre-excitation in 10%, crisis of consciousness in 8%, uncorrected congenital/acquired heart defects in 4,2%, operated heart defects in 3,7%, hypertension in 3,1% cases, control of the pacemaker in 1,63% and other causes in 3,5% cases. Discharge diagnosis after ECG Holter monitoring were: insignificant arrhythmias in 47,1% cases, wandering pacemaker in 21,3%, pre-excitation in 16,2%, benign ventricular premature beats in 6,3%, atrioventricular block in 3%, sinus pause in 2.2% cases and other arrhythmias in 3,5%. In mentioned period 57 cases of Wolf Parkinson White syndrome were registered, in 4,5% of patients antiarrhythmic therapy was administered. Radiofrequent ablation was performed in 23 cases. Conclusion: The development of pediatric cardiac surgery has initiated development of pediatric arrhythmology as imperative segment of pediatric cardiology. Continuous ECG Holter monitoring has become irreplaceable method in everyday diagnostics and therapy of arrhythmias in children. PMID:27708487
Weber-Krüger, Mark; Gelbrich, Götz; Stahrenberg, Raoul; Liman, Jan; Kermer, Pawel; Hamann, Gerhard F; Seegers, Joachim; Gröschel, Klaus; Wachter, Rolf
2014-10-01
Detecting paroxysmal atrial fibrillation (AF) in patients with ischemic strokes presenting in sinus rhythm is challenging because episodes are often short, occur randomly, and are frequently asymptomatic. If AF is detected, recurrent thromboembolism can be prevented efficiently by oral anticoagulation. Numerous uncontrolled studies using various electrocardiogram (ECG) devices have established that prolonged ECG monitoring increases the yield of AF detection, but most established procedures are time-consuming and costly. The few randomized trials are mostly limited to cryptogenic strokes. The optimal method, duration, and patient selection remain unclear. Repeated prolonged continuous Holter ECG monitoring to detect paroxysmal AF within an unspecific stroke population may prove to be a widely applicable, effective secondary prevention strategy. Find-AFRANDOMISED is a randomized and controlled prospective multicenter trial. Four hundred patients 60 years or older with manifest (symptoms ≥24 hours or acute computed tomography/magnetic resonance imaging lesion) and acute (symptoms ≤7 days) ischemic strokes will be included at 4 certified stroke centers in Germany. Those with previously diagnosed AF/flutter, indications/contraindications for oral anticoagulation, or obvious causative blood vessel pathologies will be excluded. Patients will be randomized 1:1 to either enhanced and prolonged Holter ECG monitoring (10 days at baseline and after 3 and 6 months) or standard of care (≥24-hour continuous ECG monitoring, according to current stroke guidelines). All patients will be followed up for at least 12 months. The primary end point is newly detected AF (≥30 seconds) after 6 months, confirmed by an independent adjudication committee. We plan to complete recruitment in autumn 2014. First results can be expected by spring 2016. Copyright © 2014 Mosby, Inc. All rights reserved.
Monitoring and Detection Platform to Prevent Anomalous Situations in Home Care
Villarrubia, Gabriel; Bajo, Javier; De Paz, Juan F.; Corchado, Juan M.
2014-01-01
Monitoring and tracking people at home usually requires high cost hardware installations, which implies they are not affordable in many situations. This study/paper proposes a monitoring and tracking system for people with medical problems. A virtual organization of agents based on the PANGEA platform, which allows the easy integration of different devices, was created for this study. In this case, a virtual organization was implemented to track and monitor patients carrying a Holter monitor. The system includes the hardware and software required to perform: ECG measurements, monitoring through accelerometers and WiFi networks. Furthermore, the use of interactive television can moderate interactivity with the user. The system makes it possible to merge the information and facilitates patient tracking efficiently with low cost. PMID:24905853
2015-04-10
Peripheral Interface SpO2 Arterial Oxygen Saturation Measured via Pulse - Oximeter SRS Software Requirements Specification SV Stroke Volume SVR Systemic...viewer ....................................................................................................... 9 Figure 3: Pulse OX custom module...analysis approaches will be gathered. Sensors which detect SpO2, pulse / pulse rate, ECG, and skin temperature will be researched and evaluated for
Pollonini, Luca; Rajan, Nithin O; Xu, Shuai; Madala, Sridhar; Dacso, Clifford C
2012-04-01
Remote patient monitoring (RPM) holds great promise for reducing the burden of congestive heart failure (CHF). Improved sensor technology and effective predictive algorithms can anticipate sudden decompensation events. Enhanced telemonitoring systems would promote patient independence and facilitate communication between patients and their physicians. We report the development of a novel hand-held device, called Blue Box, capable of collecting and wirelessly transmitting key cardiac parameters derived from three integrated biosensors: 2 lead electrocardiogram (ECG), photoplethysmography and bioelectrical impedance (bioimpedance). Blue Box measurements include time intervals between consecutive ECG R-waves (RR interval), time duration of the ECG complex formed by the Q, R and S waves (QRS duration), bioimpedance, heart rate and systolic time intervals. In this study, we recruited 24 healthy subjects to collect several parameters measured by Blue Box and assess their value in correlating with cardiac output measured with Echo-Doppler. Linear correlation between the heart rate measured with Blue Box and cardiac output from Echo-Doppler had a group average correlation coefficient of 0.80. We found that systolic time intervals did not improve the model significantly. However, STIs did inversely correlate with increasing workloads.
A flexible skin patch for continuous physiological monitoring of mental disorders
NASA Astrophysics Data System (ADS)
Jang, Won Ick; Lee, Bong Kuk; Ryu, Jin Hwa; Baek, In-Bok; Yu, Han Young; Kim, Seunghwan
2017-10-01
In this study, we have newly developed a flexible adhesive skin patch of electrocardiogram (ECG) device for continuous physiological monitoring of mental disorders. In addition, this flexible patch did not cause any damage to the skin even after 24 hours attachment. We have also suggested the possibility of novel interconnection for copper film on polyimide and polydimethylsiloxane (PDMS) layers of the flexible patch. Self-align and soldering of IC chips such as resistor between metal pads on flexible skin patch have also successfully fabricated for 5 min at 180 °C in vacuum oven. Low temperature interconnection technology based on a Sn42/Bi58 solder was also developed for flexible ECG devices. As a result, we can monitor the mental health status through a comprehensive analysis of biological signals from flexible ECG devices.
Wireless Sensor-Based Smart-Clothing Platform for ECG Monitoring
Lin, Chung-Chih; Yu, Yan-Shuo
2015-01-01
The goal of this study is to use wireless sensor technologies to develop a smart clothes service platform for health monitoring. Our platform consists of smart clothes, a sensor node, a gateway server, and a health cloud. The smart clothes have fabric electrodes to detect electrocardiography (ECG) signals. The sensor node improves the accuracy of QRS complexes detection by morphology analysis and reduces power consumption by the power-saving transmission functionality. The gateway server provides a reconfigurable finite state machine (RFSM) software architecture for abnormal ECG detection to support online updating. Most normal ECG can be filtered out, and the abnormal ECG is further analyzed in the health cloud. Three experiments are conducted to evaluate the platform's performance. The results demonstrate that the signal-to-noise ratio (SNR) of the smart clothes exceeds 37 dB, which is within the “very good signal” interval. The average of the QRS sensitivity and positive prediction is above 99.5%. Power-saving transmission is reduced by nearly 1980 times the power consumption in the best-case analysis. PMID:26640512
Wireless Sensor-Based Smart-Clothing Platform for ECG Monitoring.
Wang, Jie; Lin, Chung-Chih; Yu, Yan-Shuo; Yu, Tsang-Chu
2015-01-01
The goal of this study is to use wireless sensor technologies to develop a smart clothes service platform for health monitoring. Our platform consists of smart clothes, a sensor node, a gateway server, and a health cloud. The smart clothes have fabric electrodes to detect electrocardiography (ECG) signals. The sensor node improves the accuracy of QRS complexes detection by morphology analysis and reduces power consumption by the power-saving transmission functionality. The gateway server provides a reconfigurable finite state machine (RFSM) software architecture for abnormal ECG detection to support online updating. Most normal ECG can be filtered out, and the abnormal ECG is further analyzed in the health cloud. Three experiments are conducted to evaluate the platform's performance. The results demonstrate that the signal-to-noise ratio (SNR) of the smart clothes exceeds 37 dB, which is within the "very good signal" interval. The average of the QRS sensitivity and positive prediction is above 99.5%. Power-saving transmission is reduced by nearly 1980 times the power consumption in the best-case analysis.
The evolution of ambulatory ECG monitoring.
Kennedy, Harold L
2013-01-01
Ambulatory Holter electrocardiographic (ECG) monitoring has undergone continuous technological evolution since its invention and development in the 1950s era. With commercial introduction in 1963, there has been an evolution of Holter recorders from 1 channel to 12 channel recorders with increasingly smaller storage media, and there has evolved Holter analysis systems employing increasingly technologically advanced electronics providing a myriad of data displays. This evolution of smaller physical instruments with increasing technological capacity has characterized the development of electronics over the past 50 years. Currently the technology has been focused upon the conventional continuous 24 to 48 hour ambulatory ECG examination, and conventional extended ambulatory monitoring strategies for infrequent to rare arrhythmic events. However, the emergence of the Internet, Wi-Fi, cellular networks, and broad-band transmission has positioned these modalities at the doorway of the digital world. This has led to an adoption of more cost-effective strategies to these conventional methods of performing the examination. As a result, the emergence of the mobile smartphone coupled with this digital capacity is leading to the recent development of Holter smartphone applications. The potential of point-of-care applications utilizing the Holter smartphone and a vast array of new non-invasive sensors is evident in the not too distant future. The Holter smartphone is anticipated to contribute significantly in the future to the field of global health. © 2013.
Warmerdam, G; Vullings, R; Van Pul, C; Andriessen, P; Oei, S G; Wijn, P
2013-01-01
Non-invasive fetal electrocardiography (ECG) can be used for prolonged monitoring of the fetal heart rate (FHR). However, the signal-to-noise-ratio (SNR) of non-invasive ECG recordings is often insufficient for reliable detection of the FHR. To overcome this problem, source separation techniques can be used to enhance the fetal ECG. This study uses a physiology-based source separation (PBSS) technique that has already been demonstrated to outperform widely used blind source separation techniques. Despite the relatively good performance of PBSS in enhancing the fetal ECG, PBSS is still susceptible to artifacts. In this study an augmented PBSS technique is developed to reduce the influence of artifacts. The performance of the developed method is compared to PBSS on multi-channel non-invasive fetal ECG recordings. Based on this comparison, the developed method is shown to outperform PBSS for the enhancement of the fetal ECG.
SenseMyHeart: A cloud service and API for wearable heart monitors.
Pinto Silva, P M; Silva Cunha, J P
2015-01-01
In the era of ubiquitous computing, the growing adoption of wearable systems and body sensor networks is trailing the path for new research and software for cardiovascular intensity, energy expenditure and stress and fatigue detection through cardiovascular monitoring. Several systems have received clinical-certification and provide huge amounts of reliable heart-related data in a continuous basis. PhysioNet provides equally reliable open-source software tools for ECG processing and analysis that can be combined with these devices. However, this software remains difficult to use in a mobile environment and for researchers unfamiliar with Linux-based systems. In the present paper we present an approach that aims at tackling these limitations by developing a cloud service that provides an API for a PhysioNet-based pipeline for ECG processing and Heart Rate Variability measurement. We describe the proposed solution, along with its advantages and tradeoffs. We also present some client tools (windows and Android) and several projects where the developed cloud service has been used successfully as a standard for Heart Rate and Heart Rate Variability studies in different scenarios.
Lifelink: 3G-based mobile telemedicine system.
Alis, Christian; del Rosario, Carlos; Buenaobra, Bernardino; Mar Blanca, Carlo
2009-04-01
Current wired telemedicine systems encounter difficulties when implemented in archipelagic developing countries because of the high cost of fixed infrastructure. In this research, we devised Lifelink, a mobile real-time telemonitoring and diagnostic facility to command and control remote medical devices through mobile phones. The whole process is phone-based, effectively freeing offsite medical specialists from stationary monitoring consoles and endowing the system with the potential to increase the number participating consultants. The electrocardiogram (ECG) readings are analyzed using a detrended fluctuation technique and classified into pathological cases using an unassisted K-means clustering algorithm. We analyzed 30 batches of 2-hour ECG signals taken from cardiac patients (20 males, 10 females, mean age 46.7 years) with pre-diagnosed pathologies. The method successfully categorized the 30 subjects without user intervention into the following cases: normal (at 86.7% accuracy), congestive heart failure (86.7%), and atrial fibrillation (80.0%). The synergy of mobile monitoring and fluctuation analysis presents a powerful platform to reach remote, underserved communities with poor or nonexistent wired communication structures. It is likely to be essential in the development of new mobile diagnostic and prognostic measures.
Arrhythmia Classification Based on Multi-Domain Feature Extraction for an ECG Recognition System.
Li, Hongqiang; Yuan, Danyang; Wang, Youxi; Cui, Dianyin; Cao, Lu
2016-10-20
Automatic recognition of arrhythmias is particularly important in the diagnosis of heart diseases. This study presents an electrocardiogram (ECG) recognition system based on multi-domain feature extraction to classify ECG beats. An improved wavelet threshold method for ECG signal pre-processing is applied to remove noise interference. A novel multi-domain feature extraction method is proposed; this method employs kernel-independent component analysis in nonlinear feature extraction and uses discrete wavelet transform to extract frequency domain features. The proposed system utilises a support vector machine classifier optimized with a genetic algorithm to recognize different types of heartbeats. An ECG acquisition experimental platform, in which ECG beats are collected as ECG data for classification, is constructed to demonstrate the effectiveness of the system in ECG beat classification. The presented system, when applied to the MIT-BIH arrhythmia database, achieves a high classification accuracy of 98.8%. Experimental results based on the ECG acquisition experimental platform show that the system obtains a satisfactory classification accuracy of 97.3% and is able to classify ECG beats efficiently for the automatic identification of cardiac arrhythmias.
Arrhythmia Classification Based on Multi-Domain Feature Extraction for an ECG Recognition System
Li, Hongqiang; Yuan, Danyang; Wang, Youxi; Cui, Dianyin; Cao, Lu
2016-01-01
Automatic recognition of arrhythmias is particularly important in the diagnosis of heart diseases. This study presents an electrocardiogram (ECG) recognition system based on multi-domain feature extraction to classify ECG beats. An improved wavelet threshold method for ECG signal pre-processing is applied to remove noise interference. A novel multi-domain feature extraction method is proposed; this method employs kernel-independent component analysis in nonlinear feature extraction and uses discrete wavelet transform to extract frequency domain features. The proposed system utilises a support vector machine classifier optimized with a genetic algorithm to recognize different types of heartbeats. An ECG acquisition experimental platform, in which ECG beats are collected as ECG data for classification, is constructed to demonstrate the effectiveness of the system in ECG beat classification. The presented system, when applied to the MIT-BIH arrhythmia database, achieves a high classification accuracy of 98.8%. Experimental results based on the ECG acquisition experimental platform show that the system obtains a satisfactory classification accuracy of 97.3% and is able to classify ECG beats efficiently for the automatic identification of cardiac arrhythmias. PMID:27775596
Noh, Yun Hong; Jeong, Do Un
2014-07-15
In this paper, a packet generator using a pattern matching algorithm for real-time abnormal heartbeat detection is proposed. The packet generator creates a very small data packet which conveys sufficient crucial information for health condition analysis. The data packet envelopes real time ECG signals and transmits them to a smartphone via Bluetooth. An Android application was developed specifically to decode the packet and extract ECG information for health condition analysis. Several graphical presentations are displayed and shown on the smartphone. We evaluate the performance of abnormal heartbeat detection accuracy using the MIT/BIH Arrhythmia Database and real time experiments. The experimental result confirm our finding that abnormal heart beat detection is practically possible. We also performed data compression ratio and signal restoration performance evaluations to establish the usefulness of the proposed packet generator and the results were excellent.
VLSI implementation of a new LMS-based algorithm for noise removal in ECG signal
NASA Astrophysics Data System (ADS)
Satheeskumaran, S.; Sabrigiriraj, M.
2016-06-01
Least mean square (LMS)-based adaptive filters are widely deployed for removing artefacts in electrocardiogram (ECG) due to less number of computations. But they posses high mean square error (MSE) under noisy environment. The transform domain variable step-size LMS algorithm reduces the MSE at the cost of computational complexity. In this paper, a variable step-size delayed LMS adaptive filter is used to remove the artefacts from the ECG signal for improved feature extraction. The dedicated digital Signal processors provide fast processing, but they are not flexible. By using field programmable gate arrays, the pipelined architectures can be used to enhance the system performance. The pipelined architecture can enhance the operation efficiency of the adaptive filter and save the power consumption. This technique provides high signal-to-noise ratio and low MSE with reduced computational complexity; hence, it is a useful method for monitoring patients with heart-related problem.
Uokawa, Y; Yonezawa, Y; Caldwell, W M; Hahn, A W
2000-01-01
A data acquisition system employing a low power 8 bit microcomputer has been developed for heart rate variability monitoring before, during and after bathing. The system consists of three integral chest electrodes, two temperature sensors, an instrumentation amplifier, a low power 8-bit single chip microcomputer (SMC) and a 4 MB compact flash memory (CFM). The ECG from the electrodes is converted to an 8-bit digital format at a 1 ms rate by an A/D converter in the SMC. Both signals from the body and ambient temperature sensors are converted to an 8-bit digital format every 1 second. These data are stored by the CFM. The system is powered by a rechargeable 3.6 V lithium battery. The 4 x 11 x 1 cm system is encapsulated in epoxy and silicone, yielding a total volume of 44 cc. The weight is 100 g.
Zhao, Ruiyi; Chen, Chunfang; Jin, Jingfen; Sharma, Komal; Jiang, Nan; Shentu, Yingqin; Wang, Xingang
2016-06-01
The use of peripherally inserted central catheters (PICCs) provides important central venous accesses for clinical treatments, tests and monitoring. Compared with the traditional methods, intracardiac electrocardiogram (ECG)-guided method has the potential to guide more accurate tip positioning of PICCs. This study aimed to clinically evaluate the effectiveness of an intracardiac ECG to guide the tip positioning by monitoring characteristic P-wave changes. In this study, eligible patients enrolled September 2011 to May 2012 according to the inclusion and exclusion criteria received the catheterization monitored by intracardiac ECG. Then chest radiography was performed to check the catheter position. The results revealed that, with 117 eligible patients, all bar one patient who died (n = 116) completed the study, including 60 males and 56 females aged 51.2 ± 15.1 years. Most (n = 113, > 97%) had characteristic P-wave changes. The intracardiac ECG-guided positioning procedure achieved correct placement for 112 patients (96.56%), demonstrating 99.12% sensitivity and 100% specificity. In conclusion, the intracardiac ECG can be a promising technique to guide tip positioning of PICCs. However, since the sample size in this study is limited, more experience and further study during clinical practice are needed to demonstrate achievement of optimal catheterization outcomes. © 2015 John Wiley & Sons Australia, Ltd.
An intelligent health monitoring system using radio-frequency identification technology.
Lai, Yeong-Lin; Chen, Chin-Ling; Chang, Ching-Hisang; Hsu, Chih-Yu; Lai, Yeong-Kang; Tseng, Kuo-Kun; Chen, Chih-Cheng; Zheng, Chun-Yi
2015-01-01
Long-term care (LTC) for the elderly has become extremely important in recent years. It is necessary for the different physiological monitoring systems to be integrated on the same interface to help oversee and manage the elderly's needs. This paper presents a novel health monitoring system for LTC services using radio-frequency identification (RFID) technology. Dual-band RFID protocols were included in the system, in which the high-frequency (HF) band of 13.56 MHz was used to identify individuals and the microwave band of 2.45 GHz was used to monitor physiological information. Distinct physiological data, including oxyhemoglobin saturation by pulse oximetry (SpO2), blood pressure, blood sugar, electrocardiogram (ECG) readings, body temperature, and respiration rate, were monitored by various biosensors. The intelligent RFID health monitoring system provided the features of the real-time acquisition of biomedical signals and the identification of personal information pertaining to the elderly and patients in nursing homes.
Low-complexity R-peak detection for ambulatory fetal monitoring.
Rooijakkers, Michael J; Rabotti, Chiara; Oei, S Guid; Mischi, Massimo
2012-07-01
Non-invasive fetal health monitoring during pregnancy is becoming increasingly important because of the increasing number of high-risk pregnancies. Despite recent advances in signal-processing technology, which have enabled fetal monitoring during pregnancy using abdominal electrocardiogram (ECG) recordings, ubiquitous fetal health monitoring is still unfeasible due to the computational complexity of noise-robust solutions. In this paper, an ECG R-peak detection algorithm for ambulatory R-peak detection is proposed, as part of a fetal ECG detection algorithm. The proposed algorithm is optimized to reduce computational complexity, without reducing the R-peak detection performance compared to the existing R-peak detection schemes. Validation of the algorithm is performed on three manually annotated datasets. With a detection error rate of 0.23%, 1.32% and 9.42% on the MIT/BIH Arrhythmia and in-house maternal and fetal databases, respectively, the detection rate of the proposed algorithm is comparable to the best state-of-the-art algorithms, at a reduced computational complexity.
Lowres, Nicole; Mulcahy, Georgina; Gallagher, Robyn; Ben Freedman, Saul; Marshman, David; Kirkness, Ann; Orchard, Jessica; Neubeck, Lis
2016-07-01
Postoperative atrial fibrillation (POAF) occurs in 25-40% of patients following cardiac surgery, and is associated with a significant increased risk of stroke and mortality. Routine surveillance is not performed post-discharge; however, recurrence of POAF can occur in up to 30% of patients discharged in sinus rhythm. This study aimed to determine the feasibility of patients self-monitoring with an iPhone handheld electrocardiogram (iECG) to identify recurrence of POAF in the post-discharge period following cardiac surgery. Patients with POAF following cardiac surgery were eligible for participation if they had no prior history of atrial fibrillation (AF) and were discharged home in stable sinus rhythm. Participants were provided with an iECG and asked to record a 30-s iECG, four times per day for 4 weeks post-discharge. iECGs were automatically transmitted to a secure server, and reviewed for the presence of AF by the research team and a validated algorithm. All participants also received brief education on AF. Forty-two participants completed the intervention (mean age 69 ± 9 years, 80% male). Self-monitoring for POAF recurrence using an iECG was feasible and acceptable, and participants felt empowered. Self-monitoring identified 24% (95% confidence interval, 12-39%) with an AF recurrence within 17 days of hospital discharge. These participants were significantly younger than those without AF recurrence (64 ± 7 vs 70 ± 10 years; P = 0.025), and had a significantly lower CHA2DS2-VASc score (2.3 ± 1.2 vs 3.7 ± 2.3; P = 0.007). However, 80% were at high enough stroke risk to warrant consideration of anticoagulation, i.e. CHA2DS2-VASc score ≥2. Only 30% of recurrences were associated with palpitations. Participation also improved AF knowledge from 6.4 ± 1.8 to 7.3 ± 1.8 (P = 0.02), of a total score of 10. Providing patients with an iECG is a non-invasive, inexpensive, convenient and feasible way to monitor for AF recurrence in post-cardiac surgery patients. It also provides a mechanism to provide knowledge about the condition and also potentially reduce anxiety. The success of patients using this technology also has implications for extending the use of iECG self-monitoring to other patient groups such as those undergoing antiarrhythmic interventions for AF. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
A reliable transmission protocol for ZigBee-based wireless patient monitoring.
Chen, Shyr-Kuen; Kao, Tsair; Chan, Chia-Tai; Huang, Chih-Ning; Chiang, Chih-Yen; Lai, Chin-Yu; Tung, Tse-Hua; Wang, Pi-Chung
2012-01-01
Patient monitoring systems are gaining their importance as the fast-growing global elderly population increases demands for caretaking. These systems use wireless technologies to transmit vital signs for medical evaluation. In a multihop ZigBee network, the existing systems usually use broadcast or multicast schemes to increase the reliability of signals transmission; however, both the schemes lead to significantly higher network traffic and end-to-end transmission delay. In this paper, we present a reliable transmission protocol based on anycast routing for wireless patient monitoring. Our scheme automatically selects the closest data receiver in an anycast group as a destination to reduce the transmission latency as well as the control overhead. The new protocol also shortens the latency of path recovery by initiating route recovery from the intermediate routers of the original path. On the basis of a reliable transmission scheme, we implement a ZigBee device for fall monitoring, which integrates fall detection, indoor positioning, and ECG monitoring. When the triaxial accelerometer of the device detects a fall, the current position of the patient is transmitted to an emergency center through a ZigBee network. In order to clarify the situation of the fallen patient, 4-s ECG signals are also transmitted. Our transmission scheme ensures the successful transmission of these critical messages. The experimental results show that our scheme is fast and reliable. We also demonstrate that our devices can seamlessly integrate with the next generation technology of wireless wide area network, worldwide interoperability for microwave access, to achieve real-time patient monitoring.
Kao, Wei-Fong; Hou, Sen-Kuang; Huang, Chun-Yao; Chao, Chun-Chieh; Cheng, Chung-Chih; Chen, Yi-Jung
2018-01-01
Atrial fibrillation (AF) is the most common arrhythmia. The most common diagnostic method, 12-lead electrocardiogram (ECG), can record episodes of arrhythmia from which the type and severity can be determined. The Heart Spectrum Blood Pressure Monitor (P2; OSTAR Meditech Corp., New Taipei City, Taiwan) is used to measure cardiovascular pressure change with fast Fourier transform (FFT) analysis to obtain heart rate frequency variability and accurate blood pressure data. We compared the diagnostic efficacy of the Heart Spectrum Blood Pressure Monitor to a 12-lead ECG (gold standard) for patients with AF. Three measurement methods were used in this study to analyze the heart index and compare the results with simultaneous 12-lead ECG: blood pressure; mean arterial pressure, which was calculated from individual blood pressure as a constant pressure; and a constant pressure of 60 mmHg. The physician used a 12-lead ECG and the Heart Spectrum Blood Pressure Monitor simultaneously. The Heart Spectrum Blood Pressure Monitor used FFT analysis to diagnose AF, and the findings were compared to the 12-lead ECG readings. This unblinded clinical trial was conducted in the emergency department of Taipei Medical University Hospital. Twenty-nine subjects with AF and 33 without AF aged 25 to 97 y (mean, 63.5 y) were included. Subjects who were exposed to high-frequency surgical equipment during testing, those with cardiac pacemakers or implantable defibrillators, and pregnant women were excluded. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were 97%, 97%, 97%, and 97%, respectively, for method 1; 90%, 100%, 100%, and 91%, respectively, for method 2; and 100%, 94%, 94%, and 100%, respectively, for method 3. The sensitivity, specificity, PPV, and NPV for both methods ranged between 90% and 100%, indicating that the Heart Spectrum Blood Pressure Monitor can be effectively applied for AF detection.
Kao, Wei-Fong; Hou, Sen-Kuang; Huang, Chun-Yao; Cheng, Chung-Chih; Chen, Yi-Jung
2018-01-01
Atrial fibrillation (AF) is the most common arrhythmia. The most common diagnostic method, 12-lead electrocardiogram (ECG), can record episodes of arrhythmia from which the type and severity can be determined. The Heart Spectrum Blood Pressure Monitor (P2; OSTAR Meditech Corp., New Taipei City, Taiwan) is used to measure cardiovascular pressure change with fast Fourier transform (FFT) analysis to obtain heart rate frequency variability and accurate blood pressure data. We compared the diagnostic efficacy of the Heart Spectrum Blood Pressure Monitor to a 12-lead ECG (gold standard) for patients with AF. Three measurement methods were used in this study to analyze the heart index and compare the results with simultaneous 12-lead ECG: blood pressure; mean arterial pressure, which was calculated from individual blood pressure as a constant pressure; and a constant pressure of 60 mmHg. The physician used a 12-lead ECG and the Heart Spectrum Blood Pressure Monitor simultaneously. The Heart Spectrum Blood Pressure Monitor used FFT analysis to diagnose AF, and the findings were compared to the 12-lead ECG readings. This unblinded clinical trial was conducted in the emergency department of Taipei Medical University Hospital. Twenty-nine subjects with AF and 33 without AF aged 25 to 97 y (mean, 63.5 y) were included. Subjects who were exposed to high-frequency surgical equipment during testing, those with cardiac pacemakers or implantable defibrillators, and pregnant women were excluded. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were 97%, 97%, 97%, and 97%, respectively, for method 1; 90%, 100%, 100%, and 91%, respectively, for method 2; and 100%, 94%, 94%, and 100%, respectively, for method 3. The sensitivity, specificity, PPV, and NPV for both methods ranged between 90% and 100%, indicating that the Heart Spectrum Blood Pressure Monitor can be effectively applied for AF detection. PMID:29902218
Printed soft-electronics for remote body monitoring
NASA Astrophysics Data System (ADS)
Mantysalo, Matti; Vuorinen, Tiina; Jeihani, Vala; Vehkaoja, Antti
2017-08-01
Wearable electronics has emerged into the consumer markets over the past few years. Wrist worn and textile integrated devices are the most common apparatuses for unobtrusive monitoring in sports and wellness sectors. Disposable patches and bandages, however, represent the new era of wearable electronics. Soft and stretchable electronics is the enabling technology of this paradigm shift. It can conform to temporary transfer tattoo and deform with the skin without detachment or fracture. In this paper, we focus on screen-printed soft-electronics for remote body monitoring. We will present a fabrication process of a skin conformable electrode bandage designed for long-term outpatient electrocardiography (ECG) monitoring. The soft bandage is designed to be attached to the patient chest and miniaturized data collection device is connected to the bandage via Micro-USB connector. The fabricated bandage is tested in short exercise as well as continued long-term (72 hours) monitoring during normal daily activities. The attained quality of the measured ECG signals is fully satisfactory for rhythm-based cardiac analysis also during moderate-intensity exercise. After pre-processing, the signals could be used also for more profound morphological analysis of ECG wave shapes.
Hollander, J E; Delagi, R; Sciammarella, J; Viccellio, P; Ortiz, J; Henry, M C
1995-04-01
To evaluate the need for on-line telemetry control in an all-volunteer, predominantly advanced emergency medical technician (A-EMT) ambulance system. Emergency medical service (EMS) advanced life support (ALS) providers were asked to transmit the ECG rhythms of monitored patients over a six-month period in 1993. The ECG rhythm interpretations of volunteer EMS personnel were compared with those of the on-line medical control physician. All discordant readings were reviewed by a panel of physicians to decide whether the misdiagnosis would have resulted in treatment aberrations had transmission been unavailable. Patients were monitored and rhythms were transmitted in 1,825 cases. 1,642 of 1,825 rhythms were correctly interpreted by the EMS providers (90%; 95% CI 89-91%). The accuracy of the EMS providers was dependent on the patient's rhythm (chi-square, p < 0.00001), the chief complaint (chi-square, p = 0.0001), and the provider's level of training (chi-square, p = 0.02). Correct ECG rhythm interpretations were more common when the out-of-hospital interpretation was sinus rhythm (95%), ventricular fibrillation (87%), paced rhythm (94%), or agonal rhythm (96%). The EMS providers were frequently incorrect when the out-of-hospital rhythm interpretation was atrial fibrillation/flutter (71%), supraventricular tachycardia (46%), ventricular tachycardia (59%), or atrioventricular block (50%). Of the 183 discordant cases, 124 (68%) involved missing a diagnosis of, or incorrectly diagnosing, atrial fibrillation/flutter. Review of the discordant readings identified 11 cases that could have resulted in treatment errors had the rhythms not been transmitted, one of which might have resulted in an adverse outcome. In this all-volunteer, predominantly A-EMT ALS system, patients with a field interpretation of a sinus rhythm do not require ECG rhythm transmission. Field interpretations of atrial fibrillation/flutter, supraventricular tachycardia, ventricular tachycardia, and atrioventricular blocks are frequently incorrect and should continue to be transmitted.
Mild-to-moderate exercise is often used to stress the cardiovascular (CV) system of patients while monitoring them for electrocardiogram (ECG) abnormalities that may indicate underlying CV disease. We previously demonstrated that dobutamine, which increases heart rate (HR) and co...
A miniature on-chip multi-functional ECG signal processor with 30 µW ultra-low power consumption.
Liu, Xin; Zheng, Yuan Jin; Phyu, Myint Wai; Zhao, Bin; Je, Minkyu; Yuan, Xiao Jun
2010-01-01
In this paper, a miniature low-power Electrocardiogram (ECG) signal processing application specific integrated circuit (ASIC) chip is proposed. This chip provides multiple critical functions for ECG analysis using a systematic wavelet transform algorithm and a novel SRAM-based ASIC architecture, while achieves low cost and high performance. Using 0.18 µm CMOS technology and 1 V power supply, this ASIC chip consumes only 29 µW and occupies an area of 3 mm(2). This on-chip ECG processor is highly suitable for reliable real-time cardiac status monitoring applications.
Fetal ECG extraction using independent component analysis by Jade approach
NASA Astrophysics Data System (ADS)
Giraldo-Guzmán, Jader; Contreras-Ortiz, Sonia H.; Lasprilla, Gloria Isabel Bautista; Kotas, Marian
2017-11-01
Fetal ECG monitoring is a useful method to assess the fetus health and detect abnormal conditions. In this paper we propose an approach to extract fetal ECG from abdomen and chest signals using independent component analysis based on the joint approximate diagonalization of eigenmatrices approach. The JADE approach avoids redundancy, what reduces matrix dimension and computational costs. Signals were filtered with a high pass filter to eliminate low frequency noise. Several levels of decomposition were tested until the fetal ECG was recognized in one of the separated sources output. The proposed method shows fast and good performance.
Design of a cardiac monitor in terms of parameters of QRS complex.
Chen, Zhen-cheng; Ni, Li-li; Su, Ke-ping; Wang, Hong-yan; Jiang, Da-zong
2002-08-01
Objective. To design a portable cardiac monitor system based on the available ordinary ECG machine and works on the basis of QRS parameters. Method. The 80196 single chip microcomputer was used as the central microprocessor and real time electrocardiac signal was collected and analyzed [correction of analysized] in the system. Result. Apart from the performance of an ordinary monitor, this machine possesses also the following functions: arrhythmia analysis, HRV analysis, alarm, freeze, and record of automatic papering. Convenient in carrying, the system is powered by AC or DC sources. Stability, low power and low cost are emphasized in the hardware design; and modularization method is applied in software design. Conclusion. Popular in usage and low cost made the portable monitor system suitable for use under simple conditions.
Her, Keun; Ahn, Chi Bum; Park, Sung Min; Choi, Seong Wook
2015-03-21
Patients who develop critical arrhythmia during left ventricular assist device (LVAD) perfusion have a low survival rate. For diagnosis of unexpected heart abnormalities, new heart-monitoring methods are required for patients supported by LVAD perfusion. Ventricular electrocardiography using electrodes implanted in the ventricle to detect heart contractions is unsuitable if the heart is abnormal. Left ventricular impedance (LVI) is useful for monitoring heart movement but does not show abnormal action potential in the heart muscle. To detect detailed abnormal heart conditions, we obtained ventricular electrocardiograms (v-ECGs) and LVI simultaneously in porcine models connected to LVADs. In the porcine models, electrodes were set on the heart apex and ascending aorta for real-time measurements of v-ECGs and LVI. As the carrier current frequency of the LVI was adjusted to 30 kHz, it was easily derived from the original v-ECG signal by using a high-pass filter (cutoff: 10 kHz). In addition, v-ECGs with a frequency band of 0.1 - 120 Hz were easily derived using a low-pass filter. Simultaneous v-ECG and LVI data were compared to detect heart volume changes during the Q-T period when the heart contracted. A new real-time algorithm for comparison of v-ECGs and LVI determined whether the porcine heartbeats were normal or abnormal. Several abnormal heartbeats were detected using the LVADs operating in asynchronous mode, most of which were premature ventricle contractions (PVCs). To evaluate the accuracy of the new method, the results obtained were compared to normal ECG data and cardiac output measured simultaneously using commercial devices. The new method provided more accurate detection of abnormal heart movements. This method can be used for various heart diseases, even those in which the cardiac output is heavily affected by LVAD operation.
Veldhoen, Simon; Behzadi, Cyrus; Derlin, Thorsten; Rybczinsky, Meike; von Kodolitsch, Yskert; Sheikhzadeh, Sara; Henes, Frank Oliver; Bley, Thorsten Alexander; Adam, Gerhard; Bannas, Peter
2015-03-01
To assess whether ECG-gated non-contrast 2D steady-state free precession (SSFP) imaging allows for exact monitoring of aortic diameters in Marfan syndrome (MFS) patients using non-ECG-gated contrast-enhanced 3D magnetic resonance angiography (CE-MRA) and echocardiography for intraindividual comparison. Non-ECG-gated CE-MRA and ECG-gated non-contrast SSFP at 1.5 T were prospectively performed in 50 patients. Two readers measured aortic diameters on para-sagittal images identically aligned with the aortic arch at the sinuses of Valsalva, sinotubular junction, ascending/descending aorta and aortic arch. Image quality was assessed on a three-point scale. Aortic root diameters acquired by echocardiography were used as reference. Intra- and interobserver variances were smaller for SSFP at the sinuses of Valsalva (p = 0.002; p = 0.002) and sinotubular junction (p = 0.014; p = 0.043). Image quality was better in SSFP than in CE-MRA at the sinuses of Valsalva (p < 0.0001), sinotubular junction (p < 0.0001) and ascending aorta (p = 0.02). CE-MRA yielded higher diameters than SSFP at the sinuses of Valsalva (mean bias, 2.5 mm; p < 0.0001), and comparison with echocardiography confirmed a higher bias for CE-MRA (7.2 ± 3.4 mm vs. SSFP, 4.7 ± 2.6 mm). ECG-gated non-contrast 2D SSFP imaging provides superior image quality with higher validity compared to non-ECG-gated contrast-enhanced 3D imaging. Since CE-MRA requires contrast agents with potential adverse effects, non-contrast SSFP imaging is an appropriate alternative for exact and riskless aortic monitoring of MFS patients.
Tobón, Diana P.; Jayaraman, Srinivasan
2017-01-01
The last few years has seen a proliferation of wearable electrocardiogram (ECG) devices in the market with applications in fitness tracking, patient monitoring, athletic performance assessment, stress and fatigue detection, and biometrics, to name a few. The majority of these applications rely on the computation of the heart rate (HR) and the so-called heart rate variability (HRV) index via time-, frequency-, or non-linear-domain approaches. Wearable/portable devices, however, are highly susceptible to artifacts, particularly those resultant from movement. These artifacts can hamper HR/HRV measurement, thus pose a serious threat to cardiac monitoring applications. While current solutions rely on ECG enhancement as a pre-processing step prior to HR/HRV calculation, existing artifact removal algorithms still perform poorly under extremely noisy scenarios. To overcome this limitation, we take an alternate approach and propose the use of a spectro-temporal ECG signal representation that we show separates cardiac components from artifacts. More specifically, by quantifying the rate-of-change of ECG spectral components over time, we show that heart rate estimates can be reliably obtained even in extremely noisy signals, thus bypassing the need for ECG enhancement. With such HR measurements in hands, we then propose a new noise-robust HRV index termed MD-HRV (modulation-domain HRV) computed as the standard deviation of the obtained HR values. Experiments with synthetic ECG signals corrupted at various different signal-to-noise levels, as well as recorded noisy signals show the proposed measure outperforming several HRV benchmark parameters computed post wavelet-based enhancement. These findings suggest that the proposed HR measures and derived MD-HRV metric are well-suited for ambulant cardiac monitoring applications, particularly those involving intense movement (e.g., elite athletic training). PMID:29255653
Evaluation of heart rate variability indices using a real-time handheld remote ECG monitor.
Singh, Swaroop S; Carlson, Barbara W; Hsiao, Henry S
2007-12-01
Studies on retrospective electrocardiogram (ECG) recordings of patients during cardiac arrest have shown significant changes in heart rate variability (HRV) indices prior to the onset of cardiac arrhythmia. The early detection of these changes in HRV indices increases the chances for a successful medical intervention by increasing the response time window. A portable, handheld remote ECG monitor designed in this research detects the QRS complex and calculates short-term HRV indices in real-time. The QRS detection of the ECG recordings of subjects from the MIT-Arrhythmia database yielded a mean sensitivity of 99.34% and a specificity of 99.31%. ECG recordings from normal subjects and subjects with congestive heart failure were used to identify the differences in HRV indices. An increase in heart rate, high-frequency spectral power (HFP), total spectral power, the ratio of HFP to low-frequency spectral power (LFP), and a decrease in root mean square sum of RR differences were observed. No difference was found on comparison of the standard deviation of normal to normal interval between adjacent R-waves, LFP, and very-low-frequency spectral power. Based on these, additional analytical calculations could be made to provide early warnings of impending cardiac conditions.
Monitoring cardiac motion in CT using a continuous wave radar embedded in the patient table.
Pfanner, Florian; Allmendinger, Thomas; Bohn, Birgit; Flohr, Thomas; Kachelrieß, Marc
2014-08-01
To avoid motion artifacts, medical imaging devices are often synchronized with the patient's cardiac motion. Today, the ECG is used to determine the heartbeat and therewith trigger the imaging device. However, the ECG requires additional effort to prepare the patient, e.g., mount and wire electrodes and it is not able to determine the motion of the heart. An interesting alternative to assess the cardiac motion is continuous wave radar. The aim of this work is to evaluate such a radar system focusing on measuring the cardiac motion. A radar system operating in the 860 MHz band is used. In the intended application of the radar system, the antennas are located close to the patient's body, for example, inside the table of a CT system. The radar waves propagate into the patient's body and are reflected at tissue boundaries, for example, at the borderline between muscle and adipose tissue, or at the boundaries of organs. Here, the authors focus on the detection of cardiac motion. The radar system consists of hardware as well as of dedicated signal processing software to extract the desired information from the radar signals. The radar system hardware and the signal processing algorithms were tested with data from ten volunteers. As a reference, the ECG was recorded simultaneously with the radar measurements. Additionally, ultrasound measurements are performed and compared with the motion information from the radar data. According to the authors' measurements on volunteers (test persons), the heartbeat and heart rate can be detected well using the proposed radar system. The authors were further able to extract the amplitude and phase of the heart motion itself from the radar data. This was confirmed by the ultrasound measurements. However, this motion assessment is dependent on the antenna position and it remains unclear which antenna sees the motion that is the most relevant to CT imaging. A continuous wave radar operating in the near field of the antennas can be used to determine the heartbeat and the cardiac motion of humans without special patient preparation. The authors' radar system is very close to the patient because it is embedded in the patient table, but it has no direct contact to the patient or to the patient skin (as it would be necessary to acquire the ECG of the patient). Therefore, radar motion monitoring does not require special patient preparation. In contrast to other methods used today, this is a significant improvement. The authors' radar system may allow to trigger a CT scan in dependency of the cardiac phase, without requiring an ECG, and it allows to determine quiet, and thus favorable, heart phases prior to the scan start.
Panoramic ECG display versus conventional ECG: ischaemia detection by critical care nurses.
Wilson, Nick; Hassani, Aimen; Gibson, Vanessa; Lightfoot, Timothy; Zizzo, Claudio
2012-01-01
To compare accuracy and certainty of diagnosis of cardiac ischaemia using the Panoramic ECG display tool plus conventional 12-lead electrocardiogram (ECG) versus 12-lead ECG alone by UK critical care nurses who were members of the British Association of Critical Care Nurses (BACCN). Critically ill patients are prone to myocardial ischaemia. Symptoms may be masked by sedation or analgesia, and ECG changes may be the only sign. Critical care nurses have an essential role in detecting ECG changes promptly. Despite this, critical care nurses may lack expertise in interpreting ECGs and myocardial ischaemia often goes undetected by critical care staff. British Association of Critical Care Nurses (BACCN) members were invited to complete an online survey to evaluate the analysis of two sets of eight ECGs displayed alone and with the new display device. Data from 82 participants showed diagnostic accuracy improved from 67·1% reading ECG traces alone, to 96·0% reading ECG plus Panoramic ECG display tool (P < 0·01, significance level α = 0·05). Participants' diagnostic certainty score rose from 41·7% reading ECG alone to 66·8% reading ECG plus Panoramic ECG display tool (P < 0·01, α = 0·05). The Panoramic ECG display tool improves both accuracy and certainty of detecting ST segment changes among critical care nurses, when compared to conventional 12-lead ECG alone. This benefit was greatest with early ischaemic changes. Critical care nurses who are least confident in reading conventional ECGs benefit the most from the new display. Critical care nurses have an essential role in the monitoring of critically ill patients. However, nurses do not always have the expertise to detect subtle ischaemic ECG changes promptly. Introduction of the Panoramic ECG display tool into clinical practice could lead to patients receiving treatment for myocardial ischaemia sooner with the potential for reduction in morbidity and mortality. © 2012 The Authors. Nursing in Critical Care © 2012 British Association of Critical Care Nurses.
Estimation of Measurement Characteristics of Ultrasound Fetal Heart Rate Monitor
NASA Astrophysics Data System (ADS)
Noguchi, Yasuaki; Mamune, Hideyuki; Sugimoto, Suguru; Yoshida, Atsushi; Sasa, Hidenori; Kobayashi, Hisaaki; Kobayashi, Mitsunao
1995-05-01
Ultrasound fetal heart rate monitoring is very useful to determine the status of the fetus because it is noninvasive. In order to ensure the accuracy of the fetal heart rate (FHR) obtained from the ultrasound Doppler data, we measure the fetal electrocardiogram (ECG) directly and obtain the Doppler data simultaneously. The FHR differences of the Doppler data from the direct ECG data are concentrated at 0 bpm (beats per minute), and are practically symmetrical. The distribution is found to be very close to the Student's t distribution by the test of goodness of fit with the chi-square test. The spectral density of the FHR differences shows the white noise spectrum without any dominant peaks. Furthermore, the f-n (n>1) fluctuation is observed both with the ultrasound Doppler FHR and with the direct ECG FHR. Thus, it is confirmed that the FHR observation and observation of the f-n (n>1) fluctuation using the ultrasound Doppler FHR are as useful as the direct ECG.
IT-based diagnostic instrumentation systems for personalized healthcare services.
Chun, Honggu; Kang, Jaemin; Kim, Ki-Jung; Park, Kwang Suk; Kim, Hee Chan
2005-01-01
This paper describes recent research and development activities on the diagnostic instruments for personalized healthcare services in Seoul National University. Utilizing the state-of-the-art information technologies (IT), various diagnostic medical instruments have been integrated into a personal wearable device and a home telehealthcare system. We developed a wrist-worn integrated health monitoring device (WIHMD) which performs the measurements of non-invasive blood pressure (NIBP), pulse oximetry (SpO2), electrocardiogram (ECG), respiration rate, heart rate, and body surface temperature and the detection of falls to determine the onset of emergency situation. The WIHMD also analyzes the acquired bio-signals and transmits the resultant data to a healthcare service center through a commercial cellular phone. Two different kinds of IT-based blood glucometer have been developed using a cellular phone and PDA(personal digital assistant) as a main unit. A blood glucometer was also integrated within a wrist pressure measurement module which is interfaced with a cellular phone via Telecommunications Technology Association (TTA) standard in order to provide users with easiness in measuring and handling two important health parameters. Non-intrusive bio-signal measurement systems were developed for the ease of home use. One can measure his ECG on a bed while he is sleeping; measure his ECG, body temperature, bodyfat ratio and weight on a toilet seat; measure his ECG on a chair; and estimate the degree of activity by motion analysis using a camera. Another integrated diagnostic system for home telehealthcare services has been developed to include a 12 channels ECG, a pressure meter for NIBP, a blood glucometer, a bodyfat meter and a spirometer. It is an expert system to analyze the measured health data and based on the diagnostic result, the system provides an appropriate medical consultation. The measured data can be either stored on the system or transmitted to the central server through the internet. We have installed the developed systems on a model house for the performance evaluation and confirmed the possibility of the system as an effective tool for the personalized healthcare services.
[Implantable ECG recorder revealed the diagnosis in a baby with apparent life-threatening events].
Hoorntje, T M; Langerak, W; Blokland-Loggers, H E; Sreeram, N
1999-09-25
A 14-month-old boy went through episodes of cyanosis and brief loss of consciousness. Extensive investigations failed to lead to a diagnosis, until an implanted ECG recorder revealed ECG abnormalities suggestive of strangulation. Interviews with the father and mother showed that this was indeed the case. The diagnosis of 'Münchhausen by proxy' was made. Psychiatric assistance and home help were called in. The child recovered well. If there is a suspicion of arrhythmia as the cause of apparent life-threatening events, prolonged ECG recordings are necessary. In a clinical environment it is possible to make continuous ECG recordings during a limited period. An insertable recorder allows continuous ECG recordings during a syncopal event and can be used for prolonged monitoring. The patient presented is the youngest infant in the world in whom such a device has been implanted.
A Novel Approach to ECG Classification Based upon Two-Layered HMMs in Body Sensor Networks
Liang, Wei; Zhang, Yinlong; Tan, Jindong; Li, Yang
2014-01-01
This paper presents a novel approach to ECG signal filtering and classification. Unlike the traditional techniques which aim at collecting and processing the ECG signals with the patient being still, lying in bed in hospitals, our proposed algorithm is intentionally designed for monitoring and classifying the patient's ECG signals in the free-living environment. The patients are equipped with wearable ambulatory devices the whole day, which facilitates the real-time heart attack detection. In ECG preprocessing, an integral-coefficient-band-stop (ICBS) filter is applied, which omits time-consuming floating-point computations. In addition, two-layered Hidden Markov Models (HMMs) are applied to achieve ECG feature extraction and classification. The periodic ECG waveforms are segmented into ISO intervals, P subwave, QRS complex and T subwave respectively in the first HMM layer where expert-annotation assisted Baum-Welch algorithm is utilized in HMM modeling. Then the corresponding interval features are selected and applied to categorize the ECG into normal type or abnormal type (PVC, APC) in the second HMM layer. For verifying the effectiveness of our algorithm on abnormal signal detection, we have developed an ECG body sensor network (BSN) platform, whereby real-time ECG signals are collected, transmitted, displayed and the corresponding classification outcomes are deduced and shown on the BSN screen. PMID:24681668
L’investigation de la contusion myocardique pour la fracture sternale à l’urgence
Audette, Jean-Sébastien; Émond, Marcel; Scott, Hugh; Lortie, Gilles
2014-01-01
Résumé Objectif Décrire la pratique d’acquisition d’un électrocardiogramme (ECG) initial, d’ECG de contrôle ou d’un monitoring équivalent et du dosage des troponines chez les patients avec une fracture sternale évalués au département d’urgence ou par un médecin de première ligne. Type d’étude Étude rétrospective descriptive multicentrique. Contexte Deux centres académiques de traumatologie de la région de Québec au Canada. Participants 54 patients ayant subi une fracture sternale traumatique. Interventions Évaluation de l’acquisition d’ECG initial et à 6 heures post-traumatisme ou un monitoring équivalent ainsi que le dosage des troponines sanguines. Principaux paramètres à l’étude En ce qui concerne l’ECG, les critères de comparaison de qualité furent sélectionnés à partir d’opinions d’experts rapportées dans quatre études. L’utilisation d’un ECG initial et de contrôle 6 heures post-traumatisme ou d’un monitoring cardiaque de 6 heures représente la pratique recommandée par la plupart de ceux-ci pour le diagnostic de la contusion myocardique dans la fracture sternale. L’utilisation des troponines I sanguines, 4 à 8 heures suivant un traumatisme thoracique, a également été proposée par certains auteurs comme méthode de détection efficace des arythmies significatives secondaires à la contusion myocardique. Des analyses descriptives univariées et des tests de chi-carré furent effectués. Une valeur P < ,05 fut considérée significative. Résultats Trente-neuf (72 %) patients ont été évalués initialement avec un ECG, tandis que 18 (33 %) de ces patients ont eu une évaluation par ECG ou monitoring cardiaque après 6 heures à l’urgence. Seize patients (30 %) ont été évalués à l’aide du dosage des troponines I. Deux patients (4 %) ont présenté des anomalies électrocardiographiques et un seul patient (2 %) a présenté des troponines I élevées. Conclusion Les urgentologues doivent augmenter leur utilisation de l’ECG comme outil diagnostic initial et de contrôle pour les patients ayant subi une fracture sternale traumatique afin de détecter la contusion myocardique et l’arythmie. L’utilisation de la troponinémie, de concert avec l’ECG, est également suggérée dans cette population pour l’identification des patients à risque de complications secondaires à leur contusion myocardique.
Ubiquitous health monitoring system for multiple users using a ZigBee and WLAN dual-network.
Cha, Yong Dae; Yoon, Gilwon
2009-11-01
A ubiquitous health monitoring system for multiple users was developed based on a ZigBee and wireless local area network (WLAN) dual-network. A compact biosignal monitoring unit (BMU) for measuring electrocardiogram (ECG), photoplethysmogram (PPG), and temperature was also developed. A single 8-bit microcontroller operated the BMU including most of digital filtering and wireless communication. The BMU with its case was reduced to 55 x 35 x 15 mm and 33 g. In routine use, vital signs of 6 bytes/sec (heart rate, temperature, pulse transit time) per each user were transmitted through a ZigBee module even though all the real-time data were recorded in a secure digital memory of the BMU. In an emergency or when need arises, a channel of a particular user was switched to another ZigBee module, called the emergency module, that sent all ECG and PPG waveforms in real time. Each emergency ZigBee module handled up to a few users. Data from multiple users were wirelessly received by the ZigBee receiver modules in a controller called ZigBee-WLAN gateway, where the ZigBee modules were connected to a WLAN module. This WLAN module sent all data wirelessly to a monitoring center. Operating the dual modes of ZigBee/WLAN utilized an advantage of ZigBee by handling multiple users with minimum power consumption, and overcame the ZigBee limitation of low data rate. This dual-network system for LAN is economically competitive and reliable.
MURESAN, Lucian; PETCU, Ana; MURESAN, Crina; RINZIS, Mirela; GUSETU, Gabriel; POP, Dana; ZDRENGHEA, Dumitru; REDNIC, Simona
2017-01-01
Background: In patients with systemic sclerosis, NT-proBNP is a useful diagnostic marker for pulmonary hypertension and ventricular dysfunction, with important prognostic significance. The aim of this study was to assess the relationship between the NT-proBNP levels and the presence and severity of ventricular arrhythmias in patients with scleroderma. Methods: Forty consecutive patients with a diagnostic of systemic sclerosis according to the EULAR criteria admitted at the Rheumatology Clinic of Cluj-Napoca, Romania, from Jan 2014 to Apr 2014 were enrolled. Patients underwent a 12-lead ECG and a 24-hour Holter ECG monitoring for ventricular arrhythmias evaluation. Blood sample testing (including NT-proBNP level measurements), echocardiography, spirometry, chest X-ray and, when considered appropriate, high-resolution chest CT were performed. Results: Sixty percent of patients (n=24) had abnormal NT-proBNP serum levels (>125 pg/ml) and 10 patients had >100 PVC/24 h. There was a statistically significant correlation between the NT-proBNP levels and the total number of premature ventricular contractions (PVC) (r=0.445, P=0.006), total number of isolated PVC (r=0,493, P=0.002), total number of ventricular couplets (r=0.379, P=0.021) and the number of PVC morphologies (r=0.501, P=0.002). The presence of an NT-proBNP serum level >287 pg/ml had a sensitivity of 55% and a specificity of 93% in predicting the presence of complex ventricular arrhythmias on 24-hour Holter ECG monitoring. Conclusion: NT-proBNP levels could become a useful ventricular arrhythmia marker for assessing the arrhythmic risk in patients with systemic sclerosis. PMID:28845401
NASA Technical Reports Server (NTRS)
Steffen, Dale A. (Inventor); Sturm, Ronald E. (Inventor); Rinard, George A. (Inventor)
1981-01-01
A system is disclosed for monitoring vital physiological signs. Each of the system components utilizes a single hybrid circuit with each component having high accuracy without the necessity of repeated calibration. The system also has low power requirements, provides a digital display, and is of sufficiently small size to be incorporated into a hand-carried case for portable use. Components of the system may also provide independent outputs making the component useful, of itself, for monitoring one or more vital signs. The overall system preferably includes an ECG amplifier and cardiotachometer signal conditioner unit, an impedance pneumograph and respiration rate signal conditioner unit, a heart/breath rate processor unit, a temperature monitoring unit, a selector switch, a clock unit, and an LCD driver unit and associated LCDs, with the system being capable of being expanded as needed or desired, such as, for example, by addition of a systolic/diastolic blood pressure unit.
[Experience in the use of equipment for ECG system analysis in municipal polyclinics].
Bondarenko, A A
2006-01-01
Two electrocardiographs, an analog-digital electrocardiograph with preliminary analog filtering of signal and a smart cardiograph implemented as a PC-compatible device without preliminary analog filtering, are considered. Advantages and disadvantages of ECG systems based on artificial intelligence are discussed. ECG interpretation modes provided by the two electrocardiographs are considered. The reliability of automatic ECG interpretation is assessed. Problems of rational use of automated ECG processing systems are discussed.
Mild-to-moderate exercise is often used to stress the cardiovascular (CV) system of patients while monitoring them for electrocardiogram (ECG) abnormalities that may indicate underlying CV disease. We previously used dobutamine, which increases heart rate (HR) and contractility, ...
Rabinovich, S A; Razumova, S N; Vasil'ev, Yu L
The article presents the results of the cardiovascular changes assessment using electrocardiography (ECG) monitoring during local anesthesia in GP dentists. Selective ECG monitoring was carried out in 60 dentists aged 25-55 years (1 group - 25-34 y.o.; 2 group - 35-44 y.o.; 3 group - 45-55 y.o.) by means of portable «Valens» system. The study of stress index or the index of regulatory systems tension (IT) was conducted for 6 hours in the first day half within 1 working day. IT from 50 to 150 relative units was considered normal. In the first group IT peak was observed at the time of expectation of clinically relevant anesthesia in upper and lower jaw, while in the second and third groups it was associated with pain reaction in the course of treatment despite of clinical signs of anesthesia in the maxilla (IT=20±5.3 and 231±1.4, correspondingly) and mandible (IT=213±2.7 and 223±2.6, correspondingly). In all groups greater IT correlated more with mandible anesthesia events.
An Engineering Perspective of External Cardiac Loop Recorder: A Systematic Review
2016-01-01
External cardiac loop recorder (ELR) is a kind of ECG monitoring system that records cardiac activities of a subject continuously for a long time. When the heart palpitations are not the frequent and nonspecific character, it is difficult to diagnose the disease. In such a case, ELR is used for long-term monitoring of heart signal of the patient. But the cost of ELR is very high. Therefore, it is not prominently available in developing countries like India. Since the design of ELR includes the ECG electrodes, instrumentation amplifier, analog to digital converter, and signal processing unit, a comparative review of each part of the ELR is presented in this paper in order to design a cost effective, low power, and compact kind of ELR. This review will also give different choices available for selecting and designing each part of the ELR system. Finally, the review will suggest the better choice for designing a cost effective external cardiac loop recorder that helps to make it available even for rural people in India. PMID:27872843
Smart Vest: wearable multi-parameter remote physiological monitoring system.
Pandian, P S; Mohanavelu, K; Safeer, K P; Kotresh, T M; Shakunthala, D T; Gopal, Parvati; Padaki, V C
2008-05-01
The wearable physiological monitoring system is a washable shirt, which uses an array of sensors connected to a central processing unit with firmware for continuously monitoring physiological signals. The data collected can be correlated to produce an overall picture of the wearer's health. In this paper, we discuss the wearable physiological monitoring system called 'Smart Vest'. The Smart Vest consists of a comfortable to wear vest with sensors integrated for monitoring physiological parameters, wearable data acquisition and processing hardware and remote monitoring station. The wearable data acquisition system is designed using microcontroller and interfaced with wireless communication and global positioning system (GPS) modules. The physiological signals monitored are electrocardiogram (ECG), photoplethysmogram (PPG), body temperature, blood pressure, galvanic skin response (GSR) and heart rate. The acquired physiological signals are sampled at 250samples/s, digitized at 12-bit resolution and transmitted wireless to a remote physiological monitoring station along with the geo-location of the wearer. The paper describes a prototype Smart Vest system used for remote monitoring of physiological parameters and the clinical validation of the data are also presented.
A multi-sensor monitoring system of human physiology and daily activities.
Doherty, Sean T; Oh, Paul
2012-04-01
To present the design and pilot test results of a continuous multi-sensor monitoring system of real-world physiological conditions and daily life (activities, travel, exercise, and food consumption), culminating in a Web-based graphical decision-support interface. The system includes a set of wearable sensors wirelessly connected to a "smartphone" with a continuously running software application that compresses and transmits the data to a central server. Sensors include a Global Positioning System (GPS) receiver, electrocardiogram (ECG), three-axis accelerometer, and continuous blood glucose monitor. A food/medicine diary and prompted recall activity diary were also used. The pilot test involved 40 type 2 diabetic patients monitored over a 72-h period. All but three subjects were successfully monitored for the full study period. Smartphones proved to be an effective hub for managing multiple streams of data but required attention to data compression and battery consumption issues. ECG, accelerometer, and blood glucose devices performed adequately as long as subjects wore them. GPS tracking for a full day was feasible, although significant efforts are needed to impute missing data. Activity detection algorithms were successful in identifying activities and trip modes but could benefit by incorporating accelerometer data. The prompted recall diary was an effective tool for augmenting algorithm results, although subjects reported some difficulties with it. The food and medicine diary was completed fully, although end times and medicine dosages were occasionally missing. The unique combination of sensors holds promise for increasing accuracy and reducing burden associated with collecting individual-level activity and physiological data under real-world conditions, but significant data processing issues remain. Such data will provide new opportunities to explore the impacts of human geography and daily lifestyle on health at a fine spatial/temporal scale.
NASA Astrophysics Data System (ADS)
Hu, Gang; Zhang, Quan; Ivkovic, Vladimir; Strangman, Gary E.
2016-09-01
Ambulatory diffuse optical tomography (aDOT) is based on near-infrared spectroscopy (NIRS) and enables three-dimensional imaging of regional hemodynamics and oxygen consumption during a person's normal activities. Although NIRS has been previously used for muscle assessment, it has been notably limited in terms of the number of channels measured, the extent to which subjects can be ambulatory, and/or the ability to simultaneously acquire synchronized auxiliary data such as electromyography (EMG) or electrocardiography (ECG). We describe the development of a prototype aDOT system, called NINscan-M, capable of ambulatory tomographic imaging as well as simultaneous auxiliary multimodal physiological monitoring. Powered by four AA size batteries and weighing 577 g, the NINscan-M prototype can synchronously record 64-channel NIRS imaging data, eight channels of EMG, ECG, or other analog signals, plus force, acceleration, rotation, and temperature for 24+ h at up to 250 Hz. We describe the system's design, characterization, and performance characteristics. We also describe examples of isometric, cycle ergometer, and free-running ambulatory exercise to demonstrate tomographic imaging at 25 Hz. NINscan-M represents a multiuse tool for muscle physiology studies as well as clinical muscle assessment.
Video-based respiration monitoring with automatic region of interest detection.
Janssen, Rik; Wang, Wenjin; Moço, Andreia; de Haan, Gerard
2016-01-01
Vital signs monitoring is ubiquitous in clinical environments and emerging in home-based healthcare applications. Still, since current monitoring methods require uncomfortable sensors, respiration rate remains the least measured vital sign. In this paper, we propose a video-based respiration monitoring method that automatically detects a respiratory region of interest (RoI) and signal using a camera. Based on the observation that respiration induced chest/abdomen motion is an independent motion system in a video, our basic idea is to exploit the intrinsic properties of respiration to find the respiratory RoI and extract the respiratory signal via motion factorization. We created a benchmark dataset containing 148 video sequences obtained on adults under challenging conditions and also neonates in the neonatal intensive care unit (NICU). The measurements obtained by the proposed video respiration monitoring (VRM) method are not significantly different from the reference methods (guided breathing or contact-based ECG; p-value = 0.6), and explain more than 99% of the variance of the reference values with low limits of agreement (-2.67 to 2.81 bpm). VRM seems to provide a valid solution to ECG in confined motion scenarios, though precision may be reduced for neonates. More studies are needed to validate VRM under challenging recording conditions, including upper-body motion types.
Kohli, Kirpal; Liu, Jeff; Schellenberg, Devin; Karvat, Anand; Parameswaran, Ash; Grewal, Parvind; Thomas, Steven
2014-10-14
In radiotherapy, temporary translocations of the internal organs and tumor induced by respiratory and cardiac activities can undesirably lead to significantly lower radiation dose on the targeted tumor but more harmful radiation on surrounding healthy tissues. Respiratory and cardiac gated radiotherapy offers a potential solution for the treatment of tumors located in the upper thorax. The present study focuses on the design and development of simultaneous acquisition of respiratory and cardiac signal using electrical impedance technology for use in dual gated radiotherapy. An electronic circuitry was developed for monitoring the bio-impedance change due to respiratory and cardiac motions and extracting the cardiogenic ECG signal. The system was analyzed in terms of reliability of signal acquisition, time delay, and functionality in a high energy radiation environment. The resulting signal of the system developed was also compared with the output of the commercially available Real-time Position Management™ (RPM) system in both time and frequency domains. The results demonstrate that the bioimpedance-based method can potentially provide reliable tracking of respiratory and cardiac motion in humans, alternative to currently available methods. When compared with the RPM system, the impedance-based system developed in the present study shows similar output pattern but different sensitivities in monitoring different respiratory rates. The tracking of cardiac motion was more susceptible to interference from other sources than respiratory motion but also provided synchronous output compared with the ECG signal extracted. The proposed hardware-based implementation was observed to have a worst-case time delay of approximately 33 ms for respiratory monitoring and 45 ms for cardiac monitoring. No significant effect on the functionality of the system was observed when it was tested in a radiation environment with the electrode lead wires directly exposed to high-energy X-Rays. The developed system capable of rendering quality signals for tracking both respiratory and cardiac motions can potentially provide a solution for simultaneous dual-gated radiotherapy.
Efficient heart beat detection using embedded system electronics
NASA Astrophysics Data System (ADS)
Ramasamy, Mouli; Oh, Sechang; Varadan, Vijay K.
2014-04-01
The present day bio-technical field concentrates on developing various types of innovative ambulatory and wearable devices to monitor several bio-physical, physio-pathological, bio-electrical and bio-potential factors to assess a human body's health condition without intruding quotidian activities. One of the most important aspects of this evolving technology is monitoring heart beat rate and electrocardiogram (ECG) from which many other subsidiary results can be derived. Conventionally, the devices and systems consumes a lot of power since the acquired signals are always processed on the receiver end. Because of this back end processing, the unprocessed raw data is transmitted resulting in usage of more power, memory and processing time. This paper proposes an innovative technique where the acquired signals are processed by a microcontroller in the front end of the module and just the processed signal is then transmitted wirelessly to the display unit. Therefore, power consumption is considerably reduced and clearer data analysis is performed within the module. This also avoids the need for the user to be educated about usage of the device and signal/system analysis, since only the number of heart beats will displayed at the user end. Additionally, the proposed concept also eradicates the other disadvantages like obtrusiveness, high power consumption and size. To demonstrate the above said factors, a commercial controller board was used to extend the monitoring method by using the saved ECG data from a computer.
López, Débora N; Galante, Micaela; Alvarez, Estela M; Risso, Patricia H; Boeris, Valeria
2017-10-01
Model systems formed by sodium caseinate (NaCAS) and espina corona gum (ECG) were studied. There was no evidence of attractive interactions between NaCAS and ECG macromolecules. Aqueous mixtures of NaCAS and ECG phase-separate segregatively over a wide range of concentrations. According to the images obtained by confocal laser scanning microscopy, NaCAS particles form larger protein aggregates when ECG is present in the system. An increase in the hydrodynamic diameter of NaCAS particles, as a result of ECG addition, was also observed by light scattering in diluted systems. A depletion-flocculation phenomenon, in which ECG is excluded from NaCAS surface, is proposed to occur in the concentrated mixed systems, resulting in NaCAS aggregation. ECG raises the viscosity of NaCAS dispersions without affecting the Newtonian flow behaviour of NaCAS. These results contribute to improve the knowledge of a barely-studied hydrocolloid which may be useful in the development of innovative food systems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Digital Signal Processing Based Biotelemetry Receivers
NASA Technical Reports Server (NTRS)
Singh, Avtar; Hines, John; Somps, Chris
1997-01-01
This is an attempt to develop a biotelemetry receiver using digital signal processing technology and techniques. The receiver developed in this work is based on recovering signals that have been encoded using either Pulse Position Modulation (PPM) or Pulse Code Modulation (PCM) technique. A prototype has been developed using state-of-the-art digital signal processing technology. A Printed Circuit Board (PCB) is being developed based on the technique and technology described here. This board is intended to be used in the UCSF Fetal Monitoring system developed at NASA. The board is capable of handling a variety of PPM and PCM signals encoding signals such as ECG, temperature, and pressure. A signal processing program has also been developed to analyze the received ECG signal to determine heart rate. This system provides a base for using digital signal processing in biotelemetry receivers and other similar applications.
A novel algorithm for Bluetooth ECG.
Pandya, Utpal T; Desai, Uday B
2012-11-01
In wireless transmission of ECG, data latency will be significant when battery power level and data transmission distance are not maintained. In applications like home monitoring or personalized care, to overcome the joint effect of previous issues of wireless transmission and other ECG measurement noises, a novel filtering strategy is required. Here, a novel algorithm, identified as peak rejection adaptive sampling modified moving average (PRASMMA) algorithm for wireless ECG is introduced. This algorithm first removes error in bit pattern of received data if occurred in wireless transmission and then removes baseline drift. Afterward, a modified moving average is implemented except in the region of each QRS complexes. The algorithm also sets its filtering parameters according to different sampling rate selected for acquisition of signals. To demonstrate the work, a prototyped Bluetooth-based ECG module is used to capture ECG with different sampling rate and in different position of patient. This module transmits ECG wirelessly to Bluetooth-enabled devices where the PRASMMA algorithm is applied on captured ECG. The performance of PRASMMA algorithm is compared with moving average and S-Golay algorithms visually as well as numerically. The results show that the PRASMMA algorithm can significantly improve the ECG reconstruction by efficiently removing the noise and its use can be extended to any parameters where peaks are importance for diagnostic purpose.
NASA Astrophysics Data System (ADS)
Agung, Mochammad Anugrah; Basari
2017-02-01
Electrocardiogram (ECG) devices measure electrical activity of the heart muscle to determine heart conditions. ECG signal quality is the key factor in determining the diseases of the heart. This paper presents the design of 3-lead acquistion on single channel wireless ECG device developed on AD8232 chip platform using microcontroller. To make the system different from others, monopole antenna 2.4 GHz is used in order to send and receive ECG signal. The results show that the system still can receive ECG signal up to 15 meters by line of sight (LOS) condition. The shape of ECG signals is precisely similar with the expected signal, although some delays occur between two consecutive pulses. For further step, the system will be applied with on-body antenna in order to investigate body to body communication that will give variation in connectivity from the others.
Presetting ECG electrodes for earlier heart rate detection in the delivery room.
Gulati, Rashmi; Zayek, Michael; Eyal, Fabien
2018-07-01
To determine whether heart rate (HR) could be detected earlier than by pulse oximeter (POX), using a novel method of application of electrocardiogram (ECG) electrodes during neonatal resuscitation in the delivery room. ECG electrodes were set before delivery to be applied to the back of infants' thorax. Time to detect HR was recorded as soon as a numerical HR along with a recognizable and persistent QRS complex was observed on ECG monitor (HRECG) and a plethysmographic waveform was seen on POX monitor (HRPOX). Out of 334 infants, 49 were <31 weeks of gestational age. Overall, the median (interquartile range, IQR) time to detect HRECG was significantly shorter [29 (5, 60) seconds] than time by POX [60 (45,120) seconds], (p < 0.001). Similarly, in <31-week infants, the median (IQR) time to detect HRECG was 10 (2, 40) seconds compared to 60 (30,120) seconds by POX, (p < 0.001). Failure to have HR detected by 1 minute occurred in 30%, 54% and 20% of infants by ECG, POX and either of the devices, respectively. In the delivery room, electrodes applied by the study method are more effective than pulse oximetry in providing the neonatal team with timely HR information that is necessary for proper resuscitative actions. Published by Elsevier B.V.
Castrillón, Reinel; Pérez, Jairo J; Andrade-Caicedo, Henry
2018-04-02
Wearable textile electrodes for the detection of biopotentials are a promising tool for the monitoring and early diagnosis of chronic diseases. We present a comparative study of the electrical characteristics of four textile electrodes manufactured from common fabrics treated with a conductive polymer, a commercial fabric, and disposable Ag/AgCl electrodes. These characteristics will allow identifying the performance of the materials when used as ECG electrodes. The electrodes were subjected to different electrical tests, and complemented with conductivity calculations and microscopic images to determine their feasibility in the detection of ECG signals. We evaluated four electrical characteristics: contact impedance, electrode polarization, noise, and long-term performance. We analyzed PEDOT:PSS treated fabrics based on cotton, cotton-polyester, lycra and polyester; also a commercial fabric made of silver-plated nylon Shielde® Med-Tex P130, and commercial Ag/AgCl electrodes. We calculated conductivity from the surface resistance and, analyzed their surface at a microscopic level. Rwizard was used in the statistical analysis. The results showed that textile electrodes treated with PEDOT:PSS are suitable for the detection of ECG signals. The error detecting features of the ECG signal was lower than 2% and the electrodes kept working properly after 36 h of continuous use. Even though the contact impedance and the polarization level in textile electrodes were greater than in commercial electrodes, these parameters did not affect the acquisition of the ECG signals. Fabrics conductivity calculations were consistent to the contact impedance.
Design intelligent wheelchair with ECG measurement and wireless transmission function.
Chou, Hsi-Chiang; Wang, Yi-Ming; Chang, Huai-Yuan
2015-01-01
The phenomenon of aging populations has produced widespread health awareness and magnified the need for improved medical quality and technologies. Statistics show that ischemic heart disease is the leading cause of death for older people and people with reduced mobility; therefore, wheelchairs have become their primary means of transport. Hence, an arrhythmia-detecting smart wheelchair was proposed in this study to provide real-time electrocardiography (ECG)-monitoring to patients with heart disease and reduced mobility. A self-developed, handheld ECG-sensing instrument was integrated with a wheelchair and a lab-written, arrhythmia-detecting program. The measured ECG data were transmitted through a Wi-Fi module and analyzed and diagnosed using the human-machine interface.
NASA Technical Reports Server (NTRS)
Schlegel, Todd T. (Inventor); Arenare, Brian (Inventor)
2008-01-01
Cardiac electrical data are received from a patient, manipulated to determine various useful aspects of the ECG signal, and displayed and stored in a useful form using a computer. The computer monitor displays various useful information, and in particular graphically displays various permutations of reduced amplitude zones and kurtosis that increase the rapidity and accuracy of cardiac diagnoses. New criteria for reduced amplitude zones are defined that enhance the sensitivity and specificity for detecting cardiac abnormalities.
ECG Identification System Using Neural Network with Global and Local Features
ERIC Educational Resources Information Center
Tseng, Kuo-Kun; Lee, Dachao; Chen, Charles
2016-01-01
This paper proposes a human identification system via extracted electrocardiogram (ECG) signals. Two hierarchical classification structures based on global shape feature and local statistical feature is used to extract ECG signals. Global shape feature represents the outline information of ECG signals and local statistical feature extracts the…
Validation of Biofeedback Wearables for Photoplethysmographic Heart Rate Tracking
Jo, Edward; Lewis, Kiana; Directo, Dean; Kim, Michael J.; Dolezal, Brett A.
2016-01-01
The purpose of this study was to examine the validity of HR measurements by two commercial-use activity trackers in comparison to ECG. Twenty-four healthy participants underwent the same 77-minute protocol during a single visit. Each participant completed an initial rest period of 15 minutes followed by 5 minute periods of each of the following activities: 60W and 120W cycling, walking, jogging, running, resisted arm raises, resisted lunges, and isometric plank. In between each exercise task was a 5-minute rest period. Each subject wore a Basis Peak (BPk) on one wrist and a Fitbit Charge HR (FB) on the opposite wrist. Criterion measurement of HR was administered by 12-lead ECG. Time synced data from each device and ECG were concurrently and electronically acquired throughout the entire 77-minute protocol. When examining data in aggregate, there was a strong correlation between BPk and ECG for HR (r = 0.92, p < 0.001) with a mean bias of -2.5 bpm (95% LoA 19.3, -24.4). The FB demonstrated a moderately strong correlation with ECG for HR (r = 0.83, p < 0.001) with an average mean bias of -8.8 bpm (95% LoA 24.2, -41.8). During physical efforts eliciting ECG HR > 116 bpm, the BPk demonstrated an r = 0.77 and mean bias = -4.9 bpm (95% LoA 21.3, -31.0) while the FB demonstrated an r = 0.58 and mean bias = -12.7 bpm (95% LoA 28.6, -54.0). The BPk satisfied validity criteria for HR monitors, however showed a marginal decline in accuracy with increasing physical effort (ECG HR > 116 bpm). The FB failed to satisfy validity criteria and demonstrated a substantial decrease in accuracy during higher exercise intensities. Key points Modern day wearable multi-sensor activity trackers incorporate reflective photoplethymography (PPG) for heart rate detection and monitoring at the dorsal wrist. This study examined the validity of two PPG-based activity trackers, the Basis Peak and Fitbit Charge HR. The Basis Peak performed with accuracy compared with ECG and results substantiate validation of heart rate measurements. There was a slight decrease in performance during higher levels of physical exertion. The Fitbit Charge HR performed with poor accuracy compared with ECG especially during higher physical exertion and specific exercise tasks. The Fitbit Charge HR was not validated for heart rate monitoring, although better accuracy was observed during resting or recovery conditions. PMID:27803634
Yang, Shiming; Menne, Ashley; Hu, Peter; Stansbury, Lynn; Gao, Cheng; Dorsey, Nicolas; Chiu, William; Shackelford, Stacy; Mackenzie, Colin
2017-08-01
Respiratory rate (RR) is important in many patient care settings; however, direct observation of RR is cumbersome and often inaccurate, and electrocardiogram-derived RR (RR ECG ) is unreliable. We asked how data derived from the first 15 min of RR recording after trauma center admission using a novel acoustic sensor (RR a ) would compare to RR ECG and to end-tidal carbon dioxide-based RR ([Formula: see text]) from intubated patients, the "gold standard" in predicting life-saving interventions in unstable trauma patients. In a convenience sample subset of trauma patients admitted to our Level 1 trauma center, enrolled in the ONPOINT study, and monitored with RR ECG , some of whom also had [Formula: see text] data, we collected RRa using an adhesive sensor with an integrated acoustic transducer (Masimo RRa™). Using Bland-Altman analysis of area under the receiver operating characteristic (AUROC) curves, we compared the first 15 min of continuous RRa and RR ECG to [Formula: see text] and assessed the performance of these three parameters compared to the Revised Trauma Score (RTS) in predicting blood transfusion 3, 6, and 12 h after admission. Of the 1200 patients enrolled in ONPOINT from December 2011 to May 2013, 1191 had RR ECG data recorded in the first 15 min, 358 had acoustic monitoring, and 14 of the latter also had [Formula: see text]. The three groups did not differ demographically or in mechanism of injury. RR a showed less bias (0.8 vs. 6.9) and better agreement than RR ECG when compared to [Formula: see text]. At [Formula: see text] 10-29 breaths per minute, RR a was more likely to be the same as [Formula: see text] and assign the same RTS. In predicting transfusion, features derived from RR a and RR ECG gave AUROCs 0.59-0.66 but with true positive rate 0.70-0.89. RR a monitoring is a non-invasive option to glean valid RR data to assist clinical decision making and could contribute to prediction models in non-intubated unstable trauma patients.
Zhang, Jun; Gu, Zhenghui; Yu, Zhu Liang; Li, Yuanqing
2015-03-01
Low energy consumption is crucial for body area networks (BANs). In BAN-enabled ECG monitoring, the continuous monitoring entails the need of the sensor nodes to transmit a huge data to the sink node, which leads to excessive energy consumption. To reduce airtime over energy-hungry wireless links, this paper presents an energy-efficient compressed sensing (CS)-based approach for on-node ECG compression. At first, an algorithm called minimal mutual coherence pursuit is proposed to construct sparse binary measurement matrices, which can be used to encode the ECG signals with superior performance and extremely low complexity. Second, in order to minimize the data rate required for faithful reconstruction, a weighted ℓ1 minimization model is derived by exploring the multisource prior knowledge in wavelet domain. Experimental results on MIT-BIH arrhythmia database reveals that the proposed approach can obtain higher compression ratio than the state-of-the-art CS-based methods. Together with its low encoding complexity, our approach can achieve significant energy saving in both encoding process and wireless transmission.
Graphite Based Electrode for ECG Monitoring: Evaluation under Freshwater and Saltwater Conditions.
Thap, Tharoeun; Yoon, Kwon-Ha; Lee, Jinseok
2016-04-15
We proposed new electrodes that are applicable for electrocardiogram (ECG) monitoring under freshwater- and saltwater-immersion conditions. Our proposed electrodes are made of graphite pencil lead (GPL), a general-purpose writing pencil. We have fabricated two types of electrode: a pencil lead solid type (PLS) electrode and a pencil lead powder type (PLP) electrode. In order to assess the qualities of the PLS and PLP electrodes, we compared their performance with that of a commercial Ag/AgCl electrode, under a total of seven different conditions: dry, freshwater immersion with/without movement, post-freshwater wet condition, saltwater immersion with/without movement, and post-saltwater wet condition. In both dry and post-freshwater wet conditions, all ECG-recorded PQRST waves were clearly discernible, with all types of electrodes, Ag/AgCl, PLS, and PLP. On the other hand, under the freshwater- and saltwater-immersion conditions with/without movement, as well as post-saltwater wet conditions, we found that the proposed PLS and PLP electrodes provided better ECG waveform quality, with significant statistical differences compared with the quality provided by Ag/AgCl electrodes.
Gong, Xuehao; Mao, Xuhua; Chen, Yan; Huang, Leidan; Liu, Weizong; Huang, Xian; Tan, Zheng; Wang, Xianming; Wu, Wanqing; Chen, Qian; Li, Rong
2016-01-01
In this study, we examine the potential of heart rate variability (HRV) as an efficient tool for predicting the onset of epilepsy in children. We totally collected 53 seizures EEG and ECG data using Video - EEG - ECG monitoring system. We then separated the ECG data into three segments: ten-minute before onset of each seizure, five-minute before onset of each seizure, and five-minute from the onset of each seizure. After the HRV parameters in all segments were calculated, we compared the differences between pre-ictal period and ictal period. We found that the values of meanHR, LF and LF/HF were greater in onset period. And the values of meanRR and the HF were less in ictal period. And it presented the similar changes when seizures occurred in the daytime and seizures occurred in the nighttime. In brief, we found that the sympathetic nervous system was under a more active status during onset period. We speculated that the HRV parameters such as the LF, HF or LF/HF could have potential to predict the seizures in children with epilepsy.
Chang, Chia-Lin; Chang, Chih-Wei; Huang, Hong-Yi; Hsu, Chen-Ming; Huang, Chia-Hsuan; Chiou, Jin-Chern; Luo, Ching-Hsing
2010-01-01
This work describes a power-efficient bio-potential acquisition device for long-term healthcare applications that is implemented using novel microelectromechanical dry electrodes (MDE) and a low power bio-potential processing chip. Using micromachining technology, an attempt is also made to enhance the sensing reliability and stability by fabricating a diamond-shaped MDE (DS-MDE) that has a satisfactory self-stability capability and superior electric conductivity when attached onto skin without any extra skin tissue injury technology. To acquire differential bio-potentials such as ECG signals, the proposed processing chip fabricated in a standard CMOS process has a high common mode rejection ratio (C.M.R.R.) differential amplifier and a 12-bit analog-to-digital converter (ADC). Use of the proposed system and integrate simple peripheral commercial devices can obtain the ECG signal efficiently without additional skin tissue injury and ensure continuous monitoring more than 70 hours with a 400 mAh battery. PMID:22399907
Chang, Chia-Lin; Chang, Chih-Wei; Huang, Hong-Yi; Hsu, Chen-Ming; Huang, Chia-Hsuan; Chiou, Jin-Chern; Luo, Ching-Hsing
2010-01-01
This work describes a power-efficient bio-potential acquisition device for long-term healthcare applications that is implemented using novel microelectromechanical dry electrodes (MDE) and a low power bio-potential processing chip. Using micromachining technology, an attempt is also made to enhance the sensing reliability and stability by fabricating a diamond-shaped MDE (DS-MDE) that has a satisfactory self-stability capability and superior electric conductivity when attached onto skin without any extra skin tissue injury technology. To acquire differential bio-potentials such as ECG signals, the proposed processing chip fabricated in a standard CMOS process has a high common mode rejection ratio (C.M.R.R.) differential amplifier and a 12-bit analog-to-digital converter (ADC). Use of the proposed system and integrate simple peripheral commercial devices can obtain the ECG signal efficiently without additional skin tissue injury and ensure continuous monitoring more than 70 hours with a 400 mAh battery.
Kisilevsky, Barbara S; Brown, C Ann
2016-02-01
To determine the reliability at term of: (1) two methods of measuring fetal heart rate (HR), electrocardiographic (ECG, the 'gold standard') and cardiotocographic (CTG) and (2) two ECG methods of measuring maternal HR variability over relatively brief periods of time (s-min). During 20 min of rest (N=39) and during 2 min of auditory stimulation (mother's recorded voice, n=19), fetal HR data were collected using an ECG (Monica AN24) and a Hewlett-Packard Model 1351A CTG. Simultaneously, maternal HR data (n=37) were collected using the same ECG device (Monica AN24) and a second stand-alone cardiac monitor (Spacelab 514T cardiac monitor with a QRS detector). During 20 min of maternal rest, correlations of individual fetal CTG with ECG measures of HR at each second were moderate to high (r=.57-.97) for 77% of fetuses. Correlations of HR averaged over fetuses and over each of the 20 min were high (r=.93-.97); fetal HR averaged over 20 min varied between devices from 0.0 to 0.8 bpm. During 2 min of maternal voice presentation, correlations of fetal HR over each second were moderate to high (r=.54-.99) for 95% of fetuses and high (all rs=.99) when averaged across fetuses in 30s or 2 min epochs. Average fetal HR between devices over the 2 min voice varied from 0.0 to 0.6 bpm. Correlations and/or % agreement between the two ECG methods of measuring maternal HR were high. Average maternal HR over 10 min showed 81% of pairs with a difference of ≤ 1 bpm; correlations for HR variability measures varied from r=.89 to .97. Good reliability was demonstrated between individual spontaneous and auditory induced fetal CTG and ECG with high correlations when HR data were averaged over fetuses or in 30-120 s epochs. High reliability of maternal HR measures was obtained using two ECG devices. Copyright © 2016 Elsevier Inc. All rights reserved.
Development of HIHM (Home Integrated Health Monitor) for ubiquitous home healthcare.
Kim, Jung Soo; Kim, Beom Oh; Park, Kwang Suk
2007-01-01
Home Integrated Health Monitor (HIHM) was developed for ubiquitous home healthcare. From quantitative analysis, we have elicited modal of chair. The HIHM could detect Electrocardiogram (ECG) and Photoplethysmography (PPG) non-intrusively. Also, it could estimate blood pressure (BP) non-intrusively, measure blood glucose and ear temperature. Detected signals and information were transmitted to home gateway and home server through Zigbee communication technology. Home server carried them to Healthcare Center, and specialists such as medical doctors could monitor by Internet. There was also feedback system. This device has a potential to study about ubiquitous home healthcare.
Zhu, Bohui; Ding, Yongsheng; Hao, Kuangrong
2013-01-01
This paper presents a novel maximum margin clustering method with immune evolution (IEMMC) for automatic diagnosis of electrocardiogram (ECG) arrhythmias. This diagnostic system consists of signal processing, feature extraction, and the IEMMC algorithm for clustering of ECG arrhythmias. First, raw ECG signal is processed by an adaptive ECG filter based on wavelet transforms, and waveform of the ECG signal is detected; then, features are extracted from ECG signal to cluster different types of arrhythmias by the IEMMC algorithm. Three types of performance evaluation indicators are used to assess the effect of the IEMMC method for ECG arrhythmias, such as sensitivity, specificity, and accuracy. Compared with K-means and iterSVR algorithms, the IEMMC algorithm reflects better performance not only in clustering result but also in terms of global search ability and convergence ability, which proves its effectiveness for the detection of ECG arrhythmias. PMID:23690875
Low-power analog integrated circuits for wireless ECG acquisition systems.
Tsai, Tsung-Heng; Hong, Jia-Hua; Wang, Liang-Hung; Lee, Shuenn-Yuh
2012-09-01
This paper presents low-power analog ICs for wireless ECG acquisition systems. Considering the power-efficient communication in the body sensor network, the required low-power analog ICs are developed for a healthcare system through miniaturization and system integration. To acquire the ECG signal, a low-power analog front-end system, including an ECG signal acquisition board, an on-chip low-pass filter, and an on-chip successive-approximation analog-to-digital converter for portable ECG detection devices is presented. A quadrature CMOS voltage-controlled oscillator and a 2.4 GHz direct-conversion transmitter with a power amplifier and upconversion mixer are also developed to transmit the ECG signal through wireless communication. In the receiver, a 2.4 GHz fully integrated CMOS RF front end with a low-noise amplifier, differential power splitter, and quadrature mixer based on current-reused folded architecture is proposed. The circuits have been implemented to meet the specifications of the IEEE 802.15.4 2.4 GHz standard. The low-power ICs of the wireless ECG acquisition systems have been fabricated using a 0.18 μm Taiwan Semiconductor Manufacturing Company (TSMC) CMOS standard process. The measured results on the human body reveal that ECG signals can be acquired effectively by the proposed low-power analog front-end ICs.
NASA Astrophysics Data System (ADS)
Holdsworth, David W.; Detombe, Sarah A.; Chiodo, Chris; Fricke, Stanley T.; Drangova, Maria
2011-03-01
Advances in laboratory imaging systems for CT, SPECT, MRI, and PET facilitate routine micro-imaging during pre-clinical investigations. Challenges still arise when dealing with immune-compromised animals, biohazardous agents, and multi-modality imaging. These challenges can be overcome with an appropriate animal management system (AMS), with the capability for supporting and monitoring a rat or mouse during micro-imaging. We report the implementation and assessment of a new AMS system for mice (PRA-3000 / AHS-2750, ASI Instruments, Warren MI), designed to be compatible with a commercial micro-CT / micro-SPECT imaging system (eXplore speCZT, GE Healthcare, London ON). The AMS was assessed under the following criteria: 1) compatibility with the imaging system (i.e. artifact generation, geometric dimensions); 2) compatibility with live animals (i.e. positioning, temperature regulation, anesthetic supply); 3) monitoring capabilities (i.e. rectal temperature, respiratory and cardiac monitoring); 4) stability of co-registration; and 5) containment. Micro-CT scans performed using a standardized live-animal protocol (90 kVp, 40 mA, 900 views, 16 ms per view) exhibited low noise (+/-19 HU) and acceptable artifact from high-density components within the AMS (e.g. ECG pad contacts). Live mice were imaged repeatedly (with removal and replacement of the AMS) and spatial registration was found to be stable to within +/-0.07 mm. All animals tolerated enclosure within the AMS for extended periods (i.e. > one hour) without distress, based on continuous recordings of rectal temperature, ECG waveform and respiratory rate. A sealed AMS system extends the capability of a conventional micro-imaging system to include immune-compromised and biosafety level 2 mouse-imaging protocols.
Enhancing the estimation of blood pressure using pulse arrival time and two confounding factors.
Baek, Hyun Jae; Kim, Ko Keun; Kim, Jung Soo; Lee, Boreom; Park, Kwang Suk
2010-02-01
A new method of blood pressure (BP) estimation using multiple regression with pulse arrival time (PAT) and two confounding factors was evaluated in clinical and unconstrained monitoring situations. For the first analysis with clinical data, electrocardiogram (ECG), photoplethysmogram (PPG) and invasive BP signals were obtained by a conventional patient monitoring device during surgery. In the second analysis, ECG, PPG and non-invasive BP were measured using systems developed to obtain data under conditions in which the subject was not constrained. To enhance the performance of BP estimation methods, heart rate (HR) and arterial stiffness were considered as confounding factors in regression analysis. The PAT and HR were easily extracted from ECG and PPG signals. For arterial stiffness, the duration from the maximum derivative point to the maximum of the dicrotic notch in the PPG signal, a parameter called TDB, was employed. In two experiments that normally cause BP variation, the correlation between measured BP and the estimated BP was investigated. Multiple-regression analysis with the two confounding factors improved correlation coefficients for diastolic blood pressure and systolic blood pressure to acceptable confidence levels, compared to existing methods that consider PAT only. In addition, reproducibility for the proposed method was determined using constructed test sets. Our results demonstrate that non-invasive, non-intrusive BP estimation can be obtained using methods that can be applied in both clinical and daily healthcare situations.
Design of portable electrocardiogram device using DSO138
NASA Astrophysics Data System (ADS)
Abuzairi, Tomy; Matondang, Josef Stevanus; Purnamaningsih, Retno Wigajatri; Basari, Ratnasari, Anita
2018-02-01
Cardiovascular disease has been one of the leading causes of sudden cardiac deaths in many countries, covering Indonesia. Electrocardiogram (ECG) is a medical test to detect cardiac abnormalities by measuring the electrical activity generated by the heart, as the heart contracts. By using ECG, we can observe anomaly at the time of heart abnormalities. In this paper, design of portable ECG device is presented. The portable ECG device was designed to easily use in the village clinic or houses, due to the small size device and other benefits. The device was designed by using four units: (1) ECG electrode; (2) ECG analog front-end; (3) DSO138; and (4) battery. To create a simple electrode system in the portable ECG, 1-lead ECG with two electrodes were applied. The analog front-end circuitry consists of three integrated circuits, an instrumentation amplifier AD820AN, a low noise operational amplifier OPA134, and a low offset operational amplifier TL082. Digital ECG data were transformed to graphical data on DSO138. The results show that the portable ECG is successfully read the signal from 1-lead ECG system.
Accuracy of pulse oximetry measurement of heart rate of newborn infants in the delivery room.
Kamlin, C Omar F; Dawson, Jennifer A; O'Donnell, Colm P F; Morley, Colin J; Donath, Susan M; Sekhon, Jasbir; Davis, Peter G
2008-06-01
To determine the accuracy of heart rate obtained by pulse oximetry (HR(PO)) relative to HR obtained by 3-lead electrocardiography (HR(ECG)) in newborn infants in the delivery room. Immediately after birth, a preductal PO sensor and ECG leads were applied. PO and ECG monitor displays were recorded by a video camera. Two investigators reviewed the videos. Every two seconds, 1 of the investigators recorded HR(PO) and indicators of signal quality from the oximeter while masked to ECG, whereas the other recorded HR(ECG) and ECG signal quality while masked to PO. HR(PO) and HR(ECG) measurements were compared using Bland-Altman analysis. We attended 92 deliveries; 37 infants were excluded due to equipment malfunction. The 55 infants studied had a mean (+/-standard deviation [SD]) gestational age of 35 (+/-3.7) weeks, and birth weight 2399 (+/-869) g. In total, we analyzed 5877 data pairs. The mean difference (+/-2 SD) between HR(ECG) and HR(PO) was -2 (+/-26) beats per minute (bpm) overall and -0.5 (+/-16) bpm in those infants who received positive-pressure ventilation and/or cardiac massage. The sensitivity and specificity of PO for detecting HR(ECG) <100 bpm was 89% and 99%, respectively. PO provided an accurate display of newborn infants' HR in the delivery room, including those infants receiving advanced resuscitation.
Quantitative Assessment of Arrhythmia Using Non-linear Approach: A Non-invasive Prognostic Tool
NASA Astrophysics Data System (ADS)
Chakraborty, Monisha; Ghosh, Dipak
2017-12-01
Accurate prognostic tool to identify severity of Arrhythmia is yet to be investigated, owing to the complexity of the ECG signal. In this paper, we have shown that quantitative assessment of Arrhythmia is possible using non-linear technique based on "Hurst Rescaled Range Analysis". Although the concept of applying "non-linearity" for studying various cardiac dysfunctions is not entirely new, the novel objective of this paper is to identify the severity of the disease, monitoring of different medicine and their dose, and also to assess the efficiency of different medicine. The approach presented in this work is simple which in turn will help doctors in efficient disease management. In this work, Arrhythmia ECG time series are collected from MIT-BIH database. Normal ECG time series are acquired using POLYPARA system. Both time series are analyzed in thelight of non-linear approach following the method "Rescaled Range Analysis". The quantitative parameter, "Fractal Dimension" (D) is obtained from both types of time series. The major finding is that Arrhythmia ECG poses lower values of D as compared to normal. Further, this information can be used to access the severity of Arrhythmia quantitatively, which is a new direction of prognosis as well as adequate software may be developed for the use of medical practice.
Quantitative Assessment of Arrhythmia Using Non-linear Approach: A Non-invasive Prognostic Tool
NASA Astrophysics Data System (ADS)
Chakraborty, Monisha; Ghosh, Dipak
2018-04-01
Accurate prognostic tool to identify severity of Arrhythmia is yet to be investigated, owing to the complexity of the ECG signal. In this paper, we have shown that quantitative assessment of Arrhythmia is possible using non-linear technique based on "Hurst Rescaled Range Analysis". Although the concept of applying "non-linearity" for studying various cardiac dysfunctions is not entirely new, the novel objective of this paper is to identify the severity of the disease, monitoring of different medicine and their dose, and also to assess the efficiency of different medicine. The approach presented in this work is simple which in turn will help doctors in efficient disease management. In this work, Arrhythmia ECG time series are collected from MIT-BIH database. Normal ECG time series are acquired using POLYPARA system. Both time series are analyzed in thelight of non-linear approach following the method "Rescaled Range Analysis". The quantitative parameter, "Fractal Dimension" (D) is obtained from both types of time series. The major finding is that Arrhythmia ECG poses lower values of D as compared to normal. Further, this information can be used to access the severity of Arrhythmia quantitatively, which is a new direction of prognosis as well as adequate software may be developed for the use of medical practice.
Kumar, Ashish; Kumar, Manjeet; Komaragiri, Rama
2018-04-19
Bradycardia can be modulated using the cardiac pacemaker, an implantable medical device which sets and balances the patient's cardiac health. The device has been widely used to detect and monitor the patient's heart rate. The data collected hence has the highest authenticity assurance and is convenient for further electric stimulation. In the pacemaker, ECG detector is one of the most important element. The device is available in its new digital form, which is more efficient and accurate in performance with the added advantage of economical power consumption platform. In this work, a joint algorithm based on biorthogonal wavelet transform and run-length encoding (RLE) is proposed for QRS complex detection of the ECG signal and compressing the detected ECG data. Biorthogonal wavelet transform of the input ECG signal is first calculated using a modified demand based filter bank architecture which consists of a series combination of three lowpass filters with a highpass filter. Lowpass and highpass filters are realized using a linear phase structure which reduces the hardware cost of the proposed design approximately by 50%. Then, the location of the R-peak is found by comparing the denoised ECG signal with the threshold value. The proposed R-peak detector achieves the highest sensitivity and positive predictivity of 99.75 and 99.98 respectively with the MIT-BIH arrhythmia database. Also, the proposed R-peak detector achieves a comparatively low data error rate (DER) of 0.002. The use of RLE for the compression of detected ECG data achieves a higher compression ratio (CR) of 17.1. To justify the effectiveness of the proposed algorithm, the results have been compared with the existing methods, like Huffman coding/simple predictor, Huffman coding/adaptive, and slope predictor/fixed length packaging.
Smartphone ECG for evaluation of STEMI: results of the ST LEUIS Pilot Study.
Muhlestein, Joseph Boone; Le, Viet; Albert, David; Moreno, Fidela Ll; Anderson, Jeffrey L; Yanowitz, Frank; Vranian, Robert B; Barsness, Gregory W; Bethea, Charles F; Severance, Harry W; Ramo, Barry; Pierce, John; Barbagelata, Alejandro; Muhlestein, Joseph Brent
2015-01-01
12-lead ECG is a critical component of initial evaluation of cardiac ischemia, but has traditionally been limited to large, dedicated equipment in medical care environments. Smartphones provide a potential alternative platform for the extension of ECG to new care settings and to improve timeliness of care. To gain experience with smartphone electrocardiography prior to designing a larger multicenter study evaluating standard 12-lead ECG compared to smartphone ECG. 6 patients for whom the hospital STEMI protocol was activated were evaluated with traditional 12-lead ECG followed immediately by a smartphone ECG using right (VnR) and left (VnL) limb leads for precordial grounding. The AliveCor™ Heart Monitor was utilized for this study. All tracings were taken prior to catheterization or immediately after revascularization while still in the catheterization laboratory. The smartphone ECG had excellent correlation with the gold standard 12-lead ECG in all patients. Four out of six tracings were judged to meet STEMI criteria on both modalities as determined by three experienced cardiologists, and in the remaining two, consensus indicated a non-STEMI ECG diagnosis. No significant difference was noted between VnR and VnL. Smartphone based electrocardiography is a promising, developing technology intended to increase availability and speed of electrocardiographic evaluation. This study confirmed the potential of a smartphone ECG for evaluation of acute ischemia and the feasibility of studying this technology further to define the diagnostic accuracy, limitations and appropriate use of this new technology. Copyright © 2015 Elsevier Inc. All rights reserved.
Wearable dry sensors with bluetooth connection for use in remote patient monitoring systems.
Gargiulo, Gaetano; Bifulco, Paolo; Cesarelli, Mario; Jin, Craig; McEwan, Alistair; van Schaik, Andre
2010-01-01
Cost reduction has become the primary theme of healthcare reforms globally. More providers are moving towards remote patient monitoring, which reduces the length of hospital stays and frees up their physicians and nurses for acute cases and helps them to tackle staff shortages. Physiological sensors are commonly used in many human specialties e.g. electrocardiogram (ECG) electrodes, for monitoring heart signals, and electroencephalogram (EEG) electrodes, for sensing the electrical activity of the brain, are the most well-known applications. Consequently there is a substantial unmet need for physiological sensors that can be simply and easily applied by the patient or primary carer, are comfortable to wear, can accurately sense parameters over long periods of time and can be connected to data recording systems using Bluetooth technology. We have developed a small, battery powered, user customizable portable monitor. This prototype is capable of recording three-axial body acceleration, skin temperature, and has up to four bio analogical front ends. Moreover, it is also able of continuous wireless transmission to any Bluetooth device including a PDA or a cellular phone. The bio-front end can use long-lasting dry electrodes or novel textile electrodes that can be embedded in clothes. The device can be powered by a standard mobile phone which has a Ni-MH 3.6 V battery, to sustain more than seven days continuous functioning when using the Bluetooth Sniff mode to reduce TX power. In this paper, we present some of the evaluation experiments of our wearable personal monitor device with a focus on ECG applications.
Zhou, Yu; Ren, Jie
2011-04-01
We put forward a new concept of software oversampling mapping system for electrocardiogram (ECG) to assist the research of the ECG inverse problem to improve the generality of mapping system and the quality of mapping signals. We then developed a conceptual system based on the traditional ECG detecting circuit, Labview and DAQ card produced by National Instruments, and at the same time combined the newly-developed oversampling method into the system. The results indicated that the system could map ECG signals accurately and the quality of the signals was good. The improvement of hardware and enhancement of software made the system suitable for mapping in different situations. So the primary development of the software for oversampling mapping system was successful and further research and development can make the system a powerful tool for researching ECG inverse problem.
Low-cost compact ECG with graphic LCD and phonocardiogram system design.
Kara, Sadik; Kemaloğlu, Semra; Kirbaş, Samil
2006-06-01
Till today, many different ECG devices are made in developing countries. In this study, low cost, small size, portable LCD screen ECG device, and phonocardiograph were designed. With designed system, heart sounds that take synchronously with ECG signal are heard as sensitive. Improved system consist three units; Unit 1, ECG circuit, filter and amplifier structure. Unit 2, heart sound acquisition circuit. Unit 3, microcontroller, graphic LCD and ECG signal sending unit to computer. Our system can be used easily in different departments of the hospital, health institution and clinics, village clinic and also in houses because of its small size structure and other benefits. In this way, it is possible that to see ECG signal and hear heart sounds as synchronously and sensitively. In conclusion, heart sounds are heard on the part of both doctor and patient because sounds are given to environment with a tiny speaker. Thus, the patient knows and hears heart sounds him/herself and is acquainted by doctor about healthy condition.
The Abnormal vs. Normal ECG Classification Based on Key Features and Statistical Learning
NASA Astrophysics Data System (ADS)
Dong, Jun; Tong, Jia-Fei; Liu, Xia
As cardiovascular diseases appear frequently in modern society, the medicine and health system should be adjusted to meet the new requirements. Chinese government has planned to establish basic community medical insurance system (BCMIS) before 2020, where remote medical service is one of core issues. Therefore, we have developed the "remote network hospital system" which includes data server and diagnosis terminal by the aid of wireless detector to sample ECG. To improve the efficiency of ECG processing, in this paper, abnormal vs. normal ECG classification approach based on key features and statistical learning is presented, and the results are analyzed. Large amount of normal ECG could be filtered by computer automatically and abnormal ECG is left to be diagnosed specially by physicians.
NASA Astrophysics Data System (ADS)
Lynn, W. D.; Escalona, O. J.; McEneaney, D. J.
2013-06-01
This study addresses an important question in the development of a ECG device that enables long term monitoring of cardiac rhythm. This device would utilise edge sensor technologies for dry, non-irritant skin contact suitable for distal limb application and would be supported by embedded ECG denoising processes. Contemporary ECG databases including those provided by MIT-BIH and Physionet are focused on interpretation of cardiac disease and rhythm tracking. The data is recorded using chest leads as in standard clinical practise. For the development of a peripherally located heart rhythm monitor, such data would be of limited use. To provide a useful database adequate for the development of the above mentioned cardiac monitoring device a unipolar body surface potential map from the left arm and wrist was gathered in 37 volunteer patients and characterized in this study. For this, the reference electrode was placed at the wrist. Bipolar far-field electrogram leads were derived and analysed. Factors such as skin variability, 50Hz noise interference, electrode contact noise, motion artifacts and electromyographic noise, presented a challenge. The objective was quantify the signal-to-noise ratio (SNR) at the far-field locations. Preliminary results reveal that an electrogram indicative of the QRS complex can be recorded on the distal portion of the left arm when denoised using signal averaging techniques.
A low-cost biomedical signal transceiver based on a Bluetooth wireless system.
Fazel-Rezai, Reza; Pauls, Mark; Slawinski, David
2007-01-01
Most current wireless biomedical signal transceivers use range-limiting communication. This work presents a low-cost biomedical signal transceiver that uses Bluetooth wireless technology. The design is implemented in a modular form to be adaptable to different types of biomedical signals. The signal front end obtains and processes incoming signals, which are then transmitted via a microcontroller and wireless module. Near real-time receive software in LabVIEW was developed to demonstrate the system capability. The completed transmitter prototype successfully transmits ECG signals, and is able to simultaneously send multiple signals. The sampling rate of the transmitter is fast enough to send up to thirteen ECG signals simultaneously, with an error rate below 0.1% for transmission exceeding 65 meters. A low-cost wireless biomedical transceiver has many applications, such as real-time monitoring of patients with a known condition in non-clinical settings.
Nurani, Raisha; Chandraharan, Edwin; Lowe, Virginia; Ugwumadu, Austin; Arulkumaran, Sabaratnam
2012-12-01
To identify the incidence of fetal heart rate (FHR) accelerations in the second stage of labor and the role of fetal electrocardiograph (ECG) in avoiding misidentification of maternal heart rate (MHR) as FHR. Retrospective observational study. University hospital labor ward, London, UK. Cardiotocograph (CTG) tracings of 100 fetuses monitored using external transducers and internal scalp electrodes. CTG traces that fulfilled inclusion criteria were selected from an electronic FHR monitoring database. Rate of accelerations during external and internal monitoring as well as decelerations for a period of 60 minutes prior to delivery were determined. The role of fetal ECG in differentiating between MHR and FHR trace was explored. Decelerations occurred in 89% of CTG traces during the second stage of labor. Accelerations indicating possible recording of FHR or MHR were found in 28.1 and 10.9% of cases recorded by an external ultrasound transducer as well as internal scalp electrode, respectively. Accelerations coinciding with uterine contractions occurred only in 11.7 and 4% of external and internal recording of FHR, respectively. Absence of 'p-wave' of the ECG waveform was associated with MHR trace. Decelerations were the commonest CTG feature during the second stage of labor. The incidence of accelerations coinciding with uterine contractions was less than half in fetuses monitored using a fetal scalp electrode. Analysing the ECG waveform for the absence of 'p-wave' helps in differentiating MHR from FHR. © 2012 The Authors Acta Obstetricia et Gynecologica Scandinavica© 2012 Nordic Federation of Societies of Obstetrics and Gynecology.
Rizos, Timolaos; Quilitzsch, Anika; Busse, Otto; Haeusler, Karl Georg; Endres, Matthias; Heuschmann, Peter; Veltkamp, Roland
2015-06-01
Multiple methods to detect paroxysmal atrial fibrillation (pAF) in patients with acute stroke are available. However, it is unknown which approaches are currently used in clinical routine and guidelines remain vague to the extent of cardiac monitoring. We characterize diagnostic efforts for pAF detection on German stroke units (SU). A standardized anonymous questionnaire was sent to all clinical leads of certified SUs in Germany. The questionnaire focused on basic characteristics of SUs, procedures to detect AF, and estimates on AF detection. One hundred seventy-nine SU leads participated (response rate 71.6%). All patients undergo continuous bedside ECG monitoring. A percentage of 77.6 SUs initiate additional 24-hour Holter ECG in >50% of patients without known AF. Patients with transient ischemic attack are monitored significantly shorter than patients with ischemic stroke. Independent of SU type or size, 67.6% of leads assumed to fail detecting pAF in 5% to 20% of patients. In cryptogenic stroke, additional ECG monitoring is recommended by 90.2% but only 13.8% of SUs perform routine ECG follow-up visits. The use of implanted event recorders is low (1-10 patients/y by 60.7% of SUs; 28.1%: no use). A percentage of 83.9 do not use external event recorders. Our survey demonstrates substantial heterogeneity among German SUs on diagnostic work-up for pAF. Future prospective multicenter studies should systematically evaluate the impact of different methods to uncover pAF. © 2015 American Heart Association, Inc.
Effects of atomoxetine on heart rhythm in children and adolescents.
Tanidir, Ibrahim Cansaran; Tanidir, Canan; Ozturk, Erkut; Bahali, Kayhan; Gunes, Hatice; Ergul, Yakup; Uneri, Ozden Sukran; Akdeniz, Celal; Tuzcu, Volkan
2015-12-01
The aim of this study was to examine the effects of atomoxetine on heart rhythm using 12-lead electrocardiography (ECG) and 24 h Holter monitoring. Children and adolescents who were diagnosed with attention deficit-hyperactivity disorder according to DSM-IV-TR were referred to a pediatric cardiology clinic for cardiologic examination before and after 4 or 5 weeks of atomoxetine treatment. Cardiac examination, complete blood count, biochemistry, thyroid function tests, 12-lead ECG and 24 h Holter monitoring were performed routinely in all patients. Each subject underwent 24 h Holter ECG monitoring before atomoxetine was started and after 4 or 5 weeks of effective dose atomoxetine treatment. Forty-one patients were included in this prospective study. No statistically significant change was found in QT, QTc or QT interval dispersion or blood pressure before and after 4 or 5 weeks of atomoxetine treatment. There was a statistically significant increase in heart rate (both during the day and at night) and QRS duration, and a statistically significant decrease in P wave dispersion. Three patients had rhythm disturbances. All of these three patients were asymptomatic and none of these arrhythmias reached clinical significance. Atomoxetine did not cause significant changes in ECG or Holter variables. In two patients, who had undiagnosed subclinical extrasystoles, extra beats were increased after 4th week of treatment, but still remained clinically insignificant. Before and after atomoxetine treatment, listening to the heart sounds for a longer time, may help clinicians to notice an extra beat. If an extra beat is identified then 24 Holter monitoring is recommended. © 2015 Japan Pediatric Society.
Changes in ST, QT and RR ECG intervals during acute stress in firefighters: a pilot study.
Paiva, Joana S; Rodrigues, Susana; Cunha, Joao Paulo Silva
2016-08-01
Firefighting is a stressful occupation. The monitoring of psychophysiological measures in those professionals can be a way to prevent and early detect cardiac diseases and other stress-related problems. The current study aimed to assess morphological changes in the ECG signal induced by acute stress. A laboratory protocol was conducted among 6 firefighters, including a laboratory stress-inducer task - the Trier Social Stress Task (TSST) - and a 2-choice reaction time task (CRTT) that was performed before (CRTT1) and after (CRTT2) the stress condition. ECG signals were continuously acquired using the VitalJacket®, a wearable t-shirt that acts as a medical certified ECG monitor. Results showed that ECG morphological features such as QT and ST intervals are able to differentiate stressful from non stressful events in first responders. Group mean Visual Analogue Scale (VAS) for stress assessment significantly increased after the stress task (TSST), relatively to the end of CRTT2 (after TSST: 4.67±1.63; after CRTT2: 3.17±0.75), a change that was accompanied by a significant increase in group mean QT and ST segments corrected for heart rate during TSST. These encouraging results will be followed by larger studies in order to explore those measures and its physiological impact under realistic environments in a higher scalability.
Myocardial infarction in intensive care units: A systematic review of diagnosis and treatment
Mount, Thomas; Atkinson, Dougal
2016-01-01
Introduction Patients in the intensive care unit are vulnerable to myocardial injury from a variety of causes, both ischaemic and non-ischaemic. It is challenging for ICU clinicians to apply the conventional guidance concerning diagnosis and treatment. We conducted this review to examine the evidence concerning diagnosis and treatment of myocardial infarction in the ICU. Methods A systematic review was performed to identify relevant studies. Results 19 studies concerning use of ECG, cardiac enzymes, echocardiography and angiography were identified. 4 studies considered treatment of myocardial infarction. Conclusions Regular 12 lead ECG or 12 lead ECG monitoring is more sensitive than 2 lead monitoring, regular measurement of cardiac enzymes is more sensitive than when provoked by symptoms. Coronary angiography rarely identifies treatable lesions, without regional wall motion abnormality on echocardiography. Evidence relating to treatment was limited. A potential strategy to diagnose myocardial infarctions in the ICU is proposed. PMID:28979516
Fabregat-Andres, Oscar; Munoz-Macho, Adolfo; Adell-Beltran, Guillermo; Ibanez-Catala, Xavier; Macia, Agustin; Facila, Lorenzo
2014-08-01
Prevention of cardiac events during competitive sports is fundamental. New technologies with remote monitoring systems integrated into clothing could facilitate the screening of heart disease. Our aim was to evaluate the feasibility of Nuubo system during a field stress test performed by soccer players, comparing results with treadmill ergospirometry as test reference. Nineteen male professional soccer players (19.2 ± 1.6 years) were studied. Wireless electrocardiographic monitoring during a Yo-Yo intermittent recovery test level 1 in soccer field and subsequent analysis of arrhythmias were firstly performed. Subsequently, in a period no longer than 4 weeks, each player underwent cardiopulmonary exercise testing in hospital. During Yo-Yo test, electrocardiogram (ECG) signal was interpretable in 16 players (84.2%). In the other three players, ECG artifacts did not allow a proper analysis. Estimation of maximum oxygen consumption was comparable between two exercise tests (VO 2 max 53.3 ± 2.4 vs. 53.7 ± 3.0 mL/kg/min for Yo-Yo test and ergometry respectively; intra-class correlation coefficient 0.84 (0.63 - 0.93), P < 0.001). No arrhythmias were detected in any player during both tests. The use of Nuubo's technology allows an accurate single-lead electrocardiographic recording and estimation of reliable performance variables during exercise testing in field, and provides a new perspective to cardiac remote monitoring in collective sports.
III Lead ECG Pulse Measurement Sensor
NASA Astrophysics Data System (ADS)
Thangaraju, S. K.; Munisamy, K.
2015-09-01
Heart rate sensing is very important. Method of measuring heart pulse by using an electrocardiogram (ECG) technique is described. Electrocardiogram is a measurement of the potential difference (the electrical pulse) generated by a cardiac tissue, mainly the heart. This paper also reports the development of a three lead ECG hardware system that would be the basis of developing a more cost efficient, portable and easy to use ECG machine. Einthoven's Three Lead method [1] is used for ECG signal extraction. Using amplifiers such as the instrumentation amplifier AD620BN and the conventional operational amplifier Ua741 that would be used to amplify the ECG signal extracted develop this system. The signal would then be filtered from noise using Butterworth filter techniques to obtain optimum output. Also a right leg guard was implemented as a safety feature to this system. Simulation was carried out for development of the system using P-spice Program.
Classification of cardiac arrhythmias using competitive networks.
Leite, Cicilia R M; Martin, Daniel L; Sizilio, Glaucia R A; Dos Santos, Keylly E A; de Araujo, Bruno G; Valentim, Ricardo A M; Neto, Adriao D D; de Melo, Jorge D; Guerreiro, Ana M G
2010-01-01
Information generated by sensors that collect a patient's vital signals are continuous and unlimited data sequences. Traditionally, this information requires special equipment and programs to monitor them. These programs process and react to the continuous entry of data from different origins. Thus, the purpose of this study is to analyze the data produced by these biomedical devices, in this case the electrocardiogram (ECG). Processing uses a neural classifier, Kohonen competitive neural networks, detecting if the ECG shows any cardiac arrhythmia. In fact, it is possible to classify an ECG signal and thereby detect if it is exhibiting or not any alteration, according to normality.
Song, Shuang; Rooijakkers, Michael; Harpe, Pieter; Rabotti, Chiara; Mischi, Massimo; van Roermund, Arthur H M; Cantatore, Eugenio
2015-04-01
This paper presents a low-voltage current-reuse chopper-stabilized frontend amplifier for fetal ECG monitoring. The proposed amplifier allows for individual tuning of the noise in each measurement channel, minimizing the total power consumption while satisfying all application requirements. The low-voltage current reuse topology exploits power optimization in both the current and the voltage domain, exploiting multiple supply voltages (0.3, 0.6 and 1.2 V). The power management circuitry providing the different supplies is optimized for high efficiency (peak charge-pump efficiency = 90%).The low-voltage amplifier together with its power management circuitry is implemented in a standard 0.18 μm CMOS process and characterized experimentally. The amplifier core achieves both good noise efficiency factor (NEF=1.74) and power efficiency factor (PEF=1.05). Experiments show that the amplifier core can provide a noise level of 0.34 μVrms in a 0.7 to 182 Hz band, consuming 1.17 μW power. The amplifier together with its power management circuitry consumes 1.56 μW, achieving a PEF of 1.41. The amplifier is also validated with adult ECG and pre-recorded fetal ECG measurements.
Computational Electrocardiography: Revisiting Holter ECG Monitoring.
Deserno, Thomas M; Marx, Nikolaus
2016-08-05
Since 1942, when Goldberger introduced the 12-lead electrocardiography (ECG), this diagnostic method has not been changed. After 70 years of technologic developments, we revisit Holter ECG from recording to understanding. A fundamental change is fore-seen towards "computational ECG" (CECG), where continuous monitoring is producing big data volumes that are impossible to be inspected conventionally but require efficient computational methods. We draw parallels between CECG and computational biology, in particular with respect to computed tomography, computed radiology, and computed photography. From that, we identify technology and methodology needed for CECG. Real-time transfer of raw data into meaningful parameters that are tracked over time will allow prediction of serious events, such as sudden cardiac death. Evolved from Holter's technology, portable smartphones with Bluetooth-connected textile-embedded sensors will capture noisy raw data (recording), process meaningful parameters over time (analysis), and transfer them to cloud services for sharing (handling), predicting serious events, and alarming (understanding). To make this happen, the following fields need more research: i) signal processing, ii) cycle decomposition; iii) cycle normalization, iv) cycle modeling, v) clinical parameter computation, vi) physiological modeling, and vii) event prediction. We shall start immediately developing methodology for CECG analysis and understanding.
A novel biometric authentication approach using ECG and EMG signals.
Belgacem, Noureddine; Fournier, Régis; Nait-Ali, Amine; Bereksi-Reguig, Fethi
2015-05-01
Security biometrics is a secure alternative to traditional methods of identity verification of individuals, such as authentication systems based on user name and password. Recently, it has been found that the electrocardiogram (ECG) signal formed by five successive waves (P, Q, R, S and T) is unique to each individual. In fact, better than any other biometrics' measures, it delivers proof of subject's being alive as extra information which other biometrics cannot deliver. The main purpose of this work is to present a low-cost method for online acquisition and processing of ECG signals for person authentication and to study the possibility of providing additional information and retrieve personal data from an electrocardiogram signal to yield a reliable decision. This study explores the effectiveness of a novel biometric system resulting from the fusion of information and knowledge provided by ECG and EMG (Electromyogram) physiological recordings. It is shown that biometrics based on these ECG/EMG signals offers a novel way to robustly authenticate subjects. Five ECG databases (MIT-BIH, ST-T, NSR, PTB and ECG-ID) and several ECG signals collected in-house from volunteers were exploited. A palm-based ECG biometric system was developed where the signals are collected from the palm of the subject through a minimally intrusive one-lead ECG set-up. A total of 3750 ECG beats were used in this work. Feature extraction was performed on ECG signals using Fourier descriptors (spectral coefficients). Optimum-Path Forest classifier was used to calculate the degree of similarity between individuals. The obtained results from the proposed approach look promising for individuals' authentication.
A sub-nJ CMOS ECG classifier for wireless smart sensor.
Chollet, Paul; Pallas, Remi; Lahuec, Cyril; Arzel, Matthieu; Seguin, Fabrice
2017-07-01
Body area sensor networks hold the promise of more efficient and cheaper medical care services through the constant monitoring of physiological markers such as heart beats. Continuously transmitting the electrocardiogram (ECG) signal requires most of the wireless ECG sensor energy budget. This paper presents the analog implantation of a classifier for ECG signals that can be embedded onto a sensor. The classifier is a sparse neural associative memory. It is implemented using the ST 65 nm CMOS technology and requires only 234 pJ per classification while achieving a 93.6% classification accuracy. The energy requirement is 6 orders of magnitude lower than a digital accelerator that performs a similar task. The lifespan of the resulting sensor is 191 times as large as that of a sensor sending all the data.
[Arrhythmias and heart blocks in flying personnel with mitral valve prolapses].
Zakharov, V P; Karlov, V N; Bondareva, S V; Vlasov, V D
1999-01-01
Investigated were 76 pilots with ECG-verified mitral valve prolapses (MVP) of the 1st and 2nd degree (w/o profound regurgitation). There were various heart blocks and ECG repolarization changes in 35 cases. Comparison of results of the cardiovascular functional investigations of flyers with MVP displayed non-specific cardiac rhythm and conductance disturbances that were registered more often during ECG-monitoring or test loading. According to the data of this study, bicycle and treadmill ergometry revealed "pseudoischemic" shifts in ECG. Literary indications of a significant loss in human endurance of physical loads due to MVP combined with the strain-induced arrhythmia received the experimental confirmation. Probably, arrhythmias in flyers with diagnosed MVP are predominantly associated with electric instability of the myocardium against the autonomous dysfunction with prevailing adrenergic effects.
Study of heart-brain interactions through EEG, ECG, and emotions
NASA Astrophysics Data System (ADS)
Ramasamy, Mouli; Varadan, Vijay K.
2017-04-01
Neurocardiology is the exploration of neurophysiological, neurological and neuroanatomical facets of neuroscience's influence in cardiology. The paraphernalia of emotions on the heart and brain are premeditated because of the interaction between the central and peripheral nervous system. This is an investigative attempt to study emotion based neurocardiology and the factors that influence this phenomenon. The factors include: interaction between sleep EEG (electroencephalogram) and ECG (electrocardiogram), relationship between emotion and music, psychophysiological coherence between the heart and brain, emotion recognition techniques, and biofeedback mechanisms. Emotions contribute vitally to the mundane life and are quintessential to a numerous biological and everyday-functional modality of a human being. Emotions are best represented through EEG signals, and to a certain extent, can be observed through ECG and body temperature. Confluence of medical and engineering science has enabled the monitoring and discrimination of emotions influenced by happiness, anxiety, distress, excitement and several other factors that influence the thinking patterns and the electrical activity of the brain. Similarly, HRV (Heart Rate Variability) widely investigated for its provision and discerning characteristics towards EEG and the perception in neurocardiology.
New paradigms in telemedicine: ambient intelligence, wearable, pervasive and personalized.
Rubel, Paul; Fayn, Jocelyne; Simon-Chautemps, Lucas; Atoui, Hussein; Ohlsson, Mattias; Telisson, David; Adami, Stefano; Arod, Sébastien; Forlini, Marie Claire; Malossi, Cesare; Placide, Joël; Ziliani, Gian Luca; Assanelli, Deodato; Chevalier, Philippe
2004-01-01
After decades of development of information systems dedicated to health professionals, there is an increasing demand for personalized and non-hospital based care. An especially critical domain is cardiology: almost two third of cardiac deaths occur out of hospital, and victims do not survive long enough to benefit from in-hospital treatments. We need to reduce the time before treatment. But symptoms are often interpreted wrongly. The only immediate diagnostic tool to assess the possibility of a cardiac event is the electrocardiogram (ECG). Event and transtelephonic ECG recorders are used to improve decision making but require setting up new infrastructures. The European EPI-MEDICS project has developed an intelligent Personal ECG Monitor (PEM) for the early detection of cardiac events. The PEM embeds advanced decision making techniques, generates different alarm levels and forwards alarm messages to the relevant care providers by means of new generation wireless communication. It is cost saving, involving care provider only if necessary and requiring no specific infrastructure. This solution is a typical example of pervasive computing and ambient intelligence that demonstrates how personalized, wearable, ubiquitous devices could improve healthcare.
El B'charri, Oussama; Latif, Rachid; Elmansouri, Khalifa; Abenaou, Abdenbi; Jenkal, Wissam
2017-02-07
Since the electrocardiogram (ECG) signal has a low frequency and a weak amplitude, it is sensitive to miscellaneous mixed noises, which may reduce the diagnostic accuracy and hinder the physician's correct decision on patients. The dual tree wavelet transform (DT-WT) is one of the most recent enhanced versions of discrete wavelet transform. However, threshold tuning on this method for noise removal from ECG signal has not been investigated yet. In this work, we shall provide a comprehensive study on the impact of the choice of threshold algorithm, threshold value, and the appropriate wavelet decomposition level to evaluate the ECG signal de-noising performance. A set of simulations is performed on both synthetic and real ECG signals to achieve the promised results. First, the synthetic ECG signal is used to observe the algorithm response. The evaluation results of synthetic ECG signal corrupted by various types of noise has showed that the modified unified threshold and wavelet hyperbolic threshold de-noising method is better in realistic and colored noises. The tuned threshold is then used on real ECG signals from the MIT-BIH database. The results has shown that the proposed method achieves higher performance than the ordinary dual tree wavelet transform into all kinds of noise removal from ECG signal. The simulation results indicate that the algorithm is robust for all kinds of noises with varying degrees of input noise, providing a high quality clean signal. Moreover, the algorithm is quite simple and can be used in real time ECG monitoring.
Katheria, Anup; Rich, Wade; Finer, Neil
2012-11-01
To compare the time required to obtain a continuous audible heart rate signal from an electrocardiogram (ECG) monitor and pulse oximeter (PO) in infants requiring resuscitation. Infants who had both ECG and PO placed during resuscitation were analyzed using video and analog recordings. The median times from arrival until the ECG electrodes and PO sensor were placed, and the time to achieve audible tones from the devices, were compared. Forty-six infants had ECG and PO data. Thirty infants were very low birth weight (23-30 weeks). There was a difference in the median total time to place either device (26 vs 38 seconds; P = .04), and a difference (P < .001) in the time to achieve an audible heart rate signal after ECG lead (2 seconds) versus PO probe (24 seconds) placement. In infants weighing >1500 g (n = 16), the median time (interquartile range) to place the ECG was 20 seconds (14-43) whereas the time to place the PO was 36 seconds (28-56) (P = .74). The median times (interquartile range) to acquire a signal from the ECG and PO were 4 seconds (1-6) and 32 seconds (15-40, P = .001), respectively. During the first minutes of resuscitation, 93% of infants had an ECG heart rate compared with only 56% for PO. Early application of ECG electrodes during infant resuscitation can provide the resuscitation team with a continuous audible heart rate, and its use may improve the timeliness of appropriate critical interventions.
Monitoring of electric-cardio signals based on DSP
NASA Astrophysics Data System (ADS)
Yan, Yi-xin; Sun, Hui-nan; Lv, Shuang
2008-10-01
Monitoring of electric-cardio signals is the most direct method of discovering heart diseases. This article presents an electric-cardio signal acquisition and processing system based on DSP. According to the features of electric-cardio signals, the proposed system uses the AgCl electrode as electric-cardio signals sensor, and acquires analog signals with AD620 as the prepositional amplifier, and the digital system equipped is with TMS320LF2407A DSP. The design of digital filter and the analysis of heart rate variation are realized by programming in the DSP. Finally the ECG is obtained with P and T waves along with obvious QRS multi-wave characteristics. The system has low power dissipation, low cost and high precision, which meets the requirements for medical instruments.
Development of a wearable system module for monitoring physical and mental workload.
Kim, Sinbae; Nakamura, Hiromi; Yoshida, Toshihiko; Kishimoto, Masamichi; Imai, Yohsuke; Matsuki, Noriaki; Ishikawa, Takuji; Yamaguchi, Takami
2008-11-01
The population of most developed countries is rapidly aging, which has created a growing demand for home care. A key issue in medicine is supporting the increasing number of elderly patients, both physically and mentally. In this study, we developed a wearable computer that contained modules for measuring electrocardiograms (ECGs) and femoral artery pulse waves using an accelerometer. This system has several benefits: (a) it can provide a database server in each patient's home; (b) its high extendibility and flexibility facilitate adaptation to a patient's needs; and (c) it allows patients to keep their own data, thus protecting the privacy of personal information. To clarify the capabilities and reliability of the system, we applied it to 8 healthy young volunteers during states of physical and mental work. This system successfully detected clear ECGs and femoral artery pulse waves to calculate important bioinformation, including heart rate, pulse wave velocity, and the power spectral density of spontaneous beat-to-beat oscillations in the R-R interval. In this study, we proposed the way to provide an assessment of the physical and mental condition of the subject using analysis of the bio-information with respect to the physical and mental workloads. The present study provides useful knowledge for the development of a wearable computer designed to monitor the physical and mental conditions of older persons and patients.
NASA Astrophysics Data System (ADS)
Kumar, Prashanth S.; Oh, Sechang; Kwon, Hyeokjun; Rai, Pratyush; Varadan, Vijay K.
2013-04-01
Sudden cardiac death (SCD) and acute myocardial infarctions (AMIs) have been reported to be up to 7.6 times higher in rate of occurrence during intense exercise as compared to sedentary activities. The risk is high in individuals with both diagnosed as well as occult heart diseases. Recently, SCDs have been reported with a high rate of occurrence among young athletes and soldiers who routinely undergo vigorous training. Prescreening Electrocardiograms (ECG) and echocardiograms have been suggested as potential means of detecting any cardiac abnormalities prior to intense training to avoid the risk of SCDs, but the benefits of this approach are widely debated. Moreover, the increased risk of SCDs and AMIs during training or exercise suggests that ECGs are of much greater value when acquired real-time during the actual training. The availability of immediate diagnostic data will greatly reduce the time taken to administer the appropriate resuscitation. Important factors to consider in the implementation of this solution are: - cost of overall system, accuracy of signals acquired and unobtrusive design. In this paper, we evaluate a system using printed sensors made of inks with functional properties to acquire ECGs of athletes and soldiers during physical training and basic military training respectively. Using Zigbee, we show that athletes and soldiers can be monitored in real time, simultaneously.
Taywade, Sameer K; Ramaiah, Vijayaraghavan L; Basavaraja, Harish; Venkatasubramaniam, Parameswaran R; Selvakumar, Job
2017-04-01
Myocardial perfusion scintigraphy (MPS) is a valuable, noninvasive imaging modality in the evaluation of patients with coronary artery disease. Adenosine stress may occasionally be associated with ECG changes. This study evaluated the strength of association between adenosine stress-related ECG changes and perfusion defects on Tc-MPS. 117 (mean age: 61.25±9.27 years; sex: men 87, women 30) patients with known/suspected coronary artery disease underwent adenosine stress MPS. ECG was monitored continuously during adenosine stress for ST-depression. On the basis of the summed difference score, reversible perfusion defects were categorized as follows: normal: less than 4, mild: 4-8, moderate: 9-13, and severe: more than 13. ST-depression was observed in 27/117 (23.1%) and reversible perfusion defects were observed in 18/27 (66.66%) patients. 2/27, 6/27, and 10/27 patients had mild, moderate, and severe ischemia, respectively. 9/27 patients had normal perfusion. ECG changes and perfusion defects showed a moderate strength of association (correlation coefficient r=0.35, P=0.006). The sensitivity, specificity, positive predictive value, and negative predictive value of ECG findings for prediction of ischemia were 35.29, 86.36, 67.67, and 63.33%, respectively. ECG changes during adenosine stress are not uncommon. It shows a moderate strength of association with reversible perfusion defects. ECG changes during adenosine merit critical evaluation of MPS findings.
Does the STAF score help detect paroxysmal atrial fibrillation in acute stroke patients?
Horstmann, S; Rizos, T; Güntner, J; Hug, A; Jenetzky, E; Krumsdorf, U; Veltkamp, R
2013-01-01
Detecting paroxysmal atrial fibrillation (pAF) soon after acute cerebral ischaemia has a major impact on secondary stroke prevention. Recently, the STAF score, a composite of clinical and instrumental findings, was introduced to identify stroke patients at risk of pAF. We aimed to validate this score in an independent study population. Consecutive patients admitted to our stroke unit with acute ischaemic stroke were prospectively enrolled. The diagnostic work-up included neuroimaging, neuroultrasound, baseline 12-channel electrocardiogram (ECG), 24-h Holter ECG, continuous ECG monitoring, and echocardiography. Presence of AF was documented according to the medical history of each patient and after review of 12-lead ECG, 24-h Holter ECG, or continuous ECG monitoring performed during the stay on the ward. Additionally, a telephone follow-up visit was conducted for each patient after 3 months to inquire about newly diagnosed AF. Items for each patient-age, baseline NIHSS, left atrial dilatation, and stroke etiology according to the TOAST criteria - were assessed to calculate the STAF score. Overall, 584 patients were enrolled in our analysis. AF was documented in 183 (31.3%) patients. In multivariable analysis, age, NIHSS, left atrial dilatation, and absence of vascular etiology were independent predictors for AF. The logistic AF-prediction model of the STAF score revealed fair classification accuracy in receiver operating characteristic curve analysis with an area under the curve of 0.84. STAF scores of ≥5 had a sensitivity of 79% and a specificity of 74% for predicting AF. The value of the STAF score for predicting the risk of pAF in stroke patients is limited. © 2012 The Author(s) European Journal of Neurology © 2012 EFNS.
Accuracy of the Garmin 920 XT HRM to perform HRV analysis.
Cassirame, Johan; Vanhaesebrouck, Romain; Chevrolat, Simon; Mourot, Laurent
2017-12-01
Heart rate variability (HRV) analysis is widely used to investigate autonomous cardiac drive. This method requires periodogram measurement, which can be obtained by an electrocardiogram (ECG) or from a heart rate monitor (HRM), e.g. the Garmin 920 XT device. The purpose of this investigation was to assess the accuracy of RR time series measurements from a Garmin 920 XT HRM as compared to a standard ECG, and to verify whether the measurements thus obtained are suitable for HRV analysis. RR time series were collected simultaneously with an ECG (Powerlab system, AD Instruments, Castell Hill, Australia) and a Garmin XT 920 in 11 healthy subjects during three conditions, namely in the supine position, the standing position and during moderate exercise. In a first step, we compared RR time series obtained with both tools using the Bland and Altman method to obtain the limits of agreement in all three conditions. In a second step, we compared the results of HRV analysis between the ECG RR time series and Garmin 920 XT series. Results show that the accuracy of this system is in accordance with the literature in terms of the limits of agreement. In the supine position, bias was 0.01, - 2.24, + 2.26 ms; in the standing position, - 0.01, - 3.12, + 3.11 ms respectively, and during exercise, - 0.01, - 4.43 and + 4.40 ms. Regarding HRV analysis, we did not find any difference for HRV analysis in the supine position, but the standing and exercise conditions both showed small modifications.
Towards 24/7 continuous heart rate monitoring.
Tarniceriu, Adrian; Parak, Jakub; Renevey, Philippe; Nurmi, Marko; Bertschi, Mattia; Delgado-Gonzalo, Ricard; Korhonen, Ilkka
2016-08-01
Heart rate (HR) and HR variability (HRV) carry rich information about physical activity, mental and physical load, physiological status, and health of an individual. When combined with activity monitoring and personalized physiological modelling, HR/HRV monitoring may be used for monitoring of complex behaviors and impact of behaviors and external factors on the current physiological status of an individual. Optical HR monitoring (OHR) from wrist provides a comfortable and unobtrusive method for HR/HRV monitoring and is better adhered by users than traditional ECG electrodes or chest straps. However, OHR power consumption is significantly higher than that for ECG based methods due to the measurement principle based on optical illumination of the tissue. We developed an algorithmic approach to reduce power consumption of the OHR in 24/7 HR trending. We use continuous activity monitoring and a fast converging frequency domain algorithm to derive a reliable HR estimate in 7.1s (during outdoor sports, in average) to 10.0s (during daily life). The method allows >80% reduction in power consumption in 24/7 OHR monitoring when average HR monitoring is targeted, without significant reduction in tracking accuracy.
Non-invasive hypoglycemia monitoring system using extreme learning machine for Type 1 diabetes.
Ling, Sai Ho; San, Phyo Phyo; Nguyen, Hung T
2016-09-01
Hypoglycemia is a very common in type 1 diabetic persons and can occur at any age. It is always threatening to the well-being of patients with Type 1 diabetes mellitus (T1DM) since hypoglycemia leads to seizures or loss of consciousness and the possible development of permanent brain dysfunction under certain circumstances. Because of that, an accurate continuing hypoglycemia monitoring system is a very important medical device for diabetic patients. In this paper, we proposed a non-invasive hypoglycemia monitoring system using the physiological parameters of electrocardiography (ECG) signal. To enhance the detection accuracy, extreme learning machine (ELM) is developed to recognize the presence of hypoglycemia. A clinical study of 16 children with T1DM is given to illustrate the good performance of ELM. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Sato, Shinichi; Ishida-Nakajima, Wako; Ishida, Akira; Kawamura, Masanari; Miura, Shinobu; Ono, Kyoichi; Inagaki, Nobuya; Takada, Goro; Takahashi, Tsutomu
2010-01-01
Electrocardiogram (ECG) and impedance pneumography (IPG), the most widely used techniques for cardiorespiratory monitoring in the neonatal intensive care unit (NICU), have the disadvantage of causing skin damage when used for very premature newborn infants. To prevent skin damage, we designed a new piezoelectric transducer (PZT) sensor. To assess the potential of the PZT sensor for cardiorespiratory monitoring in the NICU. The PZT sensor was placed under a folded towel under a neonate to detect an acoustic cardiorespiratory signal, from which heart rate (HR) and breathing rate (BR) were calculated, together with simultaneous ECG/IPG recording for 1-9 days for long and brief (1-min) assessment. The brief assessment showed average correlation coefficients of 0.92 +/- 0.12 and 0.95 +/- 0.02 between instantaneous HRs/BRs detected by the PZT sensor and ECG/IPG in 27 and 11 neonates examined. During the long assessment, the HR detection rate by the PZT sensor was approximately 10% lower than that by ECG (82.6 +/- 12.9 vs. 91.8 +/- 4.1%; p = 0.001, n = 27), although comparable (90.3 +/- 4.1 vs. 92.5 +/- 3.4%, p = 0.081) in approximately 70% (18/27) of neonates examined; BR detection rate was comparable between the PZT sensor and IPG during relatively stable signal conditions (95.9 +/- 4.0 vs. 95.3 +/- 3.5%; p = 0.38, n = 11). The PZT sensor caused neither skin damage nor body movement increase in all neonates examined. The PZT sensor is noninvasive and does not cause skin irritation, and we believe it does provide a reliable, accurate cardiorespiratory monitoring tool for use in the NICU, although the issue of mechanical-ventilation noise remains to be solved. Copyright 2010 S. Karger AG, Basel.
A robust approach for ECG-based analysis of cardiopulmonary coupling.
Zheng, Jiewen; Wang, Weidong; Zhang, Zhengbo; Wu, Dalei; Wu, Hao; Peng, Chung-Kang
2016-07-01
Deriving respiratory signal from a surface electrocardiogram (ECG) measurement has advantage of simultaneously monitoring of cardiac and respiratory activities. ECG-based cardiopulmonary coupling (CPC) analysis estimated by heart period variability and ECG-derived respiration (EDR) shows promising applications in medical field. The aim of this paper is to provide a quantitative analysis of the ECG-based CPC, and further improve its performance. Two conventional strategies were tested to obtain EDR signal: R-S wave amplitude and area of the QRS complex. An adaptive filter was utilized to extract the common component of inter-beat interval (RRI) and EDR, generating enhanced versions of EDR signal. CPC is assessed through probing the nonlinear phase interactions between RRI series and respiratory signal. Respiratory oscillations presented in both RRI series and respiratory signals were extracted by ensemble empirical mode decomposition for coupling analysis via phase synchronization index. The results demonstrated that CPC estimated from conventional EDR series exhibits constant and proportional biases, while that estimated from enhanced EDR series is more reliable. Adaptive filtering can improve the accuracy of the ECG-based CPC estimation significantly and achieve robust CPC analysis. The improved ECG-based CPC estimation may provide additional prognostic information for both sleep medicine and autonomic function analysis. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
A system for intelligent home care ECG upload and priorisation.
D'Angelo, Lorenzo T; Tarita, Eugeniu; Zywietz, Tosja K; Lueth, Tim C
2010-01-01
In this contribution, a system for internet based, automated home care ECG upload and priorisation is presented for the first time. It unifies the advantages of existing telemonitoring ECG systems adding functionalities such as automated priorisation and usability for home care. Chronic cardiac diseases are a big group in the geriatric field. Most of them can be easily diagnosed with help of an electrocardiogram. A frequent or long-term ECG analysis allows early diagnosis of e.g. a cardiac infarction. Nevertheless, patients often aren't willing to visit a doctor for prophylactic purposes. Possible solutions of this problem are home care devices, which are used to investigate patients at home without the presence of a doctor on site. As the diffusion of such systems leads to a huge amount of data which has to be managed and evaluated, the presented approach focuses on an easy to use software for ECG upload from home, a web based management application and an algorithm for ECG preanalysis and priorisation.
Fully Textile, PEDOT:PSS Based Electrodes for Wearable ECG Monitoring Systems.
Pani, Danilo; Dessi, Alessia; Saenz-Cogollo, Jose F; Barabino, Gianluca; Fraboni, Beatrice; Bonfiglio, Annalisa
2016-03-01
To evaluate a novel kind of textile electrodes based on woven fabrics treated with PSS, through an easy fabrication process, testing these electrodes for biopotential recordings. Fabrication is based on raw fabric soaking in PSS using a second dopant, squeezing and annealing. The electrodes have been tested on human volunteers, in terms of both skin contact impedance and quality of the ECG signals recorded at rest and during physical activity (power spectral density, baseline wandering, QRS detectability, and broadband noise). The electrodes are able to operate in both wet and dry conditions. Dry electrodes are more prone to noise artifacts, especially during physical exercise and mainly due to the unstable contact between the electrode and the skin. Wet (saline) electrodes present a stable and reproducible behavior, which is comparable or better than that of traditional disposable gelled Ag/AgCl electrodes. The achieved results reveal the capability of this kind of electrodes to work without the electrolyte, providing a valuable interface with the skin, due to mixed electronic and ionic conductivity of PSS. These electrodes can be effectively used for acquiring ECG signals. Textile electrodes based on PSS represent an important milestone in wearable monitoring, as they present an easy and reproducible fabrication process, very good performance in wet and dry (at rest) conditions and a superior level of comfort with respect to textile electrodes proposed so far. This paves the way to their integration into smart garments.
Real-Time Monitoring and Analysis of Zebrafish Electrocardiogram with Anomaly Detection.
Lenning, Michael; Fortunato, Joseph; Le, Tai; Clark, Isaac; Sherpa, Ang; Yi, Soyeon; Hofsteen, Peter; Thamilarasu, Geethapriya; Yang, Jingchun; Xu, Xiaolei; Han, Huy-Dung; Hsiai, Tzung K; Cao, Hung
2017-12-28
Heart disease is the leading cause of mortality in the U.S. with approximately 610,000 people dying every year. Effective therapies for many cardiac diseases are lacking, largely due to an incomplete understanding of their genetic basis and underlying molecular mechanisms. Zebrafish ( Danio rerio ) are an excellent model system for studying heart disease as they enable a forward genetic approach to tackle this unmet medical need. In recent years, our team has been employing electrocardiogram (ECG) as an efficient tool to study the zebrafish heart along with conventional approaches, such as immunohistochemistry, DNA and protein analyses. We have overcome various challenges in the small size and aquatic environment of zebrafish in order to obtain ECG signals with favorable signal-to-noise ratio (SNR), and high spatial and temporal resolution. In this paper, we highlight our recent efforts in zebrafish ECG acquisition with a cost-effective simplified microelectrode array (MEA) membrane providing multi-channel recording, a novel multi-chamber apparatus for simultaneous screening, and a LabVIEW program to facilitate recording and processing. We also demonstrate the use of machine learning-based programs to recognize specific ECG patterns, yielding promising results with our current limited amount of zebrafish data. Our solutions hold promise to carry out numerous studies of heart diseases, drug screening, stem cell-based therapy validation, and regenerative medicine.
Real-Time Monitoring and Analysis of Zebrafish Electrocardiogram with Anomaly Detection
Lenning, Michael; Fortunato, Joseph; Le, Tai; Clark, Isaac; Sherpa, Ang; Yi, Soyeon; Hofsteen, Peter; Thamilarasu, Geethapriya; Yang, Jingchun; Xu, Xiaolei; Hsiai, Tzung K.; Cao, Hung
2017-01-01
Heart disease is the leading cause of mortality in the U.S. with approximately 610,000 people dying every year. Effective therapies for many cardiac diseases are lacking, largely due to an incomplete understanding of their genetic basis and underlying molecular mechanisms. Zebrafish (Danio rerio) are an excellent model system for studying heart disease as they enable a forward genetic approach to tackle this unmet medical need. In recent years, our team has been employing electrocardiogram (ECG) as an efficient tool to study the zebrafish heart along with conventional approaches, such as immunohistochemistry, DNA and protein analyses. We have overcome various challenges in the small size and aquatic environment of zebrafish in order to obtain ECG signals with favorable signal-to-noise ratio (SNR), and high spatial and temporal resolution. In this paper, we highlight our recent efforts in zebrafish ECG acquisition with a cost-effective simplified microelectrode array (MEA) membrane providing multi-channel recording, a novel multi-chamber apparatus for simultaneous screening, and a LabVIEW program to facilitate recording and processing. We also demonstrate the use of machine learning-based programs to recognize specific ECG patterns, yielding promising results with our current limited amount of zebrafish data. Our solutions hold promise to carry out numerous studies of heart diseases, drug screening, stem cell-based therapy validation, and regenerative medicine. PMID:29283402
NASA Astrophysics Data System (ADS)
Cosoli, G.; Casacanditella, L.; Tomasini, E. P.; Scalise, L.
2016-06-01
The assessment of the heart rate variability (HRV) is of utmost importance, being one of the most promising markers of the activity of the autonomic nervous system and associated to cardiovascular mortality. Different signals can be used to perform HRV, primarily electrocardiography (ECG), photoplethysmography (PPG), phonocardiography (PCG) or vibrocardiography (VCG), since the fundamental aspect is the individuation of a periodic feature strictly correlated with cardiac activity (i.e. R-peak in ECG or the first sound in PCG). In this work, the authors demonstrate that the VCG performances in HRV analysis are sufficiently accurate if compared to the ones measured by ECG (i.e. standard methodology); moreover, the authors want to prove the feasibility of such measurement in correspondence of different measurement points (i.e. carotid artery—which is the typical VCG measurement point—and the radial artery on the wrist)1. Results show that VCG has a mean deviation of <1 bpm with respect to ECG in heart rate (HR) measurement; carotid artery is the most accurate site for the assessment, but also the radial artery is a valid site, even if with a reduced SNR. With regards to HRV parameters, the mean percentage deviation is <10% in correspondence of carotid artery, and ≈16% for the radial artery. So, VCG allows for non-contact monitoring of the cardiac activity.
Real time reconstruction of quasiperiodic multi parameter physiological signals
NASA Astrophysics Data System (ADS)
Ganeshapillai, Gartheeban; Guttag, John
2012-12-01
A modern intensive care unit (ICU) has automated analysis systems that depend on continuous uninterrupted real time monitoring of physiological signals such as electrocardiogram (ECG), arterial blood pressure (ABP), and photo-plethysmogram (PPG). These signals are often corrupted by noise, artifacts, and missing data. We present an automated learning framework for real time reconstruction of corrupted multi-parameter nonstationary quasiperiodic physiological signals. The key idea is to learn a patient-specific model of the relationships between signals, and then reconstruct corrupted segments using the information available in correlated signals. We evaluated our method on MIT-BIH arrhythmia data, a two-channel ECG dataset with many clinically significant arrhythmias, and on the CinC challenge 2010 data, a multi-parameter dataset containing ECG, ABP, and PPG. For each, we evaluated both the residual distance between the original signals and the reconstructed signals, and the performance of a heartbeat classifier on a reconstructed ECG signal. At an SNR of 0 dB, the average residual distance on the CinC data was roughly 3% of the energy in the signal, and on the arrhythmia database it was roughly 16%. The difference is attributable to the large amount of diversity in the arrhythmia database. Remarkably, despite the relatively high residual difference, the classification accuracy on the arrhythmia database was still 98%, indicating that our method restored the physiologically important aspects of the signal.
The IMPACT shirt: textile integrated and portable impedance cardiography.
Ulbrich, Mark; Mühlsteff, Jens; Sipilä, Auli; Kamppi, Merja; Koskela, Anne; Myry, Manu; Wan, Tingting; Leonhardt, Steffen; Walter, Marian
2014-06-01
Measurement of hemodynamic parameters such as stroke volume (SV) via impedance cardiography (ICG) is an easy, non-invasive and inexpensive way to assess the health status of the heart. We present a possibility to use this technology for monitoring risk patients at home. The IMPACT Shirt (IMPedAnce Cardiography Textile) has been developed with integrated textile electrodes and textile wiring, as well as with portable miniaturized hardware. Several textile materials were characterized in vitro and in vivo to analyze their performance with regard to washability, and electrical characteristics such as skin-electrode impedance, capacitive coupling and subjective tactile feeling. The small lightweight hardware measures ECG and ICG continuously and transmits wireless data via Bluetooth to a mobile phone (Android) or PC for further analysis. A lithium polymer battery supplies the circuit and can be charged via a micro-USB. Results of a proof-of-concept trial show excellent agreement between SV assessed by a commercial device and the developed system. The IMPACT Shirt allows monitoring of SV and ECG on a daily basis at the patient's home.
An ultra low power ECG signal processor design for cardiovascular disease detection.
Jain, Sanjeev Kumar; Bhaumik, Basabi
2015-08-01
This paper presents an ultra low power ASIC design based on a new cardiovascular disease diagnostic algorithm. This new algorithm based on forward search is designed for real time ECG signal processing. The algorithm is evaluated for Physionet PTB database from the point of view of cardiovascular disease diagnosis. The failed detection rate of QRS complex peak detection of our algorithm ranges from 0.07% to 0.26% for multi lead ECG signal. The ASIC is designed using 130-nm CMOS low leakage process technology. The area of ASIC is 1.21 mm(2). This ASIC consumes only 96 nW at an operating frequency of 1 kHz with a supply voltage of 0.9 V. Due to ultra low power consumption, our proposed ASIC design is most suitable for energy efficient wearable ECG monitoring devices.
A total patient monitoring system for point-of-care applications
NASA Astrophysics Data System (ADS)
Whitchurch, Ashwin K.; Abraham, Jose K.; Varadan, Vijay K.
2007-04-01
Traditionally, home care for chronically ill patients and the elderly requires periodic visits to the patient's home by doctors or healthcare personnel. During these visits, the visiting person usually records the patient's vital signs and takes decisions as to any change in treatment and address any issues that the patient may have. Patient monitoring systems have since changed this scenario by significantly reducing the number of home visits while not compromising on continuous monitoring. This paper describes the design and development of a patient monitoring systems capable of concurrent remote monitoring of 8 patient-worn sensors: Electroencephalogram (EEG), Electrocardiogram (ECG), temperature, airflow pressure, movement and chest expansion. These sensors provide vital signs useful for monitoring the health of chronically ill patients and alerts can be raised if certain specified signal levels fall above or below a preset threshold value. The data from all eight sensors are digitally transmitted to a PC or to a standalone network appliance which relays the data through an available internet connection to the remote monitoring client. Thus it provides a real-time rendering of the patient's health at a remote location.
Pulseless electrical activity: a misdiagnosed entity during asphyxia in newborn infants?
Patel, Sparsh; Cheung, Po-Yin; Solevåg, Anne Lee; Barrington, Keith J; Kamlin, C Omar Farouk; Davis, Peter G; Schmölzer, Georg M
2018-06-12
The 2015 neonatal resuscitation guidelines added ECG as a recommended method of assessment of an infant's heart rate (HR) when determining the need for resuscitation at birth. However, a recent case report raised concerns about this technique in the delivery room. To compare accuracy of ECG with auscultation to assess asystole in asphyxiated piglets. Neonatal piglets had the right common carotid artery exposed and enclosed with a real-time ultrasonic flow probe and HR was continuously measured and recorded using ECG. This set-up allowed simultaneous monitoring of HR via ECG and carotid blood flow (CBF). The piglets were exposed to 30 min normocapnic alveolar hypoxia followed by asphyxia until asystole, achieved by disconnecting the ventilator and clamping the endotracheal tube. Asystole was defined as zero carotid blood flow and was compared with ECG traces and auscultation for heart sounds using a neonatal/infant stethoscope. Overall, 54 piglets were studied with a median (IQR) duration of asphyxia of 325 (200-491) s. In 14 (26%) piglets, CBF, ECG and auscultation identified asystole. In 23 (43%) piglets, we observed no CBF and no audible heart sounds, while ECG displayed an HR ranging from 15 to 80/min. Sixteen (30%) piglets remained bradycardic (defined as HR of <100/min) after 10 min of asphyxia, identified by CBF, ECG and auscultation. Clinicians should be aware of the potential inaccuracy of ECG assessment during asphyxia in newborn infants and should rather rely on assessment using a combination of auscultation, palpation, pulse oximetry and ECG. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Cardiac arrhythmia induced by interferon beta-1a.
Kastalli, Sarrah; El Aïdli, Sihem; Mourali, Sami; Zaïem, Ahmed; Daghfous, Riadh; Lakhal, Mohamed
2012-04-01
Cardiac adverse effects have never been reported with interferon (INF) beta. We report a case of left bundle branch block in a 35-year-old woman treated with INF beta-1a for multiple sclerosis. Five years after INF therapy, she presented loss of consciousness, retrosternal pains, short breath and lowered tolerance of effort. ECG and Holter 24-h ECG monitoring revealed permanent complete left bundle branch block. Nine months after stopping INF, no abnormalities were found at ECG and echocardiogram examination. © 2011 The Authors Fundamental and Clinical Pharmacology © 2011 Société Française de Pharmacologie et de Thérapeutique.
Electrocardiogram findings in emergency department patients with syncope.
Quinn, James; McDermott, Daniel
2011-07-01
To determine the sensitivity and specificity of the San Francisco Syncope Rule (SFSR) electrocardiogram (ECG) criteria for determining cardiac outcomes and to define the specific ECG findings that are the most important in patients with syncope. A consecutive cohort of emergency department (ED) patients with syncope or near syncope was considered. The treating emergency physicians assessed 50 predictor variables, including an ECG and rhythm assessment. For the ECG assessment, the physicians were asked to categorize the ECG as normal or abnormal based on any changes that were old or new. They also did a separate rhythm assessment and could use any of the ECGs or available monitoring strips, including prehospital strips, when making this assessment. All patients were followed up to determine a broad composite study outcome. The final ECG criterion for the SFSR was any nonsinus rhythm or new ECG changes. In this specific study, the initial assessments in the database were used to determine only cardiac-related outcomes (arrhythmia, myocardial infarction, structural, sudden death) based on set criteria, and the authors determined the sensitivity and specificity of the ECG criteria for cardiac outcomes only. All ECGs classified as "abnormal" by the study criteria were compared to the official cardiology reading to determine specific findings on the ECG. Univariate and multivariate analysis were used to determine important specific ECG and rhythm findings. A total of 684 consecutive patients were considered, with 218 having positive ECG criteria and 42 (6%) having important cardiac outcomes. ECG criteria predicted 36 of 42 patients with cardiac outcomes, with a sensitivity of 86% (95% confidence interval [CI] = 71% to 94%), a specificity of 70% (95% CI = 66% to 74%), and a negative predictive value of 99% (95% CI = 97% to 99%). Regarding specific ECG findings, any nonsinus rhythm from any source and any left bundle conduction problem (i.e., any left bundle branch block, left anterior fascicular block, left posterior fascicular block, or QRS widening) were 2.5 and 3.5 times more likely associated with significant cardiac outcomes. The ECG criteria from the SFSR are relatively simple, and if used correctly can help predict which patients are at risk of cardiac outcomes. Furthermore, any left bundle branch block conduction problems or any nonsinus rhythms found during the ED stay should be especially concerning for physicians caring for patients presenting with syncope. © 2011 by the Society for Academic Emergency Medicine.
George, Jason; Abdulla, Rami Khoury; Yeow, Raymond; Aggarwal, Anshul; Boura, Judith; Wegner, James; Franklin, Barry A
2017-02-15
Our increasingly sedentary lifestyle is associated with a heightened risk of obesity, diabetes, heart disease, and cardiovascular mortality. Using the recently developed heart rate index formula in 843 patients (mean ± SD age 62.3 ± 15.7 years) who underwent 24-hour ambulatory electrocardiographic (ECG) monitoring, we estimated average and peak daily energy expenditure, expressed as metabolic equivalents (METs), and related these data to subsequent hospital encounters and health care costs. In this cohort, estimated daily average and peak METs were 1.7 ± 0.7 and 5.5 ± 2.1, respectively. Patients who achieved daily bouts of peak energy expenditure ≥5 METs had fewer hospital encounters (p = 0.006) and median health care costs that were nearly 50% lower (p <0.001) than their counterparts who attained <5 METs. In patients whose body mass index was ≥30 kg/m 2 , there were significant differences in health care costs depending on whether they achieved <5 or ≥5 METs estimated by ambulatory ECG monitoring (p = 0.005). Interestingly, patients who achieved ≥5 METs had lower and no significant difference in their health care costs, regardless of their body mass index (p = 0.46). Patients with previous percutaneous coronary intervention who achieved ≥5 METs had lower health care costs (p = 0.044) and fewer hospital encounters (p = 0.004) than those who achieved <5 METs. In conclusion, average and peak daily energy expenditures estimated from ambulatory ECG monitoring may provide useful information regarding health care utilization in patients with and without previous percutaneous coronary intervention, irrespective of body habitus. Our findings are the first to link lower intensities of peak daily energy expenditure, estimated from ambulatory ECG monitoring, with increased health care utilization. Copyright © 2016 Elsevier Inc. All rights reserved.
A remote patient monitoring system using a Java-enabled 3G mobile phone.
Zhang, Pu; Kogure, Yuichi; Matsuoka, Hiroki; Akutagawa, Masatake; Kinouchi, Yohsuke; Zhang, Qinyu
2007-01-01
Telemedicine systems have become an important supporting for the medical staffs. As the development of the mobile phones, it is possible to apply the mobile phones to be a part of telemedicine systems. We developed an innovative Remote Patient Monitoring System using a Java-enabled 3G mobile phone. By using this system, doctors can monitor the vital biosignals of patients in ICU/CCU, such as ECG, RESP, SpO2, EtCO2 and so on by using the real-time waveform and data monitoring and list trend data monitoring functions of installed Java jiglet application on the mobile phone. Futhermore, doctors can check the patients' information by using the patient information checking function. The 3G mobile phone used has the ability to implement the application as the same time as being used to mak a voice call. Therefore, the doctor can get more and more information both from the browsing the screen of the mobile phone and the communicating with the medical staffs who are beside the patients and the monitors. The system can be conducted to evaluate the diagnostic accuracy, efficiency, and safety of telediagnosis.
A deep convolutional neural network model to classify heartbeats.
Acharya, U Rajendra; Oh, Shu Lih; Hagiwara, Yuki; Tan, Jen Hong; Adam, Muhammad; Gertych, Arkadiusz; Tan, Ru San
2017-10-01
The electrocardiogram (ECG) is a standard test used to monitor the activity of the heart. Many cardiac abnormalities will be manifested in the ECG including arrhythmia which is a general term that refers to an abnormal heart rhythm. The basis of arrhythmia diagnosis is the identification of normal versus abnormal individual heart beats, and their correct classification into different diagnoses, based on ECG morphology. Heartbeats can be sub-divided into five categories namely non-ectopic, supraventricular ectopic, ventricular ectopic, fusion, and unknown beats. It is challenging and time-consuming to distinguish these heartbeats on ECG as these signals are typically corrupted by noise. We developed a 9-layer deep convolutional neural network (CNN) to automatically identify 5 different categories of heartbeats in ECG signals. Our experiment was conducted in original and noise attenuated sets of ECG signals derived from a publicly available database. This set was artificially augmented to even out the number of instances the 5 classes of heartbeats and filtered to remove high-frequency noise. The CNN was trained using the augmented data and achieved an accuracy of 94.03% and 93.47% in the diagnostic classification of heartbeats in original and noise free ECGs, respectively. When the CNN was trained with highly imbalanced data (original dataset), the accuracy of the CNN reduced to 89.07%% and 89.3% in noisy and noise-free ECGs. When properly trained, the proposed CNN model can serve as a tool for screening of ECG to quickly identify different types and frequency of arrhythmic heartbeats. Copyright © 2017 Elsevier Ltd. All rights reserved.
Park, Sung Min; Lee, Jin Hong; Choi, Seong Wook
2014-12-01
The ventricular electrocardiogram (v-ECG) was developed for long-term monitoring of heartbeats in patients with a left ventricular assist device (LVAD) and does not normally have the functionality necessary to detect additional heart irregularities that can progress to critical arrhythmias. Although the v-ECG has the benefits of physiological optimization and counterpulsation control, when abnormal heartbeats occur, the v-ECG does not show the distinct abnormal waveform that enables easy detection of an abnormal heartbeat among normal heartbeats on the conventional ECG. In this study, the v-ECGs of normal and abnormal heartbeats are compared with each other with respect to peak-to-peak voltage, area, and maximal slopes, and a new method to detect abnormal heartbeats is suggested. In a series of animal experiments with three porcine models (Yorkshire pigs weighing 30-40 kg), a v-ECG and conventional ECG were taken simultaneously during LVAD perfusion. Clinical experts found 104 abnormal heartbeats from the saved conventional ECG data and confirmed that the other 3159 heartbeats were normal. Almost all of the abnormal heartbeats were premature ventricular contractions (PVCs), and there was short-term tachycardia for 3 s. A personal computer was used to automatically detect abnormal heartbeats with the v-ECG according to the new method, and its results were compared with the clinicians' results. The new method found abnormal heartbeats with 90% accuracy, and less than 15% of the total PVCs were missed. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Smart wireless sensor for physiological monitoring.
Tomasic, Ivan; Avbelj, Viktor; Trobec, Roman
2015-01-01
Presented is a wireless body sensor capable of measuring local potential differences on a body surface. By using on-sensor signal processing capabilities, and developed algorithms for off-line signal processing on a personal computing device, it is possible to record single channel ECG, heart rate, breathing rate, EMG, and when three sensors are applied, even the 12-lead ECG. The sensor is portable, unobtrusive, and suitable for both inpatient and outpatient monitoring. The paper presents the sensor's hardware and results of power consumption analysis. The sensor's capabilities of recording various physiological parameters are also presented and illustrated. The paper concludes with envisioned sensor's future developments and prospects.
A Digital Compressed Sensing-Based Energy-Efficient Single-Spot Bluetooth ECG Node
Cai, Zhipeng; Zou, Fumin; Zhang, Xiangyu
2018-01-01
Energy efficiency is still the obstacle for long-term real-time wireless ECG monitoring. In this paper, a digital compressed sensing- (CS-) based single-spot Bluetooth ECG node is proposed to deal with the challenge in wireless ECG application. A periodic sleep/wake-up scheme and a CS-based compression algorithm are implemented in a node, which consists of ultra-low-power analog front-end, microcontroller, Bluetooth 4.0 communication module, and so forth. The efficiency improvement and the node's specifics are evidenced by the experiments using the ECG signals sampled by the proposed node under daily activities of lay, sit, stand, walk, and run. Under using sparse binary matrix (SBM), block sparse Bayesian learning (BSBL) method, and discrete cosine transform (DCT) basis, all ECG signals were essentially undistorted recovered with root-mean-square differences (PRDs) which are less than 6%. The proposed sleep/wake-up scheme and data compression can reduce the airtime over energy-hungry wireless links, the energy consumption of proposed node is 6.53 mJ, and the energy consumption of radio decreases 77.37%. Moreover, the energy consumption increase caused by CS code execution is negligible, which is 1.3% of the total energy consumption. PMID:29599945
A Digital Compressed Sensing-Based Energy-Efficient Single-Spot Bluetooth ECG Node.
Luo, Kan; Cai, Zhipeng; Du, Keqin; Zou, Fumin; Zhang, Xiangyu; Li, Jianqing
2018-01-01
Energy efficiency is still the obstacle for long-term real-time wireless ECG monitoring. In this paper, a digital compressed sensing- (CS-) based single-spot Bluetooth ECG node is proposed to deal with the challenge in wireless ECG application. A periodic sleep/wake-up scheme and a CS-based compression algorithm are implemented in a node, which consists of ultra-low-power analog front-end, microcontroller, Bluetooth 4.0 communication module, and so forth. The efficiency improvement and the node's specifics are evidenced by the experiments using the ECG signals sampled by the proposed node under daily activities of lay, sit, stand, walk, and run. Under using sparse binary matrix (SBM), block sparse Bayesian learning (BSBL) method, and discrete cosine transform (DCT) basis, all ECG signals were essentially undistorted recovered with root-mean-square differences (PRDs) which are less than 6%. The proposed sleep/wake-up scheme and data compression can reduce the airtime over energy-hungry wireless links, the energy consumption of proposed node is 6.53 mJ, and the energy consumption of radio decreases 77.37%. Moreover, the energy consumption increase caused by CS code execution is negligible, which is 1.3% of the total energy consumption.
Carel, R S
1982-04-01
The cost-effectiveness of a computerized ECG interpretation system in an ambulatory health care organization has been evaluated in comparison with a conventional (manual) system. The automated system was shown to be more cost-effective at a minimum load of 2,500 patients/month. At larger monthly loads an even greater cost-effectiveness was found, the average cost/ECG being about $2. In the manual system the cost/unit is practically independent of patient load. This is primarily due to the fact that 87% of the cost/ECG is attributable to wages and fees of highly trained personnel. In the automated system, on the other hand, the cost/ECG is heavily dependent on examinee load. This is due to the relatively large impact of equipment depreciation on fixed (and total) cost. Utilization of a computer-assisted system leads to marked reduction in cardiologists' interpretation time, substantially shorter turnaround time (of unconfirmed reports), and potential provision of simultaneous service at several remotely located "heart stations."
Missing RRI interpolation for HRV analysis using locally-weighted partial least squares regression.
Kamata, Keisuke; Fujiwara, Koichi; Yamakawa, Toshiki; Kano, Manabu
2016-08-01
The R-R interval (RRI) fluctuation in electrocardiogram (ECG) is called heart rate variability (HRV). Since HRV reflects autonomic nervous function, HRV-based health monitoring services, such as stress estimation, drowsy driving detection, and epileptic seizure prediction, have been proposed. In these HRV-based health monitoring services, precise R wave detection from ECG is required; however, R waves cannot always be detected due to ECG artifacts. Missing RRI data should be interpolated appropriately for HRV analysis. The present work proposes a missing RRI interpolation method by utilizing using just-in-time (JIT) modeling. The proposed method adopts locally weighted partial least squares (LW-PLS) for RRI interpolation, which is a well-known JIT modeling method used in the filed of process control. The usefulness of the proposed method was demonstrated through a case study of real RRI data collected from healthy persons. The proposed JIT-based interpolation method could improve the interpolation accuracy in comparison with a static interpolation method.
Heart Rate and Electrocardiography Monitoring in Mice
Ho, David; Zhao, Xin; Gao, Shumin; Hong, Chull; Vatner, Dorothy E.; Vatner, Stephen F.
2011-01-01
The majority of current cardiovascular research involves studies in genetically engineered mouse models. The measurement of heart rate is central to understanding cardiovascular control under normal conditions, with altered autonomic tone, superimposed stress or disease states, both in wild type mice as well as those with altered genes. Electrocardiography (ECG) is the “gold standard” using either hard wire or telemetry transmission. In addition, heart rate is measured or monitored from the frequency of the arterial pressure pulse or cardiac contraction, or by pulse oximetry. For each of these techniques, discussions of materials and methods, as well as advantages and limitations are covered. However, only the direct ECG monitoring will determine not only the precise heart rates but also whether the cardiac rhythm is normal or not. PMID:21743842
Lux, Robert L.; Sower, Christopher Todd; Allen, Nancy; Etheridge, Susan P.; Tristani-Firouzi, Martin; Saarel, Elizabeth V.
2014-01-01
Background Precise measurement of the QT interval is often hampered by difficulty determining the end of the low amplitude T wave. Root mean square electrocardiography (RMS ECG) provides a novel alternative measure of ventricular repolarization. Experimental data have shown that the interval between the RMS ECG QRS and T wave peaks (RTPK) closely reflects the mean ventricular action potential duration while the RMS T wave width (TW) tracks the dispersion of repolarization timing. Here, we tested the precision of RMS ECG to assess ventricular repolarization in humans in the setting of drug-induced and congenital Long QT Syndrome (LQTS). Methods RMS ECG signals were derived from high-resolution 24 hour Holter monitor recordings from 68 subjects after receiving placebo and moxifloxacin and from standard 12 lead ECGs obtained in 97 subjects with LQTS and 97 age- and sex-matched controls. RTPK, QTRMS and RMS TW intervals were automatically measured using custom software and compared to traditional QT measures using lead II. Results All measures of repolarization were prolonged during moxifloxacin administration and in LQTS subjects, but the variance of RMS intervals was significantly smaller than traditional lead II measurements. TW was prolonged during moxifloxacin and in subjects with LQT-2, but not LQT-1 or LQT-3. Conclusion These data validate the application of RMS ECG for the detection of drug-induced and congenital LQTS. RMS ECG measurements are more precise than the current standard of care lead II measurements. PMID:24454918
Lux, Robert L; Sower, Christopher Todd; Allen, Nancy; Etheridge, Susan P; Tristani-Firouzi, Martin; Saarel, Elizabeth V
2014-01-01
Precise measurement of the QT interval is often hampered by difficulty determining the end of the low amplitude T wave. Root mean square electrocardiography (RMS ECG) provides a novel alternative measure of ventricular repolarization. Experimental data have shown that the interval between the RMS ECG QRS and T wave peaks (RTPK) closely reflects the mean ventricular action potential duration while the RMS T wave width (TW) tracks the dispersion of repolarization timing. Here, we tested the precision of RMS ECG to assess ventricular repolarization in humans in the setting of drug-induced and congenital Long QT Syndrome (LQTS). RMS ECG signals were derived from high-resolution 24 hour Holter monitor recordings from 68 subjects after receiving placebo and moxifloxacin and from standard 12 lead ECGs obtained in 97 subjects with LQTS and 97 age- and sex-matched controls. RTPK, QTRMS and RMS TW intervals were automatically measured using custom software and compared to traditional QT measures using lead II. All measures of repolarization were prolonged during moxifloxacin administration and in LQTS subjects, but the variance of RMS intervals was significantly smaller than traditional lead II measurements. TW was prolonged during moxifloxacin and in subjects with LQT-2, but not LQT-1 or LQT-3. These data validate the application of RMS ECG for the detection of drug-induced and congenital LQTS. RMS ECG measurements are more precise than the current standard of care lead II measurements.
[Implementation of a hypertension protocol in a basic health area as a basis for a medical audit].
Vilaplana Vivancos, R; Tobías Ferrer, J
1994-04-15
To analyse compliance in the application of the Arterial Hypertension procedure and the level of monitoring of our hypertensive patients. To introduce quality control methodology into the Primary Care team's work systems. Observation study of a crossover type. Primary Care. Plaza Cataluña PCC, Manresa (Barcelona). Audit of 100 medical records of hypertensive patients selected by systematic random sampling from a total of 533 hypertensive patients under 70 years old. 43% of the hypertensive patients had their pressure figures adequately monitored (CI 95%: 33.3-52.7) with 4.86 average number of checks per year. Analytic blood controls were performed on 66% and urine controls on 56%. Only 34% of patients had a minimal cardiovascular investigation, while back-of-eye investigation and ECGs were performed on 44% and 49%, respectively. The arterial pressure monitoring level is acceptable. Compliance with the procedure is deficient in most complementary investigations. The periodicity of ECGs should be agreed. It is clear that patients for whom compliance with the procedure is most deficient are those who have fewer arterial pressure recordings as well as those receiving no drugs treatment. New objectives are proposed. Lastly, corrective measures are suggested, with a reassessment after two years.
Sankari, Ziad; Adeli, Hojjat
2011-04-01
A mobile medical device, dubbed HeartSaver, is developed for real-time monitoring of a patient's electrocardiogram (ECG) and automatic detection of several cardiac pathologies, including atrial fibrillation, myocardial infarction and atrio-ventricular block. HeartSaver is based on adroit integration of four different modern technologies: electronics, wireless communication, computer, and information technologies in the service of medicine. The physical device consists of four modules: sensor and ECG processing unit, a microcontroller, a link between the microcontroller and the cell phone, and mobile software associated with the system. HeartSaver includes automated cardiac pathology detection algorithms. These algorithms are simple enough to be implemented on a low-cost, limited-power microcontroller but powerful enough to detect the relevant cardiac pathologies. When an abnormality is detected, the microcontroller sends a signal to a cell phone. This operation triggers an application software on the cell phone that sends a text message transmitting information about patient's physiological condition and location promptly to a physician or a guardian. HeartSaver can be used by millions of cardiac patients with the potential to transform the cardiac diagnosis, care, and treatment and save thousands of lives. Copyright © 2011 Elsevier Ltd. All rights reserved.
QRS peak detection for heart rate monitoring on Android smartphone
NASA Astrophysics Data System (ADS)
Pambudi Utomo, Trio; Nuryani, Nuryani; Darmanto
2017-11-01
In this study, Android smartphone is used for heart rate monitoring and displaying electrocardiogram (ECG) graph. Heart rate determination is based on QRS peak detection. Two methods are studied to detect the QRS complex peak; they are Peak Threshold and Peak Filter. The acquisition of ECG data is utilized by AD8232 module from Analog Devices, three electrodes, and Microcontroller Arduino UNO R3. To record the ECG data from a patient, three electrodes are attached to particular body’s surface of a patient. Patient’s heart activity which is recorded by AD8232 module is decoded by Arduino UNO R3 into analog data. Then, the analog data is converted into a voltage value (mV) and is processed to get the QRS complex peak. Heart rate value is calculated by Microcontroller Arduino UNO R3 uses the QRS complex peak. Voltage, heart rate, and the QRS complex peak are sent to Android smartphone by Bluetooth HC-05. ECG data is displayed as the graph by Android smartphone. To evaluate the performance of QRS complex peak detection method, three parameters are used; they are positive predictive, accuracy and sensitivity. Positive predictive, accuracy, and sensitivity of Peak Threshold method is 92.39%, 70.30%, 74.62% and for Peak Filter method are 98.38%, 82.47%, 83.61%, respectively.
NASA Astrophysics Data System (ADS)
Varadan, Vijay K.; Kumar, Prashanth S.; Oh, Sechang; Mathur, Gyanesh N.; Rai, Pratyush; Kegley, Lauren
2011-04-01
Heart related ailments have been a major cause for deaths in both men and women in United States. Since 1985, more women than men have died due to cardiac or cardiovascular ailments for reasons that are not well understood as yet. Lack of a deterministic understanding of this phenomenon makes continuous real time monitoring of cardiovascular health the best approach for both early detection of pathophysiological changes and events indicative of chronic cardiovascular diseases in women. This approach requires sensor systems to be seamlessly mounted on day to day clothing for women. With this application in focus, this paper describes a e-bra platform for sensors towards heart rate monitoring. The sensors, nanomaterial or textile based dry electrodes, capture the heart activity signals in form Electrocardiograph (ECG) and relay it to a compact textile mountable amplifier-wireless transmitter module for relay to a smart phone. The ECG signal, acquired on the smart phone, can be transmitted to the cyber space for post processing. As an example, the paper discusses the heart rate estimation and heart rate variability. The data flow from sensor to smart phone to server (cyber infrastructure) has been discussed. The cyber infrastructure based signal post processing offers an opportunity for automated emergency response that can be initiated from the server or the smartphone itself. Detailed protocols for both the scenarios have been presented and their relevance to the present emergency healthcare response system has been discussed.
Fabregat-Andres, Oscar; Munoz-Macho, Adolfo; Adell-Beltran, Guillermo; Ibanez-Catala, Xavier; Macia, Agustin; Facila, Lorenzo
2014-01-01
Background Prevention of cardiac events during competitive sports is fundamental. New technologies with remote monitoring systems integrated into clothing could facilitate the screening of heart disease. Our aim was to evaluate the feasibility of Nuubo system during a field stress test performed by soccer players, comparing results with treadmill ergospirometry as test reference. Methods Nineteen male professional soccer players (19.2 ± 1.6 years) were studied. Wireless electrocardiographic monitoring during a Yo-Yo intermittent recovery test level 1 in soccer field and subsequent analysis of arrhythmias were firstly performed. Subsequently, in a period no longer than 4 weeks, each player underwent cardiopulmonary exercise testing in hospital. Results During Yo-Yo test, electrocardiogram (ECG) signal was interpretable in 16 players (84.2%). In the other three players, ECG artifacts did not allow a proper analysis. Estimation of maximum oxygen consumption was comparable between two exercise tests (VO2 max 53.3 ± 2.4 vs. 53.7 ± 3.0 mL/kg/min for Yo-Yo test and ergometry respectively; intra-class correlation coefficient 0.84 (0.63 - 0.93), P < 0.001). No arrhythmias were detected in any player during both tests. Conclusions The use of Nuubo’s technology allows an accurate single-lead electrocardiographic recording and estimation of reliable performance variables during exercise testing in field, and provides a new perspective to cardiac remote monitoring in collective sports. PMID:28348705
A review on digital ECG formats and the relationships between them.
Trigo, Jesús Daniel; Alesanco, Alvaro; Martínez, Ignacio; García, José
2012-05-01
A plethora of digital ECG formats have been proposed and implemented. This heterogeneity hinders the design and development of interoperable systems and entails critical integration issues for the healthcare information systems. This paper aims at performing a comprehensive overview on the current state of affairs of the interoperable exchange of digital ECG signals. This includes 1) a review on existing digital ECG formats, 2) a collection of applications and cardiology settings using such formats, 3) a compilation of the relationships between such formats, and 4) a reflection on the current situation and foreseeable future of the interoperable exchange of digital ECG signals. The objectives have been approached by completing and updating previous reviews on the topic through appropriate database mining. 39 digital ECG formats, 56 applications, tools or implantation experiences, 47 mappings/converters, and 6 relationships between such formats have been found in the literature. The creation and generalization of a single standardized ECG format is a desirable goal. However, this unification requires political commitment and international cooperation among different standardization bodies. Ongoing ontology-based approaches covering ECG domain have recently emerged as a promising alternative for reaching fully fledged ECG interoperability in the near future.
Development of a Multi-Channel, High Frequency QRS Electrocardiograph
NASA Technical Reports Server (NTRS)
DePalma, Jude L.
2003-01-01
With the advent of the ISS era and the potential requirement for increased cardiovascular monitoring of crewmembers during extended EVAs, NASA flight surgeons would stand to benefit from an evolving technology that allows for a more rapid diagnosis of myocardial ischemia compared to standard electrocardiography. Similarly, during the astronaut selection process, NASA flight surgeons and other physicians would also stand to benefit from a completely noninvasive technology that, either at rest or during maximal exercise tests, is more sensitive than standard ECG in identifying the presence of ischemia. Perhaps most importantly, practicing cardiologists and emergency medicine physicians could greatly benefit from such a device as it could augment (or even replace) standard electrocardiography in settings where the rapid diagnosis of myocardial ischemia (or the lack thereof) is required for proper clinical decision-making. A multi-channel, high-frequency QRS electrocardiograph is currently under development in the Life Sciences Research Laboratories at JSC. Specifically the project consisted of writing software code, some of which contained specially-designed digital filters, which will be incorporated into an existing commercial software program that is already designed to collect, plot and analyze conventional 12-lead ECG signals on a desktop, portable or palm PC. The software will derive the high-frequency QRS signals, which will be analyzed (in numerous ways) and plotted alongside of the conventional ECG signals, giving the PC-viewing clinician advanced diagnostic information that has never been available previously in all 12 ECG leads simultaneously. After the hardware and software for the advanced digital ECG monitor have been fully integrated, plans are to use the monitor to begin clinical studies both on healthy subjects and on patients with known coronary artery disease in both the outpatient and hospital settings. The ultimate goal is to get the technology out into the clinical world, where it has the potential to save lives.
Non-contact physiological signal detection using continuous wave Doppler radar.
Qiao, Dengyu; He, Tan; Hu, Boping; Li, Ye
2014-01-01
The aim of this work is to show non-contact physiological signal monitoring system based on continuous-wave (CW) Doppler radar, which is becoming highly attractive in the field of health care monitoring of elderly people. Two radar signal processing methods were introduced in this paper: one to extract respiration and heart rates of a single person and the other to separate mixed respiration signals. To verify the validity of the methods, physiological signal is obtained from stationary human subjects using a CW Doppler radar unit. The sensor operating at 24 GHz is located 0.5 meter away from the subject. The simulation results show that the respiration and heart rates are clearly extracted, and the mixed respiration signals are successfully separated. Finally, reference respiration and heart rate signals are measured by an ECG monitor and compared with the results tracked by the CW Doppler radar monitoring system.
Cardiac Care Assistance using Self Configured Sensor Network—a Remote Patient Monitoring System
NASA Astrophysics Data System (ADS)
Sarma Dhulipala, V. R.; Kanagachidambaresan, G. R.
2014-04-01
Pervasive health care systems are used to monitor patients remotely without disturbing the normal day-to-day activities in real-time. Wearable physiological sensors required to monitor various significant ecological parameters of the patients are connected to Body Central Unit (BCU). Body Sensor Network (BSN) updates data in real-time and are designed to transmit alerts against abnormalities which enables quick response by medical units in case of an emergency. BSN helps monitoring patient without any need for attention to the subject. BSN helps in reducing the stress and strain caused by hospital environment. In this paper, mathematical models for heartbeat signal, electro cardio graph (ECG) signal and pulse rate are introduced. These signals are compared and their RMS difference-fast Fourier transforms (PRD-FFT) are processed. In the context of cardiac arrest, alert messages of these parameters and first aid for post-surgical operations has been suggested.
Monitoring activities of daily living based on wearable wireless body sensor network.
Kańtoch, E; Augustyniak, P; Markiewicz, M; Prusak, D
2014-01-01
With recent advances in microprocessor chip technology, wireless communication, and biomedical engineering it is possible to develop miniaturized ubiquitous health monitoring devices that are capable of recording physiological and movement signals during daily life activities. The aim of the research is to implement and test the prototype of health monitoring system. The system consists of the body central unit with Bluetooth module and wearable sensors: the custom-designed ECG sensor, the temperature sensor, the skin humidity sensor and accelerometers placed on the human body or integrated with clothes and a network gateway to forward data to a remote medical server. The system includes custom-designed transmission protocol and remote web-based graphical user interface for remote real time data analysis. Experimental results for a group of humans who performed various activities (eg. working, running, etc.) showed maximum 5% absolute error compared to certified medical devices. The results are promising and indicate that developed wireless wearable monitoring system faces challenges of multi-sensor human health monitoring during performing daily activities and opens new opportunities in developing novel healthcare services.
Alday, Erick A Perez; Colman, Michael A; Langley, Philip; Zhang, Henggui
2017-03-01
Atrial tachy-arrhytmias, such as atrial fibrillation (AF), are characterised by irregular electrical activity in the atria, generally associated with erratic excitation underlain by re-entrant scroll waves, fibrillatory conduction of multiple wavelets or rapid focal activity. Epidemiological studies have shown an increase in AF prevalence in the developed world associated with an ageing society, highlighting the need for effective treatment options. Catheter ablation therapy, commonly used in the treatment of AF, requires spatial information on atrial electrical excitation. The standard 12-lead electrocardiogram (ECG) provides a method for non-invasive identification of the presence of arrhythmia, due to irregularity in the ECG signal associated with atrial activation compared to sinus rhythm, but has limitations in providing specific spatial information. There is therefore a pressing need to develop novel methods to identify and locate the origin of arrhythmic excitation. Invasive methods provide direct information on atrial activity, but may induce clinical complications. Non-invasive methods avoid such complications, but their development presents a greater challenge due to the non-direct nature of monitoring. Algorithms based on the ECG signals in multiple leads (e.g. a 64-lead vest) may provide a viable approach. In this study, we used a biophysically detailed model of the human atria and torso to investigate the correlation between the morphology of the ECG signals from a 64-lead vest and the location of the origin of rapid atrial excitation arising from rapid focal activity and/or re-entrant scroll waves. A focus-location algorithm was then constructed from this correlation. The algorithm had success rates of 93% and 76% for correctly identifying the origin of focal and re-entrant excitation with a spatial resolution of 40 mm, respectively. The general approach allows its application to any multi-lead ECG system. This represents a significant extension to our previously developed algorithms to predict the AF origins in association with focal activities.
Noninvasive health condition monitoring device for workers at high altitudes conditions.
Aqueveque, Pablo; Gutierrez, Cristopher; Saavedra, Francisco; Pino, Esteban J
2016-08-01
This work presents the design and implementation of a continuous monitoring device to control the health state of workers, for instance miners, at high altitudes. The extreme ambient conditions are harmful for peoples' health; therefore a continuous control of the workers' vital signs is necessary. The developed system includes physiological variables: electrocardiogram (ECG), respiratory activity and body temperature (BT), and ambient variables: ambient temperature (AT) and relative humidity (RH). The noninvasive sensors are incorporated in a t-shirt to deliver a functional device, and maximum comfort to the users. The device is able to continuously calculate heart rate (HR) and respiration rate (RR), and establish a wireless data transmission to a central monitoring station.
Realtime Multichannel System for Beat to Beat QT Interval Variability
NASA Technical Reports Server (NTRS)
Starc, Vito; Schlegel, Todd T.
2006-01-01
The measurement of beat-to-beat QT interval variability (QTV) shows clinical promise for identifying several types of cardiac pathology. However, until now, there has been no device capable of displaying, in real time on a beattobeat basis, changes in QTV in all 12 conventional leads in a continuously monitored patient. While several software programs have been designed to analyze QTV, heretofore, such programs have all involved only a few channels (at most) and/or have required laborious user interaction or offline calculations and postprocessing, limiting their clinical utility. This paper describes a PC-based ECG software program that in real time, acquires, analyzes and displays QTV and also PQ interval variability (PQV) in each of the eight independent channels that constitute the 12lead conventional ECG. The system also processes certain related signals that are derived from singular value decomposition and that help to reduce the overall effects of noise on the realtime QTV and PQV results.
Bio-integrated electronics and sensor systems
NASA Astrophysics Data System (ADS)
Yeo, Woon-Hong; Webb, R. Chad; Lee, Woosik; Jung, Sungyoung; Rogers, John A.
2013-05-01
Skin-mounted epidermal electronics, a strategy for bio-integrated electronics, provide an avenue to non-invasive monitoring of clinically relevant physiological signals for healthcare applications. Current conventional systems consist of single-point sensors fastened to the skin with adhesives, and sometimes with conducting gels, which limits their use outside of clinical settings due to loss of adhesion and irritation to the user. In order to facilitate extended use of skin-mounted healthcare sensors without disrupting everyday life, we envision electronic monitoring systems that integrate seamlessly with the skin below the notice of the user. This manuscript reviews recent significant results towards our goal of wearable electronic sensor systems for long-term monitoring of physiological signals. Ultra-thin epidermal electronic systems (EES) are demonstrated for extended use on the skin, in a conformal manner, including during everyday bathing and sleeping activities. We describe the assessment of clinically relevant physiological parameters, such as electrocardiograms (ECG), electromyograms (EMG), electroencephalograms (EEG), temperature, mechanical strain and thermal conductivity, using examples of multifunctional EES devices. Additionally, we demonstrate capability for real life application of EES by monitoring the system functionality, which has no discernible change, during cyclic fatigue testing.
Matsui, Takemi; Shinba, Toshikazu; Sun, Guanghao
2018-02-01
12.6% of major depressive disorder (MDD) patients have suicide intent, while it has been reported that 43% of patients did not consult their doctors for MDD, automated MDD screening is eagerly anticipated. Recently, in order to achieve automated screening of MDD, biomarkers such as multiplex DNA methylation profiles or physiological method using near infra-red spectroscopy (NIRS) have been studied, however, they require inspection using 96-well DNA ELIZA kit after blood sampling or significant cost. Using a single-lead electrocardiography (ECG), we developed a high-precision MDD screening system using transient autonomic responses induced by dual mental tasks. We developed a novel high precision MDD screening system which is composed of a single-lead ECG monitor, analogue to digital (AD) converter and a personal computer with measurement and analysis program written by LabView programming language. The system discriminates MDD patients from normal subjects using heat rate variability (HRV)-derived transient autonomic responses induced by dual mental tasks, i.e. verbal fluency task and random number generation task, via linear discriminant analysis (LDA) adopting HRV-related predictor variables (hear rate (HR), high frequency (HF), low frequency (LF)/HF). The proposed system was tested for 12 MDD patients (32 ± 15 years) under antidepressant treatment from Shizuoka Saiseikai General Hospital outpatient unit and 30 normal volunteers (37 ± 17 years) from Tokyo Metropolitan University. The proposed system achieved 100% sensitivity and 100% specificity in classifying 42 examinees into 12 MDD patients and 30 normal subjects. The proposed system appears promising for future HRV-based high-precision and low-cost screening of MDDs using only single-lead ECG.
Portable electrocardiogram device using Android smartphone.
Brucal, S G E; Clamor, G K D; Pasiliao, L A O; Soriano, J P F; Varilla, L P M
2016-08-01
Portable electrocardiogram (ECG) capturing device can be interfaced to a smart phone installed with an android-based application (app). This app processes and analyses the data sent by the device to provide an interpretation of the patient/user's heart current condition (e.g.: beats per minute, heart signal waveform, R-R interval). The ECG recorded by the app is stored in the smart phone's Secure Digital (SD) card and cloud storage which can be accessed remotely by a physician to aid in providing medical diagnosis. The project aims to help patients living at a far distance from hospitals and experience difficulty in consulting their physician for regular check-ups, and assist doctors in regularly monitoring their patient's heart condition. The hardware data acquisition device and software application were subjected to trials in a clinic with volunteer-patients to measure the ECG and heart rate, data saving speed on the SD card, success rate of the saved data and uploaded file. Different ECG tests using the project prototype were done for 12 patients/users and yielded a reading difference of 7.61% in an R-R interval reading and 5.35% in heart rate reading as compared with the cardiologist's conventional 12-electrode ECG machine. Using the developed ECG device, it took less than 5 seconds to save ECG reading using SD card and approximately 2 minutes to upload via cloud.
Fusion of ECG and ABP signals based on wavelet transform for cardiac arrhythmias classification.
Arvanaghi, Roghayyeh; Daneshvar, Sabalan; Seyedarabi, Hadi; Goshvarpour, Atefeh
2017-11-01
Each of Electrocardiogram (ECG) and Atrial Blood Pressure (ABP) signals contain information of cardiac status. This information can be used for diagnosis and monitoring of diseases. The majority of previously proposed methods rely only on ECG signal to classify heart rhythms. In this paper, ECG and ABP were used to classify five different types of heart rhythms. To this end, two mentioned signals (ECG and ABP) have been fused. These physiological signals have been used from MINIC physioNet database. ECG and ABP signals have been fused together on the basis of the proposed Discrete Wavelet Transformation fusion technique. Then, some frequency features were extracted from the fused signal. To classify the different types of cardiac arrhythmias, these features were given to a multi-layer perceptron neural network. In this study, the best results for the proposed fusion algorithm were obtained. In this case, the accuracy rates of 96.6%, 96.9%, 95.6% and 93.9% were achieved for two, three, four and five classes, respectively. However, the maximum classification rate of 89% was obtained for two classes on the basis of ECG features. It has been found that the higher accuracy rates were acquired by using the proposed fusion technique. The results confirmed the importance of fusing features from different physiological signals to gain more accurate assessments. Copyright © 2017 Elsevier B.V. All rights reserved.
Vukajlovic, Dejan; Gussak, Ihor; George, Samuel; Simic, Goran; Bojovic, Bosko; Hadzievski, Ljupco; Stojanovic, Bojan; Angelkov, Lazar; Panescu, Dorin
2011-01-01
Differential diagnosis of symptomatic events in post-ablation atrial fibrillation (AF) patients (pts) is important; in particular, accurate, reliable detection of AF or atrial flutter (AFL) is essential. However, existing remote monitoring devices usually require attached leads and are not suitable for prolonged monitoring; moreover, most do not provide sufficient information to assess atrial activity, since they generally monitor only 1-3 ECG leads and rely on RR interval variability for AF diagnosis. A new hand-held, wireless, symptom-activated event monitor (CardioBip; CB) does not require attached leads and hence can be conveniently used for extended periods. Moreover, CB provides data that enables remote reconstruction of full 12-lead ECG data including atrial signal information. We hypothesized that these CB features would enable accurate remote differential diagnosis of symptomatic arrhythmias in post-ablation AF pts. 21 pts who underwent catheter ablation for AF were instructed to make a CB transmission (TX) whenever palpitations, lightheadedness, or similar symptoms occurred, and at multiple times daily when asymptomatic, during a 60 day post-ablation time period. CB transmissions (TXs) were analyzed blindly by 2 expert readers, with differences adjudicated by consensus. 7 pts had no symptomatic episodes during the monitoring period. 14 of 21 pts had symptomatic events and made a total of 1699 TX, 164 of which were during symptoms. TX quality was acceptable for rhythm diagnosis and atrial activity in 96%. 118 TX from 10 symptomatic pts showed AF (96 TX from 10 pts) or AFL (22 TX from 3 pts), and 46 TX from 9 pts showed frequent PACs or PVCs. No other arrhythmias were detected. Five pts made symptomatic TX during AF/AFL and also during PACs/PVCs. Use of CB during symptomatic episodes enabled detection and differential diagnosis of symptomatic arrhythmias. The ability of CB to provide accurate reconstruction of 12 L ECGs including atrial activity, combined with its ease of use, makes it suitable for long-term surveillance for recurrent AF in post-ablation patients.
Wiesel, Joseph; Salomone, Thomas J
2017-10-15
Early detection of asymptomatic atrial fibrillation (AF) provides an opportunity to treat patients to reduce their risk of stroke. Long-term residents of skilled nursing facilities frequently have multiple risk factors for strokes due to AF and may benefit from screening for AF. Patients in a skilled nursing facility 65 years and older, without a history of AF and without a pacemaker or defibrillator, were evaluated using a Microlife WatchBP Home A automatic blood pressure monitor that can detect AF when set to a triple reading mode. Those with readings positive for AF were evaluated with a standard 12-lead electrocardiogram (ECG) or a 30-second single-channel ECG to confirm the presence of AF. A total of 101 patients were screened with an average age of 78 years, and 48 (48%) were female. Nine automatic blood pressure monitor readings were positive for possible AF. Of those, 7 (6.9%, 95% confidence intervals 3.0% to 14.2%) had AF confirmed with ECG. Only 2 (2%, 95% confidence interval 0.3% to 7.7%) were false-positive readings. One-time screening for AF using an automatic blood pressure monitor in a skilled nursing facility resulted in a high number of patients with newly diagnosed AF. Copyright © 2017 Elsevier Inc. All rights reserved.
Automated Epileptic Seizure Detection Based on Wearable ECG and PPG in a Hospital Environment
De Cooman, Thomas; Gu, Ying; Cleeren, Evy; Claes, Kasper; Van Paesschen, Wim; Van Huffel, Sabine; Hunyadi, Borbála
2017-01-01
Electrocardiography has added value to automatically detect seizures in temporal lobe epilepsy (TLE) patients. The wired hospital system is not suited for a long-term seizure detection system at home. To address this need, the performance of two wearable devices, based on electrocardiography (ECG) and photoplethysmography (PPG), are compared with hospital ECG using an existing seizure detection algorithm. This algorithm classifies the seizures on the basis of heart rate features, extracted from the heart rate increase. The algorithm was applied to recordings of 11 patients in a hospital setting with 701 h capturing 47 (fronto-)temporal lobe seizures. The sensitivities of the hospital system, the wearable ECG device and the wearable PPG device were respectively 57%, 70% and 32%, with corresponding false alarms per hour of 1.92, 2.11 and 1.80. Whereas seizure detection performance using the wrist-worn PPG device was considerably lower, the performance using the wearable ECG is proven to be similar to that of the hospital ECG. PMID:29027928
Automated Epileptic Seizure Detection Based on Wearable ECG and PPG in a Hospital Environment.
Vandecasteele, Kaat; De Cooman, Thomas; Gu, Ying; Cleeren, Evy; Claes, Kasper; Paesschen, Wim Van; Huffel, Sabine Van; Hunyadi, Borbála
2017-10-13
Electrocardiography has added value to automatically detect seizures in temporal lobe epilepsy (TLE) patients. The wired hospital system is not suited for a long-term seizure detection system at home. To address this need, the performance of two wearable devices, based on electrocardiography (ECG) and photoplethysmography (PPG), are compared with hospital ECG using an existing seizure detection algorithm. This algorithm classifies the seizures on the basis of heart rate features, extracted from the heart rate increase. The algorithm was applied to recordings of 11 patients in a hospital setting with 701 h capturing 47 (fronto-)temporal lobe seizures. The sensitivities of the hospital system, the wearable ECG device and the wearable PPG device were respectively 57%, 70% and 32%, with corresponding false alarms per hour of 1.92, 2.11 and 1.80. Whereas seizure detection performance using the wrist-worn PPG device was considerably lower, the performance using the wearable ECG is proven to be similar to that of the hospital ECG.
Epidermal electronic systems for sensing and therapy
NASA Astrophysics Data System (ADS)
Lu, Nanshu; Ameri, Shideh K.; Ha, Taewoo; Nicolini, Luke; Stier, Andrew; Wang, Pulin
2017-04-01
Epidermal electronic system is a class of hair thin, skin soft, stretchable sensors and electronics capable of continuous and long-term physiological sensing and clinical therapy when applied on human skin. The high cost of manpower, materials, and photolithographic facilities associated with its manufacture limit the availability of disposable epidermal electronics. We have invented a cost and time effective, completely dry, benchtop "cut-and-paste" method for the green, freeform and portable manufacture of epidermal electronics within minutes. We have applied the "cut-and-paste" method to manufacture epidermal electrodes, hydration and temperature sensors, conformable power-efficient heaters, as well as cuffless continuous blood pressure monitors out of metal thin films, two-dimensional (2D) materials, and piezoelectric polymer sheets. For demonstration purpose, we will discuss three examples of "cut-and-pasted" epidermal electronic systems in this paper. The first will be submicron thick, transparent epidermal graphene electrodes that can be directly transferred to human skin like a temporary transfer tattoo and can measure electrocardiogram (ECG) with signal-to-noise ratio and motion artifacts on par with conventional gel electrodes. The second will be a chest patch which houses both electrodes and pressure sensors for the synchronous measurements of ECG and seismocardiogram (SCG) such that beat-to-beat blood pressure can be inferred from the time interval between the R peak of the ECG and the AC peak of the SCG. The last example will be a highly conformable, low power consumption epidermal heater for thermal therapy.
A design of the u-health monitoring system using a Nintendo DS game machine.
Lee, Sangjoon; Kim, Jinkwon; Kim, Jungkuk; Lee, Myoungho
2009-01-01
In this paper, we used the hand held type a Nintendo DS Game Machine for consisting of a u-Health Monitoring system. This system is consists of four parts. Biosignal acquire device is the first. The Second is a wireless sensor network device. The third is a wireless base-station for connecting internet network. Displaying units are the last part which were a personal computer and a Nintendo DS game machine. The bio-signal measurement device among the four parts the u-health monitoring system can acquire 7-channels data which have 3-channels ECG(Electrocardiogram), 3-axis accelerometer and tilting sensor data. Acquired data connect up the internet network throughout the wireless sensor network and a base-station. In the experiment, we concurrently display the bio-signals on to a monitor of personal computer and LCD of a Nintendo DS using wireless internet protocol and those monitoring devices placed off to the one side an office building. The result of the experiment, this proposed system effectively can transmit patient's biosignal data as a long time and a long distance. This suggestion of the u-health monitoring system need to operate in the ambulance, general hospitals and geriatric institutions as a u-health monitoring device.
Bhattacharya, Tinish; Gupta, Ankesh; Singh, Salam ThoiThoi; Roy, Sitikantha; Prasad, Anamika
2017-07-01
Cuff-less and non-invasive methods of Blood Pressure (BP) monitoring have faced a lot of challenges like stability, noise, motion artefact and requirement for calibration. These factors are the major reasons why such devices do not get approval from the medical community easily. One such method is calculating Blood Pressure indirectly from pulse transit time (PTT) obtained from electrocardiogram (ECG) and Photoplethysmogram (PPG). In this paper we have proposed two novel analog signal conditioning circuits for ECG and PPG that increase stability, remove motion artefacts, remove the sinusoidal wavering of the ECG baseline due to respiration and provide consistent digital pulses corresponding to blood pulses/heart-beat. We have combined these two systems to obtain the PTT and then correlated it with the Mean Arterial Pressure (MAP). The aim was to perform major part of the processing in analog domain to decrease processing load over microcontroller so as to reduce cost and make it simple and robust. We have found from our experiments that the proposed circuits can calculate the Heart Rate (HR) with a maximum error of ~3.0% and MAP with a maximum error of ~2.4% at rest and ~4.6% in motion.
Stopyra, Jason P; Ritter, Samuel I; Beatty, Jennifer; Johnson, James C; Kleiner, Douglas M; Winslow, James E; Gardner, Alison R; Bozeman, William P
2016-10-01
Despite research demonstrating the overall safety of Conducted Electrical Weapons (CEWs), commonly known by the brand name TASER(®), concerns remain regarding cardiac safety. The addition of cardiac biomonitoring capability to a CEW could prove useful and even lifesaving in the rare event of a medical crisis by detecting and analyzing cardiac rhythms during the period immediately after CEW discharge. To combine an electrocardiogram (ECG) device with a CEW to detect and store ECG signals while still allowing the CEW to perform its primary function of delivering an incapacitating electrical discharge. This work was performed in three phases. In Phase 1 standard law enforcement issue CEW cartridges were modified to demonstrate transmission of ECG signals. In Phase 2, a miniaturized ECG recorder was combined with a standard issue CEW and tested. In Phase 3, a prototype CEW with on-board cardiac biomonitoring was tested on human volunteers to assess its ability to perform its primary function of electrical incapacitation. Bench testing demonstrated that slightly modified CEW cartridge wires transmitted simulated ECG signals produced by an ECG rhythm generator and from a human volunteer. Ultimately, a modified CEW incorporating ECG monitoring successfully delivered incapacitating current to human volunteers and successfully recorded ECG signals from subcutaneous CEW probes after firing. An ECG recording device was successfully incorporated into a standard issue CEW without impeding the functioning of the device. This serves as proof-of-concept that safety measures such as cardiac biomonitoring can be incorporated into CEWs and possibly other law enforcement devices. Copyright © 2016 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
NASA Technical Reports Server (NTRS)
Toder, Carly; Gipson, Iona; Conly, Danielle; Nieschwitz, Linda; Perk, Austin
2010-01-01
This slide presentation reviews attempts to counteract the effects of being in space. It includes information on the Resistive Exercise Device (RED), the Advanced Resistive Exercise Device (ARED), Cycle Ergometer with Vibration Isolation and Stabilization (CEVIS), Treadmill with Vibration Isolation and Stabilization (TVIS) and periodic fitness evaluation with specific information on BP/ECG, heart rate monitor 2 and data distribution.
PDF-ECG in clinical practice: A model for long-term preservation of digital 12-lead ECG data.
Sassi, Roberto; Bond, Raymond R; Cairns, Andrew; Finlay, Dewar D; Guldenring, Daniel; Libretti, Guido; Isola, Lamberto; Vaglio, Martino; Poeta, Roberto; Campana, Marco; Cuccia, Claudio; Badilini, Fabio
In clinical practice, data archiving of resting 12-lead electrocardiograms (ECGs) is mainly achieved by storing a PDF report in the hospital electronic health record (EHR). When available, digital ECG source data (raw samples) are only retained within the ECG management system. The widespread availability of the ECG source data would undoubtedly permit successive analysis and facilitate longitudinal studies, with both scientific and diagnostic benefits. PDF-ECG is a hybrid archival format which allows to store in the same file both the standard graphical report of an ECG together with its source ECG data (waveforms). Using PDF-ECG as a model to address the challenge of ECG data portability, long-term archiving and documentation, a real-world proof-of-concept test was conducted in a northern Italy hospital. A set of volunteers undertook a basic ECG using routine hospital equipment and the source data captured. Using dedicated web services, PDF-ECG documents were then generated and seamlessly uploaded in the hospital EHR, replacing the standard PDF reports automatically generated at the time of acquisition. Finally, the PDF-ECG files could be successfully retrieved and re-analyzed. Adding PDF-ECG to an existing EHR had a minimal impact on the hospital's workflow, while preserving the ECG digital data. Copyright © 2017 Elsevier Inc. All rights reserved.
Panigrahy, D; Sahu, P K
2017-03-01
This paper proposes a five-stage based methodology to extract the fetal electrocardiogram (FECG) from the single channel abdominal ECG using differential evolution (DE) algorithm, extended Kalman smoother (EKS) and adaptive neuro fuzzy inference system (ANFIS) framework. The heart rate of the fetus can easily be detected after estimation of the fetal ECG signal. The abdominal ECG signal contains fetal ECG signal, maternal ECG component, and noise. To estimate the fetal ECG signal from the abdominal ECG signal, removal of the noise and the maternal ECG component presented in it is necessary. The pre-processing stage is used to remove the noise from the abdominal ECG signal. The EKS framework is used to estimate the maternal ECG signal from the abdominal ECG signal. The optimized parameters of the maternal ECG components are required to develop the state and measurement equation of the EKS framework. These optimized maternal ECG parameters are selected by the differential evolution algorithm. The relationship between the maternal ECG signal and the available maternal ECG component in the abdominal ECG signal is nonlinear. To estimate the actual maternal ECG component present in the abdominal ECG signal and also to recognize this nonlinear relationship the ANFIS is used. Inputs to the ANFIS framework are the output of EKS and the pre-processed abdominal ECG signal. The fetal ECG signal is computed by subtracting the output of ANFIS from the pre-processed abdominal ECG signal. Non-invasive fetal ECG database and set A of 2013 physionet/computing in cardiology challenge database (PCDB) are used for validation of the proposed methodology. The proposed methodology shows a sensitivity of 94.21%, accuracy of 90.66%, and positive predictive value of 96.05% from the non-invasive fetal ECG database. The proposed methodology also shows a sensitivity of 91.47%, accuracy of 84.89%, and positive predictive value of 92.18% from the set A of PCDB.
Intelligent Medical Garments with Graphene-Functionalized Smart-Cloth ECG Sensors.
Yapici, Murat Kaya; Alkhidir, Tamador Elboshra
2017-04-16
Biopotential signals are recorded mostly by using sticky, pre-gelled electrodes, which are not ideal for wearable, point-of-care monitoring where the usability of the personalized medical device depends critically on the level of comfort and wearability of the electrodes. We report a fully-wearable medical garment for mobile monitoring of cardiac biopotentials from the wrists or the neck with minimum restriction to regular clothing habits. The wearable prototype is based on elastic bands with graphene functionalized, textile electrodes and battery-powered, low-cost electronics for signal acquisition and wireless transmission. Comparison of the electrocardiogram (ECG) recordings obtained from the wearable prototype against conventional wet electrodes indicate excellent conformity and spectral coherence among the two signals.
Laptev, D N; Kruzhkova, M N; Riabykina, G V; Poliakov, S D; Korneeva, I T
2012-01-01
Study aim was to elucidate effect of graded physical exercise on glycemia level and interval QT duration in children and adolescents with type 1 diabetes mellitus. We carried out 25-hours parallel monitoring of glycemia, ECG and physical activity in 15 children and adolescents aged 9-17 years. During monitoring these patients performed an exercise test (PWC170). We found that there were two periods of significant and prolonged lowering of glycemia: in 120-420 min and 19-21 hours after exercise. Lowering of glycemia after physical exercise was associated with prolongation of QT interval. Registration of motor activity allowed to exclude changes of glycemia due to physical activity unrelated to graded exercise.
High Resolution ECG for Evaluation of Heart Function During Exposure to Subacute Hypobaric Hypoxia
NASA Technical Reports Server (NTRS)
Zupet, Petra; Finderle, Zarko; Schlegel, Todd T.; Princi, Tanja; Starc, Vito
2010-01-01
High altitude climbing presents a wide spectrum of health risks, including exposure to hypobaric hypoxia. Risks are also typically exacerbated by the difficulty in appropriately monitoring for early signs of organ dysfunction in remote areas. We investigated whether high resolution advanced ECG analysis might be helpful as a non-invasive and easy-to-use tool (e.g., instead of Doppler echocardiography) for evaluating early signs of heart overload in hypobaric hypoxia. Nine non-acclimatized healthy trained alpine rescuers (age 43.7 plus or minus 7.3 years) climbed in four days to the altitude of 4,200 m on Mount Ararat. Five-minute high-resolution 12-lead electrocardiograms (ECGs) were recorded (Cardiosoft) in each subject at rest in the supine position on different days but at the same time of day at four different altitudes: 400 m (reference altitude), 1,700 m, 3,200 m and 4,200 m. Changes in conventional and advanced resting ECG parameters, including in beat-to-beat QT and RR variability, waveform complexity, signal-averaged, high-frequency and spatial/spatiotemporal ECG was estimated by calculation of the regression coefficients in independent linear regression models. A p-value of less than 0.05 was adopted as statistically significant. As expected, the RR interval and its variability both decreased with increasing altitude, with trends k = -96 ms/1000 m with p = 0.000 and k = -9 ms/1000 m with p = 0.001, respectively. Significant changes were found in P-wave amplitude, which nearly doubled from the lowest to the highest altitude (k = 41.6 microvolt/1000 m with p = 0.000), and nearly significant changes in P-wave duration (k = 2.9 ms/1000 m with p = 0.059). Changes were less significant or non-significant in other studied parameters including those of waveform complexity, signal-averaged, high-frequency and spatial/spatiotemporal ECG. High resolution ECG analysis, particularly of the P wave, shows promise as a tool for monitoring early changes in heart function due to exposure to high altitude.
Wei, Ying-Chieh; Wei, Ying-Yu; Chang, Kai-Hsiung; Young, Ming-Shing
2012-04-01
The objective of this study is to design and develop a programmable electrocardiogram (ECG) generator with frequency domain characteristics of heart rate variability (HRV) which can be used to test the efficiency of ECG algorithms and to calibrate and maintain ECG equipment. We simplified and modified the three coupled ordinary differential equations in McSharry's model to a single differential equation to obtain the ECG signal. This system not only allows the signal amplitude, heart rate, QRS-complex slopes, and P- and T-wave position parameters to be adjusted, but can also be used to adjust the very low frequency, low frequency, and high frequency components of HRV frequency domain characteristics. The system can be tuned to function with HRV or not. When the HRV function is on, the average heart rate can be set to a value ranging from 20 to 122 beats per minute (BPM) with an adjustable variation of 1 BPM. When the HRV function is off, the heart rate can be set to a value ranging from 20 to 139 BPM with an adjustable variation of 1 BPM. The amplitude of the ECG signal can be set from 0.0 to 330 mV at a resolution of 0.005 mV. These parameters can be adjusted either via input through a keyboard or through a graphical user interface (GUI) control panel that was developed using LABVIEW. The GUI control panel depicts a preview of the ECG signal such that the user can adjust the parameters to establish a desired ECG morphology. A complete set of parameters can be stored in the flash memory of the system via a USB 2.0 interface. Our system can generate three different types of synthetic ECG signals for testing the efficiency of an ECG algorithm or calibrating and maintaining ECG equipment. © 2012 American Institute of Physics
NASA Astrophysics Data System (ADS)
Wei, Ying-Chieh; Wei, Ying-Yu; Chang, Kai-Hsiung; Young, Ming-Shing
2012-04-01
The objective of this study is to design and develop a programmable electrocardiogram (ECG) generator with frequency domain characteristics of heart rate variability (HRV) which can be used to test the efficiency of ECG algorithms and to calibrate and maintain ECG equipment. We simplified and modified the three coupled ordinary differential equations in McSharry's model to a single differential equation to obtain the ECG signal. This system not only allows the signal amplitude, heart rate, QRS-complex slopes, and P- and T-wave position parameters to be adjusted, but can also be used to adjust the very low frequency, low frequency, and high frequency components of HRV frequency domain characteristics. The system can be tuned to function with HRV or not. When the HRV function is on, the average heart rate can be set to a value ranging from 20 to 122 beats per minute (BPM) with an adjustable variation of 1 BPM. When the HRV function is off, the heart rate can be set to a value ranging from 20 to 139 BPM with an adjustable variation of 1 BPM. The amplitude of the ECG signal can be set from 0.0 to 330 mV at a resolution of 0.005 mV. These parameters can be adjusted either via input through a keyboard or through a graphical user interface (GUI) control panel that was developed using LABVIEW. The GUI control panel depicts a preview of the ECG signal such that the user can adjust the parameters to establish a desired ECG morphology. A complete set of parameters can be stored in the flash memory of the system via a USB 2.0 interface. Our system can generate three different types of synthetic ECG signals for testing the efficiency of an ECG algorithm or calibrating and maintaining ECG equipment.
Alday, Erick A. Perez; Colman, Michael A.; Langley, Philip; Butters, Timothy D.; Higham, Jonathan; Workman, Antony J.; Hancox, Jules C.; Zhang, Henggui
2015-01-01
Rapid atrial arrhythmias such as atrial fibrillation (AF) predispose to ventricular arrhythmias, sudden cardiac death and stroke. Identifying the origin of atrial ectopic activity from the electrocardiogram (ECG) can help to diagnose the early onset of AF in a cost-effective manner. The complex and rapid atrial electrical activity during AF makes it difficult to obtain detailed information on atrial activation using the standard 12-lead ECG alone. Compared to conventional 12-lead ECG, more detailed ECG lead configurations may provide further information about spatio-temporal dynamics of the body surface potential (BSP) during atrial excitation. We apply a recently developed 3D human atrial model to simulate electrical activity during normal sinus rhythm and ectopic pacing. The atrial model is placed into a newly developed torso model which considers the presence of the lungs, liver and spinal cord. A boundary element method is used to compute the BSP resulting from atrial excitation. Elements of the torso mesh corresponding to the locations of the placement of the electrodes in the standard 12-lead and a more detailed 64-lead ECG configuration were selected. The ectopic focal activity was simulated at various origins across all the different regions of the atria. Simulated BSP maps during normal atrial excitation (i.e. sinoatrial node excitation) were compared to those observed experimentally (obtained from the 64-lead ECG system), showing a strong agreement between the evolution in time of the simulated and experimental data in the P-wave morphology of the ECG and dipole evolution. An algorithm to obtain the location of the stimulus from a 64-lead ECG system was developed. The algorithm presented had a success rate of 93%, meaning that it correctly identified the origin of atrial focus in 75/80 simulations, and involved a general approach relevant to any multi-lead ECG system. This represents a significant improvement over previously developed algorithms. PMID:25611350
Smart ECG Monitoring Patch with Built-in R-Peak Detection for Long-Term HRV Analysis.
Lee, W K; Yoon, H; Park, K S
2016-07-01
Since heart rate variability (HRV) analysis is widely used to evaluate the physiological status of the human body, devices specifically designed for such applications are needed. To this end, we developed a smart electrocardiography (ECG) patch. The smart patch measures ECG using three electrodes integrated into the patch, filters the measured signals to minimize noise, performs analog-to-digital conversion, and detects R-peaks. The measured raw ECG data and the interval between the detected R-peaks can be recorded to enable long-term HRV analysis. Experiments were performed to evaluate the performance of the built-in R-wave detection, robustness of the device under motion, and applicability to the evaluation of mental stress. The R-peak detection results obtained with the device exhibited a sensitivity of 99.29%, a positive predictive value of 100.00%, and an error of 0.71%. The device also exhibited less motional noise than conventional ECG recording, being stable up to a walking speed of 5 km/h. When applied to mental stress analysis, the device evaluated the variation in HRV parameters in the same way as a normal ECG, with very little difference. This device can help users better understand their state of health and provide physicians with more reliable data for objective diagnosis.
ECG telemetry in conscious guinea pigs.
Ruppert, Sabine; Vormberge, Thomas; Igl, Bernd-Wolfgang; Hoffmann, Michael
2016-01-01
During preclinical drug development, monitoring of the electrocardiogram (ECG) is an important part of cardiac safety assessment. To detect potential pro-arrhythmic liabilities of a drug candidate and for internal decision-making during early stage drug development an in vivo model in small animals with translatability to human cardiac function is required. Over the last years, modifications/improvements regarding animal housing, ECG electrode placement, and data evaluation have been introduced into an established model for ECG recordings using telemetry in conscious, freely moving guinea pigs. Pharmacological validation using selected reference compounds affecting different mechanisms relevant for cardiac electrophysiology (quinidine, flecainide, atenolol, dl-sotalol, dofetilide, nifedipine, moxifloxacin) was conducted and findings were compared with results obtained in telemetered Beagle dogs. Under standardized conditions, reliable ECG data with low variability allowing largely automated evaluation were obtained from the telemetered guinea pig model. The model is sensitive to compounds blocking cardiac sodium channels, hERG K(+) channels and calcium channels, and appears to be even more sensitive to β-blockers as observed in dogs at rest. QT interval correction according to Bazett and Sarma appears to be appropriate methods in conscious guinea pigs. Overall, the telemetered guinea pig is a suitable model for the conduct of early stage preclinical ECG assessment. Copyright © 2016 Elsevier Inc. All rights reserved.
Wireless physiological monitoring system for psychiatric patients.
Rademeyer, A J; Blanckenberg, M M; Scheffer, C
2009-01-01
Patients in psychiatric hospitals that are sedated or secluded are at risk of death or injury if they are not continuously monitored. Some psychiatric patients are restless and aggressive, and hence the monitoring device should be robust and must transmit the data wirelessly. Two devices, a glove that measures oxygen saturation and a dorsally-mounted device that measures heart rate, skin temperature and respiratory rate were designed and tested. Both devices connect to one central monitoring station using two separate Bluetooth connections, ensuring a completely wireless setup. A Matlab graphical user interface (GUI) was developed for signal processing and monitoring of the vital signs of the psychiatric patient. Detection algorithms were implemented to detect ECG arrhythmias such as premature ventricular contraction and atrial fibrillation. The prototypes were manufactured and tested in a laboratory setting on healthy volunteers.
Mobile patient monitoring based on impedance-loaded SAW-sensors.
Karilainen, Anna; Finnberg, Thomas; Uelzen, Thorsten; Dembowski, Klaus; Müller, Jörg
2004-11-01
A remotely requestable, passive, short-range sensor network for measuring small voltages is presented. The sensor system is able to simultaneously monitor six small voltages in millivolt-range, and it can be used for Holter-electrocardiogram (ECG) and other biopotential monitoring, or in industrial applications. The sensors are based on a surface acoustic wave (SAW) delay line with voltage-dependent, impedance loading on a reflector interdigital transducer (IDT). The load circuit impedance is varied by the capacitance of the voltage-controlled varactor. High resolution is achieved by developing a MOS-capacitor with a thin oxide, low flat-band voltage, and zero-voltage capacitance in the space-charge region, as well as a high-Q-microcoil by thick metal electroplating. Simultaneous monitoring of multiple potentials is realized by time-division-multiplexing of different sensor signals.
Estimating actigraphy from motion artifacts in ECG and respiratory effort signals.
Fonseca, Pedro; Aarts, Ronald M; Long, Xi; Rolink, Jérôme; Leonhardt, Steffen
2016-01-01
Recent work in unobtrusive sleep/wake classification has shown that cardiac and respiratory features can help improve classification performance. Nevertheless, actigraphy remains the single most discriminative modality for this task. Unfortunately, it requires the use of dedicated devices in addition to the sensors used to measure electrocardiogram (ECG) or respiratory effort. This paper proposes a method to estimate actigraphy from the body movement artifacts present in the ECG and respiratory inductance plethysmography (RIP) based on the time-frequency analysis of those signals. Using a continuous wavelet transform to analyze RIP, and ECG and RIP combined, it provides a surrogate measure of actigraphy with moderate correlation (for ECG+RIP, ρ = 0.74, p < 0.001) and agreement (mean bias ratio of 0.94 and 95% agreement ratios of 0.11 and 8.45) with reference actigraphy. More important, it can be used as a replacement of actigraphy in sleep/wake classification: after cross-validation with a data set comprising polysomnographic (PSG) recordings of 15 healthy subjects and 25 insomniacs annotated by an external sleep technician, it achieves a statistically non-inferior classification performance when used together with respiratory features (average κ of 0.64 for 15 healthy subjects, and 0.50 for a dataset with 40 healthy and insomniac subjects), and when used together with respiratory and cardiac features (average κ of 0.66 for 15 healthy subjects, and 0.56 for 40 healthy and insomniac subjects). Since this method eliminates the need for a dedicated actigraphy device, it reduces the number of sensors needed for sleep/wake classification to a single sensor when using respiratory features, and to two sensors when using respiratory and cardiac features without any loss in performance. It offers a major benefit in terms of comfort for long-term home monitoring and is immediately applicable for legacy ECG and RIP monitoring devices already used in clinical practice and which do not have an accelerometer built-in.
Assurance of energy efficiency and data security for ECG transmission in BASNs.
Ma, Tao; Shrestha, Pradhumna Lal; Hempel, Michael; Peng, Dongming; Sharif, Hamid; Chen, Hsiao-Hwa
2012-04-01
With the technological advancement in body area sensor networks (BASNs), low cost high quality electrocardiographic (ECG) diagnosis systems have become important equipment for healthcare service providers. However, energy consumption and data security with ECG systems in BASNs are still two major challenges to tackle. In this study, we investigate the properties of compressed ECG data for energy saving as an effort to devise a selective encryption mechanism and a two-rate unequal error protection (UEP) scheme. The proposed selective encryption mechanism provides a simple and yet effective security solution for an ECG sensor-based communication platform, where only one percent of data is encrypted without compromising ECG data security. This part of the encrypted data is essential to ECG data quality due to its unequally important contribution to distortion reduction. The two-rate UEP scheme achieves a significant additional energy saving due to its unequal investment of communication energy to the outcomes of the selective encryption, and thus, it maintains a high ECG data transmission quality. Our results show the improvements in communication energy saving of about 40%, and demonstrate a higher transmission quality and security measured in terms of wavelet-based weighted percent root-mean-squared difference.
Wearable Sensing of In-Ear Pressure for Heart Rate Monitoring with a Piezoelectric Sensor
Park, Jang-Ho; Jang, Dae-Geun; Park, Jung Wook; Youm, Se-Kyoung
2015-01-01
In this study, we developed a novel heart rate (HR) monitoring approach in which we measure the pressure variance of the surface of the ear canal. A scissor-shaped apparatus equipped with a piezoelectric film sensor and a hardware circuit module was designed for high wearability and to obtain stable measurement. In the proposed device, the film sensor converts in-ear pulse waves (EPW) into electrical current, and the circuit module enhances the EPW and suppresses noise. A real-time algorithm embedded in the circuit module performs morphological conversions to make the EPW more distinct and knowledge-based rules are used to detect EPW peaks. In a clinical experiment conducted using a reference electrocardiogram (ECG) device, EPW and ECG were concurrently recorded from 58 healthy subjects. The EPW intervals between successive peaks and their corresponding ECG intervals were then compared to each other. Promising results were obtained from the samples, specifically, a sensitivity of 97.25%, positive predictive value of 97.17%, and mean absolute difference of 0.62. Thus, highly accurate HR was obtained from in-ear pressure variance. Consequently, we believe that our proposed approach could be used to monitor vital signs and also utilized in diverse applications in the near future. PMID:26389912
Ličev, Lačezar; Krumnikl, Michal; Škuta, Jaromír; Babiuch, Marek; Farana, Radim
2014-03-04
This paper describes the advances in the development and subsequent testing of an imaging device for three-dimensional ultrasound measurement of atherosclerotic plaque in the carotid artery. The embolization from the atherosclerotic carotid plaque is one of the most common causes of ischemic stroke and, therefore, we consider the measurement of the plaque as extremely important. The paper describes the proposed hardware for enhancing the standard ultrasonic probe to provide a possibility of accurate probe positioning and synchronization with the cardiac activity, allowing the precise plaque measurements that were impossible with the standard equipment. The synchronization signal is derived from the output signal of the patient monitor (electrocardiogram (ECG)), processed by a microcontroller-based system, generating the control commands for the linear motion moving the probe. The controlling algorithm synchronizes the movement with the ECG waveform to obtain clear images not disturbed by the heart activity.
Animal Exposure During Burn Tests
NASA Technical Reports Server (NTRS)
Gaume, J. G.
1978-01-01
An animal exposure test system (AETS) was designed and fabricated for the purpose of collecting physiological and environmental (temperature) data from animal subjects exposed to combustion gases in large scale fire tests. The AETS consisted of an open wire mesh, two-compartment cage, one containing an exercise wheel for small rodents, and the other containing one rat instrumented externally for electrocardiogram (ECG) and respiration. Cage temperature is measured by a thermistor located in the upper portion of the rat compartment. Animal activity is monitored by the ECG and the records indicate an increase in EMG (electromyograph) noise super-imposed by the increased activity of the torso musculature. Examples of the recordings are presented and discussed as to their significance regarding toxicity of fire gases and specific events occurring during the test. The AETS was shown to be a useful tool in screening materials for the relative toxicity of their outgassing products during pyrolysis and combustion.
Ciani, Oriana; Piccini, Luca; Parini, Sergio; Rullo, Alessia; Bagnoli, Franco; Marti, Patrizia; Andreoni, Giuseppe
2008-01-01
Pervasive computing research is introducing new perspectives in a wide range of applications, including healthcare domain. In this study we explore the possibility to realize a prototype of a system for unobtrusive recording and monitoring of multiple biological parameters on premature newborns hospitalized in the Neonatal Intensive Care Unit (NICU). It consists of three different units: a sensitized belt for Electrocardiogram (ECG) and chest dilatation monitoring, augmented with extrinsic transducers for temperature and respiratory activity measure, a device for signals pre-processing, sampling and transmission through Bluetooth(R) (BT) technology to a remote PC station and a software for data capture and post-processing. Preliminary results obtained by monitoring babies just discharged from the ward demonstrated the feasibility of the unobtrusive monitoring on this kind of subjects and open a new scenario for premature newborns monitoring and developmental cares practice in NICU.
Zink, Matthias Daniel; Brüser, Christoph; Winnersbach, Patrick; Napp, Andreas; Leonhardt, Steffen; Marx, Nikolaus; Schauerte, Patrick; Mischke, Karl
2015-01-01
Background. Heart rate monitoring is especially interesting in patients with atrial fibrillation (AF) and is routinely performed by ECG. A ballistocardiography (BCG) foil is an unobtrusive sensor for mechanical vibrations. We tested the correlation of heartbeat cycle length detection by a novel algorithm for a BCG foil to an ECG in AF and sinus rhythm (SR). Methods. In 22 patients we obtained BCG and synchronized ECG recordings before and after cardioversion and examined the correlation between heartbeat characteristics. Results. We analyzed a total of 4317 heartbeats during AF and 2445 during SR with a correlation between ECG and BCG during AF of r = 0.70 (95% CI 0.68–0.71, P < 0.0001) and r = 0.75 (95% CI 0.73–0.77, P < 0.0001) during SR. By adding a quality index, artifacts could be reduced and the correlation increased for AF to 0.76 (95% CI 0.74–0.77, P < 0.0001, n = 3468) and for SR to 0.85 (95% CI 0.83–0.86, P < 0.0001, n = 2176). Conclusion. Heartbeat cycle length measurement by our novel algorithm for BCG foil is feasible during SR and AF, offering new possibilities of unobtrusive heart rate monitoring. This trial is registered with IRB registration number EK205/11. This trial is registered with clinical trials registration number NCT01779674. PMID:26229965
Novel electrogram device with web-based service centre for ambulatory ECG monitoring.
Tan, B Y; Ho, K L; Ching, C K; Teo, W S
2010-07-01
Arrhythmias are often intermittent, and a normal electrocardiogram (ECG) may not be diagnostic. The purpose of this study was to evaluate the usefulness of HeartWave500 (HW), a novel web-based ambulatory ECG monitoring device. A total of 120 patients from the National Heart Centre, Singapore were prospectively randomised in a three to one ratio to either HW or a standard transtelephonic (TT) event recorder. HW records five leads and transmits to an internet server, while TT transmits audio data to a central station. Monitoring was conducted for two weeks. The diagnostic yield was calculated in two ways: the percentage of patients successfully diagnosed as a function of time, and the absolute number of new diagnoses per patient per week. 33 patients (14 male, 19 female; mean age 49.6 + or - 11.1 years) were randomised to TT. 87 patients (32 male, 55 female; mean age 43.7 + or - 12.2 years) were randomised to HW. At the end of two weeks, the percentage of patients diagnosed with any arrhythmia was similar for both groups (66.7 percent for TT versus 67.8 percent for HW). There was a trend toward significance for the number of diagnoses per patient per week for Week 2 between TT and HW (0.58 + or - 0.75 versus 0.34 + or - 0.55, p is 0.06). Transmitted ECGs were read earlier for HW (18 minutes versus 1107 minutes, Mann-Whitney non-parametric test, p is less than 0.05). Transmitted recordings that were unreadable were also significantly lower for HW (8.0 percent versus 17.6 percent, chi-square test, p is less than 0.05). HW and TT have similar diagnostic yields. There is a trend toward a shorter monitoring time for HW. The ability of HW to record and transmit via the web, the earlier review of data and low unreadable data make HW an attractive alternative to TT.
Animal exposure during burn tests
NASA Technical Reports Server (NTRS)
Gaume, J. G.
1976-01-01
An animal exposure test system has been designed and fabricated for the purpose of collecting physiological and environmental (temperature) data from animal subjects exposed to combustion gases in large scale fire tests. The AETS consists of an open wire mesh, two-compartment cage, one containing an exercise wheel for small rodents, and the other containing one rat instrumented externally for electrocardiogram and respiration. The ECG and respiration sensors are located in a belt placed around the torso of the subject, electrode wires forming an umbilical to a connector in the top of the compartment. A cable extends from the connector to the power supply and signal conditioning electronics. These are connected to a dual-beam oscilloscope for real time monitoring and a magnetic tape recorder having three or more channels. Endpoints observed are bradycardia, cardiac arrhythmias, changes in respiratory pattern, respiratory arrest and cardiac arrest. The ECG record also appears to be a good method of monitoring animal activity as indicated by an increase in EMG noise superimposed on the record during increased activity of the torso musculature. Examples of the recordings are presented and discussed as to their significance regarding toxicity of fire gases.
Scalable Telemonitoring Model in Cloud for Health Care Analysis
NASA Astrophysics Data System (ADS)
Sawant, Yogesh; Jayakumar, Naveenkumar, Dr.; Pawar, Sanket Sunil
2017-08-01
Telemonitoring model is health observations model that going to surveillance patients remotely. Telemonitoring model is suitable for patients to avoid high operating expense to get Emergency treatment. Telemonitoring gives the path for monitoring the medical device that generates a complete profile of patient’s health through assembling essential signs as well as additional health information. Telemonitoring model is relying on four differential modules which is capable to generate realistic synthetic electrocardiogram (ECG) signals. Telemonitoring model shows four categories of chronic disease: pulmonary state, diabetes, hypertension, as well as cardiovascular diseases. On the other hand, the results of this application model recommend facilitating despite of their nationality, socioeconomic grade, or age, patients observe amid tele-monitoring programs as well as the utilization of technologies. Patient’s multiple health status is shown in the result such as beat-to-beat variation in morphology and timing of the human ECG, including QT dispersion and R-peak amplitude modulation. This model will be utilized to evaluate biomedical signal processing methods that are utilized to calculate clinical information from the ECG.
Ambulatory stress monitoring with a wearable bluetooth electrocardiographic device.
Hong, Sungyoup; Yang, Youngmo; Lee, Jangyoung; Yang, Heebum; Park, Kyungnam; Lee, Suyeul; Lee, Inbum; Jang, Yongwon
2010-01-01
We tried to monitor stress by using a wearable one channel ECG device that can send ECG signals through Bluetooth wireless communication. Noxious physical and mental arithmetic stress was given three times repeatedly to healthy adults, and cortisol and catecholamines were measured serially from peripheral blood. At the same time, time domain and frequency domain parameters of heart rate variability (HRV) were calculated by taking precordial electrocardiogram. The intensity of correlation between subjective visual analogue scale (VAS) and catecholamine, cortisol, and HRV parameters according to stress was analyzed by using concordance correlation coefficients. The HRV triangular index and LF/HF ratio had high concordance correlation with the degree of stress in the physical stress model. In mental arithmetic stress model, the HRV triangular index and LF/HF ratio had weak concordance correlation with the degree of stress, and it had lower predictability than epinephrine. In both models, cortisol had some correlation with catecholamine, but it had little correlation with HRV parameters. HRV parameters using wearable one channel ECG device can be useful in predicting acute stress and also in many other areas.
Night-day-night sleep-wakefulness monitoring by ambulatory integrated circuit memories.
Yamamoto, M; Nakao, M; Katayama, N; Waku, M; Suzuki, K; Irokawa, K; Abe, M; Ueno, T
1999-04-01
A medium-sized portable digital recorder with fully integrated circuit (IC) memories for sleep monitoring has been developed. It has five amplifiers for EEG, EMG, EOG, ECG, and a signal of body acceleration or respiration sound, four event markers, an 8 ch A/D converter, a digital signal processor (DSP), 192 Mbytes IC flash memories, and batteries. The whole system weighs 1200 g including batteries and is put into a small bag worn on the subject's waist or carried in their hand. The sampling rate for each input channel is programmable through the DSP. This apparatus is valuable for continuously monitoring the states of sleep-wakefulness over 24 h, making a night-day-night recording possible in a hospital, home, or car.
[Risk management of QT-prolonging drugs by community pharmacists using a mobile electrocardiograph].
Shinozaki, Kohki
2010-11-01
Prolongation of the QT interval is associated with a high risk of serious arrhythmia, i.e., torsades de pointes (TdP). However, in many cases, the QT-prolonging drug(s) is prescribed without performing a thorough check-up of the patient's condition, especially an electrocardiogram. In addition to patient interview, we used an electrocardiogram obtained with a mobile electrocardiograph (RMH-ECG) in a community pharmacy in order to improve the risk management for QT-prolonging drugs. A comparison of the results obtained using RMH-ECG (modified I) and 12-lead ECG (I) revealed that both corrected QT (QTc) values were almost identical, and the correlation coefficient was 0.96. In one month, 5 of 948 patients who visited our pharmacy and continuously took QT-prolonging drugs had additional risk factors for TdP (advanced age, female, and drug-drug interaction). We monitored the QT interval of one of these patients. She had received erythromycin for 19 months along with other drugs metabolized by a P450 (CYP3A4); benidipine and prednisolone (for over 2 years), and tacrolimus (for 13 weeks). Three RMH-ECG tests at every 2 weeks revealed that QTcs were normal (0.43-0.45 s); therefore, we dispensed drugs without any change in the prescription. Approximately 1 in 1200 individuals has a prolonged QT interval without any subjective symptoms, and the time window of drug-induced TdP is considered to be from several hours to months after taking these drugs. Therefore, we think that an ECG test should be performed in community pharmacies before dispensing QT-prolonging drugs and that the QT interval should be monitored.
ICH E14 Q & A (R1) document: perspectives on the updated recommendations on thorough QT studies.
Shah, Rashmi R; Morganroth, Joel
2013-04-01
The International Conference on Harmonization (ICH) guidance ICH E14 provides recommendations, focusing on a clinical 'thorough QT/QTc (TQT) study', to evaluate the QT liability of a drug during its development. An Implementation Working Group (IWG) was also established to assist the sponsors with any uncertainties and clarify any ambiguities. In April 2012, the IWG updated its June 2008 version of the Questions and Answers document to address additional issues. These include the gender of the study population, a reasonable approach to evaluating QTc changes in late stage clinical development and the recommended approach to correcting the measured QT interval. This commentary provides our observations and, when appropriate, recommendations, on these issues. We review briefly evidence that suggests that (i) the greater QT effect observed in females is not entirely related to differences in drug exposure and (ii) the Fridericia correction of measured QT interval is adequate for a majority of TQT studies. Until further evidence suggests otherwise, we recommend balanced gender representation in TQT studies, unless warranted otherwise, and for positive studies, subgroup analysis of key data by common demographic variables including the gender and ethnicity. We provide a general scheme for ECG monitoring in late phase clinical trials and consider that while intensive monitoring and centralized reading of ECGs in late phase clinical trials is the norm when a TQT study is positive, there are other circumstances that also call for high quality ECG reading. Therefore, locally read ECGs should only be acceptable as long as accurate high quality ECG data can be guaranteed. © 2012 The Authors. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.
Hybridization of biomedical circuitry
NASA Technical Reports Server (NTRS)
Rinard, G. A.
1978-01-01
The design and fabrication of low power hybrid circuits to perform vital signs monitoring are reported. The circuits consist of: (1) clock; (2) ECG amplifier and cardiotachometer signal conditioner; (3) impedance pneumobraph and respiration rate processor; (4) hear/breath rate processor; (5) temperature monitor; and (6) LCD display.
Rhythmic variation in heart rate and respiration rate during space flight - Apollo 15
NASA Technical Reports Server (NTRS)
Rummel, J. A.
1974-01-01
As part of the operational biomedical monitoring for Apollo manned missions, ECG and respiration rate are telemetered at selected intervals to mission control. The data were collected as part of this monitoring program. These data were evaluated for circadian and ultradian rhythmicity because of their uniqueness. The ability to detect and quantitate biorhythms in living systems during space flight is an important aspect of evaluating hypotheses concerning the underlying mechanisms of these phenomena. Circadian variation in heart rate during space flight is demonstrated here. In analyzing generated time series data it has been found that period discrimination is much better than the theoretical limit.
Chowdhury, Shubhajit Roy
2012-04-01
The paper reports of a Field Programmable Gate Array (FPGA) based embedded system for detection of QRS complex in a noisy electrocardiogram (ECG) signal and thereafter differential diagnosis of tachycardia and tachyarrhythmia. The QRS complex has been detected after application of entropy measure of fuzziness to build a detection function of ECG signal, which has been previously filtered to remove power line interference and base line wander. Using the detected QRS complexes, differential diagnosis of tachycardia and tachyarrhythmia has been performed. The entire algorithm has been realized in hardware on an FPGA. Using the standard CSE ECG database, the algorithm performed highly effectively. The performance of the algorithm in respect of QRS detection with sensitivity (Se) of 99.74% and accuracy of 99.5% is achieved when tested using single channel ECG with entropy criteria. The performance of the QRS detection system has been compared and found to be better than most of the QRS detection systems available in literature. Using the system, 200 patients have been diagnosed with an accuracy of 98.5%.
Mobile GPU-based implementation of automatic analysis method for long-term ECG.
Fan, Xiaomao; Yao, Qihang; Li, Ye; Chen, Runge; Cai, Yunpeng
2018-05-03
Long-term electrocardiogram (ECG) is one of the important diagnostic assistant approaches in capturing intermittent cardiac arrhythmias. Combination of miniaturized wearable holters and healthcare platforms enable people to have their cardiac condition monitored at home. The high computational burden created by concurrent processing of numerous holter data poses a serious challenge to the healthcare platform. An alternative solution is to shift the analysis tasks from healthcare platforms to the mobile computing devices. However, long-term ECG data processing is quite time consuming due to the limited computation power of the mobile central unit processor (CPU). This paper aimed to propose a novel parallel automatic ECG analysis algorithm which exploited the mobile graphics processing unit (GPU) to reduce the response time for processing long-term ECG data. By studying the architecture of the sequential automatic ECG analysis algorithm, we parallelized the time-consuming parts and reorganized the entire pipeline in the parallel algorithm to fully utilize the heterogeneous computing resources of CPU and GPU. The experimental results showed that the average executing time of the proposed algorithm on a clinical long-term ECG dataset (duration 23.0 ± 1.0 h per signal) is 1.215 ± 0.140 s, which achieved an average speedup of 5.81 ± 0.39× without compromising analysis accuracy, comparing with the sequential algorithm. Meanwhile, the battery energy consumption of the automatic ECG analysis algorithm was reduced by 64.16%. Excluding energy consumption from data loading, 79.44% of the energy consumption could be saved, which alleviated the problem of limited battery working hours for mobile devices. The reduction of response time and battery energy consumption in ECG analysis not only bring better quality of experience to holter users, but also make it possible to use mobile devices as ECG terminals for healthcare professions such as physicians and health advisers, enabling them to inspect patient ECG recordings onsite efficiently without the need of a high-quality wide-area network environment.
Robust detection of heartbeats using association models from blood pressure and EEG signals.
Jeon, Taegyun; Yu, Jongmin; Pedrycz, Witold; Jeon, Moongu; Lee, Boreom; Lee, Byeongcheol
2016-01-15
The heartbeat is fundamental cardiac activity which is straightforwardly detected with a variety of measurement techniques for analyzing physiological signals. Unfortunately, unexpected noise or contaminated signals can distort or cut out electrocardiogram (ECG) signals in practice, misleading the heartbeat detectors to report a false heart rate or suspend itself for a considerable length of time in the worst case. To deal with the problem of unreliable heartbeat detection, PhysioNet/CinC suggests a challenge in 2014 for developing robust heart beat detectors using multimodal signals. This article proposes a multimodal data association method that supplements ECG as a primary input signal with blood pressure (BP) and electroencephalogram (EEG) as complementary input signals when input signals are unreliable. If the current signal quality index (SQI) qualifies ECG as a reliable input signal, our method applies QRS detection to ECG and reports heartbeats. Otherwise, the current SQI selects the best supplementary input signal between BP and EEG after evaluating the current SQI of BP. When BP is chosen as a supplementary input signal, our association model between ECG and BP enables us to compute their regular intervals, detect characteristics BP signals, and estimate the locations of the heartbeat. When both ECG and BP are not qualified, our fusion method resorts to the association model between ECG and EEG that allows us to apply an adaptive filter to ECG and EEG, extract the QRS candidates, and report heartbeats. The proposed method achieved an overall score of 86.26 % for the test data when the input signals are unreliable. Our method outperformed the traditional method, which achieved 79.28 % using QRS detector and BP detector from PhysioNet. Our multimodal signal processing method outperforms the conventional unimodal method of taking ECG signals alone for both training and test data sets. To detect the heartbeat robustly, we have proposed a novel multimodal data association method of supplementing ECG with a variety of physiological signals and accounting for the patient-specific lag between different pulsatile signals and ECG. Multimodal signal detectors and data-fusion approaches such as those proposed in this article can reduce false alarms and improve patient monitoring.
Weekly Checks Improve Real-Time Prehospital ECG Transmission in Suspected STEMI.
D'Arcy, Nicole T; Bosson, Nichole; Kaji, Amy H; Bui, Quang T; French, William J; Thomas, Joseph L; Elizarraraz, Yvonne; Gonzalez, Natalia; Garcia, Jose; Niemann, James T
2018-06-01
IntroductionField identification of ST-elevation myocardial infarction (STEMI) and advanced hospital notification decreases first-medical-contact-to-balloon (FMC2B) time. A recent study in this system found that electrocardiogram (ECG) transmission following a STEMI alert was frequently unsuccessful.HypothesisInstituting weekly test ECG transmissions from paramedic units to the hospital would increase successful transmission of ECGs and decrease FMC2B and door-to-balloon (D2B) times. This was a natural experiment of consecutive patients with field-identified STEMI transported to a single percutaneous coronary intervention (PCI)-capable hospital in a regional STEMI system before and after implementation of scheduled test ECG transmissions. In November 2014, paramedic units began weekly test transmissions. The mobile intensive care nurse (MICN) confirmed the transmission, or if not received, contacted the paramedic unit and the department's nurse educator to identify and resolve the problem. Per system-wide protocol, paramedics transmit all ECGs with interpretation of STEMI. Receiving hospitals submit patient data to a single registry as part of ongoing system quality improvement. The frequency of successful ECG transmission and time to intervention (FMC2B and D2B times) in the 18 months following implementation was compared to the 10 months prior. Post-implementation, the time the ECG transmission was received was also collected to determine the transmission gap time (time from ECG acquisition to ECG transmission received) and the advanced notification time (time from ECG transmission received to patient arrival). There were 388 patients with field ECG interpretations of STEMI, 131 pre-intervention and 257 post-intervention. The frequency of successful transmission post-intervention was 73% compared to 64% prior; risk difference (RD)=9%; 95% CI, 1-18%. In the post-intervention period, the median FMC2B time was 79 minutes (inter-quartile range [IQR]=68-102) versus 86 minutes (IQR=71-108) pre-intervention (P=.3) and the median D2B time was 59 minutes (IQR=44-74) versus 60 minutes (IQR=53-88) pre-intervention (P=.2). The median transmission gap was three minutes (IQR=1-8) and median advanced notification time was 16 minutes (IQR=10-25). Implementation of weekly test ECG transmissions was associated with improvement in successful real-time transmissions from field to hospital, which provided a median advanced notification time of 16 minutes, but no decrease in FMC2B or D2B times. D'ArcyNT, BossonN, KajiAH, BuiQT, FrenchWJ, ThomasJL, ElizarrarazY, GonzalezN, GarciaJ, NiemannJT. Weekly checks improve real-time prehospital ECG transmission in suspected STEMI. Prehosp Disaster Med. 2018;33(3):245-249.
Real-time, high frequency QRS electrocardiograph
NASA Technical Reports Server (NTRS)
Schlegel, Todd T. (Inventor); DePalma, Jude L. (Inventor); Moradi, Saeed (Inventor)
2006-01-01
Real time cardiac electrical data are received from a patient, manipulated to determine various useful aspects of the ECG signal, and displayed in real time in a useful form on a computer screen or monitor. The monitor displays the high frequency data from the QRS complex in units of microvolts, juxtaposed with a display of conventional ECG data in units of millivolts or microvolts. The high frequency data are analyzed for their root mean square (RMS) voltage values and the discrete RMS values and related parameters are displayed in real time. The high frequency data from the QRS complex are analyzed with imbedded algorithms to determine the presence or absence of reduced amplitude zones, referred to herein as RAZs. RAZs are displayed as go, no-go signals on the computer monitor. The RMS and related values of the high frequency components are displayed as time varying signals, and the presence or absence of RAZs may be similarly displayed over time.
Identifying UMLS concepts from ECG Impressions using KnowledgeMap
Denny, Joshua C.; Spickard, Anderson; Miller, Randolph A; Schildcrout, Jonathan; Darbar, Dawood; Rosenbloom, S. Trent; Peterson, Josh F.
2005-01-01
Electrocardiogram (ECG) impressions represent a wealth of medical information for potential decision support and drug-effect discovery. Much of this information is inaccessible to automated methods in the free-text portion of the ECG report. We studied the application of the KnowledgeMap concept identifier (KMCI) to map Unified Medical Language System (UMLS) concepts from ECG impressions. ECGs were processed by KMCI and the results scored for accuracy by multiple raters. Reviewers also recorded unidentified concepts through the scoring interface. Overall, KMCI correctly identified 1059 out of 1171 concepts for a recall of 0.90. Precision, indicating the proportion of ECG concepts correctly identified, was 0.94. KMCI was particularly effective at identifying ECG rhythms (330/333), perfusion changes (65/66), and noncardiac medical concepts (11/11). In conclusion, KMCI is an effective method for mapping ECG impressions to UMLS concepts. PMID:16779029
... electrodes wet (for example, no swimming, showering, or activities that cause a lot of sweating). There are two kinds of Holter monitoring — continuous recording , which means the ECG/EKG is ...
Iglesias, Beatriz; Rodrí Guez, Marí A José; Aleo, Esther; Criado, Enrique; Martí Nez-Orgado, Jose; Arruza, Luis
2018-05-01
Current neonatal resuscitation guidelines suggest the use of ECG in the delivery room (DR) to assess heart rate (HR). However, reliability of ECG compared with pulse oximetry (PO) in a situation of bradycardia has not been specifically investigated. The objective of the present study was to compare HR monitoring using ECG or PO in a situation of bradycardia (HR <100 beats per minute (bpm)) during preterm stabilisation in the DR. Video recordings of resuscitations of infants <32 weeks of gestation were reviewed. HR readings in a situation of bradycardia (<100 bpm) at any moment during stabilisation were registered with both devices every 5 s from birth. A total of 29 episodes of bradycardia registered by the ECG in 39 video recordings were included in the analysis (n=29). PO did not detect the start of these events in 20 cases (69%). PO detected the start and the end of bradycardia later than the ECG (median (IQR): 5 s (0-10) and 5 s (0-7.5), respectively). A decline in PO accuracy was observed as bradycardia progressed so that by the end of the episode PO offered significantly lower HR readings than ECG. PO detects the start and recovery of bradycardia events slower and less accurately than ECG during stabilisation at birth of very preterm infants. ECG use in this scenario may contribute to an earlier initiation of resuscitation manoeuvres and to avoid unnecessary prolongation of resuscitation efforts after recovery. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Hwang, Bosun; You, Jiwoo; Vaessen, Thomas; Myin-Germeys, Inez; Park, Cheolsoo; Zhang, Byoung-Tak
2018-02-08
Stress recognition using electrocardiogram (ECG) signals requires the intractable long-term heart rate variability (HRV) parameter extraction process. This study proposes a novel deep learning framework to recognize the stressful states, the Deep ECGNet, using ultra short-term raw ECG signals without any feature engineering methods. The Deep ECGNet was developed through various experiments and analysis of ECG waveforms. We proposed the optimal recurrent and convolutional neural networks architecture, and also the optimal convolution filter length (related to the P, Q, R, S, and T wave durations of ECG) and pooling length (related to the heart beat period) based on the optimization experiments and analysis on the waveform characteristics of ECG signals. The experiments were also conducted with conventional methods using HRV parameters and frequency features as a benchmark test. The data used in this study were obtained from Kwangwoon University in Korea (13 subjects, Case 1) and KU Leuven University in Belgium (9 subjects, Case 2). Experiments were designed according to various experimental protocols to elicit stressful conditions. The proposed framework to recognize stress conditions, the Deep ECGNet, outperformed the conventional approaches with the highest accuracy of 87.39% for Case 1 and 73.96% for Case 2, respectively, that is, 16.22% and 10.98% improvements compared with those of the conventional HRV method. We proposed an optimal deep learning architecture and its parameters for stress recognition, and the theoretical consideration on how to design the deep learning structure based on the periodic patterns of the raw ECG data. Experimental results in this study have proved that the proposed deep learning model, the Deep ECGNet, is an optimal structure to recognize the stress conditions using ultra short-term ECG data.
Intelligent Medical Garments with Graphene-Functionalized Smart-Cloth ECG Sensors
Yapici, Murat Kaya; Alkhidir, Tamador Elboshra
2017-01-01
Biopotential signals are recorded mostly by using sticky, pre-gelled electrodes, which are not ideal for wearable, point-of-care monitoring where the usability of the personalized medical device depends critically on the level of comfort and wearability of the electrodes. We report a fully-wearable medical garment for mobile monitoring of cardiac biopotentials from the wrists or the neck with minimum restriction to regular clothing habits. The wearable prototype is based on elastic bands with graphene functionalized, textile electrodes and battery-powered, low-cost electronics for signal acquisition and wireless transmission. Comparison of the electrocardiogram (ECG) recordings obtained from the wearable prototype against conventional wet electrodes indicate excellent conformity and spectral coherence among the two signals. PMID:28420158
One-Dimensional Signal Extraction Of Paper-Written ECG Image And Its Archiving
NASA Astrophysics Data System (ADS)
Zhang, Zhi-ni; Zhang, Hong; Zhuang, Tian-ge
1987-10-01
A method for converting paper-written electrocardiograms to one dimensional (1-D) signals for archival storage on floppy disk is presented here. Appropriate image processing techniques were employed to remove the back-ground noise inherent to ECG recorder charts and to reconstruct the ECG waveform. The entire process consists of (1) digitization of paper-written ECGs with an image processing system via a TV camera; (2) image preprocessing, including histogram filtering and binary image generation; (3) ECG feature extraction and ECG wave tracing, and (4) transmission of the processed ECG data to IBM-PC compatible floppy disks for storage and retrieval. The algorithms employed here may also be used in the recognition of paper-written EEG or EMG and may be useful in robotic vision.
Chen, Szi-Wen; Liaw, Jiunn-Woei; Chang, Ya-Ju; Chan, Hsiao-Lung; Chiu, Li-Yu
2015-01-01
In this study, we defined a new parameter, referred to as the cardiac stress index (CSI), using a nonlinear detrended fluctuation analysis (DFA) of heart rate (HR). Our study aimed to incorporate the CSI into a cycling based fatigue monitoring system developed in our previous work so the muscle fatigue and cardiac stress can be both continuously and quantitatively assessed for subjects undergoing the cycling exercise. By collecting electrocardiogram (ECG) signals, the DFA scaling exponent α was evaluated on the RR time series extracted from a windowed ECG segment. We then obtained the running estimate of α by shifting a one-minute window by a step of 20 seconds so the CSI, defined as the percentage of all the less-than-one α values, can be synchronously updated every 20 seconds. Since the rating of perceived exertion (RPE) scale is considered as a convenient index which is commonly used to monitor subjective perceived exercise intensity, we then related the Borg RPE scale value to the CSI in order to investigate and quantitatively characterize the relationship between exercise-induced fatigue and cardiac stress. Twenty-two young healthy participants were recruited in our study. Each participant was asked to maintain a fixed pedaling speed at a constant load during the cycling exercise. Experimental results showed that a decrease in DFA scaling exponent α or an increase in CSI was observed during the exercise. In addition, the Borg RPE scale and CSI were positively correlated, suggesting that the factors due to cardiac stress might also contribute to fatigue state during physical exercise. Since the CSI can effectively quantify the cardiac stress status during physical exercise, our system may be used in sports medicine, or used by cardiologists who carried out stress tests for monitoring heart condition in patients with heart diseases. PMID:26115515
Threshold-based system for noise detection in multilead ECG recordings.
Jekova, Irena; Krasteva, Vessela; Christov, Ivaylo; Abächerli, Roger
2012-09-01
This paper presents a system for detection of the most common noise types seen on the electrocardiogram (ECG) in order to evaluate whether an episode from 12-lead ECG is reliable for diagnosis. It implements criteria for estimation of the noise corruption level in specific frequency bands, aiming to identify the main sources of ECG quality disruption, such as missing signal or limited dynamics of the QRS components above 4 Hz; presence of high amplitude and steep artifacts seen above 1 Hz; baseline drift estimated at frequencies below 1 Hz; power-line interference in a band ±2 Hz around its central frequency; high-frequency and electromyographic noises above 20 Hz. All noise tests are designed to process the ECG series in the time domain, including 13 adjustable thresholds for amplitude and slope criteria which are evaluated in adjustable time intervals, as well as number of leads. The system allows flexible extension toward application-specific requirements for the noise levels in acceptable quality ECGs. Training of different thresholds' settings to determine different positive noise detection rates is performed with the annotated set of 1000 ECGs from the PhysioNet database created for the Computing in Cardiology Challenge 2011. Two implementations are highlighted on the receiver operating characteristic (area 0.968) to fit to different applications. The implementation with high sensitivity (Se = 98.7%, Sp = 80.9%) appears as a reliable alarm when there are any incidental problems with the ECG acquisition, while the implementation with high specificity (Sp = 97.8%, Se = 81.8%) is less susceptible to transient problems but rather validates noisy ECGs with acceptable quality during a small portion of the recording.
Yamamoto, Yuki; Yamamoto, Daisuke; Takada, Makoto; Naito, Hiroyoshi; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu
2017-09-01
Wearable, flexible healthcare devices, which can monitor health data to predict and diagnose disease in advance, benefit society. Toward this future, various flexible and stretchable sensors as well as other components are demonstrated by arranging materials, structures, and processes. Although there are many sensor demonstrations, the fundamental characteristics such as the dependence of a temperature sensor on film thickness and the impact of adhesive for an electrocardiogram (ECG) sensor are yet to be explored in detail. In this study, the effect of film thickness for skin temperature measurements, adhesive force, and reliability of gel-less ECG sensors as well as an integrated real-time demonstration is reported. Depending on the ambient conditions, film thickness strongly affects the precision of skin temperature measurements, resulting in a thin flexible film suitable for a temperature sensor in wearable device applications. Furthermore, by arranging the material composition, stable gel-less sticky ECG electrodes are realized. Finally, real-time simultaneous skin temperature and ECG signal recordings are demonstrated by attaching an optimized device onto a volunteer's chest. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Al-Busaidi, Asiya M; Khriji, Lazhar; Touati, Farid; Rasid, Mohd Fadlee; Mnaouer, Adel Ben
2017-09-12
One of the major issues in time-critical medical applications using wireless technology is the size of the payload packet, which is generally designed to be very small to improve the transmission process. Using small packets to transmit continuous ECG data is still costly. Thus, data compression is commonly used to reduce the huge amount of ECG data transmitted through telecardiology devices. In this paper, a new ECG compression scheme is introduced to ensure that the compressed ECG segments fit into the available limited payload packets, while maintaining a fixed CR to preserve the diagnostic information. The scheme automatically divides the ECG block into segments, while maintaining other compression parameters fixed. This scheme adopts discrete wavelet transform (DWT) method to decompose the ECG data, bit-field preserving (BFP) method to preserve the quality of the DWT coefficients, and a modified running-length encoding (RLE) scheme to encode the coefficients. The proposed dynamic compression scheme showed promising results with a percentage packet reduction (PR) of about 85.39% at low percentage root-mean square difference (PRD) values, less than 1%. ECG records from MIT-BIH Arrhythmia Database were used to test the proposed method. The simulation results showed promising performance that satisfies the needs of portable telecardiology systems, like the limited payload size and low power consumption.
Fetal ECG Extraction From Maternal Body Surface Measurement Using Independent Component Analysis
2001-10-25
Ibaraki 305-0901, Japan Abstract – A method applying independent component analysis (ICA) to detect the electrocardiogram of a prenatal cattle foetus is...monitoring the health status of an unborn cattle foetus is indispensable in preventing natural abortion and premature birth [3]. One of the applicable...and Y. Honda, “ECG and Heart Rate Detection of Prenatal Cattle Foetus Using Adaptive Digital Filtering,” World Congress on Med. Phys.& Biomed. Eng., Chicago TU-CXH-75, pp. 1-4, 2000.
Junell, Allison; Thomas, Jason; Hawkins, Lauren; Sklenar, Jiri; Feldman, Trevor; Henrikson, Charles A; Tereshchenko, Larisa G
2017-02-01
Each encounter of asymptomatic individuals with the healthcare system presents an opportunity for improvement of cardiovascular disease (CVD) awareness and sudden cardiac death (SCD) risk assessment. ECG sign deep terminal negativity of the P wave in V1 (DTNP V1 ) was shown to be associated with an increased risk of SCD in the general population. To evaluate association of DTNP V1 with all-cause mortality and newly diagnosed atrial fibrillation (AFib) in the large tertiary healthcare system patient population. Retrospective double cohort study compared two levels of exposure (automatically measured amplitude of P-prime (Pp) in V1): DTNP V1 (Pp from -100μV to -200μV) and ZeroPpV1 (Pp=0). An entire healthcare system (2010-2014) ECG database was screened. Medical records of children and patients with previously diagnosed AFib/atrial flutter (AFl), implanted pacemaker or cardioverter-defibrillator were excluded. DTNP V1 (n=3,413) and ZeroPpV1 (n=3,405) cohorts were matched by age and sex. Primary outcome was all-cause mortality. Secondary outcomes were newly diagnosed AFib/AFl. Median follow-up was 2.5 y. DTNP V1 was associated with all-cause mortality (HR 1.95(1.64-2.31); P<0.0001) and newly diagnosed AFib (HR 1.29(1.04-1.59); P=0.021) after adjustment for CVD, comorbidities, other ECG parameters, medications, and index ECG referral. Index ECG referral by a cardiologist was independently associated with 34% relative risk reduction of mortality (HR 0.66(0.52-0.84); P=0.001), as compared to ECG referral by a non-cardiologist. DTNP V1 is independently associated with twice higher risk of all-cause death, as compared to patients without P prime in V1. Life-saving effect of the index ECG referral by a cardiologist requires further study. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
A portable magnetic induction measurement system (PIMS).
Cordes, Axel; Foussier, Jérôme; Pollig, Daniel; Leonhardt, Steffen
2012-02-22
For contactless monitoring of ventilation and heart activity, magnetic induction measurements are applicable. As the technique is harmless for the human body, it is well suited for long-term monitoring solutions, e.g., bedside monitoring, monitoring of home care patients, and the monitoring of persons in critical occupations. For such settings, a two-channel portable magnetic induction system has been developed, which is small and light enough to be fitted in a chair or bed. Because demodulation, control, and filtering are implemented on a front-end digital signal processor, a PC is not required (except for visualization/data storage during research and development). The system can be connected to a local area network (LAN) or wireless network (WiFi), allowing to connect several devices to a large monitoring system, e.g., for a residential home for the elderly or a hospital with low-risk patients not requiring standard ECG monitoring. To visualize data streams, a Qt-based (Qt-framework by Nokia, Espoo, Finland) monitoring application has been developed, which runs on Netbook computers, laptops, or standard PCs. To induce and measure the magnetic fields, external coils and amplifiers are required. This article describes the system and presents results for monitoring respiration and heart activity in a (divan) bed and for respiration monitoring in a chair. Planar configurations and orthogonal coil setups were examined during the measurement procedures. The measurement data were streamed over a LAN to a monitoring PC running Matlab (The MathWorks Inc, Natick, MA, USA).
Development of three methods for extracting respiration from the surface ECG: a review.
Helfenbein, Eric; Firoozabadi, Reza; Chien, Simon; Carlson, Eric; Babaeizadeh, Saeed
2014-01-01
Respiration rate (RR) is a critical vital sign that can be monitored to detect acute changes in patient condition (e.g., apnea) and potentially provide an early warning of impending life-threatening deterioration. Monitoring respiration signals is also critical for detecting sleep disordered breathing such as sleep apnea. Additionally, analyzing a respiration signal can enhance the quality of medical images by gating image acquisition based on the same phase of the patient's respiratory cycle. Although many methods exist for measuring respiration, in this review we focus on three ECG-derived respiration techniques we developed to obtain respiration from an ECG signal. The first step in all three techniques is to analyze the ECG to detect beat locations and classify them. 1) The EDR method is based on analyzing the heart axis shift due to respiration. In our method, one respiration waveform value is calculated for each normal QRS complex by measuring the peak to QRS trough amplitude. Compared to other similar EDR techniques, this method does not need removal of baseline wander from the ECG signal. 2) The RSA method uses instantaneous heart rate variability to derive a respiratory signal. It is based on the observed respiratory sinus arrhythmia governed by baroreflex sensitivity. 3) Our EMGDR method for computing a respiratory waveform uses measurement of electromyogram (EMG) activity created by respiratory effort of the intercostal muscles and diaphragm. The ECG signal is high-pass filtered and processed to reduce ECG components and accentuate the EMG signal before applying RMS and smoothing. Over the last five years, we have performed six studies using the above methods: 1) In 1907 sleep lab patients with >1.5M 30-second epochs, EDR achieved an apnea detection accuracy of 79%. 2) In 24 adult polysomnograms, use of EDR and chest belts for RR computation was compared to airflow RR; mean RR error was EDR: 1.8±2.7 and belts: 0.8±2.1. 3) During cardiac MRI, a comparison of EMGDR breath locations to the reference abdominal belt signal yielded sensitivity/PPV of 94/95%. 4) Another comparison study for breath detection during MRI yielded sensitivity/PPV pairs of EDR: 99/97, RSA: 79/78, and EMGDR: 89/86%. 5) We tested EMGDR performance in the presence of simulated respiratory disease using CPAP to produce PEEP. For 10 patients, no false breath waveforms were generated with mild PEEP, but they appeared in 2 subjects at high PEEP. 6) A patient monitoring study compared RR computation from EDR to impedance-derived RR, and showed that EDR provides a near equivalent RR measurement with reduced hardware circuitry requirements. Copyright © 2014 Elsevier Inc. All rights reserved.
... by checking it through the skin with a pulse oximeter Complete blood count (CBC) ECG (electrocardiogram) Looking at ... from the groin ( cardiac catheterization ) Transcutaneous oxygen monitor (pulse oximeter) Echo-Doppler
Billeci, Lucia; Varanini, Maurizio
2017-01-01
The non-invasive fetal electrocardiogram (fECG) technique has recently received considerable interest in monitoring fetal health. The aim of our paper is to propose a novel fECG algorithm based on the combination of the criteria of independent source separation and of a quality index optimization (ICAQIO-based). The algorithm was compared with two methods applying the two different criteria independently—the ICA-based and the QIO-based methods—which were previously developed by our group. All three methods were tested on the recently implemented Fetal ECG Synthetic Database (FECGSYNDB). Moreover, the performance of the algorithm was tested on real data from the PhysioNet fetal ECG Challenge 2013 Database. The proposed combined method outperformed the other two algorithms on the FECGSYNDB (ICAQIO-based: 98.78%, QIO-based: 97.77%, ICA-based: 97.61%). Significant differences were obtained in particular in the conditions when uterine contractions and maternal and fetal ectopic beats occurred. On the real data, all three methods obtained very high performances, with the QIO-based method proving slightly better than the other two (ICAQIO-based: 99.38%, QIO-based: 99.76%, ICA-based: 99.37%). The findings from this study suggest that the proposed method could potentially be applied as a novel algorithm for accurate extraction of fECG, especially in critical recording conditions. PMID:28509860
ECG signal quality during arrhythmia and its application to false alarm reduction.
Behar, Joachim; Oster, Julien; Li, Qiao; Clifford, Gari D
2013-06-01
An automated algorithm to assess electrocardiogram (ECG) quality for both normal and abnormal rhythms is presented for false arrhythmia alarm suppression of intensive care unit (ICU) monitors. A particular focus is given to the quality assessment of a wide variety of arrhythmias. Data from three databases were used: the Physionet Challenge 2011 dataset, the MIT-BIH arrhythmia database, and the MIMIC II database. The quality of more than 33 000 single-lead 10 s ECG segments were manually assessed and another 12 000 bad-quality single-lead ECG segments were generated using the Physionet noise stress test database. Signal quality indices (SQIs) were derived from the ECGs segments and used as the inputs to a support vector machine classifier with a Gaussian kernel. This classifier was trained to estimate the quality of an ECG segment. Classification accuracies of up to 99% on the training and test set were obtained for normal sinus rhythm and up to 95% for arrhythmias, although performance varied greatly depending on the type of rhythm. Additionally, the association between 4050 ICU alarms from the MIMIC II database and the signal quality, as evaluated by the classifier, was studied. Results suggest that the SQIs should be rhythm specific and that the classifier should be trained for each rhythm call independently. This would require a substantially increased set of labeled data in order to train an accurate algorithm.
Jiang, Jiehui; Yan, Zhuangzhi; Kandachar, Prabhu; Freudenthal, Adinda
2010-05-01
High blood pressure (BP, hypertension) is a leading chronic condition in China and has become the main risk factor for many high-risk diseases, such as heart attacks. However, the platform for chronic disease measurement and management is still lacking, especially for underserved Chinese. To achieve the early diagnosis of hypertension, one BP monitoring system has been designed. The proposed design consists of three main parts: user domain, server domain, and channel domain. All three units and their materialization, validation tests on reliability, and usability are described in this paper, and the conclusion is that the current design concept is feasible and the system can be developed toward sufficient reliability and affordability with further optimization. This idea might also be extended into one platform for other physiological signals, such as blood sugar and ECG.
Elgendi, Mohamed; Eskofier, Björn; Dokos, Socrates; Abbott, Derek
2014-01-01
Cardiovascular diseases are the number one cause of death worldwide. Currently, portable battery-operated systems such as mobile phones with wireless ECG sensors have the potential to be used in continuous cardiac function assessment that can be easily integrated into daily life. These portable point-of-care diagnostic systems can therefore help unveil and treat cardiovascular diseases. The basis for ECG analysis is a robust detection of the prominent QRS complex, as well as other ECG signal characteristics. However, it is not clear from the literature which ECG analysis algorithms are suited for an implementation on a mobile device. We investigate current QRS detection algorithms based on three assessment criteria: 1) robustness to noise, 2) parameter choice, and 3) numerical efficiency, in order to target a universal fast-robust detector. Furthermore, existing QRS detection algorithms may provide an acceptable solution only on small segments of ECG signals, within a certain amplitude range, or amid particular types of arrhythmia and/or noise. These issues are discussed in the context of a comparison with the most conventional algorithms, followed by future recommendations for developing reliable QRS detection schemes suitable for implementation on battery-operated mobile devices.
Elgendi, Mohamed; Eskofier, Björn; Dokos, Socrates; Abbott, Derek
2014-01-01
Cardiovascular diseases are the number one cause of death worldwide. Currently, portable battery-operated systems such as mobile phones with wireless ECG sensors have the potential to be used in continuous cardiac function assessment that can be easily integrated into daily life. These portable point-of-care diagnostic systems can therefore help unveil and treat cardiovascular diseases. The basis for ECG analysis is a robust detection of the prominent QRS complex, as well as other ECG signal characteristics. However, it is not clear from the literature which ECG analysis algorithms are suited for an implementation on a mobile device. We investigate current QRS detection algorithms based on three assessment criteria: 1) robustness to noise, 2) parameter choice, and 3) numerical efficiency, in order to target a universal fast-robust detector. Furthermore, existing QRS detection algorithms may provide an acceptable solution only on small segments of ECG signals, within a certain amplitude range, or amid particular types of arrhythmia and/or noise. These issues are discussed in the context of a comparison with the most conventional algorithms, followed by future recommendations for developing reliable QRS detection schemes suitable for implementation on battery-operated mobile devices. PMID:24409290
Toward personal eHealth in cardiology. Results from the EPI-MEDICS telemedicine project.
Rubel, Paul; Fayn, Jocelyne; Nollo, Giandomenico; Assanelli, Deodato; Li, Bo; Restier, Lioara; Adami, Stefano; Arod, Sébastien; Atoui, Hussein; Ohlsson, Mattias; Simon-Chautemps, Lucas; Télisson, David; Malossi, Cesare; Ziliani, Gian-Luca; Galassi, Alfredo; Edenbrandt, Lars; Chevalier, Philippe
2005-10-01
Despite many attempts to improve the management of acute myocardial infarction, only small trends to shorter time intervals before treatment have been reported. The self-care solution developed by the European EPI-MEDICS project (2001-2004) is a novel, very affordable, easy-to-use, portable, and intelligent Personal ECG Monitor (PEM) for the early detection of cardiac ischemia and arrhythmia that is able to record a professional-quality, 3-lead electrocardiogram (ECG) based on leads I, II, and V2; derive the missing leads of the standard 12-lead ECG (thanks to either a generic or a patient-specific transform), compare each ECG with a reference ECG by means of advanced neural network-based decision-making methods taking into account the serial ECG measurements and the patient risk factors and clinical data; and generate different levels of alarms and forward the alarm messages with the recorded ECGs and the patient's Personal electronic Health Record (PHR) to the relevant health care providers by means of a standard Bluetooth-enabled, GSM/GPRS-compatible mobile phone. The ECG records are SCP-ECG encoded and stored with the PHR on a secure personal SD Card embedded in the PEM device. The alarm messages and the PHR are XML encoded. Major alarm messages are automatically transmitted to the nearest emergency call center. Medium or minor alarms are sent on demand to a central PEM Alarm Web Server. Health professionals are informed by a Short Message Service. The PEM embeds itself a Web server to facilitate the reviewing and/or update of the PHR during a routine visit at the office of the general physician or cardiologist. Eighty PEM prototypes have been finalized and tested for several weeks on 697 citizens/patients in different clinical and self-care situations involving end users (188 patients), general physicians (10), and cardiologists (9). The clinical evaluation indicates that the EPI-MEDICS concept may save lives and is very valuable for prehospitalization triage.
An ECG storage and retrieval system embedded in client server HIS utilizing object-oriented DB.
Wang, C; Ohe, K; Sakurai, T; Nagase, T; Kaihara, S
1996-02-01
In the University of Tokyo Hospital, the improved client server HIS has been applied to clinical practice and physicians can order prescription, laboratory examination, ECG examination and radiographic examination, etc. directly by themselves and read results of these examinations, except medical signal waves, schema and image, on UNIX workstations. Recently, we designed and developed an ECG storage and retrieval system embedded in the client server HIS utilizing object-oriented database to take the first step in dealing with digitized signal, schema and image data and show waves, graphics, and images directly to physicians by the client server HIS. The system was developed based on object-oriented analysis and design, and implemented with object-oriented database management system (OODMS) and C++ programming language. In this paper, we describe the ECG data model, functions of the storage and retrieval system, features of user interface and the result of its implementation in the HIS.
Study of emotion-based neurocardiology through wearable systems
NASA Astrophysics Data System (ADS)
Ramasamy, Mouli; Varadan, Vijay
2016-04-01
Neurocardiology is the exploration of neurophysiological, neurological and neuroanatomical facets of neuroscience's influence in cardiology. The paraphernalia of emotions on the heart and brain are premeditated because of the interaction between the central and peripheral nervous system. This is an investigative attempt to study emotion based neurocardiology and the factors that influence this phenomena. The factors include: interaction between sleep EEG (electroencephalogram) and ECG (electrocardiogram), relationship between emotion and music, psychophysiological coherence between the heart and brain, emotion recognition techniques, and biofeedback mechanisms. Emotions contribute vitally to the mundane life and are quintessential to a numerous biological and everyday-functional modalities of a human being. Emotions are best represented through EEG signals, and to a certain extent, can be observed through ECG and body temperature. Confluence of medical and engineering science has enabled the monitoring and discrimination of emotions influenced by happiness, anxiety, distress, excitement and several other factors that influence the thinking patterns and the electrical activity of the brain. Similarly, HRV (Heart Rate Variability) widely investigated for its provision and discerning characteristics towards EEG and the perception in neurocardiology.
A harmonic linear dynamical system for prominent ECG feature extraction.
Thi, Ngoc Anh Nguyen; Yang, Hyung-Jeong; Kim, SunHee; Do, Luu Ngoc
2014-01-01
Unsupervised mining of electrocardiography (ECG) time series is a crucial task in biomedical applications. To have efficiency of the clustering results, the prominent features extracted from preprocessing analysis on multiple ECG time series need to be investigated. In this paper, a Harmonic Linear Dynamical System is applied to discover vital prominent features via mining the evolving hidden dynamics and correlations in ECG time series. The discovery of the comprehensible and interpretable features of the proposed feature extraction methodology effectively represents the accuracy and the reliability of clustering results. Particularly, the empirical evaluation results of the proposed method demonstrate the improved performance of clustering compared to the previous main stream feature extraction approaches for ECG time series clustering tasks. Furthermore, the experimental results on real-world datasets show scalability with linear computation time to the duration of the time series.
Multiple bio-monitoring system using visible light for electromagnetic-wave free indoor healthcare
NASA Astrophysics Data System (ADS)
An, Jinyoung; Pham, Ngoc Quan; Chung, Wan-Young
2017-12-01
In this paper, a multiple biomedical data transmission system with visible light communication (VLC) is proposed for an electromagnetic-wave-free indoor healthcare. VLC technology has emerged as an alternative solution to radio-frequency (RF) wireless systems, due to its various merits, e.g., ubiquity, power efficiency, no RF radiation, and security. With VLC, critical bio-medical signals, including electrocardiography (ECG), can be transmitted in places where RF radiation is restricted. This potential advantage of VLC could save more lives in emergency situations. A time hopping (TH) scheme is employed to transfer multiple medical-data streams in real time with a simple system design. Multiple data streams are transmitted using identical color LEDs and go into an optical detector. The received multiple data streams are demodulated and rearranged using a TH-based demodulator. The medical data is then monitored and managed to provide the necessary medical care for each patient.
Predicting Mood Changes in Bipolar Disorder through Heartbeat Nonlinear Dynamics.
Valenza, Gaetano; Nardelli, Mimma; Lanata', Antonio; Gentili, Claudio; Bertschy, Gilles; Kosel, Markus; Scilingo, Enzo Pasquale
2016-04-20
Bipolar Disorder (BD) is characterized by an alternation of mood states from depression to (hypo)mania. Mixed states, i.e., a combination of depression and mania symptoms at the same time, can also be present. The diagnosis of this disorder in the current clinical practice is based only on subjective interviews and questionnaires, while no reliable objective psychophysiological markers are available. Furthermore, there are no biological markers predicting BD outcomes, or providing information about the future clinical course of the phenomenon. To overcome this limitation, here we propose a methodology predicting mood changes in BD using heartbeat nonlinear dynamics exclusively, derived from the ECG. Mood changes are here intended as transitioning between two mental states: euthymic state (EUT), i.e., the good affective balance, and non-euthymic (non-EUT) states. Heart Rate Variability (HRV) series from 14 bipolar spectrum patients (age: 33.439.76, age range: 23-54; 6 females) involved in the European project PSYCHE, undergoing whole night ECG monitoring were analyzed. Data were gathered from a wearable system comprised of a comfortable t-shirt with integrated fabric electrodes and sensors able to acquire ECGs. Each patient was monitored twice a week, for 14 weeks, being able to perform normal (unstructured) activities. From each acquisition, the longest artifact-free segment of heartbeat dynamics was selected for further analyses. Sub-segments of 5 minutes of this segment were used to estimate trends of HRV linear and nonlinear dynamics. Considering data from a current observation at day t0, and past observations at days (t1, t2,...,), personalized prediction accuracies in forecasting a mood state (EUT/non-EUT) at day t+1 were 69% on average, reaching values as high as 83.3%. This approach opens to the possibility of predicting mood states in bipolar patients through heartbeat nonlinear dynamics exclusively.
The Accuracy and Validity of iOS-Based Heart Rate Apps During Moderate to High Intensity Exercise.
Bouts, Alexa M; Brackman, Lauren; Martin, Elizabeth; Subasic, Adam M; Potkanowicz, Edward S
2018-01-01
People use their smartphones for everything from web browsing to tracking fitness metrics. However, it is unclear whether smartphone-based apps that use photoplethysmography to measure heart rate are an accurate or valid measure of exercise intensity. Purpose was to determine the accuracy and validity of two iOS-based heart rate monitors, Runtastic Heart Rate Monitor and Pulse Tracker PRO by Runtastic (Runtastic) and Instant Heart Rate+: Heart Rate and Pulse Monitor by Azumio (Instant Heart Rate), when compared to the electrocardiogram (ECG) and Polar® T31 uncoded heart rate monitor from moderate to vigorous intensity exercise. Participants were 15 male and female regularly active college students. Pre-exercise heart rate and blood pressure were recorded and then participants exercised on a stationary bike at a pedal rate of between 50-60 rpms. After completing a warm-up stage at 40% of age estimated maximum heart rate (AEMHR), exercise intensity progressed from 50% of AEMHR through to 85% of AEMHR in eight, 5-minute stages. At the end of each stage, and having achieved steady-state, heart rates were recorded from each apparatus. After completing the final stage, participants completed a cooldown at 40% of their AEMHR. Post-exercise heart rate and blood pressure were also recorded to ensure full recovery to baseline. There was a strong positive correlation between the Polar® monitor and the ECG during all stages. However, there were not strong correlations for either of the smartphone-based apps at any time point. Although there were weak correlations between the smartphone-based apps and ECG and Polar®, further studies need to be conducted to determine if inaccuracy is due to user error (finger placement, finger temperature, etc.) or the technology behind the apps.
The Accuracy and Validity of iOS-Based Heart Rate Apps During Moderate to High Intensity Exercise
BOUTS, ALEXA M.; BRACKMAN, LAUREN; MARTIN, ELIZABETH; SUBASIC, ADAM M.; POTKANOWICZ, EDWARD S.
2018-01-01
People use their smartphones for everything from web browsing to tracking fitness metrics. However, it is unclear whether smartphone-based apps that use photoplethysmography to measure heart rate are an accurate or valid measure of exercise intensity. Purpose was to determine the accuracy and validity of two iOS-based heart rate monitors, Runtastic Heart Rate Monitor and Pulse Tracker PRO by Runtastic (Runtastic) and Instant Heart Rate+: Heart Rate and Pulse Monitor by Azumio (Instant Heart Rate), when compared to the electrocardiogram (ECG) and Polar® T31 uncoded heart rate monitor from moderate to vigorous intensity exercise. Participants were 15 male and female regularly active college students. Pre-exercise heart rate and blood pressure were recorded and then participants exercised on a stationary bike at a pedal rate of between 50–60 rpms. After completing a warm-up stage at 40% of age estimated maximum heart rate (AEMHR), exercise intensity progressed from 50% of AEMHR through to 85% of AEMHR in eight, 5-minute stages. At the end of each stage, and having achieved steady-state, heart rates were recorded from each apparatus. After completing the final stage, participants completed a cooldown at 40% of their AEMHR. Post-exercise heart rate and blood pressure were also recorded to ensure full recovery to baseline. There was a strong positive correlation between the Polar® monitor and the ECG during all stages. However, there were not strong correlations for either of the smartphone-based apps at any time point. Although there were weak correlations between the smartphone-based apps and ECG and Polar®, further studies need to be conducted to determine if inaccuracy is due to user error (finger placement, finger temperature, etc.) or the technology behind the apps. PMID:29541341
Giada, Franco; Gulizia, Michele; Francese, Maura; Croci, Francesco; Santangelo, Lucio; Santomauro, Maurizio; Occhetta, Eraldo; Menozzi, Carlo; Raviele, Antonio
2007-05-15
The aim of the study was to compare the diagnostic yield and the costs of implantable loop recorder (ILR) with those of the conventional strategy in patients with unexplained palpitations. In patients with unexplained palpitations, especially in those with infrequent symptoms, the conventional strategy, including short-term ambulatory electrocardiogram (ECG) monitoring and electrophysiological study, sometimes fails to establish a diagnosis. We studied 50 patients with infrequent (< or =1 episode/month), sustained (>1 min) palpitations. Before enrollment, patients had a negative initial evaluation, including history, physical examination, and ECG. Patients were randomized either to conventional strategy (24-h Holter recording, a 4-week period of ambulatory ECG monitoring with an external recorder, and electrophysiological study) (n = 24) or to ILR implantation with 1-year monitoring (n = 26). Hospital costs of the 2 strategies were calculated. A diagnosis was obtained in 5 patients in the conventional strategy group, and in 19 subjects in the ILR group (21% vs. 73%, p < 0.001). Despite the higher initial cost, the cost per diagnosis in the ILR group was lower than in the conventional strategy group (euro 3,056 +/- euro 363 vs. euro 6,768 +/- euro 6,672, p = 0.012). In subjects without severe heart disease and with infrequent palpitations, ILR is a safe and more cost-effective diagnostic approach than conventional strategy.
Jeppesen, J; Beniczky, S; Fuglsang Frederiksen, A; Sidenius, P; Johansen, P
2017-07-01
Earlier studies have shown that short term heart rate variability (HRV) analysis of ECG seems promising for detection of epileptic seizures. A precise and accurate automatic R-peak detection algorithm is a necessity in a real-time, continuous measurement of HRV, in a portable ECG device. We used the portable CE marked ePatch® heart monitor to record the ECG of 14 patients, who were enrolled in the videoEEG long term monitoring unit for clinical workup of epilepsy. Recordings of the first 7 patients were used as training set of data for the R-peak detection algorithm and the recordings of the last 7 patients (467.6 recording hours) were used to test the performance of the algorithm. We aimed to modify an existing QRS-detection algorithm to a more precise R-peak detection algorithm to avoid the possible jitter Qand S-peaks can create in the tachogram, which causes error in short-term HRVanalysis. The proposed R-peak detection algorithm showed a high sensitivity (Se = 99.979%) and positive predictive value (P+ = 99.976%), which was comparable with a previously published QRS-detection algorithm for the ePatch® ECG device, when testing the same dataset. The novel R-peak detection algorithm designed to avoid jitter has very high sensitivity and specificity and thus is a suitable tool for a robust, fast, real-time HRV-analysis in patients with epilepsy, creating the possibility for real-time seizure detection for these patients.
Biosignal PI, an Affordable Open-Source ECG and Respiration Measurement System
Abtahi, Farhad; Snäll, Jonatan; Aslamy, Benjamin; Abtahi, Shirin; Seoane, Fernando; Lindecrantz, Kaj
2015-01-01
Bioimedical pilot projects e.g., telemedicine, homecare, animal and human trials usually involve several physiological measurements. Technical development of these projects is time consuming and in particular costly. A versatile but affordable biosignal measurement platform can help to reduce time and risk while keeping the focus on the important goal and making an efficient use of resources. In this work, an affordable and open source platform for development of physiological signals is proposed. As a first step an 8–12 leads electrocardiogram (ECG) and respiration monitoring system is developed. Chips based on iCoupler technology have been used to achieve electrical isolation as required by IEC 60601 for patient safety. The result shows the potential of this platform as a base for prototyping compact, affordable, and medically safe measurement systems. Further work involves both hardware and software development to develop modules. These modules may require development of front-ends for other biosignals or just collect data wirelessly from different devices e.g., blood pressure, weight, bioimpedance spectrum, blood glucose, e.g., through Bluetooth. All design and development documents, files and source codes will be available for non-commercial use through project website, BiosignalPI.org. PMID:25545268
Wang, Yishan; Doleschel, Sammy; Wunderlich, Ralf; Heinen, Stefan
2016-07-01
In this paper, a wearable and wireless ECG system is firstly designed with Bluetooth Low Energy (BLE). It can detect 3-lead ECG signals and is completely wireless. Secondly the digital Compressed Sensing (CS) is implemented to increase the energy efficiency of wireless ECG sensor. Different sparsifying basis, various compression ratio (CR) and several reconstruction algorithms are simulated and discussed. Finally the reconstruction is done by the android application (App) on smartphone to display the signal in real time. The power efficiency is measured and compared with the system without CS. The optimum satisfying basis built by 3-level decomposed db4 wavelet coefficients, 1-bit Bernoulli random matrix and the most suitable reconstruction algorithm are selected by the simulations and applied on the sensor node and App. The signal is successfully reconstructed and displayed on the App of smartphone. Battery life of sensor node is extended from 55 h to 67 h. The presented wireless ECG system with CS can significantly extend the battery life by 22 %. With the compact characteristic and long term working time, the system provides a feasible solution for the long term homecare utilization.
NASA Astrophysics Data System (ADS)
Kwon, Hyeokjun; Oh, Sechang; Varadan, Vijay K.
2012-04-01
The Electrocardiogram(ECG) signal is one of the bio-signals to check body status. Traditionally, the ECG signal was checked in the hospital. In these days, as the number of people who is interesting with periodic their health check increase, the requirement of self-diagnosis system development is being increased as well. Ubiquitous concept is one of the solutions of the self-diagnosis system. Zigbee wireless sensor network concept is a suitable technology to satisfy the ubiquitous concept. In measuring ECG signal, there are several kinds of methods in attaching electrode on the body called as Lead I, II, III, etc. In addition, several noise components occurred by different measurement situation such as experimenter's respiration, sensor's contact point movement, and the wire movement attached on sensor are included in pure ECG signal. Therefore, this paper is based on the two kinds of development concept. The first is the Zibee wireless communication technology, which can provide convenience and simpleness, and the second is motion artifact remove algorithm, which can detect clear ECG signal from measurement subject. The motion artifact created by measurement subject's movement or even respiration action influences to distort ECG signal, and the frequency distribution of the noises is around from 0.2Hz to even 30Hz. The frequencies are duplicated in actual ECG signal frequency, so it is impossible to remove the artifact without any distortion of ECG signal just by using low-pass filter or high-pass filter. The suggested algorithm in this paper has two kinds of main parts to extract clear ECG signal from measured original signal through an electrode. The first part is to extract motion noise signal from measured signal, and the second part is to extract clear ECG by using extracted motion noise signal and measured original signal. The paper suggests several techniques in order to extract motion noise signal such as predictability estimation theory, low pass filter, a filter including a moving weighted factor, peak to peak detection, and interpolation techniques. In addition, this paper introduces an adaptive filter in order to extract clear ECG signal by using extracted baseline noise signal and measured signal from sensor.
Cairns, Andrew W; Bond, Raymond R; Finlay, Dewar D; Breen, Cathal; Guldenring, Daniel; Gaffney, Robert; Gallagher, Anthony G; Peace, Aaron J; Henn, Pat
2016-12-01
The 12-lead Electrocardiogram (ECG) presents a plethora of information and demands extensive knowledge and a high cognitive workload to interpret. Whilst the ECG is an important clinical tool, it is frequently incorrectly interpreted. Even expert clinicians are known to impulsively provide a diagnosis based on their first impression and often miss co-abnormalities. Given it is widely reported that there is a lack of competency in ECG interpretation, it is imperative to optimise the interpretation process. Predominantly the ECG interpretation process remains a paper based approach and whilst computer algorithms are used to assist interpreters by providing printed computerised diagnoses, there are a lack of interactive human-computer interfaces to guide and assist the interpreter. An interactive computing system was developed to guide the decision making process of a clinician when interpreting the ECG. The system decomposes the interpretation process into a series of interactive sub-tasks and encourages the clinician to systematically interpret the ECG. We have named this model 'Interactive Progressive based Interpretation' (IPI) as the user cannot 'progress' unless they complete each sub-task. Using this model, the ECG is segmented into five parts and presented over five user interfaces (1: Rhythm interpretation, 2: Interpretation of the P-wave morphology, 3: Limb lead interpretation, 4: QRS morphology interpretation with chest lead and rhythm strip presentation and 5: Final review of 12-lead ECG). The IPI model was implemented using emerging web technologies (i.e. HTML5, CSS3, AJAX, PHP and MySQL). It was hypothesised that this system would reduce the number of interpretation errors and increase diagnostic accuracy in ECG interpreters. To test this, we compared the diagnostic accuracy of clinicians when they used the standard approach (control cohort) with clinicians who interpreted the same ECGs using the IPI approach (IPI cohort). For the control cohort, the (mean; standard deviation; confidence interval) of the ECG interpretation accuracy was (45.45%; SD=18.1%; CI=42.07, 48.83). The mean ECG interpretation accuracy rate for the IPI cohort was 58.85% (SD=42.4%; CI=49.12, 68.58), which indicates a positive mean difference of 13.4%. (CI=4.45, 22.35) An N-1 Chi-square test of independence indicated a 92% chance that the IPI cohort will have a higher accuracy rate. Interpreter self-rated confidence also increased between cohorts from a mean of 4.9/10 in the control cohort to 6.8/10 in the IPI cohort (p=0.06). Whilst the IPI cohort had greater diagnostic accuracy, the duration of ECG interpretation was six times longer when compared to the control cohort. We have developed a system that segments and presents the ECG across five graphical user interfaces. Results indicate that this approach improves diagnostic accuracy but with the expense of time, which is a valuable resource in medical practice. Copyright © 2016 Elsevier Inc. All rights reserved.
Microelectronic bioinstrumentation systems
NASA Technical Reports Server (NTRS)
Ko, W. H.
1976-01-01
Progress was made in the development of an RF cage, a single channel RF powered ECG telemetry system, and a three channel RF powered ECG, aortic blood pressure, and body temperature telemetry system. Encapsulation materials for chronic implantation of electronic circuits in the body were also evaluated.
High Frequency QRS ECG Accurately Detects Cardiomyopathy
NASA Technical Reports Server (NTRS)
Schlegel, Todd T.; Arenare, Brian; Poulin, Gregory; Moser, Daniel R.; Delgado, Reynolds
2005-01-01
High frequency (HF, 150-250 Hz) analysis over the entire QRS interval of the ECG is more sensitive than conventional ECG for detecting myocardial ischemia. However, the accuracy of HF QRS ECG for detecting cardiomyopathy is unknown. We obtained simultaneous resting conventional and HF QRS 12-lead ECGs in 66 patients with cardiomyopathy (EF = 23.2 plus or minus 6.l%, mean plus or minus SD) and in 66 age- and gender-matched healthy controls using PC-based ECG software recently developed at NASA. The single most accurate ECG parameter for detecting cardiomyopathy was an HF QRS morphological score that takes into consideration the total number and severity of reduced amplitude zones (RAZs) present plus the clustering of RAZs together in contiguous leads. This RAZ score had an area under the receiver operator curve (ROC) of 0.91, and was 88% sensitive, 82% specific and 85% accurate for identifying cardiomyopathy at optimum score cut-off of 140 points. Although conventional ECG parameters such as the QRS and QTc intervals were also significantly longer in patients than controls (P less than 0.001, BBBs excluded), these conventional parameters were less accurate (area under the ROC = 0.77 and 0.77, respectively) than HF QRS morphological parameters for identifying underlying cardiomyopathy. The total amplitude of the HF QRS complexes, as measured by summed root mean square voltages (RMSVs), also differed between patients and controls (33.8 plus or minus 11.5 vs. 41.5 plus or minus 13.6 mV, respectively, P less than 0.003), but this parameter was even less accurate in distinguishing the two groups (area under ROC = 0.67) than the HF QRS morphologic and conventional ECG parameters. Diagnostic accuracy was optimal (86%) when the RAZ score from the HF QRS ECG and the QTc interval from the conventional ECG were used simultaneously with cut-offs of greater than or equal to 40 points and greater than or equal to 445 ms, respectively. In conclusion 12-lead HF QRS ECG employing RAZ scoring is a simple, accurate and inexpensive screening technique for cardiomyopathy. Although HF QRS ECG is highly sensitive for cardiomyopathy, its specificity may be compromised in patients with cardiac pathologies other than cardiomyopathy, such as uncomplicated coronary artery disease or multiple coronary disease risk factors. Further studies are required to determine whether HF QRS might be useful for monitoring cardiomyopathy severity or the efficacy of therapy in a longitudinal fashion.
Variable threshold method for ECG R-peak detection.
Kew, Hsein-Ping; Jeong, Do-Un
2011-10-01
In this paper, a wearable belt-type ECG electrode worn around the chest by measuring the real-time ECG is produced in order to minimize the inconvenient in wearing. ECG signal is detected using a potential instrument system. The measured ECG signal is transmits via an ultra low power consumption wireless data communications unit to personal computer using Zigbee-compatible wireless sensor node. ECG signals carry a lot of clinical information for a cardiologist especially the R-peak detection in ECG. R-peak detection generally uses the threshold value which is fixed. There will be errors in peak detection when the baseline changes due to motion artifacts and signal size changes. Preprocessing process which includes differentiation process and Hilbert transform is used as signal preprocessing algorithm. Thereafter, variable threshold method is used to detect the R-peak which is more accurate and efficient than fixed threshold value method. R-peak detection using MIT-BIH databases and Long Term Real-Time ECG is performed in this research in order to evaluate the performance analysis.
Bush, Montika; Glickman, Lawrence T.; Fernandez, Antonio R.; Garvey, J. L.; Glickman, Seth W.
2013-01-01
Background Prehospital 12‐lead electrocardiography (ECG) is critical to timely STEMI care although its use remains inconsistent. Previous studies to identify reasons for failure to obtain a prehospital ECG have generally only focused on individual emergency medical service (EMS) systems in urban areas. Our study objective was to identify patient, geographic, and EMS agency‐related factors associated with failure to perform a prehospital ECG across a statewide geography. Methods and Results We analyzed data from the Prehospital Medical Information System (PreMIS) in North Carolina from January 2008 to November 2010 for patients >30 years of age who used EMS and had a prehospital chief complaint of chest pain. Among 3.1 million EMS encounters, 134 350 patients met study criteria. From 2008–2010, 82 311 (61%) persons with chest pain received a prehospital ECG; utilization increased from 55% in 2008 to 65% in 2010 (trend P<0.001). Utilization by health referral region ranged from 22.9% to 74.2% and was lowest in rural areas. Men were more likely than women to have an ECG performed (63.0% vs 61.3%, adjusted RR 1.02, 95% CI 1.01 to 1.04). The certification‐level of the EMS provider (paramedic vsbasic/intermediate) and system‐level ECG equipment availability were the strongest predictors of ECG utilization. Persons in an ambulance with a certified paramedic were significantly more likely to receive a prehospital ECG than nonparamedics (RR 2.15, 95% CI 1.55, 2.99). Conclusions Across a large geographic area prehospital ECG use increased significantly, although important quality improvement opportunities remain. Increasing ECG availability and improving EMS certification and training levels are needed to improve overall care and reduce rural‐urban treatment differences. PMID:23920232
Matsui, T; Arai, I; Gotoh, S; Hattori, H; Takase, B; Kikuchi, M; Ishihara, M
2005-10-01
The impaired balance of the low-frequency/high-frequency ratio obtained from spectral components of RR intervals can be a diagnostic test for sepsis. In addition, it is known that a reduction of heart rate variability (HRV) is useful in identifying septic patients at risk of the development of multiple organ dysfunction syndrome (MODS). We have reported a non-contact method using a microwave radar to monitor the heart and respiratory rates of a healthy person placed inside an isolator or of experimental animals exposed to toxic materials. With the purpose of preventing secondary exposure of medical personnel to toxic materials under biochemical hazard conditions, we designed a novel apparatus for non-contact measurement of HRV using a 1215 MHz microwave radar, a high-pass filter, and a personal computer. The microwave radar monitors only the small reflected waves from the subject's chest wall, which are modulated by the cardiac and respiratory motion. The high-pass filter enhances the cardiac signal and attenuates the respiratory signal. In a human trial, RR intervals derived from the non-contact apparatus significantly correlated with those derived from ECG (r=0.98, P<0.0001). The non-contact apparatus showed a similar power spectrum of RR intervals to that of ECG. Our non-contact HRV measurement apparatus appears promising for future pre-hospital monitoring of septic patients or for predicting MODS patients, inside isolators or in the field for mass casualties under biochemical hazard circumstances.
Fabric-based active electrode design and fabrication for health monitoring clothing.
Merritt, Carey R; Nagle, H Troy; Grant, Edward
2009-03-01
In this paper, two versions of fabric-based active electrodes are presented to provide a wearable solution for ECG monitoring clothing. The first version of active electrode involved direct attachment of surface-mountable components to a textile screen-printed circuit using polymer thick film techniques. The second version involved attaching a much smaller, thinner, and less obtrusive interposer containing the active electrode circuitry to a simplified textile circuit. These designs explored techniques for electronic textile interconnection, chip attachment to textiles, and packaging of circuits on textiles for durability. The results from ECG tests indicate that the performance of each active electrode is comparable to commercial Ag/AgCl electrodes. The interposer-based active electrodes survived a five-cycle washing test while maintaining good signal integrity.
Object-oriented analysis and design of an ECG storage and retrieval system integrated with an HIS.
Wang, C; Ohe, K; Sakurai, T; Nagase, T; Kaihara, S
1996-03-01
For a hospital information system, object-oriented methodology plays an increasingly important role, especially for the management of digitized data, e.g., the electrocardiogram, electroencephalogram, electromyogram, spirogram, X-ray, CT and histopathological images, which are not yet computerized in most hospitals. As a first step in an object-oriented approach to hospital information management and storing medical data in an object-oriented database, we connected electrocardiographs to a hospital network and established the integration of ECG storage and retrieval systems with a hospital information system. In this paper, the object-oriented analysis and design of the ECG storage and retrieval systems is reported.
Application of exercise ECG stress test in the current high cost modern-era healthcare system.
Vaidya, Gaurang Nandkishor
Exercise electrocardiogram (ECG) tests boasts of being more widely available, less resource intensive, lower cost and absence of radiation. In the presence of a normal baseline ECG, an exercise ECG test is able to generate a reliable and reproducible result almost comparable to Technitium-99m sestamibi perfusion imaging. Exercise ECG changes when combined with other clinical parameters obtained during the test has the potential to allow effective redistribution of scarce resources by excluding low risk patients with significant accuracy. As we look towards a future of rising healthcare costs, increased prevalence of cardiovascular disease and the need for proper allocation of limited resources; exercise ECG test offers low cost, vital and reliable disease interpretation. This article highlights the physiology of the exercise ECG test, patient selection, effective interpretation, describe previously reported scores and their clinical application in today's clinical practice. Copyright © 2017. Published by Elsevier B.V.
Effect of zero magnetic field on cardiovascular system and microcirculation
NASA Astrophysics Data System (ADS)
Gurfinkel, Yu. I.; At'kov, O. Yu.; Vasin, A. L.; Breus, T. K.; Sasonko, M. L.; Pishchalnikov, R. Yu.
2016-02-01
The effects of zero magnetic field conditions on cardiovascular system of healthy adults have been studied. In order to generate zero magnetic field, the facility for magnetic fields modeling ;ARFA; has been used. Parameters of the capillary blood flow, blood pressure, and the electrocardiogram (ECG) monitoring were measured during the study. All subjects were tested twice: in zero magnetic field and, for comparison, in sham condition. The obtained results during 60 minutes of zero magnetic field exposure demonstrate a clear effect on cardiovascular system and microcirculation. The results of our experiments can be used in studies of long-term stay in hypo-magnetic conditions during interplanetary missions.