Science.gov

Sample records for echelle grating spectrometer

  1. Cooled echelle grating spectrometer. [for space telescope applications

    NASA Technical Reports Server (NTRS)

    Beer, R. (Inventor)

    1980-01-01

    A cooled echelle grating spectrometer for detecting wavelengths between one micron and fifteen microns is disclosed. More specifically, the spectrometer has a cross-dispersing grating for ordering infrared energy and an echelle grating for further ordering of the infrared energy. Ordered radiation from the echelle grating is sensed by a detecting means. Also disclosed is use of a Schmidt camera for focusing the further ordered radiation from the echelle grating onto a detector array having individual detectors dispersed on a plane which substantially corresponds to a curved focal plane of the Schmidt camera. A spectrometer constructed according to the teachings of the present invention will continuously cover the spectrum between one micron and fifteen microns and have a resolution of 0.1/cm.

  2. Echelle grating multi-order imaging spectrometer utilizing a catadioptric lens

    DOEpatents

    Chrisp, Michael P; Bowers, Joel M

    2014-05-27

    A cryogenically cooled imaging spectrometer that includes a spectrometer housing having a first side and a second side opposite the first side. An entrance slit is on the first side of the spectrometer housing and directs light to a cross-disperser grating. An echelle immersions grating and a catadioptric lens are positioned in the housing to receive the light. A cryogenically cooled detector is located in the housing on the second side of the spectrometer housing. Light from the entrance slit is directed to the cross-disperser grating. The light is directed from the cross-disperser grating to the echelle immersions grating. The light is directed from the echelle immersions grating to the cryogenically cooled detector on the second side of the spectrometer housing.

  3. Determination of chemical concentration with a 2 dimensional CCD array in the Echelle grating spectrometer

    SciTech Connect

    Lewis, D.K.; Stevens, C.G.

    1994-11-15

    The Echelle grating spectrometer (EGS) uses a stepped Echelle grating, prisms and a folded light path to miniaturize an infrared spectrometer. Light enters the system through a slit and is spread out along Y by a prism. This light then strikes the grating and is diffracted out along X. This spreading results in a superposition of spectral orders since the grating has a high spectral range. These orders are then separated by again passing through a prism. The end result of a measurement is a 2 dimensional image which contains the folded spectrum of the region under investigation. The data lies in bands from top to bottom, for example, with wavenumber increments as small as 0.1 lying from left to right such that the right end of band N is the same as the left end of band N+1. This is the image which must be analyzed.

  4. Astronomical near-infrared echelle gratings

    NASA Astrophysics Data System (ADS)

    Hinkle, Kenneth H.; Joyce, Richard R.; Liang, Ming

    2014-07-01

    High-resolution near-infrared echelle spectrographs require coarse rulings in order to match the free spectral range to the detector size. Standard near-IR detector arrays typically are 2 K x 2 K or 4 K x 4 K. Detectors of this size combined with resolutions in the range 30000 to 100000 require grating groove spacings in the range 5 to 20 lines/mm. Moderately high blaze angles are desirable to reduce instrument size. Echelle gratings with these characteristics have potential wide application in both ambient temperature and cryogenic astronomical echelle spectrographs. We discuss optical designs for spectrographs employing immersed and reflective echelle gratings. The optical designs set constraints on grating characteristics. We report on market choices for obtaining these gratings and review our experiments with custom diamond turned rulings.

  5. Optical Alignment and Diffraction Analysis for AIRES: An Airborne Infrared Echelle Spectrometer

    NASA Technical Reports Server (NTRS)

    Haas, Michael R.; Fonda, Mark (Technical Monitor)

    2002-01-01

    The optical design is presented for a long-slit grating spectrometer known as AIRES (Airborne InfraRed Echelle Spectrometer). The instrument employs two gratings in series: a small order sorter and a large steeply blazed echelle. The optical path includes four pupil and four field stops, including two narrow slits. A detailed diffraction analysis is performed using GLAD by Applied Optics Research to evaluate critical trade-offs between optical throughput, spectral resolution, and system weight and volume. The effects of slit width, slit length, oversizing the second slit relative to the first, on- vs off-axis throughput, and clipping at the pupil stops and other optical elements are discussed.

  6. Spherical grating spectrometers

    NASA Astrophysics Data System (ADS)

    O'Donoghue, Darragh; Clemens, J. Christopher

    2014-07-01

    We describe designs for spectrometers employing convex dispersers. The Offner spectrometer was the first such instrument; it has almost exclusively been employed on satellite platforms, and has had little impact on ground-based instruments. We have learned how to fabricate curved Volume Phase Holographic (VPH) gratings and, in contrast to the planar gratings of traditional spectrometers, describe how such devices can be used in optical/infrared spectrometers designed specifically for curved diffraction gratings. Volume Phase Holographic gratings are highly efficient compared to conventional surface relief gratings; they have become the disperser of choice in optical / NIR spectrometers. The advantage of spectrometers with curved VPH dispersers is the very small number of optical elements used (the simplest comprising a grating and a spherical mirror), as well as illumination of mirrors off axis, resulting in greater efficiency and reduction in size. We describe a "Half Offner" spectrometer, an even simpler version of the Offner spectrometer. We present an entirely novel design, the Spherical Transmission Grating Spectrometer (STGS), and discuss exemplary applications, including a design for a double-beam spectrometer without any requirement for a dichroic. This paradigm change in spectrometer design offers an alternative to all-refractive astronomical spectrometer designs, using expensive, fragile lens elements fabricated from CaF2 or even more exotic materials. The unobscured mirror layout avoids a major drawback of the previous generation of catadioptric spectrometer designs. We describe laboratory measurements of the efficiency and image quality of a curved VPH grating in a STGS design, demonstrating, simultaneously, efficiency comparable to planar VPH gratings along with good image quality. The stage is now set for construction of a prototype instrument with impressive performance.

  7. Echelle crossed grating millimeter wave beam scanner.

    PubMed

    Furxhi, Orges; Marks, Daniel L; Brady, David J

    2014-06-30

    We present a two-dimensional, active, millimeter-wave, electronic beam scanner, with Doppler capabilities for stand-off imaging. The two-dimensional scan is achieved by mapping the millimeter wave spectrum to space using a pair of crossed gratings. The active transceiver and heterodyne quadrature detection allow the measurement of the relative phase between two consecutive measurements and the synthesis of the scene's Doppler signature. The frame rate of the imager is currently limited by the sweep rate of the vector network analyzer which is used to drive the millimeter wave extenders. All of the beam steering components are passive and can be designed to operate at any wavelength. The system design, characterization and measurements are presented and further uses and improvements are suggested.

  8. The design of an echelle spectrometer for diffuse extreme ultraviolet/far ultraviolet astronomy

    NASA Technical Reports Server (NTRS)

    Martin, Christopher

    1986-01-01

    The novel, relatively high-resolution nebular spectrometer design presented incorporates a mechanical precollimator with an objective echelle grating that proceeds to a cross-dispensing Wadsworth configuration; the minimum feasible number of reflections is employed in order to maximize EUV sensitivity. The configuration, which is noted to be capable of yielding a comparatively large field of view for optimal diffuse emission sensitivity, is compact and employs conventionally fabricated optical components and available microchannel plate detectors. The sensitivities obtainable approach the limit stipulated by Liouville's theorem.

  9. High-throughput, high-resolution Echelle deep-UV Raman spectrometer.

    PubMed

    Bykov, Sergei V; Sharma, Bhavya; Asher, Sanford A

    2013-08-01

    We constructed an ultrahigh-throughput, high-resolution ultraviolet (UV) Raman spectrograph that utilizes a high-efficiency filter-stage monochromator and a high-dispersion Echelle spectrograph. The spectrograph utilizes a total of six mirrors and two gratings, with an overall efficiency at 229 nm of ~18%. The limiting resolution of our spectrometer is 0.6 cm⁻¹ full width half-maximum (FWHM), as measured for 229 nm Rayleigh scattering. Use of a 1 mm-wide entrance slit gives rise to an approximately 10 cm⁻¹ FWHM resolution at 229 nm. The ultrahigh spectrograph throughput enables ultrahigh signal-to-noise ratio, deep UV Raman spectra that allow us to monitor <1% changes in peptide bond composition. The throughput is measured to be 35-fold greater than conventional deep UV Raman spectrometers.

  10. Exploiting a Transmission Grating Spectrometer

    SciTech Connect

    Ronald E. Bell

    2004-12-08

    The availability of compact transmission grating spectrometers now allows an attractive and economical alternative to the more familiar Czerny-Turner configuration for many high-temperature plasma applications. Higher throughput is obtained with short focal length refractive optics and stigmatic imaging. Many more spectra can be obtained with a single spectrometer since smaller, more densely packed optical input fibers can be used. Multiple input slits, along with a bandpass filter, can be used to maximize the number of spectra per detector, providing further economy. Curved slits can correct for the strong image curvature of the short focal length optics. Presented here are the governing grating equations for both standard and high-dispersion transmission gratings, defining dispersion, image curvature, and desired slit curvature, that can be used in the design of improved plasma diagnostics.

  11. Low-crosstalk fabrication-insensitive echelle grating multiplexers and passives for the silicon photonics toolbox

    NASA Astrophysics Data System (ADS)

    Sciancalepore, Corrado; Lycett, Richard J.; Dallery, Jacques A.; Pauliac, Sebastien; Hassan, Karim; Harduin, Julie; Duprez, Hélène; Weidenmueller, Ulf; Gallagher, Dominic F. G.; Menezo, Sylvie; Ben-Bakir, Badhise

    2015-02-01

    In this communication, we report about the design, fabrication, and testing of echelle grating (de-)multiplexers for the 100GBASE-LR4 norm and other passive architectures such as vertical fiber-couplers and slow-wave waveguides in the O-band (1.31-μm) for Silicon-based photonic integrated circuits (Si-PICs). In detail, two-point stigmatic 20th-order echelle gratings (TPSGs) on the 300-nm-thick SOI platform designed for 4x800-GHz-spaced wavelength division multiplexing featuring extremely low crosstalk (< -30 dB), precise channel spacing and optimized average insertion losses (~ 3 dB) are presented. Distributed Bragg reflectors (DBRs) are used to improve the grating facets reflectivity, while multi-mode interferometers (MMIs) are used in optimized perfectly-chirped echelle gratings (PCGs) for pass-band flattening. Moreover, 200-mm CMOS pilot lines processing tools including VISTEC variable-shape e-beam lithography are employed for the fabrication. In addition, wafer-level statistics of the multiplexers clearly shows the echelle grating to be inherently fabrication-insensitive to processing drifts, resulting in a minimized dispersion of the multiplexer performances over the wafer. In particular, the echelle grating spectral response remains stable over the wafer in terms of crosstalk, channel spacing and bandwidth, with the wavelength dispersion of the filter comb being limited to just 0.8 nm, thus highlighting the intrinsic robustness of design, fab pathways as well as the reliability of modeling tools. As well as that, apodized one-dimensional vertical fiber couplers, optimized multi-mode interferometers (MMIs) and extremely low-losses slow-light waveguides are demonstrated and discussed. The adiabatic apodization of such 1-D gratings is capable to provide band-edge group indices ng as high as 30 with propagation losses equivalent to the indexlike propagation regime.

  12. A high resolution echelle spectrometer for soft X-ray and EUV astronomy

    NASA Astrophysics Data System (ADS)

    Green, James; Bowyer, Stuart

    A new design is presented for high resolution spectroscopy from 80 to 400 A. This design employs grazing incidence optics and variable line-spaced gratings to achieve high resolution. Unlike some previously proposed EUV echelles, this design employs straight groove planar gratings, which are a well-proven, easily manufactured design. The instrument delivers a peak resolution of 7500 and a peak effective area of 3 sq cm.

  13. A high resolution echelle spectrometer for soft X-ray and EUV astronomy

    NASA Technical Reports Server (NTRS)

    Green, James; Bowyer, Stuart

    1990-01-01

    A new design is presented for high resolution spectroscopy from 80 to 400 A. This design employs grazing incidence optics and variable line-spaced gratings to achieve high resolution. Unlike some previously proposed EUV echelles, this design employs straight groove planar gratings, which are a well-proven, easily manufactured design. The instrument delivers a peak resolution of 7500 and a peak effective area of 3 sq cm.

  14. Convex Diffraction Grating Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Chrisp, Michael P. (Inventor)

    1999-01-01

    A 1:1 Offner mirror system for imaging off-axis objects is modified by replacing a concave spherical primary mirror that is concentric with a convex secondary mirror with two concave spherical mirrors M1 and M2 of the same or different radii positioned with their respective distances d1 and d2 from a concentric convex spherical diffraction grating having its grooves parallel to the entrance slit of the spectrometer which replaces the convex secondary mirror. By adjusting their distances d1 and d2 and their respective angles of reflection alpha and beta, defined as the respective angles between their incident and reflected rays, all aberrations are corrected without the need to increase the spectrometer size for a given entrance slit size to reduce astigmatism, thus allowing the imaging spectrometer volume to be less for a given application than would be possible with conventional imaging spectrometers and still give excellent spatial and spectral imaging of the slit image spectra over the focal plane.

  15. Imaging spectrometer/camera having convex grating

    NASA Technical Reports Server (NTRS)

    Reininger, Francis M. (Inventor)

    2000-01-01

    An imaging spectrometer has fore-optics coupled to a spectral resolving system with an entrance slit extending in a first direction at an imaging location of the fore-optics for receiving the image, a convex diffraction grating for separating the image into a plurality of spectra of predetermined wavelength ranges; a spectrometer array for detecting the spectra; and at least one concave sperical mirror concentric with the diffraction grating for relaying the image from the entrance slit to the diffraction grating and from the diffraction grating to the spectrometer array. In one embodiment, the spectrometer is configured in a lateral mode in which the entrance slit and the spectrometer array are displaced laterally on opposite sides of the diffraction grating in a second direction substantially perpendicular to the first direction. In another embodiment, the spectrometer is combined with a polychromatic imaging camera array disposed adjacent said entrance slit for recording said image.

  16. The diffraction efficiency of echelle gratings increased by ion-beam polishing of groove surfaces

    NASA Astrophysics Data System (ADS)

    Zorina, M. V.; Zuev, S. Yu.; Mikhailenko, M. S.; Pestov, A. E.; Polkovnikov, V. N.; Salashchenko, N. N.; Chkhalo, N. I.

    2016-08-01

    The efficiency of first-order diffraction on F1 glass echelle gratings for soft X-ray and extreme UV radiation can be significantly increased (by up to ten times) by etching the groove surface with a beam of neutralized Ar ions at 1250-eV energy. The processing was performed at normal incidence of ion beam on the surface of gratings, and the material thickness removed was on a level of 80-300 nm. A principle of optimization of the ion-beam etching process is proposed for solving particular tasks related to the planarization of microstructures with various lateral dimensions.

  17. Compact Imaging Spectrometer Utilizing Immersed Gratings

    DOEpatents

    Chrisp, Michael P.; Lerner, Scott A.; Kuzmenko, Paul J.; Bennett, Charles L.

    2006-03-21

    A compact imaging spectrometer with an immersive diffraction grating that compensates optical distortions. The imaging spectrometer comprises an entrance slit for transmitting light, a system for receiving the light and directing the light, an immersion grating, and a detector array. The entrance slit, the system for receiving the light, the immersion grating, and the detector array are positioned wherein the entrance slit transmits light to the system for receiving the light and the system for receiving the light directs the light to the immersion grating and the immersion grating receives the light and directs the light through an optical element to the detector array.

  18. Compact imaging spectrometer utilizing immersed gratings

    DOEpatents

    Lerner, Scott A.

    2005-12-20

    A compact imaging spectrometer comprising an entrance slit for directing light, lens means for receiving the light, refracting the light, and focusing the light; an immersed diffraction grating that receives the light from the lens means and defracts the light, the immersed diffraction grating directing the detracted light back to the lens means; and a detector that receives the light from the lens means.

  19. Facet-rotated echelle grating for cyclic wavelength router with uniform loss and flat passband.

    PubMed

    Mu, Ge; Huang, Pingli; Wu, Lin; He, Jian-Jun

    2015-09-01

    A novel method for designing a cyclic echelle grating wavelength router with uniform loss and flat passband is proposed and experimentally demonstrated. A 4×4 cyclic wavelength router with a channel spacing of 400 GHz at 1550 nm wavelength band is designed and fabricated in InP. Measurement results show that the loss of 16 input-output combinations varies from 9 to 19.3 dB in a conventional design, with a nonuniformity of 10.3 dB, while the 1-dB spectral bandwidth is only 0.3 nm. By rotating angles of grating facets according to an appropriately designed distribution function, the loss nonuniformity is reduced to 1.5 dB, and a flat-top spectral response with 1 dB bandwidth of 1.0 nm is achieved simultaneously.

  20. Compact imaging spectrometer utilizing immersed gratings

    DOEpatents

    Chrisp, Michael P.; Lerner, Scott A.; Kuzmenko, Paul J.; Bennett, Charles L.

    2007-07-03

    A compact imaging spectrometer with an immersive diffraction grating that compensates optical distortions. The imaging spectrometer comprises an entrance slit for transmitting light, means for receiving the light and directing the light, an immersion grating, and a detector array. The entrance slit, the means for receiving the light, the immersion grating, and the detector array are positioned wherein the entrance slit transmits light to the means for receiving the light and the means for receiving the light directs the light to the immersion grating and the immersion grating receives the light and directs the light to the means for receiving the light, and the means for receiving the light directs the light to the detector array.

  1. Compact reflective imaging spectrometer utilizing immersed gratings

    DOEpatents

    Chrisp, Michael P.

    2006-05-09

    A compact imaging spectrometer comprising an entrance slit for directing light, a first mirror that receives said light and reflects said light, an immersive diffraction grating that diffracts said light, a second mirror that focuses said light, and a detector array that receives said focused light. The compact imaging spectrometer can be utilized for remote sensing imaging spectrometers where size and weight are of primary importance.

  2. Micro Ring Grating Spectrometer with Adjustable Aperture

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor); Choi, Sang H. (Inventor)

    2012-01-01

    A spectrometer includes a micro-ring grating device having coaxially-aligned ring gratings for diffracting incident light onto a target focal point, a detection device for detecting light intensity, one or more actuators, and an adjustable aperture device defining a circular aperture. The aperture circumscribes a target focal point, and directs a light to the detection device. The aperture device is selectively adjustable using the actuators to select a portion of a frequency band for transmission to the detection device. A method of detecting intensity of a selected band of incident light includes directing incident light onto coaxially-aligned ring gratings of a micro-ring grating device, and diffracting the selected band onto a target focal point using the ring gratings. The method includes using an actuator to adjust an aperture device and pass a selected portion of the frequency band to a detection device for measuring the intensity of the selected portion.

  3. Beam Shape Effects on Grating Spectrometer Resolution

    NASA Technical Reports Server (NTRS)

    Erickson, Edwin F.; Rabanus, David; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The collimated optical beam in a grating spectrometer may be circular or elliptical in cross section, so that different parts of the beam illuminate different numbers of grooves on the grating. Here we estimate the consequent loss in spectral resolution relative to that obtained with a beam which illuminates a fixed number of grooves. For representative diffraction resolution functions, the effect is to reduce the intrinsic resolving power of the spectrometer by about 13%, exclusive of other contributions such as finite entrance slit width.

  4. Electro-optic Phase Grating Streak Spectrometer

    SciTech Connect

    Goldin, F. J.

    2012-08-02

    The electro-optic phase grating streak spectrometer (EOPGSS) generates a time-resolved spectra equivalent to that obtained with a conventional spectrometer/streak camera combination, but without using a streak camera (by far the more expensive and problematic component of the conventional system). The EOPGSS is based on a phase, rather than an amplitude grating. Further, this grating is fabricated of electro-optic material such as, for example, KD*P, by either etching grooves into an E-O slab, or by depositing lines of the E-O material onto an optical flat. An electric field normal to the grating alters the material’s index of refraction and thus affects a shift (in angle) of the output spectrum. Ramping the voltage streaks the spectrum correspondingly. The streak and dispersion directions are the same, so a second (static, conventional) grating disperses the spectrum in the orthogonal direction to prevent different wavelengths from “overwriting” each other. Because the streaking is done by the grating, the streaked output spectrum is recorded with a time-integrating device, such as a CCD. System model, typical design, and performance expectations will be presented.

  5. Echelle grating for silicon photonics applications: integration of electron beam lithography in the process flow and first results

    NASA Astrophysics Data System (ADS)

    Kaschel, Mathias; Letzkus, Florian; Butschke, Jörg; Skwierawski, Piotr; Schneider, Marc; Weber, Marc

    2016-05-01

    We present the technology steps to integrate an Echelle grating in the process flow of silicon-organic hybrid (SOH) modulators or related active devices. The CMOS-compatible process flow on SOI substrates uses a mix of optical i-line lithography and electron beam lithography (EBL). High speed optical data communication depends on wavelength divisions multiplexing and de-multiplexing devices like Echelle gratings. The minimum feature sizes vary from device to device and reach down to 60 nm inside a modulator, while the total area of a single Echelle grating is up to several mm2 of unprocessed silicon. Resist patterning using a variable shape beam electron beam pattern generator allows high resolution. An oxide hard mask is deposited, patterns are structured threefold by EBL and are later transferred to the silicon. We demonstrate a 9-channel multiplexer featuring a 2 dB on-chip loss and an adjacent channel crosstalk better than -22 dB. Additionally a 45-channel Echelle multiplexer is presented with 5 dB on chip loss and a channel crosstalk better than -12 dB. The devices cover an on-chip area of only 0.08 mm2 and 0.5 mm2 with a wavelength spacing of 10.5 nm and 2.0 nm, respectively.

  6. Imaging Spectrometers Using Concave Holographic Gratings

    NASA Technical Reports Server (NTRS)

    Gradie, J.; Wang, S.

    1993-01-01

    Imaging spectroscopy combines the spatial attributes of imaging with the compositionally diagnostic attributes of spectroscopy. For spacebased remote sensing applications, mass, size, power, data rate, and application constrain the scanning approach. For the first three approaches, substantial savings in mass and size of the spectrometer can be achieved in some cases with a concave holographic grating and careful placement of an order-sorting filter. A hologram etched on the single concave surface contains the equivalent of the collimating, dispersing, and camera optics of a conventional grating spectrometer and provides substantial wavelength dependent corrections for spherical aberrations and a flat focal field. These gratings can be blazed to improve efficiency when used over a small wavelength range or left unblazed for broadband uniform efficiency when used over a wavelength range of up to 2 orders. More than 1 order can be imaged along the dispersion axis by placing an appropriately designed step order-sorting filter in front of the one- or two-dimensional detector. This filter can be shaped for additional aberration corrections. The VIRIS imaging spectrometer based on the broadband design provides simultaneous imaging of the entrance slit from lambda = 0.9 to 2.6 microns (1.5 orders) onto a 128 x 128 HgCdTe detector (at 77 K). The VIRIS spectrometer was used for lunar mapping with the UH 24.in telescope at Mauna Kea Observatory. The design is adaptable for small, low mass, space based imaging spectrometers.

  7. Development of the mid-IR echelle high-dispersion spectrograph employing the germanium immersion grating

    NASA Astrophysics Data System (ADS)

    Hirahara, Yasuhiro; Hirao, Tsuyoshi; Tatamitani, Yoshio; Yonezu, Tomohisa; Ebizuka, Noboru; Kawaguchi, Kentaro; Tokoro, Hitoshi; Oka, Tomomichi N.

    2010-07-01

    We have developed a germanium immersion grating mid-infrared cryogenic spectrograph (GIGMICS) designed for the Nasmyth focus stage of NAOJ Subaru 8.2 m telescope, which operates at N-band (8-13 μm) in wavelength with the R ~ 50,000. A single crystal germanium immersion echelle grating (30 × 30 × 72 mm) for collimated beam size of Φ28 mm was fabricated by utilizing ultra precision micro-grinding method coupled with the ELID (ELectrolytic In-process Dressing) technique (Ohmori, H. 1992)1. All optical components are arranged on the 800 mm diameter cold optical base plate (~30 K) of the cryostat. By the Si:As IBC (Impurity Band Conductor) focal plane array (FPA) detector (412 × 512 pixels, unit pixel size 30 μm) operated at 5 K simultaneously acquires ~13 % wavelength coverage for N-band. The instrument has been assembled and is now tested for the application to the gas-phase IR high-resolution spectroscopy.

  8. Spectrometer system using a modular echelle spectrograph and a laser-driven continuum source for simultaneous multi-element determination by graphite furnace absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Geisler, Sebastian; Okruss, Michael; Becker-Ross, Helmut; Huang, Mao Dong; Esser, Norbert; Florek, Stefan

    2015-05-01

    A multi-element absorption spectrometer system has been developed based on a laser-driven xenon continuum source and a modular simultaneous echelle spectrograph (MOSES), which is characterized by a minimized number of optical components resulting in high optical throughput, high transmittance and high image quality. The main feature of the new optical design is the multifunction usage of a Littrow prism, which is attached on a rotation stage. It operates as an order-sorter for the echelle grating in a double-pass mode, as a fine positioning device moving the echelle spectrum on the detector, and as a forwarder to address different optical components, e.g., echelle gratings, in the setup. Using different prisms, which are mounted back to back on the rotation stage, a multitude of different spectroscopic modes like broad-range panorama observations, specific UV-VIS and NIR studies or high resolution zoom investigations of variable spectral channels can be realized. In the UV panorama mode applied in this work, MOSES has simultaneously detectable wavelength coverage from 193 nm to 390 nm with a spectral resolution λ/Δλ of 55,000 (3-pixel criterion). In the zoom mode the latter can be further increased by a factor of about two for a selectable section of the full wavelength range. The applicability and the analytical performance of the system were tested by simultaneous element determination in a graphite furnace, using eight different elements. Compared to an instrument operating in the optimized single line mode, the achieved analytical sensitivity using the panorama mode was typically a factor of two lower. Using the zoom mode for selected elements, comparable sensitivities were obtained. The results confirm the influence of the different spectral resolutions.

  9. A set of innovative immersed grating based spectrometer designs for METIS

    NASA Astrophysics Data System (ADS)

    Agócs, Tibor; Navarro, Ramon; Venema, Lars; van Amerongen, Aaldert H.; Tol, Paul J. J.; van Brug, Hedser; Brandl, Bernhard R.; Molster, Frank; Todd, Stephen

    2014-07-01

    We present innovative, immersed grating based optical designs for the SMO (Spectrograph Main Optics) module of the Mid-infrared E-ELT Imager and Spectrograph, METIS. The immersed grating allows a significant reduction of SMO volume compared to conventional echelle grating designs, because the diffraction takes place in high refractive index silicon. Additionally, using novel optimization techniques and technical solutions in silicon micromachining offered by the semiconductor industry, further improvements can be achieved. We show optical architectures based on compact, double-pass Three Mirror Anastigmat (TMA) designs, which appear advantageous in terms of one or several of the following: optical performance, reduction of volume, ease of manufacturing and testing. We explore optical designs, where the emphasis is put on manufacturability and we investigate optical solutions, where the ultimate goal is the highest possible optical performance. These novel, silicon immersed grating based design concepts are applicable for future earth and space based spectrometers.

  10. The Constellation-X Reflection Grating Spectrometer

    NASA Technical Reports Server (NTRS)

    Allen, Jean C.

    2006-01-01

    The Reflection Grating Spectrometer on the Constellation-X mission will provide high sensitivity, high-resolution spectra in the soft x-ray band. The RGS performance requirements are specified as a resolving power of greater than 300 and an effective area of greater than 1000 sq cm across most of the 0.25 to 2.0 keV band. These requirements are driven by the science goals of the mission. We will describe the performance requirements and goals, the reference design of the spectrometer, and examples of science cases where we expect data from the RGS to significantly advance our current understanding of the universe.

  11. Compact catadioptric imaging spectrometer utilizing reflective grating

    DOEpatents

    Lerner, Scott A.

    2005-12-27

    An imaging spectrometer apparatus comprising an entrance slit for directing light, a light means for receiving the light and directing the light, a grating that receives the light from the light means and defracts the light back onto the light means which focuses the light, and a detector that receives the focused light. In one embodiment the light means is a rotationally symmetric ZNSE aspheric lens. In another embodiment the light means comprises two ZNSE aspheric lenses that are coaxial. In another embodiment the light means comprises an aspheric mirror and a ZNSE aspheric lens.

  12. Immersion echelle spectrograph

    DOEpatents

    Stevens, Charles G.; Thomas, Norman L.

    2000-01-01

    A small spectrograph containing no moving components and capable of providing high resolution spectra of the mid-infrared region from 2 microns to 4 microns in wavelength. The resolving power of the spectrograph exceeds 20,000 throughout this region and at an optical throughput of about 10.sup.-5 cm.sup.2 sr. The spectrograph incorporates a silicon immersion echelle grating operating in high spectral order combined with a first order transmission grating in a cross-dispersing configuration to provide a two-dimensional (2-D) spectral format that is focused onto a two-dimensional infrared detector array. The spectrometer incorporates a common collimating and condensing lens assembly in a near aberration-free axially symmetric design. The spectrometer has wide use potential in addition to general research, such as monitoring atmospheric constituents for air quality, climate change, global warming, as well as monitoring exhaust fumes for smog sources or exhaust plumes for evidence of illicit drug manufacture.

  13. Monolithic integration of a quantum cascade laser array and an echelle grating multiplexer for widely tunable mid-infrared sources

    NASA Astrophysics Data System (ADS)

    Gilles, Clément; Orbe, Luis J.; Carpintero, Guillermo; Abautret, Johan; Maisons, Grégory; Carras, Mathieu

    2016-03-01

    In the mid-infrared (Mid-IR), arrays of distributed feedback Quantum Cascade Lasers (QCL) have been developed as a serious alternative to obtain extended wavelength operation range of laser-based gas sensing systems. Narrow-linewidth, single mode operation and wide tunability are then gathered together on a single chip with high compactness and intrinsic stability. In order to benefit from this extended wavelength range in a single output beam we have developed a platform for InP-based photonics. After the validation of all required building blocks such as straight waveguides, adiabatic couplers between active and passive waveguides, and echelle grating multiplexers, we are tackling the integration into a single monolithic device. We present the design, fabrication and performances of a tunable source, fully monolithic based on the echelle grating approach. Advantages are design flexibility, relatively simple processing and the need for one single epitaxial growth for the entire structure. The evanescent coupler has been designed to transfer all light adiabatically from the active region to a low loss passive waveguide, while taking advantage of the high gain available in the quantum wells. The multiplexer is based on an etched diffraction grating, covering the whole range of the 30 lasers of the array while keeping a very compact size. These results show the first realization of a monolithic widely tunable source in the Mid-IR and would therefore benefit to the development of fully integrated spectroscopic sensor systems.

  14. Linear Fresnel Spectrometer Chip with Gradient Line Grating

    NASA Technical Reports Server (NTRS)

    Choi, Sang Hyouk (Inventor); Park, Yeonjoon (Inventor)

    2015-01-01

    A spectrometer that includes a grating that disperses light via Fresnel diffraction according to wavelength onto a sensing area that coincides with an optical axis plane of the grating. The sensing area detects the dispersed light and measures the light intensity associated with each wavelength of the light. Because the spectrometer utilizes Fresnel diffraction, it can be miniaturized and packaged as an integrated circuit.

  15. Near-infrared echelle-AOTF spectrometer ACS-NIR for the ExoMars Trace Gas Orbiter

    NASA Astrophysics Data System (ADS)

    Trokhimovskiy, Alexander; Korablev, Oleg; Kalinnikov, Yurii K.; Fedorova, Anna; Stepanov, Alexander V.; Titov, Andrei Y.; Dziuban, Ilia; Patrakeev, Andrei; Montmessin, Franck

    2015-09-01

    The near-Infrared echelle-AOTF spectrometer is one channel of the Atmospheric Chemistry Suite (ACS) package dedicated for the studies of the Martian atmosphere on board ExoMars Trace Gas Orbiter planned for launch in 2016. The near-infrared (NIR) channel of ACS is a versatile spectrometer for the spectral range of 0.7-1.6 μm with a resolving power of <20,000. The NIR channel is intended to measure the atmospheric water vapor, aerosols, airglows, in nadir, in solar occultation, and on the limb. The science goals of NIR are basically the same as for SPICAM IR channel presently in flight on board Mars Express ESA orbiter, but it offers significantly better spectral resolution. The instrument employs the principle of an echelle spectrometer with an acoustooptical tunable filter (AOTF) as a preselector. The same principle was employed in SOIR, operated on Venus Express ESA mission in 2006-2014, and in RUSALKA, operated onboard ISS in 2009-2012. The NIR channel of ACS consists of entry optics, the AOTF, a Littrow echelle spectrometer, and an electrically cooled InGaAs detector array. It is a complete block with power and data interfaces, and the overall mass of 3.2 kg. The protoflight model of NIR is completed, calibrated, integrated within the ACS suite, and is undergoing tests at the spacecraft.

  16. Comparative study of two new commercial echelle spectrometers equipped with intensified CCD for analysis of laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Sabsabi, Mohamad; Detalle, Vincent; Harith, Mohamed A.; Tawfik, Walid; Imam, Hisham

    2003-10-01

    The purpose of this paper is to provide the reader with comparative information about two new commercial echelle spectrometers equipped with intensified CCD (ICCD) detectors for laser-induced breakdown spectroscopy analysis. We carried out a performance comparison between two commercial ICCD/echelle spectrometers [ESA 3000 (LLA Instruments GmbH, Berlin-Adlershof, Germany) and a Mechelle 7500 (Multichannel Instruments, Stockholm, Sweden)] for the determination of the concentrations of Be, Mg, Si, Mn, Fe, and Cu in the same Al alloy samples adopting the same experimental conditions. The results show that both systems, despite their differences in terms of resolution, have similar performance in terms of sensitivity and precision of measurements for these elements in an Al alloy matrix at least for the range of wavelength 280-400 nm studied in this work.

  17. A new echelle spectrometer for measuring UV branching fractions of Fe-group ions

    NASA Astrophysics Data System (ADS)

    Wood, Michael Patrick

    2014-12-01

    Unexpected trends in relative Fe-group abundances are observed in old, metal-poor stars which may offer insights into the history of nucleosynthesis in the Galaxy. Abundances are traditionally derived using lines in the neutral species, though Fe-group elements are predominately singly-ionized in the photospheres of stars of interest. Using weak UV lines connected to the ground and low metastable levels of Fe-group ions eliminates errors associated with departures from LTE, resulting in more accurate abundances. A new echelle spectrometer, combined with an aberration-corrected cross dispersion system, has been developed to measure accurate branching fractions for these UV lines. This instrument is capable of recording spectra at high resolving power with very broad wavelength coverage. The instrument is also free from the multiplex noise of a FTS, making it ideal for measurements of weak line branching fractions which are free from optical depth errors. These branching fractions are combined with published radiative lifetimes to produce accurate transition probabilities for UV lines connected to the ground and low metastable levels of singly-ionized Fe-group elements.

  18. Compact echelle spectrometer for occultation sounding of the Martian atmosphere: design and performance.

    PubMed

    Korablev, Oleg; Montmessin, Franck; Trokhimovsky, Alexander; Fedorova, Anna A; Kiselev, Alexander V; Bertaux, Jean-Loup; Goultail, Jean-Pierre; Belyaev, Denis A; Stepanov, Alexander V; Titov, Andrei Yu; Kalinnikov, Yurii K

    2013-02-10

    The echelle spectrometer TIMM-2 is the instrument developed for the unsuccessful Russian mission Phobos-Grunt. The instrument was dedicated to solar occultation studies of the Martian atmosphere by measuring the amount of methane, by sensitive measuring of other minor constituents, and by profiling the D/H ratio and the aerosol structure. The spectral range of the instrument is 2300-4100 nm, the spectral resolving power λ/Δλ exceeds 25,000, and the field of view is 1.5×21 arc min. The spectra are measured in narrow spectral intervals, corresponding to discreet diffraction orders. One measurement cycle includes several spectral intervals. To study the vertical profiles of aerosol, the instrument incorporates four photometers in the UV to near-IR spectral range. The mass of the instrument is 2800 g, and its power consumption is 12 W. One complete flight model remains available after the Phobos-Grunt launch. We discuss the science objectives of the occultation experiment for the case of Mars, the implementation of the instrument, and the results of ground calibrations. PMID:23400068

  19. Relative and absolute intensity calibrations of a modern broadband echelle spectrometer

    NASA Astrophysics Data System (ADS)

    Bibinov, N.; Halfmann, H.; Awakowicz, P.; Wiesemann, K.

    2007-05-01

    We report on relative and absolute intensity calibrations of a modern broadband echelle spectrometer (type ESA 3000® trademark of LLA Instruments GmbH, Berlin) for use in the diagnostics of low-temperature plasma. This type of device measures simultaneously complete emission spectra in the spectral range from 200 to 800 nm with a spectral resolution of several picometres by using more than 90 spectral orders, causing a strongly structured efficiency function. The assumptions and approximations entering the calibration procedure under these conditions are discussed in section 3. For coping with the strongly structured efficiency function a continuum light source is needed, which covers the entire spectral range. Furthermore, the variation of its intensity must be low enough to ensure that neither statistical errors perturb the calibration in regions with low photon flux and/or low efficiency, nor local memory overflow in regions with high photon flux or high efficiency. In our case this requires that during calibration over the whole spectral range of the spectrometer the counts per pixel in one measurement vary at highest by a factor 10 to 12. Usual broadband light sources do not meet this latter requirement. We, therefore, use an uncalibrated 'composite' source, an adjustable combination of a standard tungsten strip lamp and a deuterium lamp, and calibrate the spectrometer in a two-step process against the tungsten strip lamp and well-known rovibrational intensity distributions in the emission spectra of NO and N2. We adjust the composite source in a way to produce a perturbation-free first approximation of an (uncalibrated) efficiency function, which is then corrected and thus calibrated by comparison with the (secondary) standards mentioned above. For absolute calibration we use the tungsten strip lamp. The uncertainty attained in this way for the relative calibration depends on the wavelength and varies between 5% and 10%. For the absolute calibration we

  20. Study on spectrometer based upon volume holographic transmission grating

    NASA Astrophysics Data System (ADS)

    Huang, Zhen; Liu, Guodong; Ren, Zhong; Zeng, Lvming

    2010-10-01

    In this present paper, a spectrometer based upon axial transmissive optical structure with the volume-phase holographic (VPH) transmission grating technology is introduced. We give a physical insight for the structure and mechanism of photorefractive volume holographic gratings and theoretically analyze some important performance parameters of the spectrometer device using the coupled wave theory, which should be considered in the process of the following design for the device with volume phase holographic transmission gratings. The experimental results show, owing to its axial transmissive optical geometry and the perfect performance of the VPH transmission grating, the spectrometer based on the volume-phase holographic transmission grating has satisfactory high resolution and wavelength accuracy. It has great promise to be widely used in the future.

  1. Spectral calibration for convex grating imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Zhou, Jiankang; Chen, Xinhua; Ji, Yiqun; Chen, Yuheng; Shen, Weimin

    2013-12-01

    Spectral calibration of imaging spectrometer plays an important role for acquiring target accurate spectrum. There are two spectral calibration types in essence, the wavelength scanning and characteristic line sampling. Only the calibrated pixel is used for the wavelength scanning methods and he spectral response function (SRF) is constructed by the calibrated pixel itself. The different wavelength can be generated by the monochromator. The SRF is constructed by adjacent pixels of the calibrated one for the characteristic line sampling methods. And the pixels are illuminated by the narrow spectrum line and the center wavelength of the spectral line is exactly known. The calibration result comes from scanning method is precise, but it takes much time and data to deal with. The wavelength scanning method cannot be used in field or space environment. The characteristic line sampling method is simple, but the calibration precision is not easy to confirm. The standard spectroscopic lamp is used to calibrate our manufactured convex grating imaging spectrometer which has Offner concentric structure and can supply high resolution and uniform spectral signal. Gaussian fitting algorithm is used to determine the center position and the Full-Width-Half-Maximum(FWHM)of the characteristic spectrum line. The central wavelengths and FWHMs of spectral pixels are calibrated by cubic polynomial fitting. By setting a fitting error thresh hold and abandoning the maximum deviation point, an optimization calculation is achieved. The integrated calibration experiment equipment for spectral calibration is developed to enhance calibration efficiency. The spectral calibration result comes from spectral lamp method are verified by monochromator wavelength scanning calibration technique. The result shows that spectral calibration uncertainty of FWHM and center wavelength are both less than 0.08nm, or 5.2% of spectral FWHM.

  2. Imaging Spectrometer Designs Utilizing Immersed Gratings With Accessible Entrance Slit

    DOEpatents

    Chrisp, Michael P.; Lerner, Scott A.

    2006-03-21

    A compact imaging spectrometer comprises an entrance slit, a catadioptric lens with a mirrored surface, a grating, and a detector array. The entrance slit directs light to the mirrored surface of the catadioptric lens; the mirrored surface reflects the light back through the lens to the grating. The grating receives the light from the catadioptric lens and diffracts the light to the lens away from the mirrored surface. The lens transmits the light and focuses it onto the detector array.

  3. Compact Catadioptric Imaging Spectrometer Designs Utilizing Immersed Gratings

    DOEpatents

    Lerner, Scott A.

    2006-02-28

    An imaging spectrometer comprising an entrance slit for directing light, a lens that receives said light and reflects said light, a grating that defracts said light back onto said lens which focuses said light, and a detector array that receives said focused light. In one embodiment the grating has rulings immersed into a germanium surface.

  4. Hybrid plasmon photonic crystal resonance grating for integrated spectrometer biosensor.

    PubMed

    Guo, Hong; Guo, Junpeng

    2015-01-15

    Using nanofabricated hybrid metal-dielectric nanohole array photonic crystal gratings, a hybrid plasmonic optical resonance spectrometer biosensor is demonstrated. The new spectrometer sensor technique measures plasmonic optical resonance from the first-order diffraction rather than via the traditional method of measuring optical resonance from transmission. The resonance spectra measured with the new spectrometer technique are compared with the spectra measured using a commercial optical spectrometer. It is shown that the new optical resonance spectrometer can be used to measure plasmonic optical resonance that otherwise cannot be measured with a regular optical spectrometer. PMID:25679856

  5. Hybrid plasmon photonic crystal resonance grating for integrated spectrometer biosensor.

    PubMed

    Guo, Hong; Guo, Junpeng

    2015-01-15

    Using nanofabricated hybrid metal-dielectric nanohole array photonic crystal gratings, a hybrid plasmonic optical resonance spectrometer biosensor is demonstrated. The new spectrometer sensor technique measures plasmonic optical resonance from the first-order diffraction rather than via the traditional method of measuring optical resonance from transmission. The resonance spectra measured with the new spectrometer technique are compared with the spectra measured using a commercial optical spectrometer. It is shown that the new optical resonance spectrometer can be used to measure plasmonic optical resonance that otherwise cannot be measured with a regular optical spectrometer.

  6. Miniaturized NIR scanning grating spectrometer for use in mobile phones

    NASA Astrophysics Data System (ADS)

    Knobbe, Jens; Pügner, Tino; Grüger, Heinrich

    2016-05-01

    An extremely miniaturized scanning grating spectrometer at the size of a sugar cube has been developed at Fraunhofer IPMS. To meet the requirements for the integration into a mobile phone a new system approach has been pursued. The key component within the system is a silicon-based deflectable diffraction grating with an integrated driving mechanism. A first sample of the new spectrometer was built and characterized. It was found to have a spectral range from 950 nm to 1900 nm at a resolution of 10 nm. The results show that the performance of the new MEMS spectrometer is in good agreement with the requirements for mobile phone integration.

  7. Comparison of a transmission grating spectrometer to a reflective grating spectrometer for standoff laser-induced breakdown spectroscopy measurements

    SciTech Connect

    Weisberg, Arel; Craparo, Joseph; De Saro, Robert; Pawluczyk, Romuald

    2010-05-01

    We evaluate a new transmission grating spectrometer for standoff laser-induced breakdown spectroscopy (LIBS) measurements. LIBS spectra collected from standoff distances are often weak, with smaller peaks blending into the background and noise. Scattered light inside the spectrometer can also contribute to poor signal-to-background and signal-to-noise ratios for smaller emission peaks. Further, collecting standoff spectra can be difficult because most spectrometers are designed for laboratory environments and not for measurements in the field. To address these issues, a custom-designed small, lightweight transmission grating spectrometer with no moving parts was built that is well suited for standoff LIBS field measurements. The performance of the spectrometer was quantified through 10 m standoff LIBS measurements collected from aluminum alloy samples and measurements from spectra of a Hg-Ar lamp. The measurements were compared to those collected using a Czerny-Turner reflective grating spectrometer that covered a similar spectral range and used the same ICCD camera. Measurements using the transmission grating spectrometer had a 363% improved signal-to-noise ratio when measured using the 669 nm aluminum emission peak.

  8. Compact Refractive Imaging Spectrometer Designs Utilizing Immersed Gratings

    DOEpatents

    Lerner, Scott A.; Bennett, Charles L.; Bixler, Jay V.; Kuzmenko, Paul J.; Lewis, Isabella T.

    2005-07-26

    A compact imaging spectrometer comprising an entrance slit for directing light, a first means for receiving the light and focusing the light, an immersed diffraction grating that receives the light from the first means and defracts the light, a second means for receiving the light from the immersed diffraction grating and focusing the light, and an image plane that receives the light from the second means

  9. Roughness reduction of large-area high-quality thick Al films for echelle gratings by multi-step deposition method.

    PubMed

    Li, Zizheng; Gao, Jinsong; Yang, Haigui; Wang, Tongtong; Wang, Xiaoyi

    2015-09-01

    Generally, echelle grating ruling is performed on a thick Al film. Consequently, high-quality large-area thick Al films preparation becomes one of the most important factors to realize a high-performance large-size echelle grating. In this paper, we propose a novel multi-step deposition process to improve thick Al films quality. Compared with the traditional single-step deposition process, it is found that the multi-step deposition process can effectively suppress large-size grains growth resulting in a low surface roughness and high internal compactness of thick Al films. The differences between single- and multi-step deposition processes are discussed in detail. By using multi-step deposition process, we prepared high-quality large-area Al films with a thickness more than 10 μm on a 520 mm × 420 mm neoceramic glass substrate.

  10. Immersion echelle spectrograph

    SciTech Connect

    Stevens, C.G.; Thomas, N.L.

    2000-06-20

    A small spectrograph is disclosed containing no moving components and capable of providing high resolution spectra of the mid-infrared region from 2 microns to 4 microns in wavelength. The resolving power of the spectrograph exceeds 20,000 throughout this region and at an optical throughput of about 10{sup {minus}5}cm{sup 2}sr. The spectrograph incorporates a silicon immersion echelle grating operating in high spectral order combined with a first order transmission grating in a cross-dispersing configuration to provide a two-dimensional (2-D) spectral format that is focused onto a two-dimensional infrared detector array. The spectrometer incorporates a common collimating and condensing lens assembly in a near aberration-free axially symmetric design. The spectrometer has wide use potential in addition to general research, such as monitoring atmospheric constituents for air quality, climate change, global warming, as well as monitoring exhaust fumes for smog sources or exhaust plumes for evidence of illicit drug manufacture.

  11. Imaging transmission grating spectrometer for magnetic fusion experiments

    NASA Astrophysics Data System (ADS)

    Blagojević, B.; Stutman, D.; Finkenthal, M.; Moos, H. W.; Kaita, R.; Majeski, R.

    2003-03-01

    The Johns Hopkins Plasma Spectroscopy Group is developing a transmission grating based imaging spectrometer for the ultrasoft x-ray [(USXR), 10-300 Å] range. The spectrometer will be integrated into an impurity diagnostic package for magnetic fusion experiments, which provides time and space resolved information about radiation losses, Zeff profiles, and particle transport. The spectrometer has a simple layout, consisting of collimating and space resolving slits, a transmission grating, and a two-dimensional imaging USXR detector. We tested two types of detectors, a CsI coated multichannel plate and a phosphor P45 coated fiber optic plate, both with intensified charge-coupled-device image readout. The performance of the 5000 1/mm, 3:1 bar to open area ratio transmission grating has been evaluated in the laboratory using Kα lines from a Manson source and the emission from a Penning discharge. A prototype spectrometer equiped with the first type detector and optimized for 6 Å spectral resolution has been tested successfully on the CDX-U tokamak at the Princeton Plasma Physics Laboratory. A spectrometer using the second detector version has been developed for the NSTX spherical torus at Princeton. Spatially resolved spectra have been recorded with 25-250 ms time integration with both spectrometers. In both experiments, spectra are dominated by low-Z impurities, C, N, and O.

  12. The polarisation correction for space-borne grating spectrometers

    NASA Astrophysics Data System (ADS)

    Zhao, Fa-cai; Sun, Quan-she; Chen, Kun-feng; Zhu, Xing-bang; Wang, Shao-shui; Wang, Guo-quan; Zheng, Xiang-liang; Han, Zhong

    2014-02-01

    Satellite measurements of backscattered sunlight contain essential information about the global distribution of atmospheric constituents. Light reflected from the Earth's atmosphere is linearly or partially linearly polarized because of scattering of unpolarized sunlight by air molecules and aerosols. In the ultraviolet and visible part of the spectrum, measurements of space-borne grating spectrometers are in general sensitive to the state of polarization of the observed light. The interaction of polarized light with polarization-sensitive optical devices yields a different radiance that is measured by the detectors than the radiance that enters the instrument. In the OMI and the SBUV/2 instruments the problem of instrument polarization sensitivity is avoided because the polarized backscattered sunlight is depolarized before it interacts with the polarization-sensitive optical components. For GOME, SCIAMACHY, and GOME-2 it is intended to eliminate the polarization response of the instrument from the polarization-sensitive measurement. This paper discusses the basic concept of the polarisation correction of the space-borne grating spectrometers by using Mueller matrix calculus. A model was developed using the Mueller Matrices formulation to evaluate the polarization sensitivity of the space-borne grating spectrometers. The optical components are treated as general diattenuators with phase retardance. The correction for this polarization sensitivity is based on broadband polarization measurements. Accurate preflight polarisation calibration of space-borne grating spectrometers is essential for the observational objectives of the instrument, and a special facility has been developed in order to allow the instrument to be calibrated.

  13. TGIRS - A New Two-Grating Mid-Infrared Spectrometer

    NASA Astrophysics Data System (ADS)

    Creech-Eakman, M. J.; Klebe, D. I.; Stencel, R. E.; Williams, W. J.

    1996-05-01

    We present a brief overview of the design and construction of a Two Grating Infrared Spectrometer (TGIRS), a new mid-IR array, dual grating spectrometer for the 7.0-13.8 mu m region built at the University of Denver (DU). This instrument has been designed to monitor silicate features in evolved stars, but is flexible enough to accomodate a variety of astrophysical investigations. The instrument uses diamond-turned aluminum optics to allow warm optical alignment and eliminate differential contraction of the optics while operating at 6.5 K. Two gratings are used in the optical design to provide a resolution of about 800. The first grating cross disperses the flux into several orders, 8-14. The second grating is the high resolution grating which disperses the flux into each of the above orders over the wavelength range of the instrument. This second grating has two position settings controlled by a swing arm device to allow for both maximum spectral coverage and efficient use of the array detector with the least amount of moving hardware. The entire assembly is cooled with a Gifford-McMahon refrigerator so that it may later be adapted for use during remote observing. The array is a Rockwell 128X128 Si:As BIB Hybrid Focal Plane Array sensitive to 26 mu m. The dewar is being custom built by J. K. Henricksen and Assoc. in Vista, CA. Short wavelength IR and optical radiation is blocked with a long pass filter. The slit of the instrument is 1"X 4" allowing for both spectral and spatial coverage of the objects being studied. The electronics package and software for readout were developed by Wallace Instruments and are already in use on our TNTCAM at DU. With "first light" scheduled for summer '96, we expect to have photographs of the instrument for display and data by year's end. We acknowledge partial support under NASA grant NGT-51290.

  14. Assessment of the most effective part of echelle laser-induced plasma spectra for further classification using Czerny-Turner spectrometer

    NASA Astrophysics Data System (ADS)

    Pořízka, Pavel; Klus, Jakub; Prochazka, David; Vítková, Gabriela; Brada, Michal; Novotný, Jan; Novotný, Karel; Kaiser, Jozef

    2016-10-01

    The objective of this work was to assess a part of echelle Laser-Induced Plasma spectra (ranging from 200 to 1000 nm) that could be most effectively employed for rocks classification. Therefore, a 60 nm wide spectral window mask was iteratively moved over the broadband echelle spectra. Each created narrow artificial spectral windows (60 nm) was used for the classification of rock samples using various Multivariate Data Analysis (MVDA) algorithms, reaching more than 99% of the overall accuracy in certain cases. Afterwards, the Czerny-Turner spectrometer (having higher sensitivity compared to the echelle spectrometer) was aligned to the a priori selected and the most effective spectral regions and rocks samples were re-measured. Consequently the MVDA analyses were utilized again, providing also satisfying classification results yielding more than 99% of the overall accuracy. Measurements of 28 sedimentary ores (certified reference materials) were done utilizing commercially available X-Trace device (AtomTrace), where spectrometers in both configurations (echelle and Czerny-Turner) were exploited.

  15. "The Reflection Grating Spectrometer on Constellation-X"

    NASA Technical Reports Server (NTRS)

    Cottam, J.

    2006-01-01

    The Constellation-X Reflection Grating Spectrometer (RGS) is designed to provide high-throughput, high-resolution spectra in the long wavelength band of 6 to 50 angstrom. In the nominal design an array of reflection gratings is mounted at the exit of the Spectroscopy X-ray Telescope (SXT) mirror module. The gratings intercept and disperse light to a designated array of CCD detectors. To achieve the throughput (A_eff > 1000 cm2 below 0.6 keV) and resolution (R > 300 below 0.6 keV) requirements for the instrument we are investigating two possible grating designs. The first design uses in-plane gratings in a classical configuration that is very similar to the XMM-Newton RGS. The second design uses off-plane gratings in a conical configuration. The off-plane design has the advantage of providing higher reflectivity and potentially, a higher spectral resolution than the in-plane configuration. In our presentation we will describe the performance requirements and the current status of the technology development.

  16. Solar Imaging UV/EUV Spectrometers Using TVLS Gratings

    NASA Technical Reports Server (NTRS)

    Thomas, Roger J.

    2003-01-01

    It is a particular challenge to develop a stigmatic spectrograph for UV, EUV wavelengths since the very low normal-incidence reflectance of standard materials most often requires that the design be restricted to a single optical element which must simultaneously provide both reimaging and spectral dispersion. This problem has been solved in the past by the use of toroidal gratings with uniform line-spaced rulings (TULS). A number of solar extreme ultraviolet (EUV) spectrometers have been based on such designs, including SOHO/CDS, Solar-B/EIS, and the sounding rockets Solar Extreme ultraviolet Research Telescope and Spectrograph (SERTS) and Extreme Ultraviolet Normal Incidence Spectrograph (EUNIS). More recently, Kita, Harada, and collaborators have developed the theory of spherical gratings with varied line-space rulings (SVLS) operated at unity magnification, which have been flown on several astronomical satellite missions. We now combine these ideas into a spectrometer concept that puts varied-line space rulings onto toroidal gratings. Such TVLS designs are found to provide excellent imaging even at very large spectrograph magnifications and beam-speeds, permitting extremely high-quality performance in remarkably compact instrument packages. Optical characteristics of three new solar spectrometers based on this concept are described: SUMI and RAISE, two sounding rocket payloads, and NEXUS, currently being proposed as a Small-Explorer (SMEX) mission.

  17. Grating Sagnac Fourier transform spectrometer and its applications

    NASA Astrophysics Data System (ADS)

    Ma, Huan

    The Active Hyperspectral Imaging (AHI) project at University of Hawaii uses the multi-color laser induced fluorescence to detect the low concentration molecules in the atmosphere. A high throughput, high spectral and time resolution receiver is required by this application. The stationary Fourier transform spectrometer (FTS) is one candidate for this purpose. Compared to the traditional FTS, the stationary FTS has the advantage of high time resolution. However, the spectral resolution of the stationary FTS has been relatively low in the past two decades. We have invented and developed a novel stationary FTS based on a modified Sagnac interferometer. The use of multiple diffraction gratings greatly improves the spectral resolution of the interferometer. A prototype of two-grating Sagnac ITS is built. The theoretical resolving power of the prototype is 0.957 x 106 at HeNe wavelength, which corresponds to the resolution of 495 MHz in frequency. The 700--1000 MHz (<0.03 cm-1) resolution is obtained at 633 nm experimentally for the prototype. This is in full agreement with the theory and numerical simulation. The free spectral range of the prototype is more than 0.5 THz (>16.68 cm-1). The time resolution of the grating Sagnac FTS is transform-limited. The pulsed laser experiment demonstrates the 2 ˜ 3 nsec time resolution for the prototype of the two-grating Sagnac FTS. The grating Sagnac FTS has wide tuning range. The same setup can cover the full visible spectral range by simply rotating the gratings. Although only visible spectrum is demonstrated, the grating Sagnac ITS can be used for UV and IR spectral measurement when different materials and detectors are used. The general theory on optimum N-grating Sagnac FTS is developed. The higher spectral resolution is possible when more gratings are used. A successful computer model is built up to help us design the system. The characteristic of high spectral resolution and high time resolution makes the grating Sagnac FTS

  18. Proposed design class of grazing incidence echelle spectrometers - Critical analysis and reevaluation

    NASA Technical Reports Server (NTRS)

    Hettrick, M. C.; Jelinsky, P.; Bowyer, S.; Malina, R. F.

    1984-01-01

    The class of miltibounce grazing spectrometers proposed by Cash (1982) and by McClintock and Cash (1982) is analyzed, and performance values significantly lower than asserted by these authors are found. Ray tracing calculations used to examine the design parameters given in the above papers are reported, as is the efficiency which results from use of accepted reflectance data. Several schemes which can improve some of the performance parameters are indicated.

  19. Development of a Submillimeter-Wavelength Immersion Grating Spectrometer

    NASA Technical Reports Server (NTRS)

    Phillips, T. G.

    2001-01-01

    The broad goal of this project was to develop a broadband, moderate-resolution spectrometer for submillimeter wavelengths. Our original approach was to build an immersion grating spectrometer, and as such, the first step was to identify the best material (lowest loss, highest index) for the grating medium, and to characterize its properties at the foreseen optical-bench operating temperature of 1.5 K. To this end, we put our initial efforts into upgrading an existing laboratory submillimeter Fourier transform spectrometer, which allowed us to carry out the requisite materials measurements. The associated cryogenic detector dewar was also redesigned and rebuilt to carry out this work. This dewar houses the 1.5 K detector and the filter wheel used in the materials characterization. Our goal was to have the beam propagate through the samples as uniformly as possible, so the optics were redesigned to allow for the samples to be traversed by a well-defined collimated beam. The optics redesign also placed the samples at an image of the aperture stop located within the FTS. After the rebuild, we moved into the testing phase.

  20. Design and early performance of IGRINS (Immersion Grating Infrared Spectrometer)

    NASA Astrophysics Data System (ADS)

    Park, Chan; Jaffe, Daniel T.; Yuk, In-Soo; Chun, Moo-Young; Pak, Soojong; Kim, Kang-Min; Pavel, Michael; Lee, Hanshin; Oh, Heeyoung; Jeong, Ueejeong; Sim, Chae Kyung; Lee, Hye-In; Nguyen Le, Huynh Anh; Strubhar, Joseph; Gully-Santiago, Michael; Oh, Jae Sok; Cha, Sang-Mok; Moon, Bongkon; Park, Kwijong; Brooks, Cynthia; Ko, Kyeongyeon; Han, Jeong-Yeol; Nah, Jakyoung; Hill, Peter C.; Lee, Sungho; Barnes, Stuart; Yu, Young Sam; Kaplan, Kyle; Mace, Gregory; Kim, Hwihyun; Lee, Jae-Joon; Hwang, Narae; Park, Byeong-Gon

    2014-07-01

    The Immersion Grating Infrared Spectrometer (IGRINS) is a compact high-resolution near-infrared cross-dispersed spectrograph whose primary disperser is a silicon immersion grating. IGRINS covers the entire portion of the wavelength range between 1.45 and 2.45μm that is accessible from the ground and does so in a single exposure with a resolving power of 40,000. Individual volume phase holographic (VPH) gratings serve as cross-dispersing elements for separate spectrograph arms covering the H and K bands. On the 2.7m Harlan J. Smith telescope at the McDonald Observatory, the slit size is 1ʺ x 15ʺ and the plate scale is 0.27ʺ pixel. The spectrograph employs two 2048 x 2048 pixel Teledyne Scientific and Imaging HAWAII-2RG detectors with SIDECAR ASIC cryogenic controllers. The instrument includes four subsystems; a calibration unit, an input relay optics module, a slit-viewing camera, and nearly identical H and K spectrograph modules. The use of a silicon immersion grating and a compact white pupil design allows the spectrograph collimated beam size to be only 25mm, which permits a moderately sized (0.96m x 0.6m x 0.38m) rectangular cryostat to contain the entire spectrograph. The fabrication and assembly of the optical and mechanical components were completed in 2013. We describe the major design characteristics of the instrument including the system requirements and the technical strategy to meet them. We also present early performance test results obtained from the commissioning runs at the McDonald Observatory.

  1. A new toroidal grating spectrometer for the soft x-ray region

    NASA Astrophysics Data System (ADS)

    Aton, T.; Franck, C.; Källne, E.; Schnatterly, S.; Zutavern, F.

    1980-05-01

    We have developed toroidal grating instrument using holography aberration corrected gratings to give a flat field focus and cover the wavelength region 16-625 Å. The spectrometer uses four interchangeable gratings as analysers and a self scanning silicon array as detector. The sample chamber is a bakeable UHV system with LEED and Auger surface analysis equipment to characterize the sample surface.

  2. Transmission Grating Imaging Spectrometer for Magnetically Confined Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Blagojevic, B.; Stutman, D.; Vero, R.; Finkenthal, M.; Moos, H. W.

    2001-10-01

    The Johns Hopkins Plasma Spectroscopy Group is developing a transmission grating (TG) based imaging spectrometer for the soft and ultrasoft X-ray (USXR) ranges. The spectrometer will be integrated into a multi-purpose impurity diagnostic package for Magnetically Confined Fusion experiments, which will provide time and space resolved information about radiation losses, Zeff profiles and particle transport. The package will also include 2-D filtered USXR diode arrays and atomic physics and impurity transport computational capability. The spectrometer has a very simple layout, consisting of two collimating and space resolving slits, a TG and a 2-D imaging detector. As detector we are developing phosphor (P45) coated fiber optic plates with CCD and intensified CCD image readout. The performance of a test 5000 l/mm, 2:1 bar to open area ratio TG has been evaluated in the laboratory using a K-alpha Manson source and the emission from a Penning Discharge. The incident and diffracted photon flux was recorded in the 10-300 Å range with a gas flow proportional counter. The measurements show that spectral resolution and efficiency agree well with the predicted values. A device optimized for spectral resolution and higher order suppression will be tested on the CDX-U and NSTX tokamak at Princeton Plasma Physics Laboratory. Work supported by DoE grant No. DE-FG02-86ER52314ATDoE

  3. Near-Infrared Grating Spectrometer for Mobile Phone Applications.

    PubMed

    Pügner, Tino; Knobbe, Jens; Grüger, Heinrich

    2016-05-01

    Near-infrared (NIR) spectroscopy is a well-established technique for the chemical analysis of organic and inorganic matter. Accordingly, spectroscopic instrumentation of different complexity has been developed and is currently commercially available. However, there are an increasing number of new mobile applications that have come into focus and that cannot be addressed by the existing technology due to size and cost. Therefore, a new miniaturized scanning grating spectrometer for NIR spectroscopy has been developed at Fraunhofer IPMS. It is based on micro-electro-mechanical systems (MEMS) technology, and has been designed to meet the requirements for mobile application, regarding spectral range, resolution, overall size, robustness, and cost. The MEMS spectrometer covers a spectral range from 950 nm to 1900 nm at a resolution of 10 nm. The instrument is extremely small and has a volume of only 2.1 cm(3) Therefore, it is well suited for integration, even into a mobile phone. A first sample of the new spectrometer has been manufactured and put into operation. The results of a series of test measurements are in good agreement with the requirements and specifications.

  4. Near-Infrared Grating Spectrometer for Mobile Phone Applications

    PubMed Central

    Knobbe, Jens; Grüger, Heinrich

    2016-01-01

    Near-infrared (NIR) spectroscopy is a well-established technique for the chemical analysis of organic and inorganic matter. Accordingly, spectroscopic instrumentation of different complexity has been developed and is currently commercially available. However, there are an increasing number of new mobile applications that have come into focus and that cannot be addressed by the existing technology due to size and cost. Therefore, a new miniaturized scanning grating spectrometer for NIR spectroscopy has been developed at Fraunhofer IPMS. It is based on micro–electro–mechanical systems (MEMS) technology, and has been designed to meet the requirements for mobile application, regarding spectral range, resolution, overall size, robustness, and cost. The MEMS spectrometer covers a spectral range from 950 nm to 1900 nm at a resolution of 10 nm. The instrument is extremely small and has a volume of only 2.1 cm3. Therefore, it is well suited for integration, even into a mobile phone. A first sample of the new spectrometer has been manufactured and put into operation. The results of a series of test measurements are in good agreement with the requirements and specifications. PMID:27170776

  5. Initial Results From The Chandra High Energy Transmission Grating Spectrometer

    NASA Technical Reports Server (NTRS)

    Canizares, C. R.; Davis, D. S.; Dewey, D.; Flanagan, K. A.; Houck, J.; Huenemoerder, D. P.; Marshall, H. L.; Schattenburg, M. L.; Schulz, N. S.; Wise, M.

    2000-01-01

    The High Energy Transmission Grating Spectrometer (HETGS) on the Chandra X-ray Observatory provides spectral resolving powers of 200-1000 over the range 0.4-8.0 keV (1.5-30 A) with effective area of 2-200 square centimeters. Initial observations during the activation and calibration phases of the mission show that the HETGS is performing as predicted prior to Chandra launch. The talk presented very preliminary results that illustrate the power of the HETGS for performing detailed studies of a wide range of celestial sources, including plasma diagnostics. This written version gives a brief summary of that talk with examples of preliminary spectra of Capella, the Crab pulsar, SS433 and the SNR E0102-72.

  6. Next Generation Grating Spectrometer Sounders for LEO and GEO

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.

    2011-01-01

    AIRS and MODIS are widely used for weather, climate, composition, carbon cycle, cross-calibration, and applications. The community asking for new capability in the 2020 timeframe, capabilities desired: (1) Hyperspectral UV to LWIR, High Spatial ?1km IFOV (2) Maximize Synergies of Solar Reflected and IR. Synergies with OCO-2. We expect more users and applications of next gen LEO IR Sounder than GEO. These include: weather, climate, GHG monitoring, aviation, disaster response. There is a new direction for imagers and sounders: (1) Separate Vis/NIR/SWIR from MWIR/LWIR instruments reduces technology risk and complexity. (2) Expect Costs to be lower than CrIS & VIIRS Some additional ideas to reduce costs include: (1) minimum set of requirements (2) mini-grating spectrometers. supports constellation for higher revisit (3) new technology to reduce instrument size (large format fpa's) (4) hosted payloads

  7. The Reflection Grating Spectrometer on Board XMM-Newton

    NASA Technical Reports Server (NTRS)

    denHerder, J. W.; Brinkman, A. C.; Kahn, S. M.; Branduardi-Raymont, G.; Thomsen, K.; Aarts, H.; Audard, M.; Bixler, J. V.; denBoggende, A. J.

    2000-01-01

    The ESA X-ray Multi Mirror mission, XMM-Newton, carries two identical Reflection Grating Spectrometers (RGS) behind two of its three nested sets of Wolter I type mirrors. The instrument allows high-resolution (E/(Delta)E = 100 to 500) measurements in the soft X-ray range (6 to 38 A or 2.1 to 0.3 keV) with a maximum effective area of about 140 sq cm at 15 A. Its design is optimized for the detection of the K-shell transitions of carbon, nitrogen, oxygen, neon, magnesium, and silicon. as well as the L shell transitions of iron. The present paper gives a full description of the design of the RGS and its operational modes. We also review details of the calibrations and in-orbit performance including the line spread function, the wavelength calibration, the effective area, and the instrumental background.

  8. A simple scanning spectrometer based on a stretchable elastomeric reflective grating

    SciTech Connect

    Ghisleri, C.; Milani, P.; Potenza, M. A. C.; Bellacicca, A.; Ravagnan, L.

    2014-02-10

    We report a scanning optical spectrometer based on the use of a stretchable elastomeric reflective grating. The grating is obtained by supersonic cluster beam implantation of silver nanoparticles on polydimethylsiloxane previously grooved by molding to create a replica of a commercial digital versatile disk grating. The use of a stretchable grating allows the spectrometer spanning the whole optical wavelength range by solely extending the diffraction element by more than 100% of its original dimensions. The stretchable reflective optical grating shows excellent performances and stability upon thousands of stretching cycles. The use of this elastomeric element makes the optical layout and the mechanics of the spectrometer extremely simple and advantageous for those applications where spectral resolution is not a major requirement. As a proof of principle, we present the absorption spectrum of Rhodamine B in solution obtained by our spectrometer and compared to commercial instruments.

  9. Improved LIBS limit of detection of Be, Mg, Si, Mn, Fe and Cu in aluminum alloy samples using a portable Echelle spectrometer with ICCD camera

    NASA Astrophysics Data System (ADS)

    Mohamed, Walid Tawfik Y.

    2008-02-01

    Laser-induced breakdown spectroscopy (LIBS) is a laser-based technique that can provide non-intrusive, qualitative and quantitative measurement of metals in various environments. LIBS uses the plasma generated by a high-energy laser beam to prepare and excite the sample in one step. In the present work, LIBS has been applied to perform elemental analysis of six trace elements simultaneously in aluminum alloy targets. The plasma is generated by focusing a pulsed Nd:YAG laser on the target in air at atmospheric pressure. LIBS limit of detection (LOD) is affected by many experimental parameters such as interferences, self-absorption, spectral overlap and matrix effect. We aimed to improve the LIBS LOD by optimizing these experimental parameters as possible. In doing so, a portable Echelle spectrometer with intensified CCD camera was used to detect the LIBS plasma emission. This advanced Echelle spectrometer provides a constant spectral resolution (CSR) of 7500 corresponding to 4 pixels FWHM over a wavelength range 200-1000 nm displayable in a single spectrum. Then, the calibration curves for iron, beryllium, magnesium, silicon, manganese and copper as minor elements were achieved with linear regression coefficients between 98-99% on average in aluminum standard sample alloys. New LOD values were achieved in the ppm range with high precision (RSD 3-8%). From the application view point, improving LIBS LOD is very important in the on-line industrial process control to follow-up multi-elements for the correct alloying in metals.

  10. High resolution Florida IR silicon immersion grating spectrometer and an M dwarf planet survey

    NASA Astrophysics Data System (ADS)

    Ge, Jian; Powell, Scott; Zhao, Bo; Wang, Ji; Fletcher, Adam; Schofield, Sidney; Liu, Jian; Muterspaugh, Matthew; Blake, Cullen; Barnes, Rory

    2012-09-01

    We report the system design and predicted performance of the Florida IR Silicon immersion grating spectromeTer (FIRST). This new generation cryogenic IR spectrograph offers broad-band high resolution IR spectroscopy with R=72,000 at 1.4-1.8 μm and R=60,000 at 0.8-1.35 μm in a single exposure with a 2kx2k H2RG IR array. It is enabled by a compact design using an extremely high dispersion silicon immersion grating (SIG) and an R4 echelle with a 50 mm diameter pupil in combination with an Image Slicer. This instrument is operated in vacuum with temperature precisely controlled to reach long term stability for high precision radial velocity (RV) measurements of nearby stars, especially M dwarfs and young stars. The primary technical goal is to reach better than 4 m/s long term RV precision with J<9 M dwarfs within 30 min exposures. This instrument is scheduled to be commissioned at the Tennessee State University (TSU) 2-m Automatic Spectroscopic Telescope (AST) at Fairborn Observatory in spring 2013. FIRST can also be used for observing transiting planets, young stellar objects (YSOs), magnetic fields, binaries, brown dwarfs (BDs), ISM and stars. We plan to launch the FIRST NIR M dwarf planet survey in 2014 after FIRST is commissioned at the AST. This NIR M dwarf survey is the first large-scale NIR high precision Doppler survey dedicated to detecting and characterizing planets around 215 nearby M dwarfs with J< 10. Our primary science goal is to look for habitable Super-Earths around the late M dwarfs and also to identify transiting systems for follow-up observations with JWST to measure the planetary atmospheric compositions and study their habitability. Our secondary science goal is to detect and characterize a large number of planets around M dwarfs to understand the statistics of planet populations around these low mass stars and constrain planet formation and evolution models. Our survey baseline is expected to detect ~30 exoplanets, including 10 Super Earths

  11. A Soft X-ray Spectrometer using a Highly Dispersive Multilayer Grating

    NASA Astrophysics Data System (ADS)

    Warwick, Tony; Padmore, Howard; Voronov, Dmitriy; Yashchuk, Valeriy

    2010-06-01

    There is a need for higher resolution spectrometers as a tool for inelastic x-ray scattering. Currently, resolving power around R = 10,000 is advertised. Measured RIXS spectra are often limited by this instrumental resolution and higher resolution spectrometers using conventional gratings would be prohibitively large. We are engaged in a development program to build blazed multilayer grating structures for diffracting soft x-rays in high order. This leads to spectrometers with dispersion much higher than is possible using metal coated-gratings. The higher dispersion then provides higher resolution and the multilayer gratings are capable of operating away from grazing incidence as required. A spectrometer design is presented with a total length 3.8 m and capable of 105 resolving power.

  12. A Soft X-ray Spectrometer using a Highly Dispersive Multilayer Grating

    SciTech Connect

    Warwick, Tony; Padmore, Howard; Voronov, Dmitriy; Yashchuk, Valeriy

    2010-01-31

    There is a need for higher resolution spectrometers as a tool for inelastic x-ray scattering. Currently, resolving power around R = 10,000 is advertised. Measured RIXS spectra are often limited by this instrumental resolution and higher resolution spectrometers using conventional gratings would be prohibitively large. We are engaged in a development program to build blazed multilayer grating structures for diffracting soft x-rays in high order. This leads to spectrometers with dispersion much higher than is possible using metal coated-gratings. The higher dispersion then provides higher resolution and the multilayer gratings are capable of operating away from grazing incidence as required. A spectrometer design is presented with a total length 3.8m and capable of 10{sup 5} resolving power.

  13. [Technology Development for X-Ray Reflection for the Constellation-X Reflection Grating Spectrometer (RGS)

    NASA Technical Reports Server (NTRS)

    Schattenburg, Mark L.

    2003-01-01

    This Grant covers MIT support for the technology development of x-ray reflection gratings for the Constellation-X Reflection Grating Spectrometer (RGS). Since the start of the Grant MIT has extended its previously-developed patterning and super-smooth, blazed grating fabrication technology to ten-times smaller grating periods and ten-times larger blaze angles to demonstrate feasibility and performance in the off-plane grating geometry. In the past year we successfully developed several nanoimprint grating replication methods that achieved very high fidelity replication of master silicon gratings. Grating geometry on the nano and macro scales were faithfully replicated, demonstrating the viability of the process for manufacturing the thousands of gratings required for the RGS. We also successfully developed an improved metrology truss for holding test grating substrates during metrology. The flatness goal of grating substrates is under 500 nm. In the past, grating holders would cause non-repeatable distortion of >> 500 nm to the substrates due to friction and gravity sag. The new holder has a repeatability of under 50 nm which is adequate for the proposed RGS grating substrates.

  14. Compact Reflective Imaging Spectrometer Design Utilizing An Immersed Grating And Anamorphic Mirror

    DOEpatents

    Lerner, Scott A.

    2006-01-10

    A compact imaging spectrometer comprising an entrance slit, an anamorphic mirror, a grating, and a detector array. The entrance slit directs light to the anamorphic mirror. The anamorphic mirror receives the light and directs the light to the grating. The grating receives the light from the anamorphic mirror and defracts the light back onto the anamorphic mirror. The anamorphic mirror focuses the light onto a detector array.

  15. Design and experiment of spectrometer based on scanning micro-grating integrating with angle sensor

    NASA Astrophysics Data System (ADS)

    Biao, Luo; Wen, Zhi-yu

    2014-01-01

    A compact, low cost, high speed, non-destructive testing NIR (near infrared) spectrometer optical system based on MOEMS grating device is developed. The MOEMS grating works as the prismatic element and wavelength scanning element in our optical system. The MOEMS grating enables the design of compact grating spectrometers capable of acquiring full spectra using a single detector element. This MOEMS grating is driven by electromagnetic force and integrated with angle sensor which used to monitored deflection angle while the grating working. Comparing with the traditional spectral system, there is a new structure with a single detector and worked at high frequency. With the characteristics of MOEMS grating, the structure of the spectrometer system is proposed. After calculating the parameters of the optical path, ZEMAX optical software is used to simulate the system. According the ZEMAX output file of the 3D model, the prototype is designed by SolidWorks rapidly, fabricated. Designed for a wavelength range between 800 nm and 1500 nm, the spectrometer optical system features a spectral resolution of 16 nm with the volume of 97 mm × 81.7 mm × 81 mm. For the purpose of reduce modulated effect of sinusoidal rotation, spectral intensity of the different wavelength should be compensated by software method in the further. The system satisfies the demand of NIR micro-spectrometer with a single detector.

  16. ELOIS: an innovative spectrometer design using a free-form grating

    NASA Astrophysics Data System (ADS)

    De Clercq, Coralie; Moreau, Vincent; Jamoye, Jean-François; Zuccaro Marchi, Alessandro; Gloesener, Pierre

    2015-09-01

    For spaceborne hyperspectral applications1, grating-based spectrometers are of special interest due to the high spectral resolution and optical throughput that can be achieved. The classical spectrometer designs are 1:1 systems. For these systems the achievable signal to noise ratio is limited by the slit width/pixel pitch combination. One way to increase the signal to noise ratio of a spectrometer without increasing the global instrument size is to design an instrument with a magnification power of less than one. With a smaller magnification, the entrance slit is wider and a larger amount of light is collected while the image is smaller and compatible with typical detector size and pixel pitch. We presents an innovative spectrometer design with 2:1 magnification and high image quality and radiometric performances. This spectrometer called ELOIS (for Enhanced Light Offner Imaging Spectrometer) is designed with a grating atop a free-form surface. The use non-rotationally symmetric surfaces offer additional freedom for designing compact and well-corrected instruments. Nevertheless, most of the available manufacturing techniques, such as direct ruling, holography, lithography or e-beam writing, are typically applicable on simple shape of the grating surface, such as flat or spherical surface. AMOS demonstrated the feasibility of the Free Form Grating (FFG), i.e. a ruled grating on a surface without any rotational symmetry, using cost-effective approach for manufacturing blazed grating by Single Point Diamond Turning (SPDT).

  17. Design of optical system for spectrometer involving a volume phase holographic transmission grating

    NASA Astrophysics Data System (ADS)

    Ren, Zhong; Liu, Guodong; Huang, Zhen

    2014-08-01

    At present, spectrometer has popularly being used into varieties of fields including environment, food, medical health monitoring and metal industry because it has the advantages of noninvasive, high efficient and convenient etc. The performance of the spectrometer is determined by its optical system. Normally, according to the apparatus and principle of splitting-light, optical system of spectrometer can be classified into several categories, for example, filter-typed, dispersion typed, Fourier transform typed and acousto-optic tunable typed. The grating typed optical system has been popularly used into the spectrometer due to the features of higher diffraction efficiency, resolution and dispersion rate etc. In the grating-typed optical system, although the traditional plane and concave grating have usually been used into some spectrometers, some disadvantages of them still limit their applications, such as, large aberration, worse spectral flatness and low deficiency, etc. In this paper, to overcome these disadvantages of the traditional plane and concave grating, a novel optical system for spectrometer (OSS) based on volume phase holographic transmission (VPHT) grating was designed. For this novel grating, its manufacture and theories were investigated, and its diffraction efficiency was firstly numerically simulated according to different parameters. In order to prove the feasibility of this designed OSS, the spectral calibration experiment was performed and the spectral resolution reached 2nm.

  18. The high-resolution cross-dispersed echelle white-pupil spectrometer of the McDonald Observatory 2.7-m telescope

    NASA Technical Reports Server (NTRS)

    Tull, Robert G.; Macqueen, Phillip J.; Sneden, Christopher; Lambert, David L.

    1995-01-01

    A new high-resolution cross-dispersed echelle spectrometer has been installed at the coude focus of the McDonald Observatory 2.7-m telescope. Its primary goal was simultaneously to gather spectra over as much of the spectral range 3400 A to 1 micrometer as practical, at a resolution R identical with lambda/Delta lambda which approximately = 60,000 with signal-to-noise ratio of approximately 100 for stars down to magnitude 11, using 1-h exposures. In the instrument as built, two exposures are all that are needed to cover the full range. Featuring a white-pupil design, fused silica prism cross disperser, and folded Schmidt camera with a Tektronix 2048x2048 CCD used at either of two foci, it has been in regularly scheduled operation since 1992 April. Design details and performance are described.

  19. Passive Spectroscopy Bolometers, Grating- And X-Ray Imaging Crystal Spectrometers

    SciTech Connect

    Bitter, M; Hill, K W; Scott, S; Paul, S; Ince-Cushmann, A; Reinke, M; Rice, J; Beiersdorfer, P; Gu, M F; Lee, S G; Broennimann, C; Eikenberry, E F

    2007-11-07

    This tutorial gives a brief introduction into passive spectroscopy and describes the working principles of bolometers, a high-resolution grating spectrometer, and a novel X-ray imaging crystal spectrometer, which is of particular interest for profile measurements of the ion temperature and plasma rotation velocity on ITER and future burning plasma experiments.

  20. A rotated transmission grating spectrometer for detecting spectral separation of doublet Na

    SciTech Connect

    Santosa, Ignatius Edi

    2015-04-16

    Transmission gratings are usually used in a spectrometer for measuring the wavelength of light. In the common design, the position of the grating is perpendicular to the incident light. In order to increase the angular dispersion, in contrary to the common design, in this experiment the transmission grating was rotated. Due to the non-zero incident angle, the diffracted light was shifted. This rotated transmission grating spectrometer has been used to determine the separation of doublet Na. In this experiment, the diffraction angle was measured at various incident angles. The spectral separation of doublet Na was identified from the difference in the diffraction angle of two spectral lines. This spectral separation depends on the incident angle, the grating constant and the order of diffraction. As the effect of increasing the incident angle, a significant increase of the spectral separation can be achieved up to three fold.

  1. Linear FBG interrogation with a wavelength-swept fiber laser and a volume phase grating spectrometer

    NASA Astrophysics Data System (ADS)

    Kim, Hyunjin; Song, Minho

    2011-05-01

    We propose a novel FBG (fiber Bragg grating) sensor system that uses a tunable wavelength laser and a volume phase grating spectrometer. The effect of nonlinear wavelength scanning and uneven power profile of the fiber laser, which substantially degrades the measurement accuracy, is minimized by using a spectrometer demodulation. The constructed sensor system showed linear output according to the Bragg wavelength variation, and showed much higher signal-to-noise ratio compared to the conventional spectrometer demodulation which used much dimmer broadband light sources.

  2. The joint astrophysical plasmadynamic experiment (J-PEX) high-resolution EUV spectrometer: diffraction grating efficiency

    NASA Astrophysics Data System (ADS)

    Kowalski, M. P.; Berendse, F. B.; Barbee, T. W., Jr.; Hunter, W. R.; Heidemann, K. F.; Lenke, R.; Seifert, A.; Cruddace, R. G.

    2006-06-01

    We have fabricated five new holographic ion-etched polymer-coated gratings for a reflight on a sounding rocket of the J-PEX high-resolution EUV spectrometer. The gratings are parabolic (nominal 2000-mm focal length), large (160 mm x 90 mm), and have a blazed groove profile of high density (3600 grooves/mm at the vertex). They have been coated with a high-reflectance multilayer of Mo/Si/C. Using an atomic force microscope, we examined grating topography before multilayer coating. The surface roughness is 2 angstrom rms and the blaze angle is near the target value of 2.4°. Using synchrotron radiation, we completed an efficiency calibration map of each multilayer-coated grating over the wavelength range 220-245 angstrom. At an angle of incidence of 5°, the average efficiency in the first inside order peaks near 234 angstrom. The average peak efficiency is 12.3 +/- 1.0% for Grating 1, 12.6 +/- 2.4% for Grating 2, 12.6 +/- 1.8% for Grating 3, 14.1 +/- 3.0% for Grating 4, and 13.0 +/- 1.0% for Grating 5. The derived groove efficiency averaged over all gratings is approximately 50%, which meets our goals. Refined models of the multilayer gratings are required to resolve remaining issues.

  3. Soft x-ray blazed transmission grating spectrometer with high resolving power and extended bandpass

    NASA Astrophysics Data System (ADS)

    Heilmann, Ralf K.; Bruccoleri, Alexander Robert; Schattenburg, Mark

    2016-04-01

    A number of high priority questions in astrophysics can be addressed by a state-of-the-art soft x-ray grating spectrometer, such as the role of Active Galactic Nuclei in galaxy and star formation, characterization of the Warm-Hot Intergalactic Medium and the “missing baryon” problem, characterization of halos around the Milky Way and nearby galaxies, as well as stellar coronae and surrounding winds and disks. An Explorer-scale, large-area (> 1,000 cm2), high resolving power (R = λ/Δλ > 3,000) soft x-ray grating spectrometer is highly feasible based on Critical-Angle Transmission (CAT) grating technology. Still significantly higher performance can be provided by a CAT grating spectrometer on an X-ray-Surveyor-type mission. CAT gratings combine the advantages of blazed reflection gratings (high efficiency, use of higher diffraction orders) with those of conventional transmission gratings (low mass, relaxed alignment tolerances and temperature requirements, transparent at higher energies) with minimal mission resource requirements. They are high-efficiency blazed transmission gratings that consist of freestanding, ultra-high aspect-ratio grating bars fabricated from silicon-on-insulator (SOI) wafers using advanced anisotropic dry and wet etch techniques. Blazing is achieved through grazing-incidence reflection off the smooth grating bar sidewalls. The reflection properties of silicon are well matched to the soft x-ray band. Nevertheless, CAT gratings with sidewalls made of higher atomic number elements allow extension of the CAT grating principle to higher energies and larger dispersion angles. We show x-ray data from metal-coated CAT gratings and demonstrate efficient blazing to higher energies and larger blaze angles than possible with silicon alone. We also report on measurements of the resolving power of a breadboard CAT grating spectrometer consisting of a Wolter-I slumped-glass focusing mirror pair from Goddard Space Flight Center and CAT gratings, to be

  4. Development of two-grating spectrometer for the charge exchange spectroscopy system on KSTAR

    NASA Astrophysics Data System (ADS)

    Lee, Hyungho; Song, Eun-ji; Park, Young-dong; Oh, Soo-ghee; Ko, Won-Ha

    2011-06-01

    The charge exchange spectroscopy (CES) system on Korea Superconducting Tokamak Advanced Research (KSTAR) was installed last year and had been applied to measure the C VI ion temperature and rotation velocity profiles. The ion temperature and rotation velocity profiles had been estimated from the C VI 5290.5 Å (n = 8-7) charge-exchange spectrum signal measured by a Czerny-Turner type spectrometer and a thinned back-illuminated charge coupled device (CCD) camera. However, the Czerny-Turner type spectrometer used for the KSTAR CES system showed so low signal to noise ratio for KSTAR plasmas in the 2010 experimental campaign that the time resolution of the CES system had been limited to 100 ms due to the increased exposure time of the attached CCD camera. Then, new two-grating spectrometer had been developed in order to improve the time resolution of the CES system. The spectrometer consists of two gratings (1200 g/mm and 1800 g/mm each) with additive configuration, concave mirrors (f = 50 cm), and a cylindrical lens (f = 50 cm). The time resolution of the CES system increases by a factor of 2-4 with the two-grating spectrometer. The C VI ion temperature and rotation velocity profiles obtained by the two-grating spectrometer are compared to those by Czerny-Turner type spectrometer in this paper.

  5. Development of two-grating spectrometer for the charge exchange spectroscopy system on KSTAR

    SciTech Connect

    Lee, Hyungho; Song, Eun-ji; Oh, Soo-ghee; Park, Young-dong; Ko, Won-Ha

    2011-06-15

    The charge exchange spectroscopy (CES) system on Korea Superconducting Tokamak Advanced Research (KSTAR) was installed last year and had been applied to measure the C VI ion temperature and rotation velocity profiles. The ion temperature and rotation velocity profiles had been estimated from the C VI 5290.5 A (n = 8-7) charge-exchange spectrum signal measured by a Czerny-Turner type spectrometer and a thinned back-illuminated charge coupled device (CCD) camera. However, the Czerny-Turner type spectrometer used for the KSTAR CES system showed so low signal to noise ratio for KSTAR plasmas in the 2010 experimental campaign that the time resolution of the CES system had been limited to 100 ms due to the increased exposure time of the attached CCD camera. Then, new two-grating spectrometer had been developed in order to improve the time resolution of the CES system. The spectrometer consists of two gratings (1200 g/mm and 1800 g/mm each) with additive configuration, concave mirrors (f = 50 cm), and a cylindrical lens (f = 50 cm). The time resolution of the CES system increases by a factor of 2-4 with the two-grating spectrometer. The C VI ion temperature and rotation velocity profiles obtained by the two-grating spectrometer are compared to those by Czerny-Turner type spectrometer in this paper.

  6. Development of two-grating spectrometer for the charge exchange spectroscopy system on KSTAR.

    PubMed

    Lee, Hyungho; Song, Eun-ji; Park, Young-dong; Oh, Soo-ghee; Ko, Won-Ha

    2011-06-01

    The charge exchange spectroscopy (CES) system on Korea Superconducting Tokamak Advanced Research (KSTAR) was installed last year and had been applied to measure the C VI ion temperature and rotation velocity profiles. The ion temperature and rotation velocity profiles had been estimated from the C VI 5290.5 Å (n = 8-7) charge-exchange spectrum signal measured by a Czerny-Turner type spectrometer and a thinned back-illuminated charge coupled device (CCD) camera. However, the Czerny-Turner type spectrometer used for the KSTAR CES system showed so low signal to noise ratio for KSTAR plasmas in the 2010 experimental campaign that the time resolution of the CES system had been limited to 100 ms due to the increased exposure time of the attached CCD camera. Then, new two-grating spectrometer had been developed in order to improve the time resolution of the CES system. The spectrometer consists of two gratings (1200 g/mm and 1800 g/mm each) with additive configuration, concave mirrors (f = 50 cm), and a cylindrical lens (f = 50 cm). The time resolution of the CES system increases by a factor of 2-4 with the two-grating spectrometer. The C VI ion temperature and rotation velocity profiles obtained by the two-grating spectrometer are compared to those by Czerny-Turner type spectrometer in this paper.

  7. Super-Period Gold Nanodisc Grating-Enabled Surface Plasmon Resonance Spectrometer Sensor.

    PubMed

    Tian, Xueli; Guo, Hong; Bhatt, Ketan H; Zhao, Song Q; Wang, Yi; Guo, Junpeng

    2015-10-01

    We experimentally demonstrate a surface plasmon resonance spectrometer sensor by using an e-beam-patterned super-period gold nanodisc grating on a glass substrate. The super-period gold nanodisc grating has a small subwavelength period and a large diffraction grating period. The small subwavelength period enhances localized surface plasmon resonance, and the large diffraction grating period diffracts surface plasmon resonance radiation into different directions corresponding to different wavelengths. Surface plasmon resonance spectra are measured in the first order diffraction spatial profiles captured by a charge-coupled device (CCD) in addition to the traditional way of measurement using an external optical spectrometer in the zeroth order transmission. A surface plasmon resonance sensor for the bovine serum albumin protein nanolayer bonding is demonstrated by measuring the surface plasmon resonance shift in the first order diffraction spatial intensity profiles captured by the CCD.

  8. Development of a novel spectrometer for tongue coating analyzer based on volume holography transmissive grating

    NASA Astrophysics Data System (ADS)

    Ren, Zhong; Liu, Guodong; Dai, Longmin; Huang, Zhen; Zeng, Lvming

    2010-11-01

    Tongue diagnosis (TD) is an important diagnostic methods in the traditional Chinese medicine (TCM). According to the viewpoint of TCM, the changes of the tongue coating (TC) can reflect the pathological state of the patient. And the nature or severity of diseasec can be determined by observing the TC. Over the years, TD is mostly depended on the subjective experience of the Chinese physician. And the diagnostic results will be impacted by.some factors, e.g. the different light sources or environmental brightness. Recently years, the method of digital image processing has been used into the TD. But its application is limited by the complicated algorithm, time-consuming and big error, etc. Therefore, a novel tongue coating analyzer(TCA) is designed in this paper. Meanwhile, a novel spectrometer for TCA based on the volume holography transmissive (VHT) grating is developed. In this spectrometer, since the VHT grating doesn't produce the stray-light due to the absence of the grooves of classical surface-embossed gratings, the VHT grating is used as the diffraction grating instead of the classical plane or concave grating. Experimental results show that the performances of the spectrometer for TCA have been improved by using the VHT grating, optimizing the light-path structure and software algorithm, etc. Compared with the others, this spectrometer for TCA has many advantages, such as, less diffraction, wider spectrum range, higher efficiency and resolution, etc. The spectrum range of the spectrometer for TCA can reach 300-1000nm, its resolution can reach 1nm and the optical density is larger than 3.

  9. Imaging extreme ultraviolet spectrometer employing a single toroidal diffraction grating: the initial evaluation.

    PubMed

    Huber, M C; Timothy, J G; Morgan, J S; Lemaitre, G; Tondello, G; Jannitti, E; Scarin, P

    1988-08-15

    A high-efficiency extreme ultraviolet (EUV) imaging spectrometer has been constructed and tested. The spectrometer employs a concave toroidal grating illuminated at normal incidence in a Rowland circle mounting and has only one reflecting surface. The toroidal grating has been fabricated by a new technique employing an elastically deformable submaster grating which is replicated in a spherical form and then mechanically distorted to produce the desired aspect ratio of the toroidal surface for stigmatic imaging over the selected wavelength range. The fixed toroidal grating used in the spectrometer is then replicated from this surface. Photographic tests and initial photoelectric tests with a 2-D pulse-counting detector system have verified the image quality of the toroidal grating at wavelengths near 600 A. The results of these initial tests are described in detail, and the basic designs of two instruments which could employ the imaging spectrometer for astrophysical investigations in space are briefly described, namely, a high-resolution EUV spectroheliometer for studies of the solar chromosphere, transition region, and corona and an EUV spectroscopic telescope for studies of nonsolar objects. PMID:20539406

  10. Development, fabrication, and metrology of the electro-optical breadboard model for the reflection grating array of the XMM grating spectrometer

    SciTech Connect

    Decker, T.A.; Montesanti, R.C.; Bixler, J.V.; Hailey, C.J.; Kahn, S.M. |

    1994-07-01

    A prototype array consisting of eight diffraction gratings has been fabricated for the XMM Reflection Grating Spectrometer. A component of the full spectrometer is an array of approximately 200 diffraction gratings. The diffraction gratings were produced using lightweight silicon carbide substrates and a replication technique. The prototype array was developed and assembled using the same tolerances as the flight arrays which have typical tolerances of 3 {mu}m in translation and sub-arc seconds in rotation. The metrology applied during inspection and assembly included precision linear measurements, full aperture figure measurements, and angular interferometry.

  11. [Study on far ultraviolet imaging spectrometer with grating dispersion for atmosphere remote sensing].

    PubMed

    Yu, Lei; Wang, Shu-rong; Lin, Guan-yu; Qu, Yi; Wang, Long-qi

    2012-03-01

    The far ultraviolet imaging spectrometer with grating dispersion is mainly used in the detection of the ionosphere, thermosphere, auroral zone and glow zone. It is important for the study and application of the remote sensing of atmosphere in China. We designed two optical systems for the far ultraviolet imaging spectrometer, and obtained the plane grating structure prototype based on the principles of nadir and limb atmospheric sounding. The prototype working at the waveband of 120-180 nm consists of an off-axis parabolic mirror and an advanced Czerny-Turner spectral imaging system. The far ultraviolet response back-illuminating CCD is adopted as the detector. The corresponding experiment system was built to calibrate the basic performances of the spectrometer prototype. The spectral and spatial resolutions are 2 nm and 0.5 mrad respectively. The far ultraviolet imaging spectrometer prototype plays an important role in the study and application of atmospheric remote sensing. PMID:22582666

  12. Transmission grating based extreme ultraviolet imaging spectrometer for time and space resolved impurity measurements.

    PubMed

    Kumar, Deepak; Stutman, Dan; Tritz, Kevin; Finkenthal, Michael; Tarrio, Charles; Grantham, Steven

    2010-10-01

    A free standing transmission grating based imaging spectrometer in the extreme ultraviolet range has been developed for the National Spherical Torus Experiment (NSTX). The spectrometer operates in a survey mode covering the approximate spectral range from 30 to 700 Å and has a resolving capability of δλ/λ on the order of 3%. Initial results from space resolved impurity measurements from NSTX are described in this paper.

  13. Study of Planck's Law with a Small USB Grating Spectrometer

    ERIC Educational Resources Information Center

    Navratil, Zdenek; Dosoudilova, Lenka; Jurmanova, Jana

    2013-01-01

    In this paper an experiment to study Planck's radiation law is presented. The spectra of a heated furnace and of a halogen lamp under various conditions were measured with a small USB grating spectrometer and fitted using Planck's law. The temperature determined from the fit was then compared with the results of comparative temperature…

  14. Spectrometer sensor using patterned nano-structure plasmon resonance grating (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Guo, Hong; Tian, Xueli; Guo, Junpeng

    2016-03-01

    Localized surface plasmon resonance has been extensively investigated for biochemical sensor applications. In traditional localized surface plasmon resonance biosensors, resonance spectra were measured in the reflection or transmission from the nanostructure devices. In this work, we demonstrate a new surface plasmon resonance sensor platform with which the localized surface plasmon resonance and shift were measured by using a CCD imager instead of using an optical spectrometer. In additional to the metal nanostructures which support localized plasmon resonance, we pattern the nanostructures into diffraction gratings with super-wavelength grating periods. The nanostructure diffraction gratings support localized plasmon resonance and also diffract localized plasmon resonance radiations into non-zeroth order diffractions. Plasmon resonance spectrum and shift are measured with a CCD imager in one of the diffraction orders. The new plasmon resonance spectrometer sensor combines the functions of sensing and spectral analysis into one apparatus and is capable of real-time visualization of the biochemical bonding process with an imager.

  15. Varied-space grazing incidence gratings in high resolution scanning spectrometers

    SciTech Connect

    Hettrick, M.C.; Underwood, J.H.

    1986-10-01

    We discuss the dominant geometrical aberrations of a grazing incidence reflection grating and new techniques which can be used to reduce or eliminate them. Convergent beam geometries and the aberration correction possible with varied groove spacings are each found to improve the spectral resolution and speed of grazing incidence gratings. In combination, these two techniques can result in a high resolution (lambda/..delta..lambda > 10/sup 4/) monochromator or scanning spectrometer with a simple rotational motion for scanning wavelength or selecting the spectral band. 21 refs., 4 figs.

  16. Texas echelon cross echelle spectrograph

    NASA Astrophysics Data System (ADS)

    Lacy, John H.; Richter, Matthew J.; Yu, Wanglong; Basso, Bianca S.

    1998-08-01

    A new mid-IR spectrograph, the Texas Echelon Cross Echelle Spectrograph (TEXES) is under construction. The primary motivation for TEXES is to observe interstellar molecules at very high resolution. TEXES will operate at 7-25 micrometers wavelength with three spectrographic modes: a high resolution cross-dispersed mode, with R approximately equals 100,000, a mid-resolution long-slit mode, with R approximately equals 14,000, and a low resolution long-slit mode, with R approximately equals 2000. In hi-res mode, the primary disperser is a 36 inch long, R10 grating with a 7 mm groove spacing. The echelon is cross-dispersed with a 7 in long R2 echelle. In mid-res mode, the echelon is by-passed with an Offner relay, and the echelle is used by itself. In lo-res mode, a first-order grating is inserted over the echelle. For initial test, TEXES will use a Hughes Aircraft 20 X 64 pixel Si:As impurity-band array, which covers only two echelon orders. It will later be replaced with a 256 X 256 pixel array, which will Nyquist sample approximately 10 orders. The spectrograph has been assembled and tested with a partially complete echelon, demonstrating the soundness of the design. When we began this project, we were unable to find a vendor capable of machining or ruling a diffraction grating with the very coarse ruling required. Consequently, we attempted to hand-fabricate the echelon. We have not succeeded in assembling the echelon with the required precision, missing by about a factor of two. Fortunately, Hyperfine, Inc. is now capable of diamond machining the echelon. We are purchasing a machined echelon, and hope to complete the spectrograph by the end of summer 1998.

  17. Integrated X-ray testing of the electro-optical breadboard model for the XMM reflection grating spectrometer

    SciTech Connect

    Bixler, J.V.; Craig, W.; Decker, T.; Aarts, H.; Boggende, T. den; Brinkman, A.C.; Burkert, W.; Brauninger, H.; Branduardi-Raymont, G.; Dubbeldam, L.

    1994-07-12

    X-ray calibration of the Electro-Optical Breadboard Model (EOBB) of the XXM Reflection Grating Spectrometer has been carried out at the Panter test facility in Germany. The EOBB prototype optics consisted of a four-shell grazing incidence mirror module followed by an array of eight reflection gratings. The dispersed x-rays were detected by an array of three CCDs. Line profile and efficiency measurements where made at several energies, orders, and geometric configurations for individual gratings and for the grating array as a whole. The x-ray measurements verified that the grating mounting method would meet the stringent tolerances necessary for the flight instrument. Post EOBB metrology of the individual gratings and their mountings confirmed the precision of the grating boxes fabrication. Examination of the individual grating surface`s at micron resolution revealed the cause of anomalously wide line profiles to be scattering due to the crazing of the replica`s surface.

  18. An infrared high resolution silicon immersion grating spectrometer for airborne and space missions

    NASA Astrophysics Data System (ADS)

    Ge, Jian; Zhao, Bo; Powell, Scott; Jiang, Peng; Uzakbaiuly, Berik; Tanner, David

    2014-08-01

    Broad-band infrared (IR) spectroscopy, especially at high spectral resolution, is a largely unexplored area for the far IR (FIR) and submm wavelength region due to the lack of proper grating technology to produce high resolution within the very constrained volume and weight required for space mission instruments. High resolution FIR spectroscopy is an essential tool to resolve many atomic and molecular lines to measure physical and chemical conditions and processes in the environments where galaxy, star and planets form. A silicon immersion grating (SIG), due to its over three times high dispersion over a traditional reflective grating, offers a compact and low cost design of new generation IR high resolution spectrographs for space missions. A prototype SIG high resolution spectrograph, called Florida IR Silicon immersion grating spectromeTer (FIRST), has been developed at UF and was commissioned at a 2 meter robotic telescope at Fairborn Observatory in Arizona. The SIG with 54.74 degree blaze angle, 16.1 l/mm groove density, and 50x86 mm2 grating area has produced R=50,000 in FIRST. The 1.4-1.8 um wavelength region is completely covered in a single exposure with a 2kx2k H2RG IR array. The on-sky performance meets the science requirements for ground-based high resolution spectroscopy. Further studies show that this kind of SIG spectrometer with an airborne 2m class telescope such as SOFIA can offer highly sensitive spectroscopy with R~20,000-30,000 at 20 to 55 microns. Details about the on-sky measurement performance of the FIRST prototype SIG spectrometer and its predicted performance with the SOFIA 2.4m telescope are introduced.

  19. Calibration of a high resolution grating soft x-ray spectrometer

    SciTech Connect

    Magee, E. W.; Dunn, J.; Brown, G. V.; Beiersdorfer, P.; Cone, K. V.; Park, J.; Porter, F. S.; Kilbourne, C. A.; Kelley, R. L.

    2010-10-15

    The calibration of the soft x-ray spectral response of a large radius of curvature, high resolution grating spectrometer (HRGS) with a back-illuminated charge-coupled device detector is reported. The instrument is cross-calibrated for the 10-50 A waveband at the Lawrence Livermore National Laboratory electron beam ion trap (EBIT) x-ray source with the EBIT calorimeter spectrometer. The HRGS instrument is designed for laser-produced plasma experiments and is important for making high dynamic range measurements of line intensities, line shapes, and x-ray sources.

  20. Calibration of a high resolution grating soft x-ray spectrometer.

    PubMed

    Magee, E W; Dunn, J; Brown, G V; Cone, K V; Park, J; Porter, F S; Kilbourne, C A; Kelley, R L; Beiersdorfer, P

    2010-10-01

    The calibration of the soft x-ray spectral response of a large radius of curvature, high resolution grating spectrometer (HRGS) with a back-illuminated charge-coupled device detector is reported. The instrument is cross-calibrated for the 10-50 Å waveband at the Lawrence Livermore National Laboratory electron beam ion trap (EBIT) x-ray source with the EBIT calorimeter spectrometer. The HRGS instrument is designed for laser-produced plasma experiments and is important for making high dynamic range measurements of line intensities, line shapes, and x-ray sources. PMID:21034013

  1. Aberration analysis of a concentric imaging spectrometer with a convex grating

    NASA Astrophysics Data System (ADS)

    Kim, Seo Hyun; Kong, Hong Jin; Chang, Soo

    2014-12-01

    We analyze the ray-optical aberrations in a concentric imaging spectrometer composed of one convex grating and two concave mirrors of different radii. We assume that the system is generally not telecentric. First we derive aberration functions of Seidel and Buchdahl types for a bundle of rays converging to dispersed Gaussian images. Next we discuss the conditions in which the third and fifth-order ray aberrations are balanced. Finally we show that a concentric imaging spectrometer for use with a CCD detector can be optimized effectively in the neighborhood of a stigmatic condition. The stigmatic condition derived here can be useful in rapidly creating an initial design of a concentric imaging spectrometer with minimal aberrations.

  2. [Optical Design of Miniature Infrared Gratings Spectrometer Based on Planar Waveguide].

    PubMed

    Li, Yang-yu; Fang, Yong-hua; Li, Da-cheng; Liu, Yang

    2015-03-01

    In order to miniaturize an infrared spectrometer, we analyze the current optical design of miniature spectrometers and propose a method for designing a miniature infrared gratings spectrometer based on planar waveguide. Common miniature spectrometer uses miniature optical elements to reduce the size of system, which also shrinks the effective aperture. So the performance of spectrometer has dropped. Miniaturization principle of planar waveguide spectrometer is different from the principle of common miniature spectrometer. In planar waveguide spectrometer, the propagation of light is limited in a thin planar waveguide, which looks like the whole optical system is squashed flat. In the direction parallel to the planar waveguide, the light through the slit is collimated, dispersed and focused. And a spectral image is formed in the detector plane. This propagation of light is similar to the light in common miniature spectrometer. In the direction perpendicular to the planar waveguide, light is multiple reflected by the upper and lower surfaces of the planar waveguide and propagates in the waveguide. So the size of corresponding optical element could be very small in the vertical direction, which can reduce the size of the optical system. And the performance of the spectrometer is still good. The design method of the planar waveguide spectrometer can be separated into two parts, Czerny-Turner structure design and planar waveguide structure design. First, by using aberration theory an aberration-corrected (spherical aberration, coma, focal curve) Czerny-Turner structure is obtained. The operation wavelength range and spectral resolution are also fixed. Then, by using geometrical optics theory a planar waveguide structure is designed for reducing the system size and correcting the astigmatism. The planar waveguide structure includes a planar waveguide and two cylindrical lenses. Finally, they are modeled together in optical design software and are optimized as a whole. An

  3. Optimizing and characterizing grating efficiency for a soft X-ray emission spectrometer.

    PubMed

    Boots, Mark; Muir, David; Moewes, Alexander

    2013-03-01

    The efficiency of soft X-ray diffraction gratings is studied using measurements and calculations based on the differential method with the S-matrix propagation algorithm. New open-source software is introduced for efficiency modelling that accounts for arbitrary groove profiles, such as those based on atomic force microscopy (AFM) measurements; the software also exploits multi-core processors and high-performance computing resources for faster calculations. Insights from these calculations, including a new principle of optimal incidence angle, are used to design a soft X-ray emission spectrometer with high efficiency and high resolution for the REIXS beamline at the Canadian Light Source: a theoretical grating efficiency above 10% and resolving power E/ΔE > 2500 over the energy range from 100 eV to 1000 eV are achieved. The design also exploits an efficiency peak in the third diffraction order to provide a high-resolution mode offering E/ΔE > 14000 at 280 eV, and E/ΔE > 10000 at 710 eV, with theoretical grating efficiencies from 2% to 5%. The manufactured gratings are characterized using AFM measurements of the grooves and diffractometer measurements of the efficiency as a function of wavelength. The measured and theoretical efficiency spectra are compared, and the discrepancies are explained by accounting for real-world effects: groove geometry errors, oxidation and surface roughness. A curve-fitting process is used to invert the calculations to predict grating parameters that match the calculated and measured efficiency spectra; the predicted blaze angles are found to agree closely with the AFM estimates, and a method of characterizing grating parameters that are difficult or impossible to measure directly is suggested.

  4. High resolution TE&TM near infrared compact spectrometer based on waveguide grating structures

    NASA Astrophysics Data System (ADS)

    Martin, G.; Thomas, F.; Heidmann, S.; de Mengin, M.; Courjal, N.; Ulliac, G.; Morand, A.; Benech, P.; Kern, P.; Le Coarer, E...

    2015-05-01

    Integrated optics spectrometers can be essentially classified into two main families: based on Fourier transform or dispersed modes. In the first case, an interferogram generated inside an optical waveguide is sampled using nanodetectors, these scatter light into the detector that is in contact with the waveguide. A dedicated FFT processing is needed in order to recover the spectrum with high resolution but limited spectral range. Another way is to extract the optical signal confined in a waveguide using a surface grating and directly obtain the spectrum by means of a relay optics that generates the spectrum on the Fourier plane of the lens, where the detector is placed. Following this second approach, we present a high-resolution compact dispersive spectrometer (δλ =1.5nm at λ=1050nm) based on guided optics technology. The propagating signal is dispersed out of a waveguide thanks to a surface grating that lays along it. Focused Ion Beam technique is used to etch nano-grooves that act as individual scattering centers and constitute the surface grating along the waveguide. The waveguide is realized using X-cut, Ypropagating Lithium Niobate substrate, where the effective index for TE and TM guided modes is different. This results in a strong angular separation of TE and TM diffracted modes, allowing simultaneous detection of spectra for both polarizations. A simple relay optics, with limited optical aberrations, reimages the diffracted signal on the focal plane array, leading to a robust, easy to align instrument.

  5. Development of a Novel Breast Cancer Detector based on Improved Holography Concave Grating Imaging Spectrometer

    NASA Astrophysics Data System (ADS)

    Ren, Zhong; Liu, Guodong; Zeng, Lvming; Huang, Zhen

    2011-01-01

    Breast cancer can be detected by B-mode ultrasonic imaging, X-mammography, CT imaging, and MRI. But some drawbacks existed in these methods, their applications was limited in some certain. So, a novel high resolution breast cancer detector (BCD) is developed in this paper. Meanwhile, an improved holography concave grating imaging spectrometer (HCGIS) is designed. In this HCGIS, the holography concave grating is used as the diffraction grating. Additionally, CCD with combined image acquisition (IAQ) card and the 3D scan platform are used as the spectral image acquisition component. This BCD consists of the light source unit, light-path unit, check cavity, splitting-light unit, spectrum acquisition and imaging unit, signal processing unit, computer and data analysis software unit, etc. Experimental results show that the spectral range of the novel BCD can reach 300-1000 nm, its wavelength resolution can reach 1nm, and this system uses the back-split-light technology and the splitting-light structure of holography concave grating. Compared with the other instruments of breast cancer detection, this BCD has many advantages, such as, compacter volume, simpler algorithm, faster processing speed, higher accuracy, cheaper cost and higher resolution, etc. Therefore, this BCD will have the potential values in the detection of breast disease.

  6. Design of spherical varied line-space gratings for a high-resolution EUV spectrometer

    NASA Technical Reports Server (NTRS)

    Harada, Tatsuo; Kita, Toshiaki; Bowyer, Stuart; Hurwitz, Mark

    1991-01-01

    A highly efficient EUV spectrograph is designed for high-resolution spectroscopic observation. The spectrograph is designed for point source astronomy in a 40-120 nm bandpass and is to be ORFEUS (Orbiting Retrievable Far and Extreme Ultraviolet Spectrometer), scheduled for launch as the first payload of a German space platform Astro-SPAS (Astronomy Shuttle Pallet Satellite). The design uses spherical varied line-space (SVLS) grating to minimize astigmatism, coma, and spherical aberration. The effectiveness and practical feasibility of the design is proved by an SVLS grating for visible use. The image focusing properties of the SVLS grating for ORFEUS are compared to those with toroidal uniform line-space (TULS) design. The SVLS design is superior to the TULS, theoretically in resolution and image concentration, but also practically with not only fabrication ease. Four SVLS gratings with nominal groove densities of 6000, 4550, 3450, and 2616 gr./mm, and a 200 mm x 200 mm ruled area have been ruled using a numerically controlled ruling engine for use in ORFEUS.

  7. EGRAM- ECHELLE SPECTROGRAPH DESIGN AID

    NASA Technical Reports Server (NTRS)

    Dantzler, A. A.

    1994-01-01

    EGRAM aids in the design of spectrographic systems that utilize an echelle-first order cross disperser combination. This optical combination causes a two dimensional echellogram to fall on a detector. EGRAM describes the echellogram with enough detail to allow the user to effectively judge the feasibility of the spectrograph's design. By iteratively altering system parameters, the desired echellogram can be achieved without making a physical model. EGRAM calculates system parameters which are accurate to the first order and compare favorably to results from ray tracing techniques. The spectrographic system modelled by EGRAM consists of an entrance aperture, collimator, echelle, cross dispersion grating, focusing options, and a detector. The system is assumed to be free of aberrations and the echelle, cross disperser, and detector should be planar. The EGRAM program is menu driven and has a HELP facility. The user is prompted for information such as minimum and maximum wavelengths, slit dimensions, ruling frequencies, detector geometry, and angle of incidence. EGRAM calculates the resolving power and range of order numbers covered by the echellogram. A numerical map is also produced. This tabulates the order number, slit bandpass, and high/middle/low wavelengths. EGRAM can also compute the centroid coordinates of a specific wavelength and order (or vice versa). EGRAM is written for interactive execution and is written in Microsoft BASIC A. It has been implemented on an IBM PC series computer operating under DOS. EGRAM was developed in 1985.

  8. Simulation of path delay multiplexing-based Fourier transform spectrometer for fiber Bragg grating interrogation.

    PubMed

    Chelliah, Pandian; Sahoo, Trilochan; Singh, Sheela; Sujatha, Annie

    2015-10-20

    A Fourier transform spectrometer (FTS) used for interrogating a fiber Bragg grating (FBG) consists of a scanning-type interferometer. The FTS has a broad wavelength range of operation and good multiplexing capability. However, it has poor wavelength resolution and interrogation speed. We propose a modification to the FTS using path delay multiplexing to improve the same. Using this method, spatial resolution and interrogation time can be improved by n times by using n path delays. In this paper, simulation results for n=2, 5 are shown.

  9. Calibration of a helium-cooled infrared spatial radiometer and grating spectrometer

    NASA Technical Reports Server (NTRS)

    Jacobsen, Larry; Sargent, Steve; Wyatt, Clair L.; Steed, Allan J.

    1992-01-01

    Methods used by the Space Dynamics Laboratory of Utah State University (SDL/USU) to calibrate infrared sensors are described, using the Infrared Background Signature Survey (IBSS) spatial radiometer and grating spectrometer as examples. A calibration equation and a radiometric model are given for each sensor to describe their responsivity in terms of individual radiometric parameters. The calibration equation terms include dark offset, linearity, absolute responsivity, and measurement uncertainty, and the radiometric model domains include spatial, spectral, and temporal domains. A portable calibration facility, designed and fabricated by SDL/USU, provided collimated, extended, diffuse scatter, and Jones sources in a single cryogenic dewar. This multi-function calibrator allowed calibration personnel to complete a full calibration of the IBSS infrared radiometer and spectrometer in two 15-day periods. A calibration data system was developed to control and monitor the calibration facility, and to record and analyze sensor data.

  10. Calibration of a Flat Field Soft X-ray Grating Spectrometer for Laser Produced Plasmas

    SciTech Connect

    Park, J; Brown, G V; Schneider, M B; Baldis, H A; Beiersdorfer, P; Cone, K V; Kelley, R L; Kilbourne, C A; Magee, E; May, M J; Porter, F S

    2010-05-12

    We have calibrated the x ray response of a variable line spaced grating spectrometer, known as the VSG, at the Fusion and Astrophysics Data and Diagnostic Calibration Facility at the Lawrence Livermore National Laboratory (LLNL). The VSG has been developed to diagnose laser produced plasmas, such as those created at the Jupiter Laser Facility and the National Ignition Facility at LLNL, and at both the Omega and Omega EP lasers at University of Rochester's Laboratory for Laser Energetics. The bandwidth of the VSG spans the range from {approx} 6 to 60 {angstrom}. The calibration results present here include the VSG's dispersion and quantum efficiency. The dispersion is determined by measuring the x rays emitted from hydrogen-like and helium-like ions of carbon, nitrogen, oxygen, neon, and aluminum. The quantum efficiency is calibrated to an accuracy of 30% or better by normalizing the x ray intensities recorded by the VSG to those simultaneously recorded by an x ray microcalorimeter spectrometer.

  11. High Resolution Transmission Grating Spectrometer for Edge Toroidal Rotation Measurements of Tokamak Plasmas

    SciTech Connect

    Graf, A; May, M; Beiersdorfer, P; Magee, E; Lawrence, M; Terry, J; Rice, J

    2004-04-29

    We present a high throughput (f/3) visible (3500 - 7000 Angstrom) Doppler spectrometer for toroidal rotation velocity measurements of the Alcator C-Mod tokamak plasma. The spectrometer has a temporal response of 1 ms and a rotation velocity sensitivity of {approx}10{sup 5} cm/s. This diagnostic will have a tangential view and map out the plasma rotation at several locations along the outer half of the minor radius (r/a > 0.5). The plasma rotation will be determined from the Doppler shifted wavelengths of D{sub alpha} and magnetic and electric dipole transitions of highly ionized impurities in the plasma. The fast time resolution and high spectral resolving power are possible due to a 6' diameter circular transmission grating that is capable of {lambda}/{Delta}{lambda} {approx} 15500 at 5769 Angstrom in conjunction with a 50 {micro}m slit.

  12. The transmission volume-phase holographic grating recorded on dichromated gelatin film used in Raman spectrometer

    NASA Astrophysics Data System (ADS)

    Mei, Qijing; Liu, Peng; Tang, Minxue

    2015-11-01

    With the intrinsic advantages of high diffraction efficiency, signal to noise ratio, wavelength and angular selectivity, and low scattering and absorption, volume phase holographic grating (VPHG) has been widely used for spectroscopy, telecommunications, astronomy and ultra-fast laser sciences. The transmission VPHG combined with on-axis imaging lenses can be used in the Raman spectroscopic imaging, which enables a spectrometer to work at high resolution over a wide field of view, and compresses the configuration to achieve very little vignetting. The subject of this paper is to design a kind of transmission VPHG used in Raman Spectrometer with high diffraction efficiency theoretically. According to the Bragg condition and the coupled wave theory, the diffraction efficiency of transmission VPHG recorded on dichromated gelatin (DCG) has been optimized by using G-solver software, which is applicable to the visible waveband ranging from 0.46μm to 0.70μm. The effects of the recording and reconstruction setup parameters, the amplitude of the index modulation (Δn) and the thickness of the gelatin layer (d), and the polarization state of reconstruction beams on the diffraction efficiency properties of the gratings are analyzed at the same time.

  13. Cost-effective optical coherence tomography spectrometer based on a tilted fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Remund, Stefan; Bossen, Anke; Chen, Xianfeng; Wang, Ling; Adebayo, Adedotun; Zhang, Lin; Považay, Boris; Meier, Christoph

    2014-02-01

    A compact, fiber-based spectrometer for biomedical application utilizing a tilted fiber Bragg grating (TFBG) as integrated dispersive element is demonstrated. Based on a 45° UV-written PS750 TFBG a refractive spectrometer with 2.06 radiant/μm dispersion and a numerical aperture of 0.1 was set up and tested as integrated detector for an optical coherence tomography (OCT) system. Featuring a 23 mm long active region at the fiber the spectrum is projected via a cylindrical lens for vertical beam collimation and focused by an achromatic doublet onto the detector array. Covering 740 nm to 860 nm the spectrometer was optically connected to a broadband white light interferometer and a wide field scan head and electronically to an acquisition and control computer. Tomograms of ophthalmic and dermal samples obtained by the frequency domain OCT-system were obtained achieving 2.84 μm axial and 7.6 μm lateral resolution.

  14. Low-energy inverse photoemission spectroscopy using a high-resolution grating spectrometer in the near ultraviolet range.

    PubMed

    Yoshida, Hiroyuki

    2013-10-01

    An inverse photoemission spectroscopy (IPES) apparatus using a Czerny-Turner grating spectrometer is demonstrated. Previous IPES instruments based on grating spectrometers used a concave grating and operated in the vacuum ultraviolet range. The reflectance of such gratings is lower than 20% and the aberration cannot be finely corrected leading to an energy resolution of up to 0.1 eV. In the present study, employing the low energy IPES regime [H. Yoshida, Chem. Phys. Lett. 539-540, 180 (2012)], incident electrons with a kinetic energy below 5 eV are used, while photon emission in the range of between 250 and 370 nm is analyzed with a 10-cm Czerny-Turner grating spectrometer. The signal intensity is at least 30 times higher than the previous apparatus. The resolution of photon detection is set at 0.07 eV though the ultimate resolution is one order of magnitude higher. The experiment is performed both by sweeping the electron energy (isochromat mode) and by simultaneously analyzing the photon of whole wavelength range (tunable photon energy mode).

  15. Low-energy inverse photoemission spectroscopy using a high-resolution grating spectrometer in the near ultraviolet range

    SciTech Connect

    Yoshida, Hiroyuki

    2013-10-15

    An inverse photoemission spectroscopy (IPES) apparatus using a Czerny-Turner grating spectrometer is demonstrated. Previous IPES instruments based on grating spectrometers used a concave grating and operated in the vacuum ultraviolet range. The reflectance of such gratings is lower than 20% and the aberration cannot be finely corrected leading to an energy resolution of up to 0.1 eV. In the present study, employing the low energy IPES regime [H. Yoshida, Chem. Phys. Lett. 539–540, 180 (2012)], incident electrons with a kinetic energy below 5 eV are used, while photon emission in the range of between 250 and 370 nm is analyzed with a 10-cm Czerny-Turner grating spectrometer. The signal intensity is at least 30 times higher than the previous apparatus. The resolution of photon detection is set at 0.07 eV though the ultimate resolution is one order of magnitude higher. The experiment is performed both by sweeping the electron energy (isochromat mode) and by simultaneously analyzing the photon of whole wavelength range (tunable photon energy mode)

  16. A soft x-ray transmission grating imaging-spectrometer for the National Ignition Facility

    SciTech Connect

    Moore, A S; Guymer, T M; Kline, J L; Morton, J; Taccetti, M; Lanier, N E; Bentley, C; Workman, J; Peterson, B; Mussack, K; Cowan, J; Prasad, R; Richardson, M; Burns, S; Kalantar, D H; Benedetti, L R; Bell, P; Bradley, D; Hsing, W; Stevenson, M

    2012-05-01

    A soft x-ray transmission grating spectrometer has been designed for use on high energy-density physics experiments at the National Ignition Facility (NIF); coupled to one of the NIF gated x-ray detectors (GXD) it records sixteen time-gated spectra between 250 and 1000eV with 100ps temporal resolution. The trade-off between spectral and spatial resolution leads to an optimized design for measurement of emission around the peak of a 100-300eV blackbody spectrum. Performance qualification results from the NIF, the Trident Laser Facility and VUV beamline at the National Synchrotron Light Source (NSLS), evidence a <100{micro}m spatial resolution in combination with a source-size limited spectral resolution that is <10eV at photon energies of 300eV.

  17. A soft x-ray transmission grating imaging-spectrometer for the National Ignition Facility

    SciTech Connect

    Moore, A. S.; Guymer, T. M.; Morton, J.; Bentley, C.; Stevenson, M.; Kline, J. L.; Taccetti, M.; Lanier, N. E.; Workman, J.; Peterson, B.; Mussack, K.; Cowan, J.; Prasad, R.; Richardson, M.; Burns, S.; Kalantar, D. H.; Benedetti, L. R.; Bell, P.; Bradley, D.; Hsing, W.

    2012-10-15

    A soft x-ray transmission grating spectrometer has been designed for use on high energy-density physics experiments at the National Ignition Facility (NIF); coupled to one of the NIF gated x-ray detectors it records 16 time-gated spectra between 250 and 1000 eV with 100 ps temporal resolution. The trade-off between spectral and spatial resolution leads to an optimized design for measurement of emission around the peak of a 100-300 eV blackbody spectrum. Performance qualification results from the NIF, the Trident Laser Facility and vacuum ultraviolet beamline at the National Synchrotron Light Source, evidence a <100 {mu}m spatial resolution in combination with a source-size limited spectral resolution that is <10 eV at photon energies of 300 eV.

  18. Reflection Grating Array Associated with the Reflection Grating Spectrometer Developed by the Space Research Organization of the Netherlands for the X-ray Multi-Mirror Mission (XMM)

    NASA Technical Reports Server (NTRS)

    Kahn, Steven M.

    2001-01-01

    The University of California, Berkeley (UCB) served as the Principal Investigator institution for the United States participation in the development of the Reflection Grating Spectrometer (RGS) which included the design, development, fabrication, and testing of the Reflection Grating Assembly (RGA). UCB was assisted in this role by the Lawrence Livermore National Laboratory and Columbia University who provided the primary facilities, materials, services and personnel necessary to complete the development. UC Berkeley's Dr. Steven Kahn provided the technical and scientific oversight for the design. development and testing of the RGA units by monitoring the performance of the units at various stages in their development. Dr. Kahn was also the primary contact with the Space Research Organization of the Netherlands (SRON) and represented the RGA development at all SRON and European Space Agency (ESA) reviews of the RGA status. In accordance with the contract, the team designed and developed novel optical technology to meet the unique requirements of the RGS. The ESA XMM-Newton Mission carries two identical Reflection Grating Spectrometers (RGS) behind two of its three nested sets of Wolter I type mirrors. The instrument allows high-resolution measurements in the soft X-ray range (6 to 38 angstroms or 2.1 to 0.3 keV) with a maximum effective area of about 140 sq cm at 15 angstroms. Its design is optimized for the detection of the K-shell transitions of carbon, nitrogen, oxygen, neon, magnesium, and silicon. as well as the L shell transitions of iron. The RGA itself consists of two units. A structure for each unit was designed to hold up to 220 gratings. In its final configuration, one unit holds 182 gratings and the second hold 181 gratings.

  19. Alignment based on a no adjustment philosophy for the Immersion Grating Infrared Spectrometer (IGRINS)

    NASA Astrophysics Data System (ADS)

    Han, Jeong-Yeol; Yuk, In-Soo; Ko, Kyeongyeon; Oh, Heeyoung; Nah, Jakyoung; Oh, Jae Sok; Park, Chan; Lee, Sungho; Kim, Kang-Min; Chun, Moo-Young; Jaffe, Daniel T.; Pak, Soojong; Gully-Santiago, Michael

    2012-12-01

    IGRINS, the Immersion GRating INfrared Spectrometer includes an immersion grating made of silicon and observes both H-band (1.49~1.80 μm) and K-band (1.96~2.46 μm), simultaneously. In order to align such an infrared optical system, the compensator in its optical components has been adjusted within tolerances at room temperature without vacuum environment. However, such a system will ultimately operate at low temperature and vacuum with no adjustment mechanism. Therefore a reasonable relationship between different environmental variations such as room and low temperature might provide useful knowledge to align the system properly. We are attempting to develop a new process to predict the Wave Front Error (WFE), and to produce correct mechanical control values when the optical system is perturbed by moving the lens at room temperature. The purpose is to provide adequate optical performance without making changes at operating temperature. In other words, WFE was measured at operating temperature without any modification but a compensator was altered correctly at room temperature to meet target performance. The `no adjustment' philosophy was achieved by deterministic mechanical adjustment at room temperature from a simulation that we developed. In this study, an achromatic doublet lens was used to substitute for the H and K band camera of IGRINS. This novel process exhibits accuracy predictability of about 0.002 λ rms WFE and can be applied to a cooled infrared optical systems.

  20. AEGIS: An Astrophysics Experiment for Grating and Imaging Spectroscopy---a Soft X-ray, High-resolution Spectrometer

    NASA Astrophysics Data System (ADS)

    Huenemoerder, David; Bautz, M. W.; Davis, J. E.; Heilmann, R. K.; Houck, J. C.; Marshall, H. L.; Neilsen, J.; Nicastro, F.; Nowak, M. A.; Schattenburg, M. L.; Schulz, N. S.; Smith, R. K.; Wolk, S.; AEGIS Team

    2012-01-01

    AEGIS is a concept for a high-resolution soft X-ray spectroscopic observatory developed in response to NASA's request for definitions of the next X-ray astronomy mission. At a small fraction of the cost of the once-planned International X-ray Observatory (IXO), AEGIS has capabilities that surpass IXO grating spectrometer requirements, and which are far superior to those of existing soft X-ray spectrometers. AEGIS incorporates innovative technology in X-ray optics, diffraction gratings and detectors. The mirror uses high area-to-mass ratio segmented glass architecture developed for IXO, but with smaller aperture and larger graze angles optimized for high-throughput grating spectroscopy with low mass and cost. The unique Critical Angle Transmission gratings combine low mass and relaxed figure and alignment tolerances of Chandra transmission gratings but with high diffraction efficiency and resolving power of blazed reflection gratings. With more than an order of magnitude better performance over Chandra and XMM grating spectrometers, AEGIS can obtain high quality spectra of bright AGN in a few hours rather than 10 days. Such high resolving power allows detailed kinematic studies of galactic outflows, hot gas in galactic haloes, and stellar accretion flows. Absorption line spectroscopy will be used to study large scale structure, cosmic feedback, and growth of black holes in thousands of sources to great distances. AEGIS will enable powerful multi-wavelength investigations, for example with Hubble/COS in the UV to characterize the intergalactic medium. AEGIS will be the first observatory with sufficient resolution below 1 keV to resolve thermally-broadened lines in hot ( 10 MK) plasmas. Here we describe key science investigations enable by Aegis, its scientific payload and mission plan. Acknowledgements: Support was provided in part by: NASA SAO contract SV3-73016 to MIT for the Chandra X-ray Center and Science Instruments; NASA grant NNX08AI62G; and the MKI

  1. Flat-field grating spectrometer for high-resolution soft x-ray and EUV measurements on an electron beam ion trap

    SciTech Connect

    Beiersdorfer, P; Magee, E; Trabert, E; Chen, H; Lepson, J K; Gu, M F; Schmidt, M

    2004-03-27

    A R = 44.3 m grazing-incidence grating spectrometer has been implemented on the Livermore electron beam ion traps for high-resolution measurements in the soft x-ray and extreme ultraviolet region spanning from below 10 Angstrom up to 50 Angstrom. The instrument uses a grating with variable line spacing (about 2400 l/mm) for a flat field of view. Spectra are recorded with a back-illuminated charge-coupled device detector. The new instrument greatly improves upon the resolution achieved with existing grating spectrometers and complements crystal spectrometers at the shorter wavelengths both in terms of wavelength coverage and polarization independent reflectivity response.

  2. Designing Echelle Spectrographs

    NASA Technical Reports Server (NTRS)

    Dantzler, A.

    1987-01-01

    Performance numbers and output maps computed from inputs supplied by user. Echelle Spectrograph Design Aid program (EGRAM) aids in design of spectrographic systems that utilize echelle/first-order crossdisperser combinations. Optical combination causes two-dimensional echellogram to fall on detector. Describes echellogram with enough detail to enable user to judge effectively feasibility of spectrograph design. By iteratively altering system parameters, desired echellogram achieved without making physical model. Calculates system parameters accurately to first order and compare favorably to results from raytracing techniques. EGRAM written in two versions. FORTRAN 77, and Microsoft BASIC A.

  3. Plane-grating flat-field soft x-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Hague, C. F.; Underwood, J. H.; Avila, A.; Delaunay, R.; Ringuenet, H.; Marsi, M.; Sacchi, M.

    2005-02-01

    We describe a soft x-ray spectrometer covering the 120-800 eV range. It is intended for resonant inelastic x-ray scattering experiments performed at third generation synchrotron radiation (SR) facilities and has been developed with SOLEIL, the future French national SR source in mind. The Hettrick-Underwood principle is at the heart of the design using a combination of varied line-spacing plane grating and spherical-mirror to provide a flat-field image. It is slitless for optimum acceptance. This means the source size determines the resolving power. A spot size of ⩽5μm is planned at SOLEIL which, according to simulations, should ensure a resolving power ⩾1000 over the whole energy range. A 1024×1024 pixel charge-coupled device (CCD) with a 13μm×13μm pixel size is used. This is an improvement on the use of microchannel-plate detectors, both as concerns efficiency and spatial resolution. Additionally spectral line curvature is avoided by the use of a horizontal focusing mirror concentrating the beam in the nondispersing direction. It allows for readout using a binning mode to reduce the intrinsically large CCD readout noise. Preliminary results taken at beamlines at Elettra (Trieste) and at BESSY (Berlin) are presented.

  4. [Development of a high resolution simultaneous microwave plasma torch spectrometer].

    PubMed

    Jiang, Jie; Huan, Yan-Fu; Jin, Wei; Feng, Guo-Dong; Fei, Qiang; Cao, Yan-Bo; Jin, Qin-Han

    2007-11-01

    A unique high resolution simultaneous microwave plasma torch (MPT) atomic emission spectrometer was developed and studied preliminarily. Some advanced technologies were applied to the spectrometer, such as echelle grating, UV-intensified CCD array detector, adjustable microwave generator, and water cooling system for the generator, etc. The detection limits of the spectrometer for some elements were determined, the spectral resolution and pixel resolution of the spectrometer were calculated, and an analysis of a practical sample was carried out. The preliminary results demonstrate that such simultaneous spectrometer has advantages of saving sample and time, possessing high sensitivity and resolution, and low-cost for the purchase and maintenance. Taking analytical figures of merit into consideration, the high resolution simultaneous MPT spectrometer will have extended application areas and greater competition potential as compared with sequential MPT spectrometers.

  5. Design of a novel multi-spectral imaging spectrometer for breast cancer detector based on VHT grating

    NASA Astrophysics Data System (ADS)

    Ren, Zhong; Wu, Yan; Liu, Guodong; Huang, Zhen; Zeng, Lvming

    2011-06-01

    The ultrasonic imaging, X-mammography, CT imaging and MRI can be applied into the breast cancer diagnosis(BCD). But some factors such as the spatial resolution, contrast and price-performance ratio (PPR) limit their applications. So, a novel BCD technology, that is, multi-spectral imaging is adopted into this paper. It can get more information of the breast tumor and higher identity because it combines the advantages of the spectroscopy and the imaging technology. And in this paper, the multi-spectral light source induced the breast cancer imaging detector(BCID) is designed, the spectrum can cover from the UV to NIR. Meanwhile, a custom-built multi-spectral imaging spectrometer (MSIS) is also developed. And, in order to overcome the stray-light of the light-route system and improve the resolution and light-passing efficiency of the system, the novel volume holography transmissive (VHT) grating instead of the plane or concave grating is used as the diffraction grating in this MSIS. Experimental result show that the novel BCD technology is feasible, it can offer not only the spectral information but also the image of the tumor. The spectrum resolution of the MSIS for BCID based on VHT grating can reach 2nm. Compared with the others, this BCID has more compact structure, faster speed, higher PPR and higher resolution and accuracy. Therefore, this BCID has the potential value in the field of the BCD.

  6. Design of Time-Resolved Shifted Dual Transmission Grating Spectrometer for the X-Ray Spectrum Diagnostics

    NASA Astrophysics Data System (ADS)

    Wang, Baoqing; Yi, Tao; Wang, Chuanke; Zhu, Xiaoli; Li, Tingshuai; Li, Jin; Liu, Shenye; Jiang, Shaoen; Ding, Yongkun

    2016-07-01

    A new time-resolved shifted dual transmission grating spectrometer (SDTGS) is designed and fabricated in this work. This SDTGS uses a new shifted dual transmission grating (SDTG) as its dispersive component, which has two sub transmission gratings with different line densities, of 2000 lines/mm and 5000 lines/mm. The axes of the two sub transmission gratings in SDTG are horizontally and vertically shifted a certain distance to measure a broad range of 0.1-5 keV time-resolved X-ray spectra. The SDTG has been calibrated with a soft X-ray beam of the synchrotron radiation facility and its diffraction efficiency is also measured. The designed SDTGS can take full use of the space on a record panel and improve the precision for measuring spatial and temporal spectrum simultaneously. It will be a promising application for accurate diagnosis of the soft X-ray spectrum in inertial confinement fusion. supported by National Natural Science Foundation of China (Nos. 11405158 and 11435011) and Development Foundation of China Academy of Engineering Physics (Nos. 2014B0102011 and 2014B0102012)

  7. Design and Operation of a Frequency Doubled Nd:YAG Thomson Scattering System with Transmission Grating ICCD Spectrometer

    NASA Astrophysics Data System (ADS)

    Schoenbeck, N. L.; Dowd, A. S.; Fonck, R. J.; Schlossberg, D. J.; Winz, G. R.

    2012-10-01

    A novel Thomson scattering system has been deployed on the Pegasus Toroidal Experiment. It provides a relatively low-cost, simplified design. Scattering is achieved using a 7 ns, 2 J frequency doubled Nd:YAG laser operating at 532 nm. The laser focuses to ˜3 mm diameter within the plasma via a 7 m beam-line. The beam-line contains cameras as beam finders and remotely adjustable mirrors for shot-to-shot alignment. A custom multi-element lens collects scattered photons from 15 cm < Rmaj< 85 cm with 1.2 cm radial resolution. Eight fiber optic bundles provide 8 spatial points for sampling the laser or background light. Each set of 8 channels is measured in a single spectrometer that utilizes a high efficiency (˜80%) volume phase holographic grating and a high quantum efficiency (> 40%) image intensified CCD (ICCD) camera. Three spectrometers provide a total of 24 channels. Two interchangeable gratings exist to cover low (Te = 10--100 eV) and high (Te = 0.10--1 keV) electron temperature regimes on Pegasus. The spectrometer is optimized for ne from mid-10^18 to mid-10^19 m-3. The signal-to-noise expected is ˜0.5 of an equivalent system using Nd:YAG at 1064 nm and avalanche photodiode detectors.

  8. Reflection grating spectrometer for the x-ray multi-mirror (XMM) space observatory: design and calculated performance

    SciTech Connect

    Hettrick, M.C.; Kahn, S.M.

    1985-10-01

    A spectrometer design candidate is presented for the X-ray Multi-Mirror (XMM) observatory, being planned by the European Space Agency (ESA) as a long-lived large-area of telescopes. The science requirement of moderate resolution (E/..delta..E approx.100) spectroscopy in a two octave region (0.5 to 2 keV) with extremely high throughput (effective area > 500 cm/sup 2/) results in the use of grazing incidence reflection gratings. Due to the low image quality of the telescopes (approx. 1 minute of arc), the grating dispersion must be maximized by use of the classical grating mount in which the spectrum is dispersed within the plane of incident radiation. Due to the small field of view by the x-ray telescopes, the gratings must be situated in the converging beam at the exit of the telescope. A spectrometer module consists of a thin-foil conical mirror telescope, a stack of plane varied-space reflection gratings and an imaging proportional counter. This system is analyzed on the basis of dispersion, geometric aberrations and efficiency. At a spectral resolution of 0.15 A, a twenty module XMM would attain an average effective area of approx.900 cm/sup 2/, reaching twice this value at the peak wavelength (15 A). Similar throughput is obtained in second order centered at 7.5 A, the two spectral orders separated by the non-dispersive energy resolution of the proportional counter. Continuous spectra are obtained in the 6-25 A band (0.5 to 2 keV), and can be extended to 45 A if desired by tuning of the grating. The instrument sensitivity is sufficient to allow the first spectral detection of soft x-ray features in external galaxies, with access to an estimated population of several hundred active galactic nuclei. Such observations will expand vastly the roles feasible for spectroscopy in x-ray astrophysics, marking the beginning of a new era in space astronomy.

  9. Holographic fabrication of large-constant concave gratings for wide-range flat-field spectrometers with the addition of a concave lens.

    PubMed

    Zhou, Qian; Li, Xinghui; Ni, Kai; Tian, Rui; Pang, Jinchao

    2016-01-25

    We present a new design for the fabrication of concave gratings with large grating constants for flat-field miniature spectrometers with a wide spectral band. In this new design, one of the two optical paths for the holographic lithography of a curved grating structure with variable line spacing is modified by adding a concave lens in front of the point source. The addition of the concave lens allows the real point source, as well as the spatial filter for generating this point source, to be moved back. In this manner, the two spatial filters for generating two point sources are separated. Avoiding the physical conflict between these two spatial filters reduces the difficulty of fabricating large-constant concave gratings. Experimental results verify the feasibility of the proposed design in fabricating concave gratings with large grating constants. The resolution of a spectrometer using the fabricated concave grating is evaluated and found to be better than 1.1 nm across a spectral band ranging from 360 nm to 825 nm.

  10. X-ray grating spectrometer for opacity measurements in the 50 eV to 250 eV spectral range at the LULI 2000 laser facility

    SciTech Connect

    Reverdin, Charles; Caillaud, T.; Gilleron, F.; Pain, J. C.; Silvert, V.; Soullie, G.; Villette, B.; Thais, Frederic; Loisel, Guillaume; Blenski, T.; Poirier, M.; Busquet, M.; Bastiani-Ceccotti, S.; Serres, F.; Ducret, J. E.; Foelsner, W.; Gilles, D.; Turck-Chieze, S.

    2012-10-15

    An x-ray grating spectrometer was built in order to measure opacities in the 50 eV to 250 eV spectral range with an average spectral resolution {approx} 50. It has been used at the LULI-2000 laser facility at Ecole Polytechnique (France) to measure the {Delta}n = 0, n = 3 transitions of several elements with neighboring atomic number: Cr, Fe, Ni, and Cu in the same experimental conditions. Hence a spectrometer with a wide spectral range is required. This spectrometer features one line of sight looking through a heated sample at backlighter emission. It is outfitted with one toroidal condensing mirror and several flat mirrors cutting off higher energy photons. The spectral dispersion is obtained with a flatfield grating. Detection consists of a streak camera sensitive to soft x-ray radiation. Some experimental results showing the performance of this spectrometer are presented.

  11. X-ray grating spectrometer for opacity measurements in the 50 eV to 250 eV spectral range at the LULI 2000 laser facility.

    PubMed

    Reverdin, Charles; Thais, Frédéric; Loisel, Guillaume; Busquet, M; Bastiani-Ceccotti, S; Blenski, T; Caillaud, T; Ducret, J E; Foelsner, W; Gilles, D; Gilleron, F; Pain, J C; Poirier, M; Serres, F; Silvert, V; Soullie, G; Turck-Chieze, S; Villette, B

    2012-10-01

    An x-ray grating spectrometer was built in order to measure opacities in the 50 eV to 250 eV spectral range with an average spectral resolution ∼ 50. It has been used at the LULI-2000 laser facility at École Polytechnique (France) to measure the Δn = 0, n = 3 transitions of several elements with neighboring atomic number: Cr, Fe, Ni, and Cu in the same experimental conditions. Hence a spectrometer with a wide spectral range is required. This spectrometer features one line of sight looking through a heated sample at backlighter emission. It is outfitted with one toroidal condensing mirror and several flat mirrors cutting off higher energy photons. The spectral dispersion is obtained with a flatfield grating. Detection consists of a streak camera sensitive to soft x-ray radiation. Some experimental results showing the performance of this spectrometer are presented. PMID:23126955

  12. X-ray grating spectrometer for opacity measurements in the 50 eV to 250 eV spectral range at the LULI 2000 laser facilitya)

    NASA Astrophysics Data System (ADS)

    Reverdin, Charles; Thais, Frédéric; Loisel, Guillaume; Busquet, M.; Bastiani-Ceccotti, S.; Blenski, T.; Caillaud, T.; Ducret, J. E.; Foelsner, W.; Gilles, D.; Gilleron, F.; Pain, J. C.; Poirier, M.; Serres, F.; Silvert, V.; Soullie, G.; Turck-Chieze, S.; Villette, B.

    2012-10-01

    An x-ray grating spectrometer was built in order to measure opacities in the 50 eV to 250 eV spectral range with an average spectral resolution ⟨E/δE⟩ ˜ 50. It has been used at the LULI-2000 laser facility at École Polytechnique (France) to measure the Δn = 0, n = 3 transitions of several elements with neighboring atomic number: Cr, Fe, Ni, and Cu in the same experimental conditions. Hence a spectrometer with a wide spectral range is required. This spectrometer features one line of sight looking through a heated sample at backlighter emission. It is outfitted with one toroidal condensing mirror and several flat mirrors cutting off higher energy photons. The spectral dispersion is obtained with a flatfield grating. Detection consists of a streak camera sensitive to soft x-ray radiation. Some experimental results showing the performance of this spectrometer are presented.

  13. Absolutely calibrated, time-resolved measurements of soft x rays using transmission grating spectrometers at the Nike Laser Facility

    NASA Astrophysics Data System (ADS)

    Weaver, J. L.; Feldman, U.; Seely, J. F.; Holland, G.; Serlin, V.; Klapisch, M.; Columbant, D.; Mostovych, A.

    2001-12-01

    Accurate simulation of pellet implosions for direct drive inertial confinement fusion requires benchmarking the codes with experimental data. The Naval Research Laboratory (NRL) has begun to measure the absolute intensity of radiation from laser irradiated targets to provide critical information for the radiatively preheated pellet designs developed by the Nike laser group. Two main diagnostics for this effort are two spectrometers incorporating three detection systems. While both spectrometers use 2500 lines/mm transmission gratings, one instrument is coupled to a soft x-ray streak camera and the other is coupled to both an absolutely calibrated Si photodiode array and a charge coupled device (CCD) camera. Absolute calibration of spectrometer components has been undertaken at the National Synchrotron Light Source at Brookhaven National Laboratories. Currently, the system has been used to measure the spatially integrated soft x-ray flux as a function of target material, laser power, and laser spot size. A comparison between measured and calculated flux for Au and CH targets shows reasonable agreement to one-dimensional modeling for two laser power densities.

  14. Improving the spectral resolution of flat-field concave grating miniature spectrometers by dividing a wide spectral band into two narrow ones.

    PubMed

    Zhou, Qian; Pang, Jinchao; Li, Xinghui; Ni, Kai; Tian, Rui

    2015-11-10

    In this study, a new flat-field concave grating miniature spectrometer is proposed with improved resolution across a wide spectral band. A mirror is added to a conventional concave grating spectrometer and placed near the existing detector array, allowing a wide spectral band to be divided into two adjacent subspectral bands. One of these bands is directly detected by the detector, and the other is indirectly analyzed by the same detector after being reflected by the mirror. These two subspectral bands share the same entrance slit, concave grating, and detector, which allows for a compact size, while maintaining an improved spectral resolution across the entire spectral band. The positions of the mirror and other parameters of the spectrometer are designed by a computer procedure and the optical design software ZEMAX. Simulation results show that the resolution of this kind of flat-field concave grating miniature spectrometer is better than 1.6 nm across a spectral band of 700 nm. Experiments based on three laser sources reveal that the measured resolutions are comparable to the simulated ones, with a maximum relative error between them of less than 19%.

  15. Post-SM4 Sensitivity Calibration of the STIS Echelle Modes

    NASA Astrophysics Data System (ADS)

    Bostroem, K. Azalee; Aloisi, A.; Bohlin, R.; Hodge, P.; Proffitt, C.

    2012-01-01

    On-orbit sensitivity curves for all echelle modes were derived for post - servicing mis- sion 4 data using observations of the DA white dwarf G191-B2B. Additionally, new echelle ripple tables and grating dependent bad pixel tables were created for the FUV and NUV MAMA. We review the procedures used to derive the adopted throughputs and implement them in the pipeline as well as the motivation for the modification of the additional reference files and pipeline procedures.

  16. Efficiency Calibration of the Multilayer-coated Holographic Ion-Etched Flight Gratings for the J-PEX Sounding Rocket Spectrometer

    NASA Astrophysics Data System (ADS)

    Kowalski, M. P.; Barbee, T. W., Jr.; Heidemann, K. F.; Gursky, H.; Rife, J. C.; Hunter, W. R.; Fritz, G. G.; Cruddace, R. G.

    1999-05-01

    In the extreme ultraviolet, high spectral resolution and sensitivity are required for measuring linewidths and Doppler shifts and for resolving the many weak lines, absorption edges and other features that may appear in the spectra of astrophysical sources. For over a decade we have been pursuing the goal of achieving high effective area at normal-incidence by using ultra-smooth holographic ion-etched gratings that have been coated with high-reflectance multilayers. The four flight gratings for the J-PEX sounding rocket spectrometer have been fabricated using the holographic ion-etching technique. The gratings are spherical (4000 mm radius of curvature), large (160 mm x 90 mm), and have a laminar groove profile of high density (3600 grooves/mm). They have been coated with a high-reflectance multilayer of Mo/Si. We present the results of grating surface measurements, made using an atomic force microscope. The average roughness of the first grating is about 3 A rms after coating. We also present efficiency calibration maps, made over the wavelength range 225-245 A using synchrotron radiation. At an angle of incidence of 5 and a wavelength of 234 A, the average efficiency of the first grating in the first inside order is 10.4 +/- 0.5 the derived groove efficiency is 34.8 +/- 1.6 exceed all previously published results for a high density grating.

  17. Modeling of MOEMS electromagnetic scanning grating mirror for NIR micro-spectrometer

    NASA Astrophysics Data System (ADS)

    Zhou, Ying; Wen, Quan; Wen, Zhiyu; Yang, Tingyan

    2016-02-01

    In this paper, the mathematical model is developed for researching the detailed electromagnetic mechanism of MOEMS scanning mirror. We present the relationship between spectral range and optical scanning angle. Furthermore, the variation tendencies of resonant frequency and maximal torsional angle are studied in detail under different aspect ratios of MOEMS scanning mirror and varied dimensions of torsional bar. The numerical results and Finite Element Analysis simulations both indicate that the thickness of torsional bar is the most important factor. The maximal torsional angle appears when the aspect ratio equals to 1. This mathematical model is an effective way for designing the MOEMS electromagnetic scanning grating mirror in actual fabrication.

  18. Phase grating design for a dual-band snapshot imaging spectrometer.

    PubMed

    Scholl, James F; Dereniak, Eustace L; Descour, Michael R; Tebow, Christopher P; Volin, Curtis E

    2003-01-01

    Infrared spectral features have proved useful in the identification of threat objects. Dual-band focal-plane arrays (FPAs) have been developed in which each pixel consists of superimposed midwave and long-wave photodetectors [Dyer and Tidrow, Conference on Infrared Detectors and Focal Plane Arrays (SPIE, Bellingham, Wash., 1999), pp. 434-440]. Combining dual-band FPAs with imaging spectrometers capable of interband hyperspectral resolution greatly improves spatial target discrimination. The computed-tomography imaging spectrometer (CTIS) [Descour and Dereniak, Appl. Opt. 34, 4817-4826 (1995)] has proved effective in producing hyperspectral images in a single spectral region. Coupling the CTIS with a dual-band detector can produce two hyperspectral data cubes simultaneously. We describe the design of two-dimensional, surface-relief, computer-generated hologram dispersers that permit image information in these two bands simultaneously.

  19. Computed tomography imaging spectrometer (CTIS) with 2D reflective grating for ultraviolet to long-wave infrared detection especially useful for surveying transient events

    NASA Technical Reports Server (NTRS)

    Wilson, Daniel W. (Inventor); Maker, Paul D. (Inventor); Muller, Richard E. (Inventor); Mouroulis, Pantazis Z. (Inventor)

    2003-01-01

    The optical system of this invention is an unique type of imaging spectrometer, i.e. an instrument that can determine the spectra of all points in a two-dimensional scene. The general type of imaging spectrometer under which this invention falls has been termed a computed-tomography imaging spectrometer (CTIS). CTIS's have the ability to perform spectral imaging of scenes containing rapidly moving objects or evolving features, hereafter referred to as transient scenes. This invention, a reflective CTIS with an unique two-dimensional reflective grating, can operate in any wavelength band from the ultraviolet through long-wave infrared. Although this spectrometer is especially useful for rapidly occurring events it is also useful for investigation of some slow moving phenomena as in the life sciences.

  20. Computed Tomography Imaging Spectrometer (CTIS) with 2D Reflective Grating for Ultraviolet to Long-Wave Infrared Detection Especially Useful for Surveying Transient Events

    NASA Technical Reports Server (NTRS)

    Wilson, Daniel W. (Inventor); Maker, Paul D. (Inventor); Muller, Richard E. (Inventor); Mouroulis, Pantazis Z. (Inventor)

    2003-01-01

    The optical system of this invention is an unique type of imaging spectrometer, i.e. an instrument that can determine the spectra of all points in a two-dimensional scene. The general type of imaging spectrometer under which this invention falls has been termed a computed-tomography imaging spectrometer (CTIS). CTIS's have the ability to perform spectral imaging of scenes containing rapidly moving objects or evolving features, hereafter referred to as transient scenes. This invention, a reflective CTIS with an unique two-dimensional reflective grating, can operate in any wavelength band from the ultraviolet through long-wave infrared. Although this spectrometer is especially useful for events it is also for investigation of some slow moving phenomena as in the life sciences.

  1. Characterization of Ultrafast Laser Pulses using a Low-dispersion Frequency Resolved Optical Grating Spectrometer

    NASA Astrophysics Data System (ADS)

    Whitelock, Hope; Bishop, Michael; Khosravi, Soroush; Obaid, Razib; Berrah, Nora

    2016-05-01

    A low dispersion frequency-resolved optical gating (FROG) spectrometer was designed to characterize ultrashort (<50 femtosecond) laser pulses from a commercial regenerative amplifier, optical parametric amplifier, and a home-built non-colinear optical parametric amplifier. This instrument splits a laser pulse into two replicas with a 90:10 intensity ratio using a thin pellicle beam-splitter and then recombines the pulses in a birefringent medium. The instrument detects a wavelength-sensitive change in polarization of the weak probe pulse in the presence of the stronger pump pulse inside the birefringent medium. Scanning the time delay between the two pulses and acquiring spectra allows for characterization of the frequency and time content of ultrafast laser pulses, that is needed for interpretation of experimental results obtained from these ultrafast laser systems. Funded by the DoE-BES, Grant No. DE-SC0012376.

  2. High Resolution X-Ray Spectroscopy of zeta Puppis with the XMM-Newton Reflection Grating Spectrometer

    NASA Technical Reports Server (NTRS)

    Kahn, S. M.; Leutenegger, M. A.; Cottam, J.; Rauw, G.; Vreux, J.-M.; denBoggende, A. J. F.; Mewe, R.; Guedel, M.

    2000-01-01

    We present the first high resolution X-ray spectrum of the bright O4Ief supergiant star Puppis, obtained with the Reflection Grating Spectrometer on- board XMM-Newton. The spectrum exhibits bright emission lines of hydrogen-like and helium-like ions of nitrogen, oxygen, neon, magnesium, and silicon, as well as neon-like ions of iron. The lines are all significantly resolved, with characteristic velocity widths of order 1000 - 1500 km/ s. The nitrogen lines are especially strong, and indicate that the shocked gas in the wind is mixed with CNO-burned material, as has been previously inferred for the atmosphere of this star from ultraviolet spectra. We find that the forbidden to intercombination line ratios within the helium-like triplets are anomalously low for N VI, O VII, and Ne IX. While this is sometimes indicative of high electron density, we show that in this case, it is instead caused by the intense ultraviolet radiation field of the star. We use this interpretation to derive constraints on the location of the X-ray emitting shocks within the wind that agree remarkably well with current theoretical models for this system.

  3. Imaging spectrometer for high resolution measurements of stratospheric trace constituents in the ultraviolet

    NASA Technical Reports Server (NTRS)

    Torr, Marsha R.; Torr, D. G.

    1988-01-01

    A high-resolution spectrometer has been developed for studies of minor constituents in the middle atmosphere at ultraviolet wavelengths. In particular, the instrument is intended for observations of upper stratospheric UV bands. The spectrometer has a slit width of 0.08 A obtained by means of an echelle grating and a cross-disperser grating. The image plane detector is an intensified CCD consisting of a high gain proximity focused image intensifier that is fiber optically coupled to a two-dimensional CCD array. An instantaneous bandwidth of 9.2 A is resolved across 488 pixels at 0.018 A/pixel, permitting simultaneous acquisition of multiple lines of selected OH bands and the neighboring background. The spectrometer and the approach have been successfully demonstrated as a technique for measuring the concentration of OH on two high-altitude balloon flights. This paper reports the instrument design and its achieved performance.

  4. Efficiency calibration of the first multilayer-coated holographic ion-etched flight grating for a sounding rocket high-resolution spectrometer

    SciTech Connect

    Kowalski, Michael P.; Barbee, Troy W. Jr.; Heidemann, Klaus F.; Gursky, Herbert; Rife, Jack C.; Hunter, William R.; Fritz, Gilbert G.; Cruddace, Raymond G.

    1999-11-01

    We have fabricated the four flight gratings for a sounding rocket high-resolution spectrometer using a holographic ion-etching technique. The gratings are spherical (4000-nm radius of curvature), large (160 mmx90 mm), and have a laminar groove profile of high density (3600 grooves/mm). They have been coated with a high-reflectance multilayer of Mo/Si. Using an atomic force microscope, we examined the surface characteristics of the first grating before and after multilayer coating. The average roughness is approximately 3 Aa rms after coating. Using synchrotron radiation, we completed in efficiency calibration map over the wavelength range 225-245 Aa. At an angle of incidence of 5 degree sign and a wavelength of 232 Aa, the average efficiency in the first inside order is 10.4{+-}0.5%, and the derived groove efficiency is 34.8{+-}1.6%. These values exceed all previously published results for a high-density grating. (c) 1999 Optical Society of America.

  5. Silicon immersion gratings and their spectroscopic applications

    NASA Astrophysics Data System (ADS)

    Ge, Jian; Zhao, Bo; Powell, Scott; Fletcher, Adam; Wan, Xiaoke; Chang, Liang; Jakeman, Hali; Koukis, Dimitrios; Tanner, David B.; Ebbets, Dennis; Weinberg, Jonathan; Lipscy, Sarah; Nyquist, Rich; Bally, John

    2012-09-01

    Silicon immersion gratings (SIGs) offer several advantages over the commercial echelle gratings for high resolution infrared (IR) spectroscopy: 3.4 times the gain in dispersion or ~10 times the reduction in the instrument volume, a multiplex gain for a large continuous wavelength coverage and low cost. We present results from lab characterization of a large format SIG of astronomical observation quality. This SIG, with a 54.74 degree blaze angle (R1.4), 16.1 l/mm groove density, and 50x86 mm2 grating area, was developed for high resolution IR spectroscopy (R~70,000) in the near IR (1.1-2.5 μm). Its entrance surface was coated with a single layer of silicon nitride antireflection (AR) coating and its grating surface was coated with a thin layer of gold to increase its throughput at 1.1-2.5 μm. The lab measurements have shown that the SIG delivered a spectral resolution of R=114,000 at 1.55 μm with a lab testing spectrograph with a 20 mm diameter pupil. The measured peak grating efficiency is 72% at 1.55 μm, which is consistent with the measurements in the optical wavelengths from the grating surface at the air side. This SIG is being implemented in a new generation cryogenic IR spectrograph, called the Florida IR Silicon immersion grating spectrometer (FIRST), to offer broad-band high resolution IR spectroscopy with R=72,000 at 1.4-1.8 um under a typical seeing condition in a single exposure with a 2kx2k H2RG IR array at the robotically controlled Tennessee State University 2-meter Automatic Spectroscopic Telescope (AST) at Fairborn Observatory in Arizona. FIRST is designed to provide high precision Doppler measurements (~4 m/s) for the identification and characterization of extrasolar planets, especially rocky planets in habitable zones, orbiting low mass M dwarf stars. It will also be used for other high resolution IR spectroscopic observations of such as young stars, brown dwarfs, magnetic fields, star formation and interstellar mediums. An optimally designed

  6. The opto-mechanical design of the Colorado High-resolution Echelle Stellar Spectrograph (CHESS)

    NASA Astrophysics Data System (ADS)

    Kane, Robert; Beasley, Matthew; Green, James; Burgh, Eric; France, Kevin

    2011-09-01

    We present the Colorado High-resolution Echelle Stellar Spectrograph (CHESS) sounding rocket payload. The design uses a mechanical collimator made from a grid of square tubing, an objective echelle grating, a holographically-ruled cross-disperser, a new 40 mm MCP with a cross strip anode or a delta-doped 3.5k x 3.5k CCD detector. The optics are suspended using carbon fiber rods epoxied to titanium inserts to create a space frame structure. A preliminary design is presented.

  7. Electrically-programmable diffraction grating

    DOEpatents

    Ricco, Antonio J.; Butler, Michael A.; Sinclair, Michael B.; Senturia, Stephen D.

    1998-01-01

    An electrically-programmable diffraction grating. The programmable grating includes a substrate having a plurality of electrodes formed thereon and a moveable grating element above each of the electrodes. The grating elements are electrostatically programmable to form a diffraction grating for diffracting an incident beam of light as it is reflected from the upper surfaces of the grating elements. The programmable diffraction grating, formed by a micromachining process, has applications for optical information processing (e.g. optical correlators and computers), for multiplexing and demultiplexing a plurality of light beams of different wavelengths (e.g. for optical fiber communications), and for forming spectrometers (e.g. correlation and scanning spectrometers).

  8. Buckling failure of the automated planet finder spectrometer determinate spaceframe

    NASA Astrophysics Data System (ADS)

    Radovan, Matthew V.; Cabak, Gerald F.

    2012-09-01

    The Ken and Gloria Levy Spectrometer is now operational at a new 2.4 meter telescope on Mt. Hamilton. Together the spectrometer and telescope comprise the Automated Planet Finder (APF), a radial velocity instrument. A catastrophic failure occurred during transit as the instrument was being shipped to the observatory. Several struts buckled in the space frame that supported the echelle grating. This event has caused UCO/Lick to re-evaluate design methodology and how engineering safety factors apply to this type of structure. This paper describes the shipping container design, events during shipment, the failure mechanism, testing and analysis of a remedy, and its implementation. We also suggest design changes to prevent similar failures in the future.

  9. Grating spectrometer system for beam emission spectroscopy diagnostics using high-energy negative-ion-based neutral beam injection on LHD.

    PubMed

    Kado, S; Oishi, T; Yoshinuma, M; Ida, K

    2010-10-01

    A beam emission spectroscopy (BES) system was developed for density gradient and fluctuation diagnostics in the Large Helical Device (LHD). In order to cover the large Doppler shift of the Hα beam emission because of the high-energy negative-ion-based neutral beam atom (acceleration voltage V(acc)=90-170 kV) and the large motional Stark splitting due to the large v×B field (magnetic field B=3.0 T), a grating spectrometer was used instead of a conventional interference filter system. The reciprocal linear dispersion is about 2 nm/mm, which is sufficient to cover the motional Stark effect spectra using an optical fiber with a diameter of 1 mm.

  10. High-resolution spectrometer: solution to the axial resolution and ranging depth trade-off of SD-OCT

    NASA Astrophysics Data System (ADS)

    Marvdashti, Tahereh; Lee, Hee Yoon; Ellerbee, Audrey K.

    2013-03-01

    We demonstrate a cross-dispersed spectrometer for Spectral Domain Optical Coherence Tomography (SD-OCT). The resolution of a conventional SD-OCT spectrometer is limited by the available sizes of the linear array detectors. The adverse consequences of this finite resolution is a trade-off between achieving practical field of view (i.e. ranging depth) and maintaining high axial resolution. Inspired by spectrometer designs for astronomy, we take advantage of very high pixel-density 2D CCD arrays to map a single-shot 2D spectrum to an OCT A-scan. The basic system can be implemented using a high-resolution Echelle grating crossed with a prism in a direction orthogonal to the dispersion axis. In this geometry, the interferometric light returning from the OCT system is dispersed in two dimensions; the resulting spectrum can achieve more pixels than a traditional OCT spectrometer (which increases the ranging depth) and maintains impressive axial resolution because of the broad bandwidth of the detected OCT light. To the best of our knowledge, we present the first demonstration of OCT data using an Echelle-based cross-dispersed spectrometer. Potential applications for such a system include high-resolution imaging of the retina or the anterior segment of the eye over extended imaging depths and small animal imaging.

  11. The Time-Dependent Sensitivity of the MAMA and CCD Long-Slit Gratings

    NASA Astrophysics Data System (ADS)

    Holland, Stephen T.; Aloisi, Alessandra; Bostroem, Azalee; Oliveria, Cristina; Proffitt, Charles

    2014-12-01

    We present the results of observing flux standard stars used to determine trends in the sensitivities of the five STIS low-resolution, long-slit gratings between 1997 and 2013. Also, the assumption that the sensitivity trends for the medium-resolution and echelle gratings are the same as those for the corresponding low-resolution gratings is tested.

  12. Compact high-resolution Littrow conical diffraction spectrometer.

    PubMed

    Yang, Qinghua

    2016-06-20

    This paper presents a compact high-resolution Littrow conical diffraction spectrometer (LCDS) that includes an echelle grating for horizontally dispersing the incident light beam into several high diffraction orders, a prism for vertically separating the overlapping diffraction orders, and a shared focusing lens used for both the incident and dispersed beams. The unique design of the optics enables the LCDS to give high dispersion on the detector without requiring a large field of view and, therefore, to achieve the benefits of high spectral resolution and compactness. The use of the Littrow conical diffraction coupled with the shared focusing lens makes the LCDS more compact. The formulas of the footprint of the dispersed spectra are derived, and the numerical simulation is given. The design calculations for application of the LCDS to an optical coherence tomography system are illustrated by an example.

  13. Study of keV radiation properties of Mo and Ti X-pinch plasma sources using a pinhole transmission grating spectrometer

    SciTech Connect

    Li Jing; Deng Jianjun; Xie Weiping; Huang Xianbin; Yang Libing; Zhou Shaotong; Duan Shuchao; Zhang Siqun; Dan Jiakun; Zhu Xiaoli

    2010-07-15

    The properties of keV x-ray radiations from Mo and Ti X-pinch plasma sources at the current of 800 kA were investigated by a pinhole transmission grating spectrometer. The spectrometer was characterized by a high linear dispersion rate (2.9 A/mm), and from its time-integrated diffraction images, rich information about the X-pinch sources (e.g., source number, source size, and absolute spectra) could be obtained. Multiple hot spots were produced in all the Mo tests with loads made of two or four 25 mum wires with or without a shunt wire, and obvious increases both in the radiation intensity and in the source size around the spectral region of 2.6 keV were observed. In Ti X-pinch tests, a single keV x-ray burst with a source size of approx200 mum and a time duration of approx200 ps in full width at half maximum was obtained using a load made of two 50 mum wires plus a shunt wire. The intensity of x-rays decreased sharply from approx10{sup 11} photon eV{sup -1} sr{sup -1} at 1 keV to approx10{sup 8} photon eV{sup -1} sr{sup -1} at 4 keV. The energy-dependent source size in the band of 1-4 keV is less than 100 mum and seemed to shrink quickly as x-ray energy increases.

  14. Optical grating analyzer studies

    NASA Technical Reports Server (NTRS)

    Mcdonald, J. K.

    1974-01-01

    A spectrometer was specifically designed and developed to observe grating spectra over a range of incidence angles from normal to almost grazing incidence. A unique scanning and focusing mechanism is utilized to keep the exit slit on the Rowland circle. Polarization effects in the vacuum were investigated, and efficiency measurements and spectral scans were made simultaneously with the spectrometer. Results of measurements are given. Applications of the spectrometer to the space program and to the study of contamination on optical surfaces are indicated.

  15. Electrically-programmable diffraction grating

    DOEpatents

    Ricco, A.J.; Butler, M.A.; Sinclair, M.B.; Senturia, S.D.

    1998-05-26

    An electrically-programmable diffraction grating is disclosed. The programmable grating includes a substrate having a plurality of electrodes formed thereon and a moveable grating element above each of the electrodes. The grating elements are electrostatically programmable to form a diffraction grating for diffracting an incident beam of light as it is reflected from the upper surfaces of the grating elements. The programmable diffraction grating, formed by a micromachining process, has applications for optical information processing (e.g. optical correlators and computers), for multiplexing and demultiplexing a plurality of light beams of different wavelengths (e.g. for optical fiber communications), and for forming spectrometers (e.g. correlation and scanning spectrometers). 14 figs.

  16. DYNAMICS OF X-RAY-EMITTING EJECTA IN THE OXYGEN-RICH SUPERNOVA REMNANT PUPPIS A REVEALED BY THE XMM-NEWTON REFLECTION GRATING SPECTROMETER

    SciTech Connect

    Katsuda, Satoru; Tamagawa, Toru; Ohira, Yutaka; Mori, Koji; Tsunemi, Hiroshi; Koyama, Katsuji; Uchida, Hiroyuki

    2013-05-10

    Using the unprecedented spectral resolution of the reflection grating spectrometer (RGS) on board XMM-Newton, we reveal dynamics of X-ray-emitting ejecta in the oxygen-rich supernova remnant Puppis A. The RGS spectrum shows prominent K-shell lines, including O VII He{alpha} forbidden and resonance, O VIII Ly{alpha}, O VIII Ly{beta}, and Ne IX He{alpha} resonance, from an ejecta knot positionally coincident with an optical oxygen-rich filament (the so-called {Omega} filament) in the northeast of the remnant. We find that the line centroids are blueshifted by 1480 {+-} 140 {+-} 60 km s{sup -1} (the first and second term errors are measurement and calibration uncertainties, respectively), which is fully consistent with that of the optical {Omega} filament. Line broadening at 654 eV (corresponding to O VIII Ly{alpha}) is obtained to be {sigma} {approx}< 0.9 eV, indicating an oxygen temperature of {approx}< 30 keV. Analysis of XMM-Newton MOS spectra shows an electron temperature of {approx}0.8 keV and an ionization timescale of {approx}2 Multiplication-Sign 10{sup 10} cm{sup -3} s. We show that the oxygen and electron temperatures as well as the ionization timescale can be reconciled if the ejecta knot was heated by a collisionless shock whose velocity is {approx}600-1200 km s{sup -1} and was subsequently equilibrated due to Coulomb interactions. The RGS spectrum also shows relatively weak K-shell lines of another ejecta feature located near the northeastern edge of the remnant, from which we measure redward Doppler velocities of 650 {+-} 70 {+-} 60 km s{sup -1}.

  17. The assembly, calibration, and preliminary results from the Colorado high-resolution Echelle stellar spectrograph (CHESS)

    NASA Astrophysics Data System (ADS)

    Hoadley, Keri; France, Kevin; Nell, Nicholas; Kane, Robert; Schultz, Ted; Beasley, Matthew; Green, James; Kulow, Jen; Kersgaard, Eliot; Fleming, Brian

    2014-07-01

    The Colorado High-resolution Echelle Stellar Spectrograph (CHESS) is a far ultraviolet (FUV) rocket-borne experiment designed to study the atomic-to-molecular transitions within translucent interstellar clouds. CHESS is an objective echelle spectrograph operating at f/12.4 and resolving power of 120,000 over a band pass of 100 - 160 nm. The echelle flight grating is the product of a research and development project with LightSmyth Inc. and was coated at Goddard Space Flight Center (GSFC) with Al+LiF. It has an empirically-determined groove density of 71.67 grooves/mm. At the Center for Astrophysics and Space Astronomy (CASA) at the University of Colorado (CU), we measured the efficiencies of the peak and adjacent dispersion orders throughout the 90 - 165 nm band pass to characterize the behavior of the grating for pre-flight calibrations and to assess the scattered-light behavior. The crossdispersing grating, developed and ruled by Horiba Jobin-Yvon, is a holographically-ruled, low line density (351 grooves/mm), powered optic with a toroidal surface curvature. The CHESS cross-disperser was also coated at GSFC; Cr+Al+LiF was deposited to enhance far-UV efficiency. Results from final efficiency and reflectivity measurements of both optics are presented. We utilize a cross-strip anode microchannel plate (MCP) detector built by Sensor Sciences to achieve high resolution (25 μm spatial resolution) and data collection rates (~ 106 photons/second) over a large format (40mm round, digitized to 8k x 8k) for the first time in an astronomical sounding rocket flight. The CHESS instrument was successfully launched from White Sands Missile Range on 24 May 2014. We present pre-flight sensitivity, effective area calculations, lab spectra and calibration results, and touch on first results and post-flight calibration plans.

  18. IR spectrometers for Venus and Mars measurements

    NASA Astrophysics Data System (ADS)

    Drummond, Rachel; Neefs, Eddy; Vandaele, Ann C.

    2012-07-01

    The SOIR spectrometer [1] is an infra-red spectrometer that has performed over 500 solar occultation measurements of the Venus atmosphere, profiling major and minor constituents and studying aerosol absorption, temperature and pressure effects. NOMAD is a 3-channel spectrometer for Mars occultation, limb and nadir measurements. 2 channels are infra-red, the other UV-visible. We will present the technology that enables SOIR and NOMAD to get to parts per billion mixing ratio sensitivities for trace atmospheric components and highlight the improvements made to the SOIR design to enable nadir viewing with NOMAD. Key components include the Acousto-Optical Tunable Filter with radio frequency driver that allows these spectrometers to select the wavelength domain under observation with no need for mechanical moving parts. It also allows background measurements because it is opaque when no RF is applied. The grating with 4 grooves/mm is a very hard to manufacture optical component, and suppliers were very difficult to find. The detector-cooler combination (working at 90K) is from Sofradir/Ricor and the model on board Venus Express is still working after 6 years in space (more on/off cycles that ON hour lifetime problem). The detector MCT mix is slightly altered for nadir observation, in order to reduce thermal background noise and the nadir channel spectrometer is cooled down to 173K by a large V-groove radiator. All the optical components have been enlarged to maximise signal throughput and the slit (that determines spatial and spectral resolution) has also been increased. The spacecraft attitude control system switches from yaw steering for nadir to inertial pointing for solar occultations. 1. Nevejans, D., E. Neefs, E. Van Ransbeeck, S. Berkenbosch, R. Clairquin, L. De Vos, W. Moelans, S. Glorieux, A. Baeke, O. Korablev, I. Vinogradov, Y. Kalinnikov, B. Bach, J.P. Dubois, and E. Villard, Compact high-resolution space-borne echelle grating spectrometer with AOTF based on

  19. Photoelectrochemical fabrication of spectroscopic diffraction gratings, phase 2

    NASA Technical Reports Server (NTRS)

    Rauh, R. David; Carrabba, Michael M.; Li, Jianguo; Cartland, Robert F.; Hachey, John P.; Mathew, Sam

    1990-01-01

    This program was directed toward the production of Echelle diffraction gratings by a light-driven, electrochemical etching technique (photoelectrochemical etching). Etching is carried out in single crystal materials, and the differential rate of etching of the different crystallographic planes used to define the groove profiles. Etching of V-groove profiles was first discovered by us during the first phase of this project, which was initially conceived as a general exploration of photoelectrochemical etching techniques for grating fabrication. This highly controllable V-groove etching process was considered to be of high significance for producing low pitch Echelles, and provided the basis for a more extensive Phase 2 investigation.

  20. GHRS Cycle 5 Echelle Wavelength Monitor

    NASA Astrophysics Data System (ADS)

    Soderblom, David

    1995-07-01

    This proposal defines the spectral lamp test for Echelle A. It is an internal test which makes measurements of the wavelength lamp SC2. It calibrates the carrousel function, Y deflections, resolving power, sensitivity, and scattered light. The wavelength calibration dispersion constants will be updated in the PODPS calibration data base. This proposal defines the spectral lamp test for Echelle B. It is an internal test which makes measurements of the wavelength lamp SC2. It calibrates the carrousel function, Y deflections, resolving power, sensitivity, and scattered light. The wavelength calibration dispersion constants will be updated in the PODPS calibration data base. It will be run every 4 months. The wavelengths may be out of range according to PEPSI or TRANS. Please ignore the errors.

  1. The Spectrometer

    NASA Astrophysics Data System (ADS)

    Greenslade, Thomas B.

    2012-03-01

    In the fall of 1999 I was shown an Ocean Optics spectrometer-in-the-computer at St. Patricks College at Maynooth, Ireland, and thought that I had seen heaven. Of course, it could not resolve the sodium D-lines (I had done that many years before with a homemade wire diffraction grating ), and I began to realize that inside was some familiar old technology. In this paper I would like to discuss its ancestors.

  2. The Spectrometer

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2012-01-01

    In the fall of 1999 I was shown an Ocean Optics spectrometer-in-the-computer at St. Patricks College at Maynooth, Ireland, and thought that I had seen heaven. Of course, it could not resolve the sodium D-lines (I had done that many years before with a homemade wire diffraction grating), and I began to realize that inside was some familiar old…

  3. The GMT-CFA-CARNEGIE-CATOLICA LARGE EARTH FINDER (G-CLEF): A Fiber-fed, Optical Echelle Spectrograph For The Giant Magellan Telescope

    NASA Astrophysics Data System (ADS)

    Szentgyorgyi, Andrew; Furesz, G.; Frebel, A.; Geary, J.; Evans, I.; Norton, T.; Hertz, E.; DePonte Evans, J.; Jordan, A.; Guzman, D.; Epps, H.; Barnes, S.; Crane, J.

    2011-01-01

    The GMT-CfA-Carnegie-Catolica Large Earth Finder (G-CLEF) is a fiber-fed optical echelle spectrograph in concept design study phase for first light at the Giant Magellan Telescope. G-CLEF is designed to be a multipurpose echelle spectrograph that operates in a number of modes so as to enable precision radial velocity (RV) measurements, detailed abundance studies, isotopic abundance measurements and probe the IGM and ISM at high Z. Four resolution modes are implemented with image and pupil slicing. Extremely precise RV will be achieved by vacuum enclosing the spectrograph, with advanced fiber scrambling and state-of-the-art calibrators, especially ultra stabilized etalons and possibly laser frequency combs. The optical design is a asymmetric white pupil design with two camera arms splitting the 350 nm - 950 nm passband into red and blue channels. G-CLEF will have an extremely large, mosaiced echelle grating and volume phase holograph cross dispersers.

  4. WAVELENGTH CALIBRATION OF THE HAMILTON ECHELLE SPECTROGRAPH

    SciTech Connect

    Pakhomov, Yu. V.; Zhao, G.

    2013-10-01

    We present the wavelength calibration of the Hamilton Echelle Spectrograph at Lick Observatory. The main problem with the calibration of this spectrograph arises from the fact that thorium lines are absent in the spectrum of the presumed ThAr hollow-cathode lamp now under operation; numerous unknown strong lines, which have been identified as titanium lines, are present in the spectrum. We estimate the temperature of the lamp's gas which permits us to calculate the intensities of the lines and to select a large number of relevant Ti I and Ti II lines. The resulting titanium line list for the Lick hollow-cathode lamp is presented. The wavelength calibration using this line list was made with an accuracy of about 0.006 Å.

  5. ZEUS: the Redshift (z) and Early Universe Spectrometer

    NASA Astrophysics Data System (ADS)

    Stacey, G. J.; Hailey-Dunsheath, S.; Nikola, T.; Oberst, T. E.; Parshley, S. C.; Benford, D. J.; Staguhn, J. G.; Moseley, S. H.; Tucker, C.

    2007-10-01

    The redshift (z) and early Universe spectrometer (ZEUS) is an echelle grating spectrometer optimized to study star formation in the universe from about 1--2 billion years after the Big Bang to the present epoch by observing spectral lines in the submillimeter bands. ZEUS has a resolving power R ˜ 1000 optimized for extragalactic point source sensitivity. At present, ZEUS employs a 1 × 32 pixel thermister-sensed bolometer array configured to deliver simultaneous 16-element spectra in the 350 and 450 μm windows for a point source. When completed, ZEUS will have a 12 × 64 pixel TES-sensed bolometer array, delivering an instantaneous 64-element (6.4% bandwidth) spectrum at 12 spatial positions on the sky. ZEUS can be used on most large-aperture submillimeter telescopes, including the JCMT, CSO, SMT, and APEX. We obtained our first light on the CSO in early April 2006. Our primary science goals are to (1) trace star formation in the early universe by observing redshifted far-IR fine structure lines from distant (z ˜ 0.7 - 6) galaxies, (2) measure the redshifts of optically obscured submillimeter galaxies by detecting their bright 158 μm [C II] line emission, and (3) study star formation in starbursts and ULIRGs by observing their [C I] and mid-J CO rotational line emission.

  6. Electromagnetic diffraction efficiencies for plane reflection diffraction gratings

    NASA Technical Reports Server (NTRS)

    Marathay, A. S.; Shrode, T. E.

    1973-01-01

    Results are presented of research activities on holographic grating research. A large portion of this work was performed using rigorous vector diffraction theory, therefore, the necessary theory has been included in this report. The diffraction efficiency studies were continued using programs based on a rigorous theory. The simultaneous occurrence of high diffraction efficiencies and the phenomenon of double Wood's anomalies is demonstrated along with a graphic method for determining the necessary grating parameters. Also, an analytical solution for a grating profile that is perfectly blazed is obtained. The performance of the perfectly blazed grating profile is shown to be significantly better than grating profiles previously studied. Finally, a proposed method is described for the analysis of coarse echelle gratings using rigorous vector diffraction that is currently being developed.

  7. First Light Measurements with the XMM-Newton Reflection Grating Spectrometers: Evidence for an Inverse First Ionization Potential Effect and Anomalous Ne Abundance in the Coronae of HR 1099

    NASA Technical Reports Server (NTRS)

    Brinkman, A. C.; Behar, E.; Guedel, M.; Audard, M.; denBoggende, A. J. F.; Branduardi-Raymont, G.; Cottam, J.; Erd, C.; denHerder, J. W.; Jensen, F.

    2000-01-01

    The RS CVn binary system HR 1099 was extensively observed by the XMM-Newton observatory in February 2000 as its first-light target. A total of 570 ks of exposure time was accumulated with the Reflection Grating Spectrometers (RGS). The integrated X-ray spectrum between 5-38A is of unprecedented quality and shows numerous features attributed to transitions of the elements C, N, O, Ne, Mg, Si, S, Fe. Ni, and probably others. We perform an in-depth study of the elemental composition of the average corona of this system, and find that the elemental abundances strongly depend on the first ionisation potential (FIP) of the elements. But different from the solar coronal case, we find an inverse FIP effect, i.e., the abundances (relative to oxygen) increase with increasing FIP. Possible scenarios, e.g., selective enrichment due to Ne-rich flare-like events, are discussed.

  8. Electromagnetic diffraction efficiencies for plane reflection diffraction gratings

    NASA Technical Reports Server (NTRS)

    Marathay, A. S.; Shrode, T. E.

    1974-01-01

    The theory and computer programs, based on electromagnetic theory, for the analysis and design of echelle gratings were developed. The gratings are designed for instruments that operate in the ultraviolet portion of the spectrum. The theory was developed so that the resulting computer programs will be able to analyze deep (up to 30 wavelengths) gratings by including as many as 100 real or homogeneous diffraction orders. The program calculates the complex amplitude coefficient for each of the diffracted orders. A check on the numerical method used to solve the integral equations is provided by a conservation of energy calculation.

  9. Production and evaluation of silicon immersion gratings for infrared astronomy.

    PubMed

    Marsh, J P; Mar, D J; Jaffe, D T

    2007-06-10

    Immersion gratings, diffraction gratings where the incident radiation strikes the grooves while immersed in a dielectric medium, offer significant compactness and performance advantages over front-surface gratings. These advantages become particularly large for high-resolution spectroscopy in the near-IR. The production and evaluation of immersion gratings produced by fabricating grooves in silicon substrates using photolithographic patterning and anisotropic etching is described. The gratings produced under this program accommodate beams up to 25 mm in diameter (grating areas to 55 mm x 75 mm). Several devices are complete with appropriate reflective and antireflection coatings. All gratings were tested as front-surface devices as well as immersed gratings. The results of the testing show that the echelles behave according to the predictions of the scalar efficiency model and that tests done on front surfaces are in good agreement with tests done in immersion. The relative efficiencies range from 59% to 75% at 632.8 nm. Tests of fully completed devices in immersion show that the gratings have reached the level where they compete with and, in some cases, exceed the performance of commercially available conventional diffraction gratings (relative efficiencies up to 71%). Several diffraction gratings on silicon substrates up to 75 mm in diameter having been produced, the current state of the silicon grating technology is evaluated.

  10. Performance of a laser frequency comb calibration system with a high-resolution solar echelle spectrograph

    NASA Astrophysics Data System (ADS)

    Doerr, H.-P.; Kentischer, T. J.; Steinmetz, T.; Probst, R. A.; Franz, M.; Holzwarth, R.; Udem, Th.; Hänsch, T. W.; Schmidt, W.

    2012-09-01

    Laser frequency combs (LFC) provide a direct link between the radio frequency (RF) and the optical frequency regime. The comb-like spectrum of an LFC is formed by exact equidistant laser modes, whose absolute optical frequencies are controlled by RF-references such as atomic clocks or GPS receivers. While nowadays LFCs are routinely used in metrological and spectroscopic fields, their application in astronomy was delayed until recently when systems became available with a mode spacing and wavelength coverage suitable for calibration of astronomical spectrographs. We developed a LFC based calibration system for the high-resolution echelle spectrograph at the German Vacuum Tower Telescope (VTT), located at the Teide observatory, Tenerife, Canary Islands. To characterize the calibration performance of the instrument, we use an all-fiber setup where sunlight and calibration light are fed to the spectrograph by the same single-mode fiber, eliminating systematic effects related to variable grating illumination.

  11. The Colorado High-Resolution Echelle Stellar Spectrograph (CHESS) Design and Status

    NASA Astrophysics Data System (ADS)

    Beasley, Matthew

    I present a new far-ultraviolet echelle spectrograph, which will provide resolving power greater than any currently existing far-ultraviolet instrument. We are using new gratings, detectors, and coatings that allow substantial advances in performance. I will present the current status of the design, and discuss known challenges and our plans to resolve them. While the design purpose of this instrument is for observations of nearby hot stars, the technologies we incorporate will allow for advances relevant to observation subjects from protoplanetary disks to the intergalactic medium. Incorporating such a spectrograph into a future, long-duration mission will make new high-quality observations possible and enhance our understanding of astrophysical plasmas.

  12. NRES: The Network of Robotic Echelle Spectrographs

    NASA Astrophysics Data System (ADS)

    Siverd, Robert; Brown, Timothy M.; Hygelund, John; Henderson, Todd; Tufts, Joseph; Eastman, Jason; Van Eyken, Julian C.; Barnes, Stuart

    2016-01-01

    Las Cumbres Observatory Global Network (LCOGT) is building the Network of Robotic Echelle Spectrographs (NRES), which will consist of six identical, optical (390 - 860 nm) high-precision spectrographs, each fiber-fed simultaneously by up to two 1-meter telescopes and a thorium argon calibration source. We plan to install one at up to 6 observatory sites in the Northern and Southern hemispheres, creating a single, globally-distributed, autonomous spectrograph facility using up to twelve 1-m telescopes. Simulations suggest we will achieve long-term radial velocity precision of 3 m/s in less than an hour for stars brighter than V = 12. We have been funded with NSF MRI and ATI grants, and expect our first spectrograph to be deployed in early 2016, with the full network operation of 5 or 6 units beginning in 2017. We will briefly overview the NRES design, goals, robotic operation, and status. In addition, we will discuss early results from our prototype spectrograph, the laboratory and on-sky performance of our first production unit, and the ongoing software development effort to bring this resource online.

  13. NRES: The Network of Robotic Echelle Spectrographs

    NASA Astrophysics Data System (ADS)

    Siverd, Robert; Brown, Timothy M.; Henderson, Todd; Hygelund, John; Tufts, Joseph; Eastman, Jason; Barnes, Stuart; Van Eyken, Julian C.

    2016-06-01

    Las Cumbres Observatory Global Network (LCOGT) is building the Network of Robotic Echelle Spectrographs (NRES), which will consist of six identical, optical (390 - 860 nm) high-precision spectrographs, each fiber-fed simultaneously by up to two 1-meter telescopes and a thorium argon calibration source. We plan to install one at up to 6 observatory sites in the Northern and Southern hemispheres, creating a single, globally-distributed, autonomous spectrograph facility using up to twelve 1-m telescopes. Simulations suggest we will achieve long-term radial velocity precision of 3 m/s in less than an hour for stars brighter than V = 12. We have been funded with NSF MRI and ATI grants, and expect to deploy the first spectrograph in fall 2016, with the full network operation of 5 or 6 units beginning in 2017. We will briefly overview the NRES design, goals, robotic operation, and status. In addition, we will discuss early results from our prototype spectrograph, the laboratory and on-sky performance of our first production unit, initial science results, and the ongoing software development effort to bring this resource online.

  14. Modelling high resolution Echelle spectrographs for calibrations: Hanle Echelle spectrograph, a case study

    NASA Astrophysics Data System (ADS)

    Chanumolu, Anantha; Jones, Damien; Thirupathi, Sivarani

    2015-06-01

    We present a modelling scheme that predicts the centroids of spectral line features for a high resolution Echelle spectrograph to a high accuracy. Towards this, a computing scheme is used, whereby any astronomical spectrograph can be modelled and controlled without recourse to a ray tracing program. The computations are based on paraxial ray trace and exact corrections added for certain surface types and Buchdahl aberration coefficients for complex modules. The resultant chain of paraxial ray traces and corrections for all relevant components is used to calculate the location of any spectral line on the detector under all normal operating conditions with a high degree of certainty. This will allow a semi-autonomous control using simple in-house, programming modules. The scheme is simple enough to be implemented even in a spreadsheet or in any scripting language. Such a model along with an optimization routine can represent the real time behaviour of the instrument. We present here a case study for Hanle Echelle Spectrograph. We show that our results match well with a popular commercial ray tracing software. The model is further optimized using Thorium Argon calibration lamp exposures taken during the preliminary alignment of the instrument. The model predictions matched the calibration frames at a level of 0.08 pixel. Monte Carlo simulations were performed to show the photon noise effect on the model predictions.

  15. Development of Atmospheric Chemistry Suite (ACS) for ExoMars: Three IR Spectrometers to Characterize the Atmosphere and Climate

    NASA Astrophysics Data System (ADS)

    Korablev, Oleg; Ignatiev, Nikolay; Fedorova, Anna; Trokhimovskiy, Alexander; Montmessin, Franck; Grigoriev, Alexei; Shakun, Alexey

    The Atmospheric Chemistry Suite (ACS) package is being built for the ExoMars Trace Gas Orbiter (TGO). The experiment is dedicated to study the Martian atmosphere, through sensitive measurements of minor species in solar occultations, and the monitoring of the atmospheric state in nadir. The instrument covers the spectral range from near-infrared (0.7 mum) to thermal infrared (17 mum). ACS includes three separate infrared spectrometers. The near-infrared (NIR) channel for the spectral range of 0.7-1.6 mum with resolving power of 20,000 employs the principle of an echelle spectrometer combined with an AOTF (Acousto-Optical Tuneable Filter) for order selection. The main scientific targets of NIR are the measurements of water vapor, aerosols, and dayside or nightside atmospheric emissions. The mid-infrared (MIR) channel is a high-resolution echelle instrument dedicated to solar occultation measurements in the range of 2.2-4.4 mum targeting the resolving power of 50,000. The order separation is done by means of a steerable grating cross-disperser, allowing instantaneous coverage of up to 300-nm range of the spectrum. MIR is dedicated to sensitive measurements of trace gases. The thermal-infrared channel (TIRVIM) is a 2-inch Fourier-transform spectrometer for the spectral range of 1.7-17 mum with resolution from 0.2 to 1.6 cm (-1) . TIRVIM is dedicated to monitoring of atmospheric state in nadir, and will contribute to detection/reducing of upper limits of minor species absorbing beyond 4 mum, complementing MIR. It also targets the mapping of gaseous composition in nadir. The concept of the instrument, its heritage, science objectives, and the status of development will be presented.

  16. CERES: Collection of Extraction Routines for Echelle Spectra

    NASA Astrophysics Data System (ADS)

    Brahm, Rafael; Jordán, Andrés; Espinoza, Néstor

    2016-10-01

    The Collection of Extraction Routines for Echelle Spectra (CERES) constructs automated pipelines for the reduction, extraction, and analysis of echelle spectrograph data. This modular code includes tools for handling the different steps of the processing: CCD reductions, tracing of the echelle orders, optimal and simple extraction, computation of the wave-length solution, estimation of radial velocities, and rough and fast estimation of the atmospheric parameters. The standard output of pipelines constructed with CERES is a FITS cube with the optimally extracted, wavelength calibrated and instrumental drift-corrected spectrum for each of the science images. Additionally, CERES includes routines for the computation of precise radial velocities and bisector spans via the cross-correlation method, and an automated algorithm to obtain an estimate of the atmospheric parameters of the observed star.

  17. High-resolution grazing-incidence grating spectrometer for temperature measurements of low-Z ions emitting in the 100-300 Å spectral band.

    PubMed

    Widmann, K; Beiersdorfer, P; Magee, E W; Boyle, D P; Kaita, R; Majeski, R

    2014-11-01

    We have constructed a high-resolution grazing-incidence spectrometer designed for measuring the ion temperature of low-Z elements, such as Li(+) or Li(2 +), which radiate near 199 Å and 135 Å, respectively. Based on measurements at the Livermore Electron Beam Ion Trap we have shown that the instrumental resolution is better than 48 mÅ at the 200 Å setting and better than 40 mÅ for the 135-Å range. Such a high spectral resolution corresponds to an instrumental limit for line-width based temperature measurements of about 45 eV for the 199 Å Li(+) and 65 eV for the 135 Å Li(2 +) lines. Recently obtained survey spectra from the Lithium Tokamak Experiment at the Princeton Plasma Physics Laboratory show the presence of these lithium emission lines and the expected core ion temperature of approximately 70 eV is sufficiently high to demonstrate the feasibility of utilizing our high-resolution spectrometer as an ion-temperature diagnostic.

  18. High-resolution grazing-incidence grating spectrometer for temperature measurements of low-Z ions emitting in the 100–300 Å spectral band

    SciTech Connect

    Widmann, K. Beiersdorfer, P.; Magee, E. W.; Boyle, D. P.; Kaita, R.; Majeski, R.

    2014-11-15

    We have constructed a high-resolution grazing-incidence spectrometer designed for measuring the ion temperature of low-Z elements, such as Li{sup +} or Li{sup 2+}, which radiate near 199 Å and 135 Å, respectively. Based on measurements at the Livermore Electron Beam Ion Trap we have shown that the instrumental resolution is better than 48 mÅ at the 200 Å setting and better than 40 mÅ for the 135-Å range. Such a high spectral resolution corresponds to an instrumental limit for line-width based temperature measurements of about 45 eV for the 199 Å Li{sup +} and 65 eV for the 135 Å Li{sup 2+} lines. Recently obtained survey spectra from the Lithium Tokamak Experiment at the Princeton Plasma Physics Laboratory show the presence of these lithium emission lines and the expected core ion temperature of approximately 70 eV is sufficiently high to demonstrate the feasibility of utilizing our high-resolution spectrometer as an ion-temperature diagnostic.

  19. Color Perception with Diffraction Gratings.

    ERIC Educational Resources Information Center

    Kruglak, Haym; Campbell, Don

    1983-01-01

    Describes an experiment enabling students to apply concept of diffraction, determine limits of their color perception, learn how to measure wavelength with a simple apparatus, observe continuous and line spectra, and associate colors with corresponding wavelengths. The homemade diffraction-grating spectrometer used is easily constructed. (JN)

  20. Development of the Colorado High-resolution Echelle Stellar Spectrograph (CHESS)

    NASA Astrophysics Data System (ADS)

    France, Kevin; Beasley, Matthew; Kane, Robert; Nell, Nicholas; Burgh, Eric B.; Green, James C.

    2012-09-01

    A key astrophysical theme that will drive future UV/optical space missions is the life cycle of cosmic matter, from the flow of intergalactic gas into galaxies to the formation and evolution of exoplanetary systems. Spectroscopic systems capable of delivering high resolution with low backgrounds will be essential to addressing these topics. Towards this end, we are developing a rocket-borne instrument that will serve as a pathfinder for future high-sensitivity, highresolution UV spectrographs. The Colorado High-resolution Echelle Stellar Spectrograph (CHESS) will provide 2 km s-1 velocity resolution (R = 150,000) over the 100 - 160 nm bandpass that includes key atomic and molecular spectral diagnostics for the intergalactic medium (H I Lyman-series, O VI, N V, and C IV), exoplanetary atmospheres (H I Lyman-alpha, O I, and C II), and protoplanetary disks (H2 and CO electronic band systems). CHESS uses a novel mechanical collimator comprised of an array of 10 mm x 10 mm stainless steel tubes to feed a low-scatter, 69 grooves mm-1 echelle grating. The cross-disperser is a holographically ruled toroid, with 351 grooves mm-1. The spectral orders can be recorded with either a 40 mm cross-strip microchannel plate detector or a 3.5k x 3.5k δ-doped CCD. The microchannel plate will deliver 30 μm spatial resolution and employs new 64 amp/axis electronics to accommodate high count rate observations of local OB stars. CHESS is scheduled to be launched aboard a NASA Terrier/Black Brant IX sounding rocket from White Sands Missile Range in the summer of 2013.

  1. Adaptive filtering of Echelle spectra of distant Quasars

    NASA Technical Reports Server (NTRS)

    Priebe, A.; Liebscher, D.-E.; Lorenz, H.; Richter, G.-M.

    1992-01-01

    The study of the Ly alpha - forest of distant (approximately greater than 3) Quasars is an important tool in obtaining a more detailed picture of the distribution of matter along the line of sight and thus of the general distribution of matter in the Universe and is therefore of important cosmological significance. Obviously, this is one of the tasks where spectral resolution plays an important role. The spectra used were obtained with the EFOSC at the ESO 3.6m telescope. Applying for the data reduction the standard Echelle procedure, as it is implemented for instance in the MIDAS-package, one uses stationary filters (e.g. median) for noise and cosmic particle event reduction in the 2-dimensional Echelle image. These filters are useful if the spatial spectrum of the noise reaches essentially higher frequencies then the highest resolution features in the image. Otherwise the resolution in the data will be degraded and the spectral lines smoothed. However, in the Echelle spectra the highest resolution is already in the range of one or a few pixels and therefore stationary filtering means always a loss of resolution. An Echelle reduction procedure on the basis of a space variable filter described which recognizes the local resolution in the presence of noise and adapts to it is developed. It was shown that this technique leads to an improvement in resolution by a factor of 2 with respect to standard procedures.

  2. Fiber-coupled high resolution infrared array spectrometer for the Kuiper Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Glenar, D. A.; Reuter, D.; Mumma, M. J.; Chin, G.; Wiedemann, G.; Jennings, D.

    1990-01-01

    A novel cryogenic grating spectrometer (FCAS) is being designed for observations of volatiles in cometary and planetary atmospheres, and in newly forming planetary systems. The instrument features two-dimensional detector arrays coupled to a high-dispersion echelle by infrared fibers, and will achieve a spectral resolving power of about 40,000. The primary observational platform for this instrument will be the Kuiper Airborne Observatory, but it will also be configured for use at ground-based observatories. Initially, the spectrometer will use a 58 x 62, 1- to 5-micron InSb array. Larger-format IR arrays and arrays of different composition, will later be incorporated as they become available. The instrument will be used in two modes. The first uses a large format IR array in the spectral image plane for the customary one-dimensional spectral-one-dimensional spatial coverage. In the second mode, a massive, coherent bundle of infrared transmitting ZrF4 fibers will be installed after the dispersive element, to reformat the two-dimensional array into an elongated one-dimensional array for wide spectral coverage, allowing multiple lines to be measured in a single integration with high sensitivity. The overall instrument design is discussed, and the system sensitivity is estimated.

  3. Nanostructure Diffraction Gratings for Integrated Spectroscopy and Sensing

    NASA Technical Reports Server (NTRS)

    Guo, Junpeng (Inventor)

    2016-01-01

    The present disclosure pertains to metal or dielectric nanostructures of the subwavelength scale within the grating lines of optical diffraction gratings. The nanostructures have surface plasmon resonances or non-plasmon optical resonances. A linear photodetector array is used to capture the resonance spectra from one of the diffraction orders. The combined nanostructure super-grating and photodetector array eliminates the use of external optical spectrometers for measuring surface plasmon or optical resonance frequency shift caused by the presence of chemical and biological agents. The nanostructure super-gratings can be used for building integrated surface enhanced Raman scattering (SERS) spectrometers. The nanostructures within the diffraction grating lines enhance Raman scattering signal light while the diffraction grating pattern of the nanostructures diffracts Raman scattering light to different directions of propagation according to their wavelengths. Therefore, the nanostructure super-gratings allows for the use of a photodetector array to capture the surface enhanced Raman scattering spectra.

  4. Nanostructure Diffraction Gratings for Integrated Spectroscopy and Sensing

    NASA Technical Reports Server (NTRS)

    Guo, Junpeng (Inventor)

    2015-01-01

    The present disclosure pertains to metal or dielectric nanostructures of the subwavelength scale within the grating lines of optical diffraction gratings. The nanostructures have surface plasmon resonances or non-plasmon optical resonances. A linear photodetector array is used to capture the resonance spectra from one of the diffraction orders. The combined nanostructure super-grating and photodetector array eliminates the use of external optical spectrometers for measuring surface plasmon or optical resonance frequency shift caused by the presence of chemical and biological agents. The nanostructure super-gratings can be used for building integrated surface enhanced Raman scattering (SERS) spectrometers. The nanostructures within the diffraction grating lines enhance Raman scattering signal light while the diffraction grating pattern of the nanostructures diffracts Raman scattering light to different directions of propagation according to their wavelengths. Therefore, the nanostructure super-gratings allows for the use of a photodetector array to capture the surface enhanced Raman scattering spectra.

  5. Wide-range CCD spectrometer

    NASA Astrophysics Data System (ADS)

    Sokolova, Elena A.; Reyes Cortes, Santiago D.

    1996-08-01

    The utilization of wide range spectrometers is a very important feature for the design of optical diagnostics. This paper describes an innovative approach, based on charged coupled device, which allows to analyze different spectral intervals with the same diffraction grating. The spectral interval is varied by changing the position of the entrance slit when the grating is stationary. The optical system can also include a spherical mirror. In this case the geometric position of the mirror is calculated aiming at compensating the first order astigmatism and the meridional coma of the grating. This device is planned to be used in Thomson scattering diagnostic of the TOKAMAK of Instituto Superior Tecnico, Lisbon (ISTTOK).

  6. Initial Results from the MAVEN IUVS Echelle Channel

    NASA Astrophysics Data System (ADS)

    Clarke, John T.; Mayassi, Majd; McClintock, William; Schneider, Nick; Deighan, Justin; Stewart, Ian; Holsclaw, Greg; Jakosky, Bruce

    2015-11-01

    The study of the evolution of water on Mars includes understanding the high D/ H ratio in the atmosphere and surface water today, believed to be linked to the historic loss of a large volume of primordial water (the lighter H escapes faster than the heavier D). Toward this end, the IUVS instrument on MAVEN contains the first echelle spectrograph to be sent to another planet. The system has a novel optical design to enable long-aperture measurements of emission lines in the absence of continuum, intended primarily to measure the H and D Ly α emission lines and thereby the D/H ratio from the martian upper atmosphere. The system also detects the OI 1304 triplet with the three component lines well resolved. The specific scientific goal of the echelle channel is to measure the H and D Ly α emissions, and to discover how the H and D densities, temperatures, and escape fluxes vary with location, season, topography, etc. Recent IR observations indicate large variations in the D/H ratio in the lower atmosphere from location to location, and possibly seasonal changes [Villanueva et al. 2015]. HST and MEX measurements of the H corona of Mars show large (order of magnitude) changes in the H exosphere and escape flux with changing seasons and/or heliospheric distance [Clarke et al. 2014 Chaffin et al. 2014]. Early results from the echelle channel regarding how these parameters apply to martian deuterium will be presented.

  7. Thermal sensitivity of DASH interferometers: the role of thermal effects during the calibration of an Echelle DASH interferometer.

    PubMed

    Marr, Kenneth D; Englert, Christoph R; Harlander, John M; Miller, Kenneth W

    2013-11-20

    The use of a Doppler asymmetric spatial heterodyne (DASH) interferometer with an Echelle grating provides the ability to simultaneously image the 558 and 630 nm emission lines (e.g., at grating orders of n=8 and n=7, respectively) of atomic oxygen in the thermosphere. By measuring the Doppler shifts of these lines (expected relative change in wavelength on the order of 10⁻⁸), we are able to determine the thermospheric winds. Because the expected wavelength changes due to the Doppler shift are so small, understanding, monitoring, and accounting for thermal effects is expected to be important. Previously, the thermal behavior of a temperature-compensated monolithic DASH interferometer was found to have a higher thermal sensitivity than predicted by a simple model [Opt. Express 18, 26430, 2010]. A follow-up study [Opt. Express 20, 9535, 2012] suggested that this is due to thermal distortion of the interferometer, which consists of materials with different coefficients of thermal expansion. In this work, we characterize the thermal drift of a nonmonolithic Echelle DASH interferometer and discuss the implications of these results on the use of only a single wavelength source during calibration. Furthermore, we perform a finite element analysis of the earlier monolithic interferometer in order to determine how distortion would affect the thermal sensitivity of that device. Incorporating that data into the model, we find good agreement between the modified model and the measured thermal sensitivities. These findings emphasize the fact that distortion needs to be considered for the design of thermally compensated, monolithic DASH interferometers. PMID:24513761

  8. The Next Generation of X-Ray Reflection Gratings

    NASA Astrophysics Data System (ADS)

    McEntaffer, Randall L.; Off-Plane X-ray Grating Spectrometer Team

    2014-01-01

    Future NASA X-ray Observatories will shed light on a variety of high-energy astrophysical phenomena. Off-plane reflection gratings can be used to provide high throughput and spectral resolution in the 0.3-2.0 keV band, allowing for unprecedented diagnostics of energetic astrophysical processes. A grating spectrometer consists of multiple aligned gratings intersecting the converging beam of a Wolter-I telescope. To achieve the performance requirements of future missions, these gratings must have a high precision, custom groove profile and be aligned overlap each spectrum at the focal plane. Here we report on the progress made on the development of these gratings during a recent NASA Strategic Astrophysics Technology grant. We have identified a novel grating fabrication method and have performed X-ray testing of prototype gratings. The performance of these gratings is consistent with high throughput and resolution. Furthermore, we have quantified our alignment tolerances and investigated alignment strategies and module mounts.

  9. Material identification employing a grating spectrometer

    DOEpatents

    Gornushkin, Ignor B.; Winefordner, James D.; Smith, Benjamin W.

    2007-01-09

    Multi-ordered spectral data is obtained from various known substances and is stored in a spectral library. The identification of an unknown material is accomplished by correlating the sample's multi-ordered spectrum against all or a portion of the spectrum in the library, and finding the closest match.

  10. Imaging spectrometer wide field catadioptric design

    DOEpatents

    Chrisp; Michael P.

    2008-08-19

    A wide field catadioptric imaging spectrometer with an immersive diffraction grating that compensates optical distortions. The catadioptric design has zero Petzval field curvature. The imaging spectrometer comprises an entrance slit for transmitting light, a system with a catadioptric lens and a dioptric lens for receiving the light and directing the light, an immersion grating, and a detector array. The entrance slit, the system for receiving the light, the immersion grating, and the detector array are positioned wherein the entrance slit transmits light to the system for receiving the light and the system for receiving the light directs the light to the immersion grating and the immersion grating receives the light and directs the light through the system for receiving the light to the detector array.

  11. Atmospheric chemistry suite (ACS): a set of infrared spectrometers for atmospheric measurements on board ExoMars trace gas orbiter

    NASA Astrophysics Data System (ADS)

    Korablev, Oleg; Grigoriev, Alexei V.; Trokhimovsky, Alexander; Ivanov, Yurii S.; Moshkin, Boris; Shakun, Alexei; Dziuban, Ilia; Kalinnikov, Yurii K.; Montmessin, Franck

    2013-09-01

    The ACS package for ExoMars Trace Gas Orbiter is a part of Russian contribution to ExoMars ESA-Roscosmos mission. On the Orbiter it complements NOMAD investigation and is intended to recover in much extent the science lost with the cancellation of NASA MATMOS and EMCS infrared sounders. ACS includes three separate spectrometers, sharing common mechanical, electrical, and thermal interfaces. NIR is a versatile spectrometer for the spectral range of 0.7-1.6 μm with resolving power of ~20000. It is conceived on the principle of RUSALKA/ISS or SOIR/Venus Express experiments combining an echelle spectrometer and an AOTF (Acousto-Optical Tuneable Filter) for order selection. Up to 8 diffraction orders, each 10-20 nm wide can be measured in one sequence record. NIR will be operated principally in nadir, but also in solar occultations, and possibly on the limb. MIR is a high-resolution echelle instrument exclusively dedicated to solar occultation measurements in the range of 2.2-4.4 μm targeting the resolving power of 50000. The order separation is done by means of a steerable grating cross-disperser, allowing instantaneous coverage of up to 300-nm range of the spectrum for one or two records per second. MIR is dedicated to sensitive measurements of trace gases, approaching MATMOS detection thresholds for many species. TIRVIM is a 2- inch double pendulum Fourier-transform spectrometer for the spectral range of 1.7-17 μm with apodized resolution varying from 0.2 to 1.6 cm-1. TIRVIM is primarily dedicated to monitoring of atmospheric temperature and aerosol state in nadir, and would contribute in solar occultation to detection/reducing of upper limits of some components absorbing beyond 4 μm, complementing MIR and NOMAD. Additionally, TIRVIM targets the methane mapping in nadir, using separate detector optimized for 3.3-μm range. The concept of the instrument and in more detail the optical design and the expected parameters of its three parts, channel by channel are

  12. Early Results from the MAVEN IUVS Echelle Channel

    NASA Astrophysics Data System (ADS)

    Clarke, J. T.; Mayyasi, M.; Schneider, N. M.; Deighan, J.; Stewart, I. F.; McClintock, B.; Jakosky, B. M.; Bhattacharyya, D.

    2015-12-01

    The IUVS instrument on MAVEN contains the first echelle spectrograph to be sent to another planet. The system has a novel optical design to enable long-aperture measurements of emission lines in the absence of continuum, intended primarily to measure the H and D Ly αlpha emission lines and thereby the D/H ratio from the martian upper atmosphere. The system also detects the OI 1304 triplet with the three component lines well resolved. The main scientific goal of the echelle channel is to measure the H and D Ly αlpha emissions, and to discover how the H and D densities, temperatures, and escape fluxes vary with location, season, topography, etc. The global D/H ratio of the martian atmosphere is roughly 5 times higher than in the terrestrial atmosphere due to the escape of a large volume of water into space, likely early in the history of Mars. Since H atoms escape faster than D atoms, the D/H ratio increases with time as more water is lost. Recent IR observations indicate large variations in the D/H ratio in the lower atmosphere from location to location, and possibly seasonal changes [Villanueva et al. 2015]. HST and MEX measurements of the H corona of Mars show large (order of magnitude) changes in the H exosphere and escape flux with changing seasons and/or heliospheric distance [Clarke et al. 2014; Chaffin et al. 2014]. Do the same variations apply to deuterium? Are there similar variations in the D/H ratio? Early results from the echelle channel will be presented.

  13. High-end spectroscopic diffraction gratings: design and manufacturing

    NASA Astrophysics Data System (ADS)

    Glaser, Tilman

    2015-02-01

    Diffraction gratings are key components for spectroscopic systems. For high-end applications, they have to meet advanced requirements as, e.g., maximum efficiency, lowest possible scattered light level, high numerical aperture, and minimal aberrations. Diffraction gratings are demanded to allow spectrometer designs with highest resolution, a maximal étendue, and minimal stray light, built within a minimal volume. This tutorial is intended to provide an overview of different high-end spectroscopic gratings, their theoretical design and manufacturing technologies.

  14. SWP Echelle Spectra of Chromospherically Active Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Ayres, Thomas R.

    High resolution spectra of the 1150-2000 A region are enormously valuable for probing outer- atmosphere structure in cool stars. For example, such data can be used to separate blends, identify individual emission components in short-period binary systems, determine intensity ratios in close multiplets, estimate reliable emission strengths of lines superimposed on bright stellar continua, and test for the presence or absence of stellar winds at 105 K temperatures. These possibilities are not practical with IUE low-dispersion spectra. However, one must pay a steep-price to obtain useable high-dispersion IUE spectra and the additional dimension of diagnostic information, namely only a handful of the brightest UV sources are accessible even with shift-long exposures. We propose below an observing program to obtain echelle spectra of chromospherically active dwarf stars in the 1150-2000 A shortwavelength region. This program is intended to explore a particular class of objects that heretofore have not been observed at high dispersion with the SWP camera. Futhermore, this program complements previous SWP echelle studies by our group at the University of Colorado of quiet-chromosphere dwarf stars (alpha Cen A, alpha Cen B), active giants (alpha Aur A, lambda And, beta Dra), and the extreme case of the very active RS CVn-type system HR 1099. As described below, highdispersion spectra of these targets have provided a critical interpretive dimension that was lacking in previous low-dispersion studies. However, several fundamental questions have been raised in the course of our exploratory SWP work on what, in practice, are two distinct classes of chromospheric stars: the quiet dwarfs and the active giants. We feel that many of these questions can be answered by bridging the interpretive gap with a careful study of the active dwarfs. Our recent experience with shift-long SWP echelle exposures of chromospheric emission stars has suggested that our previous estimates of

  15. Compact Grism Spectrometer

    NASA Astrophysics Data System (ADS)

    Teare, S. W.

    2003-05-01

    Many observatories and instrument builders are retrofitting visible and near-infrared spectrometers into their existing imaging cameras. Camera designs that reimage the focal plane and have the optical filters located in a pseudo collimated beam are ideal candidates for the addition of a spectrometer. One device commonly used as the dispersing element for such spectrometers is a grism. The traditional grism is constructed from a prism that has had a diffraction grating applied on one surface. The objective of such a design is to use the prism wedge angle to select the desired "in-line" or "zero-deviation" wavelength that passes through on axis. The grating on the surface of the prism provides much of the dispersion for the spectrometer. A grism can also be used in a "constant-dispersion" design which provides an almost linear spatial scale across the spectrum. In this paper we provide an overview of the development of a grism spectrometer for use in a near infrared camera and demonstrate that a compact grism spectrometer can be developed on a very modest budget that can be afforded at almost any facility. The grism design was prototyped using visible light and then a final device was constructed which provides partial coverage in the near infrared I, J, H and K astronomical bands using the appropriate band pass filter for order sorting. The near infrared grism presented here provides a spectral resolution of about 650 and velocity resolution of about 450 km/s. The design of this grism relied on a computer code called Xspect, developed by the author, to determine the various critical parameters of the grism. This work was supported by a small equipment grant from NASA and administered by the AAS.

  16. Multiple order common path spectrometer

    NASA Technical Reports Server (NTRS)

    Newbury, Amy B. (Inventor)

    2010-01-01

    The present invention relates to a dispersive spectrometer. The spectrometer allows detection of multiple orders of light on a single focal plane array by splitting the orders spatially using a dichroic assembly. A conventional dispersion mechanism such as a defraction grating disperses the light spectrally. As a result, multiple wavelength orders can be imaged on a single focal plane array of limited spectral extent, doubling (or more) the number of spectral channels as compared to a conventional spectrometer. In addition, this is achieved in a common path device.

  17. Properties of a transmission grating behind a grazing incidence telescope for cosmic x-ray spectroscopy.

    PubMed

    Beuermann, K P; Lenzen, R; Bräuninger, H

    1977-05-01

    Third-order aberrations are discussed of a transmission grating positioned behind a Wolter type I telescope, using Fermat's principle. We describe the conditions required to obtain a coma-free grating. The performance of a grating spectrometer for cosmic x-ray spectroscopy is discussed in some detail. PMID:20168712

  18. Mathematical Simulation for Integrated Linear Fresnel Spectrometer Chip

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon; Yoon, Hargoon; Lee, Uhn; King, Glen C.; Choi, Sang H.

    2012-01-01

    A miniaturized solid-state optical spectrometer chip was designed with a linear gradient-gap Fresnel grating which was mounted perpendicularly to a sensor array surface and simulated for its performance and functionality. Unlike common spectrometers which are based on Fraunhoffer diffraction with a regular periodic line grating, the new linear gradient grating Fresnel spectrometer chip can be miniaturized to a much smaller form-factor into the Fresnel regime exceeding the limit of conventional spectrometers. This mathematical calculation shows that building a tiny motionless multi-pixel microspectrometer chip which is smaller than 1 cubic millimter of optical path volume is possible. The new Fresnel spectrometer chip is proportional to the energy scale (hc/lambda), while the conventional spectrometers are proportional to the wavelength scale (lambda). We report the theoretical optical working principle and new data collection algorithm of the new Fresnel spectrometer to build a compact integrated optical chip.

  19. PEPSI: the Potsdam Echelle Polarimetric and Spectroscopic Instrument for the LBT

    NASA Astrophysics Data System (ADS)

    Strassmeier, K. G.; Woche, M.; Ilyin, I.; Popow, E.; Bauer, S.-M.; Dionies, F.; Fechner, T.; Weber, M.; Hofmann, A.; Storm, J.; Materne, R.; Bittner, W.; Bartus, J.; Granzer, T.; Denker, C.; Carroll, T.; Kopf, M.; DiVarano, I.; Beckert, E.; Lesser, M.

    2008-07-01

    We present the status of PEPSI, the bench-mounted fibre-fed and stabilized "Potsdam Echelle Polarimetric and Spectroscopic Instrument" for the 2×8.4m Large Binocular Telescope in southern Arizona. PEPSI is under construction at AIP and is scheduled for first light in 2009/10. Its ultra-high-resolution mode will deliver an unprecedented spectral resolution of approximately R=310,000 at high efficiency throughout the entire optical/red wavelength range 390-1050nm without the need for adaptive optics. Besides its polarimetric Stokes IQUV mode, the capability to cover the entire optical range in three exposures at resolutions of 40,000, 130,000 and 310,000 will surpass all existing facilities in terms of light-gathering-power times spectral-coverage product. A solar feed will make use of the spectrograph also during day time. As such, we hope that PEPSI will be the most powerful spectrometer of its kind for the years to come.

  20. Full image spectral analysis of elemental emissions from an echelle spectrograph

    SciTech Connect

    Spencer, W.A.

    2000-01-27

    A new algorithm compares the background corrected echelle emission image obtained from reference standards to images of unknowns for quantitative elemental analyses. Wavelength was not used in the calculations but instead pixel position and intensity. The data reduction solution was unique to the particular detector/spectrometer. The approach was found useful for several types of images including ICP, DCP and glow discharge images. The analysis scheme required that the emission pattern of standards and background be held in memory. A dual weighting scheme was used that decreased the importance of pixels in high background areas and enhanced the importance of signals from pixels where the standards had emissions. Threshold values were used to limit the calculations to signals in the linear range of the electronics. Logarithmic weighting, (by taking the square root), was found to work well for weighting pixels from the standards. This assured that minor emissions had some influence on the data fit. In the program the best-fit scalar was determined using simple iterative guess, change and test approaches. The test looked for the minimum least square residual value in the areas of the flagged pixels.

  1. Design and simulation of microspectrometer based on torsional MEMS grating

    NASA Astrophysics Data System (ADS)

    Yan, Bin; Yuan, Weizheng; Sun, Ruikang; Qiao, Dayong; Yu, Yiting; Li, Taiping

    2010-10-01

    Micro-opto-electro-mechanical systems (MOEMS) has prominent advantages over conventional optical devices, such as smaller, lighter, more stable, lower cost and power consumption. It has been widely applied in the last few years. This paper presents a micro spectrometer based on torsional MEMS grating with micromachining process. As a diffractive component in the micro spectrometer, the torsional MEMS grating is actuated by electrostatic force to scan the spectrum. In contrast to common linear detector arrays with stationary diffraction grating and non-fixed grating rotated by stepper motor to scan spectrum used in most micro spectrometer, MEMS-based spectrometer is dynamically controllable, and has no mechanical moving parts with small size. ZEMAX is used for design, optimization, and simulation analysis of the micro spectrometer with multi-configurations in the cross Czerny-Turner optical system. The results indicate that torsional MEMS grating operates at a torsion angle of +/-3 degree, the spectrometer can scan spectral range of 800-1600nm in NIR (near infrared), spectral resolution is around 10 nm, and the whole spectrometer has a volume of 80mm×55mm×30mm. The study provides an initial theoretical foundation for the further development and design.

  2. Research directed toward improved echelles for the ultraviolet

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Research was undertaken to demonstrate that improved efficiencies for low frequency gratings are obtainable with the careful application of present technology. The motivation for the study was the desire to be assured that the grating-efficiency design goals for potential Space Telescope spectrographs can be achieved. The work was organized to compare gratings made with changes in the three specific parameters: the ruling tool profile, the coating material, and the lubricants used during the ruling process. A series of coatings and test gratings were fabricated and were examined for surface smoothness with a Nomarski Differential Interference Microscope and an electron microscope. Photomicrographs were obtained to show the difference in smoothness of the various coatings and rulings. Efficiency measurements were made for those test rulings that showed good groove characteristics: smoothness, proper ruling depth, and absence of defects. The intuitive feeling that higher grating efficiency should be correlated with the degree of smoothness of both the coating and the grating is supported by the results.

  3. Off-plane x-ray reflection grating fabrication

    NASA Astrophysics Data System (ADS)

    Peterson, Thomas J.; DeRoo, Casey T.; Marlowe, Hannah; McEntaffer, Randall L.; Miles, Drew M.; Tutt, James H.; Schultz, Ted B.

    2015-09-01

    Off-plane X-ray diffraction gratings with precision groove profiles at the submicron scale will be used in next generation X-ray spectrometers. Such gratings will be used on a current NASA suborbital rocket mission, the Off-plane Grating Rocket Experiment (OGRE), and have application for future grating missions. The fabrication of these gratings does not come without challenges. High performance off-plane gratings must be fabricated with precise radial grating patterns, optically at surfaces, and specific facet angles. Such gratings can be made using a series of common micro-fabrication techniques. The resulting process is highly customizable, making it useful for a variety of different mission architectures. In this paper, we detail the fabrication method used to produce high performance off-plane gratings and report the results of a preliminary qualification test of a grating fabricated in this manner. The grating was tested in the off-plane `Littrow' configuration, for which the grating is most efficient for a given diffraction order, and found to achieve 42% relative efficiency in the blaze order with respect to all diffracted light.

  4. Development of the 2nd Generation Redshift(z) and Early Universe Spectrometer and the Detailed Study of Far-IR Fine-Structure Lines in High-z Galaxies

    NASA Astrophysics Data System (ADS)

    Ferkinhoff, Carl; Brisbin, D.; Nikola, T.; Parshley, S.; Stacey, G. J.; Hailey-Dunsheath, S. J.; Irwin, K. D.; Cho, H.; Niemack, M.; Benford, D. J.; Staguhn, J.; Phillips, T. G.; Falgarone, E.

    2013-01-01

    The 2nd generation Redshift(z) and Early Universe Spectrometer (ZEUS-2), is a long-slit echelle grating spectrometer ( 1000) for observations at submillimeter wavelengths from 200 to 850 μm. Its design is optimized for the detection of redshifted far-infrared spectral lines from galaxies in the early universe. Combined with its exquisite sensitivity, broad wavelength coverage, and large 2.5%) instantaneous bandwidth, ZEUS-2 is uniquely suited for studying galaxies between 0.2 and 5—spanning the peaks in both the star formation rate and AGN activity in the universe. ZEUS-2 saw first light at the Caltech Submillimeter Observatory (CSO) in the spring of 2012 and was commissioned on the Atacama Pathfinder Experiment (APEX) this past November. Here we report on the instrument development and performance as well as initial scientific results from the APEX commissioning. We also discuss our ZEUS-1 (the first generation Redshift(z) and Early Universe Spectrometer) detections of the [NII] 122 μm and [OIII] 88 μm lines from starburst galaxies at redshifts between ~2.5 and 4. These are the first high-z detections of these lines and they are examples of work we plan to continue with ZEUS-2. As such, they demonstrate the potential of ZEUS-2 for increasing our understanding of galaxies and galaxy evolution over cosmic time.

  5. Holographic optical grating and method for optimizing monochromator configuration

    DOEpatents

    Koike, Masato

    1999-01-01

    This invention comprises a novel apparatus for recording a holographic groove pattern on a diffraction grating blank. The recording apparatus is configured using newly developed groups of analytical equations. The invention further comprises the novel holographic diffraction grating made with the inventive recording apparatus. The invention additionally comprises monochromators and spectrometers equipped with the inventive holographic diffraction grating. Further, the invention comprises a monochromator configured to reduce aberrations using a newly developed group of analytical equations. Additionally, the invention comprises a method to reduce aberrations in monochromators and spectrometers using newly developed groups of analytical equations.

  6. IUE Echelle Investigation of Two Peculiar Helium-Rich Degenerates

    NASA Astrophysics Data System (ADS)

    Sion, Edward M.

    We propose to observe two peculiar helium-rich degenerates, the hot hybrid composition DAB star, GD323 and the twin DB degenerate object, PC3146+082 in the IUE high dispersion mode, the first ever IUE echelle images of these spectroscopic types. Both objects occur just below the DO-DB temperature gap (in which no DB or cool DO stars are seen), have an energy distribution and color temperature similar to the twin DB degenerate interacting cataclysmic binary, AM CVn, and both may be related in a still unknown way, to the origin of hot single DB stars, which show the onset of non-radial g-mode pulsations near Teff = 30,OOOK (cf. Liebert, et al. 1986). Our specific scientific objectives for GD323 are: (1) to search for evidence of neutral and/or ionized metal absorption features formed in and/or above the photosphere, or as shortward-shifted wind absorption features, undetectable at low IUE resolution, as a means of establishing the role of either interstellar accretion, convective dredgeup, radiative levitation, mass loss or recent accretion in an interacting binary, in understanding the nature of this hybrid object; (3) to look for weak He II absorption as a means of resolving its temperature (its spectroscopic and calorimetric temperature fits are discrepant with 40,OOOK needed to fit H-beta); (4) to determine metal abundances from the analysis of any detected features or set stringent abundance constraints for metals, especially carbon, which is theoretically predicted to have a very small non-zero abundance based upon calculations of helium convective dredgeup of core carbon from its equilibrium diffusion tail; (5) to use IUE echelle detections to derive an upper limit rotation rate and upper limit magnetic field strength, two other factors which may be implicated in its hybrid composition (via inhibited gravitational settling); to compare its IUE echelle spectrum with those of the hottest DB stars, GD358 (which unexpectedly showed photospheric He II and C II) and

  7. Fiber-optic-echelle-CCD spectral monitoring of UX Arietis

    SciTech Connect

    Huenemoerder, D.P.; Buzasi, D.L.; Ramsey, L.W. )

    1989-10-01

    Results are presented on 30 fiber-optic-echelle-CCD spectra for the UX Ari system, covering one orbit in the spring and two orbits in the fall of 1987. The spectra obtained have a resolution of about 12,000 over the range of the Ca II H lines in the near UV to the Ca II triplet in the near IR, covering several activity sensitive lines. The most striking features observed were strong H-alpha and H-beta absorption near phase 0.8, which were present at epochs eight months apart. The geometry of the system, as determined from the mass ratio, rotational velocities, and the assumption of synchronous rotation, gives a radius for the K star that is approximately filling its Roche lobe. It is suggested that the excess absorption seen is due to mass-transfer activity resulting from Roche lobe overflow of the K star and accretion onto the G star. 30 refs.

  8. Development of Multiple-Element Flame Emission Spectrometer Using CCD Detection

    ERIC Educational Resources Information Center

    Seney, Caryn S.; Sinclair, Karen V.; Bright, Robin M.; Momoh, Paul O.; Bozeman, Amelia D.

    2005-01-01

    The full wavelength coverage of charge coupled device (CCD) detector when coupled with an echelle spectrography, the system allows for simultaneously multiple element spectroscopy to be performed. The multiple-element flame spectrometer was built and characterized through the analysis of environmentally significant elements such as Ca, K, Na, Cu,…

  9. Surface Plasmon Based Spectrometer

    NASA Astrophysics Data System (ADS)

    Wig, Andrew; Passian, Ali; Boudreaux, Philip; Ferrell, Tom

    2008-03-01

    A spectrometer that uses surface plasmon excitation in thin metal films to separate light into its component wavelengths is described. The use of surface plasmons as a dispersive medium sets this spectrometer apart from prism, grating, and interference based variants and allows for the miniaturization of this device. Theoretical and experimental results are presented for two different operation models. In the first case surface plasmon tunneling in the near field is used to provide transmission spectra of different broad band-pass, glass filters across the visible wavelength range with high stray-light rejection at low resolution as well as absorption spectra of chlorophyll extracted from a spinach leaf. The second model looks at the far field components of surface plasmon scattering.

  10. Monolithic spectrometer

    DOEpatents

    Rajic, S.; Egert, C.M.; Kahl, W.K.; Snyder, W.B. Jr.; Evans, B.M. III; Marlar, T.A.; Cunningham, J.P.

    1998-05-19

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays. 6 figs.

  11. Monolithic spectrometer

    DOEpatents

    Rajic, Slobodan; Egert, Charles M.; Kahl, William K.; Snyder, Jr., William B.; Evans, III, Boyd M.; Marlar, Troy A.; Cunningham, Joseph P.

    1998-01-01

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays.

  12. A compact multichannel spectrometer for Thomson scattering.

    PubMed

    Schoenbeck, N L; Schlossberg, D J; Dowd, A S; Fonck, R J; Winz, G R

    2012-10-01

    The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of T(e) < 100 eV are achieved by a 2971 l∕mm VPH grating and measurements T(e) > 100 eV by a 2072 l∕mm VPH grating. The spectrometer uses a fast-gated (~2 ns) ICCD camera for detection. A Gen III image intensifier provides ~45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction. PMID:23126988

  13. A compact multichannel spectrometer for Thomson scattering

    SciTech Connect

    Schoenbeck, N. L.; Schlossberg, D. J.; Dowd, A. S.; Fonck, R. J.; Winz, G. R.

    2012-10-15

    The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of T{sub e} < 100 eV are achieved by a 2971 l/mm VPH grating and measurements T{sub e} > 100 eV by a 2072 l/mm VPH grating. The spectrometer uses a fast-gated ({approx}2 ns) ICCD camera for detection. A Gen III image intensifier provides {approx}45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.

  14. A compact multichannel spectrometer for Thomson scatteringa)

    NASA Astrophysics Data System (ADS)

    Schoenbeck, N. L.; Schlossberg, D. J.; Dowd, A. S.; Fonck, R. J.; Winz, G. R.

    2012-10-01

    The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of Te < 100 eV are achieved by a 2971 l/mm VPH grating and measurements Te > 100 eV by a 2072 l/mm VPH grating. The spectrometer uses a fast-gated (˜2 ns) ICCD camera for detection. A Gen III image intensifier provides ˜45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.

  15. Materials and Fabrication Issues for Large Machined Germanium Immersion Gratings

    SciTech Connect

    Kuzmenko, P J; Davis, P J; Little, S L; Hale, L C

    2006-05-22

    LLNL has successfully fabricated small (1.5 cm{sup 2} area) germanium immersion gratings. We studied the feasibility of producing a large germanium immersion grating by means of single point diamond flycutting. Our baseline design is a 63.4o blaze echelle with a 6 cm beam diameter. Birefringence and refractive index inhomogeneity due to stresses produced by the crystal growth process are of concern. Careful selection of the grating blank and possibly additional annealing to relieve stress will be required. The Large Optics Diamond Turning Machine (LODTM) at LLNL is a good choice for the fabrication. It can handle parts up to 1.5 meter in diameter and 0.5 meter in length and is capable of a surface figure accuracy of better than 28 nm rms. We will describe the machine modifications and the machining process for a large grating. A next generation machine, the Precision Optical Grinder and Lathe (POGAL), currently under development has tighter specifications and could produce large gratings with higher precision.

  16. The GMT-CfA, Carnegie, Catolica, Chicago Large Earth Finder (G-CLEF): a general purpose optical echelle spectrograph for the GMT with precision radial velocity capability

    NASA Astrophysics Data System (ADS)

    Szentgyorgyi, A.; Frebel, A.; Furesz, G.; Hertz, E.; Norton, T.; Bean, J.; Bergner, H.; Crane, J.; Evans, J.; Evans, I.; Gauron, T.; Jordán, A.; Park, S.; Uomoto, A.; Barnes, S.; Davis, W.; Eisenhower, M.; Epps, H.; Guzman, D.; McCracken, K.; Ordway, M.; Plummer, D.; Podgorski, W.; Weaver, D.

    2012-09-01

    The GMT-CfA, Carnegie, Catolica, Chicago Large Earth Finder (G-CLEF) is a fiber fed, optical echelle spectrograph that has undergone conceptual design for consideration as a first light instrument at the Giant Magellan Telescope. GCLEF has been designed to be a general-purpose echelle spectrograph with precision radial velocity (PRV) capability. We have defined the performance envelope of G-CLEF to address several of the highest science priorities in the Decadal Survey1. The spectrograph optical design is an asymmetric, two-arm, white pupil design. The asymmetric white pupil design is adopted to minimize the size of the refractive camera lenses. The spectrograph beam is nominally 300 mm, reduced to 200 mm after dispersion by the R4 echelle grating. The peak efficiency of the spectrograph is >35% and the passband is 3500-9500Å. The spectrograph is primarily fed with three sets of fibers to enable three observing modes: High-Throughput, Precision-Abundance and PRV. The respective resolving powers of these modes are R~ 25,000, 40,000 and 120,000. We also anticipate having an R~40,000 Multi-object Spectroscopy mode with a multiplex of ~40 fibers. In PRV mode, each of the seven 8.4m GMT primary mirror sub-apertures feeds an individual fiber, which is scrambled after pupil-slicing. The goal radial velocity precision of G-CLEF is ∂V <10 cm/sec radial. In this paper, we provide a flowdown from fiducial science programs to design parameters. We discuss the optomechanical, electrical, structural and thermal design and present a roadmap to first light at the GMT.

  17. On-chip plasmonic spectrometer.

    PubMed

    Tsur, Yuval; Arie, Ady

    2016-08-01

    We report a numerical and experimental study of an on-chip optical spectrometer, utilizing propagating surface plasmon polaritons in the telecom spectral range. The device is based on two holographic gratings, one for coupling, and the other for decoupling free-space radiation with the surface plasmons. This 800 μm×100 μm on-chip spectrometer resolves 17 channels spectrally separated by 3.1 nm, spanning a freely tunable spectral window, and is based on standard lithography fabrication technology. We propose two potential applications for this new device; the first employs the holographic control over the amplitude and phase of the input spectrum, for intrinsically filtering unwanted frequencies, like pump radiation in Raman spectroscopy. The second prospect utilizes the unique plasmonic field enhancement at the metal-dielectric boundary for the spectral analysis of very small samples (e.g., Mie scatterers) placed between the two gratings.

  18. On-chip plasmonic spectrometer.

    PubMed

    Tsur, Yuval; Arie, Ady

    2016-08-01

    We report a numerical and experimental study of an on-chip optical spectrometer, utilizing propagating surface plasmon polaritons in the telecom spectral range. The device is based on two holographic gratings, one for coupling, and the other for decoupling free-space radiation with the surface plasmons. This 800 μm×100 μm on-chip spectrometer resolves 17 channels spectrally separated by 3.1 nm, spanning a freely tunable spectral window, and is based on standard lithography fabrication technology. We propose two potential applications for this new device; the first employs the holographic control over the amplitude and phase of the input spectrum, for intrinsically filtering unwanted frequencies, like pump radiation in Raman spectroscopy. The second prospect utilizes the unique plasmonic field enhancement at the metal-dielectric boundary for the spectral analysis of very small samples (e.g., Mie scatterers) placed between the two gratings. PMID:27472609

  19. Multilayer diffraction grating

    DOEpatents

    Barbee, T.W. Jr.

    1990-04-10

    This invention is for a reflection diffraction grating that functions at X-ray to VUV wavelengths and at normal angles of incidence. The novel grating is comprised of a laminar grating of period D with flat-topped grating bars. A multiplicity of layered synthetic microstructures, of period d and comprised of alternating flat layers of two different materials, are disposed on the tops of the grating bars of the laminar grating. In another embodiment of the grating, a second multiplicity of layered synthetic microstructures are also disposed on the flat faces, of the base of the grating, between the bars. D is in the approximate range from 3,000 to 50,000 Angstroms, but d is in the approximate range from 10 to 400 Angstroms. The laminar grating and the layered microstructures cooperatively interact to provide many novel and beneficial instrumentational advantages. 2 figs.

  20. Multilayer diffraction grating

    DOEpatents

    Barbee, Jr., Troy W.

    1990-01-01

    This invention is for a reflection diffraction grating that functions at X-ray to VUV wavelengths and at normal angles of incidence. The novel grating is comprised of a laminar grating of period D with flat-topped grating bars. A multiplicity of layered synthetic microstructures, of period d and comprised of alternating flat layers of two different materials, are disposed on the tops of the grating bars of the laminar grating. In another embodiment of the grating, a second multiplicity of layered synthetic microstructures are also disposed on the flat faces, of the base of the grating, between the bars. D is in the approximate range from 3,000 to 50,000 Angstroms, but d is in the approximate range from 10 to 400 Angstroms. The laminar grating and the layered microstructures cooperatively interact to provide many novel and beneficial instrumentational advantages.

  1. Portable smartphone optical fibre spectrometer

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Arafat; Canning, John; Cook, Kevin; Jamalipour, Abbas

    2015-09-01

    A low cost, optical fibre based spectrometer has been developed on a smartphone platform for field-portable spectral analysis. Light of visible wavelength is collected using a multimode optical fibre and diffracted by a low cost nanoimprinted diffraction grating. A measurement range over 300 nm span (λ = 400 to 700 nm) is obtained using the smartphone CMOS chip. The spectral resolution is Δλ ~ 0.42 nm/screen pixel. A customized Android application processed the spectra on the same platform and shares with other devices. The results compare well with commercially available spectrometer.

  2. Current Calibration Efforts and Performance of the HST Space Telescope Imaging Spectrograph: Echelle Flux Calibration, the BAR5 Occulter, and Lamp Lifetimes

    NASA Astrophysics Data System (ADS)

    Monroe, TalaWanda R.; Aloisi, Alessandra; Debes, John H.; Jedrzejewski, Robert I.; Lockwood, Sean A.; Peeples, Molly S.; Proffitt, Charles R.; Riley, Allyssa; Walborn, Nolan R.

    2016-06-01

    The variety of operating modes of the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST) continues to allow STIS users to obtain unique, high quality observations and cutting-edge results 19 years after its installation on HST. STIS is currently the only instrument available to the astronomy community that allows high spectral and spatial resolution spectroscopy in the FUV and NUV, including echelle modes. STIS also supports solar-blind imaging in the FUV. In the optical, STIS provides long-slit, first-order spectra that take advantage of HST's superb spatial resolution, as well as several unique unfiltered coronagraphic modes, which continue to benefit the exoplanet and debris-disk communities. The STIS instrument team monitors the instrument’s health and performance over time to characterize the effects of radiation damage and continued use of the detectors and optical elements. Additionally, the STIS team continues to improve the quality of data products for the user community. We present updates on efforts to improve the echelle flux calibration of overlapping spectral orders due to changes in the grating blaze function since HST Servicing Mission 4, and efforts to push the contrast limit and smallest inner working angle attainable with the coronagraphic BAR5 occulter. We also provide updates on the performance of the STIS calibration lamps, including work to maintain the accuracy of the wavelength calibration for all modes.

  3. Varied line-space gratings: past, present and future

    SciTech Connect

    Hettrick, M.C.

    1985-08-01

    A classically ruled diffraction grating consists of grooves which are equidistant, straight and parallel. Conversely, the so-called ''holographic'' grating (formed by the interfering waves of coherent visible light), although severely constrained by the recording wavelength and recording geometry, has grooves which are typically neither equidistant, straight nor parallel. In contrast, a varied line-space (VLS) grating, in common nomenclature, is a design in which the groove positions are relatively unconstrained yet possess sufficient symmetry to permit mechanical ruling. Such seemingly exotic gratings are no longer only a theoretical curiosity, but have been ruled and used in a wide variety of applications. These include: (1) aberration-corrected normal incidence concave gratings for Seya-Namioka monochromators and optical de-multiplexers, (2) flat-field grazing incidence concave gratings for plasma diagnostics, (3) aberration-corrected grazing incidence plane gratings for space-borne spectrometers, (4) focusing grazing incidence plane grating for synchrotron radiation monochromators, and (5) wavefront generators for visible interferometry of optical surfaces (particularly aspheres). Future prospects of VLS gratings as dispersing elements, wavefront correctors and beamsplitters appear promising. The author discusses the history of VLS gratings, their present applications, and their potential in the future. 61 refs., 24 figs.

  4. Off-the-shelf Echelle Spectroscopy: Two Devices on the Test Block

    NASA Astrophysics Data System (ADS)

    Eversberg, Thomas

    2016-11-01

    Today, various Echelle spectrographs for small telescopes are available on the market. These instruments are ready-to-use, including professional data reduction chains. Manufacturers claim that their compact instruments can deliver professionally usable data for very low prices. This paper presents extensive tests of the two most popular small-scale Echelle spectrographs for telescopes in the 1 m domain with a focus on radial velocity accuracy.

  5. AVES: an adaptive optics visual echelle spectrograph for the VLT

    NASA Astrophysics Data System (ADS)

    Pasquini, Luca; Delabre, Bernard; Avila, Gerardo; Bonaccini, Domenico

    1998-07-01

    We present the preliminary study of a low cost, high performance spectrograph for the VLT, for observations in the V, R and I bands. This spectrograph is meant for intermediate (R equals 16,000) resolution spectroscopy of faint (sky and/or detector limited) sources, with particular emphasis on the study of solar-type (F-G) stars belonging to the nearest galaxies and to distant (or highly reddened) galactic clusters. The spectrograph is designed to use the adaptive optics (AO) systems at the VLT Telescope. Even if these AO systems will not provide diffraction limited images in the V, R and I bands, the photon concentration will still be above approximately 60% of the flux in an 0.3 arcsecond aperture for typical Paranal conditions. This makes the construction of a compact, cheap and efficient echelle spectrograph possible. AVES will outperform comparable non adaptive optic instruments by more than one magnitude for sky- and/or detector-limited observations, and it will be very suitable for observations in crowded fields.

  6. First science observations with the ACES echelle spectrograph

    NASA Astrophysics Data System (ADS)

    Reynolds, Robert O.; Lloyd-Hart, Michael

    2004-09-01

    The use of spectrographs with telescopes having high order adaptive optics (AO) systems offers the possibility of achieving near diffraction-limited spectral resolution with ground-based telescopes, as well as important advantages for instrument design. The use of an optical fiber to couple the instrument to the telescope affords additional advantages such as flexibility in the placement of the instrument and improved homogeneity of the input illumination function. In the case of Steward Observatory's Adaptively Coupled Echelle Spectrograph (ACES), the instrument is normally coupled to the telescope with an 8 micron diameter near single-mode optical fiber, although the instrument can be used at fixed focus locations without the fiber for telescopes so equipped. The use of a fiber coupler results in the phenomenon known as 'modal noise', where the transmission of multiple modes in the fiber leads to a wavelength-dependent variation in illumination that limits flat fielding precision. We have largely eliminated this effect through the use of an automated fiber stretcher device. We report here on improvements to the fiber feed optics and on interim observations made with the instrument at a conventional telescope not equipped with adaptive optics.

  7. Correlation spectrometer

    DOEpatents

    Sinclair, Michael B.; Pfeifer, Kent B.; Flemming, Jeb H.; Jones, Gary D.; Tigges, Chris P.

    2010-04-13

    A correlation spectrometer can detect a large number of gaseous compounds, or chemical species, with a species-specific mask wheel. In this mode, the spectrometer is optimized for the direct measurement of individual target compounds. Additionally, the spectrometer can measure the transmission spectrum from a given sample of gas. In this mode, infrared light is passed through a gas sample and the infrared transmission signature of the gasses present is recorded and measured using Hadamard encoding techniques. The spectrometer can detect the transmission or emission spectra in any system where multiple species are present in a generally known volume.

  8. Catwalk grate lifting tool

    DOEpatents

    Gunter, L.W.

    1992-08-11

    A device is described for lifting catwalk grates comprising an elongated bent member with a handle at one end and a pair of notched braces and a hook at the opposite end that act in conjunction with each other to lock onto the grate and give mechanical advantage in lifting the grate. 10 figs.

  9. Renewable liquid reflection grating

    DOEpatents

    Ryutov, Dmitri D.; Toor, Arthur

    2003-10-07

    A renewable liquid reflection grating. Electrodes are operatively connected to a conducting liquid in an arrangement that produces a reflection grating and driven by a current with a resonance frequency. In another embodiment, the electrodes create the grating by a resonant electrostatic force acting on a dielectric liquid.

  10. Transmission Grating Measurements of Undulator K

    SciTech Connect

    Bionta, R. M.

    2010-12-01

    This study was undertaken to understand the practicalities of determine K differences in the undulator modules by measuring single-shot x-ray spectra of the spontaneous radiation with a transmissive grating spectrometer under development to measure FEL spectra. Since the quality of the FEL is dependent on a uniform K value in all the undulator modules, being able to measure the relative undulator K values is important. Preliminary results were presented in a presentation, 'Use of FEL Off-Axis Zone Plate Spectrometer to Measure Relative K by the Pinhole/Centroid Method', at the 'LCLS Beam-Based Undulator K Measurements Workshop' on November 14, 2005 (UCRL-PRES-217281). This study applies equally well to reflective gratings of the appropriate period and inclinations.

  11. Displacement measurement of a grating using moiré modulation of an optical spectrum

    NASA Astrophysics Data System (ADS)

    Nakadate, Suezou; Tokudome, Toyohisa; Shibuya, Masato

    2004-08-01

    A new method for remote displacement measurement of a grating is proposed, which utilizes moiré fringes of two gratings that modulate a spectrum of white light coming from an optical fibre. The amount of displacement of the sensing grating is calculated with Fourier coefficients of the spectrum of light detected by an arrayed spectrometer. The displacement of the spectral profile is proportional to that of the sensing grating. Parameters of the measurement system are analysed theoretically. Experimental results are given for two experimental set-ups—one for light being transmitted through gratings and the other for light reflecting from a grating and mirror. Sensitivity for the light-transmitting set-up reached 1/710 of the spacing of the grating, which corresponds to 14 nm for a grating of 10 µm spacing.

  12. Multidimensional spectrometer

    DOEpatents

    Zanni, Martin Thomas; Damrauer, Niels H.

    2010-07-20

    A multidimensional spectrometer for the infrared, visible, and ultraviolet regions of the electromagnetic spectrum, and a method for making multidimensional spectroscopic measurements in the infrared, visible, and ultraviolet regions of the electromagnetic spectrum. The multidimensional spectrometer facilitates measurements of inter- and intra-molecular interactions.

  13. Multilayer dielectric diffraction gratings

    DOEpatents

    Perry, Michael D.; Britten, Jerald A.; Nguyen, Hoang T.; Boyd, Robert; Shore, Bruce W.

    1999-01-01

    The design and fabrication of dielectric grating structures with high diffraction efficiency used in reflection or transmission is described. By forming a multilayer structure of alternating index dielectric materials and placing a grating structure on top of the multilayer, a diffraction grating of adjustable efficiency, and variable optical bandwidth can be obtained. Diffraction efficiency into the first order in reflection varying between 1 and 98 percent has been achieved by controlling the design of the multilayer and the depth, shape, and material comprising the grooves of the grating structure. Methods for fabricating these gratings without the use of ion etching techniques are described.

  14. Multilayer dielectric diffraction gratings

    DOEpatents

    Perry, M.D.; Britten, J.A.; Nguyen, H.T.; Boyd, R.; Shore, B.W.

    1999-05-25

    The design and fabrication of dielectric grating structures with high diffraction efficiency used in reflection or transmission is described. By forming a multilayer structure of alternating index dielectric materials and placing a grating structure on top of the multilayer, a diffraction grating of adjustable efficiency, and variable optical bandwidth can be obtained. Diffraction efficiency into the first order in reflection varying between 1 and 98 percent has been achieved by controlling the design of the multilayer and the depth, shape, and material comprising the grooves of the grating structure. Methods for fabricating these gratings without the use of ion etching techniques are described. 7 figs.

  15. Analytical alignment tolerances for off-plane reflection grating spectroscopy

    NASA Astrophysics Data System (ADS)

    Allured, Ryan; McEntaffer, Randall T.

    2013-12-01

    Future NASA X-ray Observatories will shed light on a variety of high-energy astrophysical phenomena. Off-plane reflection gratings can be used to provide high throughput and spectral resolution in the 0.3-1.5 keV band, allowing for unprecedented diagnostics of energetic astrophysical processes. A grating spectrometer consists of multiple aligned gratings intersecting the converging beam of a Wolter-I telescope. Each grating will be aligned such that the diffracted spectra overlap at the focal plane. Misalignments will degrade both spectral resolution and effective area. In this paper we present an analytical formulation of alignment tolerances that define grating orientations in all six degrees of freedom. We verify our analytical results with raytrace simulations to fully explore the alignment parameter space. We also investigate the effect of misalignments on diffraction efficiency.

  16. Automatic one dimensional spectra extraction for Weihai fiber-fed high resolution echelle spectra

    NASA Astrophysics Data System (ADS)

    Hu, Shao Ming; Gao, Dong Yang

    2014-11-01

    One fiber-fed high resolution echelle spectrograph was built for the one meter telescope atWeihai Observatory of Shandong University. It is used for exoplanet searching by radial velocity method and for stellar spectra analysis. One dimensional spectra extraction from the raw echelle data is researched in this paper. Flat field images with different exposure times were used to trace the order position accurately. The accurate background was fitted from each CCD image and it was subtracted from the raw image to correct the background and straylight. The intensity of each order decreases towards the order margin, and the lengths of order are different between the blue and red regions. The order tracing during the data reduction was investigated in this work. Accurate flux can be obtained after considering the effects of bad pixels, the curvature of each order and so on. One Interactive Data Language program for one dimensional spectra extraction was adopted and implemented to echelle data reduction for Weihai fiber-fed high resolution echelle spectra, and the results are illustrated here. The program is efficient and accurate for echelle data reduction. It can be adopted to reduce data taken by other instruments even the spectrographs in other fields, and it is very convenient for astronomers.

  17. Frequency comb based spectrometer for in situ and real time measurements of IO, BrO, NO₂, and H₂CO at pptv and ppqv levels.

    PubMed

    Grilli, Roberto; Méjean, Guillaume; Kassi, Samir; Ventrillard, Irène; Abd-Alrahman, Chadi; Romanini, Daniele

    2012-10-01

    We report an instrument designed for trace gas measurement of highly reactive halogenated radicals, such as bromine oxide and iodine oxide, as well as for nitrogen dioxide and formaldehyde. This compact and robust spectrometer relies on an alternated injection of a frequency-doubled femtosecond radiation at 338 and 436 nm into two parallel high-finesse cavities, for measuring BrO + H(2)CO, and IO + NO(2), respectively. The transmission of the broadband radiation through the cavity is analyzed with a high resolution, compact spectrograph consisting of an echelle grating and a high sensitivity CCD camera. The transportable instrument fits on a breadboard 120 × 60 cm size and is suitable for in situ and real time measurements of these species. A field campaign at the Marine Boundary Layer in Roscoff (in the northwest of France, 48.7°N, 4.0°W) during June 2011 illustrates the outstanding performance of the instrument, which reaches a bandwidth normalized minimum absorption coefficient of 1.3 × 10(-11) cm(-1) Hz(-1/2) per spectral element, and provides detection levels as low as 20 parts per quadrillion of IO in 5 min of acquisition.

  18. CAFE: Calar Alto Fiber-fed Echelle spectrograph

    NASA Astrophysics Data System (ADS)

    Sánchez, S. F.; Aceituno, J.; Thiele, U.; Grupp, F.; Dreizler, S.; Bean, J.; Benitez, D.

    2011-11-01

    The Calar Alto Fiber-fed Echelle spectrograph (CAFE) is an instrument underconstruction at CAHA to replace FOCES, the high-resolution echellespectrograph at the 2.2 m telescope of the observatory. FOCES is a property ofthe Observatory of the Munich University, and it was recalled it from Calar Altoin 2009. The instrument comprised a substantial fraction of thetelescope time during its operational life-time, and it is due to that it wastaken the decision to build a replacement.CAFE shares its basic characteristics with those of FOCES. However, significantimprovements have been introduced in the original design, the quality of thematerials, and the overall stability of the system. In particular: (i) a newcalibration Iodine cell is foreseen to operate together with the standard ThArlamps; (ii) the optical quality of all the components has been selected to belambda/20, instead of the original lambda/10; (iii) an isolated room hasbeen selected to place the instrument, termalized and stabilized againstvibrations (extensive tests have been performed to grant the stability); (iv)most of the mobile parts in FOCES has been substituted by fixed elements, toincrease the stability of the system; and finally (v) a new more efficientCCD, with a smaller pixel has been acquired. It is expected that the overallefficiency and the quality of the data will be significantly improved withrespect to its precesor. In particular, CAFE is design and built to achieveresolutions of R ˜ 70000, which will be kept in the final acquired data,allowing it to compete with current operational extrasolar planets hunters.After two years of work all the components are in place. The instrument is nowfinally assembled, and we are performing the the first alignment tests. It isexpected that the commissioning on the laboratory will finish at the end of2010, followed by the commissioning on telescope along the first semester of2011. If everything goes well, we will offer the instrument in a shared

  19. Optical fiber smartphone spectrometer.

    PubMed

    Hossain, Md Arafat; Canning, John; Cook, Kevin; Jamalipour, Abbas

    2016-05-15

    An optical fiber-based smartphone spectrometer incorporating an endoscopic fiber bundle is demonstrated. The endoscope allows transmission of the smartphone camera LED light to a sample, removing complications from varying background illumination. The reflected spectra collected from a surface or interface is dispersed onto the camera CMOS using a reflecting diffraction grating. A spectral resolution as low as δλ∼2.0  nm over a bandwidth of Δλ∼250  nm is obtained using a slit width, ωslit=0.7  mm. The instrument has vast potential in a number of industrial applications including agricultural produce analysis. Spectral analysis of apples shows straightforward measurement of the pigments anthocyanins, carotenoid, and chlorophyll, all of which decrease with increasing storage time. PMID:27176971

  20. SCINTILLATION SPECTROMETER

    DOEpatents

    Bell, P.R.; Francis, J.E.

    1960-06-21

    A portable scintillation spectrometer is described which is especially useful in radio-biological studies for determining the uptake and distribution of gamma -emitting substances in tissue. The spectrometer includes a collimator having a plurality of apertures that are hexagonal in cross section. Two crystals are provided: one is activated to respond to incident rays from the collimator; the other is not activated and shields the first from external radiation.

  1. Micro spectrometer for parallel light and method of use

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2011-01-01

    A spectrometer system includes an optical assembly for collimating light, a micro-ring grating assembly having a plurality of coaxially-aligned ring gratings, an aperture device defining an aperture circumscribing a target focal point, and a photon detector. An electro-optical layer of the grating assembly may be electrically connected to an energy supply to change the refractive index of the electro-optical layer. Alternately, the gratings may be electrically connected to the energy supply and energized, e.g., with alternating voltages, to change the refractive index. A data recorder may record the predetermined spectral characteristic. A method of detecting a spectral characteristic of a predetermined wavelength of source light includes generating collimated light using an optical assembly, directing the collimated light onto the micro-ring grating assembly, and selectively energizing the micro-ring grating assembly to diffract the predetermined wavelength onto the target focal point, and detecting the spectral characteristic using a photon detector.

  2. History of grating images

    NASA Astrophysics Data System (ADS)

    Iwata, Fujio

    2001-06-01

    Toppan Printing Co., Ltd. originated the name of 'grating image'. It means an image that consists of diffraction grating dots that look similar to the halftone dots of conventional printing. We proposed this new display method using simple gratings in order to enhance the visual effects when illumination is made by a fluorescent lamp. We considered the use of simple gratings as elemental dots, and used a number of elemental dots to display a 2D image. This method produces an effect something like the halftone dots of printing. The grating image technology grows from its starting to become able to produce 3D images and a 3D-video system using an electron beam grating-writing system.

  3. HIRDES-The High-Resolution Double-Echelle Spectrograph for WSO-UV

    NASA Astrophysics Data System (ADS)

    Werner, Klaus; Barnstedt, Jürgen; Kappelmann, Norbert; Becker-Roß, Helmut; Florek, Stefan

    2009-05-01

    We introduce the High-Resolution Double-Echelle Spectrograph (HIRDES), which is planned to be the main instrument for the World Space Observatory Ultraviolet (WSO-UV), a 1.7 m UV telescope. Within HIRDES the 102-310 nm spectral band is split to feed two echelle spectrographs covering the UV range 174-310 nm and the vacuum-UV range 102-176 nm with high spectral resolution (R>50000). The technical concept is based on the heritage of two previous ORFEUS SPAS missions. We describe results of the phase-B1 development activities.

  4. Grating image technology

    NASA Astrophysics Data System (ADS)

    Iwata, Fujio

    1995-07-01

    The word 'grating image' was first named by Toppan Printing Company, Ltd. It means that an image consists of grating dots. In 1988, we presented this new technology at the Optical Security Systems Symposium, in Switzerland. Then it was improved and applied in display application. Recently, it was further applied in 3D video systems. In this report, the development history and the recent situations of grating image technology are described.

  5. Reflective diffraction grating

    DOEpatents

    Lamartine, Bruce C.

    2003-06-24

    Reflective diffraction grating. A focused ion beam (FIB) micromilling apparatus is used to store color images in a durable medium by milling away portions of the surface of the medium to produce a reflective diffraction grating with blazed pits. The images are retrieved by exposing the surface of the grating to polychromatic light from a particular incident bearing and observing the light reflected by the surface from specified reception bearing.

  6. Deformed ellipsoidal diffraction grating blank

    NASA Technical Reports Server (NTRS)

    Decew, Alan E., Jr.

    1994-01-01

    The Deformed Ellipsoidal Grating Blank (DEGB) is the primary component in an ultraviolet spectrometer. Since one of the major concerns for these instruments is throughput, significant efforts are made to reduce the number of components and subsequently reflections. Each reflection results in losses through absorption and scattering. It is these two sources of photon loss that dictated the requirements for the DEGB. The first goal is to shape the DEGB in such a way that the energy at the entrance slit is focused as well as possible on the exit slit. The second goal is to produce a surface smooth enough to minimize the photon loss due to scattering. The program was accomplished in three phases. The first phase was the fabrication planning. The second phase was the actual fabrication and initial testing. The last phase was the final testing of the completed DEGB.

  7. Resolution-enhanced Mapping Spectrometer

    NASA Technical Reports Server (NTRS)

    Kumer, J. B.; Aubrun, J. N.; Rosenberg, W. J.; Roche, A. E.

    1993-01-01

    A familiar mapping spectrometer implementation utilizes two dimensional detector arrays with spectral dispersion along one direction and spatial along the other. Spectral images are formed by spatially scanning across the scene (i.e., push-broom scanning). For imaging grating and prism spectrometers, the slit is perpendicular to the spatial scan direction. For spectrometers utilizing linearly variable focal-plane-mounted filters the spatial scan direction is perpendicular to the direction of spectral variation. These spectrometers share the common limitation that the number of spectral resolution elements is given by the number of pixels along the spectral (or dispersive) direction. Resolution enhancement by first passing the light input to the spectrometer through a scanned etalon or Michelson is discussed. Thus, while a detector element is scanned through a spatial resolution element of the scene, it is also temporally sampled. The analysis for all the pixels in the dispersive direction is addressed. Several specific examples are discussed. The alternate use of a Michelson for the same enhancement purpose is also discussed. Suitable for weight constrained deep space missions, hardware systems were developed including actuators, sensor, and electronics such that low-resolution etalons with performance required for implementation would weigh less than one pound.

  8. ISO observations of Titan with SWS/grating

    NASA Technical Reports Server (NTRS)

    Coustenis, A.; Encrenaz, T.; Salama, A.; Lellouch, E.; Gautier, D.; Kessler, M. F.; deGraauw, T.; Samuelson, R. E.; Bjoraker, G.; Orton, G.

    1997-01-01

    The observations of Titan performed by the Infrared Space Observatory (ISO) short wavelength spectrometer (SWS), in the 2 micrometer to 45 micrometer region using the grating mode, are reported on. Special attention is given to data from Titan concerning 7 micrometer to 45 micrometer spectral resolution. Future work for improving Titan's spectra investigation is suggested.

  9. Observation of the June 22, 2015 G4 storm by HiT&MiS: an Echelle Spectrograph for Auroral and Airglow Studies

    NASA Astrophysics Data System (ADS)

    Aryal, S.; Hewawasam, K.; Maguire, R.; Chakrabarti, S.; Cook, T.; Martel, J.; Baumgardner, J. L.

    2015-12-01

    Observation of the June 22, 2015 G4 storm by HiT&MiS: an Echelle Spectrograph for Auroral and Airglow Studies Saurav Aryal1 , Kuravi Hewawasam1, Ryan Maguire1, Supriya Chakrabarti1, Timothy Cook1, Jason Martel1 and Jeffrey L Baumgardner2, (1) University of Massachusetts Lowell, Lowell, MA, United States, (2)Boston University, Boston, MA, United StatesA High-Throughput and Multi-slit Imaging Spectrograph (HiT&MIS) has been developed by our group. The spectrograph uses an echelle grating that operates at high dispersion orders (28-43) such that extended sources for airglow and auroral emissions can be observed at high resolution (about 0.02 nm). By using four slits (instead of the conventional one slit setup), with the appropriate foreoptics it images extended emissions along a long field of view of about 0.1° × 50°. It observes spectral regions around six prominent atmospheric emission lines (HI 656.3 nm, HI 486.1 nm, OI 557.7 nm, OI 630.0 nm, OI 777.4 nm and N+2 427.8 nm) using order sorting interference filters at the entrance slits and a filter mosaic on an image plane. We present observations from the instrument during the June 22, 2015 G4 storm. OI 557.7 nm (green line) and OI 630.0 nm (red line) showed strong brightness enhancements that lasted throughout the night from 8 P.M June 22, 2015 to 3 AM June 23,2015 when compared to the same times after the storm had passed.

  10. The diffraction grating in the Ivory optomechanical modeling tools

    NASA Astrophysics Data System (ADS)

    Hatheway, Alson E.

    2013-09-01

    In imaging spectrometers it is important that both the image of the far-field object and the image of the slit be stable on the detector plane. Lenses and mirrors contribute to the motions of these images but motions of the diffraction grating also have their own influences on these image motions. This paper develops the vector equations for the images (spectra) of the diffraction grating and derives their optomechanical influence coefficients from them. The Ivory Optomechanical Modeling Tools integrates the diffraction grating into the larger optical imaging system and formats the whole system's influence coefficients suitably for both spreadsheet and finite element analysis methods. Their application is illustrated in an example of a spectrometer exposed to both static and dynamic disturbances.

  11. A Low Cost Grism Spectrometer for Small Telescopes

    NASA Astrophysics Data System (ADS)

    Ludovici, Dominic

    2016-06-01

    We have designed and built a low cost (appx. $500) low resolution (R ~ 300) grating-prism (grism) spectrometer for the University of Iowa's robotic observatory. Grism spectrometers differ from simple transmission grating systems by partially compensating for the curved focal plane using a wedge prism. The spectrometer has five optical elements, and was designed using a ray tracing program. The collimating and focusing optics are easily modified for other telescope optics. The optics are mounted in an enclosure made with a 3-d printer. The spectrometer was installed in a modified (extended) filter wheel and has been in routine operation since January 2016. I will show sample spectra using this system and discuss spectral calibration, and optical design considerations for other telescopes. I will also discuss how low-resolution spectrometers can be used in undergraduate teaching laboratories.

  12. Bidirectional grating compressors

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Li, Zhaoyang; Li, Shuai; Liu, Yanqi; Leng, Yuxin; Li, Ruxin

    2016-07-01

    A bidirectional grating compressor for chirped pulse amplifiers is presented. It compresses a laser beam simultaneously in two opposite directions. The pulse compressor is shown to promote chirped pulse amplifiers' output energy without grating damages. To verify the practicability, an experiment is carried out. In addition, a crosscorrelation instrument is designed and set up to test the time synchronization between these two femtosecond pulses.

  13. Unexpected effects of a trap in CCD echelle spectra of B-type stars

    NASA Technical Reports Server (NTRS)

    Morrison, Nancy D.; Zimba, Jason R.

    1990-01-01

    Because of the nature of echelle spectra, cosmetic defects such as traps may mimic real spectral features. An example from spectra taken at CTIO with a GEC CCD is presented, and it is shown how the affected pixels can be eliminated from the reduced spectrum, at a slight cost in signal-to-noise ratio.

  14. Dual waveband compact catadioptric imaging spectrometer

    DOEpatents

    Chrisp, Michael P.

    2012-12-25

    A catadioptric dual waveband imaging spectrometer that covers the visible through short-wave infrared, and the midwave infrared spectral regions, dispersing the visible through shortwave infrared with a zinc selenide grating and midwave infrared with a sapphire prism. The grating and prism are at the cold stop position, enabling the pupil to be split between them. The spectra for both wavebands are focused onto the relevant sections of a single dual waveband detector. Spatial keystone distortion is controlled to less than one tenth of a pixel over the full wavelength range, facilitating the matching of the spectra in the midwave infrared with the shorter wavelength region.

  15. HyTES: Thermal Imaging Spectrometer Development

    NASA Technical Reports Server (NTRS)

    Johnson, William R.; Hook, Simon J.; Mouroulis, Pantazis; Wilson, Daniel W.; Gunapala, Sarath D.; Realmuto, Vincent; Lamborn, Andy; Paine, Chris; Mumolo, Jason M.; Eng, Bjorn T.

    2011-01-01

    The Jet Propulsion Laboratory has developed the Hyperspectral Thermal Emission Spectrometer (HyTES). It is an airborne pushbroom imaging spectrometer based on the Dyson optical configuration. First low altitude test flights are scheduled for later this year. HyTES uses a compact 7.5-12 micrometer m hyperspectral grating spectrometer in combination with a Quantum Well Infrared Photodetector (QWIP) and grating based spectrometer. The Dyson design allows for a very compact and optically fast system (F/1.6). Cooling requirements are minimized due to the single monolithic prism-like grating design. The configuration has the potential to be the optimal science-grade imaging spectroscopy solution for high altitude, lighter-than-air (HAA, LTA) vehicles and unmanned aerial vehicles (UAV) due to its small form factor and relatively low power requirements. The QWIP sensor allows for optimum spatial and spectral uniformity and provides adequate responsivity which allows for near 100mK noise equivalent temperature difference (NEDT) operation across the LWIR passband. The QWIP's repeatability and uniformity will be helpful for data integrity since currently an onboard calibrator is not planned. A calibration will be done before and after eight hour flights to gage any inconsistencies. This has been demonstrated with lab testing. Further test results show adequate NEDT, linearity as well as applicable earth science emissivity target results (Silicates, water) measured in direct sunlight.

  16. Spectrometer gun

    DOEpatents

    Waechter, D.A.; Wolf, M.A.; Umbarger, C.J.

    1981-11-03

    A hand-holdable, battery-operated, microprocessor-based spectrometer gun is described that includes a low-power matrix display and sufficient memory to permit both real-time observation and extended analysis of detected radiation pulses. Universality of the incorporated signal processing circuitry permits operation with various detectors having differing pulse detection and sensitivity parameters.

  17. Spectrometer gun

    DOEpatents

    Waechter, David A.; Wolf, Michael A.; Umbarger, C. John

    1985-01-01

    A hand-holdable, battery-operated, microprocessor-based spectrometer gun includes a low-power matrix display and sufficient memory to permit both real-time observation and extended analysis of detected radiation pulses. Universality of the incorporated signal processing circuitry permits operation with various detectors having differing pulse detection and sensitivity parameters.

  18. HISS spectrometer

    SciTech Connect

    Greiner, D.E.

    1984-11-01

    This talk describes the Heavy Ion Spectrometer System (HISS) facility at the Lawrence Berkeley Laboratory's Bevalac. Three completed experiments and their results are illustrated. The second half of the talk is a detailed discussion of the response of drift chambers to heavy ions. The limitations of trajectory measurement over a large range in incident particle charge are presented.

  19. Transmitted wavefront error of a volume phase holographic grating at cryogenic temperature.

    PubMed

    Lee, David; Taylor, Gordon D; Baillie, Thomas E C; Montgomery, David

    2012-06-01

    This paper describes the results of transmitted wavefront error (WFE) measurements on a volume phase holographic (VPH) grating operating at a temperature of 120 K. The VPH grating was mounted in a cryogenically compatible optical mount and tested in situ in a cryostat. The nominal root mean square (RMS) wavefront error at room temperature was 19 nm measured over a 50 mm diameter test aperture. The WFE remained at 18 nm RMS when the grating was cooled. This important result demonstrates that excellent WFE performance can be obtained with cooled VPH gratings, as required for use in future cryogenic infrared astronomical spectrometers planned for the European Extremely Large Telescope. PMID:22660099

  20. Concerning the Spatial Heterodyne Spectrometer

    DOE PAGES

    Lenzner, Matthias; Diels, Jean -Claude

    2016-01-22

    A modified Spatial Heterodyne Spectrometer (SHS) is used for measuring atomic emission spectra with high resolution. This device is basically a Fourier Transform Spectrometer, but the Fourier transform is taken in the directions perpendicular to the optical propagation and heterodyned around one preset wavelength. In recent descriptions of this device, one specific phenomenon - the tilt of the energy front of wave packets when diffracted from a grating - was neglected. This led to an overestimate of the resolving power of this spectrograph, especially in situations when the coherence length of the radiation under test is in the order ofmore » the effective aperture of the device. In conclusion, the limits of usability are shown here together with some measurements of known spectral lines.« less

  1. Concerning the Spatial Heterodyne Spectrometer.

    PubMed

    Lenzner, Matthias; Diels, Jean-Claude

    2016-01-25

    A modified Spatial Heterodyne Spectrometer (SHS) is used for measuring atomic emission spectra with high resolution. This device is basically a Fourier Transform Spectrometer, but the Fourier transform is taken in the directions perpendicular to the optical propagation and heterodyned around one preset wavelength. In recent descriptions of this device, one specific phenomenon - the tilt of the energy front of wave packets when diffracted from a grating - was neglected. This led to an overestimate of the resolving power of this spectrograph, especially in situations when the coherence length of the radiation under test is in the order of the effective aperture of the device. The limits of usability are shown here together with some measurements of known spectral lines. PMID:26832561

  2. Aberrations of varied line-space grazing incidence gratings in converging light beams

    NASA Technical Reports Server (NTRS)

    Hettrick, M. C.

    1984-01-01

    Analyses of the imaging properties of several designs for varied-line space gratings in converging beams of light in grazing-incidence spectrometers are presented. An explicit model is defined for the case of a plane-reflection grating intercepting light that converges and is reflected to a stigmatic point associated with the zero-order image of the grating. Smooth spatial variation of the grating constant then permits aberration correction. The aberrations are expressed as polynomials in the grating lens coordinates using power series expansions. Application of the model is illustrated in terms of aberrations experienced with the short wavelength spectrometer on the EUVE satellite. Attention is given to straight and parallel in-plane grooves, curved groove in-plane designs and off-plane grooves. Aberrations due to dispersions and misalignment are also considered.

  3. Ultra-Compact, Superconducting Spectrometer-on-a-Chip at Submillimeter Wavelengths

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam; Zmuidzinas, Jonas; Bradford, Charles M.; Leduc, Henry G.; Day, Peter K.; Swenson, Loren; Hailey-Dunsheath, Steven; O'Brient, Roger C.; Padin, Stephen; Shirokoff, Erik D.; McKenney, Christopher; Reck, Theodore; Siles, Jose V.; Barry, Peter; Doyle, Simon; Mauskopf, Philip; Llombart, Nuria; Kovacs, Attila; Marrone, Dan P.

    2013-01-01

    Small size, wide spectral bandwidth, and highly multiplexed detector readout are required to develop powerful multi-beam spectrometers for high-redshift observations. Currently available spectrometers at these frequencies are large and bulky. The grating sizes for these spectrometers are prohibitive. This fundamental size issue is a key limitation for space-based spectrometers for astrophysics applications. A novel, moderate-resolving-power (R-700), ultra-compact spectrograph-on-a-chip for millimeter and submillimeter wavelengths is the solution.

  4. Circular Dammann grating

    NASA Astrophysics Data System (ADS)

    Zhou, Changhe; Jia, Jia; Liu, Liren

    2003-11-01

    A circular Dammann grating that can produce circular equal intensities at various orders in the far field is described. A set of parameters such as order, circular number, uniformity, and diffraction efficiency has been defined to describe the novel diffractive phase elements. Numerical solutions of binary-phase (0, π) circular Dammann gratings are given. The results of experiments with a four-order circular Dammann grating made by a lithographic technique are presented. This novel diffractive optical element should be highly interesting in a wide variety of practical applications.

  5. Aluminum nitride grating couplers.

    PubMed

    Ghosh, Siddhartha; Doerr, Christopher R; Piazza, Gianluca

    2012-06-10

    Grating couplers in sputtered aluminum nitride, a piezoelectric material with low loss in the C band, are demonstrated. Gratings and a waveguide micromachined on a silicon wafer with 600 nm minimum feature size were defined in a single lithography step without partial etching. Silicon dioxide (SiO(2)) was used for cladding layers. Peak coupling efficiency of -6.6 dB and a 1 dB bandwidth of 60 nm have been measured. This demonstration of wire waveguides and wideband grating couplers in a material that also has piezoelectric and elasto-optic properties will enable new functions for integrated photonics and optomechanics.

  6. Long-Wave Infrared Dyson Spectrometer

    NASA Technical Reports Server (NTRS)

    Johnson, William R.; Hook, Simon J.; Mouroulis, Pantazis Z.; Wilson, Daniel W.; Gunapala, Sarath D.; Hill, Cory J.; Mumolo, Jason M.; Eng, Bjorn T.

    2008-01-01

    Preliminary results are presented for an ultra compact long-wave infrared slit spectrometer based on the dyson concentric design. The dyson spectrometer has been integrated in a dewar environment with a quantum well infrared photodetecor (QWIP), concave electron beam fabricated diffraction grating and ultra precision slit. The entire system is cooled to cryogenic temperatures to maximize signal to noise ratio performance, hence eliminating thermal signal from transmissive elements and internal stray light. All of this is done while maintaining QWIP thermal control. A general description is given of the spectrometer, alignment technique and predicated performance. The spectrometer has been designed for optimal performance with respect to smile and keystone distortion. A spectral calibration is performed with NIST traceable targets. A 2-point non-uniformity correction is performed with a precision blackbody source to provide radiometric accuracy. Preliminary laboratory results show excellent agreement with modeled noise equivalent delta temperature and detector linearity over a broad temperature range.

  7. Spectrometer design approaching the limit

    NASA Astrophysics Data System (ADS)

    Riesenberg, Rainer; Wuttig, Andreas; Peschel, Thomas; Damm, Christoph; Dobschal, Hans-Jürgen

    2008-09-01

    The design limits of grating array spectral sensors are discussed. The limit of a grating spectrometer with respect to the resolution is given by the diffraction limit of the grating. To approach the limit for the visible spectral region the entrance slits should reach a width of 2 μm and larger depending on wavelength and numerical aperture. The detector pixel sizes should be in the same range, which is achieved virtually by the discussed double array arrangement with a transmissive, static slit array and detector array. A number of techniques are applied for optimizing the performance as well as for miniaturization. A sub-pixel imaging including a sub-pixel analysis based on the double array arrangement virtually reduces the detector pixel sizes down to about 20%. To avoid the imaging aberrations the spectra is imaged from different entrance positions by the entrance slit array. The throughput can be increased by using a two dimensional entrance slit array, which includes a multiplex pattern or a fixed adaptive pattern. The design example of a UV-Raman spectral sensor is presented including spectral measurements.

  8. Time-of-flight Fourier UCN spectrometer

    NASA Astrophysics Data System (ADS)

    Kulin, G. V.; Frank, A. I.; Goryunov, S. V.; Kustov, D. V.; Geltenbort, P.; Jentschel, M.; Lauss, B.; Schmidt-Wellenburg, P.

    2016-05-01

    We describe a new time-of-flight Fourier spectrometer for investigation of UCN diffraction by a moving grating. The device operates in the regime of a discrete set of modulation frequencies. The results of the first experiments show that the spectrometer may be used for obtaining UCN energy spectra in the energy range of 60 - 200 neV with a resolution of about 5 neV. The accuracy of determination of the line position was estimated to be several units of 10-10 eV.

  9. Color separation gratings

    NASA Technical Reports Server (NTRS)

    Farn, Michael W.; Knowlden, Robert E.

    1993-01-01

    In this paper, we describe the theory, fabrication and test of a binary optics 'echelon'. The echelon is a grating structure which separates electromagnetic radiation of different wavelengths, but it does so according to diffraction order rather than by dispersion within one diffraction order, as is the case with conventional gratings. A prototype echelon, designed for the visible spectrum, is fabricated using the binary optics process. Tests of the prototype show good agreement with theoretical predictions.

  10. SEMICONDUCTOR DEVICES A compressed wide period-tunable grating working at low voltage

    NASA Astrophysics Data System (ADS)

    Xiang, Liu; Tie, Li; Anjie, Ming; Yuelin, Wang

    2010-10-01

    A MEMS compressed period-tunable grating device with a wide tuning range has been designed, fabricated and characterized. To increase the tuning range, avoid instability with tuning and improve the performance, we propose in this paper a period-tunable grating which is compressed by large-displacement comb actuators with tilted folded beams. The experimental results show that the designed grating device has a compression range of up to 144 μm within 37 V driving voltage. The period of the grating can be adjusted continuously from 16 to 14 μm with a tuning range of 12.5%. The maximum tuning range of the first-order diffraction angle is 0.34° at 632.8 nm and the reflectivity of the grating is more than 92.6% in the mid-infrared region. The grating device can be fabricated by simple processes and finds applications in mid-infrared spectrometers.

  11. Performance of volume phase holographic transmission grating recorded in DCG for PGP

    NASA Astrophysics Data System (ADS)

    Li, Ming; Tang, Minxue; Xia, Haohan; Fang, Chunhuan; Wu, Jianhong; Zhao, Xunjie

    2010-11-01

    The volume phase holographic (VPH) transmission grating recorded in dichromate gelatin (DCG) with a specific spectral coverage from 420 nm to 760 nm is designed for a novel prism-grating-prism imaging spectrometer. Based on the Rigorous Coupled-Wave Analysis, its performances are predicted and analyzed. The grating is manufactured and its properties are measured experimentally. The diffraction efficiency over the spectral range, the bandwidth, and the angular selectivity of the grating is measured, analyzed and compared with that of the theoretical ones. The results show that by adjusting and controlling the preparation conditions of DCG plates, the exposure time and the post-processing technique of the grating, the VPH transmission grating with high diffraction efficiency approximate to the design requirement can be obtained. The measured peak diffraction efficiency reaches nearly 85% at central wavelength of 590 nm while the average diffraction efficiency is larger than 75% over the required spectral range from 420 nm to 760 nm.

  12. Scanning imaging absorption spectrometer for atmospheric chartography

    NASA Technical Reports Server (NTRS)

    Burrows, John P.; Chance, Kelly V.

    1991-01-01

    The SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY is an instrument which measures backscattered, reflected, and transmitted light from the earth's atmosphere and surface. SCIAMACHY has eight spectral channels which observe simultaneously the spectral region between 240 and 1700 nm and selected windows between 1940 and 2400 nm. Each spectral channel contains a grating and linear diode array detector. SCIAMACHY observes the atmosphere in nadir, limb, and solar and lunar occultation viewing geometries.

  13. Laser driven grating linac

    SciTech Connect

    Palmer, R B

    1980-01-01

    The fields induced over a grating exposed to plane parallel light are explored. It is shown that acceleration is possible if either the particles travel skew to the grating lines, or if the radiation is falling at a skew angle onto the grating. A general theory of diffraction in this skew case is given. In one particular case numerical solutions are worked out for some deep grating. It is found that accelerating fields larger even than the initial fields can be obtained, the limit being set by resistive losses on the grating surface. Simple calculations are made to see what accelerating fields might be obtained using CO/sub 2/ lasers. Accelerations of 2 or 20 GeV per meter seem possible depending on whether the grating is allowed to be destroyed or not. Power requirements, injection and focussing are briefly discussed and no obvious difficulties are seen. It is concluded, therefore, that the proposed mechanism should be considered as a good candidate for the next generation of particle accelerators.

  14. Grate for coal stove

    SciTech Connect

    Harman, D.P.

    1989-02-14

    A stove grate for guiding fuel in two flows is described. The grate includes a stationary floor extending between opposed ends of the grate; spaced sidewalls extending along the sides of the floor between the ends of the grate. The floor includes an entrance section at one end of the gate, a fire support section at the other end of the grate above the entrance section and rise section means extending upwardly between the entrance section and the fire support section for guiding a lower fuel flow upwardly along the floor to the fire support section. It also guides an upper fuel flow located above the first flow up to fill a fuel reservoir located above the floor at the entrance section and at the lower part of the rise section means without overflowing the sidewalls. A plurality of combustion air openings in the floor of the grate extend along the upper part of the rise section means and along the fire support section, the entrance section and the lower part of the rise section being free of combustion air openings.

  15. High performance Si immersion gratings patterned with electron beam lithography

    NASA Astrophysics Data System (ADS)

    Gully-Santiago, Michael A.; Jaffe, Daniel T.; Brooks, Cynthia B.; Wilson, Daniel W.; Muller, Richard E.

    2014-07-01

    by a factor of 5. (3) The serial write process for typical gratings yields write times of about 24 hours- this makes prototyping costly. We discuss work with negative e-beam resist to reduce the fill factor of exposure, and therefore limit the exposure time. We also discuss the tradeoffs of long write-time serial write processes like e-beam with UV photomask lithography. We show the results of experiments on small pattern size prototypes on silicon wafers. Current prototypes now exceed 30 dB of suppression on spectral and spatial dimension ghosts compared to monochromatic spectral purity measurements of the backside of Si echelle gratings in reflection at 632 nm. We perform interferometry at 632 nm in reflection with a 25 mm circular beam on a grating with a blaze angle of 71.6°. The measured wavefront error is 0.09 waves peak to valley.

  16. Photophoretic spectrometer

    SciTech Connect

    Arnold, S.; Amani, Y.; Orenstein, A.

    1980-09-01

    An instrument is described which measures the spectral dependence of the radiometric (photophoretic) force on a micron-sized particle in a static configuration. This spectrometer consists of a servo-stabilized Millikan chamber which can be used as a photophoretic balance over the spectral range from 200 nm to 1000 nm. Spectra may be taken in a vacuum as small as 10/sup -4/ torr. The action spectrum of the photophoretic force on a crystallite of CdS is used as an example. The pressure dependence of the force at 500 nm is consistant with a radiometric mechanism.

  17. MASS SPECTROMETER

    DOEpatents

    White, F.A.

    1960-08-23

    A mass spectrometer is designed with a first adjustable magnetic field for resolving an ion beam into beams of selected masses, a second adjustable magnetic field for further resolving the ion beam from the first field into beams of selected masses, a thin foil disposed in the path of the beam between the first and second magnets to dissociate molecular ions incident thereon, an electrostatic field for further resolving the ion beam from the second field into beams of selected masses, and a detector disposed adjacent to the electrostatic field to receive the ion beam.

  18. Research directed toward improved echelles for the ultraviolet. [large space teslescope spectrographs

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Low frequency gratings obtainable with present technology, can meet the grating-efficiency design goals for potential space telescope spectrographs. Gratings made with changes in the three specific parameters: the ruling tool profile, the coating material, and the lubricants used during the ruling process were compared. A series of coatings and test gratings were fabricated and were examined for surface smoothness with a Nomarski differential interference microscope and an electron microsocope. Photomicrographs were obtained to show the difference in smoothness of the various coatings and rulings. Efficiency measurements were made for those test rulings that showed good groove characteristics: smoothness, proper ruling depth, and absence of defects (e.g., streaks, feathered edges and rough sides). Higher grating efficiency should be correlated with the degree of smoothness of both the coating and the grating groove.

  19. Diffraction Efficiency Testing of Sinusoidal and Blazed Off-Plane Reflection Gratings

    NASA Astrophysics Data System (ADS)

    Tutt, James H.; McEntaffer, Randall L.; Marlowe, Hannah; Miles, Drew M.; Peterson, Thomas J.; Deroo, Casey T.; Scholze, Frank; Laubis, Christian

    2016-09-01

    Reflection gratings in the off-plane mount have the potential to enhance the performance of future high resolution soft X-ray spectrometers. Diffraction efficiency can be optimized through the use of blazed grating facets, achieving high-throughput on one side of zero-order. This paper presents the results from a comparison between a grating with a sinusoidally grooved profile and two gratings that have been blazed. The results show that the blaze does increase throughput to one side of zero-order; however, the total throughput of the sinusoidal gratings is greater than the blazed gratings, suggesting the method of manufacturing the blazed gratings does not produce precise facets. The blazed gratings were also tested in their Littrow and anti-Littrow configurations to quantify diffraction efficiency sensitivity to rotations about the grating normal. Only a small difference in the energy at which efficiency is maximized between the Littrow and anti-Littrow configurations is seen with a small shift in peak efficiency towards higher energies in the anti-Littrow case. This is due to a decrease in the effective blaze angle in the anti-Littrow mounting. This is supported by PCGrate-SX V6.1 modeling carried out for each blazed grating which predicts similar response trends in the Littrow and anti-Littrow orientations.

  20. [Development of X-ray Reflection Grating Technology for the Constellation-X Mission

    NASA Technical Reports Server (NTRS)

    Schattenburg, Mark L.

    2005-01-01

    This Grant supports MIT technology development of x-ray reflection gratings for the Constellation-X Reflection Grating Spectrometer (RGS). Since the start of the Grant MIT has extended its previously-developed patterning and super-smooth, blazed grating fabrication technology to ten-times smaller grating periods and ten-times larger blaze angles to demonstrate feasibility and performance in the off-plane grating geometry. In the past year we have focused our efforts on extending our Nanoruler grating fabrication tool to enable it to perform variable-period scanning-beam interference lithography (VP-SBIL). This new capability required extensive optical and mechanical improvements to the system. The design phase of this work is largely completed and key components are now on order and assembly has begun. Over the next several months the new VP-SBIL Nanoruler system will be completed and testing begun. We have also demonstrated a new technique for patterning gratings using the Nanoruler called Doppler mode, which will be important for patterning the radial groove gratings for the RGS using the new VP-SBIL system. Flat and thin grating substrates will be critical for the RGS. In the last year we demonstrated a new technique for flattening thin substrates using magneto-rheologic fluid polishing (MRF) and achieved 2 arcsecond flatness with a 0.5 mm-thick substrate-a world's record. This meets the Con X requirement for grating substrate flatness.

  1. Immersion grating mount design for IGRINS and GMTNIRS

    NASA Astrophysics Data System (ADS)

    Moon, Bongkon; Wang, Weisong; Park, Chan; Yuk, In-soo; Chun, Moo-Young; Jaffe, Daniel T.

    2012-09-01

    The IGRINS (Immersion GRating INfrared Spectrometer) is a high resolution wide-band infrared spectrograph developed by the Korea Astronomy and Space Science Institute (KASI) and the University of Texas at Austin (UT). Immersion grating is a key component of IGRINS, which disperses the input ray by using a silicon material with a lithography technology. Optomechanical mount for the immersion grating is important to keep the high spectral resolution and the optical alignment in a cold temperature of 130+/-0.06K. The optical performance of immersion grating can maintain within the de-center tolerance of +/-0.05mm and the tip-tilt tolerance of +/-1.5arcmin. The mount mechanism utilizes the flexure and the semikinematic support design to satisfy the requirement and the operation condition. When the IGRINS system is cooled down to a cold temperature, three flexures compensate for the thermal contraction stress due to the different material between the immersion grating and the mounting part (aluminum 6061). They also support the immersion grating by an appropriate preload. Thermal stability is controlled by a copper strap with proper dimensions and a heater. Typically, structural and thermal analysis was performed to confirm the mount mechanism. This mechanism will be also applied to the GMTNIRS (Giant Magellan Telescope Near InfraRed Spectrograph) instrument, which is a first-generation candidate of the GMT telescope.

  2. Extreme ultraviolet spectrometer for the Shenguang III laser facility.

    PubMed

    Xiong, Gang; Yang, Guohong; Zhang, Jiyan; Wei, Minxi; Zhao, Yang; Qing, Bo; Lv, Min; Yang, Zhenghua; Wang, Feng; Liu, Shenye; Cai, Houzhi; Liu, Jinyuan

    2015-06-10

    An extreme ultraviolet spectrometer has been developed for high-energy density physics experiments at the Shenguang-III (SG-III) laser facility. Alternative use of two different varied-line-spacing gratings covers a wavelength range of 10-260 Å. A newly developed x-ray framing camera with single wide strip line is designed to record time-gated spectra with ~70 ps temporal resolution and 20 lp/mm spatial resolution. The width of the strip line is up to 20 mm, enhancing the capability of the spatial resolving measurements. All components of the x-ray framing camera are roomed in an aluminum air box. The whole spectrometer is mounted on a diagnostic instrument manipulator at the SG-III laser facility for the first time. A new alignment method for the spectrometer based on the superimposition of two laser focal spots is developed. The approaches of the alignment including offline and online two steps are described. A carbon spectrum and an aluminum spectrum have been successfully recorded by the spectrometer using 2400 l/mm and 1200 l/mm gratings, respectively. The experimental spectral lines show that the spectral resolution of the spectrometer is about 0.2 Å and 1 Å for the 2400 l/mm and 1200 l/mm gratings, respectively. A theoretical calculation was carried out to estimate the maximum resolving power of the spectrometer.

  3. Extreme ultraviolet spectrometer for the Shenguang III laser facility.

    PubMed

    Xiong, Gang; Yang, Guohong; Zhang, Jiyan; Wei, Minxi; Zhao, Yang; Qing, Bo; Lv, Min; Yang, Zhenghua; Wang, Feng; Liu, Shenye; Cai, Houzhi; Liu, Jinyuan

    2015-06-10

    An extreme ultraviolet spectrometer has been developed for high-energy density physics experiments at the Shenguang-III (SG-III) laser facility. Alternative use of two different varied-line-spacing gratings covers a wavelength range of 10-260 Å. A newly developed x-ray framing camera with single wide strip line is designed to record time-gated spectra with ~70 ps temporal resolution and 20 lp/mm spatial resolution. The width of the strip line is up to 20 mm, enhancing the capability of the spatial resolving measurements. All components of the x-ray framing camera are roomed in an aluminum air box. The whole spectrometer is mounted on a diagnostic instrument manipulator at the SG-III laser facility for the first time. A new alignment method for the spectrometer based on the superimposition of two laser focal spots is developed. The approaches of the alignment including offline and online two steps are described. A carbon spectrum and an aluminum spectrum have been successfully recorded by the spectrometer using 2400 l/mm and 1200 l/mm gratings, respectively. The experimental spectral lines show that the spectral resolution of the spectrometer is about 0.2 Å and 1 Å for the 2400 l/mm and 1200 l/mm gratings, respectively. A theoretical calculation was carried out to estimate the maximum resolving power of the spectrometer. PMID:26192833

  4. High divergent 2D grating

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Ma, Jianyong; Zhou, Changhe

    2014-11-01

    A 3×3 high divergent 2D-grating with period of 3.842μm at wavelength of 850nm under normal incidence is designed and fabricated in this paper. This high divergent 2D-grating is designed by the vector theory. The Rigorous Coupled Wave Analysis (RCWA) in association with the simulated annealing (SA) is adopted to calculate and optimize this 2D-grating.The properties of this grating are also investigated by the RCWA. The diffraction angles are more than 10 degrees in the whole wavelength band, which are bigger than the traditional 2D-grating. In addition, the small period of grating increases the difficulties of fabrication. So we fabricate the 2D-gratings by direct laser writing (DLW) instead of traditional manufacturing method. Then the method of ICP etching is used to obtain the high divergent 2D-grating.

  5. Birefringence Bragg Binary (3B) grating, quasi-Bragg grating and immersion gratings

    NASA Astrophysics Data System (ADS)

    Ebizuka, Noboru; Morita, Shin-ya; Yamagata, Yutaka; Sasaki, Minoru; Bianco, Andorea; Tanabe, Ayano; Hashimoto, Nobuyuki; Hirahara, Yasuhiro; Aoki, Wako

    2014-07-01

    A volume phase holographic (VPH) grating achieves high angular dispersion and very high diffraction efficiency for the first diffraction order and for S or P polarization. However the VPH grating could not achieve high diffraction efficiency for non-polarized light at a large diffraction angle because properties of diffraction efficiencies for S and P polarizations are different. Furthermore diffraction efficiency of the VPH grating extinguishes toward a higher diffraction order. A birefringence binary Bragg (3B) grating is a thick transmission grating with optically anisotropic material such as lithium niobate or liquid crystal. The 3B grating achieves diffraction efficiency up to 100% for non-polarized light by tuning of refractive indices for S and P polarizations, even in higher diffraction orders. We fabricated 3B grating with liquid crystal and evaluated the performance of the liquid crystal grating. A quasi-Bragg (QB) grating, which consists long rectangle mirrors aligned in parallel precisely such as a window shade, also achieves high diffraction efficiency toward higher orders. We fabricated QB grating by laminating of silica glass substrates and glued by pressure fusion of gold films. A quasi-Bragg immersion (QBI) grating has smooth mirror hypotenuse and reflector array inside the hypotenuse, instead of step-like grooves of a conventional immersion grating. An incident beam of the QBI grating reflects obliquely at a reflector, then reflects vertically at the mirror surface and reflects again at the same reflector. We are going to fabricate QBI gratings by laminating of mirror plates as similar to fabrication of the QB grating. We will also fabricate silicon and germanium immersion gratings with conventional step-like grooves by means of the latest diamond machining methods. We introduce characteristics and performance of these gratings.

  6. Pushing the Boundaries of X-ray Grating Spectroscopy in a Suborbital Rocket

    NASA Technical Reports Server (NTRS)

    McEntaffer, Randall L.; DeRoo, Casey; Schultz, Ted; Zhang, William W.; Murray, Neil J.; O'Dell, Stephen; Cash, Webster

    2013-01-01

    Developments in grating spectroscopy are paramount for meeting the soft X-ray science goals of future NASA X-ray Observatories. While developments in the laboratory setting have verified the technical feasibility of using off-plane reflection gratings to reach this goal, flight heritage is a key step in the development process toward large missions. To this end we have developed a design for a suborbital rocket payload employing an Off-Plane X-ray Grating Spectrometer. This spectrometer utilizes slumped glass Wolter-1 optics, an array of gratings, and a CCD camera. We discuss the unique capabilities of this design, the expected performance, the science return, and the perceived impact to future missions.

  7. Charged particle accelerator grating

    DOEpatents

    Palmer, Robert B.

    1986-01-01

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  8. Charged particle accelerator grating

    DOEpatents

    Palmer, Robert B.

    1986-09-02

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  9. Developing Tools for Undergraduate Spectroscopy: An Inexpensive Visible Light Spectrometer

    ERIC Educational Resources Information Center

    Vanderveen, Jesse R.; Martin, Brian; Ooms, Kristopher J.

    2013-01-01

    The design and implementation of an inexpensive, high-resolution Littrow-type visible light spectrometer is presented. The instrument is built from low-cost materials and interfaced with the program RSpec for real-time spectral analysis, making it useful for classroom and laboratory exercises. Using a diffraction grating ruled at 1200 lines/mm and…

  10. Optical system for high resolution spectrometer/monochromator

    DOEpatents

    Hettrick, M.C.; Underwood, J.H.

    1988-10-11

    An optical system for use in a spectrometer or monochromator employing a mirror which reflects electromagnetic radiation from a source to converge with same in a plane is disclosed. A straight grooved, varied-spaced diffraction grating receives the converging electromagnetic radiation from the mirror and produces a spectral image for capture by a detector, target or like receiver. 11 figs.

  11. Optical system for high resolution spectrometer/monochromator

    DOEpatents

    Hettrick, Michael C.; Underwood, James H.

    1988-01-01

    An optical system for use in a spectrometer or monochromator employing a mirror which reflects electromagnetic radiation from a source to converge with same in a plane. A straight grooved, varied-spaced diffraction grating receives the converging electromagnetic radiation from the mirror and produces a spectral image for capture by a detector, target or like receiver.

  12. High accuracy wavelength calibration for a scanning visible spectrometer

    SciTech Connect

    Scotti, Filippo; Bell, Ronald E.

    2010-10-15

    Spectroscopic applications for plasma velocity measurements often require wavelength accuracies {<=}0.2 A. An automated calibration, which is stable over time and environmental conditions without the need to recalibrate after each grating movement, was developed for a scanning spectrometer to achieve high wavelength accuracy over the visible spectrum. This method fits all relevant spectrometer parameters using multiple calibration spectra. With a stepping-motor controlled sine drive, an accuracy of {approx}0.25 A has been demonstrated. With the addition of a high resolution (0.075 arc sec) optical encoder on the grating stage, greater precision ({approx}0.005 A) is possible, allowing absolute velocity measurements within {approx}0.3 km/s. This level of precision requires monitoring of atmospheric temperature and pressure and of grating bulk temperature to correct for changes in the refractive index of air and the groove density, respectively.

  13. Applications of distributed fiber Bragg grating sensors in civil engineering

    NASA Astrophysics Data System (ADS)

    Nellen, Philipp M.; Broennimann, Rolf; Sennhauser, Urs J.; Askins, Charles G.; Putnam, Martin A.

    1995-09-01

    We report on civil engineering applications of wavelength multiplexed optical-fiber Bragg grating arrays produced directly on the draw tower for testing and surveying advanced structures and material like carbon fiber reinforced concrete elements and prestressing tendons. We equipped a 6 m X 0.9 m X 0.5 m concrete cantilever beam reinforced with carbon fiber lamellas with fiber Bragg grating sensors. Static and dynamic strain levels up to 1500 micrometers /m were measured with a Michelson interferometer used as Fourier spectrometer with resolutions of about 10 micrometers /m for all sensors. Comparative measurements with electrical resistance strain gauges were in good agreement with the fiber optic results. We used the fiber sensors in two different arrangements: some Bragg grating array elements measured the local strain while others were configured in an extensometric way to measure moderate strain over 0.1-1 m.

  14. Degradation Free Spectrometers for Solar EUV Measurements

    NASA Astrophysics Data System (ADS)

    Wieman, S. R.; Didkovsky, L. V.; Judge, D. L.; McMullin, D. R.

    2011-12-01

    Solar EUV observations will be made using two new degradation-free EUV spectrometers on a sounding rocket flight scheduled for summer 2012. The two instruments, a rare gas photoionization-based Optics-Free Spectrometer (OFS) and a Dual Grating Spectrometer (DGS), are filter-free and optics-free. OFS can measure the solar EUV spectrum with a spectral resolution comparable to that of grating-based EUV spectrometers. The DGS selectable spectral bandwidth is designed to provide solar irradiance in a 10 nm band centered on the Lyman-alpha 121.6 nm line and a 4 nm band centered on the He-II 30.4 nm line to overlap EUV observations from the SDO/EUV Variability Experiment (EVE) and the SOHO/Solar EUV Monitor (SEM). A clone of the SOHO/SEM flight instrument and a Rare Gas Ionization Cell (RGIC) absolute EUV detector will also be flown to provide additional measurements for inter-comparison. Program delays related to the sounding rocket flight termination system, which was no longer approved by the White Sands Missile Range prevented the previously scheduled summer 2011 launch of these instruments. During this delay several enhancements have been made to the sounding rocket versions of the DFS instruments, including a lighter, simplified vacuum housing and gas system for the OFS and an improved mounting for the DGS, which allows more accurate co-alignment of the optical axes of the DGS, OFS, and the SOHO/SEM clone. Details of these enhancements and results from additional lab testing of the instruments are reported here. The spectrometers are being developed and demonstrated as part of the Degradation Free Spectrometers (DFS) project under NASA's Low Cost Access to Space (LCAS) program and are supported by NASA Grant NNX08BA12G.

  15. Gratings and waveguides

    NASA Technical Reports Server (NTRS)

    Bates, K. A.; Erwin, J. K.; Li, L.; Burke, J. J.; Ramanujam, N.

    1993-01-01

    Our immediate objective is to understand the limitations of guided-wave and grating coupler devices in their application to optical data storage. Our long-range goal is to develop and validate design codes for integrated optic devices. The principal research activity was in the development of numerical models for the design of a blue wavelength integrated optical source for data storage applications.

  16. The evaluation of a deformable diffraction grating for a stigmatic EUV spectroheliometer

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1987-01-01

    A high-efficiency, extreme ultraviolet (EUV) imaging spectrometer is constructed and tested. The spectrometer employs a concave toroidal grating illuminated at normal incidence in a Rowland circle mounting and has only one reflecting surface. The toroidal grating has been fabricated by a new technique employing an elastically-deformable sub-master grating replicated in a spherical form and then mechanically distorted to produce the desired aspect ratio of the toroidal surface for stigmatic imaging over the selected wavelength range. The fixed toroidal grating used in the spectrometer is then replicated from this surface. Photographic tests and initial photoelectric tests with a two-dimensional, pulse-counting detector system verify the image quality of the toroidal grating at wavelengths near 600 A. The results of these tests and the basic designs of two instruments which could employ the imaging spectrometer for astrophysical investigations in space are described; i.e., a high-resolution EUV spectroheliometer for studies of the solar chromosphere, transition region, and corona; and an EUV spectroscopic telescope for studies of non-solar objects.

  17. The Chandra High-Energy Transmission Grating: Design, Fabrication, Ground Calibration, and 5 Years in Flight

    NASA Astrophysics Data System (ADS)

    Canizares, Claude R.; Davis, John E.; Dewey, Daniel; Flanagan, Kathryn A.; Galton, Eugene B.; Huenemoerder, David P.; Ishibashi, Kazunori; Markert, Thomas H.; Marshall, Herman L.; McGuirk, Michael; Schattenburg, Mark L.; Schulz, Norbert S.; Smith, Henry I.; Wise, Michael

    2005-10-01

    Details of the design, fabrication, and ground and flight calibration of the High Energy Transmission Grating (HETG) on the Chandra X-Ray Observatory are presented after 5 years of flight experience. Specifics include the theory of phased transmission gratings as applied to the HETG, the Rowland design of the spectrometer, details of the grating fabrication techniques, and the results of ground testing and calibration of the HETG. For nearly 6 years the HETG has operated essentially as designed, although it has presented some subtle flight calibration effects.

  18. Three infrared spectrometers, an atmospheric chemistry suite for the ExoMars 2016 trace gas orbiter

    NASA Astrophysics Data System (ADS)

    Korablev, Oleg; Trokhimovsky, Alexander; Grigoriev, Alexei V.; Shakun, Alexei; Ivanov, Yuriy S.; Moshkin, Boris; Anufreychik, Konstantin; Timonin, Denis; Dziuban, Ilia; Kalinnikov, Yurii K.; Montmessin, Franck

    2014-01-01

    The atmospheric chemistry suite (ACS) package is a part of the Russian contribution to the ExoMars ESA-Roscosmos mission. ACS consists of three separate infrared spectrometers, sharing common mechanical, electrical, and thermal interfaces. The near-infrared (NIR) channel is a versatile spectrometer for the spectral range of 0.7-1.6 μm with a resolving power of ˜20,000. The instrument employs the principle of an echelle spectrometer with an acousto-optical tunable filter (AOTF) as a preselector. NIR will be operated in nadir, in solar occultations, and possibly on the limb. Scientific targets of NIR are the measurements of water vapor, aerosols, and dayside or nightside airglows. The mid-infrared (MIR) channel is a cross-dispersion echelle instrument dedicated to solar occultation measurements in the range of 2.2-4.4 μm targeting the resolving power of 50,000. MIR is dedicated to sensitive measurements of trace gases. The thermal infrared channel (TIRVIM) is a 2-inch double pendulum Fourier-transform spectrometer for the spectral range of 1.7-17 μm with apodized resolution varying from 0.2 to 1.6 cm-1. TIRVIM is primarily dedicated to the monitoring of atmospheric temperatures and aerosol states in nadir. The present paper describes the concept of the instrument, and in more detail, the optical design and the expected parameters of its three parts channel by channel.

  19. Test of prototype ITER vacuum ultraviolet spectrometer and its application to impurity study in KSTAR plasmas.

    PubMed

    Seon, C R; Hong, J H; Jang, J; Lee, S H; Choe, W; Lee, H H; Cheon, M S; Pak, S; Lee, H G; Biel, W; Barnsley, R

    2014-11-01

    To optimize the design of ITER vacuum ultraviolet (VUV) spectrometer, a prototype VUV spectrometer was developed. The sensitivity calibration curve of the spectrometer was calculated from the mirror reflectivity, the grating efficiency, and the detector efficiency. The calibration curve was consistent with the calibration points derived in the experiment using the calibrated hollow cathode lamp. For the application of the prototype ITER VUV spectrometer, the prototype spectrometer was installed at KSTAR, and various impurity emission lines could be measured. By analyzing about 100 shots, strong positive correlation between the O VI and the C IV emission intensities could be found.

  20. Test of prototype ITER vacuum ultraviolet spectrometer and its application to impurity study in KSTAR plasmas.

    PubMed

    Seon, C R; Hong, J H; Jang, J; Lee, S H; Choe, W; Lee, H H; Cheon, M S; Pak, S; Lee, H G; Biel, W; Barnsley, R

    2014-11-01

    To optimize the design of ITER vacuum ultraviolet (VUV) spectrometer, a prototype VUV spectrometer was developed. The sensitivity calibration curve of the spectrometer was calculated from the mirror reflectivity, the grating efficiency, and the detector efficiency. The calibration curve was consistent with the calibration points derived in the experiment using the calibrated hollow cathode lamp. For the application of the prototype ITER VUV spectrometer, the prototype spectrometer was installed at KSTAR, and various impurity emission lines could be measured. By analyzing about 100 shots, strong positive correlation between the O VI and the C IV emission intensities could be found. PMID:25430310

  1. Fabrication of large-area and low mass critical-angle x-ray transmission gratings

    NASA Astrophysics Data System (ADS)

    Heilmann, Ralf K.; Bruccoleri, Alex R.; Guan, Dong; Schattenburg, Mark L.

    2014-07-01

    Soft x-ray spectroscopy of celestial sources with high resolving power R = E/ΔE and large collecting area addresses important science listed in the Astro2010 Decadal Survey New Worlds New Horizons, such as the growth of the large scale structure of the universe and its interaction with active galactic nuclei, the kinematics of galactic outflows, as well as coronal emission from stars and other topics. Numerous studies have shown that a transmission grating spectrometer based on lightweight critical-angle transmission (CAT) gratings can deliver R = 3000-5000 and large collecting area with high efficiency and minimal resource requirements, providing spectroscopic figures of merit at least an order of magnitude better than grating spectrometers on Chandra and XMM-Newton, as well as future calorimeter-based missions. The recently developed CAT gratings combine the advantages of transmission gratings (low mass, relaxed figure and alignment tolerances) and blazed reflection gratings (high broad band diffraction efficiency, utilization of higher diffraction orders). Their working principle based on blazing through reflection off the smooth, ultra-high aspect ratio grating bar sidewalls has previously been demonstrated on small samples with x rays. For larger gratings (area greater than 1 inch square) we developed a fabrication process for grating membranes with a hierarchy of integrated low-obscuration supports. The fabrication involves a combination of advanced lithography and highly anisotropic dry and wet etching techniques. We report on the latest fabrication results of free-standing, large-area CAT gratings with polished sidewalls and preliminary x-ray tests.

  2. Performance of silicon immersed gratings: measurement, analysis, and modeling

    NASA Astrophysics Data System (ADS)

    Rodenhuis, Michiel; Tol, Paul J. J.; Coppens, Tonny H. M.; Laubert, Phillip P.; van Amerongen, Aaldert H.

    2015-09-01

    The use of Immersed Gratings offers advantages for both space- and ground-based spectrographs. As diffraction takes place inside the high-index medium, the optical path difference and angular dispersion are boosted proportionally, thereby allowing a smaller grating area and a smaller spectrometer size. Short-wave infrared (SWIR) spectroscopy is used in space-based monitoring of greenhouse and pollution gases in the Earth atmosphere. On the extremely large telescopes currently under development, mid-infrared high-resolution spectrographs will, among other things, be used to characterize exo-planet atmospheres. At infrared wavelengths, Silicon is transparent. This means that production methods used in the semiconductor industry can be applied to the fabrication of immersed gratings. Using such methods, we have designed and built immersed gratings for both space- and ground-based instruments, examples being the TROPOMI instrument for the European Space Agency Sentinel-5 precursor mission, Sentinel-5 (ESA) and the METIS (Mid-infrared E-ELT Imager and Spectrograph) instrument for the European Extremely Large Telescope. Three key parameters govern the performance of such gratings: The efficiency, the level of scattered light and the wavefront error induced. In this paper we describe how we can optimize these parameters during the design and manufacturing phase. We focus on the tools and methods used to measure the actual performance realized and present the results. In this paper, the bread-board model (BBM) immersed grating developed for the SWIR-1 channel of Sentinel-5 is used to illustrate this process. Stringent requirements were specified for this grating for the three performance criteria. We will show that -with some margin- the performance requirements have all been met.

  3. A Flexible and Modular Data Reduction Library for Fiber-fed Echelle Spectrographs

    NASA Astrophysics Data System (ADS)

    Sosnowska, D.; Lovis, C.; Figueira, P.; Modigliani, A.; Marcantonio, P. D.; Megevand, D.; Pepe, F.

    2015-09-01

    Within the ESPRESSO project a new flexible data reduction library is being built. ESPRESSO, the Echelle SPectrograph for Rocky Exoplanets and Stable Spectral Observations is a fiber-fed, high-resolution, cross-dispersed echelle spectrograph. One of its main scientific goals is to search for terrestrial exoplanets using the radial velocity technique. A dedicated pipeline is being developed. It is designed to be able to reduce data from different similar spectrographs: not only ESPRESSO, but also HARPS, HARPS-N and possibly others. Instrument specifics are configurable through an input static configuration table. The first written recipes are already tested on HARPS and HARPS-N real data and ESPRESSO simulated data. The final scientific products of the pipeline will be the extracted 1-dim and 2-dim spectra. Using these products the radial velocity of the observed object can be computed with high accuracy. The library is developed within the standard ESO pipeline environment. It is being written in ANSI C and makes use of the Common Pipeline Library (CPL). It can be used in conjunction with the ESO tools Esorex, Gasgano and Reflex in the usual way.

  4. Water cooled rolling grate incinerator

    SciTech Connect

    Ettehadieh, B.

    1991-08-27

    This patent describes a water cooled roller grate incinerator cooperatively associated with a boiler. It comprises cylindrical shaped roller grates, each having a plurality of circular arrays of spaced apart cooling tubes separated by perforated webs and connected at each end to a ring header; a rotary joint associated with each cylindrical roller grate for supplying cooling fluid to the circular array of tubes to keep them cool and returning heated fluid to the boiler; each roller grate being disposed to rotate about a centrally disposed axis; the axes of the roller grates being disposed in an inclined plane generally parallel to each other so as to form an undulating surface; a waster hopper with a waste feed ram disposed on the lower end of the hopper for feeding waste to the undulating surface; a combustion air system for supplying combustion air through the perforated webs to the waste pushed on the undulating surface by the waste feed ram to burn the waste; a separate drive system for each grate, the drive system regulating the rate at which the burning waste progresses across the undulating surface portion of each grate as the grates rotate transferring the waste from one roller grate to the next lower roller grate as the waste burns.

  5. Charged particle accelerator grating

    DOEpatents

    Palmer, R.B.

    1985-09-09

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator is described. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams onto the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  6. Universal grating coupler design

    NASA Astrophysics Data System (ADS)

    Wang, Yun; Flueckiger, Jonas; Lin, Charlie; Chrostowski, Lukas

    2013-10-01

    A universal design methodology for grating couplers based on the silicon-on-insultator platform is presented in this paper. Our design methodology accomodates various etch depths, silicon thickness (e.g., 220 nm, 300 nm), incident angles, and cladding materials (e.g., silicon oxide or air), and has been verified by simulations and measurement results. Further more, the design methodology presented can be applied to a wide range, from 1260 nm to 1675 nm, of wavelengths.

  7. The joint astrophysical plasmadynamic experiment extreme ultraviolet spectrometer: resolving power

    NASA Astrophysics Data System (ADS)

    Berendse, F. B.; Cruddace, R. G.; Kowalski, M. P.; Yentis, D. J.; Hunter, W. R.; Fritz, G. G.; Siegmund, O.; Heidemann, K.; Lenke, R.; Seifert, A.; Barbee, T. W., Jr.

    2006-06-01

    The Joint astrophysical Plasmadynamic EXperiment (J-PEX) is a high-resolution extreme ultraviolet (EUV) spectrometer (220-245 Å) used for the study of white dwarf atmospheres. Significant improvements have been achieved in both the normal-incidence gratings and the focal-plane detector since its first successful sounding rocket flight in 2001. The spherical laminar gratings have been replaced by paraboloidal gratings. The substrates of the new gratings have measured slope errors less than 0.35 arcsec. The gratings were recorded holographically and the rulings transferred into the silica substrates by ion etching. This procedure was followed by polymer overcoat to reduce the blaze angle of the groove profile. The detector uses microchannel plates with 6 μm pores and a cross-strip anode, providing 17.9 μm resolution in the dispersion direction. The detector employs a KBr photocathode with a projected efficiency of 0.24 at 256 Å. Using ray tracing simulations, we predict the resolving power expected from the spectrometer during upcoming EUV calibrations with a He II discharge source.

  8. III-V-on-silicon integrated micro - spectrometer for the 3 μm wavelength range.

    PubMed

    Muneeb, M; Vasiliev, A; Ruocco, A; Malik, A; Chen, H; Nedeljkovic, M; Penades, J S; Cerutti, L; Rodriguez, J B; Mashanovich, G Z; Smit, M K; Tourni, E; Roelkens, G

    2016-05-01

    A compact (1.2 mm2) fully integrated mid-IR spectrometer operating in the 3 μm wavelength range is presented. To our knowledge this is the longest wavelength integrated spectrometer operating in the important wavelength window for spectroscopy of organic compounds. The spectrometer is based on a silicon-on-insulator arrayed waveguide grating filter. An array of InAs0.91Sb0.09 p-i-n photodiodes is heterogeneously integrated on the spectrometers output grating couplers using adhesive bonding. The spectrometer insertion loss is less than 3 dB and the waveguide-referred responsivity of the integrated photodiodes at room temperature is 0.3 A/W.

  9. The Berkeley EUV spectrometer for ORFEUS

    NASA Technical Reports Server (NTRS)

    Hurwitz, M.; Bowyer, S.

    1991-01-01

    A novel EUV spectrometer is presented for the ORFEUS-SPAS mission. It uses a set of four varied line-space spherical diffraction gratings to obtain high-resolution spectra of point sources at wavelengths between 390 and 1200 A. The spectra are recorded with two detector units, each containing curved-surface microchannel plates and a delay-line anode-readout system. An independent optical system detects the image of the source in the entrance aperture and tracks the source as it drifts during an observation, enabling a reconstruction of the spectra postflight. The overall system performance is discussed and illustrated by synthetic spectra.

  10. First application close measurements applying the new hybrid integrated MEMS spectrometer

    NASA Astrophysics Data System (ADS)

    Grüger, Heinrich; Pügner, Tino; Knobbe, Jens; Schenk, Harald

    2013-05-01

    Grating spectrometers have been designed in many different configurations. Now potential high volume applications ask for extremely miniaturized and low cost systems. By the use of integrated MEMS (micro electro mechanical systems) scanning grating devices a less expensive single detector can be used in the NIR instead of the array detectors required for fixed grating systems. Meanwhile the design of a hybrid integrated MEMS scanning grating spectrometer has been drawn. The MEMS device was fabricated in the Fraunhofer IPMS own clean room facility. This chip is mounted on a small circuit board together with the detector and then stacked with spacer and mirror substrate. The spectrometer has been realized by stacking several planar substrates by sophisticated mounting technologies. The spectrometer has been designed for the 950nm - 1900nm spectral range and 9nm spectral resolution with organic matter analysis in mind. First applications are considered in the food quality analysis and food processing technology. As example for the use of a spectrometer with this performance the grill process of steak was analyzed. Similar measurement would be possible on dairy products, vegetables or fruit. The idea is a mobile spectrometer for in situ and on site analysis applications in or attached to a host system providing processing, data access and input-output capabilities, disregarding this would be a laptop, tablet, smart phone or embedded platform.

  11. The Coude spectrograph and echelle scanner of the 2.7 m telescope at McDonald observatory

    NASA Technical Reports Server (NTRS)

    Tull, R. G.

    1972-01-01

    The design of the Coude spectrograph of the 2.7 m McDonald telescope is discussed. A description is given of the Coude scanner which uses the spectrograph optics, the configuration of the large echelle and the computer scanner control and data systems.

  12. Tropospheric Emission Spectrometer and Airborne Emission Spectrometer

    NASA Technical Reports Server (NTRS)

    Glavich, T.; Beer, R.

    1996-01-01

    The Tropospheric Emission Spectrometer (TES) is an instrument being developed for the NASA Earth Observing System Chemistry Platform. TES will measure the distribution of ozone and its precursors in the lower atmosphere. The Airborne Emission Spectrometer (AES) is an aircraft precursor to TES. Applicable descriptions are given of instrument design, technology challenges, implementation and operations for both.

  13. PUCHEROS: a low-cost fiber-fed Echelle Spectrograph for the visible spectral range

    NASA Astrophysics Data System (ADS)

    Vanzi, Leonardo; Chacon, Juan A.; Baffico, Maurizio; Avila, Gerardo; Guirao, Carlos; Rivinius, Thomas; Stefl, Stan; Baade, Dietrich

    2010-07-01

    PUCHEROS is a high resolution optical Echelle spectrograph designed for the 50 cm telescope located at the Pontificia Universidad Católica de Chile (PUC) observatory of Santa Martina. With a resolution about 20,000, PUCHEROS is an ideal instrument to study bright and variable objects, our driving science case is the study of bright early type stars. Using a fiber optic to bring the light from the telescope to the instrument, it can be located in a gravity invariant, temperature stabilized location, allowing precise long-term stability. PUCHEROS will be a valuable tool both for research and didactics at the graduate and undergraduate level. In this work we present the optical and mechanical design of the spectrograph as well as the first laboratory tests.

  14. A Laser Frequency Comb System for Absolute Calibration of the VTT Echelle Spectrograph

    NASA Astrophysics Data System (ADS)

    Doerr, H.-P.; Steinmetz, T.; Holzwarth, R.; Kentischer, T.; Schmidt, W.

    2012-10-01

    A wavelength calibration system based on a laser frequency comb (LFC) was developed in a co-operation between the Kiepenheuer-Institut für Sonnenphysik, Freiburg, Germany and the Max-Planck-Institut für Quantenoptik, Garching, Germany for permanent installation at the German Vacuum Tower Telescope (VTT) on Tenerife, Canary Islands. The system was installed successfully in October 2011. By simultaneously recording the spectra from the Sun and the LFC, for each exposure a calibration curve can be derived from the known frequencies of the comb modes that is suitable for absolute calibration at the meters per second level. We briefly summarize some topics in solar physics that benefit from absolute spectroscopy and point out the advantages of LFC compared to traditional calibration techniques. We also sketch the basic setup of the VTT calibration system and its integration with the existing echelle spectrograph.

  15. The Very precise Echelle SpectroPolarimeter on the Araki telescope (VESPolA)

    NASA Astrophysics Data System (ADS)

    Arasaki, Takayuki; Ikeda, Yuji; Shinnaka, Yoshiharu; Itose, Chisato; Nakamichi, Akika; Kawakita, Hideyo

    2015-06-01

    We report on the construction of a high-resolution spectropolarimeter, the Very precise Echelle SpectroPolarimeter on the Araki telescope (VESPolA). The instrument operates in the visible spectral range, i.e., 400-850 nm, and is mounted on the 1.3 m Araki telescope at the Koyama Astronomical Observatory of Kyoto Sangyo University (Kyoto, Japan). It employs an echelle-type spectrograph and a non-ripple super-achromatic half-wave plate, resulting in high polarimetric accuracy of δP < 0.1% for linear polarization with a spectral resolution of R = 8000 at the central wavelengths and a wide wavelength coverage of δλ = 150-250 nm in a single exposure. VESPolA is designed for 1-2 m telescopes that have a Cassegrain focus. This configuration provides a dozen polarization line profiles of various nuclear species from the target spectra simultaneously, and we can therefore obtain complementary information on both the geometry and the velocity field of the nebular emission lines from the circumstellar envelopes. We evaluated the performance of our system by observing a spectroscopic standard star and several polarization standard stars during 2012-2013. VESPolA achieved a spectral resolution 7750 < R < 8250, with a polarimetric accuracy of δP < 0.1% for linear polarization and a limiting magnitude of mv = 7.8 mag with δP < 0.1% and an integration time of 4 hr. We show preliminary results of variable stars P Cyg, β Lyr, and VY CMa. We observed polarization profiles across the Hα and He lines, as well as the TiO absorption bands, which indicate a complex spatial distribution and velocity field of the surrounding gaseous nebulae.

  16. Time- and frequency-domain models for Smith-Purcell radiation from a two-dimensional charge moving above a finite length grating

    SciTech Connect

    Kesar, Amit S.; Hess, Mark; Korbly, Stephen E.; Temkin, Richard J.

    2005-01-01

    Smith-Purcell radiation (SPR), formed by an electron beam traveling above a grating, is a very promising source of coherent radiation from the THz to the optical regime. We present two theoretical calculations of the SPR from a two-dimensional bunch of relativistic electrons passing above a grating of finite length. The first calculation uses the finite-difference time-domain approach with the total-field/scattered-field procedure for fields incident on the grating. This calculation allows good physical insight into the radiation process and also allows arbitrary geometries to be treated. The second calculation uses an electric-field integral equation method. Good agreement is obtained between these two calculations. The results of these theoretical calculations are then compared with a theoretical formalism based on an infinite-length grating. The latter formalism allows periodic boundary conditions to be rigorously applied. For gratings with less than {approx}50 periods, a significant error in the strength of the radiated field is introduced by the infinite-grating approximation. It is shown that this error disappears asymptotically as the number of periods increases. The Wood-Rayleigh anomalies, predicted in the infinite-grating approximation, were not seen in our finite-grating calculations. The SPR resonance condition is the same in all three formalisms. Numerical examples are presented for an {approx}18 MeV, 50 nC/m, 200 {mu}m bunch traveling 0.6 mm above a ten-period echelle grating having a 2.1-mm periodicity.

  17. Compact Infrared Spectrometers

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis

    2009-01-01

    Concentric spectrometer forms are advantageous for constructing a variety of systems spanning the entire visible to infrared range. Spectrometer examples are given, including broadband or high resolution forms. Some issues associated with the Dyson catadioptric type are also discussed.

  18. Mars Airborne Prospecting Spectrometer

    NASA Astrophysics Data System (ADS)

    Steinkraus, J. M.; Wright, M. W.; Rheingans, B. E.; Steinkraus, D. E.; George, W. P.; Aljabri, A.; Hall, J. L.; Scott, D. C.

    2012-06-01

    One novel approach towards addressing the need for innovative instrumentation and investigation approaches is the integration of a suite of four spectrometer systems to form the Mars Airborne Prospecting Spectrometers (MAPS) for prospecting on Mars.

  19. Normal incidence spectrophotometer using high density transmission grating technology and highly efficiency silicon photodiodes for absolute solar EUV irradiance measurements

    NASA Technical Reports Server (NTRS)

    Ogawa, H. S.; Mcmullin, D.; Judge, D. L.; Korde, R.

    1992-01-01

    New developments in transmission grating and photodiode technology now make it possible to realize spectrometers in the extreme ultraviolet (EUV) spectral region (wavelengths less than 1000 A) which are expected to be virtually constant in their diffraction and detector properties. Time dependent effects associated with reflection gratings are eliminated through the use of free standing transmission gratings. These gratings together with recently developed and highly stable EUV photodiodes have been utilized to construct a highly stable normal incidence spectrophotometer to monitor the variability and absolute intensity of the solar 304 A line. Owing to its low weight and compactness, such a spectrometer will be a valuable tool for providing absolute solar irradiance throughout the EUV. This novel instrument will also be useful for cross-calibrating other EUV flight instruments and will be flown on a series of Hitchhiker Shuttle Flights and on SOHO. A preliminary version of this instrument has been fabricated and characterized, and the results are described.

  20. Coastal Research Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Lucey, Paul G.; Williams, Timothy; Horton, Keith A.

    2004-01-01

    The Coastal Research Imaging Spectrometer (CRIS) is an airborne remote sensing system designed specifically for research on the physical, chemical, and biological characteristics of coastal waters. The CRIS includes a visible-light hyperspectral imaging subsystem for measuring the color of water, which contains information on the biota, sediment, and nutrient contents of the water. The CRIS also includes an infrared imaging subsystem, which provides information on the temperature of the water. The combination of measurements enables investigation of biological effects of both natural and artificial flows of water from land into the ocean, including diffuse and point-source flows that may contain biological and/or chemical pollutants. Temperature is an important element of such measurements because temperature contrasts can often be used to distinguish among flows from different sources: for example, a sewage outflow could manifest itself in spectral images as a local high-temperature anomaly. Both the visible and infrared subsystems scan in pushbroom mode: that is, an aircraft carrying the system moves along a ground track, the system is aimed downward, and image data are acquired in across-track linear arrays of pixels. Both subsystems operate at a frame rate of 30 Hz. The infrared and visible-light optics are adjusted so that both subsystems are aimed at the same moving swath, which has across-track angular width of 15 . Data from the infrared and visible imaging subsystems are stored in the same file along with aircraft- position data acquired by a Global Positioning System receiver. The combination of the three sets of data is used to construct infrared and hyperspectral maps of scanned areas (see figure). The visible subsystem is based on a grating spectrograph and a rapid-readout charge-coupled-device camera. Images of the swatch are acquired in 256 spectral bands at wavelengths from 400 to 800 nm. The infrared subsystem, which is sensitive in a single

  1. Phononic crystal diffraction gratings

    NASA Astrophysics Data System (ADS)

    Moiseyenko, Rayisa P.; Herbison, Sarah; Declercq, Nico F.; Laude, Vincent

    2012-02-01

    When a phononic crystal is interrogated by an external source of acoustic waves, there is necessarily a phenomenon of diffraction occurring on the external enclosing surfaces. Indeed, these external surfaces are periodic and the resulting acoustic diffraction grating has a periodicity that depends on the orientation of the phononic crystal. This work presents a combined experimental and theoretical study on the diffraction of bulk ultrasonic waves on the external surfaces of a 2D phononic crystal that consists of a triangular lattice of steel rods in a water matrix. The results of transmission experiments are compared with theoretical band structures obtained with the finite-element method. Angular spectrograms (showing frequency as a function of angle) determined from diffraction experiments are then compared with finite-element simulations of diffraction occurring on the surfaces of the crystal. The experimental results show that the diffraction that occurs on its external surfaces is highly frequency-dependent and has a definite relation with the Bloch modes of the phononic crystal. In particular, a strong influence of the presence of bandgaps and deaf bands on the diffraction efficiency is found. This observation opens perspectives for the design of efficient phononic crystal diffraction gratings.

  2. Process monitor gratings

    NASA Astrophysics Data System (ADS)

    Brunner, T. A.; Ausschnitt, C. P.

    2007-03-01

    Despite the increasing use of advanced imaging methods to pattern chip features, process windows continue to shrink with decreasing critical dimensions. Controlling the manufacturing process within these shrinking windows requires monitor structures designed to maximize both sensitivity and robustness. In particular, monitor structures must exhibit a large, measurable response to dose and focus changes over the entire range of the critical features process window. Any process variations present fundamental challenges to the effectiveness of OPC methods, since the shape compensation assumes a repeatable process. One particular process parameter which is under increasing scrutiny is focus blur, e.g. from finite laser bandwidth, which can cause such OPC instability, and thereby damage pattern fidelity. We introduce a new type of test target called the Process Monitor Grating (PMG) which is designed for extreme sensitivity to process variation. The PMG design principle is to use assist features to zero out higher diffraction orders. We show via simulation and experiment that such structures are indeed very sensitive to process variation. In addition, PMG targets have other desirable attributes such as mask manufacturability, robustness to pattern collapse, and compatibility with standard CD metrology methods such as scatterometry. PMG targets are applicable to the accurate determination of dose and focus deviations, and in combination with an isofocal grating target, allow the accurate determination of focus blur. The methods shown in this paper are broadly applicable to the characterization of process deviations using test wafers or to the control of product using kerf structures.

  3. A new compact soft x-ray spectrometer for resonant inelastic x-ray scattering studies at PETRA III

    SciTech Connect

    Yin, Z. E-mail: simone.techert@desy.de; Peters, H. B.; Hahn, U.; Viefhaus, J.; Agåker, M.; Nordgren, J.; Hage, A.; Reininger, R.; Siewert, F.; Techert, S. E-mail: simone.techert@desy.de

    2015-09-15

    We present a newly designed compact grating spectrometer for the energy range from 210 eV to 1250 eV, which would include the Kα{sub 1,2} emission lines of vital elements like C, N, and O. The spectrometer is based on a grazing incidence spherical varied line spacing grating with 2400 l/mm at its center and a radius of curvature of 58 542 mm. First, results show a resolving power of around 1000 at an energy of 550 eV and a working spectrometer for high vacuum (10{sup −4} mbar) environment without losing photon intensity.

  4. Quantifying the Sensitivity of Superconducting High-Resolution X-Ray Spectrometers

    SciTech Connect

    Drury, O; Friedrich, S

    2004-10-04

    Superconducting tunnel junction (STJ) X-ray spectrometers have been developed for synchrotron-based high-resolution soft X-ray spectroscopy. We are quantifying the improvements in sensitivity that STJ spectrometers can offer for the analysis of dilute specimens over conventional semiconductor and grating spectrometers. We present analytical equations to quantify the improvements in terms of spectrometer resolution, detection efficiency and count rate capabilities as a function of line separation and spectral background. We discuss the implications of this analysis for L-edge spectroscopy of first-row transition metals.

  5. Enhanced monolithic diffraction gratings with high efficiency and reduced polarization sensitivity for remote sensing applications

    NASA Astrophysics Data System (ADS)

    Triebel, Peter; Diehl, Torsten; Moeller, Tobias; Gatto, Alexandre; Pesch, Alexander; Erdmann, Lars H.; Burkhardt, Matthias; Kalies, Alexander

    2015-10-01

    Spectral imaging systems lead to enhanced sensing properties when the sensing system provides sufficient spectral resolution to identify materials from its spectral reflectance signature. The performance of diffraction gratings provides an initial way to improve instrumental resolution. Thus, subsequent manufacturing techniques of high quality gratings are essential to significantly improve the spectral performance. The ZEISS unique technology of manufacturing real-blazed profiles and as well as lamellar profiles comprising transparent substrates is well suited for the production of transmission gratings. In order to reduce high order aberrations, aspherical and free-form surfaces can be alternatively processed to allow more degrees of freedom in the optical design of spectroscopic instruments with less optical elements and therefore size and weight advantages. Prism substrates were used to manufacture monolithic GRISM elements for UV to IR spectral range. Many years of expertise in the research and development of optical coatings enable high transmission anti-reflection coatings from the DUV to the NIR. ZEISS has developed specially adapted coating processes (Ion beam sputtering, ion-assisted deposition and so on) for maintaining the micro-structure of blazed gratings in particular. Besides of transmission gratings, numerous spectrometer setups (e.g. Offner, Rowland circle, Czerny-Turner system layout) working on the optical design principles of reflection gratings. This technology steps can be applied to manufacture high quality reflection gratings from the EUV to the IR applications with an outstanding level of low stray light and ghost diffraction order by employing a combination of holography and reactive ion beam etching together with the in-house coating capabilities. We report on results of transmission gratings on plane and curved substrates and GRISM elements with enhanced efficiency of the grating itself combined with low scattered light in the angular

  6. Techniques for characterizing waveguide gratings and grating-based devices

    NASA Astrophysics Data System (ADS)

    Brinkmeyer, Ernst; Kieckbusch, Sven; Knappe, Frank

    2006-09-01

    Waveguide gratings used in laser technology, optical sensing or optical communications have to serve different specific purposes and, hence, have to have specific optical properties which can be tailored to a large extent. Characterization methods are required not only to measure the actual effect of a Bragg grating or long period grating under consideration but also to unveil the cause, i.e. to determine its spatial structure. This paper reviews the present status of the respective experimental characterization techniques. The methods emphasized rely on phase sensitive reflectometry together with advanced inverse scattering evaluation algorithms.

  7. Numerical optimization of a RIXS spectrometer using raytracing simulations

    NASA Astrophysics Data System (ADS)

    Lieutenant, K.; Hofmann, T.; Zendler, C.; Schulz, C.; Aziz, E. F.; Habicht, K.

    2016-08-01

    At Helmholtz-Zentrum Berlin (HZB) the end-station PEAXIS (Photo Electron Analysis and X-ray resonant Inelastic Spectroscopy) combining Angle-dependent X-ray Photoelectron Spectroscopy (AdXPS) and Resonant Inelastic X-ray Scattering (RIXS) is currently built. The latter method uses a spherical variable line space (VLS) grating to focus the beam onto the detector. Working in first-order diffraction allows resolving photon energy by transferring the energy-dependent signal to a position-dependent focal spot on the detector. Focusing requires a precise combination of various parameters of the VLS grating and the geometry of the RIXS spectrometer. The VLS grating was optimized by calculating the geometry parameters for different photon energies, simulating the instrument and evaluating the pattern on the detector. As figure of merit we chose the intensity times the square of the resolving power averaged over the photon energies.

  8. ORFEUS focal plane instrumentation: The Berkeley spectrometer

    NASA Technical Reports Server (NTRS)

    Hurwitz, Mark; Bowyer, Stuart

    1988-01-01

    A spectrograph for the ORFEUS mission that incorporates four varied line-space, spherically figured diffraction gratings was designed. The ORFEUS, a 1-m normal incidence telescope is equipped with 2 focal plane spectrographs. The Berkeley spectrograph was developed with an optimizing raytracing computer code. Each grating accepts the light from 20 percent of the aperture of the telescope primary mirror and has a unique set of characteristics to cover a sub-bandpass within the 390 to 1200 A spectral range. Two photon-counting detectors incorporating a time delay readout system are used to record the spectra from all four gratings simultaneously. The nominal design achieves a spectral resolution (FWHM) in excess of 5500 at all wavelengths within the bandpass. The resolution is limited primarily by the detector spatial resolution. The 1 sigma astigmatism of this design varies between 13 and 150 micrometer on the same focal surface. An independent, direct imaging system tracks the drift of the target within the spectrometer aperture and allows measurement of the misalignment between the telescope optical axis and that of the external star tracker. The resolution and astigmatism achievable with this design are superior to those of a standard Rowland spectrograph designed with the same constraints.

  9. High resolution extreme ultraviolet spectrometer for an electron beam ion trap

    SciTech Connect

    Ohashi, Hayato; Yatsurugi, Junji; Nakamura, Nobuyuki; Sakaue, Hiroyuki A.

    2011-08-15

    An extreme ultraviolet spectrometer has been developed for spectroscopic studies of highly charged ions with an electron beam ion trap. It has a slit-less configuration with a spherical varied-line-spacing grating that provides a flat focal plane for grazing incidence light. Alternative use of two different gratings enables us to cover the wavelength range 1-25 nm. Test observations with the Tokyo electron beam ion trap demonstrate the high performance of the present spectrometer such as a resolving power of above 1000.

  10. A visible-infrared imaging spectrometer for planetary missions

    NASA Technical Reports Server (NTRS)

    McCord, Thomas (Principal Investigator); Voelker, Mark; Owensby, Pam; Warren, Cris; Mooradian, Greg

    1996-01-01

    This final report summarizes the design effort for the construction of a visible-infrared imaging spectrometer for planetary missions, funded by NASA under the Planetary Instrument Definition and Development Program. The goal was to design and develop a prototype brassboard pushbroom imaging spectrometer covering the 0.35 gm to 2.5 gm spectral region using a simplified optical layout that would minimize the size, mass and parts count of the instrument by using a single holographic grating to disperse and focus light from a single slit onto both the infrared and visible focal plane arrays. Design approaches are presented and analyzed, along with problems encountered and recommended solutions to those problems. In particular, a new type of grating, incorporating two sets of rulings and a filter in a layered structure, is presented for further development.

  11. High Accuracy Wavelength Calibration For A Scanning Visible Spectrometer

    SciTech Connect

    Filippo Scotti and Ronald Bell

    2010-07-29

    Spectroscopic applications for plasma velocity measurements often require wavelength accuracies ≤ 0.2Â. An automated calibration for a scanning spectrometer has been developed to achieve a high wavelength accuracy overr the visible spectrum, stable over time and environmental conditions, without the need to recalibrate after each grating movement. The method fits all relevant spectrometer paraameters using multiple calibration spectra. With a steping-motor controlled sine-drive, accuracies of ~0.025 Â have been demonstrated. With the addition of high resolution (0.075 aresec) optical encoder on the grading stage, greater precision (~0.005 Â) is possible, allowing absolute velocity measurements with ~0.3 km/s. This level of precision requires monitoring of atmospheric temperature and pressure and of grating bulk temperature to correct for changes in the refractive index of air and the groove density, respectively.

  12. Design of airborne imaging spectrometer based on curved prism

    NASA Astrophysics Data System (ADS)

    Nie, Yunfeng; Xiangli, Bin; Zhou, Jinsong; Wei, Xiaoxiao

    2011-11-01

    A novel moderate-resolution imaging spectrometer spreading from visible wavelength to near infrared wavelength range with a spectral resolution of 10 nm, which combines curved prisms with the Offner configuration, is introduced. Compared to conventional imaging spectrometers based on dispersive prism or diffractive grating, this design possesses characteristics of small size, compact structure, low mass as well as little spectral line curve (smile) and spectral band curve (keystone or frown). Besides, the usage of compound curved prisms with two or more different materials can greatly reduce the nonlinearity inevitably brought by prismatic dispersion. The utilization ratio of light radiation is much higher than imaging spectrometer of the same type based on combination of diffractive grating and concentric optics. In this paper, the Seidel aberration theory of curved prism and the optical principles of Offner configuration are illuminated firstly. Then the optical design layout of the spectrometer is presented, and the performance evaluation of this design, including spot diagram and MTF, is analyzed. To step further, several types of telescope matching this system are provided. This work provides an innovational perspective upon optical system design of airborne spectral imagers; therefore, it can offer theoretic guide for imaging spectrometer of the same kind.

  13. Compact Two-Dimensional Spectrometer Optics

    NASA Technical Reports Server (NTRS)

    Hong, John

    2008-01-01

    The figure is a simplified depiction of a proposed spectrometer optical unit that would be suitable for incorporation into a remote-sensing instrumentation system. Relative to prior spectrometer optical assemblies, this unit would be compact and simple, largely by virtue of its predominantly two-dimensional character. The proposed unit would be a combination of two optical components. One component would be an arrayed-waveguide grating (AWG) an integrated-optics device, developed for use in wavelength multiplexing in telecommunications. The other component would be a diffraction grating superimposed on part of the AWG. The function of an AWG is conceptually simple. Input light propagates along a single-mode optical waveguide to a point where it is split to propagate along some number (N) of side-by-side waveguides. The lengths of the optical paths along these waveguides differ such that, considering the paths in a sequence proceeding across the array of waveguides, the path length increases linearly. These waveguides launch quasi-free-space waves into a planar waveguide-coupling region. The waves propagate through this region to interfere onto an array of output waveguides. Through proper choice of key design parameters (waveguide lengths, size and shape of the waveguide coupling region, and lateral distances between waveguides), one can cause the input light to be channeled into wavelength bins nominally corresponding to the output waveguides.

  14. Synchrotron radiation calibration of the EUVE variable line-spaced diffraction gratings at the NBS SURF II facility

    NASA Technical Reports Server (NTRS)

    Jelinsky, P.; Jelinsky, S. R.; Miller, A.; Vallerga, J.; Malina, R. F.

    1988-01-01

    The Extreme Ultraviolet Explorer (EUVE) has a spectrometer which utilizes variable line-spaced, plane diffraction gratings in the converging beam of a Wolter-Schwarzschild type II mirror. The gratings, microchannel plate detector, and thin film filters have been calibrated with continuum radiation provided by the NBS SURF II facility. These were calibrated in a continuum beam to find edges or other sharp spectral features in the transmission of the filters, quantum efficiency of the microchannel plate detector, and efficiency of the gratings. The details of the calibration procedure and the results of the calibration are presented.

  15. A Compact, Fast, Wide-Field Imaging Spectrometer System

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis; VanGorp, Byron E.; White, Victor E.; Mumolo, Jason M.; Hebert, Daniel; Feldman, Martin

    2011-01-01

    We present test results from a compact, fast (F/1.4) imaging spectrometer system with a 33 degree field of view, operating in the 450-1650 nm wavelength region with an extended response InGaAs detector array. The system incorporates a simple two-mirror telescope and a steeply concave bilinear groove diffraction grating made with gray scale x-ray lithography techniques. High degree of spectral and spatial uniformity (97%) is achieved.

  16. Design of a novel noninvasive spectrometer for pesticide residues monitor

    NASA Astrophysics Data System (ADS)

    Ren, Zhong; Liu, Guodong; Huang, Zhen

    2014-11-01

    Although the gas or liquid chromatography had been widely used into pesticide residues monitoring, some drawbacks such as time-consuming, complicated operation and especially the destructivity for samples were existed. To overcome the limits of destructive detection methods, the noninvasive detection method based on spectroscopy was used to detect the pesticide residues in this paper. To overcome low resolution and light-efficiency due to the drawbacks of the classical plane and holography concave gratings, a novel noninvasive spectrometer for pesticide residues monitor (PRM) based on volume holography transmission (VHT) grating was designed. Meanwhile, a custom-built splitting light system for PRM based on the VHT grating was developed. In addition, the linear charge coupled device (CCD) with combined data acquisition (DAQ) card and the virtual-PRM based on LabVIEW were respectively used as the spectral acquisition hardware and software-platform. Experimental results showed that the spectral resolution of this spectrometer reached 2nm, and the VHT grating's diffraction efficiency was gotten via the simulation experiment.

  17. Downdraft stove with tubular grating

    SciTech Connect

    Zimmerman, H.G.

    1986-08-26

    This patent describes a downdraft stove, a tubular grating assembly for positioning in a reaction chamber which consists of: a substantially vertically oriented central tube open at its upper end and connected at its lower end to an air inlet opening; a cap supported above the open upper end for protecting the open upper end from entry of matter, the space between the cap and the upper end constituting a primary air inlet nozzle; grating tubes radially distributed around and taking off substantially horizontally from and communicating with the central tube, thereby defining a grating, and thence turning downwardly and being open at their downward ends to thereby constitute secondary air inlets.

  18. Fluorescence imaging spectrometer optical design

    NASA Astrophysics Data System (ADS)

    Taiti, A.; Coppo, P.; Battistelli, E.

    2015-09-01

    The optical design of the FLuORescence Imaging Spectrometer (FLORIS) studied for the Fluorescence Explorer (FLEX) mission is discussed. FLEX is a candidate for the ESA's 8th Earth Explorer opportunity mission. FLORIS is a pushbroom hyperspectral imager foreseen to be embarked on board of a medium size satellite, flying in tandem with Sentinel-3 in a Sun synchronous orbit at a height of about 815 km. FLORIS will observe the vegetation fluorescence and reflectance within a spectral range between 500 and 780 nm. Multi-frames acquisitions on matrix detectors during the satellite movement will allow the production of 2D Earth scene images in two different spectral channels, called HR and LR with spectral resolution of 0.3 and 2 nm respectively. A common fore optics is foreseen to enhance by design the spatial co-registration between the two spectral channels, which have the same ground spatial sampling (300 m) and swath (150 km). An overlapped spectral range between the two channels is also introduced to simplify the spectral coregistration. A compact opto-mechanical solution with all spherical and plane optical elements is proposed, and the most significant design rationales are described. The instrument optical architecture foresees a dual Babinet scrambler, a dioptric telescope and two grating spectrometers (HR and LR), each consisting of a modified Offner configuration. The developed design is robust, stable vs temperature, easy to align, showing very high optical quality along the whole field of view. The system gives also excellent correction for transverse chromatic aberration and distortions (keystone and smile).

  19. Study of gratings with variable periods

    NASA Astrophysics Data System (ADS)

    Olivares-Pérez, Arturo; Fuentes-Tapia, Israel; Toxqui-López, Santa; Ortiz-Gutiérrez, Mauricio; Ordoñez-Padilla, Manuel Jorge; Mejias-Brizuela, Nildia Y.

    2016-03-01

    A theoretical study with sinusoidal amplitude diffraction gratings, elaborated with variable periods is shown. The diffraction pattern behavior and the symmetry degree of the gratings were observed. The grating period is increased, fringe to fringe, starting with a small period and ending with a big period that is; the grating edge, start with high spatial frequency and finish with low spatial frequency. This gratings modulation causes a widening in the diffracted orders.

  20. Fiber Grating Environmental Sensing System

    DOEpatents

    Schulz, Whitten L.; Udd, Eric

    2003-07-29

    Fiber grating environmental measurement systems are comprised of sensors that are configured to respond to changes in moisture or chemical content of the surrounding medium through the action of coatings and plates inducing strain that is measured. These sensors can also be used to monitor the interior of bonds for degradation due to aging, cracking, or chemical attack. Means to multiplex these sensors at high speed and with high sensitivity can be accomplished by using spectral filters placed to correspond to each fiber grating environmental sensor. By forming networks of spectral elements and using wavelength division multiplexing arrays of fiber grating sensors may be processed in a single fiber line allowing distributed high sensitivity, high bandwidth fiber optic grating environmental sensor systems to be realized.

  1. Encapsulation process for diffraction gratings.

    PubMed

    Ratzsch, Stephan; Kley, Ernst-Bernhard; Tünnermann, Andreas; Szeghalmi, Adriana

    2015-07-13

    Encapsulation of grating structures facilitates an improvement of the optical functionality and/or adds mechanical stability to the fragile structure. Here, we introduce novel encapsulation process of nanoscale patterns based on atomic layer deposition and micro structuring. The overall size of the encapsulated structured surface area is only restricted by the size of the available microstructuring and coating devices; thus, overcoming inherent limitations of existing bonding processes concerning cleanliness, roughness, and curvature of the components. Finally, the process is demonstrated for a transmission grating. The encapsulated grating has 97.5% transmission efficiency in the -1st diffraction order for TM-polarized light, and is being limited by the experimental grating parameters as confirmed by rigorous coupled wave analysis.

  2. Durable silver thin film coating for diffraction gratings

    DOEpatents

    Wolfe, Jesse D.; Britten, Jerald A.; Komashko, Aleksey M.

    2006-05-30

    A durable silver film thin film coated non-planar optical element has been developed to replace Gold as a material for fabricating such devices. Such a coating and resultant optical element has an increased efficiency and is resistant to tarnishing, can be easily stripped and re-deposited without modifying underlying grating structure, improves the throughput and power loading of short pulse compressor designs for ultra-fast laser systems, and can be utilized in variety of optical and spectrophotometric systems, particularly high-end spectrometers that require maximized efficiency.

  3. Spectroscopic ellipsometry on lamellar gratings

    NASA Astrophysics Data System (ADS)

    Antos, R.; Ohlidal, I.; Mistrik, J.; Murakami, K.; Yamaguchi, T.; Pistora, J.; Horie, M.; Visnovsky, S.

    2005-05-01

    Deep lamellar diffraction gratings fabricated by etching a transparent quartz plate are studied using spectroscopic ellipsometry. The rigorous coupled-wave analysis is used to calculate the optical response of the gratings. Three parameters of the rectangular profile are determined by utilizing the least-square method. Detailed investigation of the spectral dependences demonstrates the uniqueness of the solution. Observing the spectral dependences of Wood anomalies suggests that even complicated profiles can be fitted with high authenticity.

  4. Triple-path collector optics for grazing incident x-ray emission spectrometer

    NASA Astrophysics Data System (ADS)

    Tokushima, T.; Horikawa, Y.; Shin, S.

    2011-07-01

    A new type of collector optics was developed for grazing incident x-ray emission spectrometer. The collector optics used two cylindrical mirrors to add two extra light paths while keeping the center light path that directly illuminates the grating. The design and properties of the spectrometer using the triple-path collector optics were evaluated using ray-tracing simulations, and validity of this design in terms of throughput and energy resolution was confirmed by the experimentally obtained spectra.

  5. Triple-path collector optics for grazing incident x-ray emission spectrometer.

    PubMed

    Tokushima, T; Horikawa, Y; Shin, S

    2011-07-01

    A new type of collector optics was developed for grazing incident x-ray emission spectrometer. The collector optics used two cylindrical mirrors to add two extra light paths while keeping the center light path that directly illuminates the grating. The design and properties of the spectrometer using the triple-path collector optics were evaluated using ray-tracing simulations, and validity of this design in terms of throughput and energy resolution was confirmed by the experimentally obtained spectra. PMID:21806173

  6. Mirror accessory for line straightening in diffraction spectrometers

    NASA Astrophysics Data System (ADS)

    Kelman, V. M.; Rodnikova, I. V.

    1984-08-01

    Spectrometers with diffraction gratings have the inherent defect of bending the spectral lines, which is due to the oblique path of the rays from the portions of the slot source above and below the optical axis of the system. This distorting curvature can be substantially reduced by means of incorporating in the optical path an accessory for the grating, which takes the form of a telescopic system of two cylindrical mirrors. In the case of a monochromator with a plane grating, the plane of symmetry of both of the cylindrical mirrors, parallel to their generatrices, and the main cross-section of the grating are collocated and form the central plane of the monochromator, which coincides with the plane of a drawing showing the ray paths. Analytical expressions are derived for the rectification of the ray paths and applied in a sample calculation to a monochromator in which the diffraction grating was rotated through 30 and had 1,200 lines/mm; the telescopic system of cylindrical mirrors consisted of a convex mirror (f = 210 mm) and a concave mirror (f = 280 mm). Precise calculations of the curvature of the lines are summarized in tabular form for two cases.

  7. A search for lithium in Pleiades brown dwarf candidates using the Keck hires echelle

    NASA Technical Reports Server (NTRS)

    Marcy, Geoffrey W.; Basri, Gibor; Graham, James R.

    1994-01-01

    We report Keck Observatory high-resolution echelle spectra of lithium at 670.8 nm in two of the lowest luminosity brown dwarf candidates in the Pleiades. These objects have estimated masses of 0.055 to 0.059 solar mass from their location on a color-magnitude diagram relative to theoretical isochrones. Stellar interior models predict that Li has not burned in them. However, we find no evidence of the Li line, at limits 100 to 1000 times below the initial abundance. This indicates that Li has in fact been depleted, presumably by nuclear processing as occurs in Pleiades stars. Interior models suggest that such large Li depletion occurs only for objects with M greater than 0.09 solar mass at the age of the Pleiades. Thus, it is unlikely that the candidates are brown dwarfs. The brown dwarf candidates present a conflict: either they have masses greater than suggested from their placement on the H-R diagram, or they do have the very low suggested masses but are nonetheless capable of destroying Li, in only 70 Myr. Until this dilemma is resolved, the photometric identification of brown dwarfs will remain difficult. Resolution may reside in higher T(sub eff) derived from optical and IR colors or in lower T(sub eff) in the interior models.

  8. Apodized Volume Bragg Gratings

    NASA Astrophysics Data System (ADS)

    Mokhov, Sergiy

    2015-03-01

    Reflective and transmissive volume Bragg grating (VBGs) are widely used in high power laser applications because of their large operational aperture and robustness. They are fabricated in photosensitive material through holographic recording of uniform interference pattern of two overlapping coherent waves obtained by splitting a flat-top shaped laser beam. The following thermal treatment produces permanent refractive index modulation (RIM). Reflective VBGs have fringes parallel to operational anti-reflective coated surfaces and they demonstrate narrow reflection bandwidth. Transmissive VBGs are cut with fringes perpendicular to surfaces and they are characterized by narrow angular selectivity. Uniform RIM causes secondary lobes in corresponding reflection and transmission spectra due to sharp boundary conditions for volume Bragg diffraction. We propose to create apodization of RIM by recording two interference patterns with slightly different parameters in the same volume which would create slow varying moire envelope of amplitude of RIM. Cutting the specimen at zeros of moire envelope with one sine semi-period thickness will produce VBGs apodized at sides which will reduce parasitic secondary lobes in spectra. In reflection geometry, two patterns of the same orientation with slightly different periods are required for apodization along Bragg wave vector. In transmission case, recording of the same interference patterns with small mutual rotation angle provides apodization in direction perpendicular to Bragg wave vector. Modeling results show significant improvement in selective properties of VBGs with such moire apodization.

  9. Theoretical analysis of novel fiber grating pair

    NASA Astrophysics Data System (ADS)

    Wang, Liao; Jia, Hongzhi; Fang, Liang; You, Bei

    2016-06-01

    A novel fiber grating pair that consists of a conventional long-period fiber grating and a fiber Bragg cladding grating (FBCG) is proposed. The FBCG is a new type of fiber grating in which refractive index modulation is formed in the cladding. Through the coupled-mode theory, we accurately calculate the coupling coefficients between modes supported in the fibers. And some other mode coupling features in the fiber cladding gratings are analyzed in detail. The calculation of the modes involved in this paper is based on a model of three-layer step-index fiber geometry. Then, we have investigated the sensitivity characteristics for variation of the modulation strengths of the fiber Bragg cladding gratings' resonance peaks and the long-period cladding gratings' (LPCGs) dual resonant peaks. Finally, the modulation strength sensitivity of the grating pair's three resonant peaks is demonstrated, and the results indicate that these grating pairs may find potential applications in optical fiber sensing.

  10. HiJaK: the high-resolution J, H and K spectrometer

    NASA Astrophysics Data System (ADS)

    Muirhead, Philip S.; Hall, Zachary J.; Veyette, Mark J.

    2014-08-01

    We present the science drivers, design requirements and a preliminary design for a high-resolution, broad- bandwidth, slit-fed cross-dispersed near-infrared spectrometer for 5-meter-class telescopes. Our concept, called the High-Resolution J, H and K Spectrometer, or HiJaK, utilizes an R6 echelle in a white-pupil design to achieve high resolution in a compact configuration with a 2048 x 2048 pixel infrared detector. We present a preliminary ray-traced optical design matched to the new 4.3-meter Discovery Channel Telescope in Happy Jack, Arizona. We also discuss mechanical and cryogenic options to house our optical design.

  11. Holographic Gratings for Optical Processing

    NASA Technical Reports Server (NTRS)

    Kukhtarev, Nickolai

    2002-01-01

    Investigation of astronomical objects and tracking of man-made space objects lead to generation of huge amount of information for optical processing. Traditional big-size optical elements (such as optical telescopes) have a tendency for increasing aperture size in order to improve sensitivity. This tendency leads to increasing of weight and costs of optical systems and stimulate search for the new, more adequate technologies. One approach to meet these demands is based on developing of holographic optical elements using new polymeric materials. We have investigated possibility to use new material PQ-PMMA (phenantrenequinone-doped PMMA (Polymethyl Methacrylate)) for fabrication of highly selective optical filters and fast spatial-temporal light modulators. This material was originally developed in Russia and later was tested in CalTech as a candidate material for optical storage. Our theoretical investigation predicts the possibility of realization of fast spatial and temporal light modulation, using volume reflection-type spectral filter. We have developed also model of holographic-grating recording in PQ-PMMA material, based on diffusional amplification. This mechanism of recording allow to receive high diffraction efficiency during recording of reflection-type volume holographic grating (holographic mirror). We also investigated recording of dynamic gratings in the photorefractive crystals LiNbO3 (LN) for space-based spectroscopy and for adaptive correction of aberrations in the telescope's mirrors. We have shown, that specific 'photogalvanic' mechanism of holographic grating recording in LN allow to realize recording of blazed gratings for volume and surface gratings. Possible applications of dynamic gratings in LN for amplification of images, transmitted through an imaging fiber guide was also demonstrated.

  12. Compact high performance spectrometers using computational imaging

    NASA Astrophysics Data System (ADS)

    Morton, Kenneth; Weisberg, Arel

    2016-05-01

    Compressive sensing technology can theoretically be used to develop low cost compact spectrometers with the performance of larger and more expensive systems. Indeed, compressive sensing for spectroscopic systems has been previously demonstrated using coded aperture techniques, wherein a mask is placed between the grating and a charge coupled device (CCD) and multiple measurements are collected with different masks. Although proven effective for some spectroscopic sensing paradigms (e.g. Raman), this approach requires that the signal being measured is static between shots (low noise and minimal signal fluctuation). Many spectroscopic techniques applicable to remote sensing are inherently noisy and thus coded aperture compressed sensing will likely not be effective. This work explores an alternative approach to compressed sensing that allows for reconstruction of a high resolution spectrum in sensing paradigms featuring significant signal fluctuations between measurements. This is accomplished through relatively minor changes to the spectrometer hardware together with custom super-resolution algorithms. Current results indicate that a potential overall reduction in CCD size of up to a factor of 4 can be attained without a loss of resolution. This reduction can result in significant improvements in cost, size, and weight of spectrometers incorporating the technology.

  13. Dedicated spectrometers based on diffractive optics: design, modelling and evaluation

    NASA Astrophysics Data System (ADS)

    Løvhaugen, O.; Johansen, I.-R.; Bakke, K. A. H.; Fismen, B. G.; Nicolas, S.

    The described design of diffractive optical elements for low cost IR-spectrometers gives a built-in wavelength reference and allows 'spectral arithmetic' to be implemented in the optical performance of the DOE. The diffractive element combines the function of the lenses and the grating and eliminates the need for alignment of those components in the standard scanned grating spectrometer design. The element gives out a set of foci, each with one spectral component, which are scanned across a detector, thus relaxing the demands for scan angle control. It can thus be regarded as an alternative solution to a beam splitter and band pass filter instrument. Software tools have been designed to ease the adaptation of the design to different applications. To model the performance of the spectrometers we have implemented a scalar Rayleigh-Sommerfeldt diffraction model. The gold-coated elements are produced by injection moulding using a compact disc (CD) moulding technique and mould inlays mastered by e-beam lithography. The optimized selection of wavelength bands and the classification of the measured signal use a combination of principal component analysis and robust statistical methods. Typical applications will be material characterization of recycled plastics and gas monitoring. Spectrometers for two different applications have been built and tested. Comparisons between the design goals and the measured performance have been made and show good agreements.

  14. The Quadrupole Mass Spectrometer

    ERIC Educational Resources Information Center

    Matheson, E.; Harris, T. J.

    1969-01-01

    Describes the construction and operation of a quadrupole mass spectrometer for experiments in an advanced-teaching laboratory. Discusses the theory of operation of the spectrometer and the factors affecting the resolution. Some examples of mass spectra obtained with this instrument are presented and discussed. (LC)

  15. Near-perfect diffraction grating rhomb

    DOEpatents

    Wantuck, Paul J.

    1990-01-01

    A near-perfect grating rhomb enables an output beam to be diffracted to an angle offset from the input beam. The correcting grating is tipped relative to the dispersing grating to provide the offset angle. The correcting grating is further provided with a groove spacing which differs from the dispersing grating groove space by an amount effective to substantially remove angular dispersion in the output beam. A near-perfect grating rhomb has the capability for selective placement in a FEL to suppress sideband instabilities arising from the FEL.

  16. Diffraction by dual-period gratings.

    PubMed

    Skigin, Diana C; Depine, Ricardo A

    2007-03-20

    The dynamical characteristics of dual-period perfectly conducting gratings are explored. Gratings with several grooves (reflection) or slits (transmission) within each period are considered. A scalar approach is proposed to derive the general characteristics of the diffracted response. It was found that compound gratings can be designed to cancel as well as to intensify a given diffraction order. These preliminary estimations for finite gratings are validated by numerical examples for infinitely periodic reflection and transmission gratings with finite thickness, performed using an extension of the rigorous modal method to compound gratings, for both polarization cases.

  17. Alignment of the Grating Wheel Mechanism for a Ground-Based, Cryogenic, Near-Infrared Astronomy Instrument

    NASA Technical Reports Server (NTRS)

    Gutkowski, Sharon M.; Ohl, Raymond G.; Hylan, Jason E.; Hagopian, John G.; Kraft, Stephen E.; Mentzell, J. Eric; Connelly, Joseph A.; Schepis, Joseph P.; Sparr, Leroy M.; Greenhouse, Matthew A.

    2003-01-01

    We describe the population, optomechanical alignment, and alignment verification of near-infrared gratings on the grating wheel mechanism (GWM) for the Infrared Multi-Object Spectrometer (IRMOS). IRMOS is a cryogenic (80 K), principle investigator-class instrument for the 2.1 m and Mayall 3.8 m telescopes at Kitt Peak National Observatory, and a MEMS spectrometer concept demonstrator for the James Webb Space Telescope. The GWM consists of 13 planar diffraction gratings and one flat imaging mirror (58 x 57 mm), each mounted at a unique compound angle on a 32 cm diameter gear. The mechanism is predominantly made of Al 6061. The grating substrates are stress relieved for enhanced cryogenic performance. The optical surfaces are replicated from off-the-shelf masters. The imaging mirror is diamond turned. The GWM spans a projected diameter of approx. 48 cm when fully assembled, utilizes several flexure designs to accommodate potential thermal gradients, and is controlled using custom software with an off-the-shelf controller. Under ambient conditions, each grating is aligned in six degrees of freedom relative to a coordinate system that is referenced to an optical alignment cube mounted at the center of the gear. The local tip/tilt (Rx/Ry) orientation of a given grating is measured using the zero-order return from an autocollimating theodolite. The other degrees of freedom are measured using a two-axis cathetometer and rotary table. Each grating's mount includes a one-piece shim located between the optic and the gear. The shim is machined to fine align each grating. We verify ambient alignment by comparing grating difractive properties to model predictions.

  18. Line spread functions of blazed off-plane gratings operated in the Littrow mounting

    NASA Astrophysics Data System (ADS)

    DeRoo, Casey T.; McEntaffer, Randall L.; Miles, Drew M.; Peterson, Thomas J.; Marlowe, Hannah; Tutt, James H.; Donovan, Benjamin D.; Menz, Benedikt; Burwitz, Vadim; Hartner, Gisela; Allured, Ryan; Smith, Randall K.; Günther, Ramses; Yanson, Alex; Vacanti, Giuseppe; Ackermann, Marcelo

    2016-04-01

    Future soft x-ray (10 to 50 Å) spectroscopy missions require higher effective areas and resolutions to perform critical science that cannot be done by instruments on current missions. An x-ray grating spectrometer employing off-plane reflection gratings would be capable of meeting these performance criteria. Off-plane gratings with blazed groove facets operating in the Littrow mounting can be used to achieve excellent throughput into orders achieving high resolutions. We have fabricated two off-plane gratings with blazed groove profiles via a technique that uses commonly available microfabrication processes, is easily scaled for mass production, and yields gratings customized for a given mission architecture. Both fabricated gratings were tested in the Littrow mounting at the Max Planck Institute for Extraterrestrial Physics (MPE) PANTER x-ray test facility to assess their performance. The line spread functions of diffracted orders were measured, and a maximum resolution of 800±20 is reported. In addition, we also observe evidence of a blaze effect from measurements of relative efficiencies of the diffracted orders.

  19. First results from a next-generation off-plane X-ray diffraction grating

    NASA Astrophysics Data System (ADS)

    McEntaffer, Randall; DeRoo, Casey; Schultz, Ted; Gantner, Brennan; Tutt, James; Holland, Andrew; O'Dell, Stephen; Gaskin, Jessica; Kolodziejczak, Jeffrey; Zhang, William W.; Chan, Kai-Wing; Biskach, Michael; McClelland, Ryan; Iazikov, Dmitri; Wang, Xinpeng; Koecher, Larry

    2013-08-01

    Future NASA X-ray spectroscopy missions will require high throughput, high resolving power grating spectrometers. Off-plane reflection gratings are capable of meeting the performance requirements needed to realize the scientific goals of these missions. We have identified a novel grating fabrication method that utilizes common lithographic and microfabrication techniques to produce the high fidelity groove profile necessary to achieve this performance. Application of this process has produced an initial pre-master that exhibits a radial (variable line spacing along the groove dimension), high density (> 6000 grooves/mm), laminar profile. This pre-master has been tested for diffraction efficiency at the BESSY II synchrotron light facility and diffracts up to 55 % of incident light into usable spectral orders. Furthermore, tests of spectral resolving power show that these gratings are capable of obtaining resolving powers well above 1300 ( λ/Δ λ) with limitations due to the test apparatus, not the gratings. Obtaining these results has provided confidence that this fabrication process is capable of producing off-plane reflection gratings for the next generation of X-ray observatories.

  20. [Study on an optical system of small ultraviolet imaging spectrometer with high resolution in broadband].

    PubMed

    Cong, Hai-Fang; Wang, Chun-Hui; Wang, Yu

    2013-02-01

    An ultraviolet imaging spectrometer was studied based on the principle of the small scale ultraviolet spectral instrument. The scheme composed of an off-axis parabolic mirror telescope and a single toroidal grating spectral imaging system was designed. The optimization of the optical system is the optimum processing for the parameters of the toroidal grating. The optical path function and the aberration equations of the grating were analyzed. The perfect anastigmatism conditions and imaging conditions of the single toroidal grating system were obtained. These two conditions that cannot be satisfied by the algebra calculation method limit the field of view and waveband of the spectrometer. The genetic algorithm was introduced to solve the problem. A solar-blind ultraviolet imaging spectrometer for 200-280 nm was designed to verify the design method. The optimum initial configuration was calculated and simulated. A system with F/# 5.7, focal length 102 mm and high spatial resolution was designed. The modulation transfer functions (MTF) of all fields of view are more than 0.65 in the waveband in the required Nyquist frequency (20 1p x mm(-1)). The design results indicate that the optical system theory can be applied to the small scale ultraviolet imaging spectrometer with high resolution and spectral broadband.

  1. ComIXS on BACH: a compact soft x-ray spectrometer operating at Elettra

    SciTech Connect

    Cocco, Daniele; Matteucci, Maurizio; Zangrando, Marco; Bondino, Federica; Zacchigna, Michele; Plate, Mauro; Parmigiani, Fulvio; Nelles, Bruno; Prince, Kevin C.

    2004-05-12

    To accommodate increasing interest in soft x-ray inelastic scattering, a new spectrometer has been designed, constructed and commissioned at Elettra. This instrument uses as the dispersive element one of two interchangeable Variable Line Spacing (VLS) spherical gratings. The energy scan is performed by a 7 cm linear translation of a back illuminated CCD which also collects the zero order light, facilitating alignment and calibration. The two gratings have the same radius of curvature while the groove densities and the groove density variations differ by a factor four. Thus the energies focused by the gratings at a particular position differ by a factor of four. The total length of the instrument is 60 cm, the energy range covered is roughly 25-1000 eV and the expected resolving power ranges from 1000 to 5000. The spectrometer is now operating on the beamline Bach. It takes advantage of the small size of the photon spot in the experimental chamber and of the possibility to control the polarization of the incoming radiation. The small spot constitutes the virtual entrance slit, and the spectrometer collects the photons emitted in a solid angle of about 30x10 mrad2. The instrument, named ComIXS (Compact Inelastic X-ray Spectrometer), has been routinely operating since October 2002. Several experiments have already been carried out, and some results illustrating the characteristics of the instrument are described. The manufacture and testing of the blaze gratings are also discussed.

  2. ComIXS on BACH: a compact soft x-ray spectrometer operating at Elettra

    NASA Astrophysics Data System (ADS)

    Cocco, Daniele; Zangrando, Marco; Matteucci, Maurizio; Bondino, Federica; Platè, Mauro; Zacchigna, Michele; Parmigiani, Fulvio; Nelles, Bruno; Prince, Kevin C.

    2004-05-01

    To accommodate increasing interest in soft x-ray inelastic scattering, a new spectrometer has been designed, constructed and commissioned at Elettra. This instrument uses as the dispersive element one of two interchangeable Variable Line Spacing (VLS) spherical gratings. The energy scan is performed by a 7 cm linear translation of a back illuminated CCD which also collects the zero order light, facilitating alignment and calibration. The two gratings have the same radius of curvature while the groove densities and the groove density variations differ by a factor four. Thus the energies focused by the gratings at a particular position differ by a factor of four. The total length of the instrument is 60 cm, the energy range covered is roughly 25-1000 eV and the expected resolving power ranges from 1000 to 5000. The spectrometer is now operating on the beamline Bach. It takes advantage of the small size of the photon spot in the experimental chamber and of the possibility to control the polarization of the incoming radiation. The small spot constitutes the virtual entrance slit, and the spectrometer collects the photons emitted in a solid angle of about 30×10 mrad2. The instrument, named ComIXS (Compact Inelastic X-ray Spectrometer), has been routinely operating since October 2002. Several experiments have already been carried out, and some results illustrating the characteristics of the instrument are described. The manufacture and testing of the blaze gratings are also discussed.

  3. Osmium coated diffraction grating in the Space Shuttle environment - Performance

    NASA Technical Reports Server (NTRS)

    Torr, M. R.

    1985-01-01

    Samples coated with osmium were flown on the early Shuttle test flights, and on the return of these samples, the osmium coating was found to have disappeared, evidently due to the oxidation of the material in the atomic oxygen atmosphere. An instrument flown on the Spacelab 1 mission comprised an array of five spectrometers covering the extreme ultraviolet (EUV) to near-IR wavelengths. The EUV spectrometer contained an osmium-coated reflective grating located fairly deep within the instruments. Here, results of an assessment of the reflectivity and stability of the osmium surface over the course of the ten-day mission are reported. It is concluded that the osmium reflective coating remained stable relative to the spectrometer coated with MgF2 over the course of the mission. In addition, the ratio of sensitivity of these two spectrometers did not change in any major way from the time of the laboratory calibration until the time of flight two years later. Any changes are within the 50-percent calibration uncertainty.

  4. High performance Czerny-Turner imaging spectrometer with aberrations corrected by tilted lenses

    NASA Astrophysics Data System (ADS)

    Zhong, Xing; Zhang, Yuan; Jin, Guang

    2015-03-01

    The design of the high performance imaging spectrometer using low-cost plane grating is researched in this paper. In order to correct the aberrations well, under the guidance of the vector aberration theory, the modification of Czerny-Turner system with inserted tilt lenses is proposed. The novel design of a short-wave infrared imaging spectrometer working at between wavelengths of 1-2.5 μm is shown as an example, whose numerical aperture achieves 0.15 in image space. The aberrations are corrected well and the Modulation Transfer Function (MTF) performance is the same as the convex gratings systems. The smiles and keystones of the spectral image are acceptable. Advantages of the proposed design with a plane grating are obviously that the diffraction efficiency is high while the cost is very low.

  5. The science case of the PEPSI high-resolution echelle spectrograph and polarimeter for the LBT

    NASA Astrophysics Data System (ADS)

    Strassmeier, K. G.; Pallavicini, R.; Rice, J. B.; Andersen, M. I.

    2004-05-01

    We lay out the scientific rationale for and present the instrumental requirements of a high-resolution adaptive-optics Echelle spectrograph with two full-Stokes polarimeters for the Large Binocular Telescope (LBT) in Arizona. Magnetic processes just like those seen on the Sun and in the space environment of the Earth are now well recognized in many astrophysical areas. The application to other stars opened up a new field of research that became widely known as the solar-stellar connection. Late-type stars with convective envelopes are all affected by magnetic processes which give rise to a rich variety of phenomena on their surface and are largely responsible for the heating of their outer atmospheres. Magnetic fields are likely to play a crucial role in the accretion process of T-Tauri stars as well as in the acceleration and collimation of jet-like flows in young stellar objects (YSOs). Another area is the physics of active galactic nucleii (AGNs) , where the magnetic activity of the accreting black hole is now believed to be responsible for most of the behavior of these objects, including their X-ray spectrum, their notoriously dramatic variability, and the powerful relativistic jets they produce. Another is the physics of the central engines of cosmic gamma-ray bursts, the most powerful explosions in the universe, for which the extreme apparent energy release are explained through the collimation of the released energy by magnetic fields. Virtually all the physics of magnetic fields exploited in astrophysics is somehow linked to our understanding of the Sun's and the star's magnetic fields.

  6. Study of Extra-Solar Planets with the Advanced Fiber Optic Echelle

    NASA Technical Reports Server (NTRS)

    Noyes, Robert W.; Boyce, Joseph M. (Technical Monitor)

    2002-01-01

    This is the final report of NASA Grant NAG5-7505, for 'Study of Extra-solar Planets with the Advanced Fiber Optic Echelle'. This program was funded in response to our proposal submitted under NASA NRA 97-OSS-06, with a total period of performance from June 1, 1998 through Feb 28 2002. Principal Investigator is Robert W. Noyes; co-Investigators are Sylvain G. Korzennik (SAO), Peter Niserison (SAO), and Timothy M. Brown (High Altitude Observatory). Since the start of this program we have carried out more than 30 observing runs, typically of 5 to 7 days duration. We obtained a total of around 2000 usable observations of about 150 stars, where a typical observation consists of 3 exposures of 10 minutes each. Using this data base we detected thc two additional planetary companions to the star Upsilon Andromedae. This detection was made independently of, and essentially simultaneously with, a similar detection by the Berkeley group (Marcy et al): the fact that two data sets were completely independent and gave essentially the same orbital parameters for this three-planet system gave a strong confirmation of this important result. We also extended our previous detection of the planet orbiting Rho Coronae Borealis to get a better determination of its orbital eccentricity: e=0.13 +/- 0.05. We detected a new planet in orbit around the star HD 89744, with orbital period 256 days, semi-major axis 0.88 AU, eccentricity 0.70, and minimum mass m sini = 7.2 m(sub Jup). This discovery is significant because of the very high orbital eccentricity, arid also because HD 89744 has both high metallicity [Fe/H] and at the same time a low [C/Fe] abundance ratio.

  7. Cool stars: spectral library of high-resolution echelle spectra and database of stellar parameters

    NASA Astrophysics Data System (ADS)

    Montes, D.

    2013-05-01

    During the last years our group have undertake several high resolution spectroscopic surveys of nearby FGKM stars with different spectrographs (FOCES, SARG, SOFIN, FIES, HERMES). A large number of stars have been already observed and we have already determined spectral types, rotational velocities as well as radial velocities, Lithium abundance and several chromospheric activity indicators. We are working now in a homogeneous determination of the fundamental stellar parameters (T_{eff}, log{g}, ξ and [Fe/H]) and chemical abundances of many elements of all these stars. Some fully reduced spectra in FITS format have been available via ftp and in the {http://www.ucm.es/info/Astrof/invest/actividad/spectra.html}{Worl Wide Web} (Montes et al. 1997, A&AS, 123, 473; Montes et al. 1998, A&AS, 128, 485; and Montes et al. 1999, ApJS, 123, 283) and some particular spectral regions of the echelle spectra are available at VizieR by López-Santiago et al. 2010, A&A, 514, A97. We are now working in made accessible all the spectra of our different surveys in a Virtual Observatory ({http://svo.cab.inta-csic.es/}{VO}) compliant library and database accessible using a common web interface following the standards of the International Virtual Observatory Alliance ({http://www.ivoa.net/}{IVOA}). The spectral library includes F, G, K and M field stars, from dwarfs to giants. The spectral coverage is from 3800 to 10000 Å, with spectral resolution ranging from 40000 to 80000. The database will provide in addition the stellar parameters determined for these spectra using {http://cdsads.u-strasbg.fr/abs/2012arXiv1205.4879T}{StePar} (Tabernero et al. 2012, A&A, 547, A13).

  8. Enhancement of detection accuracy of fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Zeh, Thomas; Schweizer, Hans; Meixner, Andreas; Purde, Andreas; Koch, Alexander W.

    2004-06-01

    Over the course of the last few years, several readout techniques for fiber Bragg grating (FBG) sensors have been proposed. However, all of them suffer from specific restrictions concerning response speed, accuracy, sensor multiplexibility and cost. In the past, it was often assumed that diffraction grating spectrometers were suitable only for FBG applications with modest resolution. The achievable pixel resolution is nowadays in the range of several tens of pm. For FBG sensors with typical temperature coefficients of 5 pm/K and strain coefficients of 0.7 pm/μɛ this resolution is not sufficient for the majority of applications. We present a discussion on different methods for the subpixel registration of FBG spectra and we introduce a novel detection algorithm: the linear phase operator technique (LPO). Even under extreme noisy conditions LPO ensures a significant resolution enhancement by a factor of three compared to conventional algorithms and is shown to be very efficient in its implementation. The efficiencies of several conventional algorithms and LPO is compared by simulations and by means of a test bench. With slight efforts LPO is adaptable to further applications like spectrometer based Fabry-Perot sensors and other sensors with CCD detectors.

  9. Diffraction by random Ronchi gratings.

    PubMed

    Torcal-Milla, Francisco Jose; Sanchez-Brea, Luis Miguel

    2016-08-01

    In this work, we obtain analytical expressions for the near-and far-field diffraction of random Ronchi diffraction gratings where the slits of the grating are randomly displaced around their periodical positions. We theoretically show that the effect of randomness in the position of the slits of the grating produces a decrease of the contrast and even disappearance of the self-images for high randomness level at the near field. On the other hand, it cancels high-order harmonics in far field, resulting in only a few central diffraction orders. Numerical simulations by means of the Rayleigh-Sommerfeld diffraction formula are performed in order to corroborate the analytical results. These results are of interest for industrial and technological applications where manufacture errors need to be considered.

  10. Diffraction by random Ronchi gratings.

    PubMed

    Torcal-Milla, Francisco Jose; Sanchez-Brea, Luis Miguel

    2016-08-01

    In this work, we obtain analytical expressions for the near-and far-field diffraction of random Ronchi diffraction gratings where the slits of the grating are randomly displaced around their periodical positions. We theoretically show that the effect of randomness in the position of the slits of the grating produces a decrease of the contrast and even disappearance of the self-images for high randomness level at the near field. On the other hand, it cancels high-order harmonics in far field, resulting in only a few central diffraction orders. Numerical simulations by means of the Rayleigh-Sommerfeld diffraction formula are performed in order to corroborate the analytical results. These results are of interest for industrial and technological applications where manufacture errors need to be considered. PMID:27505363

  11. A Fourier transform spectrometer for visible and near ultra-violet measurements of atmospheric absorption

    NASA Technical Reports Server (NTRS)

    Parsons, C. L.; Gerlach, J. C.; Whitehurst, M.

    1982-01-01

    The development of a prototype, ground-based, Sun-pointed Michelson interferometric spectrometer is described. Its intended use is to measure the atmospheric amount of various gases which absorb in the near-infrared, visible, and near-ultraviolet portions of the electromagnetic spectrum. Preliminary spectra which contain the alpha, 0.8 micrometer, and rho sigma tau water vapor absorption bands in the near-infrared are presented to indicate the present capability of the system. Ultimately, the spectrometer can be used to explore the feasible applications of Fourier transform spectroscopy in the ultraviolet where grating spectrometers were used exclusively.

  12. The SAGE spectrometer

    NASA Astrophysics Data System (ADS)

    Pakarinen, J.; Papadakis, P.; Sorri, J.; Herzberg, R.-D.; Greenlees, P. T.; Butler, P. A.; Coleman-Smith, P. J.; Cox, D. M.; Cresswell, J. R.; Jones, P.; Julin, R.; Konki, J.; Lazarus, I. H.; Letts, S. C.; Mistry, A.; Page, R. D.; Parr, E.; Pucknell, V. F. E.; Rahkila, P.; Sampson, J.; Sandzelius, M.; Seddon, D. A.; Simpson, J.; Thornhill, J.; Wells, D.

    2014-03-01

    The SAGE spectrometer has been constructed for in-beam nuclear structure studies. SAGE combines a Ge-detector array and an electron spectrometer for detection of -rays and internal conversion electrons, respectively, and allows simultaneous observation of both electrons and -rays emitted from excited nuclei. SAGE is set up in the Accelerator Laboratory of the University of Jyväskylä and works in conjunction with the RITU gas-filled recoil separator and the GREAT focal-plane spectrometer allowing the use of the recoil-decay tagging method.

  13. Diffraction pattern of gratings with erosion

    NASA Astrophysics Data System (ADS)

    Olivares-Pérez, Arturo; Fuentes-Tapia, Israel

    2015-03-01

    We present a theoretical study of amplitude diffraction gratings using computer simulating, which consists of a random sampling of points on the image grating to determine the points to be plotted and the points to remove, to simulate erosion in amplitude on the grating. We show their behavior in the diffraction patterns and the induced noise by limiting the number of points that representing the image of the eroded gratings and their symmetry.

  14. Gratings for High-Energy Petawatt Lasers

    SciTech Connect

    Nguyen, H T; Britten, J A; Carlson, T C; Nissen, J D; Summers, L J; Hoaglan, C R; Aasen, M D; Peterson, J E; Jovanovic, I

    2005-11-08

    To enable high-energy petawatt laser operation we have developed the processing methods and tooling that produced both the world's largest multilayer dielectric reflection grating and the world's highest laser damage resistant gratings. We have successfully delivered the first ever 80 cm aperture multilayer dielectric grating to LLNL's Titan Intense Short Pulse Laser Facility. We report on the design, fabrication and characterization of multilayer dielectric diffraction gratings.

  15. Record High EUV Efficiency from Multilayer-Coated Liquid-Overcoated Blazed Ion-Etched Gratings

    NASA Astrophysics Data System (ADS)

    Kowalski, M. P.; Cruddace, R. G.; Rife, J. C.; Barbee, T. W., Jr.; Hunter, W. R.; Heidemann, K. F.; Kierey, H.

    2002-12-01

    In the EUV spectra of astrophysical sources, high spectral resolution and sensitivity are required goals for measuring line widths and Doppler shifts and for resolving the many weak lines, absorption edges and other features that may appear. We have been pursuing these goals by depositing high-reflectance multilayers on ultra-smooth holographic ion-etched gratings of high groove density. At near-normal incidence we have achieved grating groove efficiencies of 34% in the first order using laminar gratings, near the theoretical limit of 40.5%. For blazed gratings, the theoretical limit in a chosen order is 100% but the highest measured values are only 25%. Accurate control of the groove profile is the key factor, and this becomes difficult when the groove density is high and the blaze angle is only a few degrees. Such configurations are typical of high-resolution EUV spectrometers, such as with the successful J-PEX sounding rocket experiment or with the proposed APEX satellite instrument. However, a new technique has been developed at Carl Zeiss where a grating of relatively high blaze angle is overcoated with a liquid polymer, which is then hardened. The resulting grating has a reduced blaze angle, accurate profile, and reduced roughness. We present the results of efficiency measurements on blazed test gratings that were overcoated with a liquid polymer, cured, and then coated further with state-of-the-art multilayers. Record values were achieved in both measured efficiency and grating groove efficiency. This work is supported by the Office of Naval Research and NRL under Work Unit AMCORS (76-3641), and by NASA Space Astrophysics and Research Analysis under NDPR W-19,881.

  16. Design of a portable microfiber optic spectrometer

    NASA Astrophysics Data System (ADS)

    Tong, Jian-ping; Yang, Yang; Sui, Cheng-hua; Xu, Dang-yang; Wang, fei

    2010-10-01

    Spectrum examination is widely used in scientific research and production. With the development of scientific research and production, the trend of spectrum examination is from indoor to outdoor in situ examination and on-line monitor. So the spectrometer is required to be more minimal. A new type of portable micro fiber spectrometer, using CCD, blaze grating, and two spherical mirror, a small dispersing system based on crossing Czerny-Turner structure, is designed based on this kind of requirement. By analyzing optical system structure, the relation among parameters of these components has been found out in order to fix basic parameters for miniaturized spectrometer; its working wavelength is 200-910nm. The entire spectrum is detected by a CCD for one time, the selection of CCD is product of Toshiba Corporation, linear charge coupled device (L.CCD) TCD1304AP, then received light signal is converted to an electrical signal. The system's hardware circuit includes CPLD, MCU, the CCD driving timing circuit, signal conditioning circuits, high-speed A/D sampling and transform timing circuit. A new kind of driving and sampling system which is high integrated for multi-channel has been designed by using CPLD (complex programmable logical device) and MCU. In this system, many function modules can be generated by logic cells inside of the CPLD chip, such as the driving pulse of CCD, the driving timing of high-speed A/D sampling converter and storage system and so on. In the end, the A/D results can be transmitted to computer by MCU for storage, processing and analysis. The CPLD is programmed in VHDL and compiled, synthesized, simulated and burned with the helping of the environment of Quartus II. The design of portable micro fiber spectrometer has the feature of wide spectrum range and high resolving power, so the system is especially suitable in the application of portable filed examination.

  17. ORFEUS-SPAS - The Berkeley EUV spectrometer

    NASA Technical Reports Server (NTRS)

    Bowyer, Stuart; Hurwitz, Mark

    1990-01-01

    The Berkeley EUV spectrometer of ORFEUS-SPAS, a joint project of NASA and the BMFT, incorporates a set of four novel spherically figured, varied line-space gratings used in a geometry that is similar to that of the classic Rowland mount to span an interval of 390 and 1200 A. Two spectral detector units containing curved microchannel plates and delay-line anodes encode the arriving photons in digital format for telemetry. An additional optic directs the image of the source in the entrance aperture onto a sealed FUV detector which is used to track the source as it drifts during an observation, enabling a postflight reconstruction of the spacecraft pointing vector. This in turn makes it possible to define with precision the wavelength of each recorded photon.

  18. Spectrometer system for diffuse extreme ultraviolet radiation

    NASA Technical Reports Server (NTRS)

    Labov, Simon E.

    1989-01-01

    A unique grazing incidence spectrometer system has been designed to study diffuse line emission between 80 and 650 A with 10-30 A resolution. The minimum detectable emission line strength during a 5-min observation ranges from 100-2000 ph/sq cm sec str. The instrument uses mechanically ruled reflection gratings placed in front of a linear array of mirrors. These mirrors focus the spectral image on microchannel plate detectors located behind thin filters. The field of view is 40 min of arc by 15 deg, and there is no spatial imaging. This instrument has been fabricated, calibrated, and successfully flown on a sounding rocket to observe the astronomical background radiation.

  19. Advanced Fibre Bragg Grating and Microfibre Bragg Grating Fabrication Techniques

    NASA Astrophysics Data System (ADS)

    Chung, Kit Man

    Fibre Bragg gratings (FBGs) have become a very important technology for communication systems and fibre optic sensing. Typically, FBGs are less than 10-mm long and are fabricated using fused silica uniform phase masks which become more expensive for longer length or non-uniform pitch. Generally, interference UV laser beams are employed to make long or complex FBGs, and this technique introduces critical precision and control issues. In this work, we demonstrate an advanced FBG fabrication system that enables the writing of long and complex gratings in optical fibres with virtually any apodisation profile, local phase and Bragg wavelength using a novel optical design in which the incident angles of two UV beams onto an optical fibre can be adjusted simultaneously by moving just one optical component, instead of two optics employed in earlier configurations, to vary the grating pitch. The key advantage of the grating fabrication system is that complex gratings can be fabricated by controlling the linear movements of two translation stages. In addition to the study of advanced grating fabrication technique, we also focus on the inscription of FBGs written in optical fibres with a cladding diameter of several ten's of microns. Fabrication of microfibres was investigated using a sophisticated tapering method. We also proposed a simple but practical technique to filter out the higher order modes reflected from the FBG written in microfibres via a linear taper region while the fundamental mode re-couples to the core. By using this technique, reflection from the microfibre Bragg grating (MFBG) can be effectively single mode, simplifying the demultiplexing and demodulation processes. MFBG exhibits high sensitivity to contact force and an MFBG-based force sensor was also constructed and tested to investigate their suitability for use as an invasive surgery device. Performance of the contact force sensor packaged in a conforming elastomer material compares favourably to one

  20. 21 CFR 133.146 - Grated cheeses.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Grated cheeses. 133.146 Section 133.146 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.146 Grated cheeses. (a) Description. Grated cheeses is the class of foods prepared...

  1. 21 CFR 133.146 - Grated cheeses.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Grated cheeses. 133.146 Section 133.146 Food and... CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.146 Grated cheeses. (a) Description. Grated cheeses is the class of foods prepared...

  2. Embedded high-contrast distributed grating structures

    DOEpatents

    Zubrzycki, Walter J.; Vawter, Gregory A.; Allerman, Andrew A.

    2002-01-01

    A new class of fabrication methods for embedded distributed grating structures is claimed, together with optical devices which include such structures. These new methods are the only known approach to making defect-free high-dielectric contrast grating structures, which are smaller and more efficient than are conventional grating structures.

  3. Optical apparatus for forming correlation spectrometers and optical processors

    DOEpatents

    Butler, Michael A.; Ricco, Antonio J.; Sinclair, Michael B.; Senturia, Stephen D.

    1999-01-01

    Optical apparatus for forming correlation spectrometers and optical processors. The optical apparatus comprises one or more diffractive optical elements formed on a substrate for receiving light from a source and processing the incident light. The optical apparatus includes an addressing element for alternately addressing each diffractive optical element thereof to produce for one unit of time a first correlation with the incident light, and to produce for a different unit of time a second correlation with the incident light that is different from the first correlation. In preferred embodiments of the invention, the optical apparatus is in the form of a correlation spectrometer; and in other embodiments, the apparatus is in the form of an optical processor. In some embodiments, the optical apparatus comprises a plurality of diffractive optical elements on a common substrate for forming first and second gratings that alternately intercept the incident light for different units of time. In other embodiments, the optical apparatus includes an electrically-programmable diffraction grating that may be alternately switched between a plurality of grating states thereof for processing the incident light. The optical apparatus may be formed, at least in part, by a micromachining process.

  4. A cryogenically cooled, multidetector spectrometer for infrared astronomy

    NASA Technical Reports Server (NTRS)

    Witteborn, F. C.; Bregman, J. D.

    1984-01-01

    A liquid helium-cooled, 24 detector grating spectrometer was developed and used for low resolution astronomical observations in the 5 to 14 micron spectral range. The instrument operated on the 91 cm Kuiper Airborne Observatory, the 3 m IRTF (Mauna Kea), the 3 m Shane telescope Observatory, the 3 m Shane telescope (Lick Observatory), and the 152 cm NASA and University of Arizona telescope. The detectors are discrete Si:Bi photoconductors with individual metal oxide semiconductor field effect transistor preamplifiers operating at 4 K. The system uses a liquid helium-cooled slit, order-sorter filter, collimator mirror, grating, and camera mirror arranged in a Czerny-Turner configuration with a cold stop added between the collimator mirror and the grating. The distances between components are chosen so that the collimator mirror images the secondary mirror of the telescope onto the cold stop, thus providing a very effective baffle. Scattered radiation is effectively reduced by using liquid helium-cooled, black baffles to divide the spectrometer into three separate compartments. The system noise-equivalent flux density, when used on the 152 cm telescope from 8 to 13 microns with a resolving power of 50, is 4.4 x 10 to the minus 17th power W/sq cm micron square root of Hz. The main applications are for measuring continuum radiation levels and solid state emission and absorption features in regions of star and planet formation.

  5. A cryogenically cooled, multidetector spectrometer for infrared astronomy

    NASA Technical Reports Server (NTRS)

    Witteborn, F. C.; Bregman, J. D.

    1985-01-01

    A liquid helium-cooled, 24 detector grating spectrometer was developed and used for low resolution astronomical observations in the 5 to 14 micron spectral range. The instrument operated on the 91 cm Kuiper Airborne Observatory, the 3 m IRTF (Mauna Kea), the 3 m Shane telescope (Lick Observatory), and the 152 cm NASA and University of Arizona telescope. The detectors are discrete Si:Bi photoconductors with individual metal oxide semiconductor field effect transistor preamplifiers operating at 4 K. The system uses a liquid helium-cooled slit, order-sorter filter, collimator mirror, grating, and camera mirror arranged in a Czerny-Turner configuration with a cold stop added between the collimator mirror and the grating. The distances between components are chosen so that the collimator mirror images the secondary mirror of the telescope onto the cold stop, thus providing a very effective baffle. Scattered radiation is effectively reduced by using liquid helium-cooled, black baffles to divide the spectrometer into three separate compartments. The system noise-equivalent flux density, when used on the 152 cm telescope from 8 to 13 microns with a resolving power of 50, is 4.4 x 10 to the minus 17th power W/sq cm micron square root of Hz. The main applications are for measuring continuum radiation levels and solid state emission and absorption features in regions of star and planet formation.

  6. Optical apparatus for forming correlation spectrometers and optical processors

    DOEpatents

    Butler, M.A.; Ricco, A.J.; Sinclair, M.B.; Senturia, S.D.

    1999-05-18

    Optical apparatus is disclosed for forming correlation spectrometers and optical processors. The optical apparatus comprises one or more diffractive optical elements formed on a substrate for receiving light from a source and processing the incident light. The optical apparatus includes an addressing element for alternately addressing each diffractive optical element thereof to produce for one unit of time a first correlation with the incident light, and to produce for a different unit of time a second correlation with the incident light that is different from the first correlation. In preferred embodiments of the invention, the optical apparatus is in the form of a correlation spectrometer; and in other embodiments, the apparatus is in the form of an optical processor. In some embodiments, the optical apparatus comprises a plurality of diffractive optical elements on a common substrate for forming first and second gratings that alternately intercept the incident light for different units of time. In other embodiments, the optical apparatus includes an electrically-programmable diffraction grating that may be alternately switched between a plurality of grating states thereof for processing the incident light. The optical apparatus may be formed, at least in part, by a micromachining process. 24 figs.

  7. Invariant grating pseudoimaging using polychromatic light and a finite extension source.

    PubMed

    Sanchez-Brea, Luis Miguel; Saez-Landete, Jose; Alonso, Jose; Bernabeu, Eusebio

    2008-04-01

    The Talbot effect is a well studied phenomenon by which grating pseudoimages appear at certain periodic distances when monochromatic light is used. Recently, numerical simulations have shown a new phenomenon; when a polychromatic light beam is used in a double grating system, the intensity of the pseudoimages presents a transverse-profile that remains unaffected over a wide range of propagation distances. This effect can be used to increase the tolerances of gratings based optical devices, such as displacement measurement systems, interferometers, and spectrometers. The pseudoimages formation with a polychromatic and finite extension light source is analytically and experimentally demonstrated. Relatively simple analytical expressions for the intensity and the contrast allow us to predict when pseudoimages present a constant contrast and when they disappear. Furthermore, we experimentally obtain the pseudoimages using the proposed configuration, corroborating the theoretical predictions.

  8. Effect of surface defects on the self-images produced by diffraction gratings

    NASA Astrophysics Data System (ADS)

    Sanchez-Brea, Luis Miguel; Salgado-Remacha, Francisco Javier; Torcal-Milla, Francisco José

    2009-06-01

    Diffraction gratings have been successfully used in Optical Metrology for a long time. They can be found in scientific and industrial applications, such as optical encoders for determining the linear or angular displacement, spectrometers, robots, etc. Defects on the surface of the grating may occur due to the manufacturing process. Also dust particles, drops of liquids, etc. can be deposited on its surface the devices are placed in a dirty industrial environment. This separation from the ideal behaviour may produce a degradation of the self-images. In this work we analyze the effect produced by an irregular distribution of surface defects on the grating, with different distribution densities. In particular, we focus how the contrast of the self-images decreases when the defects density.

  9. Dual transmission grating based imaging radiometer for tokamak edge and divertor plasmas

    SciTech Connect

    Kumar, Deepak; Clayton, Daniel J.; Parman, Matthew; Stutman, Dan; Tritz, Kevin; Finkenthal, Michael

    2012-10-15

    The designs of single transmission grating based extreme ultraviolet (XUV) and vacuum ultraviolet (VUV) imaging spectrometers can be adapted to build an imaging radiometer for simultaneous measurement of both spectral ranges. This paper describes the design of such an imaging radiometer with dual transmission gratings. The radiometer will have an XUV coverage of 20-200 A with a {approx}10 A resolution and a VUV coverage of 200-2000 A with a {approx}50 A resolution. The radiometer is designed to have a spatial view of 16 Degree-Sign , with a 0.33 Degree-Sign resolution and a time resolution of {approx}10 ms. The applications for such a radiometer include spatially resolved impurity monitoring and electron temperature measurements in the tokamak edge and the divertor. As a proof of principle, the single grating instruments were used to diagnose a low temperature reflex discharge and the relevant data is also included in this paper.

  10. Imaging Fourier transform spectrometer

    SciTech Connect

    Bennett, C.L.

    1993-09-13

    This invention is comprised of an imaging Fourier transform spectrometer having a Fourier transform infrared spectrometer providing a series of images to a focal plane array camera. The focal plane array camera is clocked to a multiple of zero crossing occurrences as caused by a moving mirror of the Fourier transform infrared spectrometer and as detected by a laser detector such that the frame capture rate of the focal plane array camera corresponds to a multiple of the zero crossing rate of the Fourier transform infrared spectrometer. The images are transmitted to a computer for processing such that representations of the images as viewed in the light of an arbitrary spectral ``fingerprint`` pattern can be displayed on a monitor or otherwise stored and manipulated by the computer.

  11. Composite Spectrometer Prisms

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.; Page, N. A.; Rodgers, J. M.

    1985-01-01

    Efficient linear dispersive element for spectrometer instruments achieved using several different glasses in multiple-element prism. Good results obtained in both two-and three-element prisms using variety of different glass materials.

  12. AUTOMATIC MASS SPECTROMETER

    DOEpatents

    Hanson, M.L.; Tabor, C.D. Jr.

    1961-12-01

    A mass spectrometer for analyzing the components of a gas is designed which is capable of continuous automatic operation such as analysis of samples of process gas from a continuous production system where the gas content may be changing. (AEC)

  13. A Simple Raman Spectrometer.

    ERIC Educational Resources Information Center

    Blond, J. P.; Boggett, D. M.

    1980-01-01

    Discusses some basic physical ideas about light scattering and describes a simple Raman spectrometer, a single prism monochromator and a multiplier detector. This discussion is intended for British undergraduate physics students. (HM)

  14. Fourier Transform Spectrometer System

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F. (Inventor)

    2014-01-01

    A Fourier transform spectrometer (FTS) data acquisition system includes an FTS spectrometer that receives a spectral signal and a laser signal. The system further includes a wideband detector, which is in communication with the FTS spectrometer and receives the spectral signal and laser signal from the FTS spectrometer. The wideband detector produces a composite signal comprising the laser signal and the spectral signal. The system further comprises a converter in communication with the wideband detector to receive and digitize the composite signal. The system further includes a signal processing unit that receives the composite signal from the converter. The signal processing unit further filters the laser signal and the spectral signal from the composite signal and demodulates the laser signal, to produce velocity corrected spectral data.

  15. [Study and design on Dyson imaging spectrometer in spectral broadband with high resolution].

    PubMed

    Yan, Ling-Wei

    2014-04-01

    The paper designs and improves a telecentric imaging spectrometer, the Dyson imaging spectrometer. The optical structure of the imaging spectrometer is simple and compact, which is only composed of a hemispherical lens and a concave grating. Based on the Rowland circle and refraction theory, the broadband anastigmatic imaging condition of Dyson imaging spectrometer which is the ratio of the grating radius and hemispherical lens radius has been analyzed. By imposing this condition for two different wavelengths, the parameters of the optical system presenting low aberrations and excellent imaging quality are obtained. To make the design spectrometer more suitable for the engineering application, the paper studies the method making the detector not to attach the surface of the hemispherical lens. A design example using optimal conditions was designed to prove our theory. The Dyson imaging spectrometer of which the imaging RMS radii are less than 2.5 microm and the advanced spectrometer of which the imaging RMS radii are less than 8 microm, with NA 0.33, waveband 0.38-1.7 microm and the slit length 15 mm, have been obtained. The design method and results are more feasible and predominant, and can be applied in the areas of the industry and remote sensing.

  16. Ultraviolet-Infrared Mapping Interferometic Spectrometer

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Prism and grating spectrometers have been the defacto devices for spectral mapping and imaging (hereafter referred to as hyperspectra). We have developed a new, hybrid instrument with many superior capabilities, the Digital Array Scanned Interferometer, DASI. The DASI performs the hyperspectral data acquisition in the same way as a grating or prism spectrograph, but retains the substantial advantages of the two-beam (Michelson) interferometer with additional capabilities not possessed by either of the other devices. The DASI is capable of hyperspectral studies in virtually any space or surface environment at any wavelength from below 50 nm to beyond 12 microns with available array detectors. By our efforts, we have defined simple, low cost, no-moving parts DASI's capable of carrying out hyperspectral science measurements for solar system exploration missions, e.g. for martian, asteroid, lunar, or cometary surveys. DASI capabilities can be utilized to minimize cost, weight, power, pointing, and other physical requirements while maximizing the science data return for spectral mapping missions. Our success in the development of DASI's has become and continues to be an important influence on the efforts of the best research groups developing remote sensing instruments for space and other applications.

  17. Development, characterization and application of compact spectrometers based on MEMS with in-plane capacitive drives

    NASA Astrophysics Data System (ADS)

    Kenda, A.; Kraft, M.; Tortschanoff, A.; Scherf, Werner; Sandner, T.; Schenk, Harald; Luettjohann, Stephan; Simon, A.

    2014-05-01

    With a trend towards the use of spectroscopic systems in various fields of science and industry, there is an increasing demand for compact spectrometers. For UV/VIS to the shortwave near-infrared spectral range, compact hand-held polychromator type devices are widely used and have replaced larger conventional instruments in many applications. Still, for longer wavelengths this type of compact spectrometers is lacking suitable and affordable detector arrays. In perennial development Carinthian Tech Research AG together with the Fraunhofer Institute for Photonic Microsystems endeavor to close this gap by developing spectrometer systems based on photonic MEMS. Here, we review on two different spectrometer developments, a scanning grating spectrometer working in the NIR and a FT-spectrometer accessing the mid-IR range up to 14 μm. Both systems are using photonic MEMS devices actuated by in-plane comb drive structures. This principle allows for high mechanical amplitudes at low driving voltages but results in gratings respectively mirrors oscillating harmonically. Both systems feature special MEMS structures as well as aspects in terms of system integration which shall tease out the best possible overall performance on the basis of this technology. However, the advantages of MEMS as enabling technology for high scanning speed, miniaturization, energy efficiency, etc. are pointed out. Whereas the scanning grating spectrometer has already evolved to a product for the point of sale analysis of traditional Chinese medicine products, the purpose of the FT-spectrometer as presented is to demonstrate what is achievable in terms of performance. Current developments topics address MEMS packaging issues towards long term stability, further miniaturization and usability.

  18. Heavy Element Abundances in Planetary Nebulae from Deep Optical Echelle Spectroscopy

    NASA Astrophysics Data System (ADS)

    Mashburn, Amanda; Sterling, Nicholas C.; Dinerstein, Harriet L.; Garofali, Kristen; Jensema, Rachael; Turbyfill, Amanda; Wieser, Hannah-Marie N.; Reed, Evan C.; Redfield, Seth

    2016-01-01

    We present the abundances of neutron(n)-capture elements (atomic number Z > 30) and iron determined from deep optical echelle spectroscopy of 14 Galactic planetary nebulae (PNe). The spectra were obtained with the 2D-coudé spectrograph on the 2.7-m Harlan J. Smith telescope at McDonald Observatory. The abundances of n-capture elements can be enhanced in PNe due to slow n-capture nucleosynthesis in the progenitor asymptotic giant branch (AGB) stars. The high spectral resolution of these data (R = 36,700) allow most n-capture element emission lines to be resolved from other nebular and telluric features. We detect Kr in all of the observed PNe (with multiple ions detected in several objects), while Br, Rb, and Xe were each detected in 4--5 objects. Using the new Kr ionization correction factors (ICFs) of Sterling et al. (2015, ApJS, 218, 25), we find [Kr/O] abundances ranging from 0.05 to 1.1 dex. We utilize approximate ICFs for the other n-capture elements, and find slightly lower enrichments for Br and Rb (-0.1 to 0.7 dex), while Xe is enhanced relative to solar by factors of two to 30. The [Xe/Kr] ratios range from -0.3 to 1.4 dex, indicating a significant range in neutron exposures in PN progenitor stars. Interestingly, the largest [Xe/Kr] ratio is found in the thick-disk PN NGC 6644, which has a lower metallicity than the other observed PNe. We detect iron emission lines in all but one target. Fe can be depleted into dust grains in ionized nebulae, and its abundance thus provides key information regarding dust-to-gas ratios and grain destruction processes. We find that [Fe/O] ranges from -1.3 to -0.7 dex in the observed PNe, a smaller spread of depletion factors than found in recent studies (Delgado-Inglada & Rodriguez 2014, ApJ, 784, 173) though this may be due in part to our smaller sample. These data are part of a larger study of heavy elements in PNe, which will provide more accurate determinations of n-capture element abundances than previous estimates in

  19. Interrogation system for a fiber-Bragg-grating strain sensor for automotive applications

    NASA Astrophysics Data System (ADS)

    Falciai, Riccardo; Vannini, Andrea

    2001-09-01

    In this paper a derivative spectrometer, utilizing an FFP tunable filter for the wavelength shift detection and an electronic device for the signal processing, was realized and tested for data acquisition and elaboration from a fiber-Bragg-grating strain sensor system for automotive applications. The result of measurements carried out both under static and dynamic conditions have been compared with those performed with a strain gauge.

  20. Electromagnetically induced grating with maximal atomic coherence

    SciTech Connect

    Carvalho, Silvania A.; Araujo, Luis E. E. de

    2011-10-15

    We describe theoretically an atomic diffraction grating that combines an electromagnetically induced grating with a coherence grating in a double-{Lambda} atomic system. With the atom in a condition of maximal coherence between its lower levels, the combined gratings simultaneously diffract both the incident probe beam as well as the signal beam generated through four-wave mixing. A special feature of the atomic grating is that it will diffract any beam resonantly tuned to any excited state of the atom accessible by a dipole transition from its ground state.

  1. Planar Bragg grating in bulk polymethylmethacrylate.

    PubMed

    Rosenberger, M; Koller, G; Belle, S; Schmauss, B; Hellmann, R

    2012-12-01

    We report on a one-step writing process of a planar waveguide including a Bragg grating structure in bulk Polymethylmethacrylate (PMMA). A KrF excimer laser and a phase mask covered by an amplitude mask were used to locally increase the refractive index in PMMA and thereby generate simultaneously the planar waveguide and the Bragg grating. Our results show a reflected wavelength of the Bragg grating of about 1558.5 nm in accordance to the phase mask period. The reflectivity of the grating is about 80%. Initial characteristics of the Bragg grating structure towards humidity are investigated.

  2. High-resolution, flat-field, plane-grating, f/10 spectrograph with off-axis parabolic mirrors.

    PubMed

    Schieffer, Stephanie L; Rimington, Nathan W; Nayyar, Ved P; Schroeder, W Andreas; Longworth, James W

    2007-06-01

    A high-resolution, flat-field, plane-grating, f/10 spectrometer based on the novel design proposed by Gil and Simon [Appl. Opt. 22, 152 (1983)] is demonstrated. The spectrometer design employs off-axis parabolic collimation and camera mirrors in a configuration that eliminates spherical aberrations and minimizes astigmatism, coma, and field curvature in the image plane. In accordance with theoretical analysis, the performance of this spectrometer achieves a high spatial resolution over the large detection area, which is shown to be limited only by the quality of its optics and their proper alignment within the spatial resolution of a 13 microm x 13 microm pixelated CCD detector. With a 1500 lines/mm grating in first order, the measured spectral resolving power of lambda/Dlambda = 2.5(+/-0.5) x 10(4) allows the clear resolution of the violet Ar(I) doublet at 419.07 and 419.10 nm.

  3. KiwiSpec: The Design and Performance of a High Resolution Echelle Spectrograph for Astronomy

    NASA Astrophysics Data System (ADS)

    Gibson, Steven Ross

    This document describes the design, analysis, construction and testing of KiwiSpec, a fibre-fed, high resolution astronomical spectrograph of an asymmetric white pupil design. The instrument employs an R4, 31.6 groove mm-1 échelle grating for primary dispersion and a 725 lines mm-1 volume phase holographic (VPH) based grism for cross-dispersion. Two versions of the prototype were designed and constructed: an 'in-air' prototype, and a prototype featuring a vacuum chamber (to increase the stability of the instrument). The KiwiSpec optical design is introduced, as well as a description of the theory behind a cross-dispersed échelle spectrograph. The results of tolerancing the optical design are reported for alignment, optical fabrication, and optical surface quality groups of parameters. The optical windows of an iodine cell are also toleranced. The opto-mechanical mounts of both prototypes are described in detail, as is the design of the vacuum chamber system. Given the goal of 1 m/s radial velocity stability, analyses were undertaken to determine the allowable amount of movement of the vacuum windows, and to determine the allowable changes in temperature and pressure within and outside of the vacuum chamber. The spectral efficiency of the instrument was estimated through a predictive model; this was calculated for the as-built instrument and also for an instrument with ideal, high-efficiency coatings. Measurements of the spectral efficiency of various components of the instrument are reported, as well as a description of the measurement system developed to test the efficiency of VPH gratings. On-sky efficiency measurements from use of KiwiSpec on the 1-m McLellan telescope at Mt John University Observatory are reported. Two possible exposure meter locations are explored via an efficiency model, and also through the measurement of the zero-order reflectivity of the échelle grating. Various stability aspects of the design are investigated. These include the

  4. Curved VPH gratings for novel spectrographs

    NASA Astrophysics Data System (ADS)

    Clemens, J. Christopher; O'Donoghue, Darragh; Dunlap, Bart H.

    2014-07-01

    The introduction of volume phase holographic (VPH) gratings into astronomy over a decade ago opened new possibilities for instrument designers. In this paper we describe an extension of VPH grating technology that will have applications in astronomy and beyond: curved VPH gratings. These devices can disperse light while simultaneously correcting aberrations. We have designed and manufactured two different kinds of convex VPH grating prototypes for use in off-axis reflecting spectrographs. One type functions in transmission and the other in reflection, enabling Offnerstyle spectrographs with the high-efficiency and low-cost advantages of VPH gratings. We will discuss the design process and the tools required for modelling these gratings along with the recording layout and process steps required to fabricate them. We will present performance data for the first convex VPH grating produced for an astronomical spectrograph.

  5. Design and modeling of a compact imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Feng, Chen; Ahmad, Anees

    1995-11-01

    A novel low-f-number, wide-field-of-view imaging spectrometer has been designed for measuring the day-glow spectrum over the wavelength range of 260 to 870 nm with spectral resolutions of 0.5 and 0.03 nm. The zero-obstruction all-reflective design is an f/2.0 imaging spectrograph using commercial gratings. The field of view along the spatial direction is 6 deg, with a spatial resolution of 0.1 mrad. The spectrometer is designed to work with a commercially available 1037 X 1340 CCD detector with 6.8 X 6.8-micrometers pixel size. The imaging spectrometer optics consists of an aspheric toroidal telescope, a slit, an aspheric toroidal collimator, a planar reflective grating, and three off-axis higher-order aspheric imaging mirrors. Significant improvements in the performance have been achieved by introducing aspheric toroidal elements in the design. The weight and size have been reduced by a factor of 20 as compared to previous similar instruments. A virtual prototype of the instrument has also been modeled by using integrated optical and mechanical design software.

  6. A novel method for fabricating an optical grating element with a fine grating pitch

    NASA Astrophysics Data System (ADS)

    Chiu, Kuo-Chi; Chang, Sheng-Li; Hsu, Ming-Fang

    2008-04-01

    Optical encoders are widely used to detect the position, angle or speed in precise control systems. A rotary optical encoder mainly comprises an optical sensor and an optical grating element with a fine grating pitch. In order to improve the resolution of rotary optical encoders, the grating pitch in the optical grating element should be reduced as small as possible. That is, the pulse per revolution (ppr) in the optical grating element must be increased markedly. However, an optical grating element having over 10,000 ppr is difficult to achieve by traditional methods. In this paper, a novel method is proposed and demonstrated to replicate an optical grating element with a high ppr. Furthermore, the tiny signals generated from fine grating pitches in the optical grating element have been also measured by using a conventional optical pickup head.

  7. Extreme ultraviolet spectroscopy diagnostics of low-temperature plasmas based on a sliced multilayer grating and glass capillary optics

    SciTech Connect

    Kantsyrev, V. L.; Safronova, A. S.; Williamson, K. M.; Wilcox, P.; Ouart, N. D.; Yilmaz, M. F.; Struve, K. W.; Voronov, D. L.; Feshchenko, R. M.; Artyukov, I. A.; Vinogradov, A. V.

    2008-10-15

    New extreme ultraviolet (EUV) spectroscopic diagnostics of relatively low-temperature plasmas based on the application of an EUV spectrometer and fast EUV diodes combined with glass capillary optics is described. An advanced high resolution dispersive element sliced multilayer grating was used in the compact EUV spectrometer. For monitoring of the time history of radiation, filtered fast EUV diodes were used in the same spectral region (>13 nm) as the EUV spectrometer. The radiation from the plasma was captured by using a single inexpensive glass capillary that was transported onto the spectrometer entrance slit and EUV diode. The use of glass capillary optics allowed placement of the spectrometer and diodes behind the thick radiation shield outside the direction of a possible hard x-ray radiation beam and debris from the plasma source. The results of the testing and application of this diagnostic for a compact laser plasma source are presented. Examples of modeling with parameters of plasmas are discussed.

  8. The SMARTS Observatory: CHIRON Spectrometer & Data Products, Accessible to All

    NASA Astrophysics Data System (ADS)

    MacPherson, Emily; Misenti, Victoria; Henry, Todd J.

    2016-06-01

    The SMARTS observatory announces opportunities for new and returning members and proposers to use the SMARTS 1.5m telescope and CHIRON fiber echelle spectrometer at CTIO in Chile to carry out their science programs in 2017A. SMARTS Queues for You! Our Yale University-based team schedules all CHIRON requests, allowing unprecedented flexibility in observing strategy. Users submit requests easily and at their convenience on our CHIRON Scheduling Site; raw and processed data as well as calibrations are retrieved in the very same place. CHIRON is ideal for target monitoring, space mission follow-up, and simultaneous observing campaigns with space-based as well as other southern, ground-based instruments. With dedicated assistance from both the SMARTS and CTIO teams, we are able to accept Target of Opportunity requests for same-night observation as well as provide processed data quickly and efficiently.Mounted on the 1.5m telescope since 2011B, CHIRON is a highly stable, cross-dispersed echelle spectrometer fed by fiber. Its spectral resolution ranges from 25K in fiber mode to 120K with narrow slit mask. Spectral range is fixed, 410 – 870nm.SMARTS has been producing excellent science for 13 years, and we aim to maintain and operate CHIRON into the future. We invite everyone: institutions, faculty, research scientists, students and staff, to take a look at what we have to offer; take a look at what has already been accomplished with this specialized instrument, and consider what can be accomplished now and moving forward once you've joined the SMARTieS!In this poster, we show exciting science results from CHIRON users as well as statistics on productivity. We describe the capabilities of SMARTS+CHIRON, as well as our expected availability within the 2017A semester. We highlight a recent user-driven effort to enhance data reduction products for those using the instrument for purposes beyond the intentions of the original reduction code. Historically intended for precise

  9. The SMARTS Observatory: CHIRON Spectrometer & Data Products, Accessible to All

    NASA Astrophysics Data System (ADS)

    MacPherson, Emily; Misenti, Victoria; Henry, Todd J.

    2016-06-01

    The SMARTS observatory announces opportunities for new and returning members and proposers to use the SMARTS 1.5m telescope and CHIRON fiber echelle spectrometer at CTIO in Chile to carry out their science programs in 2017A. SMARTS Queues for You! Our Yale University-based team schedules all CHIRON requests, allowing unprecedented flexibility in observing strategy. Users submit requests easily and at their convenience on our CHIRON Scheduling Site; raw and processed data as well as calibrations are retrieved in the very same place. CHIRON is ideal for target monitoring, space mission follow-up, and simultaneous observing campaigns with space-based as well as other southern, ground-based instruments. With dedicated assistance from both the SMARTS and CTIO teams, we are able to accept Target of Opportunity requests for same-night observation as well as provide processed data quickly and efficiently.Mounted on the 1.5m telescope since 2011B, CHIRON is a highly stable, cross-dispersed echelle spectrometer fed by fiber. Its spectral resolution ranges from 25K in fiber mode to 120K with narrow slit mask. Spectral range is fixed, 410 - 870nm.SMARTS has been producing excellent science for 13 years, and we aim to maintain and operate CHIRON into the future. We invite everyone: institutions, faculty, research scientists, students and staff, to take a look at what we have to offer; take a look at what has already been accomplished with this specialized instrument, and consider what can be accomplished now and moving forward once you've joined the SMARTieS!In this poster, we show exciting science results from CHIRON users as well as statistics on productivity. We describe the capabilities of SMARTS+CHIRON, as well as our expected availability within the 2017A semester. We highlight a recent user-driven effort to enhance data reduction products for those using the instrument for purposes beyond the intentions of the original reduction code. Historically intended for precise

  10. Advanced astigmatism-corrected tandem Wadsworth mounting for small-scale spectral broadband imaging spectrometer.

    PubMed

    Lei, Yu; Lin, Guan-yu

    2013-01-01

    Tandem gratings of double-dispersion mount make it possible to design an imaging spectrometer for the weak light observation with high spatial resolution, high spectral resolution, and high optical transmission efficiency. The traditional tandem Wadsworth mounting is originally designed to match the coaxial telescope and large-scale imaging spectrometer. When it is used to connect the off-axis telescope such as off-axis parabolic mirror, it presents lower imaging quality than to connect the coaxial telescope. It may also introduce interference among the detector and the optical elements as it is applied to the short focal length and small-scale spectrometer in a close volume by satellite. An advanced tandem Wadsworth mounting has been investigated to deal with the situation. The Wadsworth astigmatism-corrected mounting condition for which is expressed as the distance between the second concave grating and the imaging plane is calculated. Then the optimum arrangement for the first plane grating and the second concave grating, which make the anterior Wadsworth condition fulfilling each wavelength, is analyzed by the geometric and first order differential calculation. These two arrangements comprise the advanced Wadsworth mounting condition. The spectral resolution has also been calculated by these conditions. An example designed by the optimum theory proves that the advanced tandem Wadsworth mounting performs excellently in spectral broadband. PMID:23292378

  11. Effective grating theory for resonance domain surface-relief diffraction gratings.

    PubMed

    Golub, Michael A; Friesem, Asher A

    2005-06-01

    An effective grating model, which generalizes effective-medium theory to the case of resonance domain surface-relief gratings, is presented. In addition to the zero order, it takes into account the first diffraction order, which obeys the Bragg condition. Modeling the surface-relief grating as an effective grating with two diffraction orders provides closed-form analytical relationships between efficiency and grating parameters. The aspect ratio, the grating period, and the required incidence angle that would lead to high diffraction efficiencies are predicted for TE and TM polarization and verified by rigorous numerical calculations.

  12. Electron-proton spectrometer

    NASA Technical Reports Server (NTRS)

    Winckler, J. R.

    1973-01-01

    An electron-proton spectrometer was designed to measure the geomagnetically trapped radiation in a geostationary orbit at 6.6 earth radii in the outer radiation belt. This instrument is to be flown on the Applications Technology Satellite-F (ATS-F). The electron-proton spectrometer consists of two permanent magnet surface barrier detector arrays and associated electronics capable of selecting and detecting electrons in three energy ranges: (1) 30-50 keV, (2) 150-200 keV, and (3) 500 keV and protons in three energy ranges. The electron-proton spectrometer has the capability of measuring the fluxes of electrons and protons in various directions with respect to the magnetic field lines running through the satellite. One magnet detector array system is implemented to scan between EME north and south through west, sampling the directional flux in 15 steps. The other magnet-detector array system is fixed looking toward EME east.

  13. Fixational saccades during grating detection and discrimination.

    PubMed

    Spotorno, Sara; Masson, Guillaume S; Montagnini, Anna

    2016-01-01

    We investigated the patterns of fixational saccades in human observers performing two classical perceptual tasks: grating detection and discrimination. First, participants were asked to detect a vertical or tilted grating with one of three spatial frequencies and one of four luminance contrast levels. In the second experiment, participants had to discriminate the spatial frequency of two supra-threshold gratings. The gratings were always embedded in additive, high- or low-contrast pink noise. We observed that the patterns of fixational saccades were highly idiosyncratic among participants. Moreover, during the grating detection task, the amplitude and the number of saccades were inversely correlated with stimulus visibility. We did not find a systematic relationship between saccade parameters and grating frequency, apart from a slight decrease of saccade amplitude during grating discrimination with higher spatial frequencies. No consistent changes in the number and amplitude of fixational saccades with performance accuracy were reported. Surprisingly, during grating detection, saccade number and amplitude were similar in grating-with-noise and noise-only displays. Grating orientation did not affect substantially saccade direction in either task. The results challenge the idea that, when analyzing low-level spatial properties of visual stimuli, fixational saccades can be adapted in order to extract task-relevant information optimally. Rather, saccadic patterns seem to be overall modulated by task context, stimulus visibility and individual variability.

  14. Cross-fiber Bragg grating transducer

    NASA Technical Reports Server (NTRS)

    Albin, Sacharia (Inventor); Zheng, Jianli (Inventor); Lavarias, Arnel (Inventor)

    2000-01-01

    A transducer has been invented that uses specially-oriented gratings in waveguide a manner that allows the simultaneous measurement of physical phenomena (such as shear force, strain and temperature) in a single sensing element. The invention has a highly sensitive, linear response and also has directional sensitivity with regard to strain. The transducer has a waveguide with a longitudinal axis as well as two Bragg gratings. The transducer has a first Bragg grating associated with the waveguide that has an angular orientation .theta..sub.a relative to a perpendicular to the longitudinal axis such that 0.degree.<.theta..sub.a <.theta..sub.max. The second Bragg grating is associated with the waveguide in such a way that the angular orientation .theta..sub.b of the grating relative to a perpendicular to the longitudinal axis is (360.degree.-.theta..sub.max)<.theta..sub.b <360.degree.. The first Bragg grating can have a periodicity .LAMBDA..sub.a and the second Bragg grating can have a periodicity .LAMBDA..sub.b such that the periodicity .LAMBDA..sub.a of the first Bragg grating does not equal the periodicity .LAMBDA..sub.b of the second Bragg grating. The angle of the gratings can be such that .theta..sub.a =360.degree.-.theta..sub.b. The waveguide can assume a variety of configurations, including an optical fiber, a rectangular waveguide and a planar waveguide. The waveguide can be fabricated of a variety of materials, including silica and polymer material.

  15. The Apollo Alpha Spectrometer.

    NASA Technical Reports Server (NTRS)

    Jagoda, N.; Kubierschky, K.; Frank, R.; Carroll, J.

    1973-01-01

    Located in the Science Instrument Module of Apollo 15 and 16, the Alpha Particle Spectrometer was designed to detect and measure the energy of alpha particles emitted by the radon isotopes and their daughter products. The spectrometer sensor consisted of an array of totally depleted silicon surface barrier detectors. Biased amplifier and linear gate techniques were utilized to reduce resolution degradation, thereby permitting the use of a single 512 channel PHA. Sensor identification and in-flight radioactive calibration were incorporated to enhance data reduction.

  16. Comparison of imaging spectrometers

    SciTech Connect

    Bennett, C

    2000-01-09

    Realistic signal to noise performance estimates for the various types of instruments being considered for NGST are compared, based on the point source detection values quoted in the available ISIM final reports. The corresponding sensitivity of the various types of spectrometers operating in a full field imaging mode, for both emission line objects and broad spectral distribution objects, is computed and displayed. For the purpose of seeing the earliest galaxies, or the faintest possible emission line sources, the imaging Fourier transform spectrometer emerges superior to all others, by orders of magnitude in speed.

  17. Broad band waveguide spectrometer

    DOEpatents

    Goldman, Don S.

    1995-01-01

    A spectrometer for analyzing a sample of material utilizing a broad band source of electromagnetic radiation and a detector. The spectrometer employs a waveguide possessing an entry and an exit for the electromagnetic radiation emanating from the source. The waveguide further includes a surface between the entry and exit portions which permits interaction between the electromagnetic radiation passing through the wave guide and a sample material. A tapered portion forms a part of the entry of the wave guide and couples the electromagnetic radiation emanating from the source to the waveguide. The electromagnetic radiation passing from the exit of the waveguide is captured and directed to a detector for analysis.

  18. High Efficiency Germanium Immersion Gratings

    SciTech Connect

    Kuzmenko, P J; Davis, P J; Little, S L; Little, L M; Bixler, J V

    2006-05-01

    We have fabricated several germanium immersion gratings by single crystal, single point diamond flycutting on an ultra-precision lathe. Use of a dead sharp tool produces groove corners less than 0.1 micron in radius and consequently high diffraction efficiency. We measured first order efficiencies in immersion of over 80% at 10.6 micron wavelength. Wavefront error was low averaging 0.06 wave rms (at 633 nm) across the full aperture. The grating spectral response was free of ghosts down to our detection limit of 1 part in 10{sup 4}. Scatter should be low based upon the surface roughness. Measurement of the spectral line profile of a CO{sub 2} laser sets an upper bound on total integrated scatter of 0.5%.

  19. SPRED: a multichannel grazing-incidence spectrometer for plasma impurity diagnosis

    SciTech Connect

    Fonck, R.J.; Ramsey, A.T.; Yelle, R.V.

    1982-03-01

    A compact vacuum ultraviolet spectrometer system has been developed to provide time-resolved impurity spectra from tokamak plasmas. Two interchangeable aberration-corrected toroidal diffraction gratings with flat focal fields provide simultaneous coverage over the ranges 100 to 1100 A or 160 to 1700 A. The detector is an intensified self-scanning photodiode array. Spectral resolution is 2 A with the higher dispersion grating. Minimum readout time for a full spectrum is 20 ms, but up to 7 individual spectral lines can be measured with a 1 ms time resolution. The sensitivity of the system is comparable to that of a conventional grazing incidence monochromator.

  20. Fast scanning synchronous luminescence spectrometer based on acousto-optic tunable filters

    SciTech Connect

    Hueber, D.M.; Stevenson, C.L.; Vo-Dinh, T.

    1995-11-01

    A new luminescence spectrometer based on quartz-collinear acousto-optic tunable filters (AOTFs) and capable of synchronous scanning is described. An acousto-optic tunable filter is an electronically tunable optical bandpass filter. Unlike a tunable grating monochromator, an AOTF has no moving mechanical parts, and an AOTF can be tuned to any wavelength within its operating range in microseconds. These characteristics, combined with the small size of these devices, make AOTFs an important new alternative to conventional monochromators, especially for portable instrumentation. The relevant performance of the AOTFs (efficiency, bandwidth, rejection, etc.) is compared with that of typical small-grating monochromator. {copyright} {ital 1995 Society for Applied Spectroscopy.}

  1. Single-lens computed tomography imaging spectrometer and method of capturing spatial and spectral information

    NASA Technical Reports Server (NTRS)

    Wilson, Daniel W. (Inventor); Johnson, William R. (Inventor); Bearman, Gregory H. (Inventor)

    2011-01-01

    Computed tomography imaging spectrometers ("CTISs") employing a single lens are provided. The CTISs may be either transmissive or reflective, and the single lens is either configured to transmit and receive uncollimated light (in transmissive systems), or is configured to reflect and receive uncollimated light (in reflective systems). An exemplary transmissive CTIS includes a focal plane array detector, a single lens configured to transmit and receive uncollimated light, a two-dimensional grating, and a field stop aperture. An exemplary reflective CTIS includes a focal plane array detector, a single mirror configured to reflect and receive uncollimated light, a two-dimensional grating, and a field stop aperture.

  2. Modeling the Ne IX Triplet Spectral Region of Capella with the Chandra and XMM-Newton Gratings

    NASA Astrophysics Data System (ADS)

    Ness, Jan-Uwe; Brickhouse, Nancy S.; Drake, Jeremy J.; Huenemoerder, David P.

    2003-12-01

    High-resolution X-ray spectroscopy with the diffraction gratings of Chandra and XMM-Newton offers new chances to study a large variety of stellar coronal phenomena. A popular X-ray calibration target is Capella, which has been observed with all gratings with significant exposure times. We gathered together all available data of the High Energy Transmission Grating Spectrometer (HETGS; 155 ks), Low Energy Transmission Grating Spectrometer (LETGS; 219 ks), and Reflection Grating Spectrometer (RGS; 53 ks) for comparative analysis, focusing on the Ne IX triplet at around 13.5 Å, a region that is severely blended by strong iron lines. We identify 18 emission lines in this region of the High-Energy Grating (HEG) spectrum, including many from Fe XIX, and find good agreement with predictions from a theoretical model constructed using the Astrophysical Plasma Emission Code. The model uses an emission measure distribution derived from Fe XV to Fe XXIV lines. The success of the model is due in part to the inclusion of accurate wavelengths from laboratory measurements. While these 18 emission lines cannot be isolated in the LETGS or RGS spectra, their wavelengths and fluxes as measured with HEG are consistent with the lower resolution spectra. In the Capella model for HEG, the weak intercombination line of Ne IX is significantly blended by iron lines, which contribute about half the flux. After accounting for blending in the He-like diagnostic lines, we find the density to be consistent with the low-density limit (ne<2×1010 cm-3) however, the electron temperature indicated by the Ne IX G-ratio is surprisingly low (~2 MK) compared to the peak of the emission measure distribution (~6 MK). Models show that the Ne IX triplet is less blended in cooler plasmas and in plasmas with an enhanced neon-to-iron abundance ratio.

  3. Optical gratings and grisms: developments on straylight and polarization sensitivity improved microstructures

    NASA Astrophysics Data System (ADS)

    Diehl, Torsten; Triebel, Peter; Moeller, Tobias; Gatto, Alexandre; Pesch, Alexander; Erdmann, Lars H.; Burkhardt, Matthias; Kalies, Alexander

    2015-09-01

    Spectral imaging systems lead to enhanced sensing properties when the sensing system provides sufficient spectral resolution to identify materials from its spectral reflectance signature. The performance of diffraction gratings provides an initial way to improve instrumental resolution. Thus, subsequent manufacturing techniques of high quality gratings are essential to significantly improve the spectral performance. The ZEISS unique technology of manufacturing real-blazed profiles comprising transparent substrates is well suited for the production of transmission gratings. In order to reduce high order aberrations, aspherical and free-form surfaces can be alternatively processed to allow more degrees of freedom in the optical design of spectroscopic instruments with less optical elements and therefore size and weight advantages. Prism substrates were used to manufacture monolithic GRISM elements for UV to IR spectral range. Many years of expertise in the research and development of optical coatings enable high transmission anti-reflection coatings from the DUV to the NIR. ZEISS has developed specially adapted coating processes (Ion beam sputtering, ion-assisted deposition and so on) for maintaining the micro-structure of blazed gratings in particular. Besides of transmission gratings, numerous spectrometer setups (e.g. Offner, Rowland circle, Czerny-Turner system layout) working on the optical design principles of reflection gratings. This technology steps can be applied to manufacture high quality reflection gratings from the EUV to the IR applications with an outstanding level of low stray light and ghost diffraction order by employing a combination of holography and reactive ion beam etching together with the in-house coating capabilities. We report on results of transmission, reflection gratings on plane and curved substrates and GRISM elements with enhanced efficiency of the grating itself combined with low scattered light in the angular distribution. Focusing

  4. High-resolution microspectrometer with an aberration-correcting planar grating.

    PubMed

    Grabarnik, Semen; Emadi, Arvin; Wu, Huaiwen; de Graaf, Ger; Wolffenbuttel, Reinoud F

    2008-12-01

    A concept for a highly miniaturized spectrometer featuring a two-component design is presented. The first component is a planar chip that integrates an input slit and aberration-correcting diffraction grating with an image sensor and is fabricated using microelectromechanical systems (MEMS) technologies. Due to the fabrication in a simple MEMS batch process the essential elements of the spectrometer are automatically aligned, and a low fabrication cost per device can be achieved. The second component is a spherical mirror, which is the only external part. The optimized grating structure compensates for aberrations within the spectrometer operating range, resulting in a diffraction-limited performance of the spectrometer optics. The prototype of the device has been fabricated and characterized. It takes a volume of 0.5 cm(3) and provides a FWHM spectral resolution of 0.7 nm over a 350 nm bandwidth from 420 nm to 770 nm combined with an etendue of 7.4x10(-5) mm(2) sr. PMID:19037373

  5. Interlaced spin grating for optical wave filtering

    NASA Astrophysics Data System (ADS)

    Linget, H.; Chanelière, T.; Le Gouët, J.-L.; Berger, P.; Morvan, L.; Louchet-Chauvet, A.

    2015-02-01

    Interlaced spin grating is a scheme for the preparation of spectrospatial periodic absorption gratings in an inhomogeneously broadened absorption profile. It relies on the optical pumping of atoms in a nearby long-lived ground state sublevel. The scheme takes advantage of the sublevel proximity to build large contrast gratings with unlimited bandwidth and preserved average optical depth. It is particularly suited to Tm-doped crystals in the context of classical and quantum signal processing. In this paper, we study the optical pumping dynamics at play in an interlaced spin grating and describe the corresponding absorption profile shape in an optically thick atomic ensemble. We show that, in Tm:YAG, the diffraction efficiency of such a grating can reach 18.3 % in the small-angle and 11.6 % in the large-angle configuration when the excitation is made of simple pulse pairs, considerably outperforming conventional gratings.

  6. Mass Spectrometers in Space!

    NASA Technical Reports Server (NTRS)

    Brinckerhoff, William B.

    2012-01-01

    Exploration of our solar system over several decades has benefitted greatly from the sensitive chemical analyses offered by spaceflight mass spectrometers. When dealing with an unknown environment, the broadband detection capabilities of mass analyzers have proven extremely valuable in determining the composition and thereby the basic nature of space environments, including the outer reaches of Earth s atmosphere, interplanetary space, the Moon, and the planets and their satellites. Numerous mass analyzer types, including quadrupole, monopole, sector, ion trap, and time-of-flight have been incorporated in flight instruments and delivered robotically to a variety of planetary environments. All such instruments went through a rigorous process of application-specific development, often including significant miniaturization, testing, and qualification for the space environment. Upcoming missions to Mars and opportunities for missions to Venus, Europa, Saturn, Titan, asteroids, and comets provide new challenges for flight mass spectrometers that push to state of the art in fundamental analytical technique. The Sample Analysis at Mars (SAM) investigation on the recently-launch Mars Science Laboratory (MSL) rover mission incorporates a quadrupole analyzer to support direct evolved gas as well as gas chromatograph-based analysis of martian rocks and atmosphere, seeking signs of a past or present habitable environment. A next-generation linear ion trap mass spectrometer, using both electron impact and laser ionization, is being incorporated into the Mars Organic Molecule Analyzer (MOMA) instrument, which will be flown to Mars in 2018. These and other mass spectrometers and mission concepts at various stages of development will be described.

  7. Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Understanding the global atmospheric changes is difficult with today's current technology. However, with high resolution and nearly continuous observations from a satellite, it's possible to transform our understanding of the atmosphere. To enable the next generation of atmospheric science, a new class of orbiting atmospheric sensors is being developed. The foundation of this advanced concept is the Fourier Transform Spectrometer, or FTS.

  8. Diffraction gratings used as identifying markers

    DOEpatents

    Deason, V.A.; Ward, M.B.

    1991-03-26

    A finely detailed diffraction grating is applied to an object as an identifier or tag which is unambiguous, difficult to duplicate, or remove and transfer to another item, and can be read and compared with prior readings with relative ease. The exact pattern of the diffraction grating is mapped by diffraction moire techniques and recorded for comparison with future readings of the same grating. 7 figures.

  9. Focusing Diffraction Grating Element with Aberration Control

    NASA Technical Reports Server (NTRS)

    Iazikov, Dmitri; Mossberg, Thomas W.; Greiner, Christoph M.

    2010-01-01

    Diffraction gratings are optical components with regular patterns of grooves, which angularly disperse incoming light by wavelength in a single plane, called dispersion plane. Traditional gratings on flat substrates do not perform wavefront transformation in the plane perpendicular to the dispersion plane. The device proposed here exhibits regular diffraction grating behavior, dispersing light. In addition, it performs wavelength transformation (focusing or defocusing) of diffracted light in a direction perpendicular to the dispersion plane (called sagittal plane). The device is composed of a diffraction grating with the grooves in the form of equidistant arcs. It may be formed by defining a single arc or an arc approximation, then translating it along a certain direction by a distance equal to a multiple of a fixed distance ("grating period") to obtain other groove positions. Such groove layout is nearly impossible to obtain using traditional ruling methods, such as mechanical ruling or holographic scribing, but is trivial for lithographically scribed gratings. Lithographic scribing is the newly developed method first commercially introduced by LightSmyth Technologies, which produces gratings with the highest performance and arbitrary groove shape/spacing for advanced aberration control. Unlike other types of focusing gratings, the grating is formed on a flat substrate. In a plane perpendicular to the substrate and parallel to the translation direction, the period of the grating and, therefore, the projection of its k-vector onto the plane is the same for any location on the grating surface. In that plane, no waveform transformation by the grating k-vector occurs, except of simple redirection.

  10. Active diffraction gratings: Development and tests

    SciTech Connect

    Bonora, S.; Frassetto, F.; Poletto, L.; Zanchetta, E.; Della Giustina, G.; Brusatin, G.

    2012-12-15

    We present the realization and characterization of an active spherical diffraction grating with variable radius of curvature to be used in grazing-incidence monochromators. The device consists of a bimorph deformable mirror on the top of which a diffraction grating with laminar profile is realized by UV lithography. The experimental results show that the active grating can optimize the beam focalization of visible wavelengths through its rotation and focus accommodation.

  11. Active diffraction gratings: development and tests.

    PubMed

    Bonora, S; Frassetto, F; Zanchetta, E; Della Giustina, G; Brusatin, G; Poletto, L

    2012-12-01

    We present the realization and characterization of an active spherical diffraction grating with variable radius of curvature to be used in grazing-incidence monochromators. The device consists of a bimorph deformable mirror on the top of which a diffraction grating with laminar profile is realized by UV lithography. The experimental results show that the active grating can optimize the beam focalization of visible wavelengths through its rotation and focus accommodation.

  12. Optomechanical Alignment of the Grating Wheel Mechanism for a Ground-based, Cryogenic, Near-Infrared Astronomy Instrument

    NASA Technical Reports Server (NTRS)

    Gutkowski, Sharon M.; Ohl, Raymond G.; Hagopian, John G.; Kraft, Stephen E.; Mentzell, J. Eric; Schepis, Joseph P.; Sparr, Leroy M.; Greenhouse, Matthew A.; Hyland, Jason; Mackenty, John W.

    2003-01-01

    We describe the population, optomechanical alignment, and alignment verification of near-infrared gratings on the grating wheel mechanism (GWM) for the Infrared Multi- Object Spectrometer (IRMOS). IRMOS is a cryogenic (80 K) facility instrument for the Mayall Telescope (3.8 m) at Kitt Peak National Observatory and a MEMS spectrometer concept demonstrator for NASA's James Webb Space Telescope. The IRMOS optics, bench, and mechanisms are predominantly made of Al 6061 -T651. The GWM consists of 13 planar diffraction gratings and one flat imaging mirror (58 x 57 mm), each mounted at a unique compound angle on a 31.8 cm diameter gear. The Al 6061 grating substrates are stress relieved for enhanced cryogenic performance and the optical surface is replicated from an off-the-shelf master. The imaging mirror is diamond turned and post-polished. The grating mechanism spans a projected diameter of approximately 48cm when fully assembled, utilizes several flexure designs throughout the system to accommodate thermal gradient situations, and is controlled using custom software with an off-the-shelf controller. Each optic is aligned in six degrees of freedom relative to the GWM coordinate system, which is defined relative to an optical alignment cube mounted at the center of the gear. The tip/tilt (Rx, Ry) orientation of a given grating is measured using the zero-order return from an autocollimating theodolite. Each optic's mount includes a one-piece shim located between the optic and the gear. The shim is machined to fine align each optic. We also describe alignment verification, where grating diffractive properties are compared to model predictions.

  13. Analysis and System Design Framework for Infrared Spatial Heterodyne Spectrometers

    SciTech Connect

    Cooke, B.J.; Smith, B.W.; Laubscher, B.E.; Villeneuve, P.V.; Briles, S.D.

    1999-04-05

    The authors present a preliminary analysis and design framework developed for the evaluation and optimization of infrared, Imaging Spatial Heterodyne Spectrometer (SHS) electro-optic systems. Commensurate with conventional interferometric spectrometers, SHS modeling requires an integrated analysis environment for rigorous evaluation of system error propagation due to detection process, detection noise, system motion, retrieval algorithm and calibration algorithm. The analysis tools provide for optimization of critical system parameters and components including : (1) optical aperture, f-number, and spectral transmission, (2) SHS interferometer grating and Littrow parameters, and (3) image plane requirements as well as cold shield, optical filtering, and focal-plane dimensions, pixel dimensions and quantum efficiency, (4) SHS spatial and temporal sampling parameters, and (5) retrieval and calibration algorithm issues.

  14. Fourier and Hadamard transform spectrometers - A limited comparison

    NASA Technical Reports Server (NTRS)

    Tai, M. H.; Harwit, M.

    1976-01-01

    An encoding figure of merit is established for a detector-noise limited Fourier transform spectrometer (FTS) and compared to the comparable figure for a Hadamard transform spectrometer (HTS). The limitation of the Fourier system is partly that it does not truly Fourier analyze the radiation. Instead a cosine squared modulation is imposed on the different spectral frequencies. An additional difficulty is that neither the cosine nor the cosine squared functions form an orthonormal set. This makes the Fellgett's advantage (root-mean-squared figure of merit) for a single detector Michelson interferometer a factor of the square root of (N/8) greater than for a conventional grating instrument - rather than the square root of (N/2). The theoretical limit would be the square root of N.

  15. Optomechanical design of the cosmic hot interstellar plasma spectrometer (CHIPS)

    NASA Astrophysics Data System (ADS)

    Sholl, Michael; Donakowski, William; Sirk, Martin M.; Clauss, Tobias; Lampton, Michael L.; Edelstein, Jerry; Hurwitz, Mark

    2003-02-01

    CHIPS is a NASA UNEX mission designed for diffuse background spectroscopy in the EUV bandpass from 90-260Å. The spectrometer is optimized for peak resolution near 170 Å, in order to study diffuse emissions from cooling million degree plasma. Details of local bubble thermal pressure, spatial distribution, and ionization history are the goals of CHIPS observations. We discuss the opto-mechanical design adopted to meet the throughput, signal to noise, and spectral resolution requirements within the mass, volume, and budgetary constraints of a UNEX Delta-II secondary payload. Mechanical tolerance requirements for the six spectrometer channels are discussed, along with details of the lightweight mounting scheme for CHIPS diffraction gratings, front cover slit mechanisms and thermal design. Finally, visible light and vacuum alignment techniques are discussed, as well as with methods employed to minimize stray light.

  16. Unexpected series of regular frequency spacing of δ Scuti stars in the non-asymptotic regime. II. Sample-Echelle diagrams and rotation

    DOE PAGES

    Paparo, M.; Benko, J. M.; Hareter, M.; Guzik, J. A.

    2016-06-17

    A sequence search method was developed for searching for regular frequency spacing in δ Scuti stars by visual inspection (VI) and algorithmic search. The sample contains 90 δ Scuti stars observed by CoRoT. An example is given to represent the VI. The algorithm (SSA) is described in detail. The data treatment of the CoRoT light curves, the criteria for frequency filtering, and the spacings derived by two methods (i.e., three approaches: VI, SSA, and FT) are given for each target. Echelle diagrams are presented for 77 targets for which at least one sequence of regular spacing was identified. Comparing the spacing and the shifts between pairs of echelle ridges revealed that at least one pair of echelle ridges is shifted to midway between the spacing for 22 stars. The estimated rotational frequencies compared to the shifts revealed rotationally split doublets, triplets, and multiplets not only for single frequencies, but for the complete echelle ridges in 31 δ Scuti stars. Furthermore, using several possible assumptions for the origin of the spacings, we derived the large separation (more » $${\\rm{\\Delta }}\

  17. Type IIa Bragg gratings formed in microfibers.

    PubMed

    Ran, Yang; Jin, Long; Gao, Shuai; Sun, Li-Peng; Huang, Yun-Yun; Li, Jie; Guan, Bai-Ou

    2015-08-15

    In this Letter, Type IIa Bragg gratings are inscribed into microfibers. The large germanium-doped core region of the multimode fiber provides the necessary photosensitivity to form a Type IIa grating when it is drawn down to the microscale. Reducing the diameter of the microfiber due to lower saturate modulation and the amplified tension-strain transformation effect can accelerate the formation of a Type IIa grating. This provides an efficient method for the fabrication of fiber gratings with 800°C temperature resistance. PMID:26274664

  18. Polarization Measurements on SUMI's TVLS Gratings

    NASA Technical Reports Server (NTRS)

    Kobayashi, K.; West, E. A.; Davis, J. M.; Gary, G. A.

    2007-01-01

    We present measurements of toroidal variable-line-space (TVLS) gratings for the Solar Ultraviolet Magnetograph Investigation (SUMI), currently being developed at the National Space Science and Technology Center (NSSTC). SUMI is a spectro-polarimeter designed to measure magnetic fields in the solar chromosphere by observing two UV emission lines sensitive to magnetic fields, the CIY line at 155nm and the MgII line at 280nm. The instrument uses a pair of TVLS gratings, to observe both linear polarizations simultaneously. Efficiency measurements were done on bare aluminum gratings and aluminum/MgF2 coated gratings, at both linear polarizations.

  19. Developing ultrafast laser inscribed volume gratings

    NASA Astrophysics Data System (ADS)

    MacLachlan, David G.; Choudhury, Debaditya; Arriola, Alexander; Cunningham, Colin; Thomson, Robert R.; Kirkham, Andrew; Lee, David

    2014-07-01

    Due to their high efficiency and broad operational bandwidths, volume phase holographic gratings (VPHGs) are often the grating technology of choice for astronomical instruments, but current VPHGs exhibit a number of drawbacks including limits on their size, function and durability due to the manufacturing process. VPHGs are also generally made using a dichromated gelatine substrate, which exhibits reduced transmission at wavelengths longer than ~2.2 μm, limiting their ability to operate further into the mid-infrared. An emerging alternative method of manufacturing volume gratings is ultrafast laser inscription (ULI). This technique uses focused ultrashort laser pulses to induce a localised refractive index modification inside the bulk of a substrate material. We have recently demonstrated that ULI can be used to create volume gratings for operation in the visible, near-infrared and mid-infrared regions by inscribing volume gratings in a chalcogenide glass. The direct-write nature of ULI may then facilitate the fabrication of gratings which are not restricted in terms of their size and grating profile, as is currently the case with gelatine based VPHGs. In this paper, we present our work on the manufacture of volume gratings in gallium lanthanum sulphide (GLS) chalcogenide glass. The gratings are aimed at efficient operation at wavelengths around 1 μm, and the effect of applying an anti-reflection coating to the substrate to reduce Fresnel reflections is studied.

  20. Grating projection system for surface contour measurement.

    PubMed

    Tay, Cho Jui; Thakur, Madhuri; Quan, Chenggen

    2005-03-10

    A grating projection system is a low-cost surface contour measurement technique that can be applied to a wide range of applications. There has been a resurgence of interest in the technique in recent years because of developments in computer hardware and image processing algorithms. We describe a method that projects a phase-shifted grating through a lens on an object surface. The deformed grating image on the object surface is captured by a CCD camera for subsequent analysis. Phase variation is achieved by a linear translation stage on which the grating is mounted. We compare the experimental results with the test results using a mechanical stylus method. PMID:15796237

  1. Overview of fiber grating-based sensors

    NASA Astrophysics Data System (ADS)

    Meltz, Gerald

    1996-11-01

    Optical fiber sensor technology based on intra-core Bragg gratings has been used in a number of important application areas ranging from structural monitoring to chemical sensing. Practical and cost effective systems are not far in the future judging from advances in grating manufacture and sensor readout instrumentation. Fiber grating technology is not driven by its use in sensors but rather by valuable applications in dense, broadband WDM telecommunications. In this paper, we review the fundamentals of Bragg grating sensors and discuss various means for wavelength-shift demodulation, separation of temperature and strain responses and new directions that will offer additional capabilities.

  2. Active resonant subwavelength grating devices for high speed spectroscopic sensing

    NASA Astrophysics Data System (ADS)

    Gin, A. V.; Kemme, S. A.; Boye, R. R.; Peters, D. W.; Ihlefeld, J. F.; Briggs, R. D.; Wendt, J. R.; Marshall, L. H.; Carter, T. R.; Samora, S.

    2009-02-01

    In this paper, we describe progress towards a multi-color spectrometer and radiometer based upon an active resonant subwavelength grating (RSG). This active RSG component acts as a tunable high-speed optical filter that allows device miniaturization and ruggedization not realizable using current sensors with conventional bulk optics. Furthermore, the geometrical characteristics of the device allow for inherently high speed operation. Because of the small critical dimensions of the RSG devices, the fabrication of these sensors can prove challenging. However, we utilize the state-of-the-art capabilities at Sandia National Laboratories to realize these subwavelength grating devices. This work also leverages previous work on passive RSG devices with greater than 98% efficiency and ~1nm FWHM. Rigorous coupled wave analysis has been utilized to design RSG devices with PLZT, PMN-PT and BaTiO3 electrooptic thin films on sapphire substrates. The simulated interdigitated electrode configuration achieves field strengths around 3×107 V/m. This translates to an increase in the refractive index of 0.05 with a 40V bias potential resulting in a 90% contrast of the modulated optical signal. We have fabricated several active RSG devices on selected electro-optic materials and we discuss the latest experimental results on these devices with variable electrostatic bias and a tunable wavelength source around 1.5μm. Finally, we present the proposed data acquisition hardware and system integration plans.

  3. Tropospheric and Airborne Emission Spectrometers

    NASA Technical Reports Server (NTRS)

    Glavich, Thomas; Beer, Reinhard

    1996-01-01

    X This paper describes the development of two related instruments, the Tropospheric Emission Spectrometer (TES) and the Airborne Emission Spectrometer (AES). Both instruments are infrared imaging Fourier Transform Spectrometers, used for measuring the state of the lower atmosphere, and in particular the measurement of ozone and ozone sources and sinks.

  4. Alpha Magnetic Spectrometer

    NASA Astrophysics Data System (ADS)

    Ting, Samuel

    2012-07-01

    The Alpha Magnetic Spectrometer (AMS) is a precision particle physics magnetic spectrometer designed to measure electrons, positrons, gamma rays and various nuclei and anti-nuclei from the cosmos up to TeV energy ranges. AMS weighs 7.5 tons and measures 5 meters by 4 meters by 3 meters. It contains 300,000 channels of electronics and 650 onboard microprocessors. It was delivered to the International Space Station onboard space shuttle Endeavour and installed on May 19, 2011. Since that time, more than 14 billion cosmic ray events have been collected. All the detectors function properly. At this moment, we are actively engaged in data analysis. AMS is an international collaboration involving 16 countries and 60 institutes. It took 16 years to construct and test. AMS is the only major physical science experiment on the International Space Station and will continue to collect data over the entire lifetime of the Space Station (10-20 years).

  5. Imaging Fourier Transform Spectrometer

    SciTech Connect

    Bennett, C.L.; Carter, M.R.; Fields, D.J.; Hernandez, J.

    1993-04-14

    The operating principles of an Imaging Fourier Transform Spectrometer (IFTS) are discussed. The advantages and disadvantages of such instruments with respect to alternative imaging spectrometers are discussed. The primary advantages of the IFTS are the capacity to acquire more than an order of magnitude more spectral channels than alternative systems with more than an order of magnitude greater etendue than for alternative systems. The primary disadvantage of IFTS, or FTS in general, is the sensitivity to temporal fluctuations, either random or periodic. Data from the IRIFTS (ir IFTS) prototype instrument, sensitive in the infrared, are presented having a spectral sensitivity of 0.01 absorbance units, a spectral resolution of 6 cm{sup {minus}1} over the range 0 to 7899 cm{sup {minus}1}, and a spatial resolution of 2.5 mr.

  6. FAST NEUTRON SPECTROMETER

    DOEpatents

    Davis, F.J.; Hurst, G.S.; Reinhardt, P.W.

    1959-08-18

    An improved proton recoil spectrometer for determining the energy spectrum of a fast neutron beam is described. Instead of discriminating against and thereby"throwing away" the many recoil protons other than those traveling parallel to the neutron beam axis as do conventional spectrometers, this device utilizes protons scattered over a very wide solid angle. An ovoidal gas-filled recoil chamber is coated on the inside with a scintillator. The ovoidal shape of the sensitive portion of the wall defining the chamber conforms to the envelope of the range of the proton recoils from the radiator disposed within the chamber. A photomultiplier monitors the output of the scintillator, and a counter counts the pulses caused by protons of energy just sufficient to reach the scintillator.

  7. Micro-Spec: A High Performance Compact Spectrometer for Submillimeter Astronomy

    NASA Technical Reports Server (NTRS)

    Hsieh, Wen-Ting; Moseley, Harvey; Stevenson, Thomas; Brown, Ari; Patel, Amil; U-Yen, Kongpop; Ehsan, Negar; Caltado, Giuseppe; Wollock, Edward

    2012-01-01

    We describe the micro-Spec, an extremely compact high performance spectrometer for the submillimeter and millimeter spectral ranges. We have designed a fully integrated submillimeter spectrometer based on superconducting microstrip technology and fabricated its critical elements. Using low loss transmission lines, we can produce a fully integrated high resolution submillimeter spectrometer on a single four inch Si wafer. A resolution of 500 can readily be achieved with standard fabrication tolerance, higher with phase trimming. All functions of the spectrometer are integrated - light is coupled to the micro strip circuit with a planar antenna, the spectra discrimination is achieved using a synthetic grating, orders are separated using a built-in planar filter, and the light is detected using photon counting Microwave Kinetic Inductance Detectors (MKID). We will discus the design principle of the instrument, describe its technical advantages, and report the progress on the development of the instrument.

  8. Mu-Spec - A High Performance Ultra-Compact Photon Counting spectrometer for Space Submillimeter Astronomy

    NASA Technical Reports Server (NTRS)

    Moseley, H.; Hsieh, W.-T.; Stevenson, T.; Wollack, E.; Brown, A.; Benford, D.; Sadleir; U-Yen, I.; Ehsan, N.; Zmuidzinas, J.; Bradford, M.

    2011-01-01

    We have designed and are testing elements of a fully integrated submillimeter spectrometer based on superconducting microstrip technology. The instrument can offer resolving power R approximately 1500, and its high frequency cutoff is set by the gap of available high performance superconductors. All functions of the spectrometer are integrated - light is coupled to the microstrip circuit with a planar antenna, the spectra discrimination is achieved using a synthetic grating, orders are separated using planar filter, and detected using photon counting MKID detector. This spectrometer promises to revolutionize submillimeter spectroscopy from space. It replaces instruments with the scale of 1m with a spectrometer on a 10 cm Si wafer. The reduction in mass and volume promises a much higher performance system within available resource in a space mission. We will describe the system and the performance of the components that have been fabricated and tested.

  9. Mu-Spec: A High Performance Compact Spectrometer for Submillimeter Astronomy

    NASA Technical Reports Server (NTRS)

    Hsieh, Wen-Ting; Moseley, Harvey; Stevenson, Thomas; Brown, Ari; Patel, Amil; U-yen, Kongpop; Ehsan, Negar; Cataldo, Giuseppe; Wollack, Ed

    2012-01-01

    We describe the Mu-Spec, an extremely compact high performance spectrometer for the submillimeter and millimeter spectral ranges. We have designed a fully integrated submillimeter spectrometer based on superconducting microstrip technology and fabricated its critical elements. Using low loss transmission lines, we can produce a fully integrated high resolution submillimeter spectrometer on a single four inch Si wafer. A resolution of 500 can readily be achieved with standard fabrication tolerance, higher with phase trimming. All functions of the spectrometer are integrated - light is coupled to the microstrip circuit with a planar antenna, the spectra discrimination is achieved using a synthetic grating, orders are separated using a built-in planar filter, and the light is detected using photon counting Microwave Kinetic Inductance Detectors (MKID). We will discus the design principle of the instrument, describe its technical advantages, and report the progress on the development of the instrument.

  10. A high-resolution compact Johann crystal spectrometer with the Livermore electron beam ion trap.

    SciTech Connect

    Robbins, D L; Chen, H; Beiersdorfer, P; Faenov, A Y; Pikuz, T A; May, M J; Dunn, J; Smith, A J

    2004-04-14

    A compact high-resolution ({lambda}/{Delta}{lambda} {approx} 10000) spherically bent crystal spectrometer in the Johann geometry was recently installed and tested on the Lawrence Livermore National Laboratory SuperEBIT electron beam ion trap. The curvature of the mica (002) crystal grating allows for higher collection efficiency compared to the flat and cylindrically bent crystal spectrometers commonly used on the Livermore electron beam ion traps. The spectrometer's Johann configuration enables orientation of its dispersion plane to be parallel to the electron beam propagation. Used in concert with a crystal spectrometer, whose dispersion plane is perpendicular to the electron beam propagation, the polarization of x-ray emission lines can be measured.

  11. Fiber optic diffraction grating maker

    DOEpatents

    Deason, Vance A.; Ward, Michael B.

    1991-01-01

    A compact and portable diffraction grating maker comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent beam splitters, and collimating lenses or mirrors directing the split beam at an appropriate photosensitive material. The collimating optics, the output ends of the fiber optic coupler and the photosensitive plate holder are all mounted on an articulated framework so that the angle of intersection of the beams can be altered at will without disturbing the spatial filter, collimation or beam quality, and assuring that the beams will always intersect at the position of the plate.

  12. Fiber optic diffraction grating maker

    DOEpatents

    Deason, V.A.; Ward, M.B.

    1991-05-21

    A compact and portable diffraction grating maker is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent beam splitters, and collimating lenses or mirrors directing the split beam at an appropriate photosensitive material. The collimating optics, the output ends of the fiber optic coupler and the photosensitive plate holder are all mounted on an articulated framework so that the angle of intersection of the beams can be altered at will without disturbing the spatial filter, collimation or beam quality, and assuring that the beams will always intersect at the position of the plate. 4 figures.

  13. Miniaturized Ion Mobility Spectrometer

    NASA Technical Reports Server (NTRS)

    Kaye, William J. (Inventor); Stimac, Robert M. (Inventor)

    2015-01-01

    By utilizing the combination of a unique electronic ion injection control circuit in conjunction with a particularly designed drift cell construction, the instantly disclosed ion mobility spectrometer achieves increased levels of sensitivity, while achieving significant reductions in size and weight. The instant IMS is of a much simpler and easy to manufacture design, rugged and hermetically sealed, capable of operation at high temperatures to at least 250.degree. C., and is uniquely sensitive, particularly to explosive chemicals.

  14. Rapid scanning mass spectrometer

    SciTech Connect

    Leckey, J.H.; Boeckmann, M.D.

    1996-11-25

    Mass spectrometers and residual gas analyzers (RGA) are used in a variety of applications for analysis of volatile and semi-volatile materials. Analysis is performed by detecting fragments of gas molecules, based on their mass to charge ratio, which are generated in the mass spectrometer. When used as a detector for a gas chromatograph, they function as a means to quantitatively identify isolated volatile species which have been separated from other species via the gas chromatograph. Vacuum Technology, Inc., (VTI) produces a magnetic sector mass spectrometer/RGA which is used in many industrial and laboratory environments. In order to increase the utility of this instrument, it is desirable to increase the mass scanning speed, thereby increasing the number of applications for which it is suited. This project performed the following three upgrades on the computer interface. (1) A new electrometer was designed and built to process the signal from the detector. This new electrometer is more sensitive, over 10 times faster, and over 100 times more stable than the electrometer it will replace. (2) The controller EPROM was reprogrammed with new firmware. This firmware acts as an operating system for the interface and is used to shuttle communications between the PC and the AEROVAC mass spectrometer. (3) The voltage regulator which causes the ion selector voltage to ramp to allow ions of selected mass to be sequentially detected was redesigned and prototyped. The redesigned voltage regulator can be ramped up or down more than 100 times faster than the existing regulator. These changes were incorporated into a prototype unit and preliminary performance testing conducted. Results indicated that scanning speed was significantly increased over the unmodified version.

  15. Advanced integrated spectrometer designs for miniaturized optical coherence tomography systems

    NASA Astrophysics Data System (ADS)

    Akca, B. I.; Považay, B.; Chang, L.; Alex, A.; Wörhoff, K.; de Ridder, R. M.; Drexler, W.; Pollnau, M.

    2013-06-01

    Optical coherence tomography (OCT) has enabled clinical applications that revolutionized in vivo medical diagnostics. Nevertheless, its current limitations owing to cost, size, complexity, and the need for accurate alignment must be overcome by radically novel approaches. Exploiting integrated optics, the central components of a spectral-domain OCT (SD-OCT) system can be integrated on a chip. Arrayed-waveguide grating (AWG) spectrometers with their high spectral resolution and compactness are excellent candidates for on-chip SD-OCT systems. However, specific design-related issues of AWG spectrometers limit the performance of on-chip SD-OCT systems. Here we present advanced AWG designs which could overcome the limitations arising from free spectral range, polarization dependency, and curved focal plane of the AWG spectrometers. Using these advanced AWG designs in an SD-OCT system can provide not only better overall performance but also some unique aspects that a commercial system does not have. Additionally, a partially integrated OCT system comprising an AWG spectrometer and an integrated beam splitter, as well as the in vivo imaging using this system are demonstrated.

  16. Smart slit assembly for high-resolution spectrometers in space

    NASA Astrophysics Data System (ADS)

    Guldimann, Benedikt; Minoglou, Kyriaki

    2016-03-01

    This paper introduces a novel imaging spectrometer subsystem concept, the Smart Slit Assembly (SSA), that improves instrument performances and enables new features for future Earth Observation. Derived from CarbonSat (ESA study) requirements, a concept of an SSA based on MEMS micro-shutters/mirrors and associated instrument design aspects are presented. The SSA replaces the classical grating spectrometer slit aperture in the focal plane of the telescope with three core elements, namely an input multimode waveguide array followed by a spatial light modulator (SLM) and an output multimode waveguide array which ends at the slit aperture viewed by the spectrometer. The SLM's in-and-outputs being coupled to waveguide arrays leads to an enhanced SLM with light de-coherence, polarization scrambling and scene/object homogenization capabilities. The additional advantage of this subsystem's arrangement is that waveguide level homogeneous spatial light modulation can be achieved with spatially in-homogeneous coupling from in to output multimode waveguides, allowing new, simpler and less costly designs for the SLM part of the SSA. The SSA is particularly useful for instance to reduce stray light by scene/object selection or modulation (e.g. de-clouding, intensity equalization), relax on the required dynamic range of the detectors, increase spectral stability by waveguide level intensity homogenization/scrambling, continuous in-flight monitoring of the co-registration between two or several spectrometer channels and inflight monitoring of stray light.

  17. X-ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Porter, F. Scott

    2004-01-01

    The X-ray Spectrometer (XRS) instrument is a revolutionary non-dispersive spectrometer that will form the basis for the Astro-E2 observatory to be launched in 2005. We have recently installed a flight spare X R S microcalorimeter spectrometer at the EBIT-I facility at LLNL replacing the XRS from the earlier Astro-E mission and providing twice the resolution. The X R S microcalorimeter is an x-ray detector that senses the heat deposited by the incident photon. It achieves a high energy resolution by operating at 0.06K and by carefully controlling the heat capacity and thermal conductance. The XRS/EBIT instrument has 32 pixels in a square geometry and achieves an energy resolution of 6 eV at 6 keV, with a bandpass from 0.1 to 12 keV (or more at higher operating temperature). The instrument allows detailed studies of the x-ray line emission of laboratory plasmas. The XRS/EBIT also provides an extensive calibration "library" for the Astro-E2 observatory.

  18. Tilt sensitivity of the two-grating interferometer

    SciTech Connect

    Anderson, Christopher N.; Naulleau, Patrick P.

    2008-01-30

    Fringe formation in the two-grating interferometer is analyzed in the presence of a small parallelism error between the diffraction gratings assumed in the direction of grating shear. Our analysis shows that with partially coherent illumination, fringe contrast in the interference plane is reduced in the presence of nonzero grating tilt with the effect proportional to the grating tilt angle and the grating spatial frequencies. Our analysis also shows that for a given angle between the gratings there is an angle between the final grating and the interference plane that optimizes fringe contrast across the field.

  19. Grating lobes analysis based on blazed grating theory for liquid crystal optical-phased array

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Cui, Guolong; Kong, Lingjiang; Xiao, Feng; Liu, Xin; Zhang, Xiaoguang

    2013-09-01

    The grating lobes of the liquid crystal optical-phased array (LCOPA) based on blazed grating theory is studied. Using the Fraunhofer propagation principle, the analytical expressions of the far-field intensity distribution are derived. Subsequently, we can obtain both the locations and the intensities of the grating lobes. The derived analytical functions that provide an insight into single-slit diffraction and multislit interference effect on the grating lobes are discussed. Utilizing the conventional microwave-phased array technique, the intensities of the grating lobes and the main lobe are almost the same. Different from this, the derived analytical functions demonstrate that the intensities of the grating lobes are less than that of the main lobe. The computer simulations and experiments show that the proposed method can correctly estimate the locations and the intensities of the grating lobes for a LCOPA simultaneously.

  20. Application of MEMS blazed gratings in WDM

    NASA Astrophysics Data System (ADS)

    Wu, Yongfeng; Yu, Honglin; Kang, Zhiping

    2009-05-01

    For the shortage and limitation of ruled grating that have ghost lines and stray light because of period error and ruling irregularity, a method for making a wavelength division multiplexer (WDM) based on Micro Electro-Mechanical System (MEMS) blazed grating is proposed. The basic composition of WDM based on MEMS blazed grating is introduced according to the method. The process realizing MEMS blazed grating and means for improving diffraction efficiency are also introduced. MEMS blazed grating is numerical simulated and analyzed in laboratory virtual instrument engineering workbench (LabVIEW), the diffraction intensity distribution of blazed grating is presented, it is shown that the blazed grating, period is 2000nm and blazed angle is 20 degree, have the best division effect for light wave with wavelength about 1.55μm by the results. At the same time, the 3D layout of WDM is provided in ZEMAX, and the rays in WDM are traced also. It is indicated by the results when the channel spacing is greater than or equal to 50nm, the division effect is in evidence. It achieves the capability of Coarse Wavelength Division Multiplexing (CWDM). It is proved that MEMS blazed grating can be applied well in WDM by all the results.

  1. Pitch evaluation of high-precision gratings

    NASA Astrophysics Data System (ADS)

    Lu, Yancong; Zhou, Changhe; Wei, Chunlong; Jia, Wei; Xiang, Xiansong; Li, Yanyang; Yu, Junjie; Li, Shubin; Wang, Jin; Liu, Kun; Wei, Shengbin

    2014-11-01

    Optical encoders and laser interferometers are two primary solutions in nanometer metrology. As the precision of encoders depends on the uniformity of grating pitches, it is essential to evaluate pitches accurately. We use a CCD image sensor to acquire grating image for evaluating the pitches with high precision. Digital image correlation technique is applied to filter out the noises. We propose three methods for determining the pitches of grating with peak positions of correlation coefficients. Numerical simulation indicated the average of pitch deviations from the true pitch and the pitch variations are less than 0.02 pixel and 0.1 pixel for these three methods when the ideal grating image is added with salt and pepper noise, speckle noise, and Gaussian noise. Experimental results demonstrated that our method can measure the pitch of the grating accurately, for example, our home-made grating with 20μm period has 475nm peak-to-valley uniformity with 40nm standard deviation during 35mm range. Another measurement illustrated that our home-made grating has 40nm peak-to-valley uniformity with 10nm standard deviation. This work verified that our lab can fabricate high-accuracy gratings which should be interesting for practical application in optical encoders.

  2. An Improved Diffraction Grating Spectroscope Experiment.

    ERIC Educational Resources Information Center

    Scherzer, Robert

    1995-01-01

    Discusses problems associated with standard diffraction grating experiments involving a diffraction grating, a straight meter stick, and a slit. Describes the use of a new spectroscope to overcome these problems using a curved scale to simplify calculations and help students obtain results from simple and straightforward measurements, thus giving…

  3. Inquiry with Laser Printer Diffraction Gratings

    ERIC Educational Resources Information Center

    Van Hook, Stephen J.

    2007-01-01

    The pages of "The Physics Teacher" have featured several clever designs for homemade diffraction gratings using a variety of materials--cloth, lithographic film, wire, compact discs, parts of aerosol spray cans, and pseudoliquids and pseudosolids. A different and inexpensive method I use to make low-resolution diffraction gratings takes advantage…

  4. Photometric Calibration of an EUV Flat Field Spectrometer at the Advanced Light Source

    SciTech Connect

    May, M; Lepson, J; Beiersdorfer, P; Thorn, D; Chen, H; Hey, D; Smith, A

    2002-07-03

    The photometric calibration of ail extreme ultraviolet flat field spectrometer has been done at the Advanced Light Source at LBNL. This spectrometer is used to record spectrum for atomic physics research from highly charged ions in plasmas created in the Livermore electron beam ion traps EBIT-I and SUPEREBIT. Two calibrations were done each with a different gold-coated grating, a 1200 {ell}/mm and a 2400 {ell}/mm, that covered 75-300{angstrom} and 15-160{angstrom}, respectively. The detector for this calibration was a back thinned CCD. The relative calibration was determined for several different incident angles for both gratings. Within the scatter of the data, the calibration was roughly insensitive to the incidence angle for the range of angles investigated.

  5. A pulse-front-tilt-compensated streaked optical spectrometer with high throughput and picosecond time resolution

    NASA Astrophysics Data System (ADS)

    Katz, J.; Boni, R.; Rivlis, R.; Muir, C.; Froula, D. H.

    2016-11-01

    A high-throughput, broadband optical spectrometer coupled to the Rochester optical streak system equipped with a Photonis P820 streak tube was designed to record time-resolved spectra with 1-ps time resolution. Spectral resolution of 0.8 nm is achieved over a wavelength coverage range of 480 to 580 nm, using a 300-groove/mm diffraction grating in conjunction with a pair of 225-mm-focal-length doublets operating at an f/2.9 aperture. Overall pulse-front tilt across the beam diameter generated by the diffraction grating is reduced by preferentially delaying discrete segments of the collimated input beam using a 34-element reflective echelon optic. The introduced delay temporally aligns the beam segments and the net pulse-front tilt is limited to the accumulation across an individual sub-element. The resulting spectrometer design balances resolving power and pulse-front tilt while maintaining high throughput.

  6. Highly efficient beamline and spectrometer for inelastic soft X-ray scattering at high resolution.

    PubMed

    Lai, C H; Fung, H S; Wu, W B; Huang, H Y; Fu, H W; Lin, S W; Huang, S W; Chiu, C C; Wang, D J; Huang, L J; Tseng, T C; Chung, S C; Chen, C T; Huang, D J

    2014-03-01

    The design, construction and commissioning of a beamline and spectrometer for inelastic soft X-ray scattering at high resolution in a highly efficient system are presented. Based on the energy-compensation principle of grating dispersion, the design of the monochromator-spectrometer system greatly enhances the efficiency of measurement of inelastic soft X-rays scattering. Comprising two bendable gratings, the set-up effectively diminishes the defocus and coma aberrations. At commissioning, this system showed results of spin-flip, d-d and charge-transfer excitations of NiO. These results are consistent with published results but exhibit improved spectral resolution and increased efficiency of measurement. The best energy resolution of the set-up in terms of full width at half-maximum is 108 meV at an incident photon energy tuned about the Ni L3-edge.

  7. Freeform lens collimating spectrum-folded Hadamard transform near-infrared spectrometer

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoduo; Liu, Hua; Juschkin, Larissa; Li, Yunpeng; Xu, Jialin; Quan, Xiangqian; Lu, Zhenwu

    2016-12-01

    A novel Hadamard transform spectrometer collimated by a freeform lens has been designed, which doubles the working spectral range while the spectral resolution is maintained. The freeform lens is designed to redistribute the broadband spectra of the source from 800 nm to 2400 nm into two collimated beams with different wavelengths and different tilting angles, to achieve the folding of spectra on the digital micro-mirror devices (DMD). It is constructed by solving two partial differential equations. The grating diffraction efficiency of the two split beams are more uniform and higher compared with the traditional method. The simulation results show that the bandwidth of the spectrometer is doubled and the spectral resolution is better than 10 nm. The optical system becomes more compact, and the energy efficiency is improved by 11.98% by folding the spectra with one freeform lens and one grating.

  8. Mass spectrometers: instrumentation

    NASA Astrophysics Data System (ADS)

    Cooks, R. G.; Hoke, S. H., II; Morand, K. L.; Lammert, S. A.

    1992-09-01

    Developments in mass spectrometry instrumentation over the past three years are reviewed. The subject is characterized by an enormous diversity of designs, a high degree of competition between different laboratories working with either different or similar techniques and by extremely rapid progress in improving analytical performance. Instruments can be grouped into genealogical charts based on their physical and conceptual interrelationships. This is illustrated using mass analyzers of different types. The time course of development of particular instrumental concepts is illustrated in terms of the s-curves typical of cell growth. Examples are given of instruments which are at the exponential, linear and mature growth stages. The prime examples used are respectively: (i) hybrid instruments designed to study reactive collisions of ions with surfaces: (ii) the Paul ion trap; and (iii) the triple quadrupole mass spectrometer. In the area of ion/surface collisions, reactive collisions such as hydrogen radical abstraction from the surface by the impinging ion are studied. They are shown to depend upon the chemical nature of the surface through the use of experiments which utilize self-assembled monolayers as surfaces. The internal energy deposited during surface-induced dissociation upon collision with different surfaces in a BEEQ instrument is also discussed. Attention is also given to a second area of emerging instrumentation, namely technology which allows mass spectrometers to be used for on-line monitoring of fluid streams. A summary of recent improvements in the performance of the rapidly developing quadrupole ion trap instrument illustrates this stage of instrument development. Improvements in resolution and mass range and their application to the characterization of biomolecules are described. The interaction of theory with experiment is illustrated through the role of simulations of ion motion in the ion trap. It is emphasized that mature instruments play a

  9. Absolute intensity calibration of two-channel prototype ITER vacuum ultraviolet spectrometer with a collimating mirror.

    NASA Astrophysics Data System (ADS)

    Seon, Changrae; Hong, Joohwan; Cheon, Munseong; Pak, Sunil; Lee, Hyeongon; Biel, Wolfgang; Barnsley, Robin

    2012-10-01

    To optimize the design of ITER vacuum ultraviolet (VUV) spectrometer, a two-channel prototype spectrometer was implemented with No. 3 (14.4 nm -- 31.8 nm) and No. 4 (29.0 nm -- 60.0 nm) among the five channels. The prototype is composed of a toroidal mirror, and two toroidal diffraction gratings and two different detectors of the back-illuminated CCD and the micro-channel plate (MCP). To verify each optical component, the absolute intensity calibration was performed using the calibrated hollow cathode lamp. Inverse sensitivities of each spectrometer were derived by dividing the incident photon numbers with the measured detector counts. The measured sensitivity values were consistent with the sensitivities calculated from the grating and the detector efficiencies. Consequently the calibration curves of the two-channel VUV spectrometer were provided, and the mirror reflectivity and the detector efficiency could be confirmed experimentally. For the application of the calibrated spectrometer, measurements of impurity lines in KSTAR plasmas were performed, and the line integrated emissivity was derived from the calibration curve during impurity injection experiments.

  10. Optical system design for a short-wave infrared imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Huang, Han; Li, Xiaotong; Cen, Zhaofeng

    2012-11-01

    A short-wave infrared (SWIR) imaging spectrometer with all reflective elements was designed, covering the spectral range 1000-2500nm with a spectral resolution of 10nm. The imaging spectrometer is composed of an off-axis three-mirror anastigmatic (TMA) telescope and an Offner spectral imaging system with convex grating. The design result shows that the system has compact structure, light weight, wide field of view, small smile and keystone, excellent image quality and practical feasibility. The design method is simple and easy-operating.

  11. Compact static imaging spectrometer combining spectral zooming capability with a birefringent interferometer.

    PubMed

    Li, Jie; Zhu, Jingping; Qi, Chun; Zheng, Chuanlin; Gao, Bo; Zhang, Yunyao; Hou, Xun

    2013-04-22

    A compact static birefringent imaging spectrometer (BIS) with spectral zooming capability is presented. It based on two identical Wollaston prisms and has no slit. The most significant advantage of the BIS is that we can conveniently select spectral resolution to adapt to different application requirements and greatly reduce the size of the spectral image data for capturing, saving, transferring, and processing. Also, we show this configuration blend the advantage of a grating spectrometer and a Michelson interferometer: extremely compact, robust, wide free spectral range and very high throughput. PMID:23609723

  12. APEX/J-PEX: A High-Resolution Spectrometer for EUV/X-ray Wavelengths

    NASA Astrophysics Data System (ADS)

    Kowalski, M. P.; Cruddace, R. G.; Gursky, H.; Yentis, D. J.

    2001-09-01

    Future X-ray and EUV missions should include high-resolution spectrometers, permitting use of the full range of spectroscopic diagnostics, in particular measurement of line profiles and Doppler shifts. We present a design for such an instrument (APEX), which would fly on a Small Explorer Satellite and which employs multilayer-coated ion-etched gratings in a normal-incidence configuration. We have already flown successfully a prototype spectrometer (J-PEX) on a NASA sounding rocket. The resulting EUV spectrum of the white dwarf G191-B2B will be presented.

  13. Spectrometer for UVISS telescope on the space station

    NASA Astrophysics Data System (ADS)

    Naletto, Giampiero; Poletto, Luca; Zuccaro, Alessandro

    2000-12-01

    This report summarizes the conclusions of the study so far developed at CISAS 'G. Colombo' of Padua University about the optical configuration of the spectrometer to be installed on UVISS, a SiC far- and near-UV telescope for the International Space Station. This spectrometer has to cover the whole 91 - 320 nm spectral region, by providing a resolving power greater than 300 at 100 nm and around 600 at 200 nm; a spatial resolution of 4 arcsec on-axis and minimization of spatial aberrations over arcmin's long entrance slit is required. Several designs have been considered, from the simple on- Rowland toroidal grating to the more complex aberration corrected holographically ruled one. Due to room limitations in UVISS instrument bay and in order to minimize the number of optical elements because of throughput, a two in-flight interchangeable channel configuration has provisionally been selected, each one using a single dispersive element: the first covers the 91 - 130 nm region, the second the 130 - 320 nm one. Both channels use a spherical grating with parallel variable line spacing in the Harada mounting. The theoretical performance of the two channels is obtained by ray-tracing simulation.

  14. Multilayer waveguide-grating filters.

    PubMed

    Wang, S S; Magnusson, R

    1995-05-10

    The properties of guided-mode resonance reflection filters constructed with multiple thin-film layers are addressed. Greatly improved filter characteristics are shown to follow by the incorporation of multiple homogeneous layers with the spatially modulated layer. Calculated results for single-layer, double-layer, and triple-layer filter structures are presented. Whereas good filter characteristics are obtainable with single layers that are half-resonance-wavelength thick, there remains a residual reflection in the sidebands unless the cover and the substrate permittivities are equal. With double-layer and triple-layer designs, extensive wavelength ranges with low sideband-reflectance values are shown to be possible without requiring equal cover and substrate permittivities. The antireflection properties of the layer stack can be understood if the modulated layer is modeled as a homogeneous layer characterized by its average relative permittivity. However, as the grating-modulation index increases, this approximation deteriorates. In particular it is found that, for a given high modulation index, the double-layer antireflection thin-film approximation fails, whereas for the same modulation in a triple-layer system it holds firmly. Multilayer designs can thus have significantly large filter passbands, as they may contain heavily modulated resonant gratings without corruption of the ideal filter characteristics.

  15. Astigmatism-corrected Czerny-Turner imaging spectrometer for broadband spectral simultaneity

    SciTech Connect

    Xue Qingsheng

    2011-04-01

    A low-cost, broadband, astigmatism-corrected Czerny-Turner arrangement with a fixed plane grating is proposed. A wedge cylindrical lens is used to correct astigmatism over a broadband spectral range. The principle and method of astigmatism correction are described in detail. We compare the performance of this modified Czerny-Turner arrangement with that of the traditional Czerny-Turner arrangement by using a practical Czerny-Turner imaging spectrometer example.

  16. Single-pulse coherent anti-Stokes Raman spectroscopy via fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Oh, Seung Ryeol; Park, Joo Hyun; Kwon, Won Sik; Kim, Jin Hwan; Kim, Kyung-Soo; Lee, Jae Yong; Kim, Soohyun

    2016-03-01

    Fiber Bragg grating is used in a variety of applications. In this study, we suggest compact, cost-effective coherent anti- Stokes Raman spectroscopy which is based on the pulse shaping methods via commercialized fiber Bragg grating. The experiment is performed incorporating a commercialized femtosecond pulse laser system (MICRA, Coherent) with a 100 mm length of 780-HP fiber which is inscribed 50 mm of Bragg grating. The pump laser for coherent anti-Stokes Raman spectroscopy has a bandwidth of 90 nm and central wavelength of 815 nm with a notch shaped at 785 nm. The positive chirped pulse is compensated by chirped mirror set. We compensate almost 14000 fs2 of positive group delay dispersion for the transform-limited pulse at the sample position. The pulse duration was 15 fs with average power of 50 mW, and showed an adequate notch shape. Finally, coherent anti-Stokes Raman signals are observed using a spectrometer (Jobin Yvon Triax320 and TE-cooled Andor Newton EMCCD). We obtained coherent anti-Stokes Raman signal of acetone sample which have Raman peak at the spectral finger-print region. In conclusion, the proposed method is more simple and cost-effective than the methods of previous research which use grating pairs and resonant photonic crystal slab. Furthermore, the proposed method can be used as endoscope application.

  17. Tunable External Cavity Quantum Cascade Lasers (EC-QCL): an application field for MOEMS based scanning gratings

    NASA Astrophysics Data System (ADS)

    Grahmann, Jan; Merten, André; Ostendorf, Ralf; Fontenot, Michael; Bleh, Daniela; Schenk, Harald; Wagner, Hans-Joachim

    2014-03-01

    In situ process information in the chemical, pharmaceutical or food industry as well as emission monitoring, sensitive trace detection and biological sensing applications would increasingly rely on MIR-spectroscopic anal­ysis in the 3 μm - 12 μm wavelength range. However, cost effective, portable, low power consuming and fast spectrometers with a wide tuning range are not available so far. To provide these MIR-spectrometer properties, the combination of quantum cascade lasers with a MOEMS scanning grating as wavelength selective element in the external cavity is addressed to provide a very compact and fast tunable laser source for spectroscopic analysis.

  18. Fabricating Radial Groove Gratings Using Projection Photolithography

    NASA Technical Reports Server (NTRS)

    Iazikov, Dmitri; Mossberg, Thomas W.

    2009-01-01

    Projection photolithography has been used as a fabrication method for radial grove gratings. Use of photolithographic method for diffraction grating fabrication represents the most significant breakthrough in grating technology in the last 60 years, since the introduction of holographic written gratings. Unlike traditional methods utilized for grating fabrication, this method has the advantage of producing complex diffractive groove contours that can be designed at pixel-by-pixel level, with pixel size currently at the level of 45 45 nm. Typical placement accuracy of the grating pixels is 10 nm over 30 nm. It is far superior to holographic, mechanically ruled or direct e-beam written gratings and results in high spatial coherence and low spectral cross-talk. Due to the smooth surface produced by reactive ion etch, such gratings have a low level of randomly scattered light. Also, due to high fidelity and good surface roughness, this method is ideally suited for fabrication of radial groove gratings. The projection mask is created using a laser writer. A single crystal silicon wafer is coated with photoresist, and then the projection mask, with its layer of photoresist, is exposed for patterning in a stepper or scanner. To develop the photoresist, the fabricator either removes the exposed areas (positive resist) of the unexposed areas (negative resist). Next, the patterned and developed photoresist silicon substrate is subjected to reactive ion etching. After this step, the substrate is cleaned. The projection mask is fabricated according to electronic design files that may be generated in GDS file format using any suitable CAD (computer-aided design) or other software program. Radial groove gratings in off-axis grazing angle of incidence mount are of special interest for x-ray spectroscopy, as they allow achieving higher spectral resolution for the same grating area and have lower alignment tolerances than traditional in-plane grating scheme. This is especially

  19. MASS SPECTROMETER LEAK

    DOEpatents

    Shields, W.R.

    1960-10-18

    An improved valve is described for precisely regulating the flow of a sample fluid to be analyzed, such as in a mass spectrometer, where a gas sample is allowed to "leak" into an evacuated region at a very low, controlled rate. The flow regulating valve controls minute flow of gases by allowing the gas to diffuse between two mating surfaces. The structure of the valve is such as to prevent the corrosive feed gas from contacting the bellows which is employed in the operation of the valve, thus preventing deterioration of the bellows.

  20. Modular total absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Karny, M.; Rykaczewski, K. P.; Fijałkowska, A.; Rasco, B. C.; Wolińska-Cichocka, M.; Grzywacz, R. K.; Goetz, K. C.; Miller, D.; Zganjar, E. F.

    2016-11-01

    The design and performance of the Modular Total Absorption Spectrometer built and commissioned at the Oak Ridge National Laboratory is presented. The active volume of the detector is approximately one ton of NaI(Tl), which results in very high full γ energy peak efficiency of 71% at 6 MeV and nearly flat efficiency of around 81.5% for low energy γ-rays between 300 keV and 1 MeV. In addition to the high peak efficiency, the modular construction of the detector permits the use of a γ-coincidence technique in data analysis as well as β-delayed neutron observation.

  1. Automated transportable mass spectrometer

    NASA Astrophysics Data System (ADS)

    Echo, M. W.

    1981-09-01

    The need was identified for a mass spectrometer (MS) which can be conveniently transported among several facilities for rapid verification of the isotopic composition of special nuclear material. This requirement for a light weight, transportable MS for U and Pu mass analysis was met by deleting the gas chromograph (GC) portions of a Hewlett-Packard Model 5992 Quadrupole GCMS and substituting a vacuum lock sample entry system. A programmable power supply and vacuum gauge were added and circuitry modifications were made to enable use of the supplied software.

  2. Gas Chromatic Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Wey, Chowen

    1995-01-01

    Gas chromatograph/mass spectrometer (GC/MS) used to measure and identify combustion species present in trace concentration. Advanced extractive diagnostic method measures to parts per billion (PPB), as well as differentiates between different types of hydrocarbons. Applicable for petrochemical, waste incinerator, diesel transporation, and electric utility companies in accurately monitoring types of hydrocarbon emissions generated by fuel combustion, in order to meet stricter environmental requirements. Other potential applications include manufacturing processes requiring precise detection of toxic gaseous chemicals, biomedical applications requiring precise identification of accumulative gaseous species, and gas utility operations requiring high-sensitivity leak detection.

  3. The development and test of a deformable diffraction grating for a stigmatic EUV spectroheliometer

    NASA Technical Reports Server (NTRS)

    Timothy, J. Gethyn; Walker, A. B. C., Jr.; Morgan, J. S.; Huber, M. C. E.; Tondello, G.

    1992-01-01

    The objectives were to address currently unanswered fundamental questions concerning the fine scale structure of the chromosphere, transition region, and corona. The unique characteristics of the spectroheliometer was used in combination with plasma diagnostic techniques to study the temperature, density, and velocity structures of specific features in the solar outer atmosphere. A unified understanding was sought of the interplay between the time dependent geometry of the magnetic field structure and the associated flows of mass and energy, the key to which lies in the smallest spatial scales that are unobservable with current EUV instruments. Toroidal diffraction gratings were fabricated and tested by a new technique using an elastically deformable substrate. The toroidal diffraction gratings was procured and tested to be used for the evaluation of the Multi-Anode Microchannel Array (MAMA) detector systems for the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) and UV Coronagraph Spectrometer (UVCS) instruments on the SOHO mission.

  4. Spectral interference fringes in chirped large-mode-area fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Poozesh, Reza; Madanipour, Khosro; Vatani, Vahid

    2016-09-01

    Spectral interference fringes were experimentally observed in chirped large mode area fiber Bragg grating (CFBG) in the overlapping region of the reflected spectrum of fiber modes by a high resolution spectrometer. It was demonstrated that the interference is due to optical path difference of the reflected modes in slight chirped FBGs. By assuming chirped fiber Bragg gratings as a Fabry-Perot (FP) cavity, free spectral range (FSR) of FP was calculated 0.08 nm which is matched with measurement very well. Furthermore, the experiments show that axial tension and temperature changes of the CFBG do not have observable effects on the magnitude of FSR, however coiling of the fiber deceases spectral interference fringe amplitude without sensible effect on FSR magnitude. The results of this work can be utilized in bending sensors.

  5. Long period grating response to gamma radiation

    NASA Astrophysics Data System (ADS)

    Sporea, Dan; Stǎncalie, Andrei; Neguţ, Daniel; Delepine-Lesoille, Sylvie; Lablonde, Laurent

    2016-04-01

    We report the evaluation of one long period grating (LPG) and one fiber Bragg grating (FBG) under gamma irradiation. The LPG was produced by the melting-drawing method based on CO2 laser assisted by a micro-flame and was engraved in a commercial single mode fiber SMF28 from Corning, grating length 25 mm, grating pitch of 720 μm. After the manufacturing of the grating, the fiber was re-coated with Acrylate and the grating was inserted into special ceramic case transparent to gamma radiation. The FBG is commercialized by Technica SA, and it is written in SMF-28 optical fiber (λ= 1546 nm; grating length of 12 mm; reflectivity > 80 %; bandwidth - BW @3 dB < 0.3 nm; side lobe suppress ratio - SLSR >15 dB; Acrylate recoating). By on-line monitoring of the LPG wavelength deep with an optical fiber interrogator during the irradiation exposure and pauses, both the irradiation induced shift (maximum 1.45 nm) and the recovery (in the range of 200 pm) phenomena were observed. Temperature sensitivity of the LPS was not affected by gamma irradiation.

  6. Optical fiber interferometric spectrometer

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Li, Baosheng; Liu, Yan; Zhai, Yufeng; Wang, An

    2006-02-01

    We design an optical fiber spectrometer based on optical fiber Mach-Zehnder interferometer. In optical fiber Fourier transform spectrometer spectra information is obtained by Fourier transform of interferogram, which recording intensity change vs. optical path difference. Optical path difference is generated by stretching one fiber arm which wound around fiber stretch drive by high power supply. Information from detector is linear with time rather than with optical path difference. In order to obtain high accuracy wavenumber, reference beam is used to control the optical path difference. Optical path difference is measured by reference laser interference fringe. Interferogram vs. optical path difference is resampled by Brault algorithm with information from reference beam and test beam. In the same condition, one-sided interferogram has higher resolution than that of two-sided interferogram. For one-sided interferogram, zero path difference position must be determined as accurately as possible, small shift will result in phase error. For practical experiment in laboratory, position shift is inevitable, so phase error correction must be considered. Zero order fringe is determined by curve fitting. Spectrum of light source is obtained from one-sided interferogram by Fourier cosine transform. A spectral resolution of about ~3.1 cm -1 is achieved. In practice, higher resolution is needed. This compact equipment will be used in emission spectra and absorption spectra, especially in infrared region.

  7. Resonant ultrasound spectrometer

    DOEpatents

    Migliori, Albert; Visscher, William M.; Fisk, Zachary

    1990-01-01

    An ultrasound resonant spectrometer determines the resonant frequency spectrum of a rectangular parallelepiped sample of a high dissipation material over an expected resonant response frequency range. A sample holder structure grips corners of the sample between piezoelectric drive and receive transducers. Each transducer is mounted on a membrane for only weakly coupling the transducer to the holder structure and operatively contacts a material effective to remove system resonant responses at the transducer from the expected response range. i.e., either a material such as diamond to move the response frequencies above the range or a damping powder to preclude response within the range. A square-law detector amplifier receives the response signal and retransmits the signal on an isolated shield of connecting cabling to remove cabling capacitive effects. The amplifier also provides a substantially frequency independently voltage divider with the receive transducer. The spectrometer is extremely sensitive to enable low amplitude resonance to be detected for use in calculating the elastic constants of the high dissipation sample.

  8. Phasor Analysis of Binary Diffraction Gratings with Different Fill Factors

    ERIC Educational Resources Information Center

    Martinez, Antonio; Sanchez-Lopez, Ma del Mar; Moreno, Ignacio

    2007-01-01

    In this work, we present a simple analysis of binary diffraction gratings with different slit widths relative to the grating period. The analysis is based on a simple phasor technique directly derived from the Huygens principle. By introducing a slit phasor and a grating phasor, the intensity of the diffracted orders and the grating's resolving…

  9. IR Spectrometer Using 90-Degree Off-Axis Parabolic Mirrors

    SciTech Connect

    Robert M. Malone, Ian J. McKenna

    2008-03-01

    A gated spectrometer has been designed for real-time, pulsed infrared (IR) studies at the National Synchrotron Light Source at the Brookhaven National Laboratory. A pair of 90-degree, off-axis parabolic mirrors are used to relay the light from an entrance slit to an output recording camera. With an initial wavelength range of 1500–4500 nm required, gratings could not be used in the spectrometer because grating orders would overlap. A magnesium oxide prism, placed between these parabolic mirrors, serves as the dispersion element. The spectrometer is doubly telecentric. With proper choice of the air spacing between the prism and the second parabolic mirror, any spectral region of interest within the InSb camera array’s sensitivity region can be recorded. The wavelengths leaving the second parabolic mirror are collimated, thereby relaxing the camera positioning tolerance. To set up the instrument, two different wavelength (visible) lasers are introduced at the entrance slit and made collinear with the optical axis via flip mirrors. After dispersion by the prism, these two laser beams are directed to tick marks located on the outside housing of the gated IR camera. This provides first-order wavelength calibration for the instrument. Light that is reflected off the front prism face is coupled into a high-speed detector to verify steady radiance during the gated spectral imaging. Alignment features include tick marks on the prism and parabolic mirrors. This instrument was designed to complement single-point pyrometry, which provides continuous time histories of a small collection of spots from shock-heated targets.

  10. IR Spectrometer Using 90-degree Off-axis Parabolic Mirrors

    SciTech Connect

    Robert M. Malone, Richard, G. Hacking, Ian J. McKenna, and Daniel H. Dolan

    2008-09-02

    A gated spectrometer has been designed for real-time, pulsed infrared (IR) studies at the National Synchrotron Light ource at the Brookhaven National Laboratory. A pair of 90-degree, off-axis parabolic mirrors are used to relay the light from an entrance slit to an output IR recording camera. With an initial wavelength range of 1500–4500 nm required, gratings could not be used in the spectrometer because grating orders would overlap. A magnesium oxide prism, placed between these parabolic mirrors, serves as the dispersion element. The spectrometer is doubly telecentric. With proper choice of the air spacing between the prism and the second parabolic mirror, any spectral region of interest within the InSb camera array’s sensitivity region can be recorded. The wavelengths leaving the second parabolic mirror are collimated, thereby relaxing the camera positioning tolerance. To set up the instrument, two different wavelength (visible) lasers are introduced at the entrance slit and made collinear with the optical axis via flip mirrors. After dispersion by the prism, these two laser beams are directed to tick marks located on the outside housing of the gated IR camera. This provides first-order wavelength calibration for the instrument. Light that is reflected off the front prism face is coupled into a high-speed detector to verify steady radiance during the gated spectral imaging. Alignment features include tick marks on the prism and parabolic mirrors. This instrument was designed to complement singlepoint pyrometry, which provides continuous time histories of a small collection of spots from shock-heated targets.

  11. Compact spectrometer for on-line photon diagnostics at FLASH

    NASA Astrophysics Data System (ADS)

    Frassetto, Fabio; Dziarzhytski, Siarhei; Guerassimova, Natalia; Poletto, Luca

    2013-03-01

    We present the design and characterization of a compact and portable spectrometer that has been realized to analyze in real time the high-order harmonic contents of the free-electron-laser beam at FLASH in Hamburg. The spectrometer can be installed at the end of any of the broad-band FEL beamlines at FLASH, to monitor in the single-shot operation the emissions of the fundamental FEL and the high-order harmonic content. The design is compact in order to obtain a portable instrument within a total envelope of less than one meter. It is based on the use of two flat-field grazing-incidence gratings and a EUV-enhanced CCD detector to cover the spectral range 1.7-40 nm (720-30 eV). The absolute response of the spectrometer, i.e. grating and detector efficiency, has been measured in the whole spectral region of operation. This allows to make calibrated measurements of the photon flux. Furthermore, the use of a bidimensional detector allows to measure also the angular divergence of the FEL beam in the direction parallel to the entrance slit. We present some experimental data of the FEL emissions taken at the beamline BL1 at FLASH. The high-order harmonic emissions have been characterized in terms of photon flux, temporal fluctuations and angular divergence. Measurements of the harmonics up to the 5th order at 3.8 nm have been done with the fundamental tuned at 19 nm. Measurements of the harmonics up to the 3rd order at 2.3 nm have been done with the fundamental tuned at 6.8 nm.

  12. Optical system design of the Dyson imaging spectrometer based on the Fery prism

    NASA Astrophysics Data System (ADS)

    Pei, Linlin; Xiangli, Bin; Lv, Qunbo; Shao, Xiaopeng

    2016-08-01

    Imaging spectrometer has obtained wide development since rich feature information can be obtained by it; now, we focus on its high spectral resolution and miniaturization. In this paper, we design the Dyson imaging spectrometer system based on Fery prism. The average spectral resolution is 4.3 nm and the structure of the total length is 229 mm. It is a small, high-spectrometer imaging system. The front and rear surface of the traditional prism are plane, but the surfaces of the Fery prism are spherical, which can provide some optical power to realize imaging function and produce the dispersion effect. The Fery prism does not need to be placed in the parallel optical path, which simplifies the collimator lens and the imaging lens and are necessary in the prism spectrometer, making it possible to obtain a compact spectrometer. Full-spectrum transmittance of the prism is up to 94 %. Compared to the convex grating, the energy efficiency is greatly improved, and the free spectral range is wider, and its dispersion will not bring higher-order spectral aliasing problem. The small high spectrometer only includes two components. Its spectral range is from 400 to 1000 nm, covering the near-ultraviolet to near-infrared. The various aberrations of the typical spectrum are corrected. The spectrometer is excellent in performance.

  13. Thermal annealing of tilted fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    González-Vila, Á.; Rodríguez-Cobo, L.; Mégret, P.; Caucheteur, C.; López-Higuera, J. M.

    2016-05-01

    We report a practical study of the thermal decay of cladding mode resonances in tilted fiber Bragg gratings, establishing an analogy with the "power law" evolution previously observed on uniform gratings. We examine how this process contributes to a great thermal stability, even improving it by means of a second cycle slightly increasing the annealing temperature. In addition, we show an improvement of the grating spectrum after annealing, with respect to the one just after inscription, which suggests the application of this method to be employed to improve saturation issues during the photo-inscription process.

  14. Diffraction by m-bonacci gratings

    NASA Astrophysics Data System (ADS)

    Monsoriu, Juan A.; Giménez, Marcos H.; Furlan, Walter D.; Barreiro, Juan C.; Saavedra, Genaro

    2015-11-01

    We present a simple diffraction experiment with m-bonacci gratings as a new interesting generalization of the Fibonacci ones. Diffraction by these non-conventional structures is proposed as a motivational strategy to introduce students to basic research activities. The Fraunhofer diffraction patterns are obtained with the standard equipment present in most undergraduate physics labs and are compared with those obtained with regular periodic gratings. We show that m-bonacci gratings produce discrete Fraunhofer patterns characterized by a set of diffraction peaks which positions are related to the concept of a generalized golden mean. A very good agreement is obtained between experimental and numerical results and the students’ feedback is discussed.

  15. Fiber Bragg Grating Sensors for Harsh Environments

    PubMed Central

    Mihailov, Stephen J.

    2012-01-01

    Because of their small size, passive nature, immunity to electromagnetic interference, and capability to directly measure physical parameters such as temperature and strain, fiber Bragg grating sensors have developed beyond a laboratory curiosity and are becoming a mainstream sensing technology. Recently, high temperature stable gratings based on regeneration techniques and femtosecond infrared laser processing have shown promise for use in extreme environments such as high temperature, pressure or ionizing radiation. Such gratings are ideally suited for energy production applications where there is a requirement for advanced energy system instrumentation and controls that are operable in harsh environments. This paper will present a review of some of the more recent developments. PMID:22438744

  16. Sensitive visual test for concave diffraction gratings.

    NASA Technical Reports Server (NTRS)

    Bruner, E. C., Jr.

    1972-01-01

    A simple visual test for the evaluation of concave diffraction gratings is described. It is twice as sensitive as the Foucault knife edge test, from which it is derived, and has the advantage that the images are straight and free of astigmatism. It is particularly useful for grating with high ruling frequency where the above image faults limit the utility of the Foucault test. The test can be interpreted quantitatively and can detect zonal grating space errors of as little as 0.1 A.

  17. Aplanatic and quasi-aplanatic diffraction gratings

    DOEpatents

    Hettrick, M.C.

    1987-09-14

    A reflection diffraction grating having a series of transverse minute grooves of progressively varying spacing along a concave surface enables use of such gratings for x-ray or longer wavelength imaging of objects. The variable groove spacing establishes aplanatism or substantially uniform magnetification across the optical aperture. The grating may be sued, for example, in x-ray microscopes or telescopes of the imaging type and in x-ray microprobed. Increased spatial resolution and field of view may be realized in x-ray imaging. 5 figs.

  18. Aplanatic and quasi-aplanatic diffraction gratings

    DOEpatents

    Hettrick, Michael C.

    1989-01-01

    A reflection diffraction grating having a series of transverse minute grooves of progressively varying spacing along a concave surface enables use of such gratings for X-ray or longer wavelength imaging of objects. The variable groove spacing establishes aplanatism or substantially uniform magnification across the optical aperture. The grating may be used, for example, in X-ray microscopes or telescopes of the imaging type and in X-ray microprobes. Increased spatial resolution and field of view may be realized in X-ray imaging.

  19. Holographically generated twisted nematic liquid crystal gratings

    SciTech Connect

    Choi, Hyunhee; Wu, J.W.; Chang, Hye Jeong; Park, Byoungchoo

    2006-01-09

    A reflection holographic method is introduced to fabricate an electro-optically tunable twisted nematic (TN) liquid crystal (LC) grating, forgoing the geometrical drawing. The photoisomerization process occurring on the LC alignment layers of an LC cell in the reflection holographic configuration gives a control over the twist angle, and the grating spacing is determined by the slant angle of reflection holographic configuration. The resulting diffraction grating is in a structure of a reverse TN LC, permitting a polarization-independent diffraction efficiency. The electro-optic tunability of the diffraction efficiency is also demonstrated.

  20. Influence of grating thickness in low-contrast subwavelength grating concentrating lenses

    NASA Astrophysics Data System (ADS)

    Ye, Mao; Yi, Ya Sha

    2016-07-01

    Conventional subwavelength grating concentrating lenses are designed based on calculated phase overlap, wherein the phase change is fixed by the grating thickness, bar-width, and airgap, and therefore the focus. We found that certain concentration effects can still be maintained by changing the grating thickness with the same bar-widths and airgap dimensions. Following that, we discovered the existence of the grating thickness threshold; light concentration intensity spikes upon exceeding this limit. However, the light concentration property does not change continuously with respect to a steady increase in grating thickness. This observation indicates that there exists a concentration mode self-interference effect along the light propagation direction inside the gratings. Our results may provide guidance in designing and fabricating microlenses in a potentially more easy and controllable manner. Such approaches can be utilized in various integrated nanophotonics applications ranging from optical cavities and read/write heads to concentrating photovoltaics.