Sample records for echo top height

  1. Evolution of Precipitation Structure During the November DYNAMO MJO Event: Cloud-Resolving Model Intercomparison and Cross Validation Using Radar Observations

    NASA Astrophysics Data System (ADS)

    Li, Xiaowen; Janiga, Matthew A.; Wang, Shuguang; Tao, Wei-Kuo; Rowe, Angela; Xu, Weixin; Liu, Chuntao; Matsui, Toshihisa; Zhang, Chidong

    2018-04-01

    Evolution of precipitation structures are simulated and compared with radar observations for the November Madden-Julian Oscillation (MJO) event during the DYNAmics of the MJO (DYNAMO) field campaign. Three ground-based, ship-borne, and spaceborne precipitation radars and three cloud-resolving models (CRMs) driven by observed large-scale forcing are used to study precipitation structures at different locations over the central equatorial Indian Ocean. Convective strength is represented by 0-dBZ echo-top heights, and convective organization by contiguous 17-dBZ areas. The multi-radar and multi-model framework allows for more stringent model validations. The emphasis is on testing models' ability to simulate subtle differences observed at different radar sites when the MJO event passed through. The results show that CRMs forced by site-specific large-scale forcing can reproduce not only common features in cloud populations but also subtle variations observed by different radars. The comparisons also revealed common deficiencies in CRM simulations where they underestimate radar echo-top heights for the strongest convection within large, organized precipitation features. Cross validations with multiple radars and models also enable quantitative comparisons in CRM sensitivity studies using different large-scale forcing, microphysical schemes and parameters, resolutions, and domain sizes. In terms of radar echo-top height temporal variations, many model sensitivity tests have better correlations than radar/model comparisons, indicating robustness in model performance on this aspect. It is further shown that well-validated model simulations could be used to constrain uncertainties in observed echo-top heights when the low-resolution surveillance scanning strategy is used.

  2. Report on the Radar/PIREP Cloud Top Discrepancy Study

    NASA Technical Reports Server (NTRS)

    Wheeler, Mark M.

    1997-01-01

    This report documents the results of the Applied Meteorology Unit's (AMU) investigation of inconsistencies between pilot reported cloud top heights and weather radar indicated echo top heights (assumed to be cloud tops) as identified by the 45 Weather Squadron (45WS). The objective for this study is to document and understand the differences in echo top characteristics as displayed on both the WSR-88D and WSR-74C radars and cloud top heights reported by the contract weather aircraft in support of space launch operations at Cape Canaveral Air Station (CCAS), Florida. These inconsistencies are of operational concern since various Launch Commit Criteria (LCC) and Flight Rules (FR) in part describe safe and unsafe conditions as a function of cloud thickness. Some background radar information was presented. Scan strategies for the WSR-74C and WSR-88D were reviewed along with a description of normal radar beam propagation influenced by the Effective Earth Radius Model. Atmospheric conditions prior to and leading up to both launch operations were detailed. Through the analysis of rawinsonde and radar data, atmospheric refraction or bending of the radar beam was identified as the cause of the discrepancies between reported cloud top heights by the contract weather aircraft and those as identified by both radars. The atmospheric refraction caused the radar beam to be further bent toward the Earth than normal. This radar beam bending causes the radar target to be displayed erroneously, with higher cloud top heights and a very blocky or skewed appearance.

  3. A Retrieval of Tropical Latent Heating Using the 3D Structure of Precipitation Features

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Fiaz; Schumacher, Courtney; Feng, Zhe

    Traditionally, radar-based latent heating retrievals use rainfall to estimate the total column-integrated latent heating and then distribute that heating in the vertical using a model-based look-up table (LUT). In this study, we develop a new method that uses size characteristics of radar-observed precipitating echo (i.e., area and mean echo-top height) to estimate the vertical structure of latent heating. This technique (named the Convective-Stratiform Area [CSA] algorithm) builds on the fact that the shape and magnitude of latent heating profiles are dependent on the organization of convective systems and aims to avoid some of the pitfalls involved in retrieving accurate rainfallmore » amounts and microphysical information from radars and models. The CSA LUTs are based on a high-resolution Weather Research and Forecasting model (WRF) simulation whose domain spans much of the near-equatorial Indian Ocean. When applied to S-PolKa radar observations collected during the DYNAMO/CINDY2011/AMIE field campaign, the CSA retrieval compares well to heating profiles from a sounding-based budget analysis and improves upon a simple rain-based latent heating retrieval. The CSA LUTs also highlight the fact that convective latent heating increases in magnitude and height as cluster area and echo-top heights grow, with a notable congestus signature of cooling at mid levels. Stratiform latent heating is less dependent on echo-top height, but is strongly linked to area. Unrealistic latent heating profiles in the stratiform LUT, viz., a low-level heating spike, an elevated melting layer, and net column cooling were identified and corrected for. These issues highlight the need for improvement in model parameterizations, particularly in linking microphysical phase changes to larger mesoscale processes.« less

  4. Radar and satellite determined macrophysical properties of wet season convection in Darwin as a function of wet season regime.

    NASA Astrophysics Data System (ADS)

    Jackson, R. C.; Collis, S. M.; Protat, A.; Louf, V.; Lin, W.; Vogelmann, A. M.; Endo, S.; Majewski, L.

    2017-12-01

    A known deficiency of general circulation models (GCMs) is that convection is typically parameterized using given assumptions about entrainment rates and mass fluxes. Furthermore, mechanisms coupling large scale forcing and convective organization are poorly represented, leading to a poor representation of the macrophysical properties of convection. The U.S. Department of Energy (DOE) Accelerated Climate Model for Energy (ACME) aims to run at a 12 km resolution. At this scale mesoscale motions are resolved and how they interact with the convective parameterization is unknown. This prompts the need for observational datasets to validate the macrophysical characteristics of convection in simulations and guide model development in ACME in several regions of the globe. This presentation will highlight a study of convective systems focused on data collected at the Tropical Western Pacific (TWP) ARM site in Darwin, Australia and the surrounding maritime continent. In Darwin well defined forcing regimes occur during the wet season of November to April with the onset and break of the Northern Australian Monsoon and the phase of the Madden-Julien Oscillation (MJO) which can alter the characteristics of convection over the region. The echo top heights, and convective and stratiform areas are retrieved from fifteen years of continuous plan position indicator scans from the C-band POLarimetric (CPOL) radar. Echo top heights in convective regions are 2 to 3 km lower than those retrieved by the Multifunctional Transport Satellites over Darwin, suggesting that the radar underestimates the vertical extent of convection. Distributions of echo top heights are trimodal in convective regions and unimodal in stratiform regions. This regime based convective behaviour will be used to assess the skill of ACME in reproducing the macrophysical properties of maritime continent clouds vital to the global circulation.

  5. Development of charge structure in a short live convective cell observed by a 3D lightning mapper and a phased array radar

    NASA Astrophysics Data System (ADS)

    Yoshida, S.; Adachi, T.; Kusunoki, K.; Wu, T.; Ushio, T.; Yoshikawa, E.

    2015-12-01

    Thunderstorm observation has been conducted in Osaka, Japan, with a use of a 3D lightning mapper, called Broadband Observation network for Lightning and Thunderstorm (BOLT), and an X-band phased array radar (PAR). BOLT is a LF sensor network that receives LF emission associated with lightning discharges and locates LF radiation sources in 3D. PAR employs mechanical and electrical scans, respectively, in azimuthal and elevation direction, succeeding in quite high volume scan rate. In this presentation, we focus on lightning activity and charge structure in convective cells that lasted only short time (15 minutes or so). Thunderstorms that consisted of several convective cells developed near the radar site. Precipitation structure of a convective cell in the thunderstorm was clearly observed by PAR. A reflectivity core of the convective cell appeared at an altitude of 6 km at 2245 (JST). After that the core descended and reached the ground at 2256 (JST), resulting in heavy precipitation on surface. The echo top height (30dBZ) increased intermittently between 2245 (JST) and 2253 (JST) and it reached at the altitude of 12 km. The convective cell dissipated at 2300. Many intra-cloud (IC) flashes were initiated within the convective cell. Most IC flashes that were initiated in the convective cell occurred during the time when the echo top height increased, while a few IC flashes were initiated in the convective cell after the cease of the echo top vertical development. These facts indicate that strong updraft at upper levels (about 8 km or higher) plays an important role on thunderstorm electrification for IC flashes. Moreover, initiation altitudes of the IC flashes and the positive charge regions removed by the IC flashes increased, as the echo top height increased. This fact implies that the strong updraft at the upper levels blew up positively-charged ice pellets and negatively-charged graupel, and lifted IC flash initiation altitudes and positive charge regions. Previous observation results showed that positive charge regions sometimes moved upward in short time (about 5 minutes or so) in vigorous convective cells. Our observation results support the previous observation results and show that the rapid charge structure change was caused by strong updraft at upper levels in the convective cell.

  6. Characteristics of Precipitation, Cloud, and Latent Heating Associated with the Madden-Julian Oscillation

    NASA Technical Reports Server (NTRS)

    Lau, K-M.; Wu, H-T.

    2010-01-01

    This study investigates the evolution of cloud and rainfall structures associated with Madden Julian oscillation (MJO) using Tropical Rainfall Measuring Mission (TRMM) data. Two complementary indices are used to define MJO phases. Joint probability distribution functions (PDFs) of cloud-top temperature and radar echo-top height are constructed for each of the eight MJO phases. The genesis stage of MJO convection over the western Pacific (phases 1 and 2) features a bottom-heavy PDF, characterized by abundant warm rain, low clouds, suppressed deep convection, and higher sea surface temperature (SST). As MJO convection develops (phases 3 and 4), a transition from the bottom-heavy to top-heavy PDF occurs. The latter is associated with the development of mixed-phase rain and middle-to-high clouds, coupled with rapid SST cooling. At the MJO convection peak (phase 5), a top-heavy PDF contributed by deep convection with mixed-phase and ice-phase rain and high echo-top heights (greater than 5 km) dominates. The decaying stage (phases 6 and 7) is characterized by suppressed SST, reduced total rain, increased contribution from stratiform rain, and increased nonraining high clouds. Phase 7, in particular, signals the beginning of a return to higher SST and increased warm rain. Phase 8 completes the MJO cycle, returning to a bottom-heavy PDF and SST conditions similar to phase 1. The structural changes in rain and clouds at different phases of MJO are consistent with corresponding changes in derived latent heating profiles, suggesting the importance of a diverse mix of warm, mixed-phase, and ice-phase rain associated with low-level, congestus, and high clouds in constituting the life cycle and the time scales of MJO.

  7. The behavior of the radar parameters of cumulonimbus clouds during cloud seeding with AgI

    NASA Astrophysics Data System (ADS)

    Vujović, D.; Protić, M.

    2017-06-01

    Deep convection yielding severe weather phenomena (hail, flash floods, thunder) is frequent in Serbia during the warmer part of the year, i.e. April to September. As an effort to mitigate any potential damage to material goods, agricultural crops and vegetation from larger hailstones, cloud seeding is performed. In this paper, we analyzed 29 severe hailstorms seeded by silver iodide. From these, we chose five intense summer thunderstorm cells to analyze in detail the influence of silver-iodide cloud seeding on the radar parameters. Four of them were seeded and one was not. We also used data from firing stations (hail fall occurrence, the size of the hailstones). The most sensitive radar parameter in seeding was the height where maximum reflectivity in the cloud was observed. Its cascade appeared in every case of seeding, but was absent from the non-seeded case. In the case of the supercell, increase and decrease of the height where maximum reflectivity in the cloud was observed occurred in almost regular intervals, 12 to 15 min. The most inert parameter in seeding was maximum radar reflectivity. It changed one to two dBz during one cycle. The height of the top of the cloud and the height of the zone exhibiting enhanced radar echo both had similar behavior. It seems that both increased after seeding due to a dynamic effect: upward currents increasing due to the release of latent heat during the freezing of supercooled droplets. Mean values of the height where maximum reflectivity in the cloud was observed, the height of the top of the cloud and the height of the zone exhibiting enhanced radar echo during seeded period were greater than during unseeded period in 75.9%, 72.4% and 79.3% cases, respectively. This is because the values of the chosen storm parameters were higher when the seeding started, and then those values decreased after the seeded was conducted.

  8. Regional, Intraseasonal, and Diurnal Variability of Convection associated with the Boreal Summer Intraseasonal Oscillation over and around the South China Sea

    NASA Astrophysics Data System (ADS)

    Xu, W.; Rutledge, S. A.

    2017-12-01

    Weather forecasting and climate models have difficulty in simulating the BSISO due to incomplete understanding of the underlying multiscale physical processes, which also motivates the PISTON field campaign to be held in the SCS in 2018. In preparation for PISTON, this study investigates the regional, intraseasonal, and diurnal variability of BSISO-associated convection over the SCS and surrounding landmasses using long-term satellite data. The SCS is characterized by suppressed precipitation and weak southerlies during inactive BSISO phases (BSISO-1 index, phases 1-3), while a substantial northwest-southeast oriented rainband and strong low-level westerlies dominate active BSISO phases (phases 5-7). In general, convective intensity (e.g., radar echo-top height) and lightning activity are in phase with rainfall over the SCS. However, convective intensity and lightning are out of phase with rainfall over landmasses along the BSISO rainband (e.g., Indochina and Philippines). During active BSISO phases, convective systems over both land and ocean are characterized by larger size, colder cloud tops (IR), and greater fraction of stratiform precipitation. Convection over the SCS during active BSISO phases has taller precipitation echoes (20-dBZ echo top heights), higher lightning density, stronger microwave ice scattering signatures, and more robust mixed-phase microphysics (larger 30/40 dBZ echo volume above the freezing level). These same parameters maximize over land masses of Indochina and the Philippines during BSISO inactive periods. Statistics of environmental conditions suggest that the peak convection over land is due to stronger surface heating (thus higher CAPE) during inactive phases, whereas larger sea surface heat fluxes (leading to higher CAPE) during active phases enhances convective intensity over the SCS. On the other hand, mesoscale organization, convective intensity, and microphysical properties of precipitation systems to the south and north of the BSISO key rainband region have only negligible intraseasonal variability. Land convection shows a strong diurnal cycle (maximizing at afternoon and early evening) across all BSISO phases, while offshore convection peaks at midnight and early morning times during inactive BSISO phases.

  9. Acoustical Surveys Of Methane Plumes By Using The Quantitative Echo Sounder In The Eastern Margin Of The Sea of Japan

    NASA Astrophysics Data System (ADS)

    Aoyama, C.; Matsumoto, R.; Okuda, Y.; Ishida, Y.; Hiruta, A.; Sunamura, M.; Numanami, H.; Tomaru, H.; Snyder, G.; Komatsubara, J.; Takeuchi, R.; Hiromatsu, M.; Aoyama, D.; Koike, Y.; Takeda, S.; Hayashi, T.; Hamada, H.

    2004-12-01

    The reseach and trainning/V, Umitaka-maru sailed to the methane seep area on a small ridge in the eastern margin of the Sea of Japan on July to August 2004 to survey the ocean floor gas hydrate and related acoustic signatures of methane plumes by using a quantitative echo sounder. Detailed bathymetric profiles have revealed a number of mounds, pockmarks and collapse structures within 3km x 4km on the ridge at the water depth of 910m to 980m. We mapped minutely methane plumes by using a quantitative echo sounder with positioning data from GPS. We also measured averaged echo intensity from the methane plumes both in every 100m range and every one minute by the echo integrator. We obtained the following results from the present echo-sounder survey. 1) We checked 36 plumes on echogram, ranging 100m to 200m in diameter and 600m to 700m in height, reaching up to 200m to 300m below sea level. 2) We measured the averaged volume backscattering strength (SV) of each methane plume. The strongest SV, -45dB, of the plumes was stronger than SV of fish school. 3) Averaged SV tend to show the highest values around the middle of plumes, whereas the SVs are relatively low at the bottom and the top of plumes. 4) Some of the plumes were observed to show daily fluctuation in height and width. 5) We recovered several fist-sized chunks of methane hydrate by piston coring at the area where we observed methane plumes. As a following up project, we are planning to measure SV of methane bubbles and methane hydrate floating in water columns through an experimental studies in a large water tanks.

  10. Development and Testing of the VAHIRR Radar Product

    NASA Technical Reports Server (NTRS)

    Barrett, Joe III; Miller, Juli; Charnasky, Debbie; Gillen, Robert; Lafosse, Richard; Hoeth, Brian; Hood, Doris; McNamara, Todd

    2008-01-01

    Lightning Launch Commit Criteria (LLCC) and Flight Rules (FR) are used for launches and landings at government and commercial spaceports. They are designed to avoid natural and triggered lightning strikes to space vehicles, which can endanger the vehicle, payload, and general public. The previous LLCC and FR were shown to be overly restrictive, potentially leading to costly launch delays and scrubs. A radar algorithm called Volume Averaged Height Integrated Radar Reflectivity (VAHIRR), along with new LLCC and FR for anvil clouds, were developed using data collected by the Airborne Field Mill II research program. VAHIRR is calculated at every horizontal position in the coverage area of the radar and can be displayed similar to a two-dimensional derived reflectivity product, such as composite reflectivity or echo tops. It is the arithmetic product of two quantities not currently generated by the Weather Surveillance Radar 1988 Doppler (WSR-88D): a volume average of the reflectivity measured in dBZ and the average cloud thickness based on the average echo top height and base height. This presentation will describe the VAHIRR algorithm, and then explain how the VAHIRR radar product was implemented and tested on a clone of the National Weather Service's (NWS) Open Radar Product Generator (ORPG-clone). The VAHIRR radar product was then incorporated into the Advanced Weather Interactive Processing System (AWIPS), to make it more convenient for weather forecasters to utilize. Finally, the reliability of the VAHIRR radar product was tested with real-time level II radar data from the WSR-88D NWS Melbourne radar.

  11. In-Service Monitoring of Steam Pipe Systems at High Temperatures

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Badescu, Mircea; Bao, Xiaoqi; Sherrit, Stewart; Scott, James S.; Blosiu, Julian O.; Widholm, Scott E.

    2011-01-01

    An effective, in-service health monitoring system is needed to track water condensation in real time through the walls of steam pipes. The system is required to measure the height of the condensed water from outside the pipe, while operating at temperatures that are as high as 250 C. The system needs to account for the effects of water flow and cavitation. In addition, it is desired that the system does not require perforating the pipes and thereby reducing the structural integrity. Generally, steam pipes are used as part of the district heating system carrying steam from central power stations under the streets to heat, cool, or supply power to high-rise buildings and businesses. This system uses ultrasonic waves in pulse-echo and acquires reflected signal data. Via autocorrelation, it determines the water height while eliminating the effect of noise and multiple reflections from the wall of the pipe. The system performs nondestructive monitoring through the walls of steam pipes, and automatically measures the height of condensed water while operating at the high-temperature conditions of 250 C. For this purpose, the ultrasonic pulse-echo method is used where the time-of-flight of the wave reflections inside the water are measured, and it is multiplied by the wave velocity to determine the height. The pulse-echo test consists of emitting ultrasonic wave pulses from a piezoelectric transducer and receiving the reflections from the top and bottom of the condensed water. A single transducer is used as a transmitter as well as the receiver of the ultrasonic waves. To obtain high resolution, a broadband transducer is used and the frequency can be in the range of 2.25 to 10 MHz, providing sharp pulses in the time domain allowing for higher resolution in identifying the individual reflections.

  12. Acoustic sounding in the planetary boundary layer

    NASA Technical Reports Server (NTRS)

    Kelly, E. H.

    1974-01-01

    Three case studies are presented involving data from an acoustic radar. The first two cases examine data collected during the passage of a mesoscale cold-air intrusion, probably thunderstorm outflow, and a synoptic-scale cold front. In these studies the radar data are compared to conventional meteorological data obtained from the WKY tower facility for the purpose of radar data interpretation. It is shown that the acoustic radar echoes reveal the boundary between warm and cold air and other areas of turbulent mixing, regions of strong vertical temperature gradients, and areas of weak or no wind shear. The third case study examines the relationship between the nocturnal radiation inversion and the low-level wind maximum or jet in the light of conclusions presented by Blackadar (1957). The low-level jet is seen forming well above the top of the inversion. Sudden rapid growth of the inversion occurs which brings the top of the inversion to a height equal that of the jet. Coincident with the rapid growth of the inversion is a sudden decrease in the intensity of the acoustic radar echoes in the inversion layer. It is suggested that the decrease in echo intensity reveals a decrease in turbulent mixing in the inversion layer as predicted by Blackadar. It is concluded that the acoustic radar can be a valuable tool for study in the lower atmosphere.

  13. Comparison of cloud top heights derived from FY-2 meteorological satellites with heights derived from ground-based millimeter wavelength cloud radar

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Wang, Zhenhui; Cao, Xiaozhong; Tao, Fa

    2018-01-01

    Clouds are currently observed by both ground-based and satellite remote sensing techniques. Each technique has its own strengths and weaknesses depending on the observation method, instrument performance and the methods used for retrieval. It is important to study synergistic cloud measurements to improve the reliability of the observations and to verify the different techniques. The FY-2 geostationary orbiting meteorological satellites continuously observe the sky over China. Their cloud top temperature product can be processed to retrieve the cloud top height (CTH). The ground-based millimeter wavelength cloud radar can acquire information about the vertical structure of clouds-such as the cloud base height (CBH), CTH and the cloud thickness-and can continuously monitor changes in the vertical profiles of clouds. The CTHs were retrieved using both cloud top temperature data from the FY-2 satellites and the cloud radar reflectivity data for the same time period (June 2015 to May 2016) and the resulting datasets were compared in order to evaluate the accuracy of CTH retrievals using FY-2 satellites. The results show that the concordance rate of cloud detection between the two datasets was 78.1%. Higher consistencies were obtained for thicker clouds with larger echo intensity and for more continuous clouds. The average difference in the CTH between the two techniques was 1.46 km. The difference in CTH between low- and mid-level clouds was less than that for high-level clouds. An attenuation threshold of the cloud radar for rainfall was 0.2 mm/min; a rainfall intensity below this threshold had no effect on the CTH. The satellite CTH can be used to compensate for the attenuation error in the cloud radar data.

  14. Illinois Precipitation Research: A Focus on Cloud and Precipitation Modification.

    NASA Astrophysics Data System (ADS)

    Changnon, Stanley A.; Czys, Robert R.; Scott, Robert W.; Westcott, Nancy E.

    1991-05-01

    At the heart of the 40-year atmospheric research endeavors of the Illinois State Water Survey have been studies to understand precipitation processes in order to learn how precipitation is modified purposefully and accidentally, and to measure the physical and socio-economic consequences of cloud and precipitation modification. Major field and laboratory activities of past years or briefly treated as a basis for describing the key findings of the past ten years. Recent studies of inadvertent and purposeful cloud and rain modification and their effects are emphasized, including a 1989 field project conducted in Illinois and key findings from an on-going exploratory experiment addressing cloud and rain modification. Results are encouraging for the use of dynamic seeding on summer cumuliform clouds of the Midwest.Typical in-cloud results at 10°C reveal multiple updrafts that tend to be filled with large amounts of supercooled drizzle and raindrops. Natural ice production is vigorous, and initial concentrations are larger than expected from ice nuclei. However, natural ice production is not so vigorous as to preclude opportunities for seeding. Radar-based studies of such clouds reveal that their echo cores usually can be identified prior to desired seeding times, which is significant for the evaluation of their behavior. Cell characteristics show considerable variance under different types of meteorological conditions. Analysis of cell mergers reveals that under conditions of weak vertical shear, mid-level intercell flow at 4 km occurs as the reflectivity bridge between cells rapidly intensifies. The degree of intensification of single-echo cores after they merge is strongly related to the age and vigor of the cores before they join. Hence, cloud growth may be enhanced if seeding can encourage echo cores to merge at critical times. Forecasting research has developed a technique for objectively distinguishing between operational seeding and nonoperational days and for objectively predicting maximum cloud-top height and seeding suitability. An accuracy rate of up to 60% in predicting maximum echo-top height using four categories has been achieved and suggests its use as a covariate in future experimentation. Impact studies illustrate that sizable summer rain increases would be necessary to produce economically beneficial outcomes for Corn Belt agriculture. Increases of 25% in July rainfall across certain high-production crop districts of the Corn Belt would produce economic effects realized nationally.

  15. Echo power analysis and simulation of low altitude radio fuze

    NASA Astrophysics Data System (ADS)

    Chen, Xiaolu; Chen, Biao; Xu, Tao; Xu, Suqin

    2013-01-01

    The echo power from the earth gound which was received by fuze plays an important role in aerial defense missile, especially when the fuze is working in the look down mode. It is necessary to analyze and even simulate the echo power signals to enhance the missile's anti-jamming ability. In this paper, the quantity of echo power from the earth ground of low altitude radio fuze was analyzed in detail. Three boundary equations of area irradiated by electromagnetic beams were presented, which include two equidistant curve equations and one equal-Doppler curve equation. The relationship between the working mode and the critical height was analyzed. The calculating formula of echo power waveform was derived. And based on the derived formula, the correlation between the maximal echo power and the incident height was given and simulated, which would be helpful for the further researches of low altitude radio fuze.

  16. The stable isotope amount effect: New insights from NEXRAD echo tops, Luquillo Mountains, Puerto Rico

    USGS Publications Warehouse

    Scholl, Martha A.; Shanley, James B.; Zegarra, Jan Paul; Coplen, Tyler B.

    2009-01-01

    The stable isotope amount effect has often been invoked to explain patterns of isotopic composition of rainfall in the tropics. This paper describes a new approach, correlating the isotopic composition of precipitation with cloud height and atmospheric temperature using NEXRAD radar echo tops, which are a measure of the maximum altitude of rainfall within the clouds. The seasonal differences in echo top altitudes and their corresponding temperatures are correlated with the isotopic composition of rainfall. These results offer another factor to consider in interpretation of the seasonal variation in isotopic composition of tropical rainfall, which has previously been linked to amount or rainout effects and not to temperature effects. Rain and cloud water isotope collectors in the Luquillo Mountains in northeastern Puerto Rico were sampled monthly for three years and precipitation was analyzed for δ18O and δ2H. Precipitation enriched in 18O and 2H occurred during the winter dry season (approximately December–May) and was associated with a weather pattern of trade wind showers and frontal systems. During the summer rainy season (approximately June–November), precipitation was depleted in 18O and 2H and originated in low pressure systems and convection associated with waves embedded in the prevailing easterly airflow. Rain substantially depleted in 18O and 2H compared to the aforementioned weather patterns occurred during large low pressure systems. Weather analysis showed that 29% of rain input to the Luquillo Mountains was trade wind orographic rainfall, and 30% of rainfall could be attributed to easterly waves and low pressure systems. Isotopic signatures associated with these major climate patterns can be used to determine their influence on streamflow and groundwater recharge and to monitor possible effects of climate change on regional water resources.

  17. TRMM precipitation analysis of extreme storms in South America: Bias and climatological contribution

    NASA Astrophysics Data System (ADS)

    Rasmussen, K. L.; Houze, R.; Zuluaga, M. D.; Choi, S. L.; Chaplin, M.

    2013-12-01

    The TRMM (Tropical Rainfall Measuring Mission) satellite was designed both to measure spatial and temporal variation of tropical rainfall around the globe and to understand the factors controlling the precipitation. TRMM observations have led to the realization that storms just east of the Andes in southeastern South America are among the most intense deep convection in the world. For a complete perspective of the impact of intense precipitation systems on the hydrologic cycle in South America, it is necessary to assess the contribution from various forms of extreme storms to the climatological rainfall. However, recent studies have suggested that the TRMM Precipitation Radar (PR) algorithm significantly underestimates surface rainfall in deep convection over land. Prior to investigating the climatological behavior, this research first investigates the range of the rain bias in storms containing four different types of extreme radar echoes: deep convective cores, deep and wide convective cores, wide convective cores, and broad stratiform regions over South America. The TRMM PR algorithm exhibits bias in all four extreme echo types considered here when the algorithm rates are compared to a range of conventional Z-R relations. Storms with deep convective cores, defined as high reflectivity echo volumes that extend above 10 km in altitude, show the greatest underestimation, and the bias is unrelated to their echo top height. The bias in wide convective cores, defined as high reflectivity echo volumes that extend horizontally over 1,000 km2, relates to the echo top, indicating that storms with significant mixed phase and ice hydrometeors are similarly affected by assumptions in the TRMM PR algorithm. The subtropical region tends to have more intense precipitating systems than the tropics, but the relationship between the TRMM PR rain bias and storm type is the same regardless of the climatological regime. The most extreme storms are typically not collocated with regions of high climatological precipitation. A quantitative approach that accounts for the previously described bias using TRMM PR data is employed to investigate the role of the most extreme precipitating systems on the hydrological cycle in South America. These data are first used to investigate the relative contribution of precipitation from the TRMM-identified echo cores to each separate storm in which the convective cores are embedded. The second part of the study assesses how much of the climatological rainfall in South America is accounted for by storms containing deep convective, wide convective, and broad stratiform echo components. Systems containing these echoes produce very different hydrologic responses. From a hydrologic and climatological viewpoint, this empirical knowledge is critical, as the type of runoff and flooding that may occur depends on the specific character of the convective storm and has broad implications for the hydrological cycle in this region.

  18. Why Most Biomedical Findings Echoed by Newspapers Turn Out to be False: The Case of Attention Deficit Hyperactivity Disorder

    PubMed Central

    Gonon, François; Konsman, Jan-Pieter; Cohen, David; Boraud, Thomas

    2012-01-01

    Context Because positive biomedical observations are more often published than those reporting no effect, initial observations are often refuted or attenuated by subsequent studies. Objective To determine whether newspapers preferentially report on initial findings and whether they also report on subsequent studies. Methods We focused on attention deficit hyperactivity disorder (ADHD). Using Factiva and PubMed databases, we identified 47 scientific publications on ADHD published in the 1990s and soon echoed by 347 newspapers articles. We selected the ten most echoed publications and collected all their relevant subsequent studies until 2011. We checked whether findings reported in each “top 10” publication were consistent with previous and subsequent observations. We also compared the newspaper coverage of the “top 10” publications to that of their related scientific studies. Results Seven of the “top 10” publications were initial studies and the conclusions in six of them were either refuted or strongly attenuated subsequently. The seventh was not confirmed or refuted, but its main conclusion appears unlikely. Among the three “top 10” that were not initial studies, two were confirmed subsequently and the third was attenuated. The newspaper coverage of the “top 10” publications (223 articles) was much larger than that of the 67 related studies (57 articles). Moreover, only one of the latter newspaper articles reported that the corresponding “top 10” finding had been attenuated. The average impact factor of the scientific journals publishing studies echoed by newspapers (17.1 n = 56) was higher (p<0.0001) than that corresponding to related publications that were not echoed (6.4 n = 56). Conclusion Because newspapers preferentially echo initial ADHD findings appearing in prominent journals, they report on uncertain findings that are often refuted or attenuated by subsequent studies. If this media reporting bias generalizes to health sciences, it represents a major cause of distortion in health science communication. PMID:22984483

  19. An in situ evaluation of TOPEX/Poseidon altimetric measurements versus meaurements made by moorings and inverted echo sounders for sea surface height

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The classical method of observing the sea surface height has been to make shipboard measurements of the vertical - density profile, and then calculating the surface height relative to a deeper reference surface. Two methods (a moored vertical string of instruments and an inverted echo sounder) were subsequently developed to obtain longer time in situ measurements. The first of these can be thought of as an extension of the discrete bottle hydrocast while the second integrates acoustically over the water column. One purpose of this note is to compare the result when coincidental observations are made by these two methods. This was done at two sites in the western tropical Pacific. Two inverted echo sounders were deployed alongside two enhanced TOGA-COARE moorings to be used in an in situ evaluation of TOPEX/Poseidon altimetric measurements of sea surface height. The mooring and inverted echo sounder data reproduced one another, at low frequency, with a correlation of 0.93 and 0.95 and the altimeter correlated with each of the above values ranging from 0.84 to 0.94. It is concluded that the altimetric measurements are statistically equivalent to the in situ measurements in the area of study.

  20. Characterizing the Relationships Among Lightning and Storm Parameters: Lightning as a Proxy Variable

    NASA Technical Reports Server (NTRS)

    Goodman, S. J.; Raghavan, R.; William, E.; Weber, M.; Boldi, B.; Matlin, A.; Wolfson, M.; Hodanish, S.; Sharp. D.

    1997-01-01

    We have gained important insights from prior studies that have suggested relationships between lightning and storm growth, decay, convective rain flux, vertical distribution of storm mass and echo volume in the region, and storm energetics. A study was initiated in the Summer of 1996 to determine how total (in-cloud plus ground) lightning observations might provide added knowledge to the forecaster in the determination and identification of severe thunderstorms and weather hazards in real-time. The Melbourne Weather Office was selected as a primary site to conduct this study because Melbourne is the only site in the world with continuous and open access to total lightning (LDAR) data and a Doppler (WSR-88D) radar. A Lightning Imaging Sensor Data Applications Demonstration (LISDAD) system was integrated into the forecaster's workstation during the Summer 1996 to allow the forecaster to interact in real-time with the multi-sensor data being displayed. LISDAD currently ingests LDAR data, the cloud-to-ground National Lightning Detection Network (NLDN) data, and the Melbourne radar data in f real-time. The interactive features provide the duty forecaster the ability to perform quick diagnostics on storm cells of interest. Upon selection of a storm cell, a pop-up box appears displaying the time-history of various storm parameters (e.g., maximum radar reflectivity, height of maximum reflectivity, echo-top height, NLDN and LDAR lightning flash rates, storm-based vertically integrated liquid water content). This product is archived to aid on detailed post-analysis.

  1. Cloud-top height retrieval from polarizing remote sensor POLDER

    NASA Astrophysics Data System (ADS)

    He, Xianqiang; Pan, Delu; Yan, Bai; Mao, Zhihua

    2006-10-01

    A new cloud-top height retrieval method is proposed by using polarizing remote sensing. In cloudy conditions, it shows that, in purple and blue bands, linear polarizing radiance at the top-of-atmosphere (TOA) is mainly contributed by Rayleigh scattering of the atmosphere's molecules above cloud, and the contribution by cloud reflection and aerosol scattering can be neglected. With such characteristics, the basis principle and method of cloud-top height retrieval using polarizing remote sensing are presented in detail, and tested by the polarizing remote sensing data of POLDER. The satellite-derived cloud-top height product can not only show the distribution of global cloud-top height, but also obtain the cloud-top height distribution of moderate-scale meteorological phenomena like hurricanes and typhoons. This new method is promising to become the operational algorithm for cloud-top height retrieval for POLDER and the future polarizing remote sensing satellites.

  2. Ten Year Analysis of Tropopause-Overshooting Convection Using GridRad Data

    NASA Astrophysics Data System (ADS)

    Cooney, John W.; Bowman, Kenneth P.; Homeyer, Cameron R.; Fenske, Tyler M.

    2018-01-01

    Convection that penetrates the tropopause (overshooting convection) rapidly transports air from the lower troposphere to the lower stratosphere, potentially mixing air between the two layers. This exchange of air can have a substantial impact on the composition, radiation, and chemistry of the upper troposphere and lower stratosphere (UTLS). In order to improve our understanding of the role convection plays in the transport of trace gases across the tropopause, this study presents a 10 year analysis of overshooting convection for the eastern two thirds of the contiguous United States for March through August of 2004 to 2013 based on radar observations. Echo top altitudes are estimated at hourly intervals using high-resolution, three-dimensional, gridded, radar reflectivity fields created by merging observations from available radars in the National Oceanic and Atmospheric Administration Next Generation Weather Radar (NEXRAD) network. Overshooting convection is identified by comparing echo top altitudes with tropopause altitudes derived from the ERA-Interim reanalysis. It is found that overshooting convection is most common in the central United States, with a weak secondary maximum along the southeast coast. The maximum number of overshooting events occur consistently between 2200 and 0200 UTC. Most overshooting events occur in May, June, and July when convection is deepest and the tropopause altitude is relatively low. Approximately 45% of the analyzed overshooting events (those with echo tops at least 1 km above the tropopause) have echo tops extending above the 380 K level into the stratospheric overworld.

  3. TRI DMR Dashboard Top Industries_Chemicals.png | ECHO ...

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  4. Trawling bats exploit an echo-acoustic ground effect

    PubMed Central

    Zsebok, Sandor; Kroll, Ferdinand; Heinrich, Melina; Genzel, Daria; Siemers, Björn M.; Wiegrebe, Lutz

    2013-01-01

    A water surface acts not only as an optic mirror but also as an acoustic mirror. Echolocation calls emitted by bats at low heights above water are reflected away from the bat, and hence the background clutter is reduced. Moreover, targets on the surface create an enhanced echo. Here, we formally quantified the effect of the surface and target height on both target detection and -discrimination in a combined laboratory and field approach with Myotis daubentonii. In a two-alternative, forced-choice paradigm, the bats had to detect a mealworm and discriminate it from an inedible dummy (20 mm PVC disc). Psychophysical performance was measured as a function of height above either smooth surfaces (water or PVC) or above a clutter surface (artificial grass). At low heights above the clutter surface (10, 20, or 35 cm), the bats' detection performance was worse than above a smooth surface. At a height of 50 cm, the surface structure had no influence on target detection. Above the clutter surface, also target discrimination was significantly impaired with decreasing target height. A detailed analysis of the bats' echolocation calls during target approach shows that above the clutter surface, the bats produce calls with significantly higher peak frequency. Flight-path reconstruction revealed that the bats attacked an target from below over water but from above over a clutter surface. These results are consistent with the hypothesis that trawling bats exploit an echo-acoustic ground effect, in terms of a spatio-temporal integration of direct reflections with indirect reflections from the water surface, to optimize prey detection and -discrimination not only for prey on the water but also for some range above. PMID:23576990

  5. Stereoscopic, thermal, and true deep cumulus cloud top heights

    NASA Astrophysics Data System (ADS)

    Llewellyn-Jones, D. T.; Corlett, G. K.; Lawrence, S. P.; Remedios, J. J.; Sherwood, S. C.; Chae, J.; Minnis, P.; McGill, M.

    2004-05-01

    We compare cloud-top height estimates from several sensors: thermal tops from GOES-8 and MODIS, stereoscopic tops from MISR, and directly measured heights from the Goddard Cloud Physics Lidar on board the ER-2, all collected during the CRYSTAL-FACE field campaign. Comparisons reveal a persistent 1-2 km underestimation of cloud-top heights by thermal imagery, even when the finite optical extinctions near cloud top and in thin overlying cirrus are taken into account. The most severe underestimates occur for the tallest clouds. The MISR "best-sinds" and lidar estimates disagree in very similar ways with thermally estimated tops, which we take as evidence of excellent performance by MISR. Encouraged by this, we use MISR to examine variations in cloud penetration and thermal top height errors in several locations of tropical deep convection over multiple seasons. The goals of this are, first, to learn how cloud penetration depends on the near-tropopause environment; and second, to gain further insight into the mysterious underestimation of tops by thermal imagery.

  6. Sensitivity of Numerical Simulations of a Mesoscale Convective System to Ice Hydrometeors in Bulk Microphysical Parameterization

    NASA Astrophysics Data System (ADS)

    Pu, Zhaoxia; Lin, Chao; Dong, Xiquan; Krueger, Steven K.

    2018-01-01

    Mesoscale convective systems (MCSs) and their associated cloud properties are the important factors that influence the aviation activities, yet they present a forecasting challenge in numerical weather prediction. In this study, the sensitivity of numerical simulations of an MCS over the US Southern Great Plains to ice hydrometeors in bulk microphysics (MP) schemes has been investigated using the Weather Research and Forecasting (WRF) model. It is found that the simulated structure, life cycle, cloud coverage, and precipitation of the convective system as well as its associated cold pools are sensitive to three selected MP schemes, namely, the WRF single-moment 6-class (WSM6), WRF double-moment 6-class (WDM6, with the double-moment treatment of warm-rain only), and Morrison double-moment (MORR, with the double-moment representation of both warm-rain and ice) schemes. Compared with observations, the WRF simulation with WSM6 only produces a less organized convection structure with a short lifetime, while WDM6 can produce the structure and length of the MCS very well. Both simulations heavily underestimate the precipitation amount, the height of the radar echo top, and stratiform cloud fractions. With MORR, the model performs well in predicting the lifetime, cloud coverage, echo top, and precipitation amount of the convection. Overall results demonstrate the importance of including double-moment representation of ice hydrometeors along with warm-rain. Additional experiments are performed to further examine the role of ice hydrometeors in numerical simulations of the MCS. Results indicate that replacing graupel with hail in the MORR scheme improves the prediction of the convective structure, especially in the convective core region.

  7. The radio power reflected from rough and undulating ionospheric surfaces

    NASA Astrophysics Data System (ADS)

    Whitehead, J. D.; From, W. R.; Smith, L. G.

    1984-08-01

    It is shown for both rough and undulating surfaces that the mean radio power reflected by the ionosphere averaged over a sufficiently long time is exactly the same as for a smooth flat surface at the same height provided the sounder is equally sensitive for echoes from all directions. When making radio wave absorption measurements under spread conditions the total integrated power over the whole time the direct echoes are being received must be used but the distance attenuation factor must be calculated from the time of arrival of the first echo.

  8. [Retrieval of the Optical Thickness and Cloud Top Height of Cirrus Clouds Based on AIRS IR High Spectral Resolution Data].

    PubMed

    Cao, Ya-nan; Wei, He-li; Dai, Cong-ming; Zhang, Xue-hai

    2015-05-01

    A study was carried out to retrieve optical thickness and cloud top height of cirrus clouds from the Atmospheric Infrared Sounder (AIRS) high spectral resolution data in 1070~1135 cm-1 IR band using a Combined Atmospheric Radiative Transfer model (CART) by brightness temperature difference between model simulation and AIRS observation. The research is based on AIRS LIB high spectral infrared observation data combined with Moderate Resolution Imaging Spectroradiometer (MODIS) cloud product data. Brightness temperature spectra based, on the retrieved cirrus optical thickness and cloud top height were simulated and compared with brightness temperature spectra of AIRS observation in the 650~1150 cm-1 band. The cirrus optical thickness and cloud top height retrieved were compared with brightness temperature of AIRS for channel 760 (900.56 cm-1, 11. 1 µm) and cirrus reflectance of MODIS cloud product. And cloud top height retrieved was compared with cloud top height from MODIS. Results show that the brightness temperature spectra simulated were basically consistent with AIRS observation under the condition of retrieval in the 650~1150 cm-1 band. It means that CART can be used to simulate AIRS brightness temperature spectra. The retrieved cirrus parameters are consistent with brightness temperature of AIRS for channel 11. 1 µm with low brightness temperature corresponding to large cirrus optical thickness and high cloud top height. And the retrieved cirrus parameters are consistent with cirrus reflectance of MODIS cloud product with high cirrus reflectance corresponding to large cirrus optical thickness and high cloud top height. Correlation coefficient of brightness temperature between retrieved cloud top height and MODIS cloud top height was relatively high. They are mostly located in the range of 8. 5~11.5 km, and their probability distribution trend is approximately identical. CART model is feasible to retrieve cirrus properties, and the retrieval is reliable.

  9. EUS Needle Identification Comparison and Evaluation study (with videos).

    PubMed

    Tang, Shou-Jiang; Vilmann, Andreas S; Saftoiu, Adrian; Wang, Wanmei; Streba, Costin Teodor; Fink, Peter P; Griswold, Michael; Wu, Ruonan; Dietrich, Christoph F; Jenssen, Christian; Hocke, Michael; Kantowski, Marcus; Pohl, Jürgen; Fockens, Paul; Annema, Jouke T; van der Heijden, Erik H F M; Havre, Roald Flesland; Pham, Khanh Do-Cong; Kunda, Rastislav; Deprez, Pierre H; Mariana, Jinga; Vazquez-Sequeiros, Enrique; Larghi, Alberto; Buscarini, Elisabetta; Fusaroli, Pietro; Lahav, Maor; Puri, Rajesh; Garg, Pramod Kumar; Sharma, Malay; Maluf-Filho, Fauze; Sahai, Anand; Brugge, William R; Lee, Linda S; Aslanian, Harry R; Wang, Andrew Y; Shami, Vanessa M; Markowitz, Arnold; Siddiqui, Ali A; Mishra, Girish; Scheiman, James M; Isenberg, Gerard; Siddiqui, Uzma D; Shah, Raj J; Buxbaum, James; Watson, Rabindra R; Willingham, Field F; Bhutani, Manoop S; Levy, Michael J; Harris, Cynthia; Wallace, Michael B; Nolsøe, Christian Pállson; Lorentzen, Torben; Bang, Niels; Sørensen, Sten Mellerup; Gilja, Odd Helge; D'Onofrio, Mirko; Piscaglia, Fabio; Gritzmann, Norbert; Radzina, Maija; Sparchez, Zeno Adrian; Sidhu, Paul S; Freeman, Simon; McCowan, Timothy C; de Araujo, Cyrillo Rodrigues; Patel, Akash; Ali, Mohammad Adel; Campbell, Garth; Chen, Edward; Vilmann, Peter

    2016-09-01

    EUS-guided FNA or biopsy sampling is widely practiced. Optimal sonographic visualization of the needle is critical for image-guided interventions. Of the several commercially available needles, bench-top testing and direct comparison of these needles have not been done to reveal their inherent echogenicity. The aims are to provide bench-top data that can be used to guide clinical applications and to promote future device research and development. Descriptive bench-top testing and comparison of 8 commonly used EUS-FNA needles (all size 22 gauge): SonoTip Pro Control (Medi-Globe); Expect Slimline (Boston Scientific); EchoTip, EchoTip Ultra, EchoTip ProCore High Definition (Cook Medical); ClearView (Conmed); EZ Shot 2 (Olympus); and BNX (Beacon Endoscopic), and 2 new prototype needles, SonoCoat (Medi-Globe), coated by echogenic polymers made by Encapson. Blinded evaluation of standardized and unedited videos by 43 EUS endoscopists and 17 radiologists specialized in GI US examination who were unfamiliar with EUS needle devices. There was no significant difference in the ratings and rankings of these needles between endosonographers and radiologists. Overall, 1 prototype needle was rated as the best, ranking 10% to 40% higher than all other needles (P < .01). Among the commercially available needles, the EchoTip Ultra needle and the ClearView needle were top choices. The EZ Shot 2 needle was ranked statistically lower than other needles (30%-75% worse, P < .001). All FNA needles have their inherent and different echogenicities, and these differences are similarly recognized by EUS endoscopists and radiologists. Needles with polymeric coating from the entire shaft to the needle tip may offer better echogenicity. Copyright © 2016 American Society for Gastrointestinal Endoscopy. All rights reserved.

  10. The Geoscience Laser Altimeter System (GLAS) for the ICESAT Mission

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Sun, Xiao-Li; Ketchum, Eleanor A.; Afzal, Robert S.; Millar, Pamela S.

    1999-01-01

    Accurate measurements of surface heights and atmospheric backscatter have been demonstrated with the SLA, MOLA and LITE space lidar. Recent MOLA measurements of the Mars surface have 40 cm resolution and have reduced the global uncertainty in Mars topography from a few km to approx. 10 m. GLAS is a next generation lidar being developed as part of NASA's Icesat Mission for Earth orbit . The GLAS design combines a 10 cm precision surface lidar with a sensitive dual wavelength cloud and aerosol lidar. GLAS will precisely measure the heights of the Earth's polar ice sheets, determine the height profiles of the Earth's land topography, and profile the vertical backscatter of clouds and aerosols on a global scale. GLAS will fly on a small dedicated spacecraft in a polar orbit at 598 km altitude with an inclination of 94 degrees. GLAS is scheduled to launch in summer 2001 and to operate continuously for a minimum of 3 years with a goal of 5 years. The primary mission for GLAS is to measure the seasonal and annual changes in the heights of the Greenland and Antarctic ice sheets. GLAS will measure the vertical distance to the ice sheet from orbit with 1064 nm pulses from a Nd:Yag laser at 40 Hz. Each 5 nsec wide laser pulse is used for a single range measurement. When over land GLAS will profile the heights of the topography and vegetation. The GLAS receiver uses a I m diameter telescope and a Si APD detector. The detector signal is sampled by an all digital receiver which records each surface echo waveform with I nsec resolution and a stored echo record lengths of either 200, 400, or 600 samples. Analysis of the echo waveforms within the instrument permits discrimination between cloud and surface echoes. Ground based echo analysis permits precise ranging, determining the roughness or slopes of the surface as well as the vertical distributions of vegetation illuminated by the laser, Errors in knowledge of the laser beam pointing angle can bias height measurements of sloped surfaces. For surfaces with 2 deg. slopes, knowledge of pointing angle of the beam centroid to about 8 urad is required to achieve 10 cm height accuracy. GLAS uses a stellar reference system (SRS) to determine the pointing angle of each laser firing relative to inertial space. The SRS uses a high precision star camera oriented toward local zenith whose measurements are combined with a gyroscope to determine the inertial orientation of the SRS optical bench. The far field pattern of each laser pulse is measured with a laser reference system (LRS). Optically measuring each laser far field pattern relative to the star camera and gyroscope permits the angular offsets of each laser pulse to be determined. GLAS will also determine the vertical distributions of clouds and aerosols by measuring atmospheric backscatter profiles at both 1064 and 532 nm. The 1064 nm measurements use an analog detector and profile the height and vertical structure of thicker clouds. Measurements at 532 nm use new highly sensitive photon counting detectors, and measure the height distributions of very thin clouds and aerosol layers. With averaging these can be used to determine the height of the planetary boundary layer. The instrument design and expected performance will be discussed.

  11. Analysis of cloud top height and cloud coverage from satellites using the O2 A and B bands

    NASA Technical Reports Server (NTRS)

    Kuze, Akihiko; Chance, Kelly V.

    1994-01-01

    Cloud height and cloud coverage detection are important for total ozone retrieval using ultraviolet and visible scattered light. Use of the O2 A and B bands, around 761 and 687 nm, by a satellite-borne instrument of moderately high spectral resolution viewing in the nadir makes it possible to detect cloud top height and related parameters, including fractional coverage. The measured values of a satellite-borne spectrometer are convolutions of the instrument slit function and the atmospheric transmittance between cloud top and satellite. Studies here determine the optical depth between a satellite orbit and the Earth or cloud top height to high accuracy using FASCODE 3. Cloud top height and a cloud coverage parameter are determined by least squares fitting to calculated radiance ratios in the oxygen bands. A grid search method is used to search the parameter space of cloud top height and the coverage parameter to minimize an appropriate sum of squares of deviations. For this search, nonlinearity of the atmospheric transmittance (i.e., leverage based on varying amounts of saturation in the absorption spectrum) is important for distinguishing between cloud top height and fractional coverage. Using the above-mentioned method, an operational cloud detection algorithm which uses minimal computation time can be implemented.

  12. Simultaneous optical and meteor head echo measurements using the Middle Atmosphere Alomar Radar System (MAARSY): Data collection and preliminary analysis

    NASA Astrophysics Data System (ADS)

    Brown, P.; Stober, G.; Schult, C.; Krzeminski, Z.; Cooke, W.; Chau, J. L.

    2017-07-01

    The initial results of a two year simultaneous optical-radar meteor campaign are described. Analysis of 105 double-station optical meteors having plane of sky intersection angles greater than 5° and trail lengths in excess of 2 km also detected by the Middle Atmosphere Alomar Radar System (MAARSY) as head echoes was performed. These events show a median deviation in radiants between radar and optical determinations of 1.5°, with 1/3 of events having radiant agreement to less than one degree. MAARSY tends to record average speeds roughly 0.5 km/s and 1.3 km higher than optical records, in part due to the higher sensitivity of MAARSY as compared to the optical instruments. More than 98% of all head echoes are not detected with the optical system. Using this non-detection ratio and the known limiting sensitivity of the cameras, we estimate that the limiting meteoroid detection mass of MAARSY is in the 10-9-10-10 kg (astronomical limiting meteor magnitudes of +11 to +12) appropriate to speeds from 30 to 60 km/s. There is a clear trend of higher peak RCS for brighter meteors between 35 and -30 dBsm. For meteors with similar magnitudes, the MAARSY head echo radar cross-section is larger at higher speeds. Brighter meteors at fixed heights and similar speeds have consistently, on average, larger RCS values, in accordance with established scattering theory. However, our data show RCS ∝ v/2, much weaker than the normally assumed RCS ∝ v3, a consequence of our requiring head echoes to also be detectable optically. Most events show a smooth variation of RCS with height broadly following the light production behavior. A significant minority of meteors show large variations in RCS relative to the optical light curve over common height intervals, reflecting fragmentation or possibly differential ablation. No optically detected meteor occurring in the main radar beam and at times when the radar was collecting head echo data went unrecorded by MAARSY. Thus there does not appear to be any large scale bias in MAARSY head echo detections for the (comparatively) larger optical events in our dataset, even at very low speeds.

  13. A simple biota removal algorithm for 35 GHz cloud radar measurements

    NASA Astrophysics Data System (ADS)

    Kalapureddy, Madhu Chandra R.; Sukanya, Patra; Das, Subrata K.; Deshpande, Sachin M.; Pandithurai, Govindan; Pazamany, Andrew L.; Ambuj K., Jha; Chakravarty, Kaustav; Kalekar, Prasad; Krishna Devisetty, Hari; Annam, Sreenivas

    2018-03-01

    Cloud radar reflectivity profiles can be an important measurement for the investigation of cloud vertical structure (CVS). However, extracting intended meteorological cloud content from the measurement often demands an effective technique or algorithm that can reduce error and observational uncertainties in the recorded data. In this work, a technique is proposed to identify and separate cloud and non-hydrometeor echoes using the radar Doppler spectral moments profile measurements. The point and volume target-based theoretical radar sensitivity curves are used for removing the receiver noise floor and identified radar echoes are scrutinized according to the signal decorrelation period. Here, it is hypothesized that cloud echoes are observed to be temporally more coherent and homogenous and have a longer correlation period than biota. That can be checked statistically using ˜ 4 s sliding mean and standard deviation value of reflectivity profiles. The above step helps in screen out clouds critically by filtering out the biota. The final important step strives for the retrieval of cloud height. The proposed algorithm potentially identifies cloud height solely through the systematic characterization of Z variability using the local atmospheric vertical structure knowledge besides to the theoretical, statistical and echo tracing tools. Thus, characterization of high-resolution cloud radar reflectivity profile measurements has been done with the theoretical echo sensitivity curves and observed echo statistics for the true cloud height tracking (TEST). TEST showed superior performance in screening out clouds and filtering out isolated insects. TEST constrained with polarimetric measurements was found to be more promising under high-density biota whereas TEST combined with linear depolarization ratio and spectral width perform potentially to filter out biota within the highly turbulent shallow cumulus clouds in the convective boundary layer (CBL). This TEST technique is promisingly simple in realization but powerful in performance due to the flexibility in constraining, identifying and filtering out the biota and screening out the true cloud content, especially the CBL clouds. Therefore, the TEST algorithm is superior for screening out the low-level clouds that are strongly linked to the rainmaking mechanism associated with the Indian Summer Monsoon region's CVS.

  14. Modeling Mediterranean forest structure using airborne laser scanning data

    NASA Astrophysics Data System (ADS)

    Bottalico, Francesca; Chirici, Gherardo; Giannini, Raffaello; Mele, Salvatore; Mura, Matteo; Puxeddu, Michele; McRoberts, Ronald E.; Valbuena, Ruben; Travaglini, Davide

    2017-05-01

    The conservation of biological diversity is recognized as a fundamental component of sustainable development, and forests contribute greatly to its preservation. Structural complexity increases the potential biological diversity of a forest by creating multiple niches that can host a wide variety of species. To facilitate greater understanding of the contributions of forest structure to forest biological diversity, we modeled relationships between 14 forest structure variables and airborne laser scanning (ALS) data for two Italian study areas representing two common Mediterranean forests, conifer plantations and coppice oaks subjected to irregular intervals of unplanned and non-standard silvicultural interventions. The objectives were twofold: (i) to compare model prediction accuracies when using two types of ALS metrics, echo-based metrics and canopy height model (CHM)-based metrics, and (ii) to construct inferences in the form of confidence intervals for large area structural complexity parameters. Our results showed that the effects of the two study areas on accuracies were greater than the effects of the two types of ALS metrics. In particular, accuracies were less for the more complex study area in terms of species composition and forest structure. However, accuracies achieved using the echo-based metrics were only slightly greater than when using the CHM-based metrics, thus demonstrating that both options yield reliable and comparable results. Accuracies were greatest for dominant height (Hd) (R2 = 0.91; RMSE% = 8.2%) and mean height weighted by basal area (R2 = 0.83; RMSE% = 10.5%) when using the echo-based metrics, 99th percentile of the echo height distribution and interquantile distance. For the forested area, the generalized regression (GREG) estimate of mean Hd was similar to the simple random sampling (SRS) estimate, 15.5 m for GREG and 16.2 m SRS. Further, the GREG estimator with standard error of 0.10 m was considerable more precise than the SRS estimator with standard error of 0.69 m.

  15. --No Title--

    Science.gov Websites

    {margin-top:24px}@media(min-width:768px){.feature-secondary .link-tile{margin-top:0}.showcase{height:431px }}.feature-secondary .link-tile+.link-tile{margin-top:24px}@media(min-width:992px){.showcase{height:545px }}@media(min-width:1200px){.showcase{height:649px}}.showcase{font-family:Roboto,'Helvetica Neue',Helvetica

  16. Temporal variation of the cloud top height over the tropical Pacific observed by geostationary satellites

    NASA Astrophysics Data System (ADS)

    Nishi, N.; Hamada, A.

    2012-12-01

    Stratiform clouds (nimbostratus and cirriform clouds) in the upper troposphere accompanied with cumulonimbus activity cover large part of the tropical region and largely affect the radiation and water vapor budgets there. Recently new satellites (CloudSat and CALIPSO) can give us the information of cloud height and cloud ice amount even over the open ocean. However, their coverage is limited just below the satellite paths; it is difficult to capture the whole shape and to trace the lifecycle of each cloud system by using just these datasets. We made, as a complementary product, a dataset of cloud top height and visible optical thickness with one-hour resolution over the wide region, by using infrared split-window data of the geostationary satellites (AGU fall meeting 2011) and released on the internet (http://database.rish.kyoto-u.ac.jp/arch/ctop/). We made lookup tables for estimating cloud top height only with geostationary infrared observations by comparing them with the direct cloud observation by CloudSat (Hamada and Nishi, 2010, JAMC). We picked out the same-time observations by MTSAT and CloudSat and regressed the cloud top height observation of CloudSat back onto 11μm brightness temperature (Tb) and the difference between the 11μm Tb and 12μm Tb. We will call our estimated cloud top height as "CTOP" below. The area of our coverage is 85E-155W (MTSAT2) and 80E-160W(MTSAT1R), and 20S-20N. The accuracy of the estimation with the IR split-window observation is the best in the upper tropospheric height range. We analyzed the formation and maintenance of the cloud systems whose top height is in the upper troposphere with our CTOP analysis, CloudSat 2B-GEOPROF, and GSMaP (Global Satellite Mapping of Precipitation) precipitation data. Most of the upper tropospheric stratiform clouds have their cloud top within 13-15 km range. The cloud top height decreases slowly when dissipating but still has high value to the end. However, we sometimes observe that a little lower cloud top height (6-10 km) is kept within one-two days. A typical example is observed on 5 January 2011 in a dissipating cloud system with 1000-km scale. This cluster located between 0-10N just west of the International Date Line and moved westward with keeping relatively lower cloud top (6-10 km) over one day. This top height is lower than the ubiquitous upper-tropospheric stratiform clouds but higher than the so-called 'congestus cloud' whose top height is around 0C. CloudSat data show the presence of convective rainfall. It suggests that this cloud system continuously kept making new anvil clouds in a little lower height than usual. We examined the seasonal variation of the distribution of cloud systems with a little lower cloud top height (6-11 km) during 2010-11. The number of such cloud systems is not constant with seasons but frequently increased in some specific seasons. Over the equatorial ocean region (east of 150E), they were frequently observed during the northern winter.

  17. Echo: skin stress test

    NASA Image and Video Library

    1960-05-14

    Photographed in 1960. -- Skin Stress Test of the 12-foot satellite built as a prototype of the full-scale Echo satellite. The 12-foot diameter of the sphere was chosen because that was the ceiling height in the Langley model shop. The proposal to build the 12-foot satellite was made in November 1957. -- Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, NASA SP-4308, pp. 170-171.

  18. --No Title--

    Science.gov Websites

    Untitled-1-01_ { position:absolute; left:0px; top:0px; width:1245px; height:95px; } div.Untitled-1 -02_ { position:absolute; left:0px; top:391px; width:273px; height:832px; } div.graphic_ { margin-left ; left: 1093px; top: 391px; width: 152px; height: 400px; } div.Untitled-1-05_ { position:absolute; left

  19. --No Title--

    Science.gov Websites

    untitled-1-01_ { position:absolute; left:0px; top:0px; width:1245px; height:95px; } div.untitled-1 -02_ { position:absolute; left:0px; top:391px; width:273px; height:832px; } div.graphic_ { margin-left ; left: 1093px; top: 391px; width: 152px; height: 400px; } div.untitled-1-05_ { position:absolute; left

  20. An object-based approach for areal rainfall estimation and validation of atmospheric models

    NASA Astrophysics Data System (ADS)

    Troemel, Silke; Simmer, Clemens

    2010-05-01

    An object-based approach for areal rainfall estimation is applied to pseudo-radar data simulated of a weatherforecast model as well as to real radar volume data. The method aims at an as fully as possible exploitation of three-dimensional radar signals produced by precipitation generating systems during their lifetime to enhance areal rainfall estimation. Therefore tracking of radar-detected precipitation-centroids is performed and rain events are investigated using so-called Integral Radar Volume Descriptors (IRVD) containing relevant information of the underlying precipitation process. Some investigated descriptors are statistical quantities from the radar reflectivities within the boundary of a tracked rain cell like the area mean reflectivity or the compactness of a cell; others evaluate the mean vertical structure during the tracking period at the near surface reflectivity-weighted center of the cell like the mean effective efficiency or the mean echo top height. The stage of evolution of a system is given by the trend in the brightband fraction or related quantities. Furthermore, two descriptors not directly derived from radar data are considered: the mean wind shear and an orographic rainfall amplifier. While in case of pseudo-radar data a model based on a small set of IRVDs alone provides rainfall estimates of high accuracy, the application of such a model to the real world remains within the accuracies achievable with a constant Z-R-relationship. However, a combined model based on single IRVDs and the Marshall-Palmer Z-R-estimator already provides considerable enhancements even though the resolution of the data base used has room for improvement. The mean echo top height, the mean effective efficiency, the empirical standard deviation and the Marshall-Palmer estimator are detected for the final rainfall estimator. High correlations between storm height and rain rates, a shift of the probability distribution to higher values with increasing effective efficiency, and the possibility to classify continental and maritime systems using the effective efficiency confirm the informative value of the qualified descriptors. The IRVDs especially correct for the underestimation in case of intense rain events, and the information content of descriptors is most likely higher than demonstrated so far. We used quite sparse information about meteorological variables needed for the calculation of some IRVDs from single radiosoundings, and several descriptors suffered from the range-dependent vertical resolution of the reflectivity profile. Inclusion of neighbouring radars and assimilation runs of weather forecasting models will further enhance the accuracy of rainfall estimates. Finally, the clear difference between the IRVD selection from the pseudo-radar data and from the real world data hint to a new object-based avenue for the validation of higher resolution atmospheric models and for evaluating their potential to digest radar observations in data assimilation schemes.

  1. Digital ionosonde studies of F-region waves. [measuring ionospheric disturbances

    NASA Technical Reports Server (NTRS)

    Harper, R. M.; Bowhill, S. A.

    1974-01-01

    Accurate fixed-frequency virtual height data collected on a digital ionosonde are analyzed to measure speed and direction of traveling ionospheric disturbances by matching the experimental data with virtual height and echo amplitude obtained from a simple model of the disturbed ionosphere. Several data records analyzed in this manner indicate speeds of 400 to 680 m/sec and a direction of propagation from north to south. The digital ionosonde collects virtual height data with a time resolution of 10 sec and a height resolution of less than 300 m.

  2. An Investigation of Instantaneous Plume Rise from Rocket Exhaust

    DTIC Science & Technology

    1996-12-01

    METERS) TOP = 2973.48 BASE= 210.62 SIGMAR (AZ) AT THE SURFACE (DEGREES) 13.5054 SIGMER(EL) AT THE SURFACE (DEGREES) 2.9738 MET. WIND WIND LAYER WIND SPEED...SELECTED LAYER HEIGHT- (METERS) TOP = 2973.48 BASE= 210.62 SIGMAR (AZ) AT THE SURFACE (DEGREES) 13.6911 SIGMER(EL) AT THE SURFACE (DEGREES) 2.9738 MET...TIME (SECS) 368.08 FIRST MIXING LAYER HEIGHT- (METERS) TOP = 210.62 BASE= 0.00 SECOND SELECTED LAYER HEIGHT- (METERS) TOP = 2973.48 BASE= 210.62 SIGMAR

  3. Aeronomy report no. 74: The Urbana meteor-radar system; design, development, and first observations

    NASA Technical Reports Server (NTRS)

    Hess, G. C.; Geller, M. A.

    1976-01-01

    The design, development, and first observations of a high power meteor-radar system located near Urbana, Illinois are described. The roughly five-fold increase in usable echo rate compared to other facilities, along with automated digital data processing and interferometry measurement of echo arrival angles, permits unsurpassed observations of tidal structure and shorter period waves. Such observations are discussed. The technique of using echo decay rates to infer density and scale height and the method of inferring wind shear from radial acceleration are examined. An original experiment to test a theory of the Delta-region winter anomaly is presented.

  4. --No Title--

    Science.gov Websites

    ;height:auto;overflow:hidden}.poc_table .top_row{background-color:#eee;height:auto;overflow:hidden}.poc_table ;background-color:#FFF;height:auto;overflow:hidden;border-top:1px solid #ccc}.poc_table .main_row .name :200px;padding:5px;height:auto;overflow:hidden}.tli_grey_box{background-color:#eaeaea;text-align:center

  5. Disaster debris estimation using high-resolution polarimetric stereo-SAR

    NASA Astrophysics Data System (ADS)

    Koyama, Christian N.; Gokon, Hideomi; Jimbo, Masaru; Koshimura, Shunichi; Sato, Motoyuki

    2016-10-01

    This paper addresses the problem of debris estimation which is one of the most important initial challenges in the wake of a disaster like the Great East Japan Earthquake and Tsunami. Reasonable estimates of the debris have to be made available to decision makers as quickly as possible. Current approaches to obtain this information are far from being optimal as they usually rely on manual interpretation of optical imagery. We have developed a novel approach for the estimation of tsunami debris pile heights and volumes for improved emergency response. The method is based on a stereo-synthetic aperture radar (stereo-SAR) approach for very high-resolution polarimetric SAR. An advanced gradient-based optical-flow estimation technique is applied for optimal image coregistration of the low-coherence non-interferometric data resulting from the illumination from opposite directions and in different polarizations. By applying model based decomposition of the coherency matrix, only the odd bounce scattering contributions are used to optimize echo time computation. The method exclusively considers the relative height differences from the top of the piles to their base to achieve a very fine resolution in height estimation. To define the base, a reference point on non-debris-covered ground surface is located adjacent to the debris pile targets by exploiting the polarimetric scattering information. The proposed technique is validated using in situ data of real tsunami debris taken on a temporary debris management site in the tsunami affected area near Sendai city, Japan. The estimated height error is smaller than 0.6 m RMSE. The good quality of derived pile heights allows for a voxel-based estimation of debris volumes with a RMSE of 1099 m3. Advantages of the proposed method are fast computation time, and robust height and volume estimation of debris piles without the need for pre-event data or auxiliary information like DEM, topographic maps or GCPs.

  6. The MJO Transition from Shallow to Deep Convection in CloudSat/CALIPSO Data and GISS GCM Simulations

    NASA Technical Reports Server (NTRS)

    DelGenio, Anthony G.; Chen, Yonghua; Kim, Daehyun; Yao, Mao-Sung

    2013-01-01

    The relationship between convective penetration depth and tropospheric humidity is central to recent theories of the Madden-Julian oscillation (MJO). It has been suggested that general circulation models (GCMs) poorly simulate the MJO because they fail to gradually moisten the troposphere by shallow convection and simulate a slow transition to deep convection. CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data are analyzed to document the variability of convection depth and its relation to water vapor during the MJO transition from shallow to deep convection and to constrain GCM cumulus parameterizations. Composites of cloud occurrence for 10MJO events show the following anticipatedMJO cloud structure: shallow and congestus clouds in advance of the peak, deep clouds near the peak, and upper-level anvils after the peak. Cirrus clouds are also frequent in advance of the peak. The Advanced Microwave Scanning Radiometer for EarthObserving System (EOS) (AMSR-E) columnwater vapor (CWV) increases by;5 mmduring the shallow- deep transition phase, consistent with the idea of moisture preconditioning. Echo-top height of clouds rooted in the boundary layer increases sharply with CWV, with large variability in depth when CWV is between;46 and 68 mm. International Satellite Cloud Climatology Project cloud classifications reproduce these climatological relationships but correctly identify congestus-dominated scenes only about half the time. A version of the Goddard Institute for Space Studies Model E2 (GISS-E2) GCM with strengthened entrainment and rain evaporation that produces MJO-like variability also reproduces the shallow-deep convection transition, including the large variability of cloud-top height at intermediate CWV values. The variability is due to small grid-scale relative humidity and lapse rate anomalies for similar values of CWV. 1.

  7. The Geoscience Laser Altimeter System (GLAS) for the ICESAT Mission

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Sun, Xia-Li; Ketchum, Eleanor A.; Afzal, Robert S.; Millar, Pamela S.; Smith, David E. (Technical Monitor)

    2000-01-01

    The Laser In space Technology Experiment, Shuttle Laser Altimeter and the Mars Observer Laser Altimeter have demonstrated accurate measurements of atmospheric backscatter and Surface heights from space. The recent MOLA measurements of the Mars surface have 40 cm vertical resolution and have reduced the global uncertainty in Mars topography from a few km to about 5 m. The Geoscience Laser Altimeter System (GLAS) is a next generation lidar for Earth orbit being developed as part of NASA's Icesat Mission. The GLAS design combines a 10 cm precision surface lidar with a sensitive dual wavelength cloud and aerosol lidar. GLAS will precisely measure the heights of the Earth's polar ice sheets, establish a grid of accurate height profiles of the Earth's land topography, and profile the vertical backscatter of clouds and aerosols on a global scale. GLAS is being developed to fly on a small dedicated spacecraft in a polar orbit with a 590 630 km altitude at inclination of 94 degrees. GLAS is scheduled to launch in the summer 2001 and to operate continuously for a minimum of 3 years with a goal of 5 years. The primary mission for GLAS is to measure the seasonal and annual changes in the heights of the Greenland and Antarctic ice sheets. GLAS will continuously measure the vertical distance from orbit to the Earth's surface with 1064 nm pulses from a ND:YAG laser at a 40 Hz rate. Each 5 nsec wide laser pulse is used to produce a single range measurement, and the laser spots have 66 m diameter and about 170 m center-center spacings. When over land GLAS will profile the heights of the topography and vegetation. The GLAS receiver uses a 1 m diameter telescope and a Si APD detector. The detector signal is sampled by an all digital receiver which records each surface echo waveform with I nsec resolution and a stored echo record lengths of either 200, 400, or 600 samples. Analysis of the echo waveforms within the instrument permits discrimination between cloud and surface echoes. Ground based echo analysis permits precise ranging, determining the roughness or slopes of the surface as well as the vertical distributions of vegetation illuminated by the laser. Accurate knowledge of the laser beam's pointing angle is needed to prevent height biases when over sloped surfaces. For surfaces with 2 deg. slopes, knowledge of pointing angle of the beam's centroid to about 8 urad is needed to achieve 10 cm height accuracy. GLAS uses a stellar reference system (SRS) to determine the pointing angle of each laser firing relative to inertial space. The SRS uses a high precision star camera oriented toward local zenith and a gyroscope to determine the inertial orientation of the SRS optical bench. The far field pattern of each laser is measured pulse relative to the star camera with a laser reference system (LRS). Optically measuring each laser far field pattern relative to the orientation of the star camera and gyroscope permits the precise pointing angle of each laser pulse to be determined. GLAS will also determine the vertical distributions of clouds and aerosols by measuring the vertical profile of laser energy backscattered by the atmosphere at both 1064 and 532 nm. The 1064 nm measurements use the Si APD detector and profile the height and vertical structure of thicker clouds. The measurements at 532 nm use new highly sensitive photon counting, detectors, and measure the height distributions of very thin Clouds and aerosol layers. With averaging these can be used to determine the height of the planetary boundary layer. The instrument design and expected performance will be discussed.

  8. Neural network cloud top pressure and height for MODIS

    NASA Astrophysics Data System (ADS)

    Håkansson, Nina; Adok, Claudia; Thoss, Anke; Scheirer, Ronald; Hörnquist, Sara

    2018-06-01

    Cloud top height retrieval from imager instruments is important for nowcasting and for satellite climate data records. A neural network approach for cloud top height retrieval from the imager instrument MODIS (Moderate Resolution Imaging Spectroradiometer) is presented. The neural networks are trained using cloud top layer pressure data from the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) dataset. Results are compared with two operational reference algorithms for cloud top height: the MODIS Collection 6 Level 2 height product and the cloud top temperature and height algorithm in the 2014 version of the NWC SAF (EUMETSAT (European Organization for the Exploitation of Meteorological Satellites) Satellite Application Facility on Support to Nowcasting and Very Short Range Forecasting) PPS (Polar Platform System). All three techniques are evaluated using both CALIOP and CPR (Cloud Profiling Radar for CloudSat (CLOUD SATellite)) height. Instruments like AVHRR (Advanced Very High Resolution Radiometer) and VIIRS (Visible Infrared Imaging Radiometer Suite) contain fewer channels useful for cloud top height retrievals than MODIS, therefore several different neural networks are investigated to test how infrared channel selection influences retrieval performance. Also a network with only channels available for the AVHRR1 instrument is trained and evaluated. To examine the contribution of different variables, networks with fewer variables are trained. It is shown that variables containing imager information for neighboring pixels are very important. The error distributions of the involved cloud top height algorithms are found to be non-Gaussian. Different descriptive statistic measures are presented and it is exemplified that bias and SD (standard deviation) can be misleading for non-Gaussian distributions. The median and mode are found to better describe the tendency of the error distributions and IQR (interquartile range) and MAE (mean absolute error) are found to give the most useful information of the spread of the errors. For all descriptive statistics presented MAE, IQR, RMSE (root mean square error), SD, mode, median, bias and percentage of absolute errors above 0.25, 0.5, 1 and 2 km the neural network perform better than the reference algorithms both validated with CALIOP and CPR (CloudSat). The neural networks using the brightness temperatures at 11 and 12 µm show at least 32 % (or 623 m) lower MAE compared to the two operational reference algorithms when validating with CALIOP height. Validation with CPR (CloudSat) height gives at least 25 % (or 430 m) reduction of MAE.

  9. Vertical structure of precipitating shallow echoes observed from TRMM during Indian summer monsoon

    NASA Astrophysics Data System (ADS)

    Kumar, Shailendra

    2017-08-01

    The present study explores the properties of precipitating shallow echoes (PSEs) over the tropical areas (30°S-30°N) during Indian summer monsoon season using attenuated corrected radar reflectivity factor (Ze) measured by the Tropical Rainfall Measuring Mission satellite. Radar echoes observed in study are less than the freezing height, so they belong to warm precipitation. Radar echoes with at least 0.75 km wide are considered for finding the shallow echoes climatology. Western Ghats and adjoining ocean (Arabian sea) have the highest PSEs followed by Myanmar and Burma coast, whereas the overall west coast of Latin America consists of the lowest PSEs. Tropical oceanic areas contain fewer PSEs compared to coastal areas. Average vertical profiles show nearly similar Ze characteristics which peaks between 1.5 and 2 km altitude with model value 32-34 dBZ. Slope of Ze is higher for intense PSEs as radar reflectivity decreases more rapidly in intense PSEs.

  10. Correlation of echo-Doppler aortic valve regurgitation index with angiographic aortic regurgitation severity.

    PubMed

    Chen, Ming; Luo, Huai; Miyamoto, Takashi; Atar, Shaul; Kobal, Sergio; Rahban, Masoud; Brasch, Andrea V; Makkar, Rajendra; Neuman, Yoram; Naqvi, Tasneem Z; Tolstrup, Kirsten; Siegel, Robert J

    2003-09-01

    We assessed aortic regurgitation (AR) severity by utilizing multiple echo-Doppler variables in comparison with AR severity by aortic root angiography. Patients were divided into 3 groups: mild, moderate, and severe. An AR index (ARI) was developed, comprising 5 echocardiographic parameters: ratio of color AR jet height to left ventricular outlet flow diameter, AR signal density from continuous-wave Doppler, pressure half-time, left ventricular end-diastolic diameter, and aortic root diameter. There was a strong correlation between AR severity by angiography and the calculated echo-Doppler ARI (r = 0.84, p = 0.0001). As validated by aortic angiography, the ARI is an accurate reflection of AR severity.

  11. Effects of stand density on top height estimation for ponderosa pine

    Treesearch

    Martin Ritchie; Jianwei Zhang; Todd Hamilton

    2012-01-01

    Site index, estimated as a function of dominant-tree height and age, is often used as an expression of site quality. This expression is assumed to be effectively independent of stand density. Observation of dominant height at two different ponderosa pine levels-of-growing-stock studies revealed that top height stability with respect to stand density depends on the...

  12. Derecho-like event in Bulgaria on 20 July 2011

    NASA Astrophysics Data System (ADS)

    Gospodinov, Ilian; Dimitrova, Tsvetelina; Bocheva, Lilia; Simeonov, Petio; Dimitrov, Rumen

    2015-05-01

    In this work we analyze the development of a severe-convective-storm system in northwestern Bulgaria on 20 July 2011 which exhibited derecho-like characteristics. Prior to this event, a derecho had never been documented in Bulgaria. The convective system was associated with a cold front. We present a synoptic-scale analysis of the evolution of the cold front and an overview of the wind and the damage that has occurred in the region with the strongest impact. The convective system consisted of two multi-cell thunderstorms that are analyzed in some detail, based on radar data. The two storms merged and the convective system evolved into a bow-shape reflectivity structure with two rear inflow notches. The analysis of the radar data revealed cloud top heights of 17 km, with the formation of а bounded weak echo region, a maximum radar reflectivity factor of 63 dBZ, and wind speeds above 30 m/s. The field investigation revealed patterns in the damaged crops typical of strong wind gusts.

  13. The Future of ECHO: Evaluating Open Source Possibilities

    NASA Astrophysics Data System (ADS)

    Pilone, D.; Gilman, J.; Baynes, K.; Mitchell, A. E.

    2012-12-01

    NASA's Earth Observing System ClearingHOuse (ECHO) is a format agnostic metadata repository supporting over 3000 collections and 100M science granules. ECHO exposes FTP and RESTful Data Ingest APIs in addition to both SOAP and RESTful search and order capabilities. Built on top of ECHO is a human facing search and order web application named Reverb. ECHO processes hundreds of orders, tens of thousands of searches, and 1-2M ingest actions each week. As ECHO's holdings, metadata format support, and visibility have increased, the ECHO team has received requests by non-NASA entities for copies of ECHO that can be run locally against their data holdings. ESDIS and the ECHO Team have begun investigations into various deployment and Open Sourcing models that can balance the real constraints faced by the ECHO project with the benefits of providing ECHO capabilities to a broader set of users and providers. This talk will discuss several release and Open Source models being investigated by the ECHO team along with the impacts those models are expected to have on the project. We discuss: - Addressing complex deployment or setup issues for potential users - Models of vetting code contributions - Balancing external (public) user requests versus our primary partners - Preparing project code for public release, including navigating licensing issues related to leveraged libraries - Dealing with non-free project dependencies such as commercial databases - Dealing with sensitive aspects of project code such as database passwords, authentication approaches, security through obscurity, etc. - Ongoing support for the released code including increased testing demands, bug fixes, security fixes, and new features.

  14. Gas-liquid two-phase flow pattern identification by ultrasonic echoes reflected from the inner wall of a pipe

    NASA Astrophysics Data System (ADS)

    Liang, Fachun; Zheng, Hongfeng; Yu, Hao; Sun, Yuan

    2016-03-01

    A novel ultrasonic pulse echo method is proposed for flow pattern identification in a horizontal pipe with gas-liquid two-phase flow. A trace of echoes reflected from the pipe’s internal wall rather than the gas-liquid interface is used for flow pattern identification. Experiments were conducted in a horizontal air-water two-phase flow loop. Two ultrasonic transducers with central frequency of 5 MHz were mounted at the top and bottom of the pipe respectively. The experimental results show that the ultrasonic reflection coefficient of the wall-gas interface is much larger than that of the wall-liquid interface due to the large difference in the acoustic impedance of gas and liquid. The stratified flow, annular flow and slug flow can be successfully recognized using the attenuation ratio of the echoes. Compared with the conventional ultrasonic echo measurement method, echoes reflected from the inner surface of a pipe wall are independent of gas-liquid interface fluctuation, sound speed, and gas and liquid superficial velocities, which makes the method presented a promising technique in field practice.

  15. Biosonar navigation above water I: estimating flight height.

    PubMed

    Hoffmann, Susanne; Genzel, Daria; Prosch, Selina; Baier, Leonie; Weser, Sabrina; Wiegrebe, Lutz; Firzlaff, Uwe

    2015-02-15

    Locomotion and foraging on the wing require precise navigation in more than just the horizontal plane. Navigation in three dimensions and, specifically, precise adjustment of flight height are essential for flying animals. Echolocating bats drink from water surfaces in flight, which requires an exceptionally precise vertical navigation. Here, we exploit this behavior in the bat, Phyllostomus discolor, to understand the biophysical and neural mechanisms that allow for sonar-guided navigation in the vertical plane. In a set of behavioral experiments, we show that for echolocating bats, adjustment of flight height depends on the tragus in their outer ears. Specifically, the tragus imposes elevation-specific spectral interference patterns on the echoes of the bats' sonar emissions. Head-related transfer functions of our bats show that these interference patterns are most conspicuous in the frequency range ∼55 kHz. This conspicuousness is faithfully preserved in the frequency tuning and spatial receptive fields of cortical single and multiunits recorded from anesthetized animals. In addition, we recorded vertical spatiotemporal response maps that describe neural tuning in elevation over time. One class of units that were very sharply tuned to frequencies ∼55 kHz showed unusual spatiotemporal response characteristics with a preference for paired echoes where especially the first echo originates from very low elevations. These behavioral and neural data provide the first insight into biosonar-based processing and perception of acoustic elevation cues that are essential for bats to navigate in three-dimensional space. Copyright © 2015 the American Physiological Society.

  16. Vertical variation of ice particle size in convective cloud tops.

    PubMed

    van Diedenhoven, Bastiaan; Fridlind, Ann M; Cairns, Brian; Ackerman, Andrew S; Yorks, John E

    2016-05-16

    A novel technique is used to estimate derivatives of ice effective radius with respect to height near convective cloud tops ( dr e / dz ) from airborne shortwave reflectance measurements and lidar. Values of dr e / dz are about -6 μ m/km for cloud tops below the homogeneous freezing level, increasing to near 0 μ m/km above the estimated level of neutral buoyancy. Retrieved dr e / dz compares well with previously documented remote sensing and in situ estimates. Effective radii decrease with increasing cloud top height, while cloud top extinction increases. This is consistent with weaker size sorting in high, dense cloud tops above the level of neutral buoyancy where fewer large particles are present, and with stronger size sorting in lower cloud tops that are less dense. The results also confirm that cloud-top trends of effective radius can generally be used as surrogates for trends with height within convective cloud tops. These results provide valuable observational targets for model evaluation.

  17. Vertical Variation of Ice Particle Size in Convective Cloud Tops

    NASA Technical Reports Server (NTRS)

    Van Diedenhoven, Bastiaan; Fridlind, Ann M.; Cairns, Brian; Ackerman, Andrew S.; Yorks, John E.

    2016-01-01

    A novel technique is used to estimate derivatives of ice effective radius with respect to height near convective cloud tops (dr(sub e)/dz) from airborne shortwave reflectance measurements and lidar. Values of dr(sub e)/dz are about -6 micrometer/km for cloud tops below the homogeneous freezing level, increasing to near 0 micrometer/km above the estimated level of neutral buoyancy. Retrieved dr(sub e)/dz compares well with previously documented remote sensing and in situ estimates. Effective radii decrease with increasing cloud top height, while cloud top extinction increases. This is consistent with weaker size sorting in high, dense cloud tops above the level of neutral buoyancy where fewer large particles are present and with stronger size sorting in lower cloud tops that are less dense. The results also confirm that cloud top trends of effective radius can generally be used as surrogates for trends with height within convective cloud tops. These results provide valuable observational targets for model evaluation.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chesnokov, E. N., E-mail: chesnok@kinetics.nsc.ru; Novosibirsk State University, Novosibirsk 630090; Kubarev, V. V.

    Using the pulses of terahertz free electron laser and ultra-fast Schottky diode detectors, we observed the coherent transients within a free induction decay of gaseous nitrogen dioxide NO{sub 2}. The laser excited different sub-bands of rotation spectra of NO{sub 2} containing about 50–70 lines. The free induction signal continued more than 30 ns and consisted of many echo-like bursts duration about 0.2 ns. Unlike the similar effect observed previously for linear and symmetric top molecules, the sequence of echo bursts is not periodic. The values for delay of individual echo are stable, and the set of these delays can be considered asmore » a “molecular fingerprint” in the time domain.« less

  19. Power spectra of mesospheric velocities in polar regions

    NASA Technical Reports Server (NTRS)

    Czechowsky, P.; Ruster, R.

    1985-01-01

    The mobile SOUSY radar was operated on Andoya in Northern Norway during the MAP/WINE campaign from November 1983 to February 1984 and for about two weeks in June 1984 to study the seasonal dependence of mesospheric structures and dynamics at polar latitudes. During the winter period, measurements were carried out on 57 days, primarily in coordination with the schedule of the rocket experiments. Echoes were detected in the troposphere and stratosphere up to 30 km and at mesospheric heights from about 50 to 90 km with a distinct maximum around noon. In summer, the radar system was operated continuously from 19th to the 28th of June 1984. Echoes occurred almost for 24 hours in the height range from 70 to 95 km showing no recognizable diurnal variation. Similar observations in polar latitudes were carried out for several years with the Poker Flat Radar in Alaska.

  20. Radar echo from a flat conducting plate - near and far

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, C.S.

    1982-01-01

    Over certain types of terrain, a radar fuze (or altimeter), by virtue of the horizontal component of its velocity, is likely to pass over various flat objects of limited size. The echo from such objects could have a duration less than that of one Doppler cycle, where the Doppler frequency is due to the vertical component of the velocity. If the terrain is principally made up of such objects, their echoes are in most cases entirely uncorrelated with each other. Hence, the total echo after mixing at the radar with the delayed transmitted wave would have a noise-like spectrum notmore » at all confined to the Doppler-frequency band where the desired echo signal is expected. This would seriously degrade the performance of a radar that utilizes correlation. This work shows that the echo from a square flat plate will be of duration greater than the time it takes to pass over the plate if the height h above it satisfies h > a/sup 2//lambda where a is the plate-edge dimension and lambda is the radar wavelength. The results presented here can be used to determine the spatial region wherein the echo exists, and the magnitude and phase of the echo from such a plate. I infer from these results that the case where the signal has a noise-like spectrum is not impossible but it is unlikely for the applications with which I am familiar.« less

  1. --No Title--

    Science.gov Websites

    -container{position:fixed;margin:0;padding:0;top:0;left:0;z-index:999;text-align:left;visibility:hidden {position:absolute;font-size:14px;line-height:24px;height:24px;top:50%;margin-top:-12px;width:100%;text-align:center :45%;} #sb-counter a{padding:0 4px 0 0;text-decoration:none;cursor:pointer;color:#fff;} #sb-counter

  2. High mercury wet deposition at a “clean Air” site in Puerto Rico

    USGS Publications Warehouse

    Shanley, James B.; Engle, Mark A.; Scholl, Martha A.; Krabbenhoft, David P.; Brunette, Robert; Olson, Mark L.; Conroy, Mary E.

    2015-01-01

    Atmospheric mercury deposition measurements are rare in tropical latitudes. Here we report on seven years (April 2005 to April 2012, with gaps) of wet Hg deposition measurements at a tropical wet forest in the Luquillo Mountains, northeastern Puerto Rico, U.S. Despite receiving unpolluted air off the Atlantic Ocean from northeasterly trade winds, during two complete years the site averaged 27.9 μg m–2 yr–1 wet Hg deposition, or about 30% more than Florida and the Gulf Coast, the highest deposition areas within the U.S. These high Hg deposition rates are driven in part by high rainfall, which averaged 2855 mm yr–1. The volume-weighted mean Hg concentration was 9.8 ng L–1, and was highest during summer and lowest during the winter dry season. Rainout of Hg (decreasing concentration with increasing rainfall depth) was minimal. The high Hg deposition was not supported by gaseous oxidized mercury (GOM) at ground level, which remained near global background concentrations (<10 pg m–3). Rather, a strong positive correlation between Hg concentrations and the maximum height of rain detected within clouds (echo tops) suggests that droplets in high convective cloud tops scavenge GOM from above the mixing layer. The high wet Hg deposition at this “clean air” site suggests that other tropical areas may be hotspots for Hg deposition as well.

  3. High Mercury Wet Deposition at a "Clean Air" Site in Puerto Rico.

    PubMed

    Shanley, James B; Engle, Mark A; Scholl, Martha; Krabbenhoft, David P; Brunette, Robert; Olson, Mark L; Conroy, Mary E

    2015-10-20

    Atmospheric mercury deposition measurements are rare in tropical latitudes. Here we report on seven years (April 2005 to April 2012, with gaps) of wet Hg deposition measurements at a tropical wet forest in the Luquillo Mountains, northeastern Puerto Rico, U.S. Despite receiving unpolluted air off the Atlantic Ocean from northeasterly trade winds, during two complete years the site averaged 27.9 μg m(-2) yr(-1) wet Hg deposition, or about 30% more than Florida and the Gulf Coast, the highest deposition areas within the U.S. These high Hg deposition rates are driven in part by high rainfall, which averaged 2855 mm yr(-1). The volume-weighted mean Hg concentration was 9.8 ng L(-1), and was highest during summer and lowest during the winter dry season. Rainout of Hg (decreasing concentration with increasing rainfall depth) was minimal. The high Hg deposition was not supported by gaseous oxidized mercury (GOM) at ground level, which remained near global background concentrations (<10 pg m(-3)). Rather, a strong positive correlation between Hg concentrations and the maximum height of rain detected within clouds (echo tops) suggests that droplets in high convective cloud tops scavenge GOM from above the mixing layer. The high wet Hg deposition at this "clean air" site suggests that other tropical areas may be hotspots for Hg deposition as well.

  4. A comparison between Nimbus 5 THIR and ITPR temperatures and derived winds with rawinsonde data obtained in the AVE 2 experiment

    NASA Technical Reports Server (NTRS)

    Arnold, J. E.; Scoggins, J. R.; Fuelberg, H. E.

    1976-01-01

    During the period of May 11 and 12, 1974, NASA conducted its second Atmospheric Variability Experiment (AVE II) over the eastern United States. In this time interval, two Nimbus 5 orbits crossed the AVE II area, providing a series of ITPR soundings as well as THIR data. Horizontal temperature mapping of the AVE II cloud field is examined using two grid print map scales. Implied cloud top heights are compared with maximum radar-echo top reports. In addition, shelter temperatures in areas of clear sky are compared with the surface temperatures as determined from 11.5 micrometer radiometer data of the THIR experiment. The ITPR sounding accuracy is evaluated using interpolated radiosonde temperatures at times nearly coincident with the ITPR soundings. It was found that mean differences between the two data sets were as small as 1.3 C near 500 mb and as large as 2.9 C near the tropopause. The differences between ITPR and radiosonde temperatures at constant pressure levels were sufficient to induce significant differences in the horizontal temperature gradient. Cross sections of geostrophic wind along the orbital tracks were developed using a thermal wind buildup based on the ITPR temperature data and the radiosonde temperature data. Differences between the radiosonde and ITPR geostrophic winds could be explained on the basis of differences in the ITPR and radiosonde temperature gradients.

  5. Development of methods for inferring cloud thickness and cloud-base height from satellite radiance data

    NASA Technical Reports Server (NTRS)

    Smith, William L., Jr.; Minnis, Patrick; Alvarez, Joseph M.; Uttal, Taneil; Intrieri, Janet M.; Ackerman, Thomas P.; Clothiaux, Eugene

    1993-01-01

    Cloud-top height is a major factor determining the outgoing longwave flux at the top of the atmosphere. The downwelling radiation from the cloud strongly affects the cooling rate within the atmosphere and the longwave radiation incident at the surface. Thus, determination of cloud-base temperature is important for proper calculation of fluxes below the cloud. Cloud-base altitude is also an important factor in aircraft operations. Cloud-top height or temperature can be derived in a straightforward manner using satellite-based infrared data. Cloud-base temperature, however, is not observable from the satellite, but is related to the height, phase, and optical depth of the cloud in addition to other variables. This study uses surface and satellite data taken during the First ISCCP Regional Experiment (FIRE) Phase-2 Intensive Field Observation (IFO) period (13 Nov. - 7 Dec. 1991, to improve techniques for deriving cloud-base height from conventional satellite data.

  6. Titan dune heights retrieval by using Cassini Radar Altimeter

    NASA Astrophysics Data System (ADS)

    Mastrogiuseppe, M.; Poggiali, V.; Seu, R.; Martufi, R.; Notarnicola, C.

    2014-02-01

    The Cassini Radar is a Ku band multimode instrument capable of providing topographic and mapping information. During several of the 93 Titan fly-bys performed by Cassini, the radar collected a large amount of data observing many dune fields in multiple modes such as SAR, Altimeter, Scatterometer and Radiometer. Understanding dune characteristics, such as shape and height, will reveal important clues on Titan's climatic and geological history providing a better understanding of aeolian processes on Earth. Dunes are believed to be sculpted by the action of the wind, weak at the surface but still able to activate the process of sand-sized particle transport. This work aims to estimate dunes height by modeling the shape of the real Cassini Radar Altimeter echoes. Joint processing of SAR/Altimeter data has been adopted to localize the altimeter footprints overlapping dune fields excluding non-dune features. The height of the dunes was estimated by applying Maximum Likelihood Estimation along with a non-coherent electromagnetic (EM) echo model, thus comparing the real averaged waveform with the theoretical curves. Such analysis has been performed over the Fensal dune field observed during the T30 flyby (May 2007). As a result we found that the estimated dunes' peak to trough heights difference was in the order of 60-120 m. Estimation accuracy and robustness of the MLE for different complex scenarios was assessed via radar simulations and Monte-Carlo approach. We simulated dunes-interdunes different composition and roughness for a large set of values verifying that, in the range of possible Titan environment conditions, these two surface parameters have weak effects on our estimates of standard dune heights deviation. Results presented here are the first part of a study that will cover all Titan's sand seas.

  7. Assessment of observed fog/low-cloud trends in central Taiwan

    NASA Astrophysics Data System (ADS)

    Lai, Yen-Jen; Lin, Po-Hsiung

    2017-04-01

    Xitou region, as the epitome of mid-elevation cloud forest ecosystems in Taiwan, it possesses a rich diversity of flora and fauna. It is also a popular forest recreation area. Due to rapid development of the local tourist industry, where tourist numbers increased from 0.3 million/year in 2000 to 2 million/year in 2015, the microclimate has changed continually. Global warming and landscape changes would be also the most likely factors. This study reports findings of monitoring systems including 4 visibility observed sites at different altitude, a self-developed atmospheric profile observation system carried by unmanned aerial vehicle (UAV) and a high temporal cloud base height observation system by a ceilometer. Besides this, the cloud top height of MODIS cloud product is evaluated as well. The results indicated the foggy day ratio in 2015 was 24% lower than that in 2005 around the district of the nursery. The foggy day ratio raised along with the increase of altitude and the sharpest increasing range happened in the summer time. The UAV-observed results showed the top heights of the nighttime atmospheric boundary layer (ABL) usually happened under 1300m a.s.l. (250m above ground) and the top heights of daytime ABL rose to 1500m - 2100m a.s.l. Unfortunately, it was difficult to observe the inversion layer/ABL in summer due to the fly height limitation of UAV. The ceilometer-observed results indicated the highest foggy ratio happened around 17:00 (local standard time). The daytime cloudy based height ratio was higher than nighttime and the cloud based height was usually located during 1150m - 1750m a.s.l. which was under the top heights of ABL. In addition, the higher cloud-based-heights-happened ratios were found at 1200m - 1250m a.s.l. and 1350m - 1400m a.s.l.. These results indicated the cloud based height uplifted from ground to at least 150m above ground-level causing the foggy ratio decrease. The MODIS cloud product showed the top height of low cloud uplifted or even became clear sky along with the increase of Xitou tourist numbers. Both ceilometer and MODIS data suggested the low cloud was uplifting. In order to clarify the seasonal characters of cloud thickness, the validation of MODIS cloud top height by atmospheric profiles are on-going. Furthermore, an adapted land-atmospheric model (WRF model is now under testing) will be implemented in order to discover the major factors causing the decrease of foggy ratio and assess the impacts on cloud forest.

  8. Overshooting top behavior of three tornado-producing thunderstorms

    NASA Technical Reports Server (NTRS)

    Umenhofer, T. A.

    1975-01-01

    The behavior of overshooting tops and jumping cirrus observed in three tornado-producing thunderstorms during the 1974 Learjet Cloud-Truth experiment is discussed. An investigation of temporal changes in the heights of overshooting domes (conglomerations of overshooting tops with diameters less than 1 km) reveals several distinctive features associated with tornadic events. There is a gradual decrease in dome height prior to tornado touchdown. Minimum dome activity occurred 5 min after, 5.5 min before, and at approximately the same time as the tornadic event in the storms observed. In all cases, dramatic dome growth at a rate of 17 to 23 m/sec immediately followed the occurrence of the minimum dome heights. There is evidence that tornado production is insensitive to the pre-touchdown maximum dome heights between 1 and 3 km.

  9. Characteristics of C-band meteorological radar echoes at Petrolina, Northeast Brazil

    NASA Astrophysics Data System (ADS)

    da Silva Aragão, Maria Regina; Correia, Magaly De Fatima; Alves de Araújo, Heráclio

    2000-03-01

    A unique set of C-band meteorological radar echoes is analyzed. The data were obtained in Petrolina (9°24S, 40°30W), located in the semi-arid region of Northeast Brazil, from January to June 1985. The characteristics analyzed are echo areas, types and patterns.As in other tropical areas of the world, echoes with an area100 km2 dominated, making up 53% of the total number of echoes while echoes with 100 km2

  10. The Green Ocean: Precipitation Insights from the GoAmazon2014/5 Experiment

    DOE PAGES

    Wang, Die; Giangrande, Scott E.; Bartholomew, Mary Jane; ...

    2018-02-07

    This study summarizes the precipitation properties collected during the GoAmazon2014/5 campaign near Manaus in central Amazonia, Brazil. Precipitation breakdowns, summary radar rainfall relationships and self-consistency concepts from a coupled disdrometer and radar wind profiler measurements are presented. The properties of Amazon cumulus and associated stratiform precipitation are discussed, including segregations according to seasonal (Wet/Dry regime) variability, cloud echo-top height and possible aerosol influences on the apparent oceanic characteristics of the precipitation drop size distributions. Overall, we observe that the Amazon precipitation straddles behaviors found during previous U.S. Department of Energy Atmospheric Radiation Measurements program (ARM) tropical deployments, with distributions favoringmore » higher concentrations of smaller drops than ARM continental examples. Oceanic type precipitation characteristics are predominantly observed during the Amazon Wet seasons. Finally, an exploration of the controls on Wet season precipitation properties reveals that wind direction, as compared with other standard radiosonde thermodynamic parameters or aerosol count/regime classifications performed at the ARM site, provides a good indicator for those Wet season Amazon events having an oceanic character for their precipitation drop size distributions.« less

  11. The Green Ocean: Precipitation Insights from the GoAmazon2014/5 Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Die; Giangrande, Scott E.; Bartholomew, Mary Jane

    This study summarizes the precipitation properties collected during the GoAmazon2014/5 campaign near Manaus in central Amazonia, Brazil. Precipitation breakdowns, summary radar rainfall relationships and self-consistency concepts from a coupled disdrometer and radar wind profiler measurements are presented. The properties of Amazon cumulus and associated stratiform precipitation are discussed, including segregations according to seasonal (Wet/Dry regime) variability, cloud echo-top height and possible aerosol influences on the apparent oceanic characteristics of the precipitation drop size distributions. Overall, we observe that the Amazon precipitation straddles behaviors found during previous U.S. Department of Energy Atmospheric Radiation Measurements program (ARM) tropical deployments, with distributions favoringmore » higher concentrations of smaller drops than ARM continental examples. Oceanic type precipitation characteristics are predominantly observed during the Amazon Wet seasons. Finally, an exploration of the controls on Wet season precipitation properties reveals that wind direction, as compared with other standard radiosonde thermodynamic parameters or aerosol count/regime classifications performed at the ARM site, provides a good indicator for those Wet season Amazon events having an oceanic character for their precipitation drop size distributions.« less

  12. Archetypal TRMM Radar Profiles Identified Through Cluster Analysis

    NASA Technical Reports Server (NTRS)

    Boccippio, Dennis J.

    2003-01-01

    It is widely held that identifiable 'convective regimes' exist in nature, although precise definitions of these are elusive. Examples include land / Ocean distinctions, break / monsoon beahvior, seasonal differences in the Amazon (SON vs DJF), etc. These regimes are often described by differences in the realized local convective spectra, and measured by various metrics of convective intensity, depth, areal coverage and rainfall amount. Objective regime identification may be valuable in several ways: regimes may serve as natural 'branch points' in satellite retrieval algorithms or data assimilation efforts; one example might be objective identification of regions that 'should' share a similar 2-R relationship. Similarly, objectively defined regimes may provide guidance on optimal siting of ground validation efforts. Objectively defined regimes could also serve as natural (rather than arbitrary geographic) domain 'controls' in studies of convective response to environmental forcing. Quantification of convective vertical structure has traditionally involved parametric study of prescribed quantities thought to be important to convective dynamics: maximum radar reflectivity, cloud top height, 30-35 dBZ echo top height, rain rate, etc. Individually, these parameters are somewhat deficient as their interpretation is often nonunique (the same metric value may signify different physics in different storm realizations). Individual metrics also fail to capture the coherence and interrelationships between vertical levels available in full 3-D radar datasets. An alternative approach is discovery of natural partitions of vertical structure in a globally representative dataset, or 'archetypal' reflectivity profiles. In this study, this is accomplished through cluster analysis of a very large sample (0[107) of TRMM-PR reflectivity columns. Once achieved, the rainconditional and unconditional 'mix' of archetypal profile types in a given location and/or season provides a description of the local convective spectrum which retains vertical structure information. A further cluster analysis of these 'mixes' can identify recurrent convective spectra. These are a first step towards objective identification of convective regimes, and towards answering the question: 'What are the most convectively similar locations in the world?'

  13. Methods of quantitative and qualitative analysis of bird migration with a tracking radar

    NASA Technical Reports Server (NTRS)

    Bruderer, B.; Steidinger, P.

    1972-01-01

    Methods of analyzing bird migration by using tracking radar are discussed. The procedure for assessing the rate of bird passage is described. Three topics are presented concerning the grouping of nocturnal migrants, the velocity of migratory flight, and identification of species by radar echoes. The height and volume of migration under different weather conditions are examined. The methods for studying the directions of migration and the correlation between winds and the height and direction of migrating birds are presented.

  14. Deep Convective Cloud Top Heights and Their Thermodynamic Control During CRYSTAL-FACE

    NASA Technical Reports Server (NTRS)

    Sherwood, Steven C.; Minnis, Patrick; McGill, Matthew

    2004-01-01

    Infrared (11 micron) radiances from GOES-8 and local radiosonde profiles, collected during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE) in July 2002, are used to assess the vertical distribution of Florida-area deep convective cloud top height and test predictions as to its variation based on parcel theory. The highest infrared tops (Z(sub 11)) reached approximately to the cold point, though there is at least a 1-km uncertainty due to unknown cloud-environment temperature differences. Since lidar shows that visible 'tops' are 1 km or more above Z(sub 11), visible cloud tops frequently penetrated the lapse-rate tropopause (approx. 15 km). Further, since lofted ice content may be present up to approx. 1 km above the visible tops, lofting of moisture through the mean cold point (15.4 km) was probably common. Morning clouds, and those near Key West, rarely penetrated the tropopause. Non-entraining parcel theory (i.e., CAPE) does not successfully explain either of these results, but can explain some of the day-to-day variations in cloud top height over the peninsula. Further, moisture variations above the boundary layer account for most of the day-today variability not explained by CAPE, especially over the oceans. In all locations, a 20% increase in mean mixing ratio between 750 and 500 hPa was associated with about 1 km deeper maximum cloud penetration relative to the neutral level. These results suggest that parcel theory may be useful for predicting changes in cumulus cloud height over time, but that parcel entrainment must be taken into account even for the tallest clouds. Accordingly, relative humidity above the boundary layer may exert some control on the height of the tropical troposphere.

  15. Influence of Subpixel Scale Cloud Top Structure on Reflectances from Overcast Stratiform Cloud Layers

    NASA Technical Reports Server (NTRS)

    Loeb, N. G.; Varnai, Tamas; Winker, David M.

    1998-01-01

    Recent observational studies have shown that satellite retrievals of cloud optical depth based on plane-parallel model theory suffer from systematic biases that depend on viewing geometry, even when observations are restricted to overcast marine stratus layers, arguably the closest to plane parallel in nature. At moderate to low sun elevations, the plane-parallel model significantly overestimates the reflectance dependence on view angle in the forward-scattering direction but shows a similar dependence in the backscattering direction. Theoretical simulations are performed that show that the likely cause for this discrepancy is because the plane-parallel model assumption does not account for subpixel, scale variations in cloud-top height (i.e., "cloud bumps"). Monte Carlo simulation, comparing ID model radiances to radiances from overcast cloud field with 1) cloud-top height variation, but constant cloud volume extinction; 2) flat tops but horizontal variations in cloud volume extinction; and 3) variations in both cloud top height and cloud extinction are performed over a approximately equal to 4 km x 4 km domain (roughly the size of an individual GAC AVHRR pixel). The comparisons show that when cloud-top height variations are included, departures from 1D theory are remarkably similar (qualitatively) to those obtained observationally. In contrast, when clouds are assumed flat and only cloud extinction is variable, reflectance differences are much smaller and do not show any view-angle dependence. When both cloud-top height and cloud extinction variations are included, however, large increases in cloud extinction variability can enhance reflectance difference. The reason 3D-1D reflectance differences are more sensitive to cloud-top height variations in the forward-scattering direction (at moderate to low, sun elevations) is because photons leaving the cloud field in that direction experience fewer scattering events (low-order scattering) and are restricted to the topmost portions of the cloud. While reflectance deviations from 1D theory are much larger for bumpy clouds than for flat clouds with variable cloud extinction, differences in cloud albedo are comparable for these two cases.

  16. Observational characteristics of the tropopause inversion layer derived from CHAMP/GRACE radio occultations and MOZAIC aircraft data

    NASA Astrophysics Data System (ADS)

    Schmidt, T.; Cammas, J.-P.; Smit, H. G. J.; Heise, S.; Wickert, J.; Haser, A.

    2010-12-01

    In this study we discuss characteristics of the Northern Hemisphere (NH) midlatitude (40°N-60°N) tropopause inversion layer (TIL) based on two data sets. First, temperature measurements from GPS radio occultation data (CHAMP and GRACE) for the time interval 2001-2009 are used to exhibit seasonal properties of the TIL bottom height defined here as the height of the squared buoyancy frequency minimum N2 below the thermal tropopause, the TIL maximum height as the height of the N2 maximum above the tropopause, and the TIL top height as the height of the temperature maximum above the tropopause. Mean values of the TIL bottom, TIL maximum, and TIL top heights relative to the thermal tropopause for the NH midlatitudes are (-2.08 ± 0.35) km, (0.52 ± 0.10) km and (2.10 ± 0.23) km, respectively. A seasonal cycle of the TIL bottom and TIL top height is observed with values closer to the thermal tropopause during summer. Secondly, high-resolution temperature and trace gas profile measurements on board commercial aircrafts (Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC) program) from 2001-2008 for the NH midlatitude (40°N-60°N) region are used to characterize the TIL as a mixing layer around the tropopause. Mean TIL bottom, TIL maximum, and TIL top heights based on the MOZAIC temperature (N2) measurements confirm the results from the GPS data, even though most of the MOZAIC profiles used here are available under cyclonic situations. Further, we demonstrate that the mixing ratio gradients of ozone (O3) and carbon monoxide (CO) are suitable parameters for characterizing the TIL structure.

  17. Mesospheric temperature estimation from meteor decay times of weak and strong meteor trails

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Han; Kim, Yong Ha; Jee, Geonhwa; Lee, Changsup

    2012-11-01

    Neutral temperatures near the mesopause region were estimated from the decay times of the meteor echoes observed by a VHF meteor radar during a period covering 2007 to 2009 at King Sejong Station (62.22°S, 58.78°W), Antarctica. While some previous studies have used all meteor echoes to determine the slope from a height profile of log inverse decay times for temperature estimation, we have divided meteor echoes into weak and strong groups of underdense meteor trails, depending on the strength of estimated relative electron line densities within meteor trails. We found that the slopes from the strong group are inappropriate for temperature estimation because the decay times of strong meteors are considerably scattered, whereas the slopes from the weak group clearly define the variation of decay times with height. We thus utilize the slopes only from the weak group in the altitude region between 86 km and 96 km to estimate mesospheric temperatures. The meteor estimated temperatures show a typical seasonal variation near the mesopause region and the monthly mean temperatures are in good agreement with SABER temperatures within a mean difference of 4.8 K throughout the year. The meteor temperatures, representing typically the region around the altitude of 91 km, are lower on average by 2.1 K than simultaneously measured SATI OH(6-2) rotational temperatures during winter (March-October).

  18. Categorisation of northern California rainfall for periods with and without a radar brightband using stable isotopes and a novel automated precipitation collector

    USGS Publications Warehouse

    Coplen, Tyler B.; Paul J. Neiman,; Allen B. White,; Ralph, F. Martin

    2015-01-01

    During landfall of extratropical cyclones between 2005 and 2011, nearly 1400 precipitation samples were collected at intervals of 30-min time resolution with novel automated collectors at four NOAA sites in northern California [Alta (ATA), Bodega Bay (BBY), Cazadero (CZD) and Shasta Dam (STD)] during 43 events. Substantial decreases were commonly followed hours later by substantial increases in hydrogen isotopic composition (δ2HVSMOW where VSMOW is Vienna Standard Mean Ocean Water) and oxygen isotopic composition (δ18OVSMOW) of precipitation. These variations likely occur as pre-cold frontal precipitation generation transitions from marine vapour masses having low rainout to cold cloud layers having much higher rainout (with concomitant brightband signatures measured by an S-band profiling radar and lower δ2HVSMOW values of precipitation), and finally to shallower, warmer precipitating clouds having lower rainout (with non-brightband signatures and higher δ2HVSMOW values of precipitation), in accord with ‘seeder–feeder’ precipitation. Of 82 intervals identified, a remarkable 100.5 ‰ decrease in δ2HVSMOW value was observed for a 21 January 2010 event at BBY. Of the 61 intervals identified with increases in δ2HVSMOW values as precipitation transitioned to shallower, warmer clouds having substantially less rainout (the feeder part of the seeder–feeder mechanism), a remarkable increase in δ2HVSMOW value of precipitation of 82.3 ‰ was observed for a 10 February 2007 event at CZD. All CZD and ATA events having δ2HVSMOW values of precipitation below −105 ‰ were atmospheric rivers (ARs), and of the 13 events having δ2HVSMOWvalues of precipitation below −80 ‰, 77 % were ARs. Cloud echo-top heights (a proxy for atmospheric temperature) were available for 23 events. The mean echo-top height is greater for higher rainout periods than that for lower rainout periods in 22 of the 23 events. The lowest δ2HVSMOW of precipitation of 28 CZD events was −137.9 ‰ on 16 February 2009 during an AR with cold precipitating clouds and very high rainout with tops >6.5 km altitude. An altitude effect of −2.5 ‰ per 100 m was measured from BBY and CZD δ2HVSMOW data and of −1.8 ‰ per 100 m for CZD and ATA δ2HVSMOW data. We present a new approach to categorise rainfall intervals using δ2HVSMOW values of precipitation and rainfall rates. We term this approach the algorithmic-isotopic categorisation of rainfall, and we were able to identify higher rainout and/or lower rainout periods during all events in this study. We conclude that algorithmic-isotopic categorisation of rainfall can enable users to distinguish between tropospheric vapour masses having relatively high rainout (typically with brightband rain and that commonly are ARs) and vapour masses having lower rainout (commonly with non-brightband rain).

  19. Thermal disequilibrium at the top of volcanic clouds and its effect on estimates of the column height

    NASA Technical Reports Server (NTRS)

    Woods, Andrew W.; Self, Stephen

    1992-01-01

    Satellite images of large volcanic explosions reveal that the tops of volcanic eruptions columns are much cooler than the surrounding atmosphere. It is proposed that this effect occurs whenever a mixture of hot volcanic ash and entrained air ascends sufficiently high into a stably stratified atmosphere. Although the mixture is initially very hot, it expands and cools as the ambient pressure decreases. It is shown that cloud-top undercoolings in excess of 20 C may develop in clouds that penetrate the stratosphere, and it is predicted that, for a given cloud-top temperature, variations in the initial temperature of 100-200 C may correspond to variations in the column height of 5-10 km. It is deduced that the present practice of converting satellite-based measurements of the temperature at the top of volcanic eruptions columns to estimates of the column height will produce rather inaccurate results and should therefore be discontinued.

  20. Effect of table top slope and height on body posture and muscular activity pattern.

    PubMed

    Hassaïne, M; Hamaoui, A; Zanone, P-G

    2015-04-01

    The objective of this study was to assess the effect of table top slope and height on body posture and muscular activity pattern. Twelve asymptomatic participants performed a 5-min reading task while sitting, in six experimental conditions manipulating the table top slope (20° backward slope, no slope) and its height (low, medium, up). EMGs recordings were taken on 9 superficial muscles located at the trunk and shoulder level, and the angular positions of the head, trunk and pelvis were assessed using an inertial orientation system. Results revealed that the sloping table top was associated with a higher activity of deltoideus pars clavicularis (P<0.05) and a smaller flexion angle of the head (P<0.05). A tentative conclusion is that a sloping table top induces a more erect posture of the head and the neck, but entails an overload of the shoulder, which might be harmful on the long run. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  1. Near-Space TOPSAR Large-Scene Full-Aperture Imaging Scheme Based on Two-Step Processing

    PubMed Central

    Zhang, Qianghui; Wu, Junjie; Li, Wenchao; Huang, Yulin; Yang, Jianyu; Yang, Haiguang

    2016-01-01

    Free of the constraints of orbit mechanisms, weather conditions and minimum antenna area, synthetic aperture radar (SAR) equipped on near-space platform is more suitable for sustained large-scene imaging compared with the spaceborne and airborne counterparts. Terrain observation by progressive scans (TOPS), which is a novel wide-swath imaging mode and allows the beam of SAR to scan along the azimuth, can reduce the time of echo acquisition for large scene. Thus, near-space TOPS-mode SAR (NS-TOPSAR) provides a new opportunity for sustained large-scene imaging. An efficient full-aperture imaging scheme for NS-TOPSAR is proposed in this paper. In this scheme, firstly, two-step processing (TSP) is adopted to eliminate the Doppler aliasing of the echo. Then, the data is focused in two-dimensional frequency domain (FD) based on Stolt interpolation. Finally, a modified TSP (MTSP) is performed to remove the azimuth aliasing. Simulations are presented to demonstrate the validity of the proposed imaging scheme for near-space large-scene imaging application. PMID:27472341

  2. Geoscience Laser Altimeter System (GLAS) for the ICESat Mission

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Sun, Xiaoli; Ketchum, Eleanor A.; Millar, Pamela S.; Riris, Haris

    2002-01-01

    The Geoscience Laser Altimeter System (GLAS) is a new generation lidar and is the primary science payload for NASA's ICESat Mission. The GLAS design combines a 10 cm precision surface lidar with a sensitive dual wavelength cloud and aerosol lidar. GLAS will precisely measure the heights of the Earth's polar ice sheets, establish a grid of accurate height profiles of the Earth's land topography, and profile the vertical distribution of clouds and aerosols on a global scale. GLAS will be integrated onto a small spacecraft built by Ball Aerospace, and will be launched into a polar orbit with a 590-630 km altitude at an inclination of 94 degrees. ICESat is is currently planned to launch in winter 2002/03 and GLAS is designed to operate continuously in space for a minimum of 3 years. GLAS will measure the vertical distance from orbit to the Earth's surface with pulses from a ND:YAG laser at a 40 Hz rate. Each 6 nsec wide 1064 nm laser pulse is used to produce a single range measurement. On the surface, the laser footprints have 66 m diameter and approx. 170 m center-center spacings. The GLAS receiver uses a I m diameter telescope to detect laser backscatter and a Si APD to detect the 1064 nm signals. The detector's output is sampled by a digital ranging receiver, which records each transmitted pulse and surface echo waveform with 1 nsec (15 cm) resolution. Each echo pulse is digitized and is reported to ground with a record length of from 200 to 544 samples, depending on the spacecraft's location . The GLAS location and epoch times are measured by a precision GPS receiver carried on the ICESat spacecraft. Initial processing of the echo waveforms within GLAS permits discrimination between cloud and surface echoes for selecting appropriate waveform samples. This selection is guided by an on-board DEM which is used to set the boundaries for the echo pulse search algorithm. Subsequent ground-based echo pulse analysis, along with GPS-based clock frequency estimates, permit final determination of the range to the surface, degree of pulse spreading, and vertical distribution of any vegetation illuminated by the laser. Accurate knowledge of the laser beam's pointing angle is needed to prevent height biases when measuring over tilted surfaces, such as near the boundaries of ice sheets. For surfaces with 2 deg. slopes, knowledge of pointing angle of the beam's centroid angle to better than 10 urad is needed. GLAS uses a stellar reference system (SRS) to measure the pointing angle of each laser firing relative to inertial space. The SRS uses a high precision star camera oriented toward local zenith and a gyroscope to determine the inertial orientation of the SRS optical bench. The far field pattern of each laser is measured pulse relative to the star camera with a laser reference system (LRS). GLAS will also measure the vertical distributions of clouds and aerosols by recording the vertical profiles of laser pulse backscatter at both 1064 and 532 nm. The 1064 rim measurements use the Si APD detector and will be used to measure the height and echo pulse shape from thicker clouds. The lidar receiver at 532 nm uses a narrow bandwidth etalon filter and highly sensitive photon counting detectors. The 532 nm backscatter profiles will be used to measure the vertical extent of thinner clouds and the atmospheric boundary layer. The GLAS instrument component development is complete and the instrument is undergoing final testing and qualification at NASA-Goddard. The GLAS "as-built" characteristics and its expected measurement performance will be discussed.

  3. On the Land-Ocean Contrast of Tropical Convection and Microphysics Statistics Derived from TRMM Satellite Signals and Global Storm-Resolving Models

    NASA Technical Reports Server (NTRS)

    Matsui, Toshihisa; Chern, Jiun-Dar; Tao, Wei-Kuo; Lang, Stephen E.; Satoh, Masaki; Hashino, Tempei; Kubota, Takuji

    2016-01-01

    A 14-year climatology of Tropical Rainfall Measuring Mission (TRMM) collocated multi-sensor signal statistics reveal a distinct land-ocean contrast as well as geographical variability of precipitation type, intensity, and microphysics. Microphysics information inferred from the TRMM precipitation radar and Microwave Imager (TMI) show a large land-ocean contrast for the deep category, suggesting continental convective vigor. Over land, TRMM shows higher echo-top heights and larger maximum echoes, suggesting taller storms and more intense precipitation, as well as larger microwave scattering, suggesting the presence of morelarger frozen convective hydrometeors. This strong land-ocean contrast in deep convection is invariant over seasonal and multi-year time-scales. Consequently, relatively short-term simulations from two global storm-resolving models can be evaluated in terms of their land-ocean statistics using the TRMM Triple-sensor Three-step Evaluation via a satellite simulator. The models evaluated are the NASA Multi-scale Modeling Framework (MMF) and the Non-hydrostatic Icosahedral Cloud Atmospheric Model (NICAM). While both simulations can represent convective land-ocean contrasts in warm precipitation to some extent, near-surface conditions over land are relatively moisture in NICAM than MMF, which appears to be the key driver in the divergent warm precipitation results between the two models. Both the MMF and NICAM produced similar frequencies of large CAPE between land and ocean. The dry MMF boundary layer enhanced microwave scattering signals over land, but only NICAM had an enhanced deep convection frequency over land. Neither model could reproduce a realistic land-ocean contrast in in deep convective precipitation microphysics. A realistic contrast between land and ocean remains an issue in global storm-resolving modeling.

  4. Cubic-foot tree volume equations and tables for western juniper.

    Treesearch

    Judith M. Chittester; Colin D. MacLean

    1984-01-01

    This note presents cubic-foot volume equations and tables for western juniper (Juniperus occidentalis Hook. ). Total cubicfoot volume (ground to tip, excluding all branches (CVTS)) is expressed as a function of diameter at breast height (DBH) and total height. Utilizable cubic-foot volume (top of 12-inch stump to a 4-inch top, excluding all...

  5. CASTLE Series, 1954.

    DTIC Science & Technology

    1982-04-01

    Hull Number Off EM Civ Off EM Civ Comments 7.3.7.0 Landing Ship Dock Belle Grove (LSD-2) 20 318 0 19 321 0 Boat Pool mother ship; also trans- Element...42.67) (85.34) UPPER LIMIT CLOUD TOP HEIGHT 120 240 (6.58) LOWER LIMIT (73.15) CLOUD TOP HEIGHT 10A00 ft (33.53 kmc ) E E~100 200

  6. Forest biomass change estimated from height change in interferometric SAR height models.

    PubMed

    Solberg, Svein; Næsset, Erik; Gobakken, Terje; Bollandsås, Ole-Martin

    2014-12-01

    There is a need for new satellite remote sensing methods for monitoring tropical forest carbon stocks. Advanced RADAR instruments on board satellites can contribute with novel methods. RADARs can see through clouds, and furthermore, by applying stereo RADAR imaging we can measure forest height and its changes. Such height changes are related to carbon stock changes in the biomass. We here apply data from the current Tandem-X satellite mission, where two RADAR equipped satellites go in close formation providing stereo imaging. We combine that with similar data acquired with one of the space shuttles in the year 2000, i.e. the so-called SRTM mission. We derive height information from a RADAR image pair using a method called interferometry. We demonstrate an approach for REDD based on interferometry data from a boreal forest in Norway. We fitted a model to the data where above-ground biomass in the forest increases with 15 t/ha for every m increase of the height of the RADAR echo. When the RADAR echo is at the ground the estimated biomass is zero, and when it is 20 m above the ground the estimated above-ground biomass is 300 t/ha. Using this model we obtained fairly accurate estimates of biomass changes from 2000 to 2011. For 200 m 2 plots we obtained an accuracy of 65 t/ha, which corresponds to 50% of the mean above-ground biomass value. We also demonstrate that this method can be applied without having accurate terrain heights and without having former in-situ biomass data, both of which are generally lacking in tropical countries. The gain in accuracy was marginal when we included such data in the estimation. Finally, we demonstrate that logging and other biomass changes can be accurately mapped. A biomass change map based on interferometry corresponded well to a very accurate map derived from repeated scanning with airborne laser. Satellite based, stereo imaging with advanced RADAR instruments appears to be a promising method for REDD. Interferometric processing of the RADAR data provides maps of forest height changes from which we can estimate temporal changes in biomass and carbon.

  7. Observational Characteristics of the Tropopause Inversion Layer derived from CHAMP/GRACE Radio Occultations and MOZAIC Aircraft Data

    NASA Astrophysics Data System (ADS)

    Schmidt, T.; Cammas, J.; Heise, S.; Wickert, J.; Haser, A.

    2010-12-01

    In this study we discuss characteristics of the northern hemisphere (NH) midlatitude (40°N-60°N) tropopause inversion layer (TIL) based on two datasets. First, temperature measurements from GPS radio occultation data (CHAMP and GRACE) for the time interval 2001-2009 are used to exhibit seasonal properties of the TIL bottom height defined here as the height of the squared buoyancy frequency minimum N2 below the thermal tropopause, the TIL maximum height as the height of the N2 maximum above the tropopause and the TIL top height as the height of the temperature maximum above the tropopause. Mean values of the TIL bottom, TIL maximum and TIL top heights relative to the thermal tropopause for the NH midlatitudes are (-2.08±0.35) km, (0.52±0.10) km and (2.10±0.23) km, respectively. A seasonal cycle of the TIL bottom and TIL top height is observed with values closer to the thermal tropopause during summer. Secondly, high-resolution temperature and trace gas profile measurements onboard commercial aircrafts (MOZAIC program) from 2001-2008 for the NH midlatitude (40°N-60°N) region are used to characterize the TIL as a mixing layer around the tropopause. Mean TIL bottom, TIL maximum and TIL top heights based on the MOZAIC temperature (N2) measurements confirm the results from the GPS data, even though most of the MOZAIC profiles used here are available under cyclonic situations. Further, we demonstrate that the mixing ratio gradients of ozone (O3) and carbon monoxide (CO) are suitable parameters for characterizing the TIL structure. Using O3-CO correlations we also show that on average the highest mixing occurs in a layer less than 1 km above the thermal tropopause, i.e., within the TIL.

  8. On the Simulation of Sea States with High Significant Wave Height for the Validation of Parameter Retrieval Algorithms for Future Altimetry Missions

    NASA Astrophysics Data System (ADS)

    Kuschenerus, Mieke; Cullen, Robert

    2016-08-01

    To ensure reliability and precision of wave height estimates for future satellite altimetry missions such as Sentinel 6, reliable parameter retrieval algorithms that can extract significant wave heights up to 20 m have to be established. The retrieved parameters, i.e. the retrieval methods need to be validated extensively on a wide range of possible significant wave heights. Although current missions require wave height retrievals up to 20 m, there is little evidence of systematic validation of parameter retrieval methods for sea states with wave heights above 10 m. This paper provides a definition of a set of simulated sea states with significant wave height up to 20 m, that allow simulation of radar altimeter response echoes for extreme sea states in SAR and low resolution mode. The simulated radar responses are used to derive significant wave height estimates, which can be compared with the initial models, allowing precision estimations of the applied parameter retrieval methods. Thus we establish a validation method for significant wave height retrieval for sea states causing high significant wave heights, to allow improved understanding and planning of future satellite altimetry mission validation.

  9. Small-scale structure of O2(+) and proton hydrates in a Noctilucent Cloud and polar mesospheric summer echo of August 9/10 1991 above Kiruna

    NASA Technical Reports Server (NTRS)

    Balsiger, F.; Kopp, E.; Friedrich, M.; Torkar, K. M.; Walchli, U.

    1993-01-01

    A novel mass spectrometer designed to measure simultaneously positive ion composition in the mesosphere, was successfully launched during the NLC-91 project. Instruments supporting the mass spectrometer were a probed to measure both electrons and positive ions as well as a wave propagation experiment. The location of the Noctilucent Clouds (NLC) was determined by a particle impact sensor to detect secondary electrons and ions from the impact of NLC particle. The density of proton hydrates and of the related total ions is depleted in the NLC region at 83 km. An improved detection limit of 5 x 10(exp 4)/cu m for positive ions and improved height resolution revealed for the first time large gradients in the O2(+), H(+)(H2O)2 and H(+)(H2O)6 densities within a small height range of the order of 50 m. Such gradients at the altitude of NLC and Polar Mesospheric Summer Echoes (PMSE) are associated with strong variability of mesospheric water vapor, temperature and neutral air density.

  10. Mesavage and Girard form class taper functions derived from profile equations

    Treesearch

    Thomas g. Matney; Emily B. Schultz

    2007-01-01

    The Mesavage and Girard (1946) average upper-log taper tables remain a favorite way of estimating tree bole volume because they only require the measurement of merchantable (useable) height to an indefinite top diameter limit. For the direct application of profile equations, height must be measured to a definite top diameter limit, and this makes the collection of data...

  11. --No Title--

    Science.gov Websites

    ;background-color:#ddd;border-bottom:3px solid #aaa;padding:8px;margin-top:12px;height:auto;overflow:hidden }#how_use_car{clear:both;background-color:#ddd;border-bottom:3px solid #aaa;padding:8px;margin-top:20px ;height:auto;overflow:hidden}#results{clear:both;background-color:#ddd;border-bottom:3px solid #aaa;padding:8px

  12. Thin and thick cloud top height retrieval algorithm with the Infrared Camera and LIDAR of the JEM-EUSO Space Mission

    NASA Astrophysics Data System (ADS)

    Sáez-Cano, G.; Morales de los Ríos, J. A.; del Peral, L.; Neronov, A.; Wada, S.; Rodríguez Frías, M. D.

    2015-03-01

    The origin of cosmic rays have remained a mistery for more than a century. JEM-EUSO is a pioneer space-based telescope that will be located at the International Space Station (ISS) and its aim is to detect Ultra High Energy Cosmic Rays (UHECR) and Extremely High Energy Cosmic Rays (EHECR) by observing the atmosphere. Unlike ground-based telescopes, JEM-EUSO will observe from upwards, and therefore, for a properly UHECR reconstruction under cloudy conditions, a key element of JEM-EUSO is an Atmospheric Monitoring System (AMS). This AMS consists of a space qualified bi-spectral Infrared Camera, that will provide the cloud coverage and cloud top height in the JEM-EUSO Field of View (FoV) and a LIDAR, that will measure the atmospheric optical depth in the direction it has been shot. In this paper we will explain the effects of clouds for the determination of the UHECR arrival direction. Moreover, since the cloud top height retrieval is crucial to analyze the UHECR and EHECR events under cloudy conditions, the retrieval algorithm that fulfills the technical requierements of the Infrared Camera of JEM-EUSO to reconstruct the cloud top height is presently reported.

  13. Wireless Monitoring of the Height of Condensed Water in Steam Pipes

    NASA Technical Reports Server (NTRS)

    Lee, Hyeong Jae; Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Badescu, Mircea; Dingizian, Arsham; Takano, Nobuyuki; Blosiu, Julian O.

    2014-01-01

    A wireless health monitoring system has been developed for determining the height of water condensation in the steam pipes and the data acquisition is done remotely using a wireless network system. The developed system is designed to operate in the harsh environment encountered at manholes and the pipe high temperature of over 200 °C. The test method is an ultrasonic pulse-echo and the hardware includes a pulser, receiver and wireless modem for communication. Data acquisition and signal processing software were developed to determine the water height using adaptive signal processing and data communication that can be controlled while the hardware is installed in a manhole. A statistical decision-making tool is being developed based on the field test data to determine the height of in the condensed water under high noise conditions and other environmental factors.

  14. Where We Stand

    DTIC Science & Technology

    1945-08-01

    that no inteligent and undel tading cooperation from any of the ruilif;Ir ;trgem it’ Ihev b1livvcd that hc top militarl nonmatids bad Ito co ni,eptt)n...o r10mls The possibilities of direct radat navigation are -rear, - emtended by die use of sarong, readily identifiable, artificial echoes prov,,ted

  15. An evaluation of modeled plume injection height with satellite-derived observed plume height

    Treesearch

    Sean M. Raffuse; Kenneth J. Craig; Narasimhan K. Larkin; Tara T. Strand; Dana Coe Sullivan; Neil J.M. Wheeler; Robert Solomon

    2012-01-01

    Plume injection height influences plume transport characteristics, such as range and potential for dilution. We evaluated plume injection height from a predictive wildland fire smoke transport model over the contiguous United States (U.S.) from 2006 to 2008 using satellite-derived information, including plume top heights from the Multi-angle Imaging SpectroRadiometer (...

  16. Windprofiler optimization using digital deconvolution procedures

    NASA Astrophysics Data System (ADS)

    Hocking, W. K.; Hocking, A.; Hocking, D. G.; Garbanzo-Salas, M.

    2014-10-01

    Digital improvements to data acquisition procedures used for windprofiler radars have the potential for improving the height coverage at optimum resolution, and permit improved height resolution. A few newer systems already use this capability. Real-time deconvolution procedures offer even further optimization, and this has not been effectively employed in recent years. In this paper we demonstrate the advantages of combining these features, with particular emphasis on the advantages of real-time deconvolution. Using several multi-core CPUs, we have been able to achieve speeds of up to 40 GHz from a standard commercial motherboard, allowing data to be digitized and processed without the need for any type of hardware except for a transmitter (and associated drivers), a receiver and a digitizer. No Digital Signal Processor chips are needed, allowing great flexibility with analysis algorithms. By using deconvolution procedures, we have then been able to not only optimize height resolution, but also have been able to make advances in dealing with spectral contaminants like ground echoes and other near-zero-Hz spectral contamination. Our results also demonstrate the ability to produce fine-resolution measurements, revealing small-scale structures within the backscattered echoes that were previously not possible to see. Resolutions of 30 m are possible for VHF radars. Furthermore, our deconvolution technique allows the removal of range-aliasing effects in real time, a major bonus in many instances. Results are shown using new radars in Canada and Costa Rica.

  17. HF Radar Sea-echo from Shallow Water.

    PubMed

    Lipa, Belinda; Nyden, Bruce; Barrick, Don; Kohut, Josh

    2008-08-06

    HF radar systems are widely and routinely used for the measurement of ocean surface currents and waves. Analysis methods presently in use are based on the assumption of infinite water depth, and may therefore be inadequate close to shore where the radar echo is strongest. In this paper, we treat the situation when the radar echo is returned from ocean waves that interact with the ocean floor. Simulations are described which demonstrate the effect of shallow water on radar sea-echo. These are used to investigate limits on the existing theory and to define water depths at which shallow-water effects become significant. The second-order spectral energy increases relative to the first-order as the water depth decreases, resulting in spectral saturation when the waveheight exceeds a limit defined by the radar transmit frequency. This effect is particularly marked for lower radar transmit frequencies. The saturation limit on waveheight is less for shallow water. Shallow water affects second-order spectra (which gives wave information) far more than first-order (which gives information on current velocities), the latter being significantly affected only for the lowest radar transmit frequencies for extremely shallow water. We describe analysis of radar echo from shallow water measured by a Rutgers University HF radar system to give ocean wave spectral estimates. Radar-derived wave height, period and direction are compared with simultaneous shallow-water in-situ measurements.

  18. HF Radar Sea-echo from Shallow Water

    PubMed Central

    Lipa, Belinda; Nyden, Bruce; Barrick, Don; Kohut, Josh

    2008-01-01

    HF radar systems are widely and routinely used for the measurement of ocean surface currents and waves. Analysis methods presently in use are based on the assumption of infinite water depth, and may therefore be inadequate close to shore where the radar echo is strongest. In this paper, we treat the situation when the radar echo is returned from ocean waves that interact with the ocean floor. Simulations are described which demonstrate the effect of shallow water on radar sea-echo. These are used to investigate limits on the existing theory and to define water depths at which shallow-water effects become significant. The second-order spectral energy increases relative to the first-order as the water depth decreases, resulting in spectral saturation when the waveheight exceeds a limit defined by the radar transmit frequency. This effect is particularly marked for lower radar transmit frequencies. The saturation limit on waveheight is less for shallow water. Shallow water affects second-order spectra (which gives wave information) far more than first-order (which gives information on current velocities), the latter being significantly affected only for the lowest radar transmit frequencies for extremely shallow water. We describe analysis of radar echo from shallow water measured by a Rutgers University HF radar system to give ocean wave spectral estimates. Radar-derived wave height, period and direction are compared with simultaneous shallow-water in-situ measurements. PMID:27873776

  19. Stereographic observations from geosynchronous satellites - An important new tool for the atmospheric sciences

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.

    1981-01-01

    Observations of cloud geometry using scan-synchronized stereo geostationary satellites having images with horizontal spatial resolution of approximately 0.5 km, and temporal resolution of up to 3 min are presented. The stereo does not require a cloud with known emissivity to be in equilibrium with an atmosphere with a known vertical temperature profile. It is shown that absolute accuracies of about 0.5 km are possible. Qualitative and quantitative representations of atmospheric dynamics were shown by remapping, display, and stereo image analysis on an interactive computer/imaging system. Applications of stereo observations include: (1) cloud top height contours of severe thunderstorms and hurricanes, (2) cloud top and base height estimates for cloud-wind height assignment, (3) cloud growth measurements for severe thunderstorm over-shooting towers, (4) atmospheric temperature from stereo heights and infrared cloud top temperatures, and (5) cloud emissivity estimation. Recommendations are given for future improvements in stereo observations, including a third GOES satellite, operational scan synchronization of all GOES satellites and better resolution sensors.

  20. School Nurses Race to the Top: The Pilot Year of How One District's School Nurses Revised Their Evaluation Process

    ERIC Educational Resources Information Center

    Haffke, Louise Marie; Damm, Paula; Cross, Barbara

    2014-01-01

    During the 2013-2014 school year, the Shaker Heights, Ohio City school district was mandated to change its evaluation process as part of the Race to the Top initiative. Although not required by the federal or state Departments of Education, the Shaker Heights City school district tasked all members of their faculty and staff, including school…

  1. 21 CFR 130.12 - General methods for water capacity and fill of containers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... height of the double seam. (2) Measure the vertical distance from the top level of the container to the... or altering the height of the double seam. (2) Wash, dry, and weigh the empty container. (3) Fill the container with distilled water at 68 °F to 3/16 inch vertical distance below the top level of the container...

  2. 21 CFR 130.12 - General methods for water capacity and fill of containers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... height of the double seam. (2) Measure the vertical distance from the top level of the container to the... or altering the height of the double seam. (2) Wash, dry, and weigh the empty container. (3) Fill the container with distilled water at 68 °F to 3/16 inch vertical distance below the top level of the container...

  3. 21 CFR 130.12 - General methods for water capacity and fill of containers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... height of the double seam. (2) Measure the vertical distance from the top level of the container to the... or altering the height of the double seam. (2) Wash, dry, and weigh the empty container. (3) Fill the container with distilled water at 68 °F to 3/16 inch vertical distance below the top level of the container...

  4. Antarctic meteor observations using the Davis MST and meteor radars

    NASA Astrophysics Data System (ADS)

    Holdsworth, David A.; Murphy, Damian J.; Reid, Iain M.; Morris, Ray J.

    2008-07-01

    This paper presents the meteor observations obtained using two radars installed at Davis (68.6°S, 78.0°E), Antarctica. The Davis MST radar was installed primarily for observation of polar mesosphere summer echoes, with additional transmit and receive antennas installed to allow all-sky interferometric meteor radar observations. The Davis meteor radar performs dedicated all-sky interferometric meteor radar observations. The annual count rate variation for both radars peaks in mid-summer and minimizes in early Spring. The height distribution shows significant annual variation, with minimum (maximum) peak heights and maximum (minimum) height widths in early Spring (mid-summer). Although the meteor radar count rate and height distribution variations are consistent with a similar frequency meteor radar operating at Andenes (69.3°N), the peak heights show a much larger variation than at Andenes, while the count rate maximum-to-minimum ratios show a much smaller variation. Investigation of the effects of the temporal sampling parameters suggests that these differences are consistent with the different temporal sampling strategies used by the Davis and Andenes meteor radars. The new radiant mapping procedure of [Jones, J., Jones, W., Meteor radiant activity mapping using single-station radar observations, Mon. Not. R. Astron. Soc., 367(3), 1050-1056, doi: 10.1111/j.1365-2966.2006.10025.x, 2006] is investigated. The technique is used to detect the Southern delta-Aquarid meteor shower, and a previously unknown weak shower. Meteoroid speeds obtained using the Fresnel transform are presented. The diurnal, annual, and height variation of meteoroid speeds are presented, with the results found to be consistent with those obtained using specular meteor radars. Meteoroid speed estimates for echoes identified as Southern delta-Aquarid and Sextantid meteor candidates show good agreement with the theoretical pre-atmospheric speeds of these showers (41 km s -1 and 32 km s -1, respectively). The meteoroid speeds estimated for these showers show decreasing speed with decreasing height, consistent with the effects of meteoroid deceleration. Finally, we illustrate how the new radiant mapping and meteoroid speed techniques can be combined for unambiguous meteor shower detection, and use these techniques to detect a previously unknown weak shower.

  5. MST radar observations of Perseid meteor shower 2004

    NASA Astrophysics Data System (ADS)

    Venkata Phani Kumar, D.; Reddy, K. Chenna; Yellaiah, G.

    2006-09-01

    There was a special attention for Perseid meteor shower observations in view of the predictions of an intense activity on 11th August 2004 caused by a filament of dust drifting across the Earth's orbit. Results of a systematic study of Perseid meteor shower observations, carried out during 12-15 August 2004 using Indian MST radar are presented. Based on over 27 hours of observing time, we detected 2260 meteor echoes occurring between 80 km and 120 km with a mean height of 103 km. For our observations, the peak activity of the shower occured on 12/13 August, corresponding to solar longitude lambdao = 140.565± 0.16 with an average rate of 250 meteor echoes per hour. The SNR distribution of the echoes observed during the shower indicates that the smaller size meteoroids are more compared to larger size meteoroids in the perseid meteor stream. The three distinct peaks observed in the shower activity is presented and discussed.

  6. Doppler radar echoes of lightning and precipitation at vertical incidence

    NASA Technical Reports Server (NTRS)

    Zrnic, D. S.; Rust, W. D.; Taylor, W. L.

    1982-01-01

    Digital time series data at 16 heights within two storms were collected at vertical incidence with a 10-cm Doppler radar. On several occasions during data collection, lightning echoes were observed as increased reflectivity on an oscilloscope display. Simultaneously, lightning signals from nearby electric field change antennas were recorded on an analog recorder together with the radar echoes. Reflectivity, mean velocity, and Doppler spectra were examined by means of time series analysis for times during and after lightning discharges. Spectra from locations where lightning occurred show peaks, due to the motion of the lightning channel at the air speed. These peaks are considerably narrower than the ones due to precipitation. Besides indicating the vertical air velocity that can then be used to estimate hydrometeor-size distribution, the lightning spectra provide a convenient means to estimate the radar cross section of the channel. Subsequent to one discharge, we deduce that a rapid change in the orientation of hydrometeors occurred within the resolution volume.

  7. Plasma dynamics above solar flare soft x-ray loop tops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doschek, G. A.; Warren, H. P.; McKenzie, D. E.

    2014-06-10

    We measure non-thermal motions in flare loop tops and above the loop tops using profiles of highly ionized spectral lines of Fe XXIV and Fe XXIII formed at multimillion-degree temperatures. Non-thermal motions that may be due to turbulence or multiple flow regions along the line of sight are extracted from the line profiles. The non-thermal motions are measured for four flares seen at or close to the solar limb. The profile data are obtained using the Extreme-ultraviolet Imaging Spectrometer on the Hinode spacecraft. The multimillion-degree non-thermal motions are between 20 and 60 km s{sup –1} and appear to increase withmore » height above the loop tops. Motions determined from coronal lines (i.e., lines formed at about 1.5 MK) tend to be smaller. The multimillion-degree temperatures in the loop tops and above range from about 11 MK to 15 MK and also tend to increase with height above the bright X-ray-emitting loop tops. The non-thermal motions measured along the line of sight, as well as their apparent increase with height, are supported by Solar Dynamics Observatory Atmospheric Imaging Assembly measurements of turbulent velocities in the plane of the sky.« less

  8. MTR and In-vivo 1H-MRS studies on mouse brain with parkinson's disease

    NASA Astrophysics Data System (ADS)

    Yoon, Moon-Hyun; Kim, Hyeon-Jin; Chung, Jin-Yeung; Doo, Ah-Reum; Park, Hi-Joon; Kim, Seung-Nam; Choe, Bo-Young

    2012-12-01

    The aim of this study was to investigate whether the changes in the magnetization transfer ratio (MTR) histogram are related to specific characteristics of Parkinson's disease (PD) and to investigate whether the MTR histogram parameters are associated with neurochemical dysfunction by performing in vivo proton magnetic resonance spectroscopy (1H-MRS). MTR and in vivo 1H-MRS studies were performed on control mice (n = 10) and 1-methyl-1,2,3,6-tetrahydropyridine intoxicated mice (n = 10). All the MTR and in vivo 1H-MRS experiments were performed on a 9.4 T MRI/MRS system (Bruker Biospin, Germany) using a standard head coil. The protondensity fast spin echo (FSE) images and the T2-weighted spin echo (SE) images were acquired with no gap. Outer volume suppression (OVS), combined with the ultra-short echo-time stimulated echo acquisition mode (STEAM), was used for the localized in-vivo 1H-MRS. The quantitative analysis of metabolites was performed from the 1H spectra obtained in vivo on the striatum (ST) by using jMRUI (Lyon, France). The peak height of the MTR histograms in the PD model group was significantly lower than that in the control group (p < 0.05). The midbrain MTR values for volume were lower in the PD group than the control group(p < 0.05). The complex peak (Glx: glutamine+glutamate+ GABA)/creatine (Cr) ratio of the right ST in the PD group was significantly increased as compared to that of the control group. The present study revealed that the peak height of the MTR histogram was significantly decreased in the ST and substantia nigra, and a significant increase in the Gl x /Cr ratio was found in the ST of the PD group, as compared with that of the control group. These findings could reflect the early phase of neuronal dysfunction of neurotransmitters.

  9. Arctic PBL Cloud Height and Motion Retrievals from MISR and MINX

    NASA Technical Reports Server (NTRS)

    Wu, Dong L.

    2012-01-01

    How Arctic clouds respond and feedback to sea ice loss is key to understanding of the rapid climate change seen in the polar region. As more open water becomes available in the Arctic Ocean, cold air outbreaks (aka. off-ice flow from polar lows) produce a vast sheet of roll clouds in the planetary boundary layer (PBl). The cold air temperature and wind velocity are the critical parameters to determine and understand the PBl structure formed under these roll clouds. It has been challenging for nadir visible/IR sensors to detect Arctic clouds due to lack of contrast between clouds and snowy/icy surfaces. In addition) PBl temperature inversion creates a further problem for IR sensors to relate cloud top temperature to cloud top height. Here we explore a new method with the Multiangle Imaging Spectro-Radiometer (MISR) instrument to measure cloud height and motion over the Arctic Ocean. Employing a stereoscopic-technique, MISR is able to measure cloud top height accurately and distinguish between clouds and snowy/icy surfaces with the measured height. We will use the MISR INteractive eXplorer (MINX) to quantify roll cloud dynamics during cold-air outbreak events and characterize PBl structures over water and over sea ice.

  10. Tornado occurrences related to overshooting cloud-top heights as determined from ATS pictures

    NASA Technical Reports Server (NTRS)

    Fujita, T. T.

    1972-01-01

    A sequence of ATS 3 pictures including the development history of large anvil clouds near Salina, Kansas was enlarged by NASA into 8X negatives which were used to obtain the best quality prints by mixing scan lines in 8 steps to minimize checker-board patterns. These images resulted in the best possible resolution, permitting use to compute the heights of overshooting tops above environmental anvil levels based on cloud shadow relationships along with the techniques of lunar topographic mapping. Of 39 heights computed, 6 were within 15 miles of reported positions of 3 tornadoes. It was found that the tornado proximity tops were mostly less than 5000 ft, with one exception of 7000 ft, suggesting that tornadoes are most likely to occur when overshooting height decreases. In order to simulate surface vortices induced by cloud-scale rotation and updraft fields, a laboratory model was constructed. The model experiment has shown that the rotation or updraft field induces a surface vortex but their combination does prevent the formation of the surface vortex. This research leads to a conclusion that the determination of the cloud-top topography and its time variation is of extreme importance in predicting severe local storms for a period of 0 to 6 hours.

  11. Some Thoughts on a "Beloved Community"

    ERIC Educational Resources Information Center

    Hall, Ted; Campano, Gerald

    2014-01-01

    Hall and Campano echo Jones and Rainville's call for compassion and humility in literacy coaching and argue that this is an urgent endeavor in an increasingly top-down educational climate. They offer collective analysis, through teacher inquiry communities and teacher activism, as a potential site of hope for making sense of the larger…

  12. Utah Is Unlikely Fly in Bush's School Ointment

    ERIC Educational Resources Information Center

    Davis, Michelle R.

    2005-01-01

    Utah state Representative Margaret Dayton adored President Bush. Her conservative politics lined up with his. One of her favorite memories was being at an intimate gathering and hearing the president echo her top priorities, God, family, and country. However, Dayton had drove one of Bush's biggest education-relation headaches. Dayton led a…

  13. Tracking Hurricane Wilma Across the Caribbean

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Information on cloud top heights at different stages in the life cycle of the rapidly intensifying Hurricane Wilma may prove useful for evaluating the ability of numerical weather models to predict the intensity changes of hurricanes. NASA's Multi-angle Imaging SpectroRadiometer (MISR) acquired this sequence of images and cloud-top height observations for Hurricane Wilma as it progressed across the Caribbean in October 2005. Each pair in the sequence has a photo-like view of the storm on the left and a matching color-coded image of cloud-top height on the right. Cloud-top heights range from 0 (purple) to 18 (red) kilometers altitude. Areas where cloud heights could not be determined are shown in dark gray.

    The pair on the left show Wilma on Tuesday, October 18, when Hurricane watches were posted for Cuba and Mexico. The central pair shows the eye of Hurricane Wilma just hours before the storm began to cross the Yucatan Peninsula on Friday, October 21. At that time, Wilma was a powerful Category 4 Hurricane on the Saffir-Simpson scale, and had a minimum recorded central pressure of 930 millibars. Hurricane Wilma surged from tropical storm to Category 5 hurricane status in record time, but the storm slowed and weakened considerably after battering Mexico's Yucatan Peninsula and the Caribbean. The right-hand image pair displays the eastern edges of a weakened Wilma, when Wilma had been reduced to Category 2 status and was just starting to reach southern Florida on the morning of Sunday, October 23. Wilma gathered speed and strengthened on Sunday night, crossing Florida as a Category 3 storm on Monday, October 24.

    On the 18th, Wilma looked a bit ragged. Its eye is located at the center of the left edge, and its outer bands of clouds appear to be dominated by a rather loose collection of thunderstorms. In the photo-like images, these look like areas of 'boiling clouds,' and in the cloud-height image, these appear as orange blobs, sometimes topped with pinkish-red. On October 21 (center), when Wilma was a Category 4 storm, cloud-top height on the eastern side of the storm near the eye reached 18 kilometers in altitude, with lower heights on the western side. The image from the 23rd shows the eastern edge of Wilma as it approached Florida (upper right) and Cuba (center right).

    MISR has nine different cameras which view the Earth from a variety of angles. Shifts in the clouds' apparent position from one camera's perspective to another's allows MISR to measure the height of the cloud-tops. MISR scientists have programmed computers to compare the different views, identify features that appear to shift from view to view, and use that information to calculate cloud height automatically. The height fields pictured have not been corrected for the effects of cloud motion. Wind-corrected heights (which have higher accuracy but sparser spatial coverage) are within about 1 kilometer of the heights shown here.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously, viewing the entire globe between 82o north and 82o south latitude every nine days. Each image covers an area of about 380 kilometers by 1830 kilometers. The data products were generated from a portion of the imagery acquired during Terra orbits 31037, 31081 and 31110, and utilize data from within blocks 68-83 within World Reference System-2 paths 13, 16 and 18, respectively.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is managed for NASA by the California Institute of Technology.

  14. Signal Processing for Determining Water Height in Steam Pipes with Dynamic Surface Conditions

    NASA Technical Reports Server (NTRS)

    Lih, Shyh-Shiuh; Lee, Hyeong Jae; Bar-Cohen, Yoseph

    2015-01-01

    An enhanced signal processing method based on the filtered Hilbert envelope of the auto-correlation function of the wave signal has been developed to monitor the height of condensed water through the steel wall of steam pipes with dynamic surface conditions. The developed signal processing algorithm can also be used to estimate the thickness of the pipe to determine the cut-off frequency for the low pass filter frequency of the Hilbert Envelope. Testing and analysis results by using the developed technique for dynamic surface conditions are presented. A multiple array of transducers setup and methodology are proposed for both the pulse-echo and pitch-catch signals to monitor the fluctuation of the water height due to disturbance, water flow, and other anomaly conditions.

  15. A single field of view method for retrieving tropospheric temperature profiles from cloud-contaminated radiance data

    NASA Technical Reports Server (NTRS)

    Hodges, D. B.

    1976-01-01

    An iterative method is presented to retrieve single field of view (FOV) tropospheric temperature profiles directly from cloud-contaminated radiance data. A well-defined temperature profile may be calculated from the radiative transfer equation (RTE) for a partly cloudy atmosphere when the average fractional cloud amount and cloud-top height for the FOV are known. A cloud model is formulated to calculate the fractional cloud amount from an estimated cloud-top height. The method is then examined through use of simulated radiance data calculated through vertical integration of the RTE for a partly cloudy atmosphere using known values of cloud-top height(s) and fractional cloud amount(s). Temperature profiles are retrieved from the simulated data assuming various errors in the cloud parameters. Temperature profiles are retrieved from NOAA-4 satellite-measured radiance data obtained over an area dominated by an active cold front and with considerable cloud cover and compared with radiosonde data. The effects of using various guessed profiles and the number of iterations are considered.

  16. Automatic analysis of stereoscopic satellite image pairs for determination of cloud-top height and structure

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Strong, J.; Woodward, R. H.; Pierce, H.

    1991-01-01

    Results are presented on an automatic stereo analysis of cloud-top heights from nearly simultaneous satellite image pairs from the GOES and NOAA satellites, using a massively parallel processor computer. Comparisons of computer-derived height fields and manually analyzed fields show that the automatic analysis technique shows promise for performing routine stereo analysis in a real-time environment, providing a useful forecasting tool by augmenting observational data sets of severe thunderstorms and hurricanes. Simulations using synthetic stereo data show that it is possible to automatically resolve small-scale features such as 4000-m-diam clouds to about 1500 m in the vertical.

  17. Doppler Feature Based Classification of Wind Profiler Data

    NASA Astrophysics Data System (ADS)

    Sinha, Swati; Chandrasekhar Sarma, T. V.; Lourde. R, Mary

    2017-01-01

    Wind Profilers (WP) are coherent pulsed Doppler radars in UHF and VHF bands. They are used for vertical profiling of wind velocity and direction. This information is very useful for weather modeling, study of climatic patterns and weather prediction. Observations at different height and different wind velocities are possible by changing the operating parameters of WP. A set of Doppler power spectra is the standard form of WP data. Wind velocity, direction and wind velocity turbulence at different heights can be derived from it. Modern wind profilers operate for long duration and generate approximately 4 megabytes of data per hour. The radar data stream contains Doppler power spectra from different radar configurations with echoes from different atmospheric targets. In order to facilitate systematic study, this data needs to be segregated according the type of target. A reliable automated target classification technique is required to do this job. Classical techniques of radar target identification use pattern matching and minimization of mean squared error, Euclidean distance etc. These techniques are not effective for the classification of WP echoes, as these targets do not have well-defined signature in Doppler power spectra. This paper presents an effective target classification technique based on range-Doppler features.

  18. Determination of the maximum MGS mounting height : phase II detailed analysis with LS-DYNA.

    DOT National Transportation Integrated Search

    2012-12-01

    Determination of the maximum Midwest Guardrail System (MGS) mounting height was performed in two phases. : Phase I concentrated on crash testing: two full-scale crash tests were performed on the MGS with top-rail mounting heights : of 34 in. (864 mm)...

  19. OpenSearch (ECHO-ESIP) & REST API for Earth Science Data Access

    NASA Astrophysics Data System (ADS)

    Mitchell, A.; Cechini, M.; Pilone, D.

    2010-12-01

    This presentation will provide a brief technical overview of OpenSearch, the Earth Science Information Partners (ESIP) Federated Search framework, and the REST architecture; discuss NASA’s Earth Observing System (EOS) ClearingHOuse’s (ECHO) implementation lessons learned; and demonstrate the simplified usage of these technologies. SOAP, as a framework for web service communication has numerous advantages for Enterprise applications and Java/C# type programming languages. As a technical solution, SOAP has been a reliable framework on top of which many applications have been successfully developed and deployed. However, as interest grows for quick development cycles and more intriguing “mashups,” the SOAP API loses its appeal. Lightweight and simple are the vogue characteristics that are sought after. Enter the REST API architecture and OpenSearch format. Both of these items provide a new path for application development addressing some of the issues unresolved by SOAP. ECHO has made available all of its discovery, order submission, and data management services through a publicly accessible SOAP API. This interface is utilized by a variety of ECHO client and data partners to provide valuable capabilities to end users. As ECHO interacted with current and potential partners looking to develop Earth Science tools utilizing ECHO, it became apparent that the development overhead required to interact with the SOAP API was a growing barrier to entry. ECHO acknowledged the technical issues that were being uncovered by its partner community and chose to provide two new interfaces for interacting with the ECHO metadata catalog. The first interface is built upon the OpenSearch format and ESIP Federated Search framework. Leveraging these two items, a client (ECHO-ESIP) was developed with a focus on simplified searching and results presentation. The second interface is built upon the Representational State Transfer (REST) architecture. Leveraging the REST architecture, a new API has been made available that will provide access to the entire SOAP API suite of services. The results of these development activities has not only positioned to engage in the thriving world of mashup applications, but also provided an excellent real-world case study of how to successfully leverage these emerging technologies.

  20. Tree volume and biomass equations for the Lake States.

    Treesearch

    Jerold T. Hahn

    1984-01-01

    Presents species specific equations and methods for computing tree height, cubic foot, and board foot volume, and biomass for the Lake States (Michigan, Minnesota, and Wisconsin). Height equations compute either total or merchantable height to a variable top d.o.b. from d.b.h., site index, and basal area. Volumes and biomass are computed from d.b.h. and height.

  1. Detection of Microcracks in Trunnion Rods Using Ultrasonic Guided Waves

    DTIC Science & Technology

    2015-07-01

    49 Figure 40. Larger second echo from PMN-PT vs. PZT transducer. ........................................................ 50...Figure. 41 Nonlinear crack simulations: two polished ends pulled together (top left), fatigued aluminum (bottom left), nut coupled and shims hammered... fatigued rods, can go through opening and closing variations during their deterioration. Microcracked rods need to be detected and quantified

  2. 49 CFR 214.109 - Scaffolding.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... pounds applied within two inches of the top edge, in any outward or downward direction, at any point along the top edge. (3) Top edge height of toprails, or equivalent guardrail system member, shall be 42..., solid panels, and equivalent structural members shall be capable of withstanding, without failure, a...

  3. 49 CFR 214.109 - Scaffolding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... pounds applied within two inches of the top edge, in any outward or downward direction, at any point along the top edge. (3) Top edge height of toprails, or equivalent guardrail system member, shall be 42..., solid panels, and equivalent structural members shall be capable of withstanding, without failure, a...

  4. 49 CFR 214.109 - Scaffolding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... pounds applied within two inches of the top edge, in any outward or downward direction, at any point along the top edge. (3) Top edge height of toprails, or equivalent guardrail system member, shall be 42..., solid panels, and equivalent structural members shall be capable of withstanding, without failure, a...

  5. 49 CFR 214.109 - Scaffolding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... pounds applied within two inches of the top edge, in any outward or downward direction, at any point along the top edge. (3) Top edge height of toprails, or equivalent guardrail system member, shall be 42..., solid panels, and equivalent structural members shall be capable of withstanding, without failure, a...

  6. Remote Sensing of Multiple Cloud Layer Heights Using Multi-Angular Measurements

    NASA Technical Reports Server (NTRS)

    Sinclair, Kenneth; Van Diedenhoven, Bastiaan; Cairns, Brian; Yorks, John; Wasilewski, Andrzej; Mcgill, Matthew

    2017-01-01

    Cloud top height (CTH) affects the radiative properties of clouds. Improved CTH observations will allow for improved parameterizations in large-scale models and accurate information on CTH is also important when studying variations in freezing point and cloud microphysics. NASAs airborne Research Scanning Polarimeter (RSP) is able to measure cloud top height using a novel multi-angular contrast approach. For the determination of CTH, a set of consecutive nadir reflectances is selected and the cross-correlations between this set and co-located sets at other viewing angles are calculated for a range of assumed cloud top heights, yielding a correlation profile. Under the assumption that cloud reflectances are isotropic, local peaks in the correlation profile indicate cloud layers. This technique can be applied to every RSP footprint and we demonstrate that detection of multiple peaks in the correlation profile allow retrieval of heights of multiple cloud layers within single RSP footprints. This paper provides an in-depth description of the architecture and performance of the RSPs CTH retrieval technique using data obtained during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC(exp. 4)RS) campaign. RSP retrieved cloud heights are evaluated using collocated data from the Cloud Physics Lidar (CPL). The method's accuracy associated with the magnitude of correlation, optical thickness, cloud thickness and cloud height are explored. The technique is applied to measurements at a wavelength of 670 nm and 1880 nm and their combination. The 1880-nm band is virtually insensitive to the lower troposphere due to strong water vapor absorption.

  7. Smoke from Colorado Wildfires

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Hayman fire, situated about 65 kilometers southwest of Denver, Colorado, is the largest fire ever recorded in that state. The amount and distribution of smoke from the Hayman fire and from the Ponil Complex fires south of the New Mexico-Colorado border are portrayed in these views from the Multi-angle Imaging SpectroRadiometer (MISR). The images were captured on June 9, 2002, on the second day of the Hayman fire, when only about 13 percent of the total 137,000 acres eventually consumed had been scorched.

    The image at top-left was acquired by MISR's most oblique (70-degree) forward-viewing camera, and the view at bottom-left was captured by MISR's 26-degree forward-viewing camera. Both left-hand panels are 'false color' views, utilizing near-infrared, red, and blue spectral bands displayed as red, green and blue respectively. With this spectral combination, highly vegetated areas appear red. At top right is a map of aerosol optical depth. This map utilizes the capability of the oblique view angles to measure the abundance of particles in the atmosphere. Haze distributed across the eastern part of the state is indicated by a large number of green pixels, and areas where no retrieval occurred are shown in dark grey. The more oblique perspective utilized within the top panels enhances the appearance of smoke and reveals the haze. In the lower left-hand panel the view is closer to nadir (downward-looking). Here the smoke plumes appear more compact and the haze across eastern Colorado is not detected. The lower right-hand panel is a stereoscopically derived height field that echoes the compact shape of the smoke plumes in the near-nadir image. Results indicate that the smoke plumes reached altitudes of a few kilometers above the surface terrain, or about the same height as the small clouds that appear orange along the bottom edge to the left of center.

    Data used in these visualizations were generated as part of operational processing at the Atmospheric Sciences Data Center at NASA Langley Research Center. The images were acquired during Terra orbit 13170 and cover an area of about 400 kilometers x 565 kilometers. They utilize data from blocks 58 to 61 within World Reference System-2 path 32.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  8. Studies of high latitude mesospheric turbulence by radar and rocket. I - Energy deposition and wave structure

    NASA Technical Reports Server (NTRS)

    Goldberg, R. A.; Fritts, D. C.; Chou, H.-G.; Schmidlin, F. J.; Barcus, J. R.

    1988-01-01

    The origin of wintertime mesospheric echoes observed with the mesosphere-stratosphere-troposphere radar at Poker Flat, Alaska, was studied by probing the mesosphere with in situ rocket measurements during echo occurrences in the early spring, 1985. Within the height range 65-75 km, the structure of the large scale wave field was identified. In this region, a gravity wave with a vertical wavelength of about 2 km was found superimposed on a wave with a larger amplitude and a vertical wavelength of about 6.6 km. Because of the close correlation between the smaller amplitude wave and the modulation observed in the S/N profiles, it is concluded that the smaller wave was dominant in generating turbulence within the middle atmosphere.

  9. Beamwidth effects on Z-R relations and area-integrated rainfall

    NASA Technical Reports Server (NTRS)

    Rosenfeld, Daniel; Atlas, David; Wolff, David B.; Amitai, Eyal

    1992-01-01

    The effective radar reflectivity Ze measured by a radar is the convolution of the actual distribution of reflectivity with the beam radiation pattern. Because of the nonlinearity between Z and rain rate R, Ze gives a biased estimator of R whenever the reflectivity field is nonuniform. In the presence of sharp horizontal reflectivity gradients, the measured pattern of Ze extends beyond the actual precipitation boundaries to produce false precipitation echoes. When integrated across the radar image of the storm, the false echo areas contribute to the sum to produce overestimates of the areal rainfall. As the range or beamwidth increases, the ratio of measured to actual rainfall increases. Beyond some range, the normal decrease of reflectivity with height dominates and the measured rainfall underestimates the actual amount.

  10. A Year in the Life of an Infrared Echo

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1: Supernova Remnant Cassiopeia A One Year Apart

    These Spitzer Space Telescope images, taken one year apart, show the supernova remnant Cassiopeia A (yellow ball) and surrounding clouds of dust (reddish orange). The pictures illustrate that a blast of light from Cassiopeia A is waltzing outward through the dusty skies. This dance, called an 'infrared echo,' began when the remnant erupted about 50 years ago.

    Cassiopeia A is the remnant of a once massive star that died in a violent supernova explosion 325 years ago. It consists of a dead star, called a neutron star, and a surrounding shell of material that was blasted off as the star died. This remnant is located 10,000 light-years away in the northern constellation Cassiopeia.

    Infrared echoes are created when a star explodes or erupts, flashing light into surrounding clumps of dust. As the light zips through the dust clumps, it heats them up, causing them to glow successively in infrared, like a chain of Christmas bulbs lighting up one by one. The result is an optical illusion, in which the dust appears to be flying outward at the speed of light. Echoes are distinct from supernova shockwaves, which are made up material that is swept up and hurled outward by exploding stars.

    This infrared echo is the largest ever seen, stretching more than 50 light-years away from Cassiopeia A. If viewed from Earth, the entire movie frame would take up the same amount of space as two full moons.

    Hints of an older infrared echo from Cassiopeia A's supernova explosion hundreds of years ago can also be seen.

    The top Spitzer image was taken on November 30, 2003, and the bottom, on December 2, 2004.

  11. Numerical Assessment of Four-Port Through-Flow Wave Rotor Cycles with Passage Height Variation

    NASA Technical Reports Server (NTRS)

    Paxson, D. E.; Lindau, Jules W.

    1997-01-01

    The potential for improved performance of wave rotor cycles through the use of passage height variation is examined. A Quasi-one-dimensional CFD code with experimentally validated loss models is used to determine the flowfield in the wave rotor passages. Results indicate that a carefully chosen passage height profile can produce substantial performance gains. Numerical performance data are presented for a specific profile, in a four-port, through-flow cycle design which yielded a computed 4.6% increase in design point pressure ratio over a comparably sized rotor with constant passage height. In a small gas turbine topping cycle application, this increased pressure ratio would reduce specific fuel consumption to 22% below the un-topped engine; a significant improvement over the already impressive 18% reductions predicted for the constant passage height rotor. The simulation code is briefly described. The method used to obtain rotor passage height profiles with enhanced performance is presented. Design and off-design results are shown using two different computational techniques. The paper concludes with some recommendations for further work.

  12. AATSR Based Volcanic Ash Plume Top Height Estimation

    NASA Astrophysics Data System (ADS)

    Virtanen, Timo H.; Kolmonen, Pekka; Sogacheva, Larisa; Sundstrom, Anu-Maija; Rodriguez, Edith; de Leeuw, Gerrit

    2015-11-01

    The AATSR Correlation Method (ACM) height estimation algorithm is presented. The algorithm uses Advanced Along Track Scanning Radiometer (AATSR) satellite data to detect volcanic ash plumes and to estimate the plume top height. The height estimate is based on the stereo-viewing capability of the AATSR instrument, which allows to determine the parallax between the satellite's nadir and 55◦ forward views, and thus the corresponding height. AATSR provides an advantage compared to other stereo-view satellite instruments: with AATSR it is possible to detect ash plumes using brightness temperature difference between thermal infrared (TIR) channels centered at 11 and 12 μm. The automatic ash detection makes the algorithm efficient in processing large quantities of data: the height estimate is calculated only for the ash-flagged pixels. Besides ash plumes, the algorithm can be applied to any elevated feature with sufficient contrast to the background, such as smoke and dust plumes and clouds. The ACM algorithm can be applied to the Sea and Land Surface Temperature Radiometer (SLSTR), scheduled for launch at the end of 2015.

  13. Assessing the accuracy of MISR and MISR-simulated cloud top heights using CloudSat- and CALIPSO-retrieved hydrometeor profiles

    NASA Astrophysics Data System (ADS)

    Hillman, Benjamin R.; Marchand, Roger T.; Ackerman, Thomas P.; Mace, Gerald G.; Benson, Sally

    2017-03-01

    Satellite retrievals of cloud properties are often used in the evaluation of global climate models, and in recent years satellite instrument simulators have been used to account for known retrieval biases in order to make more consistent comparisons between models and retrievals. Many of these simulators have seen little critical evaluation. Here we evaluate the Multiangle Imaging Spectroradiometer (MISR) simulator by using visible extinction profiles retrieved from a combination of CloudSat, CALIPSO, MODIS, and AMSR-E observations as inputs to the MISR simulator and comparing cloud top height statistics from the MISR simulator with those retrieved by MISR. Overall, we find that the occurrence of middle- and high-altitude topped clouds agrees well between MISR retrievals and the MISR-simulated output, with distributions of middle- and high-topped cloud cover typically agreeing to better than 5% in both zonal and regional averages. However, there are significant differences in the occurrence of low-topped clouds between MISR retrievals and MISR-simulated output that are due to differences in the detection of low-level clouds between MISR and the combined retrievals used to drive the MISR simulator, rather than due to errors in the MISR simulator cloud top height adjustment. This difference highlights the importance of sensor resolution and boundary layer cloud spatial structure in determining low-altitude cloud cover. The MISR-simulated and MISR-retrieved cloud optical depth also show systematic differences, which are also likely due in part to cloud spatial structure.

  14. Determining Appropriate Coupling between User Experiences and Earth Science Data Services

    NASA Astrophysics Data System (ADS)

    Moghaddam-Taaheri, E.; Pilone, D.; Newman, D. J.; Mitchell, A. E.; Goff, T. D.; Baynes, K.

    2012-12-01

    NASA's Earth Observing System ClearingHOuse (ECHO) is a format agnostic metadata repository supporting over 3000 collections and 100M granules. ECHO exposes FTP and RESTful Data Ingest APIs in addition to both SOAP and RESTful search and order capabilities. Built on top of ECHO is a human facing search and order web application named Reverb. Reverb exposes ECHO's capabilities through an interactive, Web 2.0 application designed around searching for Earth Science data and downloading or ordering data of interest. ECHO and Reverb have supported the concept of Earth Science data services for several years but only for discovery. Invocation of these services was not a primary capability of the user experience. As more and more Earth Science data moves online and away from the concept of data ordering, progress has been made in making on demand services available for directly accessed data. These concepts have existed through access mechanisms such as OPeNDAP but are proliferating to accommodate a wider variety of services and service providers. Recently, the EOSDIS Service Interface (ESI) was defined and integrated into the ECS system. The ESI allows data providers to expose a wide variety of service capabilities including reprojection, reformatting, spatial and band subsetting, and resampling. ECHO and Reverb were tasked with making these services available to end-users in a meaningful and usable way that integrated into its existing search and ordering workflow. This presentation discusses the challenges associated with exposing disparate service capabilities while presenting a meaningful and cohesive user experience. Specifically, we'll discuss: - Benefits and challenges of tightly coupling the user interface with underlying services - Approaches to generic service descriptions - Approaches to dynamic user interfaces that better describe service capabilities while minimizing application coupling - Challenges associated with traditional WSDL / UDDI style service descriptions - Walkthrough of the solution used by ECHO and Reverb to integrate and expose ESI compliant services to our users

  15. Hurricane Juliette

    Atmospheric Science Data Center

    2013-04-19

    ... right is the cloud-top height field derived using automated computer processing of the data from multiple MISR cameras. Relative height ... NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed ...

  16. An experimental comparison of standard stereo matching algorithms applied to cloud top height estimation from satellite IR images

    NASA Astrophysics Data System (ADS)

    Anzalone, Anna; Isgrò, Francesco

    2016-10-01

    The JEM-EUSO (Japanese Experiment Module-Extreme Universe Space Observatory) telescope will measure Ultra High Energy Cosmic Ray properties by detecting the UV fluorescent light generated in the interaction between cosmic rays and the atmosphere. Cloud information is crucial for a proper interpretation of these data. The problem of recovering the cloud-top height from satellite images in infrared has struck some attention over the last few decades, as a valuable tool for the atmospheric monitoring. A number of radiative methods do exist, like C02 slicing and Split Window algorithms, using one or more infrared bands. A different way to tackle the problem is, when possible, to exploit the availability of multiple views, and recover the cloud top height through stereo imaging and triangulation. A crucial step in the 3D reconstruction is the process that attempts to match a characteristic point or features selected in one image, with one of those detected in the second image. In this article the performance of a group matching algorithms that include both area-based and global techniques, has been tested. They are applied to stereo pairs of satellite IR images with the final aim of evaluating the cloud top height. Cloudy images from SEVIRI on the geostationary Meteosat Second Generation 9 and 10 (MSG-2, MSG-3) have been selected. After having applied to the cloudy scenes the algorithms for stereo matching, the outcoming maps of disparity are transformed in depth maps according to the geometry of the reference data system. As ground truth we have used the height maps provided by the database of MODIS (Moderate Resolution Imaging Spectroradiometer) on-board Terra/Aqua polar satellites, that contains images quasi-synchronous to the imaging provided by MSG.

  17. Cirrus Cloud Retrieval Using Infrared Sounding Data: Multilevel Cloud Errors.

    NASA Astrophysics Data System (ADS)

    Baum, Bryan A.; Wielicki, Bruce A.

    1994-01-01

    In this study we perform an error analysis for cloud-top pressure retrieval using the High-Resolution Infrared Radiometric Sounder (HIRS/2) 15-µm CO2 channels for the two-layer case of transmissive cirrus overlying an overcast, opaque stratiform cloud. This analysis includes standard deviation and bias error due to instrument noise and the presence of two cloud layers, the lower of which is opaque. Instantaneous cloud pressure retrieval errors are determined for a range of cloud amounts (0.1 1.0) and cloud-top pressures (850250 mb). Large cloud-top pressure retrieval errors are found to occur when a lower opaque layer is present underneath an upper transmissive cloud layer in the satellite field of view (FOV). Errors tend to increase with decreasing upper-cloud elective cloud amount and with decreasing cloud height (increasing pressure). Errors in retrieved upper-cloud pressure result in corresponding errors in derived effective cloud amount. For the case in which a HIRS FOV has two distinct cloud layers, the difference between the retrieved and actual cloud-top pressure is positive in all casts, meaning that the retrieved upper-cloud height is lower than the actual upper-cloud height. In addition, errors in retrieved cloud pressure are found to depend upon the lapse rate between the low-level cloud top and the surface. We examined which sounder channel combinations would minimize the total errors in derived cirrus cloud height caused by instrument noise and by the presence of a lower-level cloud. We find that while the sounding channels that peak between 700 and 1000 mb minimize random errors, the sounding channels that peak at 300—500 mb minimize bias errors. For a cloud climatology, the bias errors are most critical.

  18. Radar and Atmospheric Sounding observations around 23 TGFs

    NASA Astrophysics Data System (ADS)

    Chronis, T.; Briggs, M. S.; Priftis, G.

    2014-12-01

    This study employs 23 Terrestrial Gamma-ray Flashes (TGF) detected with NASA's Fermi Gamma-ray Burst Monitor (GBM) and collocated with the World Wide Lightning Location Network and the Earth Networks Total Lightning Network with 9 WSR-88D (NEXRAD) located in Brownsville and Corpus Christy (Texas), Lake Charles (Louisiana), Key West, Miami, Tampa and Eglin Air Force Base (Florida), San Juan (Puerto Rico) and Andersen Air Force Base (Guam). The NEXRAD Enhanced Echo Tops (EET) and Vertical Integrated Liquid Density (VILD) are traditional proxies to storm height and severity. To retrieve the storm characteristics we construct probability histograms of respective EET and VILD values around each TGF.Here we show that although high-topped storms are consistently present in the vicinity of TGFs, the VILD values indicate storms of disparate convective strengths. In particular, the majority of our TGF sample is encompassed by storms of high EET (>10-11 km) values and in their majority overall VILD < ~2.0 gr m-3.These EET and VILD values are common in summertime oceanic/coastal low-latitude thunderstorms where the main convective core is limited in the first few kilometres and the updrafts are weak and narrow. Qualitative observations from the temporal evolution of the volumetric radar reflectivity shows that in a few cases the TGF emission signals the dissipation stage of the main convective core, although this suggestion is tentative and requires more sophisticated and currently ongoing storm tracking techniques. The atmospheric soundings (where available in spatial and temporal proximity with the respective TGF) indicate that TGF producing storms can exhibit a significant variation in their respective thermodynamic environment and type (e.g. regular to high CAPE, pulse vs. high shear etc). The authors acknowledge the valuable contributions of the GBM Team, Bob Holtzworth (WWLLN) and Stan Heckman (ENTLN).

  19. Digital terrestrial photogrammetric methods for tree stem analysis

    Treesearch

    Neil A. Clark; Randolph H. Wynne; Daniel L. Schmoldt; Matt Winn

    2000-01-01

    A digital camera was used to measure diameters at various heights along the stem on 20 red oak trees. Diameter at breast height ranged from 16 to over 60 cm, and height to a 10-cm top ranged from 12 to 20 m. The chi-square maximum anticipated error of geometric mean diameter estimates at the 95 percent confidence level was within ±4 cm for all heights when...

  20. A Robust Gold Deconvolution Approach for LiDAR Waveform Data Processing to Characterize Vegetation Structure

    NASA Astrophysics Data System (ADS)

    Zhou, T.; Popescu, S. C.; Krause, K.; Sheridan, R.; Ku, N. W.

    2014-12-01

    Increasing attention has been paid in the remote sensing community to the next generation Light Detection and Ranging (lidar) waveform data systems for extracting information on topography and the vertical structure of vegetation. However, processing waveform lidar data raises some challenges compared to analyzing discrete return data. The overall goal of this study was to present a robust de-convolution algorithm- Gold algorithm used to de-convolve waveforms in a lidar dataset acquired within a 60 x 60m study area located in the Harvard Forest in Massachusetts. The waveform lidar data was collected by the National Ecological Observatory Network (NEON). Specific objectives were to: (1) explore advantages and limitations of various waveform processing techniques to derive topography and canopy height information; (2) develop and implement a novel de-convolution algorithm, the Gold algorithm, to extract elevation and canopy metrics; and (3) compare results and assess accuracy. We modeled lidar waveforms with a mixture of Gaussian functions using the Non-least squares (NLS) algorithm implemented in R and derived a Digital Terrain Model (DTM) and canopy height. We compared our waveform-derived topography and canopy height measurements using the Gold de-convolution algorithm to results using the Richardson-Lucy algorithm. Our findings show that the Gold algorithm performed better than the Richardson-Lucy algorithm in terms of recovering the hidden echoes and detecting false echoes for generating a DTM, which indicates that the Gold algorithm could potentially be applied to processing of waveform lidar data to derive information on terrain elevation and canopy characteristics.

  1. Characteristics of Moderately Deep Tropical Convection Observed by Dual-Polarimetric Radar

    NASA Astrophysics Data System (ADS)

    Powell, Scott

    2017-04-01

    Moderately deep cumulonimbus clouds (often erroneously called congestus) over the tropical warm pool play an important role in large-scale dynamics by moistening the free troposphere, thus allowing for the upscale growth of convection into mesoscale convective systems. Direct observational analysis of such convection has been limited despite a wealth of radar data collected during several field experiments in the tropics. In this study, the structure of isolated cumulonimbus clouds, particularly those in the moderately deep mode with heights of up to 8 km, as observed by RHI scans obtained with the S-PolKa radar during DYNAMO is explored. Such elements are first identified following the algorithm of Powell et al (2016); small contiguous regions of echo are considered isolated convection. Within isolated echo objects, echoes are further subdivided into core echoes, which feature vertical profiles reflectivity and differential reflectivity that is similar to convection embedded in larger cloud complexes, and fringe echoes, which contain vertical profiles of differential reflectivity that are more similar to stratiform regions. Between the surface and 4 km, reflectivities of 30-40 (10-20) dBZ are most commonly observed in isolated convective core (fringe) echoes. Convective cores in echo objects too wide to be considered isolated have a ZDR profile that peaks near the surface (with values of 0.5-1 dB common), and decays linearly to about 0.3 dB at and above an altitude of 6 km. Stratiform echoes have a minimum ZDR below of 0-0.5 dB below the bright band and a constant distribution centered on 0.5 dB above the bright band. The isolated convective core and fringe respectively possess composite vertical profiles of ZDR that resemble convective and stratiform echoes. The mode of the distribution of aspect ratios of isolated convection is approximately 2.3, but the long axis of isolated echo objects demonstrates no preferred orientation. An early attempt at illustrating composite radial velocity profiles within isolated convection is made. When the mean flow (determined from sounding data) is subtracted, a clear picture of radial velocities inside a composite representation of convection is obtained. As expected, Doppler radar data shows convergence in the lowest 1-2 km of isolated convective elements and divergence in the upper portions of the clouds. The composite velocity profiles can be used to compute crude profiles of horizontal divergence. Because the analysis uses data along radar rays (with gate size of 150 m) instead of data interpolated to a Cartesian grid, features in composited clouds can be observed at high vertical and horizontal resolution.

  2. Ridge Minimization of Ablated Morphologies on ITO Thin Films Using Squared Quasi-Flat Top Beam

    PubMed Central

    Jeon, Jin-Woo; Choi, Wonsuk; Shin, Young-Gwan; Ji, Suk-Young

    2018-01-01

    In this study, we explore the improvements in pattern quality that was obtained with a femtosecond laser with quasi-flat top beam profiles at the ablated edge of indium tin oxide (ITO) thin films for the patterning of optoelectronic devices. To ablate the ITO thin films, a femtosecond laser is used that has a wavelength and pulse duration of 1030 nm and 190 fs, respectively. The squared quasi-flat top beam is obtained from a circular Gaussian beam using slits with varying x-y axes. Then, the patterned ITO thin films are measured using both scanning electron and atomic force microscopes. In the case of the Gaussian beam, the ridge height and width are approximately 39 nm and 1.1 μm, respectively, whereas, when the quasi-flat top beam is used, the ridge height and width are approximately 7 nm and 0.25 μm, respectively. PMID:29601515

  3. High Temperature Monitoring the Height of Condensed Water in Steam Pipes

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Badescu, Mircea; Bao, Xiaoqi; Sherrit, Stewart; Widholm, Scott; Ostlund, Patrick; Blosiu, Julian

    2011-01-01

    An in-service health monitoring system is needed for steam pipes to track through their wall the condensation of water. The system is required to measure the height of the condensed water inside the pipe while operating at temperatures that are as high as 250 deg. C. The system needs to be able to make real time measurements while accounting for the effects of cavitation and wavy water surface. For this purpose, ultrasonic wave in pulse-echo configuration was used and reflected signals were acquired and auto-correlated to remove noise from the data and determine the water height. Transmitting and receiving the waves is done by piezoelectric transducers having Curie temperature that is significantly higher than 250 deg. C. Measurements were made at temperatures as high as 250 deg. C and have shown the feasibility of the test method. This manuscript reports the results of this feasibility study.

  4. Ground-echo characteristics for a ground-target pulse-Doppler radar fuze of high duty ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, C.S.

    1973-11-21

    From Tri-service electronic fuse symposium; Washington, District of Columbia, USA (26 Nov 1973). A pulse-Doppler radar fuze for use against ground targets at high burst heights can operate at low peak power provided a high duty ratio is used. The high duty ratio brings about ambiguous ground return that is prevented from firing the fuze by randomly coding the phase of the transmitted pulses. This causes the ambiguous return to appear as random noise. This paper provides formulas for the calculation of the clutter-noise power density and of the signal power so that the performance of the radar can bemore » determined. The paper also discusses the myth of decorrelation'' that is alleged to destroy the transmittedphase modulation in the echo and so make it useless. (auth)« less

  5. 49 CFR 236.557 - Receiver; location with respect to rail.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... inert roadway element type shall be maintained with bottom of the receiver at a height above the plane..., shall be maintained with the bottom of the receiver at a height above the plane of the tops of the rails...

  6. Sizing for the apparel industry using statistical analysis - a Brazilian case study

    NASA Astrophysics Data System (ADS)

    Capelassi, C. H.; Carvalho, M. A.; El Kattel, C.; Xu, B.

    2017-10-01

    The study of the body measurements of Brazilian women used the Kinect Body Imaging system for 3D body scanning. The result of the study aims to meet the needs of the apparel industry for accurate measurements. Data was statistically treated using the IBM SPSS 23 system, with 95% confidence (P<0,05) for the inferential analysis, with the purpose of grouping the measurements in sizes, so that a smaller number of sizes can cover a greater number of people. The sample consisted of 101 volunteers aged between 19 and 62 years. A cluster analysis was performed to identify the main body shapes of the sample. The results were divided between the top and bottom body portions; For the top portion, were used the measurements of the abdomen, waist and bust circumferences, as well as the height; For the bottom portion, were used the measurements of the hip circumference and the height. Three sizing systems were developed for the researched sample from the Abdomen-to-Height Ratio - AHR (top portion): Small (AHR < 0,52), Medium (AHR: 0,52-0,58), Large (AHR > 0,58) and from the Hip-to-Height Ratio - HHR (bottom portion): Small (HHR < 0,62), Medium (HHR: 0,62-0,68), Large (HHR > 0,68).

  7. The Calm Methane Northern Seas of Titan from Cassini Radio Science Observations

    NASA Astrophysics Data System (ADS)

    Marouf, Essam A.; French, Richard G.; Wong, Kwok; Anabtawi, Aseel; Schinder, Paul J.; Cassini Radio Science Team

    2016-10-01

    We report on results from 3 bistatic scattering observations of Titan northern seas conducted by the Cassini spacecraft in 2014 ( flybys T101, T102, and T106). The onboard Radio Science instrument transmits 3 sinusoidal signals of 0.94, 3.6, and 13 cm wavelengths. The spacecraft is continuously maneuvered to point in incidence direction so that mirror-like reflections from Titan's surface are observed at the ground stations of the NASA Deep Space Network. The corresponding ground-track in all 3 cases crossed different regions of Kraken Mare, and in the case of T101 also crossed Ligeia Mare. A nearly pure sinusoidal reflected signal was clearly detectable in the observed echoes spectra over surface regions identified in the Cassini RADAR images as potential liquid regions. Weaker quasi-specular echoes were also evident over some intermediate dry land and near sea shores. Cassini transmits right-circularly-polarized (RCP) signals and both the RCP and LCP echo components are observed. Their spectral shape, bandwidth, and total power are the observables used to infer/constrain physical surface properties. Presented results are limited to the 3.6 cm wavelength signal which has the largest SNR. The remarkably preserved sinusoidal echo spectral shape and the little detectable Doppler broadening strongly suggest surface that is smooth on scales large compared to 3.6 cm. If long wavelength gravity waves are present, they must be very subtle. The measured RCP/LCP echo power ratio provides direct measurement of the surface dielectric constant and is diagnostic of the liquid composition. The power ratio measurements eliminate possible significant ethane contribution and strongly imply predominantly liquid methane and nitrogen composition. Carefully calibrated measurements of the absolute echo power and the inferred dielectric constant constrain the presence of any capillary waves of wavelength << 3.6 cm. The latter affect wave coherence across the Fresnel region, reducing the reflected sinusoidal component power. When detectable, the reduction implies an RMS ripples height of about 2 mm, otherwise the measurements place an upper bound of about 1 mm. The results appear consistent among the two polarized echo components.

  8. Planetary Boundary Layer from AERI and MPL

    DOE Data Explorer

    Sawyer, Virginia

    2014-02-13

    The distribution and transport of aerosol emitted to the lower troposphere is governed by the height of the planetary boundary layer (PBL), which limits the dilution of pollutants and influences boundary-layer convection. Because radiative heating and cooling of the surface strongly affect the PBL top height, it follows diurnal and seasonal cycles and may vary by hundreds of meters over a 24-hour period. The cap the PBL imposes on low-level aerosol transport makes aerosol concentration an effective proxy for PBL height: the top of the PBL is marked by a rapid transition from polluted, well-mixed boundary-layer air to the cleaner, more stratified free troposphere. Micropulse lidar (MPL) can provide much higher temporal resolution than radiosonde and better vertical resolution than infrared spectrometer (AERI), but PBL heights from all three instruments at the ARM SGP site are compared to one another for validation. If there is agreement among them, the higher-resolution remote sensing-derived PBL heights can accurately fill in the gaps left by the low frequency of radiosonde launches, and thus improve model parameterizations and our understanding of boundary-layer processes.

  9. MIE Lidar proposed for the German Space Shuttle Mission D2

    NASA Technical Reports Server (NTRS)

    Renger, W.; Endemann, M.; Quenzel, H.; Werner, C.

    1986-01-01

    Firm plans for a second German Spacelab mission (D2-mission), originally scheduled for late 1988 is basically a zero-g mission, but will also include earth observation experiments. On board the D2-facility will allow performance of a number of different measurements with the goal to obtain performance data (cloud top heights, height of the planetary boundary layer, optical thickness, and cloud base height of thin and medium thick clouds, ice/water phase discriminatin for clouds, tropopause height, tropaspheric height, tropospheric aerosols, and stratospheric aerosols.

  10. Estimation of Arctic Sea Ice Freeboard and Thickness Using CryoSat-2

    NASA Astrophysics Data System (ADS)

    Lee, Sanggyun; Im, Jungho; yoon, Hyeonjin; Shin, Minso; Kim, Miae

    2014-05-01

    Arctic sea ice is one of the significant components of the global climate system as it plays a significant role in driving global ocean circulation, provides a continuous insulating layer at air-sea interface, and reflects a large portion of the incoming solar radiation in Polar Regions. Sea ice extent has constantly declined since 1980s. Its area was the lowest ever recorded on 16 September 2012 since the satellite record began in 1979. Arctic sea ice thickness has also been diminishing along with the decreasing sea ice extent. Because extent and thickness, two main characteristics of sea ice, are important indicators of the polar response to on-going climate change, there has been a great effort to quantify them using various approaches. Sea ice thickness has been measured with numerous field techniques such as surface drilling and deploying buoys. These techniques provide sparse and discontinuous data in spatiotemporal domain. Spaceborne radar and laser altimeters can overcome these limitations and have been used to estimate sea ice thickness. Ice Cloud and land Elevation Satellite (ICEsat), a laser altimeter from National Aeronautics and Space Administration (NASA), provided data to detect polar area elevation change between 2003 and 2009. CryoSat-2 launched with Synthetic Aperture Radar (SAR)/Interferometric Radar Altimeter (SIRAL) on April 2010 can provide data to estimate time-series of Arctic sea ice thickness. In this study, Arctic sea ice freeboard and thickness in 2012 and 2013 were estimated using CryoSat-2 SAR mode data that has sea ice surface height relative to the reference ellipsoid WGS84. In order to estimate sea ice thickness, freeboard height, elevation difference between the top of sea ice surface and leads should be calculated. CryoSat-2 profiles such as pulse peakiness, backscatter sigma-0, number of echoes, and significant wave height were examined to distinguish leads from sea ice. Several near-real time cloud-free MODIS images as CryoSat-2 data were used to identify leads. Rule-based machine learning approaches such as random forest and See5.0 and human-derived decision trees were used to produce rules to identify leads. With the freeboard height calculated from the lead analysis, sea ice thickness was finally estimated using the Archimedes' buoyancy principle with density of sea ice and sea water and the height of freeboard. The results were compared with Arctic sea ice thickness distribution retrieved from CryoSat-2 data by Alfred-Wegener-Institute.

  11. The hydrostatic gradient, not light availability, drives height-related variation in Sequoia sempervirens (Cupressaceae) leaf anatomy.

    PubMed

    Oldham, Alana R; Sillett, Stephen C; Tomescu, Alexandru M F; Koch, George W

    2010-07-01

    Leaves at the tops of most trees are smaller, thicker, and in many other ways different from leaves on the lowermost branches. This height-related variation in leaf structure has been explained as acclimation to differing light environments and, alternatively, as a consequence of hydrostatic, gravitational constraints on turgor pressure that reduce leaf expansion. • To separate hydrostatic effects from those of light availability, we used anatomical analysis of height-paired samples from the inner and outer tree crowns of tall redwoods (Sequoia sempervirens). • Height above the ground correlates much more strongly with leaf anatomy than does light availability. Leaf length, width, and mesophyll porosity all decrease linearly with height and help explain increases in leaf-mass-to-area ratio and decreases in both photosynthetic capacity and internal gas-phase conductance with increasing height. Two functional traits-leaf thickness and transfusion tissue-also increase with height and may improve water-stress tolerance. Transfusion tissue area increases enough that whole-leaf vascular volume does not change significantly with height in most trees. Transfusion tracheids become deformed with height, suggesting they may collapse under water stress and act as a hydraulic buffer that improves leaf water status and reduces the likelihood of xylem dysfunction. • That such variation in leaf structure may be caused more by gravity than by light calls into question use of the terms "sun" and "shade" to describe leaves at the tops and bottoms of tall tree crowns.

  12. The gait speed advantage of taller stature is lost with age.

    PubMed

    Elbaz, Alexis; Artaud, Fanny; Dugravot, Aline; Tzourio, Christophe; Singh-Manoux, Archana

    2018-01-24

    Taller individuals walk faster but it is unknown whether this advantage persists at older ages. We examined the cross-sectional/longitudinal associations of height with gait speed (GS) in participants from the Dijon-Three-City cohort study (France) over 11 years. In 4011 participants (65-85 y), we measured usual/fast GS (6 m) up to five times. We examined whether the baseline height-GS association varied with age using linear regression, and whether height influenced GS change using linear mixed models. Taller participants 65 y at baseline walked faster than shorter ones (fast GS difference between top/bottom height quartiles, 0.100 m/s, P < 0.001); this association weakened with age (P-interaction = 0.02), with a 0.012 m/s (P = 0.57) difference at 80 y. Ten-year fast GS decline was 51% greater (P < 0.001) in younger participants in the top height quartile (-0.183 m/s) compared to those in the bottom quartile (-0.121 m/s), leading the GS difference between the two groups to be attenuated by 50% over the follow-up. The height-related difference in fast GS decline was not explained by time-dependent comorbidities or height shrinkage. Analyses for usual GS yielded consistent findings. The height-GS relation is more complex than previously thought, as the height related advantage in GS disappears as persons grow older due to faster decline in taller compared to shorter persons.

  13. Tree height growth indicating drought and nitrogen deposition

    NASA Astrophysics Data System (ADS)

    Gulyás, Krisztina; Berki, Imre

    2016-04-01

    Several studies have been reported the increasing trends of forest growth in Europe in the last decades. Sites, where the water is not limiting factor, the increasing carbon dioxide (CO2) concentration and high nitrogen deposition influenced accelerated tree height growth. However few researches show that the drying climate conditions and water deficit cause slow/not definite trend of tree height growth in forests. The aim of our study presents the effects of drying climate and surplus nitrogen on height growth of sessile oak (Quercus petraea). Almost 50 sessile oak stands (with zonal site condition) have been measured along a humid-arid climatic transect in Hungary. Top heights of the trees are the best dendrometric parameter for indicating the changing site conditions. Observed top heights dates were compared with 50-years climate condition along the humid-arid climatic transect. Tree height growth in the dry and mesic section of climatic gradient slowed at the last 4 decades, because of the increasing frequency of dry periods. Accelerated height growth were measured in the mesic and humid section of transect, where the nitrogen deposition due to local air pollution were higher than the background deposition. These results draw attention to the importance of the drying climate and surplus nitrogen in the global changes. Keywords: climate change impacts, drought periods, surplus deposition, tree height growth Acknowledgements: Research is supported by the "Agroclimate.2" (VKSZ_12-1-2013-0034) EU-national joint funded research project.

  14. A Comparison of High Spectral Resolution Infrared Cloud-Top Pressure Altitude Algorithms Using S-HIS Measurements

    NASA Technical Reports Server (NTRS)

    Holz, Robert E.; Ackerman, Steve; Antonelli, Paolo; Nagle, Fred; McGill, Matthew; Hlavka, Dennis L.; Hart, William D.

    2005-01-01

    This paper presents a comparison of cloud-top altitude retrieval methods applied to S-HIS (Scanning High Resolution Interferometer Sounder) measurements. Included in this comparison is an improvement to the traditional CO2 Slicing method. The new method, CO2 Sorting, determines optimal channel pairs to apply the CO2 Slicing. Measurements from collocated samples of the Cloud Physics Lidar (CPL) and Modis Airborne Simulator (MAS) instruments assist in the comparison. For optically thick clouds good correlation between the S-HIS and lidar cloud-top retrievals are found. For tenuous ice clouds there can be large differences between lidar (CPL) and S-HIS retrieved cloud-tops. It is found that CO2 Sorting significantly reduces the cloud height biases for the optically thin cloud (total optical depths less then 1.0). For geometrically thick but optically thin cirrus clouds large differences between the S-HIS infrared cloud top retrievals and the CPL detected cloud top where found. For these cases the cloud height retrieved by the S-HIS cloud retrievals correlated closely with the level the CPL integrated cloud optical depth was approximately 1.0.

  15. Global cloud top height retrieval using SCIAMACHY limb spectra: model studies and first results

    NASA Astrophysics Data System (ADS)

    Eichmann, Kai-Uwe; Lelli, Luca; von Savigny, Christian; Sembhi, Harjinder; Burrows, John P.

    2016-03-01

    Cloud top heights (CTHs) are retrieved for the period 1 January 2003 to 7 April 2012 using height-resolved limb spectra measured with the SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) on board ENVISAT (ENVIronmental SATellite). In this study, we present the retrieval code SCODA (SCIAMACHY cloud detection algorithm) based on a colour index method and test the accuracy of the retrieved CTHs in comparison to other methods. Sensitivity studies using the radiative transfer model SCIATRAN show that the method is capable of detecting cloud tops down to about 5 km and very thin cirrus clouds up to the tropopause. Volcanic particles can be detected that occasionally reach the lower stratosphere. Upper tropospheric ice clouds are observable for a nadir cloud optical thickness (COT) ≥ 0.01, which is in the subvisual range. This detection sensitivity decreases towards the lowermost troposphere. The COT detection limit for a water cloud top height of 5 km is roughly 0.1. This value is much lower than thresholds reported for passive cloud detection methods in nadir-viewing direction. Low clouds at 2 to 3 km can only be retrieved under very clean atmospheric conditions, as light scattering of aerosol particles interferes with the cloud particle scattering. We compare co-located SCIAMACHY limb and nadir cloud parameters that are retrieved with the Semi-Analytical CloUd Retrieval Algorithm (SACURA). Only opaque clouds (τN,c > 5) are detected with the nadir passive retrieval technique in the UV-visible and infrared wavelength ranges. Thus, due to the frequent occurrence of thin clouds and subvisual cirrus clouds in the tropics, larger CTH deviations are detected between both viewing geometries. Zonal mean CTH differences can be as high as 4 km in the tropics. The agreement in global cloud fields is sufficiently good. However, the land-sea contrast, as seen in nadir cloud occurrence frequency distributions, is not observed in limb geometry. Co-located cloud top height measurements of the limb-viewing Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on ENVISAT are compared for the period from January 2008 to March 2012. The global CTH agreement of about 1 km is observed, which is smaller than the vertical field of view of both instruments. Lower stratospheric aerosols from volcanic eruptions occasionally interfere with the cloud retrieval and inhibit the detection of tropospheric clouds. The aerosol impact on cloud retrievals was studied for the volcanoes Kasatochi (August 2008), Sarychev Peak (June 2009), and Nabro (June 2011). Long-lasting aerosol scattering is detected after these events in the Northern Hemisphere for heights above 12.5 km in tropical and polar latitudes. Aerosol top heights up to about 22 km are found in 2009 and the enhanced lower stratospheric aerosol layer persisted for about 7 months. In August 2009 about 82 % of the lower stratosphere between 30 and 70° N was filled with scattering particles and nearly 50 % in October 2008.

  16. Development of top heights and corresponding diameters in high-elevation noble fir plantations

    Treesearch

    Robert O. Curtis

    2015-01-01

    Height and diameter growth of noble fir (Abies procera Rehd.) trees included in the largest 40 stems per acre were compared in a study that included five precommercial thinning spacings plus no thinning, in each of eight replications, at elevations from 2,200 to 4,100 feet in the western Cascade Mountains of Washington and Oregon. Height growth rates were not affected...

  17. Cubic-Foot Volume Tables for Shortleaf Pine in the Virginia-Carolina Piedmont

    Treesearch

    Glenn P. Haney; Paul P. Kormanik

    1962-01-01

    Available volume tables for shortleaf pine are based on merchantable height and do not show volumes to the small top diameter limits now used in many areas. Volume tables based on total height are also often preferred because they eliminate the error associated with ocular estimates of merchantable height. The table presented here for natural shortleaf pine is based on...

  18. The Next-Generation Goddard Convective-Stratiform Heating Algorithm: New Retrievals for Tropical and Extra-tropical Environments

    NASA Astrophysics Data System (ADS)

    Lang, S. E.; Tao, W. K.; Iguchi, T.

    2017-12-01

    The Goddard Convective-Stratiform Heating (or CSH) algorithm has been used to estimate cloud heating over the global Tropics using TRMM rainfall data and a set of look-up-tables (LUTs) derived from a series of multi-week cloud-resolving model (CRM) simulations using the Goddard Cumulus Ensemble model (GCE). These simulations link satellite observables (i.e., surface rainfall and stratiform fraction) with cloud heating profiles, which are not directly observable. However, with the launch of GPM in 2014, the range over which such algorithms can be applied has been extended from the Tropics into higher latitudes, including cold season and synoptic weather systems. In response, the CSH algorithm and its LUTs have been revised both to improve the retrievals in the Tropics as well as expand retrievals to higher latitudes. For the Tropics, the GCE simulations used to build the LUTs were upgraded using larger 2D model domains (512 vs 256 km) and a new, improved Goddard 4-ice scheme as well as expanded with additional cases (4 land and 6 ocean in total). The new tropical LUTs are also re-built using additional metrics. Besides surface type, conditional rain intensity and stratiform fraction, the new LUTs incorporate echo top heights and low-level (0-2 km) vertical reflectivity gradients. CSH retrievals in the Tropics based on the new LUTs show significant differences from previous iterations using TRMM data or the old LUT metrics. For the Extra-tropics, 6 NU-WRF simulations of synoptic events (3 East Coast and 3 West Coast), including snow, were used to build new extra-tropical CSH LUTs. The LUT metrics for the extra-tropics are based on radar characteristics and freezing level height. The extra-tropical retrievals are evaluated with a self-consistency check approach using the model heating as `truth,' and freezing level height is used to transition CSH retrievals from the Tropics to Extra-tropics. Retrieved zonal average heating structures in the Extra-tropics are presented and show distinct differences from those in the Tropics.

  19. Estimating the vegetation canopy height using micro-pulse photon-counting LiDAR data.

    PubMed

    Nie, Sheng; Wang, Cheng; Xi, Xiaohuan; Luo, Shezhou; Li, Guoyuan; Tian, Jinyan; Wang, Hongtao

    2018-05-14

    The upcoming space-borne LiDAR satellite Ice, Cloud and land Elevation Satellite-2 (ICESat-2) is scheduled to launch in 2018. Different from the waveform LiDAR system onboard the ICESat, ICESat-2 will use a micro-pulse photon-counting LiDAR system. Thus new data processing algorithms are required to retrieve vegetation canopy height from photon-counting LiDAR data. The objective of this paper is to develop and validate an automated approach for better estimating vegetation canopy height. The new proposed method consists of three key steps: 1) filtering out the noise photons by an effective noise removal algorithm based on localized statistical analysis; 2) separating ground returns from canopy returns using an iterative photon classification algorithm, and then determining ground surface; 3) generating canopy-top surface and calculating vegetation canopy height based on canopy-top and ground surfaces. This automatic vegetation height estimation approach was tested to the simulated ICESat-2 data produced from Sigma Space LiDAR data and Multiple Altimeter Beam Experimental LiDAR (MABEL) data, and the retrieved vegetation canopy heights were validated by canopy height models (CHMs) derived from airborne discrete-return LiDAR data. Results indicated that the estimated vegetation canopy heights have a relatively strong correlation with the reference vegetation heights derived from airborne discrete-return LiDAR data (R 2 and RMSE values ranging from 0.639 to 0.810 and 4.08 m to 4.56 m respectively). This means our new proposed approach is appropriate for retrieving vegetation canopy height from micro-pulse photon-counting LiDAR data.

  20. The Astro-Blaster.

    ERIC Educational Resources Information Center

    Mancuso, Richard V.; Long, Kevin R.

    1995-01-01

    Presents the Astro-Blaster as a method of the laws of conservation of momentum and energy during the creation of a supernova. Several elastic balls are aligned for a drop, followed by multiple collisions which result in the top ball reaching tremendous heights relative to the drop height. (JRH)

  1. Es structure using an HF radar

    NASA Astrophysics Data System (ADS)

    From, W. R.; Whitehead, J. D.

    1986-05-01

    By using an HF radar which produces a steerable beam about 4° wide and measures angle of arrival and Doppler shift of radio echoes, the structure of various types of mid-latitude sporadic E (Es) has been determined. Totally reflecting Es is a very smooth layer, tilted less than 1° from the horizontal. Partially reflecting Es consists of clouds of ionization. These clouds vary in size from a few kilometers to 25 km in the direction of movement and larger in the transverse direction. Echoes often disappear rapidly: the clouds either disappear quickly or have sharp edges. Spread Es has a curious structure of small clouds, each of which reflects only for a few seconds, but each cloud moves with the same velocity, typically 100 m/s, even though the heights of the clouds vary up to 10 km. It is difficult to reconcile this finding with the presence of wind shears.

  2. Es structure using an HF radar

    NASA Astrophysics Data System (ADS)

    From, W. R.; Whitehead, J. D.

    Using an HF radar which produces a steerable beam about 4 deg wide and measures angle of arrival and Doppler shift of radio echoes, the structure of various types of midlatitude sporadic E (Es) has been determined. Totally reflecting Es is a very smooth layer, tilted less than 1 deg from the horizontal. Partially reflecting Es consists of clouds of ionization. These clouds vary in size from a few kilometers to 25 km in the direction of movement and larger in the transverse direction. Echoes often disappear rapidly: the clouds either disappear quickly or have sharp edges. Spread Es has a curious structure of small clouds each of which reflects only for a few seconds, but each cloud moves with the same velocity, typically 100 m/s, even though the heights of the clouds vary up to 10 km. It is difficult to reconcile this finding with the presence of wind shears.

  3. Common allometric response of open-grown leader shoots to tree height in co-occurring deciduous broadleaved trees

    PubMed Central

    Miyata, Rie; Kubo, Takuya; Nabeshima, Eri; Kohyama, Takashi S.

    2011-01-01

    Background and Aims Morphology of crown shoots changes with tree height. The height of forest trees is usually correlated with the light environment and this makes it difficult to separate the effects of tree size and of light conditions on the morphological plasticity of crown shoots. This paper addresses the tree-height dependence of shoot traits under full-light conditions where a tree crown is not shaded by other crowns. Methods Focus is given to relationships between tree height and top-shoot traits, which include the shoot's leaf-blades and non-leafy mass, its total leaf-blade area and the length and basal diameter of the shoot's stem. We examine the allometric characteristics of open-grown current-year leader shoots at the tops of forest tree crowns up to 24 m high and quantify their responses to tree height in 13 co-occurring deciduous hardwood species in a cool-temperate forest in northern Japan. Key Results Dry mass allocated to leaf blades in a leader shoot increased with tree height in all 13 species. Specific leaf area decreased with tree height. Stem basal area was almost proportional to total leaf area in a leader shoot, where the proportionality constant did not depend on tree height, irrespective of species. Stem length for a given stem diameter decreased with tree height. Conclusions In the 13 species observed, height-dependent changes in allometry of leader shoots were convergent. This finding suggests that there is a common functional constraint in tree-height development. Under full-light conditions, leader shoots of tall trees naturally experience more severe water stress than those of short trees. We hypothesize that the height dependence of shoot allometry detected reflects an integrated response to height-associated water stress, which contributes to successful crown expansion and height gain. PMID:21914698

  4. A comparative study of three different kinds of school furniture.

    PubMed

    Aagaard, Jens; Storr-Paulsen, Annette

    1995-05-01

    Several studies indicate that the ISO standards for school furniture seem to be inappropriate, and there is increasing evidence that the inclination of the seat should be forward and that it should be possible to adjust the table-top to a certain non-horizontal angle. However, these studies have predominantly used objective measurement methods on adult subjects for short-term experiments in rather artificial surroundings. By means of structured interviews registering the school children's perception of ergonomic comfort, the present study has compared three types of school furniture-the original ISO-standard type, and two different new types characterized by forward slanting seats and tiltable desk-tops, the main difference between the two being approximately 15 cm in the height of the chair as well as the table. The study showed that the highest of the two tilting types was perceived to be significantly better than the two others in terms of table height, chair height, reading position, back-rest, and global assessment. Likewise, the feature of a tiltable table-top was considered overwhelmingly positive independently of the height of the furniture. It is recommended that school authorities, producers of school furniture, and relevant medical personnel consider these results for alternative designs of school furniture. It should be kept in mind, however, that school furniture is only one among many factors in the multifactorial field of the back health of school children.

  5. Cloud layer thicknesses from a combination of surface and upper-air observations

    NASA Technical Reports Server (NTRS)

    Poore, Kirk D.; Wang, Junhong; Rossow, William B.

    1995-01-01

    Cloud layer thicknesses are derived from base and top altitudes by combining 14 years (1975-1988) of surface and upper-air observations at 63 sites in the Northern Hemisphere. Rawinsonde observations are employed to determine the locations of cloud-layer top and base by testing for dewpoint temperature depressions below some threshold value. Surface observations serve as quality checks on the rawinsonde-determined cloud properties and provide cloud amount and cloud-type information. The dataset provides layer-cloud amount, cloud type, high, middle, or low height classes, cloud-top heights, base heights and layer thicknesses, covering a range of latitudes from 0 deg to 80 deg N. All data comes from land sites: 34 are located in continental interiors, 14 are near coasts, and 15 are on islands. The uncertainties in the derived cloud properties are discussed. For clouds classified by low-, mid-, and high-top altitudes, there are strong latitudinal and seasonal variations in the layer thickness only for high clouds. High-cloud layer thickness increases with latitude and exhibits different seasonal variations in different latitude zones: in summer, high-cloud layer thickness is a maximum in the Tropics but a minimum at high latitudes. For clouds classified into three types by base altitude or into six standard morphological types, latitudinal and seasonal variations in layer thickness are very small. The thickness of the clear surface layer decreases with latitude and reaches a summer minimum in the Tropics and summer maximum at higher latitudes over land, but does not vary much over the ocean. Tropical clouds occur in three base-altitude groups and the layer thickness of each group increases linearly with top altitude. Extratropical clouds exhibit two groups, one with layer thickness proportional to their cloud-top altitude and one with small (less than or equal to 1000 m) layer thickness independent of cloud-top altitude.

  6. Ice crystal number concentration measured at mountain-top research stations - What do we measure?

    NASA Astrophysics Data System (ADS)

    Beck, A.; Henneberger, J.; Fugal, J. P.; David, R.; Larcher, L.; Lohmann, U.

    2017-12-01

    To assess the impact of surface processes (e.g. blowing snow and hoar frost) on the ice crystal number concentrations (ICNCs) measured at mountain-top research stations, vertical profiles of ICNCs were observed up to a height of 10 m at the Sonnblick Observatory (SBO) in the Hohen Tauern Region, Austria. Independent of the presence of a cloud, the observed ICNCs decrease with height. This suggests a strong impact of surface processes on ICNCs measured at mountain-top research stations. Consequently, the measured ICNCs are not representative of the cloud, which limits the relevance of ground-based measurements for atmospheric studies. When the SBO was cloud free, the observed ICNCs reached several hundreds per liter near the surface and gradually decreased by more than two orders of magnitudes within the observed height interval of 10 m. The observed ice crystals had predominantly irregular habits, which is expected from surface processes. During in-cloud conditions, the ICNCs decreased between a factor of five and ten, if the ICNC at the surface was larger than 100 l-1. For one case study, the ICNC for regular and irregular ice crystals showed a similar relative decrease with height, which is not expected from surface processes. Therefore, we propose two near-surface processes that potentially enrich ICNCs near the surface and explain these findings: Either sedimenting ice crystals are captured in a turbulent layer above the surface or the ICNC is enhanced in a convergence zone, as the cloud is forced over a mountain. These two processes would also have an impact on ICNCs measured at mountain-top stations if the surrounding surface is not snow covered. Thus, ground-based measured ICNCs are uncharacteristic of the cloud properties aloft.

  7. Error sources in the retrieval of aerosol information over bright surfaces from satellite measurements in the oxygen A band

    NASA Astrophysics Data System (ADS)

    Nanda, Swadhin; de Graaf, Martin; Sneep, Maarten; de Haan, Johan F.; Stammes, Piet; Sanders, Abram F. J.; Tuinder, Olaf; Pepijn Veefkind, J.; Levelt, Pieternel F.

    2018-01-01

    Retrieving aerosol optical thickness and aerosol layer height over a bright surface from measured top-of-atmosphere reflectance spectrum in the oxygen A band is known to be challenging, often resulting in large errors. In certain atmospheric conditions and viewing geometries, a loss of sensitivity to aerosol optical thickness has been reported in the literature. This loss of sensitivity has been attributed to a phenomenon known as critical surface albedo regime, which is a range of surface albedos for which the top-of-atmosphere reflectance has minimal sensitivity to aerosol optical thickness. This paper extends the concept of critical surface albedo for aerosol layer height retrievals in the oxygen A band, and discusses its implications. The underlying physics are introduced by analysing the top-of-atmosphere reflectance spectrum as a sum of atmospheric path contribution and surface contribution, obtained using a radiative transfer model. Furthermore, error analysis of an aerosol layer height retrieval algorithm is conducted over dark and bright surfaces to show the dependence on surface reflectance. The analysis shows that the derivative with respect to aerosol layer height of the atmospheric path contribution to the top-of-atmosphere reflectance is opposite in sign to that of the surface contribution - an increase in surface brightness results in a decrease in information content. In the case of aerosol optical thickness, these derivatives are anti-correlated, leading to large retrieval errors in high surface albedo regimes. The consequence of this anti-correlation is demonstrated with measured spectra in the oxygen A band from the GOME-2 instrument on board the Metop-A satellite over the 2010 Russian wildfires incident.

  8. Hurricane Isabel

    Atmospheric Science Data Center

    2013-04-19

    article title:  Aspects of Hurricane Isabel     View Larger Image Cloud-top radiance and height characteristics of Hurricane Isabel are depicted in these data products and animations from the ... Imaging SpectroRadiometer (MISR). Isabel was upgraded to hurricane status a few hours after the top image panels in this set were ...

  9. Spatial variability of leaf wetness duration in different crop canopies

    NASA Astrophysics Data System (ADS)

    Sentelhas, Paulo C.; Gillespie, Terry J.; Batzer, Jean C.; Gleason, Mark L.; Monteiro, José Eduardo B. A.; Pezzopane, José Ricardo M.; Pedro, Mário J.

    2005-07-01

    The spatial variability of leaf wetness duration (LWD) was evaluated in four different height-structure crop canopies: apple, coffee, maize, and grape. LWD measurements were made using painted flat plate, printed-circuit wetness sensors deployed in different positions above and inside the crops, with inclination angles ranging from 30 to 45°. For apple trees, the sensors were installed in 12 east-west positions: 4 at each of the top (3.3 m), middle (2.1 m), and bottom (1.1 m) levels. For young coffee plants (80 cm tall), four sensors were installed close to the leaves at heights of 20, 40, 60, and 80 cm. For the maize and grape crops, LWD sensors were installed in two positions, one just below the canopy top and another inside the canopy. Adjacent to each experiment, LWD was measured above nearby mowed turfgrass with the same kind of flat plate sensor, deployed at 30 cm and between 30 and 45°. We found average LWD varied by canopy position for apple and maize (P<0.05). In these cases, LWD was longer at the top, particularly when dew was the source of wetness. For grapes, cultivated in a hedgerow system and for young coffee plants, average LWD did not differ between the top and inside the canopy. The comparison by geometric mean regression analysis between crop and turfgrass LWD measurements showed that sensors at 30 cm over turfgrass provided quite accurate estimates of LWD at the top of the crops, despite large differences in crop height and structure, but poorer estimates for wetness within leaf canopies.

  10. Spatial variability of leaf wetness duration in different crop canopies.

    PubMed

    Sentelhas, Paulo C; Gillespie, Terry J; Batzer, Jean C; Gleason, Mark L; Monteiro, José Eduardo B A; Pezzopane, José Ricardo M; Pedro, Mário J

    2005-07-01

    The spatial variability of leaf wetness duration (LWD) was evaluated in four different height-structure crop canopies: apple, coffee, maize, and grape. LWD measurements were made using painted flat plate, printed-circuit wetness sensors deployed in different positions above and inside the crops, with inclination angles ranging from 30 to 45 degrees. For apple trees, the sensors were installed in 12 east-west positions: 4 at each of the top (3.3 m), middle (2.1 m), and bottom (1.1 m) levels. For young coffee plants (80 cm tall), four sensors were installed close to the leaves at heights of 20, 40, 60, and 80 cm. For the maize and grape crops, LWD sensors were installed in two positions, one just below the canopy top and another inside the canopy. Adjacent to each experiment, LWD was measured above nearby mowed turfgrass with the same kind of flat plate sensor, deployed at 30 cm and between 30 and 45 degrees. We found average LWD varied by canopy position for apple and maize (P<0.05). In these cases, LWD was longer at the top, particularly when dew was the source of wetness. For grapes, cultivated in a hedgerow system and for young coffee plants, average LWD did not differ between the top and inside the canopy. The comparison by geometric mean regression analysis between crop and turfgrass LWD measurements showed that sensors at 30 cm over turfgrass provided quite accurate estimates of LWD at the top of the crops, despite large differences in crop height and structure, but poorer estimates for wetness within leaf canopies.

  11. Predicting root biomass of burned and unburned white oak advance reproduction from diameter and height

    Treesearch

    Benjamin O. Knapp; G. Geoff Wang; David H. Van Lear; Joan L. Walker

    2006-01-01

    The size, especially the root size, of advance oak (Quercus spp.) reproduction provides the best indication of the growth potential after release or top-kill. This study examined the relationship between the size of the root system and various diameter height measurements for small (

  12. Top pruning

    Treesearch

    Thomas D. Landis

    2005-01-01

    Controlling plant height is always a challenge because shoot growth is stimulated in modem nursery environments (Figure 1). To further aggravate the problem, economics forces nurseries to grow their stock at high densities and so plants want to outgrow their neighbors. Inducing mild stresses helps to slow height growth but this has only limited application. Chemical...

  13. Characteristics of Precipitation Features and Annual Rainfall during the TRMM Era in the Central Andes

    NASA Technical Reports Server (NTRS)

    Mohr, Karen I.; Slayback, Daniel; Yager, Karina

    2014-01-01

    The central Andes extends from 7 deg to 21 deg S, with its eastern boundary defined by elevation (1000m and greater) and its western boundary by the coastline. The authors used a combination of surface observations, reanalysis, and the University of Utah Tropical Rainfall Measuring Mission (TRMM) precipitation features (PF) database to understand the characteristics of convective systems and associated rainfall in the central Andes during the TRMM era, 1998-2012. Compared to other dry (West Africa), mountainous (Himalayas), and dynamically linked (Amazon) regions in the tropics, the central Andes PF population was distinct from these other regions, with small and weak PFs dominating its cumulative distribution functions and annual rainfall totals. No more than 10% of PFs in the central Andes met any of the thresholds used to identify and define deep convection (minimum IR cloud-top temperatures, minimum 85-GHz brightness temperature, maximum height of the 40-dBZ echo). For most of the PFs, available moisture was limited (less than 35mm) and instability low (less than 500 J kg(exp -1)). The central Andes represents a largely stable, dry to arid environment, limiting system development and organization. Hence, primarily short-duration events (less than 60 min) characterized by shallow convection and light to light-moderate rainfall rates (0.5-4.0 mm h(exp -1)) were found.

  14. Analysis of TRMM-LIS Lightning and Related Microphysics Using a Cell-Scale Database

    NASA Technical Reports Server (NTRS)

    Leroy, Anita; Petersen, Walter A.

    2010-01-01

    Previous studies of tropical lightning activity using Tropical Rainfall Measurement Mission (TRMM) Lightning Imaging Sensor (LIS) data performed analyses of lightning behavior over mesoscale "feature" scales or over uniform grids. In order to study lightning and the governing ice microphysics intrinsic to thunderstorms at a more process-specific scale (i.e., the scale over which electrification processes and lightning occur in a "unit" thunderstorm), a new convective cell-scale database was developed by analyzing and refining the University of Utah's Precipitation Features database and retaining precipitation data parameters computed from the TRMM precipitation radar (PR), microwave imager (TMI) and LIS instruments. The resulting data base was to conduct a limited four-year study of tropical continental convection occurring over the Amazon Basin, Congo, Maritime Continent and the western Pacific Ocean. The analysis reveals expected strong correlations between lightning flash counts per cell and ice proxies, such as ice water path, minimum and average 85GHz brightness temperatures, and 18dBz echo top heights above the freezing level in all regimes, as well as regime-specific relationships between lighting flash counts and PR-derived surface rainfall rates. Additionally, radar CFADs were used to partition the 3D structure of cells in each regime at different flash counts. The resulting cell-scale analyses are compared to previous mesoscale feature and gridded studies wherever possible.

  15. Estimation of the Total Electron Content of the Martian Ionosphere using Radar Sounder Surface Echoes

    NASA Technical Reports Server (NTRS)

    Safaeinili, Ali; Kofman, Wlodek; Mouginot, Jeremie; Gim, Yonggyu; Herique, Alain; Ivanov, Anton B.; Plaut, Jeffrey J.; Picardi, Giovanni

    2007-01-01

    The Martian ionosphere's local total electron content (TEC) and the neutral atmosphere scale height can be derived from radar echoes reflected from the surface of the planet. We report the global distribution of the TEC by analyzing more than 750,000 echoes of the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS). This is the first direct measurement of the TEC of the Martian ionosphere. The technique used in this paper is a novel 'transmission-mode' sounding of the ionosphere of Mars in contrast to the Active Ionospheric Sounding experiment (AIS) on MARSIS, which generally operates in the reflection mode. This technique yields a global map of the TEC for the Martian ionosphere. The radar transmits a wideband chirp signal that travels through the ionosphere before and after being reflected from the surface. The received waves are attenuated, delayed and dispersed, depending on the electron density in the column directly below the spacecraft. In the process of correcting the radar signal, we are able to estimate the TEC and its global distribution with an unprecedented resolution of about 0.1 deg in latitude (5 km footprint). The mapping of the relative geographical variations in the estimated nightside TEC data reveals an intricate web of high electron density regions that correspond to regions where crustal magnetic field lines are connected to the solar wind. Our data demonstrates that these regions are generally but not exclusively associated with areas that have magnetic field lines perpendicular to the surface of Mars. As a result, the global TEC map provides a high-resolution view of where the Martian crustal magnetic field is connected to the solar wind. We also provide an estimate of the neutral atmospheric scale height near the ionospheric peak and observe temporal fluctuations in peak electron density related to solar activity.

  16. Effect of infliximab top-down therapy on weight gain in pediatric Crohns disease.

    PubMed

    Kim, Mi Jin; Lee, Woo Yong; Choi, Kyong Eun; Choe, Yon Ho

    2012-12-01

    This retrospective-medical-record review was conducted to evaluate effect of infliximab therapy, particularly with a top-down strategy, on the nutritional parameters of children with Crohns disease (CD). 42 patients who were diagnosed with Crohns disease at the Pediatric Gastroenterology center of a tertiary care teaching hospital and achieved remission at two months and one year after beginning of treatment were divided into four subgroups according to the treatment regimen; azathioprine group (n = 11), steroid group (n = 11), infliximab top-down group (n = 11) and step-up group (n = 9). Weight, height, and serum albumin were measured at diagnosis, and then at two months and one year after the initiation of treatment. At 2 months, the Z score increment for weight was highest in the steroid group, followed by the top-down, step-up, and azathioprine groups. At one year, the Z score increment was highest in top-down group, followed by steroid, azathioprine, and step-up group. There were no significant differences between the four groups in Z score increment for height and serum albumin during the study period. The top-down infliximab treatment resulted in superior outcome for weight gain, compared to the step-up therapy and other treatment regimens.

  17. Height parallelism of implants in the treatment of the edentulous mandible with ball-retained overdentures: a technical note.

    PubMed

    Iglesia-Puig, Miguel A

    2008-01-01

    The objective of this report is to present a device to achieve equal platform height in the vertical axis to allow the spherical abutments to work correctly in mandibular overdentures retained with 2 implants. The device is fabricated over plastic castable abutments, with a plate perpendicular to the implant platforms and located at the top of the platform height. Once implants are inserted, the device is screwed to an implant and allows evaluation of the height of the platforms.

  18. Simulation of ICESat-2 canopy height retrievals for different ecosystems

    NASA Astrophysics Data System (ADS)

    Neuenschwander, A. L.

    2016-12-01

    Slated for launch in late 2017 (or early 2018), the ICESat-2 satellite will provide a global distribution of geodetic measurements from a space-based laser altimeter of both the terrain surface and relative canopy heights which will provide a significant benefit to society through a variety of applications ranging from improved global digital terrain models to producing distribution of above ground vegetation structure. The ATLAS instrument designed for ICESat-2, will utilize a different technology than what is found on most laser mapping systems. The photon counting technology of the ATLAS instrument onboard ICESat-2 will record the arrival time associated with a single photon detection. That detection can occur anywhere within the vertical distribution of the reflected signal, that is, anywhere within the vertical distribution of the canopy. This uncertainty of where the photon will be returned from within the vegetation layer is referred to as the vertical sampling error. Preliminary simulation studies to estimate vertical sampling error have been conducted for several ecosystems including woodland savanna, montane conifers, temperate hardwoods, tropical forest, and boreal forest. The results from these simulations indicate that the canopy heights reported on the ATL08 data product will underestimate the top canopy height in the range of 1 - 4 m. Although simulation results indicate the ICESat-2 will underestimate top canopy height, there is, however, a strong correlation between ICESat-2 heights and relative canopy height metrics (e.g. RH75, RH90). In tropical forest, simulation results indicate the ICESat-2 height correlates strongly with RH90. Similarly, in temperate broadleaf forest, the simulated ICESat-2 heights were also strongly correlated with RH90. In boreal forest, the simulated ICESat-2 heights are strongly correlated with RH75 heights. It is hypothesized that the correlations between simulated ICESat-2 heights and canopy height metrics are a function of both canopy cover and vegetation physiology (e.g. leaf size/shape) which contributes to the horizontal and vertical structure of the vegetation.

  19. The effect of recombination and attachment on meteor radar diffusion coefficient profiles

    NASA Astrophysics Data System (ADS)

    Lee, C. S.; Younger, J. P.; Reid, I. M.; Kim, Y. H.; Kim, J.-H.

    2013-04-01

    Estimates of the ambipolar diffusion coefficient producedusing meteor radar echo decay times display an increasing trend below 80-85 km, which is inconsistent with a diffusion-only theory of the evolution of meteor trails. Data from the 33 MHz meteor radar at King Sejong Station, Antarctica, have been compared with observations from the Aura Earth Observing System Microwave Limb Sounder satellite instrument. It has been found that the height at which the diffusion coefficient gradient reverses follows the height of a constant neutral atmospheric density surface. Numerical simulations of meteor trail diffusion including dissociative recombination with atmospheric ions and three-body attachment of free electrons to neutral molecules indicate that three-body attachment is responsible for the distortion of meteor radar diffusion coefficient profiles at heights below 90 km, including the gradient reversal below 80-85 km. Further investigation has revealed that meteor trails with low initial electron line density produce decay times more consistent with a diffusion-only model of meteor trail evolution.

  20. Board-Foot and cubic-foot volume tables for Alaska-cedar in southeast Alaska.

    Treesearch

    Donald J. DeMars

    1996-01-01

    Four tables give cubic-foot and board-foot volume estimates for Alaska-cedar given breast-height diameter outside bark (DBHOB) and either total tree height or number of logs to a 6-inch top. The values for DBHOB and total tree height (or number of logs in the tree) that are in the tables have been limited to the ranges these variables had in the sample data.

  1. Board-foot and cubic-foot volume tables for western red cedar in southeast Alaska.

    Treesearch

    Donald J. DeMars

    1996-01-01

    Four tables give cubic-foot and board-foot volume estimates for western redcedar given breast height diameter outside bark (DBHOB) and either total tree height or number of logs to a 6-inch top. The values for DBHOB and total tree height (or number of logs in the tree) that are in the tables have been limited to the ranges these variables had in the sample data.

  2. Definition of mutually optimum NDI and proof test criteria for 2219 aluminum pressure vessels. Volume 3: Applications to rail defect evaluation

    NASA Technical Reports Server (NTRS)

    Schwartzberg, F. R.; Toth, C., Jr.; King, R. G.; Todd, P. H., Jr.

    1979-01-01

    The technique for inspection of railroad rails containing transverse fissure defects was discussed. Both pulse-echo and pitch-catch inspection techniques were used. The pulse-echo technique results suggest that a multiple-scan approach using varying angles of inclination, three-surface scanning, and dual-direction traversing may offer promise of characterization of transverse defects. Because each scan is likely to produce a reflection indicating only a portion of the defect, summing of the individual reflections must be used to obtain a reasonably complete characterization of the defect. The ability of the collimated pitch-catch technique to detect relatively small amounts of flaw growth was shown. The method has a problem in characterizing the portions of the defect near the top surface or web intersection. The work performed was a preliminary evaluation of the prospects for automated mapping of rail flaws.

  3. Comparison of cloud boundaries measured with 8.6 mm radar and 10.6 micrometer lidar

    NASA Technical Reports Server (NTRS)

    Uttal, Taneil; Intrieri, Janet M.

    1993-01-01

    One of the most basic cloud properties is location; the height of cloud base and the height of cloud top. The glossary of meteorology defines cloud base (top) as follows: 'For a given cloud or cloud layer, that lowest (highest) level in the atmosphere at which the air contains a perceptible quantity of cloud particles.' Our studies show that for a 8.66 mm radar, and a 10.6 micrometer lidar, the level at which cloud hydrometers become 'perceptible' can vary significantly as a function of the different wavelengths, powers, beamwidths and sampling rates of the two remote sensors.

  4. Effects of crop residues of sunflower (Helianthus annuus), maize (Zea mays L.) and soybean (Glycine max) on growth and seed yields of sunflower.

    PubMed

    Srisa-Ard, K

    2007-04-15

    This pot experiment was carried out at Suranaree Technology University Experimental Farm, Northeast Thailand to investigate effects of crop residues of sunflower, maize and soybean on total dry weight, top dry weight, plant height, root dry weight and seed yield of sunflower plants with the use of Korat soil series (Oxic Paleustults) during the rainy season (July-October) of the 2001. The experiment was laid in a split plot arranged in a Completely Randomized Design (CRD) with four replications where the crop residues of maize, sunflower and soybean were used as main plots. Whilst crop residues of roots, top growth and roots+top growth were used as subplots. The results showed that crop residues derived from roots of both sunflower and soybean plants had their significant inhibition effects of allelopathic substances on plant height, root dry weight, top growth dry weight and total dry weight plant(-1) of the sunflower plants than those derived from top growth of both crops alone (sunflower and soybean). Maize plant residues had no significant inhibition effect on growth of subsequent crop of sunflower.

  5. Mature thunderstorm cloud top structure - Three-dimensional numerical simulation versus satellite observations

    NASA Technical Reports Server (NTRS)

    Schlesinger, R. E.

    1982-01-01

    Preliminary results of four runs with a three-dimensional model of the effects of vertical wind shear on cloud top height/temperature structure and the internal properties of isolate midlatitude thunderstorms are reported. The model is being developed as an aid to analyses of GEO remote sensing satellite data. The grid is a 27 x 27 x 20 mesh with 2 km horizontal resolution and 0.9 vertical resolution. The total grid is 54 km on a side and 18 km deep. A second-order Crowley scheme for advecting momentum is extended with a third-order correction for spatial truncation error, and the earth-relative horizontal surface wind components are decreased to 50 percent of their values at 0.45 km. A temperature increase with height is included, together with an initial impulse consisting of a nonrotating cylindrical weak buoyant updraft 10 km in radius. The results of the runs are discussed in terms of the time variation of the vertical velocity extrema, the effects of strong and weak shear on a storm, the cloud top height, the Lagrangian dynamics of a thermal couplet, and data from a real storm.

  6. In-Line Ultrasonic Monitoring for Sediments Stuck on Inner Wall of a Polyvinyl Chloride Pipe

    PubMed Central

    2014-01-01

    This research verified the applicability and effectiveness of the ultrasonic monitoring of sediments stuck on the inner wall of polyvinyl chloride (PVC) pipes. For identifying the transmittance of acoustic energy and the speed of sound in the PVC material, the pulse-echo ultrasonic testing was conducted for PVC sheets of different thicknesses. To simulate the solidified sediment, the hot melt adhesive (HMA) was covered on the inner wall of the PVC pipe in different heights. From the experiment, the speeds of sound in the PVC and the HMA materials were obtained as about 2258 and 2000 m/s, respectively. The thickness of the materials was calculated through the signal processing such as taking the absolute value and low pass filtering, the echo detection, and the measurement of the time of flight. The errors between actual and measured thicknesses of PVC sheets were below 5%. In the case of the substance stuck on the inner wall, the errors were below 2.5%. Since the pulse-echo ultrasonic inspection is available on the outer surface and its measurement accuracy was over 95%, it can be an efficient and effective in-service structural health monitoring for the sediment on the wall of PVC pipes. PMID:25243223

  7. Phase jitter in a differential phase experiment.

    NASA Technical Reports Server (NTRS)

    Tanenbaum, B. S.; Connolly, D. J.; Austin, G. L.

    1973-01-01

    Austin (1971) had concluded that, because of the 'phase jitter,' the differential phase experiment is useful over a more limited height range than the differential absorption experiment. Several observations are presented to show that this conclusion is premature. It is pointed out that the logical basis of the differential absorption experiment also requires that the O- and X-mode echoes, at a given time, come from the same irregularities. Austin's calculations are believed to contain a systematic error above 80 km.

  8. Echocardiographic and Blood Pressure Characteristics of First-Year Collegiate American-Style Football Players.

    PubMed

    Crouse, Stephen F; White, Stephanie; Erwin, John P; Meade, Thomas H; Martin, Steven E; Oliver, Jonathan M; Joubert, Dustin P; Lambert, Bradley S; Bramhall, Joe P; Gill, Kory; Weir, David

    2016-01-01

    Echocardiographic (echo) and blood pressure (BP) reference values may help identify athletes at cardiovascular risk, yet benchmarks are inadequate for collegiate American-style football (ASF) players. Our purpose was to describe echo characteristics and BP values in collegiate ASF athletes compared with normal. First-year players (n = 80, age = 18 ± 1 years, height = 186 ± 7 cm, weight = 100.1 ± 22.0 kg, body mass index = 28.7 ± 5.0), body surface area [BSA] = 2.24 ± 0.25; percentage fat = 16.5 ± 9.7%) were measured for systolic and diastolic BP, and underwent echo procedures by a certified sonographer. Data analyses included simple statistics, Pearson r, frequencies in normal ranges, and t test; α = 0.05. Selected echo measurements (and indexed by BSA) were: left ventricular (LV) internal diameter diastole = 5.3 ± 0.5 cm (2.4 ± 0.3); left atrial diameter = 3.9 ± 0.5 cm (1.8 ± 0.2): LV end-diastolic volume = 138 ± 30 ml (62 ± 11); septal wall thickness = 1.0 ± 0.2 cm (0.5 ± 0.1); LV posterior wall thickness = 1.0 ± 0.1 cm (0.5 ± 0.1), LV mass = 212 ± 46 g (95 ± 18); and relative wall thickness = 0.39 ± 0.07. Correlations between BSA and echo variables were significant (r = 0.26 to 0.50). Indexing by BSA reduced percentages above reference ranges from 36% to 7%. Septal wall thickness index was significantly greater in black (0.5 ± 0.1) than nonblack (0.4 ± 0.1) athletes. Fifty-nine athletes were hypertensive or prehypertensive, and diastolic BP was significantly greater in black (76 ± 10 mm Hg) compared with nonblack athletes (71 ± 8 mm Hg). ASF athletes demonstrated LV wall thicknesses and cavity sizes consistent with sport-training hypertrophy but which were unremarkable when indexed by BSA. Ethnicity generally did not influence echo variables. No ASF players were identified with cardiac dysfunction or disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Advances and Limitations of Atmospheric Boundary Layer Observations with GPS Occultation over Southeast Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Xie, F.; Wu, D. L.; Ao, C. O.; Mannucci, A. J.; Kursinski, E. R.

    2012-01-01

    The typical atmospheric boundary layer (ABL) over the southeast (SE) Pacific Ocean is featured with a strong temperature inversion and a sharp moisture gradient across the ABL top. The strong moisture and temperature gradients result in a sharp refractivity gradient that can be precisely detected by the Global Positioning System (GPS) radio occultation (RO) measurements. In this paper, the Constellation Observing System for Meteorology, Ionosphere & Climate (COSMIC) GPS RO soundings, radiosondes and the high-resolution ECMWF analysis over the SE Pacific are analyzed. COSMIC RO is able to detect a wide range of ABL height variations (1-2 kilometer) as observed from the radiosondes. However, the ECMWF analysis systematically underestimates the ABL heights. The sharp refractivity gradient at the ABL top frequently exceeds the critical refraction (e.g., -157 N-unit per kilometer) and becomes the so-called ducting condition, which results in a systematic RO refractivity bias (or called N-bias) inside the ABL. Simulation study based on radiosonde profiles reveals the magnitudes of the N-biases are vertical resolution dependent. The N-bias is also the primary cause of the systematically smaller refractivity gradient (rarely exceeding -110 N-unit per kilometer) at the ABL top from RO measurement. However, the N-bias seems not affect the ABL height detection. Instead, the very large RO bending angle and the sharp refractivity gradient due to ducting allow reliable detection of the ABL height from GPS RO. The seasonal mean climatology of ABL heights derived from a nine-month composite of COSMIC RO soundings over the SE Pacific reveals significant differences from the ECMWF analysis. Both show an increase of ABL height from the shallow stratocumulus near the coast to a much higher trade wind inversion further off the coast. However, COSMIC RO shows an overall deeper ABL and reveals different locations of the minimum and maximum ABL heights as compared to the ECMWF analysis. At low latitudes, despite the decreasing number of COSMIC RO soundings and the lower percentage of soundings that penetrate into the lowest 500-m above the mean-sea-level, there are small sampling errors in the mean ABL height climatology. The difference of ABL height climatology between COSMIC RO and ECMWF analysis over SE Pacific is significant and requires further studies.

  10. 47 CFR 73.160 - Vertical plane radiation characteristics, f(θ).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., f(θ). (a) The vertical plane radiation characteristics show the relative field being radiated at a... the electrical height of the tower, not including the base insulator and pier. (In the case of a folded unipole tower, the entire radiating structure's electrical height is used.) (2) For a top-loaded...

  11. Mechanism of nucleation and growth of catalyst-free self-organized GaN columns by MOVPE

    NASA Astrophysics Data System (ADS)

    Wang, Xue; Li, Shunfeng; Fündling, Sönke; Wehmann, Hergo-H.; Strassburg, Martin; Lugauer, Hans-Jürgen; Steegmüller, Ulrich; Waag, Andreas

    2013-05-01

    The growth mechanism of catalyst-free self-organized GaN nuclei and three-dimensional columns on sapphire by metal organic vapour phase epitaxy (MOVPE) is investigated. Temperature- and time-dependent growth is performed. The growth behaviour can be characterized by two different kinetic regimes: mass-transport-limited growth and thermodynamically limited growth. The sum of activation energies for thermodynamic barrier of nucleation and for surface diffusion/mass-transport limitation, i.e. Whet +Ed, is 0.57 eV in the ‘low’-temperature region and 2.43 eV in the ‘high’-temperature region. GaN columns grown under the same conditions have very comparable height, which is not dependent on their diameter or the distance to other columns. Therefore, the growth rate is presumably limited by the incorporation rate on the top surface of columns. The height and diameter at the top of the GaN columns increase linearly with time and no height limit is observed. The GaN columns can reach more than 40 µm in height. Moreover, the investigated GaN columns are Ga-polar.

  12. Infrared Data for Storm Analysis

    NASA Technical Reports Server (NTRS)

    Adler, R.

    1982-01-01

    The papers in this section include: 1) 'Thunderstorm Top Structure Observed by Aircraft Overflights with an Infrared Radiometer'; 2) 'Thunderstorm Intensity as Determined from Satellite Data'; 3) 'Relation of Satellite-Based Thunderstorm Intensity to Radar-Estimated Rainfall'; 4) 'A Simple Physical Basis for Relating Geosynchronous Satellite Infrared Observations to Thunderstorm Rainfall'; 5) 'Satellite-Observed Cloud-Top Height Changes in Tornadic Thunderstorms'; 6) 'Predicting Tropical Cyclone Intensity Using Satellite-Measured Equivalent Blackbody Temperatures of Cloud Tops'.

  13. Losses associated with Douglas-fir and true fir tops killed by western spruce budworm in eastern Washington.

    Treesearch

    Paul E. Aho

    1984-01-01

    A sample of 133 Douglas-firs (Pseudotsuga menziesii var. glauca (Beissn.) Franco) and 69 true firs (Abies spp.) with dead tops caused by defoliation by the western spruce budworm (Choristoneura occidentalis Freeman) were felled, dissected, and examined for height loss and incidence and...

  14. MASH Test 3-11 on the T131RC Bridge Rail

    DOT National Transportation Integrated Search

    2012-10-01

    Texas Department of Transportation (TxDOT) currently uses the TxDOT Type T101RC Bridge Rail, : a steel post and beam bridge rail anchored to the top of concrete curbs. The T101RC Bridge Rail is : 27 inches in height and can be anchored to the top of ...

  15. Integration of Satellite-Derived Cloud Phase, Cloud Top Height, and Liquid Water Path into an Operational Aircraft Icing Nowcasting System

    NASA Technical Reports Server (NTRS)

    Haggerty, Julie; McDonough, Frank; Black, Jennifer; Landott, Scott; Wolff, Cory; Mueller, Steven; Minnis, Patrick; Smith, William, Jr.

    2008-01-01

    Operational products used by the U.S. Federal Aviation Administration to alert pilots of hazardous icing provide nowcast and short-term forecast estimates of the potential for the presence of supercooled liquid water and supercooled large droplets. The Current Icing Product (CIP) system employs basic satellite-derived information, including a cloud mask and cloud top temperature estimates, together with multiple other data sources to produce a gridded, three-dimensional, hourly depiction of icing probability and severity. Advanced satellite-derived cloud products developed at the NASA Langley Research Center (LaRC) provide a more detailed description of cloud properties (primarily at cloud top) compared to the basic satellite-derived information used currently in CIP. Cloud hydrometeor phase, liquid water path, cloud effective temperature, and cloud top height as estimated by the LaRC algorithms are into the CIP fuzzy logic scheme and a confidence value is determined. Examples of CIP products before and after the integration of the LaRC satellite-derived products will be presented at the conference.

  16. Climatological Characterization of Three-Dimensional Storm Structure from Operational Radar and Rain Gauge Data.

    NASA Astrophysics Data System (ADS)

    Steiner, Matthias; Houze, Robert A., Jr.; Yuter, Sandra E.

    1995-09-01

    Three algorithms extract information on precipitation type, structure, and amount from operational radar and rain gauge data. Tests on one month of data from one site show that the algorithms perform accurately and provide products that characterize the essential features of the precipitation climatology. Input to the algorithms are the operationally executed volume scans of a radar and the data from a surrounding rain gauge network. The algorithms separate the radar echoes into convective and stratiform regions, statistically summarize the vertical structure of the radar echoes, and determine precipitation rates and amounts on high spatial resolution.The convective and stratiform regions are separated on the basis of the intensity and sharpness of the peaks of echo intensity. The peaks indicate the centers of the convective region. Precipitation not identified as convective is stratiform. This method avoids the problem of underestimating the stratiform precipitation. The separation criteria are applied in exactly the same way throughout the observational domain and the product generated by the algorithm can be compared directly to model output. An independent test of the algorithm on data for which high-resolution dual-Doppler observations are available shows that the convective stratiform separation algorithm is consistent with the physical definitions of convective and stratiform precipitation.The vertical structure algorithm presents the frequency distribution of radar reflectivity as a function of height and thus summarizes in a single plot the vertical structure of all the radar echoes observed during a month (or any other time period). Separate plots reveal the essential differences in structure between the convective and stratiform echoes.Tests yield similar results (within less than 10%) for monthly rain statistics regardless of the technique used for estimating the precipitation, as long as the radar reflectivity values are adjusted to agree with monthly rain gauge data. It makes little difference whether the adjustment is by monthly mean rates or percentiles. Further tests show that 1-h sampling is sufficient to obtain an accurate estimate of monthly rain statistics.

  17. Recreational Fish-Finders—An Inexpensive Alternative to Scientific Echo-Sounders for Unravelling the Links between Marine Top Predators and Their Prey

    PubMed Central

    McInnes, Alistair M.; Khoosal, Arjun; Murrell, Ben; Merkle, Dagmar; Lacerda, Miguel; Nyengera, Reason; Coetzee, Janet C.; Edwards, Loyd C.; Ryan, Peter G.; Rademan, Johan; van der Westhuizen, Jan J; Pichegru, Lorien

    2015-01-01

    Studies investigating how mobile marine predators respond to their prey are limited due to the challenging nature of the environment. While marine top predators are increasingly easy to study thanks to developments in bio-logging technology, typically there is scant information on the distribution and abundance of their prey, largely due to the specialised nature of acquiring this information. We explore the potential of using single-beam recreational fish-finders (RFF) to quantify relative forage fish abundance and draw inferences of the prey distribution at a fine spatial scale. We compared fish school characteristics as inferred from the RFF with that of a calibrated scientific split-beam echo-sounder (SES) by simultaneously operating both systems from the same vessel in Algoa Bay, South Africa. Customized open-source software was developed to extract fish school information from the echo returns of the RFF. For schools insonified by both systems, there was close correspondence between estimates of mean school depth (R2 = 0.98) and school area (R2 = 0.70). Estimates of relative school density (mean volume backscattering strength; Sv) measured by the RFF were negatively biased through saturation of this system given its smaller dynamic range. A correction factor applied to the RFF-derived density estimates improved the comparability between the two systems. Relative abundance estimates using all schools from both systems were congruent at scales from 0.5 km to 18 km with a strong positive linear trend in model fit estimates with increasing scale. Although absolute estimates of fish abundance cannot be derived from these systems, they are effective at describing prey school characteristics and have good potential for mapping forage fish distribution and relative abundance. Using such relatively inexpensive systems could greatly enhance our understanding of predator-prey interactions. PMID:26600300

  18. Relationships among cloud occurrence frequency, overlap, and effective thickness derived from CALIPSO and CloudSat merged cloud vertical profiles

    NASA Astrophysics Data System (ADS)

    Kato, Seiji; Sun-Mack, Sunny; Miller, Walter F.; Rose, Fred G.; Chen, Yan; Minnis, Patrick; Wielicki, Bruce A.

    2010-01-01

    A cloud frequency of occurrence matrix is generated using merged cloud vertical profiles derived from the satellite-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and cloud profiling radar. The matrix contains vertical profiles of cloud occurrence frequency as a function of the uppermost cloud top. It is shown that the cloud fraction and uppermost cloud top vertical profiles can be related by a cloud overlap matrix when the correlation length of cloud occurrence, which is interpreted as an effective cloud thickness, is introduced. The underlying assumption in establishing the above relation is that cloud overlap approaches random overlap with increasing distance separating cloud layers and that the probability of deviating from random overlap decreases exponentially with distance. One month of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and CloudSat data (July 2006) support these assumptions, although the correlation length sometimes increases with separation distance when the cloud top height is large. The data also show that the correlation length depends on cloud top hight and the maximum occurs when the cloud top height is 8 to 10 km. The cloud correlation length is equivalent to the decorrelation distance introduced by Hogan and Illingworth (2000) when cloud fractions of both layers in a two-cloud layer system are the same. The simple relationships derived in this study can be used to estimate the top-of-atmosphere irradiance difference caused by cloud fraction, uppermost cloud top, and cloud thickness vertical profile differences.

  19. Bark Thickness of 17-Year-Old Loblolly Pine Planted at Different Spacings

    Treesearch

    Donald P. Feduccia; William F. Mann

    1975-01-01

    Diameter at breast height was the only variable affecting double bark thickness at d.b.h. and midpoint of the merchantable stem for young loblolly pine planted at five initial spacings on plots with site indices of 77 to 111 feet. Bark thickness at the 4-inch top was not correlated with breast-height diameter.

  20. --No Title--

    Science.gov Websites

    }.afdc_pagination .disabled{border:1px solid #dddddd;line-height:1.4em;color:#aaaaaa}.afdc_pagination .current :1px solid #dddddd;line-height:1.4em;text-decoration:none}.afdc_pagination .page_info{color:#aaaaaa }.view_mode_buttons img{padding:5px}.odd:hover,.even:hover{background-color:#ddd}.card_view_in_list{border-top:0px

  1. Radio-echo sounding of 'active' Antarctic subglacial lakes

    NASA Astrophysics Data System (ADS)

    Siegert, M. J.; Ross, N.; Blankenship, D. D.; Young, D. A.; Greenbaum, J. S.; Richter, T.; Rippin, D. M.; Le Brocq, A. M.; Wright, A.; Bingham, R.; Corr, H.; Ferraccioli, F.; Jordan, T. A.; Smith, B. E.; Payne, A. J.; Dowdeswell, J. A.; Bamber, J. L.

    2013-12-01

    Repeat-pass satellite altimetry has revealed 124 discrete surface height changes across the Antarctic Ice Sheet, interpreted to be caused by subglacial lake discharges (surface lowering) and inputs (surface uplift). Few of these active lakes have been confirmed by radio-echo sounding (RES) despite several attempts, however. Over the last 5 years, major geophysical campaigns have acquired RES data from several 'active' lake sites, including the US-UK-Australian ICECAP programme in East Antactica and the UK survey of the Institute Ice Stream in West Antarctica. In the latter case, a targeted RES survey of one 'active' lake was undertaken. RES evidence of the subglacial bed beneath 'active' lakes in both East and West Antarctica will be presented, and the evidence for pooled subglacial water from these data will be assessed. Based on this assessment, the nature of 'active' subglacial lakes, and their associated hydrology and relationship with surrounding topography will be discussed, as will the likelihood of further 'active' lakes in Antarctica. Hydraulic potential map of the Byrd Glacier catchment with contours at 5 MPa intervals. Predicted subglacial flowpaths are shown in blue. Subglacial lakes known from previous geophysical surveys are shown as black triangles while the newly discovered 'Three-tier lakes' are shown in dashed black outline. Surface height change features within the Byrd subglacial catchment are shown in outline and are shaded to indicate whether they were rising or falling during the ICESat campaign. Those features are labelled in-line with the numbering system of Smith et al. (J. Glac. 2009).

  2. Observational analysis of an exceptionally intense hailstorm over the Mediterranean area: Role of the GPM Core Observatory

    NASA Astrophysics Data System (ADS)

    Marra, A. C.; Porcù, F.; Baldini, L.; Petracca, M.; Casella, D.; Dietrich, S.; Mugnai, A.; Sanò, P.; Vulpiani, G.; Panegrossi, G.

    2017-08-01

    On 5 September 2015 a violent hailstorm hit the Gulf and the city of Naples in Italy. The storm originated over the Tyrrhenian Sea dropping 7-10 cm diameter hailstones along its path. During its mature phase, at 08:47 UTC, the hailstorm was captured by one overpass of the Global Precipitation Measurement mission Core Observatory (GPM-CO) embarking the GPM Microwave Imager (GMI) and the Ka/Ku-band Dual-frequency Precipitation Radar (DPR). In this paper, observations by both GMI and DPR are thoroughly analyzed in conjunction with other spaceborne and ground-based measurements, to show how the GPM-CO integrates established observational tools in monitoring, understanding, and characterizing severe weather. Rapid-scan MSG SEVIRI images show an extremely rapid development, with 10.8 μm cloud-top temperatures dropping by 65 K in 40 min down to 198 K. The LIghtning NETwork registered over 37,000 strokes in 5 h, with intracloud positive stroke fraction increasing during the regeneration phases, when ground-based polarimetric radar and DPR support the presence of large graupel/hail particles. DPR Ku 40 dBZ and 20 dBZ echo top heights at 14 km and 16 km, respectively, indicate strong updraft and deep overshooting. GMI extremely low brightness temperatures (TBs) in correspondence of the convective core (158, 97, 67, and 87 K at 18.7, 36.5, 89 and 166 GHz) are compatible with the presence of massive ice particles. In two years of GPM global observations the storm ranks as fourth and first in terms of minimum 36.5 and 18.7 GHz (V-pol) TBs, respectively. This study illustrates GPM-CO sensing capabilities for characterizing the structure of such severe hailstorm, while providing observational evidence of its intensity and rarity, both globally and over the Mediterranean area.

  3. Method for estimating rice plant height without ground surface detection using laser scanner measurement

    NASA Astrophysics Data System (ADS)

    Thi Phan, Anh Thu; Takahashi, Kazuyoshi; Rikimaru, Atsushi; Higuchi, Yasuhiro

    2016-10-01

    A method for estimating the height of rice plants, using three-dimensional laser range data from point clouds, is proposed and assessed. Rice plant height (H) is estimated using a reference position at the top of the rice plant, avoiding the need to determine the ground position. Field experiments were performed with a SICK LMS 200 laser scanner in 2013 and 2014 on a test field with five different planting geometries. Percentile analysis identified the closest percentile to the top of the rice plant (pt=1), with vertical distances at the first percentile unaffected by planting geometry. The plant bottom position was identified using three different percentile ranks (pb=95, pb =80, and pb =70). Relative vertical distances (rD) were computed from the difference between the top and bottom positions of the rice plant. These correlated well with measured H, with slopes greater than 1.0. A greater number of stems in 2014 led to steeper slopes. Estimated H was more accurate when plant bottom positions were closer to the ground surface, and the best results were obtained with pb=95 (r2>0.87 RMSE≈4 cm). Overall, H was typically 16.0 cm greater than rD with pb=95.

  4. Reactor hold-down arrangement

    DOEpatents

    McCugh, Ralph

    1976-05-25

    A nuclear reactor contains an assembly of moderator blocks, laid end-to-end, one on top of another, and alongside one another, which blocks are restrained by vertical beams at each side of the assembly, fixed horizontal beams surrounding the assembly at the top and bottom and springs connecting the fixed horizontal beams and the ends of the vertical beams in such a way as to permit relatively high expansion midway of the height of the assembly while restricting expansion near the top of the assembly.

  5. Does Shoe Collar Height Influence Ankle Joint Kinematics and Kinetics in Sagittal Plane Maneuvers?

    PubMed Central

    Yang, Yang; Fang, Ying; Zhang, Xini; He, Junliang; Fu, Weijie

    2017-01-01

    The Objective of the study is to investigate the effects of basketball shoes with different collar heights on ankle kinematics and kinetics and athletic performance in different sagittal plane maneuvers. Twelve participants who wore high-top and low-top basketball shoes (hereafter, HS and LS, respectively) performed a weight-bearing dorsiflexion (WB-DF) maneuver, drop jumps (DJs), and lay-up jumps (LJs). Their sagittal plane kinematics and ground reaction forces were recorded using the Vicon motion capture system and Kistler force plates simultaneously. Moreover, ankle dorsiflexion and plantarflexion angles, moment, power, stiffness, and jump height were calculated. In the WB-DF test, the peak ankle dorsiflexion angle (p = 0.041) was significantly smaller in HS than in LS. Additionally, the peak ankle plantarflexion moment (p = 0.028) and power (p = 0.022) were significantly lower in HS than in LS during LJs but not during DJs. In both jumping maneuvers, no significant differences were found in the jump height or ankle kinematics between the two shoe types. According to the WB-DF test, increasing shoe collar height can effectively reduce the ankle range of motion in the sagittal plane. Although the HS did not restrict the flexion–extension performance of the ankle joint during two jumping maneuvers, an increased shoe collar height can reduce peak ankle plantarflexion moment and peak power during the push-off phase in LJs. Therefore, a higher shoe collar height should be used to circumvent effects on the partial kinetics of the ankle joint in the sagittal plane. Key points An increased shoe collar height effectively reduced ankle joint ROM in the sagittal plane in weight-bearing dorsiflexion maneuver. Shoe collar height did not affect sagittal plane ankle kinematics and had no effect on performance during realistic jumping. Shoe collar height can affect the ankle plantarflexion torque and peak power during the push-off phase in lay-up jump. PMID:29238255

  6. Sprinting performance on the Woodway Curve 3.0 is related to muscle architecture.

    PubMed

    Mangine, Gerald T; Fukuda, David H; Townsend, Jeremy R; Wells, Adam J; Gonzalez, Adam M; Jajtner, Adam R; Bohner, Jonathan D; LaMonica, Michael; Hoffman, Jay R; Fragala, Maren S; Stout, Jeffrey R

    2015-01-01

    To determine if unilateral measures of muscle architecture in the rectus femoris (RF) and vastus lateralis (VL) were related to (and predictive of) sprinting speed and unilateral (and bilateral) force (FRC) and power (POW) during a 30 s maximal sprint on the Woodway Curve 3.0 non-motorized treadmill. Twenty-eight healthy, physically active men (n = 14) and women (n = 14) (age = 22.9 ± 2.4 years; body mass = 77.1 ± 16.2 kg; height = 171.6 ± 11.2 cm; body-fa t = 19.4 ± 8.1%) completed one familiarization and one 30-s maximal sprint on the TM to obtain maximal sprinting speed, POW and FRC. Muscle thickness (MT), cross-sectional area (CSA) and echo intensity (ECHO) of the RF and VL in the dominant (DOM; determined by unilateral sprinting power) and non-dominant (ND) legs were measured via ultrasound. Pearson correlations indicated several significant (p < 0.05) relationships between sprinting performance [POW (peak, DOM and ND), FRC (peak, DOM, ND) and sprinting time] and muscle architecture. Stepwise regression indicated that POW(DOM) was predictive of ipsilateral RF (MT and CSA) and VL (CSA and ECHO), while POW(ND) was predictive of ipsilateral RF (MT and CSA) and VL (CSA); sprinting power/force asymmetry was not predictive of architecture asymmetry. Sprinting time was best predicted by peak power and peak force, though muscle quality (ECHO) and the bilateral percent difference in VL (CSA) were strong architectural predictors. Muscle architecture is related to (and predictive of) TM sprinting performance, while unilateral POW is predictive of ipsilateral architecture. However, the extent to which architecture and other factors (i.e. neuromuscular control and sprinting technique) affect TM performance remains unknown.

  7. Mapping Understory Trees Using Airborne Discrete-Return LIDAR Data

    NASA Astrophysics Data System (ADS)

    Korpela, I.; Hovi, A.; Morsdorf, F.

    2011-09-01

    Understory trees in multi-layer stands are often ignored in forest inventories. Information about them would benefit silviculture, wood procurement and biodiversity management. Cost-efficient inventory methods for the assessment of the presence, density, species- and size-distributions are called for. LiDAR remote sensing is a promising addition to field work. Unlike in passive image data, in which the signals from multiple layers mix, the 3D position of each hot-spot reflection is known in LiDAR data. The overstory however prevents from obtaining a wall-to-wall sample of understory, and measurements are subject to transmission losses. Discriminating between the crowns of dominant and suppressed trees can also be challenging. We examined the potential of LiDAR for the mapping of the understory trees in Scots pine stands (62°N, 24°E), using carefully georeferenced reference data and several LiDAR data sets. We present results that highlight differences in echo-triggering between sensors that affect the near-ground height data. A conceptual model for the transmission losses in the overstory was created and formulated into simple compensation models that reduced the intensity variation in second- and third return data. The task is highly ill-posed in discrete-return LiDAR data, and our models employed the geometry of the overstory as well as the intensity of previous returns. We showed that even first-return data in the understory is subject to losses in the overstory that did not trigger an echo. Even with compensation of the losses, the intensity data was deemed of low value in species discrimination. Area-based LiDAR height metrics that were derived from the data belonging to the crown volume of the understory showed reasonable correlation with the density and mean height of the understory trees. Assessment of the species seems out of reach in discrete-return LiDAR data, which is a drastic drawback.

  8. Microphysical Modeling of Mineral Clouds in GJ1214 b and GJ436 b: Predicting Upper Limits on the Cloud-top Height

    NASA Astrophysics Data System (ADS)

    Ohno, Kazumasa; Okuzumi, Satoshi

    2018-05-01

    The ubiquity of clouds in the atmospheres of exoplanets, especially of super-Earths, is one of the outstanding issues for the transmission spectra survey. Understanding the formation process of clouds in super-Earths is necessary to interpret the observed spectra correctly. In this study, we investigate the vertical distributions of particle size and mass density of mineral clouds in super-Earths using a microphysical model that takes into account the vertical transport and growth of cloud particles in a self-consistent manner. We demonstrate that the vertical profiles of mineral clouds significantly vary with the concentration of cloud condensation nuclei and atmospheric metallicity. We find that the height of the cloud top increases with increasing metallicity as long as the metallicity is lower than the threshold. If the metallicity is larger than the threshold, the cloud-top height no longer increases appreciably with metallicity because coalescence yields larger particles of higher settling velocities. We apply our cloud model to GJ1214 b and GJ436 b, for which recent transmission observations suggest the presence of high-altitude opaque clouds. For GJ436 b, we show that KCl particles can ascend high enough to explain the observation. For GJ1214 b, by contrast, the height of KCl clouds predicted from our model is too low to explain its flat transmission spectrum. Clouds made of highly porous KCl particles could explain the observations if the atmosphere is highly metal-rich, and hence the particle microstructure might be a key to interpret the flat spectrum of GJ1214 b.

  9. Remote observations of eruptive clouds and surface thermal activity during the 2009 eruption of Redoubt volcano

    NASA Astrophysics Data System (ADS)

    Webley, P. W.; Lopez, T. M.; Ekstrand, A. L.; Dean, K. G.; Rinkleff, P.; Dehn, J.; Cahill, C. F.; Wessels, R. L.; Bailey, J. E.; Izbekov, P.; Worden, A.

    2013-06-01

    Volcanoes often erupt explosively and generate a variety of hazards including volcanic ash clouds and gaseous plumes. These clouds and plumes are a significant hazard to the aviation industry and the ground features can be a major hazard to local communities. Here, we provide a chronology of the 2009 Redoubt Volcano eruption using frequent, low spatial resolution thermal infrared (TIR), mid-infrared (MIR) and ultraviolet (UV) satellite remote sensing data. The first explosion of the 2009 eruption of Redoubt Volcano occurred on March 15, 2009 (UTC) and was followed by a series of magmatic explosive events starting on March 23 (UTC). From March 23-April 4 2009, satellites imaged at least 19 separate explosive events that sent ash clouds up to 18 km above sea level (ASL) that dispersed ash across the Cook Inlet region. In this manuscript, we provide an overview of the ash clouds and plumes from the 19 explosive events, detailing their cloud-top heights and discussing the variations in infrared absorption signals. We show that the timing of the TIR data relative to the event end time was critical for inferring the TIR derived height and true cloud top height. The ash clouds were high in water content, likely in the form of ice, which masked the negative TIR brightness temperature difference (BTD) signal typically used for volcanic ash detection. The analysis shown here illustrates the utility of remote sensing data during volcanic crises to measure critical real-time parameters, such as cloud-top heights, changes in ground-based thermal activity, and plume/cloud location.

  10. 49 CFR 173.175 - Permeation devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., flat and horizontal surface from a height of 1.8 m (5.9 feet): (i) One drop flat on the bottom; (ii) One drop flat on the top; (iii) One drop flat on the long side; (iv) One drop flat on the short side... stacked to a height of 3 m (10 feet) (including the test sample). (3) Each of the above tests may be...

  11. 36 CFR § 1192.123 - Restrooms.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the clear floor space at a lower height provided they can be easily folded up or moved out of the way. (2) The height of the water closet shall be 17 inches to 19 inches measured to the top of the toilet... complying with § 1192.125(d) and shall be connected to such a space by an unobstructed path having a minimum...

  12. An improved tree height measurement technique tested on mature southern pines

    Treesearch

    Don C. Bragg

    2008-01-01

    Virtually all techniques for tree height determination follow one of two principles: similar triangles or the tangent method. Most people apply the latter approach, which uses the tangents of the angles to the top and bottom and a true horizontal distance to the subject tree. However, few adjust this method for ground slope, tree lean, crown shape, and crown...

  13. Taper-based system for estimating stem volumes of upland oaks

    Treesearch

    Donald E. Hilt

    1980-01-01

    A taper-based system for estimating stem volumes is developed for Central States upland oaks. Inside bark diameters up the stem are predicted as a function of dbhib, total height, and powers and relative height. A Fortran IV computer program, OAKVOL, is used to predict cubic and board-foot volumes to any desired merchantable top dib. Volumes of...

  14. --No Title--

    Science.gov Websites

    :24px}@media(min-width:768px){.showcase{height:431px}.showcase .caption{left:0;right:0;bottom:0 ;position:absolute}.feature-secondary .link-tile{margin-top:0}}@media(min-width:992px){.showcase{height:545px}}@media -radius:0;border:none;box-shadow:none}h3 .fa{padding-bottom:4px}@media only screen and (max-width :767px

  15. Compatible taper equation for loblolly pine

    Treesearch

    J. P. McClure; R. L. Czaplewski

    1986-01-01

    Cao's compatible, segmented polynomial taper equation (Q. V. Cao, H. E. Burkhart, and T. A. Max. For. Sci. 26: 71-80. 1980) is fitted to a large loblolly pine data set from the southeastern United States. Equations are presented that predict diameter at a given height, height to a given top diameter, and volume below a given position on the main stem. All...

  16. --No Title--

    Science.gov Websites

    ; border: 1px solid #ddd; padding: 0px 18px 0px 4px; color: #333; background-color: #0368a1 ; } .carpe_slider_top {background-color:#000;width:1px;margin-left:60px;height:4px;} .carpe_slider_bottom {background -color:#000;width:1px;margin-left:60px;height:4px;} .carpe_horizontal_slider_track .carpe_slider_slit

  17. Effects of morphology parameters on anti-icing performance in superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Nguyen, Thanh-Binh; Park, Seungchul; Lim, Hyuneui

    2018-03-01

    In this paper, we report the contributions of actual ice-substrate contact area and nanopillar height to passive anti-icing performance in terms of adhesion force and freezing time. Well-textured nanopillars with various parameters were fabricated via colloidal lithography and a dry etching process. The nanostructured quartz surface was coated with low-energy material to confer water-repellent properties. These superhydrophobic surfaces were investigated to determine the parameters essential for reducing adhesion strength and delaying freezing time. A well-textured surface with nanopillars of very small top diameter, regardless of height, could reduce adhesion force and delay freezing time in a subsequent de-icing process. Small top diameters of nanopillars also ensured the metastable Cassie-Baxter state based on energy barrier calculations. The results demonstrated the important role of areal fraction in anti-icing efficiency, and the negligible contribution of texture height. This insight into icing phenomena should lead to design of improved ice-phobic surfaces in the future.

  18. Plumbing Coastal Depths in Titan Kraken Mare

    NASA Image and Video Library

    2014-11-10

    Radar data from NASA's Cassini spacecraft reveal the depth of liquid methane/ethane seas on Saturn's moon Titan. Cassini's Titan flyby on August 21, 2014, included a segment designed to collect altimetry (or height) data, using the spacecraft's radar instrument, along a 120-mile (200-kilometer) shore-to-shore track on Kraken Mare, Titan's largest hydrocarbon sea. For a 25-mile (40-kilometer) stretch of this data, along the sea's eastern shoreline, Cassini's radar beam bounced off the sea bottom and back to the spacecraft, revealing the sea's depth in that area. Observations in this region, near the mouth of a large, flooded river valley, showed depths ranging from 66 to 115 feet (20 to 35 meters). Plots of three radar echoes are shown at left, indicating depths of 89 feet (27 meters), 108 feet (33 meters) and 98 feet (30 meters), respectively. The altimetry echoes show the characteristic double-peaked returns of a bottom-reflection. The tallest peak represents the sea surface; the shorter of the pair represents the sea bottom. The distance between the two peaks is a measure of the liquid's depth. The Synthetic Aperture Radar (SAR) image at right shows successive altimetry observations as black circles. The three blue circles indicate the locations of the three altimetry echoes shown in the plots at left. http://photojournal.jpl.nasa.gov/catalog/PIA19046

  19. Status of the Topside Vary-Chap Ionospheric Model

    NASA Astrophysics Data System (ADS)

    Reinisch, Bodo; Nsumei, Patrick; Huang, Xueqin; Bilitza, Dieter

    Status of the Topside Vary-Chap Ionospheric Model The general alpha-Chapman function for a multi-constituent gas which includes a continuously varying scale height and was therefore dubbed the Vary-Chap function, can present the topside electron density profiles in analytical form. The Vary-Chap profile is defined by the scale height function H(h) and the height and density of the F2 layer peak. By expressing 80,000 ISIS-2 measured topside density profiles as Vary-Chap functions we derived 80,000 scale height functions, which form the basis for the topside density profile modeling. The normalized scale height profiles Hn = H(h)/Hm were grouped according to season, MLAT, and MLT for each 50 km height bin from 200 km to 1400 km, and the median, lower, and upper quartiles for each bin were calculated. Hm is the scale height at the F2 layer peak. The resulting Hn functions are modeled in terms of hyperbolic tangent functions using 5 parameters that are determined by multivariate least squares, including the transition height hT where the scale height gradient has a maximum. These normalized scale height functions, representing the model of the topside electron density profiles from hmF2 to 1,400 km altitude, are independent of hmF2 and NmF2 and can therefore be directly used for the topside Ne profile in IRI. Similarly, this model can extend measured bottomside profiles to the topside, replacing the simple alpha-Chapman function with constant scale height that is currently used for construction of the topside profile in the Digisondes / ARTIST of the Global Ionospheric Radio Observatory (GIRO). It turns out that Hm(top) calculated from the topside profiles is generally several times larger than Hm(bot) derived from the bottomside profiles. This follows necessarily from the difference in the definition of the scale height functions for the topside and bottomside profiles. The diurnal variations of the ratio Hm(top) / Hm(bot) has been determined for different latitudes which makes it now possible to specify the topside profile for any given bottomside profile.

  20. Airborne laser scanning for forest health status assessment and radiative transfer modelling

    NASA Astrophysics Data System (ADS)

    Novotny, Jan; Zemek, Frantisek; Pikl, Miroslav; Janoutova, Ruzena

    2013-04-01

    Structural parameters of forest stands/ecosystems are an important complementary source of information to spectral signatures obtained from airborne imaging spectroscopy when quantitative assessment of forest stands are in the focus, such as estimation of forest biomass, biochemical properties (e.g. chlorophyll /water content), etc. The parameterization of radiative transfer (RT) models used in latter case requires three-dimensional spatial distribution of green foliage and woody biomass. Airborne LiDAR data acquired over forest sites bears these kinds of 3D information. The main objective of the study was to compare the results from several approaches to interpolation of digital elevation model (DEM) and digital surface model (DSM). We worked with airborne LiDAR data with different density (TopEye Mk II 1,064nm instrument, 1-5 points/m2) acquired over the Norway spruce forests situated in the Beskydy Mountains, the Czech Republic. Three different interpolation algorithms with increasing complexity were tested: i/Nearest neighbour approach implemented in the BCAL software package (Idaho Univ.); ii/Averaging and linear interpolation techniques used in the OPALS software (Vienna Univ. of Technology); iii/Active contour technique implemented in the TreeVis software (Univ. of Freiburg). We defined two spatial resolutions for the resulting coupled raster DEMs and DSMs outputs: 0.4 m and 1 m, calculated by each algorithm. The grids correspond to the same spatial resolutions of hyperspectral imagery data for which the DEMs were used in a/geometrical correction and b/building a complex tree models for radiative transfer modelling. We applied two types of analyses when comparing between results from the different interpolations/raster resolution: 1/calculated DEM or DSM between themselves; 2/comparison with field data: DEM with measurements from referential GPS, DSM - field tree alometric measurements, where tree height was calculated as DSM-DEM. The results of the analyses show that: 1/averaging techniques tend to underestimate the tree height and the generated surface does not follow the first LiDAR echoes both for 1 m and 0.4 m pixel size; 2/we did not find any significant difference between tree heights calculated by nearest neighbour algorithm and the active contour technique for 1 m pixel output but the difference increased with finer resolution (0.4 m); 3/the accuracy of the DEMs calculated by tested algorithms is similar.

  1. Estimation of the Above Ground Biomass of Tropical Forests using Polarimetric and Tomographic SAR Data Acquired at P Band and 3-D Imaging Techniques

    NASA Astrophysics Data System (ADS)

    Ferro-Famil, L.; El Hajj Chehade, B.; Ho Tong Minh, D.; Tebaldini, S.; LE Toan, T.

    2016-12-01

    Developing and improving methods to monitor forest biomass in space and time is a timely challenge, especially for tropical forests, for which SAR imaging at larger wavelength presents an interesting potential. Nevertheless, directly estimating tropical forest biomass from classical 2-D SAR images may reveal a very complex and ill-conditioned problem, since a SAR echo is composed of numerous contributions, whose features and importance depend on many geophysical parameters, such has ground humidity, roughness, topography… that are not related to biomass. Recent studies showed that SAR modes of diversity, i.e. polarimetric intensity ratios or interferometric phase centers, do not fully resolve this under-determined problem, whereas Pol-InSAR tree height estimates may be related to biomass through allometric relationships, with, in general over tropical forests, significant levels of uncertainty and lack of robustness. In this context, 3-D imaging using SAR tomography represents an appealing solution at larger wavelengths, for which wave penetration properties ensures a high quality mapping of a tropical forest reflectivity in the vertical direction. This paper presents a series of studies led, in the frame of the preparation of the next ESA mission BIOMASS, on the estimation of biomass over a tropical forest in French Guiana, using Polarimetric SAR Tomographic (Pol-TomSAR) data acquired at P band by ONERA. It is then shown that Pol-TomoSAR significantly improves the retrieval of forest above ground biomass (AGB) in a high biomass forest (200 up to 500 t/ha), with an error of only 10% at 1.5-ha resolution using a reflectivity estimates sampled at a predetermined elevation. The robustness of this technique is tested by applying the same approach over another site, and results show a similar relationship between AGB and tomographic reflectivity over both sites. The excellent ability of Pol-TomSAR to retrieve both canopy top heights and ground topography with an error of the order of 2m compared to LiDAR estimates, is then used to generalize this tomographic technique by selecting in an adaptive way the height at which reflectivity is estimated. Results indicate that this generalized techniques reduces the estimation error to values inferior to 10% and improve the representativity of the obtained AGB maps.

  2. Taking a 3-D Slice of Hurricane Maria's Cloud Structure

    NASA Image and Video Library

    2017-09-20

    NASA's CloudSat satellite flew over Hurricane Maria on Sept. 17, 2017, at 1:23 p.m. EDT (17:23 UTC) as the storm had just strengthened into a hurricane in the Atlantic Ocean. Hurricane Maria contained estimated maximum sustained winds of 75 miles per hour (65 knots) and had a minimum barometric pressure of 986 millibars. CloudSat flew over Maria through the center of the rapidly intensifying storm, directly through an overshooting cloud top (a dome-shaped protrusion that shoots out of the top of the anvil cloud of a thunderstorm). CloudSat reveals the vertical extent of the overshooting cloud top, showing the estimated height of the cloud to be 11 miles (18 kilometers). Areas of high reflectivity with deep red and pink colors extend well above 9 miles (15 kilometers) in height, showing large amounts of water being drawn upward high into the atmosphere. A movie is available at https://photojournal.jpl.nasa.gov/catalog/PIA21961

  3. Monthly Covariability of Amazonian Convective Cloud Properties and Radiative Diurnal Cycle

    NASA Technical Reports Server (NTRS)

    Dodson, J. Brant; Taylor, Patrick C.

    2016-01-01

    The diurnal cycle of convective clouds greatly influences the top-of-atmosphere radiative energy balance in convectively active regions of Earth, through both direct presence and the production of anvil and stratiform clouds. CloudSat and CERES data are used to further examine these connections by determining the sensitivity of monthly anomalies in the radiative diurnal cycle to monthly anomalies in multiple cloud variables. During months with positive anomalies in convective frequency, the longwave diurnal cycle is shifted and skewed earlier in the day by the increased longwave cloud forcing during the afternoon from mature deep convective cores and associated anvils. This is consistent with previous studies using reanalysis data to characterize anomalous convective instability. Contrary to this, months with positive anomalies in convective cloud top height (commonly associated with more intense convection) shifts the longwave diurnal cycle later in the day. The contrary results are likely an effect of the inverse relationships between cloud top height and frequency. The albedo diurnal cycle yields inconsistent results when using different cloud variables.

  4. A comparison of airborne and ground-based radar observations with rain gages during the CaPE experiment

    NASA Technical Reports Server (NTRS)

    Satake, Makoto; Short, David A.; Iguchi, Toshio

    1992-01-01

    The vicinity of KSC, where the primary ground truth site of the Tropical Rainfall Measuring Mission (TRMM) program is located, was the focal point of the Convection and Precipitation/Electrification (CaPE) experiment in Jul. and Aug. 1991. In addition to several specialized radars, local coverage was provided by the C-band (5 cm) radar at Patrick AFB. Point measurements of rain rate were provided by tipping bucket rain gage networks. Besides these ground-based activities, airborne radar measurements with X- and Ka-band nadir-looking radars on board an aircraft were also recorded. A unique combination data set of airborne radar observations with ground-based observations was obtained in the summer convective rain regime of central Florida. We present a comparison of these data intending a preliminary validation. A convective rain event was observed simultaneously by all three instrument types on the evening of 27 Jul. 1991. The high resolution aircraft radar was flown over convective cells with tops exceeding 10 km and observed reflectivities of 40 to 50 dBZ at 4 to 5 km altitude, while the low resolution surface radar observed 35 to 55 dBZ echoes and a rain gage indicated maximum surface rain rates exceeding 100 mm/hr. The height profile of reflectivity measured with the airborne radar show an attenuation of 6.5 dB/km (two way) for X-band, corresponding to a rainfall rate of 95 mm/hr.

  5. On The Ion Drift Contribution To The Phase Velocity of Electrojet Irregularities

    NASA Astrophysics Data System (ADS)

    Uspensky, M.; Koustov, A.; Janhunen, P.; Pellinen, R.; Danskin, D.; Nozawa, S.

    The ion drift effect is often ignored in the interpretation of VHF Doppler measure- ments. For example, in the STARE experiment it is assumed that the line-of-sight velocity measured at large flow angles is simply a cosine component of the true elec- tron drift. Previous studies seem to support this assumption, though only to a certain degree. In this study we consider a 3.5-hour morning event of joint STARE-EISCAT observa- tions for which the STARE-Finland radar velocity was mainly larger than the EISCAT convection component. A moderate 5-20 deg offset between the EISCAT convection azimuth and its STARE estimate was also observed. We show that both the STARE- Finland radar velocity "over-speed" and the azimuthal offset between the EISCAT and STARE convection vectors can be explained by fluid plasma theory arguments if the ion drift contribution to the irregularity phase velocity under the condition of moder- ate backscatter off-orthogonality is taken into account. The ion effects were enhanced because of a lifting up of the entire E-region seen by the EISCAT. It perhaps resulted in an increase of the STARE echo heights and aspect angles. The latter are of the order of 1 deg at the top of the electrojet layer. We also compare STARE convection magni- tudes and true velocities measured by the EISCAT to study the potential impact of the ion motions on the STARE velocity estimates.

  6. The effects of cloud inhomogeneities upon radiative fluxes, and the supply of a cloud truth validation dataset

    NASA Technical Reports Server (NTRS)

    Welch, Ronald M.

    1993-01-01

    A series of cloud and sea ice retrieval algorithms are being developed in support of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Science Team objectives. These retrievals include the following: cloud fractional area, cloud optical thickness, cloud phase (water or ice), cloud particle effective radius, cloud top heights, cloud base height, cloud top temperature, cloud emissivity, cloud 3-D structure, cloud field scales of organization, sea ice fractional area, sea ice temperature, sea ice albedo, and sea surface temperature. Due to the problems of accurately retrieving cloud properties over bright surfaces, an advanced cloud classification method was developed which is based upon spectral and textural features and artificial intelligence classifiers.

  7. --No Title--

    Science.gov Websites

    :#ccc;text-align:center;padding:5px}.upper_button{text-align:right;padding-bottom:5px}.side_button[type ;width:175px;text-align:left;font-weight:bold;overflow:hidden}.left_head_title_alt{float:left;width:175px ;text-align:left;font-weight:bold;line-height:16px;margin-top:3px;padding-top:0}.left_head_add

  8. Severity of scab and its effects on fruit weight in mechanically hedge-pruned and topped pecan trees

    USDA-ARS?s Scientific Manuscript database

    Scab is the most damaging disease of pecan in the southeastern USA. Pecan trees can attain 44 m in height, so managing disease in the upper canopy is a problem. Fungicide is ordinarily applied using ground-based air-blast sprayers. Although mechanical hedge-pruning and topping of pecan is done for s...

  9. Plume Detection and Plume Top Height Estimation using SLSTR

    NASA Astrophysics Data System (ADS)

    Virtanen, Timo H.; Kolmonen, Pekka; Sogacheva, Larisa; Rodriguez, Edith; Saponaro, Giulia; de Leeuw, Gerrit

    2017-04-01

    We present preliminary results on ash and desert dust plume detection and plume top height estimates based on satellite data from the Sea and Land Surface Temperature Radiometer (SLSTR) aboard Sentinel-3, launched in 2016. The methods are based on the previously developed AATSR Correlation Method (ACM) height estimation algorithm, which utilized the data of the preceding similar instrument, Advanced Along Track Scanning Radiometer (AATSR). The height estimate is based on the stereo-viewing capability of SLSTR, which allows to determine the parallax between the satellite's 55° backward and nadir views, and thus the corresponding height. The ash plume detection is based on the brightness temperature difference between between thermal infrared (TIR) channels centered at 11 and 12 μm, which show characteristic signals for both desert dust and ash plumes. The SLSTR instrument provides a unique combination of dual-view capability and a wavelength range from visible to thermal infrared, rendering it an ideal instrument for this work. Accurate information on the volcanic ash position is important for air traffic safety. The ACM algorithm can provide valuable data of both horizontal and vertical ash dispersion. These data may be useful for comparisons with other volcanic ash and desert dust retrieval methods and dispersion models. The current work is being carried out as part of the H2020 project EUNADICS-AV ("European Natural Disaster Coordination and Information System for Aviation"), which started in October 2016.

  10. Forest Resource Measurements by Combination of Terrestrial Laser Scanning and Drone Use

    NASA Astrophysics Data System (ADS)

    Cheung, K.; Katoh, M.; Horisawa, M.

    2017-10-01

    Using terrestrial laser scanning (TLS), forest attributes such as diameter at breast height (DBH) and tree location can be measured accurately. However, due to low penetration of laser pulses to tree tops, tree height measurements are typically underestimated. In this study, data acquired by TLS and drones were combined; DBH and tree locations were determined by TLS, and tree heights were measured by drone use. The average tree height error and root mean square error (RMSE) of tree height were 0.8 and 1.2 m, respectively, for the combined method, and -0.4 and 1.7 m using TLS alone. The tree height difference was compared using airborne laser scanning (ALS). Furthermore, a method to acquire 100 % tree detection rate based on TLS data is suggested in this study.

  11. Remeasuring tree heights on permanent plots using rectangular coordinates and one angle per tree

    Treesearch

    Robert L. Neal

    1973-01-01

    Heights of permanent sample trees with tops visible from any point can be measured from that point with any clinometer, measuring one vertical angle per tree. Two horizontal angles and one additional vertical angle per observation point are necessary to orient the point to the plot. Permanently recorded coordinates and elevations of tree locations are used with the...

  12. Development of red oak seedlings using plastic shelters on good-to- excellent hardwood sites in West Virginia

    Treesearch

    H. Clay Smith; H. Clay Smith

    1993-01-01

    Plastic shelters were used to grow red oak seedlings on good-to-excellent Appalachian hardwood growing sites in north central West Virginia. Preliminary results indicate that shelters have the potential to stimulate development of red oak seedling height growth, especially if height growth continues once the seedling tops are above the 5-foot-tall shelters.

  13. --No Title--

    Science.gov Websites

    :4px 0 0;margin-top:1px\\9;line-height:normal}.ou-form .btn,.ou-form .form-control{font-size:14px;line 5px;outline-offset:-2px}.ou-form .form-control{display:block;width:100%;height:34px;padding:6px 12px )}.ou-form .form-control::-moz-placeholder{color:#999;opacity:1}.ou-form .form-control:-ms-input

  14. Challenges to estimating tree height via LiDAR in closed-canopy forest: a parable from western Oregon

    Treesearch

    Demetrios Gatziolis; Jeremy S. Fried; Vicente S. Monleon

    2010-01-01

    We examine the accuracy of tree height estimates obtained via light detection and ranging (LiDAR) in a temperate rainforest characterized by complex terrain, steep slopes, and high canopy cover. The evaluation was based on precise top and base locations for > 1,000 trees in 45 plots distributed across three forest types, a dense network of ground elevation...

  15. Remote Sensing of Cloud Top Heights Using the Research Scanning Polarimeter

    NASA Technical Reports Server (NTRS)

    Sinclair, Kenneth; van Diedenhoven, Bastiaan; Cairns, Brian; Yorks, John; Wasilewski, Andrzej

    2015-01-01

    Clouds cover roughly two thirds of the globe and act as an important regulator of Earth's radiation budget. Of these, multilayered clouds occur about half of the time and are predominantly two-layered. Changes in cloud top height (CTH) have been predicted by models to have a globally averaged positive feedback, however observational changes in CTH have shown uncertain results. Additional CTH observations are necessary to better and quantify the effect. Improved CTH observations will also allow for improved sub-grid parameterizations in large-scale models and accurate CTH information is important when studying variations in freezing point and cloud microphysics. NASA's airborne Research Scanning Polarimeter (RSP) is able to measure cloud top height using a novel multi-angular contrast approach. RSP scans along the aircraft track and obtains measurements at 152 viewing angles at any aircraft location. The approach presented here aggregates measurements from multiple scans to a single location at cloud altitude using a correlation function designed to identify the location-distinct features in each scan. During NASAs SEAC4RS air campaign, the RSP was mounted on the ER-2 aircraft along with the Cloud Physics Lidar (CPL), which made simultaneous measurements of CTH. The RSPs unique method of determining CTH is presented. The capabilities of using single and combinations of channels within the approach are investigated. A detailed comparison of RSP retrieved CTHs with those of CPL reveal the accuracy of the approach. Results indicate a strong ability for the RSP to accurately identify cloud heights. Interestingly, the analysis reveals an ability for the approach to identify multiple cloud layers in a single scene and estimate the CTH of each layer. Capabilities and limitations of identifying single and multiple cloud layers heights are explored. Special focus is given to sources of error in the method including optically thin clouds, physically thick clouds, multi-layered clouds as well as cloud phase. When determining multi-layered CTHs, limits on the upper clouds opacity are assessed.

  16. Loaded and unloaded jump performance of top-level volleyball players from different age categories

    PubMed Central

    Kitamura, Katia; Pereira, Lucas Adriano; Kobal, Ronaldo; Cal Abad, Cesar Cavinato; Finotti, Ronaldo; Nakamura, Fábio Yuzo

    2017-01-01

    The aim of this study was to investigate the differences in loaded and unloaded jump performances between different age categories of top-level volleyball players from the same club. Forty-three volleyball players were divided into four age groups: under-17, under-19, under-21 and professional. Vertical jumping height for squat jump (SJ), countermovement jump (CMJ) and CMJ with arm swing (CMJa) and mean propulsive velocity (MPV) in the loaded jump squat exercise with 40% of the athlete’s body mass were compared among the different age categories, considering body mass as a covariate. SJ and CMJ jump height values were higher for professional and under-21 players than under-17 players (p<0.05). CMJa height was higher for under-21 players than under-19 and under-17 players (p<0.05). MPV in the loaded jump squat was higher for under-21 players than under-17 players (p<0.05). From a general perspective, these results suggest that aging per se is not capable of substantially improving loaded and unloaded vertical jump performances across different age categories of top-level volleyball players. Therefore, to increase the vertical jumping ability of these team sport athletes throughout their long-term development, coaches and strength and conditioning professionals are encouraged to implement consistent neuromuscular training strategies, in accordance with the specific needs and physiological characteristics of each age group. PMID:29158621

  17. Loaded and unloaded jump performance of top-level volleyball players from different age categories.

    PubMed

    Kitamura, Katia; Pereira, Lucas Adriano; Kobal, Ronaldo; Cal Abad, Cesar Cavinato; Finotti, Ronaldo; Nakamura, Fábio Yuzo; Loturco, Irineu

    2017-09-01

    The aim of this study was to investigate the differences in loaded and unloaded jump performances between different age categories of top-level volleyball players from the same club. Forty-three volleyball players were divided into four age groups: under-17, under-19, under-21 and professional. Vertical jumping height for squat jump (SJ), countermovement jump (CMJ) and CMJ with arm swing (CMJa) and mean propulsive velocity (MPV) in the loaded jump squat exercise with 40% of the athlete's body mass were compared among the different age categories, considering body mass as a covariate. SJ and CMJ jump height values were higher for professional and under-21 players than under-17 players (p<0.05). CMJa height was higher for under-21 players than under-19 and under-17 players (p<0.05). MPV in the loaded jump squat was higher for under-21 players than under-17 players (p<0.05). From a general perspective, these results suggest that aging per se is not capable of substantially improving loaded and unloaded vertical jump performances across different age categories of top-level volleyball players. Therefore, to increase the vertical jumping ability of these team sport athletes throughout their long-term development, coaches and strength and conditioning professionals are encouraged to implement consistent neuromuscular training strategies, in accordance with the specific needs and physiological characteristics of each age group.

  18. [Study on High-yield Cultivation Measures for Arctii Fructus].

    PubMed

    Liu, Shi-yong; Jiang, Xiao-bo; Wang, Tao; Sun, Ji-ye; Hu, Shang-qin; Zhang, Li

    2015-02-01

    To find out the high yield cultivation measures for Arctii Fructus. Completely randomized block experiment design method was used in the field planting, to analyze the effect of different cultivation way on agronomic characters, phenological phase,quality and quantity of Arctii Fructus. Arctium lappa planted on August 28 had the best results of plant height, thousand seeds weight and yield. The highest yield of Arctii Fructus was got at the density of 1,482 plants/667 m2. Arctiin content was in an increase trend with the planting time delay and planting density increasing. The plant height, thousand seeds weight, yield and arctiin content by split application of fertilizer were significantly higher than that by one-time fertilization. Compared with open field Arctium lappa, plant height, yield, arctiin content and relative water content of plastic film mulching Arctium lappa was higher by 7.74%, 10.87%, 6.38% and 24.20%, respectively. In the topping Arctium lappa, the yield was increased by 11.09%, with 39. 89% less branching number. Early planting time and topping shortened the growth cycle of Arctium lappa plant. The high-yield cultivation measures of Arctii Fructus are: around August 28 to sowing, planting density of 1 482 plants/667 m2, split application of fertilizer for four times, covering film on surface of the soil and topping in bolting.

  19. Analysis of clouds and precipitation during Baiu period over the East China Sea with cloud database CTOP and precipitation database GSMaP

    NASA Astrophysics Data System (ADS)

    Nishi, N.; Hamada, A.; Hirose, H.; Hotta, S.; Suzuki, J.

    2016-12-01

    We have made a quantitative research of the clouds and precipitation during Baiu: the rainy season within the East Asia, using recent satellite observation datasets. As the precipitation dataset, we utilized the Global Satellite Mapping of Precipitation (GSMaP), whose primary source is passive microwave observations. As the cloud dataset, we used our original database CTOP, in which the cloud top height and optical depth are estimated only with the infrared split-window channels of the geostationary satellites. Lookup tables are made by training the infrared observations with the direct cloud observation by CloudSat and CALIPSO. This technique was originally developed only for the tropics but we extended it to the mid-latitude by estimating temperature at the cloud top instead of the height. We analyzed the properties of northward shift of the Baiu precipitation zone over the East China Sea. Abrupt northward shift in mid-June has already been reported. We showed here that the abrupt shift is limited to the western half of the East China Sea. We also analyzed the zonal difference of the precipitation amount in the East China Sea. In the central latitudinal range (30-33N), the amount is larger in the eastern part of the sea. There is no significant zonal contrast in both the activity of the low pressure and the front, while the sea surface temperature in the eastern part is slightly larger than in the western part. The zonal gradient is much smaller than that in the southern region near the Kuroshio Current, but may possibly affect the zonal contrast of the precipitation. By using CTOP cloud top data, we also calculated the occurrence ratio of the cloud with various thresholds of the top height. The ratio of clouds with the tops higher than 12 km in the East China Sea is clearly lower than those over the Continental area and the main Japanese islands.

  20. 49 CFR 571.202a - Standard No. 202a; Head restraints; Mandatory applicability begins on September 1, 2009.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50th percentile male Hybrid III test dummy specified in 49 CFR part 572, subpart E, fitted with sensors... in an easily understandable format the adjustment of the head restraints and/or seat back to achieve... restraints in rear outboard seats. Measure the height of the top of a rear seat back or the top of any...

  1. 49 CFR 571.202a - Standard No. 202a; Head restraints; Mandatory applicability begins on September 1, 2009.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... restraints in rear outboard seats. Measure the height of the top of a rear seat back or the top of any independently adjustable seat component attached to or adjacent to the rear seat back in its highest position of... seat back inclination position less than the design seat back angle. (a)(1) For head restraints in...

  2. --No Title--

    Science.gov Websites

    ;color:#666;margin-top:20px;margin-bottom:0px;margin-left:31px}.category-content h2#topic-title{margin -left:31px;margin-top:0px}ul.tabs{margin-bottom:0}ul.tabs li{background-color:#5D9732;width:108px;height -width:thin;color:white;font-size:14px}ul.tabs #result-tab{background-color:#005c8e;text-align:center;padding

  3. CryoSat-2 SAR and SARin Inland Water Heights from the CRUCIAL project

    NASA Astrophysics Data System (ADS)

    Benveniste, J.; Restano, M.; Ambrózio, A.; Moore, P.; Birkinshaw, S.

    2017-12-01

    CRUCIAL was an ESA/STSE funded project investigating innovative land and inland water applications from CryoSat-2 with a forward-look component to the Sentinel-3 and Jason-CS/Sentinel-6 missions. The high along-track sampling of CryoSat-2 in its SAR and SARin modes offers the opportunity to recover high frequency signals over inland waters. A methodology was developed to process the FBR L1A Doppler beams to form a waveform product using ground cell gridding, beam steering and beam stacking. Inland water heights from CryoSat-2 are derived by using a set of empirical retrackers formulated for inland water applications. Results of the processing strategy include a comparison of waveforms and heights from the burst echoes (80 m along-track) and from multi-look waveforms (320 m along-track). SAR and SARin FBR data are available for the Amazon, Brahmaputra and Mekong for 2011-2015. FBR SAR results are compared against stage data from the nearest gauge. Heights from Tonlé Sap are also compared against Jason-2 data from the United States Department of Agriculture. A strategy to select the number of multi-looks over rivers was designed based on the rms of heights across Tonlé Sap. Comparisons include results from the empirical retrackers and from waveforms and heights obtained via ESA's Grid Processing on Demand (G-POD/SARvatore) using the SAMOSA2 retracker. Results of FBR SARin processing for the Amazon and Brahmaputra are presented including comparison of heights from the two antennae, extraction of slope of the ground surface and validation against ground data where appropriate.

  4. FLASHFlux Info

    Atmospheric Science Data Center

    2013-05-20

    ... Surface Emissivity Cloud Area Fraction Cloud Effective Pressure Cloud Effective Temperature Cloud Effective Height Cloud Top Pressure Cloud Base Pressure Cloud Particle Phase Liquid Water Path Ice Water Path Water Particle Radius Ice Particle ...

  5. Microfluidic channel fabrication method

    DOEpatents

    Arnold, Don W.; Schoeniger, Joseph S.; Cardinale, Gregory F.

    2001-01-01

    A new channel structure for microfluidic systems and process for fabricating this structure. In contrast to the conventional practice of fabricating fluid channels as trenches or grooves in a substrate, fluid channels are fabricated as thin walled raised structures on a substrate. Microfluidic devices produced in accordance with the invention are a hybrid assembly generally consisting of three layers: 1) a substrate that can or cannot be an electrical insulator; 2) a middle layer, that is an electrically conducting material and preferably silicon, forms the channel walls whose height defines the channel height, joined to and extending from the substrate; and 3) a top layer, joined to the top of the channels, that forms a cover for the channels. The channels can be defined by photolithographic techniques and are produced by etching away the material around the channel walls.

  6. Inference of cirrus cloud properties using satellite-observed visible and infrared radiances. I - Parameterization of radiance fields

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Liou, Kuo-Nan; Takano, Yoshihide

    1993-01-01

    The impact of using phase functions for spherical droplets and hexagonal ice crystals to analyze radiances from cirrus is examined. Adding-doubling radiative transfer calculations are employed to compute radiances for different cloud thicknesses and heights over various backgrounds. These radiances are used to develop parameterizations of top-of-the-atmosphere visible reflectance and IR emittance using tables of reflectances as a function of cloud optical depth, viewing and illumination angles, and microphysics. This parameterization, which includes Rayleigh scattering, ozone absorption, variable cloud height, and an anisotropic surface reflectance, reproduces the computed top-of-the-atmosphere reflectances with an accruacy of +/- 6 percent for four microphysical models: 10-micron water droplet, small symmetric crystal, cirrostratus, and cirrus uncinus. The accuracy is twice that of previous models.

  7. Non-Linear Dependence of the Height of a Chain Fountain on Drop Height

    ERIC Educational Resources Information Center

    Andrew, Y.; Kearns, F.; Mustafa, T.; Salih, R.; Ioratim-Uba, A.; Udall, I.; Usama, M.

    2015-01-01

    If the end of a long chain, which is contained in an elevated beaker, is dropped over the edge of the beaker and falls, it is observed that as the speed of the chain increases the chain rises to form a loop well above the top of the beaker. The name "chain fountain" has been applied to this phenomenon. In this study the dependence of the…

  8. 49 CFR Appendix A to Part 179 - Procedures for Tank-Head Puncture-Resistance Test

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...” car. c. At least two separate tests must be conducted with the coupler on the vertical centerline of the ram car. One test must be conducted with the coupler at a height of 53.3 cm (21 inches), plus-or... height at 79 cm (31 inches), plus-or-minus 2.5 cm (1 inch), above the top of the sill. If the combined...

  9. Determining Aerosol Plume Height from Two GEO Imagers: Lessons from MISR and GOES

    NASA Technical Reports Server (NTRS)

    Wu, Dong L.

    2012-01-01

    Aerosol plume height is a key parameter to determine impacts of particulate matters generated from biomass burning, wind-blowing dust, and volcano eruption. Retrieving cloud top height from stereo imageries from two GOES (Geostationary Operational Environmental Satellites) have been demonstrated since 1970's and the principle should work for aerosol plumes if they are optically thick. The stereo technique has also been used by MISR (Multiangle Imaging SpectroRadiometer) since 2000 that has nine look angles along track to provide aerosol height measurements. Knowing the height of volcano aerosol layers is as important as tracking the ash plume flow for aviation safety. Lack of knowledge about ash plume height during the 2010 Eyja'rjallajokull eruption resulted in the largest air-traffic shutdown in Europe since World War II. We will discuss potential applications of Asian GEO satellites to make stereo measurements for dust and volcano plumes.

  10. CERES-MISR Info

    Atmospheric Science Data Center

    2013-05-20

    ... Surface Albedo Cloud Area Fraction Cloud Effective Pressure Cloud Effective Temperature Cloud Effective Height Cloud Top Pressure Cloud Base Pressure Cloud Particle Phase Liquid Water Path Ice Water Path Water Particle Radius Ice Particle ...

  11. CERES CRS Info

    Atmospheric Science Data Center

    2013-05-17

    ... Flux - Down Cloud Area Fraction Cloud Effective Pressure Cloud Effective Temperature Cloud Effective Height Cloud Top Pressure Cloud Base Pressure Cloud Particle Phase Liquid Water Path Ice Water Path Water Particle Radius Ice Particle ...

  12. Intrauterine growth restriction

    MedlinePlus

    ... not as big as it should be. The measurement from the mother's pubic bone to the top ... than expected for the baby's gestational age. This measurement is called the uterine fundal height. Exams and ...

  13. OSCILLATING LIGHT WALL ABOVE A SUNSPOT LIGHT BRIDGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Shuhong; Zhang, Jun; Jiang, Fayu

    With the high tempo-spatial Interface Region Imaging Spectrograph 1330 Å images, we find that many bright structures are rooted in the light bridge of NOAA 12192, forming a light wall. The light wall is brighter than the surrounding areas, and the wall top is much brighter than the wall body. The New Vacuum Solar Telescope Hα and the Solar Dynamics Observatory 171 and 131 Å images are also used to study the light-wall properties. In 1330, 171, and 131 Å, the top of the wall has a higher emission, while in the Hα line, the wall-top emission is very low.more » The wall body corresponds to bright areas in 1330 Å and dark areas in the other lines. The top of the light wall moves upward and downward successively, performing oscillations in height. The deprojected mean height, amplitude, oscillation velocity, and the dominant period are determined to be 3.6 Mm, 0.9 Mm, 15.4 km s{sup −1}, and 3.9 minutes, respectively. We interpret the oscillations of the light wall as the leakage of p-modes from below the photosphere. The constant brightness enhancement of the wall top implies the existence of some kind of atmospheric heating, e.g., via the persistent small-scale reconnection or the magneto-acoustic waves. In another series of 1330 Å images, we find that the wall top in the upward motion phase is significantly brighter than in the downward phase. This kind of oscillation may be powered by the energy released due to intermittent impulsive magnetic reconnection.« less

  14. Coordination of leaf structure and gas exchange along a height gradient in a tall conifer.

    PubMed

    Woodruff, D R; Meinzer, F C; Lachenbruch, B; Johnson, D M

    2009-02-01

    The gravitational component of water potential and frictional resistance during transpiration lead to substantial reductions in leaf water potential (Psi(l)) near the tops of tall trees, which can influence both leaf growth and physiology. We examined the relationships between morphological features and gas exchange in foliage collected near the tops of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees of different height classes ranging from 5 to 55 m. This sampling allowed us to investigate the effects of tree height on leaf structural characteristics in the absence of potentially confounding factors such as irradiance, temperature, relative humidity and branch length. The use of cut foliage for measurement of intrinsic gas-exchange characteristics allowed identification of height-related trends without the immediate influences of path length and gravity. Stomatal density, needle length, needle width and needle area declined with increasing tree height by 0.70 mm(-2) m(-1), 0.20 mm m(-1), 5.9 x 10(-3) mm m(-1) and 0.012 mm(2) m(-1), respectively. Needle thickness and mesophyll thickness increased with tree height by 4.8 x 10(-2) mm m(-1) and 0.74 microm m(-1), respectively. Mesophyll conductance (g(m)) and CO(2) assimilation in ambient [CO(2)] (A(amb)) decreased by 1.1 mmol m(-2) s(-1) per m and 0.082 micromol m(-2) s(-1) per m increase in height, respectively. Mean reductions in g(m) and A(amb) of foliage from 5 to 55 m were 47% and 42%, respectively. The observed trend in A(amb) was associated with g(m) and several leaf anatomic characteristics that are likely to be determined by the prevailing vertical tension gradient during foliar development. A linear increase in foliar delta(13)C values with height (0.042 per thousand m(-1)) implied that relative stomatal and mesophyll limitations of photosynthesis in intact shoots increased with height. These data suggest that increasing height leads to both fixed structural constraints on leaf gas exchange and dynamic constraints related to prevailing stomatal behavior.

  15. Imaging Laser Altimetry in the Amazon: Mapping Large Areas of Topography, Vegetation Height and Structure, and Biomass

    NASA Technical Reports Server (NTRS)

    Blair, J. Bryan; Nelson, B.; dosSantos, J.; Valeriano, D.; Houghton, R.; Hofton, M.; Lutchke, S.; Sun, Q.

    2002-01-01

    A flight mission of NASA GSFC's Laser Vegetation Imaging Sensor (LVIS) is planned for June-August 2003 in the Amazon region of Brazil. The goal of this flight mission is to map the vegetation height and structure and ground topography of a large area of the Amazon. This data will be used to produce maps of true ground topography, vegetation height, and estimated above-ground biomass and for comparison with and potential calibration of Synthetic Aperture Radar (SAR) data. Approximately 15,000 sq. km covering various regions of the Amazon will be mapped. The LVIS sensor has the unique ability to accurately sense the ground topography beneath even the densest of forest canopies. This is achieved by using a high signal-to-noise laser altimeter to detect the very weak reflection from the ground that is available only through small gaps in between leaves and between tree canopies. Often the amount of ground signal is 1% or less of the total returned echo. Once the ground elevation is identified, that is used as the reference surface from which we measure the vertical height and structure of the vegetation. Test data over tropical forests have shown excellent correlation between LVIS measurements and biomass, basal area, stem density, ground topography, and canopy height. Examples of laser altimetry data over forests and the relationships to biophysical parameters will be shown. Also, recent advances in the LVIS instrument will be discussed.

  16. A modified ATI technique for nowcasting convective rain volumes over areas. [area-time integrals

    NASA Technical Reports Server (NTRS)

    Makarau, Amos; Johnson, L. Ronald; Doneaud, Andre A.

    1988-01-01

    This paper explores the applicability of the area-time-integral (ATI) technique for the estimation of the growth portion only of a convective storm (while the rain volume is computed using the entire life history of the event) and for nowcasting the total rain volume of a convective system at the stage of its maximum development. For these purposes, the ATIs were computed from the digital radar data (for 1981-1982) from the North Dakota Cloud Modification Project, using the maximum echo area (ATIA) no less than 25 dBz, the maximum reflectivity, and the maximum echo height as the end of the growth portion of the convective event. Linear regression analysis demonstrated that correlations between total rain volume or the maximum rain volume versus ATIA were the strongest. The uncertainties obtained were comparable to the uncertainties which typically occur in rain volume estimates obtained from radar data employing Z-R conversion followed by space and time integration. This demonstrates that the total rain volume of a storm can be nowcasted at its maximum stage of development.

  17. ENHANCEMENT OF A SUNSPOT LIGHT WALL WITH EXTERNAL DISTURBANCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Shuhong; Zhang, Jun; Erdélyi, Robert, E-mail: shuhongyang@nao.cas.cn

    Based on the Interface Region Imaging Spectrograph observations, we study the response of a solar sunspot light wall to external disturbances. A flare occurrence near the light wall caused material to erupt from the lower solar atmosphere into the corona. Some material falls back to the solar surface and hits the light bridge (i.e., the base of the light wall), then sudden brightenings appear at the wall base followed by the rise of wall top, leading to an increase of the wall height. Once the brightness of the wall base fades, the height of the light wall begins to decrease.more » Five hours later, another nearby flare takes place, and a bright channel is formed that extends from the flare toward the light bridge. Although no obvious material flow along the bright channel is found, some ejected material is conjectured to reach the light bridge. Subsequently, the wall base brightens and the wall height begins to increase again. Once more, when the brightness of the wall base decays, the wall top fluctuates to lower heights. We suggest, based on the observed cases, that the interaction of falling material and ejected flare material with the light wall results in the brightenings of wall base and causes the height of the light wall to increase. Our results reveal that the light wall can be not only powered by the linkage of p -mode from below the photosphere, but may also be enhanced by external disturbances, such as falling material.« less

  18. Focused-based multifractal analysis of the wake in a wind turbine array utilizing proper orthogonal decomposition

    NASA Astrophysics Data System (ADS)

    Kadum, Hawwa; Ali, Naseem; Cal, Raúl

    2016-11-01

    Hot-wire anemometry measurements have been performed on a 3 x 3 wind turbine array to study the multifractality of the turbulent kinetic energy dissipations. A multifractal spectrum and Hurst exponents are determined at nine locations downstream of the hub height, and bottom and top tips. Higher multifractality is found at 0.5D and 1D downstream of the bottom tip and hub height. The second order of the Hurst exponent and combination factor show an ability to predict the flow state in terms of its development. Snapshot proper orthogonal decomposition is used to identify the coherent and incoherent structures and to reconstruct the stochastic velocity using a specific number of the POD eigenfunctions. The accumulation of the turbulent kinetic energy in top tip location exhibits fast convergence compared to the bottom tip and hub height locations. The dissipation of the large and small scales are determined using the reconstructed stochastic velocities. The higher multifractality is shown in the dissipation of the large scale compared to small-scale dissipation showing consistency with the behavior of the original signals.

  19. Electron and hole photoemission detection for band offset determination of tunnel field-effect transistor heterojunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei; Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871; Zhang, Qin

    2014-11-24

    We report experimental methods to ascertain a complete energy band alignment of a broken-gap tunnel field-effect transistor based on an InAs/GaSb hetero-junction. By using graphene as an optically transparent electrode, both the electron and hole barrier heights at the InAs/GaSb interface can be quantified. For a Al{sub 2}O{sub 3}/InAs/GaSb layer structure, the barrier height from the top of the InAs and GaSb valence bands to the bottom of the Al{sub 2}O{sub 3} conduction band is inferred from electron emission whereas hole emissions reveal the barrier height from the top of the Al{sub 2}O{sub 3} valence band to the bottom ofmore » the InAs and GaSb conduction bands. Subsequently, the offset parameter at the broken gap InAs/GaSb interface is extracted and thus can be used to facilitate the development of predicted models of electron quantum tunneling efficiency and transistor performance.« less

  20. Directed self-assembly of nanorod networks: bringing the top down to the bottom up.

    PubMed

    Einsle, Joshua F; Scheunert, Gunther; Murphy, Antony; McPhillips, John; Zayats, Anatoly V; Pollard, Robert; Bowman, Robert M

    2012-12-21

    Self-assembled electrodeposited nanorod materials have been shown to offer an exciting landscape for a wide array of research ranging from nanophotonics through to biosensing and magnetics. However, until now, the scope for site-specific preparation of the nanorods on wafers has been limited to local area definition. Further there is little or no lateral control of nanorod height. In this work we present a scalable method for controlling the growth of the nanorods in the vertical direction as well as their lateral position. A focused ion beam pre-patterns the Au cathode layer prior to the creation of the anodized aluminium oxide (AAO) template on top. When the pre-patterning is of the same dimension as the pore spacing of the AAO template, lines of single nanorods are successfully grown. Further, for sub-200 nm wide features, a relationship between the nanorod height and distance from the non-patterned cathode can be seen to follow a quadratic growth rate obeying Faraday's law of electrodeposition. This facilitates lateral control of nanorod height combined with localized growth of the nanorods.

  1. Marine boundary layer structure as observed by A-train satellites

    DOE PAGES

    Luo, Tao; Wang, Zhien; Zhang, Damao; ...

    2016-05-13

    The marine boundary layer (MBL) structure is important to the marine low cloud processes, and the exchange of heat, momentum, and moisture between oceans and the low atmosphere. This study examines the MBL structure over the eastern Pacific region and further explores the controlling factors of MBL structure over the global oceans with a new 4-year satellite-based data set. The MBL top (boundary layer height, BLH) and the mixing layer height (MLH) were identified using the MBL aerosol lidar backscattering from the CALIPSO (Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations). Results showed that the MBL is generally decoupled with MLH ∕ BLHmore » ratio ranging from  ∼  0.5 to  ∼  0.8 over the eastern Pacific Ocean region. The MBL decoupling magnitude is mainly controlled by estimated inversion strength (EIS), which in turn controls the cloud top entrainment process. The systematic differences between drizzling and non-drizzling stratocumulus tops also show dependence on EIS. This may be related to the meso-scale circulations or gravity wave in the MBL. Further analysis indicates that the MBL shows a similar decoupled structure for clear-sky and cumulus-cloud-topped conditions, but is better mixed under stratiform cloud breakup and overcast conditions.« less

  2. CERES SSF Current Info

    Atmospheric Science Data Center

    2013-05-17

    ... Surface Albedo Cloud Area Fraction Cloud Effective Pressure Cloud Effective Temperature Cloud Effective Height Cloud Top Pressure Cloud Base Pressure Cloud Particle Phase Liquid Water Path Ice Water Path Water Particle Radius Ice Particle ...

  3. Retrieving Arctic Sea Fog Geometrical Thickness and Inversion Characteristics from Surface and Radiosonde Observations.

    NASA Astrophysics Data System (ADS)

    Gilson, Gaëlle; Jiskoot, Hester

    2017-04-01

    Arctic sea fog hasn't been extensively studied despite its importance for environmental impact such as on traffic safety and on glacier ablation in coastal Arctic regions. Understanding fog processes can improve nowcasting of environmental impact in such remote regions where few observational data exist. To understand fog's physical, macrophysical and radiative properties, it is important to determine accurate Arctic fog climatology. Our previous study suggested that fog peaks in July over East Greenland and associates with sea ice break-up and a sea breeze with wind speeds between 1-4 m/s. The goal of this study is to understand Arctic coastal fog macrophysical properties and quantify its vertical extent. Radiosonde profiles were extracted from the Integrated Global Radiosonde Archive (IGRA) between 1980-2012, coincident with manual and automated fog observations at three synoptic weather stations along the coast of East Greenland. A new method using air mass saturation ratio and thermodynamic stability was developed to derive fog top height from IGRA radiosonde profiles. Soundings were classified into nine categories, based on surface and low-level saturation ratio, inversion type, and the fog top height relative to the inversion base. Results show that Arctic coastal fog mainly occurs under thermodynamically stable conditions characterized by deep and strong low-level inversions. Fog thickness is commonly about 100-400 m, often reaching the top of the boundary layer. Fog top height is greater at northern stations, where daily fog duration is also longer and often lasts throughout the day. Fog thickness is likely correlated to sea ice concentration density during sea ice break-up. Overall, it is hypothesized that our sounding classes represent development or dissipation stages of advection fog, or stratus lowering and fog lifting processes. With a new automated method, it is planned to retrieve fog height from IGRA data over Arctic terrain around the entire North Atlantic region. These results will serve as a basis for the incorporation of fog and temperature inversions into glacier surface energy balance models and can aid in improving the parameterization of fog for nowcasting methods for aviation applications.

  4. Observations of marine decoupled boundary layer during the ICOS campaign at the GAW Mace Head station, Ireland.

    NASA Astrophysics Data System (ADS)

    Milroy, Conor; Martucci, Giovanni; O'Dowd, Colin

    2010-05-01

    The planetary boundary layer (PBL) top height detections have been retrieved by two ceilometers (Vaisala CL31 and Jenoptik CHM15K) and a microwave radiometer (RPG-HATPRO) based at the Mace Head Research station, Ireland, from the 8th to the 28th of June 2009 during the ICOS Mace Head campaign. Characteristic of this region, with warm waters, the marine boundary layer is typically 2-layered with a surface mixed layer (SML) and a decoupled residual or convective layer (DRCL), above which is the free troposphere (Kunz et al. 2002). The PBL data have been analyzed using a newly developed Temporal Height-Tracking (THT) algorithm (Martucci et al., 2010) for automatic detection of the independent SML and DRCL tops. Daily and weekly averages of the PBL data have been performed to smooth out the short term variability and assess the dependence of the PBL depth on different air masses advected over the Mace Head station. Moreover, a qualitative comparison between the ceilometer and radiometer PBL top detected values has been done to assess their consistency.

  5. Remote sensing of the ionospheric F layer by use of O I 6300-A and O I 1356-A observations

    NASA Technical Reports Server (NTRS)

    Chandra, S.; Reed, E. I.; Meier, R. R.; Opal, C. B.; Hicks, G. T.

    1975-01-01

    The possibility of using airglow techniques for estimating the electron density and height of the F layer is studied on the basis of a simple relationship between the height of the F2 peak and the column emission rates of the O I 6300 A and O I 1356 A lines. The feasibility of this approach is confirmed by a numerical calculation of F2 peak heights and electron densities from simultaneous measurements of O I 6300 A and O I 1356 A obtained with earth-facing photometers carried by the Ogo 4 satellite. Good agreement is established with the F2 peak heights estimates from top-side and bottom-side ionospheric sounding.

  6. Study of the post-flare loops on 29 July 1973. I - Dynamics of the X-ray loops

    NASA Technical Reports Server (NTRS)

    Nolte, J. T.; Gerassimenko, M.; Krieger, A. S.; Petrasso, R. D.; Svestka, Z.

    1979-01-01

    We derive an empirical model of the X-ray emitting post-flare loops observed during the decay phase of the 29 July 1973 flare. We find that the loops are elliptical, with the brightest emitting region at the tops. We determine the height, velocity of growth, and ratio of height to width of the loops at times from 3 to 12 hr after the flare onset.

  7. 49 CFR Appendix A to Part 179 - Procedures for Tank-Head Puncture-Resistance Test

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... outage with internal pressure of at least 6.9 Bar (100 psig) and coupled to one or more “backup” cars... the ram car. One test must be conducted with the coupler at a height of 53.3 cm (21 inches), plus-or... height at 79 cm (31 inches), plus-or-minus 2.5 cm (1 inch), above the top of the sill. If the combined...

  8. Seasonal and height variation of gravity wave activities observed by a meteor radar at King Sejong Station (62°S, 57°W), Antarctica

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Lee, C.; Kim, J.; Choi, J.; Jee, G.

    2010-12-01

    We have analyzed wind data from individual meteor echoes detected by a meteor radar at King Sejong Station, Antarctica to measure gravity wave activity in the mesopause region. Wind data in the meteor altitudes has been obtained routinely by the meteor radar since its installation in March 2007. The mean variances in the wind data that were filtered for large scale motions (mean winds and tides) can be regarded as the gravity wave activity. Monthly mean gravity wave activities show strong seasonal and height dependences in the altitude range of 80 to 100 km. The gravity wave activities except summer monotonically increase with altitude, which is expected since decreasing atmospheric densities cause wave amplitudes to increase. During summer (Dec. - Feb.) the height profiles of gravity wave activities show a minimum near 90 - 95 km, which may be due to different zonal wind and strong wind shear near 80 - 95 km. Our gravity wave activities are generally stronger than those of the Rothera station, implying sensitive dependency on location. The difference may be related to gravity wave sources in the lower atmosphere near Antarctic vortex.

  9. The structure and phase of cloud tops as observed by polarization lidar

    NASA Technical Reports Server (NTRS)

    Spinhirne, J. D.; Hansen, M. Z.; Simpson, J.

    1983-01-01

    High-resolution observations of the structure of cloud tops have been obtained with polarization lidar operated from a high altitude aircraft. Case studies of measurements acquired from cumuliform cloud systems are presented, two from September 1979 observations in the area of Florida and adjacent waters and a third during the May 1981 CCOPE experiment in southeast Montana. Accurate cloud top height structure and relative density of hydrometers are obtained from the lidar return signal intensity. Correlation between the signal return intensity and active updrafts was noted. Thin cirrus overlying developing turrets was observed in some cases. Typical values of the observed backscatter cross section were 0.1-5 (km/sr) for cumulonimbus tops. The depolarization ratio of the lidar signals was a function of the thermodynamic phase of cloud top areas. An increase of the cloud top depolarization with decreasing temperature was found for temperatures above and below -40 C.

  10. Lightning Evolution In Two North Central Florida Summer Multicell Storms and Three Winter/Spring Frontal Storms

    NASA Astrophysics Data System (ADS)

    Caicedo, J. A.; Uman, M. A.; Pilkey, J. T.

    2018-01-01

    We present the first lightning evolution studies, via the Lightning Mapping Array (LMA) and radar, performed in North Central Florida. Parts of three winter/spring frontal storms (cold season) and two complete summer (warm season) multicell storms are studied. Storm parameters measured are as follows: total number of flashes, flash-type classification, first flashes, flash initiation altitude, flash initiation power, flash rate (flashes per minute), charge structure, altitude and temperature ranges of the inferred charge regions, atmospheric isotherm altitude, radar base reflectivity (dBZ), and radar echo tops (EET). Several differences were found between summer multicell and winter/spring frontal storms in North Central Florida: (1) in winter/spring storms, the range of altitudes that all charge regions occupy is up to 1 km lower in altitude than in summer storms, as are the 0°C, -10°C, and -20°C isotherms; (2) lightning activity in summer storms is highly correlated with changes in radar signatures, in particular, echo tops; and (3) the LMA average initiation power of all flash types in winter/frontal storms is about an order of magnitude larger than that for summer storms. In relation to storms in other geographical locations, North Central Florida seasonal storms were found to have similarities in most parameters studied with a few differences, examples in Florida being (1) colder initiation altitudes for intracloud flashes, (2) charge regions occupying larger ranges of atmospheric temperatures, and (3) winter/spring frontal storms not having much lightning activity in the stratiform region.

  11. Retrievals and Comparisons of Various MODIS-Spectrum Inferred Water Cloud Droplet Effective Radii

    NASA Technical Reports Server (NTRS)

    Fu-Lung, Chang; Minnis, Patrick; Lin, Bin; Sunny, Sun-Mack; Khaiyer, Mandana M.

    2007-01-01

    Cloud droplet effective radius retrievals from different Aqua MODIS nearinfrared channels (2.1- micrometer, 3.7- micrometer, and 1.6- micrometer) show considerable differences even among most confident QC pixels. Both Collection 004 and Collection 005 MOD06 show smaller mean effective radii at 3.7- micrometer wavelength than at 2.1- micrometer and 1.6- micrometer wavelengths. Differences in effective radius retrievals between Collection 004 and Collection 005 may be affected by cloud top height/temperature differences, which mainly occur for optically thin clouds. Changes in cloud top height and temperature for thin clouds have different impacts on the effective radius retrievals from 2.1- micrometer, 3.7- micrometer, and 1.6- micrometer channels. Independent retrievals (this study) show, on average, more consistency in the three effective radius retrievals. This study is for Aqua MODIS only.

  12. Application of Lidar remote sensing to the estimation of forest canopy and stand structure

    NASA Astrophysics Data System (ADS)

    Lefsky, Michael Andrew

    A new remote sensing instrument, SLICER (Scanning Lidar Imager of Canopies by Echo Recovery), has been applied to the problem of remote sensing the canopy and stand structure of two groups of deciduous forests, Tulip Poplar-Oak stands in the vicinity of Annapolis, MD. and bottomland hardwood stands near Williamston, NC. The ability of the SLICER instrument to remotely sense the vertical distribution of canopy structure (Canopy Height Profile), bulk canopy transmittance, and several indices of canopy height has been successfully validated using twelve stands with coincident field and SLICER estimates of canopy structure. Principal components analysis has been applied to canopy height profiles from both field sites, and three significant factors were identified, each closely related to the amount of foliage in a recognizable layer of the forest, either understory, midstory, or overstory. The distribution of canopy structure to these layers is significantly correlated with the size and number of stems supporting them. The same layered structure was shown to apply to both field and SLICER remotely sensed canopy height profiles, and to apply to SLICER remotely sensed canopy profiles from both the bottomland hardwood stands in the coastal plain of North Carolina, and to mesic Tulip-Poplars stands in the upland coastal plain of Maryland. Linear regressions have demonstrated that canopy and stand structure are correlated to both a statistically significant and useful degree. Stand age and stem density is more highly correlated to stand height, while stand basal area and aboveground biomass are more closely related to a new measure of canopy structure, the quadratic mean canopy height. A geometric model of canopy structure has been shown to explain the differing relationships between canopy structure and stand basal area for stands of Eastern Deciduous Forest and Douglas Fir Forest.

  13. Signal analysis by means of time-frequency (Wigner-type) distributions -- Applications to sonar and radar echoes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaunaurd, G.; Strifors, H.C.

    1996-09-01

    Time series data have been traditionally analyzed in either the time or the frequency domains. For signals with a time-varying frequency content, the combined time-frequency (TF) representations, based on the Cohen class of (generalized) Wigner distributions (WD`s) offer a powerful analysis tool. Using them, it is possible to: (1) trace the time-evolution of the resonance features usually present in a standard sonar cross section (SCS), or in a radar cross section (RCS) and (2) extract target information that may be difficult to even notice in an ordinary SCS or RCS. After a brief review of the fundamental properties of themore » WD, the authors discuss ways to reduce or suppress the cross term interference that appears in the WD of multicomponent systems. These points are illustrated with a variety of three-dimensional (3-D) plots of Wigner and pseudo-Wigner distributions (PWD), in which the strength of the distribution is depicted as the height of a Wigner surface with height scales measured by various color shades or pseudocolors. The authors also review studies they have made of the echoes returned by conducting or dielectric targets in the atmosphere, when they are illuminated by broadband radar pings. A TF domain analysis of these impulse radar returns demonstrates their superior informative content. These plots allow the identification of targets in an easier and clearer fashion than by the conventional RCS of narrowband systems. The authors show computed and measured plots of WD and PWD of various types of aircraft to illustrate the classification advantages of the approach at any aspect angle. They also show analogous results for metallic objects buried underground, in dielectric media, at various depths.« less

  14. A Physically Based Algorithm for Non-Blackbody Correction of Cloud-Top Temperature and Application to Convection Study

    NASA Technical Reports Server (NTRS)

    Wang, Chunpeng; Lou, Zhengzhao Johnny; Chen, Xiuhong; Zeng, Xiping; Tao, Wei-Kuo; Huang, Xianglei

    2014-01-01

    Cloud-top temperature (CTT) is an important parameter for convective clouds and is usually different from the 11-micrometers brightness temperature due to non-blackbody effects. This paper presents an algorithm for estimating convective CTT by using simultaneous passive [Moderate Resolution Imaging Spectroradiometer (MODIS)] and active [CloudSat 1 Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)] measurements of clouds to correct for the non-blackbody effect. To do this, a weighting function of the MODIS 11-micrometers band is explicitly calculated by feeding cloud hydrometer profiles from CloudSat and CALIPSO retrievals and temperature and humidity profiles based on ECMWF analyses into a radiation transfer model.Among 16 837 tropical deep convective clouds observed by CloudSat in 2008, the averaged effective emission level (EEL) of the 11-mm channel is located at optical depth; approximately 0.72, with a standard deviation of 0.3. The distance between the EEL and cloud-top height determined by CloudSat is shown to be related to a parameter called cloud-top fuzziness (CTF), defined as the vertical separation between 230 and 10 dBZ of CloudSat radar reflectivity. On the basis of these findings a relationship is then developed between the CTF and the difference between MODIS 11-micrometers brightness temperature and physical CTT, the latter being the non-blackbody correction of CTT. Correction of the non-blackbody effect of CTT is applied to analyze convective cloud-top buoyancy. With this correction, about 70% of the convective cores observed by CloudSat in the height range of 6-10 km have positive buoyancy near cloud top, meaning clouds are still growing vertically, although their final fate cannot be determined by snapshot observations.

  15. Polarimetric radar convective cell tracking reveals large sensitivity of cloud precipitation and electrification properties to CCN

    NASA Astrophysics Data System (ADS)

    Hu, J.; Rosenfeld, D.; Zhang, P.; Snyder, J.; Orville, R. E.; Ryzhkov, A.; Zrnic, D.; Williams, E. R.; Zhang, R.

    2017-12-01

    Here we apply the cell tracking methodology, shown in our companion poster, to quantifying factors affecting the vigor and the time-height evolution of hydrometeors and electrification properties of convective cells. Benefitting from the Dual-polarimetric NEXRAD radar network, we composite more than 5000 well-tracked cells among three radars (at Houston, Lubbock and Oklahoma City), stratified by CCN, CAPE and land/sea locations. The analyzed cell properties include Z, ZDR, Kdp, and ρhv, Dm (raindrop diameter) and Nw (raindrop concentration) by the algorithm of Bringi et al. (2003). Lightning Mapping Array (LMA) data is also included in the analysis, which provides a 3D structure of lightning occurrence and RF power. The contrasting CCN conditions over marine, land, pristine and polluted areas are identified based on the satellite retrieval technique described in Rosenfeld et al. (2016). The results show that more CCN are associated with: Increased echo top height, manifesting the invigoration effect. Enhanced reflectivities, especially above the freezing level at around 4.5 km. Raindrop sizes at the initial stage increase at the expense of their concentrations, due to the smaller cloud droplets and suppressed coalescence. Larger propensity for hail. Lightning sources increase with greater CCN concentration and is likely due to the delayed warm rain process and enhanced mixed phase process under more CCN condition, when activated CCN into cloud droplets is too high (> 1000 cm-3) the glaciation is delayed too much and leave little ice at lower levels and thus decrease lightning activity. Land pristine clouds have fewer lightning sources than polluted clouds. Marine pristine clouds seldom have lightning Increased CAPE had a similar effect to the effect of added CCN. The cloud tracking and properties are obtained by a new methodology of Multi-Cell Identification and Tracking (MCIT) algorithm (Hu et al, 2017), with details about the algorithm to be found in the author's accompanying poster session. References [1] Bringi, V. et al., J. Atmos. Sci., 60, 354-365. (2003) [2] Rosenfeld, D. et al., Proc. Natl. Acad. Sci., 113, 5828-5834. (2016) [3] Hu, J. et al., in preparation.

  16. Hurricanes Frances and Ivan

    Atmospheric Science Data Center

    2014-05-15

    ... Image NASA's Multi-angle Imaging SpectroRadiometer (MISR) captured these images and cloud-top height retrievals of Hurricane ... especially on the 24 to 48 hour timescale vital for disaster planning. To improve the operational models used to make hurricane ...

  17. Hurricane Wilma

    Atmospheric Science Data Center

    2014-05-15

    ... Information on cloud top heights at different stages in the life cycle of the rapidly intensifying Hurricane Wilma may prove useful for ... NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed ...

  18. The Use of High-Resolution Pléiades Images to Extract Volcanic-Cloud Top Heights and Plume Elevation Models: examples on Mount Etna (Italy) and Mount Ontake (Japan)

    NASA Astrophysics Data System (ADS)

    de Michele, Marcello; Raucoules, Daniel; Corradini, Stefano; Merucci, Luca; spinetti, claudia

    2017-04-01

    Accurate and spatially-detailed knowledge of Volcanic Cloud Top Height (VCTH) and velocity is crucial in volcanology. As an example, the ash/gas dispersion in the atmosphere, their impact and lifetime around the globe, greatly depends on the injection altitude. The VCTH is critical for ash dispersion modelling and air traffic security. Furthermore, the volcanic plume height during explosive volcanism is the primary parameter for estimating mass eruption rate. Satellite remote sensing offers a comprehensive and safe way to estimate VCTH. Recently, it has been shown that high spatial resolution optical imagery from Landsat-8 OLI sensor can be used to extract Volcanic Cloud Top Height with a precision of 250 meters and an accuracy or 300m (de Michele et al., 2016). This method allows to extract a Plume Elevation Model (PEM) by jointly measuring the parallax between two optical bands acquired with a time lag varying from 0.1 to 2.5 seconds depending on the bands chosen and the sensors employed. The measure of the parallax is biased because the volcanic cloud is moving between the two images acquisitions, even if the time lag is short. The precision of our measurements is enhanced by compensating the parallax by measuring the velocity of the volcanic cloud in the perpendicular-to-epipolar direction (which is height independent) and correcting the initial parallax measurement. In this study, we push this methodology forward. We apply it to the very high spatial resolution Pleiades data (1m pixel spacing) provided by the French Space Agency (CNES). We apply the method on Mount Etna, during the 05 September 2015 eruptive episode and on Mount Ontake eruption occurring on 30 September 2014. We are able to extract VCTH as a PEM with high spatial resolution and improved precision. Since Pléiades has an improved revisit time (1day), our method has potential for routine monitoring of volcanic plumes in clear sky conditions and when the VCTH is higher than meteo clouds.

  19. The changes of the forests dendroproduction in the Carpathian basin - case study: Quercus petraea

    NASA Astrophysics Data System (ADS)

    Berki, Imre; Gulyás, Krisztina; Veperdi, Gábor

    2017-04-01

    There are a lot of publications about the accelerated forest growth in West-and North- Europe due to global climate change, elevated atmospheric carbon-dioxide and nitrogen input. However, in Central-Europe the increasing tendency of extremely dry periods caused mass mortality of forest formed tree species, and triggered slower or indefinite growth trends. In this study our scientific questions were the followings: • Which are the characteristic mechanism in the south-east part of Central -Europe: forest decay, accelerated growth or both? • What are the expected impacts of climate change on sessile oak production? • Are there any differences between a humid and an arid landscapes tree height growth? Method for measuring the changes of growth in humid landscapes: Top height of the stands is a good indicator of the site condition with high stand density. So this indicator can be used to measure the changes of growth in humid stands, where the drought periods caused not considerable tree decay. We have been measured a young and old sessile oak stands next to each other along a humid-arid climatic transect in Hungary. The old stands representing the "pre-climate change" conditions, when the annual temperature means, and the frequency of droughts were lower. The young stands have been lived their whole lifetime in changed atmospheric condition. Compared the top height of the young and old stand to the yield tables we can establish a soft accelerated growth in the last decades in the humid landscapes. Method for measuring the changes of growth in dry landscapes: Top height of thinned forests due to tree decay do not indicate the changed atmospheric condition. Although the volume of the survived trees has been increased (compared to yield tables) due to accelerated diameter growth, the production of the thinned Quercus petraea forests have been decreased. Keywords: tree height growth, nitrogen input, humid-arid climatic transect Acknowledgements: Research is supported by the ÚNKP-16-3-3 New National Excellence Program of the Ministry of Human Capacities and the "Agroclimate.2" (VKSZ_12-1-2013-0034) EU-national joint funded projects.

  20. Echoes from the Past - Lessons for the Future: A Vietnam Oral History.

    DTIC Science & Technology

    1988-03-30

    from the water station pretty regularly. Along about 7 or 8 o’clock you could find yourself with a head full of shampoo and no way to get it out. So...stateside hospital to help establish the 91st EVAC in 7 Vietnam. As a result, many ties had already been formed. As the head nurse of a medical surgical...shower consisted of a shower head hanging up there and you pulled this chain and the water came out of the tank on the top cf it. If the sun was

  1. Multiple Convective Cell Identification and Tracking Algorithm for documenting time-height evolution of measured polarimetric radar and lightning properties

    NASA Astrophysics Data System (ADS)

    Rosenfeld, D.; Hu, J.; Zhang, P.; Snyder, J.; Orville, R. E.; Ryzhkov, A.; Zrnic, D.; Williams, E.; Zhang, R.

    2017-12-01

    A methodology to track the evolution of the hydrometeors and electrification of convective cells is presented and applied to various convective clouds from warm showers to super-cells. The input radar data are obtained from the polarimetric NEXRAD weather radars, The information on cloud electrification is obtained from Lightning Mapping Arrays (LMA). The development time and height of the hydrometeors and electrification requires tracking the evolution and lifecycle of convective cells. A new methodology for Multi-Cell Identification and Tracking (MCIT) is presented in this study. This new algorithm is applied to time series of radar volume scans. A cell is defined as a local maximum in the Vertical Integrated Liquid (VIL), and the echo area is divided between cells using a watershed algorithm. The tracking of the cells between radar volume scans is done by identifying the two cells in consecutive radar scans that have maximum common VIL. The vertical profile of the polarimetric radar properties are used for constructing the time-height cross section of the cell properties around the peak reflectivity as a function of height. The LMA sources that occur within the cell area are integrated as a function of height as well for each time step, as determined by the radar volume scans. The result of the tracking can provide insights to the evolution of storms, hydrometer types, precipitation initiation and cloud electrification under different thermodynamic, aerosol and geographic conditions. The details of the MCIT algorithm, its products and their performance for different types of storm are described in this poster.

  2. Interpretation of cirrus cloud properties using coincident satellite and lidar data during the FIRE cirrus IFO

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Alvarez, Joseph M.; Young, David F.; Sassen, Kenneth; Grund, Christian J.

    1990-01-01

    The First ISCCP Regional Experiment (FIRE) Cirrus Intensive Field Observations (IFO) provide an opportunity to examine the relationships between the satellite observed radiances and various parameters which describe the bulk properties of clouds, such as cloud amount and cloud top height. Lidar derived cloud altitude data, radiosonde data, and satellite observed radiances are used to examine the relationships between visible reflectance, infrared emittance, and cloud top temperatures for cirrus clouds.

  3. Total height volume tables for western hemlock, sitka spruce and young-growth Douglas-fir (based on 32-foot logs and an 8-inch top).

    Treesearch

    Harold A. Rapraeger

    1952-01-01

    In the Pacific Northwest logs are often scaled in lengths which average about 32 feet to facilitate logging. Although several excellent Western hemlock, Sitka spruce and Douglas-fir volume tables based on a 32-foot scaling length have been available for some time, they provide for a larger top diameter than is now used in actual practice. Other tables specify a...

  4. New Data Source for Studying and Modelling the Topside Ionosphere

    NASA Technical Reports Server (NTRS)

    Huang, Xue-Qin; Reinisch, Bodo; Bilitza, Dieter; Benson, Robert

    2001-01-01

    The existing uncertainties about density profiles in the topside ionosphere, i.e., in the height regime from hmF2 to approx. 2000 km, requires the search for new data sources. Millions of ionograms had been recorded by the ISIS and Alouette satellites in the sixties and seventies, that never were analyzed in terms of electron density profiles. In recent years an effort started to digitize the analog recordings to prepare the ionograms for computerized analysis. This paper shows how the digital ionograms are processed and the electron density profiles (from satellite orbit altitude, 1400 km for ISIS-2, down to the F peak) are calculated. The most difficult part of the task is the automatic scaling of the echo traces in the ISIS ionograms. Unlike the ionograms from modern ionosondes, the ISIS ionograms do not identify the wave polarization of the different echo traces, so physical logic must be applied to identify the ordinary ()) and extraordinary (X) traces, and this is not always successful. Characteristic resonance features seen in the topside ionograms occur at the gyro and plasma frequencies. An elaborate scheme was developed to identify these resonance frequencies in order to determine the local plasma and gyrofrequencies. This information helps in the identification of the O and X traces, and it provides the starting density of the electron density profile. The inversion of the echo traces into electron density profiles uses the same modified Chebyshev polynomial fitting technique that is successfully applied in the ground-based Digisonde network. The automatic topside ionogram scaler with true height algorithm TOPIST is successfully scaling approx. 70% of the ionograms. An 'editing process' is available to manually scale the more difficult ionograms. The home page for the ISIS project is at http://nssdc.gsfc.nasa.gov/space/isis/isis-status.html. It provides access to as of January 2001, 3000,000 digitized ISIS ionogram data and to related software. A search page lets users select data location, time, and a host of other search criteria. The automated processing of the ISIS ionograms will begin later this year and the electron density profiles will be made available from the project home page. The ISIS data restoration efforts are supported through NASA's Applied Systems and Information Research Program.

  5. Evaluating Lightning-generated NOx (LNOx) Parameterization based on Cloud Top Height at Resolutions with Partially-resolved Convection for Upper Tropospheric Chemistry Studies

    NASA Astrophysics Data System (ADS)

    Wong, J.; Barth, M. C.; Noone, D. C.

    2012-12-01

    Lightning-generated nitrogen oxides (LNOx) is an important precursor to tropospheric ozone production. With a meteorological time-scale variability similar to that of the ozone chemical lifetime, it can nonlinearly perturb tropospheric ozone concentration. Coupled with upper-air circulation patterns, LNOx can accumulate in significant amount in the upper troposphere with other precursors, thus enhancing ozone production (see attached figure). While LNOx emission has been included and tuned extensively in global climate models, its inclusions in regional chemistry models are seldom tested. Here we present a study that evaluates the frequently used Price and Rind parameterization based on cloud-top height at resolutions that partially resolve deep convection using the Weather Research and Forecasting model with Chemistry (WRF-Chem) over the contiguous United States. With minor modifications, the parameterization is shown to generate integrated flash counts close to those observed. However, the modeled frequency distribution of cloud-to-ground flashes do not represent well for storms with high flash rates, bringing into question the applicability of the intra-cloud/ground partitioning (IC:CG) formulation of Price and Rind in some studies. Resolution dependency also requires attention when sub-grid cloud-tops are used instead of the originally intended grid-averaged cloud-top. LNOx passive tracers being gathered by monsoonal upper tropospheric anticyclone.

  6. Are We Reaching the Limits of Homo sapiens?

    PubMed Central

    Marck, Adrien; Antero, Juliana; Berthelot, Geoffroy; Saulière, Guillaume; Jancovici, Jean-Marc; Masson-Delmotte, Valérie; Boeuf, Gilles; Spedding, Michael; Le Bourg, Éric; Toussaint, Jean-François

    2017-01-01

    Echoing scientific and industrial progress, the Twentieth century was an unprecedented period of improvement for human capabilities and performances, with a significant increase in lifespan, adult height, and maximal physiological performance. Analyses of historical data show a major slow down occurring in the most recent years. This triggered large and passionate debates in the academic scene within multiple disciplines; as such an observation could be interpreted as our upper biological limits. Such a new phase of human history may be related to structural and functional limits determined by long term evolutionary constraints, and the interaction between complex systems and their environment. In this interdisciplinary approach, we call into question the validity of subsequent forecasts and projections through innovative and related biomarkers such as sport, lifespan, and height indicators. We set a theoretical framework based on biological and environmental relevance rather than using a typical single-variable forecasting approach. As demonstrated within the article, these new views will have major social, economical, and political implications. PMID:29123486

  7. Are We Reaching the Limits of Homo sapiens?

    PubMed

    Marck, Adrien; Antero, Juliana; Berthelot, Geoffroy; Saulière, Guillaume; Jancovici, Jean-Marc; Masson-Delmotte, Valérie; Boeuf, Gilles; Spedding, Michael; Le Bourg, Éric; Toussaint, Jean-François

    2017-01-01

    Echoing scientific and industrial progress, the Twentieth century was an unprecedented period of improvement for human capabilities and performances, with a significant increase in lifespan, adult height, and maximal physiological performance. Analyses of historical data show a major slow down occurring in the most recent years. This triggered large and passionate debates in the academic scene within multiple disciplines; as such an observation could be interpreted as our upper biological limits. Such a new phase of human history may be related to structural and functional limits determined by long term evolutionary constraints, and the interaction between complex systems and their environment. In this interdisciplinary approach, we call into question the validity of subsequent forecasts and projections through innovative and related biomarkers such as sport, lifespan, and height indicators. We set a theoretical framework based on biological and environmental relevance rather than using a typical single-variable forecasting approach. As demonstrated within the article, these new views will have major social, economical, and political implications.

  8. Estimating the top altitude of optically thick ice clouds from thermal infrared satellite observations using CALIPSO data

    NASA Astrophysics Data System (ADS)

    Minnis, Patrick; Yost, Chris R.; Sun-Mack, Sunny; Chen, Yan

    2008-06-01

    The difference between cloud-top altitude Z top and infrared effective radiating height Z eff for optically thick ice clouds is examined using April 2007 data taken by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and the Moderate-Resolution Imaging Spectroradiometer (MODIS). For even days, the difference ΔZ between CALIPSO Z top and MODIS Z eff is 1.58 +/- 1.26 km. The linear fit between Z top and Z eff , applied to odd-day data, yields a difference of 0.03 +/- 1.21 km and can be used to estimate Z top from any infrared-based Z eff for thick ice clouds. Random errors appear to be due primarily to variations in cloud ice-water content (IWC). Radiative transfer calculations show that ΔZ corresponds to an optical depth of ~1, which based on observed ice-particle sizes yields an average cloud-top IWC of ~0.015 gm-3, a value consistent with in situ measurements. The analysis indicates potential for deriving cloud-top IWC using dual-satellite data.

  9. Electrowetting in a water droplet with a movable floating substrate

    NASA Astrophysics Data System (ADS)

    Shahzad, Amir; Masud, A. R.; Song, Jang-Kun

    2016-05-01

    Electrowetting (EW) enables facile manipulation of a liquid droplet on a hydrophobic surface. In this study, manipulation of an electrolyte droplet having a small floating object on it was investigated on a solid hydrophobic substrate under the EW process. Herein, the floating object exhibited a vertical motion under an applied electric field owing to the spreading and contraction of the droplet on its connecting substrates. The field-induced height variation of the floating object was significantly influenced by the thicknesses of the dielectric and hydrophobic materials. A small mass was also placed on the top floating object and its effect on the spreading of the droplet was observed. In this system, the height of the top floating object is precisely controllable under the application of an electric voltage. The proposed system is expected to be highly useful in the design of nano- and micro-oscillatory systems for microengineering.

  10. Electrowetting in a water droplet with a movable floating substrate.

    PubMed

    Shahzad, Amir; Masud, A R; Song, Jang-Kun

    2016-05-01

    Electrowetting (EW) enables facile manipulation of a liquid droplet on a hydrophobic surface. In this study, manipulation of an electrolyte droplet having a small floating object on it was investigated on a solid hydrophobic substrate under the EW process. Herein, the floating object exhibited a vertical motion under an applied electric field owing to the spreading and contraction of the droplet on its connecting substrates. The field-induced height variation of the floating object was significantly influenced by the thicknesses of the dielectric and hydrophobic materials. A small mass was also placed on the top floating object and its effect on the spreading of the droplet was observed. In this system, the height of the top floating object is precisely controllable under the application of an electric voltage. The proposed system is expected to be highly useful in the design of nano- and micro-oscillatory systems for microengineering.

  11. Sensitivity analysis of upwelling thermal radiance in presence of clouds

    NASA Technical Reports Server (NTRS)

    Subramanian, S. V.; Tiwari, S. N.; Suttles, J. T.

    1981-01-01

    Total upwelling radiance at the top of the atmosphere is evaluated theoretically in the presence of clouds. The influence of cloud heights, thicknesses and different cloud covers on the upwelling radiance is also investigated. The characteristics of the two cloud types considered in this study closely correspond to altocumulus and cirrus with the cloud emissivity as a function of its liquid water (or ice) content. For calculation of the integrated transmittance of atmospheric gases such as, H2O, CO2, O3, and N2O, the Quasi Random Band (QRB) model approach is adopted. Results are obtained in three different spectral ranges and are compared with the clearsky radiance results. It is found that the difference between the clearsky and cloudy radiance increases with increasing cloud height and liquid water content. This difference also decreases as the surface temperature approaches the value of the cloud top temperature.

  12. Combined Infrared Stereo and Laser Ranging Cloud Measurements from Shuttle Mission STS-85

    NASA Technical Reports Server (NTRS)

    Lancaster, R. S.; Spinhirne, J. D.; Manizade, K. F.

    2004-01-01

    Multiangle remote sensing provides a wealth of information for earth and climate monitoring, such as the ability to measure the height of cloud tops through stereoscopic imaging. As technology advances so do the options for developing spacecraft instrumentation versatile enough to meet the demands associated with multiangle measurements. One such instrument is the infrared spectral imaging radiometer, which flew as part of mission STS-85 of the space shuttle in 1997 and was the first earth- observing radiometer to incorporate an uncooled microbolometer array detector as its image sensor. Specifically, a method for computing cloud-top height with a precision of +/- 620 m from the multispectral stereo measurements acquired during this flight has been developed, and the results are compared with coincident direct laser ranging measurements from the shuttle laser altimeter. Mission STS-85 was the first space flight to combine laser ranging and thermal IR camera systems for cloud remote sensing.

  13. Frequency and morphology of tropical tropopause layer cirrus from CALIPSO observations: Are isolated cirrus different from those connected to deep convection?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riihimaki, Laura D.; McFarlane, Sally A.

    2010-09-16

    Tropical Tropopause Layer cirrus (TTLC) profiles identified from CALIPSO LIDAR measurements are grouped into cloud objects and classified according to whether or not they are connected to deep convection. TTLC objects connected to deep convection are optically and physically thicker than isolated objects, consistent with what would be expected if connected objects were formed from convective detrainment and isolated objects formed in situ. In the tropics (±20 Latitude), 36% of TTLC profiles are classified as connected to deep convection, 43% as isolated, and the remaining 21% are part of lower, thicker cirrus clouds. Regions with higher occurence of deep convectionmore » also have higher occurrence of TTLC, and a greater percentage of those TTLC are connected to deep convection. Cloud top heights of both isolated and connected clouds are distributed similarly with respect to the height of the cold point tropopause. No difference in thickness or optical depth was found between TTLC above deep convection or above clear sky, though both cloud base and top heights are higher over deep convection than over clear sky.« less

  14. Extraction of convective cloud parameters from Doppler Weather Radar MAX(Z) product using Image Processing Technique

    NASA Astrophysics Data System (ADS)

    Arunachalam, M. S.; Puli, Anil; Anuradha, B.

    2016-07-01

    In the present work continuous extraction of convective cloud optical information and reflectivity (MAX(Z) in dBZ) using online retrieval technique for time series data production from Doppler Weather Radar (DWR) located at Indian Meteorological Department, Chennai has been developed in MATLAB. Reflectivity measurements for different locations within the DWR range of 250 Km radii of circular disc area can be retrieved using this technique. It gives both time series reflectivity of point location and also Range Time Intensity (RTI) maps of reflectivity for the corresponding location. The Graphical User Interface (GUI) developed for the cloud reflectivity is user friendly; it also provides the convective cloud optical information such as cloud base height (CBH), cloud top height (CTH) and cloud optical depth (COD). This technique is also applicable for retrieving other DWR products such as Plan Position Indicator (Z, in dBZ), Plan Position Indicator (Z, in dBZ)-Close Range, Volume Velocity Processing (V, in knots), Plan Position Indicator (V, in m/s), Surface Rainfall Intensity (SRI, mm/hr), Precipitation Accumulation (PAC) 24 hrs at 0300UTC. Keywords: Reflectivity, cloud top height, cloud base, cloud optical depth

  15. [Effect of greenbelt on pollutant dispersion in street canyon].

    PubMed

    Xu, Wei-Jia; Xing, Hong; Yu, Zhi

    2012-02-01

    The effect feature of greenbelt on flow field and pollutant dispersion in urban street canyon was researched. The greenbelt was assumed as uniform porous media and its aerodynamics property defined by the pressure loss coefficient. Subsequently, the pollutant dispersion in the street canyon of which there was greenbelt in the middle was simulated with the steady-state standard kappa-epsilon turbulence model and species transport equation. The simulated results agreed well with the wind-tunnel data. Compared with the treeless case, it finds that the street canyon contain a clockwise vortex, the pollutant concentration of the leeward was several times than the windward and the growth rate of pollutant concentration was 46.0%. The further simulation for the impact of tree crown position on the airflow and pollutant dispersion finds that the height of major vortex center in the street canyon increases with the height of tree crown and gradually closes the top of windward building This causes that the average wind speed in the street canyon decreases. Especially when the top of tree crown over the roof and hinder the air flow above the street canyon, the average pollutant concentration increases with the height of tree crown rapidly.

  16. Lodging Resistance of Japonica Rice (Oryza Sativa L.): Morphological and Anatomical Traits due to top-Dressing Nitrogen Application Rates.

    PubMed

    Zhang, Wujun; Wu, Longmei; Wu, Xiaoran; Ding, Yanfeng; Li, Ganghua; Li, Jingyong; Weng, Fei; Liu, Zhenghui; Tang, She; Ding, Chengqiang; Wang, Shaohua

    2016-12-01

    Lodging in rice production often limits grain yield and quality by breaking or bending stems. Excessive nitrogen (N) fertilizer rates are the cause of poor lodging resistance in rice, but little is known about the effect of top-dressing N application rates on the mechanical strength of japonica rice plants, especially how the anatomical structure in culms is affected by N. In this study, field experiments on two japonica rice varieties with three top-dressing N application rates, 0 kg N ha(-1) (LN), 135 kg N ha(-1) (MN), and 270 kg N ha(-1) (HN) as urea, were conducted. Wuyunjing23, a lodging-resistant japonica rice cultivar and W3668, a lodging-susceptible japonica rice cultivar were used. The lodging index, breaking strength, morphological and anatomical traits in culms were measured in this study. The visual lodging rate in japonica rice differed remarkably between genotypes and top-dressing N treatments. The higher lodging index of rice plants was primarily attributed to the weak breaking strength of the lower internodes. The longer elongated basal internodes were responsible for higher plant height and a higher lodging index. Correlation analysis showed that breaking strength was significantly and positively correlated with the thickness of the mechanical tissue but was significantly and negatively correlated with the inner diameter of the major axis (b2). With increasing top-dressing N rates, the sclerenchyma cells of the mechanical tissues and the vascular bundles of the Wuyunjing23 cultivar varied little. The plant height, inner diameter of the minor axis (a2) and b2 increased significantly, but the area of the large vascular bundle (ALVB) and the area of the small vascular bundle (ASVB) decreased significantly and resulted in lower stem strength and a higher lodging index under higher top-dressing N conditions. The culm diameter of the W3668 cultivar increased slightly with no significant difference, and the sclerenchyma cells in the mechanical tissues and vascular bundles showed deficient lignifications under high top-dressing N conditions. Moreover, the ALVB and the ASVB decreased significantly, while the area of air chambers (AAC) increased rapidly. An improvement in the lodging resistance of japonica rice plants could be achieved by reducing the length of the lower internodes, decreasing the inner culm diameter and developing a thicker mechanical tissue. Top-dressing N application increased the plant height and inner culm diameter and decreased the ALVB and the ASVB of the Wuyunjing23 cultivar and caused deficient lignified sclerenchyma cells, lowered the ALVB and the ASVB, and increased the AAC of the W3668 cultivar resulting in weaker stem strength and a higher lodging index.

  17. Addressing FinFET metrology challenges in 1X node using tilt-beam CD-SEM

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxiao; Zhou, Hua; Ge, Zhenhua; Vaid, Alok; Konduparthi, Deepasree; Osorio, Carmen; Ventola, Stefano; Meir, Roi; Shoval, Ori; Kris, Roman; Adan, Ofer; Bar-Zvi, Maayan

    2014-04-01

    At 1X node, 3D FinFETS raise a number of new metrology challenges. Gate height and fin height are two of the most important parameters for process control. At present there is a metrology gap in inline in-die measurement of these parameters. In order to fill this metrology gap, in-column beam tilt has been developed and implemented on Applied Materials V4i+ top-down CD-SEM for height measurement. A low tilt (5°) beam and a high tilt (14°) beam have been calibrated to obtain two sets of images providing measurement of sidewall edge width to calculate height in the host. Evaluations are done with applications in both gate height and fin height. TEM correlation with R2 being 0.89 and precision of 0.81nm have been achieved on various in-die features in gate height application. Fin height measurement shows less accuracy (R2 being 0.77) and precision (1.49 nm) due to challenges brought by fin geometry, yet still promising as first attempt. Sensitivity to DOE offset, die-to-die and in-die variation is demonstrated in both gate height and fin height. Process defect is successfully captured from inline wafers with gate height measurement implemented in production. This is the first successful demonstration of inline in-die gate height measurement for 14nm FinFET process control.

  18. Code Description for Generation of Meteorological Height and Pressure Level and Layer Profiles

    DTIC Science & Technology

    2016-06-01

    defined by user input height or pressure levels. It can process input profiles from sensing systems such as radiosonde, lidar, or wind profiling radar...nearly the same way, but the split between wind and temperature/humidity (TH) special levels leads to some changes to one other routine. If changes are...top of the sounding, sometimes the moisture, the thermal, both thermal and moisture, and/or the wind data are missing. Missing data items in the

  19. Synergy of stereo cloud top height and ORAC optimal estimation cloud retrieval: evaluation and application to AATSR

    NASA Astrophysics Data System (ADS)

    Fisher, Daniel; Poulsen, Caroline A.; Thomas, Gareth E.; Muller, Jan-Peter

    2016-03-01

    In this paper we evaluate the impact on the cloud parameter retrievals of the ORAC (Optimal Retrieval of Aerosol and Cloud) algorithm following the inclusion of stereo-derived cloud top heights as a priori information. This is performed in a mathematically rigorous way using the ORAC optimal estimation retrieval framework, which includes the facility to use such independent a priori information. Key to the use of a priori information is a characterisation of their associated uncertainty. This paper demonstrates the improvements that are possible using this approach and also considers their impact on the microphysical cloud parameters retrieved. The Along-Track Scanning Radiometer (AATSR) instrument has two views and three thermal channels, so it is well placed to demonstrate the synergy of the two techniques. The stereo retrieval is able to improve the accuracy of the retrieved cloud top height when compared to collocated Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), particularly in the presence of boundary layer inversions and high clouds. The impact of the stereo a priori information on the microphysical cloud properties of cloud optical thickness (COT) and effective radius (RE) was evaluated and generally found to be very small for single-layer clouds conditions over open water (mean RE differences of 2.2 (±5.9) microns and mean COD differences of 0.5 (±1.8) for single-layer ice clouds over open water at elevations of above 9 km, which are most strongly affected by the inclusion of the a priori).

  20. Characteristics and possible formation mechanisms of severe storms in the outer rainbands of Typhoon Mujiga (1522)

    NASA Astrophysics Data System (ADS)

    Wang, Bingyun; Wei, Ming; Hua, Wei; Zhang, Yongli; Wen, Xiaohang; Zheng, Jiafeng; Li, Nan; Li, Han; Wu, Yu; Zhu, Jie; Zhang, Mingjun

    2017-06-01

    To better understand how severe storms form and evolve in the outer rainbands of typhoons, in this study, we investigate the evolutionary characteristics and possible formation mechanisms for severe storms in the rainbands of Typhoon Mujigae, which occurred during 2-5 October 2015, based on the NCEP-NCAR reanalysis data, conventional observations, and Doppler radar data. For the rainbands far from the inner core (eye and eyewall) of Mujigae (distance of approximately 70-800 km), wind speed first increased with the radius expanding from the inner core, and then decreased as the radius continued to expand. The Rankine Vortex Model was used to explore such variations in wind speed. The areas of strong stormy rainbands were mainly located in the northeast quadrant of Mujigae, and overlapped with the areas of high winds within approximately 300-550 km away from the inner core, where the strong winds were conducive to the development of strong storms. A severe convective cell in the rainbands developed into waterspout at approximately 500 km to the northeast of the inner core, when Mujigae was strengthening before it made landfall. Two severe convective cells in the rainbands developed into two tornadoes at approximately 350 km to the northeast of the inner core after Mujigae made landfall. The radar echo bands enhanced to 60 dBZ when mesocyclones occurred in the rainbands and induced tornadoes. The radar echoes gradually weakened after the mesocyclones weakened. The tops of parent clouds of the mesocyclones elevated at first, and then suddenly dropped about 20 min before the tornadoes appeared. Thereby, the cloud top variation has the potential to be used as an early warning of tornado occurrence.

  1. Prospective study of body mass index, height, physical activity and incidence of bladder cancer in US men and women.

    PubMed

    Holick, Crystal N; Giovannucci, Edward L; Stampfer, Meir J; Michaud, Dominique S

    2007-01-01

    We evaluated prospectively the association between body mass index (BMI), height, recreational physical activity and the risk of bladder cancer among US adults. Data were used from 2 ongoing cohorts, the Health Professionals Follow-up Study and the Nurses' Health Study, with 3,542,012 years of follow-up and 866 incident bladder cancer cases (men = 507; women = 359) for the anthropometric analysis and 1,890,476 years of follow-up and 706 incident bladder cancer cases (men = 502; women = 204) for the physical activity analysis. Cox proportional hazard models were used to estimate incidence rate ratios (RR) and 95% confidence intervals (CI) between BMI, height, physical activity and bladder cancer risk adjusting for age, pack-years of cigarette smoking and current smoking. Estimates from each cohort were pooled using a random-effects model. We observed no association between baseline BMI and bladder cancer risk, even when we compared a BMI of > or =30 kg/m(2) to a BMI of 18-22.9 kg/m(2) [pooled multivariate (MV) RR, 1.16; 95% CI: 0.89-1.52]. A weak, but statistically significant, association was observed for the same comparison after excluding bladder cancer cases diagnosed within the first 4 years of follow-up (pooled MV RR, 1.33; 95% CI: 1.01-1.76). Height was not related to bladder cancer risk (pooled MV RR, 0.82; 95% CI: 0.65-1.03, top vs. bottom quintile). Total recreational physical activity also was not associated with the risk of bladder cancer (pooled MV RR, 0.97; 95% CI: 0.77-1.24, top vs. bottom quintile). Our findings do not support a role for BMI, height or physical activity in bladder carcinogenesis.

  2. Shaded Relief with Height as Color and Landsat, Yucatan Peninsula, Mexico

    NASA Image and Video Library

    2003-03-06

    The top picture is a shaded relief image of the northwest corner of Mexico Yucatan Peninsula generated from NASA Shuttle Radar Topography Mission SRTM data, and shows a subtle, but unmistakable, indication of the Chicxulub impact crater.

  3. Measuring levee elevation heights in North Louisiana.

    DOT National Transportation Integrated Search

    2010-01-01

    The primary goals of this research are to measure the elevation and centerline coordinates of the top of federal and local levees and also to ensure that the resulting global positioning system (GPS) measurement data is within a precision interval of...

  4. Atmospheric parameters in the mesosphere and lower thermosphere estimated using the Platteville, CO (40°N, 105°W) interferometric meteor radars

    NASA Astrophysics Data System (ADS)

    de La Pena, Santiago

    Two interferometric meteor radars operating at different frequencies have been collecting data for several years at the Platteville Atmospheric Observatory. Meteor decay rates measured by the two systems have been analyzed with the purpose of comparing estimates of the ambipolar diffusion in meteors made with the radars. Ambipolar diffusion is the main dispersion process for meteors. Due to its dependence on atmospheric conditions, it has been used in recent studies to estimate meteor height, and atmospheric temperature and pressure. The results of the comparison made shed light on the conditions under which meteor decay rates can be used to estimate ambipolar diffusion. The response of the two systems to sporadic and shower meteor activity was analyzed and discussed. The radars show similar temporal distributions of the echoes detected from meteor trails, but present some differences in the spatial distribution. The Statistics of the data collected by the radars present differences in the meteor echo spatial distribution between sporadic meteor activity and meteor shower events. Observations of a strong 2001 Leonid meteor storm were presented. A difference in the maximum altitude at which the radars detect meteors was seen. This limit in height is caused by a geophysical effect commonly known as meteor echo ceiling. Six years of horizontal wind estimates near the mesopause obtained from the meteor radars have been analyzed with the objective of studying the spatial and seasonal variability of the main tidal components identified in the wind structure. Interferometric capabilities allowed the estimation of the location of the detected meteor echoes, effectively providing vertical profiles of horizontal wind estimates. Spectral and harmonic analyses were made on the horizontal wind averages, and the main tidal components were identified. Diurnal and semidiurnal oscillations were found persistently, and six, 8, and 48 hour oscillations were more intermittent, but still present. A monthly climatology of the diurnal and semidiurnal tides is presented. Vertical profiles provide insight on the source and propagation characteristics of the different tides. Monthly averages of the 12 and 24 hour tides amplitudes and phases were analyzed. An 8-hour tide and a 2-day wave were analyzed when present. A linear interaction of the diurnal and semidiurnal tides was suggested as a possible cause of an 8-hour oscillation. Tidal observations were compared with the National Center for Atmospheric Research's Global Scale Wave Model (GSWM). Good agreement was found for the diurnal tide phase progression below 85-90 km. The observed diurnal tide amplitude is significantly smaller than the model predictions, especially in the meridional direction, suggesting smaller non-migrating tides. The observed semidiurnal tide amplitudes are similar to the model predictions for fall and winter, although strong amplitudes are observed during the summer months, when almost no semidiurnal tide is predicted. The observed semidiurnal tide phase progression appears irregular at times, suggesting the presence of non-migrating semidiurnal tides.

  5. Subwavelength photonic crystal waveguide with trapezoidal shaped dielectric pillars in optical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xiaochuan; Chen, Ray T.

    2017-02-07

    A method for reducing loss in a subwavelength photonic crystal waveguide bend is disclosed. The method comprising: forming the subwavelength photonic crystal waveguide bend with a series of trapezoidal shaped dielectric pillars centered about a bend radius; wherein each of the trapezoidal shaped dielectric pillars comprise a top width, a bottom width, and a trapezoid height; wherein the length of the bottom width is greater than the length of the top width; and wherein the bottom width is closer to the center of the bend radius of the subwavelength photonic crystal waveguide bend than the top width. Other embodiments aremore » described and claimed.« less

  6. Measurements of Aerosol Vertical Profiles and Optical Properties during INDOEX 1999 Using Micro-Pulse Lidars

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Voss, Kenneth J.; Quinn, Patricia K.; Flatau, Piotr J.; Markowicz, Krzysztof; Campbell, James R.; Spinhirne, James D.; Gordon, Howard R.; Johnson, James E.; Starr, David OC. (Technical Monitor)

    2001-01-01

    Micro-pulse lidar systems (MPL) were used to measure aerosol properties during the Indian Ocean Experiment (INDOEX) 1999 field phase. Measurements were made from two platforms: the NOAA ship RN Ronald H. Brown, and the Kaashidhoo Climate Observatory (KCO) in the Maldives. Sunphotometers were used to provide aerosol optical depths (AOD) needed to calibrate the MPL. This study focuses on the height distribution and optical properties (at 523 nm) of aerosols observed during the campaign. The height of the highest aerosols (top height) was calculated and found to be below 4 km for most of the cruise. The marine boundary layer (MBL) top was calculated and found to be less than 1 km. MPL results were combined with air mass trajectories, radiosonde profiles of temperature and humidity, and aerosol concentration and optical measurements. Humidity varied from approximately 80% near the surface to 50% near the top height during the entire cruise. The average value and standard deviation of aerosol optical parameters were determined for characteristic air mass regimes. Marine aerosols in the absence of any continental influence were found to have an AOD of 0.05 +/- 0.03, an extinction-to-backscatter ratio (S-ratio) of 33 +/- 6 sr, and peak extinction values around 0.05/km (near the MBL top). The marine results are shown to be in agreement with previously measured and expected values. Polluted marine areas over the Indian Ocean, influenced by continental aerosols, had AOD values in excess of 0.2, S-ratios well above 40 sr, and peak extinction values approximately 0.20/km (near the MBL top). The polluted marine results are shown to be similar to previously published values for continental aerosols. Comparisons between MPL derived extinction near the ship (75 m) and extinction calculated at ship-level using scattering measured by a nephelometer and absorption using a PSAP were conducted. The comparisons indicated that the MPL algorithm (using a constant S-ratio throughout the lower troposphere) calculates extinction near the surface in agreement with the ship-level measurements only when the MBL aerosols are well mixed with aerosols above. Finally, a review of the MPL extinction profiles showed that the model of aerosol vertical extinction developed during an earlier INDOEX field campaign (at the Maldives) did not correctly describe the true vertical distribution over the greater Indian Ocean region. Using the average extinction profile and AOD obtained during marine conditions, a new model of aerosol vertical extinction was determined for marine atmospheres over the Indian Ocean. A new model of aerosol vertical extinction for polluted marine atmospheres was also developed using the average extinction profile and AOD obtained during marine conditions influenced by continental aerosols.

  7. Structure and growth of Bi(110) islands on Si(111)√{3 }×√{3 }-B substrates

    NASA Astrophysics Data System (ADS)

    Nagase, Kentaro; Kokubo, Ikuya; Yamazaki, Shiro; Nakatsuji, Kan; Hirayama, Hiroyuki

    2018-05-01

    The structure and growth of ultrathin Bi(110) islands were investigated on a Si(111)√{3 }×√{3 }-B substrate by scanning tunneling microscopy and scanning tunneling spectroscopy (STS). Both even- and odd-layer-height islands nucleated on a one-monolayer-thick wetting layer. The islands preferred the even layer heights over the odd layer heights with an area ratio of 3:1. A weak, long-range corrugation was observed to overlap on the atomic arrangement at the top of the islands. The average distance between the peaks of the corrugation oscillated in accordance with the alternation of even and odd layer heights. Nucleation of single- and double-layer terraces occurred on the islands with even layer heights but not on those with odd layer heights. The unit cell of the single-layer terrace was aligned with that of the underlying even-layer-height island. The inequality in the height preference and the height-dependent oscillation of the corrugation suggested that the even- and odd-layer-height islands possessed different structures. The dominance and stability against terrace nucleation of the even-layer-height islands were consistent with the theoretically predicted stability of the paired layer-stacked black-phosphorus (BP)-like structure for ultrathin Bi(110) films. The alignment of the unit cell at the terrace on the island and STS spectra suggested a BP-like/bulklike/BP-like sandwich structure for the odd-layer-height Bi(110) islands.

  8. 8. GENERAL VIEW OF TOWER 32, LEFT, AND TOWER 31, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. GENERAL VIEW OF TOWER 32, LEFT, AND TOWER 31, RIGHT. VIEW LOOKING NORTH SHOWING AERIAL WIRE DESIGN WITH VERTICAL 'TOP HAT' WIRES IN CENTER. - Chollas Heights Naval Radio Transmitting Facility, 6410 Zero Road, San Diego, San Diego County, CA

  9. Comparison of Tsunami height Distributions of the 1960 and the 2010 Chilean Earthquakes on the Coasts of the Japanese Islands

    NASA Astrophysics Data System (ADS)

    Tsuji, Y.; Takahashi, T.; Imai, K.

    2010-12-01

    The tsunami of the Chilean Earthquake (Mw8.8) of February 27, 2010 was detected also on the coasts of the Japanese Islands about 23 hours after the occurrence of the main shock. It caused no human damage. There was slight house damage manly in Miyagi prefecture, south part of Sanriku coast; six and fifty one houses were flooded above and below the floor, respectively. It caused remarkable fishery loss of 75 Million US$ mainly due to breaking of cultivation rafts. The tsunami of the 1960 Chilean Earthquake(Mw9.5) also hit the Japanese coasts more severely. It caused more immense damage than the 2010 tsunami; 142 people were killed, 1,581 houses were entirely destroyed, and 1,256 houses were swept away. Most of damage occurred in the districts of Sanriku coast, where inundation heights exceeded six meters at several points. We made field survey along the Japanese coast, visited offices of fishermen’s cooperatives at over 300 fishery ports, gathered eyewitnesses counts, and obtained information of the inundation limit, arrival time, and building and fishery damage. On the basis of the information of inundation, we measured tsunami heights. We obtained data of tsunami height at more than two hundred points (Tsuji et al., 2010). The distributions of the two tsunamis of the 1960 and the 2010 Chilean earthquakes on the coasts along the Japanese Islands are shown as Fig. 1. The maximum height of 2.2 meters was recorded at Kesennuma City, Miyagi Prefecture. The heights of the 2010 tsunami were generally one third of those of the 1960 tsunami. An eminent peak appears at Sanriku coast commonly for both tsunamis. In addition smaller peaks also appear commonly at the coasts of the east part of Hokkaido, near the top of Boso peninsula, near the top of Izu Peninsula, the east coast of Kii Peninsula, Tokushima prefecture, eastern part of Shikoku, and near the Cape Ashizuri in western part of Shikoku. Fig. 1 Trace height distributions of the tsunamis of the 1960(red) and the 2010(blue) Chilean Earthquakes along the coasts of the Japanese Islands

  10. The Sagrada Familia Cathedral where Gaudi envisaged his bell music

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Shigeru; Narita, Takafumi

    2004-05-01

    The Sagrada Familia Cathedral in Barcelona, Spain was constructed in 1882. According to Antoni Gaudi, who worked over its grand plan, the Cathedral was supposed to be a huge musical instrument as a whole in the event of completion. As as result, the music of bells was expected to echo through the air of Barcelona from the belfries. However, Gaudi's true intention cannot be exactly known because the materials prepared by him were destroyed by war fire. If his idea of the Sagrada Familia as an architechtural music instrument is true, an acoustical balance should be considered between the roles of the Cathedral: bell music from the belfries and quiet service in the chapel. Basic structure of the Sagrada Familia seems to be an ensemble of twin towers. Following such speculation, we made a simplified acrylic 1/25-scale model of the lower structure of a twin tower located at the left side of the Birth Gate. The higher structure of this twin tower corresponds to the pinnacle where the bells should be arranged. The lower structure (about 43 m in actual height) has five passages connecting two towers. One of two towers includes five or six tandem columns whose ends are both squeezed to about 1.5 m in diameter. These columns seem to function as a kind of muffler. The location and shape of the roof over the nave is indefinite and tentatively supposed at the top of the lower structure. Based on our scale model, acoustical characteristics of the lower twin-tower structure as a muffler and acoustical differences between the exterior field and nave field will be reported and discussed.

  11. Estimation of Cirrus and Stratus Cloud Heights Using Landsat Imagery

    NASA Technical Reports Server (NTRS)

    Inomata, Yasushi; Feind, R. E.; Welch, R. M.

    1996-01-01

    A new method based upon high-spatial-resolution imagery is presented that matches cloud and shadow regions to estimate cirrus and stratus cloud heights. The distance between the cloud and the matching shadow pattern is accomplished using the 2D cross-correlation function from which the cloud height is derived. The distance between the matching cloud-shadow patterns is verified manually. The derived heights also are validated through comparison with a temperature-based retrieval of cloud height. It is also demonstrated that an estimate of cloud thickness can be retrieved if both the sunside and anti-sunside of the cloud-shadow pair are apparent. The technique requires some intepretation to determine the cloud height level retrieved (i.e., the top, base, or mid-level). It is concluded that the method is accurate to within several pixels, equivalent to cloud height variations of about +/- 250 m. The results show that precise placement of the templates is unnecessary, so that the development of a semi-automated procedure is possible. Cloud templates of about 64 pixels on a side or larger produce consistent results. The procedure was repeated for imagery degraded to simulate lower spatial resolutions. The results suggest that spatial resolution of 150-200 m or better is necessary in order to obtain stable cloud height retrievals.

  12. Possible link of sudden onset and short-time periodic pulsation of polar mesosphere summer echoes to ULF Pc5 geomagnetic pulsations and solar wind dynamic pressure enhancement

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Kirkwood, S.; Kwak, Y. S.

    2016-12-01

    The EISCAT VHF incoherent scatter radar in Tromsö, Norway, makes occasional observations of electron densities and Polar Mesosphere Summer Echoes, in the summer polar D-region ionosphere. In one of those datasets, pulsating polar mesospheric summer echoes (PMSE) are observed, with periodicities in the ultra-low frequency (ULF) Pc5 band (1.6-6.7 mHz), following an abrupt increase of the radar reflectivity when a geomagnetic field excursion is started, in turn linked to dynamic pressure (Pdyn) enhancement in the solar wind. At the excursion of the magnetic field, at auroral altitudes of 90 km and above, electron density is abruptly enhanced, followed by a series of short-lived peaks, superimposed on an enhanced level. The short-lived peaks are likely a signature of transient Pc5 geomagnetic pulsations and associated energetic electron precipitation from pitch-angle scattering into the loss cone in the magnetosphere. At the same time, at altitudes around 80-90 km, a sharp increase of PMSE reflectivity occurs, 100 times greater than the increase of electron density, and is followed by pulsating PMSE reflectivity with periodicities in the Pc5 band, increasing and decreasing in magnitude during the course of the next hour. The increase of the pulsation magnitude may be attributed to an increase of high-energy electron precipitation flux ( >30 keV) penetrating to at least the height of maximum PMSE reflectivity. This study suggests that Pc5 pulsation bursts in both magnetic field and high energy electron precipitation could play a crucial role in producing PMSE fluctuations on minute-to-minute time scales.

  13. Comparison between SAGE II and ISCCP high-level clouds. 2: Locating clouds tops

    NASA Technical Reports Server (NTRS)

    Liao, Xiaohan; Rossow, William B.; Rind, David

    1995-01-01

    A comparison is made of the vertical distribution of high-level cloud tops derived from the Stratospheric Aerosol and Gas Experiment II (SAGE II) occultation measurements and from the International Satellite Cloud Climatology Project (ISCCP) for all Julys and Januarys in 1985 to 1990. The results suggest that ISCCP overestimates the pressure of high-level clouds by up to 50-150 mbar, particularly at low latitudes. This is caused by the frequent presence of clouds with diffuse tops (greater than 50% time when cloudy events are observed). The averaged vertical extent of the diffuse top is about 1.5 km. At midlatitudes where the SAGE II and ISCCP cloud top pressure agree best, clouds with distinct tops reach a maximum relative proportion of the total level cloud amount (about 30-40%), and diffuse-topped clouds are reduced to their minimum (30-40%). The ISCCP-defined cloud top pressure should be regarded not as the material physical height of the clouds but as the level which emits the same infrared radiance as observed. SAGE II and ISCCP cloud top pressures agree for clouds with distinct tops. There is also an indication that the cloud top pressures of optically thin clouds not overlying thicker clouds are poorly estimated by ISCCP at middle latitudes. The average vertical extent of these thin clouds is about 2.5 km.

  14. Electrostatic waves in the warm magnetoplasma at the cyclotron harmonic frequencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gwal, A.K.; Misra, K.D.

    1977-09-01

    Mode conversion and collisionless absorption of electromagnetic wave at the cyclotron harmonic frequencies in an inhomogeneous non-Maxwellian magnetoplasma have been studied. Under suitable energy transfer condition the converted electrostatic wave (plasma wave) either grows or damps. The expressions for the growth/damping rates of this wave have been derived and studied at the cyclotron harmonic frequencies. The effect of the temperature anisotropy on the growth/damping rate of the electrostatic wave at the second cyclotron harmonic frequency has been shown. Growth of such electrostatic waves at ionospheric heights may explain the observed upper hybrid resonance (UHR) echoes and noise bands at themore » second cyclotron harmonic frequency.« less

  15. A microelectromechanical accelerometer fabricated using printed circuit processing techniques

    NASA Astrophysics Data System (ADS)

    Rogers, J. E.; Ramadoss, R.; Ozmun, P. M.; Dean, R. N.

    2008-01-01

    A microelectromechanical systems (MEMS) capacitive-type accelerometer fabricated using printed circuit processing techniques is presented. A Kapton polymide film is used as the structural layer for fabricating the MEMS accelerometer. The accelerometer proof mass along with four suspension beams is defined in the Kapton polyimide film. The proof mass is suspended above a Teflon substrate using a spacer. The deflection of the proof mass is detected using a pair of capacitive sensing electrodes. The top electrode of the accelerometer is defined on the top surface of the Kapton film. The bottom electrode is defined in the metallization on the Teflon substrate. The initial gap height is determined by the distance between the bottom electrode and the Kapton film. For an applied external acceleration (normal to the proof mass), the proof mass deflects toward or away from the fixed bottom electrode due to inertial force. This deflection causes either a decrease or increase in the air-gap height thereby either increasing or decreasing the capacitance between the top and the bottom electrodes. An example PCB MEMS accelerometer with a square proof mass of membrane area 6.4 mm × 6.4 mm is reported. The measured resonant frequency is 375 Hz and the Q-factor in air is 0.52.

  16. Achilles tendon adaptation in cross-country runners across a competitive season.

    PubMed

    Stanley, L E; Lucero, A; Mauntel, T C; Kennedy, M; Walker, N; Marshall, S W; Padua, D A; Berkoff, D J

    2018-01-01

    Ultrasound tissue characterization (UTC) is an imaging tool used to quantify tendon structural integrity. UTC has quantified Achilles tendon (AT) acute response to load in athletes; however, AT response to cumulative load over a season is unknown. The purpose of this study was to evaluate AT response across a four-month competitive season in collegiate cross-country (XC) runners. Participants (n=21; male=9, female=12; age=19.8±1.2 years; height=171.9±8.9 cm; weight=60.2±8.5 kg) were imaged using the UTC device with a 10-MHz linear-array transducer mounted in a tracking device. The device captures images at 0.2 mm intervals along the AT. UTC algorithms quantified the stability of pixel brightness over every 17 contiguous transverse images into four echo types (I-IV). A total of 168 scans (n=21, bilateral limbs) were performed monthly across the four-month season (Aug=M1, Sep=M2, Oct=M3, Nov=M4). Echo-type percentages (%) were calculated from each scan. Generalized estimating equations (GEE) linear regression models evaluated echo-type % change (β) over the season (M1=reference). Type I increased from M1 to M4 (β=9.10, P<.01; 95%CI: 7.01, 11.21) and Type II decreased from M1 to M3 (β=-2.71, P=.018; 95%CI: -4.96, -0.47) and M1 to M4 (β=-10.19, P<.01; 95%CI: -12.22, -8.17). Type III increased from M1 to M3 (β=0.42, P=.003; 95%CI: 0.19, 0.65) and M1 to M4 (β=0.49, P=.002; 95%CI: 0.18, 0.81), Type IV increased from M1 to M4 (β=0.57, P<.01; 95%CI: 0.29, 0.84). A positive adaptation in AT structural integrity was observed over the XC season, with a ~10% shift from Type II to Type I UTC echo types, suggesting AT resilience to a competitive season of repetitive loading in highly trained runners. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Measuring levee elevation heights in North Louisiana.

    DOT National Transportation Integrated Search

    2009-12-01

    The primary goals of this research are to measure the elevation and centerline coordinates of the top of federal and local levees and to ensure that resulting GPS measurement data are within a precise interval of plus or minus 3/10ths of a foot verti...

  18. Three-dimensional aspects of the shrinking phenomenon of ArF resist

    NASA Astrophysics Data System (ADS)

    Laufer, Ido; Eytan, Giora E.; Dror, Ophir

    2002-07-01

    Previous studies of the interaction of electron beams with different types of ArF resists have shown the undesired phenomenon of the resist shrinkage. The lateral component of this shrinkage has been detected and quantified easily by SEM CD measurements. However, the vertical extent of this phenomenon has to date remained unknown. In this work we present measurements of the changes in height and sidewall angles of an ArF line by using a new e-beam tilting ability of the Vera SEM 3D. The 3D measurement results show that the height of the line shrinks in similar proportions to the top and bottom CDs, with a difference in the magnitude. Due to higher penetration depth of the e-beam on the top of the line than on the sidewall, the vertical shrinkage reaches steady state more rapidly than the lateral shrinkage. We also found a slight reduction in sidewall angle, which is less than one degree even under high e-beam exposure.

  19. Method of underground mining by pillar extraction

    DOEpatents

    Bowen, Ray J.; Bowen, William R.

    1980-08-12

    A method of sublevel caving and pillar and top coal extraction for mining thick coal seams includes the advance mining of rooms and crosscuts along the bottom of a seam to a height of about eight feet, and the retreat mining of the top coal from the rooms, crosscuts and portions of the pillars remaining from formation of the rooms and cross-cuts. In the retreat mining, a pocket is formed in a pillar, the top coal above the pocket is drilled, charged and shot, and then the fallen coal is loaded by a continuous miner so that the operator remains under a roof which has not been shot. The top coal from that portion of the room adjacent the pocket is then mined, and another pocket is formed in the pillar. The top coal above the second pocket is mined followed by the mining of the top coal of that portion of the room adjacent the second pocket, all by use of a continuous miner which allows the operator to remain under a roof portion which has not been shot.

  20. Are high perches in the blackcap Sylvia atricapilla song or listening posts? A sound transmission study.

    PubMed

    Mathevon, Nicolas; Dabelsteen, Torben; Blumenrath, Sandra H

    2005-01-01

    Birds often sing from high perches referred to as song posts. However, birds also listen and keep a lookout from these perches. We used a sound transmission experiment to investigate the changes for receiving and sending conditions that a territorial songbird may experience by moving upwards in the vegetation. Representative song elements of the blackcap Sylvia atricapilla were transmitted in a forest habitat in spring using a complete factorial design with natural transmission distances and speaker and microphone heights. Four aspects of sound degradation were quantified: signal-to-noise ratio, excess attenuation, distortion within the sounds determined as a blur ratio, and prolongation of the sounds with "tails" of echoes determined as a tail-to-signal ratio. All four measures indicated that degradation decreased with speaker and microphone height. However, the decrease was considerably higher for the microphone than for the speaker. This suggests that choosing high perches in a forest at spring results in more benefits to blackcaps in terms of improved communication conditions when they act as receivers than as senders.

  1. Modeling Atmospheric Transport for Greenhouse Gas Observations within the Urban Dome

    NASA Astrophysics Data System (ADS)

    Nehrkorn, T.; Sargent, M. R.; Wofsy, S. C.

    2016-12-01

    Observations of CO2, CH4, and other greenhouse gases (GHGs) within the urban dome of major cities generally show large enhancements over background values, and large sensitivity to surface fluxes (as measured by the footprints computed by Lagrangian Particle Dispersion Models, LPDMs) within the urban dome. However, their use in top-down inversion studies to constrain urban emission estimates is complicated by difficulties in proper modeling of the atmospheric transport. We are conducting experiments with the Weather Research and Forecast model (WRF) coupled to the STILT LPDM to improve model simulation of atmospheric transport on spatial scales of a few km in urban domains, because errors in transport on short time/space scales are amplified by the patchiness of GHG emissions and may engender systematic errors of simulated concentrations.We are evaluating the quality of the meteorological simulations from model configurations with different resolutions and PBL packages, using both standard and non-standard (Lidar PBL height and ACARS aircraft profile) observations. To take into account the effect of building scale eddies for observations located on top of buildings, we are modifying the basic STILT algorithm for the computation of footprints by replacing the nominal receptor height by an effective sampling height. In addition, the footprint computations for near-field emissions make use of the vertical particle spread within the LPDM to arrive at a more appropriate estimate of mixing heights in the immediate vicinity of receptors. We present the effect of these and similar modifications on simulated concentrations and their level of agreement with observed values.

  2. Cloud base and top heights in the Hawaiian region determined with satellite and ground-based measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Chunxi; Wang, Yuqing; Lauer, Axel; Hamilton, Kevin; Xie, Feiqin

    2012-08-01

    We present a multi-year climatology of cloud-base-height (CBH), cloud-top-height (CTH), and trade wind inversion base height (TWIBH) for the Hawaiian region (18°N-22.5°N, 153.7°W-160.7°W). The new climatology is based on data from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO), the Constellation Observing System for Meteorology Ionosphere and Climate (COSMIC), ceilometer observations and radiosondes. The climatology reported here is well suited to evaluate climate model simulations and can serve as a reference state for studies of the impact of climate change on Hawaiian ecosystems. The averaged CBH from CALIPSO in the Hawaiian Region is 890 m. The mean CTH from CALIPSO is 2110 m, which is close to the mean TWIBH from COSMIC. For non-precipitating cases, the mean TWIBH at both Lihue and Hilo is close to 2000 m. For precipitating cases, the mean TWIBH is 2450 m and 2280 m at Hilo and Lihue, respectively. The potential cloud thickness (PCT) is defined as the difference between TWIBH and CBH and the mean PCT is several hundred meters thicker for precipitating than for the non-precipitating cases at both stations. We find that the PCT is more strongly correlated to the TWIBH than the CBH and that precipitation is unlikely to occur if the TWIBH is below 1500 m. The observed rainfall intensity is correlated to the PCT, i.e., thicker clouds are more likely to produce heavy rain.

  3. Mature thunderstorm cloud-top structure and dynamics - A three-dimensional numerical simulation study

    NASA Technical Reports Server (NTRS)

    Schlesinger, R. E.

    1984-01-01

    The present investigation is concerned with results from an initial set of comparative experiments in a project which utilize a three-dimensional convective storm model. The modeling results presented are related to four comparative experiments, designated Cases A through D. One of two scientific questions considered involves the dynamical processes, either near the cloud top or well within the cloud interior, which contribute to organize cloud thermal patterns such as those revealed by IR satellite imagery for some storms having strong internal cloud-scale rotation. The second question is concerned with differences, in cloud-top height and temperature field characteristics, between thunderstorms with and without significant internal cloud-scale rotation. The four experiments A-D are compared with regard to both interior and cloud-top configurations in the context of the second question. A particular strong-shear experiment, Case B, is analyzed to address question one.

  4. Satellite-observed cloud-top height changes in tornadic thunderstorms

    NASA Technical Reports Server (NTRS)

    Adler, R. F.; Fenn, D. D.

    1981-01-01

    Eleven tornadic storms are evaluated with respect to cloud top temperature changes relative to tornado touchdown. Digital IR data from the SMS/GOES geosynchronous satellites were employed for 10 F2 and one F1 tornadoes. A rapid ascent of the cloud tops 30-45 min before tornado touchdown, a temperature decrease of 0.4 K/min, and an ascent rate of about 3 m/sec were observed. The presence of an operating Doppler radar for three of the sample storms allowed detection of a mesocyclone coincident with the rapid cloud top ascent. The intensification and descent of the vortex to form a tornado is concluded to be due to a weakening of the updraft, the formation of a downdraft, and a shift of the vortex to the updraft-downdraft boundary, leading to dominance of the tilting term in the generation of vorticity.

  5. DETERMINATION OF CLOUD PARAMETERS FOR NEROS II FROM DIGITAL SATELLITE DATA

    EPA Science Inventory

    As part of the input for their regional-scale photochemical oxidant model of air pollution, known as the Regional Oxidant Model, requires statistical descriptions of total cloud amount, cumulus cloud amount, and cumulus cloud top height for certain regions and dates. These statis...

  6. --No Title--

    Science.gov Websites

    {background-color:#5e6a71;border-top:3px solid #62d2ff}@media (min-width: 768px){header{border-bottom:9px a.app-name:hover{color:#fff;display:block;font-family:Roboto;font-size:30px;line-height:1.2em;margin:0 0

  7. --No Title--

    Science.gov Websites

    .vertical-bar{margin:1em 0 1em 0} .vertical-bar h2{background-color:#545454;color:#fff;padding:8px } .vertical-bar img.icon{background-color:#8CC63F;height:53px;margin-top:20px;margin-bottom:10px;padding:0 3px

  8. EVOLUTION OF THE NOCTURNAL INVERSION LAYER AT AN URBAN AND NONURBAN LOCATION

    EPA Science Inventory

    The evolutionary cycle of the nocturnal radiation inversion layer from formation until dissipation under fair weather conditions was investigated by time-series analyses of observations of inversion base and top heights, and inversion strength at an urban and a nonurban site in S...

  9. Comparisons of Measurements Made Using Two Sodars in an Urban Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, Larry K.; Reynolds, R. M.; Allwine, K Jerry

    2006-02-01

    A Scintec MFAS sodar and an AeroVironment Model 3000 Mini-sodar were operated at the Stevens Institute of Technology (SIT) during the Urban Dispersion Program’s New York City field campaign that was conducted between 7 March and 21 March 2005. The Scintec sodar was located on a dock on the Hudson River. The AeroVironment sodar was located on the roof of the Howe Center, a 17-story building located near the Hudson River. The AeroVironment sodar was approximately 90 m above the Scintec, and the horizontal separation of the two units was approximately 350 m. The Scintec MFAS sodar and the AeroVironmentmore » mini sodar operate at different frequencies, with the AeroVironment operating at a much higher frequency. Because of these differences, different range gate spacing were selected for each instrument. The range gate spacing used with Scintec MFAS sodar was particularly course to try to probe deeper into the boundary layer. In addition to these two sodars, a meteorological tower was located at the top of the Howe Center. The original experimental plan called for us to operate the Scintec sodar on top the Howe Center, but there was significant ambient noise that degraded the performance. Therefore, the AeroVironment sodar was placed on the building top, while the Scintec MFAS sodar was moved to a dock near the Hudson River. Unfortunately, this location was close to a number of student dormitories, so the sodar could only be operated during Intensive Operations Periods (IOPs). Detailed comparisons of the wind speed and wind direction measured by both sodars and the propeller anemometer have been completed for each IOP. At a height of 100 m above the river (very close to the height of the Howe Center), the wind speed measured by the propeller anemometer and the two sodars were very close. During both IOPs there were times when the wind direction measured by the AeroVironment sodar was much different than the wind direction measured by the Scintec MFAS sodar and the propeller anemometer. At a height of 200 m above the Hudson River, the wind speed measured by the Scintec MFAS sodar was significantly smaller than the wind speed measured using the AeroVironment sodar. At this height, there were also large differences in the wind directions measured by the two sodars, with the wind direction measured by the Scintec being closer to the wind direction measured by the propeller anemometer mounted on top of the Howe Center.« less

  10. A Correction Equation for Jump Height Measured Using the Just Jump System.

    PubMed

    McMahon, John J; Jones, Paul A; Comfort, Paul

    2016-05-01

    To determine the concurrent validity and reliability of the popular Just Jump system (JJS) for determining jump height and, if necessary, provide a correction equation for future reference. Eighteen male college athletes performed 3 bilateral countermovement jumps (CMJs) on 2 JJSs (alternative method) that were placed on top of a force platform (criterion method). Two JJSs were used to establish consistency between systems. Jump height was calculated from flight time obtained from the JJS and force platform. Intraclass correlation coefficients (ICCs) demonstrated excellent within-session reliability of the CMJ height measurement derived from both the JJS (ICC = .96, P < .001) and the force platform (ICC = .96, P < .001). Dependent t tests revealed that the JJS yielded a significantly greater CMJ jump height (0.46 ± 0.09 m vs 0.33 ± 0.08 m) than the force platform (P < .001, Cohen d = 1.39, power = 1.00). There was, however, an excellent relationship between CMJ heights derived from the JJS and force platform (r = .998, P < .001, power = 1.00), with a coefficient of determination (R2) of .995. Therefore, the following correction equation was produced: Criterion jump height = (0.8747 × alternative jump height) - 0.0666. The JJS provides a reliable but overestimated measure of jump height. It is suggested, therefore, that practitioners who use the JJS as part of future work apply the correction equation presented in this study to resultant jump-height values.

  11. Height-related trends in leaf xylem anatomy and shoot hydraulic characteristics in a tall conifer: safety versus efficiency in water transport.

    PubMed

    Woodruff, D R; Meinzer, F C; Lachenbruch, B

    2008-01-01

    Hydraulic vulnerability of Douglas-fir (Pseudotsuga menziesii) branchlets decreases with height, allowing shoots at greater height to maintain hydraulic conductance (K shoot) at more negative leaf water potentials (Psi l). To determine the basis for this trend shoot hydraulic and tracheid anatomical properties of foliage from the tops of Douglas-fir trees were analysed along a height gradient from 5 to 55 m. Values of Psi l at which K shoot was substantially reduced, declined with height by 0.012 Mpa m(-1). Maximum K shoot was reduced by 0.082 mmol m(-2) MPa(-1) s(-1) for every 1 m increase in height. Total tracheid lumen area per needle cross-section, hydraulic mean diameter of leaf tracheid lumens, total number of tracheids per needle cross-section and leaf tracheid length decreased with height by 18.4 microm(2) m(-1), 0.029 microm m(-1), 0.42 m(-1) and 5.3 microm m(-1), respectively. Tracheid thickness-to-span ratio (tw/b)2 increased with height by 1.04 x 10(-3) m(-1) and pit number per tracheid decreased with height by 0.07 m(-1). Leaf anatomical adjustments that enhanced the ability to cope with vertical gradients of increasing xylem tension were attained at the expense of reduced water transport capacity and efficiency, possibly contributing to height-related decline in growth of Douglas fir.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Ming; Albrecht, Bruce A.; Ghate, Virendra P.

    This study first illustrates the utility of using the Doppler spectrum width from millimetrewavelength radar to calculate the energy dissipation rate and then to use the energy dissipation rate to study turbulence structure in a continental stratocumulus cloud. It is shown that the turbulence kinetic energy dissipation rate calculated from the radar-measured Doppler spectrum width agrees well with that calculated from the Doppler velocity power spectrum. During the 16-h stratocumulus cloud event, the small-scale turbulence contributes 40%of the total velocity variance at cloud base, 50% at normalized cloud depth=0.8 and 70% at cloud top, which suggests that small-scale turbulence playsmore » a critical role near the cloud top where the entrainment and cloud-top radiative cooling act. The 16-h mean vertical integral length scale decreases from about 160 m at cloud base to 60 m at cloud top, and this signifies that the larger scale turbulence dominates around cloud base whereas the small-scale turbulence dominates around cloud top. The energy dissipation rate, total variance and squared spectrum width exhibit diurnal variations, but unlike marine stratocumulus they are high during the day and lowest around sunset at all levels; energy dissipation rates increase at night with the intensification of the cloud-top cooling. In the normalized coordinate system, the averaged coherent structure of updrafts is characterized by low energy dissipation rates in the updraft core and higher energy dissipation rates surround the updraft core at the top and along the edges. In contrast, the energy dissipation rate is higher inside the downdraft core indicating that the downdraft core is more turbulent. The turbulence around the updraft is weaker at night and stronger during the day; the opposite is true around the downdraft. This behaviour indicates that the turbulence in the downdraft has a diurnal cycle similar to that observed in marine stratocumuluswhereas the turbulence diurnal cycle in the updraft is reversed. For both updraft and downdraft, the maximum energy dissipation rate occurs at a cloud depth=0.8 where the maximum reflectivity and air acceleration or deceleration are observed. Resolved turbulence dominates near cloud base whereas unresolved turbulence dominates near cloud top. Similar to the unresolved turbulence, the resolved turbulence described by the radial velocity variance is higher in the downdraft than in the updraft. The impact of the surface heating on the resolved turbulence in the updraft decreases with height and diminishes around the cloud top. In both updrafts and downdrafts, the resolved turbulence increases with height and reaches a maximum at cloud depth=0.4 and then decreases to the cloud top; the resolved turbulence near cloud top, just as the unresolved turbulence, is mostly due to the cloud-top radiative cooling.« less

  13. Improving volcanic ash predictions with the HYSPLIT dispersion model by assimilating MODIS satellite retrievals

    NASA Astrophysics Data System (ADS)

    Chai, Tianfeng; Crawford, Alice; Stunder, Barbara; Pavolonis, Michael J.; Draxler, Roland; Stein, Ariel

    2017-02-01

    Currently, the National Oceanic and Atmospheric Administration (NOAA) National Weather Service (NWS) runs the HYSPLIT dispersion model with a unit mass release rate to predict the transport and dispersion of volcanic ash. The model predictions provide information for the Volcanic Ash Advisory Centers (VAAC) to issue advisories to meteorological watch offices, area control centers, flight information centers, and others. This research aims to provide quantitative forecasts of ash distributions generated by objectively and optimally estimating the volcanic ash source strengths, vertical distribution, and temporal variations using an observation-modeling inversion technique. In this top-down approach, a cost functional is defined to quantify the differences between the model predictions and the satellite measurements of column-integrated ash concentrations weighted by the model and observation uncertainties. Minimizing this cost functional by adjusting the sources provides the volcanic ash emission estimates. As an example, MODIS (Moderate Resolution Imaging Spectroradiometer) satellite retrievals of the 2008 Kasatochi volcanic ash clouds are used to test the HYSPLIT volcanic ash inverse system. Because the satellite retrievals include the ash cloud top height but not the bottom height, there are different model diagnostic choices for comparing the model results with the observed mass loadings. Three options are presented and tested. Although the emission estimates vary significantly with different options, the subsequent model predictions with the different release estimates all show decent skill when evaluated against the unassimilated satellite observations at later times. Among the three options, integrating over three model layers yields slightly better results than integrating from the surface up to the observed volcanic ash cloud top or using a single model layer. Inverse tests also show that including the ash-free region to constrain the model is not beneficial for the current case. In addition, extra constraints on the source terms can be given by explicitly enforcing no-ash for the atmosphere columns above or below the observed ash cloud top height. However, in this case such extra constraints are not helpful for the inverse modeling. It is also found that simultaneously assimilating observations at different times produces better hindcasts than only assimilating the most recent observations.

  14. Experiments and theory on parametric instabilities excited in HF heating experiments at HAARP

    NASA Astrophysics Data System (ADS)

    Kuo, Spencer; Snyder, Arnold; Lee, M. C.

    2014-06-01

    Parametric instabilities excited by O-mode HF heater and the induced ionospheric modification were explored via HAARP digisonde operated in a fast mode. The impact of excited Langmuir waves and upper hybrid waves on the ionosphere are manifested by bumps in the virtual spread, which expand the ionogram echoes upward as much as 140 km and the downward range spread of the sounding echoes, which exceeds 50 km over a significant frequency range. The theory of parametric instabilities is presented. The theory identifies the ionogram bump located between the 3.2 MHz heater frequency and the upper hybrid resonance frequency and the bump below the upper hybrid resonance frequency to be associated with the Langmuir and upper hybrid instabilities, respectively. The Langmuir bump is located close to the upper hybrid resonance frequency, rather than to the heater frequency, consistent with the theory. Each bump in the virtual height spread of the ionogram is similar to the cusp occurring in daytime ionograms at the E-F2 layer transition, indicating that there is a small ledge in the density profile similar to E-F2 layer transitions. The experimental results also show that the strong impact of the upper hybrid instability on the ionosphere can suppress the Langmuir instability.

  15. Experiments and theory on parametric instabilities excited in HF heating experiments at HAARP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuo, Spencer; Snyder, Arnold; Lee, M. C.

    2014-06-15

    Parametric instabilities excited by O-mode HF heater and the induced ionospheric modification were explored via HAARP digisonde operated in a fast mode. The impact of excited Langmuir waves and upper hybrid waves on the ionosphere are manifested by bumps in the virtual spread, which expand the ionogram echoes upward as much as 140 km and the downward range spread of the sounding echoes, which exceeds 50 km over a significant frequency range. The theory of parametric instabilities is presented. The theory identifies the ionogram bump located between the 3.2 MHz heater frequency and the upper hybrid resonance frequency and the bump below themore » upper hybrid resonance frequency to be associated with the Langmuir and upper hybrid instabilities, respectively. The Langmuir bump is located close to the upper hybrid resonance frequency, rather than to the heater frequency, consistent with the theory. Each bump in the virtual height spread of the ionogram is similar to the cusp occurring in daytime ionograms at the E-F2 layer transition, indicating that there is a small ledge in the density profile similar to E-F2 layer transitions. The experimental results also show that the strong impact of the upper hybrid instability on the ionosphere can suppress the Langmuir instability.« less

  16. A hand-held EPR scanner for transcutaneous oximetry

    NASA Astrophysics Data System (ADS)

    Wolfson, Helen; Ahmad, Rizwan; Twig, Ygal; Blank, Aharon; Kuppusamy, Periannan

    2015-03-01

    Cutaneous (skin) oxygenation is an important prognostic factor for the treatment of chronic wounds, skin cancer, diabetes side effects, and limb amputation. Currently, there are no reliable methods for measuring this parameter. Oximetry, using electron paramagnetic resonance (EPR) spectroscopy, is emerging as a potential tool for clinical oximetry, including cutaneous applications. The problem with EPR oximetry, however, is that the conventional EPR design requires the use of a large magnet that can generate homogeneous field across the sample, making it unattractive for clinical practice. We present a novel approach that makes use of a miniature permanent magnet, combined with a small microwave resonator, to enable the acquisition of EPR signals from paramagnetic species placed on the skin. The instrumentation consists of a hand-held, modular, cylindrical probehead with overall dimensions of 36-mm diameter and 24-mm height, with 150-g weight. The probehead includes a Halbach array of 16 pieces (4×4×8 mm3) of Sm-Co permanent magnet and a loop-gap resonator (2.24 GHz). Preliminary measurements using a Hahn-echo pulse sequence (800 echos in 20 ms) showed a signalto- noise ratio of ~70 compared to ~435 in a homogenous magnet under identical settings. Further work is in progress to improve the performance of the probehead and to optimize the hand-held system for clinical use

  17. Long-time observation of meteor induced layers with ionosonde

    NASA Astrophysics Data System (ADS)

    Yusupov, Kamil; Akchurin, Adel

    2016-07-01

    It is considered that the main theory explaining appearance of sporadic E is the theory of wind shear, which means (includes) the presence and movement of nodes converging tidal wind through the height region of the most frequent occurrence Es (120-140km) [Mathew et. all, 1998]. However, the appearance of intense layers, following its name, are sporadic, and such variability cannot to explain by the influence of tidal waves only. Another indication inconsistency theory of wind shear is the appearance of so-called transient Es layers [Maruiama, 2003]. The distinctive feature of this trace is the high critical frequency (> 5 MHz), a constant height, weak amplitude, all trace semitransparent and short lifetime [Maruiama et. all, 2003 and 2008 and references there]. Because of duration, such layer is opposite to the traditional persistent Es layer, which we do not consider in this paper. Various researchers have used different terms for such spontaneous Es, it is meteor echo, meteor induced Es, spontaneously formed sporadic Es patches resulting of the Fresnel scattering from a region of enhanced plasma density along the meteor trail, transitory Es and transient Es. Since the term transient Es is unstable, to avoid confusion, we will stick to this term. Since meteor echo is not fully satisfy this term by some parameter, we will describe the properties of transient Es based on the ionogram properties and not from physics of its origin. We used data from our ionosonde with one-minute ionogram repetition rate for 2010-2014 years. For processing performed a method are using to select beatings and the ionosphere reflectivity of the layers by means A-, H-and AΣ-map [Akchurin, 2011; Yusupov, 2014]. This maps allow to collect transient Es appearance over a long-time. Such statistics comparison with meteor showers activity showed good agreement. It shows the presence of the transient Es formation mechanism, which coupling with meteors.

  18. Independence of Echo-Threshold and Echo-Delay in the Barn Owl

    PubMed Central

    Nelson, Brian S.; Takahashi, Terry T.

    2008-01-01

    Despite their prevalence in nature, echoes are not perceived as events separate from the sounds arriving directly from an active source, until the echo's delay is long. We measured the head-saccades of barn owls and the responses of neurons in their auditory space-maps while presenting a long duration noise-burst and a simulated echo. Under this paradigm, there were two possible stimulus segments that could potentially signal the location of the echo. One was at the onset of the echo; the other, after the offset of the direct (leading) sound, when only the echo was present. By lengthening the echo's duration, independently of its delay, spikes and saccades were evoked by the source of the echo even at delays that normally evoked saccades to only the direct source. An echo's location thus appears to be signaled by the neural response evoked after the offset of the direct sound. PMID:18974886

  19. Accurate numerical forward model for optimal retracking of SIRAL2 SAR echoes over open ocean

    NASA Astrophysics Data System (ADS)

    Phalippou, L.; Demeestere, F.

    2011-12-01

    The SAR mode of SIRAL-2 on board Cryosat-2 has been designed to measure primarily sea-ice and continental ice (Wingham et al. 2005). In 2005, K. Raney (KR, 2005) pointed out the improvements brought by SAR altimeter for open ocean. KR results were mostly based on 'rule of thumb' considerations on speckle noise reduction due to the higher PRF and to speckle decorrelation after SAR processing. In 2007, Phalippou and Enjolras (PE,2007) provided the theoretical background for optimal retracking of SAR echoes over ocean with a focus on the forward modelling of the power-waveforms. The accuracies of geophysical parameters (range, significant wave heights, and backscattering coefficient) retrieved from SAR altimeter data were derived accounting for SAR echo shape and speckle noise accurate modelling. The step forward to optimal retracking using numerical forward model (NFM) was also pointed out. NFM of the power waveform avoids analytical approximation, a warranty to minimise the geophysical dependent biases in the retrieval. NFM have been used for many years, in operational meteorology in particular, for retrieving temperature and humidity profiles from IR and microwave radiometers as the radiative transfer function is complex (Eyre, 1989). So far this technique was not used in the field of ocean conventional altimetry as analytical models (e.g. Brown's model for instance) were found to give sufficient accuracy. However, although NFM seems desirable even for conventional nadir altimetry, it becomes inevitable if one wish to process SAR altimeter data as the transfer function is too complex to be approximated by a simple analytical function. This was clearly demonstrated in PE 2007. The paper describes the background to SAR data retracking over open ocean. Since PE 2007 improvements have been brought to the forward model and it is shown that the altimeter on-ground and in flight characterisation (e.g antenna pattern range impulse response, azimuth impulse response, altimeter transfer function) can be accurately accounted for, in order to minimise the systematic errors in the retrieval. The paper presents the retrieval of range and SWH for several Cryosat 2 orbits arcs, spanning different sea state conditions. The retrieval results are found to be in excellent agreement with the noise expectations derived from the Cramer-Rao bounds (see PE 2007.). The improvement upon conventional Low Resolution mode is about a factor of two in range. Improvements in SWH accuracy is also discussed. Comparisons with the MSL and conventional LRM-like retracking is also shown. Finally, the paper will give some insights for future oceanic altimetry missions. References : Wingham et al., 2005 : CryoSat: A mission to determine the fluctuations in Earth's land and marine ice fields. Advances in Space Research 37 (2006) 841-871 Raney, R.K. 2005 : Resolution and precision ofa delayDoppler Radar Altimeter, Proc IEEE OCEANS 2005. Phalippou L, V. Enjolras 2007 : Re-tracking of SAR altimeter ocean power waveforms and related accuracies of Sea surface Height, significant wave height and wind speed. Proc IEEE IGARSS 2007. Eyre, J. 1989 : Inversion of cloudy satellite radiances by non linear estimation : Theory and simulation for TOVS. Quaterly Journal of the Royal Meteorological Society, 115, pp1001-1026.

  20. 30 CFR 75.372 - Mine ventilation map.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... at each opening. (8) The elevation at the top and bottom of each shaft and slope, and shaft and slope... of all ventilation controls, including permanent stoppings, overcasts, undercasts, regulators, seals... seals for each worked-out area. (19) The entry height, velocity and direction of the air current at or...

  1. Application of Lidar Data to the Performance Evaluations of CMAQ Model

    EPA Science Inventory

    The Tropospheric Ozone (O3) Lidar Network (TOLNet) provides time/height O3 measurements from near the surface to the top of the troposphere to describe in high-fidelity spatial-temporal distributions, which is uniquely useful to evaluate the temporal evolution of O3 profiles in a...

  2. 30 CFR 35.20 - Autogenous-ignition temperature test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., EVALUATION, AND APPROVAL OF MINING PRODUCTS FIRE-RESISTANT HYDRAULIC FLUIDS Test Requirements § 35.20... (alundum or equivalent) cylinder 5 inches in internal diameter and 5 inches in height; a transite-ring top... is obtained. (d) Appraisal of test. A fluid shall be considered fire-resistant, according to the test...

  3. 30 CFR 35.20 - Autogenous-ignition temperature test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., EVALUATION, AND APPROVAL OF MINING PRODUCTS FIRE-RESISTANT HYDRAULIC FLUIDS Test Requirements § 35.20... (alundum or equivalent) cylinder 5 inches in internal diameter and 5 inches in height; a transite-ring top... is obtained. (d) Appraisal of test. A fluid shall be considered fire-resistant, according to the test...

  4. 30 CFR 35.20 - Autogenous-ignition temperature test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., EVALUATION, AND APPROVAL OF MINING PRODUCTS FIRE-RESISTANT HYDRAULIC FLUIDS Test Requirements § 35.20... (alundum or equivalent) cylinder 5 inches in internal diameter and 5 inches in height; a transite-ring top... is obtained. (d) Appraisal of test. A fluid shall be considered fire-resistant, according to the test...

  5. 30 CFR 35.20 - Autogenous-ignition temperature test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., EVALUATION, AND APPROVAL OF MINING PRODUCTS FIRE-RESISTANT HYDRAULIC FLUIDS Test Requirements § 35.20... (alundum or equivalent) cylinder 5 inches in internal diameter and 5 inches in height; a transite-ring top... is obtained. (d) Appraisal of test. A fluid shall be considered fire-resistant, according to the test...

  6. 49 CFR 231.17 - Specifications common to all steam locomotives.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... shall be securely fastened with bolts, rivets, or studs. (ii) Locomotives having Wootten type boilers... inches above outside edge of running boards, securely fastened with bolts, rivets, or studs. (c... inches in height, measured from the top of end sill, and securely fastened with bolts or rivets. (f...

  7. SPATIAL VARIATION OF THE EVOLUTION AND STRUCTURE OF THE URBAN BOUNDARY LAYER

    EPA Science Inventory

    The spatial variation of the nocturnal urban boundary layer structure and the time variation of the mixing height, the nocturnal inversion top and strength after sunrise are presented for urban sites located upwind, downwind, and near the center of the heat island and for upwind ...

  8. Validation of CERES-MODIS Arctic cloud properties using CloudSat/CALIPSO and ARM NSA observations

    NASA Astrophysics Data System (ADS)

    Giannecchini, K.; Dong, X.; Xi, B.; Minnis, P.; Kato, S.

    2011-12-01

    The traditional passive satellite studies of cloud properties in the Arctic are often affected by the complex surface features present across the region. Nominal visual and thermal contrast exists between Arctic clouds and the snow- and ice-covered surfaces beneath them, which can lead to difficulties in satellite retrievals of cloud properties. However, the addition of active sensors to the A-Train constellation of satellites has increased the availability of validation sources for cloud properties derived from passive sensors in the data-sparse high-latitude regions. In this study, Arctic cloud fraction and cloud heights derived from the NASA CERES team (CERES-MODIS) have been compared with CloudSat/CALIPSO and DOE ARM NSA radar-lidar observations over Barrow, AK, for the two-year period from 2007 to 2008. An Arctic-wide comparison of cloud fraction and height between CERES-MODIS and CloudSat/CALIPSO was then conducted for the same time period. The CERES-MODIS cloud properties, which include cloud fraction and cloud effective heights, were retrieved using the 4-channel VISST (Visible Infrared Solar-Infrared Split-window Technique) [Minnis et al.,1995]. CloudSat/CALIPSO cloud fraction and cloud-base and -top heights were from version RelB1 data products determined by both the 94 GHz radar onboard CloudSat and the lidar on CALIPSO with a vertical resolution of 30 m below 8.2 km and 60 m above. To match the surface and satellite observations/retrievals, the ARM surface observations were averaged into 3-hour intervals centered at the time of the satellite overpass, while satellite observations were averaged within a 3°x3° grid box centered on the Barrow site. The preliminary results have shown that all observed CFs have peaks during April-May and September-October, and dips during winter months (January-February) and summer months (June-July) during the study period of 2007-2008. ARM radar-lidar and CloudSat/CALIPSO show generally good agreement in CF (0.79 vs. 0.74), while CERES-MODIS derived values are much lower (0.60). CERES-MODIS derived cloud effective height (2.7 km) falls between the CloudSat/CALIPSO derived cloud base (0.6 km) and top (6.4 km) and the ARM ceilometers and MMCR derived cloud base (0.9 km) and radar derived cloud top (5.8 km). When extended to the entire Arctic, although the CERES-MODIS and Cloudsat/CALIPSO derived annual mean CFs agree within a few percents, there are significant differences over several regions, and the maximum cloud heights derived from CloudSat/CALIPSO (13.4 km) and CERES-MODIS (10.7 km) show the largest disagreement during early spring.

  9. Effects of height on treetop transpiration and stomatal conductance in coast redwood (Sequoia sempervirens).

    PubMed

    Ambrose, Anthony R; Sillett, Stephen C; Koch, George W; Van Pelt, Robert; Antoine, Marie E; Dawson, Todd E

    2010-10-01

    Treetops become increasingly constrained by gravity-induced water stress as they approach maximum height. Here we examine the effects of height on seasonal and diurnal sap flow dynamics at the tops of 12 unsuppressed Sequoia sempervirens (D. Don) Endl. (coast redwood) trees 68-113 m tall during one growing season. Average treetop sap velocity (V(S)), transpiration per unit leaf area (E(L)) and stomatal conductance per unit leaf area (G(S)) significantly decreased with increasing height. These differences in sap flow were associated with an unexpected decrease in treetop sapwood area-to-leaf area ratios (A(S):A(L)) in the tallest trees. Both E(L) and G(S) declined as soil moisture decreased and vapor pressure deficit (D) increased throughout the growing season with a greater decline in shorter trees. Under high soil moisture and light conditions, reference G(S) (G(Sref); G(S) at D = 1 kPa) and sensitivity of G(S) to D (-δ; dG(S)/dlnD) significantly decreased with increasing height. The close relationship we observed between G(Sref) and -δ is consistent with the role of stomata in regulating E(L) and leaf water potential (Ψ(L)). Our results confirm that increasing tree height reduces gas exchange of treetop foliage and thereby contributes to lower carbon assimilation and height growth rates as S. sempervirens approaches maximum height.

  10. Regional extreme rainfalls observed globally with 17 years of the Tropical Precipitation Measurement Mission

    NASA Astrophysics Data System (ADS)

    Takayabu, Yukari; Hamada, Atsushi; Mori, Yuki; Murayama, Yuki; Liu, Chuntao; Zipser, Edward

    2015-04-01

    While extreme rainfall has a huge impact upon human society, the characteristics of the extreme precipitation vary from region to region. Seventeen years of three dimensional precipitation measurements from the space-borne precipitation radar equipped with the Tropical Precipitation Measurement Mission satellite enabled us to describe the characteristics of regional extreme precipitation globally. Extreme rainfall statistics are based on rainfall events defined as a set of contiguous PR rainy pixels. Regional extreme rainfall events are defined as those in which maximum near-surface rainfall rates are higher than the corresponding 99.9th percentile in each 2.5degree x2.5degree horizontal resolution grid. First, regional extreme rainfall is characterized in terms of its intensity and event size. Regions of ''intense and extensive'' extreme rainfall are found mainly over oceans near coastal areas and are likely associated with tropical cyclones and convective systems associated with the establishment of monsoons. Regions of ''intense but less extensive'' extreme rainfall are distributed widely over land and maritime continents, probably related to afternoon showers and mesoscale convective systems. Regions of ''extensive but less intense'' extreme rainfall are found almost exclusively over oceans, likely associated with well-organized mesoscale convective systems and extratropical cyclones. Secondly, regional extremes in terms of surface rainfall intensity and those in terms of convection height are compared. Conventionally, extremely tall convection is considered to contribute the largest to the intense rainfall. Comparing probability density functions (PDFs) of 99th percentiles in terms of the near surface rainfall intensity in each regional grid and those in terms of the 40dBZ echo top heights, it is found that heaviest precipitation in the region is not associated with tallest systems, but rather with systems with moderate heights. Interestingly, this separation of extremely heavy precipitation from extremely tall convection is found to be quite universal, irrespective of regions. Rainfall characteristics and environmental conditions both indicate the importance of warm-rain processes in producing extreme rainfall rates. Thus it is demonstrated that, even in regions where severe convective storms are representative extreme weather events, the heaviest rainfall events are mostly associated with less intense convection. Third, the size effect of rainfall events on the precipitation intensity is investigated. Comparisons of normalized PDFs of foot-print size rainfall intensity for different sizes of rainfall events show that footprint-scale extreme rainfall becomes stronger as the rainfall events get larger. At the same time, stratiform ratio in area as well as in rainfall amount increases with the size, confirming larger sized features are more organized systems. After all, it is statistically shown that organization of precipitation not only brings about an increase in extreme volumetric rainfall but also an increase in probability of the satellite footprint scale extreme rainfall.

  11. On the reliability of hook echoes as tornado indicators

    NASA Technical Reports Server (NTRS)

    Forbes, G. S.

    1981-01-01

    A study of radar echoes associated with the tornadoes of the 3 April 1974 outbreak was performed to evaluate the usefulness of echo shape as an indicator of tornadic thunderstorms. The hook shape was usually successful in characterizing an echo as tornadic, with a false alarm rate of 16%. Because hook echoes were relatively rare, however, a less restrictive shape called distinctive was more successful at detecting tornadic thunderstorms, identifying 65% of the tornadic echoes. An echo had a distinctive shape if it possessed a marked appendage on its right rear flank or was in the shape of a spiral, comma or line echo wave pattern (LEWP). Characteristics of the distinctive echo are given.

  12. Dynamical Downscaling of Climate Change over the Hawaiian Islands

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Zhang, C.; Hamilton, K. P.; Lauer, A.

    2015-12-01

    The pseudo-global-warming (PGW) method was applied to the Hawaii Regional Climate Model (HRCM) to dynamically downscale the projected climate in the late 21st century over the Hawaiian Islands. The initial and boundary conditions were adopted from MERRA reanalysis and NOAA SST data for the present-day simulations. The global warming increments constructed from the CMIP3 multi-model ensemble mean were added to the reanalysis and SST data to perform the future climate simulations. We found that the Hawaiian Islands are vulnerable to global warming effects and the changes are diverse due to the varied topography. The windward side will have more clouds and receive more rainfall. The increase of the moisture in the boundary layer makes the major contribution. On the contrary, the leeward side will have less clouds and rainfall. The clouds and rain can slightly slow down the warming trend over the windward side. The temperature increases almost linearly with the terrain height. Cloud base and top heights will slightly decline in response to the slightly lower trade wind inversion base height, while the trade wind occurrence frequency will increase by about 8% in the future. More extreme rainfall events will occur in the warming climate over the Hawaiian Islands. And the snow cover on the top of Mauna Kea and Mauna Loa will nearly disappear in the future winter.

  13. Testing Land-Vegetation retrieval algorithms for the ICESat-2 mission

    NASA Astrophysics Data System (ADS)

    Zhou, T.; Popescu, S. C.

    2017-12-01

    The upcoming spaceborne satellite, the Ice, Cloud and land Elevation Satellite 2 (ICESat-2), will provide topography and canopy profiles at the global scale using photon counting LiDAR. To prepare for the mission launch, the aim of this research is to develop a framework for retrieving ground and canopy height in different forest types and noise levels using two ICESat-2 testbed sensor data: MABEL (Multiple Altimeter Beam Experimental Lidar) data and simulated ICESat-2 data. The first step of the framework is to reduce as many noise photons as possible through grid statistical methods and cluster analysis. Subsequently, we employed the overlapping moving windows and estimated quantile heights in each window to characterize the possible ground and canopy top using the filtered photons. Both MABEL and simulated ICESat-2 data generated satisfactory results with reasonable accuracy, while the results of simulated ICESat-2 data were better than that of MABEL data with smaller root mean square errors (RMSEs). For example, the RMSEs of canopy top identification in various vegetation using simulated ICESat-2 data were less than 3.78 m comparing to 6.48 m for the MABE data. It is anticipated that the methodology will advance data processing of the ICESat-2 mission and expand potential applications of ICESat-2 data once available such as mapping vegetation canopy heights.

  14. Early selection of novel triploid hybrids of shrub willow with improved biomass yield relative to diploids

    PubMed Central

    2014-01-01

    Background Genetic improvement of shrub willow (Salix), a perennial energy crop common to temperate climates, has led to the development of new cultivars with improved biomass yield, pest and disease resistance, and biomass composition suitable for bioenergy applications. These improvements have largely been associated with species hybridization, yet little is known about the genetic mechanisms responsible for improved yield and performance of certain willow species hybrids. Results The top performing genotypes in this study, representing advanced pedigrees compared with those in previous studies, were mostly triploid in nature and outperformed current commercial cultivars. Of the genotypes studied, the diploids had the lowest mean yield of 8.29 oven dry Mg ha−1 yr−1, while triploids yielded 12.65 Mg ha−1 yr−1, with the top five producing over 16 Mg ha−1 yr−1. Triploids had high stem area and height across all three years of growth in addition to greatest specific gravity. The lowest specific gravity was observed among the tetraploid genotypes. Height was the early trait most correlated with and the best predictor of third-year yield. Conclusions These results establish a paradigm for future breeding and improvement of Salix bioenergy crops based on the development of triploid species hybrids. Stem height and total stem area are effective traits for early prediction of relative yield performance. PMID:24661804

  15. Forming maps of targets having multiple reflectors with a biomimetic audible sonar.

    PubMed

    Kuc, Roman

    2018-05-01

    A biomimetic audible sonar mimics human echolocation by emitting clicks and sensing echoes binaurally to investigate the limitations in acoustic mapping of 2.5 dimensional targets. A monaural sonar that provides only echo time-of-flight values produces biased maps that lie outside the target surfaces. Reflector bearing estimates derived from the first echoes detected by a binaural sonar are employed to form unbiased maps. Multiple echoes from a target introduce phantom-reflector artifacts into its map because later echoes are produced by reflectors at bearings different from those determined from the first echoes. In addition, overlapping echoes interfere to produce bearing errors. Addressing the causes of these bearing errors motivates a processing approach that employs template matching to extract valid echoes. Interfering echoes can mimic a valid echo and also form PR artifacts. These artifacts are eliminated by recognizing the bearing fluctuations that characterize echo interference. Removing PR artifacts produces a map that resembles the physical target shape to within the resolution capabilities of the sonar. The remaining differences between the target shape and the final map are void artifacts caused by invalid or missing echoes.

  16. A controlled ac Stark echo for quantum memories.

    PubMed

    Ham, Byoung S

    2017-08-09

    A quantum memory protocol of controlled ac Stark echoes (CASE) based on a double rephasing photon echo scheme via controlled Rabi flopping is proposed. The double rephasing scheme of photon echoes inherently satisfies the no-population inversion requirement for quantum memories, but the resultant absorptive echo remains a fundamental problem. Herein, it is reported that the first echo in the double rephasing scheme can be dynamically controlled so that it does not affect the second echo, which is accomplished by using unbalanced ac Stark shifts. Then, the second echo is coherently controlled to be emissive via controlled coherence conversion. Finally a near perfect ultralong CASE is presented using a backward echo scheme. Compared with other methods such as dc Stark echoes, the present protocol is all-optical with advantages of wavelength-selective dynamic control of quantum processing for erasing, buffering, and channel multiplexing.

  17. 17 Years of Cloud Heights from Terra, and Beyond

    NASA Astrophysics Data System (ADS)

    Davies, R.

    2017-12-01

    The effective cloud height, H, is the integral of observed cloud-top heights, weighted by their frequency of occurrence. Here we look at changes in the effective cloud height, H', as measured by the Multiangle Imaging Spectroradiometer (MISR) on the first Earth Observing System platform, Terra. Terra was launched in December 1999, and now has over 17 years of consistently measured climate records. Globally, HG' has an important influence on Earth's climate, whereas regionally, HR' is a useful measure of low frequency changes in circulation patterns. MISR has a sampling error in the annual mean HG' of ≈11 m, allowing fairly small interannual variations to be detected. This paper extends the previous 15-year summary that showed significant differences in the long term mean hemispheric cloud height changes. Also of interest are the correlations in tropical cloud height changes and related teleconnections. The largest ephemeral values in the annual HR' [over 1.5 km] are noted over the Central Pacific and the Maritime Continent. These changes are strongly anticorrelated with each other, being directly related to changes in ENSO. They are also correlated with the largest ephemeral changes in HG'. Around the equator, we find at least four distinct centres of similar fluctuations in cloud height. This paper examines the relative time dependence of these regional height changes, separately for La Niña and El Niño events, and stresses the value of extending the time series of uniformly measured cloud heights from space beyond EOS-Terra.

  18. Hydrostatic constraints on morphological exploitation of light in tall Sequoia sempervirens trees.

    PubMed

    Ishii, Hiroaki T; Jennings, Gregory M; Sillett, Stephen C; Koch, George W

    2008-07-01

    We studied changes in morphological and physiological characteristics of leaves and shoots along a height gradient in Sequoia sempervirens, the tallest tree species on Earth, to investigate whether morphological and physiological acclimation to the vertical light gradient was constrained by hydrostatic limitation in the upper crown. Bulk leaf water potential (Psi) decreased linearly and light availability increased exponentially with increasing height in the crown. During the wet season, Psi was lower in the outer than inner crown. C isotope composition of leaves (delta(13)C) increased with increasing height indicating greater photosynthetic water use efficiency in the upper crown. Leaf and shoot morphology changed continuously with height. In contrast, their relationships with light availability were discontinuous: morphological characteristics did not correspond to increasing light availability above 55-85 m. Mass-based chlorophyll concentration (chl) decreased with increasing height and increasing light availability. In contrast, area-based chl remained constant or increased with increasing height. Mass-based maximum rate of net photosynthesis (P (max)) decreased with increasing height, whereas area-based P (max) reached maximum at 78.4 m and decreased with increasing height thereafter. Mass-based P (max) increased with increasing shoot mass per area (SMA), whereas area-based P (max) was not correlated with SMA in the upper crown. Our results suggest that hydrostatic limitation of morphological development constrains exploitation of light in the upper crown and contributes to reduced photosynthetic rates and, ultimately, reduced height growth at the tops of tall S. sempervirens trees.

  19. Case study of Pampa, Texas, multicell storms

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Tsao, D. Y.; Smith, R. E.

    1983-01-01

    Analysis of the Pampa, TX, multicell storms showed prestorm environmental conditions of a strong horizontal convergence of moisture, mixing ratio 12 g/kg at the 850 mb level in the Texas Panhandle areas and strong winds with shear veering with height. Rapid-scan satellite imagery showed that the clouds penetrated above the tropopause and cloud-top temperatures were at least 4 to 9 C colder than the temperature of the tropopause. This formation and collapsing of high-mass-density overshooting cloud tops above the tropopause is characteristic of tornadoes in the middle portion of the United States.

  20. Case study of Pampa, Texas, multicell storms

    NASA Astrophysics Data System (ADS)

    Hung, R. J.; Tsao, D. Y.; Smith, R. E.

    1983-09-01

    Analysis of the Pampa, Texas, multicell storms showed prestorm environmental conditions of a strong horizontal convergence of moisture, mixing ratio 12 g/kg at the 850 mb level in the Texas Panhandle areas and strong winds with shear veering with height. Rapid-scan satellite imagery showed that the clouds penetrated above the tropopause and cloud-top temperatures were at least 4 to 9° C colder than the temperature of the tropopause. This formation and collapsing of high-mass-density overshooting cloud tops above the tropopause is characteristic of tornadoes in the middle portion of the United States.

  1. X-ray Crystal Truncation Rod Studies of Surface Oxidation and Reduction on Pt(111)

    DOE PAGES

    Liu, Yihua; Barbour, Andi; Komanicky, Vladimir; ...

    2016-02-26

    Here, we present X-ray crystal truncation rods measurements of Pt(111) surface under electrochemical conditions. Analyses of crystal truncation rods reveal that surface oxide formation buckles the top surface layer of platinum to two different heights at the potential (0.95 V vs RHE) below the so-called place-exchange potential. While the anti-Bragg intensity, sensitive to the top surface layer, drops in response to the anodic charge transfers, its responses to the cathodic charge transfers are significantly delayed. Implications to the surface oxidation and reduction behaviors are discussed.

  2. Doubly Disadvantaged? The Relative Age Effect in Poland’s Basketball Players

    PubMed Central

    Rubajczyk, Krystian; Świerzko, Kamil; Rokita, Andrzej

    2017-01-01

    The aim of this study was to identify the relative age effect (RAE) in young Polish male (n = 3849) and female (n = 3419) basketball players aged 14 to 22 years competing in the elite games of the Polish Youth Championships. The distribution of birth dates, body height, players’ match statistics, and the results of teams participating in championships were identified. The RAE was observed in male and female group, regardless of players age. Nevertheless, the greatest disproportion in the distribution of dates of birth was found in U16 group of boys (V = 0.25, p < 0.0001). Significant differences in body height were identified in U14 and U16 groups of boys (p < 0.0001) and U14 group of girls (p < 0.01). The RAE was the most detrimental in the group of boys from teams ranked 9th or lower (p < 0.0001). The groups of male and female basketball players from the top 3 teams had the highest average body height (p < 0.001). In U14 boys, significantly higher match results and performance index ratings (PIR) were observed for players born in the first half of a calendar year. The research results show the impact of the RAE on the success of youth basketball teams in Poland. The month of birth, body height and sex may determine sporting achievements in youth basketball. Coaches should consider the chronological age and pubertal growth acceleration (APHV-age at peak height velocity) of players to optimize the process of identifying gifted basketball players, especially among boys of 14 years of age. Key points The RAE was identified in all groups competing in the elite games of the Polish Youth Championships. Height averages were the highest in the group of male and female players from the top 3 teams. The research results show the impact of the RAE on the success of youth basketball teams in Poland. It is necessary to create comprehensive strategies to minimize the RAE phenomenon in basketball, for each sex separately. PMID:28630582

  3. Exploratory factor analysis of signalment and conformational measurements in Thoroughbred horses with and without recurrent laryngeal neuropathy.

    PubMed

    McGivney, C L; Gough, K F; McGivney, B A; Farries, G; Hill, E W; Katz, L M

    2018-06-23

    Conflicting results have been reported for risk factors for recurrent laryngeal neuropathy (RLN) based on resting endoscopic evaluation and comparison of single conformation traits, with many traits correlated to one another. To simplify identification of signalment and conformation traits (i.e. variables) associated with RLN cases and controls diagnosed with exercising overground endoscopy (OGE) using exploratory factor analysis (EFA). Prospective cohort. Pearson's rank correlation was used to establish significance and association between variables collected from n = 188 Thoroughbreds from one stable by observers blinded to OGE results. Exploratory factor analysis was conducted on 9 variables for cases and controls; common elements between variables developed a factor, with variables grouped into 3 factors for cases and controls, respectively. Correlation (loading) between each variable and factor was calculated to rank relationships between variables and cases/controls, with factors retrospectively named based on their underlying correlations with variables. Numerous inter-correlations were present between variables. Most strongly correlated in cases were wither height with body weight (r = 0.70) and ventral neck length (r = 0.68) and in controls body weight with rostral neck circumference (r = 0.58). Wither height (r = 0.61) significantly loaded the top-ranked factor for cases ('height RLN '), explaining 25% of conformational variance. Ventral neck length (r = 0.69) and age (r = 0.57) significantly loaded the second-ranked factor for cases ('neck length RLN '), explaining 16% of conformational variance. Rostral neck circumference (r = 0.86) and body weight (r = 0.6) significantly loaded the top-ranked factor for controls ('body size CON '), explaining 19% of the variance. Wither height (r = 0.84) significantly loaded the second-ranked factor for controls ('height CON '), explaining 13% of the variance. Horses had not reached skeletal maturity. Exploratory factor analysis allowed weightings to be determined for each variable. Wither height was the predominant conformational feature associated with RLN. Exploratory factor analysis confirms aggregated conformational differences exist between RLN cases and controls, suitable for future evaluations. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. Validation of satellite-retrieved MBL cloud properties using DOE ARM AMF measurements at the Azores

    NASA Astrophysics Data System (ADS)

    Xi, B.; Dong, X.; Minnis, P.; Sun-Mack, S.

    2013-05-01

    Marine Boundary Layer (MBL) cloud properties derived for the Clouds and the Earth's Radiant Energy System (CERES) Project using Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) data are compared with observations taken at the Atmospheric Radiation Measurement (ARM) AMF AZORES site from June 2009 through December 2010. Retrievals from ARM surface-based data were averaged over a 1-hour interval centered at the time of each satellite overpass, and the CERES-MODIS Ed4 cloud properties were averaged within a 30-km x 30-km box centered on the ARM AZORES site. Two datasets were analyzed: all of the single-layered unbroken decks (SL) and those cases without temperature inversions. The CERES-MODIS cloud top/base heights were determined from cloud top/base temperature by using a lapse rate method normalized to the 24-h mean surface air temperature. The preliminary results show: for all SL MBL at daytime, they are, on average, 0.148 km (cloud top) and 0.087 km (cloud base) higher than the ARM radar-lidar observed cloud top and base, respectively. At nighttime, they are 0.446 km (cloud top) and 0.334 km (cloud base). For those cases without temperature inversions, the comparisons are close to their SL counterparts. For cloud temperatures, the MODIS-derived cloud-top and -base temperatures are 1.6 K lower and 0.4 K higher than the surface values with correlations of 0.92 during daytime. At nighttime, the differences are slightly larger and correlations are lower than daytime comparisons. Variations in the height difference are mainly caused by uncertainties in the surface air temperatures and lapse rates. Based on a total of 61 daytime and 87 nighttime samples (ALL SL cases), the temperature inversion layers occur about 72% during daytime and 83% during nighttime. The difference of surface-observed lapse rate and the satellite derived lapse rate can be 1.6 K/km for daytime and 3.3K/km for nighttime. From these lapse rates, we can further analyze the surface air temperature difference that used to calculate these lapse rate, which are ~3K difference between surface-observed and the satellite derived during the daytime and 5.1 K during nighttime. Further studies of the cause of the temperature inversions that may help the cloud heights retrievals by satellite. The preliminary comparisons in MBL microphysical properties have shown that the averaged CERES-MODIS derived MBL cloud-droplet effective radius is only 1.5 μm larger than ARM retrieval (13.2 μm), and LWP values are also very close to each other (112 vs. 124 gm-2) with a relative large difference in optical depth (10.6 vs. 14.4).

  5. Assessing and Adapting LiDAR-Derived Pit-Free Canopy Height Model Algorithm for Sites with Varying Vegetation Structure

    NASA Astrophysics Data System (ADS)

    Scholl, V.; Hulslander, D.; Goulden, T.; Wasser, L. A.

    2015-12-01

    Spatial and temporal monitoring of vegetation structure is important to the ecological community. Airborne Light Detection and Ranging (LiDAR) systems are used to efficiently survey large forested areas. From LiDAR data, three-dimensional models of forests called canopy height models (CHMs) are generated and used to estimate tree height. A common problem associated with CHMs is data pits, where LiDAR pulses penetrate the top of the canopy, leading to an underestimation of vegetation height. The National Ecological Observatory Network (NEON) currently implements an algorithm to reduce data pit frequency, which requires two height threshold parameters, increment size and range ceiling. CHMs are produced at a series of height increments up to a height range ceiling and combined to produce a CHM with reduced pits (referred to as a "pit-free" CHM). The current implementation uses static values for the height increment and ceiling (5 and 15 meters, respectively). To facilitate the generation of accurate pit-free CHMs across diverse NEON sites with varying vegetation structure, the impacts of adjusting the height threshold parameters were investigated through development of an algorithm which dynamically selects the height increment and ceiling. A series of pit-free CHMs were generated using three height range ceilings and four height increment values for three ecologically different sites. Height threshold parameters were found to change CHM-derived tree heights up to 36% compared to original CHMs. The extent of the parameters' influence on modelled tree heights was greater than expected, which will be considered during future CHM data product development at NEON. (A) Aerial image of Harvard National Forest, (B) standard CHM containing pits, appearing as black speckles, (C) a pit-free CHM created with the static algorithm implementation, and (D) a pit-free CHM created through varying the height threshold ceiling up to 82 m and the increment to 1 m.

  6. Discovering hotspots in functional genomic data superposed on 3D chromatin configuration reconstructions

    PubMed Central

    Capurso, Daniel; Bengtsson, Henrik; Segal, Mark R.

    2016-01-01

    The spatial organization of the genome influences cellular function, notably gene regulation. Recent studies have assessed the three-dimensional (3D) co-localization of functional annotations (e.g. centromeres, long terminal repeats) using 3D genome reconstructions from Hi-C (genome-wide chromosome conformation capture) data; however, corresponding assessments for continuous functional genomic data (e.g. chromatin immunoprecipitation-sequencing (ChIP-seq) peak height) are lacking. Here, we demonstrate that applying bump hunting via the patient rule induction method (PRIM) to ChIP-seq data superposed on a Saccharomyces cerevisiae 3D genome reconstruction can discover ‘functional 3D hotspots’, regions in 3-space for which the mean ChIP-seq peak height is significantly elevated. For the transcription factor Swi6, the top hotspot by P-value contains MSB2 and ERG11 – known Swi6 target genes on different chromosomes. We verify this finding in a number of ways. First, this top hotspot is relatively stable under PRIM across parameter settings. Second, this hotspot is among the top hotspots by mean outcome identified by an alternative algorithm, k-Nearest Neighbor (k-NN) regression. Third, the distance between MSB2 and ERG11 is smaller than expected (by resampling) in two other 3D reconstructions generated via different normalization and reconstruction algorithms. This analytic approach can discover functional 3D hotspots and potentially reveal novel regulatory interactions. PMID:26869583

  7. Clonal variation in heavy metal accumulation and biomass production in a poplar coppice culture. II. Vertical distribution and phytoextraction potential.

    PubMed

    Laureysens, I; De Temmerman, L; Hastir, T; Van Gysel, M; Ceulemans, R

    2005-02-01

    Short rotation coppice cultures (SRC) are intensively managed, high-density plantations of multi-shoot trees. In April 1996, an SRC field trial with 17 different poplar clones was established in Boom (Belgium) on a former waste disposal site. In December 1996 and January 2001, all shoots were cut back to a height of 5 cm to create a coppice culture. For six clones, wood and bark were sampled at the bottom, middle and top of a shoot in August and November 2002. No significant height effect of metal concentration was found, but for wood, metal concentrations generally increased toward the top of the shoot in August, and decreased toward the top of the shoot in November. Phytoextraction potential of a clone was primarily determined by metal concentration and by biomass production. Shoot size and number of shoots per stool were less important, as a high biomass production could be achieved by producing a few large shoots or many smaller shoots. Clone Fritzi Pauley accumulated 1.4 kg ha(-1) of Al over two years; Wolterson and Balsam Spire showed a relatively high accumulation of Cd and Zn, i.e. averaging, respectively 47 and 57 g ha(-1) for Cd and 2.4 and 2.0 kg ha(-1) for Zn over two years.

  8. High Temperature Ultrasonic Probe and Pulse-Echo Probe Mounting Fixture for Testing and Blind Alignment on Steam Pipes

    NASA Technical Reports Server (NTRS)

    Lih, Shyh-Shiuh (Inventor); Takano, Nobuyuki (Inventor); Lee, Hyeong Jae (Inventor); Bao, Xiaoqi (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor); Sherrit, Stewart (Inventor); Ostlund, Patrick N. (Inventor)

    2017-01-01

    A high temperature ultrasonic probe and a mounting fixture for attaching and aligning the probe to a steam pipe using blind alignment. The high temperature ultrasonic probe includes a piezoelectric transducer having a high temperature. The probe provides both transmitting and receiving functionality. The mounting fixture allows the high temperature ultrasonic probe to be accurately aligned to the bottom external surface of the steam pipe so that the presence of liquid water in the steam pipe can be monitored. The mounting fixture with a mounted high temperature ultrasonic probe are used to conduct health monitoring of steam pipes and to track the height of condensed water through the wall in real-time.

  9. Ice elevation change from Swath Processing of CryoSat SARIn Mode Data

    NASA Astrophysics Data System (ADS)

    Foresta, Luca; Gourmelen, Noel; Shepherd, Andrew; Muir, Alan; Nienow, Pete

    2015-04-01

    Reference and repeat-observations of Glacier and Ice Sheet Margin (GISM) topography are critical to identify changes in ice elevation, provide estimates of mass gain or loss and thus quantify the contribution of the cryosphere to sea level rise (e.g. McMillan et al., 2014). The Synthetic Interferometric Radar Altimeter (SIRAL) onboard the ESA radar altimetry CryoSat (CS) mission has collected ice elevation measurements since 2010. The corresponding SARIn mode of operation, activated over GISM areas, provides high spatial resolution in the along-track direction while resolving the angular origin of echoes (i.e. across-track). The current ESA SARIn processor calculates the elevation of the Point Of Closest Approach (POCA) within each waveform and maps of elevation change in Antarctica and Greenland have been produced using the regular CS height product (McMillan et al., 2014; Helm et al., 2014). Data from the CS-SARIn mode has also been used to produce measurements of ice elevation beyond the POCA, also known as swath elevation (Hawley et al. 2009; Gray et al., 2013; ESA-STSE CryoTop project). Here we use the swath processing approach to generate maps of ice elevation change from selected regions around the margins of the Greenland and Antarctic Ice Sheets. We discuss the impact of the swath processing on the spatial resolution and precision of the resulting ice elevation field and compare our results to current dh/dt estimates. References: ESA STSE CryoTop project - http://www.stse-cryotop.org/ Gray L., Burgess D., Copland L., Cullen R., Galin N., Hawley R. and Helm V. Interferometric swath processing of Cryosat data for glacial ice topography. The Cryosphere, 7(6):1857-1867, December 2013. Hawley R.L., Shepherd A., Cullen R., Helm V. and WIngham D.J. Ice-sheet elevations from across-track processing of airborne interferometric radar altimetry. Geophysical Research Letters, 36(22):L22501, November 2009. Helm V., Humbert A. and Miller H. Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2. The Cryosphere, 8(4):1539-1559, August 2014. McMillan M., Shepherd A., Sundal A., Briggs K., Muir A., Ridout A., Hogg A. and Wingham D. Increased ice losses from Antarctica detected by CryoSat-2. Geophysical Research Letters, pages 3899-3905, 2014.

  10. Effective height of chimney for biomass cook stove simulated by computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Faisal; Setiawan, A.; Wusnah; Khairil; Luthfi

    2018-02-01

    This paper presents the results of numerical modelling of temperature distribution and flow pattern in a biomass cooking stove using CFD simulation. The biomass stove has been designed to suite the household cooking process. The stove consists of two pots. The first is the main pot located on the top of the combustion chamber where the heat from the combustion process is directly received. The second pot absorbs the heat from the exhaust gas. A chimney installed at the end of the stove releases the exhaust gas to the ambient air. During the tests, the height of chimney was varied to find the highest temperatures at both pots. Results showed that the height of the chimney at the highest temperatures of the pots is 1.65 m. This chimney height was validated by developing a model for computational fluid dynamics. Both experimental and simulations results show a good agreement and help in tune-fining the design of biomass cooking stove.

  11. Three modes of interdecadal trends in sea surface temperature and sea surface height

    NASA Astrophysics Data System (ADS)

    Gnanadesikan, A.; Pradal, M.

    2013-12-01

    It might be thought that sea surface height and sea surface temperature would be tightly related. We show that this is not necessarily the case on a global scale. We analysed this relationship in a suite of coupled climate models run under 1860 forcing conditions. The models are low-resolution variants of the GFDL Earth System Model, reported in Galbraith et al. (J. Clim. 2011). 1. Correlated changes in global sea surface height and global sea surface temperature. This mode corresponds to opening and closing of convective chimneys in the Southern Ocean. As the Southern Ocean destratifies, sea ice formation is suppressed during the winter and more heat is taken up during the summer. This mode of variability is highly correlated with changes in the top of the atmosphere radiative budget and weakly correlated with changes in the deep ocean circulation. 2. Uncorrelated changes in global sea surface height and global sea surface temperature. This mode of variability is associated with interdecadal variabliity in tropical winds. Changes in the advective flux of heat to the surface ocean play a critical role in driving these changes, which also result in significant local changes in sea level. Changes sea ice over the Southern Ocean still result in changes in solar absorption, but these are now largely cancelled by changes in outgoing longwave radiation. 3. Anticorrelated changes in global sea surface height and global sea surface temperatures. By varying the lateral diffusion coefficient in the ocean model, we are able to enhance and suppress convection in the Southern and Northern Pacific Oceans. Increasing the lateral diffusion coefficients shifts the balance sources of deep water away from the warm salty deep water of the North Atlantic and towards cold fresh deep water from the other two regions. As a result, even though the planet as a whole warms, the deep ocean cools and sea level falls, with changes of order 30 cm over 500 years. The increase in solar absorption in polar regions is more than compensated by an increase in outgoing longwave radiation. Relationship between global SSH trend over a decade and (A) local SSH change over a decade (m/m). (B) Global SST change over a decade (m/K) (C) Portion of decadal SST change correlated with net radiation at the top of the atmosphere (m/K) (D) Portion of decadal SST change not correlated with net radiation at the top of the atmosphere.

  12. A case study on large-scale dynamical influence on bright band using cloud radar during the Indian summer monsoon

    NASA Astrophysics Data System (ADS)

    Jha, Ambuj K.; Kalapureddy, M. C. R.; Devisetty, Hari Krishna; Deshpande, Sachin M.; Pandithurai, G.

    2018-02-01

    The present study is a first of its kind attempt in exploring the physical features (e.g., height, width, intensity, duration) of tropical Indian bright band using a Ka-band cloud radar under the influence of large-scale cyclonic circulation and attempts to explain the abrupt changes in bright band features, viz., rise in the bright band height by 430 m and deepening of the bright band by about 300 m observed at around 14:00 UTC on Sep 14, 2016, synoptically as well as locally. The study extends the utility of cloud radar to understand how the bright band features are associated with light precipitation, ranging from 0 to 1.5 mm/h. Our analysis of the precipitation event of Sep 14-15, 2016 shows that the bright band above (below) 3.7 km, thickness less (more) than 300 m can potentially lead to light drizzle of 0-0.25 mm/h (drizzle/light rain) at the surface. It is also seen that the cloud radar may be suitable for bright band study within light drizzle limits than under higher rain conditions. Further, the study illustrates that the bright band features can be determined using the polarimetric capability of the cloud radar. It is shown that an LDR value of - 22 dB can be associated with the top height of bright band in the Ka-band observations which is useful in the extraction of the bright band top height and its width. This study is useful for understanding the bright band phenomenon and could be potentially useful in establishing the bright band-surface rain relationship through the perspective of a cloud radar, which would be helpful to enhance the cloud radar-based quantitative estimates of precipitation.

  13. Ideal proportions in full face front view, contemporary versus antique.

    PubMed

    Mommaerts, M Y; Moerenhout, B A M M L

    2011-03-01

    To compare the facial proportions of contemporary harmonious faces with those of antiquity, to validate classical canons and to determine new ones useful in orthofacial surgery planning. Contemporary beautiful faces were retrieved from yearly polls of People Magazine and FHM. Selected B/W frontal facial photographs of 31 men and 74 women were ranked by 20 patients who had to undergo orthofacial surgery. The top-15 female faces and the top-10 male faces were analyzed with Scion Image software. The classical facial index, the Bruges facial index, the ratio lower facial height/total facial height and the vertical tri-partite of the lower face were calculated. The same analysis was done on pictures of classical sculptures representing seven goddesses and 12 gods. Harmonious contemporary female faces have a significantly lower classical facial index, indicating that facial height is less or facial width is larger than in male and even than in antique female faces. The Bruges index indicates a similar difference between ideal contemporary female and male faces. The contemporary male has a higher lower face (48%) compared to total facial height than the contemporary female (45%), although this is statistically not significant (P=0.08). The lower facial thirds index remained quite stabile for 2500 years, without gender difference. A good canon for both sexes today is stomion-gnathion being 70% of subnasale-stomion. The average ideal contemporary female face is shorter than the male face, given the fact that interpupillary distance is similar. The Vitruvian thirds in the lower face have to be adjusted to a 30% upper lip, 70% lower lip-chin proportion. The contemporary ideal ratios are suitable to be implemented in an orthofacial planning concept. Copyright © 2010 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  14. Effects of tree architecture on pollen dispersal and mating patterns in Abies pinsapo Boiss. (Pinaceae).

    PubMed

    Sánchez-Robles, Jose M; García-Castaño, Juan L; Balao, Francisco; Terrab, Anass; Navarro-Sampedro, Laura; Tremetsberger, Karin; Talavera, Salvador

    2014-12-01

    Plant architecture is crucial to pollination and mating in wind-pollinated species. We investigated the effect of crown architecture on pollen dispersal, mating system and offspring quality, combining phenotypic and genotypic analyses in a low-density population of the endangered species Abies pinsapo. A total of 598 embryos from three relative crown height levels (bottom, middle and top) in five mother plants were genotyped using eleven nuclear microsatellite markers (nSSRs). Paternity analysis and mating system models were used to infer mating and pollen dispersal parameters. In addition, seeds were weighed (N = 16 110) and germinated (N = 736), and seedling vigour was measured to assess inbreeding depression. Overall, A. pinsapo shows a fat-tailed dispersal kernel, with an average pollen dispersal distance of 113-227 m, an immigration rate of 0.84-26.92%, and a number of effective pollen donors (Nep ) ranging between 3.5 and 11.9. We found an effect of tree height and relative crown height levels on mating parameters. A higher proportion of seeds with embryo (about 50%) and a higher rate of self-fertilization (about 60%) were found at the bottom level in comparison with the top level. Seed weight and seedling vigour are positively related. Nevertheless, no differences were found in seed weight or in seedling-related variables such as weight and length of aerial and subterranean parts among the different relative crown height levels, suggesting that seeds from the more strongly inbred bottom level are not affected by inbreeding depression. Our results point to vertical isotropy for outcross-pollen and they suggest that self-pollen may ensure fertilization when outcross-pollen is not available in low-density population. © 2014 John Wiley & Sons Ltd.

  15. Relationship between tornadoes and hook echoes on April 3, 1974

    NASA Technical Reports Server (NTRS)

    Forbes, G. S.

    1975-01-01

    Radar observations of tornado families occurring on April 3, 1974 are discussed. Of the 93 tornadoes included in the sample, 81% were associated with hook-like echoes with appendages at least 40 deg to the south of the echo movement. At least one tornado was associated with 62% of the hook-like echoes observed. All of the tornadoes with intensities of F 4 and F 5 were produced by hook-like echoes; the mean intensity of all tornadoes associated with this type of echo was F 3, while the mean intensity of the remaining tornadoes was F1. The tornadic hook-like echoes moved to the right of the non-tornadic echoes forming a tornado line in advance of the squall line. Some tornadoes were associated with 'spiral' echoes.

  16. A Gigantic Jet Observed Over an Mesoscale Convective System in Midlatitude Region

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Sato, Mitsuteru; Liu, Ningyu; Lu, Gaopeng; Wang, Yu; Wang, Zhichao

    2018-01-01

    Gigantic jets (GJs) are mostly observed over summer tropical or tropical-like thunderstorms. This study reports observation of a GJ over a mesoscale convective system (MCS) in the midlatitude region in eastern China. The GJ is observed over a relatively weak radar reflectivity region ahead of the leading line, and the maximum radar echo top along the GJ azimuth was lower than the tropopause in the same region, significantly different from past studies that indicate summer GJs are usually associated with convective surges or overshooting tops. Also different from most of previous observations showing GJ-producing summer thunderstorms only produced GJ type of transient luminous events during their life cycles, two sprites were also captured in a time window of 15 min containing the GJ, indicating that the MCS provides favorable conditions not only for the GJ but also for the sprites. The balloon-borne soundings of the MCS show that there were large wind shears in the middle and upper levels of the thundercloud, which may have played important roles for the GJ production.

  17. Characteristics of tropical cyclones and overshooting from GPS radio occultation data

    NASA Astrophysics Data System (ADS)

    Biondi, Riccardo; Rieckh, Therese; Steiner, Andrea; Kirchengast, Gottfried

    2014-05-01

    Tropical cyclones (TCs) are extreme weather events causing every year huge damages and several deaths. In some countries they are the natural catastrophes accounting for the major economic damages. The thermal structure of TCs gives important information on the cloud top height allowing for a better understanding of the troposphere-stratosphere transport, which is still poorly understood. The measurement of atmospheric parameters (such as temperature, pressure and humidity) with high vertical resolution and accuracy in the upper troposphere and lower stratosphere (UTLS) is difficult especially during severe weather events (e.g TCs). Satellite remote sensing has improved the TC forecast and monitoring accuracy. In the last decade the Global Positioning Systems (GPS) Radio Occultation (RO) technique contributed to improve our knowledge especially at high troposphere altitudes and in remote regions of the globe thanks to the high vertical resolution, avoiding temperature smoothing issues (given by microwave and infrared instruments) in the UTLS and improving the poor temporal resolution and global coverage given by lidars and radars. We selected more than twenty-thousand GPS RO profiles co-located with TC best tracks for the period 2001 to 2012 and computed temperature anomaly profiles relative to a RO background climatology in order to detect TC cloud tops. We characterized the thermal structure for different ocean basins and for different TC intensities, distinguishing between tropical and extra-tropical cases. The analysis shows that all investigated storms have a common feature: they warm the troposphere and cool the UTLS near the cloud top. This behavior is amplified in the extra-tropical areas. Results reveal that the storms' cloud tops in the southern hemisphere basins reach higher altitudes and lower temperatures than in the northern hemisphere basins. We furthermore compared the cloud top height of each profile with the mean tropopause altitude (from the RO archive) in order to detect overshooting. We present a map of TC overshooting events indicating tropical areas which contribute most to UTLS transport and the large-scale atmospheric circulation.

  18. Comparing terrestrial laser scanning and unmanned aerial vehicle structure from motion to assess top of canopy structure in tropical forests

    PubMed Central

    Bartholomeus, Harm

    2018-01-01

    Terrestrial laser scanning (TLS) and unmanned aerial vehicles (UAVs) equipped with digital cameras have attracted much attention from the forestry community as potential tools for forest inventories and forest monitoring. This research fills a knowledge gap about the viability and dissimilarities of using these technologies for measuring the top of canopy structure in tropical forests. In an empirical study with data acquired in a Guyanese tropical forest, we assessed the differences between top of canopy models (TCMs) derived from TLS measurements and from UAV imagery, processed using structure from motion. Firstly, canopy gaps lead to differences in TCMs derived from TLS and UAVs. UAV TCMs overestimate canopy height in gap areas and often fail to represent smaller gaps altogether. Secondly, it was demonstrated that forest change caused by logging can be detected by both TLS and UAV TCMs, although it is better depicted by the TLS. Thirdly, this research shows that both TLS and UAV TCMs are sensitive to the small variations in sensor positions during data collection. TCMs rendered from UAV data acquired over the same area at different moments are more similar (RMSE 0.11–0.63 m for tree height, and 0.14–3.05 m for gap areas) than those rendered from TLS data (RMSE 0.21–1.21 m for trees, and 1.02–2.48 m for gaps). This study provides support for a more informed decision for choosing between TLS and UAV TCMs to assess top of canopy in a tropical forest by advancing our understanding on: (i) how these technologies capture the top of the canopy, (ii) why their ability to reproduce the same model varies over repeated surveying sessions and (iii) general considerations such as the area coverage, costs, fieldwork time and processing requirements needed. PMID:29503719

  19. Comparing terrestrial laser scanning and unmanned aerial vehicle structure from motion to assess top of canopy structure in tropical forests.

    PubMed

    Roşca, Sabina; Suomalainen, Juha; Bartholomeus, Harm; Herold, Martin

    2018-04-06

    Terrestrial laser scanning (TLS) and unmanned aerial vehicles (UAVs) equipped with digital cameras have attracted much attention from the forestry community as potential tools for forest inventories and forest monitoring. This research fills a knowledge gap about the viability and dissimilarities of using these technologies for measuring the top of canopy structure in tropical forests. In an empirical study with data acquired in a Guyanese tropical forest, we assessed the differences between top of canopy models (TCMs) derived from TLS measurements and from UAV imagery, processed using structure from motion. Firstly, canopy gaps lead to differences in TCMs derived from TLS and UAVs. UAV TCMs overestimate canopy height in gap areas and often fail to represent smaller gaps altogether. Secondly, it was demonstrated that forest change caused by logging can be detected by both TLS and UAV TCMs, although it is better depicted by the TLS. Thirdly, this research shows that both TLS and UAV TCMs are sensitive to the small variations in sensor positions during data collection. TCMs rendered from UAV data acquired over the same area at different moments are more similar (RMSE 0.11-0.63 m for tree height, and 0.14-3.05 m for gap areas) than those rendered from TLS data (RMSE 0.21-1.21 m for trees, and 1.02-2.48 m for gaps). This study provides support for a more informed decision for choosing between TLS and UAV TCMs to assess top of canopy in a tropical forest by advancing our understanding on: (i) how these technologies capture the top of the canopy, (ii) why their ability to reproduce the same model varies over repeated surveying sessions and (iii) general considerations such as the area coverage, costs, fieldwork time and processing requirements needed.

  20. Comparison of CERES-MODIS stratus cloud properties with ground-based measurements at the DOE ARM Southern Great Plains site

    NASA Astrophysics Data System (ADS)

    Dong, Xiquan; Minnis, Patrick; Xi, Baike; Sun-Mack, Sunny; Chen, Yan

    2008-02-01

    Overcast stratus cloud properties derived for the Clouds and the Earth's Radiant Energy System (CERES) project using Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) data are compared with observations taken at the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains site from March 2000 through December 2004. Retrievals from ARM surface-based data were averaged over a 1-h interval centered at the time of each satellite overpass, and the CERES-MODIS cloud properties were averaged within a 30 km × 30 km box centered on the ARM SGP site. Two data sets were analyzed: all of the data (ALL), which include multilayered, single-layered, and slightly broken stratus decks and a subset, single-layered unbroken decks (SL). The CERES-MODIS effective cloud heights were determined from effective cloud temperature using a lapse rate method with the surface temperature specified as the 24-h mean surface air temperature. For SL stratus, they are, on average, within the ARM radar-lidar estimated cloud boundaries and are 0.534 ± 0.542 km and 0.108 ± 0.480 km lower than the cloud physical tops and centers, respectively, and are comparable for day and night observations. The mean differences and standard deviations are slightly larger for ALL data, but not statistically different to those of SL data. The MODIS-derived effective cloud temperatures are 2.7 ± 2.4 K less than the surface-observed SL cloud center temperatures with very high correlations (0.86-0.97). Variations in the height differences are mainly caused by uncertainties in the surface air temperatures, lapse rates, and cloud top height variability. The biases are mainly the result of the differences between effective and physical cloud top, which are governed by cloud liquid water content and viewing zenith angle, and the selected lapse rate, -7.1 K km-1. On the basis of a total of 43 samples, the means and standard deviations of the differences between the daytime Terra and surface retrievals of effective radius re, optical depth, and liquid water path for SL stratus are 0.1 ± 1.9 μm (1.2 ± 23.5%), -1.3 ± 9.5 (-3.6 ± 26.2%), and 0.6 ± 49.9 gm-2 (0.3 ± 27%), respectively, while the corresponding correlation coefficients are 0.44, 0.87, and 0.89. For Aqua, they are 0.2 ± 1.9 μm (2.5 ± 23.4%), 2.5 ± 7.8 (7.8 ± 24.3%), and 28.1 ± 52.7 gm-2 (17.2 ± 32.2%), as well as 0.35, 0.96, and 0.93 from a total of 21 cases. The results for ALL cases are comparable. Although a bias in re was expected because the satellite retrieval of effective radius only represents the top of the cloud, the surface-based radar retrievals revealed that the vertical profile of re is highly variable with smaller droplets occurring at cloud top in some cases. The larger bias in optical depth and liquid water path for Aqua is due, at least partially, to differences in the Terra and Aqua MODIS visible channel calibrations. Methods for improving the cloud top height and microphysical property retrievals are suggested.

  1. Comparison of CERES-MODIS Stratus Cloud Properties with Ground-Based Measurements at the DOE ARM Southern Great Plains Site

    NASA Technical Reports Server (NTRS)

    Dong, Xiquan; Minnis Patrick; Xi, Baike; Sun-Mack, Sunny; Chen, Yan

    2008-01-01

    Overcast stratus cloud properties derived for the Clouds and the Earth's Radiant Energy system (CERES) Project using Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) data are compared with observations taken at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site from March 2000 through December 2004. Retrievals from ARM surface-based data were averaged over a 1-hour interval centered at the time of each satellite overpass, and the CERES-MODIS cloud properties were averaged within a 30-km x 30 km box centered on the ARM SGP site. Two datasets were analyzed: all of the data (ALL) which include multilayered, single-layered, and slightly broken stratus decks and a subset, single-layered unbroken decks (SL). The CERES-MODIS effective cloud heights were determined from effective cloud temperature using a lapse rate method with the surface temperature specified as the 24-h mean surface air temperature. For SL stratus, they are, on average, within the ARM radar-lidar estimated cloud boundaries and are 0.534 +/- 0.542 km and 0.108 +/- 0.480 km lower than the cloud physical tops and centers, respectively, and are comparable for day and night observations. The mean differences and standard deviations are slightly larger for ALL data, but not statistically different to those of SL data. The MODIS-derived effective cloud temperatures are 2.7 +/- 2.4 K less than the surface-observed SL cloud center temperatures with very high correlations (0.86-0.97). Variations in the height differences are mainly caused by uncertainties in the surface air temperatures, lapse rates, and cloud-top height variability. The biases are mainly the result of the differences between effective and physical cloud top, which are governed by cloud liquid water content and viewing zenith angle, and the selected lapse rate, -7.1 K km(exp -1). Based on a total of 43 samples, the means and standard deviations of the differences between the daytime Terra and surface retrievals of effective radius r(sub e), optical depth, and liquid water path for SL stratu are 0.1 +/- 1.9 micrometers (1.2 +/- 23.5%), -1.3 +/- 9.5 (-3.6 +/-26.2%), and 0.6 +/- 49.9 gm (exp -2) (0.3 +/- 27%), respectively, while the corresponding correlation coefficients are 0.44, 0.87, and 0.89. For Aqua, they are 0.2 +/- 1.9 micrometers (2.5 +/- 23.4%), 2.5 +/- 7.8 (7.8 +/- 24.3%), and 28.1 +/- 52.7 gm (exp -2) (17.2 +/- 32.2%), as well as 0.35, 0.96, and 0.93 from a total of 21 cases. The results for ALL cases are comparable. Although a bias in R(sub e) was expected because the satellite retrieval of effective radius only represents the top of the cloud, the surface-based radar retrievals revealed that the vertical profile of r(sub e) is highly variable with smaller droplets occurring at cloud top in some cases. The larger bias in optical depth and liquid water path for Aqua is due, at least partially, to differences in the Terra and Aqua MODIS visible channel calibrations. methods for improving the cloud-top height and microphysical property retrievals are suggested.

  2. Serb Guardrail : South Ashland Interchange California State Line Section Pacific Highway (Interstate 5) Jackson County, Oregon : final report.

    DOT National Transportation Integrated Search

    1997-02-01

    The Self Restoring Barrier (SERB) is a proprietary guardrail unit comprised of a single tubular thrie beam held outward from the supporting wooden posts by pivoting metal arms, its height above the ground secured by short cables attached to the top o...

  3. Curves of Constant Width.

    ERIC Educational Resources Information Center

    Flaten, James A.

    1999-01-01

    Argues that it is possible to get a smooth ride on noncircular wheels on a smooth road if the load is supported using the wheels as rollers. Illustrates that the key to getting a smooth ride is for the rollers to measure the same height from top to bottom, regardless of how they are rotated. (CCM)

  4. Survival and Growth of Eastern Redcedar Seed Sources in Southwest Missouri

    Treesearch

    Kenneth W. Seidel; Richard F. Watt

    1969-01-01

    After five growing seasons on a southwest Missouri outplanting site, trees from a West Virginia eastern redcedar source had better survival, form, vigor, and height growth than trees from eight other sources tested. The local Missouri source, handicapped at planting by an unfavorable top:root ration, is now growing vigorously.

  5. 49 CFR 38.107 - Restrooms.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... closet. Fold-down or retractable seats or shelves may overlap the clear floor space at a lower height... 17 inches to 19 inches measured to the top of the toilet seat. Seats shall not be sprung to return to... at least one seating location for persons using mobility aids and shall be connected to such a space...

  6. 49 CFR 38.107 - Restrooms.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... closet. Fold-down or retractable seats or shelves may overlap the clear floor space at a lower height... 17 inches to 19 inches measured to the top of the toilet seat. Seats shall not be sprung to return to... at least one seating location for persons using mobility aids and shall be connected to such a space...

  7. 49 CFR 38.107 - Restrooms.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... closet. Fold-down or retractable seats or shelves may overlap the clear floor space at a lower height... 17 inches to 19 inches measured to the top of the toilet seat. Seats shall not be sprung to return to... at least one seating location for persons using mobility aids and shall be connected to such a space...

  8. 49 CFR 38.107 - Restrooms.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... closet. Fold-down or retractable seats or shelves may overlap the clear floor space at a lower height... 17 inches to 19 inches measured to the top of the toilet seat. Seats shall not be sprung to return to... at least one seating location for persons using mobility aids and shall be connected to such a space...

  9. 50 CFR 14.106 - Primary enclosures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... affixed in the conveyance or has an open top for certain large mammals, spacer bars allowing circulation... enclosure, a sling, or on foam is exempt from the requirement to contain litter. An enclosure used to... height, “Live Animals” or “Wild Animals”, “Do Not Tip,” “Only Authorized Personnel May Open Container...

  10. 50 CFR 14.106 - Primary enclosures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... affixed in the conveyance or has an open top for certain large mammals, spacer bars allowing circulation... enclosure, a sling, or on foam is exempt from the requirement to contain litter. An enclosure used to... height, “Live Animals” or “Wild Animals”, “Do Not Tip,” “Only Authorized Personnel May Open Container...

  11. 50 CFR 14.106 - Primary enclosures.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... affixed in the conveyance or has an open top for certain large mammals, spacer bars allowing circulation... enclosure, a sling, or on foam is exempt from the requirement to contain litter. An enclosure used to... height, “Live Animals” or “Wild Animals”, “Do Not Tip,” “Only Authorized Personnel May Open Container...

  12. 50 CFR 14.106 - Primary enclosures.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... affixed in the conveyance or has an open top for certain large mammals, spacer bars allowing circulation... enclosure, a sling, or on foam is exempt from the requirement to contain litter. An enclosure used to... height, “Live Animals” or “Wild Animals”, “Do Not Tip,” “Only Authorized Personnel May Open Container...

  13. 50 CFR 14.106 - Primary enclosures.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... affixed in the conveyance or has an open top for certain large mammals, spacer bars allowing circulation... enclosure, a sling, or on foam is exempt from the requirement to contain litter. An enclosure used to... height, “Live Animals” or “Wild Animals”, “Do Not Tip,” “Only Authorized Personnel May Open Container...

  14. Pushed to Improve--Race to Top, or Not

    ERIC Educational Resources Information Center

    Cavanagh, Sean

    2011-01-01

    A pair of Ohio school districts, a short drive down Interstate 70 from each other, share similar goals. Each wants to improve student achievement by strengthening curriculum and instruction and giving teachers and principals the tools to make it happen. But the Huber Heights and Brookville school systems diverge in their approach to meeting those…

  15. --No Title--

    Science.gov Websites

    family:arial;width:100%;background-color:#fff;margin:0}form{margin:0;padding:0 %);background:-webkit-gradient(linear,left top,left bottom,color-stop(0%,#00527f),color-stop(100%,#00324d :16px;line-height:36px;color:white;font-weight:bold}#outer{width:100%;background-color:#eee;margin:0

  16. Detection of malignant hepatic tumors with ferumoxides-enhanced MRI: comparison of five gradient-recalled echo sequences with different TEs.

    PubMed

    Matsuo, Masayuki; Kanematsu, Masayuki; Itoh, Kyo; Murakami, Takamichi; Maetani, Yoji; Kondo, Hiroshi; Goshima, Satoshi; Kako, Nobuo; Hoshi, Hiroaki; Konishi, Junji; Moriyama, Noriyuki; Nakamura, Hironobu

    2004-01-01

    The purpose of our study was to compare the detectability of malignant hepatic tumors on ferumoxides-enhanced MRI using five gradient-recalled echo sequences at different TEs. Ferumoxides-enhanced MRIs obtained in 31 patients with 50 malignant hepatic tumors (33 hepatocellular carcinomas, 17 metastases) were reviewed retrospectively by three independent offsite radiologists. T1-weighted gradient-recalled echo images with TEs of 1.4 and 4.2 msec; T2*-weighted gradient-recalled echo images with TEs of 6, 8, and 10 msec; and T2-weighted fast spin-echo images of livers were randomly reviewed on a segment-by-segment basis. Observer performance was tested using the McNemar test and receiver operating characteristic analysis for the clustered data. Lesion-to-liver contrast-to-noise ratio was also assessed. Mean lesion-to-liver contrast-to-noise ratios were negative and lower with gradient-recalled echo at 1.4 msec than with the other sequences. Sensitivity was higher (p < 0.05) with gradient-recalled echo at 6, 8, and 10 msec and fast spin-echo sequences (75-83%) than with gradient-recalled echo sequences at 1.4 and 4.2 msec (46-48%), and was higher (p < 0.05) with gradient-recalled echo sequence at 8 msec (83%) than with gradient-recalled echo at 6 msec and fast spin-echo sequences (75-78%). Specificity was comparably high with all sequences (95-98%). The area under the receiver operating characteristic curve (A(z)) was greater (p < 0.05) with gradient-recalled echo at 6, 8, and 10 msec and fast spin-echo sequences (A(z) = 0.91-0.93) than with gradient-recalled echo sequences at 1.4 and 4.2 msec (A(z) = 0.82-0.85). In the detection of malignant hepatic tumors, gradient-recalled echo sequences at 8 msec showed the highest sensitivity and had an A(z) value and lesion-to-liver contrast-to-noise ratio comparable with values from gradient-recalled echo sequences at 6 and 10 msec and fast spin-echo sequences.

  17. Comparison of buried sand ridges and regressive sand ridges on the outer shelf of the East China Sea

    NASA Astrophysics Data System (ADS)

    Wu, Ziyin; Jin, Xianglong; Zhou, Jieqiong; Zhao, Dineng; Shang, Jihong; Li, Shoujun; Cao, Zhenyi; Liang, Yuyang

    2017-06-01

    Based on multi-beam echo soundings and high-resolution single-channel seismic profiles, linear sand ridges in U14 and U2 on the East China Sea (ECS) shelf are identified and compared in detail. Linear sand ridges in U14 are buried sand ridges, which are 90 m below the seafloor. It is presumed that these buried sand ridges belong to the transgressive systems tract (TST) formed 320-200 ka ago and that their top interface is the maximal flooding surface (MFS). Linear sand ridges in U2 are regressive sand ridges. It is presumed that these buried sand ridges belong to the TST of the last glacial maximum (LGM) and that their top interface is the MFS of the LGM. Four sub-stage sand ridges of U2 are discerned from the high-resolution single-channel seismic profile and four strikes of regressive sand ridges are distinguished from the submarine topographic map based on the multi-beam echo soundings. These multi-stage and multi-strike linear sand ridges are the response of, and evidence for, the evolution of submarine topography with respect to sea-level fluctuations since the LGM. Although the difference in the age of formation between U14 and U2 is 200 ka and their sequences are 90 m apart, the general strikes of the sand ridges are similar. This indicates that the basic configuration of tidal waves on the ECS shelf has been stable for the last 200 ka. A basic evolutionary model of the strata of the ECS shelf is proposed, in which sea-level change is the controlling factor. During the sea-level change of about 100 ka, five to six strata are developed and the sand ridges develop in the TST. A similar story of the evolution of paleo-topography on the ECS shelf has been repeated during the last 300 ka.

  18. TRMM-observed summer warm rain over the tropical and subtropical Pacific Ocean: Characteristics and regional differences

    NASA Astrophysics Data System (ADS)

    Qin, Fang; Fu, Yunfei

    2016-06-01

    Based on the merged measurements from the TRMM Precipitation Radar and Visible and Infrared Scanner, refined characteristics (intensity, frequency, vertical structure, and diurnal variation) and regional differences of the warm rain over the tropical and subtropical Pacific Ocean (40ffiS-40ffiN, 120ffiE-70ffiW) in boreal summer are investigated for the period 1998-2012. The results reveal that three warm rain types (phased, pure, and mixed) exist over these regions. The phased warm rain, which occurs during the developing or declining stage of precipitation weather systems, is located over the central to western Intertropical Convergence Zone, South Pacific Convergence Zone, and Northwest Pacific. Its occurrence frequency peaks at midnight and minimizes during daytime with a 5.5-km maximum echo top. The frequency of this warm rain type is about 2.2%, and it contributes to 40% of the regional total rainfall. The pure warm rain is characterized by typical stable precipitation with an echo top lower than 4 km, and mostly occurs in Southeast Pacific. Although its frequency is less than 1.3%, this type of warm rain accounts for 95% of the regional total rainfall. Its occurrence peaks before dawn and it usually disappears in the afternoon. For the mixed warm rain, some may develop into deep convective precipitation, while most are similar to those of the pure type. The mixed warm rain is mainly located over the ocean east of Hawaii. Its frequency is 1.2%, but this type of warm rain could contribute to 80% of the regional total rainfall. The results also uncover that the mixed and pure types occur over the regions where SST ranges from 295 to 299 K, accompanied by relatively strong downdrafts at 500 hPa. Both the mixed and pure warm rains happen in a more unstable atmosphere, compared with the phased warm rain.

  19. Should we consider steps with variable height for a safer stair negotiation in older adults?

    PubMed

    Kunzler, Marcos R; da Rocha, Emmanuel S; Dos Santos, Christielen S; Ceccon, Fernando G; Priario, Liver A; Carpes, Felipe P

    2018-01-01

    Effects of exercise on foot clearances are important. In older adults variations in foot clearances during walking may lead to a fall, but there is a lack of information concerning stair negotiation in older adults. Whether a condition of post exercise changes foot clearances between steps of a staircase in older adults still unknown. To determine differences in clearances when older adults negotiate different steps of a staircase before and after a session of aerobic exercise. Kinematics data from 30 older adults were acquired and the toe and heel clearances were determined for each step. Clearances were compared between the steps. Smaller clearances were found at the highest step during ascending and descending, which was not changed by exercise. Smaller clearances suggest higher risk of tripping at the top of the staircase, regardless of exercise. A smaller step at the top of a short flight of stairs could reduce chances of tripping in older adults. It suggests that steps with variable height could make stair negotiation safer in older adults. This hypothesis should be tested in further studies.

  20. An efficient framework for modeling clouds from Landsat8 images

    NASA Astrophysics Data System (ADS)

    Yuan, Chunqiang; Guo, Jing

    2015-03-01

    Cloud plays an important role in creating realistic outdoor scenes for video game and flight simulation applications. Classic methods have been proposed for cumulus cloud modeling. However, these methods are not flexible for modeling large cloud scenes with hundreds of clouds in that the user must repeatedly model each cloud and adjust its various properties. This paper presents a meteorologically based method to reconstruct cumulus clouds from high resolution Landsat8 satellite images. From these input satellite images, the clouds are first segmented from the background. Then, the cloud top surface is estimated from the temperature of the infrared image. After that, under a mild assumption of flat base for cumulus cloud, the base height of each cloud is computed by averaging the top height for pixels on the cloud edge. Then, the extinction is generated from the visible image. Finally, we enrich the initial shapes of clouds using a fractal method and represent the recovered clouds as a particle system. The experimental results demonstrate our method can yield realistic cloud scenes resembling those in the satellite images.

  1. Characteristics of spondylotic myelopathy on 3D driven-equilibrium fast spin echo and 2D fast spin echo magnetic resonance imaging: a retrospective cross-sectional study.

    PubMed

    Abdulhadi, Mike A; Perno, Joseph R; Melhem, Elias R; Nucifora, Paolo G P

    2014-01-01

    In patients with spinal stenosis, magnetic resonance imaging of the cervical spine can be improved by using 3D driven-equilibrium fast spin echo sequences to provide a high-resolution assessment of osseous and ligamentous structures. However, it is not yet clear whether 3D driven-equilibrium fast spin echo sequences adequately evaluate the spinal cord itself. As a result, they are generally supplemented by additional 2D fast spin echo sequences, adding time to the examination and potential discomfort to the patient. Here we investigate the hypothesis that in patients with spinal stenosis and spondylotic myelopathy, 3D driven-equilibrium fast spin echo sequences can characterize cord lesions equally well as 2D fast spin echo sequences. We performed a retrospective analysis of 30 adult patients with spondylotic myelopathy who had been examined with both 3D driven-equilibrium fast spin echo sequences and 2D fast spin echo sequences at the same scanning session. The two sequences were inspected separately for each patient, and visible cord lesions were manually traced. We found no significant differences between 3D driven-equilibrium fast spin echo and 2D fast spin echo sequences in the mean number, mean area, or mean transverse dimensions of spondylotic cord lesions. Nevertheless, the mean contrast-to-noise ratio of cord lesions was decreased on 3D driven-equilibrium fast spin echo sequences compared to 2D fast spin echo sequences. These findings suggest that 3D driven-equilibrium fast spin echo sequences do not need supplemental 2D fast spin echo sequences for the diagnosis of spondylotic myelopathy, but they may be less well suited for quantitative signal measurements in the spinal cord.

  2. Constructing a Merged Cloud-Precipitation Radar Dataset for Tropical Convective Clouds during the DYNAMO/AMIE Experiment at Addu Atoll

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Zhe; McFarlane, Sally A.; Schumacher, Courtney

    2014-05-16

    To improve understanding of the convective processes key to the Madden-Julian-Oscillation (MJO) initiation, the Dynamics of the MJO (DYNAMO) and Atmospheric Radiation Measurement MJO Investigation Experiment (AMIE) collected four months of observations from three radars, the S-band Polarization Radar (S-Pol), the C-band Shared Mobile Atmospheric Research & Teaching Radar (SMART-R), and Ka-band Zenith Radar (KAZR) on Addu Atoll in the tropical Indian Ocean. This study compares the measurements from the S-Pol and SMART-R to those from the more sensitive KAZR in order to characterize the hydrometeor detection capabilities of the two scanning precipitation radars. Frequency comparisons for precipitating convective cloudsmore » and non-precipitating high clouds agree much better than non-precipitating low clouds for both scanning radars due to issues in ground clutter. On average, SMART-R underestimates convective and high cloud tops by 0.3 to 1.1 km, while S-Pol underestimates cloud tops by less than 0.4 km for these cloud types. S-Pol shows excellent dynamic range in detecting various types of clouds and therefore its data are well suited for characterizing the evolution of the 3D cloud structures, complementing the profiling KAZR measurements. For detecting non-precipitating low clouds and thin cirrus clouds, KAZR remains the most reliable instrument. However, KAZR is attenuated in heavy precipitation and underestimates cloud top height due to rainfall attenuation 4.3% of the time during DYNAMO/AMIE. An empirical method to correct the KAZR cloud top heights is described, and a merged radar dataset is produced to provide improved cloud boundary estimates, microphysics and radiative heating retrievals.« less

  3. A simple method for MR elastography: a gradient-echo type multi-echo sequence.

    PubMed

    Numano, Tomokazu; Mizuhara, Kazuyuki; Hata, Junichi; Washio, Toshikatsu; Homma, Kazuhiro

    2015-01-01

    To demonstrate the feasibility of a novel MR elastography (MRE) technique based on a conventional gradient-echo type multi-echo MR sequence which does not need additional bipolar magnetic field gradients (motion encoding gradient: MEG), yet is sensitive to vibration. In a gradient-echo type multi-echo MR sequence, several images are produced from each echo of the train with different echo times (TEs). If these echoes are synchronized with the vibration, each readout's gradient lobes achieve a MEG-like effect, and the later generated echo causes a greater MEG-like effect. The sequence was tested for the tissue-mimicking agarose gel phantoms and the psoas major muscles of healthy volunteers. It was confirmed that the readout gradient lobes caused an MEG-like effect and the later TE images had higher sensitivity to vibrations. The magnitude image of later generated echo suffered the T2 decay and the susceptibility artifacts, but the wave image and elastogram of later generated echo were unaffected by these effects. In in vivo experiments, this method was able to measure the mean shear modulus of the psoas major muscle. From the results of phantom experiments and volunteer studies, it was shown that this method has clinical application potential. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. A Lidar Point Cloud Based Procedure for Vertical Canopy Structure Analysis And 3D Single Tree Modelling in Forest

    PubMed Central

    Wang, Yunsheng; Weinacker, Holger; Koch, Barbara

    2008-01-01

    A procedure for both vertical canopy structure analysis and 3D single tree modelling based on Lidar point cloud is presented in this paper. The whole area of research is segmented into small study cells by a raster net. For each cell, a normalized point cloud whose point heights represent the absolute heights of the ground objects is generated from the original Lidar raw point cloud. The main tree canopy layers and the height ranges of the layers are detected according to a statistical analysis of the height distribution probability of the normalized raw points. For the 3D modelling of individual trees, individual trees are detected and delineated not only from the top canopy layer but also from the sub canopy layer. The normalized points are resampled into a local voxel space. A series of horizontal 2D projection images at the different height levels are then generated respect to the voxel space. Tree crown regions are detected from the projection images. Individual trees are then extracted by means of a pre-order forest traversal process through all the tree crown regions at the different height levels. Finally, 3D tree crown models of the extracted individual trees are reconstructed. With further analyses on the 3D models of individual tree crowns, important parameters such as crown height range, crown volume and crown contours at the different height levels can be derived. PMID:27879916

  5. SU-F-P-44: A Direct Estimate of Peak Skin Dose for Interventional Fluoroscopy Procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weir, V; Zhang, J

    Purpose: There is an increasing demand for medical physicist to calculate peak skin dose (PSD) for interventional fluoroscopy procedures. The dose information (Dose-Area-Product and Air Kerma) displayed in the console cannot directly be used for this purpose. Our clinical experience shows that the use of the existing methods may overestimate or underestimate PSD. This study attempts to develop a direct estimate of PSD from the displayed dose metrics. Methods: An anthropomorphic torso phantom was used for dose measurements for a common fluoroscopic procedure. Entrance skin doses were measured with a Piranha solid state point detector placed on the table surfacemore » below the torso phantom. An initial “reference dose rate” (RE) measurement was conducted by comparing the displayed dose rate (mGy/min) to the dose rate measured. The distance from table top to focal spot was taken as the reference distance (RD at the RE. Table height was then adjusted. The displayed air kerma and DAP were recorded and sent to three physicists to estimate PSD. An inverse square correction was applied to correct displayed air kerma at various table heights. The PSD estimated by physicists and the PSD by the proposed method were then compared with the measurements. The estimated DAPs were compared to displayed DAP readings (mGycm2). Results: The difference between estimated PSD by the proposed method and direct measurements was less than 5%. For the same set of data, the estimated PSD by each of three physicists is different from measurements by ±52%. The DAP calculated by the proposed method and displayed DAP readings in the console is less than 20% at various table heights. Conclusion: PSD may be simply estimated from displayed air kerma or DAP if the distance between table top and tube focal spot or if x-ray beam area on table top is available.« less

  6. The Invigoration of Deep Convective Clouds Over the Atlantic: Aerosol Effect, Meteorology or Retrieval Artifact?

    NASA Technical Reports Server (NTRS)

    Koren, Ilan; Feingold, Graham; Remer, Lorraine A.

    2010-01-01

    Associations between cloud properties and aerosol loading are frequently observed in products derived from satellite measurements. These observed trends between clouds and aerosol optical depth suggest aerosol modification of cloud dynamics, yet there are uncertainties involved in satellite retrievals that have the potential to lead to incorrect conclusions. Two of the most challenging problems are addressed here: the potential for retrieved aerosol optical depth to be cloud-contaminated, and as a result, artificially correlated with cloud parameters; and the potential for correlations between aerosol and cloud parameters to be erroneously considered to be causal. Here these issues are tackled directly by studying the effects of the aerosol on convective clouds in the tropical Atlantic Ocean using satellite remote sensing, a chemical transport model, and a reanalysis of meteorological fields. Results show that there is a robust positive correlation between cloud fraction or cloud top height and the aerosol optical depth, regardless of whether a stringent filtering of aerosol measurements in the vicinity of clouds is applied, or not. These same positive correlations emerge when replacing the observed aerosol field with that derived from a chemical transport model. Model-reanalysis data is used to address the causality question by providing meteorological context for the satellite observations. A correlation exercise between the full suite of meteorological fields derived from model reanalysis and satellite-derived cloud fields shows that observed cloud top height and cloud fraction correlate best with model pressure updraft velocity and relative humidity. Observed aerosol optical depth does correlate with meteorological parameters but usually different parameters from those that correlate with observed cloud fields. The result is a near-orthogonal influence of aerosol and meteorological fields on cloud top height and cloud fraction. The results strengthen the case that the aerosol does play a role in invigorating convective clouds.

  7. Radiative transfer in spherical shell atmospheres. I - Rayleigh scattering

    NASA Technical Reports Server (NTRS)

    Adams, C. N.; Kattawar, G. W.

    1978-01-01

    The plane-parallel approximation and the more realistic spherical shell approximation for the radiance reflected from a planetary atmosphere are compared and are applied to the study of a planet the size of the earth with a homogeneous conservative Rayleigh scattering atmosphere extending to a height of 100 km. Inadequacies of the approximations are considered. Radiance versus height distributions for both single and multiple scattering are presented, as are results for the fractional radiance from altitudes in the atmosphere which contribute to the total unidirectional reflected radiance at the top of the atmosphere. The data can be used for remote sensing applications and planetary spectroscopy.

  8. A variable mixing-length ratio for convection theory

    NASA Technical Reports Server (NTRS)

    Chan, K. L.; Wolff, C. L.; Sofia, S.

    1981-01-01

    It is argued that a natural choice for the local mixing length in the mixing-length theory of convection has a value proportional to the local density scale height of the convective bubbles. The resultant variable mixing-length ratio (the ratio between the mixing length and the pressure scale height) of this theory is enhanced in the superadiabatic region and approaches a constant in deeper layers. Numerical tests comparing the new mixing length successfully eliminate most of the density inversion that typically plagues conventional results. The new approach also seems to indicate the existence of granular motion at the top of the convection zone.

  9. Civil Penalty Policies

    EPA Pesticide Factsheets

    The Environmental Protection Agency's Enforcement and Compliance History Online (ECHO) website provides customizable and downloadable information about environmental inspections, violations, and enforcement actions for EPA-regulated facilities, like power plants and factories. ECHO advances public information by sharing data related to facility compliance with and regulatory agency activity related to air, hazardous waste, clean water, and drinking water regulations. ECHO offers many user-friendly options to explore data, including:1. Facility Search (http://echo.epa.gov/facilities/facility-search?mediaSelected=all): ECHO information is searchable by varied criteria, including location, facility type, and compliance status related to the Clean Air Act, Clean Water Act, Resource Conservation and Recovery Act, and Safe Drinking Water Act. Search results are customizable and downloadable.2. Comparative Maps (http://echo.epa.gov/maps/state-comparative-maps) and State Dashboards (http://echo.epa.gov/trends/comparative-maps-dashboards/state-air-dashboard): These tools offer aggregated information about facility compliance status and regulatory agency compliance monitoring and enforcement activity at the national and state level.3. Bulk Data Downloads (http://echo.epa.gov/resources/echo-data/data-downloads): One of ECHO's most popular features is the ability to work offline by downloading large data sets. Users can take advantage of the ECHO Exporter, which provides su

  10. Echo characteristics of two salmon species

    NASA Astrophysics Data System (ADS)

    Nealson, Patrick A.; Horne, John K.; Burwen, Debby L.

    2005-04-01

    The Alaska Department of Fish and Game relies on split-beam hydroacoustic techniques to estimate Chinook salmon (Oncorhynchus tshawytscha) returns to the Kenai River. Chinook counts are periodically confounded by large numbers of smaller sockeye salmon (O. nerka). Echo target-strength has been used to distinguish fish length classes, but was too variable to separate Kenai River chinook and sockeye distributions. To evaluate the efficacy of alternate echo metrics, controlled acoustic measurements of tethered chinook and sockeye salmon were collected at 200 kHz. Echo returns were digitally sampled at 48 kHz. A suite of descriptive metrics were collected from a series of 1,000 echoes per fish. Measurements of echo width were least variable at the -3 dB power point. Initial results show echo elongation and ping-to-ping variability in echo envelope width were significantly greater for chinook than for sockeye salmon. Chinook were also observed to return multiple discrete peaks from a single broadcast echo. These characteristics were attributed to the physical width of chinook exceeding half of the broadcast echo pulse width at certain orientations. Echo phase variability, correlation coefficient and fractal dimension distributions did not demonstrate significant discriminatory power between the two species. [Work supported by ADF&G, ONR.

  11. In Pursuit of Nearshore Wave Characteristics- Implementation and Validation of a Shallow Water Correction for High Frequency Radars along the New Jersey Coast

    NASA Astrophysics Data System (ADS)

    Livermont, E. A.

    2014-12-01

    Within the U.S., coastal ocean current mapping with HF radar has matured to the point where it is now considered an essential component of regional ocean observing systems. A Mid-Atlantic HF radar network now provides high-resolution coverage within five localized networks, which are linked together to cover the full range of the Mid-Atlantic coast. While the primary focus of these networks has been on offshore current mapping observations, a long-term objective has been to develop and evaluate nearshore waves and currents. Of particular interest is the height of ocean waves that play a crucial role in engineering projects, ship navigation and design, vessel traffic control as well as shoreline protection, beach erosion, and mitigation of oil spills and ocean pollution. The radars owned by Rutgers University cover the coastline of New Jersey at multiple frequencies from 4.5 to 25 MHz. Their echoes contain information on both currents and waves from deep water up into the shallow coastal zone, providing an excellent archive for this study. Radar sea-echo spectra consist of dominant first-order peaks surrounded with lower-energy second-order structures. Present analysis methods assume that the waves do not interact with the ocean floor. The assumption of deep water is often invalid close to the coast and for broad continental shelves, and is particularly inadequate to describe the second-order sea-echo used to give information on ocean waves. Additionally, second-order echo is often only visible above the noise floor at close ranges. In this paper, a shallow water spectral theory is implemented at four locations on the New Jersey coast- Strathmere, Wildwood, Brant Beach, and Sea Bright. The corrected wave characteristics extracted from the HF radars were then compared to several in situ wave measurements. The first three sites—Strathmere, Wildwood and Brant Beach—were validated against two long-term (1999-2007) wave gauges deployed by Stevens Institute of Technology in 5 meters of water. Based on this initial comparison, several additional corrections to the radar processing were implemented. The site at Sea Bright was used for independent verification and validated against an ADCP deployed for three weeks in March 2012.

  12. Numerical investigation of thermal-hydraulic performance of channel with protrusions by turbulent cross flow jet

    NASA Astrophysics Data System (ADS)

    Sahu, M. K.; Pandey, K. M.; Chatterjee, S.

    2018-05-01

    In this two dimensional numerical investigation, small rectangular channel with right angled triangular protrusions in the bottom wall of test section is considered. A slot nozzle is placed at the middle of top wall of channel which impinges air normal to the protruded surface. A duct flow and nozzle flow combined to form cross flow which is investigated for heat transfer enhancement of protruded channel. The governing equations for continuity, momentum, energy along with SST k-ω turbulence model are solved with finite volume based Computational fluid dynamics code ANSYS FLUENT 14.0. The range of duct Reynolds number considered for this analysis is 8357 to 51760. The ratios of pitch of protrusion to height of duct considered are 0.5, 0.64 and 0.82. The ratios of height of protrusion to height of duct considered are 0.14, 0.23 and 0.29. The effect of duct Reynolds number, pitch and height of protrusion on thermal-hydraulic performance is studied under cross flow condition. It is found that heat transfer rate is more at relatively larger pitch and small pressure drop is found in case of low height of protrusion.

  13. Testing Momentum Enhancement of Ribbon Fin Based Propulsion Using a Robotic Model With an Adjustable Body

    NASA Astrophysics Data System (ADS)

    English, Ian; Curet, Oscar

    2016-11-01

    Lighthill and Blake's 1990 momentum enhancement theory suggests there is a multiplicative propulsive effect linked to the ratio of body and fin heights in Gymnotiform and Balistiform swimmers, which propel themselves using multi-rayed undulating fins while keeping their bodies mostly rigid. Proof of such a momentum enhancement could have a profound effect on unmanned underwater vehicle design and shed light on the evolutionary advantage to body-fin ratios found in nature, shown as optimal for momentum enhancement in Lighthill and Blake's theory. A robotic ribbon fin with twelve independent fin rays, elastic fin membrane, and a body of adjustable height was developed specifically to experimentally test momentum enhancement. Thrust tests for various body heights were conducted in a recirculating flow tank at different flow speeds and fin flapping frequencies. When comparing thrust at different body heights, flow speeds, and frequencies to a 'no-body' thrust test case at each frequency and flow speed, data indicate there is no momentum enhancement factor due to the presence of a body on top of an undulating fin. This suggests that if there is a benefit to a specific ratio between body and fin height, it is not due to momentum enhancement.

  14. Height is more important than light in determining leaf morphology in a tropical forest.

    PubMed

    Cavaleri, Molly A; Oberbauer, Steven F; Clark, David B; Clark, Deborah A; Ryan, Michael G

    2010-06-01

    Both within and between species, leaf physiological parameters are strongly related to leaf dry mass per area (LMA, g/m2), which has been found to increase from forest floor to canopy top in every forest where it has been measured. Although vertical LMA gradients in forests have historically been attributed to a direct phenotypic response to light, an increasing number of recent studies have provided evidence that water limitation in the upper canopy can constrain foliar morphological adaptations to higher light levels. We measured height, light, and LMA of all species encountered along 45 vertical canopy transects across a Costa Rican tropical rain forest. LMA was correlated with light levels in the lower canopy until approximately 18 m sample height and 22% diffuse transmittance. Height showed a remarkably linear relationship with LMA throughout the entire vertical canopy profile for all species pooled and for each functional group individually (except epiphytes), possibly through the influence of gravity on leaf water potential and turgor pressure. Models of forest function may be greatly simplified by estimating LMA-correlated leaf physiological parameters solely from foliage height profiles, which in turn can be assessed with satellite- and aircraft-based remote sensing.

  15. Sonar beam dynamics in leaf-nosed bats

    PubMed Central

    Linnenschmidt, Meike; Wiegrebe, Lutz

    2016-01-01

    Ultrasonic emissions of bats are directional and delimit the echo-acoustic space. Directionality is quantified by the aperture of the sonar beam. Recent work has shown that bats often widen their sonar beam when approaching movable prey or sharpen their sonar beam when navigating through cluttered habitats. Here we report how nose-emitting bats, Phyllostomus discolor, adjust their sonar beam to object distance. First, we show that the height and width of the bats sonar beam, as imprinted on a parabolic 45 channel microphone array, varies even within each animal and this variation is unrelated to changes in call level or spectral content. Second, we show that these animals are able to systematically decrease height and width of their sonar beam while focusing on the approaching object. Thus it appears that sonar beam sharpening is a further, facultative means of reducing search volume, likely to be employed by stationary animals when the object position is close and unambiguous. As only half of our individuals sharpened their beam onto the approaching object we suggest that this strategy is facultative, under voluntary control, and that beam formation is likely mediated by muscular control of the acoustic aperture of the bats’ nose leaf. PMID:27384865

  16. Sonar beam dynamics in leaf-nosed bats.

    PubMed

    Linnenschmidt, Meike; Wiegrebe, Lutz

    2016-07-07

    Ultrasonic emissions of bats are directional and delimit the echo-acoustic space. Directionality is quantified by the aperture of the sonar beam. Recent work has shown that bats often widen their sonar beam when approaching movable prey or sharpen their sonar beam when navigating through cluttered habitats. Here we report how nose-emitting bats, Phyllostomus discolor, adjust their sonar beam to object distance. First, we show that the height and width of the bats sonar beam, as imprinted on a parabolic 45 channel microphone array, varies even within each animal and this variation is unrelated to changes in call level or spectral content. Second, we show that these animals are able to systematically decrease height and width of their sonar beam while focusing on the approaching object. Thus it appears that sonar beam sharpening is a further, facultative means of reducing search volume, likely to be employed by stationary animals when the object position is close and unambiguous. As only half of our individuals sharpened their beam onto the approaching object we suggest that this strategy is facultative, under voluntary control, and that beam formation is likely mediated by muscular control of the acoustic aperture of the bats' nose leaf.

  17. Estimation of liquid water cloud height and fraction using simulated AMSU-A and MHS data. [Advanced Microwave Sounding Unit and Microwave Humidity Sounder

    NASA Technical Reports Server (NTRS)

    Huang, Hung-Lung; Diak, George R.

    1992-01-01

    The rms retrieval errors in cloud top pressure for fully overcast conditions over both land and water surfaces are shown for AMSU-A oxygen channel pair 3 and 5 and MHS water vapor channel pair 4 and 5. For both pairs, the decrease of retrieval skill from high cloud is evident for almost all liquid water contents. For high cloud and medium cloud, the water vapor pair outperforms the oxygen pair. Retrieval accuracy is the best for high and middle clouds and degrades as the cloud top is lower in the atmosphere.

  18. Surface Roughness of the Moon Derived from Multi-frequency Radar Data

    NASA Astrophysics Data System (ADS)

    Fa, W.

    2011-12-01

    Surface roughness of the Moon provides important information concerning both significant questions about lunar surface processes and engineering constrains for human outposts and rover trafficabillity. Impact-related phenomena change the morphology and roughness of lunar surface, and therefore surface roughness provides clues to the formation and modification mechanisms of impact craters. Since the Apollo era, lunar surface roughness has been studied using different approaches, such as direct estimation from lunar surface digital topographic relief, and indirect analysis of Earth-based radar echo strengths. Submillimeter scale roughness at Apollo landing sites has been studied by computer stereophotogrammetry analysis of Apollo Lunar Surface Closeup Camera (ALSCC) pictures, whereas roughness at meter to kilometer scale has been studied using laser altimeter data from recent missions. Though these studies shown lunar surface roughness is scale dependent that can be described by fractal statistics, roughness at centimeter scale has not been studied yet. In this study, lunar surface roughnesses at centimeter scale are investigated using Earth-based 70 cm Arecibo radar data and miniature synthetic aperture radar (Mini-SAR) data at S- and X-band (with wavelengths 12.6 cm and 4.12 cm). Both observations and theoretical modeling show that radar echo strengths are mostly dominated by scattering from the surface and shallow buried rocks. Given the different penetration depths of radar waves at these frequencies (< 30 m for 70 cm wavelength, < 3 m at S-band, and < 1 m at X-band), radar echo strengths at S- and X-band will yield surface roughness directly, whereas radar echo at 70-cm will give an upper limit of lunar surface roughness. The integral equation method is used to model radar scattering from the rough lunar surface, and dielectric constant of regolith and surface roughness are two dominate factors. The complex dielectric constant of regolith is first estimated globally using the regolith composition and the relation among the dielectric constant, bulk density, and regolith composition. The statistical properties of lunar surface roughness are described by the root mean square (RMS) height and correlation length, which represent the vertical and horizontal scale of the roughness. The correlation length and its scale dependence are studied using the topography data from laser altimeter observations from recent lunar missions. As these two parameters are known, surface roughness (RMS slope) can be estimated by minimizing the difference between the observed and modeled radar echo strength. Surface roughness of several regions over Oceanus Procellarum and southeastern highlands on lunar nearside are studied, and preliminary results show that maira is smoother than highlands at 70 cm scale, whereas the situation turns opposite at 12 and 4 cm scale. Surface roughness of young craters is in general higher than that of maria and highlands, indicating large rock population produced during impacting process.

  19. Three-dimensional magnetic resonance volumetry of the pituitary gland is effective in detecting short stature in children

    PubMed Central

    HAN, XUE; XIU, JIANJUN; HUANG, ZHAOQIN; ZHANG, JIE; ZHANG, ZHONGHE; DONG, YIN; YUAN, XIANSHUN; LIU, QINGWEI

    2014-01-01

    The aim of the present study was to obtain standard reference values for the pituitary gland volumes of healthy children and to analyze the potential diagnostic values of pituitary gland volumetry for growth hormone deficiency (GHD) and idiopathic short stature (ISS). The volume of the pituitary gland was measured using a thin-section three-dimensional (3D) magnetic resonance imaging (MRI) sequence of magnetization-prepared rapid gradient echo imaging with a section thickness of 1 mm. A group of 75 healthy children aged between 1 and 19 years were recruited to obtain normal volumetry values of the pituitary gland. These individuals demonstrated no evidence of abnormalities to the central nervous or endocrine systems prior to the study. An additional group of 55 children with GHD (n=32) or ISS (n=23) aged between 0 and 14 years were included in the measurement of pituitary gland volume and height. The Student’s t-test was used to evaluate the repetition test, while Pearson’s correlation coefficient and regression analyses were performed to examine the correlations between the volume and height of the pituitary glands. Pituitary gland volume and height demonstrated an increasing trend with age in the healthy children. In addition, the pituitary gland volume exhibited a growth spurt in the early teenage years (10–14 years-old), which was more prominent in females. The growth spurt was not observed for pituitary gland height. When compared with the healthy children, 65.6% of the children with GHD and 34.8% of the children with ISS had smaller pituitary gland volumes. Similarly, 37.5% of the children with GHD and 26.1% of the children with ISS had a smaller pituitary gland height compared with the healthy children. The pituitary gland volume performed significantly better compared with height with regard to the detection rate. Therefore, the results indicated that 3D MRI volumetry was useful for understanding the developmental characteristics of the pituitary gland in healthy children, and that the reference data provided by 3D MRI were effective in the diagnosis of short stature following associations with neuroimaging and clinical functional abnormalities of the pituitary gland. PMID:25009618

  20. Three-dimensional magnetic resonance volumetry of the pituitary gland is effective in detecting short stature in children.

    PubMed

    Han, Xue; Xiu, Jianjun; Huang, Zhaoqin; Zhang, Jie; Zhang, Zhonghe; Dong, Yin; Yuan, Xianshun; Liu, Qingwei

    2014-08-01

    The aim of the present study was to obtain standard reference values for the pituitary gland volumes of healthy children and to analyze the potential diagnostic values of pituitary gland volumetry for growth hormone deficiency (GHD) and idiopathic short stature (ISS). The volume of the pituitary gland was measured using a thin-section three-dimensional (3D) magnetic resonance imaging (MRI) sequence of magnetization-prepared rapid gradient echo imaging with a section thickness of 1 mm. A group of 75 healthy children aged between 1 and 19 years were recruited to obtain normal volumetry values of the pituitary gland. These individuals demonstrated no evidence of abnormalities to the central nervous or endocrine systems prior to the study. An additional group of 55 children with GHD (n=32) or ISS (n=23) aged between 0 and 14 years were included in the measurement of pituitary gland volume and height. The Student's t-test was used to evaluate the repetition test, while Pearson's correlation coefficient and regression analyses were performed to examine the correlations between the volume and height of the pituitary glands. Pituitary gland volume and height demonstrated an increasing trend with age in the healthy children. In addition, the pituitary gland volume exhibited a growth spurt in the early teenage years (10-14 years-old), which was more prominent in females. The growth spurt was not observed for pituitary gland height. When compared with the healthy children, 65.6% of the children with GHD and 34.8% of the children with ISS had smaller pituitary gland volumes. Similarly, 37.5% of the children with GHD and 26.1% of the children with ISS had a smaller pituitary gland height compared with the healthy children. The pituitary gland volume performed significantly better compared with height with regard to the detection rate. Therefore, the results indicated that 3D MRI volumetry was useful for understanding the developmental characteristics of the pituitary gland in healthy children, and that the reference data provided by 3D MRI were effective in the diagnosis of short stature following associations with neuroimaging and clinical functional abnormalities of the pituitary gland.

  1. Airborne Lidar measurements of Atmospheric CO2 Column Absorption and Line Shapes from 3-11 km altitudes

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Riris, H.; Allan, G. R.; Weaver, C.; Mao, J.; Hasselbrack, W.

    2009-04-01

    Accurate measurements of tropospheric CO2 abundances with global-coverage are needed to quantify processes that regulate CO2 exchange with the land and oceans. The 2007 Decadal Survey for Earth Science by the US National Research Council recommended a space-based CO2 measuring mission called ASCENDS. We have been developing a technique for the remote measurement of tropospheric CO2 concentrations from aircraft and as a candidate for the ASCENDS mission. It uses the 1570-nm CO2 band and a dual channel laser absorption spectrometer (ie DIAL used in altimeter mode). It uses several tunable laser transmitters allowing simultaneous measurement of the absorption from a CO2 absorption line in the 1570 nm band, O2 extinction in the oxygen A-band, and surface height and aerosol backscatter in the same path. It directs the narrow co-aligned laser beams toward nadir, and measures the energy of the laser echoes reflected from land and water surfaces. During the measurement, the lasers are stepped in wavelength across the CO2 line and an O2 line (near 765 nm) at a ~ 1 kHz rate. The receiver uses a telescope and photon counting detectors, and measures the background light and energies of the laser echoes from the surface along with scattering from any aerosols in the path. The gas extinction and column densities for the CO2 and O2 gases are estimated from the ratio of the on- and off- line signals via the DIAL technique. We use pulsed laser signals and time gating to isolate the laser echo signals from the surface, and to reject photons scattered from thin clouds and aerosols in the path. Previously we had constructed breadboard versions of our CO2 and O2 sensors, using tunable diode lasers, fiber laser amplifiers and 20 cm diameter telescopes. We have used them to make measurements of gas absorptions over 0.2, 0.4 and 1.3 km long outdoor paths. We also have also calculated several characteristics of the technique for space and have performed an initial space mission accommodation study. During 2008 we reconfigured our lidar for airborne use and made measurements of atmospheric CO2 absorption in the nadir column from the aircraft to the surface during 5 flights. The airborne lidar sweeps the laser wavelength across the CO2 line in either 10 or 20 steps per measurement. The line scan rate is ~ 1 KHz and the laser pulse widths are 1 usec. The time resolved laser backscatter is collected by the telescope and detected by a photomultiplier and recorded by a photon counting timing system. We installed our lidar on the NASA Glenn Lear-25 aircraft in October and first made measurements using the 1571.4 nm CO2 absorption line while flying in northern Ohio. We made laser backscatter and absorption measurements over a variety of land surface types, water surfaces and through thin clouds, broken clouds and to cloud tops. Strong laser signals were observed at altitudes from 2.5 to 11 km on two flights. We completed three additional flights during December 2008 and gathered over 6 hours of atmospheric CO2 column measurements using the 1572.02 and 1572.33 nm CO2 lines. Airborne CO2 line shape and absorption measurements were made while flying at 3-11 km altitudes over southwestern Ohio. Subsequently two flights were made from Ponca City OK, just east of the US Department of Energy's (DOE) ARM site. We made 4 hours of airborne measurements in square patterns around the ARM site at altitudes from 3-8 km. The increased CO2 line absorptions at higher altitudes were evident in all flights. The December flights were also coordinated with DOE investigators who flew an in-situ CO2 sensor on a Cessna aircraft inside the CO2 sounder's flight pattern. These yielded two height resolved profiles of CO2 concentrations from 5 km to the surface, which are being analyzed with radiosonde measurements for comparisons. More details of the flights, measurements and their analysis will be described in the presentation.

  2. Rain measurements from space using a modified Seasat-type radar altimeter

    NASA Technical Reports Server (NTRS)

    Goldhirsh, J.; Walsh, E. J.

    1982-01-01

    The incorporation in the 13.5 GHz Seasat-type radar altimeter of a mode to measure rain rate is investigated. Specifically, an algorithm is developed relating the echo power at the various range bins, to the rain rate taking into consideration Mie scattering and path attenuation. The dependence of the algorithm on rain drop size distribution and nonuniform rain structure are examined and associated uncertainties defined. A technique for obtaining drop size distribution through the measurements of power at the top of the raincell and power difference through the cell also is investigated together with an associated error analysis. A description of the minor hardware modifications to the basic Seasat design is given for implementing the rain measurements.

  3. Non-invasive grading of astrocytic tumours from the relative contents of myo-inositol and glycine measured by in vivo MRS.

    PubMed

    Candiota, A P; Majós, C; Julià-Sapé, M; Cabañas, M; Acebes, J J; Moreno-Torres, A; Griffiths, J R; Arús, C

    2011-01-01

    MRI and MRS are established methodologies for evaluating intracranial lesions. One MR spectral feature suggested for in vivo grading of astrocytic tumours is the apparent myo-lnositol (ml) intensity (ca 3.55 ppm) at short echo times, although glycine (gly) may also contribute in vivo to this resonance. The purpose of this study was to quantitatively evaluate the ml + gly contribution to the recorded spectral pattern in vivo and correlate it with in vitro data obtained from perchloric acid extraction of tumour biopsies. Patient spectra (n = 95) at 1.5T at short (20-31 ms) and long (135-136 ms) echo times were obtained from the INTERPRET MRS database (http://gabrmn.uab.eslinterpretvalidateddbl). Phantom spectra were acquired with a comparable protocol. Spectra were automatically processed and the ratios of the (ml + gly) to Cr peak heights ((ml + gly)/Cr) calculated. Perchloric acid extracts of brain tumour biopsies were analysed by high-resolution NMR at 9.4T. The ratio (ml + gly)/Cr decreased significantly with astrocytic grade in vivo between low-grade astrocytoma (A2) and glioblastoma multiforme (GBM). In vitro results displayed a somewhat different tendency, with anaplastic astrocytomas having significantly higher (ml + gly)/Cr than A2 and GBM. The discrepancy between in vivo and in vitro data suggests that the NMR visibility of glycine in glial brain tumours is restricted in vivo.

  4. Demonstration of solar echoes using the Air Force OTH-B radar

    NASA Technical Reports Server (NTRS)

    Pizzo, V. J.; Hildner, E.; Georges, T.; Fraser-Smith, A.; Kelly, F.

    1995-01-01

    From the late 50s to early 70s, attempts were made by at least two different groups to obtain information on physical conditions in the corona by means of active radar soundings. While echoes from the Sun were unquestionably detected. difficulties in their interpretation led to inconclusive results. A major hindrance to these efforts was the limited understanding of the day-to-day structure of the corona then available (e.g., pioneering work in solar wind studies were just underway. and coronal holes had not yet been discovered). With the end of the Cold War, the very large over-the-horizon (OTH) radars operated by the Air Force have been opened up to basic science research through the end of the fiscal year. In light of advances made in coronal physics and in signal processing technology since these early experiments were undertaken. access to the state-of-the art OTH-B radar offers a rare opportunity to gauge anew the scientific potential for radar sounding of the Sun. In principle, it should be possible to obtain useful data on plasma densities and motions over a range of heights in the corona near 0.5R(solar mass) above the solar surface We report here the preliminary findings from a sequence of observations taken over the course of a solar rotation.

  5. Effects of Stratospheric Lapse Rate on Thunderstorm Cloud-Top Structure in a Three-Dimensional Numerical Simulation. Part I: Some Basic Results of Comparative Experiments.

    NASA Astrophysics Data System (ADS)

    Schlesinger, Robert E.

    1988-05-01

    An anelastic three-dimensional model is used to investigate the effects of stratospheric temperature lapse rate on cloud top height/temperature structure for strongly sheared mature isolated midlatitude thunderstorms. Three comparative experiments are performed, differing only with respect to the stratospheric stability. The assumed stratospheric lapse rate is 0 K km1 (isothermal) in the first experiment, 3 K km1 in the second, and 3 K km1 (inversion) in the third.Kinematic storm structure is very similar in all three cases, especially in the troposphere. A strong quasi-steady updraft evolves splitting into a dominant cyclonic overshooting right-mover and a weaker anticyclonic left-mover that does not reach the tropopause. Strongest downdrafts occur at low to middle levels between the updrafts, and in the lower stratosphere a few kilometers upshear and downshear of the tapering updraft summit.Each storm shows a cloud-top thermal couplet, relatively cold near and upshear of the summit, and with a `close-in' warm region downshear. Both cold and warm regions become warmer, with significant morphological changes and a lowering of the cloud summit, as stratospheric stability is increased, though the temperature spread is not greatly affected.The coldest and highest cloud-top points are nearly colocated in the absence of a stratospheric inversion, but the coldest point is offset well upshear of the summit when an inversion is present. The cold region as a whole in each case shows at least a transient `V' shape, with the arms pointing downshear, although this shape is persistent only with the inversion.In the experiment with a 3 K km1 stratospheric lapse rate (weakest stability), the warm region is small and separates into two spots with secondary cold spots downshear of them. The warm region becomes larger, and remains single, as stratospheric stability increase. In each run, the warm regions are not accompanied by corresponding cloud-top height minima except very briefly.The cold cloud-top points are near or slightly downwind of relative vertical velocity maxima, usually positive, while the warm points are imbedded in subsidence downwind of the principal cloud-top downdraft core. The storm-relative cloud-top horizontal wind fields are consistent with the `V' shape of the cold region, showing strong diffluent flow directed downshear along the flanks from an upshear stagnation zone.

  6. On the application of magic echo cycles for quadrupolar echo spectroscopy of spin-1 nuclei.

    PubMed

    Mananga, E S; Roopchand, R; Rumala, Y S; Boutis, G S

    2007-03-01

    Magic echo cycles are introduced for performing quadrupolar echo spectroscopy of spin-1 nuclei. An analysis is performed via average Hamiltonian theory showing that the evolution under chemical shift or static field inhomogeneity can be refocused simultaneously with the quadrupolar interaction using these cycles. Due to the higher convergence in the Magnus expansion, with sufficient RF power, magic echo based quadrupolar echo spectroscopy outperforms the conventional two pulse quadrupolar echo in signal to noise. Experiments highlighting a signal to noise enhancement over the entire bandwidth of the quadrupolar pattern of a powdered sample of deuterated polyethelene are shown.

  7. A strange result in the measurement of the angles of arrival of the first and second echoes from the ionosphere at high radio frequencies

    NASA Astrophysics Data System (ADS)

    MacGibbon, J.; Whitehead, J. D.; From, W. R.

    1989-03-01

    Angle-of-arrival measurements were obtained for first echoes (those directly reflected from the ionosphere) and second echoes (those twice reflected from the ionosphere with an intermediate reflection from the ground). Unexpectedly, the off-vertical angle-of-arrival of the second echo was found to be consistently less than that of the first echo for much of the time. It is suggested that rapid phase variations caused by the change in the tilt of the ionosphere prevented recognition of the second echo by the present radar system for echoes reflected from rough terrain.

  8. Exploring Stratocumulus Cloud-Top Entrainment Processes and Parameterizations by Using Doppler Cloud Radar Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albrecht, Bruce; Fang, Ming; Ghate, Virendra

    2016-02-01

    Observations from an upward-pointing Doppler cloud radar are used to examine cloud-top entrainment processes and parameterizations in a non-precipitating continental stratocumulus cloud deck maintained by time varying surface buoyancy fluxes and cloud-top radiative cooling. Radar and ancillary observations were made at the Atmospheric Radiation Measurement (ARM)’s Southern Great Plains (SGP) site located near Lamont, Oklahoma of unbroken, non-precipitating stratocumulus clouds observed for a 14-hour period starting 0900 Central Standard Time on 25 March 2005. The vertical velocity variance and energy dissipation rate (EDR) terms in a parameterized turbulence kinetic energy (TKE) budget of the entrainment zone are estimated using themore » radar vertical velocity and the radar spectrum width observations from the upward-pointing millimeter cloud radar (MMCR) operating at the SGP site. Hourly averages of the vertical velocity variance term in the TKE entrainment formulation correlates strongly (r=0.72) to the dissipation rate term in the entrainment zone. However, the ratio of the variance term to the dissipation decreases at night due to decoupling of the boundary layer. When the night -time decoupling is accounted for, the correlation between the variance and the EDR term increases (r=0.92). To obtain bulk coefficients for the entrainment parameterizations derived from the TKE budget, independent estimate of entrainment were obtained from an inversion height budget using ARM SGP observations of the local time derivative and the horizontal advection of the cloud-top height. The large-scale vertical velocity at the inversion needed for this budget from EMWF reanalysis. This budget gives a mean entrainment rate for the observing period of 0.76±0.15 cm/s. This mean value is applied to the TKE budget parameterizations to obtain the bulk coefficients needed in these parameterizations. These bulk coefficients are compared with those from previous and are used to in the parameterizations to give hourly estimates of the entrainment rates using the radar derived vertical velocity variance and dissipation rates. Hourly entrainment rates were estimated from a convective velocity w* parameterization depends on the local surface buoyancy fluxes and the calculated radiative flux divergence, parameterization using a bulk coefficient obtained from the mean inversion height budget. The hourly rates from the cloud turbulence estimates and the w* parameterization, which is independent of the radar observations, are compared with the hourly we values from the budget. All show rough agreement with each other and capture the entrainment variability associated with substantial changes in the surface flux and radiative divergence at cloud top. Major uncertainties in the hourly estimates from the height budget and w* are discussed. The results indicate a strong potential for making entrainment rate estimates directly from the radar vertical velocity variance and the EDR measurements—a technique that has distinct advantages over other methods for estimating entrainment rates. Calculations based on the EDR alone can provide high temporal resolution (for averaging intervals as small as 10 minutes) of the entrainment processes and do not require an estimate of the boundary layer depth, which can be difficult to define when the boundary layer is decoupled.« less

  9. Low-cost high-resolution fast spin-echo MR of acoustic schwannoma: an alternative to enhanced conventional spin-echo MR?

    PubMed

    Allen, R W; Harnsberger, H R; Shelton, C; King, B; Bell, D A; Miller, R; Parkin, J L; Apfelbaum, R I; Parker, D

    1996-08-01

    To determine whether unenhanced high-resolution T2-weighted fast spin-echo MR imaging provides an acceptable and less expensive alternative to contrast-enhanced conventional T1-weighted spin-echo MR techniques in the diagnosis of acoustic schwannoma. We reviewed in a blinded fashion the records of 25 patients with pathologically documented acoustic schwannoma and of 25 control subjects, all of whom had undergone both enhanced conventional spin-echo MR imaging and unenhanced fast spin-echo MR imaging of the cerebellopontine angle/internal auditory canal region. The patients were imaged with the use of a quadrature head receiver coil for the conventional spin-echo sequences and dual 3-inch phased-array receiver coils for the fast spin-echo sequences. The size of the acoustic schwannomas ranged from 2 to 40 mm in maximum dimension. The mean maximum diameter was 12 mm, and 12 neoplasms were less than 10 mm in diameter. Acoustic schwannoma was correctly diagnosed on 98% of the fast spin-echo images and on 100% of the enhanced conventional spin-echo images. Statistical analysis of the data using the kappa coefficient demonstrated agreement beyond chance between these two imaging techniques for the diagnosis of acoustic schwannoma. There is no statistically significant difference in the sensitivity and specificity of unenhanced high-resolution fast spin-echo imaging and enhance T1-weighted conventional spin-echo imaging in the detection of acoustic schwannoma. We believe that the unenhanced high-resolution fast spin-echo technique provides a cost-effective method for the diagnosis of acoustic schwannoma.

  10. A New Method for Detecting and Monitoring Atmospheric Natural Hazards with GPS RO

    NASA Astrophysics Data System (ADS)

    Biondi, R.; Steiner, A. K.; Rieckh, T. M.; Kirchengast, G.

    2014-12-01

    Global Positioning System (GPS) Radio Occultation (RO) allows measurements in any meteorological condition, with global coverage, high vertical resolution, and high accuracy. With more than 13 years of data availability, RO also became a fundamental tool for studying climate change. We present here the application of RO for detecting and monitoring tropical cyclones (TCs), deep convective systems (CSs) and volcanic ash clouds (ACs).Deep CSs and TCs play a fundamental role in atmospheric circulation producing vertical transport, redistributing water vapor and trace gases, changing the thermal structure of the Upper Troposphere and Lower Stratosphere (UTLS) and affecting climate through overshooting into the stratosphere. Explosive volcanic eruptions produce large ACs dangerous for the aviation and they can impact climate when the ash is injected into the UTLS.The detection of cloud top height, the determination of cloud extent, the discrimination of ACs from CSs clouds and the detection of overshooting are main challenges for atmospheric natural hazards study. We created a reference atmosphere with a resolution of 5° in latitude and longitude, sampled on a 1° x 1° grid, and a vertical sampling of 100 m. We then compared RO profiles acquired during TCs, CSs and ACs to the reference atmosphere and computed anomaly profiles.CSs, TCs and the ACs leave a clear signature in the atmosphere which can be detected by RO. Using RO temperature and bending angle profiles we gain insight into the vertical thermal structure and developed a new method for detecting the cloud top altitude with high accuracy.We have characterized the TCs by ocean basins and intensities, showing that they have a different thermal structure and reach to different altitudes according to the basin. We provide statistics on overshooting frequency, achieving results consistent with patterns found in the literature and demonstrating that RO is well suited for this kind of study. We have analyzed the Nabro 2010 eruption determining the AC top height and analyzing the long term impact of the eruption in the zonal UTLS thermal structure. The results show that there is a signature allowing the discrimination of ACs from CSs clouds. The comparison of AC top height with the tropopause altitude shows that during Nabro eruption the ash reached the UTLS.

  11. Seasonal Ice Zone Reconnaissance Surveys Coordination

    DTIC Science & Technology

    2016-03-30

    sea surface temperature (SST), sea level atmospheric pressure ( SLP ), and velocity (Steele), and dropsonde measurements of atmospheric properties...aircraft), cloud top/base heights UpTempO buoys for understanding and prediction…. Steele UpTempO buoy drops for SLP , SST, SSS, & surface velocity...reflectance, skin temperature, visible imagery AXCTD= Air Expendable CTD, AXCP= Air Expendable Current Profiler, SLP = Sea Level atmospheric

  12. 29 CFR 1917.121 - Spiral stairways.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... minimum dimensions of Figure F-1; EC21OC91.020 Spiral Stairway—Minimum Dimensions A (half-tread width) B... 26.67 cm) in height; (3) Minimum loading capability shall be 100 pounds per square foot (4.79kN), and... least 6 feet, 6 inches (1.98 m) above the top step. (c) Maintenance. Spiral stairways shall be...

  13. 29 CFR 1917.121 - Spiral stairways.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... minimum dimensions of Figure F-1; EC21OC91.020 Spiral Stairway—Minimum Dimensions A (half-tread width) B... 26.67 cm) in height; (3) Minimum loading capability shall be 100 pounds per square foot (4.79kN), and... least 6 feet, 6 inches (1.98 m) above the top step. (c) Maintenance. Spiral stairways shall be...

  14. --No Title--

    Science.gov Websites

    -overlay a{z-index:100;display:block;width:49%;height:100%;padding-top:45%;font-size:30px;color:#fff;text -nav-overlay a:empty{width:49%}.ekko-lightbox a:hover{text-decoration:none;opacity:1}.ekko-lightbox .glyphicon-chevron-left{left:0;float:left;padding-left:15px;text-align:left}.ekko-lightbox .glyphicon-chevron

  15. Supersonic Jump

    ERIC Educational Resources Information Center

    Muller, Andreas

    2013-01-01

    On October 14,2012, Felix Baumgartner, an Austrian sky-diver, set some new world records for his discipline. Jumping from a height of about 39 km, he reached a top speed of 1342 km/h, becoming the first human being to break the sound barrier in free fall. In order to understand some essential physics aspects of this remarkable feat, we wonder why…

  16. 49 CFR 38.123 - Restrooms.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... retractable seats or shelves may overlap the clear floor space at a lower height provided they can be easily... measured to the top of the toilet seat. Seats shall not be sprung to return to a lifted position. (3) A... using mobility aids complying with § 38.125(d) of this part and shall be connected to such a space by an...

  17. 49 CFR 38.123 - Restrooms.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... retractable seats or shelves may overlap the clear floor space at a lower height provided they can be easily... measured to the top of the toilet seat. Seats shall not be sprung to return to a lifted position. (3) A... using mobility aids complying with § 38.125(d) of this part and shall be connected to such a space by an...

  18. 49 CFR 38.123 - Restrooms.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... retractable seats or shelves may overlap the clear floor space at a lower height provided they can be easily... measured to the top of the toilet seat. Seats shall not be sprung to return to a lifted position. (3) A... using mobility aids complying with § 38.125(d) of this part and shall be connected to such a space by an...

  19. 36 CFR 1192.25 - Doors, steps and thresholds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Contrast. All step edges, thresholds, and the boarding edge of ramps or lift platforms shall have a band of... lift or ramp surface, either light-on-dark or dark-on-light. (c) Door height. For vehicles in excess of 22 feet in length, the overhead clearance between the top of the door opening and the raised lift...

  20. 36 CFR 1192.25 - Doors, steps and thresholds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Contrast. All step edges, thresholds, and the boarding edge of ramps or lift platforms shall have a band of... lift or ramp surface, either light-on-dark or dark-on-light. (c) Door height. For vehicles in excess of 22 feet in length, the overhead clearance between the top of the door opening and the raised lift...

  1. 46 CFR 164.009-15 - Test procedure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... material, is less than 47 mm, the specimens prepared consist of layers of the sample. (3) If the sample is a composite material and has a height that is not 50 ±3mm, the layers of the specimen prepared are proportional in thickness to the layers of the sample. (4) The top and bottom faces of each specimen prepared...

  2. 46 CFR 69.121 - Engine room deduction.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Engine room deduction. 69.121 Section 69.121 Shipping... MEASUREMENT OF VESSELS Standard Measurement System § 69.121 Engine room deduction. (a) General. The engine...) Space below the crown. The crown is the top of the main space of the engine room to which the heights of...

  3. 46 CFR 69.121 - Engine room deduction.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Engine room deduction. 69.121 Section 69.121 Shipping... MEASUREMENT OF VESSELS Standard Measurement System § 69.121 Engine room deduction. (a) General. The engine...) Space below the crown. The crown is the top of the main space of the engine room to which the heights of...

  4. Productivity of 'Triple Crown' blackberry on the rotating cross-arm trellis system

    USDA-ARS?s Scientific Manuscript database

    Blackberry plants are vigorous and produce long lateral canes. However, to keep the plant canopy narrow for better spray coverage and to aid in fruit harvesting, the canes are typically pruned severely (e.g. primocanes are topped at the 6-ft height and the lateral canes are cut back to 18- to 24-in...

  5. Redacting with Confidence: How to Safely Publish Sanitized Reports Converted from Word to PDF

    DTIC Science & Technology

    2006-02-02

    select Insert->Picture-> Autoshapes from the top menu bar (this opens the AutoShapes toolbar). Select the rectangle from the Autoshapes toolbar as in... AutoShape from the menu as in Figure 6 (this opens the Format AutoShape dialog box), select the Size tab, enter the desired height and width of the

  6. A whale better adjusts the biosonar to ordered rather than to random changes in the echo parameters.

    PubMed

    Supin, Alexander Ya; Nachtigall, Paul E; Breese, Marlee

    2012-09-01

    A false killer whale's (Pseudorca crassidens) sonar clicks and auditory evoked potentials (AEPs) were recorded during echolocation with simulated echoes in two series of experiments. In the first, both the echo delay and transfer factor (which is the dB-ratio of the echo sound-pressure level to emitted pulse source level) were varied randomly from trial to trial until enough data were collected (random presentation). In the second, a combination of the echo delay and transfer factor was kept constant until enough data were collected (ordered presentation). The mean click level decreased with shortening the delay and increasing the transfer factor, more at the ordered presentation rather than at the random presentation. AEPs to the self-heard emitted clicks decreased with shortening the delay and increasing the echo level equally in both series. AEPs to echoes increased with increasing the echo level, little dependent on the echo delay at random presentations but much more dependent on delay with ordered presentations. So some adjustment of the whale's biosonar was possible without prior information about the echo parameters; however, the availability of prior information about echoes provided additional whale capabilities to adjust both the transmitting and receiving parts of the biosonar.

  7. IndEcho study: cohort study investigating birth size, childhood growth and young adult cardiovascular risk factors as predictors of midlife myocardial structure and function in South Asians

    PubMed Central

    Vasan, Senthil K; Roy, Ambuj; Samuel, Viji Thomson; Antonisamy, Belavendra; Bhargava, Santosh K; Alex, Anoop George; Singh, Bhaskar; Osmond, Clive; Geethanjali, Finney S; Karpe, Fredrik; Sachdev, Harshpal; Agrawal, Kanhaiya; Ramakrishnan, Lakshmy; Tandon, Nikhil; Thomas, Nihal; Premkumar, Prasanna S; Asaithambi, Prrathepa; Princy, Sneha F X; Sinha, Sikha; Paul, Thomas Vizhalil; Prabhakaran, Dorairaj; Fall, Caroline H D

    2018-01-01

    Introduction South Asians have high rates of cardiovascular disease (CVD) and its risk factors (hypertension, diabetes, dyslipidaemia and central obesity). Left ventricular (LV) hypertrophy and dysfunction are features of these disorders and important predictors of CVD mortality. Lower birth and infant weight and greater childhood weight gain are associated with increased adult CVD mortality, but there are few data on their relationship to LV function. The IndEcho study will examine associations of birth size, growth during infancy, childhood and adolescence and CVD risk factors in young adulthood with midlife cardiac structure and function in South Asian Indians. Methods and analysis We propose to study approximately 3000 men and women aged 43–50 years from two birth cohorts established in 1969–1973: the New Delhi Birth Cohort (n=1508) and Vellore Birth Cohort (n=2156). They had serial measurements of weight and height from birth to early adulthood. CVD risk markers (body composition, blood pressure, glucose tolerance and lipids) and lifestyle characteristics (tobacco and alcohol consumption, physical activity, socioeconomic status) were assessed at age ~30 years. Clinical measurements in IndEcho will include anthropometry, blood pressure, biochemistry (glucose, fasting insulin and lipids, urinary albumin/creatinine ratio) and body composition by dual energy X-ray absorptiometry and bioelectrical impedance. Outcomes are LV mass and indices of LV systolic and diastolic function assessed by two-dimensional and Doppler echocardiography, carotid intimal-media thickness and ECG indicators of ischaemia. Regression and conditional growth models, adjusted for potential confounders, will be used to study associations of childhood and young adult exposures with these cardiovascular outcomes. Ethics and dissemination The study has been approved by the Health Ministry Steering Committee, Government of India and institutional ethics committees of participating centres in India and the University of Southampton, UK. Results will be disseminated through scientific meetings and peer-reviewed journals. Trial registration number ISRCTN13432279; Pre-results. PMID:29643156

  8. Application of wind-profiling radar data to the analysis of dust weather in the Taklimakan Desert.

    PubMed

    Wang, Minzhong; Wei, Wenshou; Ruan, Zheng; He, Qing; Ge, Runsheng

    2013-06-01

    The Urumqi Institute of Desert Meteorology of the China Meteorological Administration carried out an atmospheric scientific experiment to detect dust weather using a wind-profiling radar in the hinterland of the Taklimakan Desert in April 2010. Based on the wind-profiling data obtained from this experiment, this paper seeks to (a) analyze the characteristics of the horizontal wind field and vertical velocity of a breaking dust weather in a desert hinterland; (b) calculate and give the radar echo intensity and vertical distribution of a dust storm, blowing sand, and floating dust weather; and (c) discuss the atmosphere dust counts/concentration derived from the wind-profiling radar data. Studies show that: (a) A wind-profiling radar is an upper-air atmospheric remote sensing system that effectively detects and monitors dust. It captures the beginning and ending of a dust weather process as well as monitors the sand and dust being transported in the air in terms of height, thickness, and vertical intensity. (b) The echo intensity of a blowing sand and dust storm weather episode in Taklimakan is about -1~10 dBZ while that of floating dust -1~-15 dBZ, indicating that the dust echo intensity is significantly weaker than that of precipitation but stronger than that of clear air. (c) The vertical shear of horizontal wind and the maintenance of low-level east wind are usually dynamic factors causing a dust weather process in Taklimakan. The moment that the low-level horizontal wind field finds a shear over time, it often coincides with the onset of a sand blowing and dust storm weather process. (d) When a blowing sand or dust storm weather event occurs, the atmospheric vertical velocity tends to be of upward motion. This vertical upward movement of the atmosphere supported with a fast horizontal wind and a dry underlying surface carries dust particles from the ground up to the air to form blown sand or a dust storm.

  9. Friction stir scribe welding technique for dissimilar joining of aluminium and galvanised steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Tianhao; Sidhar, Harpreet; Mishra, Rajiv S.

    Friction stir scribe technology, a derivative of friction stir welding, was applied for the dissimilar lap welding of an aluminum alloy and galvanized mild steel sheets. During the process, the rotating tool with a cobalt steel scribe first penetrated the top material — aluminum — and then the scribe cut the bottom material — steel. The steel was displaced into the upper material to produce a characteristic hook feature. Lap welds were shear tested, and their fracture paths were studied. Welding parameters affected the welding features including hook height, which turned out to be highly related to fracture position. Therefore,more » in this paper, the relationships among welding parameters, hook height, joint strength and fracture position are presented. In addition, influence of zinc coating on joint strength was also studied. Keywords: friction stir scribe technology; dissimilar material welding; zinc coating; hook height; joint strength; fracture position« less

  10. How Can Dolphins Recognize Fish According to Their Echoes? A Statistical Analysis of Fish Echoes

    PubMed Central

    Yovel, Yossi; Au, Whitlow W. L.

    2010-01-01

    Echo-based object classification is a fundamental task of animals that use a biosonar system. Dolphins and porpoises should be able to rely on echoes to discriminate a predator from a prey or to select a desired prey from an undesired object. Many studies have shown that dolphins and porpoises can discriminate between objects according to their echoes. All of these studies however, used unnatural objects that can be easily characterized in human terminologies (e.g., metallic spheres, disks, cylinders). In this work, we collected real fish echoes from many angles of acquisition using a sonar system that mimics the emission properties of dolphins and porpoises. We then tested two alternative statistical approaches in classifying these echoes. Our results suggest that fish species can be classified according to echoes returning from porpoise- and dolphin-like signals. These results suggest how dolphins and porpoises can classify fish based on their echoes and provide some insight as to which features might enable the classification. PMID:21124908

  11. How can dolphins recognize fish according to their echoes? A statistical analysis of fish echoes.

    PubMed

    Yovel, Yossi; Au, Whitlow W L

    2010-11-19

    Echo-based object classification is a fundamental task of animals that use a biosonar system. Dolphins and porpoises should be able to rely on echoes to discriminate a predator from a prey or to select a desired prey from an undesired object. Many studies have shown that dolphins and porpoises can discriminate between objects according to their echoes. All of these studies however, used unnatural objects that can be easily characterized in human terminologies (e.g., metallic spheres, disks, cylinders). In this work, we collected real fish echoes from many angles of acquisition using a sonar system that mimics the emission properties of dolphins and porpoises. We then tested two alternative statistical approaches in classifying these echoes. Our results suggest that fish species can be classified according to echoes returning from porpoise- and dolphin-like signals. These results suggest how dolphins and porpoises can classify fish based on their echoes and provide some insight as to which features might enable the classification.

  12. The Solar Flux Dependence of Ionospheric 150 km Radar Echoes and Implications

    NASA Astrophysics Data System (ADS)

    Patra, A. K.; Pavan Chaitanya, P.; St.-Maurice, J.-P.; Otsuka, Y.; Yokoyama, T.; Yamamoto, M.

    2017-11-01

    Radar echoes from the daytime equatorial ionospheric F1 region, popularly known as "150 km echoes," have challenged ionospheric plasma physicists for several decades. Recent theoretical simulations showed that enhanced photoelectron fluxes can amplify the amplitude of plasma waves, generating spectra similar to those of the radar echoes, implying that larger solar fluxes should produce more frequent and stronger 150 km echoes. Inspired by this proposal, we studied the occurrence and intensity dependence of the echoes on the EUV flux observed by SOHO over several years. The occurrence and intensity of the echoes were found to have an inverse relationship with this EUV flux measurement. The multiyear trend is independent of the variability often observed over successive days with nearly identical EUV fluxes. These results imply that the relationship between the echoes and EUV flux is more complex. We propose that gravity waves modulate the amplitude of 150 km echoes through changes in the variations in plasma density and photoelectron fluxes associated with the gravity wave-induced neutral density modulations.

  13. Discovering hotspots in functional genomic data superposed on 3D chromatin configuration reconstructions.

    PubMed

    Capurso, Daniel; Bengtsson, Henrik; Segal, Mark R

    2016-03-18

    The spatial organization of the genome influences cellular function, notably gene regulation. Recent studies have assessed the three-dimensional (3D) co-localization of functional annotations (e.g. centromeres, long terminal repeats) using 3D genome reconstructions from Hi-C (genome-wide chromosome conformation capture) data; however, corresponding assessments for continuous functional genomic data (e.g. chromatin immunoprecipitation-sequencing (ChIP-seq) peak height) are lacking. Here, we demonstrate that applying bump hunting via the patient rule induction method (PRIM) to ChIP-seq data superposed on a Saccharomyces cerevisiae 3D genome reconstruction can discover 'functional 3D hotspots', regions in 3-space for which the mean ChIP-seq peak height is significantly elevated. For the transcription factor Swi6, the top hotspot by P-value contains MSB2 and ERG11 - known Swi6 target genes on different chromosomes. We verify this finding in a number of ways. First, this top hotspot is relatively stable under PRIM across parameter settings. Second, this hotspot is among the top hotspots by mean outcome identified by an alternative algorithm, k-Nearest Neighbor (k-NN) regression. Third, the distance between MSB2 and ERG11 is smaller than expected (by resampling) in two other 3D reconstructions generated via different normalization and reconstruction algorithms. This analytic approach can discover functional 3D hotspots and potentially reveal novel regulatory interactions. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Characteristics of cirrus clouds and tropical tropopause layer: Seasonal variation and long-term trends

    NASA Astrophysics Data System (ADS)

    Pandit, Amit Kumar; Gadhavi, Harish; Ratnam, M. Venkat; Jayaraman, A.; Raghunath, K.; Rao, S. Vijaya Bhaskara

    2014-12-01

    In the present study, characteristics of tropical cirrus clouds observed during 1998-2013 using a ground-based lidar located at Gadanki (13.5°N, 79.2°E), India, are presented. Altitude occurrences of cirrus clouds as well as its top and base heights are estimated using the advanced mathematical tool, wavelet covariance transform (WCT). The association of observed cirrus cloud properties with the characteristics of tropical tropopause layer (TTL) is investigated using co-located radiosonde measurements available since 2006. In general, cirrus clouds occurred for about 44% of the total lidar observation time (6246 h). The most probable altitude at which cirrus clouds occurr is 14.5 km. The occurrence of cirrus clouds exhibited a strong seasonal dependence with maximum occurrence during monsoon season (76%) and minimum occurrence during winter season (33%) which is consistent with the results reported recently using space-based lidar measurements. Most of the time, cirrus top was located within the TTL (between cold point and convective outflow level) while cirrus base occurred near the convective outflow level. The geometrical thickness of the cirrus cloud is found to be higher during monsoon season compared to winter and there exists a weak inverse relation with TTL thickness. During the observation period the percentage occurrence of cirrus clouds near the tropopause showed an 8.4% increase at 70% confidence level. In the last 16 years, top and base heights of cirrus cloud increased by 0.56 km and 0.41 km, respectively.

  15. Cloud vertical profiles derived from CALIPSO and CloudSat and a comparison with MODIS derived clouds

    NASA Astrophysics Data System (ADS)

    Kato, S.; Sun-Mack, S.; Miller, W. F.; Rose, F. G.; Minnis, P.; Wielicki, B. A.; Winker, D. M.; Stephens, G. L.; Charlock, T. P.; Collins, W. D.; Loeb, N. G.; Stackhouse, P. W.; Xu, K.

    2008-05-01

    CALIPSO and CloudSat from the a-train provide detailed information of vertical distribution of clouds and aerosols. The vertical distribution of cloud occurrence is derived from one month of CALIPSO and CloudSat data as a part of the effort of merging CALIPSO, CloudSat and MODIS with CERES data. This newly derived cloud profile is compared with the distribution of cloud top height derived from MODIS on Aqua from cloud algorithms used in the CERES project. The cloud base from MODIS is also estimated using an empirical formula based on the cloud top height and optical thickness, which is used in CERES processes. While MODIS detects mid and low level clouds over the Arctic in April fairly well when they are the topmost cloud layer, it underestimates high- level clouds. In addition, because the CERES-MODIS cloud algorithm is not able to detect multi-layer clouds and the empirical formula significantly underestimates the depth of high clouds, the occurrence of mid and low-level clouds is underestimated. This comparison does not consider sensitivity difference to thin clouds but we will impose an optical thickness threshold to CALIPSO derived clouds for a further comparison. The effect of such differences in the cloud profile to flux computations will also be discussed. In addition, the effect of cloud cover to the top-of-atmosphere flux over the Arctic using CERES SSF and FLASHFLUX products will be discussed.

  16. Probing the magnetsophere with artificial electron beams

    NASA Technical Reports Server (NTRS)

    Winckler, J. R.

    1981-01-01

    An analysis is conducted of the University of Minnesota Electron Echo experiments, which so far have included five sounding rocket experiments. The concept of the Echo experiment is to inject electron beam pulses from a rocket into the ionosphere at altitudes in the range from 100 to 300 km. The electrons move to the conjugate hemisphere following magnetic field lines and return on neighboring field lines to the neighborhood of the rocket where the pulses may be detected and analyzed. Attention is given to the detection and analysis of echoes, the structure of echoes, and the Echo V experiment. The Echo V experiment showed clearly that detection of remote echo beams by atmospheric fluorescence using low light level TV system is not a viable technique. A future experiment is to use throw-away detectors for direct remote echo detection.

  17. Comparison of dust-layer heights from active and passive satellite sensors

    NASA Astrophysics Data System (ADS)

    Kylling, Arve; Vandenbussche, Sophie; Capelle, Virginie; Cuesta, Juan; Klüser, Lars; Lelli, Luca; Popp, Thomas; Stebel, Kerstin; Veefkind, Pepijn

    2018-05-01

    Aerosol-layer height is essential for understanding the impact of aerosols on the climate system. As part of the European Space Agency Aerosol_cci project, aerosol-layer height as derived from passive thermal and solar satellite sensors measurements have been compared with aerosol-layer heights estimated from CALIOP measurements. The Aerosol_cci project targeted dust-type aerosol for this study. This ensures relatively unambiguous aerosol identification by the CALIOP processing chain. Dust-layer height was estimated from thermal IASI measurements using four different algorithms (from BIRA-IASB, DLR, LMD, LISA) and from solar GOME-2 (KNMI) and SCIAMACHY (IUP) measurements. Due to differences in overpass time of the various satellites, a trajectory model was used to move the CALIOP-derived dust heights in space and time to the IASI, GOME-2 and SCIAMACHY dust height pixels. It is not possible to construct a unique dust-layer height from the CALIOP data. Thus two CALIOP-derived layer heights were used: the cumulative extinction height defined as the height where the CALIOP extinction column is half of the total extinction column, and the geometric mean height, which is defined as the geometrical mean of the top and bottom heights of the dust layer. In statistical average over all IASI data there is a general tendency to a positive bias of 0.5-0.8 km against CALIOP extinction-weighted height for three of the four algorithms assessed, while the fourth algorithm has almost no bias. When comparing geometric mean height there is a shift of -0.5 km for all algorithms (getting close to zero for the three algorithms and turning negative for the fourth). The standard deviation of all algorithms is quite similar and ranges between 1.0 and 1.3 km. When looking at different conditions (day, night, land, ocean), there is more detail in variabilities (e.g. all algorithms overestimate more at night than during the day). For the solar sensors it is found that on average SCIAMACHY data are lower by -1.097 km (-0.961 km) compared to the CALIOP geometric mean (cumulative extinction) height, and GOME-2 data are lower by -1.393 km (-0.818 km).

  18. Anisotropy of Observed and Simulated Turbulence in Marine Stratocumulus

    NASA Astrophysics Data System (ADS)

    Pedersen, J. G.; Ma, Y.-F.; Grabowski, W. W.; Malinowski, S. P.

    2018-02-01

    Anisotropy of turbulence near the top of the stratocumulus-topped boundary layer (STBL) is studied using large-eddy simulation (LES) and measurements from the POST and DYCOMS-II field campaigns. Focusing on turbulence ˜100 m below the cloud top, we see remarkable similarity between daytime and nocturnal flight data covering different inversion strengths and free-tropospheric conditions. With λ denoting wavelength and zt cloud-top height, we find that turbulence at λ/zt≃0.01 is weakly dominated by horizontal fluctuations, while turbulence at λ/zt>1 becomes strongly dominated by horizontal fluctuations. Between are scales at which vertical fluctuations dominate. Typical-resolution LES of the STBL (based on POST flight 13 and DYCOMS-II flight 1) captures observed characteristics of below-cloud-top turbulence reasonably well. However, using a fixed vertical grid spacing of 5 m, decreasing the horizontal grid spacing and increasing the subgrid-scale mixing length leads to increased dominance of vertical fluctuations, increased entrainment velocity, and decreased liquid water path. Our analysis supports the notion that entrainment parameterizations (e.g., in climate models) could potentially be improved by accounting more accurately for anisotropic deformation of turbulence in the cloud-top region. While LES has the potential to facilitate improved understanding of anisotropic cloud-top turbulence, sensitivity to grid spacing, grid-box aspect ratio, and subgrid-scale model needs to be addressed.

  19. Estimation of Characteristics of Echo Envelope Using RF Echo Signal from the Liver

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tadashi; Hachiya, Hiroyuki; Kamiyama, Naohisa; Ikeda, Kazuki; Moriyasu, Norifumi

    2001-05-01

    To realize quantitative diagnosis of liver cirrhosis, we have been analyzing the probability density function (PDF) of echo amplitude using B-mode images. However, the B-mode image is affected by the various signal and image processing techniques used in the diagnosis equipment, so a detailed and quantitative analysis is very difficult. In this paper, we analyze the PDF of echo amplitude using RF echo signal and B-mode images of normal and cirrhotic livers, and compare both results to examine the validity of the RF echo signal.

  20. Stereo Cloud Height and Wind Determination Using Measurements from a Single Focal Plane

    NASA Astrophysics Data System (ADS)

    Demajistre, R.; Kelly, M. A.

    2014-12-01

    We present here a method for extracting cloud heights and winds from an aircraft or orbital platform using measurements from a single focal plane, exploiting the motion of the platform to provide multiple views of the cloud tops. To illustrate this method we use data acquired during aircraft flight tests of a set of simple stereo imagers that are well suited to this purpose. Each of these imagers has three linear arrays on the focal plane, one looking forward, one looking aft, and one looking down. Push-broom images from each of these arrays are constructed, and then a spatial correlation analysis is used to deduce the delays and displacements required for wind and cloud height determination. We will present the algorithms necessary for the retrievals, as well as the methods used to determine the uncertainties of the derived cloud heights and winds. We will apply the retrievals and uncertainty determination to a number of image sets acquired by the airborne sensors. We then generalize these results to potential space based observations made by similar types of sensors.

  1. Orthodontic Bracket Manufacturing Tolerances and Dimensional Differences between Select Self-Ligating Brackets

    PubMed Central

    Major, Thomas W.; Carey, Jason P.; Nobes, David S.; Major, Paul W.

    2010-01-01

    In all manufacturing processes there are tolerances; however, orthodontic bracket manufacturers seldom state the slot dimensional tolerances. This experiment develops a novel method of analyzing slot profile dimensions using photographs of the slot. Five points are selected along each wall, and lines are fitted to define a trapezoidal slot shape. This investigation measures slot height at the slot's top and bottom, angles between walls, slot taper, and the linearity of each wall. Slot dimensions for 30 upper right central incisor self-ligating stainless steel brackets from three manufacturers were evaluated. Speed brackets have a slot height 2% smaller than the nominal 0.559 mm size and have a slightly convergent taper. In-Ovation brackets have a divergent taper at an average angle of 1.47 degrees. In-Ovation is closest to the nominal value of slot height at the slot base and has the smallest manufacturing tolerances. Damon Q brackets are the most rectangular in shape, with nearly 90-degree corners between the slot bottom and walls. Damon slot height is on average 3% oversized. PMID:20981299

  2. Nonlinear theory of transverse beam echoes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sen, Tanaji; Li, Yuan Shen

    Transverse beam echoes can be excited with a single dipole kick followed by a single quadrupole kick. They have been used to measure diffusion in hadron beams and have other diagnostic capabilities. Here we develop theories of the transverse echo nonlinear in both the dipole and quadrupole kick strengths. The theories predict the maximum echo amplitudes and the optimum strength parameters. We find that the echo amplitude increases with smaller beam emittance and the asymptotic echo amplitude can exceed half the initial dipole kick amplitude. We show that multiple echoes can be observed provided the dipole kick is large enough.more » The spectrum of the echo pulse can be used to determine the nonlinear detuning parameter with small amplitude dipole kicks. Simulations are performed to check the theoretical predictions. In the useful ranges of dipole and quadrupole strengths, they are shown to be in reasonable agreement.« less

  3. Nonlinear theory of transverse beam echoes

    DOE PAGES

    Sen, Tanaji; Li, Yuan Shen

    2018-02-23

    Transverse beam echoes can be excited with a single dipole kick followed by a single quadrupole kick. They have been used to measure diffusion in hadron beams and have other diagnostic capabilities. Here we develop theories of the transverse echo nonlinear in both the dipole and quadrupole kick strengths. The theories predict the maximum echo amplitudes and the optimum strength parameters. We find that the echo amplitude increases with smaller beam emittance and the asymptotic echo amplitude can exceed half the initial dipole kick amplitude. We show that multiple echoes can be observed provided the dipole kick is large enough.more » The spectrum of the echo pulse can be used to determine the nonlinear detuning parameter with small amplitude dipole kicks. Simulations are performed to check the theoretical predictions. In the useful ranges of dipole and quadrupole strengths, they are shown to be in reasonable agreement.« less

  4. The relationship between fireballs and HRO Long Echos

    NASA Astrophysics Data System (ADS)

    Yanagida, E.; Amikura, S.

    Ham-band Radio Observation (HRO) is one of the major methods used to observe meteor activity in Japan. We receive certain types of meteor echoes. One of the types is the long-lasting echo called a ``Long Echo''. We have the impression that Long Echoes correspond to fireballs. The present research found this relation and tried to identify fireball data from visual observations with Long Echo data of the 2002 Leonids, Geminids, and Quadrantids. From these data, we found that the identification percentage tended to be higher for fainter magnitudes, but that the percentage is small, the percentages of each meteor stream being less than 30 %. From these results, this research found that we could not simply say that brighter meteors were received as Long Echoes. It depends on the geocentric velocity of the meteor stream, with a possibility that Long Echoes correspond to darker as well as brighter fireballs.

  5. Removing the echoes from terahertz pulse reflection system and sample

    NASA Astrophysics Data System (ADS)

    Liu, Haishun; Zhang, Zhenwei; Zhang, Cunlin

    2018-01-01

    Due to the echoes both from terahertz (THz) pulse reflection system and sample, the THz primary pulse will be distorted. The system echoes include two types. One preceding the main peak probably is caused by ultrafast laser pulse and the other at the back of the primary pulse is caused by the Fabry-Perot (F-P) etalon effect of detector. We attempt to remove the corresponding echoes by using two kinds of deconvolution. A Si wafer of 400μm was selected as the tested sample. Firstly, the method of double Gaussian filter (DGF) decnvolution was used to remove the systematic echoes, and then another deconvolution technique was employed to eliminate the two obvious echoes of the sample. The ultimate results indicated: although the combination of two deconvolution techniques could not entirely remove the echoes of sample and system, the echoes were largely reduced.

  6. A strange result in the measurement of the angles of arrival of the first and second echoes from the ionosphere at high radio frequencies

    NASA Astrophysics Data System (ADS)

    From, W. R.; MacGibbon, J.; Whitehead, J. D.

    1989-03-01

    Angles of arrival of first echoes (those directly reflected from the ionosphere) and second echoes (those twice reflected from the ionosphere with an intermediate reflection from the ground) were measured. It is easy to show that under specified conditions the off-vertical angle of arrival of the second echo ought to be twice that of the first echo. It is consistently found to be less than this for much of the time. Several possibilities are canvassed, but none provide a convincing explanation. The place on the Earth from which the second echo was reflected was nearly always the sea or flat ground. Apparently, rapid phase variations, as the tilt of the ionosphere changed, prevented recognition of the second echo by this particular radar system for echoes reflected from rough terrain.

  7. On the Modeling of Thermal Radiation at the Top Surface of a Vacuum Arc Remelting Ingot

    NASA Astrophysics Data System (ADS)

    Delzant, P.-O.; Baqué, B.; Chapelle, P.; Jardy, A.

    2018-02-01

    Two models have been implemented for calculating the thermal radiation emitted at the ingot top in the VAR process, namely, a crude model that considers only radiative heat transfer between the free surface and electrode tip and a more detailed model that describes all radiative exchanges between the ingot, electrode, and crucible wall using a radiosity method. From the results of the second model, it is found that the radiative heat flux at the ingot top may depend heavily on the arc gap length and the electrode radius, but remains almost unaffected by variations of the electrode height. Both radiation models have been integrated into a CFD numerical code that simulates the growth and solidification of a VAR ingot. The simulation of a Ti-6-4 alloy melt shows that use of the detailed radiation model leads to some significant modification of the simulation results compared with the simple model. This is especially true during the hot-topping phase, where the top radiation plays an increasingly important role compared with the arc energy input. Thus, while the crude model has the advantage of its simplicity, use of the detailed model should be preferred.

  8. On the Modeling of Thermal Radiation at the Top Surface of a Vacuum Arc Remelting Ingot

    NASA Astrophysics Data System (ADS)

    Delzant, P.-O.; Baqué, B.; Chapelle, P.; Jardy, A.

    2018-06-01

    Two models have been implemented for calculating the thermal radiation emitted at the ingot top in the VAR process, namely, a crude model that considers only radiative heat transfer between the free surface and electrode tip and a more detailed model that describes all radiative exchanges between the ingot, electrode, and crucible wall using a radiosity method. From the results of the second model, it is found that the radiative heat flux at the ingot top may depend heavily on the arc gap length and the electrode radius, but remains almost unaffected by variations of the electrode height. Both radiation models have been integrated into a CFD numerical code that simulates the growth and solidification of a VAR ingot. The simulation of a Ti-6-4 alloy melt shows that use of the detailed radiation model leads to some significant modification of the simulation results compared with the simple model. This is especially true during the hot-topping phase, where the top radiation plays an increasingly important role compared with the arc energy input. Thus, while the crude model has the advantage of its simplicity, use of the detailed model should be preferred.

  9. The addition of stripes (a version of the 'horizontal-vertical illusion') increases foot clearance when crossing low-height obstacles.

    PubMed

    Foster, Richard J; Buckley, John G; Whitaker, David; Elliott, David B

    2016-07-01

    Trips over obstacles are one of the main causes of falling in older adults, with vision playing an important role in successful obstacle negotiation. We determined whether a horizontal-vertical illusion, superimposed onto low-height obstacles to create a perceived increase in obstacle height, increased foot clearances during obstacle negotiation thus reducing the likelihood of tripping. Eleven adults (mean ± 1 SD: age 27.3 ± 5.1 years) negotiated obstacles of varying heights (3, 5, 7 cm) with four different appearance conditions; two were obstacles with a horizontal-vertical illusion (vertical stripes of different thickness) superimposed on the front, one was a plain obstacle and the fourth a plain obstacle with a horizontal black line painted on the top edge. Foot clearance parameters were compared across conditions. Both illusions led to a significant increase in foot clearance when crossing the obstacle, compared to the plain condition, irrespective of obstacle height. Superimposing a horizontal-vertical illusion onto low-height obstacles can increase foot clearance, and its use on the floor section of a double-glazing door frame for example may reduce the incidence of tripping in the home. Practitioner Summary: Low-height obstacles such as the floor section of a double-glazing door frame are potential tripping hazards. In a gait lab-based study we found that a horizontal-vertical illusion superimposed onto low-height obstacles led to significantly higher foot clearances; indicating their potential as a useful safety measure.

  10. Comparison of Left Ventricular Hypertrophy by Electrocardiography and Echocardiography in Children Using Analytics Tool.

    PubMed

    Tague, Lauren; Wiggs, Justin; Li, Qianxi; McCarter, Robert; Sherwin, Elizabeth; Weinberg, Jacqueline; Sable, Craig

    2018-05-17

    Left ventricular hypertrophy (LVH) is a common finding on pediatric electrocardiography (ECG) leading to many referrals for echocardiography (echo). This study utilizes a novel analytics tool that combines ECG and echo databases to evaluate ECG as a screening tool for LVH. SQL Server 2012 data warehouse incorporated ECG and echo databases for all patients from a single institution from 2006 to 2016. Customized queries identified patients 0-18 years old with LVH on ECG and an echo performed within 24 h. Using data visualization (Tableau) and analytic (Stata 14) software, ECG and echo findings were compared. Of 437,699 encounters, 4637 met inclusion criteria. ECG had high sensitivity (≥ 90%) but poor specificity (43%), and low positive predictive value (< 20%) for echo abnormalities. ECG performed only 11-22% better than chance (AROC = 0.50). 83% of subjects with LVH on ECG had normal left ventricle (LV) structure and size on echo. African-Americans with LVH were least likely to have an abnormal echo. There was a low correlation between V 6 R on ECG and echo-derived Z score of left ventricle diastolic diameter (r = 0.14) and LV mass index (r = 0.24). The data analytics client was able to mine a database of ECG and echo reports, comparing LVH by ECG and LV measurements and qualitative findings by echo, identifying an abnormal LV by echo in only 17% of cases with LVH on ECG. This novel tool is useful for rapid data mining for both clinical and research endeavors.

  11. Echo tracker/range finder for radars and sonars

    NASA Technical Reports Server (NTRS)

    Constantinides, N. J. (Inventor)

    1982-01-01

    An echo tracker/range finder or altimeter is described. The pulse repetition frequency (PFR) of a predetermined plurality of transmitted pulses is adjusted so that echo pulses received from a reflecting object are positioned between transmitted pulses and divided their interpulse time interval into two time intervals having a predetermined ratio with respect to each other. The invention described provides a means whereby the arrival time of a plurality of echo pulses is defined as the time at which a composite echo pulse formed of a sum of the individual echo pulses has the highest amplitude. The invention is applicable to radar systems, sonar systems, or any other kind of system in which pulses are transmitted and echoes received therefrom.

  12. Ortho-para-hydrogen equilibration on Jupiter

    NASA Technical Reports Server (NTRS)

    Carlson, Barbara E.; Lacis, Andrew A.; Rossow, William B.

    1992-01-01

    Voyager IRIS observations reveal that the Jovian para-hydrogen fraction is not in thermodynamic equilibrium near the NH3 cloud top, implying that a vertical gradient exists between the high-temperature equilibrium value of 0.25 at depth and the cloud top values. The height-dependent para-hydrogen profile is obtained using an anisotropic multiple-scattering radiative transfer model. A vertical correlation is found to exist between the location of the para-hydrogen gradient and the NH3 cloud, strongly suggesting that paramagnetic conversion on NH3 cloud particle surfaces is the dominant equilibration mechanism. Below the NH3 cloud layer, the para fraction is constant with depth and equal to the high-temperature equilibrium value of 0.25. The degree of cloud-top equilibration appears to depend on the optical depth of the NH3 cloud layer. Belt-zone variations in the para-hydrogen profile seem to be due to differences in the strength of the vertical mixing.

  13. Laboratory glassware rack for seismic safety

    NASA Technical Reports Server (NTRS)

    Cohen, M. M. (Inventor)

    1985-01-01

    A rack for laboratory bottles and jars for chemicals and medicines has been designed to provide the maximum strength and security to the glassware in the event of a significant earthquake. The rack preferably is rectangular and may be made of a variety of chemically resistant materials including polypropylene, polycarbonate, and stainless steel. It comprises a first plurality of parallel vertical walls, and a second plurality of parallel vertical walls, perpendicular to the first. These intersecting vertical walls comprise a self-supporting structure without a bottom which sits on four legs. The top surface of the rack is formed by the top edges of all the vertical walls, which are not parallel but are skewed in three dimensions. These top edges form a grid matrix having a number of intersections of the vertical walls which define a number of rectangular compartments having varying widths and lengths and varying heights.

  14. Overshooting thunderheads observed from ATS and Learjet

    NASA Technical Reports Server (NTRS)

    Fujita, T. T.

    1974-01-01

    Overshooting tops of thunderstorms were photographed simultaneously from both ATS and a Learjet during the cloud-truth experiment over the Midwest in the Spring of 1972 and 1973. The characteristics of overshooting tops were studied in various time and space scales, revealing that the horizontal dimensions of overshooting tops vary between 1000 ft and about 10 miles. The period of overshooting turrets with horizontal dimensions of less than 1 mile is found to be comparable to the Brunt-Vaisalla frequency of gravity waves at the lowermost stratosphere. The up-and-down motion of an overshooting dome, consisting of a number of turrets, is much slower than that of individual turrets. It is assumed that the height of a dome is closely related to the intensity of the up and downdrafts beneath the dome. Emphasis is placed upon the importance of the investigation of overshooting domes toward the identification of severe storm characteristics from satellites.

  15. Classification of electronically generated phantom targets by an Atlantic bottlenose dolphin (Tursiops truncatus).

    PubMed

    Aubauer, R; Au, W W; Nachtigall, P E; Pawloski, D A; DeLong, C M

    2000-05-01

    Animal behavior experiments require not only stimulus control of the animal's behavior, but also precise control of the stimulus itself. In discrimination experiments with real target presentation, the complex interdependence between the physical dimensions and the backscattering process of an object make it difficult to extract and control relevant echo parameters separately. In other phantom-echo experiments, the echoes were relatively simple and could only simulate certain properties of targets. The echo-simulation method utilized in this paper can be used to transform any animal echolocation sound into phantom echoes of high fidelity and complexity. The developed phantom-echo system is implemented on a digital signal-processing board and gives an experimenter fully programmable control over the echo-generating process and the echo structure itself. In this experiment, the capability of a dolphin to discriminate between acoustically simulated phantom replicas of targets and their real equivalents was tested. Phantom replicas were presented in a probe technique during a materials discrimination experiment. The animal accepted the phantom echoes and classified them in the same manner as it classified real targets.

  16. ECHO Data Partners Join Forces to Federate Access to Resources

    NASA Astrophysics Data System (ADS)

    Kendall, J.; Macie, M.

    2003-12-01

    During the past year the NASA's Earth Science Data and Information System (ESDIS) project has been collaborating with various Earth science data and client providers to design and implement the EOS Clearinghouse (ECHO). ECHO is an open, interoperable metadata clearinghouse and order broker system. ECHO functions as a repository of information intended to streamline access to digital data and services provided by NASA's Earth Science Enterprise and the extended Earth science community. In a unique partnership, ECHO data providers are working to extend their services in the digital era, to reflect current trends in scientific and educational communications. The multi-organization, inter-disciplinary content of ECHO provides a valuable new service to a growing number of Earth science applications and interdisciplinary research efforts. As such, ECHO is expected to attract a wide audience. In this poster, we highlight the contributions of current ECHO data partners and provide information for prospective data partners on how the project supports the incorporation of new collections and effective long-term asset management that is directly under the control of the organizations who contribute resources to ECHO.

  17. Polarimetric and Structural Properties of a Boreal Forest at P-Band and L-Band

    NASA Astrophysics Data System (ADS)

    Tebaldini, S.; Rocca, F.

    2010-12-01

    With this paper we investigate the structural and polarimetric of the boreal forest within the Krycklan river catchment, Northern Sweden, basing on multi-polarimetric and multi-baseline SAR surveys at P-Band and L-Band collected in the framework of the ESA campaign BioSAR 2008. The analysis has been carried out by applying the Algebraic Synthesis (AS) technique, recently introduced in literature, which provides a theoretical framework for the decomposition of the backscattered signal into ground-only and volume-only contributions, basing on both baseline and polarization diversity. The availability of multiple baselines allows the formation of a synthetic aperture not only along the azimuth direction but also in elevation. Accordingly, the backscattered echoes can be focused not only in the slant range, azimuth plane, but in the whole 3D space. This is the rationale of the SAR Tomography (T-SAR) concept, which has been widely considered in the literature of the last years. It follows that, as long as the penetration in the scattering volume is guaranteed, the vertical profile of the vegetation layer is retrieved by separating backscatter contributions along the vertical direction, which is the main reason for the exploitation of Tomographic techniques at longer wavelengths. Still, the capabilities of T-SAR are limited to imaging the global vertical structure of the electromagnetic scattering in a certain polarization. It then becomes important to develop methodologies for the investigation of the vertical structure of different Scattering Mechanisms (SMs), such as ground and volume scattering, in such a way as to derive information that can be delivered also outside the field of Radar processing. This is an issue that may become relevant at longer wavelengths, such as P-Band, where the presence of multiple scattering arising from the interaction with terrain could hinder the correct reconstruction of the forest structure. The availability of multiple polarizations allows to overcome this limitation, thus providing a way to obtain the vertical structures associated with volume-only contributions. Experimental results will be provided showing the following. At P-Band the most relevant scattering contributions are observed at the ground level, not only in the co-polar channels, but also in HV, consistently with he first BioSAR campaign. L-Band data have shown a remarkable difference, resulting in a more uniform distribution of the backscattered power along the vertical direction. Volume top height has been observed to be substantially invariant to the choice of the solution for volume-only scattering. These results underline the validity of modeling a forest scenario as being constituted by volume and ground (or rather ground-locked) scattering, and the importance of forest top height as the most robust indicator of the forest structure as imaged through microwaves measurements. Nevertheless, it has also been shown that different solutions for volume scattering correspond to dramatically different vertical structures. In this framework, tomography represents a powerful tool for investigating the potential solutions, as it allows to see what kind of vertical structure has been retrieved. On this basis, a solution has been proposed as a criterion to emphasize volume contributions at P-Band.

  18. Vertical normal modes of a mesoscale model using a scaled height coordinate

    NASA Technical Reports Server (NTRS)

    Lipton, A. E.; Pielke, R. A.

    1986-01-01

    Vertical modes were derived for a version of the Colorado State Regional Atmospheric Mesoscale Modeling System. The impacts of three options for dealing with the upper boundary of the model were studied. The standard model formulation holds pressure constant at a fixed altitude near the model top, and produces a fastest mode with a speed of about 90 m/sec. An alternative formulation, which allows for an external mode, could require recomputation of vertical modes for every surface elevation on the horizontal grid unless the modes are derived in a particular way. These results have bearing on the feasibility of applying vertical mode initialization to models with scaled height coordinates.

  19. Microstructure and Mechanical Properties of Additively Manufactured Parts with Staircase Feature

    NASA Astrophysics Data System (ADS)

    Keya, Tahmina

    This thesis focuses on a part with staircase feature that is made of Inconel 718 and fabricated by SLM process. The objective of the study was to observe build height effect on the microstructure and mechanical properties of the part. Due to the nature of SLM, there is possibility of different microstructure and mechanical properties in different locations depending on the design of the part. The objective was to compare microstructure and mechanical properties from different location and four comparison groups were considered: 1. Effect of thermal cycle; 2. External and internal surfaces; 3. Build height effect and 4. Bottom surfaces. To achieve the goals of this research, standard metallurgical procedure has been performed to prepare samples. Etching was done to reveal the microstructure of SLM processed Inconel 718 parts. Young's modulus and hardness were measured using nanoindentation technique. FEM analysis was performed to simulate nanoindentation. The conclusions drawn from this research are: 1. The microstructure of front and side surface of SLM processed Inconel 718 consists of arc shaped cut ends of melt pools with intermetallic phase at the border of the melt pool; 2. On top surface, melted tracks and scanning patterns can be observed and the average width of melted tracks is 100-150 microm; 3. The microstructure looks similar at different build height; 4. Microstructure on the top of a stair is more defined and organized than the internal surface; 5. The mechanical properties are highest at the bottom. OM images revealed slight difference in microstructure in terms of build height for this specific part, but mechanical properties seem to be vary noticeably. This is something to be kept in mind while designing or determining build orientation. External and internal surfaces of a stair at the same height showed difference in both microstructure and mechanical properties. To minimize that effect and to make it more uniform, gradual elevation can be considered when suitable as far as design modification is concerned. Above all, this study reveals important information about the pattern of microstructure, thus heat transfer mechanism inside a part which is useful to understand the SLM process.

  20. Examining the robustness of automated aural classification of active sonar echoes.

    PubMed

    Murphy, Stefan M; Hines, Paul C

    2014-02-01

    Active sonar systems are used to detect underwater man-made objects of interest (targets) that are too quiet to be reliably detected with passive sonar. Performance of active sonar can be degraded by false alarms caused by echoes returned from geological seabed structures (clutter) in shallow regions. To reduce false alarms, a method of distinguishing target echoes from clutter echoes is required. Research has demonstrated that perceptual-based signal features similar to those employed in the human auditory system can be used to automatically discriminate between target and clutter echoes, thereby reducing the number of false alarms and improving sonar performance. An active sonar experiment on the Malta Plateau in the Mediterranean Sea was conducted during the Clutter07 sea trial and repeated during the Clutter09 sea trial. The dataset consists of more than 95,000 pulse-compressed echoes returned from two targets and many geological clutter objects. These echoes were processed using an automatic classifier that quantifies the timbre of each echo using a number of perceptual signal features. Using echoes from 2007, the aural classifier was trained to establish a boundary between targets and clutter in the feature space. Temporal robustness was then investigated by testing the classifier on echoes from the 2009 experiment.

  1. Value of echo-Doppler derived pulmonary vascular resistance, net-atrioventricular compliance and tricuspid annular velocity in determining exercise capacity in patients with mitral stenosis.

    PubMed

    Choi, Eui-Young; Shim, Jaemin; Kim, Sung-Ai; Shim, Chi Young; Yoon, Se-Jung; Kang, Seok-Min; Choi, Donghoon; Ha, Jong-Won; Rim, Se-Joong; Jang, Yangsoo; Chung, Namsik

    2007-11-01

    The present study sought to determine if echo-Doppler-derived pulmonary vascular resistance (PVR echo), net-atrioventricular compliance (Cn) and tricuspid peak systolic annular velocity (Sa), as parameters of right ventricular function, have value in predicting exercise capacity in patients with mitral stenosis (MS). Thirty-two patients with moderate or severe MS without left ventricular systolic dysfunction were studied. After comprehensive echo-Doppler measurements, including PVR echo, tricuspid Sa and left-sided Cn, supine bicycle exercise echo and concomitant respiratory gas analysis were performed. Measurements during 5 cardiac cycles representing the mean heart rate were averaged. Increment of resting PVR(echo) (r=-0.416, p=0.018) and decrement of resting Sa (r=0.433, p=0.013) and Cn (r=0.469, p=0.007) were significantly associated with decrease in %VO(2) peak. The predictive accuracy for %VO2 peak could increase by combining these parameters as Sa/PVR echo (r=0.500, p=0.004) or Cn. (Sa/PVR echo) (r=0.572, p=0.001) independent of mitral valve area, mean diastolic pressure gradients or presence of atrial fibrillation. Measurement of PVR echo, Cn and Sa might provide important information about the exercise capacity of patients with MS.

  2. Multiple echo multi-shot diffusion sequence.

    PubMed

    Chabert, Steren; Galindo, César; Tejos, Cristian; Uribe, Sergio A

    2014-04-01

    To measure both transversal relaxation time (T2 ) and diffusion coefficients within a single scan using a multi-shot approach. Both measurements have drawn interest in many applications, especially in skeletal muscle studies, which have short T2 values. Multiple echo single-shot schemes have been proposed to obtain those variables simultaneously within a single scan, resulting in a reduction of the scanning time. However, one problem with those approaches is the associated long echo read-out. Consequently, the minimum achievable echo time tends to be long, limiting the application of these sequences to tissues with relatively long T2 . To address this problem, we propose to extend the multi-echo sequences using a multi-shot approach, so that to allow shorter echo times. A multi-shot dual-echo EPI sequence with diffusion gradients and echo navigators was modified to include independent diffusion gradients in any of the two echoes. The multi-shot approach allows us to drastically reduce echo times. Results showed a good agreement for the T2 and mean diffusivity measurements with gold standard sequences in phantoms and in vivo data of calf muscles from healthy volunteers. A fast and accurate method is proposed to measure T2 and diffusion coefficients simultaneously, tested in vitro and in healthy volunteers. Copyright © 2013 Wiley Periodicals, Inc.

  3. Does turgor limit growth in tall trees?

    Treesearch

    D.R. Woodruff; B.J. Bond; F.C. Meinzer

    2004-01-01

    The gravitational component of water potential contributes a standing 0.01 MPa m1 to the xylem tension gradient in plants. In tall trees, this contribution can significantly reduce the water potential near the tree tops. The turgor of cells in buds and leaves is expected to decrease in direct proportion with leaf water potential along a height gradient unless osmotic...

  4. 49 CFR 178.609 - Test requirements for packagings for infectious substances.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... free-fall drops onto a rigid, nonresilient, flat, horizontal surface from a height of 9 m (30 feet... must be dropped, one in each of the following orientation: (i) Flat on the base; (ii) Flat on the top; (iii) Flat on the longest side; (iv) Flat on the shortest side; and (v) On a corner. (2) Where the...

  5. 49 CFR 173.4a - Excepted quantities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... package or packing different materials in the package must not result in a violation of § 173.21. (6) Each... onto a solid unyielding surface from a height of 1.8 m (5.9 feet): (i) Where the sample is in the shape...; (B) One drop flat on the top; (C) One drop flat on the longest side; (D) One drop flat on the...

  6. 49 CFR 173.4 - Small quantities for highway and rail.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... solid materials; (iii) One (1) g (0.04 ounce) for authorized materials meeting the definition of a... drops made from a height of 1.8 m (5.9 feet) directly onto a solid unyielding surface without breakage... package: (A) One drop flat on bottom; (B) One drop flat on top; (C) One drop flat on the long side; (D...

  7. Effect of Fertilization on Survival and Early Growth of Direct-Seeded Red Pine

    Treesearch

    David H. Alban

    1971-01-01

    Fertilization resulted in increased height and top weight of red pine seedlings by the end of the second growing season, but also resulted in considerable seedling mortality. A high level of watering also increased seedling growth but to a much less extent than fertilization. Fertilization of 1-year-old seedlings resulted in dramatic changes in their chemical...

  8. 49 CFR 173.175 - Permeation devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., flat and horizontal surface from a height of 1.8 m (5.9 feet): (i) One drop flat on the bottom; (ii) One drop flat on the top; (iii) One drop flat on the long side; (iv) One drop flat on the short side; (v) One drop on a corner at the junction of three intersecting edges; and (2) A force applied to the...

  9. 49 CFR 173.175 - Permeation devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., flat and horizontal surface from a height of 1.8 m (5.9 feet): (i) One drop flat on the bottom; (ii) One drop flat on the top; (iii) One drop flat on the long side; (iv) One drop flat on the short side; (v) One drop on a corner at the junction of three intersecting edges; and (2) A force applied to the...

  10. The Validation of Cloud Retrieval Algorithms Using Synthetic Datasets

    NASA Astrophysics Data System (ADS)

    Kokhanovsky, Alexander; Fischer, Jurgen; Linstrot, Rasmus; Meirink, Jan Fokke; Poulsen, Caroline; Preusker, Rene; Siddans, Richard; Thomas, Gareth; Arnold, Chris; Grainger, Roy; Lilli, Luca; Rozanov, Vladimir

    2012-11-01

    We have performed the inter-comparison study of cloud property retrievals using algorithms initially developed for AATSR (ORAC, RAL-Oxford University), AVHRR and SEVIRI (CPP, KNMI), SCIAMACHY/GOME (SACURA, University of Bremen), and MERIS (ANNA, Free University of Berlin). The accuracy of retrievals of cloud optical thickness (COT), effective radius (ER) of droplets, and cloud top height (CTH) is discussed.

  11. Forests, shrubs, and terrain: top-down and bottom-up controls on forest structure

    Treesearch

    Paul V. Bolstad; Katherine J. Elliott; Chelcy F. Miniat

    2018-01-01

    Overstory forest structure responds to terrain‐related abiotic factors and to biotic interactions among overstory and understory plants. Unlike species abundance, tree height, biomass, and leaf area in many regions have been poorly quantified in relation to terrain‐driven environmental gradients. In addition, the magnitude of understory influences on overstory...

  12. Logging intensity impact on small oak seedling survival and growth on the Cumberland Plateau in northeastern Alabama

    Treesearch

    Callie J. Schweitzer; Daniel C. Dey

    2013-01-01

    Ground disturbance caused by forest harvest operations can negatively impact oak regeneration. On the Cumberland Plateau, for successful regeneration, managers often must rely on very small (less than a ft in height) oak advance reproduction that is susceptible to disturbance by harvesting equipment. Furthermore, sites on the Plateau top are often harvested when...

  13. --No Title--

    Science.gov Websites

    #333;outline:5px auto -webkit-focus-ring-color;outline-offset:-2px}a:hover,a:active{outline:0}sub,sup -appearance:none}textarea{overflow:auto;vertical-align:top}@media print{*{text-shadow:none !important;color:#000 ;Helvetica",sans-serif;font-size:13px;line-height:20px;color:#333;background-color:#fff}a{color:#ba4f16

  14. --No Title--

    Science.gov Websites

    %;position:relative;z-index:1}.noUi-connects{overflow:hidden;z-index:0}.noUi-connect,.noUi-origin{will -change:transform;position:absolute;z-index:1;top:0;left:0;height:100%;width:100%;-webkit-transform-origin:0 0 ;transform-origin:0 0}html:not([dir=rtl]) .noUi-horizontal .noUi-origin{left:auto;right:0}.noUi-vertical

  15. Evaluating the performance of Sentinel-3 SRAL SAR Altimetry in the Coastal and Open Ocean, and developing improved retrieval methods - The ESA SCOOP Project.

    NASA Astrophysics Data System (ADS)

    Benveniste, J.; Cotton, D.; Moreau, T.; Varona, E.; Roca, M.; Cipollini, P.; Cancet, M.; Martin, F.; Fenoglio-Marc, L.; Naeije, M.; Fernandes, J.; Restano, M.; Ambrozio, A.

    2016-12-01

    The ESA Sentinel-3 satellite, launched in February 2016 as a part of the Copernicus programme, is the second satellite to operate a SAR mode altimeter. The Sentinel 3 Synthetic Aperture Radar Altimeter (SRAL) is based on the heritage from Cryosat-2, but this time complemented by a Microwave Radiometer (MWR) to provide a wet troposphere correction, and operating at Ku and C-Bands to provide an accurate along-track ionospheric correction. Together this instrument package, including both GPS and DORIS instruments for accurate positioning, allows accurate measurements of sea surface height over the ocean, as well as measurements of significant wave height and surface wind speed. SCOOP (SAR Altimetry Coastal & Open Ocean Performance) is a project funded under the ESA SEOM (Scientific Exploitation of Operational Missions) Programme Element, started in September 2015, to characterise the expected performance of Sentinel-3 SRAL SAR mode altimeter products, in the coastal zone and open-ocean, and then to develop and evaluate enhancements to the baseline processing scheme in terms of improvements to ocean measurements. There is also a work package to develop and evaluate an improved Wet Troposphere correction for Sentinel-3, based on the measurements from the on-board MWR, further enhanced mostly in the coastal and polar regions using third party data, and provide recommendations for use. At the end of the project recommendations for further developments and implementations will be provided through a scientific roadmap. In this presentation we provide an overview of the SCOOP project, highlighting the key deliverables and discussing the potential impact of the results in terms of the application of delay-Doppler (SAR) altimeter measurements over the open-ocean and coastal zone. We also present the initial results from the project, including: Key findings from a review of the current "state-of-the-art" for SAR altimetry, Specification of the initial "reference" delay-Doppler and echo modelling /retracking processing schemes, Evaluation of the initial Test Data Set in the Open Ocean and Coastal Zone Overview of modifications planned to the reference delay-Doppler and echo modelling/ re-tracking processing schemes.

  16. Monitoring volcanic ash cloud top height through simultaneous retrieval of optical data from polar orbiting and geostationary satellites

    NASA Astrophysics Data System (ADS)

    Zakšek, K.; Hort, M.; Zaletelj, J.; Langmann, B.

    2012-09-01

    Volcanic ash cloud top height (ACTH) can be monitored on the global level using satellite remote sensing. Here we propose a photogrammetric method based on the parallax between data retrieved from geostationary and polar orbiting satellites to overcome some limitations of the existing methods of ACTH retrieval. SEVIRI HRV band and MODIS band 1 are a good choice because of their high resolution. The procedure works well if the data from both satellites are retrieved nearly simultaneously. MODIS does not retrieve the data at exactly the same time as SEVIRI. To compensate for advection we use two sequential SEVIRI images (one before and one after the MODIS retrieval) and interpolate the cloud position from SEVIRI data to the time of MODIS retrieval. The proposed method was tested for the case of the Eyjafjallajökull eruption in April 2010. The parallax between MODIS and SEVIRI data can reach over 30 km which implies ACTH of more than 12 km in the beginning of the eruption. In the end of April eruption ACTH of 3-4 km is observed. The accuracy of ACTH was estimated to be 0.6 km.

  17. Monitoring volcanic ash cloud top height through simultaneous retrieval of optical data from polar orbiting and geostationary satellites

    NASA Astrophysics Data System (ADS)

    Zakšek, K.; Hort, M.; Zaletelj, J.; Langmann, B.

    2013-03-01

    Volcanic ash cloud-top height (ACTH) can be monitored on the global level using satellite remote sensing. Here we propose a photogrammetric method based on the parallax between data retrieved from geostationary and polar orbiting satellites to overcome some limitations of the existing methods of ACTH retrieval. SEVIRI HRV band and MODIS band 1 are a good choice because of their high resolution. The procedure works well if the data from both satellites are retrieved nearly simultaneously. MODIS does not retrieve the data at exactly the same time as SEVIRI. To compensate for advection we use two sequential SEVIRI images (one before and one after the MODIS retrieval) and interpolate the cloud position from SEVIRI data to the time of MODIS retrieval. The proposed method was tested for the case of the Eyjafjallajökull eruption in April 2010. The parallax between MODIS and SEVIRI data can reach 30 km, which implies an ACTH of approximately 12 km at the beginning of the eruption. At the end of April eruption an ACTH of 3-4 km is observed. The accuracy of ACTH was estimated to be 0.6 km.

  18. An Architect Cicada in Brazilian Rainforest: Guyalna chlorogena (Walker).

    PubMed

    Béguin, C F

    2017-04-01

    To study the noteworthy nest building behavior of the nymph of the Brazilian Rainforest cicada Guyalna chlorogena (Walker) during the last year of its underground life, we monitored a large number of edifices, consisting of a vertical well (up to 1 m deep) with a turret (20 to 40 cm tall) on top, and we also performed experiments. We have shown that the buildings are occupied by a single nymph, male or female, which increases the height of its turret each night by about 3 cm, during a short active growing phase. The nymph softens and reshapes the apex by pushing upwards a lump of freshly mixed soaked clay, without any opening present, i. e., without ever exposing itself to the outside. We also established that the nymph is very active once its building is achieved. For example, it restores the height of the turret to its original value when shortening and opens the top of its building in case of variation of environmental parameters. Finally, we have shown how the nymph opens its edifice to reach the outside for molting into an adult stage (imago). With this work, we contributed to a better understanding of the nesting behavior of Amazon cicadas.

  19. Investigating the Group-Level Impact of Advanced Dual-Echo fMRI Combinations

    PubMed Central

    Kettinger, Ádám; Hill, Christopher; Vidnyánszky, Zoltán; Windischberger, Christian; Nagy, Zoltán

    2016-01-01

    Multi-echo fMRI data acquisition has been widely investigated and suggested to optimize sensitivity for detecting the BOLD signal. Several methods have also been proposed for the combination of data with different echo times. The aim of the present study was to investigate whether these advanced echo combination methods provide advantages over the simple averaging of echoes when state-of-the-art group-level random-effect analyses are performed. Both resting-state and task-based dual-echo fMRI data were collected from 27 healthy adult individuals (14 male, mean age = 25.75 years) using standard echo-planar acquisition methods at 3T. Both resting-state and task-based data were subjected to a standard image pre-processing pipeline. Subsequently the two echoes were combined as a weighted average, using four different strategies for calculating the weights: (1) simple arithmetic averaging, (2) BOLD sensitivity weighting, (3) temporal-signal-to-noise ratio weighting and (4) temporal BOLD sensitivity weighting. Our results clearly show that the simple averaging of data with the different echoes is sufficient. Advanced echo combination methods may provide advantages on a single-subject level but when considering random-effects group level statistics they provide no benefit regarding sensitivity (i.e., group-level t-values) compared to the simple echo-averaging approach. One possible reason for the lack of clear advantages may be that apart from increasing the average BOLD sensitivity at the single-subject level, the advanced weighted averaging methods also inflate the inter-subject variance. As the echo combination methods provide very similar results, the recommendation is to choose between them depending on the availability of time for collecting additional resting-state data or whether subject-level or group-level analyses are planned. PMID:28018165

  20. A Pilot Study Assessing ECG versus ECHO Ventriculoventricular Optimization in Pediatric Resynchronization Patients.

    PubMed

    Punn, Rajesh; Hanisch, Debra; Motonaga, Kara S; Rosenthal, David N; Ceresnak, Scott R; Dubin, Anne M

    2016-02-01

    Cardiac resynchronization therapy indications and management are well described in adults. Echocardiography (ECHO) has been used to optimize mechanical synchrony in these patients; however, there are issues with reproducibility and time intensity. Pediatric patients add challenges, with diverse substrates and limited capacity for cooperation. Electrocardiographic (ECG) methods to assess electrical synchrony are expeditious but have not been extensively studied in children. We sought to compare ECHO and ECG CRT optimization in children. Prospective, pediatric, single-center cross-over trial comparing ECHO and ECG optimization with CRT. Patients were assigned to undergo either ECHO or ECG optimization, followed for 6 months, and crossed-over to the other assignment for another 6 months. ECHO pulsed-wave tissue Doppler and 12-lead ECG were obtained for 5 VV delays. ECG optimization was defined as the shortest QRSD and ECHO optimization as the lowest dyssynchrony index. ECHOs/ECGs were interpreted by readers blinded to optimization technique. After each 6 month period, these data were collected: ejection fraction, velocimetry-derived cardiac index, quality of life, ECHO-derived stroke distance, M-mode dyssynchrony, study cost, and time. Outcomes for each optimization method were compared. From June 2012 to December 2013, 19 patients enrolled. Mean age was 9.1 ± 4.3 years; 14 (74%) had structural heart disease. The mean time for optimization was shorter using ECG than ECHO (9 ± 1 min vs. 68 ± 13 min, P < 0.01). Mean cost for charges was $4,400 ± 700 less for ECG. No other outcome differed between groups. ECHO optimization of synchrony was not superior to ECG optimization in this pilot study. ECG optimization required less time and cost than ECHO optimization. © 2015 Wiley Periodicals, Inc.

Top