Wang, J; Chung Ann Choo, D; Zhang, X; Yang, Q; Xian, T; Lu, D; Jiang, S
2000-07-01
Spontaneous echo contrast (SEC) is a phenomenon that is commonly seen in areas of blood stasis. It is a slowly moving, cloud-like swirling pattern of "smoke" or increased echogenicity recorded on echocardiography. SEC is commonly seen in the left atrium of patients with mitral stenosis or atrial fibrillation. The presence of SEC has been shown to be a marker of increased thromboembolic risk. By using transesophageal echocardiography during percutaneous balloon mitral valvotomy (PBMV), the study investigated the relationship between SEC and varying left atrial appendage (LAA) blood flow velocity in the human heart. Thirty-five patients with rheumatic mitral stenosis underwent percutaneous balloon mitral valvotomy with intraoperative transesophageal echocardiography monitoring. We alternatively measured LAA velocities and observed the left atrium for various grades of SEC (0 = none to 4 = severe) before and after each balloon inflation. Left atrial appendage maximal ejection velocity was reduced from 35 +/- 14 to 6 +/- 2 mm/s at peak balloon inflation and increased to 40 +/- 16 mm/s after balloon deflation. In comparison with the values before balloon inflation and after balloon deflation, LAA velocities were significantly lower (p < 0.001). New or increased SEC grade was observed during 54 of 61 (88%) inflations and unchanged in 7 (12%) inflations at peak balloon inflation. Spontaneous echo contrast became lower in grade after 55 balloon deflations (90%), completely disappeared after 18 deflations (30%), and remained unchanged after 6 deflations (10%). The mean time to achieve maximal SEC grade (2.5 +/- 1.2 s) coincided with the mean time to trough LAA velocities (2.3 +/- 1.1 s) after balloon inflation. Upon deflation, the mean time to lowest SEC grade (2.9 +/- 1.8 s) coincided with mean time to achieve maximal LAA velocities (2.7 +/- 1.6 s). During balloon inflation, the severity of SEC was enhanced with corresponding reduction in LAA flow velocity. Upon balloon deflation, SEC lightens or disappears with increase in LAA flow velocity.
Watanabe, Tetsuya; Shinoda, Yukinori; Ikeoka, Kuniyasu; Inui, Hirooki; Fukuoka, Hidetada; Sunaga, Akihiro; Kanda, Takashi; Uematsu, Masaaki; Hoshida, Shiro
2017-03-01
The presence of spontaneous echo contrast (SEC) in the left atrium has been reported to be an independent predictor of thromboembolic risk in patients with atrial fibrillation (AF). Dabigatran was associated with lower rates of stroke and systemic embolism as compared with warfarin when administered at a higher dose. Between July 2011 and October 2015, nonvalvular AF patients treated with warfarin or dabigatran who had transesophageal echocardiography prior to ablation therapy for AF were enrolled. The intensity of SEC was classified into four grades, from 0 to 3. Univariate and multivariate analysis was performed to analyze factors associated with SEC. Sixty-five patients were on dabigatran and 65 were on warfarin, with the prothrombin time in therapeutic range. There were no significant differences in the age, CHADS2 score, left atrial dimension, and left atrial appendage flow between the two groups. However, there were more grade 2 or higher patients with left atrial SEC in the warfarin group (n = 20) than in the dabigatran group (n = 2) (p < 0.001). When multivariate regression analysis was performed, grade 2 or higher left atrial SEC was independently associated with no dabigatran usage in addition to high brain natriuretic peptide level and high incidence of diabetes mellitus or persistent AF. Thus, dabigatran exhibited low intensity of left atrial SEC in nonvalvular AF patients as compared with warfarin.
Harris, Robert J; Yao, Jingwen; Chakhoyan, Ararat; Raymond, Catalina; Leu, Kevin; Liau, Linda M; Nghiemphu, Phioanh L; Lai, Albert; Salamon, Noriko; Pope, Whitney B; Cloughesy, Timothy F; Ellingson, Benjamin M
2018-04-06
To introduce a new pH-sensitive and oxygen-sensitive MRI technique using amine proton CEST echo spin-and-gradient echo (SAGE) EPI (CEST-SAGE-EPI). pH-weighting was obtained using CEST estimations of magnetization transfer ratio asymmetry (MTR asym ) at 3 ppm, and oxygen-weighting was obtained using R2' measurements. Glutamine concentration, pH, and relaxation rates were varied in phantoms to validate simulations and estimate relaxation rates. The values of MTR asym and R2' in normal-appearing white matter, T 2 hyperintensity, contrast enhancement, and macroscopic necrosis were measured in 47 gliomas. Simulation and phantom results confirmed an increase in MTR asym with decreasing pH. The CEST-SAGE-EPI estimates of R 2 , R2*, and R2' varied linearly with gadolinium diethylenetriamine penta-acetic acid concentration (R 2 = 6.2 mM -1 ·sec -1 and R2* = 6.9 mM -1 ·sec -1 ). The CEST-SAGE-EPI and Carr-Purcell-Meiboom-Gill estimates of R 2 (R 2 = 0.9943) and multi-echo gradient-echo estimates of R2* (R 2 = 0.9727) were highly correlated. T 2 lesions had lower R2' and higher MTR asym compared with normal-appearing white matter, suggesting lower hypoxia and high acidity, whereas contrast-enhancement tumor regions had elevated R2' and MTR asym , indicating high hypoxia and acidity. The CEST-SAGE-EPI technique provides simultaneous pH-sensitive and oxygen-sensitive image contrasts for evaluation of the brain tumor microenvironment. Advantages include fast whole-brain acquisition, in-line B 0 correction, and simultaneous estimation of CEST effects, R 2 , R2*, and R2' at 3 T. © 2018 International Society for Magnetic Resonance in Medicine.
Demirçelik, Muhammed Bora; Çetin, Mustafa; Çiçekcioğlu, Hülya; Uçar, Özgül; Duran, Mustafa
2014-05-01
We aimed to investigate effects of left ventricular diastolic dysfunction on left atrial appendage functions, spontaneous echo contrast and thrombus formation in patients with nonvalvular atrial fibrillation. In 58 patients with chronic nonvalvular atrial fibrilation and preserved left ventricular systolic function, left atrial appendage functions, left atrial spontaneous echo contrast grading and left ventricular diastolic functions were evaluated using transthoracic and transoesophageal echocardiogram. Patients divided in two groups: Group D (n=30): Patients with diastolic dysfunction, Group N (n=28): Patients without diastolic dysfunction. Categorical variables in two groups were evaluated with Pearson's chi-square or Fisher's exact test. The significance of the lineer correlation between the degree of spontaneous echo contrast (SEC) and clinical measurements was evaluated with Spearman's correlation analysis. Peak pulmonary vein D velocity of the Group D was significantly higher than the Group N (p=0.006). However, left atrial appendage emptying velocity, left atrial appendage lateral wall velocity, peak pulmonary vein S, pulmonary vein S/D ratio were found to be significantly lower in Group D (p=0.028, p<0.001, p<0.001; p<0.001). Statistically significant negative correlation was found between SEC in left atrium and left atrial appendage emptying, filling, pulmonary vein S/D levels and lateral wall velocities respectively (r=-0.438, r=-0.328, r=-0.233, r=-0.447). Left atrial appendage emptying, filling, pulmonary vein S/D levels and lateral wall velocities were significantly lower in SEC 2-3-4 than SEC 1 (p=0.003, p=0.029, p<0.001, p=0.002). In patients with nonvalvular atrial fibrillation and preserved left ventricular ejection fraction, left atrial appendage functions are decreased in patients with left ventricular diastolic dysfunction. Left ventricular diastolic dysfunction may constitute a potential risk for formation of thrombus and stroke.
Kim, Yun Gi; Choi, Jong-Il; Kim, Mi-Na; Cho, Dong-Hyuk; Oh, Suk-Kyu; Kook, Hyungdon; Park, Hee-Soon; Lee, Kwang No; Baek, Yong-Soo; Roh, Seung-Young; Shim, Jaemin; Park, Seong-Mi; Shim, Wan Joo; Kim, Young-Hoon
2018-01-01
Spontaneous echo-contrast (SEC) and thrombus observed in trans-esophageal echocardiography (TEE) is known as a strong surrogate marker for future risk of ischemic stroke in patients with atrial fibrillation (AF) or atrial flutter (AFL). The efficacy of non-vitamin K antagonist oral anticoagulants (NOAC) compared to warfarin to prevent SEC or thrombus in patients with AF or AFL is currently unknown. AF or AFL patients who underwent direct current cardioversion (DCCV) and pre-DCCV TEE evaluation from January 2014 to October 2016 in a single center were analyzed. The prevalence of SEC and thrombus were compared between patients who received NOAC and those who took warfarin. NOAC included direct thrombin inhibitor and factor Xa inhibitors. Among 1,050 patients who were considered for DCCV, 424 patients anticoagulated with warfarin or NOAC underwent TEE prior to DCCV. Eighty patients who were anticoagulated for less than 21 days were excluded. Finally, 344 patients were included for the analysis (180 warfarin users vs. 164 NOAC users). No significant difference in the prevalence of SEC (44.4% vs. 43.9%; p = 0.919), dense SEC (13.9% vs. 15.2%; p = 0.722), or thrombus (2.2% vs. 4.3%; p = 0.281) was observed between the warfarin group and the NOAC group. In multivariate analysis, there was no association between NOAC and risk of SEC (odds ratio [OR]: 1.4, 95% CI: 0.796-2.297, p = 0.265) or thrombus (OR: 3.4, 95% CI: 0.726-16.039, p = 0.120). In conclusion, effectiveness of NOAC is comparable to warfarin in preventing SEC and thrombus in patients with AF or AFL undergoing DCCV. However, numerical increase in the prevalence of thrombus in NOAC group warrants further evaluation.
Kim, Yun Gi; Kim, Mi-Na; Cho, Dong-Hyuk; Oh, Suk-Kyu; Kook, Hyungdon; Park, Hee-Soon; Lee, Kwang No; Baek, Yong-Soo; Roh, Seung-Young; Shim, Jaemin; Park, Seong-Mi; Shim, Wan Joo; Kim, Young-Hoon
2018-01-01
Spontaneous echo-contrast (SEC) and thrombus observed in trans-esophageal echocardiography (TEE) is known as a strong surrogate marker for future risk of ischemic stroke in patients with atrial fibrillation (AF) or atrial flutter (AFL). The efficacy of non-vitamin K antagonist oral anticoagulants (NOAC) compared to warfarin to prevent SEC or thrombus in patients with AF or AFL is currently unknown. AF or AFL patients who underwent direct current cardioversion (DCCV) and pre-DCCV TEE evaluation from January 2014 to October 2016 in a single center were analyzed. The prevalence of SEC and thrombus were compared between patients who received NOAC and those who took warfarin. NOAC included direct thrombin inhibitor and factor Xa inhibitors. Among 1,050 patients who were considered for DCCV, 424 patients anticoagulated with warfarin or NOAC underwent TEE prior to DCCV. Eighty patients who were anticoagulated for less than 21 days were excluded. Finally, 344 patients were included for the analysis (180 warfarin users vs. 164 NOAC users). No significant difference in the prevalence of SEC (44.4% vs. 43.9%; p = 0.919), dense SEC (13.9% vs. 15.2%; p = 0.722), or thrombus (2.2% vs. 4.3%; p = 0.281) was observed between the warfarin group and the NOAC group. In multivariate analysis, there was no association between NOAC and risk of SEC (odds ratio [OR]: 1.4, 95% CI: 0.796–2.297, p = 0.265) or thrombus (OR: 3.4, 95% CI: 0.726–16.039, p = 0.120). In conclusion, effectiveness of NOAC is comparable to warfarin in preventing SEC and thrombus in patients with AF or AFL undergoing DCCV. However, numerical increase in the prevalence of thrombus in NOAC group warrants further evaluation. PMID:29360845
Vena Cava 3D Contrast-Enhanced MR Venography: A Pictorial Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin Jiang; Zhou Kangrong; Chen Zuwang
Three-dimensional contrast-enhanced magnetic resonance venography (CE MRV) is a sensitive and accurate method for diagnosing vena cava pathologies. The commonly used indirect approach involves a nondiluted gadolinium contrast agent injected into an upper limb vein or, occasionally, a pedal vein for assessment of the superior or inferior vena cava. In our studies, a coronal 3D fast multi-planar spoiled gradient-echo acquisition was used. A pre-contrast scan was obtained to ensure correct coverage of the region of interest. We initiated contrast-enhanced acquisition 15 sec after the start of contrast agent injection and performed the procedure twice. The image sets were obtained duringmore » two 20-30-sec breath hold, with a breathing rest of 5-6 sec, to obtain the first-pass and delayed arteriovenous phases. For patients with Budd-Chiari syndrome, a third acquisition coinciding with late venous phase was collected to visualize the hepatic veins, which was carried out by one additional acquisition after a 5-6-sec breathing time. This review describes the clinical application of 3D CE MRV in vena cava congenital anomalies, superior and inferior vena cava syndrome, Budd-Chiari syndrome, peripheral vein thrombosis extending to the vena cava, pre-operational evaluation in portosystemic shunting and post-surgical follow-up, and road-mapping for the placement and evaluation of complications of central venous devices.« less
Cook, Jeremy C.
2014-01-01
Following a brief introduction, the Neutron Resonance Spin-Echo (NRSE) principle is discussed classically in Sec. 2. In Sec. 3, two idealized 4-coil NRSE spectrometers are discussed (one using single π-flipper coil units and one using paired “bootstrap” coils); some idealized (exact π-flip) expressions are given for the spin-echo signal and some theoretical limitations are discussed. A more quantum mechanical discussion of NRSE is presented in Sec. 4 and additional theory related to the spin-echo signal, including wavelength-dependence, is given is Sec. 5. Factors affecting the instrumental resolution are discussed in Sec. 6. In Sec. 7, a variety of engineering issues are assessed in the context of challenging performance goals for a NIST Center for Neutron Research (NCNR) NRSE spectrometer. In Sec. 8, some Monte Carlo simulations are presented that examine the combined influences of spectrometer imperfections on the NRSE signal. These are compared with analytical predictions developed in previous sections. In Sec. 9, possible alternatives for a NCNR NRSE spectrometer configuration are discussed together with a preliminary assessment of the spectrometer neutron guide requirements. A summary of some of the useful formulas is given in Appendix A. PMID:26601027
Iyama, Yuji; Nakaura, Takeshi; Nagayama, Yasunori; Oda, Seitaro; Utsunomiya, Daisuke; Kidoh, Masafumi; Yuki, Hideaki; Hirata, Kenichiro; Namimoto, Tomohiro; Kitajima, Mika; Morita, Kosuke; Funama, Yoshinori; Takemura, Atsushi; Okuaki, Tomoyuki; Yamashita, Yasuyuki
2018-04-10
We investigated the feasibility of single breath hold unenhanced coronary MRA using multi-shot gradient echo planar imaging (MSG-EPI) on a 3T-scanner. Fourteen volunteers underwent single breath hold coronary MRA with a MSG-EPI and free-breathing turbo field echo (TFE) coronary MRA at 3T. The acquisition time, signal to noise ratio (SNR), and the contrast of the sequences were compared with the paired t-test. Readers evaluated the image contrast, noise, sharpness, artifacts, and the overall image quality. The acquisition time was 88.1% shorter for MSG-EPI than TFE (24.7 ± 2.5 vs 206.4 ± 23.1 sec, P < 0.01). The SNR was significantly higher on MSG-EPI than TFE scans (P < 0.01). There was no significant difference in the contrast on MSG-EPI and TFE scans (1.8 ± 0.3 vs 1.9 ± 0.3, P = 0.24). There was no significant difference in image contrast, image sharpness, and overall image quality between two scan techniques. The score of image noise and artifact were significantly higher on MSG-EPI than TFE scans (P < 0.05). The single breath hold MSG-EPI sequence is a promising technique for shortening the scan time and for preserving the image quality of unenhanced whole heart coronary MRA on a 3T scanner.
Jia, Guang; O'Dell, Craig; Heverhagen, Johannes T; Yang, Xiangyu; Liang, Jiachao; Jacko, Richard V; Sammet, Steffen; Pellas, Theodore; Cole, Patricia; Knopp, Michael V
2008-09-01
To describe and determine the reproducibility of a simplified model to quantitatively measure heterogeneous intralesion contrast agent diffusion in colorectal liver metastases. This HIPAA-compliant retrospective study received institutional review board approval, and written informed consent was obtained from 14 patients (mean age, 61 years +/- 9 [standard deviation]; range, 41-78 years), including 10 men (mean age, 65 years +/- 8; range, 47-78 years) and four women (mean age, 54 years +/- 9; range, 41-59 years), with colorectal liver metastases. Magnetic resonance (MR) imaging was performed twice (first baseline MR image [B(1)] and second baseline MR image [B(2)]) in a single target lesion prior to therapy. Dynamic contrast material-enhanced MR imaging was performed by using a saturation-recovery fast gradient-echo sequence. A simplified contrast agent diffusion model was proposed, and a contrast agent diffusion coefficient (CDC) was calculated. The reproducibility of the CDC measurement was evaluated by using the Bland-Altman plot and a linear regression model. The mean CDC was 0.22 mm(2)/sec (range, 0.01-0.73 mm(2)/sec) on B(1) and 0.24 mm(2)/sec (range, 0.01-0.71 mm(2)/sec) on B(2), with an intraclass correlation coefficient of 0.91 (P < .0001). Bland-Altman plot showed good agreement, with a mean difference in measurement pairs of 0.017 mm(2)/sec +/- 0.096. The slope from the linear regression model was 0.89 (95% confidence interval: 0.63, 1.15) and the intercept was 0.01 (95% confidence interval: -0.08, 0.09). The CDC enables a quantitative description of contrast enhancement heterogeneity in lesions. Given the high reproducibility of the CDC metric, CDC appears promising for further qualification as an imaging biomarker of change measurement in response assessment. http://radiology.rsnajnls.org/cgi/content/full/248/3/901/DC1. RSNA, 2008
2010-01-06
Micropulsation [10] The induced magnetic field variation was monitored by the fluxgate magnetometer located at Gakona, AK. The 1 sec resolution data...minutes on and 1 minute off, were explored. The experiments were monitored using the digisonde and magnetometer located at the HAARP facility. The...were explored. The experiments were monitored using the digisonde and magnetometer located at the HAARP facility. The results show that the
van den Bos, Indra C; Hussain, Shahid M; Krestin, Gabriel P; Wielopolski, Piotr A
2008-07-01
Institutional Review Board approval and signed informed consent were obtained by all participants for an ongoing sequence optimization project at 3.0 T. The purpose of this study was to evaluate breath-hold diffusion-induced black-blood echo-planar imaging (BBEPI) as a potential alternative for specific absorption rate (SAR)-intensive spin-echo sequences, in particular, the fast spin-echo (FSE) sequences, at 3.0 T. Fourteen healthy volunteers (seven men, seven women; mean age +/- standard deviation, 32.7 years +/- 6.8) were imaged for this purpose. Liver coverage (20 cm, z-axis) was always performed in one 25-second breath hold. Imaging parameters were varied interactively with regard to echo time, diffusion b value, and voxel size. Images were evaluated and compared with fat-suppressed T2-weighted FSE images for image quality, liver delineation, geometric distortions, fat suppression, suppression of the blood signal, contrast-to-noise ratio (CNR), and signal-to-noise ratio (SNR). An optimized short- (25 msec) and long-echo (80 msec) BBEPI provided full anatomic, single breath-hold liver coverage (100 and 50 sections, respectively), with resulting voxel sizes of 3.3 x 2.7 x 2.0 mm and 3.3 x 2.7 x 4.0 mm, respectively. Repetition time was 6300 msec, matrix size was 160 x 192, and an acceleration factor of 2.00 was used. b Values of more than 20 sec/mm(2) showed better suppression of the blood signal but b values of 10 sec/mm(2) provided improved volume coverage and signal consistency. Compared with fat-suppressed T2-weighted FSE, the optimized BBEPI sequence provided (a) comparable image quality and liver delineation, (b) acceptable geometric distortions, (c) improved suppression of fat and blood signals, and (d) high CNR and SNR. BBEPI is feasible for fast, low-SAR, thin-section morphologic imaging of the entire liver in a single breath hold at 3.0 T. (c) RSNA, 2008.
Styczynski, Grzegorz; Rdzanek, Adam; Pietrasik, Arkadiusz; Kochman, Janusz; Huczek, Zenon; Sobieraj, Piotr; Gaciong, Zbigniew; Szmigielski, Cezary
2016-11-01
Aortic pulse-wave velocity (PWV) is a measure of aortic stiffness that has a prognostic role in various diseases and in the general population. A number of methods are used to measure PWV, including Doppler ultrasound. Although echocardiography has been used for PWV measurement, to the authors' knowledge, it has never been tested against an invasive reference method at the same time point. Therefore, the aim of this study was to compare prospectively an echocardiographic PWV measurement, called echo-PWV, with an invasive study. Forty-five patients (mean age, 66 years; 60% men) underwent simultaneous intra-arterial pressure recording and echocardiographic Doppler flow evaluation during elective cardiac catheterization. Proximal pressure and Doppler waveforms were acquired in the aortic arch. Distal pressure waveforms were registered in the right and distal Doppler waveforms in the left external iliac artery. Transit time was measured as a delay of the foot of pressure or Doppler waveform in the distal relative to the proximal location. Distance was measured on the catheter for invasive PWV and over the surface for echo-PWV. Echo-PWV was calculated as distance divided by transit time. In the whole group, mean invasive PWV was 9.38 m/sec and mean echo-PWV was 9.51 m/sec (P = .78). The Pearson' correlation coefficient between methods was 0.93 (P < .0001). A Bland-Altman plot revealed a mean difference between invasive PWV and echo-PWV of 0.13 ± 0.79 m/sec. Echo-PWV, based on Doppler echocardiography, is a reliable method of aortic PWV measurement, with a close correlation with invasive assessment. Wider implementation of the echo-PWV method for the evaluation of aortic wall stiffness can further expand the clinical and scientific utility of echocardiography. Copyright © 2016 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.
Assessment of mediastinal tumors with diffusion-weighted single-shot echo-planar MRI.
Razek, Ahmed Abdel; Elmorsy, Ahmed; Elshafey, Mohsen; Elhadedy, Tamer; Hamza, Osama
2009-09-01
To assess the role of diffusion-weighted single-shot echo-planar magnetic resonance imaging (MRI) in patients with mediastinal tumors. Prospective study was conducted on 45 consecutive patients (29 male, 16 female, age 22-66 years, mean 41 years) with mediastinal tumor. They underwent diffusion-weighted single-shot echo-planar MRI of the mediastinum with a b-factor of 0, 300, and 600 sec/mm(2). The apparent diffusion coefficient (ADC) value of the mediastinal tumor was correlated with the histopathological findings. The mean ADC value of malignant mediastinal tumors was 1.09 +/- 0.25 x 10(-3) mm(2)/sec, and of benign tumors was 2.38 +/- 0.56 x 10(-3) mm(2)/sec. There was a significant difference in the mean ADC value between malignant and benign tumors (P = 0.001) and within different grades of malignancy (0.001). When an ADC value of 1.56 x 10(-3) mm(2)/sec was used as a threshold value for differentiating malignant from benign tumor, the best results were obtained with an accuracy of 95%, sensitivity of 96%, specificity of 94%, positive predictive value of 94%, negative predictive value of 96%, and area under the curve of 0.938. The ADC value is a noninvasive parameter that can be used for differentiation of malignant from benign mediastinal tumors and grading of mediastinal malignancy.
Takahara, Taro; Imai, Yutaka; Yamashita, Tomohiro; Yasuda, Seiei; Nasu, Seiji; Van Cauteren, Marc
2004-01-01
To examine a new way of body diffusion weighted imaging (DWI) using the short TI inversion recovery-echo planar imaging (STIR-EPI) sequence and free breathing scanning (diffusion weighted whole body imaging with background body signal suppression; DWIBS) to obtain three-dimensional displays. 1) Apparent contrast-to-noise ratios (AppCNR) between lymph nodes and surrounding fat tissue were compared in three types of DWI with and without breath-holding, with variable lengths of scan time and slice thickness. 2) The STIR-EPI sequence and spin echo-echo planar imaging (SE-EPI) sequence with chemical shift selective (CHESS) pulse were compared in terms of their degree of fat suppression. 3) Eleven patients with neck, chest, and abdominal malignancy were scanned with DWIBS for evaluation of feasibility. Whole body imaging was done in a later stage of the study using the peripheral vascular coil. The AppCNR of 8 mm slice thickness images reconstructed from 4 mm slice thickness source images obtained in a free breathing scan of 430 sec were much better than 9 mm slice thickness breath-hold scans obtained in 25 sec. High resolution multi-planar reformat (MPR) and maximum intensity projection (MIP) images could be made from the data set of 4 mm slice thickness images. Fat suppression was much better in the STIR-EPI sequence than SE-EPI with CHESS pulse. The feasibility of DWIBS was showed in clinical scans of 11 patients. Whole body images were successfully obtained with adequate fat suppression. Three-dimensional DWIBS can be obtained with this technique, which may allow us to screen for malignancies in the whole body.
Noncontrast Peripheral MRA with Spiral Echo Train Imaging
Fielden, Samuel W.; Mugler, John P.; Hagspiel, Klaus D.; Norton, Patrick T.; Kramer, Christopher M.; Meyer, Craig H.
2015-01-01
Purpose To develop a spin echo train sequence with spiral readout gradients with improved artery–vein contrast for noncontrast angiography. Theory Venous T2 becomes shorter as the echo spacing is increased in echo train sequences, improving contrast. Spiral acquisitions, due to their data collection efficiency, facilitate long echo spacings without increasing scan times. Methods Bloch equation simulations were performed to determine optimal sequence parameters, and the sequence was applied in five volunteers. In two volunteers, the sequence was performed with a range of echo times and echo spacings to compare with the theoretical contrast behavior. A Cartesian version of the sequence was used to compare contrast appearance with the spiral sequence. Additionally, spiral parallel imaging was optionally used to improve image resolution. Results In vivo, artery–vein contrast properties followed the general shape predicted by simulations, and good results were obtained in all stations. Compared with a Cartesian implementation, the spiral sequence had superior artery–vein contrast, better spatial resolution (1.2 mm2 versus 1.5 mm2), and was acquired in less time (1.4 min versus 7.5 min). Conclusion The spiral spin echo train sequence can be used for flow-independent angiography to generate threedimensional angiograms of the periphery quickly and without the use of contrast agents. PMID:24753164
Noncontrast peripheral MRA with spiral echo train imaging.
Fielden, Samuel W; Mugler, John P; Hagspiel, Klaus D; Norton, Patrick T; Kramer, Christopher M; Meyer, Craig H
2015-03-01
To develop a spin echo train sequence with spiral readout gradients with improved artery-vein contrast for noncontrast angiography. Venous T2 becomes shorter as the echo spacing is increased in echo train sequences, improving contrast. Spiral acquisitions, due to their data collection efficiency, facilitate long echo spacings without increasing scan times. Bloch equation simulations were performed to determine optimal sequence parameters, and the sequence was applied in five volunteers. In two volunteers, the sequence was performed with a range of echo times and echo spacings to compare with the theoretical contrast behavior. A Cartesian version of the sequence was used to compare contrast appearance with the spiral sequence. Additionally, spiral parallel imaging was optionally used to improve image resolution. In vivo, artery-vein contrast properties followed the general shape predicted by simulations, and good results were obtained in all stations. Compared with a Cartesian implementation, the spiral sequence had superior artery-vein contrast, better spatial resolution (1.2 mm(2) versus 1.5 mm(2) ), and was acquired in less time (1.4 min versus 7.5 min). The spiral spin echo train sequence can be used for flow-independent angiography to generate three-dimensional angiograms of the periphery quickly and without the use of contrast agents. © 2014 Wiley Periodicals, Inc.
PITCH MEMORY FOR NEAR THRESHOLD STIMULUS DIFFERENCES.
threshold Doppler judgments is likely up to about a 9 sec separation between reverberation and echo. However, specific training against high and low Doppler response biases at certain time separations is indicated. (Author)
Hargreaves, Brian
2012-01-01
Gradient echo sequences are widely used in magnetic resonance imaging (MRI) for numerous applications ranging from angiography to perfusion to functional MRI. Compared with spin-echo techniques, the very short repetition times of gradient-echo methods enable very rapid 2D and 3D imaging, but also lead to complicated “steady states.” Signal and contrast behavior can be described graphically and mathematically, and depends strongly on the type of spoiling: fully balanced (no spoiling), gradient spoiling, or RF-spoiling. These spoiling options trade off between high signal and pure T1 contrast while the flip angle also affects image contrast in all cases, both of which can be demonstrated theoretically and in image examples. As with spin-echo sequences, magnetization preparation can be added to gradient-echo sequences to alter image contrast. Gradient echo sequences are widely used for numerous applications such as 3D perfusion imaging, functional MRI, cardiac imaging and MR angiography. PMID:23097185
Fuchs, Katharina; Hezel, Fabian; Klix, Sabrina; Mekle, Ralf; Wuerfel, Jens; Niendorf, Thoralf
2014-12-01
This work proposes a dual contrast rapid acquisition with relaxation enhancement (RARE) variant (2in1-RARE), which provides simultaneous proton density (PD) and T2 * contrast in a single acquisition. The underlying concept of 2in1-RARE is the strict separation of spin echoes and stimulated echoes. This approach offers independent weighting of spin echoes and stimulated echoes. 2in1-RARE was evaluated in phantoms including signal-to-noise ratio (SNR) and point spread function assessment. 2in1-RARE was benchmarked versus coherent RARE and a split-echo RARE variant. The applicability of 2in1-RARE for brain imaging was demonstrated in a small cohort of healthy subjects (n = 10) and, exemplary, a multiple sclerosis patient at 3 Tesla as a precursor to a broader clinical study. 2in1-RARE enables the simultaneous acquisition of dual contrast weighted images without any significant image degradation and without sacrificing SNR versus split-echo RARE. This translates into a factor of two speed gain over multi-contrast, sequential split-echo RARE. A 15% broadening of the point spread function was observed in 2in1-RARE. T1 relaxation effects during the mixing time can be neglected for brain tissue. 2in1-RARE offers simultaneous acquisition of images of anatomical (PD) and functional (T2 *) contrast. It presents an alternative to address scan time constraints frequently encountered during sequential acquisition of T2 * or PD-weighted RARE. © 2013 Wiley Periodicals, Inc.
Sarkar, Subhendra N; Mangosing, Jason L; Sarkar, Pooja R
2013-01-01
MRI tissue contrast is not well preserved at high field. In this work, we used a phantom with known, intrinsic contrast (3.6%) for model tissue pairs to test the effects of low angle refocusing pulses and magnetization transfer from adjacent slices on intrinsic contrast at 1.5 and 3 Tesla. Only T1-weighted spin echo sequences were tested since for such sequences the contrast loss, tissue heating, and image quality degradation at high fields seem to present significant diagnostic and quality issues. We hypothesized that the sources of contrast loss could be attributed to low refocusing angles that do not fulfill the Hahn spin echo conditions or to magnetization transfer effects from adjacent slices in multislice imaging. At 1.5 T the measured contrast was 3.6% for 180° refocusing pulses and 2% for 120° pulses, while at 3 T, it was 4% for 180° and only 1% for 120° refocusing pulses. There was no significant difference between single slice and multislice imaging suggesting little or no role played by magnetization transfer in the phantom chosen. Hence, one may conclude that low angle refocusing pulses not fulfilling the Hahn spin echo conditions are primarily responsible for significant deterioration of T1-weighted spin echo image contrast in high-field MRI.
Wai, Shin Hnin; Kyu, Kyu; Galupo, Mary Joyce; Songco, Geronica G; Kong, William K F; Lee, Chi Hang; Yeo, Tiong Cheng; Poh, Kian Keong
2017-10-01
Transesophageal echocardiographic (TEE) findings of left atrial appendage (LAA) thrombus, spontaneous echo contrast (SEC), and LAA dysfunction are established risk factors of cardioembolic stroke. The semi-invasive nature of TEE limits its utility as a routine risk stratification tool. We aim to correlate TEE and transthoracic echocardiography (TTE) pulsed Doppler measurements of LAA flow velocities and use TTE measurements to predict TEE findings. We prospectively measured pulsed Doppler LAA flow velocities in 103 consecutive patients on TEE and TTE. There was a strong correlation between TEE and TTE LAA emptying velocity (LAA E) (r = .88, P < .001) and a moderate correlation between LAA filling velocities (r = .50, P < .001). TTE LAA E predicted the presence of thrombus or SEC independent of atrial fibrillation (AF). To predict the presence of thrombus or SEC, the optimal TTE LAA E cutoff was ≤30 cm/s in all patients (75% sensitive, 90% specific) and ≤31 cm/s in AF patients (80% sensitive, 79% specific). To predict LAA dysfunction (TEE E ≤ 20 cm/s), the optimal TTE LAA E cutoff was ≤27 cm/s (100% sensitive, 89% specific in all patients and 100% sensitive, 74% specific in AF patients). TTE assessment of LAA function is feasible and correlates well with the more invasive TEE method. It predicts the presence of thrombus, SEC, and LAA dysfunction on TEE. TTE LAA assessment has incremental value in thromboembolic risk stratification and should be utilized more frequently. © 2017, Wiley Periodicals, Inc.
Siewert, C; Hosten, N; Felix, R
1994-07-01
T2-weighted spin-echo imaging is the standard screening procedure in MR imaging of the neurocranium. We evaluated fast spin-echo T2-weighted imaging (TT2) of the neurocranium in comparison to conventional spin-echo T2-weighted imaging (T2). Signal-to-noise and contrast-to-noise ratio of normal brain tissues (basal ganglia, grey and white matter, CSF fluid) and different pathologies were calculated. Signal-to-noise ratio and contrast-to-noise ratio were significantly higher in TT2 than in T2 (with the exception of gray-to-white matter contrast). Tissues with increased content of water protons (mobile protons) showed the highest contrast to surrounding tissues. The increased signal intensity of fat must be given due attention in fatty lesions. Because the contrast-to-noise ratio between white matter and basal ganglia is less in TT2, Parkinson patients have to be examined by conventional T2. If these limitations are taken into account, fast spin-echo T2-weighted imaging is well appropriate for MR imaging of the neurocranium, resulting in heavy T2-weighting achieved in a short acquisition time.
Vinereanu, Dragos; Lopes, Renato D; Mulder, Hillary; Gersh, Bernard J; Hanna, Michael; de Barros E Silva, Pedro G M; Atar, Dan; Wallentin, Lars; Granger, Christopher B; Alexander, John H
2017-12-01
Few data exist on the long-term outcomes of patients with spontaneous echo contrast (SEC), left atrial/left atrial appendage (LA/LAA) thrombus, and complex aortic plaque (CAP), in patients with atrial fibrillation receiving oral anticoagulation. We explored the relationship between these 3 echocardiographic findings and clinical outcomes, and the comparative efficacy and safety of apixaban and warfarin for each finding. Patients from the ARISTOTLE trial (Apixaban for Reduction in Stroke and Other Thromboembolic Events in Atrial Fibrillation) with SEC, LA/LAA thrombus, or CAP diagnosed by either transthoracic or transesophageal echocardiography were compared with patients with none of these findings on transesophageal echocardiography. A total of 1251 patients were included: 217 had SEC, 127 had LA/LAA thrombus, 241 had CAP, and 746 had none. The rates of stroke/systemic embolism were not significantly different among patients with and without these echocardiographic findings (hazard ratio, 0.96; 95% confidence interval, 0.25-3.60 for SEC; hazard ratio, 1.27; 95% confidence interval, 0.23-6.86 for LA/LAA thrombus; hazard ratio, 2.21; 95% confidence interval, 0.71-6.85 for CAP). Rates of ischemic stroke, myocardial infarction, cardiovascular death, and all-cause death were also not different between patients with and without these findings. For patients with either SEC or CAP, there was no evidence of a differential effect of apixaban over warfarin. For patients with LA/LAA thrombus, there was also no significant interaction, with the exception of all-cause death and any bleeding where there was a greater benefit of apixaban compared with warfarin among patients with no LA/LAA thrombus. In anticoagulated patients with atrial fibrillation and risk factors for stroke, echocardiographic findings do not seem to add to the risk of thromboembolic events. URL: http://www.clinicaltrials.gov. Unique identifier: NCT00412984. © 2017 American Heart Association, Inc.
Positive contrast of SPIO-labeled cells by off-resonant reconstruction of 3D radial half-echo bSSFP.
Diwoky, Clemens; Liebmann, Daniel; Neumayer, Bernhard; Reinisch, Andreas; Knoll, Florian; Strunk, Dirk; Stollberger, Rudolf
2015-01-01
This article describes a new acquisition and reconstruction concept for positive contrast imaging of cells labeled with superparamagnetic iron oxides (SPIOs). Overcoming the limitations of a negative contrast representation as gained with gradient echo and fully balanced steady state (bSSFP), the proposed method delivers a spatially localized contrast with high cellular sensitivity not accomplished by other positive contrast methods. Employing a 3D radial bSSFP pulse sequence with half-echo sampling, positive cellular contrast is gained by adding artificial global frequency offsets to each half-echo before image reconstruction. The new contrast regime is highlighted with numerical intravoxel simulations including the point-spread function for 3D half-echo acquisitions. Furthermore, the new method is validated on the basis of in vitro cell phantom measurements on a clinical MRI platform, where the measured contrast-to-noise ratio (CNR) of the new approach exceeds even the negative contrast of bSSFP. Finally, an in vivo proof of principle study based on a mouse model with a clear depiction of labeled cells within a subcutaneous cell islet containing a cell density as low as 7 cells/mm(3) is presented. The resultant isotropic images show robustness to motion and a high CNR, in addition to an enhanced specificity due to the positive contrast of SPIO-labeled cells. Copyright © 2014 John Wiley & Sons, Ltd.
Digital ionosonde studies of F-region waves. [measuring ionospheric disturbances
NASA Technical Reports Server (NTRS)
Harper, R. M.; Bowhill, S. A.
1974-01-01
Accurate fixed-frequency virtual height data collected on a digital ionosonde are analyzed to measure speed and direction of traveling ionospheric disturbances by matching the experimental data with virtual height and echo amplitude obtained from a simple model of the disturbed ionosphere. Several data records analyzed in this manner indicate speeds of 400 to 680 m/sec and a direction of propagation from north to south. The digital ionosonde collects virtual height data with a time resolution of 10 sec and a height resolution of less than 300 m.
Microwave Reflectivity of Deposited Aluminum Films for Passive Relay Communications
NASA Technical Reports Server (NTRS)
Cuddihy, William F.; Shreve, Lloyd H.
1961-01-01
Reflectivity measurements from 400 Mc/sec to 10 kMc/sec on 2,200 A thick aluminum deposited on 1/2-mil-thick Mylar film show this material to be a very good reflector of radio waves. Measurements made under conditions of stress and temperature which would be encountered by a communications sphere, such as Project Echo (1960 Iota), showed very little deterioration of the high reflectivity. packaging effects also caused very little reflectivity change. Under conditions of severe temperature cycling, aluminum removal and decreased reflectivity occurred.
Yoshimura, Yuuki; Kuroda, Masahiro; Sugiantoc, Irfan; Bamgbosec, Babatunde O; Miyahara, Kanae; Ohmura, Yuichi; Kurozumi, Akira; Matsushita, Toshi; Ohno, Seiichiro; Kanazawa, Susumu; Asaumi, Junichi
2018-02-01
Readout-segmented echo-planar imaging (RESOLVE) is a multi-shot echo-planar imaging (EPI) modality with k-space segmented in the readout direction. We investigated whether RESOLVE decreases the distortion and artifact in the phase direction and increases the signal-to-noise ratio (SNR) in phantoms image taken with 3-tesla (3T) MRI versus conventional EPI. We used a physiological saline phantom and subtraction mapping and observed that RESOLVE's SNR was higher than EPI's. Using RESOLVE, the combination of a special-purpose coil and a large-loop coil had a higher SNR compared to using only a head/neck coil. RESOLVE's image distortioas less than EPI's. We used a 120 mM polyethylene glycol phantom to examine the phase direction artifact.vThe range where the artifact appeared in the apparent diffusion coefficient (ADC) image was shorter with RESOLVE compared to EPI. We used RESOLVE to take images of a Jurkat cell bio-phantom: the cell-region ADC was 856×10-6mm2/sec and the surrounding physiological saline-region ADC was 2,951×10-6mm2/sec. The combination of RESOLVE and the 3T clinical MRI device reduced image distortion and improved SNR and the identification of accurate ADC values due to the phase direction artifact reduction. This combination is useful for obtaining accurate ADC values of bio-phantoms.
Adipose tissue MRI for quantitative measurement of central obesity.
Poonawalla, Aziz H; Sjoberg, Brett P; Rehm, Jennifer L; Hernando, Diego; Hines, Catherine D; Irarrazaval, Pablo; Reeder, Scott B
2013-03-01
To validate adipose tissue magnetic resonance imaging (atMRI) for rapid, quantitative volumetry of visceral adipose tissue (VAT) and total adipose tissue (TAT). Data were acquired on normal adults and clinically overweight girls with Institutional Review Board (IRB) approval/parental consent using sagittal 6-echo 3D-spoiled gradient-echo (SPGR) (26-sec single-breath-hold) at 3T. Fat-fraction images were reconstructed with quantitative corrections, permitting measurement of a physiologically based fat-fraction threshold in normals to identify adipose tissue, for automated measurement of TAT, and semiautomated measurement of VAT. TAT accuracy was validated using oil phantoms and in vivo TAT/VAT measurements validated with manual segmentation. Group comparisons were performed between normals and overweight girls using TAT, VAT, VAT-TAT-ratio (VTR), body-mass-index (BMI), waist circumference, and waist-hip-ratio (WHR). Oil phantom measurements were highly accurate (<3% error). The measured adipose fat-fraction threshold was 96% ± 2%. VAT and TAT correlated strongly with manual segmentation (normals r(2) ≥ 0.96, overweight girls r(2) ≥ 0.99). VAT segmentation required 30 ± 11 minutes/subject (14 ± 5 sec/slice) using atMRI, versus 216 ± 73 minutes/subject (99 ± 31 sec/slice) manually. Group discrimination was significant using WHR (P < 0.001) and VTR (P = 0.004). The atMRI technique permits rapid, accurate measurements of TAT, VAT, and VTR. Copyright © 2012 Wiley Periodicals, Inc.
Matsuo, Masayuki; Kanematsu, Masayuki; Itoh, Kyo; Murakami, Takamichi; Maetani, Yoji; Kondo, Hiroshi; Goshima, Satoshi; Kako, Nobuo; Hoshi, Hiroaki; Konishi, Junji; Moriyama, Noriyuki; Nakamura, Hironobu
2004-01-01
The purpose of our study was to compare the detectability of malignant hepatic tumors on ferumoxides-enhanced MRI using five gradient-recalled echo sequences at different TEs. Ferumoxides-enhanced MRIs obtained in 31 patients with 50 malignant hepatic tumors (33 hepatocellular carcinomas, 17 metastases) were reviewed retrospectively by three independent offsite radiologists. T1-weighted gradient-recalled echo images with TEs of 1.4 and 4.2 msec; T2*-weighted gradient-recalled echo images with TEs of 6, 8, and 10 msec; and T2-weighted fast spin-echo images of livers were randomly reviewed on a segment-by-segment basis. Observer performance was tested using the McNemar test and receiver operating characteristic analysis for the clustered data. Lesion-to-liver contrast-to-noise ratio was also assessed. Mean lesion-to-liver contrast-to-noise ratios were negative and lower with gradient-recalled echo at 1.4 msec than with the other sequences. Sensitivity was higher (p < 0.05) with gradient-recalled echo at 6, 8, and 10 msec and fast spin-echo sequences (75-83%) than with gradient-recalled echo sequences at 1.4 and 4.2 msec (46-48%), and was higher (p < 0.05) with gradient-recalled echo sequence at 8 msec (83%) than with gradient-recalled echo at 6 msec and fast spin-echo sequences (75-78%). Specificity was comparably high with all sequences (95-98%). The area under the receiver operating characteristic curve (A(z)) was greater (p < 0.05) with gradient-recalled echo at 6, 8, and 10 msec and fast spin-echo sequences (A(z) = 0.91-0.93) than with gradient-recalled echo sequences at 1.4 and 4.2 msec (A(z) = 0.82-0.85). In the detection of malignant hepatic tumors, gradient-recalled echo sequences at 8 msec showed the highest sensitivity and had an A(z) value and lesion-to-liver contrast-to-noise ratio comparable with values from gradient-recalled echo sequences at 6 and 10 msec and fast spin-echo sequences.
Isotropic 3-D T2-weighted spin-echo for abdominal and pelvic MRI in children.
Dias, Sílvia Costa; Ølsen, Oystein E
2012-11-01
MRI has a fundamental role in paediatric imaging. The T2-weighted fast/turbo spin-echo sequence is important because it has high signal-to-noise ratio compared to gradient-echo sequences. It is usually acquired as 2-D sections in one or more planes. Volumetric spin-echo has until recently only been possible with very long echo times due to blurring of the soft-tissue contrast with long echo trains. A new 3-D spin-echo sequence uses variable flip angles to overcome this problem. It may reproduce useful soft-tissue contrast, with improved spatial resolution. Its isotropic capability allows subsequent reconstruction in standard, curved or arbitrary planes. It may be particularly useful for visualisation of small lesions, or if large lesions distort the usual anatomical relations. We present clinical examples, describe the technical parameters and discuss some potential artefacts and optimisation of image quality.
Singh, Vimal; Pfeuffer, Josef; Zhao, Tiejun; Ress, David
2018-04-01
High-resolution functional magnetic resonance imaging of human subcortical brain structures is challenging because of their deep location in the cranium, and their comparatively weak blood oxygen level dependent responses to strong stimuli. Magnetic resonance imaging data for subcortical brain regions exhibit both low signal-to-noise ratio and low functional contrast-to-noise ratio. To overcome these challenges, this work evaluates the use of dual-echo spiral variants that combine outward and inward trajectories. Specifically, in-in, in-out, and out-out combinations are evaluated. For completeness, single-echo spiral-in and parallel-receive-accelerated echo-planar-imaging sequences are also evaluated. Sequence evaluation was based on comparison of functional contrast-to-noise ratio within retinotopically predefined regions of interest. Superior colliculus was chosen as sample subcortical brain region because it exhibits a strong visual response. All sequences were compared relative to a single-echo spiral-out trajectory to establish a within-session reference. In superior colliculus, the dual-echo out-out outperformed the reference trajectory by 55% in contrast-to-noise ratio, while all other trajectories had performance similar to the reference. The sequences were also compared in early visual cortex. Here, both dual-echo spiral out-out and in-out outperformed the reference by ∼25%. Dual-echo spiral variants offer improved contrast-to-noise ratio performance for high-resolution imaging for both superior colliculus and cortex. Magn Reson Med 79:1931-1940, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Yoon, Min A; Hong, Suk-Joo; Lee, Kyu-Chong; Lee, Chang Hee
2018-06-12
This study aimed to compare 3-dimensional T1-weighted gradient-echo sequence (CAIPIRINHA-volumetric interpolated breath-hold examination [VIBE]) with 2-dimensional T1-weighted turbo spin-echo sequence for contrast-enhanced magnetic resonance imaging (MRI) of pelvic bone metastases at 3.0 T. Thirty-one contrast-enhanced MRIs of pelvic bone metastases were included. Two contrast-enhanced sequences were evaluated for the following parameters: overall image quality, sharpness of pelvic bone, iliac vessel clarity, artifact severity, and conspicuity and edge sharpness of the smallest metastases. Quantitative analysis was performed by calculating signal-to-noise ratio and contrast-to-noise ratio of the smallest metastases. Significant differences between the 2 sequences were assessed. CAIPIRINHA-VIBE had higher scores for overall image quality, pelvic bone sharpness, iliac vessel clarity, and edge sharpness of the metastatic lesions, and had less artifacts (all P < 0.05). There was no significant difference in conspicuity, signal-to-noise ratio, or contrast-to-noise ratio of the smallest metastases (P > 0.05). Our results suggest that CAIPIRINHA-VIBE may be superior to turbo spin-echo for contrast-enhanced MRI of pelvic bone metastases at 3.0 T.
Zhang, Na; Zhang, Lei; Yang, Qi; Pei, Anqi; Tong, Xiaoxin; Chung, Yiu-Cho; Liu, Xin
2017-06-01
To implement a fast (~15min) MRI protocol for carotid plaque screening using 3D multi-contrast MRI sequences without contrast agent on a 3Tesla MRI scanner. 7 healthy volunteers and 25 patients with clinically confirmed transient ischemic attack or suspected cerebrovascular ischemia were included in this study. The proposed protocol, including 3D T1-weighted and T2-weighted SPACE (variable-flip-angle 3D turbo spin echo), and T1-weighted magnetization prepared rapid acquisition gradient echo (MPRAGE) was performed first and was followed by 2D T1-weighted and T2-weighted turbo spin echo, and post-contrast T1-weighted SPACE sequences. Image quality, number of plaques, and vessel wall thicknesses measured at the intersection of the plaques were evaluated and compared between sequences. Average examination time of the proposed protocol was 14.6min. The average image quality scores of 3D T1-weighted, T2-weighted SPACE, and T1-weighted magnetization prepared rapid acquisition gradient echo were 3.69, 3.75, and 3.48, respectively. There was no significant difference in detecting the number of plaques and vulnerable plaques using pre-contrast 3D images with or without post-contrast T1-weighted SPACE. The 3D SPACE and 2D turbo spin echo sequences had excellent agreement (R=0.96 for T1-weighted and 0.98 for T2-weighted, p<0.001) regarding vessel wall thickness measurements. The proposed protocol demonstrated the feasibility of attaining carotid plaque screening within a 15-minute scan, which provided sufficient anatomical coverage and critical diagnostic information. This protocol offers the potential for rapid and reliable screening for carotid plaques without contrast agent. Copyright © 2016. Published by Elsevier Inc.
Deep scattering layer migration and composition: observations from a diving saucer.
Barham, E G
1966-03-18
The distribution of a myctophid fish and physonect siphonophores observed during dives in the Soucoupe off Baja California closely correlates with scattering layers recorded simultaneously with a 12-kcy/sec echo sounder. These organisms were observed while they were migrating vertically, and at their night and daytime levels. They are capable of rapid, extensive changes in depth.
Le Bras, A; Raoult, H; Ferré, J-C; Ronzière, T; Gauvrit, J-Y
2015-06-01
Identifying occlusion location is crucial for determining the optimal therapeutic strategy during the acute phase of ischemic stroke. The purpose of this study was to assess the diagnostic efficacy of MR imaging, including conventional sequences plus time-resolved contrast-enhanced MRA in comparison with DSA for identifying arterial occlusion location. Thirty-two patients with 34 occlusion levels referred for thrombectomy during acute cerebral stroke events were consecutively included from August 2010 to December 2012. Before thrombectomy, we performed 3T MR imaging, including conventional 3D-TOF and gradient-echo T2 sequences, along with time-resolved contrast-enhanced MRA of the extra- and intracranial arteries. The 3D-TOF, gradient-echo T2, and time-resolved contrast-enhanced MRA results were consensually assessed by 2 neuroradiologists and compared with prethrombectomy DSA results in terms of occlusion location. The Wilcoxon test was used for statistical analysis to compare MR imaging sequences with DSA, and the κ coefficient was used to determine intermodality agreement. The occlusion level on the 3D-TOF and gradient-echo T2 images differed significantly from that of DSA (P < .001 and P = .002, respectively), while no significant difference was observed between DSA and time-resolved contrast-enhanced MRA (P = .125). κ coefficients for intermodality agreement with DSA (95% CI, percentage agreement) were 0.43 (0.3%-0.6; 62%), 0.32 (0.2%-0.5; 56%), and 0.81 (0.6%-1.0; 88%) for 3D-TOF, gradient-echo T2, and time-resolved contrast-enhanced MRA, respectively. The time-resolved contrast-enhanced MRA sequence proved reliable for identifying occlusion location in acute stroke with performance superior to that of 3D-TOF and gradient-echo T2 sequences. © 2015 by American Journal of Neuroradiology.
ADC biomarker for head and neck tumors
NASA Astrophysics Data System (ADS)
Pacheco-Bravo, Irlanda; Hidalgo-Tobon, Silvia; Zaragoza, Kena; Reynoso-Noverón, Nancy; De Celis-Alonso, Benito; Delgado-Hernandez, Rosa
2014-11-01
According to the World Cancer Report, by 2020, global incidence of cancer may increase by 50%, which means 15 million new cases. In 2000, malignant tumors were the cause of 12% of the almost 56 million deaths worldwide due to all causes[1-4]. 18 men and 19 women, with an average age of 53 ± 14 years with diagnosis of head and neck cancer were scanned using a 1.5-T MR imaging unit (Signa HDxt; GE Medical Systems). Echo-planar DW imaging was performed in the transverse plane before the contrast material injection. Three b values were applied: 40, 100, and 800 sec/mm2. Primary tumors and nodes were evaluated, with diameters greater than 43 ± 15mm. In our study, ADC data for b-values of 40 showed correlation for identification of malignancy in primary tumors, and in the case of nodes there is a tendency toward malignancy in sequences in which a b-value of 800 is used.
Chen, Yongsheng; Liu, Saifeng; Wang, Yu; Kang, Yan; Haacke, E Mark
2018-02-01
To provide whole brain grey matter (GM) to white matter (WM) contrast enhanced T1W (T1WE) images, multi-echo quantitative susceptibility mapping (QSM), proton density (PD) weighted images, T1 maps, PD maps, susceptibility weighted imaging (SWI), and R2* maps with minimal misregistration in scanning times <5min. Strategically acquired gradient echo (STAGE) imaging includes two fully flow compensated double echo gradient echo acquisitions with a resolution of 0.67×1.33×2.0mm 3 acquired in 5min for 64 slices. Ten subjects were recruited and scanned at 3 Tesla. The optimum pair of flip angles (6° and 24° with TR=25ms at 3T) were used for both T1 mapping with radio frequency (RF) transmit field correction and creating enhanced GM/WM contrast (the T1WE). The proposed T1WE image was created from a combination of the proton density weighted (6°, PDW) and T1W (24°) images and corrected for RF transmit field variations. Prior to the QSM calculation, a multi-echo phase unwrapping strategy was implemented using the unwrapped short echo to unwrap the longer echo to speed up computation. R2* maps were used to mask deep grey matter and veins during the iterative QSM calculation. A weighted-average sum of susceptibility maps was generated to increase the signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR). The proposed T1WE image has a significantly improved CNR both for WM to deep GM and WM to cortical GM compared to the acquired T1W image (the first echo of 24° scan) and the T1MPRAGE image. The weighted-average susceptibility maps have 80±26%, 55±22%, 108±33% SNR increases across the ten subjects compared to the single echo result of 17.5ms for the putamen, caudate nucleus, and globus pallidus, respectively. STAGE imaging offers the potential to create a standardized brain imaging protocol providing four pieces of quantitative tissue property information and multiple types of qualitative information in just 5min. Published by Elsevier Inc.
Alibek, Sedat; Adamietz, Boris; Cavallaro, Alexander; Stemmer, Alto; Anders, Katharina; Kramer, Manuel; Bautz, Werner; Staatz, Gundula
2008-08-01
We compared contrast-enhanced T1-weighted magnetic resonance (MR) imaging of the brain using different types of data acquisition techniques: periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER, BLADE) imaging versus standard k-space sampling (conventional spin-echo pulse sequence) in the unsedated pediatric patient with focus on artifact reduction, overall image quality, and lesion detectability. Forty-eight pediatric patients (aged 3 months to 18 years) were scanned with a clinical 1.5-T whole body MR scanner. Cross-sectional contrast-enhanced T1-weighted spin-echo sequence was compared to a T1-weighted dark-fluid fluid-attenuated inversion-recovery (FLAIR) BLADE sequence for qualitative and quantitative criteria (image artifacts, image quality, lesion detectability) by two experienced radiologists. Imaging protocols were matched for imaging parameters. Reader agreement was assessed using the exact Bowker test. BLADE images showed significantly less pulsation and motion artifacts than the standard T1-weighted spin-echo sequence scan. BLADE images showed statistically significant lower signal-to-noise ratio but higher contrast-to-noise ratios with superior gray-white matter contrast. All lesions were demonstrated on FLAIR BLADE imaging, and one false-positive lesion was visible in spin-echo sequence images. BLADE MR imaging at 1.5 T is applicable for central nervous system imaging of the unsedated pediatric patient, reduces motion and pulsation artifacts, and minimizes the need for sedation or general anesthesia without loss of relevant diagnostic information.
Towards clinical computed ultrasound tomography in echo-mode: Dynamic range artefact reduction.
Jaeger, Michael; Frenz, Martin
2015-09-01
Computed ultrasound tomography in echo-mode (CUTE) allows imaging the speed of sound inside tissue using hand-held pulse-echo ultrasound. This technique is based on measuring the changing local phase of beamformed echoes when changing the transmit beam steering angle. Phantom results have shown a spatial resolution and contrast that could qualify CUTE as a promising novel diagnostic modality in combination with B-mode ultrasound. Unfortunately, the large intensity range of several tens of dB that is encountered in clinical images poses difficulties to echo phase tracking and results in severe artefacts. In this paper we propose a modification to the original technique by which more robust echo tracking can be achieved, and we demonstrate in phantom experiments that dynamic range artefacts are largely eliminated. Dynamic range artefact reduction also allowed for the first time a clinical implementation of CUTE with sufficient contrast to reproducibly distinguish the different speed of sound in different tissue layers of the abdominal wall and the neck. Copyright © 2015. Published by Elsevier B.V.
Ultrashort Echo Time and Zero Echo Time MRI at 7T
Larson, Peder E. Z.; Han, Misung; Krug, Roland; Jakary, Angela; Nelson, Sarah J.; Vigneron, Daniel B.; Henry, Roland G.; McKinnon, Graeme; Kelley, Douglas A. C.
2016-01-01
Object Zero echo time (ZTE) and ultrashort echo time (UTE) pulse sequences for MRI offer unique advantages of being able to detect signal from rapidly decaying short-T2 tissue components. In this paper, we applied 3D zero echo time (ZTE) and ultrashort echo time (UTE) pulse sequences at 7T to assess differences between these methods. Materials and Methods We matched the ZTE and UTE pulse sequences closely in terms of readout trajectories and image contrast. Our ZTE used the Water- and fat-suppressed solid-state proton projection imaging (WASPI) method to fill the center of k-space. Images from healthy volunteers obtained at 7T were compared qualitatively as well as with SNR and CNR measurements for various ultrashort, short, and long-T2 tissues. Results We measured nearly identical contrast-to-noise and signal-to-noise ratios (CNR/SNR) in similar scan times between the two approaches for ultrashort, short, and long-T2 components in the brain, knee and ankle. In our protocol, we observed gradient fidelity artifacts in UTE, and our chosen flip angle and readout also resulted as well as shading artifacts in ZTE due to inadvertent spatial selectivity. These can be corrected by advanced reconstruction methods or with different chosen protocol parameters. Conclusion The applied ZTE and UTE pulse sequences achieved similar contrast and SNR efficiency for volumetric imaging of ultrashort-T2 components. Several key differences are that ZTE is limited to volumetric imaging but has substantially reduced acoustic noise levels during the scan. Meanwhile, UTE has higher acoustic noise levels and greater sensitivity to gradient fidelity, but offers more flexibility in image contrast and volume selection. PMID:26702940
Hosseini, Zahra; Liu, Junmin; Solovey, Igor; Menon, Ravi S; Drangova, Maria
2017-04-01
To implement and optimize a new approach for susceptibility-weighted image (SWI) generation from multi-echo multi-channel image data and compare its performance against optimized traditional SWI pipelines. Five healthy volunteers were imaged at 7 Tesla. The inter-echo-variance (IEV) channel combination, which uses the variance of the local frequency shift at multiple echo times as a weighting factor during channel combination, was used to calculate multi-echo local phase shift maps. Linear phase masks were combined with the magnitude to generate IEV-SWI. The performance of the IEV-SWI pipeline was compared with that of two accepted SWI pipelines-channel combination followed by (i) Homodyne filtering (HPH-SWI) and (ii) unwrapping and high-pass filtering (SVD-SWI). The filtering steps of each pipeline were optimized. Contrast-to-noise ratio was used as the comparison metric. Qualitative assessment of artifact and vessel conspicuity was performed and processing time of pipelines was evaluated. The optimized IEV-SWI pipeline (σ = 7 mm) resulted in continuous vessel visibility throughout the brain. IEV-SWI had significantly higher contrast compared with HPH-SWI and SVD-SWI (P < 0.001, Friedman nonparametric test). Residual background fields and phase wraps in HPH-SWI and SVD-SWI corrupted the vessel signal and/or generated vessel-mimicking artifact. Optimized implementation of the IEV-SWI pipeline processed a six-echo 16-channel dataset in under 10 min. IEV-SWI benefits from channel-by-channel processing of phase data and results in high contrast images with an optimal balance between contrast and background noise removal, thereby presenting evidence of importance of the order in which postprocessing techniques are applied for multi-channel SWI generation. 2 J. Magn. Reson. Imaging 2017;45:1113-1124. © 2016 International Society for Magnetic Resonance in Medicine.
Sepahdari, Ali R; Aakalu, Vinay K; Setabutr, Pete; Shiehmorteza, Masoud; Naheedy, John H; Mafee, Mahmood F
2010-08-01
To determine whether magnetic resonance (MR) imaging with diffusion-weighted (DW) imaging can help discriminate between radiologically indeterminate benign and malignant orbital masses and to identify optimal apparent diffusion coefficient (ADC) thresholds for such discrimination. Informed consent was waived for this HIPAA-compliant institutional review board-approved retrospective study. Forty-seven orbital masses imaged with echo-planar DW imaging were identified in 47 patients (25 female patients, 22 male patients; average age, 35 years). A fellowship-trained orbital surgeon determined reference-standard diagnoses on the basis of chart review, and a neuroradiology fellow and senior neuroradiologist who were blinded to the diagnoses selected a region of interest for each lesion by consensus. ADC was calculated from signal intensity on DW images obtained with b = 1000 and b = 0 sec/mm(2). Lesion ADC was also compared with that of normal-appearing white matter (ADC ratio). The Student t test was used to compare groups. Receiver operating characteristic analysis was performed. Intraobserver agreement was assessed with a repeat data collection. Malignant lesions had lower ADCs than benign lesions, irrespective of patient age (P < .02) and in adults specifically (P < .05). Lymphomas had lower ADCs than pseudotumors (P < .001). An ADC of less than 1.0 x 10(-3) mm(2)/sec and an ADC ratio of less than 1.2 were optimal for predicting malignancy (sensitivity, 63% for both; specificity, 84% and 90%, respectively; and accuracy, 77% and 81%, respectively). Lymphoma was differentiated from pseudotumor with 100% accuracy (in 16 of 16 cases) by using these values. Infiltrative lesions that were hypointense on T2-weighted images were better characterized with DW imaging than lesions that were hyperintense or well defined. Echo-planar DW MR imaging can help characterize indeterminate orbital masses.
Toledo, Eran; Collins, Keith A; Williams, Ursula; Lammertin, Georgeanne; Bolotin, Gil; Raman, Jai; Lang, Roberto M; Mor-Avi, Victor
2005-12-01
Echocardiographic quantification of myocardial perfusion is based on analysis of contrast replenishment after destructive high-energy ultrasound impulses (flash-echo). This technique is limited by nonuniform microbubble destruction and the dependency on exponential fitting of a small number of noisy time points. We hypothesized that brief interruptions of contrast infusion (ICI) would result in uniform contrast clearance followed by slow replenishment and, thus, would allow analysis from multiple data points without exponential fitting. Electrocardiographic-triggered images were acquired in 14 isolated rabbit hearts (Langendorff) at 3 levels of coronary flow (baseline, 50%, and 15%) during contrast infusion (Definity) with flash-echo and with a 20-second infusion interruption. Myocardial videointensity was measured over time from flash-echo sequences, from which characteristic constant beta was calculated using an exponential fit. Peak contrast inflow rate was calculated from ICI data using analysis of local time derivatives. Computer simulations were used to investigate the effects of noise on the accuracy of peak contrast inflow rate and beta calculations. ICI resulted in uniform contrast clearance and baseline replenishment times of 15 to 25 cardiac cycles. Calculated peak contrast inflow rate followed the changes in coronary flow in all hearts at both levels of reduced flow (P < .05) and had a low intermeasurement variability of 7 +/- 6%. With flash-echo, contrast clearance was less uniform and baseline replenishment times were only 4 to 6 cardiac cycles. beta Decreased significantly only at 15% flow, and had intermeasurement variability of 42 +/- 33%. Computer simulations showed that measurement errors in both perfusion indices increased with noise, but beta had larger errors at higher rates of contrast inflow. ICI provides the basis for accurate and reproducible quantification of myocardial perfusion using fast and robust numeric analysis, and may constitute an alternative to the currently used techniques.
Nakamura, Masanobu; Yoneyama, Masami; Tabuchi, Takashi; Takemura, Atsushi; Obara, Makoto; Sawano, Seishi
2012-01-01
Detailed information on anatomy and hemodynamics in cerebrovascular disorders such as AVM and Moyamoya disease is mandatory for defined diagnosis and treatment planning. Arterial spin labeling technique has come to be applied to magnetic resonance angiography (MRA) and perfusion imaging in recent years. However, those non-contrast techniques are mostly limited to single frame images. Recently we have proposed a non-contrast time-resolved MRA technique termed contrast inherent inflow enhanced multi phase angiography combining spatial resolution echo planar imaging based signal targeting and alternating radiofrequency (CINEMA-STAR). CINEMA-STAR can extract the blood flow in the major intracranial arteries at an interval of 70 ms and thus permits us to observe vascular construction in full by preparing MIP images of axial acquisitions with high spatial resolution. This preliminary study demonstrates the usefulness of the CINEMA-STAR technique in evaluating the cerebral vasculature.
Boehm-Sturm, Philipp; Haeckel, Akvile; Hauptmann, Ralf; Mueller, Susanne; Kuhl, Christiane K; Schellenberger, Eyk A
2018-02-01
Purpose To synthesize two low-molecular-weight iron chelates and compare their T1 contrast effects with those of a commercial gadolinium-based contrast agent for their applicability in dynamic contrast material-enhanced (DCE) magnetic resonance (MR) imaging. Materials and Methods The animal experiments were approved by the local ethics committee. Two previously described iron (Fe) chelates of pentetic acid (Fe-DTPA) and of trans-cyclohexane diamine tetraacetic acid (Fe-tCDTA) were synthesized with stability constants several orders of magnitude higher than those of gadolinium-based contrast agents. The T1 contrast effects of the two chelates were compared with those of gadopentetate dimeglumine in blood serum phantoms at 1.5 T, 3 T, and 7 T. For in vivo studies, a human breast cancer cell line (MDA-231) was implanted in five mice per group. The dynamic contrast effects of the chelates were compared by performing DCE MR imaging with intravenous application of Fe-DTPA or Fe-tCDTA on day 1 and DCE MR imaging in the same tumors with gadopentetate dimeglumine on day 2. Quantitative DCE maps were generated with software and were compared by means of a one-tailed Pearson correlation test. Results Relaxivities in serum (0.94 T at room temperature) of Fe-tCDTA (r1 = 2.2 mmol -1 · sec -1 , r2 = 2.5 mmol -1 · sec -1 ) and Fe-DTPA (r1 = 0.9 mmol -1 · sec -1 , r2 = 0.9 mmol -1 · sec -1 ) were approximately twofold and fivefold lower, respectively, compared with those of gadopentetate dimeglumine (r1 = 4.1 mmol -1 · sec -1 , r2 = 4.8 mmol -1 · sec -1 ). Used at moderately higher concentrations, however, iron chelates generated similar contrast effects at T1-weighted MR imaging in vitro in serum, in vivo in blood, and for DCE MR imaging of breast cancer xenografts. The volume transfer constant values for Fe-DTPA and Fe-tCDTA in the same tumors correlated well with those observed for gadopentetate dimeglumine (Fe-tCDTA Pearson R, 0.99; P = .0003; Fe-DTPA Pearson R, 0.97; P = .003). Conclusion Iron-based contrast agents are promising as alternatives for contrast enhancement at T1-weighted MR imaging and have the potential to contribute to the safety of MR imaging. © RSNA, 2017 Online supplemental material is available for this article.
T2 shuffling: Sharp, multicontrast, volumetric fast spin-echo imaging.
Tamir, Jonathan I; Uecker, Martin; Chen, Weitian; Lai, Peng; Alley, Marcus T; Vasanawala, Shreyas S; Lustig, Michael
2017-01-01
A new acquisition and reconstruction method called T 2 Shuffling is presented for volumetric fast spin-echo (three-dimensional [3D] FSE) imaging. T 2 Shuffling reduces blurring and recovers many images at multiple T 2 contrasts from a single acquisition at clinically feasible scan times (6-7 min). The parallel imaging forward model is modified to account for temporal signal relaxation during the echo train. Scan efficiency is improved by acquiring data during the transient signal decay and by increasing echo train lengths without loss in signal-to-noise ratio (SNR). By (1) randomly shuffling the phase encode view ordering, (2) constraining the temporal signal evolution to a low-dimensional subspace, and (3) promoting spatio-temporal correlations through locally low rank regularization, a time series of virtual echo time images is recovered from a single scan. A convex formulation is presented that is robust to partial voluming and radiofrequency field inhomogeneity. Retrospective undersampling and in vivo scans confirm the increase in sharpness afforded by T 2 Shuffling. Multiple image contrasts are recovered and used to highlight pathology in pediatric patients. A proof-of-principle method is integrated into a clinical musculoskeletal imaging workflow. The proposed T 2 Shuffling method improves the diagnostic utility of 3D FSE by reducing blurring and producing multiple image contrasts from a single scan. Magn Reson Med 77:180-195, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Regulation of exocytosis by the exocyst subunit Sec6 and the SM protein Sec1.
Morgera, Francesca; Sallah, Margaret R; Dubuke, Michelle L; Gandhi, Pallavi; Brewer, Daniel N; Carr, Chavela M; Munson, Mary
2012-01-01
Trafficking of protein and lipid cargo through the secretory pathway in eukaryotic cells is mediated by membrane-bound vesicles. Secretory vesicle targeting and fusion require a conserved multisubunit protein complex termed the exocyst, which has been implicated in specific tethering of vesicles to sites of polarized exocytosis. The exocyst is directly involved in regulating soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor (SNARE) complexes and membrane fusion through interactions between the Sec6 subunit and the plasma membrane SNARE protein Sec9. Here we show another facet of Sec6 function-it directly binds Sec1, another SNARE regulator, but of the Sec1/Munc18 family. The Sec6-Sec1 interaction is exclusive of Sec6-Sec9 but compatible with Sec6-exocyst assembly. In contrast, the Sec6-exocyst interaction is incompatible with Sec6-Sec9. Therefore, upon vesicle arrival, Sec6 is proposed to release Sec9 in favor of Sec6-exocyst assembly and to simultaneously recruit Sec1 to sites of secretion for coordinated SNARE complex formation and membrane fusion.
Peck, Courtney M; Nielsen, Lindsey K; Quinn, Rebecca L; Laste, Nancy J; Price, Lori Lyn
2016-09-01
To determine whether the presence of spontaneous echocardiographic contrast (SEC) in cats with cardiomyopathy is associated with increased mortality. To establish whether specific types of cardiomyopathy are more often associated with SEC in an attempt to provide a risk-stratification scheme for cats with increased risk of thromboembolic events. Retrospective study 2006-2011. Tertiary referral and teaching hospital. Seven hundred twenty-five client-owned cats undergoing echocardiographic evaluation. Patient characteristics, including age, breed, clinical signs, type of cardiovascular disease, presence of SEC, and survival time were recorded. Thyroxine, HCT, and blood pressure were recorded when available. Among cats diagnosed with cardiac abnormalities based on echocardiographic findings, those with SEC were at significantly increased risk of death as compared to those without SEC. Cats with dilated cardiomyopathy, unclassified cardiomyopathy, and hypertrophic cardiomyopathy were significantly more likely to have SEC compared to cats with other types of cardiac disease. Cats with cardiomyopathy and SEC have an increased risk of death compared to cats without SEC, although other previously identified factors such as the presence of congestive heart failure and increased left atrium to aorta ratio remain important determinants of mortality. Cats with hypertrophic cardiomyopathy, unclassified cardiomyopathy, and dilated cardiomyopathy may benefit from anticoagulant therapy due to the increased risk of SEC in these subpopulations. © Veterinary Emergency and Critical Care Society 2016.
Sound speed measurements in liquid oxygen-liquid nitrogen mixtures
NASA Technical Reports Server (NTRS)
Zuckerwar, A. J.; Mazel, D. S.
1985-01-01
The sound speed in liquid oxygen (LOX), liquid nitrogen (LN2), and five LOX-LN2 mixtures was measured by an ultrasonic pulse-echo technique at temperatures in the vicinity of -195.8C, the boiling point of N2 at a pressure of I atm. Under these conditions, the measurements yield the following relationship between sound speed in meters per second and LN2 content M in mole percent: c = 1009.05-1.8275M+0.0026507 M squared. The second speeds of 1009.05 m/sec plus or minus 0.25 percent for pure LOX and 852.8 m/sec plus or minus 0.32 percent for pure LN2 are compared with those reported by past investigators. Measurement of sound speed should prove an effective means for monitoring the contamination of LOX by Ln2.
The use of sunrise and sunset terminators to calibrate ionospheric movement measurements
NASA Astrophysics Data System (ADS)
Whitehead, J. D.; Brownlie, G. D.; From, W. R.
1981-12-01
A suggestion is made concerning the use of the wave disturbances induced by the sunrise and sunset terminators for the calibration of HF radio reflection techniques measuring the velocity of ionospheric movements. Observations of the E-W and the N-S angles of arrival and the rate of change of phase range of radar echoes during sunrise are presented which demonstrate an overall negative correlation of E-W angle of arrival with the rate of change of phase range, and indicate a fluctuation velocity of 415 + or - 30 m/sec. Further observations of F-region reflections at sunrise and sunset at Brisbane, Australia indicate disturbances with a mean velocity of 400 m/sec, in agreement with the terminator velocity at this latitude. The agreement between measured and known terminator velocities thus demonstrates the reliability of the radar reflection method.
Abdel Razek, Ahmed Abdel Khalek; Khairy, Mohamed; Nada, Nadia
2014-10-01
To assess thymic epithelial tumors with diffusion-weighted magnetic resonance (MR) imaging. Informed consent from patients and institutional review board approval were obtained. Prospective study was conducted on 30 consecutive patients (21 men and nine women; age range, 35-71 years) with thymic epithelial tumors. They underwent true fast imaging with steady-state precession and single-shot echo-planar diffusion-weighted MR imaging of the mediastinum with b values of 0, 400, and 800 sec/mm(2). Apparent diffusion coefficient (ADC) of the thymic epithelial tumors was calculated by the same observer at two settings and was correlated with World Health Organization classification and clinical staging. There was significant difference in longest diameter (P = .001) and necrotic part of the tumor (P = .014) between low-risk thymoma, high-risk thymoma, and thymic carcinoma. Mean ADC value of both readings of thymic epithelial tumors (n = 30) was 1.24 × 10(-3) mm(2)/sec and 1.22 × 10(-3) mm(2)/sec, with good intraobserver agreement (κ = 0.732). There was significant difference in both readings (P = .01 and .20) of low-risk thymoma (1.30 × 10(-3) mm(2)/sec and 1.29 × 10(-3) mm(2)/sec), high-risk thymoma (1.16 × 10(-3) mm(2)/sec and 1.14 × 10(-3) mm(2)/sec), and thymic carcinoma (1.18 × 10(-3) mm(2)/sec and 1.06 × 10(-3) mm(2)/sec). Cutoff ADC values of both readings used to differentiate low-risk thymoma from high-risk thymoma and thymic carcinoma were 1.25 and 1.22 × 10(-3) mm(2)/sec with area under the curve of 0.804 and 0.851, respectively. There was significant difference in both readings of ADC value of early (stage I, II) and advanced stages (stage III, IV) of thymic epithelial tumors (P = .006 and .005, respectively). ADC value is a noninvasive, reliable, and reproducible imaging parameter that may help to assess and characterize thymic epithelial tumors. © RSNA, 2014.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weishaupt, Dominik; Hilfiker, Paul R.; Schmidt, Michaela
Purpose: To describe the three-dimensional magnetic resonance angiography (3D MRA) imaging appearance of the pulmonary arteries following administration of a superparamagnetic iron oxide blood pool agent to human volunteers, and to demonstrate in an animal model (pigs) how this technique can be used to detect pulmonary parenchymal hemorrhage. Methods: Two volunteers were examined following the intravenous administration of a superparamagnetic iron oxide blood pool agent (NC100150 Injection, Nycomed Amersham Imaging, Wayne, PA, USA). T1-weighted 3D gradient recalled echo (GRE) image sets (TR/TE 5.1/1.4 msec, flip angle 30 deg.) were acquired breathheld over 24 sec. To assess the detectability of pulmonarymore » bleeding with intravascular MR contrast, pulmonary parenchymal injuries were created in two animals under general anesthesia, and fast T1-weighted 3D GRE image sets collected before and after the injury. Results: Administration of the intravascular contrast in the two volunteers resulted in selective enhancement of the pulmonary vasculature permitting complete visualization and excellent delineation of central, segmental, and subsegmental arteries. Following iatrogenic injury in the two animals, pulmonary hemorrhage was readily detected on the 3D image sets. Conclusion: The data presented illustrate that ultrafast 3D GRE MR imaging in conjunction with an intravenously administered intravascular blood pool agent can be used to perform high-quality pulmonary MRA as well as to detect pulmonary hemorrhage.« less
Liu, Chia-Ying; Redheuil, Alban; Ouwerkerk, Ronald; Lima, Joao A. C.; Bluemke, David A.
2011-01-01
Proton MR spectroscopy (1H-MRS) has been used for in vivo quantification of intracellular triglycerides within the sarcolemma. The purpose of this study was to assess whether breath-hold dual-echo in- and out-of-phase MRI at 3.0 T can quantify the fat content of the myocardium. Biases, including T1, T2∗, and noise, that confound the calculation of the fat fraction were carefully corrected. Thirty-four of 46 participants had both MRI and MRS data. The fat fractions from MRI showed a strong correlation with fat fractions from MRS (r = 0.78; P < 0.05). The mean myocardial fat fraction for all 34 subjects was 0.7 ± 0.5% (range: 0.11–3%) assessed with MRS and 1.04 ± 0.4% (range: 0.32–2.44%) assessed with in- and out-of-phase MRI (P < 0.05). Scanning times were less than 15 sec for Dixon imaging, plus an additional minute for the acquisition used for calculation, and 15-20 min for MRS. The average postprocessing time for MRS was 3 min and 5 min for MRI including T2∗ measurement. We conclude that the dual echo method provides a rapid means to detect and quantifying myocardial fat content in vivo. Correction/adjustment for field inhomogeneity using three or more echoes seems crucial for the dual echo approach. PMID:20373390
Dayton, Paul A.; Pearson, David; Clark, Jarrod; Simon, Scott; Schumann, Patricia A.; Zutshi, Reena; Matsunaga, Terry O.; Ferrara, Katherine W.
2008-01-01
The goal of targeted ultrasound contrast agents is to significantly and selectively enhance the detection of a targeted vascular site. In this manuscript, three distinct contrast agents targeted to the αvβ3 integrin are examined. The αvβ3 integrin has been shown to be highly expressed on metastatic tumors and endothelial cells during neovascularization, and its expression has been shown to correlate with tumor grade. Specific adhesion of these contrast agents to αvβ3-expressing cell monolayers is demonstrated in vitro, and compared with that of nontargeted agents. Acoustic studies illustrate a backscatter amplitude increase from monolayers exposed to the targeted contrast agents of up to 13-fold (22 dB) relative to enhancement due to control bubbles. A linear dependence between the echo amplitude and bubble concentration was observed for bound agents. The decorrelation of the echo from adherent targeted agents is observed over successive pulses as a function of acoustic pressure and bubble density. Frequency–domain analysis demonstrates that adherent targeted bubbles exhibit high-amplitude narrowband echo components, in contrast to the primarily wideband response from free microbubbles. Results suggest that adherent targeted contrast agents are differentiable from free-floating microbubbles, that targeted contrast agents provide higher sensitivity in the detection of angiogenesis, and that conventional ultrasound imaging techniques such as signal subtraction or decorrelation detection can be used to detect integrin-expressing vasculature with sufficient signal-to-noise. PMID:15296677
Falzone, Cristian; Rossi, Federica; Calistri, Maurizio; Tranquillo, Massimo; Baroni, Massimo
2008-01-01
In humans, contrast-enhanced fluid-attenuated inversion recovery (FLAIR) imaging plays an important role in detecting brain disease. The aim of this study was to define the clinical utility of contrast-enhanced FLAIR imaging by comparing the results with those with contrast-enhanced spin echo T1-weighted images (SE T1WI) in animals with different brain disorders. Forty-one dogs and five cats with a clinical suspicion of brain disease and 30 normal animals (25 dogs and five cats) were evaluated using a 0.2 T permanent magnet. Before contrast medium injection, spin echo T1-weighted, SE T1WI, and FLAIR sequences were acquired in three planes. SE T1WI and FLAIR images were also acquired after gadolinium injection. Sensitivity in detecting the number, location, margin, and enhancement pattern and rate were evaluated. No lesions were found in a normal animal. In affected animals, 48 lesions in 34 patients were detected in contrast-enhanced SE T1WI whereas 81 lesions in 44 patients were detected in contrast-enhanced FLAIR images. There was no difference in the characteristics of the margins or enhancement pattern of the detected lesions. The objective enhancement rate, the mean value between lesion-to-white matter ratio and lesion-to-gray matter ratio, although representing an overlap of T1 and T2 effects and not pure contrast medium shortening of T1 relaxation, was better in contrast-enhanced FLAIR images. These results suggest a superiority of contrast-enhanced FLAIR images as compared with contrast-enhanced SE T1WI in detecting enhancing brain lesions.
NASA Astrophysics Data System (ADS)
Artemov, Yu. G.
2003-04-01
Relatively recent discovery of the natural CH_4 gas seepage from the sea bed had action upon the philosophy of CH_4 contribution to global budgets. So far as numerous gas vent sites are known, an acceptable method for released gas quantification is required. In particular, the questions should be answered as follows: 1) how much amount of gas comes into the water column due to a certain bubble stream, 2) how much amount of gas comes into the water column due to a certain seepage area of the see floor, 3) how much amount of gas diffuses into the water and how much gas phase enters the atmosphere. Echo-sounder is the habitual equipment for detecting gas plumes (flares) in the water column. To provide observations of gas seeps with bubbles tracking, single target and volume backscattering strength measurements, we use installed on board the R/V "Professor Vodyanitskiy" dual frequency (38 and 120 kHz) split-beam scientific echo-sounder SIMRAD EK-500. Dedicated software is developed to extract from the raw echo data and to handle the definite information for analyses of gas bubble streams features. This improved hydroacoustic techniques allows to determine gas bubbles size spectrum at different depths through the water column as well as rise velocity of bubbles of different sizes. For instance, bubble of 4.5 mm diameter has rising speed of 25.8 cm/sec at 105 m depth, while bubble of 1.7 mm diameter has rising speed of 16.3 cm/sec at 32 m depth. Using volume backscattering measurements in addition, it is possible to evaluate flux of the gas phase produced by methane bubble streams and to learn of its fate in the water column. Ranking of various gas plumes by flux rate value is available also. In this presentation results of acoustic observations at the shallow NW Black Sea seepage area are given.
Accelerated Slice Encoding for Metal Artifact Correction
Hargreaves, Brian A.; Chen, Weitian; Lu, Wenmiao; Alley, Marcus T.; Gold, Garry E.; Brau, Anja C. S.; Pauly, John M.; Pauly, Kim Butts
2010-01-01
Purpose To demonstrate accelerated imaging with artifact reduction near metallic implants and different contrast mechanisms. Materials and Methods Slice-encoding for metal artifact correction (SEMAC) is a modified spin echo sequence that uses view-angle tilting and slice-direction phase encoding to correct both in-plane and through-plane artifacts. Standard spin echo trains and short-TI inversion recovery (STIR) allow efficient PD-weighted imaging with optional fat suppression. A completely linear reconstruction allows incorporation of parallel imaging and partial Fourier imaging. The SNR effects of all reconstructions were quantified in one subject. 10 subjects with different metallic implants were scanned using SEMAC protocols, all with scan times below 11 minutes, as well as with standard spin echo methods. Results The SNR using standard acceleration techniques is unaffected by the linear SEMAC reconstruction. In all cases with implants, accelerated SEMAC significantly reduced artifacts compared with standard imaging techniques, with no additional artifacts from acceleration techniques. The use of different contrast mechanisms allowed differentiation of fluid from other structures in several subjects. Conclusion SEMAC imaging can be combined with standard echo-train imaging, parallel imaging, partial-Fourier imaging and inversion recovery techniques to offer flexible image contrast with a dramatic reduction of metal-induced artifacts in scan times under 11 minutes. PMID:20373445
Accelerated slice encoding for metal artifact correction.
Hargreaves, Brian A; Chen, Weitian; Lu, Wenmiao; Alley, Marcus T; Gold, Garry E; Brau, Anja C S; Pauly, John M; Pauly, Kim Butts
2010-04-01
To demonstrate accelerated imaging with both artifact reduction and different contrast mechanisms near metallic implants. Slice-encoding for metal artifact correction (SEMAC) is a modified spin echo sequence that uses view-angle tilting and slice-direction phase encoding to correct both in-plane and through-plane artifacts. Standard spin echo trains and short-TI inversion recovery (STIR) allow efficient PD-weighted imaging with optional fat suppression. A completely linear reconstruction allows incorporation of parallel imaging and partial Fourier imaging. The signal-to-noise ratio (SNR) effects of all reconstructions were quantified in one subject. Ten subjects with different metallic implants were scanned using SEMAC protocols, all with scan times below 11 minutes, as well as with standard spin echo methods. The SNR using standard acceleration techniques is unaffected by the linear SEMAC reconstruction. In all cases with implants, accelerated SEMAC significantly reduced artifacts compared with standard imaging techniques, with no additional artifacts from acceleration techniques. The use of different contrast mechanisms allowed differentiation of fluid from other structures in several subjects. SEMAC imaging can be combined with standard echo-train imaging, parallel imaging, partial-Fourier imaging, and inversion recovery techniques to offer flexible image contrast with a dramatic reduction of metal-induced artifacts in scan times under 11 minutes. (c) 2010 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, J; Son, J; Arun, B
Purpose: To develop and demonstrate a short breast (sb) MRI protocol that acquires both T2-weighted and dynamic contrast-enhanced T1-weighted images in approximately ten minutes. Methods: The sb-MRI protocol consists of two novel pulse sequences. The first is a flexible fast spin-echo triple-echo Dixon (FTED) sequence for high-resolution fat-suppressed T2-weighted imaging, and the second is a 3D fast dual-echo spoiled gradient sequence (FLEX) for volumetric fat-suppressed T1-weighted imaging before and post contrast agent injection. The flexible FTED sequence replaces each single readout during every echo-spacing period of FSE with three fast-switching bipolar readouts to produce three raw images in a singlemore » acquisition. These three raw images are then post-processed using a Dixon algorithm to generate separate water-only and fat-only images. The FLEX sequence acquires two echoes using dual-echo readout after each RF excitation and the corresponding images are post-processed using a similar Dixon algorithm to yield water-only and fat-only images. The sb-MRI protocol was implemented on a 3T MRI scanner and used for patients who had undergone concurrent clinical MRI for breast cancer screening. Results: With the same scan parameters (eg, spatial coverage, field of view, spatial and temporal resolution) as the clinical protocol, the total scan-time of the sb-MRI protocol (including the localizer, bilateral T2-weighted, and dynamic contrast-enhanced T1-weighted images) was 11 minutes. In comparison, the clinical breast MRI protocol took 43 minutes. Uniform fat suppression and high image quality were consistently achieved by sb-MRI. Conclusion: We demonstrated a sb-MRI protocol comprising both T2-weighted and dynamic contrast-enhanced T1-weighted images can be performed in approximately ten minutes. The spatial and temporal resolution of the images easily satisfies the current breast MRI accreditation guidelines by the American College of Radiology. The protocol has the potential of making breast MRI more widely accessible to and more tolerable by the patients. JMA is the inventor of United States patents that are owned by the University of Texas Board of Regents and currently licensed to GE Healthcare and Siemens Gmbh.« less
Asbach, Patrick; Hein, Patrick A; Stemmer, Alto; Wagner, Moritz; Huppertz, Alexander; Hamm, Bernd; Taupitz, Matthias; Klessen, Christian
2008-01-01
To evaluate soft tissue contrast and image quality of a respiratory-triggered echo-planar imaging based diffusion-weighted sequence (EPI-DWI) with different b values for magnetic resonance imaging (MRI) of the liver. Forty patients were examined. Quantitative and qualitative evaluation of contrast was performed. Severity of artifacts and overall image quality in comparison with a T2w turbo spin-echo (T2-TSE) sequence were scored. The liver-spleen contrast was significantly higher (P < 0.05) for the EPI-DWI compared with the T2-TSE sequence (0.47 +/- 0.11 (b50); 0.48 +/- 0.13 (b300); 0.47 +/- 0.13 (b600) vs 0.38 +/- 0.11). Liver-lesion contrast strongly depends on the b value of the DWI sequence and decreased with higher b values (b50, 0.47 +/- 0.19; b300, 0.40 +/- 0.20; b600, 0.28 +/- 0.23). Severity of artifacts and overall image quality were comparable to the T2-TSE sequence when using a low b value (P > 0.05), artifacts increased and image quality decreased with higher b values (P < 0.05). Respiratory-triggered EPI-DWI of the liver is feasible because good image quality and favorable soft tissue contrast can be achieved.
Aviv, R I; Huynh, T; Huang, Y; Ramsay, D; Van Slyke, P; Dumont, D; Asmah, P; Alkins, R; Liu, R; Hynynen, K
2014-09-01
The "spot sign" or contrast extravasation is strongly associated with hematoma formation and growth. An animal model of contrast extravasation is important to test existing and novel therapeutic interventions to inform present and future clinical studies. The purpose of this study was to create an animal model of contrast extravasation in acute intracerebral hemorrhage. Twenty-eight hemispheres of Yorkshire male swine were insonated with an MR imaging-guided focused sonography system following lipid microsphere infusion and mean arterial pressure elevation. The rate of contrast leakage was quantified by using dynamic contrast-enhanced MR imaging and was classified as contrast extravasation or postcontrast leakage by using postcontrast T1. Hematoma volume was measured on gradient recalled-echo MR imaging performed 2 hours postprocedure. Following this procedure, sacrificed brain was subjected to histopathologic examination. Power level, burst length, and blood pressure elevation were correlated with leakage rate, hematoma size, and vessel abnormality extent. Median (intracerebral hemorrhage) contrast extravasation leakage was higher than postcontrast leakage (11.3; 6.3-23.2 versus 2.4; 1.1-3.1 mL/min/100 g; P<.001). Increasing burst length, gradient recalled-echo hematoma (ρ=0.54; 95% CI, 0.2-0.8; P=.007), and permeability were correlated (ρ=0.55; 95% CI, 0.1-0.8; P=.02). Median permeability (P=.02), gradient recalled-echo hematoma (P=.02), and dynamic contrast-enhanced volumes (P=.02) were greater at 1000 ms than at 10 ms. Within each burst-length subgroup, incremental contrast leakage was seen with mean arterial pressure elevation (ρ=0.2-0.8). We describe a novel MR imaging-integrated real-time swine intracerebral hemorrhage model of acute hematoma growth and contrast extravasation. © 2014 by American Journal of Neuroradiology.
Dynamic MRI for distinguishing high-flow from low-flow peripheral vascular malformations.
Ohgiya, Yoshimitsu; Hashimoto, Toshi; Gokan, Takehiko; Watanabe, Shouji; Kuroda, Masayoshi; Hirose, Masanori; Matsui, Seishi; Nobusawa, Hiroshi; Kitanosono, Takashi; Munechika, Hirotsugu
2005-11-01
The purpose of our study was to assess the usefulness of dynamic MRI in distinguishing high-flow vascular malformations from low-flow vascular malformations, which do not need angiography for treatment. Between September 2001 and January 2003, 16 patients who underwent conventional and dynamic MRI had peripheral vascular malformations (six high- and 10 low-flow). The temporal resolution of dynamic MRI was 5 sec. Time intervals between beginning of enhancement of an arterial branch in the vicinity of a lesion in the same slice and the onset of enhancement in the lesion were calculated. We defined these time intervals as "artery-lesion enhancement time." Time intervals between the onset of enhancement in the lesion and the time of the maximal percentage of enhancement above baseline of the lesion within 120 sec were measured. We defined these time intervals as "contrast rise time" of the lesion. Diagnosis of the peripheral vascular malformations was based on angiographic or venographic findings. The mean artery-lesion enhancement time of the high-flow vascular malformations (3.3 sec [range, 0-5 sec]) was significantly shorter than that of the low-flow vascular malformations (8.8 sec [range, 0-20 sec]) (Mann-Whitney test, p < 0.05). The mean maximal lesion enhancement time of the high-flow vascular malformations (5.8 sec [range, 5-10 sec]) was significantly shorter than that of the low-flow vascular malformations (88.4 sec [range, 50-100 sec]) (Mann-Whitney test, p < 0.01). Dynamic MRI is useful for distinguishing high-flow from low-flow vascular malformations, especially when the contrast rise time of the lesion is measured.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marenco, S.; Kraut, M.A.; Soher, B.J.
To ascertain whether local changes in signal intensity seen with functional MRI (fMRI) were related to regional blood flow changes with PET, 45 normal male volunteers (ages 31-49) underwent both procedures during resting and bilateral visual stimulation. A single 4mm thick fMRI slice over the calcarine fissure was acquired with a gradient echo 60,60,40{prime} (TR,TE,{alpha}), on a GE Signa 1.5 T. Sixty images were acquired over 366 sec. The visual stimulator was turned on and off at intervals of 36 sec, with a stimulating frequency of 8 Hz. ROIs were drawn around clusters of pixels with high z-scores (pixel value-meanmore » over whole acquisition/SD). Several ROIs were drawn in each subject. Percent change in signal intensity was calculated as the intensity in the average of six {open_quotes}on{close_quotes} images over the average of six {open_quotes}off{close_quotes} images 100.« less
Fundamental Study of Three-dimensional Fast Spin-echo Imaging with Spoiled Equilibrium Pulse.
Ogawa, Masashi; Kaji, Naoto; Tsuchihashi, Toshio
2017-01-01
Three-dimensional fast spin-echo (3D FSE) imaging with variable refocusing flip angle has been recently applied to pre- or post-enhanced T 1 -weighted imaging. To reduce the acquisition time, this sequence requires higher echo train length (ETL), which potentially causes decreased T 1 contrast. Spoiled equilibrium (SpE) pulse consists of a resonant +90° radiofrequency (RF) pulse and is applied at the end of the echo train. This +90° RF pulse brings residual transverse magnetization to the negative longitudinal axis, which makes it possible to increase T 1 contrast. The purpose of our present study was to examine factors that influence the effect of spoiled equilibrium pulse and the relationship between T 1 contrast improvement and imaging parameters and to understand the characteristics of spoiled equilibrium pulse. Phantom studies were conducted using an magnetic resonance imaging (MRI) phantom made of polyvinyl alcohol gel. To evaluate the effect of spoiled equilibrium pulse with changes in repetition time (TR), ETL, and refocusing flip angle, we measured the signal-to-noise ratio and contrast-to-noise ratio (CNR). The effect of spoiled equilibrium pulse was evaluated by calculating the enhancement rate of CNR. The factors that influence the effect of spoiled equilibrium pulse are TR, ETL, and relaxation time of tissues. Spoiled equilibrium pulse is effective with increasing TR and decreasing ETL. The shorter the T 1 value, the better the spoiled equilibrium pulse functions. However, for tissues in which the T 1 value is long (>600 ms), at a TR of 600 ms, improvement in T 1 contrast by applying spoiled equilibrium pulse cannot be expected.
Fujiki, Kei
2004-01-01
The aims of this study were to clarify the geographic distribution of complete cell death in the radiofrequency ablated area in a porcine liver experiment, and to evaluate the efficacy of ultrasonography using contrast media in detecting the area of Radiofrequency-induced cell death. Radiofrequency ablation was performed at 3 sites in each liver in seven swine with a RF2000TM radiofrequency generator using an expandable type needle electrode. The ablation area was investigated histologically by Hematoxylin-Eosin staining and NADH staining. The area of radiofrequency-induced cell death was correlated to the ultrasonographic findings using contrast media, by means of contrast harmonic imaging, flash echo imaging-subtraction and flash echo imaging-power Doppler. The ablation area showed three distinct regions. Although the HE staining did not indicate necrosis, the NADH staining showed a complete loss of cellular activity in the inner and middle layers of the ablation area. However, in the outer layer cells displaying cellular integrity were intermingled with the necrotic cells, indicating that some of the cells in this layer had a chance to survive. Further, in some cases the outer layer of the ablated area had irregular margins. The flash-echo power-doppler images were accurately correlated in size and shape to the pathologically proved region of complete cell death in the radiofrequency-induced lesions. In the marginal part of the radiofrequency ablation area, cell death was incomplete. Flash echo imaging-power doppler was a useful and sensitive real time imaging technique for accurate evaluation of the region of complete cell death.
Effect of subaperture beamforming on phase coherence imaging.
Hasegawa, Hideyuki; Kanai, Hiroshi
2014-11-01
High-frame-rate echocardiography using unfocused transmit beams and parallel receive beamforming is a promising method for evaluation of cardiac function, such as imaging of rapid propagation of vibration of the heart wall resulting from electrical stimulation of the myocardium. In this technique, high temporal resolution is realized at the expense of spatial resolution and contrast. The phase coherence factor has been developed to improve spatial resolution and contrast in ultrasonography. It evaluates the variance in phases of echo signals received by individual transducer elements after delay compensation, as in the conventional delay-andsum beamforming process. However, the phase coherence factor suppresses speckle echoes because phases of speckle echoes fluctuate as a result of interference of echoes. In the present study, the receiving aperture was divided into several subapertures, and conventional delay-and-sum beamforming was performed with respect to each subaperture to suppress echoes from scatterers except for that at a focal point. After subaperture beamforming, the phase coherence factor was obtained from beamformed RF signals from respective subapertures. By means of this procedure, undesirable echoes, which can interfere with the echo from a focal point, can be suppressed by subaperture beamforming, and the suppression of the phase coherence factor resulting from phase fluctuation caused by such interference can be avoided. In the present study, the effect of subaperture beamforming in high-frame-rate echocardiography with the phase coherence factor was evaluated using a phantom. By applying subaperture beamforming, the average intensity of speckle echoes from a diffuse scattering medium was significantly higher (-39.9 dB) than that obtained without subaperture beamforming (-48.7 dB). As for spatial resolution, the width at half-maximum of the lateral echo amplitude profile obtained without the phase coherence factor was 1.06 mm. By using the phase coherence factor, spatial resolution was improved significantly, and subaperture beamforming achieved a better spatial resolution of 0.75 mm than that of 0.78 mm obtained without subaperture beamforming.
Echocardiographic evaluation of thalassemia intermedia patients in Duhok, Iraq.
Mohammad, Ameen Mosa
2014-12-11
Cardiac complications are among the most serious problems of thalassemia intermedia patients. The current study was initiated to address the latter issue through the study of the echocardiographic findings and correlate it with clinical characteristics of thalassemia intermedia patients in Duhok, Kurdistan region, Iraq. An echocardiographic assessment of 61 beta-thalassemia intermedia cases was performed. It included 30 males and 31 females, with a mean age 19.6 ± 7.5 years. The standard echostudy of two-dimension and M-mode measurements of cardiac chambers were done. The continuous doppler regurgitant jet of tricuspid and pulmonary valves were recorded. Left ventricle diastolic function was assessed by pulsed doppler of mitral valve inflow. To correlate the clinical with echocardiographic findings, patients were divided, according to tricuspid regurgitant velocity, into three groups (<2.5 m/sec, 2.5-2.9 m/sec and ≥3 m/sec). Tricuspid regurgitant velocity <2.5 m/sec, 2.5-2.9 m/sec and ≥3 m/sec occurred in 42(69%), 11(18%) and 8(13%) respectively. Comparing to other groups patients with tricuspid regurgitant velocity ≥3 m/sec were older and included more males. They had lower hemoglobin levels, but higher ferritin levels. Their age at diagnosis and the age of the initiation of blood transfusion were later. Most of them had significant exertional dyspnea. They also had relatively lower left ventricle ejection fraction values. Right ventricular diameter and right atrial size were larger in the same group. Tricuspid regurgitant velocity as a continuous predictor was associated positively with age, cardiac volumes and pulmonary regurgitation though negatively associated with ejection fraction. Echo-derived right and left side cardiac complications are not uncommon in thalassemia intermedia patients. Therapeutic trails targeting these complications are indicated, and echocardiographic assessment is necessary to be offered early for thalassemia intermedia.
Han, S H; Cho, J H; Jung, H S; Suh, J Y; Kim, J K; Kim, Y R; Cho, G; Cho, H
2015-05-15
Intravascular superparamagnetic iron oxide nanoparticles (SPION)-enhanced MR transverse relaxation rates (∆R2(⁎) and ∆R2) are widely used to investigate in vivo vascular parameters, such as the cerebral blood volume (CBV), microvascular volume (MVV), and mean vessel size index (mVSI, ∆R2(⁎)/∆R2). Although highly efficient, regional comparison of vascular parameters acquired using gradient-echo based ∆R2(⁎) is hampered by its high sensitivity to magnetic field perturbations arising from air-tissue interfaces and large vessels. To minimize such demerits, we took advantage of the dual contrast property of SPION and both theoretically and experimentally verified the direct benefit of replacing gradient-echo based ∆R2(⁎) measurement with ultra-short echo time (UTE)-based ∆R1 contrast to generate the robust CBV and mVSI maps. The UTE acquisition minimized the local measurement errors from susceptibility perturbations and enabled dose-independent CBV measurement using the vessel/tissue ∆R1 ratio, while independent spin-echo acquisition enabled simultaneous ∆R2 measurement and mVSI calculation of the cortex, cerebellum, and olfactory bulb, which are animal brain regions typified by significant susceptibility-associated measurement errors. Copyright © 2015 Elsevier Inc. All rights reserved.
Durães, André Rodrigues; de Souza Roriz, Pollianna; de Almeida Nunes, Bianca; Albuquerque, Felipe Pinho E; de Bulhões, Fábio Vieira; de Souza Fernandes, Andre Mauricio; Aras, Roque
2016-06-01
Dabigatran is a direct thrombin inhibitor shown to be an effective alternative to warfarin in patients with non-valvular atrial fibrillation (AF). We evaluated the use of dabigatran in patients with bioprosthetic mitral and/or aortic valve replacement and AF. We selected 34 and randomized 27 patients in a 1:1 ratio to receive dabigatran or warfarin. The primary endpoint was the presence of a new intracardiac thrombus at 90 days, by transesophageal echocardiogram (TEE). Secondary endpoints included the development of dense spontaneous echo contrast (SEC) and incidence of stroke (ischemic or hemorrhagic), myocardium infarction, valve thrombosis and peripheral embolic events. The trial was terminated prematurely because of low enrollment. There were 27 patients in total: 15 patients placed in the dabigatran group and 12 in the warfarin group. After 90 days, one patient (8.3 %) in the warfarin group and none in the dabigatran group had developed a new intracardiac thrombus. In the dabigatran group, two patients (13.3 %) developed dense SEC versus one patient (8.3 %) in the warfarin group. In the warfarin group, one patient (8.3 %) presented ischemic stroke, and none did in the dabigatran group. We observed no cases of hemorrhagic stroke, valve thrombosis, embolic events or myocardial infarction in either group throughout the study. However, one patient (6.7 %) in the dabigatran group had a fully recovered transient ischemic attack and one patient in the warfarin group died of heart failure. The use of dabigatran appears to be similar to warfarin in preventing the formation of intracardiac thrombus. Clinicaltrials.gov NCT01868243.
Volz, Steffen; Hattingen, Elke; Preibisch, Christine; Gasser, Thomas; Deichmann, Ralf
2009-05-01
T2-weighted gradient echo (GE) images yield good contrast of iron-rich structures like the subthalamic nuclei due to microscopic susceptibility induced field gradients, providing landmarks for the exact placement of deep brain stimulation electrodes in Parkinson's disease treatment. An additional advantage is the low radio frequency (RF) exposure of GE sequences. However, T2-weighted images are also sensitive to macroscopic field inhomogeneities, resulting in signal losses, in particular in orbitofrontal and temporal brain areas, limiting anatomical information from these areas. In this work, an image correction method for multi-echo GE data based on evaluation of phase information for field gradient mapping is presented and tested in vivo on a 3 Tesla whole body MR scanner. In a first step, theoretical signal losses are calculated from the gradient maps and a pixelwise image intensity correction is performed. In a second step, intensity corrected images acquired at different echo times TE are combined using optimized weighting factors: in areas not affected by macroscopic field inhomogeneities, data acquired at long TE are weighted more strongly to achieve the contrast required. For large field gradients, data acquired at short TE are favored to avoid signal losses. When compared to the original data sets acquired at different TE and the respective intensity corrected data sets, the resulting combined data sets feature reduced signal losses in areas with major field gradients, while intensity profiles and a contrast-to-noise (CNR) analysis between subthalamic nucleus, red nucleus and the surrounding white matter demonstrate good contrast in deep brain areas.
Suh, Chong Hyun; Jung, Seung Chai; Kim, Kyung Won; Pyo, Junhee
2016-09-01
This study aimed to compare the detectability of brain metastases using contrast-enhanced spin-echo (SE) and gradient-echo (GRE) T1-weighted images. The Ovid-MEDLINE and EMBASE databases were searched for studies on the detectability of brain metastases using contrast-enhanced SE or GRE images. The pooled proportions for the detectability of brain metastases were assessed using random-effects modeling. Heterogeneity among studies was determined using χ (2) statistics for the pooled estimates and the inconsistency index, I (2) . To overcome heterogeneity, subgroup analyses according to slice thickness and lesion size were performed. A total of eight eligible studies, which included a sample size of 252 patients and 1413 brain metastases, were included. The detectability of brain metastases using SE images (89.2 %) was higher than using GRE images (81.6 %; adjusted 84.0 %), but this difference was not statistically significant (p = 0.2385). In subgroup analysis of studies with 1-mm-thick slices and small metastases (<5 mm in diameter), 3-dimensional (3D) SE images demonstrated a higher detectability in comparison to 3D GRE images (93.7 % vs 73.1 % in 1-mm-thick slices; 89.5 % vs 59.4 % for small metastases) (p < 0.0001). Although both SE or GRE images are acceptable for detecting brain metastases, contrast-enhanced 3D SE images using 1-mm-thick slices are preferred for detecting brain metastases, especially small lesions (<5 mm in diameter).
Siphonophores and the Deep Scattering Layer.
Barham, E G
1963-05-17
Bathyscaphe dives in the San Diego Trough have revealed a close spatial relation between siphonophores and the deep scattering layer as recorded by precision depth recording echo-sounders. Measurements of gas bubbles within the flotation structures of Nanomia bijuga captured in a closing net in an ascended scattering layer indicate that these are very close to the resonant size for 12-kcy/sec sound. Because such organisms are capable of making prolonged vertical migrations, and are widespread geographically, they are very probably the major cause of stratified zones of scattering throughout the oceans of the world.
Abdulhadi, Mike A; Perno, Joseph R; Melhem, Elias R; Nucifora, Paolo G P
2014-01-01
In patients with spinal stenosis, magnetic resonance imaging of the cervical spine can be improved by using 3D driven-equilibrium fast spin echo sequences to provide a high-resolution assessment of osseous and ligamentous structures. However, it is not yet clear whether 3D driven-equilibrium fast spin echo sequences adequately evaluate the spinal cord itself. As a result, they are generally supplemented by additional 2D fast spin echo sequences, adding time to the examination and potential discomfort to the patient. Here we investigate the hypothesis that in patients with spinal stenosis and spondylotic myelopathy, 3D driven-equilibrium fast spin echo sequences can characterize cord lesions equally well as 2D fast spin echo sequences. We performed a retrospective analysis of 30 adult patients with spondylotic myelopathy who had been examined with both 3D driven-equilibrium fast spin echo sequences and 2D fast spin echo sequences at the same scanning session. The two sequences were inspected separately for each patient, and visible cord lesions were manually traced. We found no significant differences between 3D driven-equilibrium fast spin echo and 2D fast spin echo sequences in the mean number, mean area, or mean transverse dimensions of spondylotic cord lesions. Nevertheless, the mean contrast-to-noise ratio of cord lesions was decreased on 3D driven-equilibrium fast spin echo sequences compared to 2D fast spin echo sequences. These findings suggest that 3D driven-equilibrium fast spin echo sequences do not need supplemental 2D fast spin echo sequences for the diagnosis of spondylotic myelopathy, but they may be less well suited for quantitative signal measurements in the spinal cord.
Palmucci, Stefano; Roccasalva, Federica; Piccoli, Marina; Fuccio Sanzà, Giovanni; Foti, Pietro Valerio; Ragozzino, Alfonso; Milone, Pietro; Ettorre, Giovanni Carlo
2017-01-01
Since its introduction, MRCP has been improved over the years due to the introduction of several technical advances and innovations. It consists of a noninvasive method for biliary tree representation, based on heavily T2-weighted images. Conventionally, its protocol includes two-dimensional single-shot fast spin-echo images, acquired with thin sections or with multiple thick slabs. In recent years, three-dimensional T2-weighted fast-recovery fast spin-echo images have been added to the conventional protocol, increasing the possibility of biliary anatomy demonstration and leading to a significant benefit over conventional 2D imaging. A significant innovation has been reached with the introduction of hepatobiliary contrasts, represented by gadoxetic acid and gadobenate dimeglumine: they are excreted into the bile canaliculi, allowing the opacification of the biliary tree. Recently, 3D interpolated T1-weighted spoiled gradient echo images have been proposed for the evaluation of the biliary tree, obtaining images after hepatobiliary contrast agent administration. Thus, the acquisition of these excretory phases improves the diagnostic capability of conventional MRCP-based on T2 acquisitions. In this paper, technical features of contrast-enhanced magnetic resonance cholangiography are briefly discussed; main diagnostic tips of hepatobiliary phase are showed, emphasizing the benefit of enhanced cholangiography in comparison with conventional MRCP.
Allen, R W; Harnsberger, H R; Shelton, C; King, B; Bell, D A; Miller, R; Parkin, J L; Apfelbaum, R I; Parker, D
1996-08-01
To determine whether unenhanced high-resolution T2-weighted fast spin-echo MR imaging provides an acceptable and less expensive alternative to contrast-enhanced conventional T1-weighted spin-echo MR techniques in the diagnosis of acoustic schwannoma. We reviewed in a blinded fashion the records of 25 patients with pathologically documented acoustic schwannoma and of 25 control subjects, all of whom had undergone both enhanced conventional spin-echo MR imaging and unenhanced fast spin-echo MR imaging of the cerebellopontine angle/internal auditory canal region. The patients were imaged with the use of a quadrature head receiver coil for the conventional spin-echo sequences and dual 3-inch phased-array receiver coils for the fast spin-echo sequences. The size of the acoustic schwannomas ranged from 2 to 40 mm in maximum dimension. The mean maximum diameter was 12 mm, and 12 neoplasms were less than 10 mm in diameter. Acoustic schwannoma was correctly diagnosed on 98% of the fast spin-echo images and on 100% of the enhanced conventional spin-echo images. Statistical analysis of the data using the kappa coefficient demonstrated agreement beyond chance between these two imaging techniques for the diagnosis of acoustic schwannoma. There is no statistically significant difference in the sensitivity and specificity of unenhanced high-resolution fast spin-echo imaging and enhance T1-weighted conventional spin-echo imaging in the detection of acoustic schwannoma. We believe that the unenhanced high-resolution fast spin-echo technique provides a cost-effective method for the diagnosis of acoustic schwannoma.
Townley, Anna K; Feng, Yi; Schmidt, Katy; Carter, Deborah A; Porter, Robert; Verkade, Paul; Stephens, David J
2008-09-15
The COPII coat assembles on endoplasmic reticulum membranes to coordinate the collection of secretory cargo with the formation of transport vesicles. During COPII assembly, Sar1 deforms the membrane and recruits the Sec23-Sec24 complex (Sec23/24), which is the primary cargo-binding adaptor for the system, and Sec13-Sec31 (Sec13/31), which provides a structural outer layer for vesicle formation. Here we show that Sec13 depletion results in concomitant loss of Sec31 and juxtanuclear clustering of pre-budding complexes containing Sec23/24 and cargo. Electron microscopy reveals the presence of curved coated profiles on distended endoplasmic reticulum, indicating that Sec13/31 is not required for the generation or maintenance of the curvature. Surprisingly, export of tsO45-G-YFP, a marker of secretory cargo, is unaffected by Sec13/31 depletion; by contrast, secretion of collagen from primary fibroblasts is strongly inhibited. Suppression of Sec13 expression in zebrafish causes defects in proteoglycan deposition and skeletal abnormalities that are grossly similar to the craniofacial abnormalities of crusher mutant zebrafish and patients with cranio-lenticulo-sutural dysplasia. We conclude that efficient coupling of the inner (Sec23/24) and outer (Sec13/31) layers of the COPII coat is required to drive the export of collagen from the endoplasmic reticulum, and that highly efficient COPII assembly is essential for normal craniofacial development during embryogenesis.
Multishot EPI-SSFP in the Heart
Herzka, Daniel A.; Kellman, Peter; Aletras, Anthony H.; Guttman, Michael A.; McVeigh, Elliot R.
2007-01-01
Refocused steady-state free precession (SSFP), or fast imaging with steady precession (FISP or TrueFISP), has recently proven valuable for cardiac imaging because of its high signal-to-noise ratio (SNR) and excellent blood-myocardium contrast. In this study, various implementations of multiecho SSFP or EPI-SSFP for imaging in the heart are presented. EPI-SSFP has higher scan-time efficiency than single-echo SSFP, as two or more phase-encode lines are acquired per repetition time (TR) at the cost of a modest increase in TR. To minimize TR, a noninterleaved phase-encode order in conjunction with a phased-array ghost elimination (PAGE) technique was employed, removing the need for echo time shifting (ETS). The multishot implementation of EPI-SSFP was used to decrease the breath-hold duration for cine acquisitions or to increase the temporal or spatial resolution for a fixed breath-hold duration. The greatest gain in efficiency was obtained with the use of a three-echo acquisition. Image quality for cardiac cine applications using multishot EPI-SSFP was comparable to that of single-echo SSFP in terms of blood-myocardium contrast and contrast-to-noise ratio (CNR). The PAGE method considerably reduced flow artifacts due to both the inherent ghost suppression and the concomitant reduction in phase-encode blip size. The increased TR of multishot EPI-SSFP led to a reduced specific absorption rate (SAR) for a fixed RF flip angle, and allowed the use of a larger flip angle without increasing the SAR above the FDA-approved limits. PMID:11948726
Haider, Clifton R; Borisch, Eric A; Glockner, James F; Mostardi, Petrice M; Rossman, Phillip J; Young, Phillip M; Riederer, Stephen J
2010-10-01
High temporal and spatial resolution is desired in imaging of vascular abnormalities having short arterial-to-venous transit times. Methods that exploit temporal correlation to reduce the observed frame time demonstrate temporal blurring, obfuscating bolus dynamics. Previously, a Cartesian acquisition with projection reconstruction-like (CAPR) sampling method has been demonstrated for three-dimensional contrast-enhanced angiographic imaging of the lower legs using two-dimensional sensitivity-encoding acceleration and partial Fourier acceleration, providing 1mm isotropic resolution of the calves, with 4.9-sec frame time and 17.6-sec temporal footprint. In this work, the CAPR acquisition is further undersampled to provide a net acceleration approaching 40 by eliminating all view sharing. The tradeoff of frame time and temporal footprint in view sharing is presented and characterized in phantom experiments. It is shown that the resultant 4.9-sec acquisition time, three-dimensional images sets have sufficient spatial and temporal resolution to clearly portray arterial and venous phases of contrast passage. It is further hypothesized that these short temporal footprint sequences provide diagnostic quality images. This is tested and shown in a series of nine contrast-enhanced MR angiography patient studies performed with the new method.
Kale, S P; Cary, J W; Bhatnagar, D; Bennett, J W
1996-01-01
Six previously isolated, nonaflatoxigenic variants of Aspergillus parasiticus, designated sec mutants, were characterized morphologically by electron microscopy, biochemically by biotransformation studies with an aflatoxin precursor, and genetically by Northern (RNA) hybridization analysis of aflatoxin biosynthetic gene transcripts. Scanning electron micrographs clearly demonstrated that compared with the parental sec+ forms, the variant sec forms had an abundance of vegetative mycelia, orders of magnitude reduced number of conidiophores and conidia, and abnormal metulae. Conidiospores were detected in sec cultures only at higher magnifications (x 500), in contrast to the sec+ (wild-type) strain, in which abundant conidiospores (masking the vegetative mycelia) were observed at even lower magnifications (x 300). All sec+ forms, but none of the sec forms, showed bioconversion of sterigmatocystin to aflatoxins. Northern blots probed with pathway genes demonstrated lack of expression of both the aflatoxin biosynthetic pathway structural (nor-1 and omtA) and regulatory (aflR) genes in the sec forms; PCR and Southern hybridization analysis confirmed the presence of the genes in the sec genomes. Thus, the loss of aflatoxigenic capabilities in the sec form is correlated with alterations in the conidial morphology of the fungus, suggesting that the regulation of aflatoxin synthesis and conidiogenesis may be interlinked. PMID:8795232
Chamberlain, Ryan; Reyes, Denise; Curran, Geoffrey L.; Marjanska, Malgorzata; Wengenack, Thomas M.; Poduslo, Joseph F.; Garwood, Michael; Jack, Clifford R.
2009-01-01
One of the hallmark pathologies of Alzheimer’s disease (AD) is amyloid plaque deposition. Plaques appear hypointense on T2- and T2*-weighted MR images probably due to the presence of endogenous iron, but no quantitative comparison of various imaging techniques has been reported. We estimated the T1, T2, T2*, and proton density values of cortical plaques and normal cortical tissue and analyzed the plaque contrast generated by a collection of T2-, T2*-, and susceptibility-weighted imaging (SWI) methods in ex vivo transgenic mouse specimens. The proton density and T1 values were similar for both cortical plaques and normal cortical tissue. The T2 and T2* values were similar in cortical plaques, which indicates that the iron content of cortical plaques may not be as large as previously thought. Ex vivo plaque contrast was increased compared to a previously reported spin echo sequence by summing multiple echoes and by performing SWI; however, gradient echo and susceptibility weighted imaging was found to be impractical for in vivo imaging due to susceptibility interface-related signal loss in the cortex. PMID:19253386
Jack, Clifford R.; Garwood, Michael; Wengenack, Thomas M.; Borowski, Bret; Curran, Geoffrey L.; Lin, Joseph; Adriany, Gregor; Grohn, Olli H.J.; Grimm, Roger; Poduslo, Joseph F.
2009-01-01
One of the cardinal pathologic features of Alzheimer’s disease (AD) is formation of senile, or amyloid, plaques. Transgenic mice have been developed that express one or more of the genes responsible for familial AD in humans. Doubly transgenic mice develop “human-like” plaques, providing a mechanism to study amyloid plaque biology in a controlled manner. Imaging of labeled plaques has been accomplished with other modalities, but only MRI has sufficient spatial and contrast resolution to visualize individual plaques non-invasively. Methods to optimize visualization of plaques in vivo in transgenic mice at 9.4 T using a spin echo sequence based on adiabatic pulses are described. Preliminary results indicate that a spin echo acquisition more accurately reflects plaque size, while a T2* weighted gradient echo sequence reflects plaque iron content not plaque size. In vivo MRI – ex vivo MRI – in vitro histological correlations are provided. Histologically verified plaques as small as 50 μm in diameter were visualized in the living animal. To our knowledge this work represents the first demonstration of non-invasive in vivo visualization of individual AD plaques without the use of a contrast agent. PMID:15562496
Vucicevic, Darko; Lester, Steven J; Appleton, Christopher P; Panse, Prasad M; Schleifer, John William; Wilansky, Susan
2016-04-01
The development of a left ventricular (LV) apical pouch in patients with apical hypertrophic cardiomyopathy (aHCM) has been thought to be the transition point that can become an apical aneurysm, which is linked to higher risk of adverse events. In our study, we sought to compare the ability of transthoracic echocardiography (echo) and cardiac magnetic resonance imaging (cMRI) to accurately identify the presence of an apical pouch or aneurysm in patients with aHCM. We retrospectively reviewed the charts of all consecutive patients that had features of aHCM on imaging. Data from cMRI and echo examinations were abstracted, and the ability of these diagnostic modalities to identify the presence of a LV apical pouch and aneurysm was analyzed. Of 31 patients with aHCM, 17 (54.8%) had an apical pouch and 2 were found to have apical aneurysm (6.5%) on cMRI. Echo with and without perflutren contrast was able to accurately identify both aneurysms, but only 47.1% (8/17) of apical pouches seen by cMRI. Two patients had apical thrombus that was identified by cMRI, but not by echo. Our findings indicate that cMRI is superior to echo in identifying apical pouches in patients with aHCM. Our results also suggest that in patients undergoing echo, the use of perflutren contrast for LV opacification increases the diagnostic yield. Further study is necessary to delineate whether earlier identification of an apical pouch will be of clinical benefit for patients with aHCM by altering clinical management and avoiding adverse cardiovascular events. © 2015, Wiley Periodicals, Inc.
Effect of Contrast Media on Single Shot EPI: Implications for Abdominal Diffusion Imaging
Gulani, Vikas; Willatt, Jonathan M.; Blaimer, Martin; Hussain, Hero K.; Duerk, Jeffrey L.; Griswold, Mark A.
2010-01-01
Purpose The goal of this study was to determine the effect of contrast media on the signal behavior of single shot echo planar imaging (ssEPI) used for abdominal diffusion imaging. Materials and Methods The signal of a ssEPI spin echo sequence in a water phantom with varying concentrations of gadolinium was modeled with Bloch equations and the predicted behavior validated on a phantom at 1.5 T. Six volunteers were given gadolinium contrast, and signal intensity (SI) time courses for regions of interest (ROIs) in the liver, pancreas, spleen, renal cortex and medulla were analyzed. The Student's t-test was used to compare pre-contrast SI to 0, 1, 4, 5, 10, and 13 minutes following contrast. Results The results show that following contrast, ssEPI SI goes through a nadir, recovering differently for each organ. Maximal contrast related signal losses relative to pre-contrast signal are 20%, 20%, 53%, and 67%, for the liver, pancreas, renal cortex and medulla respectively. The SIs remain statistically below the pre-contrast values for 5, 4, and 1 minutes for the pancreas, liver, and spleen, and for all times measured for the renal cortex and medulla. Conclusion Abdominal diffusion imaging should be performed prior to contrast due to adverse effects on the signal in ssEPI. PMID:19856456
NASA Astrophysics Data System (ADS)
Liu, Lingli; Zheng, Hairong; Williams, Logan; Zhang, Fuxing; Wang, Rui; Hertzberg, Jean; Shandas, Robin
2008-03-01
We have recently developed an ultrasound-based velocimetry technique, termed echo particle image velocimetry (Echo PIV), to measure multi-component velocity vectors and local shear rates in arteries and opaque fluid flows by identifying and tracking flow tracers (ultrasound contrast microbubbles) within these flow fields. The original system was implemented on images obtained from a commercial echocardiography scanner. Although promising, this system was limited in spatial resolution and measurable velocity range. In this work, we propose standard rules for characterizing Echo PIV performance and report on a custom-designed Echo PIV system with increased spatial resolution and measurable velocity range. Then we employed this system for initial measurements on tube flows, rotating flows and in vitro carotid artery and abdominal aortic aneurysm (AAA) models to acquire the local velocity and shear rate distributions in these flow fields. The experimental results verified the accuracy of this technique and indicated the promise of the custom Echo PIV system in capturing complex flow fields non-invasively.
Chiou, Hong-Jen; Chou, Yi-Hong; Chen, Wei-Ming; Chen, Winby; Wang, Hsin-Kai; Chang, Cheng-Yen
2010-12-01
We aimed to evaluate the ability of 3-dimensional power Doppler ultrasonography to differentiate soft-tissue masses from blood flow and vascularization with contrast medium. Twenty-five patients (mean age, 44.1 years; range, 12-77 years) with a palpable mass were enrolled in this study. Volume data were acquired using linear and convex 3-dimensional probes and contrast medium injected manually by bolus. Data were stored and traced slice by slice for 12 slices. All patients were scanned by the same senior sonologist. The vascular index (VI), flow index (FI), and vascular-flow index (VFI) were automatically calculated after the tumor was completely traced. All tumors were later confirmed by pathology. The study included 8 benign (mean, 36.5 mL; range, 2.4-124 mL) and 17 malignant (mean, 319.4 mL; range, 9.9-1,179.6 mL) tumors. Before contrast medium injection, mean VI, FI and VFI were, respectively, 3.22, 32.26 and 1.07 in benign tumors, and 1.97, 29.33 and 0.67 in malignant tumors. After contrast medium injection, they were, respectively, 20.85, 37.33 and 8.52 in benign tumors, and 40.12, 41.21 and 17.77 in malignant tumors. The mean differences between with and without contrast injection for VI, FI and VFI were, respectively, 17.63, 5.07 and 7.45 in benign tumors, and 38.15, 11.88 and 16.55 in malignant tumors. Tumor volume, VI, FI and VFI were not significantly different between benign and malignant tumors before and after echo-contrast medium injection. However, VI, FI and VFI under self-differentiation (differences between with and without contrast injection) were significantly different between malignant and benign tumors. Three-dimensional power Doppler ultrasound is a valuable tool for differential diagnosis of soft-tissue tumors, especially with the injection of an echo-contrast medium. Copyright © 2010 Elsevier. Published by Elsevier B.V. All rights reserved.
Sato, Y; Ogasawara, K; Narumi, S; Sasaki, M; Saito, A; Tsushima, E; Namba, T; Kobayashi, M; Yoshida, K; Terayama, Y; Ogawa, A
2016-06-01
Preoperative identification of plaque vulnerability may allow improved risk stratification for patients considered for carotid endarterectomy. The present study aimed to determine which plaque imaging technique, cardiac-gated black-blood fast spin-echo, magnetization-prepared rapid acquisition of gradient echo, source image of 3D time-of-flight MR angiography, or noncardiac-gated spin-echo, most accurately predicts development of microembolic signals during exposure of carotid arteries in carotid endarterectomy. Eighty patients with ICA stenosis (≥70%) underwent the 4 sequences of preoperative MR plaque imaging of the affected carotid bifurcation and then carotid endarterectomy under transcranial Doppler monitoring of microembolic signals in the ipsilateral middle cerebral artery. The contrast ratio of the carotid plaque was calculated by dividing plaque signal intensity by sternocleidomastoid muscle signal intensity. Microembolic signals during exposure of carotid arteries were detected in 23 patients (29%), 3 of whom developed new neurologic deficits postoperatively. Those deficits remained at 24 hours after surgery in only 1 patient. The area under the receiver operating characteristic curve to discriminate between the presence and absence of microembolic signals during exposure of the carotid arteries was significantly greater with nongated spin-echo than with black-blood fast spin-echo (difference between areas, 0.258; P < .0001), MPRAGE (difference between areas, 0.106; P = .0023), or source image of 3D time-of-flight MR angiography (difference between areas, 0.128; P = .0010). Negative binomial regression showed that in the 23 patients with microembolic signals, the contrast ratio was associated with the number of microembolic signals only in nongated spin-echo (risk ratio, 1.36; 95% confidence interval, 1.01-1.97; P < .001). Nongated spin-echo may predict the development of microembolic signals during exposure of the carotid arteries in carotid endarterectomy more accurately than other MR plaque imaging techniques. © 2016 by American Journal of Neuroradiology.
Kimme-Smith, C; Rothschild, P A; Bassett, L W; Gold, R H; Moler, C
1989-01-01
Six different combinations of film-processor temperature (33.3 degrees C, 35 degrees C), development time (22 sec, 44 sec), and chemistry (Du Pont medium contrast developer [MCD] and Kodak rapid process [RP] developer) were each evaluated by separate analyses with Hurter and Driffield curves, test images of plastic step wedges, noise variance analysis, and phantom images; each combination also was evaluated clinically. Du Pont MCD chemistry produced greater contrast than did Kodak RP chemistry. A change in temperature from 33.3 degrees C (92 degrees F) to 35 degrees C (95 degrees F) had the least effect on dose and image contrast. Temperatures of 36.7 degrees C (98 degrees F) and 38.3 degrees C (101 degrees F) also were tested with extended processing. The speed increased for 36.7 degrees C but decreased at 38.3 degrees C. Base plus fog increased, but contrast decreased for these higher temperatures. Increasing development time had the greatest effect on decreasing the dose required for equivalent film darkening when imaging BR12 breast equivalent test objects; ion chamber measurements showed a 32% reduction in dose when the development time was increased from 22 to 44 sec. Although noise variance doubled in images processed with the extended development time, diagnostic capability was not compromised. Extending the processing time for mammographic films was an effective method of dose reduction, whereas varying the processing temperature and chemicals had less effect on contrast and dose.
Multishot EPI-SSFP in the heart.
Herzka, Daniel A; Kellman, Peter; Aletras, Anthony H; Guttman, Michael A; McVeigh, Elliot R
2002-04-01
Refocused steady-state free precession (SSFP), or fast imaging with steady precession (FISP or TrueFISP), has recently proven valuable for cardiac imaging because of its high signal-to-noise ratio (SNR) and excellent blood-myocardium contrast. In this study, various implementations of multiecho SSFP or EPI-SSFP for imaging in the heart are presented. EPI-SSFP has higher scan-time efficiency than single-echo SSFP, as two or more phase-encode lines are acquired per repetition time (TR) at the cost of a modest increase in TR. To minimize TR, a noninterleaved phase-encode order in conjunction with a phased-array ghost elimination (PAGE) technique was employed, removing the need for echo time shifting (ETS). The multishot implementation of EPI-SSFP was used to decrease the breath-hold duration for cine acquisitions or to increase the temporal or spatial resolution for a fixed breath-hold duration. The greatest gain in efficiency was obtained with the use of a three-echo acquisition. Image quality for cardiac cine applications using multishot EPI-SSFP was comparable to that of single-echo SSFP in terms of blood-myocardium contrast and contrast-to-noise ratio (CNR). The PAGE method considerably reduced flow artifacts due to both the inherent ghost suppression and the concomitant reduction in phase-encode blip size. The increased TR of multishot EPI-SSFP led to a reduced specific absorption rate (SAR) for a fixed RF flip angle, and allowed the use of a larger flip angle without increasing the SAR above the FDA-approved limits. Copyright 2002 Wiley-Liss, Inc.
A Sensitive TLRH Targeted Imaging Technique for Ultrasonic Molecular Imaging
Hu, Xiaowen; Zheng, Hairong; Kruse, Dustin E.; Sutcliffe, Patrick; Stephens, Douglas N.; Ferrara, Katherine W.
2010-01-01
The primary goals of ultrasound molecular imaging are the detection and imaging of ultrasound contrast agents (microbubbles), which are bound to specific vascular surface receptors. Imaging methods that can sensitively and selectively detect and distinguish bound microbubbles from freely circulating microbubbles (free microbubbles) and surrounding tissue are critically important for the practical application of ultrasound contrast molecular imaging. Microbubbles excited by low frequency acoustic pulses emit wide-band echoes with a bandwidth extending beyond 20 MHz; we refer to this technique as TLRH (transmission at a low frequency and reception at a high frequency). Using this wideband, transient echo, we have developed and implemented a targeted imaging technique incorporating a multi-frequency co-linear array and the Siemens Antares® imaging system. The multi-frequency co-linear array integrates a center 5.4 MHz array, used to receive echoes and produce radiation force, and two outer 1.5 MHz arrays used to transmit low frequency incident pulses. The targeted imaging technique makes use of an acoustic radiation force sub-sequence to enhance accumulation and a TLRH imaging sub-sequence to detect bound microbubbles. The radiofrequency (RF) data obtained from the TLRH imaging sub-sequence are processsed to separate echo signatures between tissue, free microbubbles, and bound microbubbles. By imaging biotin-coated microbubbles targeted to avidin-coated cellulose tubes, we demonstrate that the proposed method has a high contrast-to-tissue ratio (up to 34 dB) and a high sensitivity to bound microbubbles (with the ratio of echoes from bound microbubbles versus free microbubbles extending up to 23 dB). The effects of the imaging pulse acoustic pressure, the radiation force sub-sequence and the use of various slow-time filters on the targeted imaging quality are studied. The TLRH targeted imaging method is demonstrated in this study to provide sensitive and selective detection of bound microbubbles for ultrasound molecularly-targeted imaging. PMID:20178897
Chayakulkeeree, Methee; Johnston, Simon Andrew; Oei, Johanes Bijosono; Lev, Sophie; Williamson, Peter Richard; Wilson, Christabel Frewen; Zuo, Xiaoming; Leal, Ana Lusia; Vainstein, Marilene Henning; Meyer, Wieland; Sorrell, Tania Christine; May, Robin Charles; Djordjevic, Julianne Teresa
2011-01-01
Summary Secreted phospholipase B1 (CnPlb1) is essential for dissemination of Cryptococcus neoformans to the central nervous system (CNS) yet essential components of its secretion machinery remain to be elucidated. Using gene deletion analysis we demonstrate that CnPlb1 secretion is dependent on the CnSEC14 product, CnSec14-1p. CnSec14-1p is a homologue of the phosphatidylinositol transfer protein (PITP) ScSec14p, which is essential for secretion and viability in Saccharomyces cerevisiae. In contrast to CnPlb1, neither laccase 1 (Lac1)-induced melanization within the cell wall nor capsule induction were negatively impacted in CnSEC14-1 deletion mutants (CnΔsec14-1 and CnΔsec14-1CnΔsfh5). Similar to the CnPLB1 deletion mutant (CnΔplb1), CnΔsec14-1 was hypo-virulent in mice and did not disseminate to the CNS by day 14 post infection. Furthermore, macrophage expulsion of live CnΔsec14-1 and CnΔplb1 (vomocytosis) was reduced. Individual deletion of CnSEC14-2, a closely-related CnSEC14-1 homologue, and CnSFH5, a distantly-related SEC fourteen-like homologue, did not abrogate CnPlb1 secretion or virulence. However, reconstitution of CnΔsec14-1 with CnSEC14-1 or CnSEC14-2 restored both phenotypes, consistent with functional genetic redundancy. We conclude that CnPlb1 secretion is SEC14-dependent and that C. neoformans preferentially exports virulence determinants to the cell periphery via distinct pathways. We also demonstrate that CnPlb1 secretion is essential for vomocytosis. PMID:21453402
New Imaging Strategies Using a Motion-Resistant Liver Sequence in Uncooperative Patients
Kim, Bong Soo; Lee, Kyung Ryeol; Goh, Myeng Ju
2014-01-01
MR imaging has unique benefits for evaluating the liver because of its high-resolution capability and ability to permit detailed assessment of anatomic lesions. In uncooperative patients, motion artifacts can impair the image quality and lead to the loss of diagnostic information. In this setting, the recent advances in motion-resistant liver MR techniques, including faster imaging protocols (e.g., dual-echo magnetization-prepared rapid-acquisition gradient echo (MP-RAGE), view-sharing technique), the data under-sampling (e.g., gradient recalled echo (GRE) with controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA), single-shot echo-train spin-echo (SS-ETSE)), and motion-artifact minimization method (e.g., radial GRE with/without k-space-weighted image contrast (KWIC)), can provide consistent, artifact-free images with adequate image quality and can lead to promising diagnostic performance. Understanding of the different motion-resistant options allows radiologists to adopt the most appropriate technique for their clinical practice and thereby significantly improve patient care. PMID:25243115
Kalenova, L F; Fisher, T A; Suhovey, J G; Besedin, I M
2009-05-01
Experiments on inbred animals showed that short-term exposure in cold water significantly modified structural and functional parameters of the immune system at different levels of its organization, from bone marrow hemopoiesis to effector stage of the immune response to antigen. The thermal factor caused changes in nonspecific and specific mechanisms of the immune system. Hypothermal exposure (7-9 degrees C, 5 sec) increased the thymic index and bone marrow lymphocyte count, reduced absorption capacity and stimulated metabolic activity of phagocytes, stimulated cell-mediated and suppressed humoral immunity. Contrast exposure in cold and hot water (7-9 degrees C, 5 sec/40-42 degrees C, 30 sec) increased monocyte count in bone marrow and reduced it in the their peripheral blood, reduced metabolic activity of phagocytes, stimulated cell-mediated and suppressed humoral immunity. These data demonstrate physiological mechanisms of interactions between the thermoregulatory and immune systems.
Shi, Xianfeng; Kim, Seong-Eun; Jeong, Eun-Kee
2011-01-01
The conventional stimulated-echo NMR sequence only measures the longitudinal component, while discarding the transverse component, after tipping up the prepared magnetization. This transverse magnetization can be used to measure a spin-echo, in addition to the stimulated-echo. 2D ss-SESTEPI is an EPI-based singleshot imaging technique that simultaneously acquires a spin-echo-planar image (SEPI) and a stimulated-echo-planar image (STEPI) after a single RF excitation. The magnitudes of SEPI and STEPI differ by T1 decay and diffusion weighting for perfect 90° RF, and thus can be used to rapidly measure T1. However, the spatial variation of B1 amplitude induces un-even splitting of the transverse magnetization for SEPI and STEPI within the imaging FOV. Correction for B1 inhomogeneity is therefore critical for 2D ss-SESTEPI to be used for T1 measurement. We developed a method for B1 inhomogeneity correction by acquiring an additional STEPI with minimal mixing time, calculating the difference between the spin-echo and the stimulated-echo and multiplying the STEPI by the inverse functional map. Diffusion-induced decay is corrected by measuring the average diffusivity during the prescanning. Rapid singleshot T1 mapping may be useful for various applications, such as dynamic T1 mapping for real-time estimation of the concentration of contrast agent in DCE-MRI. PMID:20564579
Magnetic susceptibility induced echo time shifts: Is there a bias in age-related fMRI studies?
Ngo, Giang-Chau; Wong, Chelsea N.; Guo, Steve; Paine, Thomas; Kramer, Arthur F.; Sutton, Bradley P.
2016-01-01
Purpose To evaluate the potential for bias in functional MRI (fMRI) aging studies resulting from age-related differences in magnetic field distributions which can impact echo time and functional contrast. Materials and Methods Magnetic field maps were taken on 31 younger adults (age: 22 ± 2.9 years) and 46 older adults (age: 66 ± 4.5 years) on a 3 T scanner. Using the spatial gradients of the magnetic field map for each participant, an echo planar imaging (EPI) trajectory was simulated. The effective echo time, time at which the k-space trajectory is the closest to the center of k-space, was calculated. This was used to examine both within-subject and across-age-group differences in the effective echo time maps. The Blood Oxygenation Level Dependent (BOLD) percent signal change resulting from those echo time shifts was also calculated to determine their impact on fMRI aging studies. Result For a single subject, the effective echo time varied as much as ± 5 ms across the brain. An unpaired t-test between the effective echo time across age group resulted in significant differences in several regions of the brain (p<0.01). The difference in echo time was only approximately 1 ms, however which is not expected to have an important impact on BOLD fMRI percent signal change (< 4%). Conclusion Susceptibility-induced magnetic field gradients induce local echo time shifts in gradient echo fMRI images, which can cause variable BOLD sensitivity across the brain. However, the age-related differences in BOLD signal are expected to be small for an fMRI study at 3 T. PMID:27299727
High-Resolution Echo-Planar Spectroscopic Imaging of the Human Calf
Weis, Jan; Bruvold, Morten; Ortiz-Nieto, Francisco; Ahlström, Håkan
2014-01-01
Background This study exploits the speed benefits of echo-planar spectroscopic imaging (EPSI) to acquire lipid spectra of skeletal muscle. The main purpose was to develop a high-resolution EPSI technique for clinical MR scanner, to visualise the bulk magnetic susceptibility (BMS) shifts of extra-myocellular lipid (EMCL) spectral lines, and to investigate the feasibility of this method for the assessment of intra-myocellular (IMCL) lipids. Methods The study group consisted of six healthy volunteers. A two dimensional EPSI sequence with point-resolved spectroscopy (PRESS) spatial localization was implemented on a 3T clinical MR scanner. Measurements were performed by means of 64×64 spatial matrix and nominal voxel size 3×3×15 mm3. The total net measurement time was 3 min 12 sec for non-water-suppressed (1 acquisition) and 12 min 48 sec for water-suppressed scans (4 acquisitions). Results Spectra of the human calf had a very good signal-to-noise ratio and linewidths sufficient to differentiate IMCL resonances from EMCL. The use of a large spatial matrix reduces inter-voxel signal contamination of the strong EMCL signals. Small voxels enabled visualisation of the methylene EMCL spectral line splitting and their BMS shifts up to 0.5 ppm relative to the correspondent IMCL line. The mean soleus muscle IMCL content of our six volunteers was 0.30±0.10 vol% (range 0.18–0.46) or 3.6±1.2 mmol/kg wet weight (range: 2.1–5.4). Conclusion This study demonstrates that high-spatial resolution PRESS EPSI of the muscle lipids is feasible on standard clinical scanners. PMID:24498129
The effects of preceding lead-alone and lag-alone click trains on the buildup of echo suppression.
Bishop, Christopher W; Yadav, Deepak; London, Sam; Miller, Lee M
2014-08-01
Spatial perception in echoic environments is influenced by recent acoustic history. For instance, echo suppression becomes more effective or "builds up" with repeated exposure to echoes having a consistent acoustic relationship to a temporally leading sound. Four experiments were conducted to investigate how buildup is affected by prior exposure to unpaired lead-alone or lag-alone click trains. Unpaired trains preceded lead-lag click trains designed to evoke and assay buildup. Listeners reported how many sounds they heard from the echo hemifield during the lead-lag trains. Stimuli were presented in free field (experiments 1 and 4) or dichotically through earphones (experiments 2 and 3). In experiment 1, listeners reported more echoes following a lead-alone train compared to a period of silence. In contrast, listeners reported fewer echoes following a lag-alone train; similar results were observed with earphones. Interestingly, the effects of lag-alone click trains on buildup were qualitatively different when compared to a no-conditioner trial type in experiment 4. Finally, experiment 3 demonstrated that the effects of preceding click trains on buildup cannot be explained by a change in counting strategy or perceived click salience. Together, these findings demonstrate that echo suppression is affected by prior exposure to unpaired stimuli.
3-D photoacoustic and pulse echo imaging of prostate tumor progression in the mouse window chamber
NASA Astrophysics Data System (ADS)
Bauer, Daniel R.; Olafsson, Ragnar; Montilla, Leonardo G.; Witte, Russell S.
2011-02-01
Understanding the tumor microenvironment is critical to characterizing how cancers operate and predicting their response to treatment. We describe a novel, high-resolution coregistered photoacoustic (PA) and pulse echo (PE) ultrasound system used to image the tumor microenvironment. Compared to traditional optical systems, the platform provides complementary contrast and important depth information. Three mice are implanted with a dorsal skin flap window chamber and injected with PC-3 prostate tumor cells transfected with green fluorescent protein. The ensuing tumor invasion is mapped during three weeks or more using simultaneous PA and PE imaging at 25 MHz, combined with optical and fluorescent techniques. Pulse echo imaging provides details of tumor structure and the surrounding environment with 100-μm3 resolution. Tumor size increases dramatically with an average volumetric growth rate of 5.35 mm3/day, correlating well with 2-D fluorescent imaging (R = 0.97, p < 0.01). Photoacoustic imaging is able to track the underlying vascular network and identify hemorrhaging, while PA spectroscopy helps classify blood vessels according to their optical absorption spectrum, suggesting variation in blood oxygen saturation. Photoacoustic and PE imaging are safe, translational modalities that provide enhanced depth resolution and complementary contrast to track the tumor microenvironment, evaluate new cancer therapies, and develop molecular contrast agents in vivo.
Bell, L C; Does, M D; Stokes, A M; Baxter, L C; Schmainda, K M; Dueck, A C; Quarles, C C
2017-09-01
The optimal TE must be calculated to minimize the variance in CBV measurements made with DSC MR imaging. Simulations can be used to determine the influence of the TE on CBV, but they may not adequately recapitulate the in vivo heterogeneity of precontrast T2*, contrast agent kinetics, and the biophysical basis of contrast agent-induced T2* changes. The purpose of this study was to combine quantitative multiecho DSC MRI T2* time curves with error analysis in order to compute the optimal TE for a traditional single-echo acquisition. Eleven subjects with high-grade gliomas were scanned at 3T with a dual-echo DSC MR imaging sequence to quantify contrast agent-induced T2* changes in this retrospective study. Optimized TEs were calculated with propagation of error analysis for high-grade glial tumors, normal-appearing white matter, and arterial input function estimation. The optimal TE is a weighted average of the T2* values that occur as a contrast agent bolus transverses a voxel. The mean optimal TEs were 30.0 ± 7.4 ms for high-grade glial tumors, 36.3 ± 4.6 ms for normal-appearing white matter, and 11.8 ± 1.4 ms for arterial input function estimation (repeated-measures ANOVA, P < .001). Greater heterogeneity was observed in the optimal TE values for high-grade gliomas, and mean values of all 3 ROIs were statistically significant. The optimal TE for the arterial input function estimation is much shorter; this finding implies that quantitative DSC MR imaging acquisitions would benefit from multiecho acquisitions. In the case of a single-echo acquisition, the optimal TE prescribed should be 30-35 ms (without a preload) and 20-30 ms (with a standard full-dose preload). © 2017 by American Journal of Neuroradiology.
Musculoskeletal MRI at 3.0 T and 7.0 T: a comparison of relaxation times and image contrast.
Jordan, Caroline D; Saranathan, Manojkumar; Bangerter, Neal K; Hargreaves, Brian A; Gold, Garry E
2013-05-01
The purpose of this study was to measure and compare the relaxation times of musculoskeletal tissues at 3.0 T and 7.0 T, and to use these measurements to select appropriate parameters for musculoskeletal protocols at 7.0 T. We measured the T₁ and T₂ relaxation times of cartilage, muscle, synovial fluid, bone marrow and subcutaneous fat at both 3.0 T and 7.0 T in the knees of five healthy volunteers. The T₁ relaxation times were measured using a spin-echo inversion recovery sequence with six inversion times. The T₂ relaxation times were measured using a spin-echo sequence with seven echo times. The accuracy of both the T₁ and T₂ measurement techniques was verified in phantoms at both magnetic field strengths. We used the measured relaxation times to help design 7.0 T musculoskeletal protocols that preserve the favorable contrast characteristics of our 3.0 T protocols, while achieving significantly higher resolution at higher SNR efficiency. The T₁ relaxation times in all tissues at 7.0 T were consistently higher than those measured at 3.0 T, while the T₂ relaxation times at 7.0 T were consistently lower than those measured at 3.0 T. The measured relaxation times were used to help develop high resolution 7.0 T protocols that had similar fluid-to-cartilage contrast to that of the standard clinical 3.0 T protocols for the following sequences: proton-density-weighted fast spin-echo (FSE), T₂-weighted FSE, and 3D-FSE-Cube. The T₁ and T₂ changes were within the expected ranges. Parameters for musculoskeletal protocols at 7.0 T can be optimized based on these values, yielding improved resolution in musculoskeletal imaging with similar contrast to that of standard 3.0 T clinical protocols. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Reichert, Miriam; Morelli, John N; Runge, Val M; Tao, Ai; von Ritschl, Ruediger; von Ritschl, Andreas; Padua, Abraham; Dix, James E; Marra, Michael J; Schoenberg, Stefan O; Attenberger, Ulrike I
2013-01-01
The aim of this study was to compare the detection of brain metastases at 3 T using a 32-channel head coil with 2 different 3-dimensional (3D) contrast-enhanced sequences, a T1-weighted fast spin-echo-based (SPACE; sampling perfection with application-optimized contrasts using different flip angle evolutions) sequence and a conventional magnetization-prepared rapid gradient-echo (MP-RAGE) sequence. Seventeen patients with 161 brain metastases were examined prospectively using both SPACE and MP-RAGE sequences on a 3-T magnetic resonance system. Eight healthy volunteers were similarly examined for determination of signal-to-noise ratio (SNR) values. Parameters were adjusted to equalize acquisition times between the sequences (3 minutes and 30 seconds). The order in which sequences were performed was randomized. Two blinded board-certified neuroradiologists evaluated the number of detectable metastatic lesions with each sequence relative to a criterion standard reading conducted at the Gamma Knife facility by a neuroradiologist with access to all clinical and imaging data. In the volunteer assessment with SPACE and MP-RAGE, SNR (10.3 ± 0.8 vs 7.7 ± 0.7) and contrast-to-noise ratio (0.8 ± 0.2 vs 0.5 ± 0.1) were statistically significantly greater with the SPACE sequence (P < 0.05). Overall, lesion detection was markedly improved with the SPACE sequence (99.1% of lesions for reader 1 and 96.3% of lesions for reader 2) compared with the MP-RAGE sequence (73.6% of lesions for reader 1 and 68.5% of lesions for reader 2; P < 0.01). A 3D T1-weighted fast spin echo sequence (SPACE) improves detection of metastatic lesions relative to 3D T1-weighted gradient-echo-based scan (MP-RAGE) imaging when implemented with a 32-channel head coil at identical scan acquisition times (3 minutes and 30 seconds).
An, Yeong Yi; Kim, Sung Hun; Kang, Bong Joo
2017-01-01
To determine the added value of qualitative analysis as an adjunct to quantitative analysis for the discrimination of benign and malignant lesions in patients with breast cancer using diffusion-weighted imaging (DWI) with readout-segmented echo-planar imaging (rs-EPI). A total of 99 patients with 144 lesions were reviewed from our prospectively collected database. DWI data were obtained using rs-EPI acquired at 3.0 T. The diagnostic performances of DWI in the qualitative, quantitative, and combination analyses were compared with that of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Additionally, the effect of lesion size on the diagnostic performance of the DWI combination analysis was evaluated. The strongest indicators of malignancy on DWI were a heterogeneous pattern (P = 0.005) and an apparent diffusion coefficient (ADC) value <1.0 × 10-3 mm2/sec (P = 0.002). The area under the curve (AUC) values for the qualitative analysis, quantitative analysis, and combination analysis on DWI were 0.732 (95% CI, 0.651-0.803), 0.780 (95% CI, 0.703-0.846), and 0.826 (95% CI, 0.754-0.885), respectively (P<0.0001). The AUC for the combination analysis on DWI was superior to that for DCE-MRI alone (0.651, P = 0.003) but inferior to that for DCE-MRI plus the ADC value (0.883, P = 0.03). For the DWI combination analysis, the sensitivity was significantly lower in the size ≤1 cm group than in the size >1 cm group (80% vs. 95.6%, P = 0.034). Qualitative analysis of tumor morphology was diagnostically applicable on DWI using rs-EPI. This qualitative analysis adds value to quantitative analyses for lesion characterization in patients with breast cancer.
Karnahl, Matthias; Park, Misoon; Krause, Cornelia; Hiller, Ulrike; Mayer, Ulrike; Stierhof, York-Dieter; Jürgens, Gerd
2018-06-12
Sec1/Munc18 (SM) proteins contribute to membrane fusion by interacting with Qa-SNAREs or nascent trans -SNARE complexes. Gymnosperms and the basal angiosperm Amborella have only a single SEC1 gene related to the KEULE gene in Arabidopsis However, the genomes of most angiosperms including Arabidopsis encode three SEC1-related SM proteins of which only KEULE has been functionally characterized as interacting with the cytokinesis-specific Qa-SNARE KNOLLE during cell-plate formation. Here we analyze the closest paralog of KEULE named SEC1B. In contrast to the cytokinesis defects of keule mutants, sec1b mutants are homozygous viable. However, the keule sec1b double mutant was nearly gametophytically lethal, displaying collapsed pollen grains, which suggests substantial overlap between SEC1B and KEULE functions in secretion-dependent growth. SEC1B had a strong preference for interaction with the evolutionarily ancient Qa-SNARE SYP132 involved in secretion and cytokinesis, whereas KEULE interacted with both KNOLLE and SYP132. This differential interaction with Qa-SNAREs is likely conferred by domains 1 and 2a of the two SM proteins. Comparative analysis of all four possible combinations of the relevant SEC1 Qa-SNARE double mutants revealed that in cytokinesis, the interaction of SEC1B with KNOLLE plays no role, whereas the interaction of KEULE with KNOLLE is prevalent and functionally as important as the interactions of both SEC1B and KEU with SYP132 together. Our results suggest that functional diversification of the two SEC1-related SM proteins during angiosperm evolution resulted in enhanced interaction of SEC1B with Qa-SNARE SYP132, and thus a predominant role of SEC1B in secretion.
Stellar Echo Imaging of Exoplanets
NASA Technical Reports Server (NTRS)
Mann, Chris; Lerch, Kieran; Lucente, Mark; Meza-Galvan, Jesus; Mitchell, Dan; Ruedin, Josh; Williams, Spencer; Zollars, Byron
2016-01-01
All stars exhibit intensity fluctuations over several timescales, from nanoseconds to years. These intensity fluctuations echo off bodies and structures in the star system. We posit that it is possible to take advantage of these echoes to detect, and possibly image, Earth-scale exoplanets. Unlike direct imaging techniques, temporal measurements do not require fringe tracking, maintaining an optically-perfect baseline, or utilizing ultra-contrast coronagraphs. Unlike transit or radial velocity techniques, stellar echo detection is not constrained to any specific orbital inclination. Current results suggest that existing and emerging technology can already enable stellar echo techniques at flare stars, such as Proxima Centauri, including detection, spectroscopic interrogation, and possibly even continent-level imaging of exoplanets in a variety of orbits. Detection of Earth-like planets around Sun-like stars appears to be extremely challenging, but cannot be fully quantified without additional data on micro- and millisecond-scale intensity fluctuations of the Sun. We consider survey missions in the mold of Kepler and place preliminary constraints on the feasibility of producing 3D tomographic maps of other structures in star systems, such as accretion disks. In this report we discuss the theory, limitations, models, and future opportunities for stellar echo imaging.
[Imaging characteristics of PROPELLER T2-weighted imaging].
Goto, Masami; Aoki, Shigeki; Hayashi, Naoto; Mori, Harushi; Watanabe, Yasushi; Ino, Kenji; Satake, Yoshirou; Nishida, Katuji; Sato, Haruo; Iida, Kyouhito; Mima, Kazuo; Ohtomo, Kuni
2004-11-01
As the PROPELLER sequence is a combination of the radial scan and fast-spin-echo (FSE) sequence, it can be considered an FSE sequence with a motion correlation. However, there are some differences between PROPELLER and FSE owing to differences in k-space trajectory. We clarified the imaging characteristics of PROPELLER T2-weighted imaging (T2WI) for different parameters in comparison with usual FSE T2WI. When the same parameters were used, PROPELLER T2WI showed a higher signal-to-noise ratio (SNR) and lower spatial resolution than usual FSE. Effective echo time (TE) changed with different echo train lengths (ETL) or different bandwidths on PROPELLER, and imaging contrast changed accordingly to be more effective.
Highly ionized atoms toward HD 93521
NASA Technical Reports Server (NTRS)
Spitzer, Lyman, Jr.; Fitzpatrick, Edward L.
1992-01-01
Results are reported from the HST High Resolution Spectrograph observations of absorption features of C IV and Si IV in the spectrum of the high-latitude O star HD 93521 (l = 183 deg; b = 62 deg). A comparison of Si IV and C IV profiles showed that the FWHM of both features is about 50 km/sec, in contrast to the 7 km/sec found for one of the several S II features. The line centers for C IV and Si IV are at v = -67 km/sec and -60 km/sec, respectively. As the interval velocity decreases from 90 to 50 km/sec, the Si IV/C IV ratio of the column density per unit velocity interval increases from about 0.2 to 0.4. The result is qualitatively consistent with a fountain model of Shapiro and Benjamin (1991) if the slower gas has cooled and recombined more than the faster gas.
In vivo imaging of cortical pathology in multiple sclerosis using ultra-high field MRI
Mainero, C; Benner, T; Radding, A; van der Kouwe, A; Jensen, R; Rosen, B R.; Kinkel, R P.
2009-01-01
Objective: We used ultra-high field MRI to visualize cortical lesion types described by neuropathology in 16 patients with multiple sclerosis (MS) compared with 8 age-matched controls; to characterize the contrast properties of cortical lesions including T2*, T2, T1, and phase images; and to investigate the relationship between cortical lesion types and clinical data. Methods: We collected, on a 7-T scanner, 2-dimensional fast low-angle shot (FLASH)-T2*-weighted spoiled gradient-echo, T2-weighted turbo spin-echo (TSE) images (0.33 × 033 × 1 mm3), and a 3-dimensional magnetization-prepared rapid gradient echo. Results: Overall, 199 cortical lesions were detected in patients on both FLASH-T2* and T2-TSE scans. Seven-tesla MRI allowed for characterization of cortical plaques into type I (leukocortical), type II (intracortical), and type III/IV (subpial extending partly or completely through the cortical width) lesions as described histopathologically. Types III and IV were the most frequent type of cortical plaques (50.2%), followed by type I (36.2%) and type II (13.6%) lesions. Each lesion type was more frequent in secondary progressive than in relapsing–remitting MS. This difference, however, was significant only for type III/IV lesions. T2*-weighted images showed the highest, while phase images showed the lowest, contrast-to-noise ratio for all cortical lesion types. In patients, the number of type III/IV lesions was associated with greater disability (p < 0.02 by Spearman test) and older age (p < 0.04 by Spearman test). Conclusions: Seven-tesla MRI detected different histologic cortical lesion types in our small multiple sclerosis (MS) sample, suggesting, if validated in a larger population, that it may prove a valuable tool to assess the contribution of cortical MS pathology to clinical disability. GLOSSARY ANOVA = analysis of variance; BN = background noise; CNR = contrast-to-noise ratio; DIR = double-inversion recovery; EDSS = Expanded Disability Status Scale; FLAIR = fluid-attenuated inversion recovery; FLASH = fast low-angle shot; GM = gray matter; MPRAGE = magnetization-prepared rapid gradient echo; MR = magnetic resonance; MS = multiple sclerosis; NACGM = normal-appearing cortical gray matter; RF = radiofrequency; ROI = region of interest; RRMS = relapsing–remitting multiple sclerosis; SNR = signal-to-noise ratio; SPMS = secondary progressive multiple sclerosis; TA = time of acquisition; TE = echo time; TR = repetition time; TSE = turbo spin-echo; WM = white matter. PMID:19641168
Inoue, Yuji; Yoneyama, Masami; Nakamura, Masanobu; Ozaki, Satoshi; Ito, Kenjiro; Hiura, Mikio
2012-01-01
Vulnerable plaque can be attributed to induction of ischemic symptoms and magnetic resonance imaging of carotid artery is valuable to detect the plaque. Magnetization prepared rapid acquisition with gradient echo (MPRAGE) method could detect hemorrhagic vulnerable plaque as high intensity signal; however, blood flow is not sufficiently masked by this method. The contrast for plaque in T
Perception of echo delay is disrupted by small temporal misalignment of echo harmonics in bat sonar
Bates, Mary E.; Simmons, James A.
2011-01-01
Echolocating big brown bats emit ultrasonic frequency-modulated (FM) biosonar sounds containing two prominent downward-sweeping harmonics (FM1 and FM2) and perceive target distance from echo delay. In naturally occurring echoes, FM1 and FM2 are delayed by the same amount. Even though echoes from targets located off-axis or far away are lowpass filtered, which weakens FM2 relative to FM1, their delays remain the same. We show here that misalignment of FM2 with FM1 by only 2.6 μs is sufficient to significantly disrupt acuity, which then persists for larger misalignments up to 300 μs. However, when FM2 is eliminated entirely rather than just misaligned, acuity is effectively restored. For naturally occurring, lowpass-filtered echoes, neuronal responses to weakened FM2 are retarded relative to FM1 because of amplitude-latency trading, which misaligns the harmonics in the bat's internal auditory representations. Electronically delaying FM2 relative to FM1 mimics the retarded neuronal responses for FM2 relative to FM1 caused by amplitude-latency trading. Echoes with either electronically or physiologically misaligned harmonics are not perceived as having a clearly defined delay. This virtual collapse of delay acuity may suppress interference from off-axis or distant clutter through degradation of delay images for clutter in contrast to sharp images for nearer, frontal targets. PMID:21228198
Perception of echo delay is disrupted by small temporal misalignment of echo harmonics in bat sonar.
Bates, Mary E; Simmons, James A
2011-02-01
Echolocating big brown bats emit ultrasonic frequency-modulated (FM) biosonar sounds containing two prominent downward-sweeping harmonics (FM1 and FM2) and perceive target distance from echo delay. In naturally occurring echoes, FM1 and FM2 are delayed by the same amount. Even though echoes from targets located off-axis or far away are lowpass filtered, which weakens FM2 relative to FM1, their delays remain the same. We show here that misalignment of FM2 with FM1 by only 2.6 μs is sufficient to significantly disrupt acuity, which then persists for larger misalignments up to 300 μs. However, when FM2 is eliminated entirely rather than just misaligned, acuity is effectively restored. For naturally occurring, lowpass-filtered echoes, neuronal responses to weakened FM2 are retarded relative to FM1 because of amplitude-latency trading, which misaligns the harmonics in the bat's internal auditory representations. Electronically delaying FM2 relative to FM1 mimics the retarded neuronal responses for FM2 relative to FM1 caused by amplitude-latency trading. Echoes with either electronically or physiologically misaligned harmonics are not perceived as having a clearly defined delay. This virtual collapse of delay acuity may suppress interference from off-axis or distant clutter through degradation of delay images for clutter in contrast to sharp images for nearer, frontal targets.
Kim, Yun Ju; Kang, Bong Joo; Park, Chang Suk; Kim, Hyeon Sook; Son, Yo Han; Porter, David Andrew; Song, Byung Joo
2014-01-01
Objective The purpose of this study was to compare the image quality of standard single-shot echo-planar imaging (ss-EPI) and that of readout-segmented EPI (rs-EPI) in patients with breast cancer. Materials and Methods Seventy-one patients with 74 breast cancers underwent both ss-EPI and rs-EPI. For qualitative comparison of image quality, three readers independently assessed the two sets of diffusion-weighted (DW) images. To evaluate geometric distortion, a comparison was made between lesion lengths derived from contrast enhanced MR (CE-MR) images and those obtained from the corresponding DW images. For assessment of image parameters, signal-to-noise ratio (SNR), lesion contrast, and contrast-to-noise ratio (CNR) were calculated. Results The rs-EPI was superior to ss-EPI in most criteria regarding the qualitative image quality. Anatomical structure distinction, delineation of the lesion, ghosting artifact, and overall image quality were significantly better in rs-EPI. Regarding the geometric distortion, lesion length on ss-EPI was significantly different from that of CE-MR, whereas there were no significant differences between CE-MR and rs-EPI. The rs-EPI was superior to ss-EPI in SNR and CNR. Conclusion Readout-segmented EPI is superior to ss-EPI in the aspect of image quality in DW MR imaging of the breast. PMID:25053898
A 2D spiral turbo-spin-echo technique.
Li, Zhiqiang; Karis, John P; Pipe, James G
2018-03-09
2D turbo-spin-echo (TSE) is widely used in the clinic for neuroimaging. However, the long refocusing radiofrequency pulse train leads to high specific absorption rate (SAR) and alters the contrast compared to conventional spin-echo. The purpose of this work is to develop a robust 2D spiral TSE technique for fast T 2 -weighted imaging with low SAR and improved contrast. A spiral-in/out readout is incorporated into 2D TSE to fully take advantage of the acquisition efficiency of spiral sampling while avoiding potential off-resonance-related artifacts compared to a typical spiral-out readout. A double encoding strategy and a signal demodulation method are proposed to mitigate the artifacts because of the T 2 -decay-induced signal variation. An adapted prescan phase correction as well as a concomitant phase compensation technique are implemented to minimize the phase errors. Phantom data demonstrate the efficacy of the proposed double encoding/signal demodulation, as well as the prescan phase correction and concomitant phase compensation. Volunteer data show that the proposed 2D spiral TSE achieves fast scan speed with high SNR, low SAR, and improved contrast compared to conventional Cartesian TSE. A robust 2D spiral TSE technique is feasible and provides a potential alternative to conventional 2D Cartesian TSE for T 2 -weighted neuroimaging. © 2018 International Society for Magnetic Resonance in Medicine.
Pumphrey, Ashley; Yang, Zhengshi; Ye, Shaojing; Powell, David K.; Thalman, Scott; Watt, David S.; Abdel-Latif, Ahmed; Unrine, Jason; Thompson, Katherine; Fornwalt, Brandon; Ferrauto, Giuseppe; Vandsburger, Moriel
2016-01-01
An improved pre-clinical cardiac chemical exchange saturation transfer (CEST) pulse sequence (cardioCEST) was used to selectively visualize paramagnetic CEST (paraCEST)-labeled cells following intramyocardial implantation. In addition, cardioCEST was used to examine the effect of diet-induced obesity upon myocardial creatine CEST contrast. CEST pulse sequences were designed from standard turbo-spin-echo and gradient-echo sequences, and a cardiorespiratory-gated steady-state cine gradient-echo sequence. In vitro validation studies performed in phantoms composed of 20mM Eu-HPDO3A, 20mM Yb-HPDO3A, or saline demonstrated similar CEST contrast by spin-echo and gradient-echo pulse sequences. Skeletal myoblast cells (C2C12) were labeled with either Eu-HPDO3A or saline using a hypotonic swelling procedure and implanted into the myocardium of C57B6/J mice. Inductively coupled plasma mass spectrometry confirmed cellular levels of Eu of 2.1 × 10−3 ng/cell in Eu-HPDO3A-labeled cells and 2.3 × 10−5 ng/cell in saline-labeled cells. In vivo cardioCEST imaging of labeled cells at ±15ppm was performed 24 h after implantation and revealed significantly elevated asymmetric magnetization transfer ratio values in regions of Eu-HPDO3A-labeled cells when compared with surrounding myocardium or saline-labeled cells. We further utilized the cardioCEST pulse sequence to examine changes in myocardial creatine in response to diet-induced obesity by acquiring pairs of cardioCEST images at ±1.8 ppm. While ventricular geometry and function were unchanged between mice fed either a high-fat diet or a corresponding control low-fat diet for 14 weeks, myocardial creatine CEST contrast was significantly reduced in mice fed the high-fat diet. The selective visualization of paraCEST-labeled cells using cardioCEST imaging can enable investigation of cell fate processes in cardioregenerative medicine, or multiplex imaging of cell survival with imaging of cardiac structure and function and additional imaging of myocardial creatine. PMID:26684053
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nosrati, R; Sunnybrook Health Sciences Centre, Toronto, Ontario; Soliman, A
Purpose: This study aims at developing an MRI-only workflow for post-implant dosimetry of the prostate LDR brachytherapy seeds. The specific goal here is to develop a post-processing algorithm to produce positive contrast for the seeds and prostatic calcifications and differentiate between them on MR images. Methods: An agar-based phantom incorporating four dummy seeds (I-125) and five calcifications of different sizes (from sheep cortical bone) was constructed. Seeds were placed arbitrarily in the coronal plane. The phantom was scanned with 3T Philips Achieva MR scanner using an 8-channel head coil array. Multi-echo turbo spin echo (ME-TSE) and multi-echo gradient recalled echomore » (ME-GRE) sequences were acquired. Due to minimal susceptibility artifacts around seeds, ME-GRE sequence (flip angle=15; TR/TE=20/2.3/2.3; resolution=0.7×0.7×2mm3) was further processed.The induced field inhomogeneity due to the presence of titaniumencapsulated seeds was corrected using a B0 field map. B0 map was calculated using the ME-GRE sequence by calculating the phase difference at two different echo times. Initially, the product of the first echo and B0 map was calculated. The features corresponding to the seeds were then extracted in three steps: 1) the edge pixels were isolated using “Prewitt” operator; 2) the Hough transform was employed to detect ellipses approximately matching the dimensions of the seeds and 3) at the position and orientation of the detected ellipses an ellipse was drawn on the B0-corrected image. Results: The proposed B0-correction process produced positive contrast for the seeds and calcifications. The Hough transform based on Prewitt edge operator successfully identified all the seeds according to their ellipsoidal shape and dimensions in the edge image. Conclusion: The proposed post-processing algorithm successfully visualized the seeds and calcifications with positive contrast and differentiates between them according to their shapes. Further assessments on more realistic phantoms and patient study are required to validate the outcome.« less
Characterization of D-maltose as a T2 -exchange contrast agent for dynamic contrast-enhanced MRI.
Goldenberg, Joshua M; Pagel, Mark D; Cárdenas-Rodríguez, Julio
2018-09-01
We sought to investigate the potential of D-maltose, D-sorbitol, and D-mannitol as T 2 exchange magnetic resonance imaging (MRI) contrast agents. We also sought to compare the in vivo pharmacokinetics of D-maltose with D-glucose with dynamic contrast enhancement (DCE) MRI. T 1 and T 2 relaxation time constants of the saccharides were measured using eight pH values and nine concentrations. The effect of echo spacing in a multiecho acquisition sequence used for the T 2 measurement was evaluated for all samples. Finally, performances of D-maltose and D-glucose during T 2 -weighted DCE-MRI were compared in vivo. Estimated T 2 relaxivities (r 2 ) of D-glucose and D-maltose were highly and nonlinearly dependent on pH and echo spacing, reaching their maximum at pH = 7.0 (∼0.08 mM -1 s -1 ). The r 2 values of D-sorbitol and D-mannitol were estimated to be ∼0.02 mM -1 s -1 and were invariant to pH and echo spacing for pH ≤7.0. The change in T 2 in tumor and muscle tissues remained constant after administration of D-maltose, whereas the change in T 2 decreased in tumor and muscle after administration of D-glucose. Therefore, D-maltose has a longer time window for T 2 -weighted DCE-MRI in tumors. We have demonstrated that D-maltose can be used as a T 2 exchange MRI contrast agent. The larger, sustained T 2 -weighted contrast from D-maltose relative to D-glucose has practical advantages for tumor diagnoses during T 2 -weighted DCE-MRI. Magn Reson Med 80:1158-1164, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.
Onishi, Natsuko; Kataoka, Masako; Kanao, Shotaro; Sagawa, Hajime; Iima, Mami; Nickel, Marcel Dominik; Toi, Masakazu; Togashi, Kaori
2018-01-01
To evaluate the feasibility of ultrafast dynamic contrast-enhanced (UF-DCE) magnetic resonance imaging (MRI) with compressed sensing (CS) for the separate identification of breast arteries/veins and perform temporal evaluations of breast arteries and veins with a focus on the association with ipsilateral cancers. Our Institutional Review Board approved this study with retrospective design. Twenty-five female patients who underwent UF-DCE MRI at 3T were included. UF-DCE MRI consisting of 20 continuous frames was acquired using a prototype 3D gradient-echo volumetric interpolated breath-hold sequence including a CS reconstruction: temporal resolution, 3.65 sec/frame; spatial resolution, 0.9 × 1.3 × 2.5 mm. Two readers analyzed 19 maximum intensity projection images reconstructed from subtracted images, separately identified breast arteries/veins and the earliest frame in which they were respectively visualized, and calculated the time interval between arterial and venous visualization (A-V interval) for each breast. In total, 49 breasts including 31 lesions (breast cancer, 16; benign lesion, 15) were identified. In 39 of the 49 breasts (breasts with cancers, 16; breasts with benign lesions, 10; breasts with no lesions, 13), both breast arteries and veins were separately identified. The A-V intervals for breasts with cancers were significantly shorter than those for breasts with benign lesions (P = 0.043) and no lesions (P = 0.007). UF-DCE MRI using CS enables the separate identification of breast arteries/veins. Temporal evaluations calculating the time interval between arterial and venous visualization might be helpful in the differentiation of ipsilateral breast cancers from benign lesions. 3 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:97-104. © 2017 International Society for Magnetic Resonance in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Leary, D.W.
1989-03-01
The US Geological Survey's remote sensing instrument for regional imaging of the deep sea floor (> 400 m water depth) is the GLORIA (Geologic Long-Range Inclined Asdic) sidescan sonar system, designed and operated by the British Institute of Oceanographic Sciences. A 30-sec sweep rate provides for a swath width of approximately 45 km, depending on water depth. The return signal is digitally recorded as 8 bit data to provide a cross-range pixel dimension of 50 m. Postcruise image processing is carried out by using USGS software. Processing includes precision water-column removal, geometric and radiometric corrections, and contrast enhancement. Mosaicking includesmore » map grid fitting, concatenation, and tone matching. Seismic reflection profiles, acquired along track during the survey, are image correlative and provide a subsurface dimension unique to marine remote sensing. Generally GLORIA image interpretation is based on brightness variations which are largely a function of (1) surface roughness at a scale of approximately 1 m and (2) slope changes of more than about 4/degrees/ over distances of at least 50 m. Broader, low-frequency changes in slope that cannot be detected from the Gloria data can be determined from seismic profiles. Digital files of bathymetry derived from echo-sounder data can be merged with GLORIA image data to create relief models of the sea floor for geomorphic interpretation of regional slope effects.« less
Hamaguchi, Y; Hamaguchi, M S
1990-06-01
An increase in intracellular Ca2+ concentration ([Ca2+]) and morphological were simultaneously observed by epifluorescence and differential interference contrast (DIC) microscopy during fertilization of the sand dollar, Clypeaster japonicus. [Ca2+], which was detected by a Ca2+ indicator, Fluo-3, initially increased just beneath the sperm-attached site on the egg surface 8.6 sec after attachment. The increase spread into the egg as a concentric sphere to the egg center and, thereafter, propagated in the egg cytoplasm as a planar wave rather than a spherical wave. It reached the site opposite the initiation site across the egg 24.2 sec after initiation. The fertilization envelope (FE) began to elevate 10.3 sec after the initiation of the increase in [Ca2+] and 21.2 sec after sperm attachment.
Li, Z; Hu, H H; Miller, J H; Karis, J P; Cornejo, P; Wang, D; Pipe, J G
2016-04-01
A challenge with the T1-weighted postcontrast Cartesian spin-echo and turbo spin-echo brain MR imaging is the presence of flow artifacts. Our aim was to develop a rapid 2D spiral spin-echo sequence for T1-weighted MR imaging with minimal flow artifacts and to compare it with a conventional Cartesian 2D turbo spin-echo sequence. T1-weighted brain imaging was performed in 24 pediatric patients. After the administration of intravenous gadolinium contrast agent, a reference Cartesian TSE sequence with a scanning time of 2 minutes 30 seconds was performed, followed by the proposed spiral spin-echo sequence with a scanning time of 1 minutes 18 seconds, with similar spatial resolution and volumetric coverage. The results were reviewed independently and blindly by 3 neuroradiologists. Scores from a 3-point scale were assigned in 3 categories: flow artifact reduction, subjective preference, and lesion conspicuity, if any. The Wilcoxon signed rank test was performed to evaluate the reviewer scores. The t test was used to evaluate the SNR. The Fleiss κ coefficient was calculated to examine interreader agreement. In 23 cases, spiral spin-echo was scored over Cartesian TSE in flow artifact reduction (P < .001). In 21 cases, spiral spin-echo was rated superior in subjective preference (P < .001). Ten patients were identified with lesions, and no statistically significant difference in lesion conspicuity was observed between the 2 sequences. There was no statistically significant difference in SNR between the 2 techniques. The Fleiss κ coefficient was 0.79 (95% confidence interval, 0.65-0.93). The proposed spiral spin-echo pulse sequence provides postcontrast images with minimal flow artifacts at a faster scanning time than its Cartesian TSE counterpart. © 2016 by American Journal of Neuroradiology.
Cardiovascular magnetic resonance physics for clinicians: part II
2012-01-01
This is the second of two reviews that is intended to cover the essential aspects of cardiovascular magnetic resonance (CMR) physics in a way that is understandable and relevant to clinicians using CMR in their daily practice. Starting with the basic pulse sequences and contrast mechanisms described in part I, it briefly discusses further approaches to accelerate image acquisition. It then continues by showing in detail how the contrast behaviour of black blood fast spin echo and bright blood cine gradient echo techniques can be modified by adding rf preparation pulses to derive a number of more specialised pulse sequences. The simplest examples described include T2-weighted oedema imaging, fat suppression and myocardial tagging cine pulse sequences. Two further important derivatives of the gradient echo pulse sequence, obtained by adding preparation pulses, are used in combination with the administration of a gadolinium-based contrast agent for myocardial perfusion imaging and the assessment of myocardial tissue viability using a late gadolinium enhancement (LGE) technique. These two imaging techniques are discussed in more detail, outlining the basic principles of each pulse sequence, the practical steps required to achieve the best results in a clinical setting and, in the case of perfusion, explaining some of the factors that influence current approaches to perfusion image analysis. The key principles of contrast-enhanced magnetic resonance angiography (CE-MRA) are also explained in detail, especially focusing on timing of the acquisition following contrast agent bolus administration, and current approaches to achieving time resolved MRA. Alternative MRA techniques that do not require the use of an endogenous contrast agent are summarised, and the specialised pulse sequence used to image the coronary arteries, using respiratory navigator gating, is described in detail. The article concludes by explaining the principle behind phase contrast imaging techniques which create images that represent the phase of the MR signal rather than the magnitude. It is shown how this principle can be used to generate velocity maps by designing gradient waveforms that give rise to a relative phase change that is proportional to velocity. Choice of velocity encoding range and key pitfalls in the use of this technique are discussed. PMID:22995744
New Observations of Subarcsecond Photospheric Bright Points
NASA Technical Reports Server (NTRS)
Berger, T. E.; Schrijver, C. J.; Shine, R. A.; Tarbell, T. D.; Title, A. M.; Scharmer, G.
1995-01-01
We have used an interference filter centered at 4305 A within the bandhead of the CH radical (the 'G band') and real-time image selection at the Swedish Vacuum Solar Telescope on La Palma to produce very high contrast images of subarcsecond photospheric bright points at all locations on the solar disk. During the 6 day period of 15-20 Sept. 1993 we observed active region NOAA 7581 from its appearance on the East limb to a near-disk-center position on 20 Sept. A total of 1804 bright points were selected for analysis from the disk center image using feature extraction image processing techniques. The measured FWHM distribution of the bright points in the image is lognormal with a modal value of 220 km (0.30 sec) and an average value of 250 km (0.35 sec). The smallest measured bright point diameter is 120 km (0.17 sec) and the largest is 600 km (O.69 sec). Approximately 60% of the measured bright points are circular (eccentricity approx. 1.0), the average eccentricity is 1.5, and the maximum eccentricity corresponding to filigree in the image is 6.5. The peak contrast of the measured bright points is normally distributed. The contrast distribution variance is much greater than the measurement accuracy, indicating a large spread in intrinsic bright-point contrast. When referenced to an averaged 'quiet-Sun' area in the image, the modal contrast is 29% and the maximum value is 75%; when referenced to an average intergranular lane brightness in the image, the distribution has a modal value of 61% and a maximum of 119%. The bin-averaged contrast of G-band bright points is constant across the entire measured size range. The measured area of the bright points, corrected for pixelation and selection effects, covers about 1.8% of the total image area. Large pores and micropores occupy an additional 2% of the image area, implying a total area fraction of magnetic proxy features in the image of 3.8%. We discuss the implications of this area fraction measurement in the context of previously published measurements which show that typical active region plage has a magnetic filling factor on the order of 10% or greater. The results suggest that in the active region analyzed here, less than 50% of the small-scale magnetic flux tubes are demarcated by visible proxies such as bright points or pores.
Skinner, Jack T; Robison, Ryan K; Elder, Christopher P; Newton, Allen T; Damon, Bruce M; Quarles, C Chad
2014-12-01
Perfusion-based changes in MR signal intensity can occur in response to the introduction of exogenous contrast agents and endogenous tissue properties (e.g. blood oxygenation). MR measurements aimed at capturing these changes often implement single-shot echo planar imaging (ssEPI). In recent years ssEPI readouts have been combined with parallel imaging (PI) to allow fast dynamic multi-slice imaging as well as the incorporation of multiple echoes. A multiple spin- and gradient-echo (SAGE) EPI acquisition has recently been developed to allow measurement of transverse relaxation rate (R2 and R2(*)) changes in dynamic susceptibility contrast (DSC)-MRI experiments in the brain. With SAGE EPI, the use of PI can influence image quality, temporal resolution, and achievable echo times. The effect of PI on dynamic SAGE measurements, however, has not been evaluated. In this work, a SAGE EPI acquisition utilizing SENSE PI and partial Fourier (PF) acceleration was developed and evaluated. Voxel-wise measures of R2 and R2(*) in healthy brain were compared using SAGE EPI and conventional non-EPI multiple echo acquisitions with varying SENSE and PF acceleration. A conservative SENSE factor of 2 with PF factor of 0.73 was found to provide accurate measures of R2 and R2(*) in white (WM) (rR2=[0.55-0.79], rR2*=[0.47-0.71]) and gray (GM) matter (rR2=[0.26-0.59], rR2*=[0.39-0.74]) across subjects. The combined use of SENSE and PF allowed the first dynamic SAGE EPI measurements in muscle, with a SENSE factor of 3 and PF factor of 0.6 providing reliable relaxation rate estimates when compared to multi-echo methods. Application of the optimized SAGE protocol in DSC-MRI of high-grade glioma patients provided T1 leakage-corrected estimates of CBV and CBF as well as mean vessel diameter (mVD) and simultaneous measures of DCE-MRI parameters K(trans) and ve. Likewise, application of SAGE in a muscle reperfusion model allowed dynamic measures of R2', a parameter that has been shown to correlate with muscle oxy-hemoglobin saturation. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lamarche, Leslie J.; Makarevich, Roman A.
2017-03-01
We present observations of plasma density gradients, electric fields, and small-scale plasma irregularities near a polar cap patch made by the Super Dual Auroral Radar Network radar at Rankin Inlet (RKN) and the northern face of Resolute Bay Incoherent Scatter Radar (RISR-N). RKN echo power and occurrence are analyzed in the context of gradient-drift instability (GDI) theory, with a particular focus on the previously uninvestigated 2-D dependencies on wave propagation, electric field, and gradient vectors, with the latter two quantities evaluated directly from RISR-N measurements. It is shown that higher gradient and electric field components along the wave vector generally lead to the higher observed echo occurrence, which is consistent with the expected higher GDI growth rate, but the relationship with echo power is far less straightforward. The RKN echo power increases monotonically as the predicted linear growth rate approaches zero from negative values but does not continue this trend into positive growth rate values, in contrast with GDI predictions. The observed greater consistency of echo occurrence with GDI predictions suggests that GDI operating in the linear regime can control basic plasma structuring, but measured echo strength may be affected by other processes and factors, such as multistep or nonlinear processes or a shear-driven instability.
Fully phase-encoded MRI near metallic implants using ultrashort echo times and broadband excitation.
Wiens, Curtis N; Artz, Nathan S; Jang, Hyungseok; McMillan, Alan B; Koch, Kevin M; Reeder, Scott B
2018-04-01
To develop a fully phase-encoded MRI method for distortion-free imaging near metallic implants, in clinically feasible acquisition times. An accelerated 3D fully phase-encoded acquisition with broadband excitation and ultrashort echo times is presented, which uses a broadband radiofrequency pulse to excite the entire off-resonance induced by the metallic implant. Furthermore, fully phase-encoded imaging is used to prevent distortions caused by frequency encoding, and to obtain ultrashort echo times for rapidly decaying signal. Phantom and in vivo acquisitions were used to describe the relationship among excitation bandwidth, signal loss near metallic implants, and T 1 weighting. Shorter radiofrequency pulses captured signal closer to the implant by improving spectral coverage and allowing shorter echo times, whereas longer pulses improved T 1 weighting through larger maximum attainable flip angles. Comparisons of fully phase-encoded acquisition with broadband excitation and ultrashort echo times to T 1 -weighted multi-acquisition with variable resonance image combination selective were performed in phantoms and subjects with metallic knee and hip prostheses. These acquisitions had similar contrast and acquisition efficiency. Accelerated fully phase-encoded acquisitions with ultrashort echo times and broadband excitation can generate distortion free images near metallic implants in clinically feasible acquisition times. Magn Reson Med 79:2156-2163, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Fully Phase-Encoded MRI Near Metallic Implants Using Ultrashort Echo Times and Broadband Excitation
Wiens, Curtis N.; Artz, Nathan S.; Jang, Hyungseok; McMillan, Alan B.; Koch, Kevin M.; Reeder, Scott B.
2017-01-01
Purpose To develop a fully phase-encoded MRI method for distortion-free imaging near metallic implants, in clinically feasible acquisition times. Theory and Methods An accelerated 3D fully phase-encoded acquisition with broadband excitation and ultrashort echo times is presented, which uses a broadband radiofrequency pulse to excite the entire off-resonance induced by the metallic implant. Furthermore, fully phase-encoded imaging is used to prevent distortions caused by frequency encoding, and to obtain ultrashort echo times for rapidly decaying signal. Results Phantom and in vivo acquisitions were used to describe the relationship among excitation bandwidth, signal loss near metallic implants, and T1 weighting. Shorter radiofrequency pulses captured signal closer to the implant by improving spectral coverage and allowing shorter echo times, whereas longer pulses improved T1 weighting through larger maximum attainable flip angles. Comparisons of fully phase-encoded acquisition with broadband excitation and ultrashort echo times to T1-weighted multi-acquisition with variable resonance image combination selective were performed in phantoms and subjects with metallic knee and hip prostheses. These acquisitions had similar contrast and acquisition efficiency. Conclusions Accelerated fully phase-encoded acquisitions with ultrashort echo times and broadband excitation can generate distortion free images near metallic implants in clinically feasible acquisition times. Magn Reson Med 000:000–000, 2017. PMID:28833407
Kuhn, Matthew J; Picozzi, Piero; Maldjian, Joseph A; Schmalfuss, Ilona M; Maravilla, Kenneth R; Bowen, Brian C; Wippold, Franz J; Runge, Val M; Knopp, Michael V; Wolansky, Leo J; Gustafsson, Lars; Essig, Marco; Anzalone, Nicoletta
2007-04-01
The goal in this article was to compare 0.1 mmol/kg doses of gadobenate dimeglumine (Gd-BOPTA) and gadopentetate dimeglumine, also known as gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA), for enhanced magnetic resonance (MR) imaging of intraaxial brain tumors. Eighty-four patients with either intraaxial glioma (47 patients) or metastasis (37 patients) underwent two MR imaging examinations at 1.5 tesla, one with Gd-BOPTA as the contrast agent and the other with Gd-DTPA. The interval between fully randomized contrast medium administrations was 2 to 7 days. The T1-weighted spin echo and T2-weighted fast spin echo images were acquired before administration of contrast agents and T1-weighted spin echo images were obtained after the agents were administered. Acquisition parameters and postinjection acquisition times were identical for the two examinations in each patient. Three experienced readers working in a fully blinded fashion independently evaluated all images for degree and quality of available information (lesion contrast enhancement, lesion border delineation, definition of disease extent, visualization of the lesion's internal structures, global diagnostic preference) and quantitative enhancement (that is, the extent of lesion enhancement after contrast agent administration compared with that seen before its administration [hereafter referred to as percent enhancement], lesion/brain ratio, and contrast/noise ratio). Differences were tested with the Wilcoxon signed-rank test. Reader agreement was assessed using kappa statistics. Significantly better diagnostic information/imaging performance (p < 0.0001, all readers) was obtained with Gd-BOPTA for all visualization end points. Global preference for images obtained with Gd-BOPTA was expressed for 42 (50%), 52 (61.9%), and 56 (66.7%) of 84 patients (readers 1, 2, and 3, respectively) compared with images obtained with Gd-DTPA contrast in four (4.8%), six (7.1%), and three (3.6%) of 84 patients. Similar differences were noted for all other visualization end points. Significantly greater quantitative contrast enhancement (p < 0.04) was noted after administration of Gd-BOPTA. Reader agreement was good (kappa > 0.4). Lesion visualization, delineation, definition, and contrast enhancement are significantly better after administration of 0.1 mmol/kg Gd-BOPTA, potentially allowing better surgical planning and follow up and improved disease management.
Combined Dynamic Contrast Enhanced Liver MRI and MRA Using Interleaved Variable Density Sampling
Rahimi, Mahdi Salmani; Korosec, Frank R.; Wang, Kang; Holmes, James H.; Motosugi, Utaroh; Bannas, Peter; Reeder, Scott B.
2014-01-01
Purpose To develop and evaluate a method for volumetric contrast-enhanced MR imaging of the liver, with high spatial and temporal resolutions, for combined dynamic imaging and MR angiography using a single injection of contrast. Methods An interleaved variable density (IVD) undersampling pattern was implemented in combination with a real-time-triggered, time-resolved, dual-echo 3D spoiled gradient echo sequence. Parallel imaging autocalibration lines were acquired only once during the first time-frame. Imaging was performed in ten subjects with focal nodular hyperplasia (FNH) and compared with their clinical MRI. The angiographic phase of the proposed method was compared to a dedicated MR angiogram acquired during a second injection of contrast. Results A total of 21 FNH, 3 cavernous hemangiomas, and 109 arterial segments were visualized in 10 subjects. The temporally-resolved images depicted the characteristic arterial enhancement pattern of the lesions with a 4 s update rate. Images were graded as having significantly higher quality compared to the clinical MRI. Angiograms produced from the IVD method provided non-inferior diagnostic assessment compared to the dedicated MRA. Conclusion Using an undersampled IVD imaging method, we have demonstrated the feasibility of obtaining high spatial and temporal resolution dynamic contrast-enhanced imaging and simultaneous MRA of the liver. PMID:24639130
Technical Note: Deep learning based MRAC using rapid ultra-short echo time imaging.
Jang, Hyungseok; Liu, Fang; Zhao, Gengyan; Bradshaw, Tyler; McMillan, Alan B
2018-05-15
In this study, we explore the feasibility of a novel framework for MR-based attenuation correction for PET/MR imaging based on deep learning via convolutional neural networks, which enables fully automated and robust estimation of a pseudo CT image based on ultrashort echo time (UTE), fat, and water images obtained by a rapid MR acquisition. MR images for MRAC are acquired using dual echo ramped hybrid encoding (dRHE), where both UTE and out-of-phase echo images are obtained within a short single acquisition (35 sec). Tissue labeling of air, soft tissue, and bone in the UTE image is accomplished via a deep learning network that was pre-trained with T1-weighted MR images. UTE images are used as input to the network, which was trained using labels derived from co-registered CT images. The tissue labels estimated by deep learning are refined by a conditional random field based correction. The soft tissue labels are further separated into fat and water components using the two-point Dixon method. The estimated bone, air, fat, and water images are then assigned appropriate Hounsfield units, resulting in a pseudo CT image for PET attenuation correction. To evaluate the proposed MRAC method, PET/MR imaging of the head was performed on 8 human subjects, where Dice similarity coefficients of the estimated tissue labels and relative PET errors were evaluated through comparison to a registered CT image. Dice coefficients for air (within the head), soft tissue, and bone labels were 0.76±0.03, 0.96±0.006, and 0.88±0.01. In PET quantification, the proposed MRAC method produced relative PET errors less than 1% within most brain regions. The proposed MRAC method utilizing deep learning with transfer learning and an efficient dRHE acquisition enables reliable PET quantification with accurate and rapid pseudo CT generation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
2010-01-01
Miniaturization has evolved in the creation of a pocket-size imaging device which can be utilized as an ultrasound stethoscope. This study assessed the additional diagnostic power of pocket size device by both experts operators and trainees in comparison with physical examination and its appropriateness of use in comparison with standard echo machine in a non-cardiologic population. Three hundred four consecutive non cardiologic outpatients underwent a sequential assessment including physical examination, pocket size imaging device and standard Doppler-echo exam. Pocket size device was used by both expert operators and trainees (who received specific training before the beginning of the study). All the operators were requested to give only visual, qualitative insights on specific issues. All standard Doppler-echo exams were performed by expert operators. One hundred two pocket size device exams were performed by experts and two hundred two by trainees. The time duration of the pocket size device exam was 304 ± 117 sec. Diagnosis of cardiac abnormalities was made in 38.2% of cases by physical examination and in 69.7% of cases by physical examination + pocket size device (additional diagnostic power = 31.5%, p < 0.0001). The overall K between pocket size device and standard Doppler-echo was 0.67 in the pooled population (0.84 by experts and 0.58 by trainees). K was suboptimal for trainees in the eyeball evaluation of ejection fraction, left atrial dilation and right ventricular dilation. Overall sensitivity was 91% and specificity 76%. Sensitivity and specificity were lower in trainees than in experts. In conclusion, pocket size device showed a relevant additional diagnostic value in comparison with physical examination. Sensitivity and specificity were good in experts and suboptimal in trainees. Specificity was particularly influenced by the level of experience. Training programs are needed for pocket size device users. PMID:21110840
Xie, Yibin; Yang, Qi; Xie, Guoxi; Pang, Jianing; Fan, Zhaoyang; Li, Debiao
2016-06-01
The purpose of this study was to develop a three-dimensional black blood imaging method for simultaneously evaluating the carotid and intracranial arterial vessel walls with high spatial resolution and excellent blood suppression with and without contrast enhancement. The delay alternating with nutation for tailored excitation (DANTE) preparation module was incorporated into three-dimensional variable flip angle turbo spin echo (SPACE) sequence to improve blood signal suppression. Simulations and phantom studies were performed to quantify image contrast variations induced by DANTE. DANTE-SPACE, SPACE, and two-dimensional turbo spin echo were compared for apparent signal-to-noise ratio, contrast-to-noise ratio, and morphometric measurements in 14 healthy subjects. Preliminary clinical validation was performed in six symptomatic patients. Apparent residual luminal blood was observed in five (pre-contrast) and nine (post-contrast) subjects with SPACE and only two (post-contrast) subjects with DANTE-SPACE. DANTE-SPACE showed 31% (pre-contrast) and 100% (post-contrast) improvement in wall-to-blood contrast-to-noise ratio over SPACE. Vessel wall area measured from SPACE was significantly larger than that from DANTE-SPACE due to possible residual blood signal contamination. DANTE-SPACE showed the potential to detect vessel wall dissection and identify plaque components in patients. DANTE-SPACE significantly improved arterial and venous blood suppression compared with SPACE. Simultaneous high-resolution carotid and intracranial vessel wall imaging to potentially identify plaque components was feasible with a scan time under 6 min. Magn Reson Med 75:2286-2294, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Kim, Y.; Kim, J.; Lee, C.; Jee, G.
2008-12-01
A VHF meteor radar at King Sejong Station (62°S, 58°W), Antarctica has been detecting echoes from more than 20,000 meteors per day since March 2007. Meteor echoes are decayed typically within seconds as meteor trail plasma spread away or are neutralized. Assuming that diffusion is the only process for decay of meteor echo signals, the atmospheric temperatures and pressures have been inferred from the measured meteor decay times at the peak meteor altitudes around 90 km. In this study, we analyze altitude profiles of meteor decay times in each month, which clearly show a maximum at 80 ~ 85 km. The maximum appears at higher altitude during austral summer than winter. The fast decay of meteor signals below the maximum cannot be explained by atmospheric diffusion which decreases with increasing atmospheric densities. We find that the measured meteor decay time profiles can be fitted with a loss rate profile, in addition to diffusion, with a peak altitude of 55 ~ 73 km and a peak rate of 4 ~ 15 sec- 1. The additional loss of meteor plasma may be due to electron absorption by icy particles in the mesosphere, but the estimated peak altitudes are much lower than the layers of NLC or PME. The estimated peak loss rates seem to be too large to be accounted by absorption by icy or dust particles. We will discuss other processes to explain the fast meteor times and their variation over season.
Chen, Yongsheng; Liu, Saifeng; Buch, Sagar; Hu, Jiani; Kang, Yan; Haacke, E Mark
2018-04-01
To image the entire vasculature of the brain with complete suppression of signal from background tissue using a single 3D excitation interleaved rephased/dephased multi-echo gradient echo sequence. This ensures no loss of signal from fast flow and provides co-registered susceptibility weighted images (SWI) and quantitative susceptibility maps (QSM) from the same scan. The suppression of background tissue was accomplished by subtracting the flow-dephased images from the flow-rephased images with the same echo time of 12.5ms to generate a magnetic resonance angiogram and venogram (MRAV). Further, a 2.5ms flow-compensated echo was added in the rephased portion to provide sufficient signal for major arteries with fast flow. The QSM data from the rephased 12.5ms echo was used to suppress veins on the MRAV to generate an artery-only MRA. The proposed approach was tested on five healthy volunteers at 3T. This three-echo interleaved GRE sequence provided complete background suppression of stationary tissues, while the short echo data gave high signal in the internal carotid and middle cerebral arteries (MCA). The contrast-to-noise ratio (CNR) of the arteries was significantly improved in the M3 territory of the MCA compared to the non-linear subtraction MRA and TOF-MRA. Veins were suppressed successfully utilizing the QSM data. The background tissue can be properly suppressed using the proposed interleaved MRAV sequence. One can obtain whole brain MRAV, MRA, SWI, true-SWI (or tSWI) and QSM data simultaneously from a single scan. Published by Elsevier Inc.
Snider, Gregg W.; Ruggles, Erik; Khan, Nadeem; Hondal, Robert J.
2013-01-01
Mammalian thioredoxin reductase (TR) is a selenocysteine (Sec)-containing homodimeric pyridine nucleotide oxidoreductase which catalyzes the reduction of oxidized thioredoxin. We have previously demonstrated the full-length mitochondrial mammalian TR (mTR3) enzyme to be resistant to inactivation from exposure to 50 mM H2O2. Because a Sec residue oxidizes more rapidly than a cysteine (Cys) residue, it has been previously thought that Sec-containing enzymes are “sensitive to oxidation” compared to Cys-orthologs. Here we show for the first time a direct comparison of the abilities of Sec-containing mTR3 and the Cys-ortholog from D. melanogaster (DmTR) to resist inactivation by oxidation from a variety of oxidants including H2O2, hydroxyl radical, peroxynitrite, hypochlorous acid, hypobromous acid, and hypothiocyanous acid. The results show that the Sec-containing TR is far superior to the Cys-ortholog TR in resisting inactivation by oxidation. To further test our hypothesis that the use of Sec confers strong resistance to inactivation by oxidation, we constructed a chimeric enzyme in which we replaced the active site Cys nucleophile of DmTR with a Sec residue using semisynthesis. The chimeric Sec-containing enzyme has similar ability to resist inactivation by oxidation as the wild type Sec-containing TR from mouse mitochondria. The use of Sec in the chimeric enzyme “rescued” the enzyme from oxidant-induced inactivation for all of the oxidants tested in this study, in direct contrast to previous understanding. We discuss two possibilities for this rescue effect from inactivation under identical conditions of oxidative stress: (i) Sec resists over-oxidation and inactivation, whereas a Cys residue can be permanently over-oxidized to the sulfinic acid form, and (ii) Sec protects the body of the enzyme from harmful oxidation by allowing the enzyme to metabolize (turnover) various oxidants much better than a Cys-containing TR. PMID:23865454
Sun, Yang; Zhao, Shukui; Dayton, Paul A; Ferrara, Katherine W
2006-06-01
Rayleigh-Plesset analysis, ultra-high speed photography, and single bubble acoustical recordings previously were applied independently to characterize the radial oscillation and resulting echoes from a microbubble in response to an ultrasonic pulse. In addition, high-speed photography has shown that microbubbles are destroyed over a single pulse or pulse train by diffusion and fragmentation. In order to develop a single model to characterize microbubble echoes based on oscillatory and destructive characteristics, an optical-acoustical system was developed to simultaneously record the optical image and backscattered echo from each microbubble. Combined observation provides the opportunity to compare predictions for oscillation and echoes with experimental results and identify discrepancies due to diffusion or fragmentation. Optimization of agents and insonating pulse parameters may be facilitated with this system. The mean correlation of the predicted and experimental radius-time curves and echoes exceeds 0.7 for the parameters studied here. An important application of this new system is to record and analyze microbubble response to a long pulse in which diffusion is shown to occur over the pulse duration. The microbubble response to an increasing or decreasing chirp is evaluated using this new tool. For chirp insonation beginning with the lower center frequency, low-frequency modulation of the oscillation envelope was obvious. However, low-frequency modulation was not observed in the radial oscillation produced by decreasing chirp insonation. Comparison of the echoes from similar sized microbubbles following increasing and decreasing chirp insonation demonstrated that the echoes were not time-reversed replicas. Using a transmission pressure of 620 kPa, the -6 dB echo length was 0.9 and 1.1 micros for increasing and decreasing chirp insonation, respectively (P = 0.02). The mean power in the low-frequency portion of the echoes was 8 (mV)2 and 13 (mV)2 for increasing and decreasing chirp insonation, respectively (P = 0.01).
Sun, Yang; Zhao, Shukui; Dayton, Paul A.; Ferrara, Katherine W.
2006-01-01
Rayleigh-Plesset analysis, ultra-high speed photography, and single bubble acoustical recordings have previously been applied independently to characterize the radial oscillation and resulting echoes from a microbubble in response to an ultrasonic pulse. In addition, high speed photography has shown that microbubbles are destroyed over a single pulse or pulse train by diffusion and fragmentation. In order to develop a single model to characterize microbubble echoes based on oscillatory and destructive characteristics, an optical-acoustical system was developed to simultaneously record the optical image and backscattered echo from each microbubble. Combined observation provides the opportunity to compare predictions for oscillation and echoes with experimental results and identify discrepancies due to diffusion or fragmentation. Optimization of agents and insonating pulse parameters may be facilitated with this system. The mean correlation of the predicted and experimental radius-time curves and echoes exceeds 0.7 for the parameters studied here. An important application of this new system is to record and analyze microbubble response to a long pulse where diffusion is shown to occur over the pulse duration. The microbubble response to an increasing or decreasing chirp is evaluated using this new tool. For chirp insonation beginning with the lower center frequency, low frequency modulation of the oscillation envelope was obvious. However, low frequency modulation was not observed in the radial oscillation produced by decreasing chirp insonation. Comparison of the echoes from similar sized microbubbles following increasing and decreasing chirp insonation demonstrated that the echoes were not time-reversed replicas. Using a transmission pressure of 620 kPa, the −6 dB echo length was 0.9 and 1.1 μs for increasing and decreasing chirp insonation, respectively (P = 0.02). The mean power in the low frequency portion of the echoes was 8 (mV)2 and 13 (mV)2 for increasing and decreasing chirp insonation, respectively, (P = 0.01). PMID:16846145
GRE T2∗-Weighted MRI: Principles and Clinical Applications
Tang, Meng Yue; Chen, Tian Wu; Zhang, Xiao Ming; Huang, Xiao Hua
2014-01-01
The sequence of a multiecho gradient recalled echo (GRE) T2*-weighted imaging (T2*WI) is a relatively new magnetic resonance imaging (MRI) technique. In contrast to T2 relaxation, which acquires a spin echo signal, T2* relaxation acquires a gradient echo signal. The sequence of a GRE T2*WI requires high uniformity of the magnetic field. GRE T2*WI can detect the smallest changes in uniformity in the magnetic field and can improve the rate of small lesion detection. In addition, the T2* value can indirectly reflect changes in tissue biochemical components. Moreover, it can be used for the early diagnosis and quantitative diagnosis of some diseases. This paper reviews the principles and clinical applications as well as the advantages and disadvantages of GRE T2*WI. PMID:24987676
longitudinal space charge assisted echo seeding of a free electron laser
NASA Astrophysics Data System (ADS)
Hacker, Kirsten
2015-05-01
Seed lasers are employed to improve the temporal coherence of free-electron laser light. However, when seed pulses are short relative to the particle bunch, the noisy, temporally incoherent radiation from the un-seeded electrons can overwhelm the coherent, seeded radiation. In this paper a new seeding mechanism to improve the contrast between coherent and incoherent free electron laser radiation is employed together with a novel, simplified echo-seeding method. The concept relies on a combination of longitudinal space charge wakes and an echo-seeding technique to make a short, coherent pulse of FEL light together with noise background suppression. Several different simulation codes are used to illustrate the concept with conditions at the soft x-ray Free-electron LASer in Hamburg, FLASH. The impacts of coherent synchrotron radiation, intra beam scattering, and high peak current operation are investigated.
Kawaguchi, Kohei; Endo, Akinori; Fukushima, Toshiaki; Madoka, Yuka; Tanaka, Toshiaki; Komada, Masayuki
2018-05-15
Nascent cargo proteins in the endoplasmic reticulum are transported to the Golgi by COPII carriers. Typical COPII vesicles are 60-70 nm in diameter, and much larger macromolecules, such as procollagen, are transported by atypical large COPII carriers in mammalian cells. The formation of large COPII carriers is enhanced by Cul3 ubiquitin ligase, which mono-ubiquitinates Sec31A, a COPII coat protein. However, the deubiquitinating enzyme for Sec31A was unclear. Here, we show that the deubiquitinating enzyme USP8 interacts with and deubiquitinates Sec31A. The interaction was mediated by the adaptor protein STAM1. USP8 overexpression inhibited the formation of large COPII carriers. By contrast, USP8 knockdown caused the accumulation of COPII coat proteins around the cis-Golgi, promoted the intracellular trafficking of procollagen IV from the endoplasmic reticulum to the Golgi, and increased collagen IV secretion. We concluded that USP8 deubiquitinates Sec31A and inhibits the formation of large COPII carriers, thereby suppressing collagen IV secretion. Copyright © 2018 Elsevier Inc. All rights reserved.
Liu, Ying; Xu, Yi; Cheng, Wen; Liu, Xinghan
2016-01-01
The present study aimed to investigate the feasibility of applying contrast-enhanced ultrasonography (CEUS) imaging technology for distinguishing between benign and malignant endometrial lesions, and to screen markers that could be correlated with the pathological results. In this study, endometrial diseases were diagnosed by biopsy under hysteroscopy and CEUS examinations. The intensity and time parameters of the time-intensity curve (TIC) were analyzed. The mean arrival time (AT), time-to-peak (TTP), rise time (RT), washout half-time and clearance half-time of malignant lesions were shorter than those of benign lesions (P<0.05), whereas the average peak intensity (PI) and enhancement intensity (EI) of malignant lesions were higher than those of benign lesions (P<0.05). The receiver operating characteristic curve showed the following cut-off values: PI, 29.2 dB; EI, 21.35 dB; AT, 12.75 sec; TTP, 26.75 sec; RT, 13.2 sec; clearance half-time, 89.3 sec; and washout half-time, 75.45 sec. The lesions with PI, an EI higher than that of the cut-off and lesions with an AT, TTP, RT, half clearing time and washout half-time shorter than the cut-off were considered malignant. The TTP, RT and half clearing time were negatively correlated with microvessel density (MVD), i.e., MVD was higher when the TTP, RT and half clearing time were shorter. Overall, changes in the enhancement and clearing of lesions could be quantitatively analyzed by CEUS TIC and further discriminate benign from malignant lesions. In the present study, CEUS appeared to indirectly reflect blood vessel changes inside the lesions and provided a pre-operative non-invasive fast imaging method for the diagnosis of endometrial disease. PMID:27895728
Comprehensive MR imaging of acute gynecologic diseases.
Dohke, M; Watanabe, Y; Okumura, A; Amoh, Y; Hayashi, T; Yoshizako, T; Yasui, M; Nakashita, S; Nakanishi, J; Dodo, Y
2000-01-01
Rapid advances in techniques of magnetic resonance (MR) imaging have enabled diagnosis of acute gynecologic conditions, which are characterized by sudden onset of lower abdominal pain, fever, genital bleeding, intraperitoneal bleeding, or symptoms of shock. The chemical-selective fat-suppression technique not only helps establish the characteristics of lesions that contain fat components but also increases the conspicuity of inflammatory lesions. When a T2-weighted image is obtained with a very long effective echo time (>250 msec), even a small amount of ascites can be easily identified and the contrast between urine and complex fluid becomes more conspicuous. T2*-weighted images are useful for identification of hemorrhagic lesions by demonstrating deoxyhemoglobin and hemosiderin. Contrast material-enhanced dynamic subtraction MR imaging performed with a three-dimensional fast field-echo sequence and a rapid bolus injection of gadopentetate dimeglumine allows evaluation of lesion vascularity and the anatomic relationship between pelvic vessels and a lesion and allows identification of the bleeding point by demonstrating extravasation of contrast material. To optimize the MR imaging examination, attention should be given to the parameters of each pulse sequence and proper combination of the sequences.
On the analysis of time-of-flight spin-echo modulated dark-field imaging data
NASA Astrophysics Data System (ADS)
Sales, Morten; Plomp, Jeroen; Bouwman, Wim G.; Tremsin, Anton S.; Habicht, Klaus; Strobl, Markus
2017-06-01
Spin-Echo Modulated Small Angle Neutron Scattering with spatial resolution, i.e. quantitative Spin-Echo Dark Field Imaging, is an emerging technique coupling neutron imaging with spatially resolved quantitative small angle scattering information. However, the currently achieved relatively large modulation periods of the order of millimeters are superimposed to the images of the samples. So far this required an independent reduction and analyses of the image and scattering information encoded in the measured data and is involving extensive curve fitting routines. Apart from requiring a priori decisions potentially limiting the information content that is extractable also a straightforward judgment of the data quality and information content is hindered. In contrast we propose a significantly simplified routine directly applied to the measured data, which does not only allow an immediate first assessment of data quality and delaying decisions on potentially information content limiting further reduction steps to a later and better informed state, but also, as results suggest, generally better analyses. In addition the method enables to drop the spatial resolution detector requirement for non-spatially resolved Spin-Echo Modulated Small Angle Neutron Scattering.
Debunking in a world of tribes
Bessi, Alessandro; Del Vicario, Michela; Scala, Antonio; Caldarelli, Guido; Shekhtman, Louis; Havlin, Shlomo; Quattrociocchi, Walter
2017-01-01
Social media aggregate people around common interests eliciting collective framing of narratives and worldviews. However, in such a disintermediated environment misinformation is pervasive and attempts to debunk are often undertaken to contrast this trend. In this work, we examine the effectiveness of debunking on Facebook through a quantitative analysis of 54 million users over a time span of five years (Jan 2010, Dec 2014). In particular, we compare how users usually consuming proven (scientific) and unsubstantiated (conspiracy-like) information on Facebook US interact with specific debunking posts. Our findings confirm the existence of echo chambers where users interact primarily with either conspiracy-like or scientific pages. However, both groups interact similarly with the information within their echo chamber. Then, we measure how users from both echo chambers interacted with 50,220 debunking posts accounting for both users consumption patterns and the sentiment expressed in their comments. Sentiment analysis reveals a dominant negativity in the comments to debunking posts. Furthermore, such posts remain mainly confined to the scientific echo chamber. Only few conspiracy users engage with corrections and their liking and commenting rates on conspiracy posts increases after the interaction. PMID:28742163
Influence of Free Radicals on the Intrinsic MRI Relaxation Properties.
Tain, Rong-Wen; Scotti, Alessandro M; Li, Weiguo; Zhou, Xiaohong Joe; Cai, Kejia
2017-01-01
Free radicals are critical contributors in various conditions including normal aging, Alzheimer's disease, cancer, and diabetes. Currently there is no non-invasive approach to image tissue free radicals based on endogenous contrast due to their extremely short lifetimes and low in vivo concentrations. In this study we aim at characterizing the influence of free radicals on the MRI relaxation properties. Phantoms containing free radicals were created by treating egg white with various H 2 O 2 concentrations and scanned on a 9.4 T MRI scanner at room temperature. T 1 and T 2 relaxation maps were generated from data acquired with an inversion recovery sequence with varied inversion times and a multi-echo spin echo sequence with varied echo times (TEs), respectively. Results demonstrated that free radicals express a strong shortening effect on T 1 , which was proportional to the H 2 O 2 concentration, and a relatively small reduction in T 2 (<10%). Furthermore, the sensitivity of this approach in the detection of free radicals was estimated to be in the pM range that is within the physiological range of in vivo free radical expression. In conclusion, the free radicals show a strong paramagnetic effect that may be utilized as an endogenous MRI contrast for its non-invasive in vivo imaging.
Lebel, R Marc; Menon, Ravi S; Bowen, Chris V
2006-03-01
Magnetic resonance microscopy using magnetically labeled cells is an emerging discipline offering the potential for non-destructive studies targeting numerous cellular events in medical research. The present work develops a technique to quantify superparamagnetic iron-oxide (SPIO) loaded cells using fully balanced steady state free precession (b-SSFP) imaging. An analytic model based on phase cancellation was derived for a single particle and extended to predict mono-exponential decay versus echo time in the presence of multiple randomly distributed particles. Numerical models verified phase incoherence as the dominant contrast mechanism and evaluated the model using a full range of tissue decay rates, repetition times, and flip angles. Numerical simulations indicated a relaxation rate enhancement (DeltaR(2b)=0.412 gamma . LMD) proportional to LMD, the local magnetic dose (the additional sample magnetization due to the SPIO particles), a quantity related to the concentration of contrast agent. A phantom model of SPIO loaded cells showed excellent agreement with simulations, demonstrated comparable sensitivity to gradient echo DeltaR(*) (2) enhancements, and 14 times the sensitivity of spin echo DeltaR(2) measurements. We believe this model can be used to facilitate the generation of quantitative maps of targeted cell populations. Magn Reson Med, 2006. (c) 2006 Wiley-Liss, Inc.
Comparison of Echo and MRI in the Imaging Evaluation of Intracardiac Masses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gulati, G., E-mail: gulatigurpreet@rediffmail.com; Sharma, S.; Kothari, S.S.
We compared the efficacy of echocardiography (ECHO) and magnetic resonance imaging (MRI) for evaluating intracardiac masses. Over an 8-yr period, 28 patients, 21 males, 7 females, 16 days-60 years of age (mean 25 years) with a suspected intracardiac mass on ECHO (transthoracic in all; transesophageal in 9) underwent an MRI examination. Five patients had a contrast-enhanced MRI. ECHO and MRI were compared with respect to their technical adequacy, ability to detect and suggest the likely etiology of the mass, and provide additional information (masses not seen with the other technique, inflow or outflow obstruction, and intramural component of an intracavitarymore » mass). With MRI, the image morphology (including signal intensity changes on the various sequences) and extracardiac manifestations were also evaluated. The diagnosis was confirmed by histopathology in 18, surgical inspection in 4, by follow- up imaging on conservative management in 5, and by typical extracardiac manifestations of the disease in 1 patient.Fifteen (54%) patients had tumors (benign 12, malignant 3), 5 had a thrombus or hematoma, and 4 each had infective or vascular lesions. Thirty-four masses (13 in ventricle, 11 septal, 7 atrial, 2 on valve and 1 in pulmonary artery) were seen on MRI, 28 of which were detected by ECHO. Transthoracic ECHO (TTE) and MRI were technically optimal in 82% and 100% of cases, respectively. Nine patients needed an additional transesophageal ECHO (TEE). Overall, MRI showed a mass in all patients, whereas ECHO missed it in 2 cases. In cases with a mass on both modalities, MRI detected 4 additional masses not seen on ECHO. MRI suggested the etiology in 21 (75%) cases, while the same was possible with ECHO (TTE and TEE) in 8 (29%) cases. Intramural component, extension into the inflow or outflow, outflow tract obstruction, and associated pericardial or extracardiac masses were better depicted on MRI. We conclude that MRI is advantageous over a combination of TTE and TEE for the detection and complete morphological and functional evaluation (hemodynamic effects) of cardiac masses.« less
Tsui, Ho-Ching Tiffany; Keen, Susan K; Sham, Lok-To; Wayne, Kyle J; Winkler, Malcolm E
2011-01-01
The Sec translocase pathway is the major route for protein transport across and into the cytoplasmic membrane of bacteria. Previous studies reported that the SecA translocase ATP-binding subunit and the cell surface HtrA protease/chaperone formed a single microdomain, termed "ExPortal," in some species of ellipsoidal (ovococcus) Gram-positive bacteria, including Streptococcus pyogenes. To investigate the generality of microdomain formation, we determined the distribution of SecA and SecY by immunofluorescent microscopy in Streptococcus pneumoniae (pneumococcus), which is an ovococcus species evolutionarily distant from S. pyogenes. In the majority (≥ 75%) of exponentially growing cells, S. pneumoniae SecA (SecA (Spn)) and SecY (Spn) located dynamically in cells at different stages of division. In early divisional cells, both Sec subunits concentrated at equators, which are future sites of constriction. Further along in division, SecA(Spn) and SecY(Spn) remained localized at mid-cell septa. In late divisional cells, both Sec subunits were hemispherically distributed in the regions between septa and the future equators of dividing cells. In contrast, the HtrA (Spn) homologue localized to the equators and septa of most (> 90%) dividing cells, whereas the SrtA(Spn) sortase located over the surface of cells in no discernable pattern. This dynamic pattern of Sec distribution was not perturbed by the absence of flotillin family proteins, but was largely absent in most cells in early stationary phase and in cls mutants lacking cardiolipin synthase. These results do not support the existence of an ExPortal microdomain in S. pneumoniae. Instead, the localization of the pneumococcal Sec translocase depends on the stage of cell division and anionic phospholipid content. Two patterns of Sec translocase distribution, an ExPortal microdomain in certain ovococcus-shaped species like Streptococcus pyogenes and a spiral pattern in rod-shaped species like Bacillus subtilis, have been reported for Gram-positive bacteria. This study provides evidence for a third pattern of Sec localization in the ovococcus human pathogen Streptococcus pneumoniae. The SecA motor and SecY channel subunits of the Sec translocase localize dynamically to different places in the mid-cell region during the division cycle of exponentially growing, but not stationary-phase, S. pneumoniae. Unexpectedly, the S. pneumoniae HtrA (HtrA(Spn)) protease/chaperone principally localizes to cell equators and division septa. The coincident localization of SecA(Spn), SecY (Spn), and HtrA (Spn) to regions of peptidoglycan (PG) biosynthesis in unstressed, growing cells suggests that the pneumococcal Sec translocase directs assembly of the PG biosynthesis apparatus to regions where it is needed during division and that HtrA(Spn) may play a general role in quality control of proteins exported by the Sec translocase.
Cardiovascular magnetic resonance physics for clinicians: part I.
Ridgway, John P
2010-11-30
There are many excellent specialised texts and articles that describe the physical principles of cardiovascular magnetic resonance (CMR) techniques. There are also many texts written with the clinician in mind that provide an understandable, more general introduction to the basic physical principles of magnetic resonance (MR) techniques and applications. There are however very few texts or articles that attempt to provide a basic MR physics introduction that is tailored for clinicians using CMR in their daily practice. This is the first of two reviews that are intended to cover the essential aspects of CMR physics in a way that is understandable and relevant to this group. It begins by explaining the basic physical principles of MR, including a description of the main components of an MR imaging system and the three types of magnetic field that they generate. The origin and method of production of the MR signal in biological systems are explained, focusing in particular on the two tissue magnetisation relaxation properties (T1 and T2) that give rise to signal differences from tissues, showing how they can be exploited to generate image contrast for tissue characterisation. The method most commonly used to localise and encode MR signal echoes to form a cross sectional image is described, introducing the concept of k-space and showing how the MR signal data stored within it relates to properties within the reconstructed image. Before describing the CMR acquisition methods in detail, the basic spin echo and gradient pulse sequences are introduced, identifying the key parameters that influence image contrast, including appearances in the presence of flowing blood, resolution and image acquisition time. The main derivatives of these two pulse sequences used for cardiac imaging are then described in more detail. Two of the key requirements for CMR are the need for data acquisition first to be to be synchronised with the subject's ECG and to be fast enough for the subject to be able to hold their breath. Methods of ECG synchronisation using both triggering and retrospective gating approaches, and accelerated data acquisition using turbo or fast spin echo and gradient echo pulse sequences are therefore outlined in some detail. It is shown how double inversion black blood preparation combined with turbo or fast spin echo pulse sequences acquisition is used to achieve high quality anatomical imaging. For functional cardiac imaging using cine gradient echo pulse sequences two derivatives of the gradient echo pulse sequence; spoiled gradient echo and balanced steady state free precession (bSSFP) are compared. In each case key relevant imaging parameters and vendor-specific terms are defined and explained.
Cardiovascular magnetic resonance physics for clinicians: part I
2010-01-01
There are many excellent specialised texts and articles that describe the physical principles of cardiovascular magnetic resonance (CMR) techniques. There are also many texts written with the clinician in mind that provide an understandable, more general introduction to the basic physical principles of magnetic resonance (MR) techniques and applications. There are however very few texts or articles that attempt to provide a basic MR physics introduction that is tailored for clinicians using CMR in their daily practice. This is the first of two reviews that are intended to cover the essential aspects of CMR physics in a way that is understandable and relevant to this group. It begins by explaining the basic physical principles of MR, including a description of the main components of an MR imaging system and the three types of magnetic field that they generate. The origin and method of production of the MR signal in biological systems are explained, focusing in particular on the two tissue magnetisation relaxation properties (T1 and T2) that give rise to signal differences from tissues, showing how they can be exploited to generate image contrast for tissue characterisation. The method most commonly used to localise and encode MR signal echoes to form a cross sectional image is described, introducing the concept of k-space and showing how the MR signal data stored within it relates to properties within the reconstructed image. Before describing the CMR acquisition methods in detail, the basic spin echo and gradient pulse sequences are introduced, identifying the key parameters that influence image contrast, including appearances in the presence of flowing blood, resolution and image acquisition time. The main derivatives of these two pulse sequences used for cardiac imaging are then described in more detail. Two of the key requirements for CMR are the need for data acquisition first to be to be synchronised with the subject's ECG and to be fast enough for the subject to be able to hold their breath. Methods of ECG synchronisation using both triggering and retrospective gating approaches, and accelerated data acquisition using turbo or fast spin echo and gradient echo pulse sequences are therefore outlined in some detail. It is shown how double inversion black blood preparation combined with turbo or fast spin echo pulse sequences acquisition is used to achieve high quality anatomical imaging. For functional cardiac imaging using cine gradient echo pulse sequences two derivatives of the gradient echo pulse sequence; spoiled gradient echo and balanced steady state free precession (bSSFP) are compared. In each case key relevant imaging parameters and vendor-specific terms are defined and explained. PMID:21118531
Dele-Michael, Abiola O.; Fujikura, Kana; Devereux, Richard B; Islam, Fahmida; Hriljac, Ingrid; Wilson, Sean R.; Lin, Fay; Weinsaft, Jonathan W.
2014-01-01
Background Echocardiography (echo) quantified LV stroke volume (SV) is widely used to assess systolic performance after acute myocardial infarction (AMI). This study compared two common echo approaches – predicated on flow (Doppler) and linear chamber dimensions (Teichholz) – to volumetric SV and global infarct parameters quantified by cardiac magnetic resonance (CMR). Methods Multimodality imaging was performed as part of a post-AMI registry. For echo, SV was measured by Doppler and Teichholz methods. Cine-CMR was used for volumetric SV and LVEF quantification, and delayed-enhancement CMR for infarct size. Results 142 patients underwent same-day echo and CMR. On echo, mean SV by Teichholz (78±17ml) was slightly higher than Doppler (75±16ml; Δ=3±13ml, p=0.02). Compared to SV on CMR (78±18ml), mean difference by Teichholz (Δ=−0.2±14; p=0.89) was slightly smaller than Doppler (Δ−3±14; p=0.02) but limits of agreement were similar between CMR and echo methods (Teichholz: −28, 27 ml, Doppler: −31, 24ml). For Teichholz, differences with CMR SV were greatest among patients with anteroseptal or lateral wall hypokinesis (p<0.05). For Doppler, differences were associated with aortic valve abnormalities or root dilation (p=0.01). SV by both echo methods decreased stepwise in relation to global LV injury as assessed by CMR-quantified LVEF and infarct size (p<0.01). Conclusions Teichholz and Doppler calculated SV yield similar magnitude of agreement with CMR. Teichholz differences with CMR increase with septal or lateral wall contractile dysfunction, whereas Doppler yields increased offsets in patients with aortic remodeling. PMID:23488864
NASA Astrophysics Data System (ADS)
Hacker, Kirsten
2014-09-01
Seed lasers are employed to improve the temporal coherence of free-electron laser (FEL) light. However, when these seed pulses are short relative to the particle bunch, the noisy, temporally incoherent radiation from the unseeded electrons can overwhelm the coherent, seeded radiation. In this paper, a technique to seed a particle bunch with an external laser is presented in which a new mechanism to improve the contrast between coherent and incoherent free electron laser radiation is employed together with a novel, simplified echo-seeding method. The concept relies on a combination of longitudinal space charge wakes and an echo-seeding technique to make a short, coherent pulse of FEL light together with noise background suppression. Several different simulation codes are used to illustrate the concept with conditions at the soft x-ray free-electron laser in Hamburg, FLASH.
The Balloon-Borne Exoplanet Experiment (EchoBeach)
NASA Astrophysics Data System (ADS)
Pascale, E.
2013-09-01
The Balloon-Borne Exoplanet Experiment (EchoBeach) is a proposed sub-orbital spectroscopic instrument. Its primary scientific goal is to detect and characterize the atmospheres of transiting exoplanets in the Mid-IR part of the electromagnetic spectrum from 4 to 20 μm using a 1.6m diameter telescope. It is in this wavelength range where the contrast between the star and planet emission grows exponentially, and this spectral region is key to answering important questions about the existence and composition of exp-atmospheres. Due to the Earth atmospheric absorption and emission, bservations at these wavelength are impossible from the ground or even at aircraft altitudes, but become available to balloon-born instrumentation flying in the upper stratosphere. At present we have high fidelity Mid-IR spectra of just two exoplanets of any type. EchoBeach can greatly improve on this by observing a multitude of transiting exoplanets, well in advance of any planned space-mission.
New Observations of Subarcsecond Photospheric Bright Points
NASA Technical Reports Server (NTRS)
Berger, T. E.; Schrijver, C. J.; Shine, R. A.; Tarbell, T. D.; Title, A. M.; Scharmer, G.
1995-01-01
We have used an interference filter centered at 4305 A within the bandhead of the CH radical (the 'G band') and real-time image selection at the Swedish Vacuum Solar Telescope on La Palma to produce very high contrast images of subarcsecond photospheric bright points at all locations on the solar disk. During the 6 day period of 1993 September 15-20 we observed active region NOAA 7581 from its appearance on the East limb to a near-disk-center position on September 20. A total of 1804 bright points were selected for analysis from the disk center image using feature extraction image processing techniques. The measured Full Width at Half Maximum (FWHM) distribution of the bright points in the image is lognormal with a modal value of 220 km (0 sec .30) and an average value of 250 km (0 sec .35). The smallest measured bright point diameter is 120 km (0 sec .17) and the largest is 600 km (O sec .69). Approximately 60% of the measured bright points are circular (eccentricity approx. 1.0), the average eccentricity is 1.5, and the maximum eccentricity corresponding to filigree in the image is 6.5. The peak contrast of the measured bright points is normally distributed. The contrast distribution variance is much greater than the measurement accuracy, indicating a large spread in intrinsic bright-point contrast. When referenced to an averaged 'quiet-Sun' area in the image, the modal contrast is 29% and the maximum value is 75%; when referenced to an average intergranular lane brightness in the image, the distribution has a modal value of 61% and a maximum of 119%. The bin-averaged contrast of G-band bright points is constant across the entire measured size range. The measured area of the bright points, corrected for pixelation and selection effects, covers about 1.8% of the total image area. Large pores and micropores occupy an additional 2% of the image area, implying a total area fraction of magnetic proxy features in the image of 3.8%. We discuss the implications of this area fraction measurement in the context of previously published measurements which show that typical active region plage has a magnetic filling factor on the order of 10% or greater. The results suggest that in the active region analyzed here, less than 50% of the small-scale magnetic flux tubes are demarcated by visible proxies such as bright points or pores.
Kasaliwal, Rajeev; Sankhe, Shilpa S; Lila, Anurag R; Budyal, Sweta R; Jagtap, Varsha S; Sarathi, Vijaya; Kakade, Harshal; Bandgar, Tushar; Menon, Padmavathy S; Shah, Nalini S
2013-06-01
Various techniques have been attempted to increase the yield of magnetic resonance imaging (MRI) for localization of pituitary microadenomas in corticotropin (ACTH)-dependent Cushing's syndrome (CS). To compare the performance of dynamic contrast spin echo (DC-SE) and volume interpolated 3D-spoiled gradient echo (VI-SGE) MR sequences in the diagnostic evaluation of ACTH-dependent CS. Data was analysed retrospectively from a series of ACTH-dependent CS patients treated over 2-year period at a tertiary care referral centre (2009-2011). Thirty-six patients (24 female and 12 male) were diagnosed to have ACTH-dependent CS during the study period. All patients underwent MRI by both sequences during a single examination. Cases with negative and equivocal pituitary MR imaging underwent corticotropin-releasing hormone (CRH) stimulated bilateral inferior petrosal sinus sampling (BIPSS) to confirm pituitary origin of ACTH excess state. Thirty patients were finally diagnosed to have Cushing's disease (CD) [based on histopathology proof of adenoma and/or remission (partial/complete) of hypercortisolism postsurgery]. Six patients were diagnosed to have histopathologically proven ectopic CS. Of 30 patients with CD, 24 patients had microadenomas and 6 patients had macroadenomas. DC-SE MRI sequence was able to identify microadenomas in 16 of 24 patients, whereas postcontrast VI-SGE sequence was able to identify microadenomas in 21 of 24 patients. All six patients of ectopic CS had negative pituitary MR imaging by both techniques (specificity: 100%). VI-SGE MR sequence was better for localization of pituitary microadenomas particularly when DC-SE MR sequence is negative or equivocal and should be used in addition to DC-SE MR sequence for the evaluation of ACTH-dependent CS. © 2012 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Ibrahime Adodo, Fifi; Remy, Frédérique; Picard, Ghislain
2018-05-01
Spaceborne radar altimeters are a valuable tool for observing the Antarctic Ice Sheet. The radar wave interaction with the snow provides information on both the surface and the subsurface of the snowpack due to its dependence on the snow properties. However, the penetration of the radar wave within the snowpack also induces a negative bias on the estimated surface elevation. Empirical corrections of this space- and time-varying bias are usually based on the backscattering coefficient variability. We investigate the spatial and seasonal variations of the backscattering coefficient at the S (3.2 GHz ˜ 9.4 cm), Ku (13.6 GHz ˜ 2.3 cm) and Ka (37 GHz ˜ 0.8 cm) bands. We identified that the backscattering coefficient at Ku band reaches a maximum in winter in part of the continent (Region 1) and in the summer in the remaining (Region 2), while the evolution at other frequencies is relatively uniform over the whole continent. To explain this contrasting behavior between frequencies and between regions, we studied the sensitivity of the backscattering coefficient at three frequencies to several parameters (surface snow density, snow temperature and snow grain size) using an electromagnetic model. The results show that the seasonal cycle of the backscattering coefficient at Ka frequency is dominated by the volume echo and is mainly driven by snow temperature evolution everywhere. In contrast, at S band, the cycle is dominated by the surface echo. At Ku band, the seasonal cycle is dominated by the volume echo in Region 1 and by the surface echo in Region 2. This investigation provides new information on the seasonal dynamics of the Antarctic Ice Sheet surface and provides new clues to build more accurate corrections of the radar altimeter surface elevation signal in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moschouris, Hippocrates, E-mail: hipmosch@gmail.co; Malagari, Katerina; Kornezos, Ioannis
2010-12-15
The purpose of this study was to describe and evaluate the findings of unenhanced ultrasonography (US) and contrast-enhanced ultrasonography (CEUS) when these modalities are applied during transarterial embolization (TAE) or transarterial chemoembolization (TACE) of liver tumors. Sixteen tumors (9 hepatocellular carcinomas, 5 metastases from colorectal cancer, and 2 hemangiomas) were treated with TAE with microspheres and/or TACE with drug-eluting beads. All of these lesions were studied with intraprocedural unenhanced US and 12 were studied with intraprocedural CEUS. For the latter, a second-generation echo-enhancer (SonoVue; Bracco, Milan, Italy) and a low mechanical index technique were used. Intraprocedural findings were classified accordingmore » to an arbitrary scale and were compared with pretreatment imaging (CEUS and computed tomography or CEUS and magnetic resonance imaging), with postembolization angiography, and with follow-up results. On unenhanced intraprocedural US, 13 of 16 tumors demonstrated intralesional high-level echoes of varying extent. These feature correlated poorly (r = 0.33, p = 0.097) with and generally underestimated the actual extent of necrosis. Exceptionally, high-level echoes that occupied the largest part of the treated lesions were associated with >50% tumor necrosis. Intraprocedural CEUS clearly depicted immediate partial or complete disappearance of tumor enhancement as a result of TAE/TACE. Three of 6 tumors with complete devascularization on postembolization angiogram showed residual enhancement on intraprocedural CEUS. Intraprocedural CEUS findings correlated closely (r = 0.91, p = 0.002) with follow-up findings. Intraprocedural sonography, particularly with echo-enhancers, could be used for intraprocedural monitoring in selected cases of liver tumors that undergo TAE or TACE.« less
Song, Yan; Feng, Jun; Dang, Ying; Zhao, Chao; Zheng, Jie; Ruan, Litao
2017-12-01
The aim of this study was to determine the relationship between plaque echo, thickness and neovascularization in different stenosis groups using quantitative and semi-quantitative contrast-enhanced ultrasound (CEUS) in patients with carotid atherosclerosis plaque. A total of 224 plaques were divided into mild stenosis (<50%; 135 plaques, 60.27%), moderate stenosis (50%-69%; 39 plaques, 17.41%) and severe stenosis (70%-99%; 50 plaques, 22.32%) groups. Quantitative and semi-quantitative methods were used to assess plaque neovascularization and determine the relationship between plaque echo, thickness and neovascularization. Correlation analysis revealed no relationship of neovascularization with plaque echo in the groups using either quantitative or semi-quantitative methods. Furthermore, there was no correlation of neovascularization with plaque thickness using the semi-quantitative method. The ratio of areas under the curve (RAUC) was negatively correlated with plaque thickness (r = -0.317, p = 0.001) in the mild stenosis group. With the quartile method, plaque thickness of the mild stenosis group was divided into four groups, with significant differences between the 1.5-2.2 mm and ≥3.5 mm groups (p = 0.002), 2.3-2.8 mm and ≥3.5 mm groups (p <0.001) and 2.9-3.4 mm and ≥3.5 mm groups (p <0.001). Both semi-quantitative and quantitative CEUS methods characterizing neovascularization of plaque are equivalent with respect to assessing relationships between neovascularization, echogenicity and thickness. However, the quantitative method could fail for plaque <3.5 mm because of motion artifacts. Copyright © 2017 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.
Method and apparatus to characterize ultrasonically reflective contrast agents
NASA Technical Reports Server (NTRS)
Pretlow, Robert A., III (Inventor)
1993-01-01
A method and apparatus for characterizing the time and frequency response of an ultrasonically reflective contrast agent is disclosed. An ultrasonically reflective contrast agent is injected, under constant pressure, into a fluid flowing through a pump flow circuit. The fluid and the ultrasonically reflective contrast agent are uniformly mixed in a mixing chamber, and the uniform mixture is passed through a contrast agent chamber. The contrast agent chamber is acoustically and axially interposed between an ultrasonic transducer chamber and an acoustic isolation chamber. A pulse of ultrasonic energy is transmitted into the contrast agent chamber from the ultrasonic transducer chamber. An echo waveform is received from the ultrasonically reflective contrast agent, and it is analyzed to determine the time and frequency response of the ultrasonically reflective contrast agent.
Morris, Mallory J; Striegel, André M
2014-06-15
Introduced here is a method for determining the solution conformational entropy of oligosaccharides (-ΔS) that relies on the on-line coupling of size-exclusion chromatography (SEC), an entropically-controlled separation technique, and differential viscometry (VISC). Results from this SEC/VISC method were compared, for the same injections of the same sample dissolutions and under identical solvent/temperature conditions, to results from a benchmark SEC/differential refractometry (SEC/DRI) method which has been applied successfully over the last decade to determining -ΔS of a variety of mono-, di-, and oligosaccharides. The accuracy (as compared to SEC/DRI) and precision of SEC/VISC were found to be excellent, as was the sensitivity of the viscometer in the oligomeric region. The experiments presented here contrast three sets of (1→4)-β-d-oligosaccharides, namely manno-, cello-, and N-acetylchitooligosaccharides of degree of polymerization (DP) 2 through 6. For each series, the dependence of -ΔS on DP was found to be monotonic while, between series, differences at each DP could be ascribed to either the additional degrees of freedom imparted by large, multi-atomic substituent groups, or to the presence or absence of additional intramolecular hydrogen bonds, depending on the axial versus equatorial arrangement of particular hydroxyl groups. An hypothesis is advanced to explain the unexpectedly high sensitivity of viscometric detection for low-molar-mass analytes. The method presented can be extended to the analysis of oligosaccharides other than those studied here. Published by Elsevier Ltd.
Trigger Factor can antagonize both SecB and DnaK/DnaJ chaperone functions in Escherichia coli
Ullers, Ronald S.; Ang, Debbie; Schwager, Françoise; Georgopoulos, Costa; Genevaux, Pierre
2007-01-01
Polypeptides emerging from the ribosome are assisted by a pool of molecular chaperones and targeting factors, which enable them to efficiently partition as cytoplasmic, integral membrane, or exported proteins. In Escherichia coli, the chaperones SecB, Trigger Factor (TF), and DnaK are key players in this process. Here, we report that, as with dnaK or dnaJ mutants, a secB null strain exhibits a strong cold-sensitive (Cs) phenotype. Through suppressor analyses, we found that inactivating mutations in the tig gene encoding TF fully relieve both the Cs phenotype and protein aggregation observed in the absence of SecB. This antagonistic effect of TF depends on its ribosome-binding and chaperone activities but unrelated to its peptidyl-prolyl cis/trans isomerase (PPIase) activity. Furthermore, in contrast to the previously known synergistic action of TF and DnaK/DnaJ above 30°C, a tig null mutation partially suppresses the Cs phenotype exhibited by a compromised DnaK/DnaJ chaperone machine. The antagonistic role of TF is further exemplified by the fact that the secB dnaJ double mutant is viable only in the absence of TF. Finally, we show that, in the absence of TF, more SecA and ribosomes are associated with the inner membrane, suggesting that the presence of TF directly or indirectly interferes with the process of cotranslational protein targeting to the Sec translocon. PMID:17360615
Quantitative 17O imaging towards oxygen consumption study in tumor bearing mice at 7 T.
Narazaki, Michiko; Kanazawa, Yoko; Koike, Sachiko; Ando, Koichi; Ikehira, Hiroo
2013-06-01
(17)O magnetic resonance imaging (MRI) using a conventional pulse sequence was explored as a method of quantitative imaging towards regional oxygen consumption rate measurement for tumor evaluation in mice. At 7 T, fast imaging with steady state (FISP) was the best among gradient echo, fast spin echo and FISP for the purpose. The distribution of natural abundance H2(17)O in mice was visualized under spatial resolution of 2.5 × 2.5mm(2) by FISP in 10 min. The signal intensity by FISP showed a linear relationship with (17)O quantity both in phantom and mice. Following the injection of 5% (17)O enriched saline, (17)O re-distribution was monitored in temporal resolution down to 5 sec with an image quality sufficient to distinguish each organ. The image of labeled water produced from inhaled (17)O2 gas was also obtained. The present method provides quantitative (17)O images under sufficient temporal and spatial resolution for the evaluation of oxygen consumption rate in each organ. Experiments using various model compounds of R-OH type clarified that the signal contribution of body constituents other than water in the present in vivo(17)O FISP image was negligible. Copyright © 2013 Elsevier Inc. All rights reserved.
A Dwarf Dissolving? - A Kinematic Analysis of Andromeda XXVII and the Northern Arc
NASA Astrophysics Data System (ADS)
Collins, Michelle; Rich, R. M.; Chapman, S. C.; Ibata, R.; Irwin, M.; McConnachie, A. W.
2013-01-01
We report internal kinematics for an unusual M31 dwarf spheroidal galaxy, And XXVII, which is superposed against the Northern Arc Stream feature, isolated in the PandAS (Pan-Andromeda Archaeological Survey). In contrast to the coherent, cold velocity fields of most Andromeda dwarf spheroidals, And XXVII has a trimodal velocity distribution spanning 100 km/sec, with a relatively cold central peak at -530 km/sec , and a velocity dispersion of sigma= 8 km/sec. While all of the candidate members are < 2' (or approximately one half light radii, ~600 pc) from the core, the full velocity range is not consistent with a system of luminosity Mv=-7.9. We propose that And XXVII may be in the process of dissolving into the Northern Arc.
Bernard, Yvette; Morel, Mathilde; Descotes-Genon, Vincent; Jehl, Jerome; Meneveau, Nicolas; Schiele, Francois
2014-04-01
Right ventricular (RV) function is a major prognostic factor in patients (pts) with operated tetralogy of Fallot (TOF). We compared the results of RV speckle tracking (two-dimensional [2D] strain) with those of magnetic resonance imaging (MRI) in this setting. At transthoracic echocardiogram (echo), RV fractional area change (RVFAC), tricuspid annular plane systolic excursion (TAPSE), velocity of S-wave at tricuspid annulus with tissue Doppler, and 2D strain (longitudinal maximal systolic strain) were recorded. Their results were compared to RV indexed end-diastolic volume (EDV), indexed end-systolic volume (ESV), and RV ejection fraction (EF) at MRI. Twenty-two pts (16 M) aged 11-62 years (mean 23.2 ± 10.8) were included. Parameters of RV systolic function were as follows: RVFAC = 40 ± 10%, TAPSE = 18 ± 4 mm, S-wave = 10 ± 0.2 cm/sec, and RV EF at MRI = 43 ± 11%. Global RV systolic strain was -15.5 ± 4.2%, free wall strain was -15.1 ± 6.3%, and septal strain was -15.8 ± 3.8% on average for the whole group. Echo indexed RV end-diastolic area correlated with EDV at MRI (r = 0.73), as well as echo indexed RV end-systolic area and ESV at MRI (r = 0.71). Global RV 2D strain correlated well with RV EF at MRI: r = 0.68; P < 0.05, and with ESV at MRI: r = 0.63. Feasibility, intra- and inter-observer reproducibility of 2D strain were adequate. Speckle tracking is a promising method to estimate RV systolic function in pts operated on for TOF. © 2013, Wiley Periodicals, Inc.
Borusewicz, P; Stańczyk, E; Kubiak, K; Spużak, J; Glińska-Suchocka, K; Jankowski, M; Nicpoń, J; Podgórski, P
2018-05-01
Dynamic contrast enhanced (DCE)-magnetic resonance imaging (MRI) consists of acquisition of native baseline images, followed by a series of acquisitions performed during and after administration of a contrast medium. DCE-MRI, in conjunction with hepatobiliary-specific contrast media, such as gadoxetic acid (GD-EOB-DTPA), allows for precise characterisation of the enhancement pattern of the hepatic parenchyma following administration of the contrast agent. The aim of the study was to assess the pattern of temporal resolution contrast enhancement of the hepatic parenchyma following administration of GD-EOB-DTPA and to determine the optimal time window for post-contrast assessment of the liver. The study was carried out on eight healthy beagle dogs. MRI was performed using a 1.5T scanner. The imaging protocol included T1 weighted (T1-W) gradient echo (GRE), T2 weighted (T2-W) turbo spin echo (TSE) and dynamic T1-W GRE sequences. The dynamic T1-W sequence was performed using single 10mm thick slices. Regions of interest (ROIs) were chosen and the signal intensity curves were calculated for quantitative image analysis. The mean time to peak for all dogs was 26min. The plateau phase lasted on average 21min. A gradual decrease in the signal intensity of the hepatic parenchyma was observed in all dogs. A DCE-MRI enhancement pattern of the hepatic parenchyma was evident in dogs following the administration of a GD-EOB-DTPA, establishing baseline data for an optimal time window between 26 and 41min after administration of the contrast agent. Copyright © 2018 Elsevier Ltd. All rights reserved.
Langer, Christoph; Schroeder, Janina; Peterschroeder, Andreas; Vaske, Bernhard; Faber, Lothar; Welge, Dirk; Niethammer, Matthias; Lamp, Barbara; Butz, Thomas; Bitter, Thomas; Oldenburg, Olaf; Horstkotte, Dieter
2010-07-01
Multi-slice computed tomography (MSCT) was proved to provide precise cardiac volumetric assessment. Cardiac resynchronization therapy (CRT) is an effective treatment for selected patients with heart failure and reduced ejection fraction (HFREF). In HFREF patients we investigated the potential of MSCT based wall motion analysis in order to demonstrate CRT-induced reversed remodeling. Besides six patients with normal cardiac pump function serving as control group seven HFREF patients underwent contrast enhanced MSCT before and after CRT. Short cardiac axis views of the left ventricle (LV) in end-diastole (ED) and end-systole (ES) served for planimetry. Pre- and post-CRT MSCT based volumetry was compared with 2D echo. To demonstrate CRT-induced reverse remodeling, MSCT based multi-segment color-coded polar maps were introduced. With regard to the HFREF patients pre-CRT MSCT based volumetry correlated with 2D echo data for LV-EDV (MSCT 278.3+/-75.0mL vs. echo 274.4+/-85.6mL) r=0.380, p=0.401, LV-ESV (MSCT 226.7+/-75.4mL vs. echo 220.1+/-74.0mL) r=0.323, p=0.479 and LV-EF (MSCT 20.2+/-8.8% vs. echo 20.0+/-11.9%) r=0.617, p=0.143. Post-CRT MSCT correlated well with 2D echo: LV-EDV (MSCT 218.9+/-106.4mL vs. echo 188.7+/-93.1mL) r=0.87, p=0.011, LV-ESV (MSCT 145+/-71.5mL vs. echo 125.6+/-78mL) r=0.84, p=0.018 and LV-EF (MSCT 29.6+/-11.3mL vs. echo 38.6+/-14.6mL) r=0.89, p=0.007. There was a significant increase of the mid-ventricular septum in terms of absolute LV wall thickening of the responders (pre 0.9+/-2.1mm vs. post 3.3+/-2.2mm; p<0.0005). MSCT based volumetry involving multi-segment color-coded polar maps offers wall motion analysis to demonstrate CRT-induced reverse remodeling which needs to be further validated. 2010 Elsevier Ltd. All rights reserved.
Evolution of high duty cycle echolocation in bats.
Fenton, M Brock; Faure, Paul A; Ratcliffe, John M
2012-09-01
Duty cycle describes the relative 'on time' of a periodic signal. In bats, we argue that high duty cycle (HDC) echolocation was selected for and evolved from low duty cycle (LDC) echolocation because increasing call duty cycle enhanced the ability of echolocating bats to detect, lock onto and track fluttering insects. Most echolocators (most bats and all birds and odontocete cetaceans) use LDC echolocation, separating pulse and echo in time to avoid forward masking. They emit short duration, broadband, downward frequency modulated (FM) signals separated by relatively long periods of silence. In contrast, bats using HDC echolocation emit long duration, narrowband calls dominated by a single constant frequency (CF) separated by relatively short periods of silence. HDC bats separate pulse and echo in frequency by exploiting information contained in Doppler-shifted echoes arising from their movements relative to background objects and their prey. HDC echolocators are particularly sensitive to amplitude and frequency glints generated by the wings of fluttering insects. We hypothesize that narrowband/CF calls produced at high duty cycle, and combined with neurobiological specializations for processing Doppler-shifted echoes, were essential to the evolution of HDC echolocation because they allowed bats to detect, lock onto and track fluttering targets. This advantage was especially important in habitats with dense vegetation that produce overlapping, time-smeared echoes (i.e. background acoustic clutter). We make four specific, testable predictions arising from this hypothesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wonneberger, Uta, E-mail: uta.wonneberger@charite.d; Schnackenburg, Bernhard, E-mail: bernhard.schnackenburg@philips.co; Streitparth, Florian, E-mail: florian.streitparth@charite.de
2010-04-15
In this article, we study in vitro evaluation of needle artefacts and image quality for musculoskeletal laser-interventions in an open high-field magnetic resonance imaging (MRI) scanner at 1.0T with vertical field orientation. Five commercially available MRI-compatible puncture needles were assessed based on artefact characteristics in a CuSO4 phantom (0.1%) and in human cadaveric lumbar spines. First, six different interventional sequences were evaluated with varying needle orientation to the main magnetic field B0 (0{sup o} to 90{sup o}) in a sequence test. Artefact width, needle-tip error, and contrast-to-noise ratio (CNR) were calculated. Second, a gradient-echo sequence used for thermometric monitoring wasmore » assessed and in varying echo times, artefact width, tip error, and signal-to-noise ratio (SNR) were measured. Artefact width and needle-tip error correlated with needle material, instrument orientation to B0, and sequence type. Fast spin-echo sequences produced the smallest needle artefacts for all needles, except for the carbon fibre needle (width <3.5 mm, tip error <2 mm) at 45{sup o} to B0. Overall, the proton density-weighted spin-echo sequences had the best CNR (CNR{sub Muscle/Needle} >16.8). Concerning the thermometric gradient echo sequence, artefacts remained <5 mm, and the SNR reached its maximum at an echo time of 15 ms. If needle materials and sequences are accordingly combined, guidance and monitoring of musculoskeletal laser interventions may be feasible in a vertical magnetic field at 1.0T.« less
Medical Imaging with Ultrasound: Some Basic Physics.
ERIC Educational Resources Information Center
Gosling, R.
1989-01-01
Discussed are medical applications of ultrasound. The physics of the wave nature of ultrasound including its propagation and production, return by the body, spatial and contrast resolution, attenuation, image formation using pulsed echo ultrasound techniques, measurement of velocity and duplex scanning are described. (YP)
TH-A-BRF-05: MRI of Individual Lymph Nodes to Guide Regional Breast Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heijst, T van; Asselen, B van; Lagendijk, J
2014-06-15
Purpose: In regional radiotherapy (RT) for breast-cancer patients, direct visualization of individual lymph nodes (LNs) may reduce target volumes and Result in lower toxicity (i.e. reduced radiation pneumonitis, arm edema, arm morbidity), relative to standard CT-based delineations. To this end, newly designed magnetic resonance imaging (MRI) sequences were optimized and assessed qualitatively and quantitatively. Methods: In ten healthy female volunteers, a scanning protocol was developed and optimized. Coronal images were acquired in supine RT position positioned on a wedge board on a 1.5 T Ingenia (Philips) wide-bore MRI. In four volunteers the optimized MRI protocol was applied, including a 3-dimensionalmore » (3D) T1-weighted (T1w) fast-field-echo (FFE). T2w sequences, including 3D FFE, 3D and 2D fast spin echo (FSE), and diffusion-weighted single-shot echo-planar imaging (DWI) were also performed. Several fatsuppression techniques were used. Qualitative evaluation parameters included LN contrast, motion susceptibility, visibility of anatomical structures, and fat suppression. The number of visible axillary and supraclavicular LNs was also determined. Results: T1 FFE, insensitive to motion, lacked contrast of LNs, which often blended in with soft tissue and blood. T2 FFE showed high contrast, but some LNs were obscured due to motion. Both 2D and 3D FSE were motion-insensitive having high contrast, although some blood remained visible. 2D FSE showed more anatomical details, while in 3D FSE, some blurring occurred. DWI showed high LN contrast, but suffered from geometric distortions and low resolution. Fat suppression by mDixon was the most reliable in regions with magnetic-field inhomogeneities. The FSE sequences showed the highest sensitivity for LN detection. Conclusion: MRI of regional LNs was achieved in volunteers. The FSE techniques were robust and the most sensitive. Our optimized MRI sequences can facilitate direct delineation of individual LNs. This can Result in smaller target volumes and reduced toxicity in regional RT compared to standard CT planning.« less
Schollenberger, Martin; Radke, Wolfgang
2011-10-28
A gradient ranging from methanol to tetrahydrofuran (THF) was applied to a series of poly(methyl methacrylate) (PMMA) standards, using the recently developed concept of SEC-gradients. Contrasting to conventional gradients the samples eluted before the solvent, i.e. within the elution range typical for separations by SEC, however, the high molar mass PMMAs were retarded as compared to experiments on the same column using pure THF as the eluent. The molar mass dependence on retention volume showed a complex behaviour with a nearly molar mass independent elution for high molar masses. This molar mass dependence was explained in terms of solubility and size exclusion effects. The solubility based SEC-gradient was proven to be useful to separate PMMA and poly(n-butyl crylate) (PnBuA) from a poly(t-butyl crylate) (PtBuA) sample. These samples could be separated neither by SEC in THF, due to their very similar hydrodynamic volumes, nor by an SEC-gradient at adsorbing conditions, due to a too low selectivity. The example shows that SEC-gradients can be applied not only in adsorption/desorption mode, but also in precipitation/dissolution mode without risking blocking capillaries or breakthrough peaks. Thus, the new approach is a valuable alternative to conventional gradient chromatography. Copyright © 2011 Elsevier B.V. All rights reserved.
Zhu, Chengcheng; Tian, Bing; Chen, Luguang; Eisenmenger, Laura; Raithel, Esther; Forman, Christoph; Ahn, Sinyeob; Laub, Gerhard; Liu, Qi; Lu, Jianping; Liu, Jing; Hess, Christopher; Saloner, David
2018-06-01
Develop and optimize an accelerated, high-resolution (0.5 mm isotropic) 3D black blood MRI technique to reduce scan time for whole-brain intracranial vessel wall imaging. A 3D accelerated T 1 -weighted fast-spin-echo prototype sequence using compressed sensing (CS-SPACE) was developed at 3T. Both the acquisition [echo train length (ETL), under-sampling factor] and reconstruction parameters (regularization parameter, number of iterations) were first optimized in 5 healthy volunteers. Ten patients with a variety of intracranial vascular disease presentations (aneurysm, atherosclerosis, dissection, vasculitis) were imaged with SPACE and optimized CS-SPACE, pre and post Gd contrast. Lumen/wall area, wall-to-lumen contrast ratio (CR), enhancement ratio (ER), sharpness, and qualitative scores (1-4) by two radiologists were recorded. The optimized CS-SPACE protocol has ETL 60, 20% k-space under-sampling, 0.002 regularization factor with 20 iterations. In patient studies, CS-SPACE and conventional SPACE had comparable image scores both pre- (3.35 ± 0.85 vs. 3.54 ± 0.65, p = 0.13) and post-contrast (3.72 ± 0.58 vs. 3.53 ± 0.57, p = 0.15), but the CS-SPACE acquisition was 37% faster (6:48 vs. 10:50). CS-SPACE agreed with SPACE for lumen/wall area, ER measurements and sharpness, but marginally reduced the CR. In the evaluation of intracranial vascular disease, CS-SPACE provides a substantial reduction in scan time compared to conventional T 1 -weighted SPACE while maintaining good image quality.
Napoleon, B; Alvarez-Sanchez, M V; Gincoul, R; Pujol, B; Lefort, C; Lepilliez, V; Labadie, M; Souquet, J C; Queneau, P E; Scoazec, J Y; Chayvialle, J A; Ponchon, T
2010-07-01
Distinguishing pancreatic adenocarcinoma from other pancreatic masses remains challenging with current imaging techniques. This prospective study aimed to evaluate the accuracy of a new procedure, imaging the microcirculation pattern of the pancreas by contrast-enhanced harmonic endoscopic ultrasound (CEH-EUS) with a new Olympus prototype echo endoscope. 35 patients presenting with solid pancreatic lesions were prospectively enrolled. All patients had conventional B mode and power Doppler EUS. After an intravenous bolus injection of 2.4 ml of a second-generation ultrasound contrast agent (SonoVue) CEH-EUS was then performed with a new Olympus prototype echo endoscope (xGF-UCT 180). The microvascular pattern was compared with the final diagnosis based on the pathological examination of specimens from surgery or EUS-guided fine-needle aspiration (EUS-FNA) or on follow-up for at least 12 months. The final diagnoses were: 18 adenocarcinomas, 9 neuroendocrine tumors, 7 chronic pancreatitis, and 1 stromal tumor. Power Doppler failed to display microcirculation, whereas harmonic imaging demonstrated it in all cases. Out of 18 lesions with a hypointense signal on CEH-EUS, 16 were adenocarcinomas. The sensitivity, specificity, negative predictive value (NPV), positive predictive value (PPV), and accuracy of hypointensity for diagnosing pancreatic adenocarcinoma were 89 %, 88 %, 88 %, 89 %, and 88.5 %, compared with corresponding values of 72 %, 100 %, 77 %, 100 %, and 86 % for EUS-FNA. Of five adenocarcinomas with false-negative results at EUS-FNA, four had a hypointense echo signal at CEH-EUS. CEH-EUS with the new Olympus prototype device successfully visualizes the microvascular pattern in pancreatic solid lesions, and may be useful for distinguishing adenocarcinomas from other pancreatic masses.
The effect of ultrasound-related stimuli on cell viability in microfluidic channels
2013-01-01
Background In ultrasonic micro-devices, contrast agent micro-bubbles are known to initiate cavitation and streaming local to cells, potentially compromising cell viability. Here we investigate the effects of US alone by omitting contrast agent and monitoring cell viability under moderate-to-extreme ultrasound-related stimuli. Results Suspended H9c2 cardiac myoblasts were exposed to ultrasonic fields within a glass micro-capillary and their viability monitored under different US-related stimuli. An optimal injection flow rate of 2.6 mL/h was identified in which, high viability was maintained (~95%) and no mechanical stress towards cells was evident. This flow rate also allowed sufficient exposure of cells to US in order to induce bioeffects (~5 sec), whilst providing economical sample collection and processing times. Although the transducer temperature increased from ambient 23°C to 54°C at the maximum experimental voltage (29 Vpp), computational fluid dynamic simulations and controls (absence of US) revealed that the cell medium temperature did not exceed 34°C in the pressure nodal plane. Cells exposed to US amplitudes ranging from 0–29 Vpp, at a fixed frequency sweep period (tsw = 0.05 sec), revealed that viability was minimally affected up to ~15 Vpp. There was a ~17% reduction in viability at 21 Vpp, corresponding to the onset of Rayleigh-like streaming and a ~60% reduction at 29 Vpp, corresponding to increased streaming velocity or the potential onset of cavitation. At a fixed amplitude (29 Vpp) but with varying frequency sweep period (tsw = 0.02-0.50 sec), cell viability remained relatively constant at tsw ≥ 0.08 sec, whilst viability reduced at tsw < 0.08 sec and minimum viability recorded at tsw = 0.05 sec. Conclusion The absence of CA has enabled us to investigate the effect of US alone on cell viability. Moderate-to-extreme US-related stimuli of cells have allowed us to discriminate between stimuli that maintain high viability and stimuli that significantly reduce cell viability. Results from this study may be of potential interest to researchers in the field of US-induced intracellular drug delivery and ultrasonic manipulation of biological cells. PMID:23809777
The effect of ultrasound-related stimuli on cell viability in microfluidic channels.
Ankrett, Dyan N; Carugo, Dario; Lei, Junjun; Glynne-Jones, Peter; Townsend, Paul A; Zhang, Xunli; Hill, Martyn
2013-06-28
In ultrasonic micro-devices, contrast agent micro-bubbles are known to initiate cavitation and streaming local to cells, potentially compromising cell viability. Here we investigate the effects of US alone by omitting contrast agent and monitoring cell viability under moderate-to-extreme ultrasound-related stimuli. Suspended H9c2 cardiac myoblasts were exposed to ultrasonic fields within a glass micro-capillary and their viability monitored under different US-related stimuli. An optimal injection flow rate of 2.6 mL/h was identified in which, high viability was maintained (~95%) and no mechanical stress towards cells was evident. This flow rate also allowed sufficient exposure of cells to US in order to induce bioeffects (~5 sec), whilst providing economical sample collection and processing times. Although the transducer temperature increased from ambient 23°C to 54°C at the maximum experimental voltage (29 Vpp), computational fluid dynamic simulations and controls (absence of US) revealed that the cell medium temperature did not exceed 34°C in the pressure nodal plane. Cells exposed to US amplitudes ranging from 0-29 Vpp, at a fixed frequency sweep period (tsw = 0.05 sec), revealed that viability was minimally affected up to ~15 Vpp. There was a ~17% reduction in viability at 21 Vpp, corresponding to the onset of Rayleigh-like streaming and a ~60% reduction at 29 Vpp, corresponding to increased streaming velocity or the potential onset of cavitation. At a fixed amplitude (29 Vpp) but with varying frequency sweep period (tsw = 0.02-0.50 sec), cell viability remained relatively constant at tsw ≥ 0.08 sec, whilst viability reduced at tsw < 0.08 sec and minimum viability recorded at tsw = 0.05 sec. The absence of CA has enabled us to investigate the effect of US alone on cell viability. Moderate-to-extreme US-related stimuli of cells have allowed us to discriminate between stimuli that maintain high viability and stimuli that significantly reduce cell viability. Results from this study may be of potential interest to researchers in the field of US-induced intracellular drug delivery and ultrasonic manipulation of biological cells.
Human speed perception is contrast dependent
NASA Technical Reports Server (NTRS)
Stone, Leland S.; Thompson, Peter
1992-01-01
When two parallel gratings moving at the same speed are presented simultaneously, the lower-contrast grating appears slower. This misperception is evident across a wide range of contrasts (2.5-50 percent) and does not appear to saturate. On average, a 70 percent contrast grating must be slowed by 35 percent to match a 10 percent contrast grating moving at 2 deg/sec (N = 6). Furthermore, the effect is largely independent of the absolute contrast level and is a quasilinear function of log contrast ratio. A preliminary parametric study shows that, although spatial frequency has little effect, relative orientation is important. Finally, the misperception of relative speed appears lessened when the stimuli to be matched are presented sequentially.
Zhang, Yu; Xiao, Xiao-Ping; Shu, Ting; Cai, Jing; Xiao, Xin-Lan; Li, Yan-Shu; Zhang, Zhong-Wei; Tang, Qun
2018-06-01
Manganese-based (chemically formulated of KMnF 3 ) nanocrystal was evaluated as a liver-specific contrast agent for MR imaging and its imaging performance was also compared with those of two commercial hepatobiliary contrast media (Gd-EOB-DTPA and MnDPDP). KMnF 3 nanocrystal was post-treated using a plasma technique to cause severe defects, leading to appropriate water dispersibility and high relaxivity. Severely defective KMnF 3 nanocrystal (SD-KMnF 3 ) has characteristic high tolerance, as evidenced by cytotoxicity on the macrophage cell, and acute and subchronic toxicity on the healthy mouse. SD-KMnF 3 showed better hepatic MR imaging as the T 1 relaxation time of the liver decreased to only 17% of the control group, compared to 22% of the control group for Gd-EOB-DTPA (P < 0.01) and 42% of the control group for MnDPDP (P < 0.001). As applied to MR imaging of the allograft orthotopic model of liver cancer, statistical studies demonstrated that SD-KMnF 3 significantly improved the tumor's contrast-to-noise ratio, compared with Gd-EOB-DTPA (P < 0.01) and MnDPDP (P < 0.01) by spin-echo pulse sequence, and even better performance (P < 0.001) by gradient-echo sequence. Our findings indicate that SD-KMnF 3 could serve as a hepatic contrast agent for imaging liver cancer such as hepatocarcinoma or metastatic lesions.
NASA Astrophysics Data System (ADS)
Zhang, Yu; Xiao, Xiao-ping; Shu, Ting; Cai, Jing; Xiao, Xin-lan; Li, Yan-shu; Zhang, Zhong-wei; Tang, Qun
2018-06-01
Manganese-based (chemically formulated of KMnF3) nanocrystal was evaluated as a liver-specific contrast agent for MR imaging and its imaging performance was also compared with those of two commercial hepatobiliary contrast media (Gd-EOB-DTPA and MnDPDP). KMnF3 nanocrystal was post-treated using a plasma technique to cause severe defects, leading to appropriate water dispersibility and high relaxivity. Severely defective KMnF3 nanocrystal (SD-KMnF3) has characteristic high tolerance, as evidenced by cytotoxicity on the macrophage cell, and acute and subchronic toxicity on the healthy mouse. SD-KMnF3 showed better hepatic MR imaging as the T 1 relaxation time of the liver decreased to only 17% of the control group, compared to 22% of the control group for Gd-EOB-DTPA (P < 0.01) and 42% of the control group for MnDPDP (P < 0.001). As applied to MR imaging of the allograft orthotopic model of liver cancer, statistical studies demonstrated that SD-KMnF3 significantly improved the tumor’s contrast-to-noise ratio, compared with Gd-EOB-DTPA (P < 0.01) and MnDPDP (P < 0.01) by spin-echo pulse sequence, and even better performance (P < 0.001) by gradient-echo sequence. Our findings indicate that SD-KMnF3 could serve as a hepatic contrast agent for imaging liver cancer such as hepatocarcinoma or metastatic lesions.
Du, Jiang; Ma, Guolin; Li, Shihong; Carl, Michael; Szeverenyi, Nikolaus M; VandenBerg, Scott; Corey-Bloom, Jody; Bydder, Graeme M
2014-01-01
White matter of the brain contains a majority of long T2 components as well as a minority of short T2 components. These are not detectable using clinical magnetic resonance imaging (MRI) sequences with conventional echo times (TEs). In this study we used ultrashort echo time (UTE) sequences to investigate the ultrashort T2 components in white matter of the brain and quantify their T2*s and relative proton densities (RPDs) (relative to water with a proton density of 100%) using a clinical whole body 3T scanner. An adiabatic inversion recovery prepared dual echo UTE (IR-dUTE) sequence was used for morphological imaging of the ultrashort T2 components in white matter. IR-dUTE acquisitions at a constant TR of 1000 ms and a series of TIs were performed to determine the optimal TI which corresponded to the minimum signal to noise ratio (SNR) in white matter of the brain on the second echo image. T2*s of the ultrashort T2 components were quantified using mono-exponential decay fitting of the IR-dUTE signal at a series of TEs. RPD was quantified by comparing IR-dUTE signal of the ultrashort T2 components with that of a rubber phantom. Nine healthy volunteers were studied. The IR-dUTE sequence provided excellent image contrast for the ultrashort T2 components in white matter of the brain with a mean signal to noise ratio of 18.7 ± 3.7 and a contrast to noise ratio of 14.6 ± 2.4 between the ultrashort T2 white matter and gray matter in a 4.4 min scan time with a nominal voxel size of 1.25×1.25×5.0 mm3. On average a T2* value of 0.42 ± 0.08 ms and a RPD of 4.05 ± 0.88% were demonstrated for the ultrashort T2 components in white matter of the brain of healthy volunteers at 3T. PMID:24188809
Does oxygen delivery explain interindividual variation in forearm critical impulse?
Kellawan, J Mikhail; Bentley, Robert F; Bravo, Michael F; Moynes, Jackie S; Tschakovsky, Michael E
2014-11-01
Within individuals, critical power appears sensitive to manipulations in O2 delivery. We asked whether interindividual differences in forearm O2 delivery might account for a majority of the interindividual differences in forearm critical force impulse (critical impulse), the force analog of critical power. Ten healthy men (24.6 ± 7.10 years) completed a maximal effort rhythmic handgrip exercise test (1 sec contraction-2 sec relaxation) for 10 min. The average of contraction impulses over the last 30 sec quantified critical impulse. Forearm brachial artery blood flow (FBF; echo and Doppler ultrasound) and mean arterial pressure (MAP; finger photoplethysmography) were measured continuously. O2 delivery (FBF arterial oxygen content (venous blood [hemoglobin] and oxygen saturation from pulse oximetry)) and forearm vascular conductance (FVC; FBF·MAP(-1)) were calculated. There was a wide range in O2 delivery (59.98-121.15 O2 mL·min(-1)) and critical impulse (381.5-584.8 N) across subjects. During maximal effort exercise, O2 delivery increased rapidly, plateauing well before the declining forearm impulse and explained most of the interindividual differences in critical impulse (r(2) = 0.85, P < 0.01). Both vasodilation (r(2) = 0.64, P < 0.001) and the exercise pressor response (r(2) = 0.33, P < 0.001) independently contributed to interindividual differences in FBF. In conclusion, interindividual differences in forearm O2 delivery account for most of the interindividual variation in critical impulse. Furthermore, individual differences in pressor response play an important role in determining differences in O2 delivery in addition to vasodilation. The mechanistic origins of this vasodilatory and pressor response heterogeneity across individuals remain to be determined. © 2014 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Does oxygen delivery explain interindividual variation in forearm critical impulse?
Kellawan, J. Mikhail; Bentley, Robert F.; Bravo, Michael F.; Moynes, Jackie S.; Tschakovsky, Michael E.
2014-01-01
Abstract Within individuals, critical power appears sensitive to manipulations in O2 delivery. We asked whether interindividual differences in forearm O2 delivery might account for a majority of the interindividual differences in forearm critical force impulse (critical impulse), the force analog of critical power. Ten healthy men (24.6 ± 7.10 years) completed a maximal effort rhythmic handgrip exercise test (1 sec contraction‐2 sec relaxation) for 10 min. The average of contraction impulses over the last 30 sec quantified critical impulse. Forearm brachial artery blood flow (FBF; echo and Doppler ultrasound) and mean arterial pressure (MAP; finger photoplethysmography) were measured continuously. O2 delivery (FBF arterial oxygen content (venous blood [hemoglobin] and oxygen saturation from pulse oximetry)) and forearm vascular conductance (FVC; FBF·MAP−1) were calculated. There was a wide range in O2 delivery (59.98–121.15 O2 mL·min−1) and critical impulse (381.5–584.8 N) across subjects. During maximal effort exercise, O2 delivery increased rapidly, plateauing well before the declining forearm impulse and explained most of the interindividual differences in critical impulse (r2 = 0.85, P < 0.01). Both vasodilation (r2 = 0.64, P < 0.001) and the exercise pressor response (r2 = 0.33, P < 0.001) independently contributed to interindividual differences in FBF. In conclusion, interindividual differences in forearm O2 delivery account for most of the interindividual variation in critical impulse. Furthermore, individual differences in pressor response play an important role in determining differences in O2 delivery in addition to vasodilation. The mechanistic origins of this vasodilatory and pressor response heterogeneity across individuals remain to be determined. PMID:25413323
Determination of the MRI contrast agent Gd-DTPA by SEC-ICP-MS.
Loreti, Valeria; Bettmer, Jörg
2004-08-01
The simultaneous determination of Gd(3+) and Gd-DTPA (DTPA: diethylenetriamino-pentaacetic acid), often used as contrast agent, is described. The proposed approach combines size-exclusion chromatography (SEC) and inductively coupled plasma-mass spectrometry (ICP-MS) for element-selective detection in order to determine also high-molecular Gd-complexes if present. This method was applied to the analysis of urine samples of a patient to whom Gd-DTPA was intravenously administered. The results showed that no conversion or adsorption of Gd-DTPA could be observed in any sample, even free Gd(3+) could not be detected. Urine excretion behaviour was monitored and it was proved that Gd-DTPA was almost completely (>99%) excreted by urination within one day. Traces of Gd-DTPA could be measured in hair samples, but extraction with tetramethylammonium hydroxide (TMAH) resulted in degradation of Gd-DTPA.
NASA Technical Reports Server (NTRS)
Matsui, Toshihisa; Chern, Jiun-Dar; Tao, Wei-Kuo; Lang, Stephen E.; Satoh, Masaki; Hashino, Tempei; Kubota, Takuji
2016-01-01
A 14-year climatology of Tropical Rainfall Measuring Mission (TRMM) collocated multi-sensor signal statistics reveal a distinct land-ocean contrast as well as geographical variability of precipitation type, intensity, and microphysics. Microphysics information inferred from the TRMM precipitation radar and Microwave Imager (TMI) show a large land-ocean contrast for the deep category, suggesting continental convective vigor. Over land, TRMM shows higher echo-top heights and larger maximum echoes, suggesting taller storms and more intense precipitation, as well as larger microwave scattering, suggesting the presence of morelarger frozen convective hydrometeors. This strong land-ocean contrast in deep convection is invariant over seasonal and multi-year time-scales. Consequently, relatively short-term simulations from two global storm-resolving models can be evaluated in terms of their land-ocean statistics using the TRMM Triple-sensor Three-step Evaluation via a satellite simulator. The models evaluated are the NASA Multi-scale Modeling Framework (MMF) and the Non-hydrostatic Icosahedral Cloud Atmospheric Model (NICAM). While both simulations can represent convective land-ocean contrasts in warm precipitation to some extent, near-surface conditions over land are relatively moisture in NICAM than MMF, which appears to be the key driver in the divergent warm precipitation results between the two models. Both the MMF and NICAM produced similar frequencies of large CAPE between land and ocean. The dry MMF boundary layer enhanced microwave scattering signals over land, but only NICAM had an enhanced deep convection frequency over land. Neither model could reproduce a realistic land-ocean contrast in in deep convective precipitation microphysics. A realistic contrast between land and ocean remains an issue in global storm-resolving modeling.
Dynamic contrast-enhanced breast MRI at 7 Tesla utilizing a single-loop coil: a feasibility trial.
Umutlu, Lale; Maderwald, Stefan; Kraff, Oliver; Theysohn, Jens M; Kuemmel, Sherko; Hauth, Elke A; Forsting, Michael; Antoch, Gerald; Ladd, Mark E; Quick, Harald H; Lauenstein, Thomas C
2010-08-01
The aim of this study was to assess the feasibility of dynamic contrast-enhanced ultra-high-field breast imaging at 7 Tesla. A total of 15 subjects, including 5 patients with histologically proven breast cancer, were examined on a 7 Tesla whole-body magnetic resonance imaging system using a unilateral linearly polarized single-loop coil. Subjects were placed in prone position on a biopsy support system, with the coil placed directly below the region of interest. The examination protocol included the following sequences: 1) T2-weighted turbo spin echo sequence; 2) six dynamic T1-weighted spoiled gradient-echo sequences; and 3) subtraction imaging. Contrast-enhanced T1-weighted imaging at 7 Tesla could be obtained at high spatial resolution with short acquisition times, providing good image accuracy and a conclusively good delineation of small anatomical and pathological structures. T2-weighted imaging could be obtained with high spatial resolution at adequate acquisition times. Because of coil limitations, four high-field magnetic resonance examinations showed decreased diagnostic value. This first scientific approach of dynamic contrast-enhanced breast magnetic resonance imaging at 7 Tesla demonstrates the complexity of ultra-high-field breast magnetic resonance imaging and countenances the implementation of further advanced bilateral coil concepts to circumvent current limitations from the coil and ultra-high-field magnetic strength. 2010 AUR. Published by Elsevier Inc. All rights reserved.
Saline as the Sole Contrast Agent for Successful MRI-guided Epidural Injections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deli, Martin, E-mail: martin.deli@web.de; Fritz, Jan, E-mail: jfritz9@jhmi.edu; Mateiescu, Serban, E-mail: mateiescu@microtherapy.de
Purpose. To assess the performance of sterile saline solution as the sole contrast agent for percutaneous magnetic resonance imaging (MRI)-guided epidural injections at 1.5 T. Methods. A retrospective analysis of two different techniques of MRI-guided epidural injections was performed with either gadolinium-enhanced saline solution or sterile saline solution for documentation of the epidural location of the needle tip. T1-weighted spoiled gradient echo (FLASH) images or T2-weighted single-shot turbo spin echo (HASTE) images visualized the test injectants. Methods were compared by technical success rate, image quality, table time, and rate of complications. Results. 105 MRI-guided epidural injections (12 of 105 withmore » gadolinium-enhanced saline solution and 93 of 105 with sterile saline solution) were performed successfully and without complications. Visualization of sterile saline solution and gadolinium-enhanced saline solution was sufficient, good, or excellent in all 105 interventions. For either test injectant, quantitative image analysis demonstrated comparable high contrast-to-noise ratios of test injectants to adjacent body substances with reliable statistical significance levels (p < 0.001). The mean table time was 22 {+-} 9 min in the gadolinium-enhanced saline solution group and 22 {+-} 8 min in the saline solution group (p = 0.75). Conclusion. Sterile saline is suitable as the sole contrast agent for successful and safe percutaneous MRI-guided epidural drug delivery at 1.5 T.« less
Multi-echo GRE imaging of knee cartilage.
Yuen, Joanna; Hung, Jachin; Wiggermann, Vanessa; Robinson, Simon D; McCormack, Robert; d'Entremont, Agnes G; Rauscher, Alexander
2017-05-01
To visualize healthy and abnormal articular cartilage, we investigated the potential of using the 3D multi-echo gradient echo (GRE) signal's magnitude and frequency and maps of T2* relaxation. After optimizing imaging parameters in five healthy volunteers, 3D multi-echo GRE magnetic resonance (MR) images were acquired at 3T in four patients with chondral damage prior to their arthroscopic surgery. Average magnitude and frequency information was extracted from the GRE images, and T2* maps were generated. Cartilage abnormalities were confirmed after arthroscopy and were graded using the Outerbridge classification scheme. Regions of interest were identified on average magnitude GRE images and compared to arthroscopy. All four patients presented with regions of Outerbridge Grade I and II cartilage damage on arthroscopy. One patient had Grade III changes. Grade I, II, and III changes were detectable on average magnitude and T2* maps, while Grade II and higher changes were also observable on MR frequency maps. For average magnitude images of healthy volunteers, the signal-to-noise ratio of the magnitude image averaged over three echoes was 4.26 ± 0.32, 12.26 ± 1.09, 14.31 ± 1.93, and 13.36 ± 1.13 in bone, femoral, tibial, and patellar cartilage, respectively. This proof-of-principle study demonstrates the feasibility of using different imaging contrasts from the 3D multi-echo GRE scan to visualize abnormalities of the articular cartilage. © 2016 International Society for Magnetic Resonance in Medicine Level of Evidence: 1 J. MAGN. RESON. IMAGING 2017;45:1502-1513. © 2016 International Society for Magnetic Resonance in Medicine.
Giugni, Elisabetta; Sabatini, Umberto; Hagberg, Gisela E; Formisano, Rita; Castriota-Scanderbeg, Alessandro
2005-05-01
Diffuse axonal injury (DAI) is a common type of primary neuronal injury in patients with severe traumatic brain injury (TBI), and is frequently accompanied by tissue tear hemorrhage. T2-weighted gradient-recalled echo (GRE) sequences are more sensitive than T2-weighted spin-echo images for detection of hemorrhage. The purpose of this study is to compare turbo Proton Echo Planar Spectroscopic Imaging (t-PEPSI), an extremely fast sequence, with GRE sequence in the detection of DAI. Twenty-one patients (mean age 26.8 years) with severe TBI occurred at least 3 months earlier, underwent a brain MR Imaging study on a 1.5-T scanner. A qualitative evaluation of the t-PEPSI sequences was performed by identifying the optimal echo time and in-plane resolution. The number and size of DAI lesions, as well as the signal intensity contrast ratio (SI CR), were computed for each set of GRE and t-PEPSI images, and divided according to their anatomic location as lobar and/or deep brain. There was no significant difference between GRE and t-PEPSI sequences in the detection of the total number of DAI lesions (291 vs. 230, respectively). GRE sequence delineated a higher number of DAI in the temporal lobe compared to the t-PEPSI sequence (74 vs. 37, P < .004), while no differences were found for the other regions. The SI CR was significantly lower with the t-PEPSI than the GRE sequence (P < .00001). Owing to its very short scan time and high sensitivity to the hemorrhage foci, the t-PEPSI sequence may be used as an alternative to the GRE to assess brain DAI in severe TBI patients, especially if uncooperative and medically unstable.
Analysis of seismic body waves excited by the Mount Saint Helens eruption of May 18, 1980
NASA Technical Reports Server (NTRS)
Kanamori, H.; Given, J. W.; Lay, T.
1982-01-01
Seismic body waves which were excited by eruption of Mt. St. Helens, and recorded by the Global Digital Seismographic Network (GDSN) stations are analyzed to determine the nature and the time sequence of the events associated with the eruption. The polarity of teleseismic P waves (period 20 sec) is identical at six stations which are distributed over a wide azimuthal range. This observation, together with a very small S to P amplitude ratio (at 20 sec), suggests that the source is a nearly vertical single force that represents the counter force of the eruption. The time history of the vertical force suggests two distinct groups of events, about two minutes apart, each consisting of several subevents with a duration of about 25 sec. The magnitude of the force is approximately 2.6 to the 17th power dyne. this vertical force is in contrast with the long period (approximately 150 sec) southward horizontal single force which was determined by a previous study and interpreted to be due to the massive landslide.
Jarus-Dziedzic, Katarzyna; Juniewicz, Henryk; Wroñski, Jerzy; Zub, Wojciech Leslaw; Kasper, Ekkehard; Gowacki, Mariusz; Mierzwa, Janusz
2002-09-01
Patients (n = 127) with aneurysmal subarachnoid hemorrhage (SAH) were examined by transcranial Doppler ultrasonography (TCD) in a prospective study to follow the time course of the posthemorrhagic blood flow velocity in both the middle cerebral artery (MCA) and in the anterior cerebral artery (ACA). Results were analysed to reveal their relationship and predictive use with respect to the occurrence of delayed ischemic deficits. Mean flow velocities (MFV) higher than 120 cm sec(-1) in MCA and 90 cm sec(-1) in ACA were interpreted as indicative for significant vasospasm. In 20 of our 127 patients (16%) a delayed ischemic deficit (DID) was subsequently diagnosed clinically (DID+ group). Patients in the DID+ group can be characterized as those individuals who presented early during the observation period post-SAH with highest values of MFV, a faster increase and longer persistence of pathologically elevated MFV-values (exceeding 120 cm sec(-1) in MCA and 90 cm sec(-1) in ACA). They also show a greater difference in MFV-values if one compares the operated to the nonoperated side. Differences in MFV-values obtained in MCA or ACA were statistically significant (p < 0.05) for DID+ and DID- patients. The daily maximal increase of MFV was found between days 9 and 11 after SAH. In the DID+ group, the maximal MFV was 181 +/- 26 cm sec(-1) in MCA and 119 +/- 14 cm sec(-1) in ACA. In contrast to this, patients in the DID- group were found to present with MFV of 138 +/- 11 cm sec(-1) in MCA and 100 +/- 7 cm sec(-1) in ACA respectively. Delayed ischemic deficits appeared three times more often in DID+ patients than in patients with MFV < 120 cm sec(-1), if they showed a MFV > 120 cm sec(-1) in MCA. If pathological values were obtained in ACA, this ratio increases to about four times, if DID + patients presented with MFV > 90 cm sec(-1) versus patients with MFV < 90 cm sec(-1). Daily monitoring of vasospasm using TCD examination is thus helpful to identify patients at high risk for delayed ischemic deficits. This should allow us to implement further preventive treatment regimens.
Gilbert, Guillaume; Savard, Geneviève; Bard, Céline; Beaudoin, Gilles
2012-06-01
The aim of this study was to investigate the benefits arising from the use of a multiecho sequence for susceptibility-weighted phase imaging using a quantitative comparison with a standard single-echo acquisition. Four healthy adult volunteers were imaged on a clinical 3-T system using a protocol comprising two different three-dimensional susceptibility-weighted gradient-echo sequences: a standard single-echo sequence and a multiecho sequence. Both sequences were repeated twice in order to evaluate the local noise contribution by a subtraction of the two acquisitions. For the multiecho sequence, the phase information from each echo was independently unwrapped, and the background field contribution was removed using either homodyne filtering or the projection onto dipole fields method. The phase information from all echoes was then combined using a weighted linear regression. R2 maps were also calculated from the multiecho acquisitions. The noise standard deviation in the reconstructed phase images was evaluated for six manually segmented regions of interest (frontal white matter, posterior white matter, globus pallidus, putamen, caudate nucleus and lateral ventricle). The use of the multiecho sequence for susceptibility-weighted phase imaging led to a reduction of the noise standard deviation for all subjects and all regions of interest investigated in comparison to the reference single-echo acquisition. On average, the noise reduction ranged from 18.4% for the globus pallidus to 47.9% for the lateral ventricle. In addition, the amount of noise reduction was found to be strongly inversely correlated to the estimated R2 value (R=-0.92). In conclusion, the use of a multiecho sequence is an effective way to decrease the noise contribution in susceptibility-weighted phase images, while preserving both contrast and acquisition time. The proposed approach additionally permits the calculation of R2 maps. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Muzamil, Akhmad; Haries Firmansyah, Achmad
2017-05-01
The research was done the optimization image of Magnetic Resonance Imaging (MRI) T2 Fast Spin Echo (FSE) with variation Echo Train Length (ETL) on the Rupture Tendon Achilles case. This study aims to find the variations Echo Train Length (ETL) from the results of ankle’s MRI image and find out how the value of Echo Train Length (ETL) works on the MRI ankle to produce optimal image. In this research, the used ETL variations were 12 and 20 with the interval 2 on weighting T2 FSE sagittal. The study obtained the influence of Echo Train Length (ETL) on the quality of ankle MRI image sagittal using T2 FSE weighting and analyzed in 25 images of five patients. The data analysis has done quantitatively with the Region of Interest (ROI) directly on computer MRI image planes which conducted statistical tests Signal to Noise Ratio (SNR) and Contras to Noise Ratio (CNR). The Signal to Noise Ratio (SNR) was the highest finding on fat tissue, while the Contras to Noise Ratio (CNR) on the Tendon-Fat tissue with ETL 12 found in two patients. The statistics test showed the significant SNR value of the 0.007 (p<0.05) of Tendon tissue, 0.364 (p>0.05) of the Fat, 0.912 (p>0.05) of the Fibula, and 0.436 (p>0.05) of the Heel Bone. For the contrast to noise ratio (CNR) of the Tendon-FAT tissue was about 0.041 (p>0.05). The results of the study showed that ETL variation with T2 FSE sagittal weighting had difference at Tendon tissue and Tendon-Fat tissue for MRI imaging quality. SNR and CNR were an important aspect on imaging optimization process to give the diagnose information.
[Differential echographic diagnosis in small tissue areas--exemplified by the orbits].
Buschmann, W; Haigis, W
1982-12-01
Measurement-based ultrasonography proved mandatory in ophthalmic diagnostic work. It provides comparable examination conditions and therefore, comparable results, in contrast to simple, empirical ultrasonic examination. Measurement methods which can be easily applied under clinical conditions have been developed for determination of those technical characteristics of the apparatus and transducer probes which proved decisive for the diagnostic results. Some echographic criteria can be additionally or better evaluated using this basis. All echo-amplitude measurements should be related to a well-defined test-reflector echo. In addition to sensitivity and resolution, frequency and frequency spectrum are especially important. Manufacturer's data have proved insufficient up to now, insufficient; even within one manufacturer's series of one equipment or transducer probe type considerable deviations from the declared data have been found. Such deviations may mimick pathologic alterations in the echograms. The size of a lesion area can be better evaluated when using well-defined technical conditions. The echographic presentation of tissue structures in the depth is especially dependent on frequency and on the frequency spectrum. Pathologic alterations of tissues may cause changes in the ultrasound attenuation which results in emphasized or reduced presentation of echoes from normal structures behind the lesion area. Tissue differentiation should be based on additional A-scan echograms. Computerized echogram averaging provides a more reliable evaluation of echo amplitudes and ultrasound attenuation. Use of measurement-based ultrasonography permits to compare measured echo-amplitudes and ultrasound attenuation with the results of other working groups, even if these are based on other equipment and transducers.
A Selective-Echo Method for Chemical-Shift Imaging of Two-Component Systems
NASA Astrophysics Data System (ADS)
Gerald, Rex E., II; Krasavin, Anatoly O.; Botto, Robert E.
A simple and effective method for selectively imaging either one of two chemical species in a two-component system is presented and demonstrated experimentally. The pulse sequence employed, selective- echo chemical- shift imaging (SECSI), is a hybrid (frequency-selective/ T1-contrast) technique that is executed in a short period of time, utilizes the full Boltzmann magnetization of each chemical species to form the corresponding image, and requires only hard pulses of quadrature phase. This approach provides a direct and unambiguous representation of the spatial distribution of the two chemical species. In addition, the performance characteristics and the advantages of the SECSI sequence are compared on a common basis to those of other pulse sequences.
B0 concomitant field compensation for MRI systems employing asymmetric transverse gradient coils.
Weavers, Paul T; Tao, Shengzhen; Trzasko, Joshua D; Frigo, Louis M; Shu, Yunhong; Frick, Matthew A; Lee, Seung-Kyun; Foo, Thomas K-F; Bernstein, Matt A
2018-03-01
Imaging gradients result in the generation of concomitant fields, or Maxwell fields, which are of increasing importance at higher gradient amplitudes. These time-varying fields cause additional phase accumulation, which must be compensated for to avoid image artifacts. In the case of gradient systems employing symmetric design, the concomitant fields are well described with second-order spatial variation. Gradient systems employing asymmetric design additionally generate concomitant fields with global (zeroth-order or B 0 ) and linear (first-order) spatial dependence. This work demonstrates a general solution to eliminate the zeroth-order concomitant field by applying the correct B 0 frequency shift in real time to counteract the concomitant fields. Results are demonstrated for phase contrast, spiral, echo-planar imaging (EPI), and fast spin-echo imaging. A global phase offset is reduced in the phase-contrast exam, and blurring is virtually eliminated in spiral images. The bulk image shift in the phase-encode direction is compensated for in EPI, whereas signal loss, ghosting, and blurring are corrected in the fast-spin echo images. A user-transparent method to compensate the zeroth-order concomitant field term by center frequency shifting is proposed and implemented. This solution allows all the existing pulse sequences-both product and research-to be retained without any modifications. Magn Reson Med 79:1538-1544, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Pogorevc, Mateja; Faber, Kurt
2003-01-01
Whole cells of Rhodococcus ruber DSM 44541 were found to hydrolyze (±)-2-octyl sulfate in a stereo- and enantiospecific fashion. When growing on a complex medium, the cells produced two sec-alkylsulfatases and (at least) one prim-alkylsulfatase in the absence of an inducer, such as a sec-alkyl sulfate or a sec-alcohol. From the crude cell-free lysate, two proteins responsible for sulfate ester hydrolysis (designated RS1 and RS2) were separated from each other based on their different hydrophobicities and were subjected to further chromatographic purification. In contrast to sulfatase RS1, enzyme RS2 proved to be reasonably stable and thus could be purified to homogeneity. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a single band at a molecular mass of 43 kDa. Maximal enzyme activity was observed at 30°C and at pH 7.5. Sulfatase RS2 showed a clear preference for the hydrolysis of linear secondary alkyl sulfates, such as 2-, 3-, or 4-octyl sulfate, with remarkable enantioselectivity (an enantiomeric ratio of up to 21 [23]). Enzymatic hydrolysis of (R)-2-octyl sulfate furnished (S)-2-octanol without racemization, which revealed that the enzymatic hydrolysis proceeded through inversion of the configuration at the stereogenic carbon atom. Screening of a broad palette of potential substrates showed that the enzyme exhibited limited substrate tolerance; while simple linear sec-alkyl sulfates (C7 to C10) were freely accepted, no activity was found with branched and mixed aryl-alkyl sec-sulfates. Due to the fact that prim-sulfates were not accepted, the enzyme was classified as sec-alkylsulfatase (EC 3.1.6.X). PMID:12732552
Choi, Brian G; Sanai, Reza; Yang, Benjamin; Young, Heather A; Mazhari, Ramesh; Reiner, Jonathan S; Lewis, Jannet F
2014-10-31
Studies with other imaging modalities have demonstrated a relationship between contrast transit and cardiac output (CO) and pulmonary vascular resistance (PVR). We tested the hypothesis that the transit time during contrast echocardiography could accurately estimate both CO and PVR compared to right heart catheterization (RHC). 27 patients scheduled for RHC had 2D-echocardiogram immediately prior to RHC. 3 ml of DEFINITY contrast followed by a 10 ml saline flush was injected, and a multi-cycle echo clip was acquired from the beginning of injection to opacification of the left ventricle. 2D-echo based calculations of CO and PVR along with the DEFINITY-based transit time calculations were subsequently correlated with the RHC-determined CO and PVR. The transit time from full opacification of the right ventricle to full opacification of the left ventricle inversely correlated with CO (r=-0.61, p<0.001). The transit time from peak opacification of the right ventricle to first appearance in the left ventricle moderately correlated with PVR (r=0.46, p<0.01). Previously described echocardiographic methods for the determination of CO (Huntsman method) and PVR (Abbas and Haddad methods) did not correlate with RHC-determined values (p = 0.20 for CO, p = 0.18 and p = 0.22 for PVR, respectively). The contrast transit time method demonstrated reliable intra- (p<0.0001) and inter-observer correlation (p<0.001). We describe a novel method for the quantification of CO and estimation of PVR using contrast echocardiography transit time. This technique adds to the methodologies used for noninvasive hemodynamic assessment, but requires further validation to determine overall applicability.
Wu, Michael; Gabriels, James; Khan, Mohammad; Shaban, Nada; D'Amato, Salvatore; Liu, Christopher F; Markowitz, Steven M; Ip, James E; Thomas, George; Singh, Parmanand; Lerman, Bruce; Patel, Apoor; Cheung, Jim W
2018-04-01
Left atrial thrombus (LAT) and dense spontaneous echocardiographic contrast (SEC) detected by transesophageal echocardiography (TEE) in patients on continuous direct oral anticoagulants (DOAC) therapy before catheter ablation of atrial fibrillation (AF) or atrial flutter (AFL) have been described. We sought to compare rates of TEE-detected LAT and dense SEC among patients taking different DOACs. We evaluated 609 consecutive patients from 3 tertiary hospitals (median age 65 years; interquartile range 58-71 years; 436 (72%) men) who were on ≥4 weeks of continuous DOAC therapy (dabigatran, n = 166 [27%]; rivaroxaban, n = 257 [42%]; or apixaban, n = 186 [31%]) undergoing TEE before catheter ablation of AF/AFL. Demographic, clinical, and TEE data were collected for each patient. Despite ≥4 weeks of continuous DOAC therapy, 17 patients (2.8%) had LAT and 15 patients (2.5%) had dense SEC detected by TEE. The rates of LAT were 3.0%, 3.5%, and 1.6% for patients on dabigatran, rivaroxaban, and apixaban, respectively (P = .482). The rates of dense SEC were 1.2%, 3.5%, and 2.2% for patients on dabigatran, rivaroxaban, and apixaban, respectively (P = .299). Congestive heart failure (odds ratio 4.4; 95% confidence interval 1.6-12; P = .003) and moderate/severe left atrial enlargement (odds ratio 3.1; 95% confidence interval 1.1-8.6; P = .026) were independent predictors of LAT. In this study, ∼3% of patients on continuous DOAC therapy had LAT detected before catheter ablation of AF/AFL. Specific DOAC therapy did not significantly affect the rates of LAT detection. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Scheidler, J; Heuck, A; Wencke, K; Kimmig, R; Müller-Lisse, U; Reiser, M
1997-04-01
To determine whether contrast-enhanced and fat-suppressed sequences contribute to the MR imaging diagnosis of parametrial invasion. 21 patients with carcinoma of the cervix were prospectively examined with a phased-array coil and a 1.5T MR-scanner using the following sequences: transverse T2-weighted turbo spin echo (T2-TSE), T1-weighted spin echo (T1-SE) and fat suppressed T1-weighted SE sequences before and after Gd-DTPA. The sequences were evaluated separately for the presence of parametrial invasion. Image quality and diagnostic confidence were classified on a scale of 0-10 (nondiagnostic-excellent). Findings were compared to the results of the pathohistological examination. Sensitivity, specificity and diagnostic accuracy were highest for T2-TSE sequences (100%, 79% and 86%, respectively). Contrast-enhanced T1-SE sequences with fat-suppression (71%, 79%, and 76%) showed no improvement compared to T2-TSE. Unenhanced fat-suppressed T1-SE (100%, 30%, and 56%) and unenhanced T1-SE (100%, 7%, and 38%) as well as contrast-enhanced T1-SE (86%, 20%, and 47%) were significantly worse than T2-TSE. With similar image quality (p < 0.05) diagnostic confidence was higher on T2-TSE than on any of the other sequences (p < 0.001). Considering the cost-effectiveness of the examination, for the MR diagnosis of parametrial invasion the use of fat-suppressed contrast-enhanced sequences can be abandoned in favour of T2-weighted TSE sequences.
Hadamard-Encoded Multipulses for Contrast-Enhanced Ultrasound Imaging.
Gong, Ping; Song, Pengfei; Chen, Shigao
2017-11-01
The development of contrast-enhanced ultrasound (CEUS) imaging offers great opportunities for new ultrasound clinical applications such as myocardial perfusion imaging and abdominal lesion characterization. In CEUS imaging, the contrast agents (i.e., microbubbles) are utilized to improve the contrast between blood and tissue based on their high nonlinearity under low ultrasound pressure. In this paper, we propose a new CEUS pulse sequence by combining Hadamard-encoded multipulses (HEM) with fundamental frequency bandpass filter (i.e., filter centered on transmit frequency). HEM consecutively emits multipulses encoded by a second-order Hadamard matrix in each of the two transmission events (i.e., pulse-echo events), as opposed to conventional CEUS methods which emit individual pulses in two separate transmission events (i.e., pulse inversion (PI), amplitude modulation (AM), and PIAM). In HEM imaging, the microbubble responses can be improved by the longer transmit pulse, and the tissue harmonics can be suppressed by the fundamental frequency filter, leading to significantly improved contrast-to-tissue ratio (CTR) and signal-to-noise ratio (SNR). In addition, the fast polarity change between consecutive coded pulse emissions excites strong nonlinear microbubble echoes, further enhancing the CEUS image quality. The spatial resolution of HEM image is compromised as compared to other microbubble imaging methods due to the longer transmit pulses and the lower imaging frequency (i.e., fundamental frequency). However, the resolution loss was shown to be negligible and could be offset by the significantly enhanced CTR, SNR, and penetration depth. These properties of HEM can potentially facilitate robust CEUS imaging for many clinical applications, especially for deep abdominal organs and heart.
Breast augmentation and reconstructive surgery: MR imaging of implant rupture and malignancy.
Herborn, Christoph U; Marincek, Borut; Erfmann, Daniel; Meuli-Simmen, Claudia; Wedler, Volker; Bode-Lesniewska, Beate; Kubik-Huch, Rahel A
2002-09-01
The purpose of this study was to assess the diagnostic accuracy of MRI in detecting prosthesis integrity and malignancy after breast augmentation and reconstruction. Forty-one implants in 25 patients were analyzed by MRI before surgical removal. Imaging results were compared with ex vivo findings. Magnetic resonance imaging of the breast was performed on a 1.5-T system using a dedicated surface breast coil. Axial and sagittal T2-weighted fast spin-echo as well as dynamic contrast-enhanced T1-weighted gradient-recalled-echo sequences were acquired. The linguine sign indicating collapse of the silicone shell or siliconomas indicating free silicone proved implant rupture, whereas early focal contrast enhancement of a lesion was suspicious for malignancy. The sensitivity for detection of implant rupture was 86.7% with a specificity of 88.5%. The positive and negative predictive values were 81.3 and 92.0%, respectively. The linguine sign as a predictor of intracapsular implant rupture had a sensitivity of 80% with a specificity of 96.2%. Magnetic resonance imaging revealed two lesions with suspicious contrast enhancement (one carcinoma, one extra-abdominal fibromatosis). Magnetic resonance imaging is a reliable and reproducible technique for diagnosing both implant rupture and malignant lesions in women after breast augmentation and reconstruction.
Demi, Libertario; Wijkstra, Hessel; Mischi, Massimo
2014-12-01
Several imaging techniques aimed at detecting ultrasound contrast agents (UCAs) echo signals, while suppressing signals coming from the surrounding tissue, have been developed. These techniques are especially relevant for blood flow, perfusion, or contrast dispersion quantification. However, despite several approaches being presented, improving the understanding of the ultrasound/UCAs interaction may support further development of imaging techniques. In this paper, the physical phenomena behind the formation of harmonic components in tissue and UCAs, respectively, are addressed as a possible way to recognize the origin of the echo signals. Simulations based on a modified Rayleigh, Plesset, Noltingk, Neppiras, and Poritsky equation and transmission and backscattering measurements of ultrasound propagating through UCAs performed with a single element transducer and a submergible hydrophone, are presented. Both numerical and in vitro results show the occurrence of a cumulative time delay between the second harmonic and fundamental component which increases with UCA concentration and propagation path length through UCAs, and that was clearly observable at frequencies ( f0 = 2.5 MHz) and pressure regimes (mechanical index = 0.1) of interest for imaging. Most importantly, this delay is not observed in the absence of UCAs. In conclusion, the reported phenomenon represents a marker for UCAs with potential application for imaging.
Reduction of Diffusion-Weighted Imaging Contrast of Acute Ischemic Stroke at Short Diffusion Times.
Baron, Corey Allan; Kate, Mahesh; Gioia, Laura; Butcher, Kenneth; Emery, Derek; Budde, Matthew; Beaulieu, Christian
2015-08-01
Diffusion-weighted imaging (DWI) of tissue water is a sensitive and specific indicator of acute brain ischemia, where reductions of the diffusion of tissue water are observed acutely in the stroke lesion core. Although these diffusion changes have been long attributed to cell swelling, the precise nature of the biophysical mechanisms remains uncertain. The potential cause of diffusion reductions after stroke was investigated using an advanced DWI technique, oscillating gradient spin-echo DWI, that enables much shorter diffusion times and can improve specificity for alterations of structure at the micron level. Diffusion measurements in the white matter lesions of patients with acute ischemic stroke were reduced by only 8% using oscillating gradient spin-echo DWI, in contrast to a 37% decrease using standard DWI. Neurite beading has recently been proposed as a mechanism for the diffusion changes after ischemic stroke with some ex vivo evidence. To explore whether beading could cause such differential results, simulations of beaded cylinders and axonal swelling were performed, yielding good agreement with experiment. Short diffusion times result in dramatically reduced diffusion contrast of human stroke. Simulations implicate a combination of neuronal beading and axonal swelling as the key structural changes leading to the reduced apparent diffusion coefficient after stroke. © 2015 American Heart Association, Inc.
Gai, Neville D; Malayeri, Ashkan A; Bluemke, David A
2017-08-01
Long T2 species can interfere with visualization of short T2 tissue imaging. For example, visualization of lung parenchyma can be hindered by breathing artifacts primarily from fat in the chest wall. The purpose of this work was to design and evaluate a scheme for long T2 species suppression in lung parenchyma imaging using 3-D inversion recovery double-echo ultrashort echo time imaging with a k-space reordering scheme for artifact suppression. A hyperbolic secant (HS) pulse was evaluated for different tissues (T1/T2). Bloch simulations were performed with the inversion pulse followed by segmented UTE acquisition. Point spread function (PSF) was simulated for a standard interleaved acquisition order and a modulo 2 forward-reverse acquisition order. Phantom and in vivo images (eight volunteers) were acquired with both acquisition orders. Contrast to noise ratio (CNR) was evaluated in in vivo images prior to and after introduction of the long T2 suppression scheme. The PSF as well as phantom and in vivo images demonstrated reduction in artifacts arising from k-space modulation after using the reordering scheme. CNR measured between lung and fat and lung and muscle increased from -114 and -148.5 to +12.5 and 2.8 after use of the IR-DUTE sequence. Paired t test between the CNRs obtained from UTE and IR-DUTE showed significant positive change (p < 0.001 for lung-fat CNR and p = 0.03 for lung-muscle CNR). Full 3-D lung parenchyma imaging with improved positive contrast between lung and other long T2 tissue types can be achieved robustly in a clinically feasible time using IR-DUTE with image subtraction when segmented radial acquisition with k-space reordering is employed.
Human speed perception is contrast dependent
NASA Technical Reports Server (NTRS)
Stone, Leland S.; Thompson, Peter
1992-01-01
When two parallel gratings moving at the same speed are presented simultaneously, the lower-contrast grating appears slower. This misperception is evident across a wide range of contrasts (2.5-50 percent) and does not appear to saturate (e.g. a 50 percent contrast grating appears slower than a 70 percent contrast grating moving at the same speed). On average, a 70 percent contrast grating must be slowed by 35 percent to match a 10 percent contrast grating moving at 2 deg/sec (N = 6). Furthermore, the effect is largely independent of the absolute contrast level and is a quasi-linear function of log contrast ratio. A preliminary parametric study shows that, although spatial frequency has little effect, relative orientation is important. Finally, the misperception of relative speed appears lessened when the stimuli to be matched are presented sequentially.
Ex Vivo Diffusion Tensor Imaging of Spinal Cord Injury in Rats of Varying Degrees of Severity
Jirjis, Michael B.; Kurpad, Shekar N.
2013-01-01
Abstract The aim of this study was to characterize magnetic resonance diffusion tensor imaging (DTI) in proximal regions of the spinal cord following a thoracic spinal cord injury (SCI). Sprague–Dawley rats (n=40) were administered a control, mild, moderate, or severe contusion injury at the T8 vertebral level. Six direction diffusion weighted images (DWIs) were collected ex vivo along the length of the spinal cord, with an echo/repetition time of 31.6 ms/14 sec and b=500 sec/mm2. Diffusion metrics were correlated to hindlimb motor function. Significant differences were found for whole cord region of interest (ROI) drawings for fractional anisotropy (FA), mean diffusivity (MD), longitudinal diffusion coefficient (LD), and radial diffusion coefficient (RD) at each of the cervical levels (p<0.01). Motor function correlated with MD in the cervical segments of the spinal cord (r2=0.80). The diffusivity of water significantly decreased throughout “uninjured” portions of the spinal cord following a contusion injury (p<0.05). Diffusivity metrics were found to be altered following SCI in both white and gray matter regions. Injury severity was associated with diffusion changes over the entire length of the cord. This study demonstrates that DTI is sensitive to SCI in regions remote from injury, suggesting that the diffusion metrics may be used as a biomarker for severity of injury. PMID:23782233
Iodine contrast cone beam CT imaging of breast cancer
NASA Astrophysics Data System (ADS)
Partain, Larry; Prionas, Stavros; Seppi, Edward; Virshup, Gary; Roos, Gerhard; Sutherland, Robert; Boone, John
2007-03-01
An iodine contrast agent, in conjunction with an X-ray cone beam CT imaging system, was used to clearly image three, biopsy verified, cancer lesions in two patients. The lesions were approximately in the 10 mm to 6 mm diameter range. Additional regions were also enhanced with approximate dimensions down to 1 mm or less in diameter. A flat panel detector, with 194 μm pixels in 2 x 2 binning mode, was used to obtain 500 projection images at 30 fps with an 80 kVp X-ray system operating at 112 mAs, for an 8-9 mGy dose - equivalent to two view mammography for these women. The patients were positioned prone, while the gantry rotated in the horizontal plane around the uncompressed, pendant breasts. This gantry rotated 360 degrees during the patient's 16.6 sec breath hold. A volume of 100 cc of 320 mg/ml iodine-contrast was power injected at 4 cc/sec, via catheter into the arm vein of the patient. The resulting 512 x 512 x 300 cone beam CT data set of Feldkamp reconstructed ~(0.3 mm) 3 voxels were analyzed. An interval of voxel contrast values, characteristic of the regions with iodine contrast enhancement, were used with surface rendering to clearly identify up to a total of 13 highlighted volumes. This included the three largest lesions, that were previously biopsied and confirmed to be malignant. The other ten highlighted regions, of smaller diameters, are likely areas of increased contrast trapping unrelated to cancer angiogenesis. However the technique itself is capable of resolving lesions that small.
Naganawa, Shinji; Satake, Hiroko; Iwano, Shingo; Kawai, Hisashi; Kubota, Seiji; Komada, Tomohiro; Kawamura, Minako; Sakurai, Yasuo; Fukatsu, Hiroshi
2008-02-01
The BLADE and PROPELLER (periodically rotated overlapping parallel lines with enhanced reconstruction) techniques have been proposed to reduce the effect of head motion. Preliminary results have shown that BLADE also reduces pulsation artifacts from venous sinuses. The purpose of this study was to compare T1-weighted FLAIR acquired with BLADE (T1W-FLAIR BLADE) and T1-weighted spin-echo (T1W-SE) for the detection of contrast enhancement in a phantom and in patients with suspected brain lesions and to compare the degree of flow-related artifacts in the patients. A phantom filled with diluted Gd-DTPA was scanned in addition to 27 patients. In the phantom study, the peak contrast-to-noise ratio of T1W-FLAIR BLADE was larger than that of T1W-SE, and the position of the peak was shifted to a lower concentration. In patients, the degree of flow-related artifacts was significantly higher in T1W-SE. Among the 27 patients, 9 had metastatic tumor, and 18 did not. On a patient-by-patient basis, the sensitivity and specificity for the detection of metastatic lesions on axial T1W-SE were 100% and 55.6% respectively, while on axial T1W-FLAIR BLADE they were 100% and 100%. T1W-FLAIR BLADE seems to be capable of replacing T1W-SE, at least for axial post-contrast imaging to detect brain metastases.
Reimer, P; Bremer, C; Horch, C; Morgenroth, C; Allkemper, T; Schuierer, G
1998-01-01
The purpose of this study was to evaluate the clinical utility of laser-induced thermotherapy (LITT) as a palliative treatment for patients with high-grade gliomas. Four consenting patients with recurrent high grade III/IV gliomas near the primary language or motor areas were palliatively treated with LITT (2-5 W, 3-13 minutes; Neodym YAG Laser, Dornier, Friedrichshafen, Germany). Temperature monitoring was performed by T1-weighted turbo-fast low-angle shot (FLASH) imaging at 1.5 T (Siemens Magnetom SP 4000, Siemens, Erlangen, Germany). MRI studies before LITT included contrast-enhanced conventional scans and functional activation studies to localize the primary motor cortex or language areas using an echo-planar imaging (EPI) spin-echo (SE) sequence. Follow-up studies consisted of contrast-enhanced conventional scans as well as diffusion studies (contrast-enhanced Fourier-acquired steady-state technique and EPI-SE) and perfusion studies (EPI-SE with .2 mmol of gadolinium (Gd)/kg body weight) to differentiate post-therapeutic effects from residual or recurrent tumor growth. Local tumor control was achieved in areas with laser energy deposition with clinically stable conditions > or = 6 months. Conventional contrast-enhanced scans demonstrated strong enhancement surrounding ablated tumor components, which showed a reduction in CBV/CBF. Perfusion studies were useful to discriminate granulomatous tissue enhancement from residual or recurrent tumor growth. Careful application of LITT may evolve as an alternative palliative concept for patients with end-stage high-grade cerebral gliomas reducing clinical symptoms from circumscribed areas of pathology.
Brain magnetic resonance imaging with contrast dependent on blood oxygenation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogawa, S.; Lee, T.M.; Kay, A.R.
1990-12-01
Paramagnetic deoxyhemoglobin in venous blood is a naturally occurring contrast agent for magnetic resonance imaging (MRI). By accentuating the effects of this agent through the use of gradient-echo techniques in high yields, the authors demonstrate in vivo images of brain microvasculature with image contrast reflecting the blood oxygen level. This blood oxygenation level-dependent (BOLD) contrast follows blood oxygen changes induced by anesthetics, by insulin-induced hypoglycemia, and by inhaled gas mixtures that alter metabolic demand or blood flow. The results suggest that BOLD contrast can be used to provide in vivo real-time maps of blood oxygenation in the brain under normalmore » physiological conditions. BOLD contrast adds an additional feature to magnetic resonance imaging and complement other techniques that are attempting to provide position emission tomography-like measurements related to regional neural activity.« less
Brain Magnetic Resonance Imaging with Contrast Dependent on Blood Oxygenation
NASA Astrophysics Data System (ADS)
Ogawa, S.; Lee, T. M.; Kay, A. R.; Tank, D. W.
1990-12-01
Paramagnetic deoxyhemoglobin in venous blood is a naturally occurring contrast agent for magnetic resonance imaging (MRI). By accentuating the effects of this agent through the use of gradient-echo techniques in high fields, we demonstrate in vivo images of brain microvasculature with image contrast reflecting the blood oxygen level. This blood oxygenation level-dependent (BOLD) contrast follows blood oxygen changes induced by anesthetics, by insulin-induced hypoglycemia, and by inhaled gas mixtures that alter metabolic demand or blood flow. The results suggest that BOLD contrast can be used to provide in vivo real-time maps of blood oxygenation in the brain under normal physiological conditions. BOLD contrast adds an additional feature to magnetic resonance imaging and complements other techniques that are attempting to provide positron emission tomography-like measurements related to regional neural activity.
Towards Dynamic Contrast Specific Ultrasound Tomography
NASA Astrophysics Data System (ADS)
Demi, Libertario; van Sloun, Ruud J. G.; Wijkstra, Hessel; Mischi, Massimo
2016-10-01
We report on the first study demonstrating the ability of a recently-developed, contrast-enhanced, ultrasound imaging method, referred to as cumulative phase delay imaging (CPDI), to image and quantify ultrasound contrast agent (UCA) kinetics. Unlike standard ultrasound tomography, which exploits changes in speed of sound and attenuation, CPDI is based on a marker specific to UCAs, thus enabling dynamic contrast-specific ultrasound tomography (DCS-UST). For breast imaging, DCS-UST will lead to a more practical, faster, and less operator-dependent imaging procedure compared to standard echo-contrast, while preserving accurate imaging of contrast kinetics. Moreover, a linear relation between CPD values and ultrasound second-harmonic intensity was measured (coefficient of determination = 0.87). DCS-UST can find clinical applications as a diagnostic method for breast cancer localization, adding important features to multi-parametric ultrasound tomography of the breast.
Towards Dynamic Contrast Specific Ultrasound Tomography.
Demi, Libertario; Van Sloun, Ruud J G; Wijkstra, Hessel; Mischi, Massimo
2016-10-05
We report on the first study demonstrating the ability of a recently-developed, contrast-enhanced, ultrasound imaging method, referred to as cumulative phase delay imaging (CPDI), to image and quantify ultrasound contrast agent (UCA) kinetics. Unlike standard ultrasound tomography, which exploits changes in speed of sound and attenuation, CPDI is based on a marker specific to UCAs, thus enabling dynamic contrast-specific ultrasound tomography (DCS-UST). For breast imaging, DCS-UST will lead to a more practical, faster, and less operator-dependent imaging procedure compared to standard echo-contrast, while preserving accurate imaging of contrast kinetics. Moreover, a linear relation between CPD values and ultrasound second-harmonic intensity was measured (coefficient of determination = 0.87). DCS-UST can find clinical applications as a diagnostic method for breast cancer localization, adding important features to multi-parametric ultrasound tomography of the breast.
Towards Dynamic Contrast Specific Ultrasound Tomography
Demi, Libertario; Van Sloun, Ruud J. G.; Wijkstra, Hessel; Mischi, Massimo
2016-01-01
We report on the first study demonstrating the ability of a recently-developed, contrast-enhanced, ultrasound imaging method, referred to as cumulative phase delay imaging (CPDI), to image and quantify ultrasound contrast agent (UCA) kinetics. Unlike standard ultrasound tomography, which exploits changes in speed of sound and attenuation, CPDI is based on a marker specific to UCAs, thus enabling dynamic contrast-specific ultrasound tomography (DCS-UST). For breast imaging, DCS-UST will lead to a more practical, faster, and less operator-dependent imaging procedure compared to standard echo-contrast, while preserving accurate imaging of contrast kinetics. Moreover, a linear relation between CPD values and ultrasound second-harmonic intensity was measured (coefficient of determination = 0.87). DCS-UST can find clinical applications as a diagnostic method for breast cancer localization, adding important features to multi-parametric ultrasound tomography of the breast. PMID:27703251
Kordes, Sebastian; Kössl, Manfred
2017-01-01
Abstract For the purpose of orientation, echolocating bats emit highly repetitive and spatially directed sonar calls. Echoes arising from call reflections are used to create an acoustic image of the environment. The inferior colliculus (IC) represents an important auditory stage for initial processing of echolocation signals. The present study addresses the following questions: (1) how does the temporal context of an echolocation sequence mimicking an approach flight of an animal affect neuronal processing of distance information to echo delays? (2) how does the IC process complex echolocation sequences containing echo information from multiple objects (multiobject sequence)? Here, we conducted neurophysiological recordings from the IC of ketamine-anaesthetized bats of the species Carollia perspicillata and compared the results from the IC with the ones from the auditory cortex (AC). Neuronal responses to an echolocation sequence was suppressed when compared to the responses to temporally isolated and randomized segments of the sequence. The neuronal suppression was weaker in the IC than in the AC. In contrast to the cortex, the time course of the acoustic events is reflected by IC activity. In the IC, suppression sharpens the neuronal tuning to specific call-echo elements and increases the signal-to-noise ratio in the units’ responses. When presenting multiple-object sequences, despite collicular suppression, the neurons responded to each object-specific echo. The latter allows parallel processing of multiple echolocation streams at the IC level. Altogether, our data suggests that temporally-precise neuronal responses in the IC could allow fast and parallel processing of multiple acoustic streams. PMID:29242823
Beetz, M Jerome; Kordes, Sebastian; García-Rosales, Francisco; Kössl, Manfred; Hechavarría, Julio C
2017-01-01
For the purpose of orientation, echolocating bats emit highly repetitive and spatially directed sonar calls. Echoes arising from call reflections are used to create an acoustic image of the environment. The inferior colliculus (IC) represents an important auditory stage for initial processing of echolocation signals. The present study addresses the following questions: (1) how does the temporal context of an echolocation sequence mimicking an approach flight of an animal affect neuronal processing of distance information to echo delays? (2) how does the IC process complex echolocation sequences containing echo information from multiple objects (multiobject sequence)? Here, we conducted neurophysiological recordings from the IC of ketamine-anaesthetized bats of the species Carollia perspicillata and compared the results from the IC with the ones from the auditory cortex (AC). Neuronal responses to an echolocation sequence was suppressed when compared to the responses to temporally isolated and randomized segments of the sequence. The neuronal suppression was weaker in the IC than in the AC. In contrast to the cortex, the time course of the acoustic events is reflected by IC activity. In the IC, suppression sharpens the neuronal tuning to specific call-echo elements and increases the signal-to-noise ratio in the units' responses. When presenting multiple-object sequences, despite collicular suppression, the neurons responded to each object-specific echo. The latter allows parallel processing of multiple echolocation streams at the IC level. Altogether, our data suggests that temporally-precise neuronal responses in the IC could allow fast and parallel processing of multiple acoustic streams.
The Direct Detection and Characterization of M-dwarf Planets Using Light Echoes
NASA Astrophysics Data System (ADS)
Sparks, William B.; White, Richard L.; Lupu, Roxana E.; Ford, Holland C.
2018-02-01
Exoplanets orbiting M-dwarf stars are a prime target in the search for life in the universe. M-dwarf stars are active, with powerful flares that could adversely impact prospects for life, though there are counter-arguments. Here, we turn flaring to advantage and describe ways in which it can be used to enhance the detectability of planets, in the absence of transits or a coronagraph, significantly expanding the accessible discovery and characterization space. Flares produce brief bursts of intense luminosity, after which the star dims. Due to the light travel time between the star and planet, the planet receives the high-intensity pulse, which it re-emits through scattering (a light echo) or intrinsic emission when the star is much fainter, thereby increasing the planet’s detectability. The planet’s light-echo emission can potentially be discriminated from that of the host star by means of a time delay, Doppler shift, spatial shift, and polarization, each of which can improve the contrast of the planet to the star. Scattered light can reveal the albedo spectrum of the planet to within a size scale factor, and is likely to be polarized. Intrinsic emission mechanisms include fluorescent pumping of multiple molecular hydrogen and neutral oxygen lines by intense Lyα and Lyβ flare emission, recombination radiation of ionized and photodissociated species, and atmospheric processes such as terrestrial upper atmosphere airglow and near-infrared hydroxyl emission. We discuss the feasibility of detecting light echoes and find that light echo detection is possible under favorable circumstances.
WE-DE-206-04: MRI Pulse Sequences - Spin Echo, Gradient Echo, EPI, Non-Cartesia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pooley, R.
Magnetic resonance imaging (MRI) has become an essential part of clinical imaging due to its ability to render high soft tissue contrast. Instead of ionizing radiation, MRI use strong magnetic field, radio frequency waves and field gradients to create diagnostic useful images. It can be used to image the anatomy and also functional and physiological activities within the human body. Knowledge of the basic physical principles underlying MRI acquisition is vitally important to successful image production and proper image interpretation. This lecture will give an overview of the spin physics, imaging principle of MRI, the hardware of the MRI scanner,more » and various pulse sequences and their applications. It aims to provide a conceptual foundation to understand the image formation process of a clinical MRI scanner. Learning Objectives: Understand the origin of the MR signal and contrast from the spin physics level. Understand the main hardware components of a MRI scanner and their purposes Understand steps for MR image formation including spatial encoding and image reconstruction Understand the main kinds of MR pulse sequences and their characteristics.« less
Magnetic resonance imaging protocols for examination of the neurocranium at 3 T.
Schwindt, W; Kugel, H; Bachmann, R; Kloska, S; Allkemper, T; Maintz, D; Pfleiderer, B; Tombach, B; Heindel, W
2003-09-01
The increasing availability of high-field (3 T) MR scanners requires adapting and optimizing clinical imaging protocols to exploit the theoretically higher signal-to-noise ratio (SNR) of the higher field strength. Our aim was to establish reliable and stable protocols meeting the clinical demands for imaging the neurocranium at 3 T. Two hundred patients with a broad range of indications received an examination of the neurocranium with an appropriate assortment of imaging techniques at 3 T. Several imaging parameters were optimized. Keeping scan times comparable to those at 1.5 T we increased spatial resolution. Contrast-enhanced and non-enhanced T1-weighted imaging was best applying gradient-echo and inversion recovery (rather than spin-echo) techniques, respectively. For fluid-attenuated inversion recovery (FLAIR) imaging a TE of 120 ms yielded optimum contrast-to-noise ratio (CNR). High-resolution isotropic 3D data sets were acquired within reasonable scan times. Some artifacts were pronounced, but generally imaging profited from the higher SNR. We present a set of optimized examination protocols for neuroimaging at 3 T, which proved to be reliable in a clinical routine setting.
High-speed multislice T1 mapping using inversion-recovery echo-planar imaging.
Ordidge, R J; Gibbs, P; Chapman, B; Stehling, M K; Mansfield, P
1990-11-01
Tissue contrast in MR images is a strong function of spin-lattice (T1) and spin-spin (T2) relaxation times. However, the T1 relaxation time is rarely quantified because of the long scan time required to produce an accurate T1 map of the subject. In a standard 2D FT technique, this procedure may take up to 30 min. Modifications of the echo-planar imaging (EPI) technique which incorporate the principle of inversion recovery (IR) enable multislice T1 maps to be produced in total scan times varying from a few seconds up to a minute. Using IR-EPI, rapid quantification of T1 values may thus lead to better discrimination between tissue types in an acceptable scan time.
A Comparative Analysis of Two Full-Scale MD-500 Helicopter Crash Tests
NASA Technical Reports Server (NTRS)
Littell, Justin D.
2011-01-01
Two full scale crash tests were conducted on a small MD-500 helicopter at NASA Langley Research Center fs Landing and Impact Research Facility. One of the objectives of this test series was to compare airframe impact response and occupant injury data between a test which outfitted the airframe with an external composite passive energy absorbing honeycomb and a test which had no energy absorbing features. In both tests, the nominal impact velocity conditions were 7.92 m/sec (26 ft/sec) vertical and 12.2 m/sec (40 ft/sec) horizontal, and the test article weighed approximately 1315 kg (2900 lbs). Airframe instrumentation included accelerometers and strain gages. Four Anthropomorphic Test Devices were also onboard; three of which were standard Hybrid II and III, while the fourth was a specialized torso. The test which contained the energy absorbing honeycomb showed vertical impact acceleration loads of approximately 15 g, low risk for occupant injury probability, and minimal airframe damage. These results were contrasted with the test conducted without the energy absorbing honeycomb. The test results showed airframe accelerations of approximately 40 g in the vertical direction, high risk for injury probability in the occupants, and substantial airframe damage.
NASA Astrophysics Data System (ADS)
Dong, Kyung-Rae; Goo, Eun-Hoe; Lee, Jae-Seung; Chung, Woon-Kwan
2013-01-01
A consecutive series of 50 patients (28 males and 22 females) who underwent hepatic magnetic resonance imaging (MRI) from August to December 2011 were enrolled in this study. The appropriate parameters for abdominal MRI scans were determined by comparing the images (TE = 90 and 128 msec) produced using the half-Fourier acquisition single-shot turbo spin-echo (HASTE) technique at different signal acquisition times. The patients consisted of 15 normal patients, 25 patients with a hepatoma and 10 patients with a hemangioma. The TE in a single patient was set to either 90 msec or 128 msec. This was followed by measurements using the four normal rendering methods of the biliary tract system and the background signal intensity using the maximal signal intensity techniques in the liver, spleen, pancreas, gallbladder, fat, muscles and hemangioma. The signal-to-noise and the contrast-to-noise ratios were obtained. The image quality was assessed subjectively, and the results were compared. The signal-to-noise and the contrast-to-noise ratios were significantly higher at TE = 128 msec than at TE = 90 when diseases of the liver, spleen, pancreas, gallbladder, and fat and muscles, hepatocellular carcinomas and hemangiomas, and rendering the hepatobiliary tract system based on the maximum signal intensity technique were involved (p < 0.05). In addition, the presence of artifacts, the image clarity and the overall image quality were excellent at TE = 128 msec (p < 0.05). In abdominal MRI, the breath-hold half-Fourier acquisition single-shot turbo spin-echo (HASTE) was found to be effective in illustrating the abdominal organs for TE = 128 msec. Overall, the image quality at TE = 128 msec was better than that at TE = 90 msec due to the improved signal-to-noise (SNR) and contrast-to-noise (CNR) ratios. Overall, the HASTE technique for abdominal MRI based on a high-magnetic field (3.0 T) at a TE of 128 msec can provide useful data.
Nael, Kambiz; Khan, Rihan; Choudhary, Gagandeep; Meshksar, Arash; Villablanca, Pablo; Tay, Jennifer; Drake, Kendra; Coull, Bruce M; Kidwell, Chelsea S
2014-07-01
If magnetic resonance imaging (MRI) is to compete with computed tomography for evaluation of patients with acute ischemic stroke, there is a need for further improvements in acquisition speed. Inclusion criteria for this prospective, single institutional study were symptoms of acute ischemic stroke within 24 hours onset, National Institutes of Health Stroke Scale ≥3, and absence of MRI contraindications. A combination of echo-planar imaging (EPI) and a parallel acquisition technique were used on a 3T magnetic resonance (MR) scanner to accelerate the acquisition time. Image analysis was performed independently by 2 neuroradiologists. A total of 62 patients met inclusion criteria. A repeat MRI scan was performed in 22 patients resulting in a total of 84 MRIs available for analysis. Diagnostic image quality was achieved in 100% of diffusion-weighted imaging, 100% EPI-fluid attenuation inversion recovery imaging, 98% EPI-gradient recalled echo, 90% neck MR angiography and 96% of brain MR angiography, and 94% of dynamic susceptibility contrast perfusion scans with interobserver agreements (k) ranging from 0.64 to 0.84. Fifty-nine patients (95%) had acute infarction. There was good interobserver agreement for EPI-fluid attenuation inversion recovery imaging findings (k=0.78; 95% confidence interval, 0.66-0.87) and for detection of mismatch classification using dynamic susceptibility contrast-Tmax (k=0.92; 95% confidence interval, 0.87-0.94). Thirteen acute intracranial hemorrhages were detected on EPI-gradient recalled echo by both observers. A total of 68 and 72 segmental arterial stenoses were detected on contrast-enhanced MR angiography of the neck and brain with k=0.93, 95% confidence interval, 0.84 to 0.96 and 0.87, 95% confidence interval, 0.80 to 0.90, respectively. A 6-minute multimodal MR protocol with good diagnostic quality is feasible for the evaluation of patients with acute ischemic stroke and can result in significant reduction in scan time rivaling that of the multimodal computed tomographic protocol. © 2014 American Heart Association, Inc.
Vessel-wall imaging and quantification of flow-mediated dilation using water-selective 3D SSFP-echo.
Langham, Michael C; Li, Cheng; Englund, Erin K; Chirico, Erica N; Mohler, Emile R; Floyd, Thomas F; Wehrli, Felix W
2013-10-30
To introduce a new, efficient method for vessel-wall imaging of carotid and peripheral arteries by means of a flow-sensitive 3D water-selective SSFP-echo pulse sequence. Periodic applications of RF pulses will generate two transverse steady states, immediately after and before an RF pulse; the latter being referred to as the SSFP-echo. The SSFP-echo signal for water protons in blood is spoiled as a result of moving spins losing phase coherence in the presence of a gradient pulse along the flow direction. Bloch equation simulations were performed over a wide range of velocities to evaluate the flow sensitivity of the SSFP-echo signal. Vessel walls of carotid and femoral and popliteal arteries were imaged at 3 T. In two patients with peripheral artery disease the femoral arteries were imaged bilaterally to demonstrate method's potential to visualize atherosclerotic plaques. The method was also evaluated as a means to measure femoral artery flow-mediated dilation (FMD) in response to cuff-induced ischemia in four subjects. The SSFP-echo pulse sequence, which does not have a dedicated blood signal suppression preparation, achieved low blood signal permitting discrimination of the carotid and peripheral arterial walls with in-plane spatial resolution ranging from 0.5 to 0.69 mm and slice thickness of 2 to 3 mm, i.e. comparable to conventional 2D vessel-wall imaging techniques. The results of the simulations were in good agreement with analytical solution and observations for both vascular territories examined. Scan time ranged from 2.5 to 5 s per slice yielding a contrast-to-noise ratio between the vessel wall and lumen from 3.5 to 17. Mean femoral FMD in the four subjects was 9%, in good qualitative agreement with literature values. Water-selective 3D SSFP-echo pulse sequence is a potential alternative to 2D vessel-wall imaging. The proposed method is fast, robust, applicable to a wide range of flow velocities, and straightforward to implement.
New Clinically Feasible 3T MRI Protocol to Discriminate Internal Brain Stem Anatomy.
Hoch, M J; Chung, S; Ben-Eliezer, N; Bruno, M T; Fatterpekar, G M; Shepherd, T M
2016-06-01
Two new 3T MR imaging contrast methods, track density imaging and echo modulation curve T2 mapping, were combined with simultaneous multisection acquisition to reveal exquisite anatomic detail at 7 canonical levels of the brain stem. Compared with conventional MR imaging contrasts, many individual brain stem tracts and nuclear groups were directly visualized for the first time at 3T. This new approach is clinically practical and feasible (total scan time = 20 minutes), allowing better brain stem anatomic localization and characterization. © 2016 by American Journal of Neuroradiology.
Mukdadi, Osama; Shandas, Robin
2004-01-01
Nonlinear wave propagation in tissue can be employed for tissue harmonic imaging, ultrasound surgery, and more effective tissue ablation for high intensity focused ultrasound (HIFU). Wave propagation in soft tissue and scattering from microbubbles (ultrasound contrast agents) are modeled to improve detectability, signal-to-noise ratio, and contrast harmonic imaging used for echo particle image velocimetry (Echo-PIV) technique. The wave motion in nonlinear material (tissue) is studied using KZK-type parabolic evolution equation. This model considers ultrasound beam diffraction, attenuation, and tissue nonlinearity. Time-domain numerical model is based on that originally developed by Lee and Hamilton [J. Acoust. Soc. Am 97:906-917 (1995)] for axi-symmetric acoustic field. The initial acoustic waveform emitted from the transducer is assumed to be a broadband wave modulated by Gaussian envelope. Scattering from microbubbles seeded in the blood stream is characterized. Hence, we compute the pressure field impinges the wall of a coated microbubble; the dynamics of oscillating microbubble can be modeled using Rayleigh-Plesset-type equation. Here, the continuity and the radial-momentum equation of encapsulated microbubbles are used to account for the lipid layer surrounding the microbubble. Numerical results show the effects of tissue and microbubble nonlinearities on the propagating pressure wave field. These nonlinearities have a strong influence on the waveform distortion and harmonic generation of the propagating and scattering waves. Results also show that microbubbles have stronger nonlinearity than tissue, and thus improves S/N ratio. These theoretical predictions of wave phenomena provide further understanding of biomedical imaging technique and provide better system design.
Echolocating bats rely on audiovocal feedback to adapt sonar signal design.
Luo, Jinhong; Moss, Cynthia F
2017-10-10
Many species of bat emit acoustic signals and use information carried by echoes reflecting from nearby objects to navigate and forage. It is widely documented that echolocating bats adjust the features of sonar calls in response to echo feedback; however, it remains unknown whether audiovocal feedback contributes to sonar call design. Audiovocal feedback refers to the monitoring of one's own vocalizations during call production and has been intensively studied in nonecholocating animals. Audiovocal feedback not only is a necessary component of vocal learning but also guides the control of the spectro-temporal structure of vocalizations. Here, we show that audiovocal feedback is directly involved in the echolocating bat's control of sonar call features. As big brown bats tracked targets from a stationary position, we played acoustic jamming signals, simulating calls of another bat, timed to selectively perturb audiovocal feedback or echo feedback. We found that the bats exhibited the largest call-frequency adjustments when the jamming signals occurred during vocal production. By contrast, bats did not show sonar call-frequency adjustments when the jamming signals coincided with the arrival of target echoes. Furthermore, bats rapidly adapted sonar call design in the first vocalization following the jamming signal, revealing a response latency in the range of 66 to 94 ms. Thus, bats, like songbirds and humans, rely on audiovocal feedback to structure sonar signal design.
Ozcan, H Nursun; Gormez, Ayşegul; Ozsurekci, Yasemin; Karakaya, Jale; Oguz, Berna; Unal, Sule; Cetin, Mualla; Ceyhan, Mehmet; Haliloglu, Mithat
2017-02-01
Computed tomography (CT) is commonly used to detect pulmonary infection in immunocompromised children. To compare MRI and multidetector CT findings of pulmonary abnormalities in immunocompromised children. Seventeen neutropaenic children (6 girls; ages 2-18 years) were included. Non-contrast-enhanced CT was performed with a 64-detector CT scanner. Axial and coronal non-enhanced thoracic MRI was performed using a 1.5-T scanner within 24 h of the CT examination (true fast imaging with steady-state free precession, fat-saturated T2-weighted turbo spin echo with motion correction, T2-weighted half-Fourier single-shot turbo spin echo [HASTE], fat-saturated T1-weighted spoiled gradient echo). Pulmonary abnormalities (nodules, consolidations, ground glass opacities, atelectasis, pleural effusion and lymph nodes) were evaluated and compared among MRI sequences and between MRI and CT. The relationship between MRI sequences and nodule sizes was examined by chi- square test. Of 256 CT lesions, 207 (81%, 95% confidence interval [CI] 76-85%) were detected at MRI. Of 202 CT-detected nodules, 157 (78%, 95% CI 71-83%) were seen at motion-corrected MRI. Of the 1-5-mm nodules, 69% were detected by motion-corrected T2-weighted MRI and 38% by HASTE MRI. Sensitivity of MRI (both axial fat-saturated T2-weighted turbo spin echo with variable phase encoding directions (BLADE) images and HASTE sequences) to detect pulmonary abnormalities is promising.
The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI Methods
Jack, Clifford R.; Bernstein, Matt A.; Fox, Nick C.; Thompson, Paul; Alexander, Gene; Harvey, Danielle; Borowski, Bret; Britson, Paula J.; Whitwell, Jennifer L.; Ward, Chadwick; Dale, Anders M.; Felmlee, Joel P.; Gunter, Jeffrey L.; Hill, Derek L.G.; Killiany, Ron; Schuff, Norbert; Fox-Bosetti, Sabrina; Lin, Chen; Studholme, Colin; DeCarli, Charles S.; Krueger, Gunnar; Ward, Heidi A.; Metzger, Gregory J.; Scott, Katherine T.; Mallozzi, Richard; Blezek, Daniel; Levy, Joshua; Debbins, Josef P.; Fleisher, Adam S.; Albert, Marilyn; Green, Robert; Bartzokis, George; Glover, Gary; Mugler, John; Weiner, Michael W.
2008-01-01
The Alzheimer's Disease Neuroimaging Initiative (ADNI) is a longitudinal multisite observational study of healthy elders, mild cognitive impairment (MCI), and Alzheimer's disease. Magnetic resonance imaging (MRI), (18F)-fluorode-oxyglucose positron emission tomography (FDG PET), urine serum, and cerebrospinal fluid (CSF) biomarkers, as well as clinical/psychometric assessments are acquiredat multiple time points. All data will be cross-linked and made available to the general scientific community. The purpose of this report is to describe the MRI methods employed in ADNI. The ADNI MRI core established specifications thatguided protocol development. A major effort was devoted toevaluating 3D T1-weighted sequences for morphometric analyses. Several options for this sequence were optimized for the relevant manufacturer platforms and then compared in a reduced-scale clinical trial. The protocol selected for the ADNI study includes: back-to-back 3D magnetization prepared rapid gradient echo (MP-RAGE) scans; B1-calibration scans when applicable; and an axial proton density-T2 dual contrast (i.e., echo) fast spin echo/turbo spin echo (FSE/TSE) for pathology detection. ADNI MRI methods seek to maximize scientific utility while minimizing the burden placed on participants. The approach taken in ADNI to standardization across sites and platforms of the MRI protocol, postacquisition corrections, and phantom-based monitoring of all scanners could be used as a model for other multisite trials. PMID:18302232
Giugni, E; Sabatini, U; Hagberg, G E; Formisano, R; Castriota-Scanderbeg, A
2005-01-01
Diffuse axonal injury (DAI) is a common type of primary neuronal injury in patients with severe traumatic brain injury, and is frequently accompanied by tissue tear haemorrhage. The T2*-weighted gradient-recalled echo (GRE) sequences are more sensitive than T2-weighted spin-echo images for detection of haemorrhage. This study was undertaken to determine whether turbo-PEPSI, an extremely fast multi-echo-planar-imaging sequence, can be used as an alternative to the GRE sequence for detection of DAI. Nineteen patients (mean age 24,5 year) with severe traumatic brain injury (TBI), occurred at least 3 months earlier, underwent a brain MRI study on a 1.5-Tesla scanner. A qualitative evaluation of the turbo-PEPSI sequences was performed by identifying the optimal echo time and in-plane resolution. The number and size of DAI lesions, as well as the signal intensity contrast ratio (SI CR), were computed for each set of GRE and turbo-PEPSI images, and divided according to their anatomic location into lobar and/or deep brain. There was no significant difference between GRE and turbo-PEPSI sequences in the total number of DAI lesions detected (283 vs 225 lesions, respectively). The GRE sequence identified a greater number of hypointense lesions in the temporal lobe compared to the t-PEPSI sequence (72 vs 35, p<0.003), while no significant differences were found for the other brain regions. The SI CR was significantly better (i.e. lower) for the turbo-PEPSI than for the GRE sequence (p<0.00001). Owing to its very short scan time and high sensitivity to the haemorrhage foci, the turbo-PEPSI sequence can be used as an alternative to the GRE to assess brain DAI in severe TBI patients, especially if uncooperative and medically unstable.
Improved Contrast-Enhanced Ultrasound Imaging With Multiplane-Wave Imaging.
Gong, Ping; Song, Pengfei; Chen, Shigao
2018-02-01
Contrast-enhanced ultrasound (CEUS) imaging has great potential for use in new ultrasound clinical applications such as myocardial perfusion imaging and abdominal lesion characterization. In CEUS imaging, contrast agents (i.e., microbubbles) are used to improve contrast between blood and tissue because of their high nonlinearity under low ultrasound pressure. However, the quality of CEUS imaging sometimes suffers from a low signal-to-noise ratio (SNR) in deeper imaging regions when a low mechanical index (MI) is used to avoid microbubble disruption, especially for imaging at off-resonance transmit frequencies. In this paper, we propose a new strategy of combining CEUS sequences with the recently proposed multiplane-wave (MW) compounding method to improve the SNR of CEUS in deeper imaging regions without increasing MI or sacrificing frame rate. The MW-CEUS method emits multiple Hadamard-coded CEUS pulses in each transmission event (i.e., pulse-echo event). The received echo signals first undergo fundamental bandpass filtering (i.e., the filter is centered on the transmit frequency) to eliminate the microbubble's second-harmonic signals because they cannot be encoded by pulse inversion. The filtered signals are then Hadamard decoded and realigned in fast time to recover the signals as they would have been obtained using classic CEUS pulses, followed by designed recombination to cancel the linear tissue responses. The MW-CEUS method significantly improved contrast-to-tissue ratio and SNR of CEUS imaging by transmitting longer coded pulses. The image resolution was also preserved. The microbubble disruption ratio and motion artifacts in MW-CEUS were similar to those of classic CEUS imaging. In addition, the MW-CEUS sequence can be adapted to other transmission coding formats. These properties of MW-CEUS can potentially facilitate CEUS imaging for many clinical applications, especially assessing deep abdominal organs or the heart.
Klarhöfer, Markus; Dilharreguy, Bixente; van Gelderen, Peter; Moonen, Chrit T W
2003-10-01
A 3D sequence for dynamic susceptibility imaging is proposed which combines echo-shifting principles (such as PRESTO), sensitivity encoding (SENSE), and partial-Fourier acquisition. The method uses a moderate SENSE factor of 2 and takes advantage of an alternating partial k-space acquisition in the "slow" phase encode direction allowing an iterative reconstruction using high-resolution phase estimates. Offering an isotropic spatial resolution of 4 x 4 x 4 mm(3), the novel sequence covers the whole brain including parts of the cerebellum in 0.5 sec. Its temporal signal stability is comparable to that of a full-Fourier, full-FOV EPI sequence having the same dynamic scan time but much less brain coverage. Initial functional MRI experiments showed consistent activation in the motor cortex with an average signal change slightly less than that of EPI. Copyright 2003 Wiley-Liss, Inc.
Fries, Peter; Runge, Val M; Bücker, Arno; Schürholz, Hellmut; Reith, Wolfgang; Robert, Philippe; Jackson, Carney; Lanz, Titus; Schneider, Günther
2009-04-01
The aim of this study was to evaluate lesion enhancement (LE) and contrast-to-noise ratio (CNR) properties of P846, a new intermediate sized, high relaxivity Gd-based contrast agent at 3 Tesla in a rat brain glioma model, and to compare this contrast agent with a high relaxivity, macromolecular compound (P792), and a standard extracellular Gd-chelate (Gd-DOTA). Seven rats with experimental induced brain glioma were evaluated using 3 different contrast agents, with each MR examination separated by at least 24 hours. The time between injections assured sufficient clearance of the agent from the tumor, before the next examination. P792 (Gadomelitol, Guerbet, France) and P846 (a new compound from Guerbet Research) are macromolecular and high relaxivity contrast agents with no protein binding, and were compared with the extracellular agent Gd-DOTA (Dotarem, Guerbet, France). T1w gradient echo sequences (TR/TE 200 milliseconds/7.38 milliseconds, flip angle = 90 degrees , acquisition time: 1:42 minutes:sec, voxel size: 0.2 x 0.2 x 2.0 mm, FOV = 40 mm, acquisition matrix: 256 x 256) were acquired before and at 5 consecutive time points after each intravenous contrast injection in the identical slice orientation, using a dedicated 4-channel head array animal coil. The order of contrast media injection was randomized, with however Gd-DOTA used either as the first or second contrast agent. Contrast agent dose was adjusted to compensate for the different T1 relaxivities of the 3 agents. Signal-to-noise ratio, CNR, and LE were evaluated using region-of-interest analysis. A veterinary histopathologist confirmed the presence of a glioma in each subject, after completion of the imaging study. P792 showed significantly less LE as compared with Gd-DOTA within the first 7 minutes after contrast agent injection (P < 0.05) with, however, reaching comparable LE values at 9 minutes after injection (P = 0.07). However, P792 provided significantly less CNR as compared with Gd-DOTA (P < 0.05) for all examination time points. P846 provided comparable but persistent LE as compared with Gd-DOTA (P < 0.05) and demonstrated significantly greater LE and CNR when compared with P792 (P < 0.05). No statistically significant differences between CNR values for Gd-DOTA and P846 were noted for all examination time points (P < 0.05), with P846 administered at one-fourth the dose as compared with Gd-DOTA. The intravascular contrast medium P792 showed significantly less LE and CNR in comparison to Gd-DOTA and P846, suggesting that it does not show marked extravasation from tumor neocapillaries and does not significantly cross the disrupted blood brain-barrier in this rat glioma model. In distinction, P846 provides comparable enhancement properties at a field strength of 3 Tesla to the extracellular contrast agent Gd-DOTA, using the adjusted dose, suggesting that it crosses the disrupted blood-brain-barrier and tumor capillaries, most likely based on the decreased molecular weight as compared with P792. At the same time, the high relaxivity of this compound allows for decreasing the injected gadolinium dose by a factor of 4 whereas providing comparable enhancement properties when compared with a standard extracellular Gd-chelate (Gd-DOTA) at a dose of 0.1 mmol/kg body weight.
Histological correlation of 7 T multi-parametric MRI performed in ex-vivo Achilles tendon.
Juras, Vladimir; Apprich, Sebastian; Pressl, Christina; Zbyn, Stefan; Szomolanyi, Pavol; Domayer, Stephan; Hofstaetter, Jochen G; Trattnig, Siegfried
2013-05-01
The goal of this in vitro validation study was to investigate the feasibility of biochemical MRI techniques, such as sodium imaging, T₂ mapping, fast imaging with steady state precession (FISP), and reversed FISP (PSIF), as potential markers for collagen, glycosaminoglycan and water content in the Achilles tendon. Five fresh cadaver ankles acquired from a local anatomy department were used in the study. To acquire a sodium signal from the Achilles tendon, a 3D-gradient-echo sequence, optimized for sodium imaging, was used with TE=7.71 ms and TR=17 ms. The T₂ relaxation times were obtained using a multi-echo, spin-echo technique with a repetition time (TR) of 1200 ms and six echo times. A 3D, partially balanced, steady-state gradient echo pulse sequence was used to acquire FISP and PSIF images, with TR/TE=6.96/2.46 ms. MRI parameters were correlated with each other, as well as with histologically assessed glycosaminoglycan and water content in cadaver Achilles tendons. The highest relevant Pearson correlation coefficient was found between sodium SNR and glycosaminoglycan content (r=0.71, p=0.007). Relatively high correlation was found between the PSIF signal and T2 values (r=0.51, p=0.036), and between the FISP signal and T₂ values (r=0.56, p=0.047). Other correlations were found to be below the moderate level. This study demonstrated the feasibility of progressive biochemical MRI methods for the imaging of the AT. A GAG-specific, contrast-free method (sodium imaging), as well as collagen- and water-sensitive methods (T₂ mapping, FISP, PSIF), may be used in fast-relaxing tissues, such as tendons, in reasonable scan times. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Canine hippocampal formation composited into three-dimensional structure using MPRAGE.
Jung, Mi-Ae; Nahm, Sang-Soep; Lee, Min-Su; Lee, In-Hye; Lee, Ah-Ra; Jang, Dong-Pyo; Kim, Young-Bo; Cho, Zang-Hee; Eom, Ki-Dong
2010-07-01
This study was performed to anatomically illustrate the living canine hippocampal formation in three-dimensions (3D), and to evaluate its relationship to surrounding brain structures. Three normal beagle dogs were scanned on a MR scanner with inversion recovery segmented 3D gradient echo sequence (known as MP-RAGE: Magnetization Prepared Rapid Gradient Echo). The MRI data was manually segmented and reconstructed into a 3D model using the 3D slicer software tool. From the 3D model, the spatial relationships between hippocampal formation and surrounding structures were evaluated. With the increased spatial resolution and contrast of the MPRAGE, the canine hippocampal formation was easily depicted. The reconstructed 3D image allows easy understanding of the hippocampal contour and demonstrates the structural relationship of the hippocampal formation to surrounding structures in vivo.
High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells*
Kanderova, Veronika; Kuzilkova, Daniela; Stuchly, Jan; Vaskova, Martina; Brdicka, Tomas; Fiser, Karel; Hrusak, Ondrej; Lund-Johansen, Fridtjof
2016-01-01
Acute leukemia is a disease pathologically manifested at both genomic and proteomic levels. Molecular genetic technologies are currently widely used in clinical research. In contrast, sensitive and high-throughput proteomic techniques for performing protein analyses in patient samples are still lacking. Here, we used a technology based on size exclusion chromatography followed by immunoprecipitation of target proteins with an antibody bead array (Size Exclusion Chromatography-Microsphere-based Affinity Proteomics, SEC-MAP) to detect hundreds of proteins from a single sample. In addition, we developed semi-automatic bioinformatics tools to adapt this technology for high-content proteomic screening of pediatric acute leukemia patients. To confirm the utility of SEC-MAP in leukemia immunophenotyping, we tested 31 leukemia diagnostic markers in parallel by SEC-MAP and flow cytometry. We identified 28 antibodies suitable for both techniques. Eighteen of them provided excellent quantitative correlation between SEC-MAP and flow cytometry (p < 0.05). Next, SEC-MAP was applied to examine 57 diagnostic samples from patients with acute leukemia. In this assay, we used 632 different antibodies and detected 501 targets. Of those, 47 targets were differentially expressed between at least two of the three acute leukemia subgroups. The CD markers correlated with immunophenotypic categories as expected. From non-CD markers, we found DBN1, PAX5, or PTK2 overexpressed in B-cell precursor acute lymphoblastic leukemias, LAT, SH2D1A, or STAT5A overexpressed in T-cell acute lymphoblastic leukemias, and HCK, GLUD1, or SYK overexpressed in acute myeloid leukemias. In addition, OPAL1 overexpression corresponded to ETV6-RUNX1 chromosomal translocation. In summary, we demonstrated that SEC-MAP technology is a powerful tool for detecting hundreds of proteins in clinical samples obtained from pediatric acute leukemia patients. It provides information about protein size and reveals differences in protein expression between particular leukemia subgroups. Forty-seven of SEC-MAP identified targets were validated by other conventional method in this study. PMID:26785729
Unconsolidated sediments at the bottom of Lake Vostok from seismic data
Filina, I.; Lukin, V.; Masolov, V.; Blankenship, D.
2007-01-01
Seismic soundings of Lake Vostok have been performed by the Polar Marine Geological Research Expedition in collaboration with the Russian Antarctic Expedition since the early 1990s. The seismograms recorded show at least two relatively closely spaced reflections associated with the lake bottom. These were initially interpreted as boundaries of a layer of unconsolidated sediments at the bottom of the lake. A more recent interpretation suggests that the observed reflections are side echoes from the rough lake bottom, and that there are no unconsolidated sediments at the bottom of the lake. The major goal of this paper is to reveal the nature of those reflections by testing three hypotheses of their origin. The results show that some of the reflections, but not all of them, are consistent with the hypothesis of a non-flat lake bottom along the source-receiver line (2D case). The reflections were also evaluated as side echoes from an adjacent sloping interface, but these tests implied unreasonably steep slopes (at least 8 degrees) at the lake bottom. The hypothesis that is the most compatible with seismic data is the presence of a widespread layer of unconsolidated sediments at the bottom of Lake Vostok. The modeling suggests the presence of a two hundred meter thick sedimentary layer with a seismic velocity of 1700 -1900 m/sec in the southern and middle parts of the lake. The sedimentary layer thickens in the northern basin to ~350 m
A Simulation Tool for Dynamic Contrast Enhanced MRI
Mauconduit, Franck; Christen, Thomas; Barbier, Emmanuel Luc
2013-01-01
The quantification of bolus-tracking MRI techniques remains challenging. The acquisition usually relies on one contrast and the analysis on a simplified model of the various phenomena that arise within a voxel, leading to inaccurate perfusion estimates. To evaluate how simplifications in the interstitial model impact perfusion estimates, we propose a numerical tool to simulate the MR signal provided by a dynamic contrast enhanced (DCE) MRI experiment. Our model encompasses the intrinsic and relaxations, the magnetic field perturbations induced by susceptibility interfaces (vessels and cells), the diffusion of the water protons, the blood flow, the permeability of the vessel wall to the the contrast agent (CA) and the constrained diffusion of the CA within the voxel. The blood compartment is modeled as a uniform compartment. The different blocks of the simulation are validated and compared to classical models. The impact of the CA diffusivity on the permeability and blood volume estimates is evaluated. Simulations demonstrate that the CA diffusivity slightly impacts the permeability estimates ( for classical blood flow and CA diffusion). The effect of long echo times is investigated. Simulations show that DCE-MRI performed with an echo time may already lead to significant underestimation of the blood volume (up to 30% lower for brain tumor permeability values). The potential and the versatility of the proposed implementation are evaluated by running the simulation with realistic vascular geometry obtained from two photons microscopy and with impermeable cells in the extravascular environment. In conclusion, the proposed simulation tool describes DCE-MRI experiments and may be used to evaluate and optimize acquisition and processing strategies. PMID:23516414
Pavel, M; Sperling, G; Riedl, T; Vanderbeek, A
1987-12-01
To determine the limits of human observers' ability to identify visually presented American Sign Language (ASL), the contrast s and the amount of additive noise n in dynamic ASL images were varied independently. Contrast was tested over a 4:1 range; the rms signal-to-noise ratios (s/n) investigated were s/n = 1/4, 1/2, 1, and infinity (which is used to designate the original, uncontaminated images). Fourteen deaf subjects were tested with an intelligibility test composed of 85 isolated ASL signs, each 2-3 sec in length. For these ASL signs (64 x 96 pixels, 30 frames/sec), subjects' performance asymptotes between s/n = 0.5 and 1.0; further increases in s/n do not improve intelligibility. Intelligibility was found to depend only on s/n and not on contrast. A formulation in terms of logistic functions was proposed to derive intelligibility of ASL signs from s/n, sign familiarity, and sign difficulty. Familiarity (ignorance) is represented by additive signal-correlated noise; it represents the likelihood of a subject's knowing a particular ASL sign, and it adds to s/n. Difficulty is represented by a multiplicative difficulty coefficient; it represents the perceptual vulnerability of an ASL sign to noise and it adds to log(s/n).
Horie, Tomohiko; Takahara, Tarou; Ogino, Tetsuo; Okuaki, Tomoyuki; Honda, Masatoshi; Okumura, Yasuhiro; Kajihara, Nao; Usui, Keisuke; Muro, Isao; Imai, Yutaka
2008-09-20
In recent years, the utility of body diffusion weighted imaging as represented by diffusion weighted whole body imaging with background body signal suppression (DWIBS), the DWIBS method, is very high. However, there was a problem in the DWIBS method involving the artifact corresponding to the distance of the diaphragm. To provide a solution, the respiratory trigger (RT) method and the navigator echo method were used together. A problem was that scan time extended to the compensation and did not predict the extension rate, although both artifacts were reduced. If we used only navigator real time slice tracking (NRST) from the findings obtained by the DWIBS method, we presumed the artifacts would be ameliorable without the extension of scan time. Thus, the TRacking Only Navigator (TRON) method was developed, and a basic examination was carried out for the liver. An important feature of the TRON method is the lack of the navigator gating window (NGW) and addition of the method of linear interpolation prior to NRST. The method required the passing speed and the distance from the volunteer's diaphragm. The estimated error from the 2D-selective RF pulse (2DSRP) of the TRON method to slice excitation was calculated. The condition of 2D SRP, which did not influence the accuracy of NRST, was required by the movement phantom. The volunteer was scanned, and the evaluation and actual scan time of the image quality were compared with the RT and DWIBS methods. Diaphragm displacement speed and the quantity of displacement were determined in the head and foot directions, and the result was 9 mm/sec, and 15 mm. The estimated error was within 2.5 mm in b-factor 1000 sec/mm(2). The FA of 2DSRP was 15 degrees, and the navigator echo length was 120 mm, which was excellent. In the TRON method, the accuracy of NRST was steady because of line interpolation. The TRON method obtained image quality equal to that of the RT method with the b-factor in the volunteer scanning at short actual scan time. The TRON method can obtain image quality equal to that of the RT method in body diffusion weighted imaging within a short time. Moreover, because scan time during planning becomes actual scan time, inspection can be efficiently executed.
de Souza, Marcus Vinicius Leitão; de Fátima Dos Santos Teixeira, Patricia; Vaisman, Mario; Xavier, Sergio Salles
2017-02-01
Anticoagulation remains a controversial issue among hyperthyroid patients with atrial fibrillation (AF). We aimed to evaluate the prevalence of the thrombogenic milieu (TM), detected using transesophageal echocardiography (TEE), among patients with AF related to hyperthyroidism, and to correlate these findings with the clinical embolic risk classification (CHA 2 DS 2 -VASc). CHA 2 DS 2 -VASc score, thyroid hormonal status, time since hyperthyroidism diagnosis, transthoracic echocardiography (TTE) and TEE were assessed in 47 consecutive patients aged between 18 and 65years with AF related to hyperthyroidism. The following TEE parameters defined TM: dense spontaneous echo contrast, thrombi, or left atrial appendage (LAA) blood flow velocities <0.20m/s. Non-classic TM was defined as non-dense SEC plus LAA flow velocity 0.20-0.40m/s. Pulmonary hypertension was present in 39/47 (81.4%) and TM in 22/47 (46.8%) patients. Despite a low CHA 2 DS 2 -VASc score of 0/1, 10 of 19 (52.6%) patients had a TM, whereas 16 of 28 (57.1%) patients with score ≥2 had none. The probability of having a TM did not correlate with CHA 2 DS 2 -VASc scores. On regression binary analysis, hyperthyroidism diagnosed more than 12months previous was independently associated with non-classic TM (p=0.031). Among patients younger than 65years of age with AF related to hyperthyroidism, pulmonary hypertension and TM on TEE were highly prevalent. There was no association between CHA 2 DS 2 -VASc with TEE markers of TM. Thyroid status, especially longer duration of hyperthyroidism might influence thrombogenic abnormalities. TEE adds useful information that may change antithrombotic therapy if otherwise guided solely by clinical risk classification. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Viessmann, Olivia; Li, Linqing; Benjamin, Philip; Jezzard, Peter
2017-02-01
To optimize intracranial vessel wall imaging (VWI) at 7T for sharp wall depiction and high boundary contrast. A variable flip angle turbo spin echo scheme (SPACE) was optimized for VWI. SPACE provides black-blood contrast, but has less crushing effect on cerebrospinal fluid (CSF). However, a delay alternating with nutation for tailored excitation (DANTE) preparation suppresses the signal from slowly moving spins of a few mm per second. Therefore, we optimized a DANTE-preparation module for 7T. Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and signal ratio for vessel wall, CSF, and lumen were calculated for SPACE and DANTE-SPACE in 11 volunteers at the middle cerebral artery (MCA). An exemplar MCA stenosis patient was scanned with DANTE-SPACE. The 7T-optimized SPACE sequence improved the vessel wall point-spread function by 17%. The CNR between the wall and CSF was doubled (12.2 versus 5.6) for the DANTE-SPACE scans compared with the unprepared SPACE. This increase was significant in the right hemisphere (P = 0.016), but not in the left (P = 0.090). The CNR between wall and lumen was halved, but remained at a high value (24.9 versus 56.5). The optimized SPACE sequence improves VWI at 7T. Additional DANTE preparation increases the contrast between the wall and CSF. Increased outer boundary contrast comes at the cost of reduced inner boundary contrast. Magn Reson Med 77:655-663, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
Gabr, Refaat E; Pednekar, Amol S; Govindarajan, Koushik A; Sun, Xiaojun; Riascos, Roy F; Ramírez, María G; Hasan, Khader M; Lincoln, John A; Nelson, Flavia; Wolinsky, Jerry S; Narayana, Ponnada A
2017-08-01
To improve the conspicuity of white matter lesions (WMLs) in multiple sclerosis (MS) using patient-specific optimization of single-slab 3D fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI). Sixteen MS patients were enrolled in a prospective 3.0T MRI study. FLAIR inversion time and echo time were automatically optimized for each patient during the same scan session based on measurements of the relative proton density and relaxation times of the brain tissues. The optimization criterion was to maximize the contrast between gray matter (GM) and white matter (WM), while suppressing cerebrospinal fluid. This criterion also helps increase the contrast between WMLs and WM. The performance of the patient-specific 3D FLAIR protocol relative to the fixed-parameter protocol was assessed both qualitatively and quantitatively. Patient-specific optimization achieved a statistically significant 41% increase in the GM-WM contrast ratio (P < 0.05) and 32% increase in the WML-WM contrast ratio (P < 0.01) compared with fixed-parameter FLAIR. The increase in WML-WM contrast ratio correlated strongly with echo time (P < 10 -11 ). Two experienced neuroradiologists indicated substantially higher lesion conspicuity on the patient-specific FLAIR images over conventional FLAIR in 3-4 cases (intrarater correlation coefficient ICC = 0.72). In no case was the image quality of patient-specific FLAIR considered inferior to conventional FLAIR by any of the raters (ICC = 0.32). Changes in proton density and relaxation times render fixed-parameter FLAIR suboptimal in terms of lesion contrast. Patient-specific optimization of 3D FLAIR increases lesion conspicuity without scan time penalty, and has potential to enhance the detection of subtle and small lesions in MS. 1 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:557-564. © 2016 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Zhou, Peng; Zhang, Xi; Sun, Weifeng; Dai, Yongshou; Wan, Yong
2018-01-01
An algorithm based on time-frequency analysis is proposed to select an imaging time window for the inverse synthetic aperture radar imaging of ships. An appropriate range bin is selected to perform the time-frequency analysis after radial motion compensation. The selected range bin is that with the maximum mean amplitude among the range bins whose echoes are confirmed to be contributed by a dominant scatter. The criterion for judging whether the echoes of a range bin are contributed by a dominant scatter is key to the proposed algorithm and is therefore described in detail. When the first range bin that satisfies the judgment criterion is found, a sequence composed of the frequencies that have the largest amplitudes in every moment's time-frequency spectrum corresponding to this range bin is employed to calculate the length and the center moment of the optimal imaging time window. Experiments performed with simulation data and real data show the effectiveness of the proposed algorithm, and comparisons between the proposed algorithm and the image contrast-based algorithm (ICBA) are provided. Similar image contrast and lower entropy are acquired using the proposed algorithm as compared with those values when using the ICBA.
3D Fast Spin Echo T2-weighted Contrast for Imaging the Female Cervix
NASA Astrophysics Data System (ADS)
Vargas Sanchez, Andrea Fernanda
Magnetic Resonance Imaging (MRI) with T2-weighted contrast is the preferred modality for treatment planning and monitoring of cervical cancer. Current clinical protocols image the volume of interest multiple times with two dimensional (2D) T2-weighted MRI techniques. It is of interest to replace these multiple 2D acquisitions with a single three dimensional (3D) MRI acquisition to save time. However, at present the image contrast of standard 3D MRI does not distinguish cervical healthy tissue from cancerous tissue. The purpose of this thesis is to better understand the underlying factors that govern the contrast of 3D MRI and exploit this understanding via sequence modifications to improve the contrast. Numerical simulations are developed to predict observed contrast alterations and to propose an improvement. Improvements of image contrast are shown in simulation and with healthy volunteers. Reported results are only preliminary but a promising start to establish definitively 3D MRI for cervical cancer applications.
Subashi, Ergys; Choudhury, Kingshuk R; Johnson, G Allan
2014-03-01
The pharmacokinetic parameters derived from dynamic contrast-enhanced (DCE) MRI have been used in more than 100 phase I trials and investigator led studies. A comparison of the absolute values of these quantities requires an estimation of their respective probability distribution function (PDF). The statistical variation of the DCE-MRI measurement is analyzed by considering the fundamental sources of error in the MR signal intensity acquired with the spoiled gradient-echo (SPGR) pulse sequence. The variance in the SPGR signal intensity arises from quadrature detection and excitation flip angle inconsistency. The noise power was measured in 11 phantoms of contrast agent concentration in the range [0-1] mM (in steps of 0.1 mM) and in onein vivo acquisition of a tumor-bearing mouse. The distribution of the flip angle was determined in a uniform 10 mM CuSO4 phantom using the spin echo double angle method. The PDF of a wide range of T1 values measured with the varying flip angle (VFA) technique was estimated through numerical simulations of the SPGR equation. The resultant uncertainty in contrast agent concentration was incorporated in the most common model of tracer exchange kinetics and the PDF of the derived pharmacokinetic parameters was studied numerically. The VFA method is an unbiased technique for measuringT1 only in the absence of bias in excitation flip angle. The time-dependent concentration of the contrast agent measured in vivo is within the theoretically predicted uncertainty. The uncertainty in measuring K(trans) with SPGR pulse sequences is of the same order, but always higher than, the uncertainty in measuring the pre-injection longitudinal relaxation time (T10). The lowest achievable bias/uncertainty in estimating this parameter is approximately 20%-70% higher than the bias/uncertainty in the measurement of the pre-injection T1 map. The fractional volume parameters derived from the extended Tofts model were found to be extremely sensitive to the variance in signal intensity. The SNR of the pre-injection T1 map indicates the limiting precision with which K(trans) can be calculated. Current small-animal imaging systems and pulse sequences robust to motion artifacts have the capacity for reproducible quantitative acquisitions with DCE-MRI. In these circumstances, it is feasible to achieve a level of precision limited only by physiologic variability.
TU-C-12A-02: Development of a Multiparametric Statistical Response Map for Quantitative Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bosca, R; The University of Texas MD Anderson Cancer Center, Houston, TX; Mahajan, A
2014-06-15
Purpose: Quantitative imaging biomarkers (QIB) are becoming increasingly utilized in early phase clinical trials as a means of non-invasively assessing treatment response and associated response heterogeneity. The aim of this study was to develop a flexible multiparametric statistical framework to predict voxel-by-voxel response of several potential MRI QIBs. Methods: Patients with histologically proven glioblastomas (n=11) were treated with chemoradiation (with/without bevacizumab) and underwent one baseline and two mid-treatment (3–4wks) MRIs. Dynamic contrast-enhanced (3D FSPGR, 6.3sec/phase, 0.1 mmol/kg Gd-DTPA), dynamic susceptibility contrast (2D GRE-EPI, 1.5sec/phase, 0.2mmol/kg Gd-DTPA), and diffusion tensor (2D DW-EPI, b=0, 1200 s/mm{sup 2}, 27 directions) imaging acquisitions weremore » obtained during each study. Mid-treatment and pre-treatment images were rigidly aligned, and regions of partial response (PR), stable disease (SD), and progressive disease (PD) were contoured in consensus by two experienced radiation oncologists. Voxels in these categories were used to train ordinal (PR« less
Non-contrast enhanced MR venography using 3D fresh blood imaging (FBI): initial experience.
Yokoyama, K; Nitatori, T; Inaoka, S; Takahara, T; Hachiya, J
2001-01-01
This study examined the efficacy of 3D-fresh blood imaging (FBI) in patients with venous disease in the iliac region to lower extremity. Fourteen patients with venous disease were examined [8 deep venous thrombosis (DVT) and 6 varix] by 3D-FBI and 2D-TOF MRA. All FBI images and 2D-TOF images were evaluated in terms of visualization of the disease and compared with conventional X-ray venography (CV). The total scan time of 3D-FBI ranged from 3 min 24 sec to 4 min 52 sec. 3D-FBI was positive in all 23 anatomical levels in which DVT was diagnosed by CV (100% sensitivity) as well as 2D-TOF. The delineation of collateral veins was superior or equal to that of 2D-TOF. 3D-FBI allowed depiction of varices in five of six cases; however, in one case, the evaluation was limited because the separation of arteries from veins was difficult. The 3D-FBI technique, which allows iliac to peripheral MR venography without contrast medium within a short acquisition time, is considered clinically useful.
Multi-view 3D echocardiography compounding based on feature consistency
NASA Astrophysics Data System (ADS)
Yao, Cheng; Simpson, John M.; Schaeffter, Tobias; Penney, Graeme P.
2011-09-01
Echocardiography (echo) is a widely available method to obtain images of the heart; however, echo can suffer due to the presence of artefacts, high noise and a restricted field of view. One method to overcome these limitations is to use multiple images, using the 'best' parts from each image to produce a higher quality 'compounded' image. This paper describes our compounding algorithm which specifically aims to reduce the effect of echo artefacts as well as improving the signal-to-noise ratio, contrast and extending the field of view. Our method weights image information based on a local feature coherence/consistency between all the overlapping images. Validation has been carried out using phantom, volunteer and patient datasets consisting of up to ten multi-view 3D images. Multiple sets of phantom images were acquired, some directly from the phantom surface, and others by imaging through hard and soft tissue mimicking material to degrade the image quality. Our compounding method is compared to the original, uncompounded echocardiography images, and to two basic statistical compounding methods (mean and maximum). Results show that our method is able to take a set of ten images, degraded by soft and hard tissue artefacts, and produce a compounded image of equivalent quality to images acquired directly from the phantom. Our method on phantom, volunteer and patient data achieves almost the same signal-to-noise improvement as the mean method, while simultaneously almost achieving the same contrast improvement as the maximum method. We show a statistically significant improvement in image quality by using an increased number of images (ten compared to five), and visual inspection studies by three clinicians showed very strong preference for our compounded volumes in terms of overall high image quality, large field of view, high endocardial border definition and low cavity noise.
A Tractography Comparison between Turboprop and Spin-Echo Echo-Planar Diffusion Tensor Imaging
Gui, Minzhi; Peng, Huiling; Carew, John D.; Lesniak, Maciej S.; Arfanakis, Konstantinos
2008-01-01
The development of accurate, non-invasive methods for mapping white matter fiber-tracts is of critical importance. However, fiber-tracking is typically performed on diffusion tensor imaging (DTI) data obtained with echo-planar-based imaging techniques (EPI), which suffer from susceptibility-related image artifacts, and image warping due to eddy-currents. Thus, a number of white matter fiber-bundles mapped using EPI-based DTI data are distorted and/or terminated early. This severely limits the clinical potential of fiber-tracking. In contrast, Turboprop-MRI provides images with significantly fewer susceptibility and eddy-current-related artifacts than EPI. The purpose of this work was to compare fiber-tracking results obtained from DTI data acquired with Turboprop-DTI and EPI-based DTI. It was shown that, in brain regions near magnetic field inhomogeneities, white matter fiber-bundles obtained with EPI-based DTI were distorted and/or partially detected, when magnetic susceptibility-induced distortions were not corrected. After correction, residual distortions were still present and several fiber-tracts remained partially detected. In contrast, when using Turboprop-DTI data, all traced fiber-tracts were in agreement with known anatomy. The inter-session reproducibility of tractography results was higher for Turboprop than EPI-based DTI data in regions near field inhomogeneities. Thus, Turboprop may be a more appropriate DTI data acquisition technique for tracing white matter fibers near regions with significant magnetic susceptibility differences, as well as in longitudinal studies of such fibers. However, the intra-session reproducibility of tractography results was higher for EPI-based than Turboprop DTI data. Thus, EPI-based DTI may be more advantageous for tracing fibers minimally affected by field inhomogeneities. PMID:18621131
A tractography comparison between turboprop and spin-echo echo-planar diffusion tensor imaging.
Gui, Minzhi; Peng, Huiling; Carew, John D; Lesniak, Maciej S; Arfanakis, Konstantinos
2008-10-01
The development of accurate, non-invasive methods for mapping white matter fiber-tracts is of critical importance. However, fiber-tracking is typically performed on diffusion tensor imaging (DTI) data obtained with echo-planar-based imaging techniques (EPI), which suffer from susceptibility-related image artifacts, and image warping due to eddy-currents. Thus, a number of white matter fiber-bundles mapped using EPI-based DTI data are distorted and/or terminated early. This severely limits the clinical potential of fiber-tracking. In contrast, Turboprop-MRI provides images with significantly fewer susceptibility and eddy-current-related artifacts than EPI. The purpose of this work was to compare fiber-tracking results obtained from DTI data acquired with Turboprop-DTI and EPI-based DTI. It was shown that, in brain regions near magnetic field inhomogeneities, white matter fiber-bundles obtained with EPI-based DTI were distorted and/or partially detected, when magnetic susceptibility-induced distortions were not corrected. After correction, residual distortions were still present and several fiber-tracts remained partially detected. In contrast, when using Turboprop-DTI data, all traced fiber-tracts were in agreement with known anatomy. The inter-session reproducibility of tractography results was higher for Turboprop than EPI-based DTI data in regions near field inhomogeneities. Thus, Turboprop may be a more appropriate DTI data acquisition technique for tracing white matter fibers near regions with significant magnetic susceptibility differences, as well as in longitudinal studies of such fibers. However, the intra-session reproducibility of tractography results was higher for EPI-based than Turboprop DTI data. Thus, EPI-based DTI may be more advantageous for tracing fibers minimally affected by field inhomogeneities.
Fei, Xiaolu; Li, Shanshan; Gao, Shan; Wei, Lan; Wang, Lihong
2014-09-04
Radio Frequency Identification(RFID) has been widely used in healthcare facilities, but it has been paid little attention whether RFID applications are safe enough under healthcare environment. The purpose of this study is to assess the effects of RFID tags on Magnetic Resonance (MR) imaging in a typical electromagnetic environment in hospitals, and to evaluate the safety of their applications. A Magphan phantom was used to simulate the imaging objects, while active RFID tags were placed at different distances (0, 4, 8, 10 cm) from the phantom border. The phantom was scanned by using three typical sequences including spin-echo (SE) sequence, gradient-echo (GRE) sequence and inversion-recovery (IR) sequence. The quality of the image was quantitatively evaluated by using signal-to-noise ratio (SNR), uniformity, high-contrast resolution, and geometric distortion. RFID tags were read by an RFID reader to calculate their usable rate. RFID tags can be read properly after being placed in high magnetic field for up to 30 minutes. SNR: There were no differences between the group with RFID tags and the group without RFID tags using SE and IR sequence, but it was lower when using GRE sequence.Uniformity: There was a significant difference between the group with RFID tags and the group without RFID tags using SE and GRE sequence. Geometric distortion and high-contrast resolution: There were no obvious differences found. Active RFID tags can affect MR imaging quality, especially using the GRE sequence. Increasing the distance from the RFID tags to the imaging objects can reduce that influence. When the distance was longer than 8 cm, MR imaging quality were almost unaffected. However, the Gradient Echo related sequence is not recommended when patients wear a RFID wristband.
Optimal control design of turbo spin‐echo sequences with applications to parallel‐transmit systems
Hoogduin, Hans; Hajnal, Joseph V.; van den Berg, Cornelis A. T.; Luijten, Peter R.; Malik, Shaihan J.
2016-01-01
Purpose The design of turbo spin‐echo sequences is modeled as a dynamic optimization problem which includes the case of inhomogeneous transmit radiofrequency fields. This problem is efficiently solved by optimal control techniques making it possible to design patient‐specific sequences online. Theory and Methods The extended phase graph formalism is employed to model the signal evolution. The design problem is cast as an optimal control problem and an efficient numerical procedure for its solution is given. The numerical and experimental tests address standard multiecho sequences and pTx configurations. Results Standard, analytically derived flip angle trains are recovered by the numerical optimal control approach. New sequences are designed where constraints on radiofrequency total and peak power are included. In the case of parallel transmit application, the method is able to calculate the optimal echo train for two‐dimensional and three‐dimensional turbo spin echo sequences in the order of 10 s with a single central processing unit (CPU) implementation. The image contrast is maintained through the whole field of view despite inhomogeneities of the radiofrequency fields. Conclusion The optimal control design sheds new light on the sequence design process and makes it possible to design sequences in an online, patient‐specific fashion. Magn Reson Med 77:361–373, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine PMID:26800383
Lan, Gao; Yunmin, Lian; Pu, Wang; Haili, Huai
2016-06-01
This study aimed to observe and evaluate six 3.0 T sequences of metallic artifacts produced by metal dental crowns. Dental crowns fabricated with four different materials (Co-Gr, Ni-Gr, Ti alloy and pure Ti) were evaluated. A mature crossbreed dog was used as the experimental animal, and crowns were fabricated for its upper right second premolar. Each crown was examined through head MRI (3.0 T) with six sequences, namely, T₁ weighted-imaging of spin echo (T₁W/SE), T₂ weighted-imaging of inversion recovery (T₂W/IR), T₂ star gradient echo (T₂*/GRE), T2 weighted-imaging of fast spin echo (T₂W/FSE), T₁ weighted-imaging of fluid attenuate inversion recovery (T₂W/FLAIR), and T₂ weighted-imaging of propeller (T₂W/PROP). The largest area and layers of artifacts were assessed and compared. The artifact in the T₂*/GRE sequence was significantly wider than those in the other sequences (P < 0.01), whose artifact extent was not significantly different (P > 0.05). T₂*/GRE exhibit the strongest influence on the artifact, whereas the five other sequences contribute equally to artifact generation.
Jenista, Elizabeth R; Stokes, Ashley M; Branca, Rosa Tamara; Warren, Warren S
2009-11-28
A recent quantum computing paper (G. S. Uhrig, Phys. Rev. Lett. 98, 100504 (2007)) analytically derived optimal pulse spacings for a multiple spin echo sequence designed to remove decoherence in a two-level system coupled to a bath. The spacings in what has been called a "Uhrig dynamic decoupling (UDD) sequence" differ dramatically from the conventional, equal pulse spacing of a Carr-Purcell-Meiboom-Gill (CPMG) multiple spin echo sequence. The UDD sequence was derived for a model that is unrelated to magnetic resonance, but was recently shown theoretically to be more general. Here we show that the UDD sequence has theoretical advantages for magnetic resonance imaging of structured materials such as tissue, where diffusion in compartmentalized and microstructured environments leads to fluctuating fields on a range of different time scales. We also show experimentally, both in excised tissue and in a live mouse tumor model, that optimal UDD sequences produce different T(2)-weighted contrast than do CPMG sequences with the same number of pulses and total delay, with substantial enhancements in most regions. This permits improved characterization of low-frequency spectral density functions in a wide range of applications.
NASA Astrophysics Data System (ADS)
Omoumi, Farid H.; Wu, Di; Guo, Yuran; Ghani, Muhammad U.; Li, Yuhua; Boyce, Kari E.; Liu, Hong
2018-02-01
The objective of this study is to demonstrate the potential of using the High-energy in-line phase contrast x-ray imaging to detect lesions that are indistinguishable by conventional x-ray mammography but are detectable by supplemental ultrasound screening within dense breasts. For this study, a custom-made prototype x-ray/ultrasound dualmodality phantom that mimics dense breast is created to include embedded carbon fiber disks with multiple diameters and thicknesses. The phase contrast image is acquired using a prototype at 120kVp, 67μA, exposure time of 16.7sec and focal spot size of 18.3μm with average glandular dose (AGD) of 0.3mGy under a geometric magnification of 2.48. The conventional x-ray image is acquired with a bench top system operating at 40kVp, 300μA, exposure time of 50sec and same AGD. The results demonstrate that conventional x-ray imaging is unable to detect any of the carbon fiber disks, while phase contrast imaging and ultrasonography are able to detect most or all of the disks under the applied experimental conditions. These results illustrate phase contrast imaging is capable of detecting targets in a dual-modality phantom which simulates lesions in dense breast tissue, when the simulated lesions are not distinguishable by conventional mammography. Therefore mammographic screening with phase contrast technique could eventually replace both x-ray and ultrasonography for screening detection of small lesions with microcalcification in dense breasts where pathologic lesions are masked due to highly glandular tissue. These results encourage further investigation using high glandular density phantoms to further evaluate the effectiveness of phase contrast imaging as a single modality test, which combines the advantages of both x-ray and ultrasound imaging in cancer screening of patients with dense breasts.
Kossaify, Antoine; Grollier, Gilles
2014-01-01
Echocardiography accounts for nearly half of all cardiac imaging techniques. It is a widely available and adaptable tool, as well as being a cost-effective and mainly a non-invasive test. In addition, echocardiography provides extensive clinical data, which is related to the presence or advent of different modalities (tissue Doppler imaging, speckle tracking imaging, three-dimensional mode, contrast echo, etc.), different approaches (transesophageal, intravascular, etc.), and different applications (ie, heart failure/resynchronization studies, ischemia/stress echo, etc.). In view of this, it is essential to conform to criteria of appropriate use and to keep standards of competence. In this study, we sought to review and discuss clinical practice of echocardiography in light of the criteria of appropriate clinical use, also we present an insight into echocardiographic technical competence and quality improvement project. PMID:24516342
A blind human expert echolocator shows size constancy for objects perceived by echoes.
Milne, Jennifer L; Anello, Mimma; Goodale, Melvyn A; Thaler, Lore
2015-01-01
Some blind humans make clicking noises with their mouth and use the reflected echoes to perceive objects and surfaces. This technique can operate as a crude substitute for vision, allowing human echolocators to perceive silent, distal objects. Here, we tested if echolocation would, like vision, show size constancy. To investigate this, we asked a blind expert echolocator (EE) to echolocate objects of different physical sizes presented at different distances. The EE consistently identified the true physical size of the objects independent of distance. In contrast, blind and blindfolded sighted controls did not show size constancy, even when encouraged to use mouth clicks, claps, or other signals. These findings suggest that size constancy is not a purely visual phenomenon, but that it can operate via an auditory-based substitute for vision, such as human echolocation.
Relationships between the intensity and duration of Peltier heat stimulation and pain magnitude
Vierck, Charles J.; Mauderli, Andre P.; Riley, Joseph L.
2013-01-01
Ramp-and-hold heat stimulation with a Peltier thermode is a standard procedure for quantitative sensory testing of human pain sensitivity. Because myelinated and unmyelinated nociceptive afferents respond preferentially to changing and steady temperatures, respectively, ramp-and-hold heat stimulation could assess processing of input from A-delta nociceptors early and C nociceptors late during prolonged thermal stimulation. In order to evaluate the progression from dynamic change to a steady temperature during prolonged Peltier stimulation, recordings of temperatures at the probe-skin interface were obtained. First, recordings of temperature during contact-and-hold stimulation (solenoid powered delivery of a preheated thermode to the skin) provided an evaluation of heat dissipation from the beginning of stimulation, uncontaminated by ramping. The heat sink effect lasted up to 8 sec. and accounted in part for substantial increases in pain intensity as a combined function of durations from 1–16 sec. and stimulus intensities from 43°C to 59°. Recordings during longer periods of stimulation showed that Peltier stimulation generated feedback oscillations in temperature for up to 75 sec that were tracked by subjects’ continuous ratings of pain. During 120 sec. trials, sensitization of pain was observed over 45 seconds after the oscillations subsided. In contrast, sensitization was not observed during 130.5 sec. of stimulation with alternately increasing and decreasing temperatures that maintained a target eVAS rating of 35. Thus, long duration stimulation can be utilized to evaluate sensitization, presumably of C nociception, when not disrupted by oscillations inherent to feedback control of Peltier stimulation. PMID:23423165
Rouhana, Jad; Padilla, André; Estaran, Sébastien; Bakari, Sana; Delbecq, Stephan; Boublik, Yvan; Chopineau, Joel; Pugnière, Martine; Chavanieu, Alain
2013-01-01
The GDP/GTP nucleotide exchange of Arf1 is catalyzed by nucleotide exchange factors (GEF), such as Arno, which act through their catalytic Sec7 domain. This exchange is a complex mechanism that undergoes conformational changes and intermediate complex species involving several allosteric partners such as nucleotides, Mg2+, and Sec7 domains. Using a surface plasmon resonance approach, we characterized the kinetic binding parameters for various intermediate complexes. We first confirmed that both GDP and GTP counteract equivalently to the free-nucleotide binary Arf1-Arno complex stability and revealed that Mg2+ potentiates by a factor of 2 the allosteric effect of GDP. Then we explored the uncompetitive inhibitory mechanism of brefeldin A (BFA) that conducts to an abortive pentameric Arf1-Mg2+-GDP-BFA-Sec7 complex. With BFA, the association rate of the abortive complex is drastically reduced by a factor of 42, and by contrast, the 15-fold decrease of the dissociation rate concurs to stabilize the pentameric complex. These specific kinetic signatures have allowed distinguishing the level and nature as well as the fate in real time of formed complexes according to experimental conditions. Thus, we showed that in the presence of GDP, the BFA-resistant Sec7 domain of Arno can also associate to form a pentameric complex, which suggests that the uncompetitive inhibition by BFA and the nucleotide allosteric effect combine to stabilize such abortive complex. PMID:23255605
NASA Astrophysics Data System (ADS)
Qin, Shengping; Caskey, Charles F.; Ferrara, Katherine W.
2009-03-01
Microbubble contrast agents and the associated imaging systems have developed over the past 25 years, originating with manually-agitated fluids introduced for intra-coronary injection. Over this period, stabilizing shells and low diffusivity gas materials have been incorporated in microbubbles, extending stability in vitro and in vivo. Simultaneously, the interaction of these small gas bubbles with ultrasonic waves has been extensively studied, resulting in models for oscillation and increasingly sophisticated imaging strategies. Early studies recognized that echoes from microbubbles contained frequencies that are multiples of the microbubble resonance frequency. Although individual microbubble contrast agents cannot be resolved—given that their diameter is on the order of microns—nonlinear echoes from these agents are used to map regions of perfused tissue and to estimate the local microvascular flow rate. Such strategies overcome a fundamental limitation of previous ultrasound blood flow strategies; the previous Doppler-based strategies are insensitive to capillary flow. Further, the insonation of resonant bubbles results in interesting physical phenomena that have been widely studied for use in drug and gene delivery. Ultrasound pressure can enhance gas diffusion, rapidly fragment the agent into a set of smaller bubbles or displace the microbubble to a blood vessel wall. Insonation of a microbubble can also produce liquid jets and local shear stress that alter biological membranes and facilitate transport. In this review, we focus on the physical aspects of these agents, exploring microbubble imaging modes, models for microbubble oscillation and the interaction of the microbubble with the endothelium.
Ultrasound contrast microbubbles in imaging and therapy: physical principles and engineering
Qin, Shengping; Caskey, Charles F; Ferrara, Katherine W
2010-01-01
Microbubble contrast agents and the associated imaging systems have developed over the past twenty-five years, originating with manually-agitated fluids introduced for intra-coronary injection. Over this period, stabilizing shells and low diffusivity gas materials have been incorporated in microbubbles, extending stability in vitro and in vivo. Simultaneously, the interaction of these small gas bubbles with ultrasonic waves has been extensively studied, resulting in models for oscillation and increasingly sophisticated imaging strategies. Early studies recognized that echoes from microbubbles contained frequencies that are multiples of the microbubble resonance frequency. Although individual microbubble contrast agents cannot be resolved—given that their diameter is on the order of microns—nonlinear echoes from these agents are used to map regions of perfused tissue and to estimate the local microvascular flow rate. Such strategies overcome a fundamental limitation of previous ultrasound blood flow strategies; the previous Doppler-based strategies are insensitive to capillary flow. Further, the insonation of resonant bubbles results in interesting physical phenomena that have been widely studied for use in drug and gene delivery. Ultrasound pressure can enhance gas diffusion, rapidly fragment the agent into a set of smaller bubbles or displace the microbubble to a blood vessel wall. Insonation of a microbubble can also produce liquid jets and local shear stress that alter biological membranes and facilitate transport. In this review, we focus on the physical aspects of these agents, exploring microbubble imaging modes, models for microbubble oscillation and the interaction of the microbubble with the endothelium. PMID:19229096
Automated detection of arterial input function in DSC perfusion MRI in a stroke rat model
NASA Astrophysics Data System (ADS)
Yeh, M.-Y.; Lee, T.-H.; Yang, S.-T.; Kuo, H.-H.; Chyi, T.-K.; Liu, H.-L.
2009-05-01
Quantitative cerebral blood flow (CBF) estimation requires deconvolution of the tissue concentration time curves with an arterial input function (AIF). However, image-based determination of AIF in rodent is challenged due to limited spatial resolution. We evaluated the feasibility of quantitative analysis using automated AIF detection and compared the results with commonly applied semi-quantitative analysis. Permanent occlusion of bilateral or unilateral common carotid artery was used to induce cerebral ischemia in rats. The image using dynamic susceptibility contrast method was performed on a 3-T magnetic resonance scanner with a spin-echo echo-planar-image sequence (TR/TE = 700/80 ms, FOV = 41 mm, matrix = 64, 3 slices, SW = 2 mm), starting from 7 s prior to contrast injection (1.2 ml/kg) at four different time points. For quantitative analysis, CBF was calculated by the AIF which was obtained from 10 voxels with greatest contrast enhancement after deconvolution. For semi-quantitative analysis, relative CBF was estimated by the integral divided by the first moment of the relaxivity time curves. We observed if the AIFs obtained in the three different ROIs (whole brain, hemisphere without lesion and hemisphere with lesion) were similar, the CBF ratios (lesion/normal) between quantitative and semi-quantitative analyses might have a similar trend at different operative time points. If the AIFs were different, the CBF ratios might be different. We concluded that using local maximum one can define proper AIF without knowing the anatomical location of arteries in a stroke rat model.
Fujiwara, Yasuhiro; Maruyama, Hirotoshi; Toyomaru, Kanako; Nishizaka, Yuri; Fukamatsu, Masahiro
2018-06-01
Magnetic resonance imaging (MRI) is widely used to detect carotid atherosclerotic plaques. Although it is important to evaluate vulnerable carotid plaques containing lipids and intra-plaque hemorrhages (IPHs) using T 1 -weighted images, the image contrast changes depending on the imaging settings. Moreover, to distinguish between a thrombus and a hemorrhage, it is useful to evaluate the iron content of the plaque using both T 1 -weighted and T 2 *-weighted images. Therefore, a quantitative evaluation of carotid atherosclerotic plaques using T 1 and T 2 * values may be necessary for the accurate evaluation of plaque components. The purpose of this study was to determine whether the multi-echo phase-sensitive inversion recovery (mPSIR) sequence can improve T 1 contrast while simultaneously providing accurate T 1 and T 2 * values of an IPH. T 1 and T 2 * values measured using mPSIR were compared to values from conventional methods in phantom and in vivo studies. In the phantom study, the T 1 and T 2 * values estimated using mPSIR were linearly correlated with those of conventional methods. In the in vivo study, mPSIR demonstrated higher T 1 contrast between the IPH phantom and sternocleidomastoid muscle than the conventional method. Moreover, the T 1 and T 2 * values of the blood vessel wall and sternocleidomastoid muscle estimated using mPSIR were correlated with values measured by conventional methods and with values reported previously. The mPSIR sequence improved T 1 contrast while simultaneously providing accurate T 1 and T 2 * values of the neck region. Although further study is required to evaluate the clinical utility, mPSIR may improve carotid atherosclerotic plaque detection and provide detailed information about plaque components.
NASA Astrophysics Data System (ADS)
Merčep, Elena; Burton, Neal C.; Deán-Ben, Xosé Luís.; Razansky, Daniel
2017-02-01
The complementary contrast of the optoacoustic (OA) and pulse-echo ultrasound (US) modalities makes the combined usage of these imaging technologies highly advantageous. Due to the different physical contrast mechanisms development of a detector array optimally suited for both modalities is one of the challenges to efficient implementation of a single OA-US imaging device. We demonstrate imaging performance of the first hybrid detector array whose novel design, incorporating array segments of linear and concave geometry, optimally supports image acquisition in both reflection-mode ultrasonography and optoacoustic tomography modes. Hybrid detector array has a total number of 256 elements and three segments of different geometry and variable pitch size: a central 128-element linear segment with pitch of 0.25mm, ideally suited for pulse-echo US imaging, and two external 64-elements segments with concave geometry and 0.6mm pitch optimized for OA image acquisition. Interleaved OA and US image acquisition with up to 25 fps is facilitated through a custom-made multiplexer unit. Spatial resolution of the transducer was characterized in numerical simulations and validated in phantom experiments and comprises 230 and 300 μm in the respective OA and US imaging modes. Imaging performance of the multi-segment detector array was experimentally shown in a series of imaging sessions with healthy volunteers. Employing mixed array geometries allows at the same time achieving excellent OA contrast with a large field of view, and US contrast for complementary structural features with reduced side-lobes and improved resolution. The newly designed hybrid detector array that comprises segments of linear and concave geometries optimally fulfills requirements for efficient US and OA imaging and may expand the applicability of the developed hybrid OPUS imaging technology and accelerate its clinical translation.
Poole, Dana S; Plenge, Esben; Poot, Dirk H J; Lakke, Egbert A J F; Niessen, Wiro J; Meijering, Erik; van der Weerd, Louise
2014-07-01
The visualization of activity in mouse brain using inversion recovery spin echo (IR-SE) manganese-enhanced MRI (MEMRI) provides unique contrast, but suffers from poor resolution in the slice-encoding direction. Super-resolution reconstruction (SRR) is a resolution-enhancing post-processing technique in which multiple low-resolution slice stacks are combined into a single volume of high isotropic resolution using computational methods. In this study, we investigated, first, whether SRR can improve the three-dimensional resolution of IR-SE MEMRI in the slice selection direction, whilst maintaining or improving the contrast-to-noise ratio of the two-dimensional slice stacks. Second, the contrast-to-noise ratio of SRR IR-SE MEMRI was compared with a conventional three-dimensional gradient echo (GE) acquisition. Quantitative experiments were performed on a phantom containing compartments of various manganese concentrations. The results showed that, with comparable scan times, the signal-to-noise ratio of three-dimensional GE acquisition is higher than that of SRR IR-SE MEMRI. However, the contrast-to-noise ratio between different compartments can be superior with SRR IR-SE MEMRI, depending on the chosen inversion time. In vivo experiments were performed in mice receiving manganese using an implanted osmotic pump. The results showed that SRR works well as a resolution-enhancing technique in IR-SE MEMRI experiments. In addition, the SRR image also shows a number of brain structures that are more clearly discernible from the surrounding tissues than in three-dimensional GE acquisition, including a number of nuclei with specific higher brain functions, such as memory, stress, anxiety and reward behavior. Copyright © 2014 John Wiley & Sons, Ltd.
77 FR 8803 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-15
...,936. Needs and Uses: This request is for an extension of a current information collection. Under... owner or operator of a vessel for which a permit has been issued under Sec. 635.4 and that uses handline... block letters or Arabic numerals in a color that contrasts with the background color of the float or...
Frias, A.E.; Schabel, M.C.; Roberts, V.H.J.; Tudorica, A.; Grigsby, P.L.; Oh, K.Y.; Kroenke, C. D.
2015-01-01
Purpose The maternal microvasculature of the primate placenta is organized into 10-20 perfusion domains that are functionally optimized to facilitate nutrient exchange to support fetal growth. This study describes a dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) method for identifying vascular domains, and quantifying maternal blood flow in them. Methods A rhesus macaque on the 133rd day of pregnancy (G133, term=165 days) underwent Doppler ultrasound (US) procedures, DCE-MRI, and Cesarean-section delivery. Serial T1-weighted images acquired throughout intravenous injection of a contrast reagent (CR) bolus were analyzed to obtain CR arrival time maps of the placenta. Results Watershed segmentation of the arrival time map identified 16 perfusion domains. The number and location of these domains corresponded to anatomical cotyledonary units observed following delivery. Analysis of the CR wave front through each perfusion domain enabled determination of volumetric flow, which ranged from 9.03 to 44.9 mL/sec (25.2 ± 10.3 mL/sec). These estimates are supported by Doppler US results. Conclusions The DCE-MRI analysis described here provides quantitative estimates of the number of maternal perfusion domains in a primate placenta, and estimates flow within each domain. Anticipated extensions of this technique are to the study placental function in nonhuman primate models of obstetric complications. PMID:24753177
Prieto, Claudia; Uribe, Sergio; Razavi, Reza; Atkinson, David; Schaeffter, Tobias
2010-08-01
One of the current limitations of dynamic contrast-enhanced MR angiography is the requirement of both high spatial and high temporal resolution. Several undersampling techniques have been proposed to overcome this problem. However, in most of these methods the tradeoff between spatial and temporal resolution is constant for all the time frames and needs to be specified prior to data collection. This is not optimal for dynamic contrast-enhanced MR angiography where the dynamics of the process are difficult to predict and the image quality requirements are changing during the bolus passage. Here, we propose a new highly undersampled approach that allows the retrospective adaptation of the spatial and temporal resolution. The method combines a three-dimensional radial phase encoding trajectory with the golden angle profile order and non-Cartesian Sensitivity Encoding (SENSE) reconstruction. Different regularization images, obtained from the same acquired data, are used to stabilize the non-Cartesian SENSE reconstruction for the different phases of the bolus passage. The feasibility of the proposed method was demonstrated on a numerical phantom and in three-dimensional intracranial dynamic contrast-enhanced MR angiography of healthy volunteers. The acquired data were reconstructed retrospectively with temporal resolutions from 1.2 sec to 8.1 sec, providing a good depiction of small vessels, as well as distinction of different temporal phases.
NASA Astrophysics Data System (ADS)
Shi, Jin-Wei; Wei, Chia-Chien; Chen, Jyehong; Ledentsov, N. N.; Yang, Ying-Jay
2017-02-01
Vertical-cavity surface-emitting lasers (VCSELs) has become the most important light source in the booming market of short-reach (< 300 meters) optical interconnect (OI). The next generation OI has been targeted at 56 Gbit/sec data rate per channel (CEI-56G) with the total data rate up to 400 Gbit/sec. However, the serious modal dispersion of multi-mode fiber (MMF), limited speed of VCSEL, and its high resistance (> 150 Ω) seriously limits the >50 Gbit/sec linking distance (< 10 m) by using only on-off keying (OOK) modulation scheme without any signal processing techniques. In contrast to OOK, 4-PAM modulation format is attractive for >50 Gbit/sec transmission due to that it can save one-half of the required bandwidth. Nevertheless, a 4.7 dB optical power penalty and the linearity of transmitter would become issues in the 4-PAM linking performance. Besides, in the modern OI system, the optics transreceiver module must be packaged as close as possible with the integrated circuits (ICs). The heat generated from ICs will become an issue in speed of VSCEL. Here, we review our recent work about 850 nm VCSEL, which has unique Zn-diffusion/oxide-relief apertures and special p- doping active layer with strong wavelength detuning to further enhance its modulation speed and high-temperature (85°C) performances. Single-mode (SM) devices with high-speed ( 26 GHz), reasonable resistance ( 70 Ω) and moderate output power ( 1.5 mW) can be achieved. Error-free 54 Gbit/sec OOK transmission through 1km MMF has been realized by using such SM device with signal processing techniques. Besides, the volterra nonlinear equalizer has been applied in our 4-PAM 64 Gbit/sec transmission through 2-km OM4 MMF, which significantly enhance the linearity of device and outperforms fed forward equalization (FFE) technique. Record high bit-rate distance product of 128.km is confirmed for optical-interconnect applications.
C-tactile afferent stimulating touch carries a positive affective value.
Pawling, Ralph; Cannon, Peter R; McGlone, Francis P; Walker, Susannah C
2017-01-01
The rewarding sensation of touch in affiliative interactions is hypothesized to be underpinned by a specialized system of nerve fibers called C-Tactile afferents (CTs), which respond optimally to slowly moving, gentle touch, typical of a caress. However, empirical evidence to support the theory that CTs encode socially relevant, rewarding tactile information in humans is currently limited. While in healthy participants, touch applied at CT optimal velocities (1-10cm/sec) is reliably rated as subjectively pleasant, neuronopathy patients lacking large myelinated afferents, but with intact C-fibres, report that the conscious sensation elicited by stimulation of CTs is rather vague. Given this weak perceptual impact the value of self-report measures for assessing the specific affective value of CT activating touch appears limited. Therefore, we combined subjective ratings of touch pleasantness with implicit measures of affective state (facial electromyography) and autonomic arousal (heart rate) to determine whether CT activation carries a positive affective value. We recorded the activity of two key emotion-relevant facial muscle sites (zygomaticus major-smile muscle, positive affect & corrugator supercilii-frown muscle, negative affect) while participants evaluated the pleasantness of experimenter administered stroking touch, delivered using a soft brush, at two velocities (CT optimal 3cm/sec & CT non-optimal 30cm/sec), on two skin sites (CT innervated forearm & non-CT innervated palm). On both sites, 3cm/sec stroking touch was rated as more pleasant and produced greater heart rate deceleration than 30cm/sec stimulation. However, neither self-report ratings nor heart rate responses discriminated stimulation on the CT innervated arm from stroking of the non-CT innervated palm. In contrast, significantly greater activation of the zygomaticus major (smiling muscle) was seen specifically to CT optimal, 3cm/sec, stroking on the forearm in comparison to all other stimuli. These results offer the first empirical evidence in humans that tactile stimulation that optimally activates CTs carries a positive affective valence that can be measured implicitly.
Viessmann, Olivia; Li, Linqing; Benjamin, Philip
2016-01-01
Purpose To optimize intracranial vessel wall imaging (VWI) at 7T for sharp wall depiction and high boundary contrast. Methods A variable flip angle turbo spin echo scheme (SPACE) was optimized for VWI. SPACE provides black‐blood contrast, but has less crushing effect on cerebrospinal fluid (CSF). However, a delay alternating with nutation for tailored excitation (DANTE) preparation suppresses the signal from slowly moving spins of a few mm per second. Therefore, we optimized a DANTE‐preparation module for 7T. Signal‐to‐noise ratio (SNR), contrast‐to‐noise ratio (CNR), and signal ratio for vessel wall, CSF, and lumen were calculated for SPACE and DANTE‐SPACE in 11 volunteers at the middle cerebral artery (MCA). An exemplar MCA stenosis patient was scanned with DANTE‐SPACE. Results The 7T‐optimized SPACE sequence improved the vessel wall point‐spread function by 17%. The CNR between the wall and CSF was doubled (12.2 versus 5.6) for the DANTE‐SPACE scans compared with the unprepared SPACE. This increase was significant in the right hemisphere (P = 0.016), but not in the left (P = 0.090). The CNR between wall and lumen was halved, but remained at a high value (24.9 versus 56.5). Conclusion The optimized SPACE sequence improves VWI at 7T. Additional DANTE preparation increases the contrast between the wall and CSF. Increased outer boundary contrast comes at the cost of reduced inner boundary contrast. Magn Reson Med 77:655–663, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:26890988
Novel Imaging Contrast Methods for Hyperpolarized 13 C Magnetic Resonance Imaging
NASA Astrophysics Data System (ADS)
Reed, Galen Durant
Magnetic resonance imaging using hyperpolarized 13C-labeled small molecules has emerged as an extremely powerful tool for the in vivo monitoring of perfusion and metabolism. This work presents methods for improved imaging, parameter mapping, and image contrast generation for in vivo hyperpolarized 13C MRI. Angiography using hyperpolarized urea was greatly improved with a highly T2-weighted acquisition in combination with 15N labeling of the urea amide groups. This is due to the fact that the T2 of [13C]urea is strongly limited by the scalar coupling to the neighboring quadrupolar 14N. The long in vivo T2 values of [13C, 15N2]urea were utilized for sub-millimeter projection angiography using a contrast agent that could be safely injected in concentrations of 10-100 mM while still tolerated in patients with renal insufficiency. This study also presented the first method for in vivo T2 mapping of hyperpolarized 13C compounds. The in vivo T2 of urea was short in the blood and long within the kidneys. This persistent signal component was isolated to the renal filtrate, thus enabling for the first time direct detection of an imaging contrast agent undergoing glomerular filtration. While highly T2-weighted acquisitions select for molecules with short rotational correlation times, high diffusion weighting selects for those with the long translational correlation times. A specialized spin-echo EPI sequence was developed in order to generate highly diffusion-weighted hyperpolarized 13C images on a clinical MRI system operating within clinical peak- RF and gradient amplitude constraints. Low power adiabatic spin echo pulses were developed in order to generate a sufficiently large refocused bandwidth while maintaining low nominal power. This diffusion weighted acquisition gave enhanced tumor contrast-to-noise ratio when imaging [1-13C]lactate after infusion of [1-13C]pyruvate. Finally, the first in-man hyperpolarized 13C MRI clinical trial is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soliman, A; Safigholi, H; Sunnybrook Health Sciences Center, Toronto, ON
Purpose: To propose a new method that provides a positive contrast visualization of the prostate brachytherapy seeds using the phase information from MR images. Additionally, the feasibility of using the processed phase information to distinguish seeds from calcifications is explored. Methods: A gel phantom was constructed using 2% agar dissolved in 1 L of distilled water. Contrast agents were added to adjust the relaxation times. Four iodine-125 (Eckert & Ziegler SML86999) dummy seeds were placed at different orientations with respect to the main magnetic field (B0). Calcifications were obtained from a sheep femur cortical bone due to its close similaritymore » to human bone tissue composition. Five samples of calcifications were shaped into different dimensions with lengths ranging between 1.2 – 6.1 mm.MR imaging was performed on a 3T Philips Achieva using an 8-channel head coil. Eight images were acquired at eight echo-times using a multi-gradient echo sequence. Spatial resolution was 0.7 × 0.7 × 2 mm, TR/TE/dTE = 20.0/2.3/2.3 ms and BW = 541 Hz/pixel. Complex images were acquired and fed into a two-step processing pipeline: the first includes phase unwrapping and background phase removal using Laplacian operator (Wei et al. 2013). The second step applies a specific phase mask on the resulting tissue phase from the first step to provide the desired positive contrast of the seeds and to, potentially, differentiate them from the calcifications. Results: The phase-processing was performed in less than 30 seconds. The proposed method has successfully resulted in a positive contrast of the brachytherapy seeds. Additionally, the final processed phase image showed difference between the appearance of seeds and calcifications. However, the shape of the seeds was slightly distorted compared to the original dimensions. Conclusion: It is feasible to provide a positive contrast of the seeds from MR images using Laplacian operator-based phase processing.« less
Tian, Mei; Wen, Xiaoxia; Jackson, Edward F.; Ng, Chaan; Uthamanthil, Rajesh; Liang, Dong; Gelovani, Juri G.; Li, Chun
2012-01-01
The purpose of this study was to evaluate poly(L-glutamic acid)-benzyl-DTPA-Gd (PG-Gd), a new biodegradable macromolecular magnetic resonance imaging contrast agent, for its pharmacokinetics and MRI enhancement in nonhuman primates. Studies were performed in rhesus monkeys at intravenous doses of 0.01, 0.02, and 0.08 mmol Gd/kg. T1-weighted MR images were acquired at 1.5T using fast spoiled gradient recalled echo and fast spin echo imaging protocols. The small-molecule contrast agent Magnevist was used as a control. PG-Gd in the monkey showed a bi-exponential disposition. The initial blood concentrations within 2 hours of PG-Gd administration were much higher than for those of Magnevist. The high blood concentration of PG-Gd was consistent with the MR imaging data, which showed prolonged circulation of PG-Gd in the blood pool. Enhancement of blood vessels and organs with a high blood perfusion (heart, liver, and kidney) was clearly visualized at 2 hours after contrast injection at the three doses used. A greater than proportional increase of the area under the blood concentration-time curve was observed when the administered single dose was increased from 0.01 mmol/kg to 0.08 mmol/kg. By 2 days after PG-Gd injection, the contrast agent was mostly cleared from all major organs, including kidney. The mean residence time was 15 hours at the 0.08 mmol/kg dose. A similar pharmacokinetic profile was observed in mice, with a mean residence time of 5.4 hours and a volume of distribution at steady-state of 85.5 mL/kg, indicating that the drug was mainly distributed in the blood compartment. Based on this pilot study, further investigations on potential systemic toxicity of PG-Gd in both rodents and large animals are needed before testing this agent in humans. PMID:21861289
NASA Astrophysics Data System (ADS)
Juras, Vladimir; Bittsansky, Michal; Majdisova, Zuzana; Szomolanyi, Pavol; Sulzbacher, Irene; Gäbler, Stefan; Stampfl, Jürgen; Schüller, Georg; Trattnig, Siegfried
2009-03-01
The objective of this study was to evaluate the correlations between MR parameters and the biomechanical properties of naturally degenerated human articular cartilage. Human cartilage explants from the femoral condyles of patients who underwent total knee replacement were evaluated on a micro-imaging system at 3 T. To quantify glycosaminoglycan (GAG) content, delayed gadolinium-enhanced MRI of the cartilage (dGEMRIC) was used. T2 maps were created by using multi-echo, multi-slice spin echo sequences with six echoes: 15, 30, 45, 60, 75, and 90 ms. Data for apparent diffusion constant (ADC) maps were obtained from pulsed gradient spin echo (PGSE) sequences with five b-values: 10.472, 220.0, 627.0, 452.8, 724.5, and 957.7. MR parameters were correlated with mechanical parameters (instantaneous ( I) and equilibrium ( Eq) modulus and relaxation time ( τ)), and the OA stage of each cartilage specimen was determined by histological evaluation of hematoxylin-eosin stained slices. For some parameters, a high correlation was found: the correlation of T1Gd vs Eq ( r = 0.8095), T1Gd vs I/ Eq ( r = -0.8441) and T1Gd vs τ ( r = 0.8469). The correlation of T2 and ADC with selected biomechanical parameters was not statistically significant. In conclusion, GAG content measured by dGEMRIC is highly related to the selected biomechanical properties of naturally degenerated articular cartilage. In contrast, T2 and ADC were unable to estimate these properties. The results of the study imply that some MR parameters can non-invasively predict the biomechanical properties of degenerated articular cartilage.
NASA Astrophysics Data System (ADS)
Kim, Y.; Lee, C.; Kim, J.; Jee, G.
2013-12-01
For the first time, vertical winds near the mesopause region were estimated from radial velocities of meteor echoes detected by a VHF meteor radar at King Sejong Station (KSS) in 2011 and 2012. Since the radar usually detects more than a hundred echoes every hour in an altitude bin of 88 - 92 km, much larger than other radars, we were able to fit measured radial velocities of these echoes with a 6 component model that consists of horizontal winds, spatial gradients of horizontal winds and vertical wind. The conventional method of deriving horizontal winds from meteor echoes utilizes a 2 component model, assuming that vertical winds and spatial gradients of horizontal winds are negligible. We analyzed the radar data obtained for 8400 hours in 2012 and 8100 hours in 2011. We found that daily mean values of vertical winds are mostly within +/- 1 m/s, whereas those of zonal winds are a few tens m/s mostly eastward. The daily mean vertical winds sometimes stay positive or negative for more than 20 days, implying that the atmosphere near the mesopause experiences episodically a large scale low and high pressure environments, respectively, like the tropospheric weather system. By conducting Lomb-normalized periodogram analysis, we also found that the vertical winds have diurnal, semidiurnal and terdiurnal tidal components with about equal significance, in contrast to horizontal winds that show a dominant semidiurnal one. We will discuss about uncertainties of the estimated vertical wind and possible reasons of its tidal and daily variations.
Lee, Hyunyeol; Sohn, Chul-Ho; Park, Jaeseok
2017-07-01
To develop a current-induced, alternating reversed dual-echo-steady-state-based magnetic resonance electrical impedance tomography for joint estimation of tissue relaxation and electrical properties. The proposed method reverses the readout gradient configuration of conventional, in which steady-state-free-precession (SSFP)-ECHO is produced earlier than SSFP-free-induction-decay (FID) while alternating current pulses are applied in between the two SSFPs to secure high sensitivity of SSFP-FID to injection current. Additionally, alternating reversed dual-echo-steady-state signals are modulated by employing variable flip angles over two orthogonal injections of current pulses. Ratiometric signal models are analytically constructed, from which T 1 , T 2 , and current-induced B z are jointly estimated by solving a nonlinear inverse problem for conductivity reconstruction. Numerical simulations and experimental studies are performed to investigate the feasibility of the proposed method in estimating relaxation parameters and conductivity. The proposed method, if compared with conventional magnetic resonance electrical impedance tomography, enables rapid data acquisition and simultaneous estimation of T 1 , T 2 , and current-induced B z , yielding a comparable level of signal-to-noise ratio in the parameter estimates while retaining a relative conductivity contrast. We successfully demonstrated the feasibility of the proposed method in jointly estimating tissue relaxation parameters as well as conductivity distributions. It can be a promising, rapid imaging strategy for quantitative conductivity estimation. Magn Reson Med 78:107-120, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Morishige, Kunio; Kacher, Daniel F.; Libby, Peter; Josephson, Lee; Ganz, Peter; Weissleder, Ralph; Aikawa, Masanori
2010-01-01
Background Macrophages contribute to the progression and acute complications of atherosclerosis. Macrophage imaging may serve as a biomarker to identify subclinical inflamed lesions, to predict future risk, and to aid in the assessment of novel therapies. Methods and Results To test the hypothesis that nanoparticle-enhanced, high-resolution magnetic resonance imaging (MRI) can measure plaque macrophage accumulation, we used 3-T MRI with a macrophage-targeted superparamagnetic nanoparticle preparation (monocrystalline iron oxide nanoparticles-47 [MION-47]) in cholesterol-fed New Zealand White rabbits 6 months after balloon injury. In vivo MRI visualized thickened abdominal aortas on both T1- and T2-weighted spin-echo images (T1 spin echo, 20 axial slices per animal; T2 spin echo, 28 slices per animal). Seventy-two hours after MION-47 injection, aortas exhibited lower T2 signal intensity compared with before contrast imaging (signal intensity ratio, aortic wall/muscle: before, 1.44±0.26 versus after, 0.95±0.22; 164 slices; P<0.01), whereas T1 spin echo images showed no significant change. MRI on ex vivo specimens provided similar results. Histological studies colocalized iron accumulation with immunoreactive macrophages in atheromata. The magnitude of signal intensity reduction on T2 spin echo in vivo images further correlated with macrophage areas in situ (150 slices; r=0.73). Treatment with rosuvastatin for 3 months yielded diminished macrophage content (P<0.05) and reversed T2 signal intensity changes (P<0.005). Signal changes in rosuvastatin-treated rabbits correlated with reduced macrophage burden (r=0.73). In vitro validation studies showed concentration-dependent MION-47 uptake by human primary macrophages. Conclusion The magnitude of T2 signal intensity reduction in high-resolution MRI after administration of superparamagnetic phagocytosable nanoparticles can assess macrophage burden in atheromata, providing a clinically translatable tool to identify inflamed plaques and to monitor therapy-mediated changes in plaque inflammation. PMID:20937980
Simultaneous Quantitative MRI Mapping of T1, T2* and Magnetic Susceptibility with Multi-Echo MP2RAGE
Kober, Tobias; Möller, Harald E.; Schäfer, Andreas
2017-01-01
The knowledge of relaxation times is essential for understanding the biophysical mechanisms underlying contrast in magnetic resonance imaging. Quantitative experiments, while offering major advantages in terms of reproducibility, may benefit from simultaneous acquisitions. In this work, we demonstrate the possibility of simultaneously recording relaxation-time and susceptibility maps with a prototype Multi-Echo (ME) Magnetization-Prepared 2 RApid Gradient Echoes (MP2RAGE) sequence. T1 maps can be obtained using the MP2RAGE sequence, which is relatively insensitive to inhomogeneities of the radio-frequency transmit field, B1+. As an extension, multiple gradient echoes can be acquired in each of the MP2RAGE readout blocks, which permits the calculation of T2* and susceptibility maps. We used computer simulations to explore the effects of the parameters on the precision and accuracy of the mapping. In vivo parameter maps up to 0.6 mm nominal resolution were acquired at 7 T in 19 healthy volunteers. Voxel-by-voxel correlations and the test-retest reproducibility were used to assess the reliability of the results. When using optimized paramenters, T1 maps obtained with ME-MP2RAGE and standard MP2RAGE showed excellent agreement for the whole range of values found in brain tissues. Simultaneously obtained T2* and susceptibility maps were of comparable quality as Fast Low-Angle SHot (FLASH) results. The acquisition times were more favorable for the ME-MP2RAGE (≈ 19 min) sequence as opposed to the sum of MP2RAGE (≈ 12 min) and FLASH (≈ 10 min) acquisitions. Without relevant sacrifice in accuracy, precision or flexibility, the multi-echo version may yield advantages in terms of reduced acquisition time and intrinsic co-registration, provided that an appropriate optimization of the acquisition parameters is performed. PMID:28081157
Rhea's Surface: Ice Properties Measured by Radar.
NASA Astrophysics Data System (ADS)
Black, G.; Campbell, D.
2004-11-01
We obtained echoes from the leading and trailing hemispheres of Rhea in January 2004 using the Arecibo Observatory's 13-cm radar system. The transmitted signal was circularly polarized and strong echoes were received in both the opposite circular (OC) sense to that transmitted and the same circular (SC) sense. Rhea's mean total cross section normalized by projected area is 1.32±0.10 and the mean circular polarization ratio, the ratio of SC echo power to OC echo power, is 1.17±0.12. The reflectivity of the leading hemisphere may be slightly lower than that of the trailing hemisphere by about 10%, although the polarization ratio appears to vary less. The cross section and polarization ratio are similar to those of the icy Galilean satellites and closest to Ganymede's. For these bodies the high radar backscatter cross sections and high polarization ratios are due to an efficient multiple scattering mechanism in the cold, relatively clean water ice surfaces which have very low propagation loss at radio wavelengths. Rhea's surface appears to be exhibiting a similar effect. Rhea's echo spectra are broad, again similar to those of the icy Galilean satellites, and consistent with a multiple scattering mechanism. In contrast, the bright icy hemisphere of Rhea's sibling Iapetus is significantly more radar dark with a radar reflectivity roughly 10% of Rhea's (Black et al., Science, v304, 2004). On Iapetus this great reduction in scattering efficiency is most likely caused by a radar absorber in the ice, possibly ammonia compounds or buried non-ice material from its dark hemisphere. Rhea's surface ice must therefore be relatively free of contaminants, and have a purity similar to Ganymede's. These observations can constrain the concentration of ammonia in the near surface which would be a strong absorber even in amounts of only a few percent. We acknowledge support by NASA's PG&G program.
Bagnato, Francesca; Hametner, Simon; Pennell, David; Dortch, Richard; Dula, Adrienne N; Pawate, Siddharama; Smith, Seth A; Lassmann, Hans; Gore, John C; Welch, Edward B
2015-01-01
The high value of the specific absorption rate (SAR) of radio-frequency (RF) energy arising from the series of RF refocusing pulses in T2-weighted (T2-w) turbo spin echo (TSE) MRI hampers its clinical application at 7.0 Tesla (7T). T2-w gradient and spin echo (GRASE) uses the speed from gradient refocusing in combination with the chemical-shift/static magnetic field (B0) inhomogeneity insensitivity from spin-echo refocusing to acquire T2-w images with a limited number of refocusing RF pulses, thus reducing SAR. To investigate whether low SAR T2-w GRASE could replace T2-w TSE in detecting white matter (WM) disease in MS patients imaged at 7T. The .7 mm3 isotropic T2-w TSE and T2-w GRASE images with variable echo times (TEs) and echo planar imaging (EPI) factors were obtained on a 7T scanner from postmortem samples of MS brains. These samples were derived from brains of 3 female MS patients. WM lesions (WM-Ls) and normal-appearing WM (NAWM) signal intensity, WM-Ls/NAWM contrast-to-noise ratio (CNR) and MRI/myelin staining sections comparisons were obtained. GRASE sequences with EPI factor/TE = 3/50 and 3/75 ms were comparable to the SE technique for measures of CNR in WM-Ls and NAWM and for detection of WM-Ls. In all sequences, however, identification of areas with remyelination, Wallerian degeneration, and gray matter demyelination, as depicted by myelin staining, was not possible. T2-w GRASE images may replace T2-w TSE for clinical use. However, even at 7T, both sequences fail in detecting and characterizing MS disease beyond visible WM-Ls. Copyright © 2015 by the American Society of Neuroimaging.
Momentum-Space Entanglement and Loschmidt Echo in Luttinger Liquids after a Quantum Quench.
Dóra, Balázs; Lundgren, Rex; Selover, Mark; Pollmann, Frank
2016-07-01
Luttinger liquids (LLs) arise by coupling left- and right-moving particles through interactions in one dimension. This most natural partitioning of LLs is investigated by the momentum-space entanglement after a quantum quench using analytical and numerical methods. We show that the momentum-space entanglement spectrum of a LL possesses many universal features both in equilibrium and after a quantum quench. The largest entanglement eigenvalue is identical to the Loschmidt echo, i.e., the overlap of the disentangled and final wave functions of the system. The second largest eigenvalue is the overlap of the first excited state of the disentangled system with zero total momentum and the final wave function. The entanglement gap is universal both in equilibrium and after a quantum quench. The momentum-space entanglement entropy is always extensive and saturates fast to a time independent value after the quench, in sharp contrast to a spatial bipartitioning.
Limitation on the use of a spaceborne SAR for rain measurements
NASA Technical Reports Server (NTRS)
Ahamad, Atiq
1994-01-01
A proof-of-concept experiment for remote sensing of precipitation by SAR is part of the SIR-C/X-SAR experiment. This thesis presents a feasibility study and recommendations for detection of precipitation using SIR-C/X-SAR. The principal limitation to rain measurement from a spaceborne SAR is the poor SCR (signal-to-clutter ratio). This is in part due to the system configuration and largely due to the large magnitude of echoes associated with the surface component. Two geometries apply: off-vertical and vertical pointing angles. Here we present calculations for both. With vertical geometry a large clutter component is associated with range sidelobes of the chirped transmitter pulse. To overcome this problem a narrow transmitted pulse (3 mu sec) processed without dechirping was used. Since the magnitude of the clutter over the ocean is high it is recommended that data in the chirped mode be obtained over the forest due to the significantly lower backscatter associated with it at nadir. With these recommendations, at nadir, it is believed that rain rates greater than 5 mm/hr may be detected. The use of a better weighting function that gives lower sidelobe levels than that used (a raised cos(exp 2)) is also recommended. At off-vertical look angles all the range cells have a large clutter component associated with them due to the geometry. The use of higher angles of incidence (theta greater than 60 deg) is recommended because of better SCR at these angles. With this recommendation, at off-vertical, it is believed that rain rates greater than 10 mm/hr may be detected. Various other techniques are described and recommended to improve the minimum detectable precipitation rate. These include trying to subtract the estimate of the clutter from the combined signal and clutter and trying to separate the Doppler of the rain echo and the surface echo. With these recommendations it is believed that it is possible to detect precipitation as low as 1 mm/hr at vertical and greater than 5 mm/hr at off-vertical look angles.
NASA Astrophysics Data System (ADS)
Rapley, P. L.; Witiw, C.; Rich, K.; Niccoli, S.; Tassotto, M. L.; Th'ng, J.
2012-11-01
Recent research in cell biology as well as oncology research has focused on apoptosis or programmed cell death as a means of quantifying the induced effects of treatment. A hallmark of late-stage apoptosis is nuclear fragmentation in which DNA is degraded to release nucleosomes with their associated histones. In this work, a method was developed for detecting and measuring nucleosome concentration in vitro with magnetic resonance imaging (MRI). The indirect procedure used a commercially available secondary antibody-superparamagnetic iron oxide (SPIO) particle complex as a contrast agent that bound to primary antibodies against nucleosomal histones H4, H2A and H2B. Using a multiple-echo spin-echo sequence on a 1.5 T clinical MRI scanner, significant T2 relaxation enhancement as a function of in vitro nucleosomal concentration was measured. In addition, clustering or aggregation of the contrast agent was demonstrated with its associated enhancement in T2 effects. The T2 clustering enhancement showed a complex dependence on relative concentrations of nucleosomes, primary antibody and secondary antibody + SPIO. The technique supports the feasibility of using MRI measurements of nucleosome concentration in blood as a diagnostic, prognostic and predictive tool in the management of cancer.
Liu, Hongwei; Zhang, Lei; Liu, Hong Fei; Chen, Shuting; Wang, Shihua; Wong, Zheng Zheng; Yao, Kui
2018-05-16
Corrosion in internal cavity is one of the most common problems occurs in many hollow metallic components, such as pipes containing corrosive fluids and high temperature turbines in aircraft. It is highly demanded to non-destructively detect the corrosion inside hollow components and determine the corrosion extent from the external side. In this work, we present two high-frequency ultrasonic non-destructive testing (NDT) technologies, including piezoelectric pulse-echo and laser-ultrasonic methods, for detecting corrosion of Ni superalloy from the opposite side. The determination of corrosion layer thickness below ∼100 µm has been demonstrated by both methods, in comparison with X-CT and SEM. With electron microscopic examination, it is found that with multilayer corrosion structure formed over a prolonged corrosion time, the ultrasonic NDT methods can only reliably reveal outer corrosion layer thickness because of the resulting acoustic contrast among the multiple layers due to their respective different mechanical parameters. A time-frequency signal analysis algorithm is employed to effectively enhance the high frequency ultrasonic signal contrast for the piezoelectric pulse-echo method. Finally, a blind test on a Ni superalloy turbine blade with internal corrosion is conducted with the high frequency piezoelectric pulser-receiver method. Copyright © 2018 Elsevier B.V. All rights reserved.
Calder, Alistair D; Hiorns, Melanie P; Abhyankar, Aruna; Mushtaq, Imran; Olsen, Oystein E
2007-04-01
Crossing renal vessels (CRV) are associated with ureteropelvic junction (UPJ) obstruction, particularly when presentation is beyond the neonatal period. Their presence may influence surgical management. To evaluate the accuracy of contrast-enhanced magnetic resonance angiography (CE-MRA) in the identification of CRV in children requiring surgical treatment of symptomatic UPJ obstruction, against a gold standard of laparoscopic or open surgical findings. We reviewed CE-MRA studies (3-D T2-weighted turbo spin-echo and multiphase 3-D spoiled gradient echo following intravenous gadolinium administration) of 14 children, age range 6-15 years, performed prior to surgery for suspected CRV-related UPJ obstruction. Consensus reviews of the CE-MRA studies were compared with surgical findings. CE-MRA demonstrated CRV at the level of the obstruction in nine and no crossing vessels in five children. These were all verified intraoperatively (chi2=14.0; P<0.001). In eight of the nine patients with CRV there was no evidence of intrinsic obstruction at surgery. In the remaining patient there was fibrosis of the upper ureter. CE-MRA is an accurate means of identifying CRV in children older than 6 years with symptomatic UPJ obstruction.
Patronas, Nicholas; Bulakbasi, Nail; Stratakis, Constantine A; Lafferty, Antony; Oldfield, Edward H; Doppman, John; Nieman, Lynnette K
2003-04-01
Recent studies show that the standard T1-weighted spin echo (SE) technique for magnetic resonance imaging (MRI) fails to identify 40% of corticotrope adenomas. We hypothesized that the superior soft tissue contrast and thinner sections obtained with spoiled gradient recalled acquisition in the steady state (SPGR) would improve tumor detection. We compared the performance of SE and SPGR MRI in 50 patients (age, 7-67 yr) with surgically confirmed corticotrope adenoma. Coronal SE and SPGR MR images were obtained before and after administration of gadolinium contrast, using a 1.5 T scanner. SE scans were obtained over 5.1 min (12-cm field of view; interleaved sections, 3 mm). SPGR scans were obtained over 3.45 min (12- or 18-cm field of view, contiguous 1- or 2-mm slices). The MRI interpretations of two radiologists were compared with findings at surgical resection. Compared with SE for detection of tumor, SPGR had superior sensitivity (80%; confidence interval, 68-91; vs. 49%; confidence interval, 34-63%), but a higher false positive rate (2% vs. 4%). We recommend the addition of SPGR to SE sequences using pituitary-specific technical parameters to improve the MRI detection of ACTH-secreting pituitary tumors.
Time-Resolved Photometry of V458 Vul
NASA Astrophysics Data System (ADS)
Bouzid, Samia; Garnavich, P.
2011-01-01
We observed V458 Vul (Nova Vul 2007) over four nights in June, 2010, nearly three years after its nova outburst. Time-resolved photometry was obtained at the Vatican Advanced Technology Telescope (VATT) on Mt. Graham, Arizona, covering 2 to 4 hour spans with a cadence of 30 sec. The first night of data shows a clear 20 minute periodicity with a 0.1 magnitude amplitude. On subsequent nights, power-spectral analysis continues to show variations with a time scale of 20 minutes, but the irregularity of the signal suggests that this is a quasi-periodic oscillation. The 98-minute orbital period is not evident in our observations. V458 Vul is the central star of a planetary nebula. Combining our CCD images suggests a light echo from the nova outburst is scattering off of material in the nebula to the northwest of the central star. Appreciation goes to the National Science Foundation for supporting this project through the Research Experience for Undergraduates program at Notre Dame.
Fischer, Axel R; Lan, Nham Thi Phuong; Wiedemann, Cornelia; Heide, Petra; Werner, Peter; Schmidt, Arndt W; Theumer, Gabriele; Knölker, Hans-Joachim
2010-04-23
A new method for determining the endocrine disrupting substance 4-nonylphenol (technical grade=mixture of isomers, 4-NP) from water samples has been developed by using 4-(2,6-dimethylhept-3-yl)phenol (4-sec-NP) as model compound. This branched monoalkylphenol is shown to serve as internal standard (IS) for the determination of technical 4-nonylphenol. To the best of our knowledge, 4-(2,6-dimethylhept-3-yl)phenol (racemic mixture) is a newly synthesized 4-nonylphenol isomer and has not been described elsewhere. Recoveries have been determined by analyzing spiked water samples from distilled water, river water and wastewater. Following acetylation, the compounds were enriched via solid phase extraction (SPE). Analyses of the compounds were performed by capillary column gas chromatography/mass spectrometry (GC/MS), operating in selected ion-monitoring (SIM) mode. The recovery of technical 4-NP using either the newly prepared 4-sec-NP or 4-n-nonylphenol (4-n-NP) as IS have been compared. 4-sec-NP showed slightly better results. However, in the first series of experiments using wastewater, the yields for the derivatization of the two standard compounds were remarkably different. The yield for derivatization of 4-n-NP was approximately 20%, probably due to the difficult matrix of the wastewater. In contrast, the yield for the derivatization of 4-sec-NP was considerably higher (approximately 63%). This problem can be solved by increasing the concentration of the reagent used for derivatization. For better control of the clean-up process, we recommend application of 4-sec-NP as internal standard, at least in water samples with complex matrices (e.g., high content of hydroxylated compounds). Copyright 2010 Elsevier B.V. All rights reserved.
Schmidt, H; Schmidt, W; Müller, T; Böhrer, H; Gebhard, M M; Martin, E
1997-05-01
To determine the influence of N-acetylcysteine on endotoxin-induced leukocyte-endothelial cell adhesion, vascular leakage, and venular microhemodynamics. Randomized, blinded, controlled trial. Experimental laboratory. Thirty male Wistar rats. After pretreatment with N-acetylcysteine (150 mg/kg; n = 40; group A) or 0.9% saline solution (n = 10; group B) animals were given an intravenous infusion of endotoxin (Escherichia coli lipopolysaccharide 026:B6; 2 mg/kg/hr) over 120 mins. Animals in the control group (n = 10; group C) received a volume-equivalent infusion of 0.9% saline solution. Leukocyte adherence, red cell velocity (VRBC), vessel diameters, venular wall shear rate, and macromolecular leakage were determined in mesenteric postcapillary venules using in vivo videomicroscopy at baseline and at 30, 50, 90, and 120 mins after the start of the endotoxin challenge. Endotoxin exposure induced a marked increase in adherent leukocytes (group B: baseline, 391 +/- 24 cells/mm2; 120 mins, 1268 +/- 131 cells/mm2; p < .01). N-acetylcysteine pretreatment attenuated the adherence of leukocytes during endotoxemia (baseline, 366 +/- 28 cells/mm2; 120 mins, 636 +/- 49 cells/mm2; p < .01 vs. baseline; p < .01 vs. group B). Leukocyte adherence in control animals (group C) did not increase significantly. Administration of N-acetylcysteine did not influence the decrease in VRBC observed during endotoxemia. In group B1 VRBC decreased during the infusion of endotoxin from 2.0 +/- 0.2 mm/sec at baseline to 1.1 +/- 0.2 mm/ sec after 120 mins (p < .01 vs. baseline; p < .05 vs. group C), and in group A from 2.2 +/- 0.2 mm/sec to 1.1 +/- 0.1 mm/sec after 120 mins (p < .01 vs. baseline; p < .05 vs. group C). In group C, VRBC remained unchanged (baseline, 1.7 +/- 0.2 mm/sec; at 120 mins, 1.5 +/- 0.2 mm/sec). The venular diameters remained unchanged in all groups during the entire study period. After 120 mins, the venular wall shear rate decreased from 502 +/- 62 secs-1 at baseline to 272 +/- 46 sec-1 in group B (p < .01), and from 563 +/- 45 secs-1 at baseline to 283 +/- 31 secs-1 in group A (p < .01). No differences in venular wall shear rate were observed between these groups. In group C, the venular wall shear rate remained unchanged (baseline, 457 +/- 54 secs-1; at 120 mins, 409 +/- 51 secs-1). Macromolecular leakage, expressed as perivenular/intravenular fluorescence intensity after injection of fluorescence-labeled albumin, increased from 0.29 +/- 0.03 to 0.58 +/- 0.03 (p < .01) during the infusion of endotoxin in group B. In contrast, pretreatment with N-acetylcysteine diminished the extravasation of albumin (baseline, 0.27 +/- 0.01; at 120 mins, 0.37 +/- 0.02; p < .01 vs. baseline; p < .01 vs. group B). These results demonstrate that N-acetylcysteine attenuates endotoxin-induced alterations in leukocyte-endothelial cell adhesion and macromolecular leakage, suggesting N-acetylcysteine might be therapeutic in the prevention of endothelial damage in sepsis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, T; Wang, J; Frank, S
Purpose: The current CT-based post-implant dosimetry allows precise seed localization but limited anatomical delineation. Switching to MR-based post-implant dosimetry is confounded by imprecise seed localization. One approach is to place positive-contrast markers (Sirius) adjacent to the negative-contrast seeds. This patient study aims to assess the utility of a 3D fast spoiled gradient-recalled echo (FSPGR) sequence to visualize Sirius markers for post-implant dosimetry. Methods: MRI images were acquired in prostate implant patients (n=10) on Day 0 (day-of-implant) and Day 30. The post-implant MR protocol consisted of 3D T2-weighted fast-spin-echo (FSE), T2-weighted 2D-FSE (axial) and T1-weighted 2D-FSE (axial/sagittal/coronal). We incorporated a 3D-FSPGRmore » sequence into the post-implant MR protocol to visualize the Sirius markers. Patients were scanned with different number-of-excitations (6, 8, 10), field-of-view (10cm, 14cm, 18cm), slice thickness (1mm, 0.8mm), flip angle (14 degrees, 20 degrees), bandwidth (122.070 Hz/pixel, 325.508 Hz/pixel, 390.625 Hz/pixel), phase encoding steps (160, 192, 224, 256), frequency-encoding direction (right/left, anterior/posterior), echo-time type (minimum-full, out-of-phase), field strength (1.5T, 3T), contrast (with, without), scanner vendor (Siemens, GE), coil (endorectal-coil only, endorectal-and-torso-coil, torsocoil only), endorectal-coil filling (30cc, 50cc) and endorectal-coil filling type (air, perfluorocarbon [PFC]). For post-implant dosimetric evaluation with greater anatomical detail, 3D-FSE images were fused with 3D-FSPGR images. For comparison with CT-based post-implant dosimetry, CT images were fused with 3D-FSPGR images. Results: The 3D-FSPGR sequence facilitated visualization of markers in patients. Marker visualization helped distinguish signal voids as seeds versus needle tracks for more definitive MR-based post-implant dosimetry. On the CT-MR fused images, the distance between the seed on CT to MR images was 3.2±1.6mm in patients with no endorectal coil, 2.3±0.8mm in patients with 30cc-PFC-filled endorectal-coil and 5.0±1.8mm in patients with 50cc-PFC-filled endorectal-coil. Conclusion: An MR protocol to visualize positive-contrast Sirius markers to assist in the identification of negative-contrast seeds was demonstrated. S Frank is a co-founder of C4 Imaging LLC, the manufacturer of the MRI markers.« less
NASA Astrophysics Data System (ADS)
Schifano, R.; Riise, H. N.; Domagala, J. Z.; Azarov, A. Yu.; Ratajczak, R.; Monakhov, E. V.; Venkatachalapathy, V.; Vines, L.; Chan, K. S.; Wong-Leung, J.; Svensson, B. G.
2017-01-01
Homoepitaxial ZnO growth is demonstrated from conventional RF-sputtering at 400 °C on both Zn and O polar faces of hydrothermally grown ZnO substrates. A minimum yield for the Rutherford backscattering and channeling spectrum, χmin, equal to ˜3% and ˜12% and a full width at half maximum of the 00.2 diffraction peak rocking curve of (70 ± 10) arc sec and (1400 ± 100) arc sec have been found for samples grown on the Zn and O face, respectively. The structural characteristics of the film deposited on the Zn face are comparable with those of epilayers grown by more complex techniques like molecular beam epitaxy. In contrast, the film simultaneously deposited on the O-face exhibits an inferior crystalline structure ˜0.7% strained in the c-direction and a higher atomic number contrast compared with the substrate, as revealed by high angle annular dark field imaging measurements. These differences between the Zn- and O-face films are discussed in detail and associated with the different growth mechanisms prevailing on the two surfaces.
Neural correlates of autobiographical memory retrieval in children and adults.
Bauer, Patricia J; Pathman, Thanujeni; Inman, Cory; Campanella, Carolina; Hamann, Stephan
2017-04-01
Autobiographical memory (AM) is a critically important form of memory for life events that undergoes substantial developmental changes from childhood to adulthood. Relatively little is known regarding the functional neural correlates of AM retrieval in children as assessed with fMRI, and how they may differ from adults. We investigated this question with 14 children ages 8-11 years and 14 adults ages 19-30 years, contrasting AM retrieval with semantic memory (SM) retrieval. During scanning, participants were cued by verbal prompts to retrieve previously selected recent AMs or to verify semantic properties of words. As predicted, both groups showed AM retrieval-related increased activation in regions implicated in prior studies, including bilateral hippocampus, and prefrontal, posterior cingulate, and parietal cortices. Adults showed greater activation in the hippocampal/parahippocampal region as well as prefrontal and parietal cortex, relative to children; age-related differences were most prominent in the first 8 sec versus the second 8 sec of AM retrieval and when AM retrieval was contrasted with semantic retrieval. This study is the first to characterise similarities and differences during AM retrieval in children and adults using fMRI.
Volumetric Echocardiographic Particle Image Velocimetry (V-Echo-PIV)
NASA Astrophysics Data System (ADS)
Falahatpisheh, Ahmad; Kheradvar, Arash
2015-11-01
Measurement of 3D flow field inside the cardiac chambers has proven to be a challenging task. Current laser-based 3D PIV methods estimate the third component of the velocity rather than directly measuring it and also cannot be used to image the opaque heart chambers. Modern echocardiography systems are equipped with 3D probes that enable imaging the entire 3D opaque field. However, this feature has not yet been employed for 3D vector characterization of blood flow. For the first time, we introduce a method that generates velocity vector field in 4D based on volumetric echocardiographic images. By assuming the conservation of brightness in 3D, blood speckles are tracked. A hierarchical 3D PIV method is used to account for large particle displacement. The discretized brightness transport equation is solved in a least square sense in interrogation windows of size 163 voxels. We successfully validate the method in analytical and experimental cases. Volumetric echo data of a left ventricle is then processed in the systolic phase. The expected velocity fields were successfully predicted by V-Echo-PIV. In this work, we showed a method to image blood flow in 3D based on volumetric images of human heart using no contrast agent.
McAleavey, Stephen A
2014-05-01
Shear wave induced phase encoding (SWIPE) imaging generates ultrasound backscatter images of tissue-like elastic materials by using traveling shear waves to encode the lateral position of the scatters in the phase of the received echo. In contrast to conventional ultrasound B-scan imaging, SWIPE offers the potential advantages of image formation without beam focusing or steering from a single transducer element, lateral resolution independent of aperture size, and the potential to achieve relatively high lateral resolution with low frequency ultrasound. Here a Fourier series description of the phase modulated echo signal is developed, demonstrating that echo harmonics at multiples of the shear wave frequency reveal target k-space data at identical multiples of the shear wavenumber. Modulation transfer functions of SWIPE imaging systems are calculated for maximum shear wave acceleration and maximum shear constraints, and compared with a conventionally focused aperture. The relative signal-to-noise ratio of the SWIPE method versus a conventionally focused aperture is found through these calculations. Reconstructions of wire targets in a gelatin phantom using 1 and 3.5 MHz ultrasound and a cylindrical shear wave source are presented, generated from the fundamental and second harmonic of the shear wave modulation frequency, demonstrating weak dependence of lateral resolution with ultrasound frequency.
da Silva, Yvana Lopes Pinheiro; Costa, Rita Zanlorensi Visneck; Pinho, Kátia Elisa Prus; Ferreira, Ricardo Rabello; Schuindt, Sueliton Miyamoto
2015-01-01
Objective To investigate the effects of dilution of paramagnetic contrast agent with iodinated contrast and xylocaine on the signal intensity during magnetic resonance arthrography, and to improve the paramagnetic contrast agent concentration utilized in this imaging modality. Materials and Methods Samples specially prepared for the study with three different concentrations of paramagnetic contrast agent diluted in saline, iodinated contrast agent and xylocaine were imaged with fast spin echo T1-weighted sequences with fat saturation. The samples were placed into flasks and graphical analysis of the signal intensity was performed as a function of the paramagnetic contrast concentration. Results As compared with samples of equal concentrations diluted only with saline, the authors have observed an average signal intensity decrease of 20.67% for iodinated contrast agent, and of 28.34% for xylocaine. However, the increased gadolinium concentration in the samples caused decrease in signal intensity with all the dilutions. Conclusion Minimizing the use of iodinated contrast media and xylocaine and/or the use of a gadolinium concentration of 2.5 mmol/L diluted in saline will improve the sensitivity of magnetic resonance arthrography. PMID:25987746
Bovee, Ken D.; Gore, James A.; Silverman, Arnold J.
1978-01-01
A comprehensive, multi-component in-stream flow methodology was developed and field tested in the Tongue River in southeastern Montana. The methodology incorporates a sensitivity for the flow requirements of a wide variety of in-stream uses, and the flexibility to adjust flows to accommodate seasonal and sub-seasonal changes in the flow requirements for different areas. In addition, the methodology provides the means to accurately determine the magnitude of the water requirement for each in-stream use. The methodology can be a powerful water management tool in that it provides the flexibility and accuracy necessary in water use negotiations and evaluation of trade-offs. In contrast to most traditional methodologies, in-stream flow requirements were determined by additive independent methodologies developed for: 1) fisheries, including spawning, rearing, and food production; 2) sediment transport; 3) the mitigation of adverse impacts of ice; and 4) evapotranspiration losses. Since each flow requirement varied in important throughout the year, the consideration of a single in-stream use as a basis for a flow recommendation is inadequate. The study shows that the base flow requirement for spawning shovelnose sturgeon was 13.0 m3/sec. During the same period of the year, the flow required to initiate the scour of sediment from pools is 18.0 m3/sec, with increased scour efficiency occurring at flows between 20.0 and 25.0 m3/sec. An over-winter flow of 2.83 m3/sec. would result in the loss of approximately 80% of the riffle areas to encroachment by surface ice. At the base flow for insect production, approximately 60% of the riffle area is lost to ice. Serious damage to the channel could be incurred from ice jams during the spring break-up period. A flow of 12.0 m3/sec. is recommended to alleviate this problem. Extensive ice jams would be expected at the base rearing and food production levels. The base rearing flow may be profoundly influenced by the loss of streamflow to transpiration. Transpiration losses to riparian vegetation ranged from 0.78 m3/sec. in April, to 1.54 m3/sec. in July, under drought conditions. Requirement for irrigation were estimated to range from 5.56 m3/sec. in May to 7.97 m3/sec. in July, under drought conditions. It was concluded that flow requirements to satisfy monthly water losses to transpiration must be added to the base fishery flows to provide adequate protection to the resources in the lower reaches of the river. Integration of the in-stream requirements for various use components shows that a base flow of at least 23.6 m3/sec. must be reserved during the month of June to initiate scour of sediment from pools, provide spawning habitat to shovelnose sturgeon, and to accommodate water losses from the system. In comparison, a base flow of 3.85 m3/sec. would be required during early February to provide fish rearing habitat and insect productivity, and to prevent excessive loss of food production areas to surface ice formation. During mid to late February, a flow of 12 m3/sec. would be needed to facilitate ice break-up and prevent ice jams from forming. Following break-up, the base flow would again be 3.85 m3/sec. until the start of spawning season.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, B; Rao, Y; Tsien, C
Purpose: To implement the Gradient Echo Plural Contrast Imaging(GEPCI) technique in MRI-simulation for radiation therapy and assess the feasibility of using GEPCI images with advanced inhomogeneity correction in MRI-guided radiotherapy for brain treatment. Methods: An optimized multigradient-echo GRE sequence (TR=50ms;TE1=4ms;delta-TE=4ms;flip angle=300,11 Echoes) was developed to generate both structural (T1w and T2*w) and functional MRIs (field and susceptibility maps) from a single acquisition. One healthy subject (Subject1) and one post-surgical brain cancer patient (Subject2) were scanned on a Philips Ingenia 1.5T MRI used for radiation therapy simulation. Another healthy subject (Subject3) was scanned on a 0.35T MRI-guided radiotherapy (MR-IGRT) system (ViewRay).more » A voxel spread function (VSF) was used to correct the B0 inhomogeneities caused by surgical cavities and edema for Subject2. GEPCI images and standard radiotherapy planning MRIs for this patient were compared focusing the delineation of radiotherapy target region. Results: GEPCI brain images were successfully derived from all three subjects with scan times of <7 minutes. The images derived for Subjects1&2 demonstrated that GEPCI can be applied and combined into radiotherapy MRI simulation. Despite low field, T1-weighted and R2* images were successfully reconstructed for Subject3 and were satisfactory for contour and target delineation. The R2* distribution of grey matter (center=12,FWHM=4.5) and white matter (center=14.6, FWHM=2) demonstrated the feasibility for tissue segmentation and quantification. The voxel spread function(VSF) corrected surgical site related inhomogeneities for Subject2. R2* and quantitative susceptibility map(QSM) images for Subject2 can be used to quantitatively assess the brain structure response to radiation over the treatment course. Conclusion: We implemented the GEPCI technique in MRI-simulation and in MR-IGRT system for radiation therapy. The images demonstrated that it is feasible to adopt this technique in radiotherapy for structural delineation. The preliminary data also enable the opportunity for quantitative assessment of radiation response of the target region and normal tissue.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subashi, Ergys; Choudhury, Kingshuk R.; Johnson, G. Allan, E-mail: gjohnson@duke.edu
2014-03-15
Purpose: The pharmacokinetic parameters derived from dynamic contrast-enhanced (DCE) MRI have been used in more than 100 phase I trials and investigator led studies. A comparison of the absolute values of these quantities requires an estimation of their respective probability distribution function (PDF). The statistical variation of the DCE-MRI measurement is analyzed by considering the fundamental sources of error in the MR signal intensity acquired with the spoiled gradient-echo (SPGR) pulse sequence. Methods: The variance in the SPGR signal intensity arises from quadrature detection and excitation flip angle inconsistency. The noise power was measured in 11 phantoms of contrast agentmore » concentration in the range [0–1] mM (in steps of 0.1 mM) and in onein vivo acquisition of a tumor-bearing mouse. The distribution of the flip angle was determined in a uniform 10 mM CuSO{sub 4} phantom using the spin echo double angle method. The PDF of a wide range of T1 values measured with the varying flip angle (VFA) technique was estimated through numerical simulations of the SPGR equation. The resultant uncertainty in contrast agent concentration was incorporated in the most common model of tracer exchange kinetics and the PDF of the derived pharmacokinetic parameters was studied numerically. Results: The VFA method is an unbiased technique for measuringT1 only in the absence of bias in excitation flip angle. The time-dependent concentration of the contrast agent measured in vivo is within the theoretically predicted uncertainty. The uncertainty in measuring K{sup trans} with SPGR pulse sequences is of the same order, but always higher than, the uncertainty in measuring the pre-injection longitudinal relaxation time (T1{sub 0}). The lowest achievable bias/uncertainty in estimating this parameter is approximately 20%–70% higher than the bias/uncertainty in the measurement of the pre-injection T1 map. The fractional volume parameters derived from the extended Tofts model were found to be extremely sensitive to the variance in signal intensity. The SNR of the pre-injection T1 map indicates the limiting precision with which K{sup trans} can be calculated. Conclusions: Current small-animal imaging systems and pulse sequences robust to motion artifacts have the capacity for reproducible quantitative acquisitions with DCE-MRI. In these circumstances, it is feasible to achieve a level of precision limited only by physiologic variability.« less
NASA Astrophysics Data System (ADS)
Marouf, E.; Rappaport, N.; French, R.; Simpson, R.; Kliore, A.; McGhee, C.; Schinder, P.; Anabtawi, A.
2008-12-01
Four out of six Radio Science bistatic scattering (bistatic-radar) observations of Titan's surface completed during the Cassini nominal mission yielded detectable quasi-specular 3.6 cm-λ (X-band) surface echoes, making Titan the most distant solar system object for which bistatic echoes have been successfully detected. Right circularly polarized sinusoidal signal was transmitted by Cassini and both the right and left circularly polarized (RCP and LCP) surface reflected components were observed at the 70-m stations of NASA Deep Space Network. Cassini was maneuvered continuously to track the region of Titan's surface where mirror-like (quasi-specular) reflected signals may be observed. The experiments were designed for incidence angles θ close to the Brewster, or polarization, angle of likely surface compositions. Careful measurement of the system noise temperature allowed determination of the absolute power in each polarized echo component and hence their ratio. The polarization ratio, the known observation geometry, and Fresnel reflection theory were then used to determine the dielectric constant ɛ. Three near-equatorial (~ 5 to 15° S) observations on flyby T14 inbound and outbound and on flyby T34 inbound yielded weak but clearly detectable echoes. The echoes were intermittent along the ground track, indicating mostly rough terrain occasionally interrupted by patches of relatively flat areas. For the two observations on T14, polarization ratio measurements for two localized but widely separated surface regions (~ 15° S, ~ 14 and 140° W) conducted at angles θ ~ 56° and 64°, close to the Brewster angle for ices, imply ɛ ~ 1.6 for both regions, suggesting liquid hydrocarbons although alternative interpretations are possible (Marouf et al., 2006 Fall AGU, P11A- 07). In sharp contrast, a single high latitude (~81-86° S, ~ 45-155° W) observation on T27 inbound yielded much stronger surface echoes that lasted for almost the full duration of the experiment (~ 23 minutes). The relatively more grazing incidence geometry (θ ~ 70-79°) caused the RCP component to dominate the LCP component, as expected. Nonetheless, the later was mostly detectable, allowing estimation of the corresponding polarization ratio and hence profiling of the variability of the dielectric constant along the ground track. The inferred dielectric constant ɛ appears to vary over the large surface region probed but falls generally in the range 2 to 2.5, suggesting solid hydrocarbons or hydrocarbon "sludge" surface composition close to Titan's south pole. The small observed spectral Doppler broadening suggests that the echoes originate from gently undulating surface regions with RMS slopes of order few degrees.
In-Vivo Imaging of Cell Migration Using Contrast Enhanced MRI and SVM Based Post-Processing.
Weis, Christian; Hess, Andreas; Budinsky, Lubos; Fabry, Ben
2015-01-01
The migration of cells within a living organism can be observed with magnetic resonance imaging (MRI) in combination with iron oxide nanoparticles as an intracellular contrast agent. This method, however, suffers from low sensitivity and specificty. Here, we developed a quantitative non-invasive in-vivo cell localization method using contrast enhanced multiparametric MRI and support vector machines (SVM) based post-processing. Imaging phantoms consisting of agarose with compartments containing different concentrations of cancer cells labeled with iron oxide nanoparticles were used to train and evaluate the SVM for cell localization. From the magnitude and phase data acquired with a series of T2*-weighted gradient-echo scans at different echo-times, we extracted features that are characteristic for the presence of superparamagnetic nanoparticles, in particular hyper- and hypointensities, relaxation rates, short-range phase perturbations, and perturbation dynamics. High detection quality was achieved by SVM analysis of the multiparametric feature-space. The in-vivo applicability was validated in animal studies. The SVM detected the presence of iron oxide nanoparticles in the imaging phantoms with high specificity and sensitivity with a detection limit of 30 labeled cells per mm3, corresponding to 19 μM of iron oxide. As proof-of-concept, we applied the method to follow the migration of labeled cancer cells injected in rats. The combination of iron oxide labeled cells, multiparametric MRI and a SVM based post processing provides high spatial resolution, specificity, and sensitivity, and is therefore suitable for non-invasive in-vivo cell detection and cell migration studies over prolonged time periods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamson, J; Chang, Z; Cai, J
Purpose: To develop a robust MRI sequence to measure BOLD breath hold induced contrast in context of breast radiotherapy. Methods: Two sequences were selected from prior studies as candidates to measure BOLD contrast attributable to breath holding within the breast: (1) T2* based Gradient Echo EPI (TR/TE = 500/41ms, flip angle = 60°), and (2) T2 based Single Shot Fast Spin Echo (SSFSE) (TR/TE = 3000/60ms). We enrolled ten women post-lumpectomy for breast cancer who were undergoing treatment planning for whole breast radiotherapy. Each session utilized a 1.5T GE MRI and 4 channel breast coil with the subject immobilized pronemore » on a custom board. For each sequence, 1–3 planes of the lumpectomy breast were imaged continuously during a background measurement (1min) and intermittent breath holds (20–40s per breath hold, 3–5 holds per sequence). BOLD contrast was quantified as correlation of changes in per-pixel intensity with the breath hold schedule convolved with a hemodynamic response function. Subtle motion was corrected using a deformable registration algorithm. Correlation with breath-holding was considered significant if p<0.001. Results: The percentage of the breast ROI with positive BOLD contrast measured by the two sequences were in agreement with a correlation coefficient of R=0.72 (p=0.02). While both sequences demonstrated areas with strong BOLD response, the response was more systematic throughout the breast for the SSFSE (T2) sequence (% breast with response in the same direction: 51.2%±0.7% for T2* vs. 68.1%±16% for T2). In addition, the T2 sequence was less prone to magnetic susceptibility artifacts, especially in presence of seroma, and provided a more robust image with little distortion or artifacts. Conclusion: A T2 SSFSE sequence shows promise for measuring BOLD contrast in the context of breast radiotherapy utilizing a breath hold technique. Further study in a larger patient cohort is warranted to better refine this novel technique.« less
Fan, Wei Xiong; Chen, Xiao Feng; Cheng, Feng Yan; Cheng, Ya Bao; Xu, Tai; Zhu, Wen Biao; Zhu, Xiao Lei; Li, Gui Jin; Li, Shuai
2018-01-01
Abstract We explored the utility of time-resolved angiography with interleaved stochastic trajectories dynamic contrast-enhanced magnetic resonance imaging (TWIST DCE-MRI), readout segmentation of long variable echo-trains diffusion-weighted magnetic resonance imaging- diffusion-weighted magnetic resonance imaging (RESOLVE-DWI), and echo-planar imaging- diffusion-weighted magnetic resonance imaging (EPI-DWI) for distinguishing between malignant and benign breast lesions. This retrospective analysis included female patients with breast lesions seen at a single center in China between January 2016 and April 2016. Patients were allocated to a benign or malignant group based on pathologic diagnosis. All patients received routine MRI, RESOLVE-DWI, EPI-DWI, and TWIST DCE-T1WI. Variables measured included quantitative parameters (Ktrans, Kep, and Ve), semiquantitative parameters (rate of contrast enhancement for contrast agent inflow [W-in], rate of contrast decay for contrast agent outflow [W-out], and time-to-peak enhancement after contrast agent injection [TTP]) and apparent diffusion coefficient (ADC) values for RESOLVE-DWI (ADCr) and EPI-DWI (ADCe). Receiver-operating characteristic (ROC) curve analysis was used to evaluate the diagnostic utility of each parameter for differentiating malignant from benign breast lesions. A total of 87 patients were included (benign, n = 20; malignant, n = 67). Compared with the benign group, the malignant group had significantly higher Ktrans, Kep and W-in and significantly lower W-out, TTP, ADCe, and ADCr (all P < .05); Ve was not significantly different between groups. RESOLVE-DWI was superior to conventional EPI-DWI at illustrating lesion boundary and morphology, while ADCr was significantly lower than ADCe in all patients. Kep, W-out, ADCr, and ADCe showed the highest diagnostic efficiency (based on AUC value) for differentiating between benign and malignant lesions. Combining 3 parameters (Kep, W-out, and ADCr) had a higher diagnostic efficiency (AUC, 0.965) than any individual parameter and distinguished between benign and malignant lesions with high sensitivity (91.0%), specificity (95.0%), and accuracy (91.9%). An index combining Kep, W-out, and ADCr could potentially be used for the differential diagnosis of breast lesions. PMID:29369183
Fan, Wei Xiong; Chen, Xiao Feng; Cheng, Feng Yan; Cheng, Ya Bao; Xu, Tai; Zhu, Wen Biao; Zhu, Xiao Lei; Li, Gui Jin; Li, Shuai
2018-01-01
We explored the utility of time-resolved angiography with interleaved stochastic trajectories dynamic contrast-enhanced magnetic resonance imaging (TWIST DCE-MRI), readout segmentation of long variable echo-trains diffusion-weighted magnetic resonance imaging- diffusion-weighted magnetic resonance imaging (RESOLVE-DWI), and echo-planar imaging- diffusion-weighted magnetic resonance imaging (EPI-DWI) for distinguishing between malignant and benign breast lesions.This retrospective analysis included female patients with breast lesions seen at a single center in China between January 2016 and April 2016. Patients were allocated to a benign or malignant group based on pathologic diagnosis. All patients received routine MRI, RESOLVE-DWI, EPI-DWI, and TWIST DCE-T1WI. Variables measured included quantitative parameters (K, Kep, and Ve), semiquantitative parameters (rate of contrast enhancement for contrast agent inflow [W-in], rate of contrast decay for contrast agent outflow [W-out], and time-to-peak enhancement after contrast agent injection [TTP]) and apparent diffusion coefficient (ADC) values for RESOLVE-DWI (ADCr) and EPI-DWI (ADCe). Receiver-operating characteristic (ROC) curve analysis was used to evaluate the diagnostic utility of each parameter for differentiating malignant from benign breast lesions.A total of 87 patients were included (benign, n = 20; malignant, n = 67). Compared with the benign group, the malignant group had significantly higher K, Kep and W-in and significantly lower W-out, TTP, ADCe, and ADCr (all P < .05); Ve was not significantly different between groups. RESOLVE-DWI was superior to conventional EPI-DWI at illustrating lesion boundary and morphology, while ADCr was significantly lower than ADCe in all patients. Kep, W-out, ADCr, and ADCe showed the highest diagnostic efficiency (based on AUC value) for differentiating between benign and malignant lesions. Combining 3 parameters (Kep, W-out, and ADCr) had a higher diagnostic efficiency (AUC, 0.965) than any individual parameter and distinguished between benign and malignant lesions with high sensitivity (91.0%), specificity (95.0%), and accuracy (91.9%).An index combining Kep, W-out, and ADCr could potentially be used for the differential diagnosis of breast lesions.
Monguió-Tortajada, Marta; Roura, Santiago; Gálvez-Montón, Carolina; Pujal, Josep Maria; Aran, Gemma; Sanjurjo, Lucía; Franquesa, Marcel la; Sarrias, Maria-Rosa; Bayes-Genis, Antoni; Borràs, Francesc E
2017-01-01
Undesired immune responses have drastically hampered outcomes after allogeneic organ transplantation and cell therapy, and also lead to inflammatory diseases and autoimmunity. Umbilical cord mesenchymal stem cells (UCMSCs) have powerful regenerative and immunomodulatory potential, and their secreted extracellular vesicles (EVs) are envisaged as a promising natural source of nanoparticles to increase outcomes in organ transplantation and control inflammatory diseases. However, poor EV preparations containing highly-abundant soluble proteins may mask genuine vesicular-associated functions and provide misleading data. Here, we used Size-Exclusion Chromatography (SEC) to successfully isolate EVs from UCMSCs-conditioned medium. These vesicles were defined as positive for CD9, CD63, CD73 and CD90, and their size and morphology characterized by NTA and cryo-EM. Their immunomodulatory potential was determined in polyclonal T cell proliferation assays, analysis of cytokine profiles and in the skewing of monocyte polarization. In sharp contrast to the non-EV containing fractions, to the complete conditioned medium and to ultracentrifuged pellet, SEC-purified EVs from UCMSCs inhibited T cell proliferation, resembling the effect of parental UCMSCs. Moreover, while SEC-EVs did not induce cytokine response, the non-EV fractions, conditioned medium and ultracentrifuged pellet promoted the secretion of pro-inflammatory cytokines by polyclonally stimulated T cells and supported Th17 polarization. In contrast, EVs did not induce monocyte polarization, but the non-EV fraction induced CD163 and CD206 expression and TNF-α production in monocytes. These findings increase the growing evidence confirming that EVs are an active component of MSC's paracrine immunosuppressive function and affirm their potential for therapeutics in nanomedicine. In addition, our results highlight the importance of well-purified and defined preparations of MSC-derived EVs to achieve the immunosuppressive effect.
Distal airways in humans: dynamic hyperpolarized 3He MR imaging--feasibility
NASA Technical Reports Server (NTRS)
Tooker, Angela C.; Hong, Kwan Soo; McKinstry, Erin L.; Costello, Philip; Jolesz, Ferenc A.; Albert, Mitchell S.
2003-01-01
Dynamic hyperpolarized helium 3 (3He) magnetic resonance (MR) imaging of the human airways is achieved by using a fast gradient-echo pulse sequence during inhalation. The resulting dynamic images show differential contrast enhancement of both distal airways and the lung periphery, unlike static hyperpolarized 3He MR images on which only the lung periphery is seen. With this technique, up to seventh-generation airway branching can be visualized. Copyright RSNA, 2003.
Marijuana smoking: effects of varying puff volume and breathhold duration.
Azorlosa, J L; Greenwald, M K; Stitzer, M L
1995-02-01
Two studies were conducted to quantify biological and behavioral effects resulting from exposure to controlled doses of marijuana smoke. In one study, puff volume (30, 60 and 90 ml) and in a second study, breathhold duration (0, 10 and 20 sec) were systematically varied while holding constant other smoking topography parameters (number of puffs = 10, interpuff interval = 60 sec and inhalation volume = 25% of vital capacity). Each study also varied levels of delta 9-tetrahydro-cannabinol marijuana cigarette content (1.75% and 3.55%). Regular marijuana users served as subjects (n = 7 in each experiment). Subjects smoked 10 puffs in each of six sessions; a seventh, nonsmoking session (all measures recorded at the same times as in active smoking sessions) served as a control. Variations in puff volume produced significant dose-related changes in postsmoking plasma delta 9-tetrahydro-cannabinol levels, carbon monoxide boost and subjective effects (e.g., "high"). In contrast, breathholding for 10 or 20 sec versus 0 sec increased plasma delta 9-tetrahydro-cannabinol levels but not CO boost or subjective effects. Task performance measures were not reliably influenced by marijuana smoke exposure within the dosing ranges examined. These findings confirm the utility of the controlled smoking technology, support the notion that cumulative puff volume systematically influences biological exposure and subjective effects, but cast doubt on the common belief that prolonged breathholding of marijuana smoke enhances classical subjective effects associated with its reinforcing value in humans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buljubasich, Lisandro; Dente, Axel D.; Levstein, Patricia R.
2015-10-28
We performed Loschmidt echo nuclear magnetic resonance experiments to study decoherence under a scaled dipolar Hamiltonian by means of a symmetrical time-reversal pulse sequence denominated Proportionally Refocused Loschmidt (PRL) echo. The many-spin system represented by the protons in polycrystalline adamantane evolves through two steps of evolution characterized by the secular part of the dipolar Hamiltonian, scaled down with a factor |k| and opposite signs. The scaling factor can be varied continuously from 0 to 1/2, giving access to a range of complexity in the dynamics. The experimental results for the Loschmidt echoes showed a spreading of the decay rates thatmore » correlate directly to the scaling factors |k|, giving evidence that the decoherence is partially governed by the coherent dynamics. The average Hamiltonian theory was applied to give an insight into the spin dynamics during the pulse sequence. The calculations were performed for every single radio frequency block in contrast to the most widely used form. The first order of the average Hamiltonian numerically computed for an 8-spin system showed decay rates that progressively decrease as the secular dipolar Hamiltonian becomes weaker. Notably, the first order Hamiltonian term neglected by conventional calculations yielded an explanation for the ordering of the experimental decoherence rates. However, there is a strong overall decoherence observed in the experiments which is not reflected by the theoretical results. The fact that the non-inverted terms do not account for this effect is a challenging topic. A number of experiments to further explore the relation of the complete Hamiltonian with this dominant decoherence rate are proposed.« less
Müller-Horvat, C; Schick, F; Claussen, C D; Grönewäller, E
2004-12-01
To evaluate the suitability of different MR sequences for monitoring the stage of maturation of hyaline cartilage grafts in the knee joint and the early detection of complications like hypertrophy. In addition, it was analyzed whether indirect MR arthrography can indicate debonding of the graft. MRI examinations were performed in 19 patients, aged 17 - 48 years, with autologous transplantation of a hyaline cartilage tissue graft after knee trauma. Examination dates were prior to transplantation to localize the defect, and 6 weeks, 3, 6 and 12 months after transplantation to control morphology and maturation of the autologous graft. Standard T2- and proton-density-weighted turbo spin echo (TSE) sequences and T1-weighted spin echo (SE) sequences were used, as well as gradient echo (GRE) sequences with and without magnetization transfer (MT) prepulses. In some cases, indirect MR arthrography was performed. Cartilage defect and the hyaline cartilage graft could be detected in all 19 patients. Hypertrophy of the graft could be found early in 3 patients and debonding in 1 patient. For depicting the graft a short time after surgery, T2-weighted TSE-sequences showed the best results. Six and 12 months after transplantation, spoiled 3D-GRE-sequences like FLASH3D (fast low angle shot) showed reduced artifacts due to magnetic residues from the surgery. Difference images from GRE-sequences with and without MT pulse provided high contrast between cartilage and surrounding tissue. The quantification of the MT effect showed an assimilation of the graft to the original cartilage within 12 months. Indirect MR arthrography showed subchondral contrast medium even 12 months after transplantation in 3 patients. MRI allows a reliable depiction of the hyaline graft and provides very early detection of complications like hypertrophy. The MT effect seems to be correlated with maturation of the graft and allows selective depiction of normal cartilage and engrafted cartilage.
Lechner-Greite, Silke M; Hehn, Nicolas; Werner, Beat; Zadicario, Eyal; Tarasek, Matthew; Yeo, Desmond
2016-01-01
The study aims to investigate different ground plane segmentation designs of an ultrasound transducer to reduce gradient field induced eddy currents and the associated geometric distortion and temperature map errors in echo-planar imaging (EPI)-based MR thermometry in transcranial magnetic resonance (MR)-guided focused ultrasound (tcMRgFUS). Six different ground plane segmentations were considered and the efficacy of each in suppressing eddy currents was investigated in silico and in operando. For the latter case, the segmented ground planes were implemented in a transducer mockup model for validation. Robust spoiled gradient (SPGR) echo sequences and multi-shot EPI sequences were acquired. For each sequence and pattern, geometric distortions were quantified in the magnitude images and expressed in millimeters. Phase images were used for extracting the temperature maps on the basis of the temperature-dependent proton resonance frequency shift phenomenon. The means, standard deviations, and signal-to-noise ratios (SNRs) were extracted and contrasted with the geometric distortions of all patterns. The geometric distortion analysis and temperature map evaluations showed that more than one pattern could be considered the best-performing transducer. In the sagittal plane, the star (d) (3.46 ± 2.33 mm) and star-ring patterns (f) (2.72 ± 2.8 mm) showed smaller geometric distortions than the currently available seven-segment sheet (c) (5.54 ± 4.21 mm) and were both comparable to the reference scenario (a) (2.77 ± 2.24 mm). Contrasting these results with the temperature maps revealed that (d) performs as well as (a) in SPGR and EPI. We demonstrated that segmenting the transducer ground plane into a star pattern reduces eddy currents to a level wherein multi-plane EPI for accurate MR thermometry in tcMRgFUS is feasible.
Use of computed tomography renal angiography for screening feline renal transplant donors.
Bouma, Jennifer L; Aronson, Lillian R; Keith, Dennis G; Saunders, H Mark
2003-01-01
Preoperative knowledge of the renal vascular anatomy is important for selection of the appropriate feline renal donor. Intravenous urograms (IVUs) have been performed routinely to screen potential donors at the Veterinary Hospital of the University of Pennsylvania (VHUP), but the vascular phase views lack sufficient detail of the renal vascular anatomy. Computed tomography angiography (CTA), which requires a helical computed tomography (CT) scanner, has been found to provide superior renal vascular anatomic information of prospective human renal donors. The specific aims of this study were as follows: 1) develop the CTA technique for the feline patient; and 2) obtain preliminary information on feline renal vessel anatomy in potential renal donors. Ten healthy, potential feline renal donors were anesthetized and imaged using a third-generation helical CT scanner. The time delay between i.v. contrast medium injection and image acquisition, and other parameters of slice collimation, slice interval, pitch, exposure settings, and reconstruction algorithms were varied to maximize contrast medium opacification of the renal vascular anatomy. Optimal CTA acquisition parameters were determined to be: 1) 10-sec delay post-i.v. bolus of iodinated contrast medium; 2) two serially acquired (corresponding to arterial and venous phases) helical scans through the renal vasculature; 3) pitch of 2 (4 mm/sec patient translation, 2 mm slice collimation); and 4) 120-kVp, 160-mA, and 1-sec exposure settings. Retrospective reconstructed CTA transverse images obtained at a 2-mm slice width and a 1-mm slice interval in combination with two-dimensional reformatted images and three-dimensional reconstructed images were qualitatively evaluated for vascular anatomy; vascular anatomy was confirmed at surgery. Four cats had single renal arteries and veins bilaterally; four cats had double renal veins. One cat had a small accessory artery supplying the caudal pole of the left kidney. One cat had a left renal artery originating from the aorta at a 90 degrees angle with the cranial mesenteric artery. CTA of the feline renal vascular anatomy is feasible, and reconstruction techniques provide excellent anatomic vascular detail. CTA is now used routinely at VHUP to screen all potential feline renal donors.
Otte, T; Pasch, H; Macko, T; Brüll, R; Stadler, F J; Kaschta, J; Becker, F; Buback, M
2011-07-08
The molar mass distribution (MMD) of synthetic polymers is frequently analyzed by size exclusion chromatography (SEC) coupled to multi angle light scattering (MALS) detection. For ultrahigh molar mass (UHM) or branched polymers this method is not sufficient, because shear degradation and abnormal elution effects falsify the calculated molar mass distribution and information on branching. High temperatures above 130 °C have to be applied for dissolution and separation of semi-crystalline materials like polyolefins which requires special hardware setups. Asymmetrical flow field-flow fractionation (AF4) offers the possibility to overcome some of the main problems of SEC due to the absence of an obstructing porous stationary phase. The SEC-separation mainly depends on the pore size distribution of the used column set. The analyte molecules can enter the pores of the stationary phase in dependence on their hydrodynamic volume. The archived separation is a result of the retention time of the analyte species inside SEC-column which depends on the accessibility of the pores, the residence time inside the pores and the diffusion ability of the analyte molecules. The elution order in SEC is typically from low to high hydrodynamic volume. On the contrary AF4 separates according to the diffusion coefficient of the analyte molecules as long as the chosen conditions support the normal FFF-separation mechanism. The separation takes place in an empty channel and is caused by a cross-flow field perpendicular to the solvent flow. The analyte molecules will arrange in different channel heights depending on the diffusion coefficients. The parabolic-shaped flow profile inside the channel leads to different elution velocities. The species with low hydrodynamic volume will elute first while the species with high hydrodynamic volume elute later. The AF4 can be performed at ambient or high temperature (AT-/HT-AF4). We have analyzed one low molar mass polyethylene sample and a number of narrow distributed polystyrene standards as reference materials with known structure by AT/HT-SEC and AT/HT-AF4. Low density polyethylenes as well as polypropylene and polybutadiene, containing high degrees of branching and high molar masses, have been analyzed with both methods. As in SEC the relationship between the radius of gyration (R(g)) or the molar mass and the elution volume is curved up towards high elution volumes, a correct calculation of the MMD and the molar mass average or branching ratio is not possible using the data from the SEC measurements. In contrast to SEC, AF4 allows the precise determination of the MMD, the molar mass averages as well as the degree of branching because the molar mass vs. elution volume curve and the conformation plot is not falsified in this technique. In addition, higher molar masses can be detected using HT-AF4 due to the absence of significant shear degradation in the channel. As a result the average molar masses obtained from AF4 are higher compared to SEC. The analysis time in AF4 is comparable to that of SEC but the adjustable cross-flow program allows the user to influence the separation efficiency which is not possible in SEC without a costly change of the whole column combination. Copyright © 2011 Elsevier B.V. All rights reserved.
Stress Echocardiography for the Diagnosis of Coronary Artery Disease
2010-01-01
Executive Summary In July 2009, the Medical Advisory Secretariat (MAS) began work on Non-Invasive Cardiac Imaging Technologies for the Diagnosis of Coronary Artery Disease (CAD), an evidence-based review of the literature surrounding different cardiac imaging modalities to ensure that appropriate technologies are accessed by patients suspected of having CAD. This project came about when the Health Services Branch at the Ministry of Health and Long-Term Care asked MAS to provide an evidentiary platform on effectiveness and cost-effectiveness of non-invasive cardiac imaging modalities. After an initial review of the strategy and consultation with experts, MAS identified five key non-invasive cardiac imaging technologies for the diagnosis of CAD. Evidence-based analyses have been prepared for each of these five imaging modalities: cardiac magnetic resonance imaging, single photon emission computed tomography, 64-slice computed tomographic angiography, stress echocardiography, and stress echocardiography with contrast. For each technology, an economic analysis was also completed (where appropriate). A summary decision analytic model was then developed to encapsulate the data from each of these reports (available on the OHTAC and MAS website). The Non-Invasive Cardiac Imaging Technologies for the Diagnosis of Coronary Artery Disease series is made up of the following reports, which can be publicly accessed at the MAS website at: www.health.gov.on.ca/mas"> www.health.gov.on.ca/mas or at www.health.gov.on.ca/english/providers/program/mas/mas_about.html Single Photon Emission Computed Tomography for the Diagnosis of Coronary Artery Disease: An Evidence-Based Analysis Stress Echocardiography for the Diagnosis of Coronary Artery Disease: An Evidence-Based Analysis Stress Echocardiography with Contrast for the Diagnosis of Coronary Artery Disease: An Evidence-Based Analysis 64-Slice Computed Tomographic Angiography for the Diagnosis of Coronary Artery Disease: An Evidence-Based Analysis Cardiac Magnetic Resonance Imaging for the Diagnosis of Coronary Artery Disease: An Evidence-Based Analysis Pease note that two related evidence-based analyses of non-invasive cardiac imaging technologies for the assessment of myocardial viability are also available on the MAS website: Positron Emission Tomography for the Assessment of Myocardial Viability: An Evidence-Based Analysis Magnetic Resonance Imaging for the Assessment of Myocardial Viability: an Evidence-Based Analysis The Toronto Health Economics and Technology Assessment Collaborative has also produced an associated economic report entitled: The Relative Cost-effectiveness of Five Non-invasive Cardiac Imaging Technologies for Diagnosing Coronary Artery Disease in Ontario [Internet]. Available from: http://theta.utoronto.ca/reports/?id=7 Objective The objective of the analysis is to determine the diagnostic accuracy of stress echocardiography (ECHO) in the diagnosis of patients with suspected coronary artery disease (CAD) compared to coronary angiography (CA). Stress Echocardiography Stress ECHO is a non-invasive technology that images the heart using ultrasound. It is one of the most commonly employed imaging techniques for investigating a variety of cardiac abnormalities in both community and hospital settings. A complete ECHO exam includes M-mode, 2-dimensional (2-D) images and Doppler imaging. In order to diagnosis CAD and assess whether myocardial ischemia is present, images obtained at rest are compared to those obtained during or immediately after stress. The most commonly used agents used to induce stress are exercise and pharmacological agents such as dobutamine and dipyridamole. The hallmark of stress-induced myocardial ischemia is worsening of wall motion abnormalities or the development of new wall motion abnormalities. A major challenge for stress ECHO is that the interpretation of wall motion contractility and function is subjective. This leads to inter-observer variability and reduced reproducibility. Further, it is estimated that approximately 30% of patients have sub-optimal stress ECHO exams. To overcome this limitation, contrast agents for LV opacification have been developed. Although stress ECHO is a relatively easy to use technology that poses only a low risk of adverse events compared to other imaging technologies, it may potentially be overused and/or misused in CAD diagnosis. Several recent advances have been made focusing on quantitative methods for assessment, improved image quality and enhanced portability, however, evidence on the effectiveness and clinical utility of these enhancements is limited. Evidence-Based Analysis Research Questions What is the diagnostic accuracy of stress ECHO for the diagnosis of patients with suspected CAD compared to the reference standard of CA? What is the clinical utility1 of stress ECHO? Literature Search A literature search was performed on August 28, 2009 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, the Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA) for studies published from January 1, 2004 until August 21, 2009. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Reference lists were also examined for any relevant studies not identified through the search. Inclusion Criteria Systematic reviews, meta-analyses, randomized controlled trials, prospective observational studies, retrospective analyses Minimum sample size of 20 enrolled patients Comparison to CA (reference standard) Definition of CAD specified as either ≥50%, ≥70% or ≥75% coronary artery stenosis on CA Reporting accuracy data on individual patients (rather than accuracy data stratified by segments of the heart) English Human Exclusion Criteria Duplicate studies Non-systematic reviews, case reports Grey literature (e.g., conference abstracts) Insufficient data for independent calculation of sensitivity and specificity Use of ECHO for purposes other than diagnosis of CAD (e.g., arrhythmia, valvular disease, mitral stenosis, pre-operative risk of MI) Transesophageal ECHO since its primary use is for non-CAD indications such as endocarditis, intracardiac thrombi, valvular disorders Only resting ECHO performed Outcomes of Interest Accuracy outcomes (sensitivity, specificity, positive predictive value, negative predictive value) Costs Summary of Findings Given the vast amount of published literature on stress ECHO, it was decided to focus on the studies contained in the comprehensive 2007 review by Heijenbrok-Kal et al. (1) as a basis for the MAS evidence-based analysis. In applying our inclusion and exclusion criteria, 105 observational studies containing information on 13,035 patients were included. Six studies examined stress ECHO with adenosine, 26 with dipyridamole and 77 with dobutamine, the latter being the most commonly used pharmacological stress ECHO agent in Ontario. A further 18 studies employed exercise as the stressor.2 The prevalence of CAD ranged from 19% to 94% with a mean estimated prevalence of 70%. Based on the results of these studies the following conclusions were made: Based on the available evidence, stress ECHO is a useful imaging modality for the diagnosis of CAD in patients with suspected disease. The overall pooled sensitivity is 0.80 (95% CI: 0.77 – 0.82) and the pooled specificity is 0.84 (95% CI: 0.82 – 0.87) using CA as the reference standard. The AUC derived from the sROC curve is 0.895 and the DOR is 20.64. For pharmacological stress, the pooled sensitivity is 0.79 (95% CI: 0.71 – 0.87) and the pooled specificity is 0.85 (95% CI: 0.83 – 0.88). When exercise is employed as the stress agent, the pooled sensitivity is 0.81 (95% CI: 0.76– 0.86) and the pooled specificity is 0.79 (95% CI: 0.71 – 0.87). Although pharmacological stress and exercise stress would be indicated for different patient populations based on ability to exercise there were no significant differences in sensitivity and specificity. Based on clinical experts, diagnostic accuracy on stress ECHO depends on the patient population, the expertise of the interpreter and the quality of the image. PMID:23074412
Stress echocardiography for the diagnosis of coronary artery disease: an evidence-based analysis.
2010-01-01
In July 2009, the Medical Advisory Secretariat (MAS) began work on Non-Invasive Cardiac Imaging Technologies for the Diagnosis of Coronary Artery Disease (CAD), an evidence-based review of the literature surrounding different cardiac imaging modalities to ensure that appropriate technologies are accessed by patients suspected of having CAD. This project came about when the Health Services Branch at the Ministry of Health and Long-Term Care asked MAS to provide an evidentiary platform on effectiveness and cost-effectiveness of non-invasive cardiac imaging modalities.After an initial review of the strategy and consultation with experts, MAS identified five key non-invasive cardiac imaging technologies for the diagnosis of CAD. Evidence-based analyses have been prepared for each of these five imaging modalities: cardiac magnetic resonance imaging, single photon emission computed tomography, 64-slice computed tomographic angiography, stress echocardiography, and stress echocardiography with contrast. For each technology, an economic analysis was also completed (where appropriate). A summary decision analytic model was then developed to encapsulate the data from each of these reports (available on the OHTAC and MAS website).The Non-Invasive Cardiac Imaging Technologies for the Diagnosis of Coronary Artery Disease series is made up of the following reports, which can be publicly accessed at the MAS website at: www.health.gov.on.ca/mas">www.health.gov.on.ca/mas or at www.health.gov.on.ca/english/providers/program/mas/mas_about.htmlSINGLE PHOTON EMISSION COMPUTED TOMOGRAPHY FOR THE DIAGNOSIS OF CORONARY ARTERY DISEASE: An Evidence-Based AnalysisSTRESS ECHOCARDIOGRAPHY FOR THE DIAGNOSIS OF CORONARY ARTERY DISEASE: An Evidence-Based AnalysisSTRESS ECHOCARDIOGRAPHY WITH CONTRAST FOR THE DIAGNOSIS OF CORONARY ARTERY DISEASE: An Evidence-Based Analysis64-Slice Computed Tomographic Angiography for the Diagnosis of Coronary Artery Disease: An Evidence-Based AnalysisCARDIAC MAGNETIC RESONANCE IMAGING FOR THE DIAGNOSIS OF CORONARY ARTERY DISEASE: An Evidence-Based AnalysisPease note that two related evidence-based analyses of non-invasive cardiac imaging technologies for the assessment of myocardial viability are also available on the MAS website:POSITRON EMISSION TOMOGRAPHY FOR THE ASSESSMENT OF MYOCARDIAL VIABILITY: An Evidence-Based AnalysisMAGNETIC RESONANCE IMAGING FOR THE ASSESSMENT OF MYOCARDIAL VIABILITY: an Evidence-Based AnalysisThe Toronto Health Economics and Technology Assessment Collaborative has also produced an associated economic report entitled:The Relative Cost-effectiveness of Five Non-invasive Cardiac Imaging Technologies for Diagnosing Coronary Artery Disease in Ontario [Internet]. Available from: http://theta.utoronto.ca/reports/?id=7 OBJECTIVE: The objective of the analysis is to determine the diagnostic accuracy of stress echocardiography (ECHO) in the diagnosis of patients with suspected coronary artery disease (CAD) compared to coronary angiography (CA). STRESS ECHOCARDIOGRAPHY: Stress ECHO is a non-invasive technology that images the heart using ultrasound. It is one of the most commonly employed imaging techniques for investigating a variety of cardiac abnormalities in both community and hospital settings. A complete ECHO exam includes M-mode, 2-dimensional (2-D) images and Doppler imaging. In order to diagnosis CAD and assess whether myocardial ischemia is present, images obtained at rest are compared to those obtained during or immediately after stress. The most commonly used agents used to induce stress are exercise and pharmacological agents such as dobutamine and dipyridamole. The hallmark of stress-induced myocardial ischemia is worsening of wall motion abnormalities or the development of new wall motion abnormalities. A major challenge for stress ECHO is that the interpretation of wall motion contractility and function is subjective. This leads to inter-observer variability and reduced reproducibility. Further, it is estimated that approximately 30% of patients have sub-optimal stress ECHO exams. To overcome this limitation, contrast agents for LV opacification have been developed. Although stress ECHO is a relatively easy to use technology that poses only a low risk of adverse events compared to other imaging technologies, it may potentially be overused and/or misused in CAD diagnosis. Several recent advances have been made focusing on quantitative methods for assessment, improved image quality and enhanced portability, however, evidence on the effectiveness and clinical utility of these enhancements is limited. EVIDENCE-BASED ANALYSIS: What is the diagnostic accuracy of stress ECHO for the diagnosis of patients with suspected CAD compared to the reference standard of CA?What is the clinical utility() of stress ECHO? A literature search was performed on August 28, 2009 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, the Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA) for studies published from January 1, 2004 until August 21, 2009. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Reference lists were also examined for any relevant studies not identified through the search. Systematic reviews, meta-analyses, randomized controlled trials, prospective observational studies, retrospective analysesMinimum sample size of 20 enrolled patientsComparison to CA (reference standard)Definition of CAD specified as either ≥50%, ≥70% or ≥75% coronary artery stenosis on CAReporting accuracy data on individual patients (rather than accuracy data stratified by segments of the heart)EnglishHuman Duplicate studiesNon-systematic reviews, case reportsGrey literature (e.g., conference abstracts)Insufficient data for independent calculation of sensitivity and specificityUse of ECHO for purposes other than diagnosis of CAD (e.g., arrhythmia, valvular disease, mitral stenosis, pre-operative risk of MI)Transesophageal ECHO since its primary use is for non-CAD indications such as endocarditis, intracardiac thrombi, valvular disordersOnly resting ECHO performed Accuracy outcomes (sensitivity, specificity, positive predictive value, negative predictive value)Costs Given the vast amount of published literature on stress ECHO, it was decided to focus on the studies contained in the comprehensive 2007 review by Heijenbrok-Kal et al. (1) as a basis for the MAS evidence-based analysis. In applying our inclusion and exclusion criteria, 105 observational studies containing information on 13,035 patients were included. Six studies examined stress ECHO with adenosine, 26 with dipyridamole and 77 with dobutamine, the latter being the most commonly used pharmacological stress ECHO agent in Ontario. A further 18 studies employed exercise as the stressor.() The prevalence of CAD ranged from 19% to 94% with a mean estimated prevalence of 70%. Based on the results of these studies the following conclusions were made: Based on the available evidence, stress ECHO is a useful imaging modality for the diagnosis of CAD in patients with suspected disease. The overall pooled sensitivity is 0.80 (95% CI: 0.77 - 0.82) and the pooled specificity is 0.84 (95% CI: 0.82 - 0.87) using CA as the reference standard. The AUC derived from the sROC curve is 0.895 and the DOR is 20.64.For pharmacological stress, the pooled sensitivity is 0.79 (95% CI: 0.71 - 0.87) and the pooled specificity is 0.85 (95% CI: 0.83 - 0.88). When exercise is employed as the stress agent, the pooled sensitivity is 0.81 (95% CI: 0.76- 0.86) and the pooled specificity is 0.79 (95% CI: 0.71 - 0.87). Although pharmacological stress and exercise stress would be indicated for different patient populations based on ability to exercise there were no significant differences in sensitivity and specificity.Based on clinical experts, diagnostic accuracy on stress ECHO depends on the patient population, the expertise of the interpreter and the quality of the image.
Park, Hee Jin; Lee, So Yeon; Kang, Kyung A; Kim, Eun Young; Shin, Hun Kyu; Park, Se Jin; Park, Jai Hyung; Kim, Eugene
2018-04-01
To compare image quality of three-dimensional volume isotropic T 2 weighted fast spin echo (3D VISTA) and two-dimensional (2D) T 2 weighted images (T2WI) for evaluation of triangular fibrocartilage (TFC) and to investigate whether 3D VISTA can replace 2D T 2 WI in evaluating TFC injury. This retrospective study included 69 patients who received wrist MRIs using both 2D T 2 WI and 3D VISTA techniques for assessment of wrist pathology, including TFC injury. Two radiologists measured the signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR) of the two sequences. The anatomical identification score and diagnostic performance were independently assessed by two interpreters. The diagnostic abilities of 3D VISTA and 2D T 2 WI were analysed by sensitivity, specificity and accuracy for diagnosing TFC injury using surgically or clinically confirmed diagnostic reference standards. 17 cases (25%) were classified as having TFC injury. 2 cases (12%) were diagnosed surgically, and 15 cases (88%) were diagnosed by physical examination. 52 cases (75%) were diagnosed as having intact TFC. 8 of these cases (15%) were surgically confirmed, while the others were diagnosed by physical examination and clinical findings. The 3D VISTA images had significantly higher SNR and CNR values for the TFC than 2D T 2 WI images. The scores of 3D VISTA's total length, full width and sharpness were similar to those of 2D T 2 WI. We were unable to find a significant difference between 3D VISTA and 2D T 2 WI in the ability to diagnose TFC injury. 3D VISTA image quality is similar to that of 2D T 2 WI for TFC evaluation and is also excellent for tissue contrast. 3D VISTA can replace 2D images in TFC injury assessment. Advances in knowledge: 3D VISTA image quality is similar to that of 2D T 2 WI for TFC evaluation and is also excellent for tissue contrast. 3D VISTA can replace 2D images in TFC injury assessment.
Zeineh, Michael M; Parekh, Mansi B; Zaharchuk, Greg; Su, Jason H; Rosenberg, Jarrett; Fischbein, Nancy J; Rutt, Brian K
2014-05-01
The objectives of this study were to acquire ultra-high resolution images of the brain using balanced steady-state free precession (bSSFP) at 7 T and to identify the potential utility of this sequence. Eight volunteers participated in this study after providing informed consent. Each volunteer was scanned with 8 phase cycles of bSSFP at 0.4-mm isotropic resolution using 0.5 number of excitations and 2-dimensional parallel acceleration of 1.75 × 1.75. Each phase cycle required 5 minutes of scanning, with pauses between the phase cycles allowing short periods of rest. The individual phase cycles were aligned and then averaged. The same volunteers underwent scanning using 3-dimensional (3D) multiecho gradient recalled echo at 0.8-mm isotropic resolution, 3D Cube T2 at 0.7-mm isotropic resolution, and thin-section coronal oblique T2-weighted fast spin echo at 0.22 × 0.22 × 2.0-mm resolution for comparison. Two neuroradiologists assessed image quality and potential research and clinical utility. The volunteers generally tolerated the scan sessions well, and composite high-resolution bSSFP images were produced for each volunteer. Rater analysis demonstrated that bSSFP had a superior 3D visualization of the microarchitecture of the hippocampus, very good contrast to delineate the borders of the subthalamic nucleus, and relatively good B1 homogeneity throughout. In addition to an excellent visualization of the cerebellum, subtle details of the brain and skull base anatomy were also easier to identify on the bSSFP images, including the line of Gennari, membrane of Liliequist, and cranial nerves. Balanced steady-state free precession had a strong iron contrast similar to or better than the comparison sequences. However, cortical gray-white contrast was significantly better with Cube T2 and T2-weighted fast spin echo. Balanced steady-state free precession can facilitate ultrahigh-resolution imaging of the brain. Although total imaging times are long, the individually short phase cycles can be acquired separately, improving examination tolerability. These images may be beneficial for studies of the hippocampus, iron-containing structures such as the subthalamic nucleus and line of Gennari, and the basal cisterns and their contents.
Initial experience with 3D isotropic high-resolution 3 T MR arthrography of the wrist.
Sutherland, John K; Nozaki, Taiki; Kaneko, Yasuhito; J Yu, Hon; Rafijah, Gregory; Hitt, David; Yoshioka, Hiroshi
2016-01-16
Our study was performed to evaluate the image quality of 3 T MR wrist arthrograms with attention to ulnar wrist structures, comparing image quality of isotropic 3D proton density fat suppressed turbo spin echo (PDFS TSE) sequence versus standard 2D 3 T sequences as well as comparison with 1.5 T MR arthrograms. Eleven consecutive 3 T MR wrist arthrograms were performed and the following sequences evaluated: 3D isotropic PDFS, repetition time/echo time (TR/TE) 1400/28.3 ms, voxel size 0.35x0.35x0.35 mm, acquisition time 5 min; 2D coronal sequences with slice thickness 2 mm: T1 fat suppressed turbo spin echo (T1FS TSE) (TR/TE 600/20 ms); proton density (PD) TSE (TR/TE 3499/27 ms). A 1.5 T group of 18 studies with standard sequences were evaluated for comparison. All MR imaging followed fluoroscopically guided intra-articular injection of dilute gadolinium contrast. Qualitative assessment related to delineation of anatomic structures between 1.5 T and 3 T MR arthrograms was carried out using Mann-Whitney test and the differences in delineation of anatomic structures among each sequence in 3 T group were analyzed with Wilcoxon signed-rank test. Quantitative assessment of mean relative signal intensity (SI) and relative contrast measurements was performed using Wilcoxon signed-rank test. Mean qualitative scores for 3 T sequences were significantly higher than 1.5 T (p < 0.01), with isotropic 3D PDFS sequence having highest mean qualitative scores (p < 0.05). Quantitative analysis demonstrated no significant difference in relative signal intensity among the 3 T sequences. Significant differences were found in relative contrast between fluid-bone and fluid-fat comparing 3D and 2D PDFS (p < 0.01). 3D isotropic PDFS sequence showed promise in both qualitative and quantitative assessment, suggesting this may be useful for MR wrist arthrograms at 3 T. Primary reasons for diagnostic potential include the ability to make reformations in any obliquity to follow the components of ulnar side wrist structures including triangular fibrocartilage complex. Additionally, isotropic imaging provides thinner slice thickness with less partial volume averaging allowing for identification of subtle injuries.
Kuo, Yu-Ting; Chen, Chiao-Yun; Liu, Gin-Chung; Wang, Yun-Ming
2016-01-01
Liver tumors are common and imaging methods, particularly magnetic resonance imaging (MRI), play an important role in their non-invasive diagnosis. Previous studies have shown that detection of liver tumors can be improved by injection of two different MR contrast agents. Here, we developed a new contrast agent, Gd-manganese-doped magnetism-engineered iron oxide (Gd-MnMEIO), with enhancement effects on both T1- and T2-weighted MR images of the liver. A 3.0T clinical MR scanner equipped with transmit/receiver coil for mouse was used to obtain both T1-weighted spoiled gradient-echo and T2-weighted fast spin-echo axial images of the liver before and after intravenous contrast agent injection into Balb/c mice with and without tumors. After pre-contrast scanning, six mice per group were intravenously injected with 0.1 mmol/kg Gd-MnMEIO, or the control agents, i.e., Gd-DTPA or SPIO. The scanning time points for T1-weighted images were 0.5, 5, 10, 15, 20, 25, and 30 min after contrast administration. The post-enhanced T2-weighted images were then acquired immediately after T1-weighted acquisition. We found that T1-weighted images were positively enhanced by both Gd-DTPA and Gd-MnMEIO and negatively enhanced by SPIO. The enhancement by both Gd-DTPA and Gd-MnMEIO peaked at 0.5 min and gradually declined thereafter. Gd-MnMEIO (like Gd-DTPA) enhanced T1-weighted images and (like SPIO) T2-weighted images. Marked vascular enhancement was clearly visible on dynamic T1-weighted images with Gd-MnMEIO. In addition, the T2 signal was significantly decreased at 30 min after administration of Gd-MnMEIO. Whereas the effects of Gd-MnMEIO and SPIO on T2-weighted images were similar (p = 0.5824), those of Gd-MnMEIO and Gd-DTPA differed, with Gd-MnMEIO having a significant T2 contrast effect (p = 0.0086). Our study confirms the feasibility of synthesizing an MR contrast agent with both T1 and T2 shortening effects and using such an agent in vivo. This agent enables tumor detection and characterization in single liver MRI sections.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-24
... part 950 of this chapter. title. Sec. 1264.3(a), Sec. 926.4........ Sec. 1264.4. Introductory text. Sec...).. Sec. 1264.3(a)(2). Introductory text. Sec. 1264.4(c)(1)......... Sec. 926.3(a)(3).. Sec. 1264.3(a)(3...)......... Sec. 950.7 of this Sec. 950.7 of this chapter. title. Sec. 1269.3(a), Sec. Sec. Sec. Sec. Introductory...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sueyoshi, Eijun, E-mail: EijunSueyoshi@aol.com; Sakamoto, Ichiro; Okimoto, Tomoaki
Amyloidosis is a rare systemic disease. However, involvement of the heart is a common finding and is the most frequent cause of death in amyloidosis. We report the sonographic, scintigraphic, and MRI features of a pathologically proven case of cardiac amyloidosis. Delayed contrast-enhanced MR images, using an inversion recovery prepped gradient-echo sequence, revealed diffuse enhancement in the wall of both left and right ventricles. This enhancement suggested expansion of the extracellular space of the myocardium caused by diffuse myocardial necrosis secondary to deposition of amyloid.
Photo-Acoustic Ultrasound Imaging to Distinguish Benign from Malignant Prostate Cancer
2016-09-01
from the inside out. Ultrasound imaging provides a basic view of the structure of the prostate while photoacoustic contrast is predicted to enhance...University Page 2 of 13 1. INTRODUCTION: Ultrasound imaging uses sound waves at frequencies above the human hearing range to image organs within the body...An ultrasound transducer delivers a pulse of acoustic energy into the area of interest and listens for the echoes which return as the sound waves
Ultrasonic measurements of breast viscoelasticity.
Sridhar, Mallika; Insana, Michael F
2007-12-01
In vivo measurements of the viscoelastic properties of breast tissue are described. Ultrasonic echo frames were recorded from volunteers at 5 fps while applying a uniaxial compressive force (1-20 N) within a 1 s ramp time and holding the force constant for up to 200 s. A time series of strain images was formed from the echo data, spatially averaged viscous creep curves were computed, and viscoelastic strain parameters were estimated by fitting creep curves to a second-order Voigt model. The useful strain bandwidth from this quasi-static ramp stimulus was 10(-2) < or = omega < or = 10(0) rad/s (0.0016-0.16 Hz). The stress-strain curves for normal glandular tissues are linear when the surface force applied is between 2 and 5 N. In this range, the creep response was characteristic of biphasic viscoelastic polymers, settling to a constant strain (arrheodictic) after 100 s. The average model-based retardance time constants for the viscoelastic response were 3.2 +/- 0.8 and 42.0 +/- 28 s. Also, the viscoelastic strain amplitude was approximately equal to that of the elastic strain. Above 5 N of applied force, however, the response of glandular tissue became increasingly nonlinear and rheodictic, i.e., tissue creep never reached a plateau. Contrasting in vivo breast measurements with those in gelatin hydrogels, preliminary ideas regarding the mechanisms for viscoelastic contrast are emerging.
Ultrasonic measurements of breast viscoelasticity
Sridhar, Mallika; Insana, Michael F.
2009-01-01
In vivo measurements of the viscoelastic properties of breast tissue are described. Ultrasonic echo frames were recorded from volunteers at 5 fps while applying a uniaxial compressive force (1–20 N) within a 1 s ramp time and holding the force constant for up to 200 s. A time series of strain images was formed from the echo data, spatially averaged viscous creep curves were computed, and viscoelastic strain parameters were estimated by fitting creep curves to a second-order Voigt model. The useful strain bandwidth from this quasi-static ramp stimulus was 10−2 ≤ ω ≤ 100 rad/s (0.0016–0.16 Hz). The stress-strain curves for normal glandular tissues are linear when the surface force applied is between 2 and 5 N. In this range, the creep response was characteristic of biphasic viscoelastic polymers, settling to a constant strain (arrheodictic) after 100 s. The average model-based retardance time constants for the viscoelastic response were 3.2±0.8 and 42.0±28 s. Also, the viscoelastic strain amplitude was approximately equal to that of the elastic strain. Above 5 N of applied force, however, the response of glandular tissue became increasingly nonlinear and rheodictic, i.e., tissue creep never reached a plateau. Contrasting in vivo breast measurements with those in gelatin hydrogels, preliminary ideas regarding the mechanisms for viscoelastic contrast are emerging. PMID:18196803
Intensity inhomogeneity correction for magnetic resonance imaging of human brain at 7T.
Uwano, Ikuko; Kudo, Kohsuke; Yamashita, Fumio; Goodwin, Jonathan; Higuchi, Satomi; Ito, Kenji; Harada, Taisuke; Ogawa, Akira; Sasaki, Makoto
2014-02-01
To evaluate the performance and efficacy for intensity inhomogeneity correction of various sequences of the human brain in 7T MRI using the extended version of the unified segmentation algorithm. Ten healthy volunteers were scanned with four different sequences (2D spin echo [SE], 3D fast SE, 2D fast spoiled gradient echo, and 3D time-of-flight) by using a 7T MRI system. Intensity inhomogeneity correction was performed using the "New Segment" module in SPM8 with four different values (120, 90, 60, and 30 mm) of full width at half maximum (FWHM) in Gaussian smoothness. The uniformity in signals in the entire white matter was evaluated using the coefficient of variation (CV); mean signal intensities between the subcortical and deep white matter were compared, and contrast between subcortical white matter and gray matter was measured. The length of the lenticulostriate (LSA) was measured on maximum intensity projection (MIP) images in the original and corrected images. In all sequences, the CV decreased as the FWHM value decreased. The differences of mean signal intensities between subcortical and deep white matter also decreased with smaller FWHM values. The contrast between white and gray matter was maintained at all FWHM values. LSA length was significantly greater in corrected MIP than in the original MIP images. Intensity inhomogeneity in 7T MRI can be successfully corrected using SPM8 for various scan sequences.
NASA Astrophysics Data System (ADS)
Sitharaman, Balaji; Jacobson, Barry D.; Wadghiri, Youssef Z.; Bryant, Henry; Frank, Joseph
2013-04-01
We report the magnetic behavior, relaxometry, phantom magnetic resonance imaging (MRI), and near-infrared (NIR) photoluminescence spectroscopy of gadolinium (Gd) catalyzed single-walled carbon nanotubes (Gd-SWCNTs). Gd-SWCNTs are paramagnetic with an effective magnetic moment of 7.29 μB. Gd-SWCNT solutions show high r1 and r2 relaxivities at very low (0.01 MHz) to clinically relevant (61 MHz) magnetic fields (r1 ≥ 130 mM-1 s-1, r2 ≥ 160 mM-1 s-1). Analysis of nuclear magnetic resonance dispersion profiles using Solomon, Bloembergen, and Morgan equations suggests that multiple structural and dynamic parameters such as rotational correlation time τR, rate of water exchange τM, and the number of fast-exchanging water molecules within the inner sphere q may be responsible for the increase in r1 and r2 relaxivity. The T1 weighted MRI signal intensity (gradient echo sequence; repetition time (TR) = 66 ms, echo time (TE) = 3 ms, flop angle = 108°) of Gd-SWCNT phantom solution is 14 times greater than the Gd-based clinical MRI contrast agent Magnevist. Additionally, these nanotubes exhibit near infrared fluorescence with distinct E11 transitions of several semiconducting SWCNTs. Taken together, these results demonstrate that Gd-SWCNTs have potential as a novel, highly efficacious, multimodal MRI-NIR optical imaging contrast agent.
Geographic deaggregation of seismic hazard in the United States
Harmsen, S.; Frankel, A.
2001-01-01
The seismic hazard calculations for the 1996 national seismic hazard maps have been geographically deaggregated to assist in the understanding of the relative contributions of sources. These deaggregations are exhibited as maps with vertical bars whose heights are proportional to the contribution that each geographical cell makes to the ground-motion exceedance hazard. Bar colors correspond to average source magnitudes. We also extend the deaggregation analysis reported in Harmsen et al. (1999) to the western conterminous United States. In contrast to the central and eastern United States (CEUS); the influence of specific faults or characteristic events can be clearly identified. Geographic deaggregation for 0.2-sec and 1.0-sec pseudo spectral acceleration (SA) is performed for 10% probability of exceedance (PE) in 50 yr (475-yr mean return period) and 2% PE in 50 yr (2475-yr mean return period) for four western U.S. cities, Los Angeles, Salt Lake City, San Francisco, and Seattle, and for three central and eastern U.S. cities, Atlanta, Boston, and Saint Louis. In general, as the PE is lowered, the sources of hazard closer to the site dominate. Larger, more distant earthquakes contribute more significantly to hazard for 1.0-sec SA than for 0.2-sec SA. Additional maps of geographically deaggregated seismic hazard are available on the Internet for 120 cities in the conterminous United States (http://geohazards. cr.usgs.gov/eq/) for 1-sec SA and for 0.2-sec SA with a 2% PE in 50 yr. Examination of these maps of hazard contributions enables the investigator to determine the distance and azimuth to predominant sources, and their magnitudes. This information can be used to generate scenario earthquakes and corresponding time histories for seismic design and retrofit. Where fault density is lower than deaggregation cell dimensions, we can identify specific faults that contribute significantly to the seismic hazard at a given site. Detailed fault information enables investigators to include rupture information such as source directivity, radiation pattern, and basin-edge effects into their scenario earthquakes used in engineering analyses.
Alkan, Ozlem; Kizilkiliç, Osman; Yildirim, Tülin; Alibek, Sedat
2009-06-01
We compared periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER, BLADE) MR technique with spin echo (SE) technique for evaluation of artifacts, and detection and delineation of brain lesions. Contrast-enhanced T1-weighted fluid attenuated inversion recovery (FLAIR) images with BLADE technique (CE T1W-FLAIR BLADE) and contrast-enhanced T1-weighted SE (CE T1W-SE) were performed in 50 patients with intracranial enhancing lesions. These techniques were compared by two neuroradiologists for qualitative analysis of artifacts, lesion detectability, lesion delineation from adjacent structures, and preferred imaging technique; and for quantitative variables, i.e., lesion-to-background and lesion-to-cerebrospinal fluid (CSF) contrast-to-noise (CNR) ratios. Reader agreement was assessed by kappa statistics. All lesions depicted with the CE T1W-SE were also detected with the CE T1W-FLAIR BLADE technique. Delineation of lesions was better on CE T1W-FLAIR BLADE in the majority of patients. Flow-related artifacts were considerably reduced with CE T1W-FLAIR BLADE. A star-like artifact at the level of the 4(th) ventricle was noted on CE T1W-FLAIR BLADE but not on CE T1W-SE. The lesion-to-background CNR and lesion-to-CSF CNR did not show a statistically significant difference between the two techniques. CE T1W-FLAIR BLADE images were preferred by the observers over the CE T1w-SE images, indicating good interobserver agreement (k = 0.70). CE T1W-FLAIR BLADE technique is superior to CE T1WSE for delineation of lesions and reduction of flow-related artifacts, especially within the posterior fossa, and is preferred by readers. CE T1W-FLAIR BLADE may be an alternative approach to imaging, especially for posterior fossa lesions.
Quaia, Emilio; Sozzi, Michele; Gennari, Antonio Giulio; Pontello, Michele; Angileri, Roberta; Cova, Maria Assunta
2016-03-01
To determine whether magnetic resonance enterography (MRE) performed without intravenous contrast injection is diagnostically noninferior to conventional contrast-enhanced MRE (CE-MRE) in patients with Crohn's disease (CD). This was an Institutional Review Board (IRB)-approved retrospective study. Ninety-six patients (52 male and 44 female; 47.18 years ± 13.6) with a diagnosis of CD underwent MRE at 1.5T including T2 -weighted single-shot turbo-spin-echo, T2 -weighted spectral fat presaturation with inversion recovery (SPAIR), T1 -weighted balanced fast-field-echo MR sequences, and CE-MRE consisting in T1 -weighted breath-hold THRIVE 3D MRI sequences after administration of gadobenate dimeglumine (0.2 mL/kg of body weight). Unenhanced MRE, CE-MRE, and unenhanced MRE plus CE-MRE were reviewed in separate sessions with blinding by two readers in consensus, and subsequently by two other readers independently considering a subgroup of 20 patients. Crohn's Disease Endoscopic Index of Severity (CDEIS) and/or histologic analysis of the surgical specimen were considered as reference standards for the assessment of inflammatory activity. Patients revealed prevalently active (n = 55 patients) or quiescent CD (n = 41 patients). The agreement between unenhanced MRE vs. CE-MRE in interpreting active bowel inflammation was 96% (123/128 bowel segments; one-sided 95% confidence interval [CI], >94.4%). Unenhanced MRE vs. CE-MRE vs. unenhanced MRE plus CE-MRE revealed a diagnostic accuracy of 93% [90/96] vs. 92% [88/96] vs. 97% [93/96] (P > 0.05) in the diagnosis of active CD. Interreader agreement was very good for all variables (κ value = 0.8-0.9) except for the measurement of the length of disease (κ value = 0.45). Unenhanced MRE was noninferior to CE-MRE in diagnosing active inflammation in patients with CD. © 2015 Wiley Periodicals, Inc.
Hirata, Kenichiro; Nakaura, Takeshi; Okuaki, Tomoyuki; Tsuda, Noriko; Taguchi, Narumi; Oda, Seitaro; Utsunomiya, Daisuke; Yamashita, Yasuyuki
2018-01-01
We compared the efficacy of three-dimensional (3D) isotropic T2-weighted fast spin-echo imaging using a 3D hybrid profile order technique with a single-breath-hold (3D-Hybrid BH) with a two-dimensional (2D) T2-weighted fast spin-echo conventional respiratory-gated (2D-Conventional RG) technique for visualising small liver lesions. This study was approved by our institutional review board. The requirement to obtain written informed consent was waived. Fifty patients with small (≤15mm) hepatocellular carcinomas (HCC) (n=26), or benign cysts (n=24), had undergone hepatic MRI including both 2D-Conventional RG and 3D-Hybrid BH. We calculated the signal-to-noise ratio (SNR) and tumour-to-liver contrast (TLC). The diagnostic performance of the two protocols was analysed. The image acquisition time was 89% shorter with the 3D-Hybrid BH than with 2D-Conventional RG. There was no significant difference in the SNR between the two protocols. The area under the curve (AUC) of the TLC was significantly higher on 3D-Hybrid BH than on 2D-Conventional RG. The 3D-Hybrid BH sequence significantly improved diagnostic performance for small liver lesions with a shorter image acquisition time without sacrificing accuracy. Copyright © 2017. Published by Elsevier B.V.
Sharma, Rakesh
2010-07-21
Ex vivo magnetic resonance microimaging (MRM) image characteristics are reported in human skin samples in different age groups. Human excised skin samples were imaged using a custom coil placed inside a 500 MHz NMR imager for high-resolution microimaging. Skin MRI images were processed for characterization of different skin structures. Contiguous cross-sectional T1-weighted 3D spin echo MRI, T2-weighted 3D spin echo MRI and proton density images were compared with skin histopathology and NMR peaks. In all skin specimens, epidermis and dermis thickening and hair follicle size were measured using MRM. Optimized parameters TE and TR and multicontrast enhancement generated better MRI visibility of different skin components. Within high MR signal regions near to the custom coil, MRI images with short echo time were comparable with digitized histological sections for skin structures of the epidermis, dermis and hair follicles in 6 (67%) of the nine specimens. Skin % tissue composition, measurement of the epidermis, dermis, sebaceous gland and hair follicle size, and skin NMR peaks were signatures of skin type. The image processing determined the dimensionality of skin tissue components and skin typing. The ex vivo MRI images and histopathology of the skin may be used to measure the skin structure and skin NMR peaks with image processing may be a tool for determining skin typing and skin composition.
NASA Astrophysics Data System (ADS)
Sharma, Rakesh
2010-07-01
Ex vivo magnetic resonance microimaging (MRM) image characteristics are reported in human skin samples in different age groups. Human excised skin samples were imaged using a custom coil placed inside a 500 MHz NMR imager for high-resolution microimaging. Skin MRI images were processed for characterization of different skin structures. Contiguous cross-sectional T1-weighted 3D spin echo MRI, T2-weighted 3D spin echo MRI and proton density images were compared with skin histopathology and NMR peaks. In all skin specimens, epidermis and dermis thickening and hair follicle size were measured using MRM. Optimized parameters TE and TR and multicontrast enhancement generated better MRI visibility of different skin components. Within high MR signal regions near to the custom coil, MRI images with short echo time were comparable with digitized histological sections for skin structures of the epidermis, dermis and hair follicles in 6 (67%) of the nine specimens. Skin % tissue composition, measurement of the epidermis, dermis, sebaceous gland and hair follicle size, and skin NMR peaks were signatures of skin type. The image processing determined the dimensionality of skin tissue components and skin typing. The ex vivo MRI images and histopathology of the skin may be used to measure the skin structure and skin NMR peaks with image processing may be a tool for determining skin typing and skin composition.
An MRI system for imaging neonates in the NICU: initial feasibility study.
Tkach, Jean A; Hillman, Noah H; Jobe, Alan H; Loew, Wolfgang; Pratt, Ron G; Daniels, Barret R; Kallapur, Suhas G; Kline-Fath, Beth M; Merhar, Stephanie L; Giaquinto, Randy O; Winter, Patrick M; Li, Yu; Ikegami, Machiko; Whitsett, Jeffrey A; Dumoulin, Charles L
2012-11-01
Transporting premature infants from a neonatal intensive care unit (NICU) to a radiology department for MRI has medical risks and logistical challenges. To develop a small 1.5-T MRI system for neonatal imaging that can be easily installed in the NICU and to evaluate its performance using a sheep model of human prematurity. A 1.5-T MRI system designed for orthopedic use was adapted for neonatal imaging. The system was used for MRI examinations of the brain, chest and abdomen in 12 premature lambs during the first hours of life. Spin-echo, fast spin-echo and gradient-echo MR images were evaluated by two pediatric radiologists. All animals remained physiologically stable throughout the imaging sessions. Animals were imaged at two or three time points. Seven brain MRI examinations were performed in seven different animals, 23 chest examinations in 12 animals and 19 abdominal examinations in 11 animals. At each anatomical location, high-quality images demonstrating good spatial resolution, signal-to-noise ratio and tissue contrast were routinely obtained within 30 min using standard clinical protocols. Our preliminary experience demonstrates the feasibility and potential of the neonatal MRI system to provide state-of-the-art MRI capabilities within the NICU. Advantages include overall reduced cost and site demands, lower acoustic noise, improved ease of access and reduced medical risk to the neonate.
Independence of Echo-Threshold and Echo-Delay in the Barn Owl
Nelson, Brian S.; Takahashi, Terry T.
2008-01-01
Despite their prevalence in nature, echoes are not perceived as events separate from the sounds arriving directly from an active source, until the echo's delay is long. We measured the head-saccades of barn owls and the responses of neurons in their auditory space-maps while presenting a long duration noise-burst and a simulated echo. Under this paradigm, there were two possible stimulus segments that could potentially signal the location of the echo. One was at the onset of the echo; the other, after the offset of the direct (leading) sound, when only the echo was present. By lengthening the echo's duration, independently of its delay, spikes and saccades were evoked by the source of the echo even at delays that normally evoked saccades to only the direct source. An echo's location thus appears to be signaled by the neural response evoked after the offset of the direct sound. PMID:18974886
Exchange-Mediated Contrast Agents for Spin-Lock Imaging
Cobb, Jared G.; Xie, Jingping; Li, Ke; Gochberg, Daniel F.; Gore, John C.
2011-01-01
Measurements of relaxation rates in the rotating frame with spin-locking (SL) techniques are sensitive to substances with exchanging protons with appropriate chemical shifts. We develop a novel approach to exchange rate selective imaging based on measured T1ρ dispersion with applied locking field strength, and demonstrate the method on samples containing the X-ray contrast agent Iohexol (IO) with and without cross-linked bovine serum albumin (BSA). T1ρ dispersion of water in the phantoms was measured with a Varian 9.4T magnet by an on-resonance SL pulse with fast spin-echo readout, and the results used to estimate exchange rates. The IO phantom alone gave a fitted exchange rate of ~1 kHz, BSA alone was ~11 kHz, and in combination gave rates in between. By using these estimated rates, we demonstrate how a novel SL imaging method may be used to enhance contrast due to the presence of a contrast agent whose protons have specific exchange rates. PMID:21954094
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jutras, Jean-David
MRI-only Radiation Treatment Planning (RTP) is becoming increasingly popular because of a simplified work-flow, and less inconvenience to the patient who avoids multiple scans. The advantages of MRI-based RTP over traditional CT-based RTP lie in its superior soft-tissue contrast, and absence of ionizing radiation dose. The lack of electron-density information in MRI can be addressed by automatic tissue classification. To distinguish bone from air, which both appear dark in MRI, an ultra-short echo time (UTE) pulse sequence may be used. Quantitative MRI parametric maps can provide improved tissue segmentation/classification and better sensitivity in monitoring disease progression and treatment outcome thanmore » standard weighted images. Superior tumor contrast can be achieved on pure T{sub 1} images compared to conventional T{sub 1}-weighted images acquired in the same scan duration and voxel resolution. In this study, we have developed a robust and fast quantitative MRI acquisition and post-processing work-flow that integrates these latest advances into the MRI-based RTP of brain lesions. Using 3D multi-echo FLASH images at two different optimized flip angles (both acquired in under 9 min, and 1mm isotropic resolution), parametric maps of T{sub 1}, proton-density (M{sub 0}), and T{sub 2}{sup *} are obtained with high contrast-to-noise ratio, and negligible geometrical distortions, water-fat shifts and susceptibility effects. An additional 3D UTE MRI dataset is acquired (in under 4 min) and post-processed to classify tissues for dose simulation. The pipeline was tested on four healthy volunteers and a clinical trial on brain cancer patients is underway.« less
Zhou, Quan; Li, Shao-Lin; Ma, Ya-Jun; de Tal, Vicki; Li, Wei; Zhao, Ying-Hua
2018-05-05
Currently, magnetic resonance imaging (MRI) is the most commonly used imaging modality for observing the growth and development of mesenchymal stem cells (MSCs) after in vivo transplantation to treat osteoarthritis (OA). However, it is a challenge to accurately monitor the treatment effects of MSCs in the zone of calcified cartilage (ZCC) with OA. This is especially true in the physiological and biochemical views that are not accurately detected by MRI contrast agents. In contrast, ultrashort time echo (UTE) MRI has been shown to be sensitive to the presence of the ZCC, creating the potential for more effectively observing the repair of the ZCC in OA by MSCs. A special focus is given to the outlook of the use of UTE MRI to detect repair of the ZCC with OA through MSCs. The limitations of the current techniques for clinical applications and future directions are also discussed. Using the combined keywords: "osteoarthritis", "mesenchymal stem cells", "calcified cartilage", and "magnetic resonance imaging", the PubMed/MEDLINE literature search was conducted up to June 1, 2017. A total of 132 published articles were initially identified citations. Of the 132 articles, 48 articles were selected after further detailed review. This study referred to all the important English literature in full. In contrast, UTE MRI has been shown to be sensitive to the presence of the ZCC, creating the potential for more effectively observing the repair of the ZCC in OA by MSCs. The current studies showed that the ZCC could be described in terms of its histomorphology and biochemistry by UTE MRI. We prospected that UTE MRI has been shown the potential for more effectively observing the repair of the ZCC in OA by MSCs in vivo.
Christen, T.; Pannetier, NA.; Ni, W.; Qiu, D.; Moseley, M.; Schuff, N.; Zaharchuk, G.
2014-01-01
In the present study, we describe a fingerprinting approach to analyze the time evolution of the MR signal and retrieve quantitative information about the microvascular network. We used a Gradient Echo Sampling of the Free Induction Decay and Spin Echo (GESFIDE) sequence and defined a fingerprint as the ratio of signals acquired pre and post injection of an iron based contrast agent. We then simulated the same experiment with an advanced numerical tool that takes a virtual voxel containing blood vessels as input, then computes microscopic magnetic fields and water diffusion effects, and eventually derives the expected MR signal evolution. The parameters inputs of the simulations (cerebral blood volume [CBV], mean vessel radius [R], and blood oxygen saturation [SO2]) were varied to obtain a dictionary of all possible signal evolutions. The best fit between the observed fingerprint and the dictionary was then determined using least square minimization. This approach was evaluated in 5 normal subjects and the results were compared to those obtained using more conventional MR methods, steady-state contrast imaging for CBV and R and a global measure of oxygenation obtained from the superior sagittal sinus for SO2. The fingerprinting method enabled the creation of high-resolution parametric maps of the microvascular network showing expected contrast and fine details. Numerical values in gray matter (CBV=3.1±0.7%, R=12.6±2.4µm, SO2=59.5±4.7%) are consistent with literature reports and correlated with conventional MR approaches. SO2 values in white matter (53.0±4.0%) were slightly lower than expected. Numerous improvements can easily be made and the method should be useful to study brain pathologies. PMID:24321559
Hiwatashi, Akio; Yoshiura, Takashi; Yamashita, Koji; Kamano, Hironori; Honda, Hiroshi
2012-09-01
Preoperative evaluation of small vessels without contrast material is sometimes difficult in patients with neurovascular compression disease. The purpose of this retrospective study was to evaluate whether 3D STIR MRI could simultaneously depict the lower cranial nerves--fifth through twelfth--and the blood vessels in the posterior fossa. The posterior fossae of 47 adults (26 women, 21 men) without gross pathologic changes were imaged with 3D STIR and turbo spin-echo heavily T2-weighted MRI sequences and with contrast-enhanced turbo field-echo MR angiography (MRA). Visualization of the cranial nerves on STIR images was graded on a 4-point scale and compared with visualization on T2-weighted images. Visualization of the arteries on STIR images was evaluated according to the segments in each artery and compared with that on MRA images. Visualization of the veins on STIR images was also compared with that on MRA images. Statistical analysis was performed with the Mann-Whitney U test. There were no significant differences between STIR and T2-weighted images with respect to visualization of the cranial nerves (p > 0.05). Identified on STIR and MRA images were 94 superior cerebellar arteries, 81 anteroinferior cerebellar arteries, and 79 posteroinferior cerebellar arteries. All veins evaluated were seen on STIR and MRA images. There were no significant differences between STIR and MRA images with respect to visualization of arteries and veins (p > 0.05). High-resolution STIR is a feasible method for simultaneous evaluation of the lower cranial nerves and the vessels in the posterior fossa without the use of contrast material.
Miquel, M E; Hill, D L G; Baker, E J; Qureshi, S A; Simon, R D B; Keevil, S F; Razavi, R S
2003-06-01
The present study was designed to evaluate the feasibility and clinical usefulness of three-dimensional (3D) reconstruction of intra-cardiac anatomy from a series of two-dimensional (2D) MR images using commercially available software. Sixteen patients (eight with structurally normal hearts but due to have catheter radio-frequency ablation of atrial tachyarrhythmias and eight with atrial septal defects (ASD) due for trans-catheter closure) and two volunteers were imaged at 1T. For each patient, a series of ECG-triggered images (5 mm thick slices, 2-3 mm apart) were acquired during breath holding. Depending on image quality, T1- or T2-weighted spin-echo images or gradient-echo cine images were used. The 3D reconstruction was performed off-line: the blood pools within cardiac chambers and great vessels were semi-automatically segmented, their outer surface was extracted using a marching cube algorithm and rendered. Intra- and inter-observer variability, effect of breath-hold position and differences between pulse sequences were assessed by imaging a volunteer. The 3D reconstructions were assessed by three cardiologists and compared with the 2D MR images and with 2D and 3D trans-esophagal and intra-cardiac echocardiography obtained during interventions. In every case, an anatomically detailed 3D volume was obtained. In the two patients where a 3 mm interval between slices was used, the resolution was not as good but it was still possible to visualize all the major anatomical structures. Spin-echo images lead to reconstructions more detailed than those obtained from gradient-echo images. However, gradient-echo images are easier to segment due to their greater contrast. Furthermore, because images were acquired at least at ten points in the cardiac cycles for every slice it was possible to reconstruct a cine loop and, for example, to visualize the evolution of the size and margins of the ASD during the cardiac cycle. 3D reconstruction proved to be an effective way to assess the relationship between the different parts of the cardiac anatomy. The technique was useful in planning interventions in these patients.
Kumar, Dushyant; Hariharan, Hari; Faizy, Tobias D; Borchert, Patrick; Siemonsen, Susanne; Fiehler, Jens; Reddy, Ravinder; Sedlacik, Jan
2018-05-12
We present a computationally feasible and iterative multi-voxel spatially regularized algorithm for myelin water fraction (MWF) reconstruction. This method utilizes 3D spatial correlations present in anatomical/pathological tissues and underlying B1 + -inhomogeneity or flip angle inhomogeneity to enhance the noise robustness of the reconstruction while intrinsically accounting for stimulated echo contributions using T2-distribution data alone. Simulated data and in vivo data acquired using 3D non-selective multi-echo spin echo (3DNS-MESE) were used to compare the reconstruction quality of the proposed approach against those of the popular algorithm (the method by Prasloski et al.) and our previously proposed 2D multi-slice spatial regularization spatial regularization approach. We also investigated whether the inter-sequence correlations and agreements improved as a result of the proposed approach. MWF-quantifications from two sequences, 3DNS-MESE vs 3DNS-gradient and spin echo (3DNS-GRASE), were compared for both reconstruction approaches to assess correlations and agreements between inter-sequence MWF-value pairs. MWF values from whole-brain data of six volunteers and two multiple sclerosis patients are being reported as well. In comparison with competing approaches such as Prasloski's method or our previously proposed 2D multi-slice spatial regularization method, the proposed method showed better agreements with simulated truths using regression analyses and Bland-Altman analyses. For 3DNS-MESE data, MWF-maps reconstructed using the proposed algorithm provided better depictions of white matter structures in subcortical areas adjoining gray matter which agreed more closely with corresponding contrasts on T2-weighted images than MWF-maps reconstructed with the method by Prasloski et al. We also achieved a higher level of correlations and agreements between inter-sequence (3DNS-MESE vs 3DNS-GRASE) MWF-value pairs. The proposed algorithm provides more noise-robust fits to T2-decay data and improves MWF-quantifications in white matter structures especially in the sub-cortical white matter and major white matter tract regions. Copyright © 2018 Elsevier Inc. All rights reserved.
Time-resolved photon echoes from donor-bound excitons in ZnO epitaxial layers
NASA Astrophysics Data System (ADS)
Poltavtsev, S. V.; Kosarev, A. N.; Akimov, I. A.; Yakovlev, D. R.; Sadofev, S.; Puls, J.; Hoffmann, S. P.; Albert, M.; Meier, C.; Meier, T.; Bayer, M.
2017-07-01
The coherent optical response from 140 nm and 65 nm thick ZnO epitaxial layers is studied using four-wave-mixing spectroscopy with picosecond temporal resolution. Resonant excitation of neutral donor-bound excitons results in two-pulse and three-pulse photon echoes. For the donor-bound A exciton (D0XA ) at temperature of 1.8 K we evaluate optical coherence times T2=33 -50 ps corresponding to homogeneous line widths of 13 -19 μ eV , about two orders of magnitude smaller as compared with the inhomogeneous broadening of the optical transitions. The coherent dynamics is determined mainly by the population decay with time T1=30 -40 ps, while pure dephasing is negligible. Temperature increase leads to a significant shortening of T2 due to interaction with acoustic phonons. In contrast, the loss of coherence of the donor-bound B exciton (D0XB ) is significantly faster (T2=3.6 ps ) and governed by pure dephasing processes.
Luthra, Suman A; Utz, Marcel; Gorman, Eric M; Pikal, Michael J; Munson, Eric J; Lubach, Joseph W
2012-01-01
In this study, changes in the local conformation of aspartame were observed in annealed lyophilized glasses by monitoring changes in the distance between two labeled sites using C-(2)H rotational-echo double-resonance (REDOR) nuclear magnetic resonance (NMR) spectroscopy. Confirmation that the REDOR experiments were producing accurate distance measurement was ensured by measuring the (13)C-(15)N distance in glycine. The experiment was further verified by measuring the REDOR dephasing curve on (13)C-(2)H methionine. (13)C-(2)H REDOR dephasing curves were then measured on lyophilized aspartame-disaccharide formulations. In aspartame-sucrose formulation, the internuclear distances increased upon annealing, which correlated with decreased chemical reactivity. By contrast, annealing had only a minimal effect on the dephasing curve in aspartame-trehalose formulation. The results show that stability is a function of both mobility and local structure (conformation), even in a small molecule system such as lyophilized aspartame-sucrose. Copyright © 2011 Wiley-Liss, Inc.
Susceptibility weighted imaging: differentiating between calcification and hemosiderin*
Barbosa, Jeam Haroldo Oliveira; Santos, Antonio Carlos; Salmon, Carlos Ernesto Garrido
2015-01-01
Objective To present a detailed explanation on the processing of magnetic susceptibility weighted imaging (SWI), demonstrating the effects of echo time and sensitive mask on the differentiation between calcification and hemosiderin. Materials and Methods Computed tomography and magnetic resonance (magnitude and phase) images of six patients (age range 41– 54 years; four men) were retrospectively selected. The SWI images processing was performed using the Matlab’s own routine. Results Four out of the six patients showed calcifications at computed tomography images and their SWI images demonstrated hyperintense signal at the calcification regions. The other patients did not show any calcifications at computed tomography, and SWI revealed the presence of hemosiderin deposits with hypointense signal. Conclusion The selection of echo time and of the mask may change all the information on SWI images, and compromise the diagnostic reliability. Amongst the possible masks, the authors highlight that the sigmoid mask allows for contrasting calcifications and hemosiderin on a single SWI image. PMID:25987750
Magnetic resonance imaging for diagnosis and assessment of cartilage defect repairs.
Marlovits, Stefan; Mamisch, Tallal Charles; Vekszler, György; Resinger, Christoph; Trattnig, Siegfried
2008-04-01
Clinical magnetic resonance imaging (MRI) is the method of choice for the non-invasive evaluation of articular cartilage defects and the follow-up of cartilage repair procedures. The use of cartilage-sensitive sequences and a high spatial-resolution technique enables the evaluation of cartilage morphology even in the early stages of disease, as well as assessment of cartilage repair. Sequences that offer high contrast between articular cartilage and adjacent structures, such as the fat-suppressed, 3-dimensional, spoiled gradient-echo sequence and the fast spin-echo sequence, are accurate and reliable for evaluating intrachondral lesions and surface defects of articular cartilage. These sequences can also be performed together in reasonable examination times. In addition to morphology, new MRI techniques provide insight into the biochemical composition of articular cartilage and cartilage repair tissue. These techniques enable the diagnosis of early cartilage degeneration and help to monitor the effect and outcome of various surgical and non-surgical cartilage repair therapies.
Nagahama, Hiroshi; Suzuki, Kengo; Shonai, Takaharu; Aratani, Kazuki; Sakurai, Yuuki; Nakamura, Manami; Sakata, Motomichi
2015-01-01
Electrodes are surgically implanted into the subthalamic nucleus (STN) of Parkinson's disease patients to provide deep brain stimulation. For ensuring correct positioning, the anatomic location of the STN must be determined preoperatively. Magnetic resonance imaging has been used for pinpointing the location of the STN. To identify the optimal imaging sequence for identifying the STN, we compared images produced with T2 star-weighted angiography (SWAN), gradient echo T2*-weighted imaging, and fast spin echo T2-weighted imaging in 6 healthy volunteers. Our comparison involved measurement of the contrast-to-noise ratio (CNR) for the STN and substantia nigra and a radiologist's interpretations of the images. Of the sequences examined, the CNR and qualitative scores were significantly higher on SWAN images than on other images (p < 0.01) for STN visualization. Kappa value (0.74) on SWAN images was the highest in three sequences for visualizing the STN. SWAN is the sequence best suited for identifying the STN at the present time.
NASA Astrophysics Data System (ADS)
Bannenberg, L. J.; Kakurai, K.; Falus, P.; Lelièvre-Berna, E.; Dalgliesh, R.; Dewhurst, C. D.; Qian, F.; Onose, Y.; Endoh, Y.; Tokura, Y.; Pappas, C.
2017-04-01
We present a comprehensive small angle neutron scattering and neutron spin echo spectroscopy study of the structural and dynamical aspects of the helimagnetic transition in Fe1 -xCoxSi with x =0.30 . In contrast to the sharp transition observed in the archetype chiral magnet MnSi, the transition in Fe1 -xCoxSi is gradual, and long-range helimagnetic ordering coexists with short-range correlations over a wide temperature range. The dynamics are more complex than in MnSi and involve long relaxation times with a stretched exponential relaxation which persists even under magnetic field. These results in conjunction with an analysis of the hierarchy of the relevant length scales show that the helimagnetic transition in Fe1 -xCoxSi differs substantially from the transition in MnSi and question the validity of a universal approach to the helimagnetic transition in chiral magnets.
Swanson, Stephanie; Ioerger, Thomas R.; Rigel, Nathan W.; Miller, Brittany K.; Braunstein, Miriam
2015-01-01
ABSTRACT While SecA is the ATPase component of the major bacterial secretory (Sec) system, mycobacteria and some Gram-positive pathogens have a second paralog, SecA2. In bacteria with two SecA paralogs, each SecA is functionally distinct, and they cannot compensate for one another. Compared to SecA1, SecA2 exports a distinct and smaller set of substrates, some of which have roles in virulence. In the mycobacterial system, some SecA2-dependent substrates lack a signal peptide, while others contain a signal peptide but possess features in the mature protein that necessitate a role for SecA2 in their export. It is unclear how SecA2 functions in protein export, and one open question is whether SecA2 works with the canonical SecYEG channel to export proteins. In this study, we report the structure of Mycobacterium tuberculosis SecA2 (MtbSecA2), which is the first structure of any SecA2 protein. A high level of structural similarity is observed between SecA2 and SecA1. The major structural difference is the absence of the helical wing domain, which is likely to play a role in how MtbSecA2 recognizes its unique substrates. Importantly, structural features critical to the interaction between SecA1 and SecYEG are preserved in SecA2. Furthermore, suppressor mutations of a dominant-negative secA2 mutant map to the surface of SecA2 and help identify functional regions of SecA2 that may promote interactions with SecYEG or the translocating polypeptide substrate. These results support a model in which the mycobacterial SecA2 works with SecYEG. IMPORTANCE SecA2 is a paralog of SecA1, which is the ATPase of the canonical bacterial Sec secretion system. SecA2 has a nonredundant function with SecA1, and SecA2 exports a distinct and smaller set of substrates than SecA1. This work reports the crystal structure of SecA2 of Mycobacterium tuberculosis (the first SecA2 structure reported for any organism). Many of the structural features of SecA1 are conserved in the SecA2 structure, including putative contacts with the SecYEG channel. Several structural differences are also identified that could relate to the unique function and selectivity of SecA2. Suppressor mutations of a secA2 mutant map to the surface of SecA2 and help identify functional regions of SecA2 that may promote interactions with SecYEG. PMID:26668263
Multidimensional scaling of musical time estimations.
Cocenas-Silva, Raquel; Bueno, José Lino Oliveira; Molin, Paul; Bigand, Emmanuel
2011-06-01
The aim of this study was to identify the psycho-musical factors that govern time evaluation in Western music from baroque, classic, romantic, and modern repertoires. The excerpts were previously found to represent variability in musical properties and to induce four main categories of emotions. 48 participants (musicians and nonmusicians) freely listened to 16 musical excerpts (lasting 20 sec. each) and grouped those that seemed to have the same duration. Then, participants associated each group of excerpts to one of a set of sine wave tones varying in duration from 16 to 24 sec. Multidimensional scaling analysis generated a two-dimensional solution for these time judgments. Musical excerpts with high arousal produced an overestimation of time, and affective valence had little influence on time perception. The duration was also overestimated when tempo and loudness were higher, and to a lesser extent, timbre density. In contrast, musical tension had little influence.
Fink, Christian; Puderbach, Michael; Biederer, Juergen; Fabel, Michael; Dietrich, Olaf; Kauczor, Hans-Ulrich; Reiser, Maximilian F; Schönberg, Stefan O
2007-06-01
To compare the image quality and lesion contrast of lung MRI using 5 different pulse sequences at 1.5 T and 3 T. Lung MRI was performed at 1.5 T and 3 T using 5 pulse sequences which have been previously proposed for lung MRI: 3D volumetric interpolated breath-hold examination (VIBE), true fast imaging with steady-state precession (TrueFISP), half-Fourier single-shot turbo spin-echo (HASTE), short tau inversion recovery (STIR), T2-weighted turbo spin-echo (TSE). In addition to 4 healthy volunteers, 5 porcine lungs were examined in a dedicated chest phantom. Lung pathology (nodules and infiltrates) was simulated in the phantom by intrapulmonary and intrabronchial injections of agarose. CT was performed in the phantom for correlation. Image quality of the sequences was ranked in a side-by-side comparison by 3 blinded radiologists regarding the delineation of pulmonary and mediastinal anatomy, conspicuity of pulmonary nodules and infiltrates, and presence of artifacts. The contrast of nodules and infiltrates (CNODULES and CINFILTRATES) defined by the ratio of the signal intensities of the lesion and adjacent normal lung parenchyma was determined. There were no relevant differences regarding the preference for the individual sequences between both field strengths. TSE was the preferred sequence for the visualization of the mediastinum at both field strengths. For the visualization of lung parenchyma the observers preferred TrueFISP in volunteers and TSE in the phantom studies. At both field strengths VIBE achieved the best rating for the depiction of nodules, whereas HASTE was rated best for the delineation of infiltrates. TrueFISP had the fewest artifacts in volunteers, whereas STIR showed the fewest artifacts in the phantom. For all but the TrueFISP sequence the lesion contrast increased from 1.5 T to 3 T. At both field strengths VIBE showed the highest CNODULES (6.6 and 7.1) and HASTE the highest CINFILTRATES (6.1 and 6.3). The imaging characteristics of different pulse sequences used for lung MRI do not substantially differ between 1.5 T and 3 T. A higher lesion contrast can be expected at 3 T.
On the reliability of hook echoes as tornado indicators
NASA Technical Reports Server (NTRS)
Forbes, G. S.
1981-01-01
A study of radar echoes associated with the tornadoes of the 3 April 1974 outbreak was performed to evaluate the usefulness of echo shape as an indicator of tornadic thunderstorms. The hook shape was usually successful in characterizing an echo as tornadic, with a false alarm rate of 16%. Because hook echoes were relatively rare, however, a less restrictive shape called distinctive was more successful at detecting tornadic thunderstorms, identifying 65% of the tornadic echoes. An echo had a distinctive shape if it possessed a marked appendage on its right rear flank or was in the shape of a spiral, comma or line echo wave pattern (LEWP). Characteristics of the distinctive echo are given.
Positive Contrast Visualization of Nitinol Devices using Susceptibility Gradient Mapping
Vonken, Evert-jan P.A.; Schär, Michael; Stuber, Matthias
2008-01-01
MRI visualization of devices is traditionally based on the signal loss due to T2* effects originating from the local susceptibility differences. To visualize nitinol devices with positive contrast a recently introduced post processing method is adapted to map the induced susceptibility gradients. This method operates on regular gradient echo MR images and maps the shift in k-space in a (small) neighborhood of every voxel by Fourier analysis followed by a center of mass calculation. The quantitative map of the local shifts generates the positive contrast image of the devices, while areas without susceptibility gradients render a background with noise only. The positive signal response of this method depends only on the choice of the voxel neighborhood size. The properties of the method are explained and the visualization of a nitinol wire and two stents are shown for illustration. PMID:18727096
NASA Astrophysics Data System (ADS)
Isono, Hiroshi; Hirata, Shinnosuke; Hachiya, Hiroyuki
2015-07-01
In medical ultrasonic images of liver disease, a texture with a speckle pattern indicates a microscopic structure such as nodules surrounded by fibrous tissues in hepatitis or cirrhosis. We have been applying texture analysis based on a co-occurrence matrix to ultrasonic images of fibrotic liver for quantitative tissue characterization. A co-occurrence matrix consists of the probability distribution of brightness of pixel pairs specified with spatial parameters and gives new information on liver disease. Ultrasonic images of different types of fibrotic liver were simulated and the texture-feature contrast was calculated to quantify the co-occurrence matrices generated from the images. The results show that the contrast converges with a value that can be theoretically estimated using a multi-Rayleigh model of echo signal amplitude distribution. We also found that the contrast value increases as liver fibrosis progresses and fluctuates depending on the size of fibrotic structure.
NASA Astrophysics Data System (ADS)
Ta, Hang T.; Li, Zhen; Wu, Yuao; Cowin, Gary; Zhang, Shaohua; Yago, Anya; Whittaker, Andrew K.; Xu, Zhi Ping
2017-11-01
This study aims to compare the relaxivities of ultra-small dual positive and negative contrast iron oxide nanoparticles (DCION) at different magnetic field strengths ranging from 4.7 to 16.4 T at physiological temperatures; and to investigate the effect of particle aggregation on relaxivities. Relaxivities of DCIONs were determined by magnetic resonance imaging scanners at 4.7, 7, 9.4, and 16.4 T. Both longitudinal (T 1) and transverse relaxation times (T 2) were measured by appropriate spin-echo sequences. It has been found that both longitudinal and transverse relaxivities are significantly dependent on the magnetic field strength. Particle aggregation also strongly affects the relaxivities. Awareness of the field strength and particle colloid stability is crucial for the comparison and evaluation of relaxivity values of these ultra-small iron oxide nanoparticles, and also for their medical applications as contrast agents.
Forming maps of targets having multiple reflectors with a biomimetic audible sonar.
Kuc, Roman
2018-05-01
A biomimetic audible sonar mimics human echolocation by emitting clicks and sensing echoes binaurally to investigate the limitations in acoustic mapping of 2.5 dimensional targets. A monaural sonar that provides only echo time-of-flight values produces biased maps that lie outside the target surfaces. Reflector bearing estimates derived from the first echoes detected by a binaural sonar are employed to form unbiased maps. Multiple echoes from a target introduce phantom-reflector artifacts into its map because later echoes are produced by reflectors at bearings different from those determined from the first echoes. In addition, overlapping echoes interfere to produce bearing errors. Addressing the causes of these bearing errors motivates a processing approach that employs template matching to extract valid echoes. Interfering echoes can mimic a valid echo and also form PR artifacts. These artifacts are eliminated by recognizing the bearing fluctuations that characterize echo interference. Removing PR artifacts produces a map that resembles the physical target shape to within the resolution capabilities of the sonar. The remaining differences between the target shape and the final map are void artifacts caused by invalid or missing echoes.
A controlled ac Stark echo for quantum memories.
Ham, Byoung S
2017-08-09
A quantum memory protocol of controlled ac Stark echoes (CASE) based on a double rephasing photon echo scheme via controlled Rabi flopping is proposed. The double rephasing scheme of photon echoes inherently satisfies the no-population inversion requirement for quantum memories, but the resultant absorptive echo remains a fundamental problem. Herein, it is reported that the first echo in the double rephasing scheme can be dynamically controlled so that it does not affect the second echo, which is accomplished by using unbalanced ac Stark shifts. Then, the second echo is coherently controlled to be emissive via controlled coherence conversion. Finally a near perfect ultralong CASE is presented using a backward echo scheme. Compared with other methods such as dc Stark echoes, the present protocol is all-optical with advantages of wavelength-selective dynamic control of quantum processing for erasing, buffering, and channel multiplexing.
Taylor, Brian A.; Elliott, Andrew M.; Hwang, Ken-Pin; Hazle, John D.; Stafford, R. Jason
2011-01-01
In order to investigate simultaneous MR temperature imaging and direct validation of tissue damage during thermal therapy, temperature-dependent signal changes in proton resonance frequency (PRF) shifts, R2* values, and T1-weighted amplitudes are measured from one technique in ex vivo tissue heated with a 980-nm laser at 1.5T and 3.0T. Using a multi-gradient echo acquisition and signal modeling with the Stieglitz-McBride algorithm, the temperature sensitivity coefficient (TSC) values of these parameters are measured in each tissue at high spatiotemporal resolutions (1.6×1.6×4mm3,≤5sec) at the range of 25-61 °C. Non-linear changes in MR parameters are examined and correlated with an Arrhenius rate dose model of thermal damage. Using logistic regression, the probability of changes in these parameters is calculated as a function of thermal dose to determine if changes correspond to thermal damage. Temperature calibrations demonstrate TSC values which are consistent with previous studies. Temperature sensitivity of R2* and, in some cases, T1-weighted amplitudes are statistically different before and after thermal damage occurred. Significant changes in the slopes of R2* as a function of temperature are observed. Logistic regression analysis shows that these changes could be accurately predicted using the Arrhenius rate dose model (Ω=1.01±0.03), thereby showing that the changes in R2* could be direct markers of protein denaturation. Overall, by using a chemical shift imaging technique with simultaneous temperature estimation, R2* mapping and T1-W imaging, it is shown that changes in the sensitivity of R2* and, to a lesser degree, T1-W amplitudes are measured in ex vivo tissue when thermal damage is expected to occur according to Arrhenius rate dose models. These changes could possibly be used for direct validation of thermal damage in contrast to model-based predictions. PMID:21721063
Wang, G.-Q.; Tang, G.-Q.; Boore, D.M.; Van Ness, Burbach; Jackson, C.R.; Zhou, X.-Y.; Lin, Q.-L.
2006-01-01
Significant surface waves were recorded in the western coastal plain (WCP) of Taiwan during the 1999 Chi-Chi, Taiwan, earthquake and its series of aftershocks. We study in detail the surface waves produced by one aftershock (20 September 1999, 18hr 03m 41.16sec, M 6.2) in this paper. We take the Chelungpu-Chukou fault to be the eastern edge of the WCP because it marks a distinct lateral contrast in seismic wave velocities in the upper few kilometers of the surface. For many records from stations within the WCP, body waves and surface waves separate well in both the time domain and the period domain. Long-period (e.g., >2 sec) ground motions in the plain are dominated by surface waves. Significant prograde Rayleigh wave particle motions were observed in the WCP. The observed peak ground velocities are about 3-5 times larger than standard predictions in the central and western part of the plain. Observed response spectra at 3 sec, 4 sec, and 5 sec at the center of the plain can be 15 times larger than standard predictions and 10 times larger than the predictions of Joyner (2000) based on surface wave data from the Los Angeles basin. The strong surface waves were probably generated at the boundary of the WCP and then propagated toward the west, largely along radial directions relative to the epicenter. The geometry of the boundary may have had a slight effect on propagation directions of surface waves. Group velocities of fundamental mode Rayleigh and Love waves are estimated using the multiple filter analysis (MFA) technique and are refined with phase matched filtering (PMF). Group velocities of fundamental mode surface waves range from about 0.7 km/sec to 1.5 km/sec for the phases at periods from 3 sec to 10 sec. One important observation from this study is that the strongest surface waves were recorded in the center of the plain. The specific location of the strongest motions depends largely on the period of surface waves rather than on specific site conditions or plain structures. Accordingly, we conjecture that surface waves could be generated in a wide area close to boundaries of low-velocity sedimentary wave guides. In the case studied in this article the area can be as wide as 30 km (from the Chelungpu fault to the center of the plain). Surface waves converted by P and S waves at different locations would overlap each other and add constructively along their propagation paths. As a result, the surface waves would get stronger and stronger. Beyond a certain distance to the boundary, no more surface waves would be generated. Consequently, no more local surface waves would be superimposed into the invasive surface waves, and the surface waves would tend to decay in amplitude with distance.
Lateral mobility of plasma membrane lipids in dividing Xenopus eggs.
Tetteroo, P A; Bluemink, J G; Dictus, W J; van Zoelen, E J; de Laat, S W
1984-07-01
The lateral mobility of plasma membrane lipids was analyzed during first cleavage of Xenopus laevis eggs by fluorescence photobleaching recovery (FPR) measurements, using the lipid analogs 5-(N-hexadecanoyl)aminofluorescein ("HEDAF") and 5-(N-tetradecanoyl)aminofluorescein ("TEDAF") as probes. The preexisting plasma membrane of the animal side showed an inhomogeneous, dotted fluorescence pattern after labeling and the lateral mobility of both probes used was below the detection limits of the FPR method (D much less than 10(-10) cm2/sec). In contrast, the preexisting plasma membrane of the vegetal side exhibited homogeneous fluorescence and the lateral diffusion coefficient of both probes used was relatively high (HEDAF, D = 2.8 X 10(-8) cm2/sec; TEDAF, D = 2.4 X 10(-8) cm2/sec). In the cleaving egg visible transfer of HEDAF or TEDAF from prelabeled plasma membrane to the new membrane in the furrow did not occur, even on the vegetal side. Upon labeling during cleavage, however, the new membrane was uniformly labeled and both probes were mobile, as in the vegetal preexisting plasma membrane. These data show that the membrane of the dividing Xenopus egg comprises three macrodomains: (i) the animal preexisting plasma membrane; (ii) the vegetal preexisting plasma membrane; (iii) the new furrow membrane.
Artifacts in Sonography - Part 3.
Bönhof, Jörg A; McLaughlin, Glen
2018-06-01
As a continuation of parts 1 1 and 2 2, this article discusses artifacts as caused by insufficient temporal resolution, artifacts in color and spectral Doppler sonography, and information regarding artifacts in sonography with contrast agents. There are artifacts that occur in B-mode sonography as well as in Doppler imaging methods and sonography with contrast agents, such as slice thickness artifacts and bow artifacts, shadows, mirroring, and artifacts due to refraction that appear, for example, as double images, because they are based on the same formation mechanisms. In addition, there are artifacts specific to Doppler sonography, such as the twinkling artifact, and method-based motion artifacts, such as aliasing, the ureteric jet, and due to tissue vibration. The artifacts specific to contrast mode include echoes from usually highly reflective structures that are not contrast bubbles ("leakage"). Contrast agent can also change the transmitting signal so that even structures not containing contrast agent are echogenic ("pseudoenhancement"). While artifacts can cause problems regarding differential diagnosis, they can also be useful for determining the diagnosis. Therefore, effective use of sonography requires both profound knowledge and skilled interpretation of artifacts. © Georg Thieme Verlag KG Stuttgart · New York.
Characteristics of C-band meteorological radar echoes at Petrolina, Northeast Brazil
NASA Astrophysics Data System (ADS)
da Silva Aragão, Maria Regina; Correia, Magaly De Fatima; Alves de Araújo, Heráclio
2000-03-01
A unique set of C-band meteorological radar echoes is analyzed. The data were obtained in Petrolina (9°24S, 40°30W), located in the semi-arid region of Northeast Brazil, from January to June 1985. The characteristics analyzed are echo areas, types and patterns.As in other tropical areas of the world, echoes with an area100 km2 dominated, making up 53% of the total number of echoes while echoes with 100 km2
Relationship between tornadoes and hook echoes on April 3, 1974
NASA Technical Reports Server (NTRS)
Forbes, G. S.
1975-01-01
Radar observations of tornado families occurring on April 3, 1974 are discussed. Of the 93 tornadoes included in the sample, 81% were associated with hook-like echoes with appendages at least 40 deg to the south of the echo movement. At least one tornado was associated with 62% of the hook-like echoes observed. All of the tornadoes with intensities of F 4 and F 5 were produced by hook-like echoes; the mean intensity of all tornadoes associated with this type of echo was F 3, while the mean intensity of the remaining tornadoes was F1. The tornadic hook-like echoes moved to the right of the non-tornadic echoes forming a tornado line in advance of the squall line. Some tornadoes were associated with 'spiral' echoes.
Biological Studies with Laser-Polarized ^129Xe
NASA Astrophysics Data System (ADS)
Tseng, C. H.; Oteiza, E. R.; Wong, G. A.; Walsworth, R. L.; Albert, M. S.; Nascimben, L.; Peled, S.; Sakai, K.; Jolesz, F. A.
1996-05-01
We have studied several biological systems using laser-polarized ^129Xe. In certain tissues magnetic resonance imaging (MRI) using inhaled laser-polarized noble gases may provide images superior to those from conventional proton MRI. High resolution laser-polarized ^3He images of air spaces in the human lung were recently obtained by the Princeton/Duke group. However, ^3He is not very soluble in tissue. Therefore, we are using laser polarized ^129Xe (tissue-soluble), with the long term goal of biomedical functional imaging. We have investigated multi-echo and multi-excitation magnetic resonance detection schemes to exploit the highly non-thermal ^129Xe magnetization produced by the laser polarization technique. We have inhalated live rats with laser-polarized ^129Xe gas and measured three distinct ^129Xe tissue resonances that last 20 to 40 sec. As a demonstration, we obtained a laser polarized ^129Xe image of the human oral cavity. Currently we are measuring the polarization lifetime of ^129Xe dissolved in human blood, the biological transporting medium. These studies and other recent developments will be reported.
Use of ultrasound in altitude decompression modeling
NASA Technical Reports Server (NTRS)
Olson, Robert M.; Pilmanis, Andrew A.
1993-01-01
A model that predicts the probability of developing decompression sickness (DCS) with various denitrogenation schedules is being developed by the Armstrong Laboratory, using human data from previous exposures. It was noted that refinements are needed to improve the accuracy and scope of the model. A commercially developed ultrasonic echo imaging system is being used in this model development. Using this technique, bubbles images from a subject at altitude can be seen in the gall bladder, hepatic veins, vena cava, and chambers of the heart. As judged by their motion and appearance in the vena cava, venous bubbles near the heart range in size from 30 to 300 M. The larger bubbles skim along the top, whereas the smaller ones appear as faint images near the bottom of the vessel. Images from growing bubbles in a model altitude chamber indicate that they grow rapidly, going from 20 to 100 M in 3 sec near 30,000 ft altitude. Information such as this is valuable in verifying those aspects of the DCS model dealing with bubble size, their growth rate, and their site of origin.
Ligon, Lauren S.; Rigel, Nathan W.; Romanchuk, Artur; Jones, Corbin D.
2013-01-01
All bacteria use the conserved Sec pathway to transport proteins across the cytoplasmic membrane, with the SecA ATPase playing a central role in the process. Mycobacteria are part of a small group of bacteria that have two SecA proteins: the canonical SecA (SecA1) and a second, specialized SecA (SecA2). The SecA2-dependent pathway exports a small subset of proteins and is required for Mycobacterium tuberculosis virulence. The mechanism by which SecA2 drives export of proteins across the cytoplasmic membrane remains poorly understood. Here we performed suppressor analysis on a dominant negative secA2 mutant (secA2 K129R) of the model mycobacterium Mycobacterium smegmatis to better understand the pathway used by SecA2 to export proteins. Two extragenic suppressor mutations were identified as mapping to the promoter region of secY, which encodes the central component of the canonical Sec export channel. These suppressor mutations increased secY expression, and this effect was sufficient to alleviate the secA2 K129R phenotype. We also discovered that the level of SecY protein was greatly diminished in the secA2 K129R mutant, but at least partially restored in the suppressors. Furthermore, the level of SecY in a suppressor strongly correlated with the degree of suppression. Our findings reveal a detrimental effect of SecA2 K129R on SecY, arguing for an integrated system in which SecA2 works with SecY and the canonical Sec translocase to export proteins. PMID:23913320
A simple method for MR elastography: a gradient-echo type multi-echo sequence.
Numano, Tomokazu; Mizuhara, Kazuyuki; Hata, Junichi; Washio, Toshikatsu; Homma, Kazuhiro
2015-01-01
To demonstrate the feasibility of a novel MR elastography (MRE) technique based on a conventional gradient-echo type multi-echo MR sequence which does not need additional bipolar magnetic field gradients (motion encoding gradient: MEG), yet is sensitive to vibration. In a gradient-echo type multi-echo MR sequence, several images are produced from each echo of the train with different echo times (TEs). If these echoes are synchronized with the vibration, each readout's gradient lobes achieve a MEG-like effect, and the later generated echo causes a greater MEG-like effect. The sequence was tested for the tissue-mimicking agarose gel phantoms and the psoas major muscles of healthy volunteers. It was confirmed that the readout gradient lobes caused an MEG-like effect and the later TE images had higher sensitivity to vibrations. The magnitude image of later generated echo suffered the T2 decay and the susceptibility artifacts, but the wave image and elastogram of later generated echo were unaffected by these effects. In in vivo experiments, this method was able to measure the mean shear modulus of the psoas major muscle. From the results of phantom experiments and volunteer studies, it was shown that this method has clinical application potential. Copyright © 2014 Elsevier Inc. All rights reserved.
Biosynthesis of Selenocysteine on Its tRNA in Eukaryotes
Mix, Heiko; Zhang, Yan; Saira, Kazima; Glass, Richard S; Berry, Marla J; Gladyshev, Vadim N; Hatfield, Dolph L
2007-01-01
Selenocysteine (Sec) is cotranslationally inserted into protein in response to UGA codons and is the 21st amino acid in the genetic code. However, the means by which Sec is synthesized in eukaryotes is not known. Herein, comparative genomics and experimental analyses revealed that the mammalian Sec synthase (SecS) is the previously identified pyridoxal phosphate-containing protein known as the soluble liver antigen. SecS required selenophosphate and O-phosphoseryl-tRNA[Ser]Sec as substrates to generate selenocysteyl-tRNA[Ser]Sec. Moreover, it was found that Sec was synthesized on the tRNA scaffold from selenide, ATP, and serine using tRNA[Ser]Sec, seryl-tRNA synthetase, O-phosphoseryl-tRNA[Ser]Sec kinase, selenophosphate synthetase, and SecS. By identifying the pathway of Sec biosynthesis in mammals, this study not only functionally characterized SecS but also assigned the function of the O-phosphoseryl-tRNA[Ser]Sec kinase. In addition, we found that selenophosphate synthetase 2 could synthesize monoselenophosphate in vitro but selenophosphate synthetase 1 could not. Conservation of the overall pathway of Sec biosynthesis suggests that this pathway is also active in other eukaryotes and archaea that synthesize selenoproteins. PMID:17194211
NASA Astrophysics Data System (ADS)
Quarles, C. C.; Gochberg, D. F.; Gore, J. C.; Yankeelov, T. E.
2009-10-01
Dynamic susceptibility contrast (DSC) MRI methods rely on compartmentalization of the contrast agent such that a susceptibility gradient can be induced between the contrast-containing compartment and adjacent spaces, such as between intravascular and extravascular spaces. When there is a disruption of the blood-brain barrier, as is frequently the case with brain tumors, a contrast agent leaks out of the vasculature, resulting in additional T1, T2 and T*2 relaxation effects in the extravascular space, thereby affecting the signal intensity time course and reducing the reliability of the computed hemodynamic parameters. In this study, a theoretical model describing these dynamic intra- and extravascular T1, T2 and T*2 relaxation interactions is proposed. The applicability of using the proposed model to investigate the influence of relevant MRI pulse sequences (e.g. echo time, flip angle), and physical (e.g. susceptibility calibration factors, pre-contrast relaxation rates) and physiological parameters (e.g. permeability, blood flow, compartmental volume fractions) on DSC-MRI signal time curves is demonstrated. Such a model could yield important insights into the biophysical basis of contrast-agent-extravasastion-induced effects on measured DSC-MRI signals and provide a means to investigate pulse sequence optimization and appropriate data analysis methods for the extraction of physiologically relevant imaging metrics.
MR-Guided Unfocused Ultrasound Disruption of the Rat Blood-Brain Barrier
NASA Astrophysics Data System (ADS)
Townsend, Kelly A.; King, Randy L.; Zaharchuk, Greg; Pauly, Kim Butts
2011-09-01
Therapeutic ultrasound with microbubbles can temporarily disrupt the blood-brain barrier (BBB) for drug delivery. Contrast-enhanced MRI (CE-MRI) can visualize gadolinium passage into the brain, indicating BBB opening. Previous studies used focused ultrasound, which is appropriate for the targeted delivery of drugs. The purpose of this study was to investigate unfocused ultrasound for BBB opening across the whole brain. In 10 rats, gadolinium-based MR contrast agent (Gd; 0.25 ml) was administered concurrent with ultrasound microbubbles (Optison, 0.25 ml) and circulated for 20 sec before sonication. A 753 kHz planar PZT transducer, diameter 1.8 cm, sonicated each rat brain with supplied voltage of 300, 400, or 500 mVpp for 10 sec in continuous wave mode, or at 500 mVpp at 20% duty cycle at 10 Hz for 30-300 sec. After sonication, coronal T1-weighted FSE CE-MRI images were acquired with a 3in surface coil. The imaging protocol was repeated 3-5 times after treatment. One control animal was given Gd and microbubbles, but not sonicated, and the other was given Gd and sonicated without microbubbles. Signal change in ROIs over the muscle, mesencephalon/ventricles, and the cortex/striatum were measured at 3-5 time points up to 36 min after sonication. Signal intensity was converted to % signal change compared to the initial image. In the controls, CE-MRI showed brightening of surrounding structures, but not the brain. In the continuous wave subjects, cortex/striatum signal did not increase, but ventricle/mesenchephalon signal did. Those that received pulsed sonications showed signal increases in both the cortex/striatum and ventricles/mesenchephalon. In conclusion, after pulsed unfocused ultrasound sonication, the BBB is disrupted across the whole brain, including cortex and deep grey matter, while continuous wave sonication affects only the ventricles and possibly deeper structures, without opening the cortex BBB. As time passes, the timeline of Gd passage into the brain can be visualized.
The Environmental Protection Agency's Enforcement and Compliance History Online (ECHO) website provides customizable and downloadable information about environmental inspections, violations, and enforcement actions for EPA-regulated facilities, like power plants and factories. ECHO advances public information by sharing data related to facility compliance with and regulatory agency activity related to air, hazardous waste, clean water, and drinking water regulations. ECHO offers many user-friendly options to explore data, including:1. Facility Search (http://echo.epa.gov/facilities/facility-search?mediaSelected=all): ECHO information is searchable by varied criteria, including location, facility type, and compliance status related to the Clean Air Act, Clean Water Act, Resource Conservation and Recovery Act, and Safe Drinking Water Act. Search results are customizable and downloadable.2. Comparative Maps (http://echo.epa.gov/maps/state-comparative-maps) and State Dashboards (http://echo.epa.gov/trends/comparative-maps-dashboards/state-air-dashboard): These tools offer aggregated information about facility compliance status and regulatory agency compliance monitoring and enforcement activity at the national and state level.3. Bulk Data Downloads (http://echo.epa.gov/resources/echo-data/data-downloads): One of ECHO's most popular features is the ability to work offline by downloading large data sets. Users can take advantage of the ECHO Exporter, which provides su
Echo characteristics of two salmon species
NASA Astrophysics Data System (ADS)
Nealson, Patrick A.; Horne, John K.; Burwen, Debby L.
2005-04-01
The Alaska Department of Fish and Game relies on split-beam hydroacoustic techniques to estimate Chinook salmon (Oncorhynchus tshawytscha) returns to the Kenai River. Chinook counts are periodically confounded by large numbers of smaller sockeye salmon (O. nerka). Echo target-strength has been used to distinguish fish length classes, but was too variable to separate Kenai River chinook and sockeye distributions. To evaluate the efficacy of alternate echo metrics, controlled acoustic measurements of tethered chinook and sockeye salmon were collected at 200 kHz. Echo returns were digitally sampled at 48 kHz. A suite of descriptive metrics were collected from a series of 1,000 echoes per fish. Measurements of echo width were least variable at the -3 dB power point. Initial results show echo elongation and ping-to-ping variability in echo envelope width were significantly greater for chinook than for sockeye salmon. Chinook were also observed to return multiple discrete peaks from a single broadcast echo. These characteristics were attributed to the physical width of chinook exceeding half of the broadcast echo pulse width at certain orientations. Echo phase variability, correlation coefficient and fractal dimension distributions did not demonstrate significant discriminatory power between the two species. [Work supported by ADF&G, ONR.
NASA Astrophysics Data System (ADS)
Kim, Eng-Chan; Cho, Jae-Hwan; Kim, Min-Hye; Kim, Ki-Hong; Choi, Cheon-Woong; Seok, Jong-min; Na, Kil-Ju; Han, Man-Seok
2013-03-01
This study was conducted on 20 patients who had undergone pedicle screw fixation between March and December 2010 to quantitatively compare a conventional fat suppression technique, CHESS (chemical shift selection suppression), and a new technique, IDEAL (iterative decomposition of water and fat with echo asymmetry and least squares estimation). The general efficacy and usefulness of the IDEAL technique was also evaluated. Fat-suppressed transverse-relaxation-weighed images and longitudinal-relaxation-weighted images were obtained before and after contrast injection by using these two techniques with a 1.5T MR (magnetic resonance) scanner. The obtained images were analyzed for image distortion, susceptibility artifacts and homogenous fat removal in the target region. The results showed that the image distortion due to the susceptibility artifacts caused by implanted metal was lower in the images obtained using the IDEAL technique compared to those obtained using the CHESS technique. The results of a qualitative analysis also showed that compared to the CHESS technique, fewer susceptibility artifacts and more homogenous fat removal were found in the images obtained using the IDEAL technique in a comparative image evaluation of the axial plane images before and after contrast injection. In summary, compared to the CHESS technique, the IDEAL technique showed a lower occurrence of susceptibility artifacts caused by metal and lower image distortion. In addition, more homogenous fat removal was shown in the IDEAL technique.
Jang, Jinhee; Kim, Tae-Won; Hwang, Eo-Jin; Choi, Hyun Seok; Koo, Jaseong; Shin, Yong Sam; Jung, So-Lyung; Ahn, Kook-Jin; Kim, Bum-Soo
2017-01-01
The purpose of this study was to compare the histogram analysis and visual scores in 3T MRI assessment of middle cerebral arterial wall enhancement in patients with acute stroke, for the differentiation of parent artery disease (PAD) from small artery disease (SAD). Among the 82 consecutive patients in a tertiary hospital for one year, 25 patients with acute infarcts in middle cerebral artery (MCA) territory were included in this study including 15 patients with PAD and 10 patients with SAD. Three-dimensional contrast-enhanced T1-weighted turbo spin echo MR images with black-blood preparation at 3T were analyzed both qualitatively and quantitatively. The degree of MCA stenosis, and visual and histogram assessments on MCA wall enhancement were evaluated. A statistical analysis was performed to compare diagnostic accuracy between qualitative and quantitative metrics. The degree of stenosis, visual enhancement score, geometric mean (GM), and the 90th percentile (90P) value from the histogram analysis were significantly higher in PAD than in SAD ( p = 0.006 for stenosis, < 0.001 for others). The receiver operating characteristic curve area of GM and 90P were 1 (95% confidence interval [CI], 0.86-1.00). A histogram analysis of a relevant arterial wall enhancement allows differentiation between PAD and SAD in patients with acute stroke within the MCA territory.
Image domain propeller fast spin echo.
Skare, Stefan; Holdsworth, Samantha J; Lilja, Anders; Bammer, Roland
2013-04-01
A new pulse sequence for high-resolution T2-weighted (T2-w) imaging is proposed - image domain propeller fast spin echo (iProp-FSE). Similar to the T2-w PROPELLER sequence, iProp-FSE acquires data in a segmented fashion, as blades that are acquired in multiple TRs. However, the iProp-FSE blades are formed in the image domain instead of in the k-space domain. Each iProp-FSE blade resembles a single-shot fast spin echo (SSFSE) sequence with a very narrow phase-encoding field of view (FOV), after which N rotated blade replicas yield the final full circular FOV. Our method of combining the image domain blade data to a full FOV image is detailed, and optimal choices of phase-encoding FOVs and receiver bandwidths were evaluated on phantom and volunteers. The results suggest that a phase FOV of 15-20%, a receiver bandwidth of ±32-63 kHz and a subsequent readout time of about 300 ms provide a good tradeoff between signal-to-noise ratio (SNR) efficiency and T2 blurring. Comparisons between iProp-FSE, Cartesian FSE and PROPELLER were made on single-slice axial brain data, showing similar T2-w tissue contrast and SNR with great anatomical conspicuity at similar scan times - without colored noise or streaks from motion. A new slice interleaving order is also proposed to improve the multislice capabilities of iProp-FSE. Copyright © 2013 Elsevier Inc. All rights reserved.
Stokes, Ashley M.; Semmineh, Natenael; Quarles, C. Chad
2015-01-01
Purpose A combined biophysical- and pharmacokinetic-based method is proposed to separate, quantify, and correct for both T1 and T2* leakage effects using dual-echo DSC acquisitions to provide more accurate hemodynamic measures, as validated by a reference intravascular contrast agent (CA). Methods Dual-echo DSC-MRI data were acquired in two rodent glioma models. The T1 leakage effects were removed and also quantified in order to subsequently correct for the remaining T2* leakage effects. Pharmacokinetic, biophysical, and combined biophysical and pharmacokinetic models were used to obtain corrected cerebral blood volume (CBV) and cerebral blood flow (CBF), and these were compared with CBV and CBF from an intravascular CA. Results T1-corrected CBV was significantly overestimated compared to MION CBV, while T1+T2*-correction yielded CBV values closer to the reference values. The pharmacokinetic and simplified biophysical methods showed similar results and underestimated CBV in tumors exhibiting strong T2* leakage effects. The combined method was effective for correcting T1 and T2* leakage effects across tumor types. Conclusions Correcting for both T1 and T2* leakage effects yielded more accurate measures of CBV. The combined correction method yields more reliable CBV measures than either correction method alone, but for certain brain tumor types (e.g., gliomas) the simplified biophysical method may provide a robust and computationally efficient alternative. PMID:26362714
Zhang, Shu; Keupp, Jochen; Wang, Xinzeng; Dimitrov, Ivan; Madhuranthakam, Ananth J; Lenkinski, Robert E; Vinogradov, Elena
2018-05-01
Chemical exchange saturation transfer (CEST) MRI is increasingly evolving from brain to body applications. One of the known problems in the body imaging is the presence of strong lipid signals. Although their influence on the CEST effect is acknowledged, there was no study that focuses on the interplay among echo time, fat fraction, and Z-spectrum. This study strives to address these points, with the emphasis on the application in the breast. Z-spectra were simulated in phase and out of phase of the main fat peak at -3.4 ppm, with the fat fraction varying from 0 to 100%. The magnetization transfer ratio asymmetry in two ranges, centering at the exchanging pool and at 3.5 ppm approximately opposite the nonexchanging fat pool, were calculated and were plotted against fat fraction. The results were verified in phantoms and in vivo. The results demonstrate the combined influence of fat fraction and echo time on the Z-spectrum for gradient echo based CEST acquisitions. The influence is straightforward in the in-phase images, but it is more complicated in the out-of-phase images, potentially leading to erroneous CEST contrast. This study provides a basis for understanding the origin and appearance of lipid artifacts in CEST imaging, and lays the foundation for their efficient removal. Magn Reson Med 79:2731-2737, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Cho, Junghun; Kee, Youngwook; Spincemaille, Pascal; Nguyen, Thanh D; Zhang, Jingwei; Gupta, Ajay; Zhang, Shun; Wang, Yi
2018-03-07
To map the cerebral metabolic rate of oxygen (CMRO 2 ) by estimating the oxygen extraction fraction (OEF) from gradient echo imaging (GRE) using phase and magnitude of the GRE data. 3D multi-echo gradient echo imaging and perfusion imaging with arterial spin labeling were performed in 11 healthy subjects. CMRO 2 and OEF maps were reconstructed by joint quantitative susceptibility mapping (QSM) to process GRE phases and quantitative blood oxygen level-dependent (qBOLD) modeling to process GRE magnitudes. Comparisons with QSM and qBOLD alone were performed using ROI analysis, paired t-tests, and Bland-Altman plot. The average CMRO 2 value in cortical gray matter across subjects were 140.4 ± 14.9, 134.1 ± 12.5, and 184.6 ± 17.9 μmol/100 g/min, with corresponding OEFs of 30.9 ± 3.4%, 30.0 ± 1.8%, and 40.9 ± 2.4% for methods based on QSM, qBOLD, and QSM+qBOLD, respectively. QSM+qBOLD provided the highest CMRO 2 contrast between gray and white matter, more uniform OEF than QSM, and less noisy OEF than qBOLD. Quantitative CMRO 2 mapping that fits the entire complex GRE data is feasible by combining QSM analysis of phase and qBOLD analysis of magnitude. © 2018 International Society for Magnetic Resonance in Medicine.
Retinotopic mapping with Spin Echo BOLD at 7 Tesla
Olman, Cheryl A.; Van de Moortele, Pierre-Francois; Schumacher, Jennifer F.; Guy, Joe; Uğurbil, Kâmil; Yacoub, Essa
2010-01-01
For blood oxygenation level-dependent (BOLD) functional MRI experiments, contrast-to-noise ratio (CNR) increases with increasing field strength for both gradient echo (GE) and spin echo (SE) BOLD techniques. However, susceptibility artifacts and non-uniform coil sensitivity profiles complicate large field-of-view fMRI experiments (e.g., experiments covering multiple visual areas instead of focusing on a single cortical region). Here, we use SE BOLD to acquire retinotopic mapping data in early visual areas, testing the feasibility of SE BOLD experiments spanning multiple cortical areas at 7 Tesla. We also use a recently developed method for normalizing signal intensity in T1-weighted anatomical images to enable automated segmentation of the cortical gray matter for scans acquired at 7T with either surface or volume coils. We find that the CNR of the 7T GE data (average single-voxel, single-scan stimulus coherence: 0.41) is almost twice that of the 3T GE BOLD data (average coherence: 0.25), with the CNR of the SE BOLD data (average coherence: 0.23) comparable to that of the 3T GE data. Repeated measurements in individual subjects find that maps acquired with 1.8 mm resolution at 3T and 7T with GE BOLD and at 7T with SE BOLD show no systematic differences in either the area or the boundary locations for V1, V2 and V3, demonstrating the feasibility of high-resolution SE BOLD experiments with good sensitivity throughout multiple visual areas. PMID:20656431
Differential phase acoustic microscope for micro-NDE
NASA Technical Reports Server (NTRS)
Waters, David D.; Pusateri, T. L.; Huang, S. R.
1992-01-01
A differential phase scanning acoustic microscope (DP-SAM) was developed, fabricated, and tested in this project. This includes the acoustic lens and transducers, driving and receiving electronics, scanning stage, scanning software, and display software. This DP-SAM can produce mechanically raster-scanned acoustic microscopic images of differential phase, differential amplitude, or amplitude of the time gated returned echoes of the samples. The differential phase and differential amplitude images provide better image contrast over the conventional amplitude images. A specially designed miniature dual beam lens was used to form two foci to obtain the differential phase and amplitude information of the echoes. High image resolution (1 micron) was achieved by applying high frequency (around 1 GHz) acoustic signals to the samples and placing two foci close to each other (1 micron). Tone burst was used in this system to obtain a good estimation of the phase differences between echoes from the two adjacent foci. The system can also be used to extract the V(z) acoustic signature. Since two acoustic beams and four receiving modes are available, there are 12 possible combinations to produce an image or a V(z) scan. This provides a unique feature of this system that none of the existing acoustic microscopic systems can provide for the micro-nondestructive evaluation applications. The entire system, including the lens, electronics, and scanning control software, has made a competitive industrial product for nondestructive material inspection and evaluation and has attracted interest from existing acoustic microscope manufacturers.
Hallac, Rami R; Ding, Yao; Yuan, Qing; McColl, Roderick W; Lea, Jayanthi; Sims, Robert D; Weatherall, Paul T; Mason, Ralph P
2012-12-01
Hypoxia is reported to be a biomarker for poor prognosis in cervical cancer. However, a practical noninvasive method is needed for the routine clinical evaluation of tumor hypoxia. This study examined the potential use of blood oxygenation level-dependent (BOLD) contrast MRI as a noninvasive technique to assess tumor vascular oxygenation at 3T. Following Institutional Review Board-approved informed consent and in compliance with the Health Insurance Portability and Accountability Act, successful results were achieved in nine patients with locally advanced cervical cancer [International Federation of Gynecology and Obstetrics (FIGO) stage IIA to IVA] and three normal volunteers. In the first four patients, dynamic T₂*-weighted MRI was performed in the transaxial plane using a multi-shot echo planar imaging sequence whilst patients breathed room air followed by oxygen (15 dm³/min). Later, a multi-echo gradient echo examination was added to provide quantitative R₂* measurements. The baseline T₂*-weighted signal intensity was quite stable, but increased to various extents in tumors on initiation of oxygen breathing. The signal in normal uterus increased significantly, whereas that in the iliacus muscle did not change. R₂* responded significantly in healthy uterus, cervix and eight cervical tumors. This preliminary study demonstrates that BOLD MRI of cervical cancer at 3T is feasible. However, more patients must be evaluated and followed clinically before any prognostic value can be determined. Copyright © 2012 John Wiley & Sons, Ltd.
Steady-state MR imaging sequences: physics, classification, and clinical applications.
Chavhan, Govind B; Babyn, Paul S; Jankharia, Bhavin G; Cheng, Hai-Ling M; Shroff, Manohar M
2008-01-01
Steady-state sequences are a class of rapid magnetic resonance (MR) imaging techniques based on fast gradient-echo acquisitions in which both longitudinal magnetization (LM) and transverse magnetization (TM) are kept constant. Both LM and TM reach a nonzero steady state through the use of a repetition time that is shorter than the T2 relaxation time of tissue. When TM is maintained as multiple radiofrequency excitation pulses are applied, two types of signal are formed once steady state is reached: preexcitation signal (S-) from echo reformation; and postexcitation signal (S+), which consists of free induction decay. Depending on the signal sampled and used to form an image, steady-state sequences can be classified as (a) postexcitation refocused (only S+ is sampled), (b) preexcitation refocused (only S- is sampled), and (c) fully refocused (both S+ and S- are sampled) sequences. All tissues with a reasonably long T2 relaxation time will show additional signals due to various refocused echo paths. Steady-state sequences have revolutionized cardiac imaging and have become the standard for anatomic functional cardiac imaging and for the assessment of myocardial viability because of their good signal-to-noise ratio and contrast-to-noise ratio and increased speed of acquisition. They are also useful in abdominal and fetal imaging and hold promise for interventional MR imaging. Because steady-state sequences are now commonly used in MR imaging, radiologists will benefit from understanding the underlying physics, classification, and clinical applications of these sequences.
[Laparoscopic and general surgery guided by open interventional magnetic resonance].
Lauro, A; Gould, S W T; Cirocchi, R; Giustozzi, G; Darzi, A
2004-10-01
Interventional magnetic resonance (IMR) machines have produced unique opportunity for image-guided surgery. The open configuration design and fast pulse sequence allow virtual real time intraoperative scanning to monitor the progress of a procedure, with new images produced every 1.5 sec. This may give greater appreciation of anatomy, especially deep to the 2-dimensional laparoscopic image, and hence increase safety, reduce procedure magnitude and increase confidence in tumour resection surgery. The aim of this paper was to investigate the feasibility of performing IMR-image-guided general surgery, especially in neoplastic and laparoscopic field, reporting a single center -- St. Mary's Hospital (London, UK) -- experience. Procedures were carried out in a Signa 0.5 T General Elettric SP10 Interventional MR (General Electric Medical Systems, Milwaukee, WI, USA) with magnet-compatible instruments (titanium alloy instruments, plastic retractors and ultrasonic driven scalpel) and under general anesthesia. There were performed 10 excision biopsies of palpable benign breast tumors (on female patients), 3 excisions of skin sarcoma (dermatofibrosarcoma protuberans), 1 right hemicolectomy and 2 laparoscopic cholecystectomies. The breast lesions were localized with pre- and postcontrast (intravenous gadolinium DPTA) sagittal and axial fast multiplanar spoiled gradient recalled conventional Signa sequences; preoperative real time fast gradient recalled sequences were also obtained using the flashpoint tracking device. During right hemicolectomy intraoperative single shot fast spin echo (SSFSE) and fast spoiled gradient recalled (FSPGR) imaging of right colon were performed after installation of 150 cc of water or 1% gadolinium solution, respectively, through a Foley catheter; imaging was also obtained in an attempt to identify mesenteric lymph nodes intraoperatively. Concerning laparoscopic procedures, magnetic devices (insufflator, light source) were positioned outside scan room, the tubing and light head being passed through penetration panels. Intraoperative MR-cholangiography was performed using fast spin echo (SSFSE) techniques with minimal intensity projection 3-dimensional reconstruction. About skin sarcomas, 2 of them were skin recurrences of previously surgically treated sarcomas (all of them received preoperative biopsy) and the extent of the lesion was then determined using short tau inversion recovery (STIR) sequence. The skin was closed in each case without need for any plastic reconstruction. The breast lesions were visualized with both Signa and real-time imaging and all enhanced with contrast: 2 (20%) were visualized only after contrast enhancement; intraoperative real time imaging clearly demonstrated a resection margin in all cases. Maximum dimensions of breast specimens (range 8-50 mm, median 24.5 mm) were not significantly different from those measured by Signa (p>0.17, Student's paired t-test) or real time images (p>0.4): also there was no significant difference in lesion size between Signa and real time images (p>0.25). All postprocedure scans clearly demonstrated complete excision. The extent of the tumor at MR imaging was greater in each case than suggested by clinical examination. Adequate resection margins were planned using STIR sequences. Histological examination confirmed clear surgical margins of at least 1 cm in each case. During right hemicolectomy, both intraoperative SSFSE and FSPGR contrast imaging revealed the lesion and details of the colonic surface; imaging of the lymph node draining right colon was only partially successful, due to movement artifact. Concerning laparoscopic procedures, both FSE and SSFSE techniques produced reasonable images of the gallbladder and intrahepatic ducts, but the FSE imaging was of poor quality due to respiration artifact; however, SSFSE allowed visualization of the gallbladder and part of the common bile duct. About skin sarcomas, the extent of the tumor at MR imaging was greater in each case than suggested by clinical examination and in each case the complete tumor excision was confirmed. Histological examination confirmed clear surgical margins of at least 1 cm in each case. Intraoperative MR scanning reliably identifies palpable breast tumours and skin sarcomas and is sufficiently accurate to guide their surgical excision. Further work may be done to develop laparoscopic and open abdominal surgery as well.
NASA Technical Reports Server (NTRS)
Challa, M. S.; Natanson, G. A.; Baker, D. F.; Deutschmann, J. K.
1994-01-01
This paper describes real-time attitude determination results for the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX), a gyroless spacecraft, using a Kalman filter/Euler equation approach denoted the real-time sequential filter (RTSF). The RTSF is an extended Kalman filter whose state vector includes the attitude quaternion and corrections to the rates, which are modeled as Markov processes with small time constants. The rate corrections impart a significant robustness to the RTSF against errors in modeling the environmental and control torques, as well as errors in the initial attitude and rates, while maintaining a small state vector. SAMPLEX flight data from various mission phases are used to demonstrate the robustness of the RTSF against a priori attitude and rate errors of up to 90 deg and 0.5 deg/sec, respectively, as well as a sensitivity of 0.0003 deg/sec in estimating rate corrections in torque computations. In contrast, it is shown that the RTSF attitude estimates without the rate corrections can degrade rapidly. RTSF advantages over single-frame attitude determination algorithms are also demonstrated through (1) substantial improvements in attitude solutions during sun-magnetic field coalignment and (2) magnetic-field-only attitude and rate estimation during the spacecraft's sun-acquisition mode. A robust magnetometer-only attitude-and-rate determination method is also developed to provide for the contingency when both sun data as well as a priori knowledge of the spacecraft state are unavailable. This method includes a deterministic algorithm used to initialize the RTSF with coarse estimates of the spacecraft attitude and rates. The combined algorithm has been found effective, yielding accuracies of 1.5 deg in attitude and 0.01 deg/sec in the rates and convergence times as little as 400 sec.
Porter, Craig; Herndon, David N; Børsheim, Elisabet; Bhattarai, Nisha; Chao, Tony; Reidy, Paul T; Rasmussen, Blake B; Andersen, Clark R; Suman, Oscar E; Sidossis, Labros S
2016-01-01
The long-term impact of burn trauma on skeletal muscle bioenergetics remains unknown. Here, the authors determined respiratory capacity and function of skeletal muscle mitochondria in healthy individuals and in burn victims for up to 2 years postinjury. Biopsies were collected from the m. vastus lateralis of 16 healthy men (26 ± 4 years) and 69 children (8 ± 5 years) with burns encompassing ≥30% of their total BSA. Seventy-nine biopsies were collected from cohorts of burn victims at 2 weeks (n = 18), 6 months (n = 18), 12 months (n = 25), and 24 months (n = 18) postburn. Hypermetabolism was determined by the difference in predicted and measured metabolic rate. Mitochondrial respiration was determined in saponin-permeabilized myofiber bundles. Outcomes were modeled by analysis of variance, with differences in groups assessed by Tukey-adjusted contrasts. Burn patients were hypermetabolic for up to 2 years postinjury. Coupled mitochondrial respiration was lower at 2 weeks (17 [8] pmol/sec/mg; P < .001), 6 months (41 [30] pmol/sec/mg; P = .03), and 12 months (35 [14] pmol/sec/mg; P < .001) postburn compared with healthy controls (58 [13] pmol/sec/mg). Coupled respiration was greater at 6, 12, and 24 months postburn vs 2 weeks postburn (P < .001). Mitochondrial adenosine diphosphate and oligomycin sensitivity (measures of coupling control) were lower at all time-points postburn vs control (P < .05), but greater at 6, 12, and 24 months postburn vs 2 weeks postburn (P < .05). Muscle mitochondrial respiratory capacity remains significantly lower in burn victims for 1-year postinjury. Mitochondrial coupling control is diminished for up to 2 years postinjury in burn victims, resulting in greater mitochondrial thermogenesis. These quantitative and qualitative derangements in skeletal muscle bioenergetics likely contribute to the long-term pathophysiological stress response to burn trauma.
ACTION OF A COMPLEX RADIATION FLUX ON ERYTHROCYTE PHOSPHOMONOESTERASE (in Rumanian)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buruiana, L.M.; Hadarag, El.; Dema, A.
To study the effect of radiation on the enzyme, erythrocytes were irradiated in the reactor of the Institute of Atomic Physics of the Romanian Academy of Sciences, Bucharest, in which the intensity of the various radiation components is: thermal neutrons 2.3 x 10/sup 7//cm/sup 2//sec, epithermal neutrons 7.1 x 10/sup 5//cm/sup 2//sec, fast neutrons 4.0 x 10/sup 7//cm/sup 2// sec, and gamma radiation 0.06 r/sec. In general, irradiation lowered the enzyme activity of solutions of the enzyme from horse erythrocytes, this reduction depending on the duration of irradiation and the initial enzyme activity. Kinetics of the nonirradiated and irradiated enzymemore » with respect to its substrate, alpha -glycerophosphate, were studied at various temperatures and substrate concentrations, according to the formulations of Lineweaver and Burk and the Michaelis constant (K/sub m/) was determined. The value of K/sub m/ was 0.0294 and 0.10 mole/l after 30 and 60 min irradiation, respectively, in contrast to 0.04 mole/l for the native enzyme. The corresponding hydrolysis rates at a substrate concentration of 0.50 g/100 ml were 0.036, 0.025, and 0.045, as g P per 100 ml erythrocytes at 37 deg C. Impairment of quality of the enzyme during irradiation was shown by the progressive increase in activation energy, which rose from 8955 cal/mole in native enzyme to 11500 and 11666 cal/mole in solutions of enzyme irradiated for 15 and 30 min, respectively. Although the above data apply to the equine enzyme only, similar changes in kinetics were observed following irradiation of the enzyme in bovine erythrocytes. (BBB)« less
Miyazaki, Keiko; Jerome, Neil P; Collins, David J; Orton, Matthew R; d'Arcy, James A; Wallace, Toni; Moreno, Lucas; Pearson, Andrew D J; Marshall, Lynley V; Carceller, Fernando; Leach, Martin O; Zacharoulis, Stergios; Koh, Dow-Mu
2015-09-01
The objectives are to examine the reproducibility of functional MR imaging in children with solid tumours using quantitative parameters derived from diffusion-weighted (DW-) and dynamic contrast enhanced (DCE-) MRI. Patients under 16-years-of age with confirmed diagnosis of solid tumours (n = 17) underwent free-breathing DW-MRI and DCE-MRI on a 1.5 T system, repeated 24 hours later. DW-MRI (6 b-values, 0-1000 sec/mm(2)) enabled monoexponential apparent diffusion coefficient estimation using all (ADC0-1000) and only ≥100 sec/mm(2) (ADC100-1000) b-values. DCE-MRI was used to derive the transfer constant (K(trans)), the efflux constant (kep), the extracellular extravascular volume (ve), and the plasma fraction (vp), using a study cohort arterial input function (AIF) and the extended Tofts model. Initial area under the gadolinium enhancement curve and pre-contrast T1 were also calculated. Percentage coefficients of variation (CV) of all parameters were calculated. The most reproducible cohort parameters were ADC100-1000 (CV = 3.26%), pre-contrast T1 (CV = 6.21%), and K(trans) (CV = 15.23%). The ADC100-1000 was more reproducible than ADC0-1000, especially extracranially (CV = 2.40% vs. 2.78%). The AIF (n = 9) derived from this paediatric population exhibited sharper and earlier first-pass and recirculation peaks compared with the literature's adult population average. Free-breathing functional imaging protocols including DW-MRI and DCE-MRI are well-tolerated in children aged 6 - 15 with good to moderate measurement reproducibility. • Diffusion MRI protocol is feasible and well-tolerated in a paediatric oncology population. • DCE-MRI for pharmacokinetic evaluation is feasible and well tolerated in a paediatric oncology population. • Paediatric arterial input function (AIF) shows systematic differences from the adult population-average AIF. • Variation of quantitative parameters from paired functional MRI measurements were within 20%.
Ussavarungsi, Kamonpun; Lee, Augustine S; Burger, Charles D
2016-09-01
Pulmonary hypertension (PH) is commonly observed in patients with diffuse parenchymal lung disease (DPLD). The purpose of this study was to explore the influence of the 6-minute walk test (6MWT) as a simple, non-invasive tool to assess right ventricular (RV) function in patients with DPLD and to identify the need for an echocardiogram (ECHO) to screen for PH. We retrospectively reviewed 48 patients with PH secondary to DPLD, who were evaluated in the PH clinic at the Mayo Clinic in Jacksonville, Florida, from January 1999 to December 2014. Fifty-two percent of patients had RV dysfunction. They had a significantly greater right heart pressure by ECHO and mean pulmonary arterial pressure (MPAP) from right heart catheterization (RHC) than those with normal RV function. A reduced 6-minute walk distance (6MWD) did not predict RV dysfunction (OR 0.995; 95% CI 0.980-1.001, p = 0.138). In addition, worsening restrictive physiology, heart rate at one-minute recovery and desaturation were not different between patients with and without RV dysfunction. However, there were inverse correlations between 6MWD and MPAP from RHC (r = -0.41, p = 0.010), 6MWD and RV systolic pressure (r = -0.51, p < 0.001), and 6MWD and MPAP measured by ECHO (r = -0.46, p =0.013). We also found no significant correlation between 6MWD and pulmonary function test parameters. Our single-center cohort of patients with PH secondary to DPLD, PH was found to have an impact on 6MWD. In contrast to our expectations, 6MWD was not useful to predict RV dysfunction. Interestingly, a severe reduction in the 6MWD was related to PH and not to pulmonary function; therefore, it may be used to justify an ECHO to identify patients with a worse prognosis.
Lau, Condon; Zhou, Iris Y; Cheung, Matthew M; Chan, Kevin C; Wu, Ed X
2011-04-29
The superior colliculus (SC) and lateral geniculate nucleus (LGN) are important subcortical structures for vision. Much of our understanding of vision was obtained using invasive and small field of view (FOV) techniques. In this study, we use non-invasive, large FOV blood oxygenation level-dependent (BOLD) fMRI to measure the SC and LGN's response temporal dynamics following short duration (1 s) visual stimulation. Experiments are performed at 7 tesla on Sprague Dawley rats stimulated in one eye with flashing light. Gradient-echo and spin-echo sequences are used to provide complementary information. An anatomical image is acquired from one rat after injection of monocrystalline iron oxide nanoparticles (MION), a blood vessel contrast agent. BOLD responses are concentrated in the contralateral SC and LGN. The SC BOLD signal measured with gradient-echo rises to 50% of maximum amplitude (PEAK) 0.2±0.2 s before the LGN signal (p<0.05). The LGN signal returns to 50% of PEAK 1.4±1.2 s before the SC signal (p<0.05). These results indicate the SC signal rises faster than the LGN signal but settles slower. Spin-echo results support these findings. The post-MION image shows the SC and LGN lie beneath large blood vessels. This subcortical vasculature is similar to that in the cortex, which also lies beneath large vessels. The LGN lies closer to the large vessels than much of the SC. The differences in response timing between SC and LGN are very similar to those between deep and shallow cortical layers following electrical stimulation, which are related to depth-dependent blood vessel dilation rates. This combined with the similarities in vasculature between subcortex and cortex suggest the SC and LGN timing differences are also related to depth-dependent dilation rates. This study shows for the first time that BOLD responses in the rat SC and LGN following short duration visual stimulation are temporally different.
On the application of magic echo cycles for quadrupolar echo spectroscopy of spin-1 nuclei.
Mananga, E S; Roopchand, R; Rumala, Y S; Boutis, G S
2007-03-01
Magic echo cycles are introduced for performing quadrupolar echo spectroscopy of spin-1 nuclei. An analysis is performed via average Hamiltonian theory showing that the evolution under chemical shift or static field inhomogeneity can be refocused simultaneously with the quadrupolar interaction using these cycles. Due to the higher convergence in the Magnus expansion, with sufficient RF power, magic echo based quadrupolar echo spectroscopy outperforms the conventional two pulse quadrupolar echo in signal to noise. Experiments highlighting a signal to noise enhancement over the entire bandwidth of the quadrupolar pattern of a powdered sample of deuterated polyethelene are shown.
NASA Astrophysics Data System (ADS)
MacGibbon, J.; Whitehead, J. D.; From, W. R.
1989-03-01
Angle-of-arrival measurements were obtained for first echoes (those directly reflected from the ionosphere) and second echoes (those twice reflected from the ionosphere with an intermediate reflection from the ground). Unexpectedly, the off-vertical angle-of-arrival of the second echo was found to be consistently less than that of the first echo for much of the time. It is suggested that rapid phase variations caused by the change in the tilt of the ionosphere prevented recognition of the second echo by the present radar system for echoes reflected from rough terrain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jens, Sjoerd, E-mail: s.jens@amc.uva.nl; Marquering, Henk A., E-mail: h.a.marquering@amc.uva.nl; Koelemay, Mark J. W., E-mail: m.j.koelemaij@amc.uva.nl
ObjectiveTo study the feasibility of 2D perfusion imaging in critical limb ischemia (CLI).Methods/ResultsPerfusion angiography is a new technology which was tested in 18 patients with CLI of the foot. A standardized protocol was used with a catheter placed at the mid-part of the popliteal artery, and a total of 9 cc of non-ionic iodinated contrast material was injected at a rate of 3 cc/sec. The technology is based on early cardiology research where iodinated contrast agents were used for imaging of cardiac perfusion. During the first pass of the contrast, there is a significant diffusion of the contrast agents into the interstitialmore » space, particularly for non-ionic and low-molecular-weight compounds.DiscussionThe original angiography data can be used to make a time–density curve, which represents the actual perfusion of the foot in time. Angiographic perfusion imaging is a post-processing modality for which no extra contrast or radiation is needed. With this technique, it is possible to get more information about the perfusion status and microcirculation of the foot. This is a step toward functional imaging in CLI patients.« less
Rapid scatter estimation for CBCT using the Boltzmann transport equation
NASA Astrophysics Data System (ADS)
Sun, Mingshan; Maslowski, Alex; Davis, Ian; Wareing, Todd; Failla, Gregory; Star-Lack, Josh
2014-03-01
Scatter in cone-beam computed tomography (CBCT) is a significant problem that degrades image contrast, uniformity and CT number accuracy. One means of estimating and correcting for detected scatter is through an iterative deconvolution process known as scatter kernel superposition (SKS). While the SKS approach is efficient, clinically significant errors on the order 2-4% (20-40 HU) still remain. We have previously shown that the kernel method can be improved by perturbing the kernel parameters based on reference data provided by limited Monte Carlo simulations of a first-pass reconstruction. In this work, we replace the Monte Carlo modeling with a deterministic Boltzmann solver (AcurosCTS) to generate the reference scatter data in a dramatically reduced time. In addition, the algorithm is improved so that instead of adjusting kernel parameters, we directly perturb the SKS scatter estimates. Studies were conducted on simulated data and on a large pelvis phantom scanned on a tabletop system. The new method reduced average reconstruction errors (relative to a reference scan) from 2.5% to 1.8%, and significantly improved visualization of low contrast objects. In total, 24 projections were simulated with an AcurosCTS execution time of 22 sec/projection using an 8-core computer. We have ported AcurosCTS to the GPU, and current run-times are approximately 4 sec/projection using two GPU's running in parallel.
A whale better adjusts the biosonar to ordered rather than to random changes in the echo parameters.
Supin, Alexander Ya; Nachtigall, Paul E; Breese, Marlee
2012-09-01
A false killer whale's (Pseudorca crassidens) sonar clicks and auditory evoked potentials (AEPs) were recorded during echolocation with simulated echoes in two series of experiments. In the first, both the echo delay and transfer factor (which is the dB-ratio of the echo sound-pressure level to emitted pulse source level) were varied randomly from trial to trial until enough data were collected (random presentation). In the second, a combination of the echo delay and transfer factor was kept constant until enough data were collected (ordered presentation). The mean click level decreased with shortening the delay and increasing the transfer factor, more at the ordered presentation rather than at the random presentation. AEPs to the self-heard emitted clicks decreased with shortening the delay and increasing the echo level equally in both series. AEPs to echoes increased with increasing the echo level, little dependent on the echo delay at random presentations but much more dependent on delay with ordered presentations. So some adjustment of the whale's biosonar was possible without prior information about the echo parameters; however, the availability of prior information about echoes provided additional whale capabilities to adjust both the transmitting and receiving parts of the biosonar.
Dynamic Contrast-Enhanced MR Microscopy: Functional Imaging in Preclinical Models of Cancer
NASA Astrophysics Data System (ADS)
Subashi, Ergys
Dynamic contrast-enhanced (DCE) MRI has been widely used as a quantitative imaging method for monitoring tumor response to therapy. The pharmacokinetic parameters derived from this technique have been used in more than 100 phase I trials and investigator led studies. The simultaneous challenges of increasing the temporal and spatial resolution, in a setting where the signal from the much smaller voxel is weaker, have made this MR technique difficult to implement in small-animal imaging.Existing preclinical DCE-MRI protocols acquire a limited number of slices resulting in potentially lost information in the third dimension. Furthermore, drug efficacy studies measuring the effect of an anti-angiogenic treatment, often compare the derived biomarkers on manually selected tumor regions or over the entire volume. These measurements include domains where the interpretation of the biomarkers may be unclear (such as in necrotic areas). This dissertation describes and compares a family of four-dimensional (3D spatial + time), projection acquisition, keyhole-sampling strategies that support high spatial and temporal resolution. An interleaved 3D radial trajectory with a quasi-uniform distribution of points in k-space was used for sampling temporally resolved datasets. These volumes were reconstructed with three different k-space filters encompassing a range of possible keyhole strategies. The effect of k-space filtering on spatial and temporal resolution was studied in phantoms and in vivo. The statistical variation of the DCE-MRI measurement is analyzed by considering the fundamental sources of error in the MR signal intensity acquired with the spoiled gradient-echo (SPGR) pulse sequence. Finally, the technique was applied for measuring the extent of the opening of the blood-brain barrier in a mouse model of pediatric glioma and for identifying regions of therapeutic effect in a model of colorectal adenocarcinoma. It is shown that 4D radial keyhole imaging does not degrade the system spatial and temporal resolution at a cost of 20-40% decrease in SNR. The time-dependent concentration of the contrast agent measured in vivo is within the theoretically predicted limits. The uncertainty in measuring the pharmacokinetic parameters with the sequences is of the same order, but always higher than, the uncertainty in measuring the pre-injection longitudinal relaxation time. The histogram of the time-to-peak provides useful knowledge about the spatial distribution of Ktrans and microvascular density. Two regions with distinct kinetic parameters were identified when the TTP map from DCE-MRM was thresholded at 1000 sec. The effect of bevacizumab, as measured by a decrease in Ktrans, was confined to one of these regions. DCE-MRI studies may contribute unique insights into the response of the tumor microenvironment to therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-12-31
The purpose of this bill is to assist local governments and local citizens` organizations in the assessment and remediation of brownfield sites, and for other purposes. Attention is focused on the following: Sec. 101. Inventory, assessment, and training and grant program; Sec. 112. Grants for revolving loan programs; Sec. 113. Economic redevelopment grants; Sec. 114. Reports; Sec 115. Limitations on use of funds; Sec. 116 Siting of TSD facilities; Sec. 117. Effect on other laws; Sec. 118. Regulations; Sec. 119. Authorizations of appropriations; Sec 120. Research, development, and demonstration; Sec. 121. Assistance for workforce training; Sec. 122. Worker training andmore » education grants; and Sec. 201. Economic development grants in connection with community development loan guarantees.« less
How Can Dolphins Recognize Fish According to Their Echoes? A Statistical Analysis of Fish Echoes
Yovel, Yossi; Au, Whitlow W. L.
2010-01-01
Echo-based object classification is a fundamental task of animals that use a biosonar system. Dolphins and porpoises should be able to rely on echoes to discriminate a predator from a prey or to select a desired prey from an undesired object. Many studies have shown that dolphins and porpoises can discriminate between objects according to their echoes. All of these studies however, used unnatural objects that can be easily characterized in human terminologies (e.g., metallic spheres, disks, cylinders). In this work, we collected real fish echoes from many angles of acquisition using a sonar system that mimics the emission properties of dolphins and porpoises. We then tested two alternative statistical approaches in classifying these echoes. Our results suggest that fish species can be classified according to echoes returning from porpoise- and dolphin-like signals. These results suggest how dolphins and porpoises can classify fish based on their echoes and provide some insight as to which features might enable the classification. PMID:21124908
How can dolphins recognize fish according to their echoes? A statistical analysis of fish echoes.
Yovel, Yossi; Au, Whitlow W L
2010-11-19
Echo-based object classification is a fundamental task of animals that use a biosonar system. Dolphins and porpoises should be able to rely on echoes to discriminate a predator from a prey or to select a desired prey from an undesired object. Many studies have shown that dolphins and porpoises can discriminate between objects according to their echoes. All of these studies however, used unnatural objects that can be easily characterized in human terminologies (e.g., metallic spheres, disks, cylinders). In this work, we collected real fish echoes from many angles of acquisition using a sonar system that mimics the emission properties of dolphins and porpoises. We then tested two alternative statistical approaches in classifying these echoes. Our results suggest that fish species can be classified according to echoes returning from porpoise- and dolphin-like signals. These results suggest how dolphins and porpoises can classify fish based on their echoes and provide some insight as to which features might enable the classification.
The Solar Flux Dependence of Ionospheric 150 km Radar Echoes and Implications
NASA Astrophysics Data System (ADS)
Patra, A. K.; Pavan Chaitanya, P.; St.-Maurice, J.-P.; Otsuka, Y.; Yokoyama, T.; Yamamoto, M.
2017-11-01
Radar echoes from the daytime equatorial ionospheric F1 region, popularly known as "150 km echoes," have challenged ionospheric plasma physicists for several decades. Recent theoretical simulations showed that enhanced photoelectron fluxes can amplify the amplitude of plasma waves, generating spectra similar to those of the radar echoes, implying that larger solar fluxes should produce more frequent and stronger 150 km echoes. Inspired by this proposal, we studied the occurrence and intensity dependence of the echoes on the EUV flux observed by SOHO over several years. The occurrence and intensity of the echoes were found to have an inverse relationship with this EUV flux measurement. The multiyear trend is independent of the variability often observed over successive days with nearly identical EUV fluxes. These results imply that the relationship between the echoes and EUV flux is more complex. We propose that gravity waves modulate the amplitude of 150 km echoes through changes in the variations in plasma density and photoelectron fluxes associated with the gravity wave-induced neutral density modulations.
Mitchell, William Kyle; Phillips, Bethan E; Williams, John P; Rankin, Debbie; Smith, Kenneth; Lund, Jonathan N; Atherton, Philip J
2013-01-01
Compromised limb blood flow in aging may contribute to the development of sarcopenia, frailty, and the metabolic syndrome. We developed a novel contrast-enhanced ultrasound technique using Sonovue™ to characterize muscle microvasculature responses to an oral feeding stimulus (15 g essential amino acids) in young (∼20 years) and older (∼70 years) men. Intensity-time replenishment curves were made via an ultrasound probe “fixed” over the quadriceps, with intermittent high mechanical index destruction of microbubbles within muscle vasculature. This permitted real-time measures of microvascular blood volume (MBV), microvascular flow velocity (MFV) and their product, microvascular blood flow (MBF). Leg blood flow (LBF) was measured by Doppler and insulin by enzyme-linked immunosorbent assay. Steady-state contrast concentrations needed for comparison between different physiological states were achieved <150 sec from commencing Sonovue™ infusion, and MFV and MBV measurements were completed <120 sec thereafter. Interindividual coefficients of variation in MBV and MFV were 35–40%, (N = 36). Younger men (N = 6) exhibited biphasic vascular responses to feeding with early increases in MBV (+36%, P < 0.008 45 min post feed) reflecting capillary recruitment, and late increases in MFV (+77%, P < 0.008) and MBF (+130%, P < 0.007 195 min post feed) reflecting more proximal vessel dilatation. Early MBV responses were synchronized with peak insulin but not increased LBF, while later changes in MFV and MBF occurred with insulin at post absorptive values but alongside increased LBF. All circulatory responses were absent in old men (N = 7). Thus, impaired postprandial circulation could impact age-related declines in muscle glucose disposal, protein anabolism, and muscle mass. PMID:24303186
Up to 50-fold increase in urine viscosity with iso-osmolar contrast media in the rat.
Seeliger, Erdmann; Becker, Klaus; Ladwig, Mechthild; Wronski, Thomas; Persson, Pontus B; Flemming, Bert
2010-08-01
To compare changes in urinary viscosity in the renal tubules following administration of a high-viscosity iso-osmolar contrast agent (iodixanol) to that observed following administration of a less viscous, higher osmolar contrast agent (iopromide) in anesthetized rats. A total of 43 rats were studied. Experiments were approved by the Berlin, Germany, animal protection administration. A viscometer was developed to measure viscosity in minute samples (7 microL). Urine was collected, viscosity was measured (at 37 degrees C), and glomerular filtration rate (GFR) was determined by means of creatinine clearance. Boluses of 1.5 mL of iodixanol (320 mg iodine per milliliter, iso-osmolar to plasma, high viscosity) or iopromide (370 mg iodine per milliliter, higher osmolality and lower viscosity than iodixanol) were injected into the thoracic aorta. There were five groups (seven rats per group). Groups 1 (iodixanol) and 2 (iopromide) had free access to water prior to the experiment; groups 3 (iodixanol) and 4 (iopromide) received an additional infusion of isotonic saline (4 mL/kg/h). Group 5 was treated as group 1 but received only 0.75 mL of iodixanol. The observation period was 100 minutes. Statistical comparisons were made by means of nonparametric procedures (Friedman test, Kruskal-Wallis test). Iodixanol increased urine viscosity from 0.69 to 36.7 mm(2)/sec; thus, urine became threefold more viscous than native iodixanol solution. The increase in urine viscosity after injection of iopromide was from 0.73 to 2.3 mm(2)/sec. While GFR was not significantly affected by iopromide, GFR transiently decreased by 50% after administration of iodixanol. Iopromide had a diuretic effect twofold greater than that of iodixanol. Saline infusion blunted the viscosity rise and transient decline in GFR caused by iodixanol, as did reducing the iodixanol dose by 50%. Contrast media, in particular iodixanol, increase urine viscosity (which is equal to tubular fluid viscosity in the collecting ducts); in response to iodixanol, GFR markedly decreases. Saline infusion attenuates this response, thus potentially explaining the protective effects of volume expansion in contrast medium-induced nephropathy.
First refraction contrast imaging via Laser-Compton Scattering X-ray at KEK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakaue, Kazuyuki; Aoki, Tatsuro; Washio, Masakazu
2012-07-31
Laser-Compton Scattering (LCS) is one of the most feasible techniques for high quality, high brightness, and compact X-ray source. High energy electron beam produced by accelerators scatters off the laser photon at a small spot. As a laser target, we have been developing a pulsedlaser storage cavity for increasing an X-ray flux. The X-ray flux was still inadequate that was 2.1 Multiplication-Sign 10{sup 5}/sec, however, we performed first refraction contrast imaging in order to evaluate the quality of LCS X-ray. Edge enhanced contrast imaging was achieved by changing the distance from sample to detector. The edge enhancement indicates that themore » LCS X-ray has small source size, i.e. high brightness. We believe that the result has demonstrated good feasibility of linac-based high brightness X-ray sources via laser-electron Compton scatterings.« less
Probing the magnetsophere with artificial electron beams
NASA Technical Reports Server (NTRS)
Winckler, J. R.
1981-01-01
An analysis is conducted of the University of Minnesota Electron Echo experiments, which so far have included five sounding rocket experiments. The concept of the Echo experiment is to inject electron beam pulses from a rocket into the ionosphere at altitudes in the range from 100 to 300 km. The electrons move to the conjugate hemisphere following magnetic field lines and return on neighboring field lines to the neighborhood of the rocket where the pulses may be detected and analyzed. Attention is given to the detection and analysis of echoes, the structure of echoes, and the Echo V experiment. The Echo V experiment showed clearly that detection of remote echo beams by atmospheric fluorescence using low light level TV system is not a viable technique. A future experiment is to use throw-away detectors for direct remote echo detection.
77 FR 14417 - Notice of Temporary Closure on Public Lands in Gooding and Elmore Counties, ID
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-09
... affected public lands is: Boise Meridian, Idaho T. 3 S., R. 10 E., Sec. 35. T. 4 S., R. 10 E., Secs. 1 and 2; Secs. 12 to 15, inclusive; Sec. 17; Secs. 20 to 28, inclusive; Secs. 33 to 35, inclusive. T. 5 S., R. 10 E., Secs. 3 and 4. T. 3 S., R. 11 E., Secs. 31 and 33. T. 4 S., R. 11 E., Secs. 3 to 15...
NASA Astrophysics Data System (ADS)
Strohm, Eric; Rui, Min; Gorelikov, Ivan; Matsuura, Naomi; Kolios, Michael
2011-03-01
An acoustic and photoacoustic characterization of micron-sized perfluorocarbon (PFC) droplets is presented. PFC droplets are currently being investigated as acoustic and photoacoustic contrast agents and as cancer therapy agents. Pulse echo measurements at 375 MHz were used to determine the diameter, ranging from 3.2 to 6.5 μm, and the sound velocity, ranging from 311 to 406 m/s of nine droplets. An average sound velocity of 379 +/- 18 m/s was calculated for droplets larger than the ultrasound beam width of 4.0 μm. Optical droplet vaporization, where vaporization of a single droplet occurred upon laser irradiation of sufficient intensity, was verified using pulse echo acoustic methods. The ultrasonic backscatter amplitude, acoustic impedance and attenuation increased after vaporization, consistent with a phase change from a liquid to gas core. Photoacoustic measurements were used to compare the spectra of three droplets ranging in diameter from 3.0 to 6.2 μm to a theoretical model. Good agreement in the spectral features was observed over the bandwidth of the 375 MHz transducer.
Magnetic resonance imaging of the wrist: bone and cartilage injury.
Hayter, Catherine L; Gold, Stephanie L; Potter, Hollis G
2013-05-01
Magnetic resonance imaging (MRI) is particularly useful for imaging the wrist due to its superior soft tissue contrast and ability to detect subtle bone marrow changes and occult fractures. A high field (1.5T or greater) strength, dedicated wrist coil, and high in-plane and through-plane resolution must be utilized to successfully visualize the relatively thin cartilage of the wrist. MRI can be used to detect occult carpal bone fractures, identify complications following scaphoid fractures, and assess for avascular necrosis in the setting in Kienböck's and Preiser's disease. MRI is useful to identify secondary soft tissue and chondral pathology in impaction/impingement syndromes. The use of an intermediate-echo time fast spin echo sequence allows for accurate assessment of articular cartilage, allowing evaluation of chondral wear in the setting of primary osteoarthritis and posttraumatic degenerative arthrosis. MRI is the most sensitive imaging modality for the detection of early inflammatory arthropathies and can detect synovitis, bone marrow edema, and early erosions in the setting of negative radiographs. Copyright © 2012 Wiley Periodicals, Inc.
Equivalence of time and aperture domain additive noise in ultrasound coherence.
Bottenus, Nick B; Trahey, Gregg E
2015-01-01
Ultrasonic echoes backscattered from diffuse media, recorded by an array transducer and appropriately focused, demonstrate coherence predicted by the van Cittert-Zernike theorem. Additive noise signals from off-axis scattering, reverberation, phase aberration, and electronic (thermal) noise can all superimpose incoherent or partially coherent signals onto the recorded echoes, altering the measured coherence. An expression is derived to describe the effect of uncorrelated random channel noise in terms of the noise-to-signal ratio. Equivalent descriptions are made in the aperture dimension to describe uncorrelated magnitude and phase apodizations of the array. Binary apodization is specifically described as an example of magnitude apodization and adjustments are presented to minimize the artifacts caused by finite signal length. The effects of additive noise are explored in short-lag spatial coherence imaging, an image formation technique that integrates the calculated coherence curve of acquired signals up to a small fraction of the array length for each lateral and axial location. A derivation of the expected contrast as a function of noise-to-signal ratio is provided and validation is performed in simulation.
A multislice gradient echo pulse sequence for CEST imaging.
Dixon, W Thomas; Hancu, Ileana; Ratnakar, S James; Sherry, A Dean; Lenkinski, Robert E; Alsop, David C
2010-01-01
Chemical exchange-dependent saturation transfer and paramagnetic chemical exchange-dependent saturation transfer are agent-mediated contrast mechanisms that depend on saturating spins at the resonant frequency of the exchangeable protons on the agent, thereby indirectly saturating the bulk water. In general, longer saturating pulses produce stronger chemical and paramagnetic exchange-dependent saturation transfer effects, with returns diminishing for pulses longer than T1. This could make imaging slow, so one approach to chemical exchange-dependent saturation transfer imaging has been to follow a long, frequency-selective saturation period by a fast imaging method. A new approach is to insert a short frequency-selective saturation pulse before each spatially selective observation pulse in a standard, two-dimensional, gradient-echo pulse sequence. Being much less than T1 apart, the saturation pulses have a cumulative effect. Interleaved, multislice imaging is straightforward. Observation pulses directed at one slice did not produce observable, unintended chemical exchange-dependent saturation transfer effects in another slice. Pulse repetition time and signal-to noise ratio increase in the normal way as more slices are imaged simultaneously. Copyright (c) 2009 Wiley-Liss, Inc.
Estimation of Characteristics of Echo Envelope Using RF Echo Signal from the Liver
NASA Astrophysics Data System (ADS)
Yamaguchi, Tadashi; Hachiya, Hiroyuki; Kamiyama, Naohisa; Ikeda, Kazuki; Moriyasu, Norifumi
2001-05-01
To realize quantitative diagnosis of liver cirrhosis, we have been analyzing the probability density function (PDF) of echo amplitude using B-mode images. However, the B-mode image is affected by the various signal and image processing techniques used in the diagnosis equipment, so a detailed and quantitative analysis is very difficult. In this paper, we analyze the PDF of echo amplitude using RF echo signal and B-mode images of normal and cirrhotic livers, and compare both results to examine the validity of the RF echo signal.
Vaphiades, Michael S.; Visscher, Kristina; Rucker, Janet C.; Vattoth, Surjith; Roberson, Glenn H.
2015-01-01
ABSTRACT An 18-year-old woman underwent an uneventful ascending aortic aneurysm repair then developed progressive supranuclear palsy-like syndrome. Extensive neuroimaging including contrasted fat-suppressed cranial and orbital magnetic resonance imaging (MRI), MRI tractography, and functional MRI (fMRI) revealed no clear radiographic involvement except for a single tiny hypoechoic midbrain dot on the T2*-weighted gradient-echo imaging, which is not considered sufficient to account for the patient’s deficits. This case attests to the occult nature of this rare and devastating syndrome. PMID:27928334
NASA Astrophysics Data System (ADS)
Coumou, Pieter-Jan C. J. J.; Brizard, Aurelie M. A.; van Esch, Jan H.; de Schepper, Ignatz M.; Bouwman, Wim G.
2010-11-01
From dibenzoyl cystine, a low molecular weight gelator, we have prepared needle shaped crystals at relatively high concentrations. For the first time SESANS measurements are performed on objects with this geometry. From the measurements the average diameter can be seen directly. From a more careful analysis the width distribution is determined. The gel phase itself prepared at lower concentrations did not show any signal, in contrast to what one observes with conventional SANS. This shows the complementarity of SESANS and SANS.
Dronkers, C E A; Klok, F A; van Haren, G R; Gleditsch, J; Westerlund, E; Huisman, M V; Kroft, L J M
2018-03-01
Diagnosing upper extremity deep vein thrombosis (UEDVT) can be challenging. Compression ultrasonography is often inconclusive because of overlying anatomic structures that hamper compressing veins. Contrast venography is invasive and has a risk of contrast allergy. Magnetic Resonance Direct Thrombus Imaging (MRDTI) and Three Dimensional Turbo Spin-echo Spectral Attenuated Inversion Recovery (3D TSE-SPAIR) are both non-contrast-enhanced Magnetic Resonance Imaging (MRI) sequences that can visualize a thrombus directly by the visualization of methemoglobin, which is formed in a fresh blood clot. MRDTI has been proven to be accurate in diagnosing deep venous thrombosis (DVT) of the leg. The primary aim of this pilot study was to test the feasibility of diagnosing UEDVT with these MRI techniques. MRDTI and 3D TSE-SPAIR were performed in 3 pilot patients who were already diagnosed with UEDVT by ultrasonography or contrast venography. In all patients, UEDVT diagnosis could be confirmed by MRDTI and 3D TSE-SPAIR in all vein segments. In conclusion, this study showed that non-contrast MRDTI and 3D TSE-SPAIR sequences may be feasible tests to diagnose UEDVT. However diagnostic accuracy and management studies have to be performed before these techniques can be routinely used in clinical practice. Copyright © 2018 Elsevier Ltd. All rights reserved.
Nonlinear theory of transverse beam echoes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sen, Tanaji; Li, Yuan Shen
Transverse beam echoes can be excited with a single dipole kick followed by a single quadrupole kick. They have been used to measure diffusion in hadron beams and have other diagnostic capabilities. Here we develop theories of the transverse echo nonlinear in both the dipole and quadrupole kick strengths. The theories predict the maximum echo amplitudes and the optimum strength parameters. We find that the echo amplitude increases with smaller beam emittance and the asymptotic echo amplitude can exceed half the initial dipole kick amplitude. We show that multiple echoes can be observed provided the dipole kick is large enough.more » The spectrum of the echo pulse can be used to determine the nonlinear detuning parameter with small amplitude dipole kicks. Simulations are performed to check the theoretical predictions. In the useful ranges of dipole and quadrupole strengths, they are shown to be in reasonable agreement.« less
Nonlinear theory of transverse beam echoes
Sen, Tanaji; Li, Yuan Shen
2018-02-23
Transverse beam echoes can be excited with a single dipole kick followed by a single quadrupole kick. They have been used to measure diffusion in hadron beams and have other diagnostic capabilities. Here we develop theories of the transverse echo nonlinear in both the dipole and quadrupole kick strengths. The theories predict the maximum echo amplitudes and the optimum strength parameters. We find that the echo amplitude increases with smaller beam emittance and the asymptotic echo amplitude can exceed half the initial dipole kick amplitude. We show that multiple echoes can be observed provided the dipole kick is large enough.more » The spectrum of the echo pulse can be used to determine the nonlinear detuning parameter with small amplitude dipole kicks. Simulations are performed to check the theoretical predictions. In the useful ranges of dipole and quadrupole strengths, they are shown to be in reasonable agreement.« less
The relationship between fireballs and HRO Long Echos
NASA Astrophysics Data System (ADS)
Yanagida, E.; Amikura, S.
Ham-band Radio Observation (HRO) is one of the major methods used to observe meteor activity in Japan. We receive certain types of meteor echoes. One of the types is the long-lasting echo called a ``Long Echo''. We have the impression that Long Echoes correspond to fireballs. The present research found this relation and tried to identify fireball data from visual observations with Long Echo data of the 2002 Leonids, Geminids, and Quadrantids. From these data, we found that the identification percentage tended to be higher for fainter magnitudes, but that the percentage is small, the percentages of each meteor stream being less than 30 %. From these results, this research found that we could not simply say that brighter meteors were received as Long Echoes. It depends on the geocentric velocity of the meteor stream, with a possibility that Long Echoes correspond to darker as well as brighter fireballs.
Removing the echoes from terahertz pulse reflection system and sample
NASA Astrophysics Data System (ADS)
Liu, Haishun; Zhang, Zhenwei; Zhang, Cunlin
2018-01-01
Due to the echoes both from terahertz (THz) pulse reflection system and sample, the THz primary pulse will be distorted. The system echoes include two types. One preceding the main peak probably is caused by ultrafast laser pulse and the other at the back of the primary pulse is caused by the Fabry-Perot (F-P) etalon effect of detector. We attempt to remove the corresponding echoes by using two kinds of deconvolution. A Si wafer of 400μm was selected as the tested sample. Firstly, the method of double Gaussian filter (DGF) decnvolution was used to remove the systematic echoes, and then another deconvolution technique was employed to eliminate the two obvious echoes of the sample. The ultimate results indicated: although the combination of two deconvolution techniques could not entirely remove the echoes of sample and system, the echoes were largely reduced.
NASA Astrophysics Data System (ADS)
From, W. R.; MacGibbon, J.; Whitehead, J. D.
1989-03-01
Angles of arrival of first echoes (those directly reflected from the ionosphere) and second echoes (those twice reflected from the ionosphere with an intermediate reflection from the ground) were measured. It is easy to show that under specified conditions the off-vertical angle of arrival of the second echo ought to be twice that of the first echo. It is consistently found to be less than this for much of the time. Several possibilities are canvassed, but none provide a convincing explanation. The place on the Earth from which the second echo was reflected was nearly always the sea or flat ground. Apparently, rapid phase variations, as the tilt of the ionosphere changed, prevented recognition of the second echo by this particular radar system for echoes reflected from rough terrain.
Protein Export by the Mycobacterial SecA2 System Is Determined by the Preprotein Mature Domain
Feltcher, Meghan E.; Gibbons, Henry S.; Ligon, Lauren S.
2013-01-01
At the core of the bacterial general secretion (Sec) pathway is the SecA ATPase, which powers translocation of unfolded preproteins containing Sec signal sequences through the SecYEG membrane channel. Mycobacteria have two nonredundant SecA homologs: SecA1 and SecA2. While the essential SecA1 handles “housekeeping” export, the nonessential SecA2 exports a subset of proteins and is required for Mycobacterium tuberculosis virulence. Currently, it is not understood how SecA2 contributes to Sec export in mycobacteria. In this study, we focused on identifying the features of two SecA2 substrates that target them to SecA2 for export, the Ms1704 and Ms1712 lipoproteins of the model organism Mycobacterium smegmatis. We found that the mature domains of Ms1704 and Ms1712, not the N-terminal signal sequences, confer SecA2-dependent export. We also demonstrated that the lipid modification and the extreme N terminus of the mature protein do not impart the requirement for SecA2 in export. We further showed that the Ms1704 mature domain can be efficiently exported by the twin-arginine translocation (Tat) pathway. Because the Tat system exports only folded proteins, this result implies that SecA2 substrates can fold in the cytoplasm and suggests a putative role of SecA2 in enabling export of such proteins. Thus, the mycobacterial SecA2 system may represent another way that bacteria solve the problem of exporting proteins that can fold in the cytoplasm. PMID:23204463
Randall, Linda L; Henzl, Michael T
2010-06-01
Protein export mediated by the general secretory Sec system in Escherichia coli proceeds by a dynamic transfer of a precursor polypeptide from the chaperone SecB to the SecA ATPase motor of the translocon and subsequently into and through the channel of the membrane-embedded SecYEG heterotrimer. The complex between SecA and SecB is stabilized by several separate sites of contact. Here we have demonstrated directly an interaction between the N-terminal residues 2 through 11 of SecA and the C-terminal 13 residues of SecB by isothermal titration calorimetry and analytical sedimentation velocity centrifugation. We discuss the unusual binding properties of SecA and SecB in context of a model for transfer of the precursor along the pathway of export.
Khoriaty, Rami; Everett, Lesley; Chase, Jennifer; Zhu, Guojing; Hoenerhoff, Mark; McKnight, Brooke; Vasievich, Matthew P.; Zhang, Bin; Tomberg, Kärt; Williams, John; Maillard, Ivan; Ginsburg, David
2016-01-01
In humans, loss of function mutations in SEC23B result in Congenital Dyserythropoietic Anemia type II (CDAII), a disease limited to defective erythroid development. Patients with two nonsense SEC23B mutations have not been reported, suggesting that complete SEC23B deficiency might be lethal. We previously reported that SEC23B-deficient mice die perinatally, exhibiting massive pancreatic degeneration and that mice with hematopoietic SEC23B deficiency do not exhibit CDAII. We now show that SEC23B deficiency restricted to the pancreas is sufficient to explain the lethality observed in mice with global SEC23B-deficiency. Immunohistochemical stains demonstrate an acinar cell defect but normal islet cells. Mammalian genomes contain two Sec23 paralogs, Sec23A and Sec23B. The encoded proteins share ~85% amino acid sequence identity. We generate mice with pancreatic SEC23A deficiency and demonstrate that these mice survive normally, exhibiting normal pancreatic weights and histology. Taken together, these data demonstrate that SEC23B but not SEC23A is essential for murine pancreatic development. We also demonstrate that two BAC transgenes spanning Sec23b rescue the lethality of mice homozygous for a Sec23b gene trap allele, excluding a passenger gene mutation as the cause of the pancreatic lethality, and indicating that the regulatory elements critical for Sec23b pancreatic function reside within the BAC transgenes. PMID:27297878
Imaging inflammation in mouse colon using a rapid stage-scanning confocal fluorescence microscope
NASA Astrophysics Data System (ADS)
Saldua, Meagan A.; Olsovsky, Cory A.; Callaway, Evelyn S.; Chapkin, Robert S.; Maitland, Kristen C.
2012-01-01
Large area confocal microscopy may provide fast, high-resolution image acquisition for evaluation of tissue in pre-clinical studies with reduced tissue processing in comparison to histology. We present a rapid beam and stage-scanning confocal fluorescence microscope to image cellular and tissue features along the length of the entire excised mouse colon. The beam is scanned at 8,333 lines/sec by a polygon scanning mirror while the specimen is scanned in the orthogonal axis by a motorized translation stage with a maximum speed of 7 mm/sec. A single 1×60 mm2 field of view image spanning the length of the mouse colon is acquired in 10 s. Z-projection images generated from axial image stacks allow high resolution imaging of the surface of non-flat specimens. In contrast to the uniform size, shape, and distribution of colon crypts in confocal images of normal colon, confocal images of chronic bowel inflammation exhibit heterogeneous tissue structure with localized severe crypt distortion.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-24
...., partially surveyed, Sec. 7, NW\\1/4\\ and S\\1/2\\. T. 16 S., R. 58 E., unsurveyed, Secs. 11 thru 14, inclusive; Secs. 23 thru 26, inclusive; Secs. 35 and 36. T. 15 S., R. 59 E., unsurveyed, Secs. 2 thru 11, inclusive; Secs. 14 thru 23, inclusive; Secs. 26 thru 35, inclusive. T. 16 S., R. 59 E., unsurveyed, Secs. 2...
Cardiac phenotyping in ex vivo murine embryos using microMRI.
Cleary, Jon O; Price, Anthony N; Thomas, David L; Scambler, Peter J; Kyriakopoulou, Vanessa; McCue, Karen; Schneider, Jürgen E; Ordidge, Roger J; Lythgoe, Mark F
2009-10-01
Microscopic MRI (microMRI) is an emerging technique for high-throughput phenotyping of transgenic mouse embryos, and is capable of visualising abnormalities in cardiac development. To identify cardiac defects in embryos, we have optimised embryo preparation and MR acquisition parameters to maximise image quality and assess the phenotypic changes in chromodomain helicase DNA-binding protein 7 (Chd7) transgenic mice. microMRI methods rely on tissue penetration with a gadolinium chelate contrast agent to reduce tissue T(1), thus improving signal-to-noise ratio (SNR) in rapid gradient echo sequences. We investigated 15.5 days post coitum (dpc) wild-type CD-1 embryos fixed in gadolinium-diethylene triamine pentaacetic acid (Gd-DTPA) solutions for either 3 days (2 and 4 mM) or 2 weeks (2, 4, 8 and 16 mM). To assess penetration of the contrast agent into heart tissue and enable image contrast simulations, T(1) and T(*) (2) were measured in heart and background agarose. Compared to 3-day, 2-week fixation showed reduced mean T(1) in the heart at both 2 and 4 mM concentrations (p < 0.0001), resulting in calculated signal gains of 23% (2 mM) and 29% (4 mM). Using T(1) and T(*) (2) values from 2-week concentrations, computer simulation of heart and background signal, and ex vivo 3D gradient echo imaging, we demonstrated that 2-week fixed embryos in 8 mM Gd-DTPA in combination with optimised parameters (TE/TR/alpha/number of averages: 9 ms/20 ms/60 degrees /7) produced the largest SNR in the heart (23.2 +/- 1.0) and heart chamber contrast-to-noise ratio (CNR) (27.1 +/- 1.6). These optimised parameters were then applied to an MRI screen of embryos heterozygous for the gene Chd7, implicated in coloboma of the eye, heart defects, atresia of the choanae, retardation of growth, genital/urinary abnormalities, ear abnormalities and deafness (CHARGE) syndrome (a condition partly characterised by cardiovascular birth defects in humans). A ventricular septal defect was readily identified in the screen, consistent with the human phenotype. (c) 2009 John Wiley & Sons, Ltd.
Leiner, Tim; Vink, Eva E.; Blankestijn, Peter J.; van den Berg, Cornelis A.T.
2017-01-01
Purpose Renal dynamic contrast‐enhanced (DCE) MRI provides information on renal perfusion and filtration. However, clinical implementation is hampered by challenges in postprocessing as a result of misalignment of the kidneys due to respiration. We propose to perform automated image registration using the fat‐only images derived from a modified Dixon reconstruction of a dual‐echo acquisition because these provide consistent contrast over the dynamic series. Methods DCE data of 10 hypertensive patients was used. Dual‐echo images were acquired at 1.5 T with temporal resolution of 3.9 s during contrast agent injection. Dixon fat, water, and in‐phase and opposed‐phase (OP) images were reconstructed. Postprocessing was automated. Registration was performed both to fat images and OP images for comparison. Perfusion and filtration values were extracted from a two‐compartment model fit. Results Automatic registration to fat images performed better than automatic registration to OP images with visible contrast enhancement. Median vertical misalignment of the kidneys was 14 mm prior to registration, compared to 3 mm and 5 mm with registration to fat images and OP images, respectively (P = 0.03). Mean perfusion values and MR‐based glomerular filtration rates (GFR) were 233 ± 64 mL/100 mL/min and 60 ± 36 mL/minute, respectively, based on fat‐registered images. MR‐based GFR correlated with creatinine‐based GFR (P = 0.04) for fat‐registered images. For unregistered and OP‐registered images, this correlation was not significant. Conclusion Absence of contrast changes on Dixon fat images improves registration in renal DCE MRI and enables automated postprocessing, resulting in a more accurate estimation of GFR. Magn Reson Med 80:66–76, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. PMID:29134673
Phase imaging in brain using SWIFT
NASA Astrophysics Data System (ADS)
Lehto, Lauri Juhani; Garwood, Michael; Gröhn, Olli; Corum, Curtis Andrew
2015-03-01
The majority of MRI phase imaging is based on gradient recalled echo (GRE) sequences. This work studies phase contrast behavior due to small off-resonance frequency offsets in brain using SWIFT, a FID-based sequence with nearly zero acquisition delay. 1D simulations and a phantom study were conducted to describe the behavior of phase accumulation in SWIFT. Imaging experiments of known brain phase contrast properties were conducted in a perfused rat brain comparing GRE and SWIFT. Additionally, a human brain sample was imaged. It is demonstrated how SWIFT phase is orientation dependent and correlates well with GRE, linking SWIFT phase to similar off-resonance sources as GRE. The acquisition time is shown to be analogous to TE for phase accumulation time. Using experiments with and without a magnetization transfer preparation, the likely effect of myelin water pool contribution is seen as a phase increase for all acquisition times. Due to the phase accumulation during acquisition, SWIFT phase contrast can be sensitized to small frequency differences between white and gray matter using low acquisition bandwidths.
Suh, J S; Cho, J H; Shin, K H; Kim, S J
1996-01-01
Twenty-one MRI studies with a fat-suppression three-dimensional spoiled gradient-recalled echo in a steady state (3D SPGR) pulse sequence after intravenous contrast injection were evaluated to assess the accuracy in depicting chondromalacia of the knee. On the basis of MR images, chondromalacia and its grade were determined in each of five articular cartilage regions (total, 105 regions) and then the results were compared to arthroscopic findings. The sensitivity, specificity, and accuracy of MRI were 70%, 99%, and 93%, respectively. MR images depicted 7 of 11 lesions of arthroscopic grade 1 or 2 chondromalacia, and seven of nine lesions of arthroscopic grade 3 or 4 chondromalacia. The cartilage abnormalities in all cases appeared as focal lesions with high signal intensity. Intravenous contrast-injection, fat-suppression 3D SPGR imaging showed high specificity in excluding cartilage abnormalities and may be considered as an alternative to intra-articular MR arthrography when chondromalacia is suspected.
Tague, Lauren; Wiggs, Justin; Li, Qianxi; McCarter, Robert; Sherwin, Elizabeth; Weinberg, Jacqueline; Sable, Craig
2018-05-17
Left ventricular hypertrophy (LVH) is a common finding on pediatric electrocardiography (ECG) leading to many referrals for echocardiography (echo). This study utilizes a novel analytics tool that combines ECG and echo databases to evaluate ECG as a screening tool for LVH. SQL Server 2012 data warehouse incorporated ECG and echo databases for all patients from a single institution from 2006 to 2016. Customized queries identified patients 0-18 years old with LVH on ECG and an echo performed within 24 h. Using data visualization (Tableau) and analytic (Stata 14) software, ECG and echo findings were compared. Of 437,699 encounters, 4637 met inclusion criteria. ECG had high sensitivity (≥ 90%) but poor specificity (43%), and low positive predictive value (< 20%) for echo abnormalities. ECG performed only 11-22% better than chance (AROC = 0.50). 83% of subjects with LVH on ECG had normal left ventricle (LV) structure and size on echo. African-Americans with LVH were least likely to have an abnormal echo. There was a low correlation between V 6 R on ECG and echo-derived Z score of left ventricle diastolic diameter (r = 0.14) and LV mass index (r = 0.24). The data analytics client was able to mine a database of ECG and echo reports, comparing LVH by ECG and LV measurements and qualitative findings by echo, identifying an abnormal LV by echo in only 17% of cases with LVH on ECG. This novel tool is useful for rapid data mining for both clinical and research endeavors.
The Future of ECHO: Evaluating Open Source Possibilities
NASA Astrophysics Data System (ADS)
Pilone, D.; Gilman, J.; Baynes, K.; Mitchell, A. E.
2012-12-01
NASA's Earth Observing System ClearingHOuse (ECHO) is a format agnostic metadata repository supporting over 3000 collections and 100M science granules. ECHO exposes FTP and RESTful Data Ingest APIs in addition to both SOAP and RESTful search and order capabilities. Built on top of ECHO is a human facing search and order web application named Reverb. ECHO processes hundreds of orders, tens of thousands of searches, and 1-2M ingest actions each week. As ECHO's holdings, metadata format support, and visibility have increased, the ECHO team has received requests by non-NASA entities for copies of ECHO that can be run locally against their data holdings. ESDIS and the ECHO Team have begun investigations into various deployment and Open Sourcing models that can balance the real constraints faced by the ECHO project with the benefits of providing ECHO capabilities to a broader set of users and providers. This talk will discuss several release and Open Source models being investigated by the ECHO team along with the impacts those models are expected to have on the project. We discuss: - Addressing complex deployment or setup issues for potential users - Models of vetting code contributions - Balancing external (public) user requests versus our primary partners - Preparing project code for public release, including navigating licensing issues related to leveraged libraries - Dealing with non-free project dependencies such as commercial databases - Dealing with sensitive aspects of project code such as database passwords, authentication approaches, security through obscurity, etc. - Ongoing support for the released code including increased testing demands, bug fixes, security fixes, and new features.
Echo tracker/range finder for radars and sonars
NASA Technical Reports Server (NTRS)
Constantinides, N. J. (Inventor)
1982-01-01
An echo tracker/range finder or altimeter is described. The pulse repetition frequency (PFR) of a predetermined plurality of transmitted pulses is adjusted so that echo pulses received from a reflecting object are positioned between transmitted pulses and divided their interpulse time interval into two time intervals having a predetermined ratio with respect to each other. The invention described provides a means whereby the arrival time of a plurality of echo pulses is defined as the time at which a composite echo pulse formed of a sum of the individual echo pulses has the highest amplitude. The invention is applicable to radar systems, sonar systems, or any other kind of system in which pulses are transmitted and echoes received therefrom.
Kontinen, V P; Yamanaka, M; Nishiyama, K; Tokuda, H
1996-06-01
SecE, an essential membrane component of the Escherichia coli protein translocase, consists of 127 amino acid residues. Only a part of the second putative cytoplasmic region comprising some 13 residues is essential for the SecE function as long as the proper topological arrangement is retained. The Trp84 and Pro85 residues of this region are conserved in all eubacterial SecE homologues. The conservation of positively charged residues corresponding to Arg80 and Lys81 is also substantial. We deleted or replaced these residues to assess their roles in the SecE function. Deletion of the Arg80-Lys81 dipeptide did not abolish the SecE function whereas that of Trp84 or Pro85 caused a loss of the function. Strikingly, however, replacement of Pro85 with either Gly, Ser, or Ala, and that of Trp84 with Lys did not abolish the SecE function. These results indicate that the strong conservation of these residues does not reflect their obligatory requirement for the SecE function. A chimeric SecE possessing the cytoplasmic region of the E. coli SecE and the following region of the Bacillus subtilis SecE was able to form the translocation machinery together with SecA, SecY, and SecG. Although a Leu to Arg mutation at position 108 has been thought to cause a loss of signal recognition fidelity and thereby suppress a signal sequence defect, the same mutation at position 111 caused a complete loss of the function. The levels of SecY and SecG in the secEcsE501 mutant, which expresses SecE at a decreased level and is sensitive to low temperature, increased upon the expression of functional SecE derivatives, irrespective of the site of mutation, suggesting that the levels of SecY and SecG are co-operatively determined by the level of functional, but not non-functional, SecE. Based on these results, the SecE function in the translocase is discussed.
Aubauer, R; Au, W W; Nachtigall, P E; Pawloski, D A; DeLong, C M
2000-05-01
Animal behavior experiments require not only stimulus control of the animal's behavior, but also precise control of the stimulus itself. In discrimination experiments with real target presentation, the complex interdependence between the physical dimensions and the backscattering process of an object make it difficult to extract and control relevant echo parameters separately. In other phantom-echo experiments, the echoes were relatively simple and could only simulate certain properties of targets. The echo-simulation method utilized in this paper can be used to transform any animal echolocation sound into phantom echoes of high fidelity and complexity. The developed phantom-echo system is implemented on a digital signal-processing board and gives an experimenter fully programmable control over the echo-generating process and the echo structure itself. In this experiment, the capability of a dolphin to discriminate between acoustically simulated phantom replicas of targets and their real equivalents was tested. Phantom replicas were presented in a probe technique during a materials discrimination experiment. The animal accepted the phantom echoes and classified them in the same manner as it classified real targets.
ECHO Data Partners Join Forces to Federate Access to Resources
NASA Astrophysics Data System (ADS)
Kendall, J.; Macie, M.
2003-12-01
During the past year the NASA's Earth Science Data and Information System (ESDIS) project has been collaborating with various Earth science data and client providers to design and implement the EOS Clearinghouse (ECHO). ECHO is an open, interoperable metadata clearinghouse and order broker system. ECHO functions as a repository of information intended to streamline access to digital data and services provided by NASA's Earth Science Enterprise and the extended Earth science community. In a unique partnership, ECHO data providers are working to extend their services in the digital era, to reflect current trends in scientific and educational communications. The multi-organization, inter-disciplinary content of ECHO provides a valuable new service to a growing number of Earth science applications and interdisciplinary research efforts. As such, ECHO is expected to attract a wide audience. In this poster, we highlight the contributions of current ECHO data partners and provide information for prospective data partners on how the project supports the incorporation of new collections and effective long-term asset management that is directly under the control of the organizations who contribute resources to ECHO.
Comparative analysis of renal flow using contrast power Doppler and gray-scale ultrasound
NASA Astrophysics Data System (ADS)
Sehgal, Chandra M.; Arger, Peter H.; Bovee, Kenneth C.; Pugh, Charles; Kirchhofer, Justin I.
1997-05-01
Our previous studies have shown that renal perfusion can be visualized by imaging the transit of a contrast agent through the parenchyma of the organ using gray scale (GS) and power Doppler (PD) ultrasound.However, the relative merits and the sensitivities of the two imaging methods are not known. This study compares the effectiveness of the two modes in visualizing kidney perfusion at the clinical dose of contrast agents. GS and PD images of the dog kidneys were recorded using a clinical ultrasound scanner at 4-7 MHz. A fixed longitudinal plane of the kidney was imaged by mounting the transducer on the animal with a specially designed holder. A dose of 0.1 m1/kg of Echogen was injected intravenously and GS and PD images were recorded simultaneously on two separate time-encoded video tapes during the passage of the contrast agent through the kidneys. The enhancement of GS and PD images was assessed qualitatively by three radiologists. The quantitative assessment was made by measuring the regional and global enhancements of digitized B-scan and PS images. Regional measurements were made by comparing brightness of the post contrast images with that of a pre-contrast reference image pixel by pixel. Student t-test was used to determine the statistical significance of the change. The regions representing statistically significant differences were encoded on the image in color with brightness proportional to the magnitude of change. The regions with no significant change were represented in GS. This generated a series of new images, referred to as StatMap, with color representing regions of perfusion. Changes in power Doppler images were visually detectable with high confidence in all five dogs by al three radiologists. There was no perceptible changes in B-scans. Computer analysis of PD images yielded characteristic indicator dilution curves in all five dogs with an initial rise time of 2-5 sec and a peak at 7-20 sec. The enhancement in PD lasted for 97-400 seconds. The peak to pre-injection Doppler power ratio was 2.41 +/- 0.85. There were not detectable changes in gray scale images except in one dog which exhibited a small change. The StatMap images of PD exhibited perfusion over the entire kidney, whereas the GS images showed perfusion to be sparsely distributed.
Laghi, Andrea; Paolantonio, Pasquale; Iafrate, Franco; Borrelli, Osvaldo; Dito, Lucia; Tomei, Ernesto; Cucchiara, Salvatore; Passariello, Roberto
2003-01-01
To report our experience using MR of the small bowel with polyethylene glycol (PEG) solution as an oral contrast agent in a population of adults and children with known Crohn's disease. 40 patients (29 males; 11 females), 15 adults (age range 24-52 years) and 25 children (age range 5-17 years), with known Crohn's disease, underwent MR of the small bowel using a supeconductive 1.5 T magnet, and polyethylene glycol solution as an oral contrast agent. The fixed amount of contrast agent was 750-1000 ml for adults and 10 ml/kg of body weight for children. The Crohn's Disease Activity Index (CDAI) was available in all patients. Our study protocol included the acquisition of T2-weighted half-Fourier single-shot turbo spin-echo (HASTE) sequences and true fast imaging in the steady-state precession (true-FISP) sequences, followed by the acquisition of "spoiled" 2D gradient echo T1-weighted sequences with fat suppression (FLASH, fast low-angle shot) or alternatively "spoiled" 3D (VIBE, volume interpolated breath-hold examination), acquired 70 seconds after intravenous administration of gadopentetate dimeglumine (Gd-DTPA) (0,1 mmol/kg). A specific MR score was created and calculated for each patient and was compared by means of the Spearman rank with CDAI. In all patients no significant side effects were observed and the MR examination was well tolerated even by paediatric patients. In all cases MR showed a small bowel wall thickening (> 4 mm) in the terminal ileum, with lumen stenosis in 26 patients. In 3 cases pathological segments proximal to the terminal ileum were observed and in another 3 cases caecal involvement was visible. The MR examination was able to show abnormalities of perivisceral fat tissue in 15 patients, mesenteric lymphadenopathy in 1 patient and abdominal abscess in 1 case. The Spearman rank showed a statistically significant correlation between CDAI and the MR score (r = 0.91, P = 0,0001). MR using PEG as an oral contrast agent could be considered a test of great interest in the evaluation of the small bowel in patients suspected of having Crohn's disease in that it is easily reproducible, well tolerated even by paediatric patients and it provides useful information about the localisation, extension and activity of inflammatory disease without the use of ionising radiation.
Examining the robustness of automated aural classification of active sonar echoes.
Murphy, Stefan M; Hines, Paul C
2014-02-01
Active sonar systems are used to detect underwater man-made objects of interest (targets) that are too quiet to be reliably detected with passive sonar. Performance of active sonar can be degraded by false alarms caused by echoes returned from geological seabed structures (clutter) in shallow regions. To reduce false alarms, a method of distinguishing target echoes from clutter echoes is required. Research has demonstrated that perceptual-based signal features similar to those employed in the human auditory system can be used to automatically discriminate between target and clutter echoes, thereby reducing the number of false alarms and improving sonar performance. An active sonar experiment on the Malta Plateau in the Mediterranean Sea was conducted during the Clutter07 sea trial and repeated during the Clutter09 sea trial. The dataset consists of more than 95,000 pulse-compressed echoes returned from two targets and many geological clutter objects. These echoes were processed using an automatic classifier that quantifies the timbre of each echo using a number of perceptual signal features. Using echoes from 2007, the aural classifier was trained to establish a boundary between targets and clutter in the feature space. Temporal robustness was then investigated by testing the classifier on echoes from the 2009 experiment.
Choi, Eui-Young; Shim, Jaemin; Kim, Sung-Ai; Shim, Chi Young; Yoon, Se-Jung; Kang, Seok-Min; Choi, Donghoon; Ha, Jong-Won; Rim, Se-Joong; Jang, Yangsoo; Chung, Namsik
2007-11-01
The present study sought to determine if echo-Doppler-derived pulmonary vascular resistance (PVR echo), net-atrioventricular compliance (Cn) and tricuspid peak systolic annular velocity (Sa), as parameters of right ventricular function, have value in predicting exercise capacity in patients with mitral stenosis (MS). Thirty-two patients with moderate or severe MS without left ventricular systolic dysfunction were studied. After comprehensive echo-Doppler measurements, including PVR echo, tricuspid Sa and left-sided Cn, supine bicycle exercise echo and concomitant respiratory gas analysis were performed. Measurements during 5 cardiac cycles representing the mean heart rate were averaged. Increment of resting PVR(echo) (r=-0.416, p=0.018) and decrement of resting Sa (r=0.433, p=0.013) and Cn (r=0.469, p=0.007) were significantly associated with decrease in %VO(2) peak. The predictive accuracy for %VO2 peak could increase by combining these parameters as Sa/PVR echo (r=0.500, p=0.004) or Cn. (Sa/PVR echo) (r=0.572, p=0.001) independent of mitral valve area, mean diastolic pressure gradients or presence of atrial fibrillation. Measurement of PVR echo, Cn and Sa might provide important information about the exercise capacity of patients with MS.
Multiple echo multi-shot diffusion sequence.
Chabert, Steren; Galindo, César; Tejos, Cristian; Uribe, Sergio A
2014-04-01
To measure both transversal relaxation time (T2 ) and diffusion coefficients within a single scan using a multi-shot approach. Both measurements have drawn interest in many applications, especially in skeletal muscle studies, which have short T2 values. Multiple echo single-shot schemes have been proposed to obtain those variables simultaneously within a single scan, resulting in a reduction of the scanning time. However, one problem with those approaches is the associated long echo read-out. Consequently, the minimum achievable echo time tends to be long, limiting the application of these sequences to tissues with relatively long T2 . To address this problem, we propose to extend the multi-echo sequences using a multi-shot approach, so that to allow shorter echo times. A multi-shot dual-echo EPI sequence with diffusion gradients and echo navigators was modified to include independent diffusion gradients in any of the two echoes. The multi-shot approach allows us to drastically reduce echo times. Results showed a good agreement for the T2 and mean diffusivity measurements with gold standard sequences in phantoms and in vivo data of calf muscles from healthy volunteers. A fast and accurate method is proposed to measure T2 and diffusion coefficients simultaneously, tested in vitro and in healthy volunteers. Copyright © 2013 Wiley Periodicals, Inc.
77 FR 36611 - Core Principles and Other Requirements for Designated Contract Markets
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-19
.... 38.154--Regulatory Services Provided by a Third Party vi. Sec. 38.155--Compliance Staff and Resources... vi. Sec. 38.256--Trade Reconstruction vii. Sec. 38.257--Regulatory Service Provider viii. Sec. 38.258... Integrity iii. Sec. 38.603--Protection of Customer Funds iv. Sec. 38.604--Financial Surveillance v. Sec. 38...
Investigating the Group-Level Impact of Advanced Dual-Echo fMRI Combinations
Kettinger, Ádám; Hill, Christopher; Vidnyánszky, Zoltán; Windischberger, Christian; Nagy, Zoltán
2016-01-01
Multi-echo fMRI data acquisition has been widely investigated and suggested to optimize sensitivity for detecting the BOLD signal. Several methods have also been proposed for the combination of data with different echo times. The aim of the present study was to investigate whether these advanced echo combination methods provide advantages over the simple averaging of echoes when state-of-the-art group-level random-effect analyses are performed. Both resting-state and task-based dual-echo fMRI data were collected from 27 healthy adult individuals (14 male, mean age = 25.75 years) using standard echo-planar acquisition methods at 3T. Both resting-state and task-based data were subjected to a standard image pre-processing pipeline. Subsequently the two echoes were combined as a weighted average, using four different strategies for calculating the weights: (1) simple arithmetic averaging, (2) BOLD sensitivity weighting, (3) temporal-signal-to-noise ratio weighting and (4) temporal BOLD sensitivity weighting. Our results clearly show that the simple averaging of data with the different echoes is sufficient. Advanced echo combination methods may provide advantages on a single-subject level but when considering random-effects group level statistics they provide no benefit regarding sensitivity (i.e., group-level t-values) compared to the simple echo-averaging approach. One possible reason for the lack of clear advantages may be that apart from increasing the average BOLD sensitivity at the single-subject level, the advanced weighted averaging methods also inflate the inter-subject variance. As the echo combination methods provide very similar results, the recommendation is to choose between them depending on the availability of time for collecting additional resting-state data or whether subject-level or group-level analyses are planned. PMID:28018165
Punn, Rajesh; Hanisch, Debra; Motonaga, Kara S; Rosenthal, David N; Ceresnak, Scott R; Dubin, Anne M
2016-02-01
Cardiac resynchronization therapy indications and management are well described in adults. Echocardiography (ECHO) has been used to optimize mechanical synchrony in these patients; however, there are issues with reproducibility and time intensity. Pediatric patients add challenges, with diverse substrates and limited capacity for cooperation. Electrocardiographic (ECG) methods to assess electrical synchrony are expeditious but have not been extensively studied in children. We sought to compare ECHO and ECG CRT optimization in children. Prospective, pediatric, single-center cross-over trial comparing ECHO and ECG optimization with CRT. Patients were assigned to undergo either ECHO or ECG optimization, followed for 6 months, and crossed-over to the other assignment for another 6 months. ECHO pulsed-wave tissue Doppler and 12-lead ECG were obtained for 5 VV delays. ECG optimization was defined as the shortest QRSD and ECHO optimization as the lowest dyssynchrony index. ECHOs/ECGs were interpreted by readers blinded to optimization technique. After each 6 month period, these data were collected: ejection fraction, velocimetry-derived cardiac index, quality of life, ECHO-derived stroke distance, M-mode dyssynchrony, study cost, and time. Outcomes for each optimization method were compared. From June 2012 to December 2013, 19 patients enrolled. Mean age was 9.1 ± 4.3 years; 14 (74%) had structural heart disease. The mean time for optimization was shorter using ECG than ECHO (9 ± 1 min vs. 68 ± 13 min, P < 0.01). Mean cost for charges was $4,400 ± 700 less for ECG. No other outcome differed between groups. ECHO optimization of synchrony was not superior to ECG optimization in this pilot study. ECG optimization required less time and cost than ECHO optimization. © 2015 Wiley Periodicals, Inc.
Brown, Ryan; Storey, Pippa; Geppert, Christian; McGorty, KellyAnne; Leite, Ana Paula Klautau; Babb, James; Sodickson, Daniel K; Wiggins, Graham C; Moy, Linda
2013-11-01
To evaluate the image quality of T1-weighted fat-suppressed breast MRI at 7 T and to compare 7-T and 3-T images. Seventeen subjects were imaged using a 7-T bilateral transmit-receive coil and 3D gradient echo sequence with adiabatic inversion-based fat suppression (FS). Images were graded on a five-point scale and quantitatively assessed through signal-to-noise ratio (SNR), fibroglandular/fat contrast and signal uniformity measurements. Image scores at 7 and 3 T were similar on standard-resolution images (1.1 × 1.1 × 1.1-1.6 mm(3)), indicating that high-quality breast imaging with clinical parameters can be performed at 7 T. The 7-T SNR advantage was underscored on 0.6-mm isotropic images, where image quality was significantly greater than at 3 T (4.2 versus 3.1, P ≤ 0.0001). Fibroglandular/fat contrast was more than two times higher at 7 T than at 3 T, owing to effective adiabatic inversion-based FS and the inherent 7-T signal advantage. Signal uniformity was comparable at 7 and 3 T (P < 0.05). Similar 7-T image quality was observed in all subjects, indicating robustness against anatomical variation. The 7-T bilateral transmit-receive coil and adiabatic inversion-based FS technique produce image quality that is as good as or better than at 3 T. • High image quality bilateral breast MRI is achievable with clinical parameters at 7 T. • 7-T high-resolution imaging improves delineation of subtle soft tissue structures. • Adiabatic-based fat suppression provides excellent fibroglandular/fat contrast at 7 T. • 7- and 3-T 3D T1-weighted gradient-echo images have similar signal uniformity. • The 7-T dual solenoid coil enables bilateral imaging without compromising uniformity.
Jonczyk, Martin; Hamm, Bernd; Heinrich, Andreas; Thomas, Andreas; Rathke, Hendrik; Schnackenburg, Bernhard; Güttler, Felix; Teichgräber, Ulf K M; de Bucourt, Maximilian
2014-02-01
To report our initial clinical experience with a new magnetic resonance imaging (MRI) quadrupole coil that allows interventions in prone position. Fifteen patients (seven women, eight men; average age, 42.8 years) were treated in the same 1.0-Tesla Panorama High Field Open (HFO) MRI system (Panorama HFO) using a quadrupole butterfly coil (Bfly) and compared with 15 patients matched for sex, age, and MR intervention using the MultiPurposeL coil (MPL), performed in conventional lateral decubitus position (all, Philips Medical Systems, Best, The Netherlands). All interventions were performed with a near-real-time proton density turbo spin echo (PD TSE) sequence (time to repeat/time to echo/flip angle/acquisition time, 600 ms/10 ms/90°/3 s/image). Qualitative and quantitative image analyses were performed, including signal intensity, signal-to-noise and contrast-to-noise ratio (SNR, CNR), contrast, and full width at half maximum (FWHM) measurements. Contrast differed significantly between the needle and muscles (Bfly 0.27/MPL 0.17), as well as the needle and periradicular fat (0.13/0.24) during the intervention (both, p=0.029), as well as the CNR between muscles and the needle (10.61/5.23; p=0.010), although the FWHM values did not (2.4/2.2; p=0.754). The signal intensity of the needle in interventional imaging (1152.9/793.2; p=0.006) and the postinterventional SNR values of subcutaneous fat (15.3/28.6; p=0.007), muscles (6.6/11.8; p=0.011), and the CNR between these tissues (8.7/17.5; p=0.004) yielded significant differences. The new coil is a valid alternative for MR-guided interventions in an open MRI system at 1.0 tesla, especially if patients cannot (or prefer not to) be in a lateral decubitus position or if prone positioning yields better access to the target zone.
Fan, Zhaoyang; Yang, Qi; Deng, Zixin; Li, Yuxia; Bi, Xiaoming; Song, Shlee; Li, Debiao
2017-03-01
Although three-dimensional (3D) turbo spin echo (TSE) with variable flip angles has proven to be useful for intracranial vessel wall imaging, it is associated with inadequate suppression of cerebrospinal fluid (CSF) signals and limited spatial coverage at 3 Tesla (T). This work aimed to modify the sequence and develop a protocol to achieve whole-brain, CSF-attenuated T 1 -weighted vessel wall imaging. Nonselective excitation and a flip-down radiofrequency pulse module were incorporated into a commercial 3D TSE sequence. A protocol based on the sequence was designed to achieve T 1 -weighted vessel wall imaging with whole-brain spatial coverage, enhanced CSF-signal suppression, and isotropic 0.5-mm resolution. Human volunteer and pilot patient studies were performed to qualitatively and quantitatively demonstrate the advantages of the sequence. Compared with the original sequence, the modified sequence significantly improved the T 1 -weighted image contrast score (2.07 ± 0.19 versus 3.00 ± 0.00, P = 0.011), vessel wall-to-CSF contrast ratio (0.14 ± 0.16 versus 0.52 ± 0.30, P = 0.007) and contrast-to-noise ratio (1.69 ± 2.18 versus 4.26 ± 2.30, P = 0.022). Significant improvement in vessel wall outer boundary sharpness was observed in several major arterial segments. The new 3D TSE sequence allows for high-quality T 1 -weighted intracranial vessel wall imaging at 3 T. It may potentially aid in depicting small arteries and revealing T 1 -mediated high-signal wall abnormalities. Magn Reson Med 77:1142-1150, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Zhou, Quan; Li, Shao-Lin; Ma, Ya-Jun; de Tal, Vicki; Li, Wei; Zhao, Ying-Hua
2018-01-01
Objective: Currently, magnetic resonance imaging (MRI) is the most commonly used imaging modality for observing the growth and development of mesenchymal stem cells (MSCs) after in vivo transplantation to treat osteoarthritis (OA). However, it is a challenge to accurately monitor the treatment effects of MSCs in the zone of calcified cartilage (ZCC) with OA. This is especially true in the physiological and biochemical views that are not accurately detected by MRI contrast agents. In contrast, ultrashort time echo (UTE) MRI has been shown to be sensitive to the presence of the ZCC, creating the potential for more effectively observing the repair of the ZCC in OA by MSCs. A special focus is given to the outlook of the use of UTE MRI to detect repair of the ZCC with OA through MSCs. The limitations of the current techniques for clinical applications and future directions are also discussed. Data Sources: Using the combined keywords: “osteoarthritis”, “mesenchymal stem cells”, “calcified cartilage”, and “magnetic resonance imaging”, the PubMed/MEDLINE literature search was conducted up to June 1, 2017. Study Selection: A total of 132 published articles were initially identified citations. Of the 132 articles, 48 articles were selected after further detailed review. This study referred to all the important English literature in full. Results: In contrast, UTE MRI has been shown to be sensitive to the presence of the ZCC, creating the potential for more effectively observing the repair of the ZCC in OA by MSCs. Conclusions: The current studies showed that the ZCC could be described in terms of its histomorphology and biochemistry by UTE MRI. We prospected that UTE MRI has been shown the potential for more effectively observing the repair of the ZCC in OA by MSCs in vivo. PMID:29451138
Christen, T; Pannetier, N A; Ni, W W; Qiu, D; Moseley, M E; Schuff, N; Zaharchuk, G
2014-04-01
In the present study, we describe a fingerprinting approach to analyze the time evolution of the MR signal and retrieve quantitative information about the microvascular network. We used a Gradient Echo Sampling of the Free Induction Decay and Spin Echo (GESFIDE) sequence and defined a fingerprint as the ratio of signals acquired pre- and post-injection of an iron-based contrast agent. We then simulated the same experiment with an advanced numerical tool that takes a virtual voxel containing blood vessels as input, then computes microscopic magnetic fields and water diffusion effects, and eventually derives the expected MR signal evolution. The parameter inputs of the simulations (cerebral blood volume [CBV], mean vessel radius [R], and blood oxygen saturation [SO2]) were varied to obtain a dictionary of all possible signal evolutions. The best fit between the observed fingerprint and the dictionary was then determined by using least square minimization. This approach was evaluated in 5 normal subjects and the results were compared to those obtained by using more conventional MR methods, steady-state contrast imaging for CBV and R and a global measure of oxygenation obtained from the superior sagittal sinus for SO2. The fingerprinting method enabled the creation of high-resolution parametric maps of the microvascular network showing expected contrast and fine details. Numerical values in gray matter (CBV=3.1±0.7%, R=12.6±2.4μm, SO2=59.5±4.7%) are consistent with literature reports and correlated with conventional MR approaches. SO2 values in white matter (53.0±4.0%) were slightly lower than expected. Numerous improvements can easily be made and the method should be useful to study brain pathologies. Copyright © 2013 Elsevier Inc. All rights reserved.
Sauvageau, Anny
2009-01-01
The human pathophysiology of asphyxia by hanging is still poorly understood, despite great advances in forensic science. In that context, filmed hangings may hold the key to answer questions regarding the sequence of events leading to death in human asphyxia. Four filmed hangings were analyzed. Rapid loss of consciousness was observed between 13 sec and 18 sec after onset of hanging, closely followed by convulsions (at 14-19 sec). A complex pattern of decerebration rigidity (19-21 sec in most cases), followed by a quick phase of decortication rigidity (1 min 00 sec-1 min 08 sec in most cases), an extended phase of decortication rigidity (1 min 04 sec-1 min 32 sec) and loss of muscle tone (1 min 38 sec-2 min 47 sec) was revealed. Very deep respiratory attempts started between 20 and 22 sec, the last respiratory attempt being detected between 2 min 00 sec and 2 min 04 sec. Despite differences in the types of hanging, this unique study reveals similarities that are further discussed.
White, Clare; McIlfatrick, Sonja; Dunwoody, Lynn; Watson, Max
2015-12-01
Project ECHO (Extension for Community Healthcare Outcomes) uses teleconferencing technology to support and train healthcare providers (HCPs) remotely, and has improved care across the USA. A 6-month pilot was trialled in a community palliative care nursing setting to determine if ECHO would be effective in the UK in providing education and support to community hospice nurses (CHN). The pilot involved weekly 2 hour sessions of teaching and case-based discussions facilitated by hospice staff linking with nine teams of CHN using video conferencing technology. A mixed-methods prospective longitudinal cohort study was used to evaluate the pilot. Each CHN provided demographic data, and completed a written knowledge assessment and a self-efficacy tool before and after the pilot. Two focus groups were also performed after the pilot. 28 CHNs completed the evaluation. Mean knowledge score improved significantly from 71.3% to 82.7% (p=0.0005) as did overall self-efficacy scores following the ECHO pilot. Pre-ECHO (p=0.036) and Retro-Pretest ECHO (p=0.0005) self-efficacy were significantly lower than post-ECHO. There was no significant difference between Pretest and Retro-Pretest ECHO self-efficacy (p=0.063). 96% recorded gains in learning, and 90% felt that ECHO had improved the care they provided for patients. 83% would recommend ECHO to other HCPs. 70% stated the technology used in ECHO had given them access to education that would have been hard to access due to geography. This study supports the use of Project ECHO for CHNs in the UK by demonstrating how a 6-month pilot improved knowledge and self-efficacy. As a low-cost high-impact model, ECHO provides an affordable solution to addressing growing need. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Secretome Analysis Defines the Major Role of SecDF in Staphylococcus aureus Virulence
Quiblier, Chantal; Seidl, Kati; Roschitzki, Bernd; Zinkernagel, Annelies S.; Berger-Bächi, Brigitte; Senn, Maria M.
2013-01-01
The Sec pathway plays a prominent role in protein export and membrane insertion, including the secretion of major bacterial virulence determinants. The accessory Sec constituent SecDF has been proposed to contribute to protein export. Deletion of Staphylococcus aureus secDF has previously been shown to reduce resistance, to alter cell separation, and to change the expression of certain virulence factors. To analyse the impact of the secDF deletion in S. aureus on protein secretion, a quantitative secretome analysis was performed. Numerous Sec signal containing proteins involved in virulence were found to be decreased in the supernatant of the secDF mutant. However, two Sec-dependent hydrolases were increased in comparison to the wild type, suggesting additional indirect, regulatory effects to occur upon deletion of secDF. Adhesion, invasion, and cytotoxicity of the secDF mutant were reduced in human umbilical vein endothelial cells. Virulence was significantly reduced using a Galleria mellonella insect model. Altogether, SecDF is a promising therapeutic target for controlling S. aureus infections. PMID:23658837
Integrated SSFP for functional brain mapping at 7 T with reduced susceptibility artifact
NASA Astrophysics Data System (ADS)
Sun, Kaibao; Xue, Rong; Zhang, Peng; Zuo, Zhentao; Chen, Zhongwei; Wang, Bo; Martin, Thomas; Wang, Yi; Chen, Lin; He, Sheng; Wang, Danny J. J.
2017-03-01
Balanced steady-state free precession (bSSFP) offers an alternative and potentially important tool to the standard gradient-echo echo-planar imaging (GE-EPI) for functional MRI (fMRI). Both passband and transition band based bSSFP have been proposed for fMRI. The applications of these methods, however, are limited by banding artifacts due to the sensitivity of bSSFP signal to off-resonance effects. In this article, a unique case of the SSFP-FID sequence, termed integrated-SSFP or iSSFP, was proposed to overcome the obstacle by compressing the SSFP profile into the width of a single voxel. The magnitude of the iSSFP signal was kept constant irrespective of frequency shift. Visual stimulation studies were performed to demonstrate the feasibility of fMRI using iSSFP at 7 T with flip angles of 4° and 25°, compared to standard bSSFP and gradient echo (GRE) imaging. The signal changes for the complex iSSFP signal in activated voxels were 2.48 ± 0.53 (%) and 2.96 ± 0.87 (%) for flip angles (FA) of 4° and 25° respectively at the TR of 9.88 ms. Simultaneous multi-slice acquisition (SMS) with the CAIPIRIHNA technique was carried out with iSSFP scanning to detect the anterior temporal lobe activation using a semantic processing task fMRI, compared with standard 2D GE-EPI. This study demonstrates the feasibility of iSSFP for fMRI with reduced susceptibility artifacts, while maintaining robust functional contrast at 7 T.
Morelli, John; Porter, David; Ai, Fei; Gerdes, Clint; Saettele, Megan; Feiweier, Thorsten; Padua, Abraham; Dix, James; Marra, Michael; Rangaswamy, Rajesh; Runge, Val
2013-04-01
Diffusion-weighted imaging (DWI) magnetic resonance imaging (MRI) is most commonly performed utilizing a single-shot echo-planar imaging technique (ss-EPI). Susceptibility artifact and image blur are severe when this sequence is utilized at 3 T. To evaluate a readout-segmented approach to DWI MR in comparison with single-shot echo planar imaging for brain MRI. Eleven healthy volunteers and 14 patients with acute and early subacute infarctions underwent DWI MR examinations at 1.5 and 3T with ss-EPI and readout-segmented echo-planar (rs-EPI) DWI at equal nominal spatial resolutions. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) calculations were made, and two blinded readers ranked the scans in terms of high signal intensity bulk susceptibility artifact, spatial distortions, image blur, overall preference, and motion artifact. SNR and CNR were greatest with rs-EPI (8.1 ± 0.2 SNR vs. 6.0 ± 0.2; P <10(-4) at 3T). Spatial distortions were greater with single-shot (0.23 ± 0.03 at 3T; P <0.001) than with rs-EPI (0.12 ± 0.02 at 3T). Combined with blur and artifact reduction, this resulted in a qualitative preference for the readout-segmented scans overall. Substantial image quality improvements are possible with readout-segmented vs. single-shot EPI - the current clinical standard for DWI - regardless of field strength (1.5 or 3 T). This results in improved image quality secondary to greater real spatial resolution and reduced artifacts from susceptibility in MR imaging of the brain.
Climate change and watershed mercury export: a multiple projection and model analysis
Golden, Heather E.; Knightes, Christopher D.; Conrads, Paul; Feaster, Toby D.; Davis, Gary M.; Benedict, Stephen T.; Bradley, Paul M.
2013-01-01
Future shifts in climatic conditions may impact watershed mercury (Hg) dynamics and transport. An ensemble of watershed models was applied in the present study to simulate and evaluate the responses of hydrological and total Hg (THg) fluxes from the landscape to the watershed outlet and in-stream THg concentrations to contrasting climate change projections for a watershed in the southeastern coastal plain of the United States. Simulations were conducted under stationary atmospheric deposition and land cover conditions to explicitly evaluate the effect of projected precipitation and temperature on watershed Hg export (i.e., the flux of Hg at the watershed outlet). Based on downscaled inputs from 2 global circulation models that capture extremes of projected wet (Community Climate System Model, Ver 3 [CCSM3]) and dry (ECHAM4/HOPE-G [ECHO]) conditions for this region, watershed model simulation results suggest a decrease of approximately 19% in ensemble-averaged mean annual watershed THg fluxes using the ECHO climate-change model and an increase of approximately 5% in THg fluxes with the CCSM3 model. Ensemble-averaged mean annual ECHO in-stream THg concentrations increased 20%, while those of CCSM3 decreased by 9% between the baseline and projected simulation periods. Watershed model simulation results using both climate change models suggest that monthly watershed THg fluxes increase during the summer, when projected flow is higher than baseline conditions. The present study's multiple watershed model approach underscores the uncertainty associated with climate change response projections and their use in climate change management decisions. Thus, single-model predictions can be misleading, particularly in developmental stages of watershed Hg modeling.
Theory and optical design of x-ray echo spectrometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shvyd'ko, Yuri
X-ray echo spectroscopy, a space-domain counterpart of neutron spin echo, is a recently proposed inelastic x-ray scattering (IXS) technique. X-ray echo spectroscopy relies on imaging IXS spectra and does not require x-ray monochromatization. Due to this, the echo-type IXS spectrometers are broadband, and thus have a potential to simultaneously provide dramatically increased signal strength, reduced measurement times, and higher resolution compared to the traditional narrow-band scanning-type IXS spectrometers. The theory of x-ray echo spectrometers presented earlier [Yu. Shvyd'ko, Phys. Rev. Lett. 116, 080801 (2016)] is developed here further with a focus on questions of practical importance, which could facilitate opticalmore » design and assessment of the feasibility and performance of the echo spectrometers. Among others, the following questions are addressed: spectral resolution, refocusing condition, echo spectrometer tolerances, refocusing condition adjustment, effective beam size on the sample, spectral window of imaging and scanning range, impact of the secondary source size on the spectral resolution, angular dispersive optics, focusing and collimating optics, and detector's spatial resolution. In conclusion, examples of optical designs and characteristics of echo spectrometers with 1-meV and 0.1-meV resolutions are presented.« less
Dolphin "packet" use during long-range echolocation tasks.
Finneran, James J
2013-03-01
When echolocating, dolphins typically emit a single broadband "click," then wait to receive the echo before emitting another click. However, previous studies have shown that during long-range echolocation tasks, they may instead emit a burst, or "packet," of several clicks, then wait for the packet of echoes to return before emitting another packet of clicks. The reasons for the use of packets are unknown. In this study, packet use was examined by having trained bottlenose dolphins perform long-range echolocation tasks. The tasks featured "phantom" echoes produced by capturing the dolphin's outgoing echolocation clicks, convolving the clicks with an impulse response to create an echo waveform, and then broadcasting the delayed, scaled echo to the dolphin. Dolphins were trained to report the presence of phantom echoes or a change in phantom echoes. Target range varied from 25 to 800 m. At ranges below 75 m, the dolphins rarely used packets. As the range increased beyond 75 m, two of the three dolphins increasingly produced packets, while the third dolphin instead utilized very high click repetition rates. The use of click packets appeared to be governed more by echo delay (target range) than echo amplitude.
Theory and optical design of x-ray echo spectrometers
Shvyd'ko, Yuri
2017-08-02
X-ray echo spectroscopy, a space-domain counterpart of neutron spin echo, is a recently proposed inelastic x-ray scattering (IXS) technique. X-ray echo spectroscopy relies on imaging IXS spectra and does not require x-ray monochromatization. Due to this, the echo-type IXS spectrometers are broadband, and thus have a potential to simultaneously provide dramatically increased signal strength, reduced measurement times, and higher resolution compared to the traditional narrow-band scanning-type IXS spectrometers. The theory of x-ray echo spectrometers presented earlier [Yu. Shvyd'ko, Phys. Rev. Lett. 116, 080801 (2016)] is developed here further with a focus on questions of practical importance, which could facilitate opticalmore » design and assessment of the feasibility and performance of the echo spectrometers. Among others, the following questions are addressed: spectral resolution, refocusing condition, echo spectrometer tolerances, refocusing condition adjustment, effective beam size on the sample, spectral window of imaging and scanning range, impact of the secondary source size on the spectral resolution, angular dispersive optics, focusing and collimating optics, and detector's spatial resolution. In conclusion, examples of optical designs and characteristics of echo spectrometers with 1-meV and 0.1-meV resolutions are presented.« less
Psychoacoustic influences of the echoing environments of prehistoric art
NASA Astrophysics Data System (ADS)
Waller, Steven J.
2002-11-01
Cave paintings and ancient petroglyphs around the world are typically found in echo rich locations such as caves, canyons, and rocky cliff faces. Analysis of field data shows that echo decibel levels at a large number of prehistoric art sites are higher than those at nondecorated locations. The selection of these echoing environments by the artists appears not to be a mere coincidence. This paper considers the perception of an echoed sound as a psychoacoustic event that would have been inexplicable to ancient humans. A variety of ancient legends from cultures on several continents attribute the phenomenon of echoes to supernatural beings. These legends, together with the quantitative data, strongly implicate echoing as relevant to the artists of the past. The notion that the echoes were caused by spirits within the rock would explain not only the unusual locations of prehistoric art, but also the perplexing subject matter. For example, the common theme of hoofed animal imagery could have been inspired by echoes of percussion noises perceived as hoof beats. Further systematic acoustical studies of prehistoric art sites is warranted. Conservation of the natural acoustic properties of rock art environments--a previously unrecognized need--is urged.
Fast T2*-weighted MRI of the prostate at 3 Tesla.
Hardman, Rulon L; El-Merhi, Fadi; Jung, Adam J; Ware, Steve; Thompson, Ian M; Friel, Harry T; Peng, Qi
2011-04-01
To describe a rapid T2*-weighted (T2*W), three-dimensional (3D) echo planar imaging (EPI) sequence and its application in mapping local magnetic susceptibility variations in 3 Tesla (T) prostate MRI. To compare the sensitivity of T2*W EPI with routinely used T1-weighted turbo-spin echo sequence (T1W TSE) in detecting hemorrhage and the implications on sequences sensitive to field inhomogeneities such as MR spectroscopy (MRS). B(0) susceptibility weighted mapping was performed using a 3D EPI sequence featuring a 2D spatial excitation pulse with gradients of spiral k-space trajectory. A series of 11 subjects were imaged using 3T MRI and combination endorectal (ER) and six-channel phased array cardiac coils. T1W TSE and T2*W EPI sequences were analyzed quantitatively for hemorrhage contrast. Point resolved spectroscopy (PRESS MRS) was performed and data quality was analyzed. Two types of susceptibility variation were identified: hemorrhagic and nonhemorrhagic T2*W-positive areas. Post-biopsy hemorrhage lesions showed on average five times greater contrast on the T2*W images than T1W TSE images. Six nonhemorrhage regions of severe susceptibility artifact were apparent on the T2*W images that were not seen on standard T1W or T2W images. All nonhemorrhagic susceptibility artifact regions demonstrated compromised spectral quality on 3D MRS. The fast T2*W EPI sequence identifies hemorrhagic and nonhemorrhagic areas of susceptibility variation that may be helpful in prostate MRI planning at 3.0T. Copyright © 2011 Wiley-Liss, Inc.
Comparison of Silent and Conventional MR Imaging for the Evaluation of Myelination in Children
Matsuo-Hagiyama, Chisato; Watanabe, Yoshiyuki; Tanaka, Hisashi; Takahashi, Hiroto; Arisawa, Atsuko; Yoshioka, Eri; Nabatame, Shin; Nakano, Sayaka; Tomiyama, Noriyuki
2017-01-01
Purpose: Silent magnetic resonance imaging (MRI) scans produce reduced acoustic noise and are considered more gentle for sedated children. The aim of this study was to compare the validity of T1- (T1W) and T2-weighted (T2W) silent sequences for myelination assessment in children with conventional spin-echo sequences. Materials and Methods: A total of 30 children (21 boys, 9 girls; age range: 1–83 months, mean age: 35.5 months, median age: 28.5 months) were examined using both silent and spin-echo sequences. Acoustic noise levels were analyzed and compared. The degree of myelination was qualitatively assessed via consensus, and T1W and T2W signal intensities were quantitatively measured by percent contrast. Results: Acoustic noise levels were significantly lower during silent sequences than during conventional sequences (P < 0.0001 for both T1W and T2W). Inter-method comparison indicated overall good to excellent agreement (T1W and T2W images, κ = 0.76 and 0.80, respectively); however, agreement was poor for cerebellar myelination on T1W images (κ = 0.14). The percent contrast of silent and conventional MRI sequences had a strong correlation (T1W, correlation coefficient [CC] = 0.76; T1W excluding the middle cerebellar peduncle, CC = 0.82; T2W, CC = 0.91). Conclusions: For brain MRI, silent sequences significantly reduced acoustic noise and provided diagnostic image quality for myelination evaluations; however, the two methods differed with respect to cerebellar delineation on T1W sequences. PMID:27795484
Influence of Guided Waves in Tibia on Non-linear Scattering of Contrast Agents.
Wang, Diya; Zhong, Hui; Zhai, Yu; Hu, Hong; Jin, Bowen; Wan, Mingxi
2016-02-01
The aim of this study was to elucidate the linear and non-linear responses of ultrasound contrast agent (UCA) to frequency-dispersive guided waves from the tibia cortex, particularly two individual modes, S0 (1.23 MHz) and A1 (2.06 MHz). The UCA responses to guided waves were illustrated through the Marmottant model derived from measured guided waves, and then verified by continuous infusion experiments in a vessel-tibia flow phantom. These UCA responses were further evaluated by the enhanced ratio of peak values and the resolutions of UCA backscattered echoes. Because of the individual modes S0 and A1 in the tibia, the peak values of the UCA backscattered echoes were enhanced by 83.57 ± 7.35% (p < 0.05) and 80.77 ± 6.60% (p < 0.01) in the UCA subharmonic frequency and subharmonic imaging, respectively. However, corresponding resolutions were 0.78 ± 0.07 (p < 0.05) and 0.72 ± 0.12 (p < 0.01) times those without guided wave disturbances, respectively. Even though the resolution was partly degenerated, the subharmonic detection sensitivity of UCA was improved by the guided waves. Thus, UCA responses to the double-frequency guided waves should be further explored to benefit the detection of capillary perfusion in tissue layers near the bone cortex, particularly for perfusion imaging in the free flaps and skeletal muscles. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Supin, Alexander Ya; Nachtigall, Paul E; Breese, Marlee
2008-07-01
In a false killer whale Pseudorca crassidens, echo perception thresholds were measured using a go/no-go psychophysical paradigm and one-up-one-down staircase procedure. Computer controlled echoes were electronically synthesized pulses that were played back through a transducer and triggered by whale emitted biosonar pulses. The echo amplitudes were proportional to biosonar pulse amplitudes; echo levels were specified in terms of the attenuation of the echo sound pressure level near the animal's head relative to the source level of the biosonar pulses. With increasing echo delay, the thresholds (echo attenuation factor) decreased from -49.3 dB at 2 ms to -79.5 dB at 16 ms, with a regression slope of -9.5 dB per delay doubling (-31.5 dB per delay decade). At the longer delays, the threshold remained nearly constant around -80.4 dB. Levels of emitted pulses slightly increased with delay prolongation (threshold decrease), with a regression slope of 3.2 dB per delay doubling (10.7 dB per delay decade). The echo threshold dependence on delay is interpreted as a release from forward masking by the preceding emitted pulse. This release may compensate for the echo level decrease with distance, thus keeping the echo sensation level for the animal near constant within a certain distance range.
In Candida albicans hyphae, Sec2p is physically associated with SEC2 mRNA on secretory vesicles.
Caballero-Lima, David; Hautbergue, Guillaume M; Wilson, Stuart A; Sudbery, Peter E
2014-11-01
Candida albicans hyphae grow in a highly polarized fashion from their tips. This polarized growth requires the continuous delivery of secretory vesicles to the tip region. Vesicle delivery depends on Sec2p, the Guanine Exchange Factor (GEF) for the Rab GTPase Sec4p. GTP bound Sec4p is required for the transit of secretory vesicles from the trans-Golgi to sites of polarized growth. We previously showed that phosphorylation of Sec2p at residue S584 was necessary for Sec2p to support hyphal, but not yeast growth. Here we show that on secretory vesicles SEC2 mRNA is physically associated with Sec2p. Moreover, we show that the phosphorylation of S584 allows SEC2 mRNA to dissociate from Sec2p and we speculate that this is necessary for Sec2p function and/or translation. During hyphal extension, the growing tip may be separated from the nucleus by up to 15 μm. Transport of SEC2 mRNA on secretory vesicles to the tip localizes SEC2 translation to tip allowing a sufficient accumulation of this key protein at the site of polarized growth. © 2014 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.
Fang, H; Green, N
1994-01-01
The sec71-1 and sec72-1 mutations were identified by a genetic assay that monitored membrane protein integration into the endoplasmic reticulum (ER) membrane of the yeast Saccharomyces cerevisiae. The mutations inhibited integration of various chimeric membrane proteins and translocation of a subset of water soluble proteins. In this paper we show that SEC71 encodes the 31.5-kDa transmembrane glycoprotein (p31.5) and SEC72 encodes the 23-kDa protein (p23) of the Sec63p-BiP complex. SEC71 is therefore identical to SEC66 (HSS1), which was previously shown to encode p31.5. DNA sequence analyses reveal that sec71-1 cells contain a nonsense mutation that removes approximately two-thirds of the cytoplasmic C-terminal domain of p31.5. The sec72-1 mutation shifts the reading frame of the gene encoding p23. Unexpectedly, the sec71-1 mutant lacks p31.5 and p23. Neither mutation is lethal, although sec71-1 cells exhibit a growth defect at 37 degrees C. These results show that p31.5 and p23 are important for the trafficking of a subset of proteins to the ER membrane. Images PMID:7841522
Gadolinium-enhanced MR images of the growing piglet skeleton: ionic versus nonionic contrast agent.
Menezes, Nina M; Olear, Elizabeth A; Li, Xiaoming; Connolly, Susan A; Zurakowski, David; Foley, Mary; Shapiro, Frederic; Jaramillo, Diego
2006-05-01
To determine whether there are differences in the distribution of ionic and nonionic gadolinium-based contrast agents by evaluating contrast enhancement of the physis, epiphyseal cartilage, secondary ossification center, and metaphysis in the knees of normal piglets. Following approval from the Subcommittee on Research Animal Care, knees of 12 3-week-old piglets were imaged at 3-T magnetic resonance (MR) imaging after intravenous injection of gadoteridol (nonionic contrast agent; n = 6) or gadopentetate dimeglumine (ionic contrast agent; n = 6). Early enhancement evaluation with gradient-echo MR imaging was quantified and compared (Student t test) by means of enhancement ratios. Distribution of contrast material was assessed and compared (Student t test) by means of T1 measurements obtained before and at three 15-minute intervals after contrast agent administration. The relative visibility of the physis, epiphyseal cartilage, secondary ossification center, and metaphysis was qualitatively assessed by two observers and compared (Wilcoxon signed rank test). Differences in matrix content and cellularity that might explain the imaging findings were studied at histologic evaluation. Enhancement ratios were significantly higher for gadoteridol than for gadopentetate dimeglumine in the physis, epiphyseal cartilage, and secondary ossification center (P < .05). After contrast agent administration, T1 values decreased sharply for both agents-but more so for gadoteridol. Additionally, there was less variability in T1 values across structures with this contrast agent. Gadoteridol resulted in greater visibility of the physis, while gadopentetate dimeglumine resulted in greater contrast between the physis and metaphysis (P < .05). The results suggest different roles for the two gadolinium-based contrast agents: The nonionic contrast medium is better suited for evaluating perfusion and anatomic definition in the immature skeleton, while the ionic contrast medium is better for evaluating cartilage fixed-charge density. (c) RSNA, 2006.
Stalder, Danièle; Novick, Peter J.
2016-01-01
Sec2p is a guanine nucleotide exchange factor that activates Sec4p, the final Rab GTPase of the yeast secretory pathway. Sec2p is recruited to secretory vesicles by the upstream Rab Ypt32p acting in concert with phosphatidylinositol-4-phosphate (PI(4)P). Sec2p also binds to the Sec4p effector Sec15p, yet Ypt32p and Sec15p compete against each other for binding to Sec2p. We report here that the redundant casein kinases Yck1p and Yck2p phosphorylate sites within the Ypt32p/Sec15p binding region and in doing so promote binding to Sec15p and inhibit binding to Ypt32p. We show that Yck2p binds to the autoinhibitory domain of Sec2p, adjacent to the PI(4)P binding site, and that addition of PI(4)P inhibits Sec2p phosphorylation by Yck2p. Loss of Yck1p and Yck2p function leads to accumulation of an intracellular pool of the secreted glucanase Bgl2p, as well as to accumulation of Golgi-related structures in the cytoplasm. We propose that Sec2p is phosphorylated after it has been recruited to secretory vesicles and the level of PI(4)P has been reduced. This promotes Sec2p function by stimulating its interaction with Sec15p. Finally, Sec2p is dephosphorylated very late in the exocytic reaction to facilitate recycling. PMID:26700316
Tripathi, Arati; Mandon, Elisabet C; Gilmore, Reid; Rapoport, Tom A
2017-05-12
The biosynthesis of many eukaryotic proteins requires accurate targeting to and translocation across the endoplasmic reticulum membrane. Post-translational protein translocation in yeast requires both the Sec61 translocation channel, and a complex of four additional proteins: Sec63, Sec62, Sec71, and Sec72. The structure and function of these proteins are largely unknown. This pathway also requires the cytosolic Hsp70 protein Ssa1, but whether Ssa1 associates with the translocation machinery to target protein substrates to the membrane is unclear. Here, we use a combined structural and biochemical approach to explore the role of Sec71-Sec72 subcomplex in post-translational protein translocation. To this end, we report a crystal structure of the Sec71-Sec72 complex, which revealed that Sec72 contains a tetratricopeptide repeat (TPR) domain that is anchored to the endoplasmic reticulum membrane by Sec71. We also determined the crystal structure of this TPR domain with a C-terminal peptide derived from Ssa1, which suggests how Sec72 interacts with full-length Ssa1. Surprisingly, Ssb1, a cytoplasmic Hsp70 that binds ribosome-associated nascent polypeptide chains, also binds to the TPR domain of Sec72, even though it lacks the TPR-binding C-terminal residues of Ssa1. We demonstrate that Ssb1 binds through its ATPase domain to the TPR domain, an interaction that leads to inhibition of nucleotide exchange. Taken together, our results suggest that translocation substrates can be recruited to the Sec71-Sec72 complex either post-translationally through Ssa1 or co-translationally through Ssb1. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Nascent chain-monitored remodeling of the Sec machinery for salinity adaptation of marine bacteria
Ishii, Eiji; Chiba, Shinobu; Hashimoto, Narimasa; Kojima, Seiji; Homma, Michio; Ito, Koreaki; Akiyama, Yoshinori; Mori, Hiroyuki
2015-01-01
SecDF interacts with the SecYEG translocon in bacteria and enhances protein export in a proton-motive-force-dependent manner. Vibrio alginolyticus, a marine-estuarine bacterium, contains two SecDF paralogs, V.SecDF1 and V.SecDF2. Here, we show that the export-enhancing function of V.SecDF1 requires Na+ instead of H+, whereas V.SecDF2 is Na+-independent, presumably requiring H+. In accord with the cation-preference difference, V.SecDF2 was only expressed under limited Na+ concentrations whereas V.SecDF1 was constitutive. However, it is not the decreased concentration of Na+ per se that the bacterium senses to up-regulate the V.SecDF2 expression, because marked up-regulation of the V.SecDF2 synthesis was observed irrespective of Na+ concentrations under certain genetic/physiological conditions: (i) when the secDF1VA gene was deleted and (ii) whenever the Sec export machinery was inhibited. VemP (Vibrio export monitoring polypeptide), a secretory polypeptide encoded by the upstream ORF of secDF2VA, plays the primary role in this regulation by undergoing regulated translational elongation arrest, which leads to unfolding of the Shine–Dalgarno sequence for translation of secDF2VA. Genetic analysis of V. alginolyticus established that the VemP-mediated regulation of SecDF2 is essential for the survival of this marine bacterium in low-salinity environments. These results reveal that a class of marine bacteria exploits nascent-chain ribosome interactions to optimize their protein export pathways to propagate efficiently under different ionic environments that they face in their life cycles. PMID:26392525
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tripathi, Arati; Mandon, Elisabet C.; Gilmore, Reid
The biosynthesis of many eukaryotic proteins requires accurate targeting to and translocation across the endoplasmic reticulum membrane. Post-translational protein translocation in yeast requires both the Sec61 translocation channel, and a complex of four additional proteins: Sec63, Sec62, Sec71, and Sec72. The structure and function of these proteins are largely unknown. This pathway also requires the cytosolic Hsp70 protein Ssa1, but whether Ssa1 associates with the translocation machinery to target protein substrates to the membrane is unclear. Here, we use a combined structural and biochemical approach to explore the role of Sec71-Sec72 subcomplex in post-translational protein translocation. To this end, wemore » report a crystal structure of the Sec71-Sec72 complex, which revealed that Sec72 contains a tetratricopeptide repeat (TPR) domain that is anchored to the endoplasmic reticulum membrane by Sec71. We also determined the crystal structure of this TPR domain with a C-terminal peptide derived from Ssa1, which suggests how Sec72 interacts with full-length Ssa1. Surprisingly, Ssb1, a cytoplasmic Hsp70 that binds ribosome-associated nascent polypeptide chains, also binds to the TPR domain of Sec72, even though it lacks the TPR-binding C-terminal residues of Ssa1. We demonstrate that Ssb1 binds through its ATPase domain to the TPR domain, an interaction that leads to inhibition of nucleotide exchange. Taken together, our results suggest that translocation substrates can be recruited to the Sec71-Sec72 complex either post-translationally through Ssa1 or co-translationally through Ssb1.« less
NASA Technical Reports Server (NTRS)
Fujita, T. T.
1976-01-01
Radar echoes of a storm at John F. Kennedy International Airport are examined. Results regarding the phenomena presented suggest the existence of downburst cells. These cells are characterized by spearhead echoes. About 2% of the echoes in the New York area were spearhead echoes. The detection and identification of downburst cells, their potential hazard to approaching and landing aircraft, and communication of this information to the pilots of those aircraft are discussed.
Bauer, Benedikt W; Shemesh, Tom; Chen, Yu; Rapoport, Tom A
2014-06-05
In bacteria, most secretory proteins are translocated across the plasma membrane by the interplay of the SecA ATPase and the SecY channel. How SecA moves a broad range of polypeptide substrates is only poorly understood. Here we show that SecA moves polypeptides through the SecY channel by a "push and slide" mechanism. In its ATP-bound state, SecA interacts through a two-helix finger with a subset of amino acids in a substrate, pushing them into the channel. A polypeptide can also passively slide back and forth when SecA is in the predominant ADP-bound state or when SecA encounters a poorly interacting amino acid in its ATP-bound state. SecA performs multiple rounds of ATP hydrolysis before dissociating from SecY. The proposed push and slide mechanism is supported by a mathematical model and explains how SecA allows translocation of a wide range of polypeptides. This mechanism may also apply to hexameric polypeptide-translocating ATPases. Copyright © 2014 Elsevier Inc. All rights reserved.
Demonstration of a Specific Escherichia coli SecY–Signal Peptide Interaction†
Wang, Ligong; Miller, Alexander; Rusch, Sharyn L.; Kendall, Debra A.
2011-01-01
Protein translocation in Escherichia coli is initiated by the interaction of a preprotein with the membrane translocase composed of a motor protein, SecA ATPase, and a membrane-embedded channel, the SecYEG complex. The extent to which the signal peptide region of the preprotein plays a role in SecYEG interactions is unclear, in part because studies in this area typically employ the entire preprotein. Using a synthetic signal peptide harboring a photoaffinity label in its hydrophobic core, we examined this interaction with SecYEG in a detergent micellar environment. The signal peptide was found to specifically bind SecY in a saturable manner and at levels comparable to those that stimulate SecA ATPase activity. Chemical and proteolytic cleavage of cross-linked SecY and analysis of the signal peptide adducts indicate that the binding was primarily to regions of the protein containing transmembrane domains seven and two. The signal peptide–SecY interaction was affected by the presence of SecA and nucleotides in a manner consistent with the transfer of signal peptide to SecY upon nucleotide hydrolysis at SecA. PMID:15476412
Tsuchida, Keiichi; García-García, Héctor M; van der Giessen, Willem J; McFadden, Eugène P; van der Ent, Martin; Sianos, Georgios; Meulenbrug, Hans; Ong, Andrew T L; Serruys, Patrick W
2006-03-01
The objective of this study was to investigate the efficacy of guidewire navigation across coronary artery stenoses using magnetic navigation system (MNS) versus conventional navigation. The MNS is a novel option to facilitate access to target lesions, particularly in tortuous vessels. In an experimental study using a challenging vessel phantom, magnetic-navigated guidewire passage has been reported to reduce fluoroscopy and procedure time significantly. Both magnetic and manual guidewire navigation were attempted in 21 consecutive diseased coronary arteries. The study endpoint was defined as an intraluminal wire position distal to the stenosis. Procedural success was defined as successful guidewire passage without procedural events. Procedure time, amount of contrast, fluoroscopy time, and radiation dose/area product (DAP) were evaluated. There were no procedural events related to either guidewire. Although the lesions attempted had relatively simple and straightforward characteristics, significantly shorter procedure and fluoroscopy time were observed for manual guidewire navigation compared to MNS (median, 40 vs. 120 sec, P=0.001; 38 vs. 105 sec, P=0.001, respectively). Contrast amount and DAP were higher in MNS than in conventional method (median, 13 vs. 9 ml, P=0.018; 215 vs. 73 Gym2, P=0.002, respectively). The magnetic wire did not cross in two vessels. Guidewire navigation using MNS presented a novel, safe, and feasible approach to address coronary artery lesions. Clinical studies are needed to evaluate the potential benefit of the MNS in more complex coronary lesions and tortuous anatomy. Copyright (c) 2006 Wiley-Liss, Inc.
Effect of contrast on human speed perception
NASA Technical Reports Server (NTRS)
Stone, Leland S.; Thompson, Peter
1992-01-01
This study is part of an ongoing collaborative research effort between the Life Science and Human Factors Divisions at NASA ARC to measure the accuracy of human motion perception in order to predict potential errors in human perception/performance and to facilitate the design of display systems that minimize the effects of such deficits. The study describes how contrast manipulations can produce significant errors in human speed perception. Specifically, when two simultaneously presented parallel gratings are moving at the same speed within stationary windows, the lower-contrast grating appears to move more slowly. This contrast-induced misperception of relative speed is evident across a wide range of contrasts (2.5-50 percent) and does not appear to saturate (e.g., a 50 percent contrast grating appears slower than a 70 percent contrast grating moving at the same speed). The misperception is large: a 70 percent contrast grating must, on average, be slowed by 35 percent to match a 10 percent contrast grating moving at 2 deg/sec (N = 6). Furthermore, it is largely independent of the absolute contrast level and is a quasilinear function of log contrast ratio. A preliminary parametric study shows that, although spatial frequency has little effect, the relative orientation of the two gratings is important. Finally, the effect depends on the temporal presentation of the stimuli: the effects of contrast on perceived speed appears lessened when the stimuli to be matched are presented sequentially. These data constrain both physiological models of visual cortex and models of human performance. We conclude that viewing conditions that effect contrast, such as fog, may cause significant errors in speed judgments.
Posse, Stefan
2011-01-01
The rapid development of fMRI was paralleled early on by the adaptation of MR spectroscopic imaging (MRSI) methods to quantify water relaxation changes during brain activation. This review describes the evolution of multi-echo acquisition from high-speed MRSI to multi-echo EPI and beyond. It highlights milestones in the development of multi-echo acquisition methods, such as the discovery of considerable gains in fMRI sensitivity when combining echo images, advances in quantification of the BOLD effect using analytical biophysical modeling and interleaved multi-region shimming. The review conveys the insight gained from combining fMRI and MRSI methods and concludes with recent trends in ultra-fast fMRI, which will significantly increase temporal resolution of multi-echo acquisition. PMID:22056458
Analysis of a waterborne disease model with socioeconomic classes.
Collins, O C; Robertson, Suzanne L; Govinder, K S
2015-11-01
Waterborne diseases such as cholera continue to pose serious public health problems in the world today. Transmission parameters can vary greatly with socioeconomic class (SEC) and the availability of clean water. We formulate a multi-patch waterborne disease model such that each patch represents a particular SEC with its own water source, allowing individuals to move between SECs. For a 2-SEC model, we investigate the conditions under which each SEC is responsible for driving a cholera outbreak. We determine the effect of SECs on disease transmission dynamics by comparing the basic reproduction number of the 2-SEC model to that of a homogeneous model that does not take SECs into account. We conclude by extending several results of the 2-SEC model to an n-SEC model. Copyright © 2015 Elsevier Inc. All rights reserved.
Wong, Terence T. W.; Lau, Andy K. S.; Ho, Kenneth K. Y.; Tang, Matthew Y. H.; Robles, Joseph D. F.; Wei, Xiaoming; Chan, Antony C. S.; Tang, Anson H. L.; Lam, Edmund Y.; Wong, Kenneth K. Y.; Chan, Godfrey C. F.; Shum, Ho Cheung; Tsia, Kevin K.
2014-01-01
Accelerating imaging speed in optical microscopy is often realized at the expense of image contrast, image resolution, and detection sensitivity – a common predicament for advancing high-speed and high-throughput cellular imaging. We here demonstrate a new imaging approach, called asymmetric-detection time-stretch optical microscopy (ATOM), which can deliver ultrafast label-free high-contrast flow imaging with well delineated cellular morphological resolution and in-line optical image amplification to overcome the compromised imaging sensitivity at high speed. We show that ATOM can separately reveal the enhanced phase-gradient and absorption contrast in microfluidic live-cell imaging at a flow speed as high as ~10 m/s, corresponding to an imaging throughput of ~100,000 cells/sec. ATOM could thus be the enabling platform to meet the pressing need for intercalating optical microscopy in cellular assay, e.g. imaging flow cytometry – permitting high-throughput access to the morphological information of the individual cells simultaneously with a multitude of parameters obtained in the standard assay. PMID:24413677
The acoustics of the echo cornet
NASA Astrophysics Data System (ADS)
Pyle, Robert W., Jr.; Klaus, Sabine K.
2002-11-01
The echo cornet was an instrument produced by a number of makers in several countries from about the middle of the nineteenth to the early twentieth centuries. It consists of an ordinary three-valve cornet to which a fourth valve has been added, downstream of the three normal valves. The extra valve diverts the airstream from the normal bell to an ''echo'' bell that gives a muted tone quality. Although the air column through the echo bell is typically 15 cm longer than the path through the normal bell, there is no appreciable change of playing pitch when the echo bell is in use. Acoustic input impedance and impulse response measurements and consideration of the standing-wave pattern within the echo bell show how this can be so. Acoustically, the echo bell is more closely related to hand-stopping on the French horn than to the mutes commonly used on the trumpet and cornet.
Beam echoes in the presence of coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gross, Axel
2017-10-03
Transverse beam echoes could provide a new technique of measuring diusion characteristics orders of magnitude faster than the current methods; however, their interaction with many accelerator parameters is poorly understood. Using a program written in C, we explored the relationship between coupling and echo strength. We found that echoes could be generated in both dimensions, even with a dipole kick in only one dimension. We found that the echo eects are not destroyed even when there is strong coupling, falling o only at extremely high coupling values. We found that at intermediate values of skew quadrupole strength, the decoherence timemore » of the beam is greatly increased, causing a destruction of the echo eects. We found that this is caused by a narrowing of the tune width of the particles. Results from this study will help to provide recommendations to IOTA (Integrable Optics Test Accelerator) for their upcoming echo experiment.« less
NASA Technical Reports Server (NTRS)
Thompson, T. W.; Moore, H. J.
1990-01-01
Researchers developed a radar-echo model for Mars based on 12.6 cm continuous wave radio transmissions backscattered from the planet. The model broadly matches the variations in depolarized and polarized total radar cross sections with longitude observed by Goldstone in 1986 along 7 degrees S. and yields echo spectra that are generally similiar to the observed spectra. Radar map units in the model include an extensive cratered uplands unit with weak depolarized echo cross sections, average thermal inertias, moderate normal refelectivities, and moderate rms slopes; the volcanic units of Tharsis, Elysium, and Amazonis regions with strong depolarized echo cross sections, low thermal inertia, low normal reflectivities, and large rms slopes; and the northern planes units with moderate to strong depolarized echo cross sections, moderate to very high thermal inertias, moderate to large normal reflectivities, and moderate rms slopes. The relevance of the model to the interpretation of radar echoes from Mars is discussed.
Supin, Alexander Ya; Nachtigall, Paul E; Breese, Marlee
2011-09-01
Auditory evoked potentials (AEP) were recorded during echolocation in a false killer whale Pseudorca crassidens. An electronically synthesized and played-back (simulated) echo was triggered by an emitted biosonar pulse, and its intensity was proportional to that of the emitted click. The delay and transfer factor of the echo relative to the emitted click was controlled by the operator. The echo delay varied from 2 to 16 ms (by two-fold steps), and the transfer factor varied within ranges from -45 to -30 dB at the 2-ms delay to -60 to -45 dB at the 16-ms delay. Echo-related AEPs featured amplitude dependence both on echo delay at a constant transfer factor (the longer the delay, the higher amplitude) and on echo transfer factor at a constant delay (the higher transfer factor, the higher amplitude). Conjunctional variation of the echo transfer factor and delay kept the AEP amplitude constant when the delay to transfer factor trade was from -7.1 to -8.4 dB per delay doubling. The results confirm the hypothesis that partial forward masking of the echoes by the preceding emitted sonar pulses serves as a time-varying automatic gain control in the auditory system of echolocating odontocetes. © 2011 Acoustical Society of America
Echo-level compensation and delay tuning in the auditory cortex of the mustached bat.
Macías, Silvio; Mora, Emanuel C; Hechavarría, Julio C; Kössl, Manfred
2016-06-01
During echolocation, bats continuously perform audio-motor adjustments to optimize detection efficiency. It has been demonstrated that bats adjust the amplitude of their biosonar vocalizations (known as 'pulses') to stabilize the amplitude of the returning echo. Here, we investigated this echo-level compensation behaviour by swinging mustached bats on a pendulum towards a reflective surface. In such a situation, the bats lower the amplitude of their emitted pulses to maintain the amplitude of incoming echoes at a constant level as they approach a target. We report that cortical auditory neurons that encode target distance have receptive fields that are optimized for dealing with echo-level compensation. In most cortical delay-tuned neurons, the echo amplitude eliciting the maximum response matches the echo amplitudes measured from the bats' biosonar vocalizations while they are swung in a pendulum. In addition, neurons tuned to short target distances are maximally responsive to low pulse amplitudes while neurons tuned to long target distances respond maximally to high pulse amplitudes. Our results suggest that bats dynamically adjust biosonar pulse amplitude to match the encoding of target range and to keep the amplitude of the returning echo within the bounds of the cortical map of echo delays. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Echo scintillation Index affected by cat-eye target's caliber with Cassegrain lens
NASA Astrophysics Data System (ADS)
Shan, Cong-miao; Sun, Hua-yan; Zhao, Yan-zhong; Zheng, Yong-hui
2015-10-01
The optical aperture of cat-eye target has the aperture averaging effect to the active detecting laser of active laser detection system, which can be used to identify optical targets. The echo scintillation characteristics of the transmission-type lens target have been studied in previous work. Discussing the differences of the echo scintillation characteristics between the transmission-type lens target and Cassegrain lens target can be helpful to targets classified. In this paper, the echo scintillation characteristics of Cat-eye target's caliber with Cassegrain lens has been discussed . By using the flashing theory of spherical wave in the weak atmospheric turbulence, the annular aperture filter function and the Kolmogorov power spectrum, the analytic expression of the scintillation index of the cat-eye target echo of the horizontal path two-way transmission was given when the light is normal incidence. Then the impact of turbulence inner and outer scale to the echo scintillation index and the analytic expression of the echo scintillation index at the receiving aperture were presented using the modified Hill spectrum and the modified Von Karman spectrum. Echo scintillation index shows the tendency of decreasing with the target aperture increases and different ratios of the inner and outer aperture diameter show the different echo scintillation index curves. This conclusion has a certain significance for target recognition in the active laser detection system that can largely determine the target type by largely determining the scope of the cat-eye target which depending on echo scintillation index.
Reference tissue quantification of DCE-MRI data without a contrast agent calibration
NASA Astrophysics Data System (ADS)
Walker-Samuel, Simon; Leach, Martin O.; Collins, David J.
2007-02-01
The quantification of dynamic contrast-enhanced (DCE) MRI data conventionally requires a conversion from signal intensity to contrast agent concentration by measuring a change in the tissue longitudinal relaxation rate, R1. In this paper, it is shown that the use of a spoiled gradient-echo acquisition sequence (optimized so that signal intensity scales linearly with contrast agent concentration) in conjunction with a reference tissue-derived vascular input function (VIF), avoids the need for the conversion to Gd-DTPA concentration. This study evaluates how to optimize such sequences and which dynamic time-series parameters are most suitable for this type of analysis. It is shown that signal difference and relative enhancement provide useful alternatives when full contrast agent quantification cannot be achieved, but that pharmacokinetic parameters derived from both contain sources of error (such as those caused by differences between reference tissue and region of interest proton density and native T1 values). It is shown in a rectal cancer study that these sources of uncertainty are smaller when using signal difference, compared with relative enhancement (15 ± 4% compared with 33 ± 4%). Both of these uncertainties are of the order of those associated with the conversion to Gd-DTPA concentration, according to literature estimates.
Tumor Vessel Compression Hinders Perfusion of Ultrasonographic Contrast Agents1
Galiè, Mirco; D'Onofrio, Mirko; Montani, Maura; Amici, Augusto; Calderan, Laura; Marzola, Pasquina; Benati, Donatella; Merigo, Flavia; Marchini, Cristina; Sbarbati, Andrea
2005-01-01
Abstract Contrast-enhanced ultrasound (CEUS) is an advanced approach to in vivo assessment of tumor vascularity and is being increasingly adopted in clinical oncology. It is based on 1- to 10 µm-sized gas microbubbles, which can cross the capillary beds of the lungs and are effective echo enhancers. It is known that high cell density, high transendothelial fluid exchange, and poorly functioning lymphatic circulation all provoke solid stress, which compresses vessels and drastically reduces tumor blood flow. Given their size, we supposed that the perfusion of microbubbles is affected by anatomic features of tumor vessels more than are contrast agents traditionally used in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Here, we compared dynamic information obtained from CEUS and DCE-MRI on two experimental tumor models exhibiting notable differences in vessel anatomy. We found that tumors with small, flattened vessels show a much higher resistance to microbubble perfusion than to MRI contrast agents, and appear scarcely vascularized at CEUS examination, despite vessel volume adequate for normal function. Thus, whereas CEUS alone could induce incorrect diagnosis when tumors have small or collapsed vessels, integrated analysis using CEUS and DCE-MRI allows in vivo identification of tumors with a vascular profile frequently associated with malignant phenotypes. PMID:15967105
NASA Astrophysics Data System (ADS)
Biagioni, Angelo; Bettucci, Andrea; Passeri, Daniele; Alippi, Adriano
2015-06-01
Ultrasound contrast agents are used in echographic imaging techniques to enhance image contrast. In addition, they may represent an interesting solution to the problem of non-invasive temperature monitoring inside the human body, based on some thermal variations of their physical properties. Contrast agents, indeed, are inserted into blood circulation and they reach the most important organs inside the human body; consequently, any thermometric property that they may possess, could be exploited for realizing a non-invasive thermometer. They essentially are a suspension of microbubbles containing a gas enclosed in a phospholipid membrane; temperature variations induce structural modifications of the microbubble phospholipid shell, thus causing thermal dependence of contrast agent's elastic characteristics. In this paper, the acoustic scattering efficiency of a bulk suspension of of SonoVue® (Bracco SpA Milan, Italy) has been studied using a pulse-echo technique in the frequency range 1-17 MHz, as it depends upon temperatures between 25 and 65°C. Experimental data confirm that the ultrasonic attenuation coefficient of SonoVue® depends on temperature between 25 and 60°C. Chemical composition of the bubble shell seem to support the hypothesis that a phase transition in the microstructure of lipid-coated microbubbles could play a key role in explaining such effect.
Fujimoto, T; Ichikawa, H; Akisue, T; Fujita, I; Kishimoto, K; Hara, H; Imabori, M; Kawamitsu, H; Sharma, P; Brown, S C; Moudgil, B M; Fujii, M; Yamamoto, T; Kurosaka, M; Fukumori, Y
2009-07-01
Neutron-capture therapy with gadolinium (Gd-NCT) has therapeutic potential, especially that gadolinium is generally used as a contrast medium in magnetic resonance imaging (MRI). The accumulation of gadolinium in a human sarcoma cell line, malignant fibrosis histiocytoma (MFH) Nara-H, was visualized by the MRI system. The commercially available MRI contrast medium Gd-DTPA (Magnevist, dimeglumine gadopentetate aqueous solution) and the biodegradable and highly gadopentetic acid (Gd-DTPA)-loaded chitosan nanoparticles (Gd-nanoCPs) were prepared as MRI contrast agents. The MFH cells were cultured and collected into three falcon tubes that were set into the 3-tesra MRI system to acquire signal intensities from each pellet by the spin echo method, and the longitudinal relaxation time (T1) was calculated. The amount of Gd in the sample was measured by inductively coupled plasma atomic emission spectrography (ICP-AES). The accumulation of gadolinium in cells treated with Gd-nanoCPs was larger than that in cells treated with Gd-DTPA. In contrast, and compared with the control, Gd-DTPA was more effective than Gd-nanoCPs in reducing T1, suggesting that the larger accumulation exerted the adverse effect of lowering the enhancement of MRI. Further studies are warranted to gain insight into the therapeutic potential of Gd-NCT.
Echo decorrelation imaging of ex vivo HIFU and bulk ultrasound ablation using image-treat arrays
NASA Astrophysics Data System (ADS)
Fosnight, Tyler R.; Hooi, Fong Ming; Colbert, Sadie B.; Keil, Ryan D.; Barthe, Peter G.; Mast, T. Douglas
2017-03-01
In this study, the ability of ultrasound echo decorrelation imaging to map and predict heat-induced cell death was tested using bulk ultrasound thermal ablation, high intensity focused ultrasound (HIFU) thermal ablation, and pulse-echo imaging of ex vivo liver tissue by a custom image-treat array. Tissue was sonicated at 5.0 MHz using either pulses of unfocused ultrasound (N=12) (7.5 s, 50.9-101.8 W/cm2 in situ spatial-peak, temporal-peak intensity) for bulk ablation or focused ultrasound (N=21) (1 s, 284-769 W/cm2 in situ spatial-peak, temporal-peak intensity and focus depth of 10 mm) for HIFU ablation. Echo decorrelation and integrated backscatter (IBS) maps were formed from radiofrequency pulse-echo images captured at 118 frames per second during 5.0 s rest periods, beginning 1.1 s after each sonication pulse. Tissue samples were frozen at -80˚C, sectioned, vitally stained, imaged, and semi-automatically segmented for receiver operating characteristic (ROC) analysis. ROC curves were constructed to assess prediction performance for echo decorrelation and IBS. Logarithmically scaled mean echo decorrelation in non-ablated and ablated tissue regions before and after electronic noise and motion correction were compared. Ablation prediction by echo decorrelation and IBS was significant for both focused and bulk ultrasound ablation. The log10-scaled mean echo decorrelation was significantly greater in regions of ablation for both HIFU and bulk ultrasound ablation. Echo decorrelation due to electronic noise and motion was significantly reduced by correction. These results suggest that ultrasound echo decorrelation imaging is a promising approach for real-time prediction of heat-induced cell death for guidance and monitoring of clinical thermal ablation, including radiofrequency ablation and HIFU.
Arora, Sanjeev; Kalishman, Summers; Thornton, Karla; Dion, Denise; Murata, Glen; Deming, Paulina; Parish, Brooke; Brown, John; Komaromy, Miriam; Colleran, Kathleen; Bankhurst, Arthur; Katzman, Joanna; Harkins, Michelle; Curet, Luis; Cosgrove, Ellen; Pak, Wesley
2013-01-01
The Extension for Community Healthcare Outcomes (ECHO) Model was developed by the University of New Mexico Health Sciences Center (UNMHSC) as a platform to deliver complex specialty medical care to underserved populations through an innovative educational model of team-based inter-disciplinary development. Using state-of-the-art telehealth technology, best practice protocols, and case based learning, ECHO trains and supports primary care providers to develop knowledge and self-efficacy on a variety of diseases. As a result, they can deliver best practice care for complex health conditions in communities where specialty care is unavailable. ECHO was first developed for the management of hepatitis C virus (HCV), optimal management of which requires consultation with multi-disciplinary experts in medical specialties, mental health and substance abuse. Few practitioners, particularly in rural and underserved areas, have the knowledge to manage its emerging treatment options, side effects, drug toxicities and treatment-induced depression. In addition data was obtained from observation of ECHO weekly clinics and database of ECHO clinic participation and patient presentations by clinical provider, evaluation of the ECHO program incorporates annual survey integrated into the ECHO annual meeting and routine surveys of community providers about workplace learning, personal and professional experiences, systems and environmental factors associated with professional practice, self-efficacy, facilitators and barriers to ECHO. The initial survey data show a significant improvement in provider knowledge, self-efficacy and professional satisfaction through participation in ECHO HCV clinics. Clinicians reported a moderate to major benefit from participation. We conclude that ECHO expands access to best practice care for underserved populations, builds communities of practice to enhance professional development and satisfaction of primary care clinicians, and expands sustainable capacity for care by building local centers of excellence. PMID:20607688
Mock ECHO: A Simulation-Based Medical Education Method.
Fowler, Rebecca C; Katzman, Joanna G; Comerci, George D; Shelley, Brian M; Duhigg, Daniel; Olivas, Cynthia; Arnold, Thomas; Kalishman, Summers; Monnette, Rebecca; Arora, Sanjeev
2018-04-16
This study was designed to develop a deeper understanding of the learning and social processes that take place during the simulation-based medical education for practicing providers as part of the Project ECHO® model, known as Mock ECHO training. The ECHO model is utilized to expand access to care of common and complex diseases by supporting the education of primary care providers with an interprofessional team of specialists via videoconferencing networks. Mock ECHO trainings are conducted through a train the trainer model targeted at leaders replicating the ECHO model at their organizations. Trainers conduct simulated teleECHO clinics while participants gain skills to improve communication and self-efficacy. Three focus groups, conducted between May 2015 and January 2016 with a total of 26 participants, were deductively analyzed to identify common themes related to simulation-based medical education and interdisciplinary education. Principal themes generated from the analysis included (a) the role of empathy in community development, (b) the value of training tools as guides for learning, (c) Mock ECHO design components to optimize learning, (d) the role of interdisciplinary education to build community and improve care delivery, (e) improving care integration through collaboration, and (f) development of soft skills to facilitate learning. Mock ECHO trainings offer clinicians the freedom to learn in a noncritical environment while emphasizing real-time multidirectional feedback and encouraging knowledge and skill transfer. The success of the ECHO model depends on training interprofessional healthcare providers in behaviors needed to lead a teleECHO clinic and to collaborate in the educational process. While building a community of practice, Mock ECHO provides a safe opportunity for a diverse group of clinician experts to practice learned skills and receive feedback from coparticipants and facilitators.
Hiwatashi, A; Yoshiura, T; Togao, O; Yamashita, K; Kikuchi, K; Kobayashi, K; Ohga, M; Sonoda, S; Honda, H; Obara, M
2014-01-01
3D turbo field echo with diffusion-sensitized driven-equilibrium preparation is a non-echo-planar technique for DWI, which enables high-resolution DWI without field inhomogeneity-related image distortion. The purpose of this study was to evaluate the feasibility of diffusion-sensitized driven-equilibrium turbo field echo in evaluating diffusivity in the normal pituitary gland. First, validation of diffusion-sensitized driven-equilibrium turbo field echo was attempted by comparing it with echo-planar DWI. Five healthy volunteers were imaged by using diffusion-sensitized driven-equilibrium turbo field echo and echo-planar DWI. The imaging voxel size was 1.5 × 1.5 × 1.5 mm(3) for diffusion-sensitized driven-equilibrium turbo field echo and 1.5 × 1.9 × 3.0 mm(3) for echo-planar DWI. ADCs measured by the 2 methods in 15 regions of interests (6 in gray matter and 9 in white matter) were compared by using the Pearson correlation coefficient. The ADC in the pituitary anterior lobe was then measured in 10 volunteers by using diffusion-sensitized driven-equilibrium turbo field echo, and the results were compared with those in the pons and vermis by using a paired t test. The ADCs from the 2 methods showed a strong correlation (r = 0.79; P < .0001), confirming the accuracy of the ADC measurement with the diffusion-sensitized driven-equilibrium sequence. The ADCs in the normal pituitary gland were 1.37 ± 0.13 × 10(-3) mm(2)/s, which were significantly higher than those in the pons (1.01 ± 0.24 × 10(-3) mm(2)/s) and the vermis (0.89 ± 0.25 × 10(-3) mm(2)/s, P < .01). We demonstrated that diffusion-sensitized driven-equilibrium turbo field echo is feasible in assessing ADC in the pituitary gland.
Ravi, Prasad; Ashwath, Ravi; Strainic, James; Li, Hong; Steinberg, Jon; Snyder, Christopher
2016-01-01
Left axis deviation (LAD) on the electrocardiogram (ECG) is associated with congenital heart disease (CHD), prompting the clinician to order further testing when evaluating a patient with this finding. The purpose is to (1) compare the physical examination (PE) by a pediatric cardiologist to echocardiogram (ECHO) findings in patients with LAD on resting ECG and (2) assess cost of performing ECHO on all patients with LAD on ECG. An IRB approved, retrospective cohort study was performed on patients with LAD (QRS axis ≥0° to -90°) on ECG between 01/02 and 12/12. age >0.25 and <18 years, non-postoperative, and PE and ECHO by pediatric cardiologist. A decision tree model analyzed cost of ECHO in patients with LAD and normal/abnormal PE. Cost of complete ECHO ($239.00) was obtained from 2014 Medicare reimbursement rates. A total of 146 patients met inclusion criteria with 46.5% (68) having normal PE and ECHO, 1.4% (2) having normal PE and abnormal ECHO, 47.3% (69) having abnormal PE and ECHO, and 4.8% (7) having an abnormal PE and normal ECHO. Sensitivity and specificity of PE for detecting abnormalities in this population was 97% and 90%. Positive and negative predictive value of PE was 91% and 97.5%. In patients with normal PE, the cost to identify an ECHO abnormality was $8365, and $263 for those with abnormal PE. In presence of LAD on ECG, the sensitivity, specificity, and positive and negative predictive values of PE by a pediatric cardiologist are excellent at identifying CHD. Performing an ECHO on patients with LAD on ECG is only cost effective in the presence of an abnormal PE. In the presence of normal PE, there is a possibility of missing incidental structural cardiac disease in approximately 2% if an ECHO is not performed. © 2015 Wiley Periodicals, Inc.
Backscattering of sound from targets in an Airy caustic formed by a curved reflecting surface
NASA Astrophysics Data System (ADS)
Dzikowicz, Benjamin Robert
The focusing of a caustic associated with the reflection of a locally curved sea floor or surface affects the scattering of sound by underwater targets. The most elementary caustic formed when sound reflects off a naturally curved surface is an Airy caustic. The case of a spherical target is examined here. With a point source acting also as a receiver, a point target lying in a shadow region returns only one echo directly from the target. When the target is on the Airy caustic, there are two echoes: one path is directly to the target and the other focuses off the curved surface. Echoes may be focused in both directions, the doubly focused case being the largest and the latest echo. With the target in the lit region, these different paths produce multiple echoes. For a finite sized sphere near an Airy caustic, all these echoes are manifest, but they occur at shifted target positions. Echoes of tone bursts reflecting only once overlap and interfere with each other, as do those reflecting twice. Catastrophe theory is used to analyze the echo amplitudes arising from these overlaps. The echo pressure for single reflections is shown to have a dependence on target position described by an Airy function for both a point and a finite target. With double focusing, this dependence is the square of an Airy function for a point target. With a finite sized target, (as in the experiment) this becomes a hyperbolic umbilic catastrophe integral with symmetric arguments. The arguments of each of these functions are derived from only the relative echo times of a transient pulse. Transient echo times are calculated using a numerical ray finding technique. Experiment confirms the predicted merging of transient echoes in the time domain, as well as the Airy and hyperbolic umbilic diffraction integral amplitudes for a tone burst. This method allows targets to be observed at greater distances in the presence of a focusing surface.
NASA Astrophysics Data System (ADS)
Levinsen, J. F.; Smith, B. E.; Sandberg Sorensen, L.; Khvorostovsky, K.; Simonsen, S. B.; Forsberg, R.
2015-12-01
A number of Digital Elevation Models (DEMs) of Greenland exist, each of which are applicable for different purposes. This study presents two such DEMs: One developed by merging contemporary radar and laser altimeter data, and one derived from high-resolution stereoscopic imagery. All products are made freely available. The former DEM covers the entire Greenland. It is specific to the year 2010, providing it with an advantage over previous models suffering from either a reduced spatial/ temporal data coverage or errors from surface elevation changes (SEC) occurring during data acquisition. Radar data are acquired with Envisat and CryoSat-2, and laser data with the Ice, Cloud, and land Elevation Satellite, the Land, Vegetation, and Ice Sensor, and the Airborne Topographic Mapper. Correcting radar data for errors from slope effects and surface penetration of the echoes, and merging these with laser data, yields a DEM capable of resolving both surface depressions as well as topographic features at higher altitudes. The spatial resolution is 2 x 2 km, making the DEM ideal for application in surface mass balance studies, SEC detection from radar altimetry, or for correcting such data for slope-induced errors. The other DEM is developed in a pilot study building the expertise to map all ice-free parts of Greenland. The work combines WorldView-2 and -3 as well as GeoEye1 imagery from 2014 and 2015 over the Disko, Narsaq, Tassilaq, and Zackenberg regions. The novelty of the work is the determination of the product specifications after elaborate discussions with interested parties from government institutions, the tourist industry, etc. Thus, a 10 m DEM, 1.5 m orthophotos, and vector maps are produced. This opens to the possibility of using orthophotos with up-to-date contour lines or for deriving updated coastlines to aid, e.g., emergency management. This allows for a product development directly in line with the needs of parties with specific interests in Greenland.
NASA Astrophysics Data System (ADS)
Furman-Haran, Edna; Margalit, Raanan; Grobgeld, Dov; Degani, Hadassa
1996-06-01
The mechanism of contrast enhancement of tumors using magnetic resonance imaging was investigated in MCF7 human breast cancer implanted in nude mice. Dynamic contrast-enhanced images recorded at high spatial resolution were analyzed by an image analysis method based on a physiological model, which included the blood circulation, the tumor, the remaining tissues, and clearance via the kidneys. This analysis enabled us to map in rapidly enhancing regions within the tumor, the capillary permeability factor (capillary permeability times surface area per voxel volume) and the fraction of leakage space. Correlation of these maps with T2-weighted spin echo images, with histopathology, and with immunohistochemical staining of endothelial cells demonstrated the presence of dense permeable microcapillaries in the tumor periphery and in intratumoral regions that surrounded necrotic loci. The high leakage from the intratumoral permeable capillaries indicated an induction of a specific angiogenic process associated with stress conditions that cause necrosis. This induction was augmented in tumors responding to tamoxifen treatment. Determination of the distribution and extent of this stress-induced angiogenic activity by contrast-enhanced MRI might be of diagnostic and of prognostic value.
Haage, P; Adam, G; Karaagac, S; Pfeffer, J; Glowinski, A; Döhmen, S; Günther, R W
2001-04-01
To evaluate a new technique with mechanical administration of aerosolized gadolinium (Gd)-DTPA for MR visualization of lung ventilation. Ten experimental procedures were performed in six domestic pigs. Gd-DTPA was aerosolized by a small-particle generator. The intubated animals were mechanically aerosolized with the nebulized contrast agent and studied on a 1.5-T MR imager. Respiratory gated T1-weighted turbo spin-echo images were obtained before, during, and after contrast administration. Pulmonary signal intensity (SI) changes were calculated for corresponding regions of both lungs. Homogeneity of aerosol distribution was graded independently by two radiologists. To achieve a comparable SI increase as attained in previous trials that used manual aerosol ventilation, a ventilation period of 20 minutes (formerly 30 minutes) was sufficient. Mean SI changes of 116% were observed after that duration. Contrast delivery was rated evenly distributed in all cases by the reviewers. The feasibility of applying Gd-DTPA as a contrast agent to demonstrate pulmonary ventilation in large animals has been described before. The results of this refined technique substantiate the potential of Gd-based ventilation MR imaging by improving aerosol distribution and shortening the nebulization duration in the healthy lung.
Pinched flow fractionation of microbubbles for ultrasound contrast agent enrichment
NASA Astrophysics Data System (ADS)
Versluis, Michel; Kok, Maarten; Segers, Tim
2014-11-01
An ultrasound contrast agent (UCA) suspension contains a wide size distribution of encapsulated microbubbles (typically 1-10 μm in diameter) that resonate to the driving ultrasound field by the intrinsic relationship between bubble size and ultrasound frequency. Medical transducers, however, operate in a narrow frequency range, which severely limits the number of bubbles that contribute to the echo signal. Thus, the sensitivity can be improved by narrowing down the size distribution of the bubble suspension. Here, we present a novel, low-cost, lab-on-a-chip method for the sorting of contrast microbubbles by size, based on a microfluidic separation technique known as pinched flow fractionation (PFF). We show by experimental and numerical investigation that the inclusion of particle rotation is essential for an accurate physical description of the sorting behavior of the larger bubbles. Successful sorting of a bubble suspension with a narrow size distribution (3.0 +/- 0.6 μm) has been achieved with a PFF microdevice. This sorting technique can be easily parallelized, and may lead to a significant improvement in the sensitivity of contrast-enhanced medical ultrasound. This work is supported by NanoNextNL, a micro and nanotechnology consortium of the Government of the Netherlands and 130 partners.
Effects of ultrasound and ultrasound contrast agent on vascular tissue
2012-01-01
Background Ultrasound (US) imaging can be enhanced using gas-filled microbubble contrast agents. Strong echo signals are induced at the tissue-gas interface following microbubble collapse. Applications include assessment of ventricular function and virtual histology. Aim While ultrasound and US contrast agents are widely used, their impact on the physiological response of vascular tissue to vasoactive agents has not been investigated in detail. Methods and results In the present study, rat dorsal aortas were treated with US via a clinical imaging transducer in the presence or absence of the US contrast agent, Optison. Aortas treated with both US and Optison were unable to contract in response to phenylephrine or to relax in the presence of acetylcholine. Histology of the arteries was unremarkable. When the treated aortas were stained for endothelial markers, a distinct loss of endothelium was observed. Importantly, terminal deoxynucleotidyl transferase mediated dUTP nick-end-labeling (TUNEL) staining of treated aortas demonstrated incipient apoptosis in the endothelium. Conclusions Taken together, these ex vivo results suggest that the combination of US and Optison may alter arterial integrity and promote vascular injury; however, the in vivo interaction of Optison and ultrasound remains an open question. PMID:22805356
NASA Astrophysics Data System (ADS)
Cobb, Charles M.; Spencer, Paulette; McCollum, Mark H.
1995-05-01
Specimens consisted of 18 extracted single rooted teeth unaffected by periodontal disease. After debriding roots, specimens were randomly divided into 4 treatment groups and subjected to a single pass, at varying energy densities, of a CO2, Nd:YAG, and Nd:YAG with air/water surface cooling (Nd:YAG-C). The rate of exposure was controlled at 4 mm/sec. Approximate energy densities were: CO2, 138, 206, 275, and 344 J/cm2; Nd:YAG, 114, 171, 229, and 286 J/cm2; Nd:YAG-C, 286, 343, 514, and 571 J/cm2. The CO2 laser was used both in continuous and pulsed beam modes (20 Hz, 0.01 sec pulse length and 0.8 mm dia spot size) whereas the Nd:YAG and Nd:YAG-C were preset at 50 Hz, 0.08 sec pulse length and 0.6 mm dia spot size. Specimen examination by SEM revealed, for all lasers, a direct correlation between increasing energy densities and depth of tissue ablation and width of tissue damage. However, to achieve the same relative dept of tissue ablation, the Nd:YAG-C required higher energy densities than either the CO2 or Nd:YAG lasers. The Nd:YAG-C generated a cavitation with sharply defined margins. Furthermore, regardless of energy density, and in contrast with other laser types, areas treated with the Nd:YAG-C did not exhibit collateral zones of heat damaged surface tissue.
Noise Reduction of 1sec Geomagnetic Observatory Data without Information Loss
NASA Astrophysics Data System (ADS)
Brunke, Heinz-Peter; Korte, Monika; Rudolf, Widmer-Schnidrig
2017-04-01
Traditional fluxgate magnetometers used at geomagnetic observatories are optimized towards long-term stability. Typically, such instruments can only resolve background geomagnetic field variations up to a frequency of approximately 0.04 Hz and are limited by instrumental self-noise above this frequency. However, recently the demand for low noise 1 Hz observatory data has increased. IAGA has defined a standard for definitive 1sec data. Induction coils have low noise at these high frequencies, but lack long-term stability. We present a method to numerically combine the data from a three axis induction coil system with a typical low-drift observatory fluxgate magnetometer. The resulting data set has a reduced noise level above 0.04 Hz while maintaining the long term stability of the fluxgate magnetometer. Numerically we fit a spline to the fluxgate data. But in contrast to such a low pass filtering process, our method reduces the noise level at high frequencies without any loss of information. In order to experimentally confirm our result, we compared it to a very low noise scalar magnetometer: an optically pumped potassium magnetometer. In the frequency band from [0.03Hz to 0.5Hz] we found an rms-noise reduction from 80pT for the unprocessed fluxgate data to about 25pT for the processed data. We show how our method improves geomagnetic 1 sec observatory data for, e.g., the study of magnetospheric pulsations and EMIC waves.
Nhi-Cong, Le Thi; Mai, Cung Thi Ngoc; Minh, Nghiem Ngoc; Ha, Hoang Phuong; Lien, Do Thi; Tuan, Do Van; Quyen, Dong Van; Ike, Michihiko; Uyen, Do Thi To
2016-01-01
This article reports on the ability of yeast Trichosporon asahii B1 biofilm-associated cells, compared with that of planktonic cells, to transform sec-hexylbenzene and its metabolites. This B1 strain was isolated from a petroleum-polluted sediment collected in the QuangNinh coastal zones in Vietnam, and it can transform the branched aromatic hydrocarbons into a type of forming biofilm (pellicle) more efficiency than that the planktonic forms can. In the biofilm cultivation, seven metabolites, including acetophenone, benzoic acid, 2,3-dihydroxybenzoic acid, β-methylcinnamic acid, 2-phenylpropionic acid, 3-phenylbutyric acid, and 5-phenylhexanoic acid were extracted by ethyl acetate and analyzed by HPLC and GC-MS. In contrast, in the planktonic cultivation, only three of these intermediates were found. An individual metabolite was independently used as an initial substrate to prove its degradation by biofilm and planktonic types. The degradation of these products indicated that their inoculation with B1 biofilms was indeed higher than that observed in their inoculation with B1 planktonic cells. This is the first report on the degradation of sec-hexylbenzene and its metabolites by a biofilm-forming Trichosporon asahii strain. These results enhance our understanding of the degradation of branched-side-chain alkylbenzenes by T. asahii B1 biofilms and give a new insight into the potential role of biofilms formed by such species in the bioremediation of other recalcitrant aromatic compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Lingzhi, E-mail: hlingzhi@gmail.com, E-mail: raymond.muzic@case.edu; Traughber, Melanie; Su, Kuan-Hao
Purpose: The ultrashort echo-time (UTE) sequence is a promising MR pulse sequence for imaging cortical bone which is otherwise difficult to image using conventional MR sequences and also poses strong attenuation for photons in radiation therapy and PET imaging. The authors report here a systematic characterization of cortical bone signal decay and a scanning time optimization strategy for the UTE sequence through k-space undersampling, which can result in up to a 75% reduction in acquisition time. Using the undersampled UTE imaging sequence, the authors also attempted to quantitatively investigate the MR properties of cortical bone in healthy volunteers, thus demonstratingmore » the feasibility of using such a technique for generating bone-enhanced images which can be used for radiation therapy planning and attenuation correction with PET/MR. Methods: An angularly undersampled, radially encoded UTE sequence was used for scanning the brains of healthy volunteers. Quantitative MR characterization of tissue properties, including water fraction and R2{sup ∗} = 1/T2{sup ∗}, was performed by analyzing the UTE images acquired at multiple echo times. The impact of different sampling rates was evaluated through systematic comparison of the MR image quality, bone-enhanced image quality, image noise, water fraction, and R2{sup ∗} of cortical bone. Results: A reduced angular sampling rate of the UTE trajectory achieves acquisition durations in proportion to the sampling rate and in as short as 25% of the time required for full sampling using a standard Cartesian acquisition, while preserving unique MR contrast within the skull at the cost of a minimal increase in noise level. The R2{sup ∗} of human skull was measured as 0.2–0.3 ms{sup −1} depending on the specific region, which is more than ten times greater than the R2{sup ∗} of soft tissue. The water fraction in human skull was measured to be 60%–80%, which is significantly less than the >90% water fraction in brain. High-quality, bone-enhanced images can be generated using a reduced sampled UTE sequence with no visible compromise in image quality and they preserved bone-to-air contrast with as low as a 25% sampling rate. Conclusions: This UTE strategy with angular undersampling preserves the image quality and contrast of cortical bone, while reducing the total scanning time by as much as 75%. The quantitative results of R2{sup ∗} and the water fraction of skull based on Dixon analysis of UTE images acquired at multiple echo times provide guidance for the clinical adoption and further parameter optimization of the UTE sequence when used for radiation therapy and MR-based PET attenuation correction.« less
Quantitative evaluation of microvascular blood flow by contrast-enhanced ultrasound (CEUS).
Greis, Christian
2011-01-01
Ultrasound contrast agents consist of tiny gas-filled microbubbles the size of red blood cells. Due to their size distribution, they are purely intravascular tracers which do not extravasate into the interstitial fluid, and thus they are perfect agents for imaging blood distribution and flow. Using ultrasound scanners with contrast-specific software, the specific microbubble-derived echo signals can be separated from tissue signals in realtime, allowing selective imaging of the contrast agent. The signal intensity obtained lies in a linear relationship to the amount of microbubbles in the target organ, which allows easy and reliable assessment of relative blood volume. Imaging of the contrast wash-in and wash-out after bolus injection, or more precisely using the flash-replenishment technique, allows assessment of regional blood flow velocity. Commercially available quantification software packages can calculate time-related intensity values from the contrast wash-in and wash-out phase for each image pixel from stored video clips. After fitting of a mathematical model curve according to the respective kinetic model (bolus or flash-replenishment kinetics), time/intensity curves (TIC) can be calculated from single pixels or user-defined regions of interest (ROI). Characteristic parameters of these TICs (e.g. peak intensity, area under the curve, wash-in rate, etc.) can be displayed as color-coded parametric maps on top of the anatomical image, to identify cold and hot spots with abnormal perfusion.
Assessment of inflammatory activity in Crohn's disease by means of dynamic contrast-enhanced MRI.
Pupillo, V A; Di Cesare, E; Frieri, G; Limbucci, N; Tanga, M; Masciocchi, C
2007-09-01
Our aim was to perform a dynamic study of contrast enhancement of the intestinal wall in patients with Crohn's disease to quantitatively assess local inflammatory activity. We studied a population of 50 patients with histologically proven Crohn's disease. Magnetic resonance imaging (MRI) was performed using a 1.5-T magnet with a phased-array coil and acquisition of T2-weighted single-shot fast spin echo (SSFSE) half Fourier sequences before intravenous administration of gadolinium, and T1-weighted fast spoiled gradient (FSPGR) fat-saturated sequences before and after contrast administration. Before the examination, patents received oral polyethylene glycol (PEG) (1,000 ml for adults; 10 ml/Kg of body weight for children). Regions of interest (ROI) were placed on the normal and diseased intestinal wall to assess signal intensity and rate of increase in contrast enhancement over time. Data were compared with the Crohn's Disease Activity Index (CDAI). The diseased bowel wall showed early and intense uptake of contrast that increases over time until a plateau is reached. In patients in the remission phase after treatment, signal intensity was only slightly higher in diseased bowel loops than in healthy loops. There was a significant correlation between the peak of contrast uptake and CDAI. Dynamic MRI is a good technique for quantifying local inflammatory activity of bowel wall in patients with Crohn's disease.
NASA Technical Reports Server (NTRS)
Rottger, J.
1983-01-01
Mesospheric echoes are strongly influenced by the electron density profile of the ionospheric D region. These echoes therefore are only observed during daylight hours or high energy particle precipitation. The turbulence occurs in layers, which often confines the radar echoes to rather thin regions of several 100 m vertical extent, although layers as thick as several kilometers are also observed. Evaluable echoes are not observed through the entire altitude region of the mesosphere for the given power aperture product. The echoes indicate temporal variation.
Diffusion measurement from observed transverse beam echoes
Sen, Tanaji; Fischer, Wolfram
2017-01-09
For this research, we study the measurement of transverse diffusion through beam echoes. We revisit earlier observations of echoes in RHIC and apply an updated theoretical model to these measurements. We consider three possible models for the diffusion coefficient and show that only one is consistent with measured echo amplitudes and pulse widths. This model allows us to parameterize the diffusion coefficients as functions of bunch charge. We demonstrate that echoes can be used to measure diffusion much quicker than present methods and could be useful to a variety of hadron synchrotrons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santoso, A; Song, K; Gardner, S
Purpose: 4D-CBCT facilitates assessment of tumor motion at treatment position. We investigated the effect of gantry speed on 4D-CBCT image quality and dose using the Varian Edge On-Board Imager (OBI). Methods: A thoracic protocol was designed using a 125 kVp spectrum. Image quality parameters were obtained via 4D acquisition using a Catphan phantom with a gating system. A sinusoidal waveform was executed with a five second period and superior-inferior motion. 4D-CBCT scans were sorted into 4 and 10 phases. Image quality metrics included spatial resolution, contrast-to-noise ratio (CNR), uniformity index (UI), Hounsfield unit (HU) sensitivity, and RMS error (RMSE) ofmore » motion amplitude. Dosimetry was accomplished using Gafchromic XR-QA2 films within a CIRS Thorax phantom. This was placed on the gating phantom using the same motion waveform. Results: High contrast resolution decreased linearly from 5.93 to 4.18 lp/cm, 6.54 to 4.18 lp/cm, and 5.19 to 3.91 lp/cm for averaged, 4 phase, and 10 phase 4DCBCT volumes respectively as gantry speed increased from 1.0 to 6.0 degs/sec. CNRs decreased linearly from 4.80 to 1.82 as the gantry speed increased from 1.0 to 6.0 degs/sec, respectively. No significant variations in UIs, HU sensitivities, or RMSEs were observed with variable gantry speed. Ion chamber measurements compared to film yielded small percent differences in plastic water regions (0.1–9.6%), larger percent differences in lung equivalent regions (7.5–34.8%), and significantly larger percent differences in bone equivalent regions (119.1–137.3%). Ion chamber measurements decreased from 17.29 to 2.89 cGy with increasing gantry speed from 1.0 to 6.0 degs/sec. Conclusion: Maintaining technique factors while changing gantry speed changes the number of projections used for reconstruction. Increasing the number of projections by decreasing gantry speed decreases noise, however, dose is increased. The future of 4DCBCT’s clinical utility relies on further investigation of image optimization.« less