Sample records for eclipse light curve

  1. New Light Curves and Analysis of the Overcontact Binaries PP Lac and DK Sge

    NASA Astrophysics Data System (ADS)

    Sanders, S. J.; Hargis, J. R.; Bradstreet, D. H.

    2004-12-01

    As a by-product of the ongoing work with the Catalog and AtLas of Eclipsing Binaries database (CALEB; Bradstreet et al. 2004), several hundred eclipsing binary systems have been identified that have either unpublished or poor quality light curves. We present new V & Rc light curves for the overcontact systems PP Lac and DK Sge, both chosen because their deep eclipses (peak-to-peak amplitudes of nearly 0.7 mag) help constrain the light curve modelling. Data were obtained using the 41-cm telescope at the Eastern University Observatory equipped with an SBIG ST-10XME CCD. PP Lac (P= 0.40116 d) is a W-type contact binary with only one previously published light curve (Dumont & Maraziti 1990), but the data are sparse and almost non-existent at primary eclipse. Modelling of these data gave varying results; the published mass ratios differ by nearly 0.3. Our data confirms the noted differing eclipse depths but we find the primary eclipse to be total. We present a new light curve solution using Binary Maker 3 (Bradstreet & Steelman 2002) and Wilson-Devinney, finding the mass ratio to be well-constrained by the duration of total eclipse. A period study will be presented using previously existing and newly derived times of minimum light. DK Sge (P=0.62182 d) appears to be an A-type contact binary with no published light curve. The eclipses are partial, with the primary eclipse being deeper by about 0.08 mag. The maxima show evidence of a slight asymmetry, although the light curve appears to be repeatable over the 1 month of observations. We present the first light curve solution using Binary Maker 3 and Wilson-Devinney, but have limited mass ratio constraints due to the absence of radial velocity data. A period study will be presented using previously existing and newly derived times of minimum light.

  2. MM Herculis - An eclipsing binary of the RS CVn

    NASA Technical Reports Server (NTRS)

    Sowell, J. R.; Hall, D. S.; Henry, G. W.; Burke, E. W., Jr.; Milone, E. F.

    1983-01-01

    V, B and U differential photoelectric photometry has been obtained for the RS Canum Venaticorum-class eclipsing binary star MM Her, with the light outside the eclipse being Fourier-analyzed to study wave migration and amplitude. These, together with the mean light level of the system, have been monitored from 1976 through 1980. Observations within the eclipse have revealed eclipses to be partial, rather than total as previously thought. The geometric elements of the presently rectified light curve are forced on the pre-1980 light curves and found to be compatible. With these elements, and previously obtained double line radial velocity curves, new absolute dimensions of 1.18 solar masses and 1.58 solar radii are calculated for the hotter star and 1.27 solar masses and 2.83 solar radii for the cooler star. The plotting of color indices on the color-color curve indicates G2V and K2IV spectral types.

  3. Kepler eclipsing binary stars. IV. Precise eclipse times for close binaries and identification of candidate three-body systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conroy, Kyle E.; Stassun, Keivan G.; Prša, Andrej

    2014-02-01

    We present a catalog of precise eclipse times and analysis of third-body signals among 1279 close binaries in the latest Kepler Eclipsing Binary Catalog. For these short-period binaries, Kepler's 30 minute exposure time causes significant smearing of light curves. In addition, common astrophysical phenomena such as chromospheric activity, as well as imperfections in the light curve detrending process, can create systematic artifacts that may produce fictitious signals in the eclipse timings. We present a method to measure precise eclipse times in the presence of distorted light curves, such as in contact and near-contact binaries which exhibit continuously changing light levelsmore » in and out of eclipse. We identify 236 systems for which we find a timing variation signal compatible with the presence of a third body. These are modeled for the light travel time effect and the basic properties of the third body are derived. This study complements J. A. Orosz et al. (in preparation), which focuses on eclipse timing variations of longer period binaries with flat out-of-eclipse regions. Together, these two papers provide comprehensive eclipse timings for all binaries in the Kepler Eclipsing Binary Catalog, as an ongoing resource freely accessible online to the community.« less

  4. Candidates of eclipsing multiples based on extraneous eclipses on binary light curves: KIC 7622486, KIC 7668648, KIC 7670485 and KIC 8938628

    NASA Astrophysics Data System (ADS)

    Zhang, Jia; Qian, Sheng-Bang; He, Jian-Duo

    2017-02-01

    Four candidates of eclipsing multiples, based on new extraneous eclipses found on Kepler binary light curves, are presented and studied. KIC 7622486 is a double eclipsing binary candidate with orbital periods of 2.2799960 d and 40.246503 d. The two binary systems do not eclipse each other in the line of sight, but there is mutual gravitational influence between them which leads to the small but definite eccentricity of 0.0035(0.0022) associated with the short 2.2799960 d period orbit. KIC 7668648 is a hierarchical quadruple system candidate, with two sets of solid 203 ± 5 d period extraneous eclipses and another independent set of extraneous eclipses. A clear and credible extraneous eclipse is found on the binary light curve of KIC 7670485 which makes it a triple system candidate. Two sets of extraneous eclipses with periods of about 390 d and 220 d are found on KIC 8938628 binary curves, which not only confirm the previous conclusion of the 388.5 ± 0.3 triple system, but also indicate new additional objects that make KIC 8938628 a hierarchical quadruple system candidate. The results from these four candidates will contribute to the field of eclipsing multiples.

  5. The extraneous eclipses on binary light curves: KIC 5255552, KIC 10091110, and KIC 11495766

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Qian, S. B.; Wang, S. M.; Sun, L. L.; Wu, Y.; Jiang, L. Q.

    2018-03-01

    Aims: We aim to find more eclipsing multiple systems and obtain their parameters, thus increasing our understanding of multiple systems. Methods: The extraneous eclipses on the Kepler binary light curves indicating extraneous bodies were searched. The binary light curves were analyzed using the binary model, and the extraneous eclipses were studied on their periodicity and shape changes. Results: Three binaries with extraneous eclipses on the binary light curves were found and studied based on the Kepler observations. The object KIC 5255552 is an eclipsing triple system with a fast changing inner binary and an outer companion uncovered by three groups of extraneous eclipses of 862.1(±0.1) d period. The KIC 10091110 is suggested to be a double eclipsing binary system with several possible extraordinary coincidences: the two binaries share similar extremely small mass ratios (0.060(13) and 0.0564(18)), similar mean primary densities (0.3264(42) ρ⊙ and 0.3019(28) ρ⊙), and, most notably, the ratio of the two binaries' periods is very close to integer 2 (8.5303353/4.2185174 = 2.022). The KIC 11495766 is a probable triple system with a 120.73 d period binary and (at least) one non-eclipse companion. Furthermore, very close to it in the celestial sphere, there is a blended background stellar binary of 8.3404432 d period. A first list of 25 eclipsing multiple candidates is presented, with the hope that it will be beneficial for study of eclipsing multiples.

  6. A Photometric Study of the Eclipsing Binary Star PY Boötis

    NASA Astrophysics Data System (ADS)

    Michaels, E. J.

    2016-12-01

    Presented here are the first precision multi-band CCD photometry of the eclipsing binary star PY Boötis. Best-fit stellar models were determined by analyzing the light curves with the Wilson-Devinney program. Asymmetries in the light curves were interpreted as resulting from magnetic activity which required spots to be included in the model. The resulting model is consistent with a W-type contact eclipsing binary having total eclipses.

  7. Modeling the Effects of Asynchronous Rotation on Secondary Eclipse Timings in HW VIr Binaries

    NASA Astrophysics Data System (ADS)

    Clancy, Padraig

    2018-01-01

    HW Vir binaries are post common envelope binaries consisting of a hot subdwarf and red dwarf, with light curves dominated by primary eclipses, a strong reflection effect, and secondary eclipses. They have orbital periods ranging from a few hours to half a day and are generally thought to be tidally locked; most studies assume both synchronous rotation and zero eccentricity when modeling HW Vir light curves and radial velocities. Their stable eclipse timings are frequently used in O-C studies to look for the presence of circumbinary objects, measure evolutionary changes in the orbital period, and even constrain the component masses through Roemer delay measurements of the secondary eclipse. While most systems are probably tidally locked or close to it, even slightly asynchronous rotation could theoretically shift the orbital phase of the reflection effect. Here we investigate how asynchronous rotation might affect measurements of secondary eclipse timings by generating thousands of synthetic light curves with a range of reflection effect phases, fitting eclipse timings, and creating O-C diagrams.

  8. The EB factory project. I. A fast, neural-net-based, general purpose light curve classifier optimized for eclipsing binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paegert, Martin; Stassun, Keivan G.; Burger, Dan M.

    2014-08-01

    We describe a new neural-net-based light curve classifier and provide it with documentation as a ready-to-use tool for the community. While optimized for identification and classification of eclipsing binary stars, the classifier is general purpose, and has been developed for speed in the context of upcoming massive surveys such as the Large Synoptic Survey Telescope. A challenge for classifiers in the context of neural-net training and massive data sets is to minimize the number of parameters required to describe each light curve. We show that a simple and fast geometric representation that encodes the overall light curve shape, together withmore » a chi-square parameter to capture higher-order morphology information results in efficient yet robust light curve classification, especially for eclipsing binaries. Testing the classifier on the ASAS light curve database, we achieve a retrieval rate of 98% and a false-positive rate of 2% for eclipsing binaries. We achieve similarly high retrieval rates for most other periodic variable-star classes, including RR Lyrae, Mira, and delta Scuti. However, the classifier currently has difficulty discriminating between different sub-classes of eclipsing binaries, and suffers a relatively low (∼60%) retrieval rate for multi-mode delta Cepheid stars. We find that it is imperative to train the classifier's neural network with exemplars that include the full range of light curve quality to which the classifier will be expected to perform; the classifier performs well on noisy light curves only when trained with noisy exemplars. The classifier source code, ancillary programs, a trained neural net, and a guide for use, are provided.« less

  9. B and V photometry and analysis of the eclipsing binary RZ CAS

    NASA Astrophysics Data System (ADS)

    Riazi, N.; Bagheri, M. R.; Faghihi, F.

    1994-01-01

    Photoelectric light curves of the eclipsing binary RZ Cas are presented for B and V filters. The light curves are analyzed for light and geometrical elements, starting with a previously suggested preliminary method. The approximate results thus obtained are then optimised through the Wilson-Devinney computer programs.

  10. The near-infrared properties of compact binary systems

    NASA Astrophysics Data System (ADS)

    Froning, Cynthia Suzanne

    I present H- and K-band light curves of the dwarf nova cataclysmic variable (CV), IP Peg, and the novalike CV, RW Tri, and an H-band light curve of the novalike CV, SW Sex. All three systems showed contributions from the late-type secondary star and the accretion disk, including a primary eclipse of the accretion disk by the secondary star and a secondary eclipse of the star by the disk. The ellipsoidal variations of the secondary star in IP Peg were modeled and subtracted from the data. The subtracted light curves show a pronounced double-hump variation, resembling those seen in the dwarf novae WZ Sge and AL Com. The primary eclipse was modeled using maximum entropy disk mapping techniques. The accretion disk has a flat intensity distribution and a low brightness temperature (Tbr ~= 3000-4000 K). Superimposed on the face of the disk is the bright spot, where the mass accretion stream impacts the disk; the position of the bright spot is different from the range of positions seen at visible wavelengths. The near-infrared accretion disk flux is dominated by optically thin emission. The eclipse depth is too shallow to be caused by a fully opaque accretion disk. The NIR light curves in RW Tri show a deep primary eclipse of the accretion disk, ellipsoidal variations from the secondary star, a secondary eclipse, and strong flickering in the disk flux. The depth of the secondary eclipse indicates that the accretion disk is opaque. The light curve also has a hump extending from φ = 0.1-0.9 which was successfully modeled as flux from the inner face of the secondary star when heated by a ~0.2 L Lsolar source. The radial brightness temperature profile of the outer disk is consistent with models of a disk in steady-state for a mass transfer rate of M~=5×10- 10 Msolaryr- 1 . At small disk radii, however, the brightness temperature profile is flatter than the steady-state model. The H-band light curve of SW Sex is dominated by emission from the accretion disk. As in RW Tri, the light curve has a hump outside of primary eclipse which was modeled as flux from the secondary star when irradiated by a 0.2-0.3 Lsolar source. The light curve has a dip at φ = 0.5 which is consistent with an eclipse of the irradiated face of the secondary star by an opaque accretion disk. The accretion disk has a brightness temperature profile much flatter than the theoretical profile of a steady- state disk. The disk is asymmetric, with the front of the disk (the side facing the secondary star at mid-eclipse) hotter than the back. The bright spot, which appears in visible disk maps of SW Sex, is not seen in the NIR light curve. I also present H-band light curves of the X-ray binary system, A0620-00, and NIR spectra of two X-ray binaries, CI Cam, and the relativistic jet source, SS 433. (Abstract shortened by UMI.)

  11. V380 Dra: New short-period totally eclipsing active binary

    NASA Astrophysics Data System (ADS)

    Özdarcan, O.

    2014-02-01

    In this study, first complete and standard BVR light curves and photometric analysis of the eclipsing binary system V380 Dra are presented. Photometric analysis result indicates that the system has components which are cool main sequence stars. In light and color curves, remarkable asymmetry is observed, especially after secondary minimum, which is believed to be a result of chromospheric activity in one or both components. O-C diagram of available small number of eclipse times, together with new eclipse timings in this work, exhibits no significant variation. Preliminary light curve solution shows that the secondary minimum is total eclipse. By using the advantage of total eclipse and mass-luminosity relation, it is found that the system has a possible mass ratio of q = 0.81. First estimation of masses and radii of primary and secondary components are M1 = 0.77 M⊙,M2 = 0.62 M⊙ and R1 = 0.93 R⊙,R2 = 0.77 R⊙, respectively.

  12. The Eclipsing Binary On-Line Atlas (EBOLA)

    NASA Astrophysics Data System (ADS)

    Bradstreet, D. H.; Steelman, D. P.; Sanders, S. J.; Hargis, J. R.

    2004-05-01

    In conjunction with the upcoming release of \\it Binary Maker 3.0, an extensive on-line database of eclipsing binaries is being made available. The purposes of the atlas are: \\begin {enumerate} Allow quick and easy access to information on published eclipsing binaries. Amass a consistent database of light and radial velocity curve solutions to aid in solving new systems. Provide invaluable querying capabilities on all of the parameters of the systems so that informative research can be quickly accomplished on a multitude of published results. Aid observers in establishing new observing programs based upon stars needing new light and/or radial velocity curves. Encourage workers to submit their published results so that others may have easy access to their work. Provide a vast but easily accessible storehouse of information on eclipsing binaries to accelerate the process of understanding analysis techniques and current work in the field. \\end {enumerate} The database will eventually consist of all published eclipsing binaries with light curve solutions. The following information and data will be supplied whenever available for each binary: original light curves in all bandpasses, original radial velocity observations, light curve parameters, RA and Dec, V-magnitudes, spectral types, color indices, periods, binary type, 3D representation of the system near quadrature, plots of the original light curves and synthetic models, plots of the radial velocity observations with theoretical models, and \\it Binary Maker 3.0 data files (parameter, light curve, radial velocity). The pertinent references for each star are also given with hyperlinks directly to the papers via the NASA Abstract website for downloading, if available. In addition the Atlas has extensive searching options so that workers can specifically search for binaries with specific characteristics. The website has more than 150 systems already uploaded. The URL for the site is http://ebola.eastern.edu/.

  13. Decoding of the light changes in eclipsing Wolf-Rayet binaries. I. A non-classical approach to the solution of light curves

    NASA Astrophysics Data System (ADS)

    Perrier, C.; Breysacher, J.; Rauw, G.

    2009-09-01

    Aims: We present a technique to determine the orbital and physical parameters of eclipsing eccentric Wolf-Rayet + O-star binaries, where one eclipse is produced by the absorption of the O-star light by the stellar wind of the W-R star. Methods: Our method is based on the use of the empirical moments of the light curve that are integral transforms evaluated from the observed light curves. The optical depth along the line of sight and the limb darkening of the W-R star are modelled by simple mathematical functions, and we derive analytical expressions for the moments of the light curve as a function of the orbital parameters and the key parameters of the transparency and limb-darkening functions. These analytical expressions are then inverted in order to derive the values of the orbital inclination, the stellar radii, the fractional luminosities, and the parameters of the wind transparency and limb-darkening laws. Results: The method is applied to the SMC W-R eclipsing binary HD 5980, a remarkable object that underwent an LBV-like event in August 1994. The analysis refers to the pre-outburst observational data. A synthetic light curve based on the elements derived for the system allows a quality assessment of the results obtained.

  14. Light curve solutions of the eclipsing eccentric binaries KIC 8111622, KIC 10518735, KIC 8196180 and their out-of-eclipse variability

    NASA Astrophysics Data System (ADS)

    Kjurkchieva, Diana P.; Vasileva, Doroteya L.

    2018-02-01

    We determined the orbits and stellar parameters of three eccentric eclipsing binaries by light curve solutions of their Kepler data. KIC 8111622 and KIC 10518735 undergo total eclipses while KIC 8196180 reveals partial eclipses. The target components are G and K stars, excluding the primary of KIC 8196180 which is early F star. KIC 8196180 reveals well-visible tidally-induced feature at periastron, i.e. it is an eclipsing heartbeat star. The characteristics of the observed periastron feature (shape, width and amplitude) confirm the theoretical predictions. There are additional out-of-eclipse variations of KIC 8196180 with the orbital period which may be explained by spot activity of synchronously rotating component. Besides worse visible periastron feature KIC 811162 exhibits small-amplitude light variations whose period is around 2.3 times shorter than the orbital one. These oscillations were attributed to spot(s) on asynchronously rotating component.

  15. A spectroscopic investigation of the eclipsing binary Epsilon Aurigae

    NASA Technical Reports Server (NTRS)

    Balachandran, Suchitra

    1991-01-01

    The objectives were to examine, in detail, the spectra of the eclipsing binary Epsilon Aurigae taken with the IUE satellite telescope during the 1982 to 1984 eclipse. All of the low resolution spectra were analyzed and UV light curves are presented. The primary findings are as follows: (1) a constant eclipse depth from 1600 A to longer wavelengths and a sharp drop in the eclipse depth from 1600 to 1200 A; (2) the absence of large amplitude fluctuations in the UV as expected from a Cepheid primary; and (3) equal ingress and egress times in contradiction to that interpreted from visible light curves. The effects of these findings on the eclipse geometry are being studied.

  16. The first eclipsing binary catalogue from the MOA-II data base

    NASA Astrophysics Data System (ADS)

    Li, M. C. A.; Rattenbury, N. J.; Bond, I. A.; Sumi, T.; Bennett, D. P.; Koshimoto, N.; Abe, F.; Asakura, Y.; Barry, R.; Bhattacharya, A.; Donachie, M.; Evans, P.; Freeman, M.; Fukui, A.; Hirao, Y.; Itow, Y.; Ling, C. H.; Masuda, K.; Matsubara, Y.; Muraki, Y.; Nagakane, M.; Ohnishi, K.; Saito, To.; Sharan, A.; Sullivan, D. J.; Suzuki, D.; Tristram, P. J.; Yonehara, A.

    2017-09-01

    We present the first catalogue of eclipsing binaries in two MOA (Microlensing Observations in Astrophysics) fields towards the Galactic bulge, in which over 8000 candidates, mostly contact and semidetached binaries of periods <1 d, were identified. In this paper, the light curves of a small number of interesting candidates, including eccentric binaries, binaries with noteworthy phase modulations and eclipsing RS Canum Venaticorum type stars, are shown as examples. In addition, we identified three triple object candidates by detecting the light-travel-time effect in their eclipse time variation curves.

  17. Light curve solutions of the eccentric binaries KIC 10992733, KIC 5632781, KIC 10026136 and their out-of-eclipse variability

    NASA Astrophysics Data System (ADS)

    Kjurkchieva, Diana; Vasileva, Doroteya

    2018-01-01

    We determined the orbits and stellar parameters of three eccentric eclipsing binaries by light curve solutions of their Kepler data. KIC 10992733 and KIC 5632781 undergo total eclipses while KIC 10026136 reveals partial eclipses. The components of the targets are G and K stars. KIC 10992733 exhibited variations which were attributed to variable visibility of spot(s) on asynchronously rotating component. KIC 5632781 and KIC 1002613 reveal tidally-induced features at periastron, i.e. they might be considered as eclipsing heartbeat stars. The characteristics of the periastron features (shape, width and amplitude) confirm the theoretical predictions.

  18. Light curve variations of the eclipsing binary V367 Cygni

    NASA Astrophysics Data System (ADS)

    Akan, M. C.

    1987-07-01

    The long-period eclipsing binary star V367 Cygni has been observed photoelectrically in two colours, B and V, in 1984, 1985, and 1986. These new light curves of the system have been discussed and compared for the light-variability with the earlier ones presented by Heiser (1962). Using some of the previously published photoelectric light curves and the present ones, several primary minima times have been derived to calculate the light elements. Any attempt to obtain a photometric solution of the binary is complicated by the peculiar nature of the light curve caused by the presence of the circumstellar matter in the system. Despite this difficulty, however, some approaches are being carried out to solve the light curves which are briefly discussed.

  19. Gaia eclipsing binary and multiple systems. Supervised classification and self-organizing maps

    NASA Astrophysics Data System (ADS)

    Süveges, M.; Barblan, F.; Lecoeur-Taïbi, I.; Prša, A.; Holl, B.; Eyer, L.; Kochoska, A.; Mowlavi, N.; Rimoldini, L.

    2017-07-01

    Context. Large surveys producing tera- and petabyte-scale databases require machine-learning and knowledge discovery methods to deal with the overwhelming quantity of data and the difficulties of extracting concise, meaningful information with reliable assessment of its uncertainty. This study investigates the potential of a few machine-learning methods for the automated analysis of eclipsing binaries in the data of such surveys. Aims: We aim to aid the extraction of samples of eclipsing binaries from such databases and to provide basic information about the objects. We intend to estimate class labels according to two different, well-known classification systems, one based on the light curve morphology (EA/EB/EW classes) and the other based on the physical characteristics of the binary system (system morphology classes; detached through overcontact systems). Furthermore, we explore low-dimensional surfaces along which the light curves of eclipsing binaries are concentrated, and consider their use in the characterization of the binary systems and in the exploration of biases of the full unknown Gaia data with respect to the training sets. Methods: We have explored the performance of principal component analysis (PCA), linear discriminant analysis (LDA), Random Forest classification and self-organizing maps (SOM) for the above aims. We pre-processed the photometric time series by combining a double Gaussian profile fit and a constrained smoothing spline, in order to de-noise and interpolate the observed light curves. We achieved further denoising, and selected the most important variability elements from the light curves using PCA. Supervised classification was performed using Random Forest and LDA based on the PC decomposition, while SOM gives a continuous 2-dimensional manifold of the light curves arranged by a few important features. We estimated the uncertainty of the supervised methods due to the specific finite training set using ensembles of models constructed on randomized training sets. Results: We obtain excellent results (about 5% global error rate) with classification into light curve morphology classes on the Hipparcos data. The classification into system morphology classes using the Catalog and Atlas of Eclipsing binaries (CALEB) has a higher error rate (about 10.5%), most importantly due to the (sometimes strong) similarity of the photometric light curves originating from physically different systems. When trained on CALEB and then applied to Kepler-detected eclipsing binaries subsampled according to Gaia observing times, LDA and SOM provide tractable, easy-to-visualize subspaces of the full (functional) space of light curves that summarize the most important phenomenological elements of the individual light curves. The sequence of light curves ordered by their first linear discriminant coefficient is compared to results obtained using local linear embedding. The SOM method proves able to find a 2-dimensional embedded surface in the space of the light curves which separates the system morphology classes in its different regions, and also identifies a few other phenomena, such as the asymmetry of the light curves due to spots, eccentric systems, and systems with a single eclipse. Furthermore, when data from other surveys are projected to the same SOM surface, the resulting map yields a good overview of the general biases and distortions due to differences in time sampling or population.

  20. VizieR Online Data Catalog: Light curves for the eclipsing binary V1094 Tau (Maxted+, 2015)

    NASA Astrophysics Data System (ADS)

    Maxted, P. F. L.; Hutcheon, R. J.; Torres, G.; Lacy, C. H. S.; Southworth, J.; Smalley, B.; Pavlovski, K.; Marschall, L. A.; Clausen, J. V.

    2015-04-01

    Photometric light curves of the detached eclipsing binary V1094 Tau in the Stroemgren u-,v-,b- and y-bands, and in the Johnson V-band. The curves in the Stroemgren bands were obtained with the Stroemgren Automatic Telescope (SAT) at ESO, La Silla. The curves in the V-band were obtained with the NFO telescope in New Mexico and with the URSA telescope at the University of Arkansas. (6 data files).

  1. 3D Modeling of Spectra and Light Curves of Hot Jupiters with PHOENIX; a First Approach

    NASA Astrophysics Data System (ADS)

    Jiménez-Torres, J. J.

    2016-04-01

    A detailed global circulation model was used to feed the PHOENIX code and calculate 3D spectra and light curves of hot Jupiters. Cloud free and dusty radiative fluxes for the planet HD179949b were modeled to show differences between them. The PHOENIX simulations can explain the broad features of the observed 8 μm light curves, including the fact that the planet-star flux ratio peaks before the secondary eclipse. The PHOENIX reflection spectrum matches the Spitzer secondary-eclipse depth at 3.6 μm and underpredicts eclipse depths at 4.5, 5.8 and 8.0 μm. These discrepancies result from the chemical composition and suggest the incorporation of different metallicities in future studies.

  2. 1998 UBV Light Curves of Eclipsing Binary AI Draconis and Absolute Parameters

    NASA Astrophysics Data System (ADS)

    Jassur, D. M. Z.; Khaledian, M. S.; Kermani, M. H.

    New UBV photometry of Algol-Type eclipsing binary star AI Dra and the absolute physical parameters of this system have been presented. The light curve analysis carried out by the method of differential corrections indicates that both components are inside their Roche-Lobes. From combining the photometric solution with spectroscopic data obtained from velocity curve analysis, it has been found that the system consist of a main sequence primary and an evolved (subgiant) secondary.

  3. The light curve of CV Serpentis, the sometimes-eclipsing Wolf-Rayet star

    NASA Technical Reports Server (NTRS)

    Schild, R.; Liller, W.

    1975-01-01

    New photoelectric observations of the B-magnitude of CV Ser made in 1973 and 1974 show no clear evidence of an eclipse, but they establish night-to-night variability of several percent, a systematic brightness change of 0.035 mag during a portion of the single orbit observed in 1973, and irregular flaring in 1974. We made iris photometer measurements of Harvard patrol plates taken between 1905 June and 1953 July, and find no evidence of a very deep eclipse such as observed by Hjellming and Hiltner. We present several new light curves and discuss then in the light of the recent results of Cowley et al.

  4. The remarkable eclipsing asynchronous AM Herculis binary RX J19402-1025

    NASA Technical Reports Server (NTRS)

    Patterson, Joseph; Skillman, David R.; Thorstensen, John; Hellier, Coel

    1995-01-01

    We report on two years of photometric and spectroscopic observation of the recently discovered AM Herculis star RX J19402-1025. A sharp eclipse feature is present in the optical and X-ray light curves, repeating with a period of 12116.290 +/- 0.003 s. The out-of-eclipse optical waveform contains approximately equal contributions from a signal at the same period and another signal at 12150 s. As these signals drift in and out of phase, the wave form of the light curve changes in a complex but predictable manner. After one entire 'supercycle' of 50 days (the beat period between the shorter periods), the light curve returns to its initial shape. We present long-term ephemerides for each of these periods. It is highly probable that the eclipse period is the underlying orbital period, while the magnetic white dwarf rotates with P = 12150 s. The eclipses appear to be eclipses of the white dwarf by the secondary star. But there is probably also a small obscuring effect from cold gas surrounding the secondary, especially on the orbit-leading side where the stream begins to fall towards the white dwarf. The latter hypothesis can account for several puzzling effects in this star, as well as the tendency among most AM Her stars for the sharp emission-line components to slightly precede the actual motion of the secondary. The presence of eclipses in an asynchronous AM Her star provides a marvelous opportunity to study how changes in the orientation of magnetic field lines affect the accretion flows. Repeated polarimetric light curves and high-resolution studies of the emission lines are now critical to exploit this potential.

  5. Light Curves and Analyses of the Eclipsing Overcontact Binaries V546 And & V566 And & the Discovery of a New Variable Star

    NASA Astrophysics Data System (ADS)

    Bradstreet, David H.; Sanders, S. J.; Volpert, C. G.

    2013-01-01

    New precision V & Rc light curves of the eclipsing binaries V546 And and V566 And have been obtained using the 41-cm telescopes at the Eastern University Observatory equipped with SBIG ST-10XME CCD’s. V546 And (GSC 2828:18, P = 0.3831 days, m = 11.2) has only one published discovery light curve with significant scatter in the data. The system was observed on seven nights from 30 Aug - 20 Sep 2012, accumulating approximately 900 observations in both V and Rc. The light curves show distinctly that the system is totally eclipsing and preliminary analysis indicates that the binary is W-type (the larger, more massive star is the cooler component), has a mass ratio of 0.34, small temperature difference between the stars of 300 K, and a fillout of 0.30. There is also strong evidence of the presence of starspots influencing the slopes of both eclipses. V566 And (GSC 2321:257, P = 0.3897 days, m = 10.9) is a totally eclipsing overcontact system likewise showing obvious O’Connell effects likely due to starspots. V566 And was observed on seven nights from 30 Aug - 25 Sep 2012, accumulating more than 900 observations in both V and Rc. Preliminary light curve models indicate a W-type system with a small temperature difference between the stars of 200 K and a mass ratio of only 0.20. The original comparison star for V566 And, GSC 2321:911 (m = 12.0), turned out to be a previously unknown variable star with a period of approximately 0.466 days and a light amplitude in Rc of 0.15 mag. This new variable has no information concerning it in the online archives and initial analysis seems to indicate that this may be an ellipsoidal variable. The complete light curve analyses will be presented for both systems and the new variable’s light curves will also be discussed.

  6. Tidally Induced Pulsations in Kepler Eclipsing Binary KIC 3230227

    NASA Astrophysics Data System (ADS)

    Guo, Zhao; Gies, Douglas R.; Fuller, Jim

    2017-01-01

    KIC 3230227 is a short period (P ≈ 7.0 days) eclipsing binary with a very eccentric orbit (e = 0.6). From combined analysis of radial velocities and Kepler light curves, this system is found to be composed of two A-type stars, with masses of M1 = 1.84 ± 0.18 M⊙, M2 = 1.73 ± 0.17 M⊙ and radii of R1 = 2.01 ± 0.09 R⊙, R2 = 1.68 ± 0.08 R⊙ for the primary and secondary, respectively. In addition to an eclipse, the binary light curve shows a brightening and dimming near periastron, making this a somewhat rare eclipsing heartbeat star system. After removing the binary light curve model, more than 10 pulsational frequencies are present in the Fourier spectrum of the residuals, and most of them are integer multiples of the orbital frequency. These pulsations are tidally driven, and both the amplitudes and phases are in agreement with predictions from linear tidal theory for l = 2, m = -2 prograde modes.

  7. Spectral irradiance curve calculations for any type of solar eclipse

    NASA Technical Reports Server (NTRS)

    Deepak, A.; Merrill, J. E.

    1974-01-01

    A simple procedure is described for calculating the eclipse function (EF), alpha, and hence the spectral irradiance curve (SIC), (1-alpha), for any type of solar eclipse: namely, the occultation (partial/total) eclipse and the transit (partial/annular) eclipse. The SIC (or the EF) gives the variation of the amount (or the loss) of solar radiation of a given wavelength reaching a distant observer for various positions of the moon across the sun. The scheme is based on the theory of light curves of eclipsing binaries, the results of which are tabulated in Merrill's Tables, and is valid for all wavelengths for which the solar limb-darkening obeys the cosine law: J = sub c (1 - X + X cost gamma). As an example of computing the SIC for an occultation eclipse which may be total, the calculations for the March 7, 1970, eclipse are described in detail.

  8. Envelopes in eclipsing binary stars

    NASA Technical Reports Server (NTRS)

    Huang, S.

    1972-01-01

    Theoretical research on eclipsing binaries is presented. The specific areas of investigation are the following: (1) the relevance of envelopes to the study of the light curves of eclipsing binaries, (2) the disk envelope, and (3) the spherical envelope.

  9. THE VARYING LIGHT CURVE AND TIMINGS OF THE ULTRASHORT-PERIOD CONTACT BINARY KIC 9532219

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jae Woo; Hong, Kyeongsoo; Koo, Jae-Rim

    2016-03-20

    KIC 9532219 is a W UMa-type eclipsing binary with an orbital period of 0.1981549 days that is below the short-period limit (∼0.22 days) of the period distribution for contact binaries. The Kepler light curve of the system exhibits striking changes in both eclipse depths and light maxima. Applying third-body and spot effects, the light-curve synthesis indicates that the eclipsing pair is currently in a marginal contact stage with a mass ratio of q = 1.20, an orbital inclination of i = 66.°0, a temperature difference of T{sub 1}–T{sub 2} = 172 K, and a third light of l{sub 3} = 75.9%.more » To understand the light variations with time, we divided up the light curve into 312 segments and analyzed them separately. The results reveal that variation of eclipse depth is primarily caused by changing amounts of contamination due to the nearby star KIC 9532228 between the Kepler Quarters and that the variable O’Connell effect originates from the starspot activity on the less massive primary component. Based on our light-curve timings, a period study of KIC 9532219 indicates that the orbital period has varied as a combination of a downward parabola and a light-travel-time (LTT) effect due to a third body, which has a period of 1196 days and a minimum mass of 0.0892 M{sub ⊙} in an orbit of eccentricity 0.150. The parabolic variation could be a small part of a second LTT orbit due to a fourth component in a wider orbit, instead of either mass transfer or angular momentum loss.« less

  10. New Eclipsing Contact Binary System in Auriga

    NASA Astrophysics Data System (ADS)

    Austin, S. J.; Robertson, J. W.; Justice, C.; Campbell, R. T.; Hoskins, J.

    2004-05-01

    We present data on a newly discovered eclipsing binary system. The serendipitous discovery of this variable star was made by J.W. Robertson analyzing inhomogeneous ensemble photometry of stars in the field of the cataclysmic variable FS Aurigae from Indiana University RoboScope data. We obtained differential time-series BVR photometry during 2003 of this field variable using an ensemble of telescopes including the university observatories at ATU, UCA and joint ventures with amateur observatories in the state of Arkansas (Whispering Pines Observatory and Nubbin Ridge Observatory). The orbital period of this eclipsing system is 0.2508 days. The B-V light curve indicates colors of 1.2 around quadrature, to nearly 1.4 at primary eclipse. Binary star light curve models that best fit the BVR differential photometry suggest that the system is a contact binary overfilling the inner Roche Lobe by 12%, a primary component with a temperature of 4350K, a secondary component with a temperature of 3500K, a mass ratio of 0.37, and an inclination of 83 degrees. We present BVR light curves, an ephemeris, and best fit model parameters for the physical characteristics of this new eclipsing binary system.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groot, Paul J., E-mail: pgroot@astro.ru.nl

    In eclipsing binaries the stellar rotation of the two components will cause a rotational Doppler beaming during eclipse ingress and egress when only part of the eclipsed component is covered. For eclipsing binaries with fast spinning components this photometric analog of the well-known spectroscopic Rossiter-McLaughlin effect can exceed the strength of the orbital effect. Example light curves are shown for a detached double white dwarf binary, a massive O-star binary and a transiting exoplanet case, similar to WASP-33b. Inclusion of the rotational Doppler beaming in eclipsing systems is a prerequisite for deriving the correct stellar parameters from fitting high-quality photometricmore » light curves and can be used to determine stellar obliquities as well as, e.g., an independent measure of the rotational velocity in those systems that may be expected to be fully synchronized.« less

  12. W UMa Type Eclipsing Binary VW Cep

    NASA Astrophysics Data System (ADS)

    Kang, Bong-Seok; Lee, Yong-Sam; Jeong, Jang-Hae

    2000-06-01

    A total of 1,018 observations (509 in B, 509 in V ) of the eclipsing binary VW Cep was made during 7 nights from April through May in 1999 at Sobaeksan Optical Astronomy Observatory, using the CCD camera attached to the 61cm telescope. A time of minimum light of HJD2451327.2282 was determined from our data, and we constructed BV light curves with the data. Using Wilson-Devinney's binary model, we analized the light curves. The absolute dimension of M1 = 0.95Msolar, M2 = 0.33Msolar, R1 = 1.02Rsolar, R2 = 0.66Rsolar of the VW Cep system were derived from our light curve solution and Kaszas et al. (1998) spectroscoppic rsult.

  13. Precision of Times-of-Minima and the Detection of Low-Mass Third Bodies Orbiting Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Genet, R. M.; Smith, T. C.

    2004-12-01

    Low-mass third bodies orbiting eclipsing binaries are difficult to detect by way of periodic shifts in photometric times-of-minima because the observational precision of these timings are of the same order as the expected effects of any low-mass companions. We are implementing three approaches to increasing the precision of our times-of-minima. First, we are obtaining many times-of-minima by utilizing relatively low-cost, dedicated telescopes and CCD cameras (10- and 14-inch Meade LX-200 telescopes and SBIG ST7-XE cameras). Operating in a semiautomatic mode, we select an eclipsing binary system, based on its placement in the sky, and observe it all night long - usually many nights in a row. We choose binaries with short enough periods to assure us of obtaining a complete light curve (and hence an eclipse) every night we observe. Second, we are striving to increase the photometric precision of each observation through the use of multiple comparison stars (ensemble photometry). We are also, in conjunction with California Polytechnic State University, investigating other ways of increasing the photometric precision of these low-cost systems (see E. Sturm this conference). Finally, we are utilizing complete, as opposed to partial, light curves in our analysis. Information outside primary eclipses is gathered as a matter of course, and its use can improve precision. A total of 186 complete light curves were obtained at the Dark Ridge and Orion Observatories during the 2004 observing season on six eclipsing binaries (TZ Boo, V523 Cas, RW Com, V1191 Cyg, GM Dra, and V400 Lyr). Please see T. Smith and R. Genet (this conference) for preliminary results on V523 Cas (30+ complete light curves).

  14. Eclipsing Binary V1178 Tau: A Reddening Independent Determination of the Age and Distance to NGC 1817

    NASA Astrophysics Data System (ADS)

    Hedlund, Anne; Sandquist, Eric L.; Arentoft, Torben; Brogaard, Karsten; Grundahl, Frank; Stello, Dennis; Bedin, Luigi R.; Libralato, Mattia; Malavolta, Luca; Nardiello, Domenico; Molenda-Zakowicz, Joanna; Vanderburg, Andrew

    2018-06-01

    V1178 Tau is a double-lined spectroscopic eclipsing binary in NGC1817, one of the more massive clusters observed in the K2 mission. We have determined the orbital period (P = 2.20 d) for the first time, and we model radial velocity measurements from the HARPS and ALFOSC spectrographs, light curves collected by Kepler, and ground based light curves using the Eclipsing Light Curve code (ELC, Orosz & Hauschildt 2000). We present masses and radii for the stars in the binary, allowing for a reddening-independent means of determining the cluster age. V1178 Tau is particularly useful for calculating the age of the cluster because the stars are close to the cluster turnoff, providing a more precise age determination. Furthermore, because one of the stars in the binary is a delta Scuti variable, the analysis provides improved insight into their pulsations.

  15. Photometric Analysis of Eclipsing Binary Az Vir

    NASA Astrophysics Data System (ADS)

    Neugarten, Andrew; Akiba, Tatsuya; Gokhale, Vayujeet

    2018-06-01

    We present photometric analysis of the eclipsing binary star system Az Vir. Standard BVR filter data were obtained using the 17-inch PlaneWave Instruments CDK telescope at the Truman State University Observatory in Kirksville, Mo and the 31-inch NURO telescope at the Lowell Observatory complex in Flagstaff, AZ. We apply an eight-term truncated Fourier fit to the light curves generated from these data to confirm the classification of Az Vir as a W Ursae Majoris-type eclipsing variable, using criteria specified by Rucinski (1997). We also calculate the values for the O’Connell Effect Ratio (OER) and the Light Curve Asymmetry (LCA) to quantify the asymmetry in the BVR light curves. In addition, we use data provided by the SuperWASP mission to perform long term O-C (observed minus calculated) analysis on the system to determine if and how its period is changing.

  16. An elementary theory of eclipsing depths of the light curve and its application to Beta Lyrae

    NASA Technical Reports Server (NTRS)

    Huang, S.-S.; Brown, D. A.

    1976-01-01

    An elementary theory of the ratio of depths of secondary and primary eclipses of a light curve has been proposed for studying the nature of component stars. It has been applied to light curves of Beta Lyrae in the visual, blue, and far-ultraviolet regions with the purpose of investigating the energy sources for the luminosity of the disk surrounding the secondary component and determining the dominant radiative process in the disk. No trace of the spectrum of primary radiation has been found in the disk. Therefore, it is suggested that LTE is the main radiative process in the disk, which radiates at a temperature of approximately 12,000 K in the portion that undergoes eclipse. A small source corresponding to 14,500 K has also been tentatively detected and may represent a hot spot caused by hydrodynamic flow of matter from the primary component to the disk.

  17. Time Series Observations of the 2015 Eclipse of b Persei (not beta Persei) (Abstract)

    NASA Astrophysics Data System (ADS)

    Collins, D. F.

    2016-06-01

    (Abstract only) The bright (V = 4.6) ellipsoidal variable b Persei consists of a close non-eclipsing binary pair that shows a nearly sinusoidal light curve with a ~1.5 day period. This system also contains a third star that orbits the binary pair every 702 days. AAVSO observers recently detected the first ever optical eclipse of A-B binary pair by the third star as a series of snapshots (D. Collins, R. Zavala, J. Sanborn - AAVSO Spring Meeting, 2013); abstract published in Collins, JAAVSO, 41, 2, 391 (2013); b Per mis-printed as b Per therein. A follow-up eclipse campaign in mid-January 2015 recorded time-series observations. These new time-series observations clearly show multiple ingress and egress of each component of the binary system by the third star over the eclipse duration of 2 to 3 days. A simulation of the eclipse was created. Orbital and some astrophysical parameters were adjusted within constraints to give a reasonable fit to the observed light curve.

  18. Orbital Light Curves of UU Aquarii in Stunted Outburst

    NASA Astrophysics Data System (ADS)

    Robertson, J. W.; Honeycutt, R. K.; Henden, A. A.; Campbell, R. T.

    2018-02-01

    Stunted outbursts are ∼0.ͫ6 eruptions, typically lasting 5–10 days, which are found in some novalike cataclysmic variables, including UU Aqr. The mechanism responsible for stunted outbursts is uncertain but is likely related to an accretion disk instability or to variations in the mass transfer rate. A campaign to monitor the eclipse light curves in UU Aqr has been conducted in order to detect any light curve distortions due to the appearance of a hot spot on the disk at the location of the impact point of the accretion stream. If stunted outbursts are due to a temporary mass transfer enhancement, then predictable deformations of the orbital light curve are expected to occur during such outbursts. This study used 156 eclipses on 135 nights during the years 2000–2012. During this interval, random samples found the system to be in stunted outbursts 4%–5% of the time, yielding ∼7 eclipses obtained during some stage of stunted outburst. About half of the eclipses obtained during stunted outbursts showed clear evidence for hot spot enhancement, providing strong evidence that the stunted outbursts in UU Aqr are associated with mass transfer variations. The other half of the eclipses during stunted outburst showed little or no evidence for hot spot enhancement. Furthermore, there were no systematic changes in the hot spot signature as stunted outbursts progressed. Therefore, we have tentatively attributed the changes in hot spot visibility during stunted outburst to random blobby accretion, which likely further modulates the strength of the accretion stream on orbital timescales.

  19. Binarity and Variable Stars in the Open Cluster NGC 2126

    NASA Astrophysics Data System (ADS)

    Chehlaeh, Nareemas; Mkrtichian, David; Kim, Seung-Lee; Lampens, Patricia; Komonjinda, Siramas; Kusakin, Anatoly; Glazunova, Ljudmila

    2018-04-01

    We present the results of an analysis of photometric time-series observations for NGC 2126 acquired at the Thai National Observatory (TNO) in Thailand and the Mount Lemmon Optical Astronomy Observatory (LOAO) in USA during the years 2004, 2013 and 2015. The main purpose is to search for new variable stars and to study the light curves of binary systems as well as the oscillation spectra of pulsating stars. NGC 2126 is an intermediate-age open cluster which has a population of stars inside the δ Scuti instability strip. Several variable stars are reported including three eclipsing binary stars, one of which is an eclipsing binary star with a pulsating component (V551 Aur). The Wilson-Devinney technique was used to analyze its light curves and to determine a new set of the system’s parameters. A frequency analysis of the eclipse-subtracted light curve was also performed. Eclipsing binaries which are members of open clusters are capable of delivering strong constraints on the cluster’s properties which are in turn useful for a pulsational analysis of their pulsating components. Therefore, high-resolution, high-quality spectra will be needed to derive accurate component radial velocities of the faint eclipsing binaries which are located in the field of NGC 2126. The new Devasthal Optical Telescope, suitably equipped, could in principle do this.

  20. Short apsidal period of three eccentric eclipsing binaries discovered in the Large Magellanic Cloud

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Kyeongsoo; Lee, Chung-Uk; Kim, Seung-Lee

    2014-06-01

    We present new elements of apsidal motion in three eccentric eclipsing binaries located in the Large Magellanic Cloud. The apsidal motions of the systems were analyzed using both light curves and eclipse timings. The OGLE-III data obtained during the long period of 8 yr (2002-2009) allowed us to determine the apsidal motion period from their analyses. The existence of third light in all selected systems was investigated by light curve analysis. The O – C diagrams of EROS 1018, EROS 1041, and EROS 1054 were analyzed using the 30, 44, and 26 new times of minimum light, respectively, determined frommore » full light curves constructed from EROS, MACHO, OGLE-II, OGLE-III, and our own observations. This enabled a detailed study of the apsidal motion in these systems for the first time. All of the systems have a significant apsidal motion below 100 yr. In particular, EROS 1018 shows a very fast apsidal period of 19.9 ± 2.2 yr in a detached system.« less

  1. A possible additional body in eclipsing binary system HS 2231+2441

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.; Shliakhetska, Ya. O.; Romanyuk, Ya. O.

    2016-12-01

    Analysis of the light curves of eclipsing binary systems HS 2231+2441, obtained with the 36-cm telescope, is made. In processing the photometric data on eclipses by method of timing, obtained evidence for the existence of a third body in the system.

  2. On the period determination of ASAS eclipsing binaries

    NASA Astrophysics Data System (ADS)

    Mayangsari, L.; Priyatikanto, R.; Putra, M.

    2014-03-01

    Variable stars, or particularly eclipsing binaries, are very essential astronomical occurrence. Surveys are the backbone of astronomy, and many discoveries of variable stars are the results of surveys. All-Sky Automated Survey (ASAS) is one of the observing projects whose ultimate goal is photometric monitoring of variable stars. Since its first light in 1997, ASAS has collected 50,099 variable stars, with 11,076 eclipsing binaries among them. In the present work we focus on the period determination of the eclipsing binaries. Since the number of data points in each ASAS eclipsing binary light curve is sparse, period determination of any system is a not straightforward process. For 30 samples of such systems we compare the implementation of Lomb-Scargle algorithm which is an Fast Fourier Transform (FFT) basis and Phase Dispersion Minimization (PDM) method which is non-FFT basis to determine their period. It is demonstrated that PDM gives better performance at handling eclipsing detached (ED) systems whose variability are non-sinusoidal. More over, using semi-automatic recipes, we get better period solution and satisfactorily improve 53% of the selected object's light curves, but failed against another 7% of selected objects. In addition, we also highlight 4 interesting objects for further investigation.

  3. Revisiting the Energy Budget of WASP-43b: Enhanced Day-Night Heat Transport

    NASA Astrophysics Data System (ADS)

    Keating, Dylan; Cowan, Nicolas B.

    2017-11-01

    The large day-night temperature contrast of WASP-43b has so far eluded explanation. We revisit the energy budget of this planet by considering the impact of reflected light on dayside measurements and the physicality of implied nightside temperatures. Previous analyses of the infrared eclipses of WASP-43b have assumed reflected light from the planet is negligible and can be ignored. We develop a phenomenological eclipse model including reflected light, thermal emission, and water absorption, and we use it to fit published Hubble and Spitzer eclipse data. We infer a near-infrared geometric albedo of 24% ± 1% and a cooler dayside temperature of 1483 ± 10 K. Additionally, we perform light curve inversion on the three published orbital phase curves of WASP-43b and find that each suggests unphysical, negative flux on the nightside. By requiring non-negative brightnesses at all longitudes, we correct the unphysical parts of the maps and obtain a much hotter nightside effective temperature of 1076 ± 11 K. The cooler dayside and hotter nightside suggest a heat recirculation efficiency of 51% for WASP-43b, essentially the same as for HD 209458b, another hot Jupiter with nearly the same temperature. Our analysis therefore reaffirms the trend that planets with lower irradiation temperatures have more efficient day-night heat transport. Moreover, we note that (1) reflected light may be significant for many near-IR eclipse measurements of hot Jupiters, and (2) phase curves should be fit with physically possible longitudinal brightness profiles—it is insufficient to only require that the disk-integrated light curve be non-negative.

  4. Light Curve and Analysis of the Eclipsing Binary BF Centauri

    NASA Astrophysics Data System (ADS)

    Morris, M. A.; Wolf, G. W.

    2003-12-01

    The eclipsing binary star BF Centauri was observed photometrically by GWW in the uvby filter system from Mt. John Observatory in New Zealand during 1982, 1989 and 1998. It was also observed spectroscopically at 10 A/mm by W. A. Lawson in 1993 at Mt. Stromlo in Australia to obtain a radial velocity solution. The combined light curves and spectroscopic results have been analyzed using the 1998 version of Robert Wilson's WD light-curve programs. A consistent model for the system will be presented. This analysis was done as a part of a senior research project by MAM, who would like to acknowledge financial support from the Missouri Space Grant Consortium.

  5. A New Light Curve and Analysis of the Long Period Eclipsing Binary BF Draconis

    NASA Astrophysics Data System (ADS)

    Wolf, G. W.; Craig, L. E.; Caffey, J. F.

    1999-01-01

    The star BF Draconis was found to be an eclipsing binary by Strohmeier, Knigge and Ott (1962) and originally thought to be an Algol-type system with a period of 5.6 days. A spectrographic study by Imbert (1985) showed that the period was actually double this value and that the system consisted of two well-separated, almost-equal F-type stars in elliptical orbit. Diethelm, Wolf and Agerer (1993) later published a preliminary light curve of this system showing minima of unequal depth and width with a displaced secondary, confirming the elliptical orbit but disagreeing with Imbert on the specific orbital parameters. As a part of our long-term program of obtaining improved light curves of double-lined spectroscopic and eclipsing binaries, we have observed BF Draconis for the past four years using the 0.4 meter telescope at the Baker Observatory of Southwest Missouri State University. Complete light curves in the Cousins BVRI passbands have been obtained with our Photometrics CCD system, and a new model and orbital parameters for the binary have been determined using the Wilson-Devinney program. This research has been supported by NSF Grants AST-9315061 and AST-9605822 and NASA Grant NGT5-40060.

  6. Observations and Light Curve Solutions of the Eclipsing Binaries KR Lyn, CSS J110212+244412, NSVS 4917488 and NSVS 7336024

    NASA Astrophysics Data System (ADS)

    Kjurkchieva, D.; Popov, V. A.; Eneva, J.; Petrov, N.

    2018-05-01

    We present photometric observations in Sloan filters g', i' of the short-period eclipsing stars KR Lyn, CSS J110212+244412, NSVS 4917488 and NSVS 7336024. The light curve solutions revealed that all targets are overcontact binaries whose components are G and K stars. Their temperature differences do not exceed 300 K but they differ considerably in size and mass. NSVS 4917488 and NSVS 7336024 reveal total eclipses and their parameters can be considered as well-determined. We found that KR Lyn, NSVS 4917488 and NSVS 7336024 are of W-subtype while CSS J110212+244412 is A-subtype W UMa-type star.

  7. The fidelity of Kepler eclipsing binary parameters inferred by the neural network

    NASA Astrophysics Data System (ADS)

    Holanda, N.; da Silva, J. R. P.

    2018-04-01

    This work aims to test the fidelity and efficiency of obtaining automatic orbital elements of eclipsing binary systems, from light curves using neural network models. We selected a random sample with 78 systems, from over 1400 eclipsing binary detached obtained from the Kepler Eclipsing Binaries Catalog, processed using the neural network approach. The orbital parameters of the sample systems were measured applying the traditional method of light curve adjustment with uncertainties calculated by the bootstrap method, employing the JKTEBOP code. These estimated parameters were compared with those obtained by the neural network approach for the same systems. The results reveal a good agreement between techniques for the sum of the fractional radii and moderate agreement for e cos ω and e sin ω, but orbital inclination is clearly underestimated in neural network tests.

  8. The fidelity of Kepler eclipsing binary parameters inferred by the neural network

    NASA Astrophysics Data System (ADS)

    Holanda, N.; da Silva, J. R. P.

    2018-07-01

    This work aims to test the fidelity and efficiency of obtaining automatic orbital elements of eclipsing binary systems, from light curves using neural network models. We selected a random sample with 78 systems, from over 1400 detached eclipsing binaries obtained from the Kepler Eclipsing Binaries Catalog, processed using the neural network approach. The orbital parameters of the sample systems were measured applying the traditional method of light-curve adjustment with uncertainties calculated by the bootstrap method, employing the JKTEBOP code. These estimated parameters were compared with those obtained by the neural network approach for the same systems. The results reveal a good agreement between techniques for the sum of the fractional radii and moderate agreement for e cosω and e sinω, but orbital inclination is clearly underestimated in neural network tests.

  9. Outburst-related period changes of recurrent nova CI aquilae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, R. E.; Honeycutt, R. K., E-mail: honey@astro.indiana.edu, E-mail: rewilson@ufl.edu

    2014-11-01

    Pre-outburst and post-outburst light curves and post-outburst eclipse timings are analyzed to measure any period (P) change related to nova CI Aql's outburst of early 2000 and a mean post-outburst dP/dt, which then lead to estimates of the accreting component's rate of mass (M) change and its overall outburst-related change of mass over roughly a decade of observations. We apply a recently developed procedure for unified analysis of three timing-related data types (light curves, radial velocities, and eclipse timings), although with only light curves and timings in this case. Fits to the data are reasonably good without need for amore » disk in the light-curve model, although the disk certainly exists and has an important role in our post-outburst mass flow computations. Initial experiments showed that, although there seems to be an accretion hot spot, it has essentially no effect on derived outburst-related ΔP or on post-outburst dP/dt. Use of atomic time (HJED) in place of HJD also has essentially nil effect on ΔP and dP/dt. We find ΔP consistently negative in various types of solutions, although at best only marginally significant statistically in any one experiment. Pre-outburst HJD {sub 0} and P results are given, as are post-outburst HJD {sub 0}, P, and dP/dt, with light curves and eclipse times as joint input, and also with only eclipse time input. Post-outburst dP/dt is negative at about 2.4σ. Explicit formulae for mass transfer rates and epoch-to-epoch mass change are developed and applied. A known offset in the magnitude zero point for 1991-1994 is corrected.« less

  10. A search for tight hierarchical triple systems amongst the eclipsing binaries in the CoRoT fields

    NASA Astrophysics Data System (ADS)

    Hajdu, T.; Borkovits, T.; Forgács-Dajka, E.; Sztakovics, J.; Marschalkó, G.; Benkő, J. M.; Klagyivik, P.; Sallai, M. J.

    2017-10-01

    We report a comprehensive search for hierarchical triple stellar system candidates amongst eclipsing binaries (EBs) observed by the CoRoT spacecraft. We calculate and check eclipse timing variation (ETV) diagrams for almost 1500 EBs in an automated manner. We identify five relatively short period Algol systems for which our combined light-curve and complex ETV analyses (including both the light-travel time effect and short-term dynamical third-body perturbations) resulted in consistent third-body solutions. The computed periods of the outer bodies are between 82 and 272 d (with an alternative solution of 831 d for one of the targets). We find that the inner and outer orbits are near coplanar in all but one case. The dynamical masses of the outer subsystems determined from the ETV analyses are consistent with both the results of our light-curve analyses and the spectroscopic information available in the literature. One of our candidate systems exhibits outer eclipsing events as well, the locations of which are in good agreement with the ETV solution. We also report another certain triply eclipsing triple system that, however, is lacking a reliable ETV solution due to the very short time range of the data, and four new blended systems (composite light curves of two EBs each), where we cannot decide whether the components are gravitationally bounded or not. Amongst these blended systems, we identify the longest period and highest eccentricity EB in the entire CoRoT sample.

  11. A Statistical Characterization of Reflection and Refraction in the Atmospheres of sub-Saturn Kepler Planet Candidates

    NASA Astrophysics Data System (ADS)

    Sheets, Holly A.; Deming, Drake; Arney, Giada; Meadows, Victoria

    2016-01-01

    We present the results of our method to detect small atmospheric signals in Kepler's close-in, sub-Saturn planet candidate light curves. We detect an average secondary eclipse for groups of super-Earth, Neptune-like, and other sub-Saturn-sized candidates by scaling and combining photometric data of the groups of candidates such that the eclipses add constructively. This greatly increases the signal-to-noise compared to combining eclipses for individual planets. We have modified our method for averaging short cadence light curves of multiple planet candidates (2014, ApJ, 794, 133), and have applied it to long cadence data, accounting for the broadening of the eclipse due to the 30 minute cadence. We then use the secondary eclipse depth to determine the average albedo for the group. In the short cadence data, we found that a group of close-in sub-Saturn candidates (1 to 6 Earth radii) was more reflective (geometric A ~ 0.22) than typical hot Jupiters (geometric A ~ 0.06 to 0.11: Demory 2014, ApJL, 789, L20). With the larger number of candidates available in long cadence, we improve the resolution in radius and consider groups of candidates with radii between 1 and 2, 2 and 4, and 4 and 6 Earth radii. We also modify our averaging technique to search for refracted light just before and after transit in the Kepler candidate light curves, as modelled by Misra and Meadows (2014, ApJL, 795, L14).

  12. Simultaneous CCD Photometry of Two Eclipsing Binary Stars in Pegasus - Part2: BX Peg

    NASA Astrophysics Data System (ADS)

    Alton, K. B.

    2013-05-01

    BX Peg is an overcontact W UMa binary system (P = 0.280416 d) which has been rather well studied, but not fully understood due to complex changes in eclipse timings and light curve variations attributed to star spots. Photometric data collected in three bandpasses (B, V, and Ic) produced nineteen new times of minimum for BX Peg. These were used to update the linear ephemeris and further analyze potential changes in orbital periodicity by examining long-term changes in eclipse timings. In addition, synthetic fitting of light curves by Roche modeling was accomplished with the assistance of three different programs, two of which employ the Wilson-Devinney code. Different spotted solutions were necessary to achieve the best Roche model fits for BX Peg light curves collected in 2008 and 2011. Overall, the long-;term decrease (9.66 × 10-3 sec y-1) in orbital period defined by the parabolic fit of eclipse timing data could arise from mass transfer or angular momentum loss. The remaining residuals from observed minus predicted eclipse timings for BX Peg exhibit complex but non-random behavior. These may be related to magnetic activity cycles and/or the presence of an unseen mass influencing the times of minimum, however, additional minima need to be collected over a much longer timescale to resolve the nature of these complex changes.

  13. Revisiting the Energy Budget of WASP-43b: Enhanced Day–Night Heat Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keating, Dylan; Cowan, Nicolas B.

    The large day–night temperature contrast of WASP-43b has so far eluded explanation. We revisit the energy budget of this planet by considering the impact of reflected light on dayside measurements and the physicality of implied nightside temperatures. Previous analyses of the infrared eclipses of WASP-43b have assumed reflected light from the planet is negligible and can be ignored. We develop a phenomenological eclipse model including reflected light, thermal emission, and water absorption, and we use it to fit published Hubble and Spitzer eclipse data. We infer a near-infrared geometric albedo of 24% ± 1% and a cooler dayside temperature ofmore » 1483 ± 10 K. Additionally, we perform light curve inversion on the three published orbital phase curves of WASP-43b and find that each suggests unphysical, negative flux on the nightside. By requiring non-negative brightnesses at all longitudes, we correct the unphysical parts of the maps and obtain a much hotter nightside effective temperature of 1076 ± 11 K. The cooler dayside and hotter nightside suggest a heat recirculation efficiency of 51% for WASP-43b, essentially the same as for HD 209458b, another hot Jupiter with nearly the same temperature. Our analysis therefore reaffirms the trend that planets with lower irradiation temperatures have more efficient day–night heat transport. Moreover, we note that (1) reflected light may be significant for many near-IR eclipse measurements of hot Jupiters, and (2) phase curves should be fit with physically possible longitudinal brightness profiles—it is insufficient to only require that the disk-integrated light curve be non-negative.« less

  14. KMTNet Time-series Photometry of the Doubly Eclipsing Binary Stars Located in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Hong, Kyeongsoo; Koo, Jae-Rim; Lee, Jae Woo; Kim, Seung-Lee; Lee, Chung-Uk; Park, Jang-Ho; Kim, Hyoun-Woo; Lee, Dong-Joo; Kim, Dong-Jin; Han, Cheongho

    2018-05-01

    We report the results of photometric observations for doubly eclipsing binaries OGLE-LMC-ECL-15674 and OGLE-LMC-ECL-22159, both of which are composed of two pairs (designated A&B) of a detached eclipsing binary located in the Large Magellanic Cloud. The light curves were obtained by high-cadence time-series photometry using the Korea Microlensing Telescope Network 1.6 m telescopes located at three southern sites (CTIO, SAAO, and SSO) between 2016 September and 2017 January. The orbital periods were determined to be 1.433 and 1.387 days for components A and B of OGLE-LMC-ECL-15674, respectively, and 2.988 and 3.408 days for OGLE-LMC-ECL-22159A and B, respectively. Our light curve solutions indicate that the significant changes in the eclipse depths of OGLE-LMC-ECL-15674A and B were caused by variations in their inclination angles. The eclipse timing diagrams of the A and B components of OGLE-LMC-ECL-15674 and OGLE-LMC-ECL-22159 were analyzed using 28, 44, 28, and 26 new times of minimum light, respectively. The apsidal motion period of OGLE-LMC-ECL-15674B was estimated by detailed analysis of eclipse timings for the first time. The detached eclipsing binary OGLE-LMC-ECL-15674B shows a fast apsidal period of 21.5 ± 0.1 years.

  15. V1494 Aql: Eclipsing Fast Nova with an Unusual Orbital Light Curve

    NASA Astrophysics Data System (ADS)

    Kato, Taichi; Ishioka, Ryoko; Uemura, Makoto; Starkey, Donn R.; Krajci, Tom

    2004-03-01

    We present the time-resolved photometry of V1494 Aql (Nova Aql 1999 No. 2) between 2001 November and 2003 June. The object is confirmed to be an eclipsing nova with a period of 0.1346138(2)d. The eclipses were present in all observed epochs. The orbital light curve shows a rather unusual profile, consisting of a bump-like feature at phase 0.6-0.7 and a dip-like feature at phase 0.2-0.4. These features were probably persistently present in all available observations between 2001 and 2003. A period analysis outside of the eclipses has confirmed that these variations have a period common to the orbital period, and are unlikely to be interpreted as superhumps. We suspect that the structure (probably in the accretion disk) fixed in the binary rotational frame is somehow responsible for this feature.

  16. Optical Variability Analysis of UU Aqr - an Eclipsing Nova-like System

    NASA Astrophysics Data System (ADS)

    Khruzina, T.; Katysheva, N.; Golysheva, P.; Shugarov, S.

    2015-12-01

    By using our photometric observations of nova-like system UU Aqr with unstable light curve during a few nights, we plotted phase-folded light curves and calculated a model of the system. We show that the complicated character of light curves can be explained by the spiral arms in the disk. We decomposed the syntesis photometric curve into separated components as accretion disk, white and red dwarf, hot line.

  17. The two variables in the triple system HR 6469 = V819 Her: One eclipsing, one spotted

    NASA Technical Reports Server (NTRS)

    Van Hamme, Walter V.; Hall, Douglas S.; Hargrove, Adam W.; Henry, Gregory W.; Wasson, Rick; Barksdale, William S.; Chang, Sandy; Fried, Robert E.; Green, Charles L.; Lines, Helen C.

    1994-01-01

    A complete BV light curve, from 14 nights of good data obtained with the Vanderbilt University-Tennessee State University (VU-TSU) automatic telescope, are presented and solved with the Wilson-Devinney program. Third light is evaluated, with the companion star brighter by 0.58(sup m) in V and 0.11(sup m) in B. The eclipses are partial. Inferred color indices yield F2 V and F8 V for the eclipsing pair and G8 IV-III for the distant companion star. After removing the variability due to eclipses, we study the residual variability of the G8 IV-III star over the ten years 1982 to 1992. Each yearly light curve is fit with a two-spot model. Three relatively long-lived spots are identified, with rotation periods of 85.9(sup d), 85.9(sup d), and 86.1(sup d). The weak and intermittent variability is understood because the G8 IV-III star has a Rossby number at the threshold for the onset of heavy spottedness.

  18. The PHEMU15 catalogue and astrometric results of the Jupiter's Galilean satellite mutual occultation and eclipse observations made in 2014-2015

    NASA Astrophysics Data System (ADS)

    Saquet, E.; Emelyanov, N.; Robert, V.; Arlot, J.-E.; Anbazhagan, P.; Baillié, K.; Bardecker, J.; Berezhnoy, A. A.; Bretton, M.; Campos, F.; Capannoli, L.; Carry, B.; Castet, M.; Charbonnier, Y.; Chernikov, M. M.; Christou, A.; Colas, F.; Coliac, J.-F.; Dangl, G.; Dechambre, O.; Delcroix, M.; Dias-Oliveira, A.; Drillaud, C.; Duchemin, Y.; Dunford, R.; Dupouy, P.; Ellington, C.; Fabre, P.; Filippov, V. A.; Finnegan, J.; Foglia, S.; Font, D.; Gaillard, B.; Galli, G.; Garlitz, J.; Gasmi, A.; Gaspar, H. S.; Gault, D.; Gazeas, K.; George, T.; Gorda, S. Y.; Gorshanov, D. L.; Gualdoni, C.; Guhl, K.; Halir, K.; Hanna, W.; Henry, X.; Herald, D.; Houdin, G.; Ito, Y.; Izmailov, I. S.; Jacobsen, J.; Jones, A.; Kamoun, S.; Kardasis, E.; Karimov, A. M.; Khovritchev, M. Y.; Kulikova, A. M.; Laborde, J.; Lainey, V.; Lavayssiere, M.; Le Guen, P.; Leroy, A.; Loader, B.; Lopez, O. C.; Lyashenko, A. Y.; Lyssenko, P. G.; Machado, D. I.; Maigurova, N.; Manek, J.; Marchini, A.; Midavaine, T.; Montier, J.; Morgado, B. E.; Naumov, K. N.; Nedelcu, A.; Newman, J.; Ohlert, J. M.; Oksanen, A.; Pavlov, H.; Petrescu, E.; Pomazan, A.; Popescu, M.; Pratt, A.; Raskhozhev, V. N.; Resch, J.-M.; Robilliard, D.; Roschina, E.; Rothenberg, E.; Rottenborn, M.; Rusov, S. A.; Saby, F.; Saya, L. F.; Selvakumar, G.; Signoret, F.; Slesarenko, V. Y.; Sokov, E. N.; Soldateschi, J.; Sonka, A.; Soulie, G.; Talbot, J.; Tejfel, V. G.; Thuillot, W.; Timerson, B.; Toma, R.; Torsellini, S.; Trabuco, L. L.; Traverse, P.; Tsamis, V.; Unwin, M.; Abbeel, F. Van Den; Vandenbruaene, H.; Vasundhara, R.; Velikodsky, Y. I.; Vienne, A.; Vilar, J.; Vugnon, J.-M.; Wuensche, N.; Zeleny, P.

    2018-03-01

    During the 2014-2015 mutual events season, the Institut de Mécanique Céleste et de Calcul des Éphémérides (IMCCE), Paris, France, and the Sternberg Astronomical Institute (SAI), Moscow, Russia, led an international observation campaign to record ground-based photometric observations of Galilean moon mutual occultations and eclipses. We focused on processing the complete photometric observations data base to compute new accurate astrometric positions. We used our method to derive astrometric positions from the light curves of the events. We developed an accurate photometric model of mutual occultations and eclipses, while correcting for the satellite albedos, Hapke's light scattering law, the phase effect, and the limb darkening. We processed 609 light curves, and we compared the observed positions of the satellites with the theoretical positions from IMCCE NOE-5-2010-GAL satellite ephemerides and INPOP13c planetary ephemeris. The standard deviation after fitting the light curve in equatorial positions is ±24 mas, or 75 km at Jupiter. The rms (O-C) in equatorial positions is ±50 mas, or 150 km at Jupiter.

  19. Artificial Intelligence in Astronomy

    NASA Astrophysics Data System (ADS)

    Devinney, E. J.; Prša, A.; Guinan, E. F.; Degeorge, M.

    2010-12-01

    From the perspective (and bias) as Eclipsing Binary researchers, we give a brief overview of the development of Artificial Intelligence (AI) applications, describe major application areas of AI in astronomy, and illustrate the power of an AI approach in an application developed under the EBAI (Eclipsing Binaries via Artificial Intelligence) project, which employs Artificial Neural Network technology for estimating light curve solution parameters of eclipsing binary systems.

  20. On the orbital period of the magnetic cataclysmic variable HU Aquarii

    NASA Astrophysics Data System (ADS)

    Vogel, J.; Schwope, A.; Schwarz, R.; Kanbach, G.; Dhillon, V. S.; Marsh, T. R.

    2008-02-01

    We present an analysis of ULTRACAM light curves of the magnetic cataclysmic variable HU Aquarii which were taken at the VLT in May 2005. Since the light curves were serendipitously obtained during a low state, they allowed us to determine the binary and the stellar parameters with high accuracy. The light curve was decomposed into the components originating from the accretion spot, the photosphere surrounding it and the white dwarf itself, which allowed us to extract the eclipse light curve for the pure white dwarf. Combined with high-time resolution observations with different instruments over a 12 year baseline it was possible to get exact eclipse timings of the white dwarf and thus establish a significant deviation from a linear ephemeris. If described by a quadratic term, the period decreases by -1.13×10-11 ss-1. Interpreting this change in period as a pure angular momentum loss (AML) effect, the rate of J˙ = -4.9×1035 erg is much too high to be explained by gravitational radiation alone.

  1. The EB factory project. II. Validation with the Kepler field in preparation for K2 and TESS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parvizi, Mahmoud; Paegert, Martin; Stassun, Keivan G., E-mail: mahmoud.parvizi@vanderbilt.edu

    Large repositories of high precision light curve data, such as the Kepler data set, provide the opportunity to identify astrophysically important eclipsing binary (EB) systems in large quantities. However, the rate of classical “by eye” human analysis restricts complete and efficient mining of EBs from these data using classical techniques. To prepare for mining EBs from the upcoming K2 mission as well as other current missions, we developed an automated end-to-end computational pipeline—the Eclipsing Binary Factory (EBF)—that automatically identifies EBs and classifies them into morphological types. The EBF has been previously tested on ground-based light curves. To assess the performancemore » of the EBF in the context of space-based data, we apply the EBF to the full set of light curves in the Kepler “Q3” Data Release. We compare the EBs identified from this automated approach against the human generated Kepler EB Catalog of ∼2600 EBs. When we require EB classification with ⩾90% confidence, we find that the EBF correctly identifies and classifies eclipsing contact (EC), eclipsing semi-detached (ESD), and eclipsing detached (ED) systems with a false positive rate of only 4%, 4%, and 8%, while complete to 64%, 46%, and 32%, respectively. When classification confidence is relaxed, the EBF identifies and classifies ECs, ESDs, and EDs with a slightly higher false positive rate of 6%, 16%, and 8%, while much more complete to 86%, 74%, and 62%, respectively. Through our processing of the entire Kepler “Q3” data set, we also identify 68 new candidate EBs that may have been missed by the human generated Kepler EB Catalog. We discuss the EBF's potential application to light curve classification for periodic variable stars more generally for current and upcoming surveys like K2 and the Transiting Exoplanet Survey Satellite.« less

  2. The Eb Factory Project. Ii. Validation With the Kepler Field in Preparation for K2 and Tess

    NASA Astrophysics Data System (ADS)

    Parvizi, Mahmoud; Paegert, Martin; Stassun, Keivan G.

    2014-12-01

    Large repositories of high precision light curve data, such as the Kepler data set, provide the opportunity to identify astrophysically important eclipsing binary (EB) systems in large quantities. However, the rate of classical “by eye” human analysis restricts complete and efficient mining of EBs from these data using classical techniques. To prepare for mining EBs from the upcoming K2 mission as well as other current missions, we developed an automated end-to-end computational pipeline—the Eclipsing Binary Factory (EBF)—that automatically identifies EBs and classifies them into morphological types. The EBF has been previously tested on ground-based light curves. To assess the performance of the EBF in the context of space-based data, we apply the EBF to the full set of light curves in the Kepler “Q3” Data Release. We compare the EBs identified from this automated approach against the human generated Kepler EB Catalog of ˜ 2600 EBs. When we require EB classification with ≥slant 90% confidence, we find that the EBF correctly identifies and classifies eclipsing contact (EC), eclipsing semi-detached (ESD), and eclipsing detached (ED) systems with a false positive rate of only 4%, 4%, and 8%, while complete to 64%, 46%, and 32%, respectively. When classification confidence is relaxed, the EBF identifies and classifies ECs, ESDs, and EDs with a slightly higher false positive rate of 6%, 16%, and 8%, while much more complete to 86%, 74%, and 62%, respectively. Through our processing of the entire Kepler “Q3” data set, we also identify 68 new candidate EBs that may have been missed by the human generated Kepler EB Catalog. We discuss the EBF's potential application to light curve classification for periodic variable stars more generally for current and upcoming surveys like K2 and the Transiting Exoplanet Survey Satellite.

  3. The Eclipsing System EP Andromedae and Its Circumbinary Companions

    NASA Astrophysics Data System (ADS)

    Lee, Jae Woo; Hinse, Tobias Cornelius; Park, Jang-Ho

    2013-04-01

    We present new long-term CCD photometry for EP And acquired during the period 2007-2012. The light curves display total eclipses at primary minima and season-to-season light variability. Our synthesis for all available light curves indicates that the eclipsing pair is a W-type overcontact binary with parameters of q = 2.578, i = 83.°3, ΔT = 27 K, f = 28%, and l 3 = 2%-3%. The asymmetric light curves in 2007 were satisfactorily modeled by a cool spot on either of the eclipsing components from a magnetic dynamo. Including our 95 timing measurements, a total of 414 times of minimum light spanning about 82 yr was used for a period study. A detailed analysis of the eclipse timing diagram revealed that the orbital period of EP And has varied as a combination of an upward-opening parabola and two periodic variations, with cycle lengths of P 3 = 44.6 yr and P 4 = 1.834 yr and semi-amplitudes of K 3 = 0.0100 days and K 4 = 0.0039 days, respectively. The observed period increase at a fractional rate of +1.39 × 10-10 is in excellent agreement with that calculated from the W-D code and can be plausibly explained by some combination of mass transfer from the primary to the secondary star and angular momentum loss due to magnetic braking. The most reasonable explanation for both cycles is a pair of light-travel-time effects driven by the possible existence of a third and fourth component with projected masses of M 3 = 0.25 M ⊙ and M 4 = 0.90 M ⊙. The more massive companion could be revealed using high-resolution spectroscopic data extending over the course of a few years and could also be a binary itself. It is possible that the circumbinary objects may have played an important role in the formation and evolution of the eclipsing pair, which would cause it to have a short initial orbital period and thus evolve into an overcontact configuration by angular momentum loss.

  4. Mysterious eclipses in the light curve of KIC8462852: a possible explanation

    NASA Astrophysics Data System (ADS)

    Neslušan, L.; Budaj, J.

    2017-04-01

    Context. Apart from thousands of "regular" exoplanet candidates, Kepler satellite has discovered a small number of stars exhibiting peculiar eclipse-like events. They are most probably caused by disintegrating bodies transiting in front of the star. However, the nature of the bodies and obscuration events, such as those observed in KIC 8462852, remain mysterious. A swarm of comets or artificial alien mega-structures have been proposed as an explanation for the latter object. Aims: We explore the possibility that such eclipses are caused by the dust clouds associated with massive parent bodies orbiting the host star. Methods: We assumed a massive object and a simple model of the dust cloud surrounding the object. Then, we used the numerical integration to simulate the evolution of the cloud, its parent body, and resulting light-curves as they orbit and transit the star. Results: We found that it is possible to reproduce the basic features in the light-curve of KIC 8462852 with only four objects enshrouded in dust clouds. The fact that they are all on similar orbits and that such models require only a handful of free parameters provides additional support for this hypothesis. Conclusions: This model provides an alternative to the comet scenario. With such physical models at hand, at present, there is no need to invoke alien mega-structures for an explanation of these light-curves.

  5. BVRI Photometric Study of the High Mass Ratio, Detached, Pre-contact W UMa Binary GQ Cancri

    NASA Astrophysics Data System (ADS)

    Samec, R. G.; Olson, A.; Caton, D.; Faulkner, D. R.

    2017-12-01

    CCD BVRcIc light curves of GQ Cancri were observed in April 2013 using the SARA North 0.9-meter Telescope at Kitt Peak National Observatory in Arizona in remote mode. It is a high-amplitude (V 0.9 magnitude) K0±V type eclipsing binary (T1 5250 K) with a photometrically-determined mass ratio of M2 / M1 = 0.80. Its spectral color type classifies it as a pre-contact W UMa Binary (PCWB). The Wilson-Devinney Mode 2 solutions show that the system has a detached binary configuration with fill-outs of 94% and 98% for the primary and secondary component, respectively. As expected, the light curve is asymmetric due to spot activity. Three times of minimum light were calculated, for two primary eclipses and one secondary eclipse, from our present observations. In total, some 26 times of minimum light covering nearly 20 years of observation were used to determine linear and quadratic ephemerides. It is noted that the light curve solution remained in a detached state for every iteration of the computer runs. The components are very similar with a computed temperature difference of only 4 K, and the flux of the primary component accounts for 53±55% of the system's light in B, V, Rc, and Ic. A 12-degree radius high latitude white spot (faculae) was iterated on the primary component.

  6. CONSTRAINING RELATIVISTIC BOW SHOCK PROPERTIES IN ROTATION-POWERED MILLISECOND PULSAR BINARIES.

    PubMed

    Wadiasingh, Zorawar; Harding, Alice K; Venter, Christo; Böttcher, Markus; Baring, Matthew G

    2017-04-20

    Multiwavelength followup of unidentified Fermi sources has vastly expanded the number of known galactic-field "black widow" and "redback" millisecond pulsar binaries. Focusing on their rotation-powered state, we interpret the radio to X-ray phenomenology in a consistent framework. We advocate the existence of two distinct modes differing in their intrabinary shock orientation, distinguished by the phase-centering of the double-peaked X-ray orbital modulation originating from mildly-relativistic Doppler boosting. By constructing a geometric model for radio eclipses, we constrain the shock geometry as functions of binary inclination and shock stand-off R 0 . We develop synthetic X-ray synchrotron orbital light curves and explore the model parameter space allowed by radio eclipse constraints applied on archetypal systems B1957+20 and J1023+0038. For B1957+20, from radio eclipses the stand-off is R 0 ~ 0.15-0.3 fraction of binary separation from the companion center, depending on the orbit inclination. Constructed X-ray light curves for B1957+20 using these values are qualitatively consistent with those observed, and we find occultation of the shock by the companion as a minor influence, demanding significant Doppler factors to yield double peaks. For J1023+0038, radio eclipses imply R 0 ≲ 0.4 while X-ray light curves suggest 0.1 ≲ R 0 ≲ 0.3 (from the pulsar). Degeneracies in the model parameter space encourage further development to include transport considerations. Generically, the spatial variation along the shock of the underlying electron power-law index should yield energy-dependence in the shape of light curves motivating future X-ray phase-resolved spectroscopic studies to probe the unknown physics of pulsar winds and relativistic shock acceleration therein.

  7. CONSTRAINING RELATIVISTIC BOW SHOCK PROPERTIES IN ROTATION-POWERED MILLISECOND PULSAR BINARIES

    PubMed Central

    Wadiasingh, Zorawar; Harding, Alice K.; Venter, Christo; Böttcher, Markus; Baring, Matthew G.

    2018-01-01

    Multiwavelength followup of unidentified Fermi sources has vastly expanded the number of known galactic-field “black widow” and “redback” millisecond pulsar binaries. Focusing on their rotation-powered state, we interpret the radio to X-ray phenomenology in a consistent framework. We advocate the existence of two distinct modes differing in their intrabinary shock orientation, distinguished by the phase-centering of the double-peaked X-ray orbital modulation originating from mildly-relativistic Doppler boosting. By constructing a geometric model for radio eclipses, we constrain the shock geometry as functions of binary inclination and shock stand-off R0. We develop synthetic X-ray synchrotron orbital light curves and explore the model parameter space allowed by radio eclipse constraints applied on archetypal systems B1957+20 and J1023+0038. For B1957+20, from radio eclipses the stand-off is R0 ~ 0.15–0.3 fraction of binary separation from the companion center, depending on the orbit inclination. Constructed X-ray light curves for B1957+20 using these values are qualitatively consistent with those observed, and we find occultation of the shock by the companion as a minor influence, demanding significant Doppler factors to yield double peaks. For J1023+0038, radio eclipses imply R0 ≲ 0.4 while X-ray light curves suggest 0.1 ≲ R0 ≲ 0.3 (from the pulsar). Degeneracies in the model parameter space encourage further development to include transport considerations. Generically, the spatial variation along the shock of the underlying electron power-law index should yield energy-dependence in the shape of light curves motivating future X-ray phase-resolved spectroscopic studies to probe the unknown physics of pulsar winds and relativistic shock acceleration therein. PMID:29651167

  8. Constraining Relativistic Bow Shock Properties in Rotation-Powered Millisecond Pulsar Binaries

    NASA Technical Reports Server (NTRS)

    Wadiasingh, Zorawar; Harding, Alice K.; Venter, Christo; Bottcher, Markus; Baring, Matthew G.

    2017-01-01

    Multiwavelength follow-up of unidentified Fermi sources has vastly expanded the number of known galactic-field "black widow" and "redback" millisecond pulsar binaries. Focusing on their rotation-powered state, we interpret the radio to X-ray phenomenology in a consistent framework. We advocate the existence of two distinct modes differing in their intrabinary shock orientation, distinguished by the phase-centering of the double-peaked X-ray orbital modulation originating from mildly-relativistic Doppler boosting. By constructing a geometric model for radio eclipses, we constrain the shock geometry as functions of binary inclination and shock stand-off R(sub 0). We develop synthetic X-ray synchrotron orbital light curves and explore the model parameter space allowed by radio eclipse constraints applied on archetypal systems B1957+20 and J1023+0038. For B1957+20, from radio eclipses the stand-off is R(sub 0) approximately 0:15 - 0:3 fraction of binary separation from the companion center, depending on the orbit inclination. Constructed X-ray light curves for B1957+20 using these values are qualitatively consistent with those observed, and we find occultation of the shock by the companion as a minor influence, demanding significant Doppler factors to yield double peaks. For J1023+0038, radio eclipses imply R(sub 0) is approximately less than 0:4 while X-ray light curves suggest 0:1 is approximately less than R(sub 0) is approximately less than 0:3 (from the pulsar). Degeneracies in the model parameter space encourage further development to include transport considerations. Generically, the spatial variation along the shock of the underlying electron power-law index should yield energy-dependence in the shape of light curves motivating future X-ray phase-resolved spectroscopic studies to probe the unknown physics of pulsar winds and relativistic shock acceleration therein.

  9. Investigations of a New Eclipsing Cataclysmic Variable HBHA 4705-03

    NASA Astrophysics Data System (ADS)

    Yakin, D. G.; Suleimanov, V. F.; Shimansky, V. V.; Vlasyuk, V. V.; Spiridonova, O. I.

    2013-01-01

    Results of photometric and spectroscopic investigations of the recently discovered eclipsing cataclysmic variable star HBHA 4705-03 are presented. The emission spectra of the system show broad hydrogen and helium emission lines. The bright spots with an approximately zero velocity components are found in the Doppler maps for the hydrogen and ionized helium lines. The disc structure is more prominent in the maps for the neutral helium lines. The masses of the components (MWD = 0.54 ± 0.10M⊙ and MRD = 0.45 ± 0.05 M⊙), and the orbit inclination (i = 71.°8 ± 0.°7) were estimated using the radial velocity light curve and the eclipse width. The modeling of the light curve allows us to evaluate the bright spot parameters and the mass accretion rate (M ≍ 2 ·1017 g s-1).

  10. HS 0705+6700: a New Eclipsing sdB Binary

    NASA Astrophysics Data System (ADS)

    Drechsel, H.; Heber, U.; Napiwotzki, R.; Ostensen, R.; Solheim, J.-E.; Deetjen, J.; Schuh, S.

    HS 0705+6700 is a newly discovered eclipsing sdB binary system consisting of an sdB primary and a cool secondary main sequence star. CCD photometry obtained in October and November 2000 with the 2.5m Nordic (NOT) telescope (La Palma, Tenerife) in the B passband and with the 2.2m Calar Alto telescope (CAFOS, R filter) yielded eclipse light curves with complete orbital phase coverage at high time resolution. A periodogram analysis of 12 primary minimum times distributed over the time span from October 2000 to March 2001 allowed to derive the following exact period and linear ephemeris: prim. min. = HJD 2451822.759782(22) + 0.09564665(39) ṡ E A total of 15 spectra taken with the 3.5m Calar Alto telescope (TWIN spectrograph) on March 11-12, 2001, were used to establish the radial velocity curve of the primary star (K1 = 85.8 km/s) , and to determine its basic atmospheric parameters (Teff = 29300 K, log g = 5.47). The B and R light curves were solved using our Wilson-Devinney based light curve analysis code MORO (Drechsel et al. 1995, A&A 294, 723). The best fit solution yielded exact system parameters consistent with the spectroscopic results. Detailed results will be published elsewhere (Drechsel et al. 2001, A&A, in preparation).

  11. GLOBAL ANALYSIS OF KOI-977: SPECTROSCOPY, ASTEROSEISMOLOGY, AND PHASE-CURVE ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirano, Teruyuki; Sato, Bun'ei; Kobayashi, Atsushi

    2015-01-20

    We present a global analysis of KOI-977, one of the planet host candidates detected by Kepler. The Kepler Input Catalog (KIC) reports that KOI-977 is a red giant, for which few close-in planets have been discovered. Our global analysis involves spectroscopic and asteroseismic determinations of stellar parameters (e.g., mass and radius) and radial velocity (RV) measurements. Our analyses reveal that KOI-977 is indeed a red giant, possibly in the red clump, but its estimated radius (≳ 20 R {sub ☉} = 0.093 AU) is much larger than KOI-977.01's orbital distance (∼0.027 AU) estimated from its period (P {sub orb} ∼more » 1.35 days) and host star's mass. RV measurements show a small variation, which also contradicts the amplitude of ellipsoidal variations seen in the light curve folded with KOI-977.01's period. Therefore, we conclude that KOI-977.01 is a false positive, meaning that the red giant, for which we measured the radius and RVs, is different from the object that produces the transit-like signal (i.e., an eclipsing binary). On the basis of this assumption, we also perform a light curve analysis including the modeling of transits/eclipses and phase-curve variations, adopting various values for the dilution factor D, which is defined as the flux ratio between the red giant and eclipsing binary. Fitting the whole folded light curve as well as individual transits in the short cadence data simultaneously, we find that the estimated mass and radius ratios of the eclipsing binary are consistent with those of a solar-type star and a late-type star (e.g., an M dwarf) for D ≳ 20.« less

  12. The interpretation of optical light variations of Centaurus X-3

    NASA Technical Reports Server (NTRS)

    Mauder, H.

    1976-01-01

    The interpretation of optical light variations of X-ray binaries is discussed for the case of negligible reflection effect. The limiting cases of synchronous rotation of the visible star (Roche configuration) and of no rotation (pure tidal deformation) are considered. The theoretical results are compared with the available light curves of Cen X-3. X-ray data of the Copernicus satellite are used to get an impression of the atmospheric structure of the outer layers of the visible component. It is shown, that the X-ray eclipse duration is in good agreement with the mass ration derived from the optical variations. The X-ray eclipse duration is discussed with respect to the extended low states, and a possible correlation of the extended lows with the appearance of the optical light curves is considered.

  13. SS Bootis - A totally eclipsing binary of the RS CVn type

    NASA Technical Reports Server (NTRS)

    Vaucher, C. A.; Africano, J. L.; Henry, G. W.; Hall, D. S.; Wilson, J. W.

    1983-01-01

    Photoelectric photometry gathered for SS Bootis over the 1976-1981 period shows a distortion wave amplitude variation from 0.05 to 0.20 mag, with no apparent pattern. From the rectified light curve, a new time of midprimary eclipse was found to be 2444332.0335 + or - 0.0005 days. Solutions of the primary eclipse data, rectified for star spots as well as for ellipticity and reflection, are presented.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barlow, Brad N.; Wade, Richard A.; Liss, Sandra E.

    The eclipsing binary system 2M 1938+4603 consists of a pulsating hot subdwarf B star and a cool M dwarf companion in an effectively circular three-hour orbit. The light curve shows both primary and secondary eclipses, along with a strong reflection effect from the cool companion. Here, we present constraints on the component masses and eccentricity derived from the Romer delay of the secondary eclipse. Using six months of publicly available Kepler photometry obtained in short-cadence mode, we fit model profiles to the primary and secondary eclipses to measure their centroid values. We find that the secondary eclipse arrives on averagemore » 2.06 {+-} 0.12 s after the midpoint between primary eclipses. Under the assumption of a circular orbit, we calculate from this time delay a mass ratio of q = 0.2691 {+-} 0.0018 and individual masses of M{sub sd} = 0.372 {+-} 0.024 M{sub Sun} and M{sub c} = 0.1002 {+-} 0.0065 M{sub Sun} for the sdB and M dwarf, respectively. These results differ slightly from those of a previously published light-curve modeling solution; this difference, however, may be reconciled with a very small eccentricity, ecos {omega} Almost-Equal-To 0.00004. We also report a decrease in the orbital period of P-dot = (-1.23 {+-} 0.07) Multiplication-Sign 10{sup -10}.« less

  15. A connection between long-term luminosity variations and orbital period changes in chromospherically active binaries

    NASA Technical Reports Server (NTRS)

    Hall, Douglas S.

    1991-01-01

    The eclipsing binary CG Cyg provides observational confirmation of three predictions made by Applegate's (1991) improvement on the theory that magnetic cycles cause the quasi-periodic orbital period changes in binaries containing a convective star. The mean brightness outside eclipse and the period vary with the same cycle length of about 50 yr. The light curve and O - C curve are in phase, with maximum light and period increase occurring in early 1980. The chromospherically active star becomes bluer in phase with the brightening. Because a period increase occurs at maximum brightness, the sense of the star's differential rotation is specified: outside rotating faster.

  16. KIC 11401845: An Eclipsing Binary with Multiperiodic Pulsations and Light-travel Time

    NASA Astrophysics Data System (ADS)

    Lee, Jae Woo; Hong, Kyeongsoo; Kim, Seung-Lee; Koo, Jae-Rim

    2017-02-01

    We report the {\\text{}}{Kepler} photometry of KIC 11401845 displaying multiperiodic pulsations, superimposed on binary effects. Light-curve synthesis shows that the binary star is a short-period detached system with a very low mass ratio of q = 0.070 and filling factors of F1 = 45% and F2 = 99%. Multiple-frequency analyses were applied to the light residuals after subtracting the synthetic eclipsing curve from the observed data. We detected 23 frequencies with signal-to-noise ratios larger than 4.0, of which the orbital harmonics (f4, f6, f9, f15) in the low-frequency domain may originate from tidally excited modes. For the high frequencies of 13.7-23.8 day-1, the period ratios and pulsation constants are in the ranges of {P}{pul}/{P}{orb}=0.020{--}0.034 and Q = 0.018-0.031 days, respectively. These values and the position on the Hertzsprung-Russell diagram demonstrate that the primary component is a δ Sct pulsating star. We examined the eclipse timing variation of KIC 11401845 from the pulsation-subtracted data and found a delay of 56 ± 17 s in the arrival times of the secondary eclipses relative to the primary eclipses. A possible explanation of the time shift may be some combination of a light-travel-time delay of about 34 s and a very small eccentricity of e\\cos ω < 0.0002. This result represents the first measurement of the Rømer delay in noncompact binaries.

  17. Recent Observations of the Neglected Southern Eclipsing Binary Systems V343 Cen, UY Mus, HT Aps, and V1961 Sgr

    NASA Astrophysics Data System (ADS)

    Faulkner, D. R.; Samec, R. G.; Stoddard, M. L.; McKenzie, R.; Rebar, D.; Lavoie, G. D.; Moody, S.; Miller, J.; Van Hamme, W.

    2002-12-01

    As a part of our continuing search for solar type binaries with impacting gas streams, we present light curves of V343 Cen, UY Mus, HT Aps, and V1961 Sgr. These are all neglected variables whose observing histories show little or no observations since their discovery. The CCD observations were taken at the 0.9-m at CTI0 in the UBVRI Johnson-Cousins system. The observations were taken in on 2002, May 31-June 8 and 2001, May 16 - 23 respectively. UY Mus is a near contact binary with a large difference in eclipse depths of V = 0.67 mag. Otherwise the curve appears symmetric. The times of minimum light determined from our data are HJD Min I = 242047.62316(6) and Min II = 2452050.4874(3) where the value in parentheses is the standard error in the last decimal place. V1961 Sgr (GCVS 6848 485) is a W UMa binary with a difference in eclipse depths of V = 0.11 mag and a possible variable spot area causing a V = 0.04 mag variation in MAX I from night to night. HT Aps is a near contact solar type binary with a large difference in eclipse depths of V= 0.47 mag and a somewhat asymmetric (difference in maxima, V= 0.4 mag) light curve. It is a possibly a candidate for a binary with a gas stream. One time of minimum light determined from our data is HJD Min I = 2452331.63725 (12). V343 Cen is a near contact binary with a large difference in eclipse depths of V= 0.42 mag and distortions that give evidence of a gas stream collision. The difference in maxima is V = 0.07 mag. The curve shows little variation over the 4 day interval of observation. Light curves analyses, new period determinations and photometric data will be presented for these variables. Acknowledgements: We wish to thank the American Astronomical Society for their continued support of our undergraduate research programs through their small research grants. Faulkner and Samec were visiting Astronomers, Cerro Tololo InterAmerican Observatory, National Optical Astronomical Observatories, which are operated by the Association of Universities for Research in Astronomy, Inc. under contract with the National Science Foundation.

  18. Period Study and Analyses of 2017 Observations of the Totally Eclipsing, Solar Type Binary, MT Camelopardalis

    NASA Astrophysics Data System (ADS)

    Faulkner, Danny R.; Samec, Ronald G.; Caton, Daniel B.

    2018-06-01

    We report here on a period study and the analysis of BVRcIc light curves (taken in 2017) of MT Cam (GSC03737-01085), which is a solar type (T ~ 5500K) eclipsing binary. D. Caton observed MT Cam on 05, 14, 15, 16, and 17, December 2017 with the 0.81-m reflector at Dark Sky Observatory. Six times of minimum light were calculated from four primary eclipses and two secondary eclipses:HJD I = 24 58092.4937±0.0002, 2458102.74600±0.0021, 2458104.5769±0.0002, 2458104.9434±0.0029HJD II = 2458103.6610±0.0001, 2458104.7607±0.0020,Six times of minimum light were also calculated from data taken by Terrell, Gross, and Cooney, in their 2016 and 2004 observations (reported in IBVS #6166; TGC, hereafter). In addition, six more times of minimum light were taken from the literature. From all 18 times of minimum light, we determined the following light elements:JD Hel Min I=2458102.7460(4) + 0.36613937(5) EWe found the orbital period was constant over the 14 years spanning all observations. We note that TGC found a slightly increasing period. However, our results were obtained from a period study rather than comparison of observations from only two epochs by the Wilson-Devinney (W-D) Program. A BVRcIc Johnson-Cousins filtered simultaneous W-D Program solution gives a mass ratio (0.3385±0.0014) very nearly the same as TGC’s (0.347±0.003), and a component temperature difference of only ~40 K. As with TGC, no spot was needed in the modeling. Our modeling (beginning with Binary Maker 3.0 fits) was done without prior knowledge of TGC’s. This shows the agreement achieved when independent analyses are done with the W-D code. The present observations were taken 1.8 years later than the last curves by TGC, so some variation is expected.The Roche Lobe fill-out of the binary is ~13% and the inclination is ~83.5 degrees. The system is a shallow contact W-type W UMa Binary, albeit, the amplitudes of the primary and secondary eclipse are very nearly identical. An eclipse duration of ~21 minutes was determined for the secondary eclipse and the light curve solution. Additional and more detailed information is given in the poster paper.

  19. Full Phase Multi-Band Study of Eclipsing Binaries 1SWASP J061850.43+220511.9 and 2MASSJ07095549+3643564

    NASA Astrophysics Data System (ADS)

    Terheide, Rachel; Zhang, Liyun; Han, Xianming; Lu, Hongpeng

    2018-01-01

    We present full-phase VRI-band light curves for eclipsing binary 1SWASP J061850.43+220511.9, and full-phase BVRI-band light curves for eclipsing binary 2MASS J07095549+3643564. The observations were conducted using the 0.94-m Holcomb Observatory telescope located on Butler University Campus in Indianapolis, Indiana, and the 0.6-m SARA telescope located at the Cerro Tololo Inter-American Observatory in Chile. We obtained key system parameters for both eclipsing binaries. For 1SWASP J061850.43+220511.9, the period is 0.21482 ±0.00053 days compared to 0.21439 days from an older study (Lohr et. al), the system mass ratio is found as 2.50 and the system is classified as EW type. Similarly, for 2MASS J07095549+3643564, we obtained a linear ephemeris and a physical model for the first time. We found its period to be 0.22297 ±0.00032 days, as compared to 0.446092 days and 0.11152 days from previous research (Drake et. al 2014, Hartman et. al 2011). 2MASS J07095549+3643564 is classified as a W Uma type eclipsing binary.

  20. EC 10246-2707: an eclipsing subdwarf B + M dwarf binary

    NASA Astrophysics Data System (ADS)

    Barlow, B. N.; Kilkenny, D.; Drechsel, H.; Dunlap, B. H.; O'Donoghue, D.; Geier, S.; O'Steen, R. G.; Clemens, J. C.; LaCluyze, A. P.; Reichart, D. E.; Haislip, J. B.; Nysewander, M. C.; Ivarsen, K. M.

    2013-03-01

    We announce the discovery of a new eclipsing hot subdwarf B + M dwarf binary, EC 10246-2707, and present multicolour photometric and spectroscopic observations of this system. Similar to other HW Vir-type binaries, the light curve shows both primary and secondary eclipses, along with a strong reflection effect from the M dwarf; no intrinsic light contribution is detected from the cool companion. The orbital period is 0.118 507 9936 ± 0.000 000 0009 d, or about 3 h. Analysis of our time series spectroscopy reveals a velocity semi-amplitude of K1 = 71.6 ± 1.7 km s-1 for the sdB and best-fitting atmospheric parameters of Teff = 28 900 ± 500 K, log g = 5.64 ± 0.06 and log N(He)/N(H) = -2.5 ± 0.2. Although we cannot claim a unique solution from modelling the light curve, the best-fitting model has an sdB mass of 0.45 M⊙ and a cool companion mass of 0.12 M⊙. These results are roughly consistent with a canonical-mass sdB and M dwarf separated by a ˜ 0.84 R⊙. We find no evidence of pulsations in the light curve and limit the amplitude of rapid photometric oscillations to <0.08 per cent. Using 15 yr of eclipse timings, we construct an observed minus calculated (O - C) diagram but find no statistically significant period changes; we rule out |dot{P}| > 7.2 × 10^{-12}. If EC 10246-2707 evolves into a cataclysmic variable, its period should fall below the famous cataclysmic variable period gap.

  1. Absolute Parameters for the F-type Eclipsing Binary BW Aquarii

    NASA Astrophysics Data System (ADS)

    Maxted, P. F. L.

    2018-05-01

    BW Aqr is a bright eclipsing binary star containing a pair of F7V stars. The absolute parameters of this binary (masses, radii, etc.) are known to good precision so they are often used to test stellar models, particularly in studies of convective overshooting. ... Maxted & Hutcheon (2018) analysed the Kepler K2 data for BW Aqr and noted that it shows variability between the eclipses that may be caused by tidally induced pulsations. ... Table 1 shows the absolute parameters for BW Aqr derived from an improved analysis of the Kepler K2 light curve plus the RV measurements from both Imbert (1979) and Lester & Gies (2018). ... The values in Table 1 with their robust error estimates from the standard deviation of the mean are consistent with the values and errors from Maxted & Hutcheon (2018) based on the PPD calculated using emcee for a fit to the entire K2 light curve.

  2. The Search for Pre-Main Sequence Eclipsing Binary Stars in the Lagoon Nebula

    NASA Astrophysics Data System (ADS)

    Henderson, Calen B.; Stassun, K. G.

    2009-01-01

    We report time-series CCD I-band photometry for the pre-main-sequence cluster NGC 6530, located within the Lagoon Nebula. The data were obtained with the 4Kx4K imager on the SMARTS 1.0m telescope at CTIO on 36 nights over the summers of 2005 and 2006. In total we have light curves for 50,000 stars in an area 1 deg2, with a sampling cadence of 1 hour. The stars in our sample have masses in the range 0.25-4.0 Msun, assuming a distance of 1.25 kpc to the cluster. Our goals are to look for stars with rotation periods and to identify eclipsing binary candidates. Here we present light curves of photometrically variable stars and potential eclipsing binary star systems. This work has been supported by the National Science Foundation under Career grant AST-0349075.

  3. A Comprehensive Stellar Astrophysical Study of the Old Open Cluster M67 with Kepler

    NASA Astrophysics Data System (ADS)

    Mathieu, Robert D.; Vanderburg, Andrew; K2 M67 Team

    2016-06-01

    M67 is among the best studied of all star clusters. Being at an age and metallicity very near solar, at an accessible distance of 850 pc with low reddening, and rich in content (over 1000 members including main-sequence dwarfs, a well populated subgiant branch and red giant branch, white dwarfs, blue stragglers, sub-subgiants, X-ray sources and CVs), M67 is a cornerstone of stellar astrophysics.The K2 mission (Campaign 5) has obtained long-cadence observations for 2373 stars, both within an optimized central superaperture and as specified targets outside the superaperture. 1,432 of these stars are likely cluster members based on kinematic and photometric criteria.We have extracted light curves and corrected for K2 roll systematics, producing light curves with noise characteristics qualitatively similar to Kepler light curves of stars of similar magnitudes. The data quality is slightly poorer than for field stars observed by K2 due to crowding near the cluster core, but the data are of sufficient quality to detect seismic oscillations, binary star eclipses, flares, and candidate transit events. We are in the process of uploading light curves and various diagnostic files to MAST; light curves and supporting data will also be made available on ExoFOP.Importantly, several investigators within the M67 K2 team are independently doing light curve extractions and analyses for confirmation of science results. We also are adding extensive ground-based supporting data, including APOGEE near-infrared spectra, TRES and WIYN optical spectra, LCOGT photometry, and more.Our science goals encompass asteroseismology and stellar evolution, alternative stellar evolution pathways in binary stars, stellar rotation and angular momentum evolution, stellar activity, eclipsing binaries and beaming, and exoplanets. We will present early science results as available by the time of the meeting, and certainly including asteroseismology, blue stragglers and sub-subgiants, and newly discovered eclipsing binaries.This work is supported by NASA grant NNX15AW24A to the University of Wisconsin - Madison.

  4. BEER ANALYSIS OF KEPLER AND CoRoT LIGHT CURVES. IV. DISCOVERY OF FOUR NEW LOW-MASS WHITE DWARF COMPANIONS IN THE KEPLER DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faigler, S.; Kull, I.; Mazeh, T.

    We report the discovery of four short-period eclipsing systems in the Kepler light curves, consisting of an A-star primary and a low-mass white dwarf (WD) secondary (dA+WD)—KIC 4169521, KOI-3818, KIC 2851474, and KIC 9285587. The systems show BEaming, Ellipsoidal and Reflection (BEER) phase modulations together with primary and secondary eclipses. These add to the 6 Kepler and 18 WASP short-period eclipsing dA+WD binaries that were previously known. The light curves, together with follow-up spectroscopic observations, allow us to derive the masses, radii, and effective temperatures of the two components of the four systems. The orbital periods, of 1.17–3.82 days, andmore » WD masses, of 0.19–0.22 M{sub ⊙}, are similar to those of the previously known systems. The WD radii of KOI-3818, KIC 2851474, and KIC 9285587 are 0.026, 0.035, and 0.026 R{sub ⊙}, respectively, the smallest WD radii derived so far for short-period eclipsing dA+WD binaries. These three binaries extend the previously known population to older systems with cooler and smaller WD secondaries. KOI-3818 displays evidence for a fast-rotating primary and a minute but significant eccentricity, ∼1.5 × 10{sup −3}. These features are probably the outcome of the mass-transfer process.« less

  5. Photometric followup investigations on LAMOST survey target Ly And

    NASA Astrophysics Data System (ADS)

    Lu, Hong-peng; Zhang, Li-yun; Han, Xianming L.; Pi, Qing-feng; Wang, Dai-mei

    2017-02-01

    We present a low-dispersion spectrum and two sets of CCD photometric light curves of the eclipsing binary LY And for the first time. The spectrum of LY And was classified as G2. We derived an updated ephemeris based on all previously available and our newly acquired minimum light times. Our analyses of LY And light curve minimum times reveals that the differences between calculated and observed minimum times for LY And can be represented by an upward parabolic curve, which means its orbital period is increasing with a rate of 1.88 (± 0.13) × 10-7 days/year. This increase in orbital period may be interpreted as mass transfer from the primary component to the secondary component, with a rate of dM1/dt = -4.54 × 10-8M⊙/year. By analyzing our CCD photometric light curves obtained in 2015, we obtained its photometric solution with the Wilson-Devinney program. This photometric solution also fits very well our light curves obtained in 2014. Our photometric solution shows that LY And is a contact eclipsing binary and its contact factor is f = (17.8 ± 1.9)%. Furthermore, both our spectroscopic and photometric data show no obvious chromospheric activity of LY And.

  6. Photometry of AM Herculis - A slow optical pulsar

    NASA Technical Reports Server (NTRS)

    Priedhorsky, W. C.; Krzeminski, W.

    1978-01-01

    Multicolor photometry of the X-ray binary AM Her suggests that the red component of the optical flux is closely related to the source of optical circular polarization in the system. It is concluded from the periodic modulation of flux in the U through R bands, which is particularly well-defined when plotted as color curves, that the primary and secondary minima are neither eclipses by a secondary star nor eclipses by a hot spot. It is suggested that the primary minimum in the visual light curve is the eclipse of a region of intense optical emission in the magnetic field near the surface of a degenerate dwarf by that dwarf itself.

  7. Two-Color V and R CCD Photometry of the SW Sex-Type Eclipsing Cataclysmic Variable V1315 Aql

    NASA Astrophysics Data System (ADS)

    Andronov, I. L.; Baklanov, A. V.; Burwitz, V.

    2005-08-01

    The V-R color index shows a complicated behaviour during the eclipse, being largest at the brightness minimum, but showing asymmetric minima at phases -0.07 and +0.13. The hump at the light curve occurs after the eclipse, contrary to systems with the "hot spot". The phases of minima in V and R are 0.0092(17) and 0.0062(17), respectively, for the mean date JD=2453202.

  8. Orbital evolution and search for eccentricity and apsidal motion in the eclipsing HMXB 4U 1700-37

    NASA Astrophysics Data System (ADS)

    Islam, Nazma; Paul, Biswajit

    2016-09-01

    In the absence of detectable pulsations in the eclipsing high-mass X-ray binary 4U 1700-37, the orbital period decay is necessarily determined from the eclipse timing measurements. We have used the earlier reported mid-eclipse time measurements of 4U 1700-37 together with the new measurements from long-term light curves obtained with the all sky monitors RXTE-ASM, Swift-BAT and MAXI-GSC, as well as observations with RXTE-PCA, to measure the long-term orbital evolution of the binary. The orbital period decay rate of the system is estimated to be {dot{P}}/P = -(4.7 ± 1.9) × 10^{-7} yr-1, smaller compared to its previous estimates. We have also used the mid-eclipse times and the eclipse duration measurements obtained from 10-years-long X-ray light curve with Swift-BAT to separately put constraints on the eccentricity of the binary system and attempted to measure any apsidal motion. For an apsidal motion rate greater than 5 deg yr-1, the eccentricity is found to be less than 0.008, which limits our ability to determine the apsidal motion rate from the current data. We discuss the discrepancy of the current limit of eccentricity with the earlier reported values from radial velocity measurements of the companion star.

  9. Spectral Eclipse Timing

    NASA Astrophysics Data System (ADS)

    Dobbs-Dixon, Ian; Agol, Eric; Deming, Drake

    2015-12-01

    We utilize multi-dimensional simulations of varying equatorial jet strength to predict wavelength-dependent variations in the eclipse times of gas-giant planets. A displaced hot spot introduces an asymmetry in the secondary eclipse light curve that manifests itself as a measured offset in the timing of the center of eclipse. A multi-wavelength observation of secondary eclipse, one probing the timing of barycentric eclipse at short wavelengths and another probing at longer wavelengths, will reveal the longitudinal displacement of the hot spot and break the degeneracy between this effect and that associated with the asymmetry due to an eccentric orbit. The effect of time offsets was first explored in the IRAC wavebands by Williams et al. Here we improve upon their methodology, extend to a broad range of wavelengths, and demonstrate our technique on a series of multi-dimensional radiative-hydrodynamical simulations of HD 209458b with varying equatorial jet strength and hot-spot displacement. Simulations with the largest hot-spot displacement result in timing offsets of up to 100 s in the infrared. Though we utilize a particular radiative hydrodynamical model to demonstrate this effect, the technique is model independent. This technique should allow a much larger survey of hot-spot displacements with the James Webb Space Telescope than currently accessible with time-intensive phase curves, hopefully shedding light on the physical mechanisms associated with thermal energy advection in irradiated gas giants.

  10. Distance Estimation for Eclipsing X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Wilson, Robert E.; Paul, B.; Raichur, H.

    2006-06-01

    Recent interest in eclipsing binaries as distance indicators leads naturally into direct distance estimation for X-ray pulsars by combination of pulse arrival times, radial velocities, X-ray eclipse duration, and spectra. Optical light curves may help in some cases by measuring tides and irradiation, although dynamical tides in eccentric systems limit light curve usefulness. Pulse arrivals give an absolute scale and also orbit shape and orientation, which may be poorly known from radial velocities. For example, orbital eccentricity of 0.09 is known from Vela X1 pulse arrivals, although optical velocities are too noisy to measure eccentricity accurately. Combined pulse and optical velocity data give mass information. A lower limit to sin i from eclipse duration sets a lower limit to R2, and for the general eccentric case. A mass ratio sets lobe size and thus an upper limit to R2, so boxing R2 within a narrow range may be possible. T2 can be assessed from spectra so EB distance estimation can work if magnitude is known in one or more standard bands such as B or V. Realistic distance uncertainties are explored. In regard to new observations, Vela X-1 was observed by RXTE over about nine days in January 2005, including an eclipse of about 3.5 days. We extracted the light curves with time resolution 0.125 s. Spin period measurements by the Chi square criterion show Doppler variation with orbital phase and mean spin period 283.5 s. Pulse profiles of that period were averaged in sets of 10 at 138 phases. Cross correlation for the first 40 pulses show the expected Doppler arrival time variation. As the Vela X-1 pulse period is large compared to light travel time across the orbit, the pulses are already phase connected. Support is by U.S. National Science Foundation grant 0307561.

  11. APSIDAL MOTION AND A LIGHT CURVE SOLUTION FOR 13 LMC ECCENTRIC ECLIPSING BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zasche, P.; Wolf, M.; Vraštil, J.

    2015-12-15

    New CCD observations for 13 eccentric eclipsing binaries from the Large Magellanic Cloud were carried out using the Danish 1.54 m telescope located at the La Silla Observatory in Chile. These systems were observed for their times of minimum and 56 new minima were obtained. These are needed for accurate determination of the apsidal motion. Besides that, in total 436 times of minimum were derived from the photometric databases OGLE and MACHO. The O – C diagrams of minimum timings for these B-type binaries were analyzed and the parameters of the apsidal motion were computed. The light curves of thesemore » systems were fitted using the program PHOEBE, giving the light curve parameters. We derived for the first time relatively short periods of the apsidal motion ranging from 21 to 107 years. The system OGLE-LMC-ECL-07902 was also analyzed using the spectra and radial velocities, resulting in masses of 6.8 and 4.4 M{sub ⊙} for the eclipsing components. For one system (OGLE-LMC-ECL-20112), the third-body hypothesis was also used to describe the residuals after subtraction of the apsidal motion, resulting in a period of about 22 years. For several systems an additional third light was also detected, which makes these systems suspect for triplicity.« less

  12. Apsidal rotation in the eclipsing binary AG Persei

    NASA Technical Reports Server (NTRS)

    Koch, Robert H.; Woodward, Edith J.

    1987-01-01

    New three-filter light curves of AG Per are given. These yield times of minimum light in accord with the known rate of apsidal rotation but do not improve that rate. These light curves and all other published historical ones have been treated with the code EBOP and are shown to give largely consistent geometric and photometric parameters no matter which orientation of the orbit is displayed to the observer.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Zhao; Gies, Douglas R.; Fuller, Jim, E-mail: guo@astro.gsu.edu, E-mail: gies@chara.gsu.edu, E-mail: jfuller@caltech.edu

    KIC 3230227 is a short period (P  ≈ 7.0 days) eclipsing binary with a very eccentric orbit ( e  = 0.6). From combined analysis of radial velocities and Kepler light curves, this system is found to be composed of two A-type stars, with masses of M {sub 1} = 1.84 ± 0.18  M {sub ⊙}, M {sub 2} = 1.73 ± 0.17  M {sub ⊙} and radii of R {sub 1} = 2.01 ± 0.09  R {sub ⊙}, R {sub 2} = 1.68 ± 0.08 R {sub ⊙} for the primary and secondary, respectively. In addition to an eclipse, the binary light curve shows a brightening and dimming near periastron, making this a somewhat rare eclipsing heartbeat star system.more » After removing the binary light curve model, more than 10 pulsational frequencies are present in the Fourier spectrum of the residuals, and most of them are integer multiples of the orbital frequency. These pulsations are tidally driven, and both the amplitudes and phases are in agreement with predictions from linear tidal theory for l  = 2, m  = −2 prograde modes.« less

  14. Photometric, Spectroscopic, and X-ray Analysis of the Cool Algol BD+05 706

    NASA Astrophysics Data System (ADS)

    Torres, G.; Mader, J.; Marschall, L. A.; Neuhaeuser, R.; Duffy, A. S.

    2000-12-01

    BD+05 706 is an example of a rare class of a dozen or so interacting binaries called ``cool Algols", in which both components of the system are late-type stars. By contrast, the ``classical Algols" are systems in which the star transfering mass is of late spectral type, but the mass gainer is much hotter. BD+05 706 was shown previously to be eclipsing (Marschall, Torres & Neuhaeuser 1998, BAAS, 30, 835). In this paper we report our complete analysis of BVRI light curves for the system obtained at Gettysburg College Observatory, together with spectroscopy from the Harvard-Smithsonian Center for Astrophysics reported previously (Torres, Neuhaeuser & Wichmann 1998, AJ, 115, 2028), and X-ray observations obtained with the ROSAT satellite. Our light curve analysis indicates the presence of spots, most likely on the more massive, active component (primary), which change from season to season. Our results confirm the semi-detached nature of the system, and combined with the spectroscopy they have allowed us to obtain the most precise absolute masses and radii for any object of this class. Our X-ray light curve for BD+05 706 shows the primary eclipse clearly, but no sign of a secondary eclipse, confirming that the primary is the active star. Strong X-ray flares are also visible.

  15. The First Photometric and Period Investigation of the Total Eclipse Binary System V0474 Cam

    NASA Astrophysics Data System (ADS)

    Guo, D. F.; Li, K.; Hu, S. M.; Chen, X.

    2018-06-01

    Three complete multi-band light curves of the W UMa-type binary V0474 Cam, which display a total eclipse, were obtained on four nights during two observing seasons from 2016 February 9 to 2017 February 24. By analyzing all obtainable times of light minimum, including 8 newly calculated, a downward parabolic change was found to be overlaid with a possible cyclic oscillation. The secular period decrease is determined to be {dP}/{dt}=-9.42 × {10}-7 days yr‑1, which can be explained by the existence of angular momentum loss from the binary system via a magnetic stellar wind. The cyclic oscillation, with a 3.44-yr period and a 0.0015-days amplitude, could be explained more plausibly by the magnetic activity, although the light-travel time effect as result of the present of a third component cannot be excluded. According to the three complete light curves, the intrinsic variations are obvious, particularly in the deepness at primary minimum and in the phase around 0.75. The light curve of V0474 Cam is symmetric observed in February 2016, then it become asymmetric in December 2016 and February 2017. The W-D program was adopted to investigate the multi-band light curves and the results indicate V0474 Cam is a W-subtype binary (the less massive component is hotter). A mass ratio of q = 3.230 was derived by analyzing the symmetric light curves observed at February in 2016. After accepting the results derived from the symmetric light curves as the references, other two sets of asymmetrical light curves can be well resolved through adding a cool spot on the more massive component.

  16. The infrared counterpart of the eclipsing X-ray binary HO253 + 193

    NASA Technical Reports Server (NTRS)

    Zuckerman, B.; Becklin, E. E.; Mclean, I. S.; Patterson, Joseph

    1992-01-01

    We report the identification of the infrared counterpart of the pulsating X-ray source HO253 + 193. It is a highly reddened star varying in K light with a period near 3 hr, but an apparent even-odd effect in the light curve implies that the true period is 6.06 hr. Together with the recent report of X-ray eclipses at the latter period, this establishes the close binary nature of the source. Infrared minimum occurs at X-ray minimum, certifying that the infrared variability arises from the tidal distortion of the lobe-filling secondary. The absence of a point source at radio wavelengths, plus the distance derived from the infrared data, suggests that the binary system is accidentally located behind the dense core of the molecular cloud Lynds 1457. The eclipses and pulsations in the X-ray light curve, coupled with the hard X-ray spectrum and low luminosity, demonstrate that HO253 + 193 contains an accreting magnetic white dwarf, and hence belongs to the 'DQ Herculis' class of cataclysmic variables.

  17. Constraining Relativistic Bow Shock Properties in Rotation-powered Millisecond Pulsar Binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wadiasingh, Zorawar; Venter, Christo; Böttcher, Markus

    2017-04-20

    Multiwavelength follow-up of unidentified Fermi sources has vastly expanded the number of known galactic-field “black widow” and “redback” millisecond pulsar binaries. Focusing on their rotation-powered state, we interpret the radio to X-ray phenomenology in a consistent framework. We advocate the existence of two distinct modes differing in their intrabinary shock orientation, distinguished by the phase centering of the double-peaked X-ray orbital modulation originating from mildly relativistic Doppler boosting. By constructing a geometric model for radio eclipses, we constrain the shock geometry as functions of binary inclination and shock standoff R {sub 0}. We develop synthetic X-ray synchrotron orbital light curvesmore » and explore the model parameter space allowed by radio eclipse constraints applied on archetypal systems B1957+20 and J1023+0038. For B1957+20, from radio eclipses the standoff is R {sub 0} ∼ 0.15–0.3 fraction of binary separation from the companion center, depending on the orbit inclination. Constructed X-ray light curves for B1957+20 using these values are qualitatively consistent with those observed, and we find occultation of the shock by the companion as a minor influence, demanding significant Doppler factors to yield double peaks. For J1023+0038, radio eclipses imply R {sub 0} ≲ 0.4, while X-ray light curves suggest 0.1 ≲ R {sub 0} ≲ 0.3 (from the pulsar). Degeneracies in the model parameter space encourage further development to include transport considerations. Generically, the spatial variation along the shock of the underlying electron power-law index should yield energy dependence in the shape of light curves, motivating future X-ray phase-resolved spectroscopic studies to probe the unknown physics of pulsar winds and relativistic shock acceleration therein.« less

  18. Preliminary Studies of Interacting Binaries From NURO Observations : V963 Cygni and GSC 1419 0091

    NASA Astrophysics Data System (ADS)

    Samec, R. G.; Jones, S. M.; Scott, T.; Branning, J.; Miller, J.; Faulkner, D. R.; Hawkins, N. C.

    2005-12-01

    We present preliminary analyses of V963 and V965 Cygni based on observations taken at the National Undergraduate Research Observatory (NURO). Our CCD observations were taken 07-12 March 2005 and 19-25 July 2004 by DRF,RGS, and NCH with the Lowell Observatory 31-inch reflector. Standard UBVRI filters were used. Preliminary light curve analyses and updated periodicity studies are presented for these variables. V963 Cyg (GSC 2656 1995,α (2000) = 19h 44m 04.92s, δ (2000) = +31 41 50.17) is a detached binary discovered by Wachmann (Ast Abh Ham St VI, #1, 1961). The eclipse depths are nearly equal, 0.78 and 0.67 magnitudes in in V in the primary and secondary eclipses, respectively, causing observers to MISTAKINGLY classify it as an Algol-type system. Thus the two stars are similar in temperature and the period has to be DOUBLED. The curves appear fairlysymmetrical with a depressed section following the primary eclipse in R and I about 0.2 phase units wide. In BVRI, 100 to 130 observations were taken along with 75 in U. We determined three new times of minimum light, two secondary eclipses, HJD Min II = 2453207.76857±0.00029d and 2453211.9540±0.0032d, and one primary eclipse HJD Min I = 2453209.86073±0.00095d. A corrected period and an improved ephemeris was computed using available times of minimum light: HJD Min I = 2453209.8616(±0.0011)d + 1.39466792(±0.00000019)*E. GSC 1419 0091 (Brh V132) [α (2000) = 10h 11m 59.152s,δ (2000) = +16 52 30.28] is an overcontact binary discovered by Klaus Bernhard (BAV, http://www.var-mo.de/star/brh_v132.htm). We took approximately 60-65 observations in each of B,V,R, and I. We determined four new times of minimum light: HJD Min I = 2453437.8293(±0.0003) and 2453441.8291(±0.0019), and HJD Min II = 2453437.6973(±0.0012) and 2453442.76317(±0.0005). We computed an improved ephemeris from all available times of minimum and low light: HJD Min I = 2452754.4733(±0.0030)d + 0.2667251*E(±0.0000011). The light curves show shallow eclipse amplitudes of 0.46 and 0.43 mags in B and V, respectively, and a time of constant light in the secondary eclipse of 31 m. We wish to thank the NURO for their allocation of observing time, as well as NASA and the American Astronomical Society for their support in paying for travel and publication expenses.

  19. I Think I See the Light Curve: The Good (and Bad) of Exoplanetary Inverse Problems

    NASA Astrophysics Data System (ADS)

    Schwartz, Joel Colin

    Planets and planetary systems change in brightness as a function of time. These "light curves" can have several features, including transits where a planet blocks some starlight, eclipses where a star obscures a planet's flux, and rotational variations where a planet reflects light differently as it spins. One can measure these brightness changes--which encode radii, temperatures, and more of planets--using current and planned telescopes. But interpreting light curves is an inverse problem: one has to extract astrophysical signals from the effects of imperfect instruments. In this thesis, I first present a meta study of planetary eclipses taken with the Spitzer Space Telescope. We find that eclipse depth uncertainties may be overly precise, especially those in early Spitzer papers. I then offer the first rigorous test of BiLinearly-Interpolated Subpixel Sensitivity (BLISS) mapping, which is widely used to model detector systematics of Spitzer. We show that this ad hoc method is not statistically sound, but it performs adequately in many real-life scenarios. Next, I present the most comprehensive empirical analysis to date on the energy budgets and bulk atmospherics of hot Jupiters. We find that dayside and nightside measurements suggest many hot Jupiters have reflective clouds in the infrared, and that day-night heat transport decreases as these planets are irradiated more. I lastly describe a semi-analytical model for how a planet's surfaces, clouds, and orbital geometry imprint on a light curve. We show that one can strongly constrain a planet's spin axis--and even spin direction--from modest high-precision data. Importantly, these methods will be useful for temperate, terrestrial planets with the launch of the James Webb Space Telescope and beyond.

  20. New Light-Time Curve of Eclipsing Binary AM Leo

    NASA Astrophysics Data System (ADS)

    Gorda, S. Yu.; Matveeva, E. A.

    2017-12-01

    We present 72 photoelectric and CCD times of minima of eclipsing binary AM Leo obtained mainly during at Kourovka Astronomical Observatory of the Ural Federal University in Russia. We obtained new values of period of 50.5 years and eccentricity of 0.28 of the orbit of the eclipsing pair around the mass center of the system AM Leo with the third body. These results have been received taking into account the times of minima taken from literature and obtained from to .

  1. VX Her: Eclipsing Binary System or Single Variable Star

    NASA Astrophysics Data System (ADS)

    Perry, Kathleen; Castelaz, Michael; Henson, Gary; Boghozian, Andrew

    2015-01-01

    VX Her is a pulsating variable star with a period of .4556504 days. It is believed to be part of an eclipsing binary system (Fitch et al. 1966). This hypothesis originated from Fitch seeing VX Her's minimum point on its light curve reaching a 0.7 magnitude fainter than normal and remaining that way for nearly two hours. If VX Her were indeed a binary system, I would expect to see similar results with a fainter minimum and a broader, more horizontal dip. Having reduced and analyzed images from the Southeastern Association for Research in Astronomy Observatory in Chile and Kitt Peak, as well as images from a 0.15m reflector at East Tennessee State University, I found that VX Her has the standard light curve of the prototype variable star, RR Lyrae. Using photometry, I found no differing features in its light curve to suggest that it is indeed a binary system. However, more observations are needed in case VX Her is a wide binary.

  2. HD 47755, a new eclipsing binary

    NASA Technical Reports Server (NTRS)

    Koch, R. H.; Bradstreet, D. H.; Hrivnak, B. J.; Pfeiffer, R. J.; Perry, P. M.

    1986-01-01

    The IUE spectra of the close binary star HD 47755 have been examined in order to determine its geometry, chemical composition, and light curve. UBV fluxes in the spectra, when dereddened for E(B-V) = 0.09 yield an effective temperature of 16,500 K. The ratio of the mean radii of the stars is found to agree well with an old blueband spectrophotometric value. Eclipses in the binary have been observed and a complex green light curve is derived. It is suggested that the wind from at least one of the components of HD 47755 is the source of the complexity in the light curve. The geometry of the HD 47755 is compared to that of V 641 Mon, A definite cluster member of NGC 2264. The interstellar line spectrum is found to be similar to that of V 641 Mon and the column densities for a few interstellar ions are given in a table. Evaluation of the nonastrometric evidence indicates that HD 47755 is also a member of NGC 2264.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Chun-Hwey; Song, Mi-Hwa; Yoon, Jo-Na

    A photometric study of BD And was made through the analysis of two sets of new BVR light curves. The light curves with migrating photometric waves outside eclipse show that BD And is a short-period RS CVn-type binary star. The analysis of all available timings reveals that the orbital period has varied in a strictly cyclical way with a period of 9.2 yr. The periodic variation most likely arises from the light-time effect due to a tertiary moving in a highly elliptical orbit (e {sub 3} = 0.76). The Applegate mechanism could not operate properly in the eclipsing pair. Themore » light curves were modeled with two large spots on the hotter star and a large third light amounting to about 14% of the total systemic light. BD And is a triple system: a detached binary system consisting of two nearly equal solar-type stars with an active primary star and a G6-G7 tertiary dwarf. The absolute dimensions of the eclipsing pair and tertiary components were determined. The three components with a mean age of about 5.8 Gyr are located at midpositions in main-sequence bands. The radius of the secondary is about 17% larger than that deduced from stellar models. The orbital and radiometric characteristics of the tertiary are intensively investigated. One important feature is that the mutual inclination between two orbits is larger than 60°, implying that Kozai cycles had occurred very efficiently in the past. The possible past and future evolutions of the BD And system, driven by KCTF and MBTF, are also discussed.« less

  4. Effects of interstellar dust scattering on the X-ray eclipses of the LMXB AX J1745.6-2901 in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Jin, Chichuan; Ponti, Gabriele; Haberl, Frank; Smith, Randall; Valencic, Lynne

    2018-07-01

    AX J1745.6-2901 is an eclipsing low-mass X-ray binary in the Galactic Centre (GC). It shows significant X-ray excess emission during the eclipse phase, and its eclipse light curve shows an asymmetric shape. We use archival XMM-Newton and Chandra observations to study the origin of these peculiar X-ray eclipsing phenomena. We find that the shape of the observed X-ray eclipse light curves depends on both photon energy and the shape of the source extraction region, and also shows differences between the two instruments. By performing detailed simulations for the time-dependent X-ray dust-scattering halo, as well as directly modelling the observed eclipse and non-eclipse halo profiles of AX J1745.6-2901, we obtained solid evidence that its peculiar eclipse phenomena are indeed caused by the X-ray dust scattering in multiple foreground dust layers along the line of sight (LOS). The apparent dependence on the instruments is caused by different instrumental point spread functions. Our results can be used to assess the influence of dust-scattering in other eclipsing X-ray sources, and raise the importance of considering the timing effects of dust-scattering halo when studying the variability of other X-ray sources in the GC, such as Sgr A⋆. Moreover, our study of halo eclipse reinforces the existence of a dust layer local to AX J1745.6-2901 as reported by Jin et al. (2017), as well as identifying another dust layer within a few hundred parsecs to the Earth, containing up to several tens of percent LOS dust, which is likely to be associated with the molecular clouds in the Solar neighbourhood. The remaining LOS dust is likely to be associated with the molecular clouds located in the Galactic disc in-between.

  5. On the development and applications of automated searches for eclipsing binary stars

    NASA Astrophysics Data System (ADS)

    Devor, Jonathan

    Eclipsing binary star systems provide the most accurate method of measuring both the masses and radii of stars. Moreover, they enable testing tidal synchronization and circularization theories, as well as constraining models of stellar structure and dynamics. With the recent availability of large-scale multi-epoch photometric datasets, we are able to study eclipsing binary stars en masse. In this thesis, we analyzed 185,445 light curves from ten TrES fields, and 218,699 light curves from the OGLE II bulge fields. In order to manage such large quantities of data, we developed a pipeline with which we systematically identified eclipsing binaries, solved for their geometric orientations, and then found their components' absolute properties. Following this analysis, we assembled catalogs of eclipsing binaries with their models, computed statistical distributions of their properties, and located rare cases for further follow-up. Of particular importance are low-mass eclipsing binaries, which are rare, yet critical for resolving the ongoing mass-radius discrepancy between theoretical models and observations. To this end, we have discovered over a dozen new low-mass eclipsing binary candidates, and spectroscopically confirmed the masses of five of them. One of these confirmed candidates, T-Lyr1-17236, is especially interesting because of its uniquely long orbital period. We examined T-Lyr1-17236 in detail and found that it is consistent with the magnetic disruption hypothesis for explaining the observed mass-radius discrepancy. Both the source code of our pipeline and the complete list of our candidates are freely available.

  6. Photometric Analysis and Modeling of Five Mass-Transferring Binary Systems

    NASA Astrophysics Data System (ADS)

    Geist, Emily; Beaky, Matthew; Jamison, Kate

    2018-01-01

    In overcontact eclipsing binary systems, both stellar components have overfilled their Roche lobes, resulting in a dumbbell-shaped shared envelope. Mass transfer is common in overcontact binaries, which can be observed as a slow change on the rotation period of the system.We studied five overcontact eclipsing binary systems with evidence of period change, and thus likely mass transfer between the components, identified by Nelson (2014): V0579 Lyr, KN Vul, V0406 Lyr, V2240 Cyg, and MS Her. We used the 31-inch NURO telescope at Lowell Observatory in Flagstaff, Arizona to obtain images in B,V,R, and I filters for V0579 Lyr, and the 16-inch Meade LX200GPS telescope with attached SBIG ST-8XME CCD camera at Juniata College in Huntingdon, Pennsylvania to image KN Vul, V0406 Lyr, V2240 Cyg, and MS Her, also in B,V,R, and I.After data reduction, we created light curves for each of the systems and modeled the eclipsing binaries using the BinaryMaker3 and PHOEBE programs to determine their fundamental physical parameters for the first time. Complete light curves and preliminary models for each of these neglected eclipsing binary systems will be presented.

  7. Mapping the accretion disc of the short period eclipsing binary SDSS J0926+3624

    NASA Astrophysics Data System (ADS)

    Schlindwein, Wagner; Baptista, Raymundo

    2018-05-01

    We report the analysis of time-series of optical photometry of SDSS J0926+3624 collected with the Liverpool Robotic Telescope between 2012 February and March while the object was in quiescence. We combined our median eclipse timing with those in the literature to revise the ephemeris and confirm that the binary period is increasing at a rate \\dot{P}=(3.2 ± 0.4)× 10^{-13} s/s. The light curves show no evidence of either the orbital hump produced by a bright spot at disc rim or of superhumps; the average out-of-eclipse brightness level is consistently lower than previously reported. The eclipse map from the average light curve shows a hot white dwarf surrounded by a faint, cool accretion disc plus enhanced emission along the gas stream trajectory beyond the impact point at the outer disc rim, suggesting the occurrence of gas stream overflow/penetration at that epoch. We estimate a disc mass input rate of \\dot{M}=(9 ± 1)× 10^{-12} M_⊙ yr^{-1}, more than an order of magnitude lower than that expected from binary evolution with conservative mass transfer.

  8. Low-mass Pre-He White Dwarf Stars in Kepler Eclipsing Binaries with Multi-periodic Pulsations

    NASA Astrophysics Data System (ADS)

    Zhang, X. B.; Fu, J. N.; Liu, N.; Luo, C. Q.; Ren, A. B.

    2017-12-01

    We report the discovery of two thermally bloated low-mass pre-He white dwarfs (WDs) in two eclipsing binaries, KIC 10989032 and KIC 8087799. Based on the Kepler long-cadence photometry, we determined comprehensive photometric solutions of the two binary systems. The light curve analysis reveals that KIC 10989032 is a partially eclipsed detached binary system containing a probable low-mass WD with the temperature of about 10,300 K. Having a WD with the temperature of about 13,300, KKIC 8087799 is typical of an EL CVn system. By utilizing radial velocity measurements available for the A-type primary star of KIC 10989032, the mass and radius of the WD component are determined to be 0.24+/- 0.02 {M}⊙ and 0.50+/- 0.01 {R}⊙ , respectively. The values of mass and radius of the WD in KIC 8087799 are estimated as 0.16 ± 0.02 M ⊙ and 0.21 ± 0.01 R ⊙, respectively, according to the effective temperature and mean density of the A-type star derived from the photometric solution. We therefore introduce KIC 10989032 and KIC 8087799 as the eleventh and twelfth dA+WD eclipsing binaries in the Kepler field. Moreover, both binaries display marked multi-periodic pulsations superimposed on binary effects. A preliminary frequency analysis is applied to the light residuals when subtracting the synthetic eclipsing light curves from the observations, revealing that the light pulsations of the two systems are both due to the δ Sct-type primaries. We hence classify KIC 10989032 and KIC 8087799 as two WD+δ Sct binaries.

  9. Photometric Study of The Solar Type, Total Eclipsing Binary, TYC 2853-18-1

    NASA Astrophysics Data System (ADS)

    Samec, Ronald G.; Figg, E. R.; Faulkner, D.; Van Hamme, W.

    2009-12-01

    We present an analysis of the Solar-Type eclipsing binary, TYC 2853-18-1 (Persei), based on observations taken at the National Undergraduate Research Observatory (NURO) and the Southeastern Association for Research in Astronomy (SARA) in the Fall, 2007 and Spring, 2008. Light curves, a period study and a synthetic light curve solution are presented for this variable which was recently discovered by TYCHO as an eclipsing binary (2006, IBVS 5700). Our CCD observations of TYC 2853-18-1 [GSC 2853 0018, RA(2000) = 02h 47m 07.996s, DEC(2000) = +41° 22’ 32.80"] were taken on 20,27 December, 2007 at Lowell Observatory with the 0.81-m reflector with NURO time and 25 November, 3 December, 2007 and 19 February, 2008 via remote observing from Kitt Peak with SARA. NURO observations were take with the thermoelectrically cooled (<-100C) 2KX2K CCD NASACAM. Standard BVRcIc Johnson-Cousins filters were used. Our light curve solution was calculated with the 2004 Wilson code. Mean times of eclipse include, HJDMinI = 2454516.6131(±0.0005), 2454440.52974(±0.00008), 2454438.7605 (±0.0001), 2454462.6464 (±0.0003), HJDMinII = 2454455.71985 (±0.00060), 255462.7943 (±0.0002). These, including the epoch by ROTSE (2006, IBVS 5699) and the epoch calculated by the Wilson code, yielded the following ephemeris: HJD Hel Min I =2451370.8753(±.0.0010)d + 0.2949039 (±0.0000001)E Our unspotted Wilson code solution reveals TYC 2853-18-1 to be a W-type W UMa contact binary with unequal eclipse depths (amplitudes are 0.72 and 0.61 mags in V). It has shallow contact (8% fill-out) and a brief, but total eclipse. Its curves dictate a mass ratio of 2.62±0.01, a component temperature difference of only 73±5 ° K and an inclination of 82.0±0.2°. Spot activity is indicated by night to night variations. We wish to thank the NURO and SARA for their allocation of observing time, as well as NASA and the AAS for their support in paying for travel and publication expenses.

  10. Double-lined M dwarf eclipsing binaries from Catalina Sky Survey and LAMOST

    NASA Astrophysics Data System (ADS)

    Lee, Chien-Hsiu; Lin, Chien-Cheng

    2017-02-01

    Eclipsing binaries provide a unique opportunity to determine fundamental stellar properties. In the era of wide-field cameras and all-sky imaging surveys, thousands of eclipsing binaries have been reported through light curve classification, yet their basic properties remain unexplored due to the extensive efforts needed to follow them up spectroscopically. In this paper we investigate three M2-M3 type double-lined eclipsing binaries discovered by cross-matching eclipsing binaries from the Catalina Sky Survey with spectroscopically classified M dwarfs from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope survey data release one and two. Because these three M dwarf binaries are faint, we further acquire radial velocity measurements using GMOS on the Gemini North telescope with R˜ 4000, enabling us to determine the mass and radius of individual stellar components. By jointly fitting the light and radial velocity curves of these systems, we derive the mass and radius of the primary and secondary components of these three systems, in the range between 0.28-0.42M_⊙ and 0.29-0.67R_⊙, respectively. Future observations with a high resolution spectrograph will help us pin down the uncertainties in their stellar parameters, and render these systems benchmarks to study M dwarfs, providing inputs to improving stellar models in the low mass regime, or establishing an empirical mass-radius relation for M dwarf stars.

  11. 1SWASP J200503.05-343726.5: A high mass ratio eclipsing binary near the period limit

    NASA Astrophysics Data System (ADS)

    Bin, Zhang; Shengbang, Qian; Zejda, Miloslav; Liying, Zhu; Nianping, Liu

    2017-07-01

    First CCD photometric light curves of the eclipsing binary system 1SWASP J200503.05-343726.5 are presented. Our complete light curves in V, R and I bands using the Bessell filter show an out-of-eclipsing distortion, which means that the components of the system may be active. The preliminary photometric solutions with a cool star-spot are derived by using the 2013 version of the Wilson-Devinney (W-D) code. The photometric solutions suggest that 1SWASP J200503.05-343726.5 is a shallow-contact eclipsing binary(f = 9.0 %) with a mass ratio of q = 1.0705 , which is very high for late-type binary systems near the period limit. The primary component is about 230 K hotter than the secondary component. Based on our new CCD eclipse times, the orbital period change was analyzed. According to O - C diagram, the orbital period of the 1SWASP J200503.05-343726.5 shows an increase at a rate of P˙ = + 5.43 ×10-8 days year-1. The period increase may be caused by mass transfer from the less massive component to the more massive one. This shallow-contact system may be formed from a detached short-period binary via orbital shrinkage because of dynamical interactions with a third component or by magnetic braking.

  12. Kottamia 74-inch telescope discovery of the new eclipsing binary 2MASS J20004638 + 0547475.: First CCD photometry and light curve analysis

    NASA Astrophysics Data System (ADS)

    Darwish, M. S.; Shokry, A.; Saad, S. M.; El-Sadek, M. A.; Essam, A.; Ismail, M.

    2017-05-01

    A CCD photometric study is presented for the eclipsing binary system 2MASS J20004638 + 0547475. Observations of the system were obtained in the V, R and I colours with the 2Kx2K CCD attached to 1.88 m Kottamia Optical Telescope. New times of light minimum and new ephemeris were obtained. The V, R and I light curves were analyzed using the PHOEBE 0.31 program to determine geometrical and physical parameters of the system. The results show that 2MASS J20004638 + 0547475, is A-Type WUMa and is an overcontact binary with high fill-out factor = 69%. The current evolutionary status of the system indicates that the primary component lies very close to the main sequence while the secondary is evolved. The asymmetric maxima were studied and a modeling of the hot spot parameters is given.

  13. Suzaku Observation of the Dwarf Nova V893 Scorpii: The Discovery of a Partial X-Ray Eclipse

    NASA Technical Reports Server (NTRS)

    Mukai, Koji; Zietsman, E.; Still, M.

    2008-01-01

    V893 Sco is an eclipsing dwarf nova that had attracted little attention from X-ray astronomers until it was proposed as the identification of an RXTE all-sky slew survey (XSS) source. Here we report on the po inted X-ray observations of this object using Suzaku. We confirm V893 Sco to be X-ray bright, whose spectrum is highly absorbed for a dwar f nova. We have also discovered a partial X-ray eclipse in V893 Sco. This is the first time that a partial eclipse is seen in Xray light c urves of a dwarf nova. We have successfully modeled the gross features of the optical and X-ray eclipse light curves using a boundary layer geometry of the X-ray emission region. Future observations may lead to confirmation of this basic picture, and allow us to place tight co nstraints on the size of the X-ray emission region. The partial X-ray eclipse therefore should make V893 Sco a key object in understanding the physics of accretion in quiescent dwarf nova.

  14. First photometric study of two southern eclipsing binaries IS Tel and DW Aps

    NASA Astrophysics Data System (ADS)

    Özer, S.; Sürgit, D.; Erdem, A.; Öztürk, O.

    2017-02-01

    The paper presents the first photometric analysis of two southern eclipsing binary stars, IS Tel and DW Aps. Their V light curves from the All Sky Automated Survey were modelled by using Wilson-Devinney method. The final models give these two Algol-like binary stars as having detached configurations. Absolute parameters of the components of the systems were also estimated.

  15. Dramatic Evolution of the Disk-shaped Secondary in the Orion Trapezium Star θ1 Ori B1 (BM Ori): MOST Satellite Observations

    NASA Astrophysics Data System (ADS)

    Windemuth, Diana; Herbst, William; Tingle, Evan; Fuechsl, Rachel; Kilgard, Roy; Pinette, Melanie; Templeton, Matthew; Henden, Arne

    2013-05-01

    The eclipsing binary θ1 Orionis B1, variable star designation BM Ori, is the faintest of the four well-known Trapezium stars at the heart of the Orion Nebula. The primary is a B3 star (~6 M ⊙) but the nature of the secondary (~2 M ⊙) has long been mysterious, since the duration and shape of primary eclipse are inappropriate for any sort of ordinary star. Here we report nearly continuous photometric observations obtained with the MOST satellite over ~4 cycles of the 6.47 d binary period. The light curve is of unprecedented quality, revealing a deep, symmetric primary eclipse as well as a clear reflection effect and secondary eclipse. In addition, there are other small disturbances, some of which repeat at the same phase over the four cycles monitored. The shape of the primary light curve has clearly evolved significantly over the past 40 years. While its overall duration and depth have remained roughly constant, the slopes of the descent and ascent phases are significantly shallower now than in the past and its distinctive flat-bottomed "pseudo-totality" is much less obvious or even absent in the most recent data. We further demonstrate that the primary eclipse was detected at X-ray wavelengths during the Chandra Orion Ultradeep Project (COUP) study. The light curve continues to be well modeled by a self-luminous and reflective disk-shaped object seen nearly edge-on orbiting the B3 primary. The dramatic change in shape over four decades is modeled as an opacity variation in a tenuous outer envelope or disk of the secondary object. We presume that the secondary is an extremely young protostar at an earlier evolutionary phase than can be commonly observed elsewhere in the Galaxy and that the opacity variations observed are related to its digestion of some accreted matter over the last 50-100 years. Indeed, this object deserves continued observational and theoretical attention as the youngest known eclipsing binary system.

  16. Discovery of four new low-mass white-dwarf companions in the Kepler data

    NASA Astrophysics Data System (ADS)

    Faigler, Simchon; Kull, Ilya; Mazeh, Tsevi; Kiefer, Flavien; Latham, David W.; Bloemen, Steven

    2015-12-01

    We report the discovery of four new short-period eclipsing systems in the Kepler light curves, consisting of an A-star primary and a low-mass white-dwarf (WD) secondary (dA+WD) - KIC 4169521, KOI-3818, KIC 2851474 and KIC 9285587. These add to the 6 Kepler, and 19 non-Kepler, previously known short-period eclipsing dA+WD binaries.The discoveries were made through searching the light curves of bright Kepler stars for BEaming, Ellipsoidal and Reflection (BEER) modulations that are consistent with a compact companion, using the BEER search algorithm. This was followed by inspection of the search top hits, looking for eclipsing systems with a secondary eclipse deeper than the primary one, as expected for a WD that is hotter than the primary star. Follow-up spectroscopic radial-velocity (RV) observations confirmed the binarity of the systems. We derive the systems' parameters through analyses of the light curves' eclipses and phase modulations, combined with RV orbital solutions and stellar evolution models.The four systems' orbital periods of 1.17-3.82 days and WD masses of 0.19-0.22 Msun are similar to those reported for the previously known systems. These values are consistent with evolution models of such systems, that undergo a stable mass transfer from the WD progenitor to the current A star.For KIC 4169521 we derive a bloated WD radius of 0.09 Rsun that is well within the WD radius range of 0.04-0.43 Rsun of the known systems. For the remaining three systems we report WD radii of 0.026-0.035 Rsun, the smallest WD radii derived so far for short-period eclipsing dA+WD binaries.As suggested before, the previously known systems, together with KIC 4169521, all with hot and bloated WD secondaries, represent young systems probably at a proto-WD, or initial WD cooling track stage. The other three new systems - KOI-3818, KIC 2851474, and KIC 9285587, are probably positioned further along the WD cooling track, and extend the known population to older systems with cooler and smaller WD secondaries.

  17. DRAMATIC EVOLUTION OF THE DISK-SHAPED SECONDARY IN THE ORION TRAPEZIUM STAR {theta}{sup 1} Ori B{sub 1} (BM Ori): MOST SATELLITE OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Windemuth, Diana; Herbst, William; Tingle, Evan

    2013-05-01

    The eclipsing binary {theta}{sup 1} Orionis B{sub 1}, variable star designation BM Ori, is the faintest of the four well-known Trapezium stars at the heart of the Orion Nebula. The primary is a B3 star ({approx}6 M{sub Sun }) but the nature of the secondary ({approx}2 M{sub Sun }) has long been mysterious, since the duration and shape of primary eclipse are inappropriate for any sort of ordinary star. Here we report nearly continuous photometric observations obtained with the MOST satellite over {approx}4 cycles of the 6.47 d binary period. The light curve is of unprecedented quality, revealing a deep,more » symmetric primary eclipse as well as a clear reflection effect and secondary eclipse. In addition, there are other small disturbances, some of which repeat at the same phase over the four cycles monitored. The shape of the primary light curve has clearly evolved significantly over the past 40 years. While its overall duration and depth have remained roughly constant, the slopes of the descent and ascent phases are significantly shallower now than in the past and its distinctive flat-bottomed ''pseudo-totality'' is much less obvious or even absent in the most recent data. We further demonstrate that the primary eclipse was detected at X-ray wavelengths during the Chandra Orion Ultradeep Project (COUP) study. The light curve continues to be well modeled by a self-luminous and reflective disk-shaped object seen nearly edge-on orbiting the B3 primary. The dramatic change in shape over four decades is modeled as an opacity variation in a tenuous outer envelope or disk of the secondary object. We presume that the secondary is an extremely young protostar at an earlier evolutionary phase than can be commonly observed elsewhere in the Galaxy and that the opacity variations observed are related to its digestion of some accreted matter over the last 50-100 years. Indeed, this object deserves continued observational and theoretical attention as the youngest known eclipsing binary system.« less

  18. Properties OF M31. V. 298 eclipsing binaries from PAndromeda

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, C.-H.; Koppenhoefer, J.; Seitz, S.

    2014-12-10

    The goal of this work is to conduct a photometric study of eclipsing binaries in M31. We apply a modified box-fitting algorithm to search for eclipsing binary candidates and determine their period. We classify these candidates into detached, semi-detached, and contact systems using the Fourier decomposition method. We cross-match the position of our detached candidates with the photometry from Local Group Survey and select 13 candidates brighter than 20.5 mag in V. The relative physical parameters of these detached candidates are further characterized with the Detached Eclipsing Binary Light curve fitter (DEBiL) by Devor. We will follow up the detachedmore » eclipsing binaries spectroscopically and determine the distance to M31.« less

  19. An ultraviolet investigation of the unusual eclipsing binary system FF AQR

    NASA Technical Reports Server (NTRS)

    Dorren, J. D.; Guinan, E. F.; Sion, E. M.

    1982-01-01

    A series of seven low dispersion IUE exposures in ultraviolet and wavelength regions obtained on December 6, 1981 during the eclipse of the subdwarf, during egress, and out of eclipse is analyzed. These observations and the binary phase at which they were made are shown on a schematic representation of the V-band light curve obtained in 1975. The depth in V is 0.15 mag. The circles are IUE V magnitudes from FES measures obtained during the observing run. They indicate an eclipse depth some 0.05 mag lower than expected, possibly due to difficulties with the color term in the FES calibration. The eclipse depths of Dworetsky in U, B and V were assumed in the calculations.

  20. RW Per - Nodal motion changes its amplitude by 1.4 mag

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.; Fried, Robert E.

    1991-01-01

    RW Per was found to have large secular changes in its eclipse amplitude. In blue light, for example, the amplitude was 3.2 mag in the early 1900s, 2.2 mag in the late 1960s, and 1.75 mag in 1990. Throughout this time, the brightness at maximum was constant in all colors. It is shown that the only possible explanation is nodal motion, where the inclination varies with a period of roughly 100,000 yr. The nodal motion is caused by a third star, for which the light curve, the colors, and the O - C curve already provide evidence. Thus, RW Per is only the fourth known star with large changes of eclipse amplitude and is only the second example of nodal motion.

  1. Optical Photometry and X-Ray Monitoring of the ``Cool Algol'' BD +05°706: Determination of the Physical Properties

    NASA Astrophysics Data System (ADS)

    Torres, Guillermo; Mader, Jeff A.; Marschall, Laurence A.; Neuhäuser, Ralph; Duffy, Alaine S.

    2003-06-01

    We present new photometric observations in the BVRI bands of the double-lined eclipsing binary BD +05°706 conducted over three observing seasons, as well as new X-ray observations obtained with ROSAT covering a full orbital cycle (P=18.9 days). A detailed light-curve analysis of the optical data shows the system to be semidetached, confirming indications from an earlier analysis by Torres et al. (published in 1998), with the less massive and cooler star filling its Roche lobe. The system is a member of the rare class of cool Algol systems, which are different from the ``classical'' Algol systems in that the mass-gaining component is also a late-type star rather than a B- or A-type star. By combining the new photometry with a reanalysis of the spectroscopic observations reported by Torres et al., we derive accurate absolute masses for the components of M1=2.633+/-0.028 Msolar and M2=0.5412+/-0.0093 Msolar, radii of R1=7.55+/-0.20 Rsolar and R2=11.02+/-0.21 Rsolar, as well as effective temperatures of 5000+/-100 and 4640+/-150 K, for the primary and secondary, respectively. There are obvious signs of activity (spottedness) in the optical light curve of the binary. Our X-ray light curve clearly shows the primary eclipse but not the secondary eclipse, suggesting that the primary star is the dominant source of the activity in the system. The depth and duration of the eclipse allow us to infer some of the properties of the X-ray-emitting region around that star.

  2. KEPLER ECLIPSING BINARIES WITH STELLAR COMPANIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gies, D. R.; Matson, R. A.; Guo, Z.

    2015-12-15

    Many short-period binary stars have distant orbiting companions that have played a role in driving the binary components into close separation. Indirect detection of a tertiary star is possible by measuring apparent changes in eclipse times of eclipsing binaries as the binary orbits the common center of mass. Here we present an analysis of the eclipse timings of 41 eclipsing binaries observed throughout the NASA Kepler mission of long duration and precise photometry. This subset of binaries is characterized by relatively deep and frequent eclipses of both stellar components. We present preliminary orbital elements for seven probable triple stars amongmore » this sample, and we discuss apparent period changes in seven additional eclipsing binaries that may be related to motion about a tertiary in a long period orbit. The results will be used in ongoing investigations of the spectra and light curves of these binaries for further evidence of the presence of third stars.« less

  3. Transitions in the Cloud Composition of Hot Jupiters

    NASA Astrophysics Data System (ADS)

    Parmentier, Vivien; Fortney, Jonathan J.; Showman, Adam P.; Morley, Caroline; Marley, Mark S.

    2016-09-01

    Over a large range of equilibrium temperatures, clouds shape the transmission spectrum of hot Jupiter atmospheres, yet their composition remains unknown. Recent observations show that the Kepler light curves of some hot Jupiters are asymmetric: for the hottest planets, the light curve peaks before secondary eclipse, whereas for planets cooler than ˜1900 K, it peaks after secondary eclipse. We use the thermal structure from 3D global circulation models to determine the expected cloud distribution and Kepler light curves of hot Jupiters. We demonstrate that the change from an optical light curve dominated by thermal emission to one dominated by scattering (reflection) naturally explains the observed trend from negative to positive offset. For the cool planets the presence of an asymmetry in the Kepler light curve is a telltale sign of the cloud composition, because each cloud species can produce an offset only over a narrow range of effective temperatures. By comparing our models and the observations, we show that the cloud composition of hot Jupiters likely varies with equilibrium temperature. We suggest that a transition occurs between silicate and manganese sulfide clouds at a temperature near 1600 K, analogous to the L/T transition on brown dwarfs. The cold trapping of cloud species below the photosphere naturally produces such a transition and predicts similar transitions for other condensates, including TiO. We predict that most hot Jupiters should have cloudy nightsides, that partial cloudiness should be common at the limb, and that the dayside hot spot should often be cloud-free.

  4. Glimpses of stellar surfaces. II. Origins of the photometric modulations and timing variations of KOI-1452

    NASA Astrophysics Data System (ADS)

    Ioannidis, P.; Schmitt, J. H. M. M.

    2016-10-01

    The deviations of the mid-transit times of an exoplanet from a linear ephemeris are usually the result of gravitational interactions with other bodies in the system. However, these types of transit timing variations (TTV) can also be introduced by the influences of star spots on the shape of the transit profile. Here we use the method of unsharp masking to investigate the photometric light curves of planets with ambiguous TTV to compare the features in their O-C diagram with the occurrence and in-transit positions of spot-crossing events. This method seems to be particularly useful for the examination of transit light curves with only small numbers of in-transit data points, I.e., the long cadence light curves from Kepler satellite. As a proof of concept we apply this method to the light curve and the estimated eclipse timing variations of the eclipsing binary KOI-1452, for which we prove their non-gravitational nature. Furthermore, we use the method to study the rotation properties of the primary star of the system KOI-1452 and show that the spots responsible for the timing variations rotate with different periods than the most prominent periods of the system's light curve. We argue that the main contribution in the measured photometric variability of KOI-1452 originates in g-mode oscillations, which makes the primary star of the system a γ-Dor type variable candidate.

  5. The Spot Variability and Related Brightness variations of the Solar Type PreContact W UMa Binary System V1001 Cas

    NASA Astrophysics Data System (ADS)

    Samec, Ronald George; Koenke, Sam S.; Faulkner, Danny R.

    2015-08-01

    A new classification of eclipsing binary has emerged, Pre Contact WUMa Binaries (PCWB’s, Samec et al. 2012). These solar-type systems are usually detached or semidetached with one or both components under filling their critical Roche lobes. They usually have EA or EB-type light curves (unequal eclipse depths, indicating components with substantially different temperatures). The accepted scenario for these W UMa binaries is that they are undergoing steady but slow angular momentum losses due to magnetic braking as stellar winds blow radially away on stiff bipolar field lines. These binaries are believed to come into stable contact and eventually coalesce into blue straggler type, single, fast rotating A-type stars (Guinan and Bradstreet,1988). High precision 2012 and 2009 light curves are compared for the very short period (~0.43d) Precontact W UMa Binary (PCWB), V1001 Cassiopeia. This is the shortest period PCWB found so far. Its short period, similar to the majority of W UMa’s, in contrast to its distinct Algol-type light curve, make it a very rare and interesting system. Our solutions of light curves separated by some three years give approximately the same physical parameters. However the spots radically change, in temperature, area and position causing a distinctive variation in the shape of the light curves. We conclude that spots are very active on this solar type dwarf system and that it may mimic its larger cousins, the RS CVn binaries.

  6. Chromospheric activity of periodic variable stars (including eclipsing binaries) observed in DR2 LAMOST stellar spectral survey

    NASA Astrophysics Data System (ADS)

    Zhang, Liyun; Lu, Hongpeng; Han, Xianming L.; Jiang, Linyan; Li, Zhongmu; Zhang, Yong; Hou, Yonghui; Wang, Yuefei; Cao, Zihuang

    2018-05-01

    The LAMOST spectral survey provides a rich databases for studying stellar spectroscopic properties and chromospheric activity. We cross-matched a total of 105,287 periodic variable stars from several photometric surveys and databases (CSS, LINEAR, Kepler, a recently updated eclipsing star catalogue, ASAS, NSVS, some part of SuperWASP survey, variable stars from the Tsinghua University-NAOC Transient Survey, and other objects from some new references) with four million stellar spectra published in the LAMOST data release 2 (DR2). We found 15,955 spectra for 11,469 stars (including 5398 eclipsing binaries). We calculated their equivalent widths (EWs) of their Hα, Hβ, Hγ, Hδ and Caii H lines. Using the Hα line EW, we found 447 spectra with emission above continuum for a total of 316 stars (178 eclipsing binaries). We identified 86 active stars (including 44 eclipsing binaries) with repeated LAMOST spectra. A total of 68 stars (including 34 eclipsing binaries) show chromospheric activity variability. We also found LAMOST spectra of 12 cataclysmic variables, five of which show chromospheric activity variability. We also made photometric follow-up studies of three short period targets (DY CVn, HAT-192-0001481, and LAMOST J164933.24+141255.0) using the Xinglong 60-cm telescope and the SARA 90-cm and 1-m telescopes, and obtained new BVRI CCD light curves. We analyzed these light curves and obtained orbital and starspot parameters. We detected the first flare event with a huge brightness increase of more than about 1.5 magnitudes in R filter in LAMOST J164933.24+141255.0.

  7. Photometric Study of the Pulsating, Eclipsing Binary OO Dra

    NASA Astrophysics Data System (ADS)

    Zhang, X. B.; Deng, L. C.; Tian, J. F.; Wang, K.; Sun, J. J.; Liu, Q. L.; Xin, H. Q.; Zhou, Q.; Yan, Z. Z.; Luo, Z. Q.; Luo, C. Q.

    2014-12-01

    We present a comprehensive photometric study of the pulsating, eclipsing binary OO Dra. Simultaneous B- and V-band photometry of the star was carried out on 14 nights. A revised orbital period and a new ephemeris were derived from the data. The first photometric solution of the binary system and the physical parameters of the component stars are determined. They reveal that OO Dra could be a detached system with a less-massive secondary component nearly filling its Roche lobe. By subtracting the eclipsing light changes from the data, we obtained the intrinsic pulsating light curves of the hotter, massive primary component. A frequency analysis of the residual light yields two confident pulsation modes in both B- and V-band data with the dominant frequency detected at 41.865 c/d. A brief discussion concerning the evolutionary status and the pulsation nature of the binary system is finally given.

  8. Photometric study of the pulsating, eclipsing binary OO DRA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, X. B.; Deng, L. C.; Tian, J. F.

    We present a comprehensive photometric study of the pulsating, eclipsing binary OO Dra. Simultaneous B- and V-band photometry of the star was carried out on 14 nights. A revised orbital period and a new ephemeris were derived from the data. The first photometric solution of the binary system and the physical parameters of the component stars are determined. They reveal that OO Dra could be a detached system with a less-massive secondary component nearly filling its Roche lobe. By subtracting the eclipsing light changes from the data, we obtained the intrinsic pulsating light curves of the hotter, massive primary component.more » A frequency analysis of the residual light yields two confident pulsation modes in both B- and V-band data with the dominant frequency detected at 41.865 c/d. A brief discussion concerning the evolutionary status and the pulsation nature of the binary system is finally given.« less

  9. NSVS 7051868: A system in a key evolutionary stage. First multi-color photometric study

    NASA Astrophysics Data System (ADS)

    Barani, C.; Martignoni, M.; Acerbi, F.

    2017-01-01

    The first CCD photometric complete light curves of the eclipsing binary NSVS 7051868 were obtained during six nights in January 2016 in the B, V and Ic bands using the 0.25 m telescope of the Stazione Astronomica Betelgeuse in Magnago, Italy. These observations confirm the short period (P = 0.517 days) variation found by Shaw and collaborators in their online list (http://www.physast.uga.edu/ jss/nsvs/) of periodic variable stars found in the Northern Sky Variability Survey. The light curves were modelled using the Wilson-Devinney code and the elements obtained from this analysis are used to compute the physical parameters of the system in order to study its evolutionary status. A grid of solutions for several fixed values of mass ratio was calculated. A reasonable fit of the synthetic light curves of the data indicate that NSVS 7051868 is an A-subtype W Ursae Majoris contact binary system, with a low mass ratio of q = 0.22, a degree of contact factor f = 35.5% and inclination i = 85°. Our light curves shows a time of constant light in the secondary eclipse of approximately 0.1 in phase. The light curve solution reveals a component temperature difference of about 700 K. Both the value of the fill-out factor and the temperature difference suggests that NSVS 7051868 is a system in a key evolutionary stage of the Thermal Relaxation Oscillation theory. The distance to NSVS 7051868 was calculated as 180 pc from this analysis, taking into account interstellar extinction.

  10. The Eclipsing Central Stars of the Planetary Nebulae Lo 16 and PHR J1040-5417

    NASA Astrophysics Data System (ADS)

    Hillwig, Todd C.; Frew, David; Jones, David; Crispo, Danielle

    2017-01-01

    Binary central stars of planetary nebula are a valuable tool in understanding common envelope evolution. In these cases both the resulting close binary system and the expanding envelope (the planetary nebula) can be studied directly. In order to compare observed systems with common envelope evolution models we need to determine precise physical parameters of the binaries and the nebulae. Eclipsing central stars provide us with the best opportunity to determine high precision values for mass, radius, and temperature of the component stars in these close binaries. We present photometry and spectroscopy for two of these eclipsing systems; the central stars of Lo 16 and PHR 1040-5417. Using light curves and radial velocity curves along with binary modeling we provide physical parameters for the stars in both of these systems.

  11. Eclipsing Binaries From the CSTAR Project at Dome A, Antarctica

    NASA Astrophysics Data System (ADS)

    Yang, Ming; Zhang, Hui; Wang, Songhu; Zhou, Ji-Lin; Zhou, Xu; Wang, Lingzhi; Wang, Lifan; Wittenmyer, R. A.; Liu, Hui-Gen; Meng, Zeyang; Ashley, M. C. B.; Storey, J. W. V.; Bayliss, D.; Tinney, Chris; Wang, Ying; Wu, Donghong; Liang, Ensi; Yu, Zhouyi; Fan, Zhou; Feng, Long-Long; Gong, Xuefei; Lawrence, J. S.; Liu, Qiang; Luong-Van, D. M.; Ma, Jun; Wu, Zhenyu; Yan, Jun; Yang, Huigen; Yang, Ji; Yuan, Xiangyan; Zhang, Tianmeng; Zhu, Zhenxi; Zou, Hu

    2015-04-01

    The Chinese Small Telescope ARray (CSTAR) has observed an area around the Celestial South Pole at Dome A since 2008. About 20,000 light curves in the i band were obtained during the observation season lasting from 2008 March to July. The photometric precision achieves about 4 mmag at i = 7.5 and 20 mmag at i = 12 within a 30 s exposure time. These light curves are analyzed using Lomb-Scargle, Phase Dispersion Minimization, and Box Least Squares methods to search for periodic signals. False positives may appear as a variable signature caused by contaminating stars and the observation mode of CSTAR. Therefore, the period and position of each variable candidate are checked to eliminate false positives. Eclipsing binaries are removed by visual inspection, frequency spectrum analysis, and a locally linear embedding technique. We identify 53 eclipsing binaries in the field of view of CSTAR, containing 24 detached binaries, 8 semi-detached binaries, 18 contact binaries, and 3 ellipsoidal variables. To derive the parameters of these binaries, we use the Eclipsing Binaries via Artificial Intelligence method. The primary and secondary eclipse timing variations (ETVs) for semi-detached and contact systems are analyzed. Correlated primary and secondary ETVs confirmed by false alarm tests may indicate an unseen perturbing companion. Through ETV analysis, we identify two triple systems (CSTAR J084612.64-883342.9 and CSTAR J220502.55-895206.7). The orbital parameters of the third body in CSTAR J220502.55-895206.7 are derived using a simple dynamical model.

  12. Interpretation of BM Orionis. [eclipsing binary model

    NASA Technical Reports Server (NTRS)

    Huang, S.-S.

    1975-01-01

    The entire light curve of the BM Ori system both inside and outside primary and secondary eclipses has been examined on the basis of two models for the disk around the secondary component: one with the luminous energy of the disk coming entirely from the secondary, and another with the luminous energy coming at least partly from the primary. It has been found that if the disk is highly opaque, as is suggested by the fitting of the light curve, there exist in the first model discrepancies between what has been derived from the luminosity consideration for the secondary component and what has been derived from the radius consideration. Hence the second model is accepted. Based on this model the nature of both component stars has been examined from a consideration of the luminosity and the dimensions of the disk.

  13. A computer program for modeling non-spherical eclipsing binary star systems

    NASA Technical Reports Server (NTRS)

    Wood, D. B.

    1972-01-01

    The accurate analysis of eclipsing binary light curves is fundamental to obtaining information on the physical properties of stars. The model described accounts for the important geometric and photometric distortions such as rotational and tidal distortion, gravity brightening, and reflection effect. This permits a more accurate analysis of interacting eclipsing star systems. The model is designed to be useful to anyone with moderate computing resources. The programs, written in FORTRAN 4 for the IBM 360, consume about 80k bytes of core. The FORTRAN program listings are provided, and the computational aspects are described in some detail.

  14. Search for Pulsating Stars in the Open Cluster NGC 1502

    NASA Astrophysics Data System (ADS)

    Stęślicki, M.

    2006-04-01

    We present results of a variability search in the field of the young open cluster NGC 1502. We confirm that a beta Cephei suspect WEBDA 26 is indeed pulsating with a period of 0.09612 d and semi-amplitude of about 3 mmag in V. A new VI light curve of the bright eclipsing binary and cluster member SZ Cam was obtained. In addition, we found two new variable stars. One is an interesting eclipsing binary showing total eclipses, which can be used to derive the distance to the cluster once radial velocities of the components will be obtained.

  15. Photometric Study of Two Totally Eclipsing Contact Binaries: V789 Her and V1007 Cas

    NASA Astrophysics Data System (ADS)

    Li, K.; Xia, Q.-Q.; Hu, S.-M.; Guo, D.-F.; Chen, X.

    2018-07-01

    Two sets of V and R c light curves of V789 Her and one complete set of BVR c I c light curves of V1007 Cas were observed and presented. By analyzing all these light curves together with the Sloan g‧i‧ light curves observed by Kjurkchieva et al., we determined that both systems are W-subtype contact binaries and that V789 Her is a medium contact system, while V1007 Cas is a shallow contact system. Because the two binaries show totally eclipsing primary minima, the photometric results are reliable. In addition, the light curves of the two systems are asymmetric, requiring a dark spot on the primary or the secondary component in the modeling. By compiling all available times of minimum light including literatures, SuperWASP archive and ours, we analyzed the orbital period variations. We derived that the O ‑ C diagram of V789 Her displays a periodic oscillation whose period and amplitude are 29.2 years and 0.0179 days and the period of V1007 Cas exhibits a continuous decrease at dP/dt = ‑1.78(±0.09) × 10‑7 days yr‑1. The cyclic period modulation of V789 Her is probably attributed to the light travel time effect via a tertiary companion with very small mass. The continuous period decrease of V1007 Cas may result from the mass transfer between the two components. However, we cannot rule out the possibility of angular momentum loss because V1007 Cas shows strong magnetic activity. By analyzing the evolutionary status of the components of the two systems, we determined that they exhibit typical characteristics of other W-subtype contact binaries.

  16. VizieR Online Data Catalog: Kepler Mission. VII. Eclipsing binaries in DR3 (Kirk+, 2016)

    NASA Astrophysics Data System (ADS)

    Kirk, B.; Conroy, K.; Prsa, A.; Abdul-Masih, M.; Kochoska, A.; Matijevic, G.; Hambleton, K.; Barclay, T.; Bloemen, S.; Boyajian, T.; Doyle, L. R.; Fulton, B. J.; Hoekstra, A. J.; Jek, K.; Kane, S. R.; Kostov, V.; Latham, D.; Mazeh, T.; Orosz, J. A.; Pepper, J.; Quarles, B.; Ragozzine, D.; Shporer, A.; Southworth, J.; Stassun, K.; Thompson, S. E.; Welsh, W. F.; Agol, E.; Derekas, A.; Devor, J.; Fischer, D.; Green, G.; Gropp, J.; Jacobs, T.; Johnston, C.; Lacourse, D. M.; Saetre, K.; Schwengeler, H.; Toczyski, J.; Werner, G.; Garrett, M.; Gore, J.; Martinez, A. O.; Spitzer, I.; Stevick, J.; Thomadis, P. C.; Vrijmoet, E. H.; Yenawine, M.; Batalha, N.; Borucki, W.

    2016-07-01

    The Kepler Eclipsing Binary Catalog lists the stellar parameters from the Kepler Input Catalog (KIC) augmented by: primary and secondary eclipse depth, eclipse width, separation of eclipse, ephemeris, morphological classification parameter, and principal parameters determined by geometric analysis of the phased light curve. The previous release of the Catalog (Paper II; Slawson et al. 2011, cat. J/AJ/142/160) contained 2165 objects, through the second Kepler data release (Q0-Q2). In this release, 2878 objects are identified and analyzed from the entire data set of the primary Kepler mission (Q0-Q17). The online version of the Catalog is currently maintained at http://keplerEBs.villanova.edu/. A static version of the online Catalog associated with this paper is maintained at MAST https://archive.stsci.edu/kepler/eclipsing_binaries.html. (10 data files).

  17. SARA South Observations and Analysis of the Solar Type, Totally Eclipsing, Over Contact Binary, PY Aquarii

    NASA Astrophysics Data System (ADS)

    Chamberlain, Heather; Samec, Ronald G.; Caton, Daniel Bruce; Van Hamme, Walter

    2018-01-01

    PY Aqr (GSC 05191-00853) is a solar Type (T ~ 5750K) eclipsing binary. It was observed in July to October, 2017 at Cerro Tololo in remote mode with the 0.6-m SARA South reflector. Two times of minimum light were calculated from our present observations, a primary and a secondary eclipse:HJD Min I = 2457951.7762±0.0006 HJD Min II = 2458019.5295±00.0003. Both weighted as 1.0.In addition, four timings were determined from online data given in IBVS 5600 and five observations at minima were determined from archived All Sky Automated Survey Data:HJD Min I = 2452908.3165, 2452912.33612 HJD Min II = 2452877.5621, 2452913.34465. All weighted as 0.5.ASAS Observations at minima: 2452094.688, 2453478.882, 2453266.576, 2452093.685 and 54729.600. Each weighted as 0.10The following linear and quadratic ephemerides were determined from all available times of minimum light:JD Hel Min I=2452951.7443±0.0008d + 0.402093441±0.000000099 X E {1} JD Hel Min I=2452951.7439±0.0007d + 0.4020912±0.0000007 X E +0.00000000018 ± 0.00000000006 X E2 {2}A BVRI Bessell filtered simultaneous Wilson-Devinney Program (W-D) solution reveals that the system has a mass ratio of ~0.34 and a component temperature difference of only ~40 K. One low luminosity (Tfact ~ 0.94, ~66 degree radius) large cool region of spots was iterated on the primary component in the WD Synthetic Light Curve computations. It appears in the Southern Hemisphere (colatitude 155 degrees). The Roche Lobe fill-out of the binary is ~17%. The inclination is ~86 degrees. An eclipse duration of ~10 minutes was determined for the primary eclipse and the light curve solution. Additional and more detailed information is given in this report.

  18. The eclipsing binary CW Eridani. [three-color photoelectric observation

    NASA Technical Reports Server (NTRS)

    Chen, K.-Y.

    1975-01-01

    Results of three-color photoelectric observations of CW Eridani are presented which were made with a 30-inch telescope over the three-year period from 1970 to 1973. The times of minima are computed, solutions of the light curves are obtained, and theoretical light curves are computed from the solutions. The period is determined to be 2.72837 days, and the orbital and photoelectric elements are derived from solutions based on the idealized Russell model.

  19. A search for pulsations in two Algol-type systems V1241 Tau and GQ Dra

    NASA Astrophysics Data System (ADS)

    Ulaş, Burak; Ulusoy, Ceren; Gazeas, Kosmas; Erkan, Naci; Liakos, Alexios

    2014-02-01

    We present new photometric observations of two eclipsing binary systems, V1241 Tau and GQ Dra. We use the following methodology: initially, the Wilson-Devinney code is applied to the light curves in order to determine the photometric elements of the systems. Then, the residuals are analysed using Fourier techniques. The results are the following. One frequency can be possibly attributed to a real light variation of V1241 Tau, while there is no evidence of pulsations in the light curve of GQ Dra.

  20. TRANSITIONS IN THE CLOUD COMPOSITION OF HOT JUPITERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parmentier, Vivien; Fortney, Jonathan J.; Morley, Caroline

    Over a large range of equilibrium temperatures, clouds shape the transmission spectrum of hot Jupiter atmospheres, yet their composition remains unknown. Recent observations show that the Kepler light curves of some hot Jupiters are asymmetric: for the hottest planets, the light curve peaks before secondary eclipse, whereas for planets cooler than ∼1900 K, it peaks after secondary eclipse. We use the thermal structure from 3D global circulation models to determine the expected cloud distribution and Kepler light curves of hot Jupiters. We demonstrate that the change from an optical light curve dominated by thermal emission to one dominated by scatteringmore » (reflection) naturally explains the observed trend from negative to positive offset. For the cool planets the presence of an asymmetry in the Kepler light curve is a telltale sign of the cloud composition, because each cloud species can produce an offset only over a narrow range of effective temperatures. By comparing our models and the observations, we show that the cloud composition of hot Jupiters likely varies with equilibrium temperature. We suggest that a transition occurs between silicate and manganese sulfide clouds at a temperature near 1600 K, analogous to the L / T transition on brown dwarfs. The cold trapping of cloud species below the photosphere naturally produces such a transition and predicts similar transitions for other condensates, including TiO. We predict that most hot Jupiters should have cloudy nightsides, that partial cloudiness should be common at the limb, and that the dayside hot spot should often be cloud-free.« less

  1. On Correlated-noise Analyses Applied to Exoplanet Light Curves

    NASA Astrophysics Data System (ADS)

    Cubillos, Patricio; Harrington, Joseph; Loredo, Thomas J.; Lust, Nate B.; Blecic, Jasmina; Stemm, Madison

    2017-01-01

    Time-correlated noise is a significant source of uncertainty when modeling exoplanet light-curve data. A correct assessment of correlated noise is fundamental to determine the true statistical significance of our findings. Here, we review three of the most widely used correlated-noise estimators in the exoplanet field, the time-averaging, residual-permutation, and wavelet-likelihood methods. We argue that the residual-permutation method is unsound in estimating the uncertainty of parameter estimates. We thus recommend to refrain from this method altogether. We characterize the behavior of the time averaging’s rms-versus-bin-size curves at bin sizes similar to the total observation duration, which may lead to underestimated uncertainties. For the wavelet-likelihood method, we note errors in the published equations and provide a list of corrections. We further assess the performance of these techniques by injecting and retrieving eclipse signals into synthetic and real Spitzer light curves, analyzing the results in terms of the relative-accuracy and coverage-fraction statistics. Both the time-averaging and wavelet-likelihood methods significantly improve the estimate of the eclipse depth over a white-noise analysis (a Markov-chain Monte Carlo exploration assuming uncorrelated noise). However, the corrections are not perfect when retrieving the eclipse depth from Spitzer data sets, these methods covered the true (injected) depth within the 68% credible region in only ˜45%-65% of the trials. Lastly, we present our open-source model-fitting tool, Multi-Core Markov-Chain Monte Carlo (MC3). This package uses Bayesian statistics to estimate the best-fitting values and the credible regions for the parameters for a (user-provided) model. MC3 is a Python/C code, available at https://github.com/pcubillos/MCcubed.

  2. UTM, a universal simulator for lightcurves of transiting systems

    NASA Astrophysics Data System (ADS)

    Deeg, Hans

    2009-02-01

    The Universal Transit Modeller (UTM) is a light-curve simulator for all kinds of transiting or eclipsing configurations between arbitrary numbers of several types of objects, which may be stars, planets, planetary moons, and planetary rings. Applications of UTM to date have been mainly in the generation of light-curves for the testing of detection algorithms. For the preparation of such test for the Corot Mission, a special version has been used to generate multicolour light-curves in Corot's passbands. A separate fitting program, UFIT (Universal Fitter) is part of the UTM distribution and may be used to derive best fits to light-curves for any set of continuously variable parameters. UTM/UFIT is written in IDL code and its source is released in the public domain under the GNU General Public License.

  3. Absolute dimensions and masses of eclipsing binaries. V. IQ Persei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lacy, C.H.; Frueh, M.L.

    1985-08-01

    New photometric and spectroscopic observations of the 1.7 day eclipsing binary IQ Persei (B8 + A6) have been analyzed to yield very accurate fundamental properties of the system. Reticon spectroscopic observations obtained at McDonald Observatory were used to determine accurate radial velocities of both stars in this slightly eccentric large light-ratio binary. A new set of VR light curves obtained at McDonald Observatory were analyzed by synthesis techniques, and previously published UBV light curves were reanalyzed to yield accurate photometric orbits. Orbital parameters derived from both sets of photometric observations are in excellent agreement. The absolute dimensions, masses, luminosities, andmore » apsidal motion period (140 yr) derived from these observations agree well with the predictions of theoretical stellar evolution models. The A6 secondary is still very close to the zero-age main sequence. The B8 primary is about one-third of the way through its main-sequence evolution. 27 references.« less

  4. Photometric Properties of the HW Vir-type Binary OGLE-GD-ECL-11388

    NASA Astrophysics Data System (ADS)

    Hong, Kyeongsoo; Lee, Jae Woo; Lee, Dong-Joo; Kim, Seung-Lee; Koo, Jae-Rim; Park, Jang-Ho; Lee, Chung-Uk; Kim, Dong-Jin; Cha, Sang-Mok; Lee, Yongseok

    2017-01-01

    We present the first extensive photometric results for the eclipsing binary OGLE-GD-ECL-11388 with a period of about 3.5 hours located in the Galactic disk. For the photometric solutions, we obtained the BVI light curves from both the KMTNet observations in 2015 and the OGLE-III survey data from 2001-2009, which show striking reflection effects and very sharp eclipses. The light curve synthesis indicates that the eclipsing system is a HW Vir-type binary with a mass ratio of q = 0.289, an orbital inclination of i = 81.9 deg, and a temperature ratio between both components of T 2/T 1 = 0.091. A frequency analysis was applied to the light residuals from our binary model; however, no pulsating periodicity from the subdwarf B-type primary component was detected under signal-to-noise amplitude ratios larger than 4.0. A total of 27 minimum epochs spanning 15 yr were used to analyze the eclipse timing variations of OGLE-GD-ECL-11388. It was found that the orbital period has varied due to a continuous period decrease at a rate of dP/dt = -1.1 × 10-8 day yr-1 or a sinusoidal oscillation with a semiamplitude of K = 35 s and a cycle of P 3 = 8.9 yr. The period decrease may be explained by an angular momentum loss via magnetic stellar wind braking or may be only a part of the sinusoidal variation. We think the most likely interpretation of the orbital period change, at present, is the light-time effect via the presence of a third body with a mass of {M}3\\sin {i}3=12.5 M Jup, putting it in the boundary zone between planets and brown dwarfs.

  5. PTF1 J191905.19+481506.2—A partially eclipsing AM CVn system discovered in the Palomar transient factory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levitan, David; Groot, Paul J.; Prince, Thomas A.

    2014-04-20

    We report on PTF1 J191905.19+481506.2, a newly discovered, partially eclipsing, outbursting AM CVn system found in the Palomar Transient Factory synoptic survey. This is only the second known eclipsing AM CVn system. We use high-speed photometric observations and phase-resolved spectroscopy to establish an orbital period of 22.4559(3) minutes. We also present a long-term light curve and report on the normal and super-outbursts regularly seen in this system, including a super-outburst recurrence time of 36.8(4) days. We use the presence of the eclipse to place upper and lower limits on the inclination of the system and discuss the number of knownmore » eclipsing AM CVn systems versus what would be expected.« less

  6. Multi-color light curves and orbital period research of eclipsing binary V1073 Cyg

    NASA Astrophysics Data System (ADS)

    Tian, Xiao-Man; Zhu, Li-Ying; Qian, Sheng-Bang; Li, Lin-Jia; Jiang, Lin-Qiao

    2018-02-01

    New multi-color BV RcIc photometric observations are presented for the W UMa type eclipsing binary V1073 Cyg. The multi-color light curve analysis with the Wilson-Devinney procedure yielded the absolute parameters of this system, showing that V1073 Cyg is a shallow contact binary system with a fill-out factor f = 0.124(±0.011). We collected all available times of light minima spanning 119 yr, including CCD data to construct the O ‑ C curve, and performed detailed O ‑ C analysis. The O ‑ C diagram shows that the period change is complex. A long-term continuous decrease and a cyclic variation exist. The period is decreasing at a rate of Ṗ = ‑1.04(±0.18) × 10‑10 d cycle‑1 and, with the period decrease, V1073 Cyg will evolve to the deep contact stage. The cyclic variation with a period of P 3 = 82.7(±3.6) yr and an amplitude of A = 0.028(±0.002)d may be explained by magnetic activity of one or both components or the light travel time effect caused by a distant third companion with M 3(i‧ = 90°) = 0.511 M⊙.

  7. On the Nature of the Bright Short-Period X-Ray Source in the Circinus Galaxy Field

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; Wu, Kinwah; Tennant, Allyn F.; Swartz, Douglas A.; Ghosh, Kajal K.

    2004-01-01

    The spectrum and light curve of the bright X-ray source CG X-1 in the field of the Circinus galaxy are reexamined. Previous analyses have concluded that the source is an accreting black hole of mass > or approx. 50 solar masses although it has been noted that the light curve resembles that of an AM Herculis system. Here we show that the short period and an assumed main-sequence companion constrain the mass of the companion to less than 1 solar mass. Furthermore, a possible eclipse seen during one of the Chandra observations and a subsequent XMM-Newton observation constrain the mass of the compact object to less than 60 solar masses. If such a system lies in the Circinus galaxy, then the accreting object must either radiate anisotropically or strongly violate the Eddington limit. Even if the emission is beamed, then the companion star that intercepts this flux during eclipse will be driven out of thermal equilibrium and evaporate within approx. 10(exp 3) yr. We find that the observations cannot rule out an AM Herculis system in the Milky Way and that such a system can account for the variations seen in the light curve.

  8. A Photometric Study of the Eclipsing Binary NSV 1000

    NASA Astrophysics Data System (ADS)

    Richards, T. J.; Bembrick, C. S.

    2018-06-01

    Abstract NSV 1000 is an unstudied eclipsing binary in Hydrus. Our photometric research in the period 2014-2016 shows it is a W UMa system with a period of 0.336 579 6(3) d, consistent with the catalogued period. Model fitting to our B, V, and Ic light curves shows the two stars are barely in contact. The parameters derived from the fit satisfy the broadly defined characteristics of a W-type W UMa system.

  9. Multi-band photometric study of the short-period eclipsing binary GR Boo

    NASA Astrophysics Data System (ADS)

    Wang, Daimei; Zhang, Liyun; Han, Xianming L.; Lu, Hongpeng

    2017-05-01

    We present BVRI light curves with complete phase coverage for the short-period (p = 0.377day) eclipsing binary star GR Boo. We carried out the observations using the SARA 90 cm telescope located at Kitt Peak National Observatory. We obtained six new light curve minimum times. By fitting all of the available O-C minimum times, we obtained an updated ephemeris that shows the orbital period of GR Boo is decreasing at a rate of P˙ = - 2.36 ×10-7 days/year. This decrease in its period can be explained by either mass transfer from the more massive component to the less massive one, or angular momentum exchange due to magnetic activities. We also obtained a set of revised orbital parameters using the Wilson & Devinney program. And finally, we concluded that GR Boo is a contact binary with a dark spot.

  10. Photometric study of two eclipsing binary stars: Light curve analysis and system parameters for GU CMa and SWASP J011732.10+525204.9

    NASA Astrophysics Data System (ADS)

    Shokry, A.; Saad, S. M.; Hamdy, M. A.; Beheary, M. M.; Abolazm, M. S.; Gadallah, K. A.; El-Depsey, M. H.; Al-Gazzar, M. S.

    2018-02-01

    A new photometric study of two eclipsing binary systems (GU CMa and SWASP J011732.10+525204.9) is presented. The accepted solutions of analyzing the light curves revealed that GU CMa is a semi-detached system consisting of two early spectral type components, (B2 and B2.5) while SWASP J011732.10+525204.9 is a contact binary with two late type components (K2 and M1). The primary component of each system is the massive one. The geometric configuration indicates that SWASP J011732.10+525204.9 passes through a very critical phase in which each component exactly fills its limited lobe with zero fill out ratio. New times of minimum and the absolute physical parameters for each system are determined. The evolution status for each system has been investigated.

  11. The detached eclipsing binary TX Her revisited

    NASA Astrophysics Data System (ADS)

    Erdem, A.; Aliçavuş, F.; Soydugan, F.; Doğru, S. S.; Soydugan, E.; Çiçek, C.; Demircan, O.

    2011-12-01

    This paper presents new CCD Bessell BVRI light curves and photometric analysis of the Algol-type binary star TX Her. The CCD observations were carried out at Çanakkale Onsekiz Mart University Observatory in 2010. New BVRI light curves from this study and radial velocity curves from Popper (1970) were solved simultaneously using modern light and radial velocity curves synthesis methods. The general results show that TX Her is a well-detached eclipsing binary, however, both component stars fill at least half of their Roche lobes. A significant third light contribution to the total light of the system could not be determined. Using O- C residuals formed by the updated minima times, an orbital period study of the system was performed. It was confirmed that the tilted sinusoidal O- C variation corresponds to an apparent period variation caused by the light travel time effect due to an unseen third body. The following absolute parameters of the components were derived: M1 = 1.62 ± 0.04 M ⊙, M2 = 1.45 ± 0.03 M ⊙, R1 = 1.69 ± 0.03 R ⊙, R2 = 1.43 ± 0.03 R ⊙, L1 = 8.21 ± 0.90 L ⊙ and L2 = 3.64 ± 0.60 L ⊙. The distance to TX Her was calculated as 155 ± 10 pc, taking into account interstellar extinction. The position of the components of TX Her in the HR diagram are also discussed. The components are young stars with an age of ˜500 Myr.

  12. FROM X-RAY DIPS TO ECLIPSE: WITNESSING DISK REFORMATION IN THE RECURRENT NOVA U Sco

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ness, J.-U.; Talavera, A.; Gonzalez-Riestra, R.

    2012-01-20

    The tenth recorded outburst of the recurrent eclipsing nova U Sco was observed simultaneously in X-ray, UV, and optical by XMM-Newton on days 22.9 and 34.9 after the outburst. Two full passages of the companion in front of the nova ejecta were observed, as was the reformation of the accretion disk. On day 22.9, we observed smooth eclipses in UV and optical but deep dips in the X-ray light curve that disappeared by day 34.9, yielding clean eclipses in all bands. X-ray dips can be caused by clumpy absorbing material that intersects the line of sight while moving along highlymore » elliptical trajectories. Cold material from the companion could explain the absence of dips in UV and optical light. The disappearance of X-ray dips before day 34.9 implies significant progress in the formation of the disk. The X-ray spectra contain photospheric continuum emission plus strong emission lines, but no clear absorption lines. Both continuum and emission lines in the X-ray spectra indicate a temperature increase from day 22.9 to day 34.9. We find clear evidence in the spectra and light curves for Thompson scattering of the photospheric emission from the white dwarf. Photospheric absorption lines can be smeared out during scattering in a plasma of fast electrons. We also find spectral signatures of resonant line scattering that lead to the observation of the strong emission lines. Their dominance could be a general phenomenon in high-inclination systems such as Cal 87.« less

  13. UTM: Universal Transit Modeller

    NASA Astrophysics Data System (ADS)

    Deeg, Hans J.

    2014-12-01

    The Universal Transit Modeller (UTM) is a light-curve simulator for all kinds of transiting or eclipsing configurations between arbitrary numbers of several types of objects, which may be stars, planets, planetary moons, and planetary rings. A separate fitting program, UFIT (Universal Fitter) is part of the UTM distribution and may be used to derive best fits to light-curves for any set of continuously variable parameters. UTM/UFIT is written in IDL code and its source is released in the public domain under the GNU General Public License.

  14. Eclipsing Binaries in the OGLE Variable Star Catalogs. V. Long-Period EB-Type Light Curve Systems in the Small Magellanic Cloud and the PLC-β Relation

    NASA Astrophysics Data System (ADS)

    Rucinski, Slavek M.; Maceroni, Carla

    2001-01-01

    Thirty-eight long-period (P>10 days) apparently contact binary stars discovered by the OGLE-II project in the SMC show EB-type light curves and an ``inverted'' period-color relation with longer orbital periods for redder systems. The strong light variations between eclipses can be explained within a semidetached model in which ellipsoidal variations of a large, evolved, Roche lobe-filling component dominates over eclipse effects in the systemic light changes. The model requires further spectroscopic and color-curve support before it can be fully accepted. It is noted that the dominant role of the Roche lobe-filling component in the total systemic luminosity can explain the new period-luminosity-color (PLC) relation, which has been established for the long-period EB (LP-EB) systems. We call it the PLC-β relation, to distinguish it from the Cepheid relation. Two versions of the PLC-β relation-based on the (B-V)0 or (V-I)0 color indices-have been calibrated for 33 systems with (V-I)0>0.25 spanning the orbital period range of 11 to 181 days (it was found that blue systems with (V-I)0<=0.25 do not follow the same calibration). The relations can provide maximum-light, absolute-magnitude estimates accurate to ɛMV~=0.35 mag within the approximate range -3

  15. Observations of candidate oscillating eclipsing binaries and two newly discovered pulsating variables

    NASA Astrophysics Data System (ADS)

    Liakos, A.; Niarchos, P.

    2009-03-01

    CCD observations of 24 eclipsing binary systems with spectral types ranging between A0-F0, candidate for containing pulsating components, were obtained. Appropriate exposure times in one or more photometric filters were used so that short-periodic pulsations could be detected. Their light curves were analyzed using the Period04 software in order to search for pulsational behaviour. Two new variable stars, namely GSC 2673-1583 and GSC 3641-0359, were discov- ered as by-product during the observations of eclipsing variables. The Fourier analysis of the observations of each star, the dominant pulsation frequencies and the derived frequency spectra are also presented.

  16. UBV photometry of the 1982-4 eclipse of Epsilon Aurigae: A discussion of the observed light curves

    NASA Technical Reports Server (NTRS)

    Schmidtke, P. C.

    1985-01-01

    At least 29 observers in nine countries have contributed photometric measurements of Epsilon Aurigae during the recent observational campaign. The present discussion is limited to data submitted by J. L. Hopkins of the Hopkins Phoenix Observatory and S. I. Ingvarsson of the Tjornisland Astronomical Observatory. Both sources are on the UBV system, with no significant systematic differences. Combined, these two sources cover the entire eclipse, from pre-ingress up to the present (April 1985). It should be noted that this eclipse is the first to have complete photometric coverage in all three broadband filters U, B, and V.

  17. Photometric Study of the Solar Type Pre-Contact Binary, V2421 Cygni

    NASA Astrophysics Data System (ADS)

    Hill, Robert L.; Shebs, T.; Samec, R. G.; Kring, J.; Van Hamme, W. V.; Faulkner, D. R.

    2013-06-01

    We present the first precision BVRI light curves, and synthetic light curve solutions and a period study for the 14th magnitude (V) pre-contact W UMa Binary, V2421 Cygni. Observations were taken with the NURO 0.81-m Lowell reflector on 30 September, 1 and 2 October. Our light curves were premodeled with Binary Maker 3.0, and solved with the Wilson-Devinney program. The observations included 140 B, 149 V, 139 R and 135 I individual and calibrated observations. These were taken with the Lowell CRYOTIGER cooled (-100k) 2KX2K NASACAM. Three mean times of minimum light were determined, including HJDMin I = 2455469.82375±0.00037, and 2455471.72232±0.0012 and HJDMin II = 2455470.77149±0.0012. Eight eclipse timings were taken from the the literature for our calculation of its first precision ephemeris: JD Tmin I = 2455469.8238± 0.0047 + 0.6331290 ± 0.0000015 d*E The light curve has the appearance of an Algol (EA) type, however it is made up of dwarf solar type components in a detached mode with a period of only 0.6331 days. The light curve solution gives a mass ratio of ~0.5, an inclination of 86° and amplitudes of 1.3, 1.1, 0.98, and 0.87 in B,V,R and I, respectively. Flare-like disruptions occur in the light curves following the primary and secondary eclipses. The fill-outs are 83% and 98% for star one (hotter more massive component) and star two, respectively. The model includes two hot spots, possibly, stream spots (one a direct hit and the second, a splash spot). Further observations are needed to determine its orbital evolution. We thank USC, Lancaster for their support of our membership in NURO for the past 8 years, the American Astronomical Society for its support through its small research program and Arizona Space grant for the partial support for our student’s travel.

  18. Vulcan Identification of Eclipsing Binaries in the Kepler Field of View

    NASA Astrophysics Data System (ADS)

    Mjaseth, Kimberly; Batalha, N.; Borucki, W.; Caldwell, D.; Latham, D.; Martin, K. R.; Rabbette, M.; Witteborn, F.

    2007-05-01

    We report the discovery of 236 new eclipsing binary stars located in and around the field of view of the Kepler Mission. The binaries were identified from photometric light curves from the Vulcan exoplanet transit survey. The Vulcan camera is comprised of a modest aperture (10cm) f/2.8 Canon lens focusing a 7° x 7° field of view onto a 4096 x 4096 Kodak CCD. The system yields an hour-to-hour relative precision of 0.003 on 12th magnitude stars and saturates at 9th magnitude. The binaries have magnitudes in the range of 9.5 < V < 13.5 and periods ranging from 0.5 to 13 days. The milli-magnitude photometric precision allows detection of transits as shallow as 1%. The catalog contains a total of 273 eclipsing binary stars, including detached systems (high and low mass ratio), contact binaries, and triple systems. We present the derived orbital/transit properties, light curves, and stellar properties for selected targets. In addition, we summarize the results of radial velocity follow-up work. Support for this work came from NASA's Discovery Program and NASA's Origins of the Solar System Program.

  19. Evaluating Gaia performances on eclipsing binaries. IV. Orbits and stellar parameters for SV Cam, BS Dra and HP Dra

    NASA Astrophysics Data System (ADS)

    Milone, E. F.; Munari, U.; Marrese, P. M.; Williams, M. D.; Zwitter, T.; Kallrath, J.; Tomov, T.

    2005-10-01

    This is the fourth in a series of papers that aim both to provide reasonable orbits for a number of eclipsing binaries and to evaluate the expected performance of Gaia of these objects and the accuracy that is achievable in the determination of such fundamental stellar parameters as mass and radius. In this paper, we attempt to derive the orbits and physical parameters for three eclipsing binaries in the mid-F to mid-G spectral range. As for previous papers, only the H_P, V_T, BT photometry from the Hipparcos/Tycho mission and ground-based radial velocities from spectroscopy in the region 8480-8740 Å are used in the analyses. These data sets simulate the photometric and spectroscopic data that are expected to be obtained by Gaia, the approved ESA Cornerstone mission to be launched in 2011. The systems targeted in this paper are SV Cam, BS Dra and HP Dra. SV Cam and BS Dra have been studied previously, allowing comparisons of the derived parameters with those from full scale and devoted ground-based investigations. HP Dra has no published orbital solution. SV Cam has a β Lyrae type light curve and the others have Algol-like light curves. SV Cam has the complication of light curve anomalies, usually attributed to spots; BS Dra has non-solar metallicity, and HP Dra appears to have a small eccentricity and a sizeable time derivative in the argument of the periastron. Thus all three provide interesting and different test cases.

  20. Multicolor eclipse studies of UU Aquarii. 1: Observations and system parameters

    NASA Technical Reports Server (NTRS)

    Baptista, R.; Steiner, J. E.; Cieslinski, D.

    1994-01-01

    A study of the eclipses in UU Aqr from multicolor high-speed photometry is presented. A revised ephemeris for the times of minimum and an upper limit for orbital period variations are obtained. We use measurements of contact phases in the eclipse light curve to derive the binary geometry and to estimate masses and relevant dimensions. We find a mass ratio of q = 0.30 +/- 0.07 and an inclination of i = 78 deg +/- 2 deg. The masses of the component stars are M(sub 1) = 0.67 +/- 0.14 solar mass and M(sub 2) = 0.20 +/- 0.07 solar mass. Our photometric model predicts K(sub 1) = 84 +/- 26 km/s, which is approximately 30% smaller than the velocity amplitude obtained from the emission lines. From the white dwarf fluxes we estimate T(sub wd) approximately = 34,000 K and a distance of d = 270 +/- 50 pc if the inner disk is opaque. UU Aqr has long term brightness variations of approximately = 0.3 m on timescales of approximately 4 yr. The system was in a 'high' state in 1989 and 1990 and in a 'low' state in 1988 and 1992. The high state results from an increase in the brightness of the outer and cooler parts of the disk, mainly due to the appearance of a bright spot at disk rim. Based on the smooth and gradual eclipse shape and on the absence of a prominent hump in the light curve we suggest that UU Aqr is a high mass-transfer nova-like system with a relatively bright and optically thick accretion disk. We find no perceptible eclipse in the H-alpha emission line. The fluxes at mid-eclipse can be fitted by a compostion of a late-type spectrum plus an optically thin hydrogen emission-line spectrum. These evidences suggest that the emission lines are formed in an extended region only partially occulted during eclipse.

  1. Infrared observations of RS CVn stars

    NASA Technical Reports Server (NTRS)

    Berriman, G.; De Campli, W. M.; Werner, M. W.; Hatchett, S. P.

    1983-01-01

    The paper presents infrared photometry of the RS CVn binary stars AR Lac (1.2-10 microns) and MM Her (1.2-3.5 microns) as they egressed from their primary and secondary eclipses; of the eclipsing systems RS CVn and Z Her at maximum light (1.2-10 microns) and of the non-eclipsing systems UX Ari and HR 1099 (1.2-10 microns). An analysis of these and published V data based on flux ratio diagrams (linear analogues of color-color diagrams) shows that G and K stars supply the infrared light of these systems. In AR Lac, the combined light of a G5-K0 subgiant and either a late F dwarf or an early F subgiant can account for the observed visual and infrared light curves. None of these systems shows infrared emission from circumstellar matter. This result is simply understood: dust grains would not be expected to form in the physical conditions surrounding the subgiant, and the corona and chromosphere (whose properties have been deduced from spectroscopic X-ray observations) should not produce appreciable infrared emission.

  2. First Precision Photometric Observations and Analyses of the Totally Eclipsing, Solar Type Binary V573 Pegasi

    NASA Astrophysics Data System (ADS)

    Samec, R. G.; Caton, D. B.; Faulkner, D. R.

    2018-06-01

    CCD VRcIc light curves of V573 Peg were taken 26 and 27 September and 2, 4, and 6 October, 2017, at the Dark Sky Observatory in North Carolina with the 0.81-m reflector of Appalachian State University. Five times of minimum light were calculated, two primary and three secondary eclipses, from our present observations. The following quadratic ephemeris was determined from all available times of minimum light: JD Hel MinI = 2456876.4958 (2) d + 0.41744860 (8) × E -2.74 (12) × 10^-10 × E2, where the parentheses hold the ± error in the last two digits of the preceding value. A 14-year period study (covered by 24 times of minimum light) reveals a decreasing orbital period with high confidence, possibly due to magnetic braking. The mass ratio is found to be somewhat extreme, M2 / M1 = 0.2629 ± 0.0006 (M1 / M2 = 3.8). Its Roche Lobe fill-out is ˜25%. The solution had no need of spots. The component temperature difference is about 130 K, with the less massive component as the hotter one, so it is a W-type W UMa Binary. The inclination is 80.4 ± 0.1°. Our secondary eclipse shows a time of constant light with an eclipse duration of 24 minutes. More information is given in the following report.

  3. The V471 Tauri System: A Multi-data-type Probe

    NASA Astrophysics Data System (ADS)

    Vaccaro, T. R.; Wilson, R. E.; Van Hamme, W.; Terrell, Dirk

    2015-09-01

    V471 Tauri, a white dwarf-red dwarf eclipsing binary (EB) in the Hyades, is well known for stimulating development of common envelope theory, whereby novae and other cataclysmic variables form from much wider binaries by catastrophic orbit shrinkage. Our evaluation of a recent imaging search that reported negative results for a much postulated third body shows that the object could have escaped detection or may have actually been seen. The balance of evidence continues to favor a brown dwarf companion about 12 AU from the EB. A recently developed algorithm finds unified solutions from three data types. New radial velocities (RVs) of the red dwarf and {{BVR}}C{I}C light curves are solved simultaneously along with white dwarf and red dwarf RVs from the literature, uvby data, the Microvariability and Oscillations of Stars mission light curve, and 40 years of eclipse timings. Precision-based weighting is the key to proper information balance among the various data sets. Timewise variation of modeled starspots allows unified solution of multiple data eras. Light-curve amplitudes strongly suggest decreasing spottedness from 1976 to about 1980, followed by approximately constant spot coverage from 1981 to 2005. An explanation is proposed for lack of noticeable variation in 1981 light curves, in terms of competition between spot and tidal variations. Photometric-spectroscopic distance is estimated. The red dwarf mass comes out larger than normal for a K2 V star, and even larger than adopted in several structure and evolution papers. An identified cause for this result is that much improved red dwarf RV curves now exist.

  4. PG0027 + 260 - An example of a class of cataclysmic binaries with mysterious, but consistent, behavior

    NASA Technical Reports Server (NTRS)

    Thorstensen, John R.; Ringwald, F. A.; Wade, Richard A.; Schmidt, Gary D.; Norsworthy, Jane E.

    1991-01-01

    This paper reports extensive optical observations on the PG0027 + 260 binary, carried out on August 1984 with the 1.3 McGraw-Hill telescope and Mark II spectrometer at Michigan-Dartmouth-MIT Observatory on Kitt Peak. It is shown that this object is an eclipsing novalike variable with an orbital period of 3.51 hr. The PG0027 + 260 displays several unexplained phenomena which are remarkably similar to those of the SW Sex, DW UMa, and V1315 Aql, which are eclipsing novalike stars with periods between 3 and 4 hrs. The eclipse of the PG0027 + 260 is modeled, and it is shown that, while the mean eclipse light curve is easy to match, there is no simple explanation for the variable depth.

  5. YSOVAR: Six Pre-main-sequence Eclipsing Binaries in the Orion Nebula Cluster

    DTIC Science & Technology

    2012-06-25

    reserved. Printed in the U.S.A. YSOVAR: SIX PRE-MAIN-SEQUENCE ECLIPSING BINARIES IN THE ORION NEBULA CLUSTER M. Morales-Calderón1,2, J. R. Stauffer1, K. G...multi-color light curves for∼2400 candidate Orion Nebula Cluster (ONC) members from our Warm Spitzer Exploration Science Program YSOVAR, we have...readable tables 1. INTRODUCTION The Orion Nebula Cluster (ONC) contains several thousand members, and since it is nearby, it provides an excellent em

  6. The "Cool Algol" BD+05 706 : Photometric observations of a new eclipsing double-lined spectroscopic binary

    NASA Astrophysics Data System (ADS)

    Marschall, L. A.; Torres, G.; Neuhauser, R.

    1998-05-01

    BVRI Observations of the star BD+05 706, carried out between January, 1997, and April 1998 using the 0.4m reflector and Photometrics CCD camera at the Gettysburg College Observatory, show that the star is an eclipsing binary system with a light curve characteristic of a class of semi-detached binaries known as the "cool Algols". These results are in good agreement with the previous report of BD+05 706 as a cool Algol by Torres, Neuhauser, and Wichmann,(Astron. J., 115, May 1998) who based their classification on the strong X-ray emission detected by Rosat and on a series of spectroscopic observations of the radial velocities of both components of the system obtained at the Oak Ridge Observatory, the Fred L. Whipple Observatory, and the Multiple Mirror Telescope. Only 10 other examples of cool Algols are known, and the current photometric light curve, together with the radial velocity curves obtained previously, allows us to derive a complete solution for the physical parameters of each component, providing important constraints on models for these interesting systems.

  7. Absolute parameters of eclipsing binaries in Southern Hemisphere sky - II: QY Tel

    NASA Astrophysics Data System (ADS)

    Erdem, A.; Sürgit, D.; Engelbrecht, C. A.; van Heerden, H. P.; Manick, R.

    2016-11-01

    This paper presents the first analysis of spectroscopic and photometric observations of the neglected southern eclipsing binary star, QY Tel. Spectroscopic observations were carried out at the South African Astronomical Observatory in 2013. New radial velocity curves from this study and V light curves from the All Sky Automated Survey were solved simultaneously using modern light and radial velocity curve synthesis methods. The final model describes QY Tel as a detached binary star where both component stars fill at least half of their Roche limiting lobes. The masses and radii were found to be 1.32 (± 0.06) M⊙, 1.74 (± 0.15) R⊙ and 1.44 (± 0.09) M⊙, 2.70 (± 0.16) R⊙ for the primary and secondary components of the system, respectively. The distance to QY Tel was calculated as 365 (± 40) pc, taking into account interstellar extinction. The evolution case of QY Tel is also examined. Both components of the system are evolved main-sequence stars with an age of approximately 3.2 Gy, when compared to Geneva theoretical evolution models.

  8. Search for light curve modulations among Kepler candidates. Three very low-mass transiting companions

    NASA Astrophysics Data System (ADS)

    Lillo-Box, J.; Ribas, A.; Barrado, D.; Merín, B.; Bouy, H.

    2016-07-01

    Context. Light curve modulations in the sample of Kepler planet candidates allows the disentangling of the nature of the transiting object by photometrically measuring its mass. This is possible by detecting the effects of the gravitational pull of the companion (ellipsoidal modulations) and in some cases, the photometric imprints of the Doppler effect when observing in a broad band (Doppler beaming). Aims: We aim to photometrically unveil the nature of some transiting objects showing clear light curve modulations in the phase-folded Kepler light curve. Methods: We selected a subsample among the large crop of Kepler objects of interest (KOIs) based on their chances to show detectable light curve modulations, I.e., close (a< 12 R⋆) and large (in terms of radius, according to their transit signal) candidates. We modeled their phase-folded light curves with consistent equations for the three effects, namely, reflection, ellipsoidal and beaming (known as REB modulations). Results: We provide detailed general equations for the fit of the REB modulations for the case of eccentric orbits. These equations are accurate to the photometric precisions achievable by current and forthcoming instruments and space missions. By using this mathematical apparatus, we find three close-in very low-mass companions (two of them in the brown dwarf mass domain) orbiting main-sequence stars (KOI-554, KOI-1074, and KOI-3728), and reject the planetary nature of the transiting objects (thus classifying them as false positives). In contrast, the detection of the REB modulations and transit/eclipse signal allows the measurement of their mass and radius that can provide important constraints for modeling their interiors since just a few cases of low-mass eclipsing binaries are known. Additionally, these new systems can help to constrain the similarities in the formation process of the more massive and close-in planets (hot Jupiters), brown dwarfs, and very low-mass companions.

  9. Searching for Extrasolar Trojan Planets: A Status Report

    NASA Astrophysics Data System (ADS)

    Caton, D. B.; Davis, S. A.; Kluttz, K. A.; Stamilio, R. J.; Wohlman, K. D.

    2001-05-01

    We are exploring the light curves of eclipsing binaries for the photometric signature of planets that may exist at the L4 and L5 Lagrange points of the stellar system. While no binaries are known to exist that strictly satisfy the stellar mass ratio constraint for the restricted three-body problem, the general solution would allow a planet formed at the L-point to remain there if there are no major perturbing bodies such as an additional planet. We have coined such objects "Trojan planets." The advantage of this approach is that the phases of the planetary eclipses are known. We picked systems with deep primary eclipses, to maximize the amount of system light eclipsed by the planet when in front of the hotter star. We also scanned the Finding List for Observers of Interactive Binary Stars, for G dwarf systems, but found only a few that were high inclination and detached. The target list includes QY Aql, YZ Aql, V442 Cas, SS Cet, S Cnc, VW Cyg, WW Cyg, RR Dra, RX Gem, RY Gem, VW Hya, Y Leo, TV Mon, BN Sct, UW Vir, AC UMa, and GSC 1657. We have concentrated on V442 Cas and YZ Aql, based on initial results that show anomalies in the light curves near the phases where a Trojan planet eclipse is expected. New work is being done on brighter systems by using a "spot filter," similar to that developed by Castellano (PASP 112, 821-6),2000), to allow longer exposures that provide brighter comparison stars. We will report on the observations made to date on several systems. We gratefully acknowledge the support of the National Science Foundation, through grants AST-9731062 and AST-0089248. We also appreciate the support of the Fund for Astrophysical Research. Gregory Shelton and Brenda Corbin, at the U.S. naval Observatory Library, have been indispensable in providing references for these binary systems. This research has made use of the Simbad database, operated at CDS, Strasbourg, France

  10. SEVEN NEW BINARIES DISCOVERED IN THE KEPLER LIGHT CURVES THROUGH THE BEER METHOD CONFIRMED BY RADIAL-VELOCITY OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faigler, S.; Mazeh, T.; Tal-Or, L.

    We present seven newly discovered non-eclipsing short-period binary systems with low-mass companions, identified by the recently introduced BEER algorithm, applied to the publicly available 138-day photometric light curves obtained by the Kepler mission. The detection is based on the beaming effect (sometimes called Doppler boosting), which increases (decreases) the brightness of any light source approaching (receding from) the observer, enabling a prediction of the stellar Doppler radial-velocity (RV) modulation from its precise photometry. The BEER algorithm identifies the BEaming periodic modulation, with a combination of the well-known Ellipsoidal and Reflection/heating periodic effects, induced by short-period companions. The seven detections weremore » confirmed by spectroscopic RV follow-up observations, indicating minimum secondary masses in the range 0.07-0.4 M{sub Sun }. The binaries discovered establish for the first time the feasibility of the BEER algorithm as a new detection method for short-period non-eclipsing binaries, with the potential to detect in the near future non-transiting brown-dwarf secondaries, or even massive planets.« less

  11. BVR{sub c}I{sub c} observations and analyses on V2421 Cygni, a precontact W UMa binary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samec, R. G.; Shebs, Travis S.; Faulkner, D. R.

    2014-01-01

    We present the first precision BVRI light curves, synthetic light curve solutions, and a period study for the high amplitude solar type binary, V2421 Cygni. The light curves have the appearance of an Algol (EA) type; however, it is made up of dwarf solar type components in a detached mode with a period of only 0.6331 days with an amplitude of about a full magnitude, i.e., it is a precontact W UMa binary. Flare-like disruptions occur in the light curves following the primary and secondary eclipses possibly due to the line-of-sight track of a gas stream. An associated stream spotmore » and splash spot cause bright equatorial spots on the stellar surface of the primary star. The more massive star is the gainer, making this system a classic, albeit dwarf, Algol.« less

  12. Photometric study of the eclipsing binary GR Bootis

    NASA Astrophysics Data System (ADS)

    Zhang, Z. L.; Zhang, Y. P.; Fu, J. N.; Xue, H. F.

    2016-07-01

    We present CCD photometry and low-resolution spectra of the eclipsing binary GR Boo. A new ephemeris is determined based on all the available times of the minimum light. The period analysis reveals that the orbital period is decreasing with a rate of dP / dt = - 2.05 ×10-10 d yr-1 . A photometric analysis for the obtained light curves is performed with the Wilson-Devinney Differential Correction program for the first time. The photometric solutions confirm the W UMa-type nature of the binary system. The mass ratio turns out to be q = 0.985 ± 0.001 . The evolutionary status and physical nature of the binary system are briefly discussed.

  13. Selected results from the epsilon Aurigae eclipse campaign, and what lies ahead

    NASA Astrophysics Data System (ADS)

    Stencel, Robert E.

    2013-07-01

    The torrent of data generated during the 2009-2011 eclipse of the enigmatic binary, epsilon Aurigae, has provided abundant opportunity to test and refine the many ideas associated with this system. The UBVRIJH photometric light curves established times of ingress and egress, and also revealed that the differential color of the disk varied, relative to pre- or post- mid-eclipse phase. Inter-eclipse monitoring indicated secular variations suggestive of a rapidly evolving F supergiant star. Interferometric imaging decisively identified the eclipse-causing agent to be an opaque disk (CHARA+MIRC). Spectroscopy has shown that a hot source occupies the center of this disk (He I 10830A, Far-UV excess), that the disk exhibits substructure (K I 7699A) and may have an extended atmosphere (CHARA+VEGA), and that the disk is isotopically-enhanced in 13C (GNIRS) and in rare-earth elements during a third contact "still-stand" in the light curve, suggestive of a mass transfer stream. Polarimetry and spectro-polarimetry provided additional constraints on the F star atmospheric variation and the nature of the dust scattering in the disk. Numerical models of the disk are exploring its relationship to the wider class of transitional and debris-type disks, and how differential heating of the dust may reveal properties not otherwise detected spectroscopically. As the system moves to quadrature in coming years, continued observing opportunities will continue to exist. I am grateful for support from the estate of William Herschel Womble for astronomy at the University of Denver, which has made possible two decades of research on this star that otherwise has revealed its secrets only very slowly.

  14. Lunar eclipse photometry: absolute luminance measurements and modeling.

    PubMed

    Hernitschek, Nina; Schmidt, Elmar; Vollmer, Michael

    2008-12-01

    The Moon's time-dependent luminance was determined during the 9 February 1990 and 3 March 2007 total lunar eclipses by using calibrated, industry standard photometers. After the results were corrected to unit air mass and to standard distances for both Moon and Sun, an absolute calibration was accomplished by using the Sun's known luminance and a pre-eclipse lunar albedo of approximately 13.5%. The measured minimum level of brightness in the total phase of both eclipses was relatively high, namely -3.32 m(vis) and -1.7 m(vis), which hints at the absence of pronounced stratospheric aerosol. The light curves were modeled in such a way as to let the Moon move through an artificial Earth shadow composed of a multitude of disk and ring zones, containing a relative luminance data set from an atmospheric radiative transfer calculation.

  15. Evidence for a planetary mass third body orbiting the binary star KIC 5095269

    NASA Astrophysics Data System (ADS)

    Getley, A. K.; Carter, B.; King, R.; O'Toole, S.

    2017-07-01

    In this paper, we report the evidence for a planetary mass body orbiting the close binary star KIC 5095269. This detection arose from a search for eclipse timing variations amongst the more than 2000 eclipsing binaries observed by Kepler. Light curve and periodic eclipse time variations have been analysed using systemic and a custom Binary Eclipse Timings code based on the Transit Analysis Package which indicates a 7.70 ± 0.08MJup object orbiting every 237.7 ± 0.1 d around a 1.2 M⊙ primary and a 0.51 M⊙ secondary in an 18.6 d orbit. A dynamical integration over 107 yr suggests a stable orbital configuration. Radial velocity observations are recommended to confirm the properties of the binary star components and the planetary mass of the companion.

  16. Detection of secondary eclipses of WASP-10b and Qatar-1b in the Ks band and the correlation between Ks-band temperature and stellar activity.

    NASA Astrophysics Data System (ADS)

    Cruz, Patricia; Barrado, David; Lillo-Box, Jorge; Diaz, Marcos; López-Morales, Mercedes; Birkby, Jayne; Fortney, Jonathan J.; Hodgkin, Simon

    2017-10-01

    The Calar Alto Secondary Eclipse study was a program dedicated to observe secondary eclipses in the near-IR of two known close-orbiting exoplanets around K-dwarfs: WASP-10b and Qatar-1b. Such observations reveal hints on the orbital configuration of the system and on the thermal emission of the exoplanet, which allows the study of the brightness temperature of its atmosphere. The observations were performed at the Calar Alto Observatory (Spain). We used the OMEGA2000 instrument (Ks band) at the 3.5m telescope. The data was acquired with the telescope strongly defocused. The differential light curve was corrected from systematic effects using the Principal Component Analysis (PCA) technique. The final light curve was fitted using an occultation model to find the eclipse depth and a possible phase shift by performing a MCMC analysis. The observations have revealed a secondary eclipse of WASP-10b with depth of 0.137%, and a depth of 0.196% for Qatar-1b. The observed phase offset from expected mid-eclipse was of -0.0028 for WASP-10b, and of -0.0079 for Qatar-1b. These measured offsets led to a value for |ecosω| of 0.0044 for the WASP-10b system, leading to a derived eccentricity which was too small to be of any significance. For Qatar-1b, we have derived a |ecosω| of 0.0123, however, this last result needs to be confirmed with more data. The estimated Ks-band brightness temperatures are of 1647 K and 1885 K for WASP-10b and Qatar-1b, respectively. We also found an empirical correlation between the (R'HK) activity index of planet hosts and the Ks-band brightness temperature of exoplanets, considering a small number of systems.

  17. The Kepler Mission and Eclipsing Binaries

    NASA Technical Reports Server (NTRS)

    Koch, David; Borucki, William; Lissauer, J.; Basri, Gibor; Brown, Timothy; Caldwell, Douglas; Cochran, William; Jenkins, Jon; Dunham, Edward; Gautier, Nick

    2006-01-01

    The Kepler Mission is a photometric mission with a precision of 14 ppm (at R=12) that is designed to continuously observe a single field of view (FOV) of greater 100 sq deg in the Cygnus-Lyra region for four or more years. The primary goal of the mission is to monitor greater than 100,000 stars for transits of Earth-size and smaller planets in the habitable zone of solar-like stars. In the process, many eclipsing binaries (EB) will also be detected and light curves produced. To enhance and optimize the mission results, the stellar characteristics for all the stars in the FOV with R less than 16 will have been determined prior to launch. As part of the verification process, stars with transit candidates will have radial velocity follow-up observations performed to determine the component masses and thereby separate eclipses caused by stellar companions from transits caused by planets. The result will be a rich database on EBs. The community will have access to the archive for further analysis, such as, for EB modeling of the high-precision light curves. A guest observer program is also planned to allow for photometric observations of objects not on the target list but within the FOV, since only the pixels of interest from those stars monitored will be transmitted to the ground.

  18. KOI-1003: A New Spotted, Eclipsing RS CVn Binary in the Kepler Field

    NASA Astrophysics Data System (ADS)

    Roettenbacher, Rachael M.; Kane, Stephen R.; Monnier, John D.; Harmon, Robert O.

    2016-12-01

    Using the high-precision photometry from the Kepler space telescope, thousands of stars with stellar and planetary companions have been observed. The characterization of stars with companions is not always straightforward and can be contaminated by systematic and stellar influences on the light curves. Here, through a detailed analysis of starspots and eclipses, we identify KOI-1003 as a new, active RS CVn star—the first identified with data from Kepler. The Kepler light curve of this close binary system exhibits the system’s primary transit, secondary eclipse, and starspot evolution of two persistent active longitudes. The near equality of the system’s orbital and rotation periods indicates the orbit and primary star’s rotation are nearly synchronized ({P}{orb}=8.360613+/- 0.000003 {days}; {P}{rot}˜ 8.23 {days}). By assuming the secondary star is on the main sequence, we suggest the system consists of a {1.45}-0.19+0.11 {M}⊙ subgiant primary and a {0.59}-0.04+0.03 {M}⊙ main-sequence companion. Our work gives a distance of 4400 ± 600 pc and an age of t={3.0}+2.0-0.5 {Gyr}, parameters which are discrepant with previous studies that included the star as a member of the open cluster NGC 6791.

  19. The MUCHFUSS photometric campaign

    NASA Astrophysics Data System (ADS)

    Schaffenroth, V.; Geier, S.; Heber, U.; Gerber, R.; Schneider, D.; Ziegerer, E.; Cordes, O.

    2018-06-01

    Hot subdwarfs (sdO/Bs) are the helium-burning cores of red giants, which have lost almost all of their hydrogen envelope. This mass loss is often triggered by common envelope interactions with close stellar or even substellar companions. Cool companions like late-type stars or brown dwarfs are detectable via characteristic light-curve variations like reflection effects and often also eclipses. To search for such objects, we obtained multi-band light curves of 26 close sdO/B binary candidates from the MUCHFUSS project with the BUSCA instrument. We discovered a new eclipsing reflection effect system (P = 0.168938 d) with a low-mass M dwarf companion (0.116 M⊙). Three more reflection effect binaries found in the course of the campaign have already been published; two of them are eclipsing systems, and in one system only showing the reflection effect but no eclipses, the sdB primary is found to be pulsating. Amongst the targets without reflection effect a new long-period sdB pulsator was discovered and irregular light variations were found in two sdO stars. The found light variations allowed us to constrain the fraction of reflection effect binaries and the substellar companion fraction around sdB stars. The minimum fraction of reflection effect systems amongst the close sdB binaries might be greater than 15% and the fraction of close substellar companions in sdB binaries may be as high as 8.0%. This would result in a close substellar companion fraction to sdB stars of about 3%. This fraction is much higher than the fraction of brown dwarfs around possible progenitor systems, which are solar-type stars with substellar companions around 1 AU, as well as close binary white dwarfs with brown dwarf companions. This might suggest that common envelope interactions with substellar objects are preferentially followed by a hot subdwarf phase.

  20. A Catalog of Eclipsing Binaries and Variable Stars Observed with ASTEP 400 from Dome C, Antarctica

    NASA Astrophysics Data System (ADS)

    Chapellier, E.; Mékarnia, D.; Abe, L.; Guillot, T.; Agabi, K.; Rivet, J.-P.; Schmider, F.-X.; Crouzet, N.; Aristidi, E.

    2016-10-01

    We used the large photometric database of the ASTEP program, whose primary goal was to detect exoplanets in the southern hemisphere from Antarctica, to search for eclipsing binaries (EcBs) and variable stars. 673 EcBs and 1166 variable stars were detected, including 31 previously known stars. The resulting online catalogs give the identification, the classification, the period, and the depth or semi-amplitude of each star. Data and light curves for each object are available at http://astep-vo.oca.eu.

  1. Photometric study and absolute parameters of the short-period eclipsing binary HH Bootis

    NASA Astrophysics Data System (ADS)

    Gürol, B.; Bradstreet, D. H.; Demircan, Y.; Gürsoytrak, S. H.

    2015-11-01

    We present the results of our investigation on the geometrical and physical parameters of the W UMa type binary system HH Bootis from new CCD (BVRI) light curves and published radial velocity data. The photometric data were obtained in 2011 and 2012 at Ankara University Observatory (AUO). Light and radial velocity observations were analyzed simultaneously using the Wilson-Devinney (2013 revision) code to obtain absolute and geometrical parameters. The system was determined to be a W-type W UMa system of a type different from that suggested by Dal and Sipahi (2013). An interesting cyclic period variation in the time intervals between primary and secondary eclipses ("half-period variation") was discovered and analyzed and its possible cause is discussed. Combining our photometric solution with the spectroscopic data we derived masses and radii of the eclipsing system to be M1 = 0.627M⊙ , M2 = 1.068M⊙ , R1 = 0.782R⊙ and R2 = 0.997R⊙ . New light elements were derived and finally the evolutionary status of the system is discussed.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsons, S. G.; Marsh, T. R.; Gaensicke, B. T.

    Using Liverpool Telescope+RISE photometry we identify the 2.78 hr period binary star CSS 41177 as a detached eclipsing double white dwarf binary with a 21,100 K primary star and a 10,500 K secondary star. This makes CSS 41177 only the second known eclipsing double white dwarf binary after NLTT 11748. The 2 minute long primary eclipse is 40% deep and the secondary eclipse 10% deep. From Gemini+GMOS spectroscopy, we measure the radial velocities of both components of the binary from the H{alpha} absorption line cores. These measurements, combined with the light curve information, yield white dwarf masses of M{sub 1}more » = 0.283 {+-} 0.064 M{sub sun} and M{sub 2} = 0.274 {+-} 0.034 M{sub sun}, making them both helium core white dwarfs. As an eclipsing, double-lined spectroscopic binary, CSS 41177 is ideally suited to measuring precise, model-independent masses and radii. The two white dwarfs will merge in roughly 1.1 Gyr to form a single sdB star.« less

  3. Ultraviolet photometry of the eclipsing variable CW Cephei

    NASA Technical Reports Server (NTRS)

    Sobieski, S.

    1972-01-01

    A series of photometric observations was made of the eclipsing variable CW Cephei on the OAO 2. Approximate elements were derived from the eclipse depths and shape of the secondary. Persistent asymmetries and anomalous light variations, larger than the expected experimental error, were also found, subsequent ground-based observations show H alpha entirely in emission, indicating the presence of an extended gaseous system surrounding one or both components. A detailed comparison was made of the flux distribution of the binary relative to that for the nominally unreddened stars delta Pic, BlIII, and eta Aur, B3V, to investigate the effects of interstellar extinction. The resultant extinction curves, normalized at a wavelength of 3330 A, show a relatively smooth increase with decreasing wavelength.

  4. Long-term Optical Observations of Two LMXBS: UW CrB (=MS 1603+260) and V1408 Aql (=4U 1957+115)

    NASA Astrophysics Data System (ADS)

    Mason, Paul A.; Robinson, Edward L.; Bayless, Amanda J.; Hakala, Pasi J.

    2012-10-01

    We present new optical photometry of two low-mass X-ray binary stars, UW CrB (MS 1603+260) and V1408 Aql (4U 1957+115). UW CrB is an eclipsing binary and we refine its eclipse ephemeris and measure an upper limit to the rate of change of its orbital period, |\\dot{P}| < 4.2 \\times 10^{-11} (unitless). The light curve of UW CrB shows optical counterparts of type I X-ray bursts. We tabulate the times, orbital phases, and fluences of 33 bursts and show that the optical flux in the bursts comes primarily from the accretion disk, not from the secondary star. The new observations are consistent with a model in which the accretion disk in UW CrB is asymmetric and precesses in the prograde direction with a period of ~5.5 days. The light curve of V1408 Aql has a low-amplitude modulation at its 9.33 hr orbital period. The modulation remained a nearly pure sine curve in the new data as it was in 1984 and 2008, but its mean amplitude was lower, 18% against 23% in the earlier data. A model in which the orbital modulation is caused by the varying aspect of the heated face of the secondary star continues to give an excellent fit to the light curve. We derive a much improved orbital ephemeris for the system.

  5. LONG-TERM OPTICAL OBSERVATIONS OF TWO LMXBs: UW CrB (=MS 1603+260) AND V1408 Aql (=4U 1957+115)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mason, Paul A.; Robinson, Edward L.; Bayless, Amanda J.

    We present new optical photometry of two low-mass X-ray binary stars, UW CrB (MS 1603+260) and V1408 Aql (4U 1957+115). UW CrB is an eclipsing binary and we refine its eclipse ephemeris and measure an upper limit to the rate of change of its orbital period, | P-dot | < 4.2 Multiplication-Sign 10{sup -11} (unitless). The light curve of UW CrB shows optical counterparts of type I X-ray bursts. We tabulate the times, orbital phases, and fluences of 33 bursts and show that the optical flux in the bursts comes primarily from the accretion disk, not from the secondary star.more » The new observations are consistent with a model in which the accretion disk in UW CrB is asymmetric and precesses in the prograde direction with a period of {approx}5.5 days. The light curve of V1408 Aql has a low-amplitude modulation at its 9.33 hr orbital period. The modulation remained a nearly pure sine curve in the new data as it was in 1984 and 2008, but its mean amplitude was lower, 18% against 23% in the earlier data. A model in which the orbital modulation is caused by the varying aspect of the heated face of the secondary star continues to give an excellent fit to the light curve. We derive a much improved orbital ephemeris for the system.« less

  6. LX Leo: A High Mass-Ratio Totally Eclipsing W-type W UMa System

    NASA Astrophysics Data System (ADS)

    Gürol, B.; Michel, R.; Gonzalez, C.

    2017-10-01

    We present the results of our investigation of the geometrical and physical parameters of the binary system LX Leo. Based on CCD BVRc light curves, and their analyses with the Wilson-Devinney code, new times of minima and light elements have been determined. According to our solution, the system is a high mass-ratio, totally eclipsing, W-type W UMa system. Combining our photometric solution with the empirical relation for W UMa type systems by Dimitrow & Kjurkchieva (2015), we derived the masses and radii of the components to be M1=0.43 M⊙, M2=0.81 M⊙, R1=0.58 R⊙ and R2=0.77 R⊙. In addition, the evolutionary condition of the system is discussed.

  7. Multi-Filter Photometric Analysis of Three β Lyrae-type Eclipsing Binary Stars

    NASA Astrophysics Data System (ADS)

    Gardner, T.; Hahs, G.; Gokhale, V.

    2015-12-01

    We present light curve analysis of three variable stars, ASAS J105855+1722.2, NSVS 5066754, and NSVS 9091101. These objects are selected from a list of β- Lyrae candidates published by Hoffman et al. (2008). Light curves are generated using data collected at the the 31-inch NURO telescope at the Lowell Observatory in Flagstaff, Arizona in three filters: Bessell B, V, and R. Additional observations were made using the 14-inch Meade telescope at the Truman State Observatory in Kirksville, Missouri using Baader R, G, and B filters. In this paper, we present the light curves for these three objects and generate a truncated eight-term Fourier fit to these light curves. We use the Fourier coefficients from this fit to confirm ASAS J105855+1722.2 and NSVS 5066754 as β Lyrae type systems, and NSVS 9091101 to possibly be a RR Lyrae-type system. We measure the O'Connell effect observed in two of these systems (ASAS J105855+1722.2 and NSVS 5066754), and quantify this effect by calculating the "Light Curve Asymmetry" (LCA) and the "O'Connell Effect Ratio" (OER).

  8. The eclipsing AM Herculis variable H1907 + 690

    NASA Technical Reports Server (NTRS)

    Remillard, R. A.; Silber, A.; Stroozas, B. A.; Tapia, S.

    1991-01-01

    The discovery is reported of an eclipsing cataclysmic variable that exhibits up to 10 percent circular polarization at optical wavelengths, securing its classification as an AM Herculis type binary. The object, H1907 + 609, was located with the guidance of X-ray positions from the HEAO 1 survey. Optical CCD photometry exhibits deep eclipses, from which is derived a precise orbital period of 1.743750 hr. The eclipse duration suggests an inclination angle about 80 deg for a main-sequence secondary star. The optical flux has been persistently faint during observations spanning 1987-1990, while the X-ray measurements suggest long-term X-ray variability. The polarization and photometric light curves can be interpreted with a geometric model in which most of the accretion is directed toward a single magnetic pole, with an accretion spot displaced about 17 deg in longitude from the projection of the secondary star on the white dwarf surface.

  9. Observations, Roche Lobe Analysis, and Period Study of the Eclipsing Contact Binary System GM Canum Venaticorum

    NASA Astrophysics Data System (ADS)

    Alton, K. B.; Nelson, R. H.

    2018-06-01

    GM CVn is an eclipsing W UMa binary system (P = 0.366984 d) which has been largely neglected since its variability was first detected during the ROTSE campaign (1999-2000). Other than a single unfiltered light curve (LC) no other photometric data have been published. LC data collected in three bandpasses (B, V, and Rc) at UnderOak Observatory (UO) produced three new times of minimum for GM CVn. These along with other eclipse timings from the literature were used to update the linear ephemeris. Roche modeling to produce synthetic LC fits to the observed data was accomplished using binary maker 3, wdwint56a, and phoebe v.31a. Newly acquired radial velocity data were pivotal to defining the absolute and geometric parameters for this partially eclipsing binary system. An unspotted solution achieved the best Roche model fits for the multi-color LCs collected in 2013.

  10. Dramatic Evolution of the Disk-Shaped Secondary in the Orion Trapezium Star θ1 Ori B1 (BM Ori): MOST Satellite Observations

    NASA Astrophysics Data System (ADS)

    Windemuth, Diana; Herbst, W.; Tingle, E. D.; Fuechsl, R.; Kilgard, R. E.; Pinette, M.; Templeton, M. R.; Henden, A. A.

    2013-01-01

    θ1 Orionis B1 (BM Ori), the faintest of four well-known Trapezium stars in Orion, is the youngest known eclipsing binary system with a contraction age < 105 years. While the primary is a B3 star, the secondary component 2M⊙ based on radial velocities) has eluded classification since the duration and shape of the eclipse do not conform to those of an ordinary star. We report nearly continuous photometric observations obtained with the Microvariability & Oscillations of STars (MOST) satellite over ~4 cycles of the 6.47d binary period, which contain both primary and secondary eclipses, as well as a clear reflection effect. We find that the shape of the primary light curve has evolved significantly over the past 40 years. While its overall duration and depth have remained constant, ingress and egress are notably shallower now, and the flat bottom that has distinguished BM Ori’s light curve in the past is ill defined or even absent in the most recent data. Furthermore, small perturbations, some of which are repeated over the four cycles monitored, indicate semi-stable structures outside the Robe lobe of the secondary. In addition, we re-examine data from the Chandra Orion Ultradeep Project (COUP) study and detect the primary eclipse at X-ray wavelengths. The optical light curve continues to be well modeled by a self-luminous and reflective disk-shaped object seen nearly edge-on, orbiting a normal ZAMS primary. We treat the change in shape over the past four decades as an opacity variation in a tenuous outer envelope or disk surrounding the secondary, perhaps related to the digestion of accreted matter over the last 50-100 years. This work was partially funded by the NASA ROSES program and NASA’s Origins of Solar Systems program. Undergraduate participation in this research was supported by NSF/REU grants in support of Wesleyan University as a part of the Keck Northeast Astronomy Consortium.

  11. A simultaneous spectroscopic and photometric study of two eclipsing binaries: V566 Oph and V972 Her

    NASA Astrophysics Data System (ADS)

    Selam, S. O.; Esmer, E. M.; Şenavcı, H. V.; Bahar, E.; Yörükoğlu, O.; Yılmaz, M.; Baştürk, Ö.

    2018-02-01

    In this study, we have performed simultaneous solutions of light and radial velocity curves of two eclipsing binary systems, V566 Oph and V972 Her. We observed both systems spectroscopically with a very recently installed spectrograph on the 40 cm telescope, T40, located in Ankara University Kreiken Observatory (AUKR), for the first time. We made use of the photometric data from the Hipparcos satellite for V972 Her, while we obtained the photometric observations of V566 Oph by using the 35 cm telescope, T35, located also in our observatory campus. We derived the absolute parameters for both systems and discussed their evolutionary states. In addition to the simultaneous analysis, we have also analyzed the change in mid-eclipse times for V566 Oph, and found cyclic variations, for which we have discussed light-time effect and magnetic activity as their potential origin, superimposed on a secular change due to a mass transfer between the components of the binary.

  12. EE Cep observations requested for upcoming eclipse

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2014-07-01

    The AAVSO requests observations for the upcoming eclipse of EE Cephei, a long-period eclipsing variable. EE Cep has a period of 2,050 days, and shows strong variations in the eclipse light curve from one event to the next. Observations are needed to study the morphology of the upcoming eclipse, which will be used to better understand the shape of the eclipsing disk and how it precesses. Mid-eclipse is predicted to be August 23, 2014, but the early stages of the eclipse may begin as much as a month earlier. EE Cep is being observed by a number of amateur and professional astronomers using multiple telescopes at multiple wavelengths. Among these is a collaboration (see https://sites.google.com/site/eecep2014campaign/) headed by Cezary Galan at the Nicolaus Copernicus Astronomical Center in Poland; several individual AAVSO observers are already participating in this effort. The AAVSO is not currently a partner in that campaign, but all data submitted to the AAVSO will be publicly available. The AAVSO strongly encourages observers to begin following this star now, and to continue observations into October 2014 at least. Finder charts with sequence may be created using the AAVSO Variable Star Plotter (http://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details and observations.

  13. Stellar Obliquity and Magnetic Activity of Planet-hosting Stars and Eclipsing Binaries Based on Transit Chord Correlation

    NASA Astrophysics Data System (ADS)

    Dai, Fei; Winn, Joshua N.; Berta-Thompson, Zachory; Sanchis-Ojeda, Roberto; Albrecht, Simon

    2018-04-01

    The light curve of an eclipsing system shows anomalies whenever the eclipsing body passes in front of active regions on the eclipsed star. In some cases, the pattern of anomalies can be used to determine the obliquity Ψ of the eclipsed star. Here we present a method for detecting and analyzing these patterns, based on a statistical test for correlations between the anomalies observed in a sequence of eclipses. Compared to previous methods, ours makes fewer assumptions and is easier to automate. We apply it to a sample of 64 stars with transiting planets and 24 eclipsing binaries for which precise space-based data are available, and for which there was either some indication of flux anomalies or a previously reported obliquity measurement. We were able to determine obliquities for 10 stars with hot Jupiters. In particular we found Ψ ≲ 10° for Kepler-45, which is only the second M dwarf with a measured obliquity. The other eight cases are G and K stars with low obliquities. Among the eclipsing binaries, we were able to determine obliquities in eight cases, all of which are consistent with zero. Our results also reveal some common patterns of stellar activity for magnetically active G and K stars, including persistently active longitudes.

  14. The solar type deep low mass-ratio contact binary V658 Lyr: Photometric solution and preliminary elements

    NASA Astrophysics Data System (ADS)

    Martignoni, M.; Barani, C.; Acerbi, F.

    2018-07-01

    We present the first light curve analysis of the eclipsing binary V658 Lyr. B, V and Ic photometric observations made from 2014 to 2017 of this W UMa-type binary star are collected, the complete light curves were obtained in 2015 (4 nights) and 2016 (11 nights) and are used for a detailed photometric analysis to determine orbital and physical parameters using the Wilson-Devinney code. The results obtained indicates that V658 Lyr is an A-type overcontact binary system with both components of spectral type (G2 + G4). Based on our 17 ToM the short orbital period of the eclipsing binary was confirmed and revised to P = 0.3302577 days. The orbital period was found to show a cyclic variations and a decrease rate of dP/dt = - 2.97 × 10 -7 days yr-1 , which can be interpreted as a mass transfer from the more massive component to the less massive one. We have not found an asymmetry of the light curves. The mass of the primary and secondary stars are calculated to be M1 = 1.18M⊙( ± 0.08) and M2 = 0.21M⊙( ± 0.01) indicating the primary to be underluminous for its mass and the secondary to be overluminous for its mass.

  15. High Fill-out, Extreme Mass Ratio Overcontact Binary Systems. X. The Newly Discovered Binary XY Leonis Minoris

    NASA Astrophysics Data System (ADS)

    Qian, S.-B.; Liu, L.; Zhu, L.-Y.; He, J.-J.; Yang, Y.-G.; Bernasconi, L.

    2011-05-01

    The newly discovered short-period close binary star, XY LMi, has been monitored photometrically since 2006. Its light curves are typical EW-type light curves and show complete eclipses with durations of about 80 minutes. Photometric solutions were determined through an analysis of the complete B, V, R, and I light curves using the 2003 version of the Wilson-Devinney code. XY LMi is a high fill-out, extreme mass ratio overcontact binary system with a mass ratio of q = 0.148 and a fill-out factor of f = 74.1%, suggesting that it is in the late evolutionary stage of late-type tidal-locked binary stars. As observed in other overcontact binary stars, evidence for the presence of two dark spots on both components is given. Based on our 19 epochs of eclipse times, we found that the orbital period of the overcontact binary is decreasing continuously at a rate of dP/dt = -1.67 × 10-7 days yr-1, which may be caused by mass transfer from the primary to the secondary and/or angular momentum loss via magnetic stellar wind. The decrease of the orbital period may result in the increase of the fill-out, and finally, it will evolve into a single rapid-rotation star when the fluid surface reaches the outer critical Roche lobe.

  16. First photometric study of ultrashort-period contact binary 1SWASP J140533.33+114639.1

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Qian, Sheng-Bang; Michel, Ri; Soonthornthum, Boonrucksar; Zhu, Li-Ying

    2018-03-01

    In this paper, CCD photometric light curves for the short-period eclipsing binary 1SWASP J140533.33+114639.1 (hereafter J1405) in the BV R bands are presented and analyzed using the 2013 version of the Wilson-Devinney (W-D) code. It is discovered that J1405 is a W-subtype shallow contact binary with a contact degree of f = 7.9 ± 0.5% and a mass ratio of q = 1.55 ± 0.02. In order to explain the asymmetric light curves of the system, a cool starspot on the more massive component is employed. This shallow contact eclipsing binary may have been formed from a short-period detached system through orbital shrinkage due to angular momentum loss. Based on the (O – C) method, the variation of orbital period is studied using all the available times of minimum light. The (O – C) diagram reveals that the period is increasing continuously at a rate of dP/dt = +2.09 × 10‑7, d yr‑1, which can be explained by mass transfer from the less massive component to the more massive one.

  17. Photometry of the long period dwarf nova GY Hya

    NASA Astrophysics Data System (ADS)

    Bruch, Albert; Monard, Berto

    2017-08-01

    Although comparatively bright, the cataclysmic variable GY Hya has not attracted much attention in the past. As part of a project to better characterize such systems photometrically, we observed light curves in white light, each spanning several hours, at Bronberg Observatory, South Africa, in 2004 and 2005, and at the Observatório do Pico dos Dias, Brazil, in 2014 and 2016. These data permit to study orbital modulations and their variations from season to season. The orbital period, already known from spectroscopic observations of Peters and Thorstensen (2005), is confirmed through strong ellipsoidal variations of the mass donor star in the system and the presence of eclipses of both components. A refined period of 0.34723972 (6) days and revised ephemeries are derived. Seasonal changes in the average orbital light curve can qualitatively be explained by variations of the contribution of a hot spot to the system light together with changes of the disk radius. The amplitude of the ellipsoidal variations and the eclipse contact phases permit to put some constraints on the mass ratio, orbital inclination and the relative brightness of the primary and secondary components. There are some indications that the disk radius during quiescence, expressed in units of the component separation, is smaller than in other dwarf novae.

  18. Eclipse studies of the dwarf nova EX Draconis

    NASA Astrophysics Data System (ADS)

    Baptista, R.; Catalán, M. S.; Costa, L.

    2000-08-01

    We report on V and R high-speed photometry of the dwarf nova EX Draconis (EX Dra) in quiescence and in outburst. The analysis of the outburst light curves indicates that the outbursts do not start in the outer disc regions. The disc expands during the rise to maximum and shrinks during decline and along the following quiescent period. The decrease in brightness at the later stages of the outburst is due to the fading of the light from the inner disc regions. At the end of two outbursts the system was seen to go through a phase of lower brightness, characterized by an out-of-eclipse level ~=15 per cent lower than the typical quiescent level and by the fairly symmetric eclipse of a compact source at disc centre with little evidence of a bright spot at disc rim. New eclipse timings were measured from the light curves taken in quiescence and a revised ephemeris was derived. The residuals with respect to the linear ephemeris are well described by a sinusoid of amplitude 1.2min and period ~=4yr and are possibly related to a solar-like magnetic activity cycle in the secondary star. Eclipse phases of the compact central source and of the bright spot were used to derive the geometry of the binary. By constraining the gas stream trajectory to pass through the observed position of the bright spot, we find q=0.72+/-0.06 and i85+3-2 degrees. The binary parameters were estimated by combining the measured mass ratio with the assumption that the secondary star obeys an empirical main-sequence mass-radius relation. We find M1=0.75+/-0.15Msolar and M2=0.54+/-0.10Msolar. The results indicate that the white dwarf at disc centre is surrounded by an extended and variable atmosphere or boundary layer of at least three times its radius and a temperature of T~=28000K. The fluxes at mid-eclipse yield an upper limit to the contribution of the secondary star and lead to a lower limit photometric parallax distance of D=290+/-80pc. The fluxes of the secondary star are well-matched by those of a M0+/-2 main-sequence star.

  19. Doubled-lined eclipsing binary system KIC~2306740 with pulsating component discovered from Kepler space photometry

    NASA Astrophysics Data System (ADS)

    Yakut, Kadri

    2015-08-01

    We present a detailed study of KIC 2306740, an eccentric double-lined eclipsing binary system with a pulsating component.Archive Kepler satellite data were combined with newly obtained spectroscopic data with 4.2\\,m William Herschel Telescope(WHT). This allowed us to determine rather precise orbital and physical parameters of this long period, slightly eccentric, pulsating binary system. Duplicity effects are extracted from the light curve in order to estimate pulsation frequencies from the residuals.We modelled the detached binary system assuming non-conservative evolution models with the Cambridge STARS(TWIN) code.

  20. Photometric Mapping of Two Kepler Eclipsing Binaries: KIC11560447 and KIC8868650

    NASA Astrophysics Data System (ADS)

    Senavci, Hakan Volkan; Özavci, I.; Isik, E.; Hussain, G. A. J.; O'Neal, D. O.; Yilmaz, M.; Selam, S. O.

    2018-04-01

    We present the surface maps of two eclipsing binary systems KIC11560447 and KIC8868650, using the Kepler light curves covering approximately 4 years. We use the code DoTS, which is based on maximum entropy method in order to reconstruct the surface maps. We also perform numerical tests of DoTS to check the ability of the code in terms of tracking phase migration of spot clusters. The resulting latitudinally averaged maps of KIC11560447 show that spots drift towards increasing orbital longitudes, while the overall behaviour of spots on KIC8868650 drifts towards decreasing latitudes.

  1. Observations and light curve solutions of a selection of middle-contact W UMa binaries

    NASA Astrophysics Data System (ADS)

    Kjurkchieva, Diana Petrova; Popov, Velimir Angelov; Lyubenova Vasileva, Doroteya; Petrov, Nikola Ivanov

    2018-04-01

    Photometric observations in Sloan g‧ and i‧ bands of W UMa binaries NSVS 4340949, T-Dra0–00959, GSC 03950–00707, NSVS 4665041, NSVS 4803568, MM Peg, MM Com and NSVS 4751449 are presented. The light curve solutions revealed that the components of each target are of G and K spectral types. The binaries of the sample have middle-contact configurations whose fillout factors are within the range 0.2–0.4. The only exception is NSVS 4751449 which is in deeper contact (fillout factor of 0.55). It precisely obeys the relation between mass ratio and fillout factor for deep, low mass ratio overcontact binaries. One of the eclipses of almost all targets (except MM Peg) is an occultation and their photometric mass ratios and solutions could be accepted with confidence. We found that the target components have almost equal temperatures but differ considerably in size and mass. The components of the partially-eclipsed MM Peg have close parameters. Our solutions reveal that NSVS 4340949, T-Dra0–00959, NSVS 4803568 and MM Com are of W subtype while GSC 03950–00707, NSVS 4665041, MM Peg and NSVS 4751449 are of A subtype. This subclassification is well-determined for all totally-eclipsed binaries. The targets confirm the trends in which W-subtype systems have smaller periods and lower temperatures than A subtype binaries.

  2. EE Cep Winks in Full Color

    NASA Astrophysics Data System (ADS)

    Walker, Gary E.

    2015-01-01

    We observe the long period (5.6 years) Eclipsing Binary Variable Star EE Cep during it's 2014 eclipse. It was observed on every clear night from the Maria Mitchell Observatory as well as remote sites for a total of 25 nights. Each night consisted of a detailed time series in BVRI looking for short term variations for a total of >9000 observations. The data was transformed to the Standard System. In addition, a time series was captured during the night of the eclipse. This data provides an alternate method to determine Time of Minimum than traditionally performed. The TOM varied with color. Several strong correlations are seen between colors substantiating the detection of variations on a time scale of hours. The long term light curve shows 5 interesting and different Phases with different characteristics.

  3. The eclipsing system V404 Lyr: Light-travel times and γ Doradus pulsations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jae Woo; Kim, Seung-Lee; Hong, Kyeongsoo

    We present the physical properties of V404 Lyr exhibiting eclipse timing variations and multiperiodic pulsations from all historical data including the Kepler and SuperWASP observations. Detailed analyses of 2922 minimum epochs showed that the orbital period has varied through a combination of an upward-opening parabola and two sinusoidal variations, with periods of P {sub 3} = 649 days and P {sub 4} = 2154 days and semi-amplitudes of K {sub 3} = 193 s and K {sub 4} = 49 s, respectively. The secular period increase at a rate of +1.41 × 10{sup –7} days yr{sup –1} could be interpretedmore » as a combination of the secondary to primary mass transfer and angular momentum loss. The most reasonable explanation for both sinusoids is a pair of light-travel-time effects due to two circumbinary objects with projected masses of M {sub 3} = 0.47 M {sub ☉} and M {sub 4} = 0.047 M {sub ☉}. The third-body parameters are consistent with those calculated using the Wilson-Devinney binary code. For the orbital inclinations i {sub 4} ≳ 43°, the fourth component has a mass within the hydrogen-burning limit of ∼0.07 M {sub ☉}, which implies that it is a brown dwarf. A satisfactory model for the Kepler light curves was obtained by applying a cool spot to the secondary component. The results demonstrate that the close eclipsing pair is in a semi-detached, but near-contact, configuration; the primary fills approximately 93% of its limiting lobe and is larger than the lobe-filling secondary. Multiple frequency analyses were applied to the light residuals after subtracting the synthetic eclipsing curve from the Kepler data. This revealed that the primary component of V404 Lyr is a γ Dor type pulsating star, exhibiting seven pulsation frequencies in the range of 1.85-2.11 day{sup –1} with amplitudes of 1.38-5.72 mmag and pulsation constants of 0.24-0.27 days. The seven frequencies were clearly identified as high-order low-degree gravity-mode oscillations which might be excited through tidal interaction. Only eight eclipsing binaries have been known to contain γ Dor pulsating components and, therefore, V404 Lyr will be an important test bed for investigating these rare and interesting objects.« less

  4. Second derivative in the model of classical binary system

    NASA Astrophysics Data System (ADS)

    Abubekerov, M. K.; Gostev, N. Yu.

    2016-06-01

    We have obtained an analytical expression for the second derivatives of the light curve with respect to geometric parameters in the model of eclipsing classical binary systems. These expressions are essentially efficient algorithm to calculate the numerical values of these second derivatives for all physical values of geometric parameters. Knowledge of the values of second derivatives of the light curve at some point provides additional information about asymptotical behaviour of the function near this point and can significantly improve the search for the best-fitting light curve through the use of second-order optimization method. We write the expression for the second derivatives in a form which is most compact and uniform for all values of the geometric parameters and so make it easy to write a computer program to calculate the values of these derivatives.

  5. Discovery of 36 eclipsing EL CVn binaries found by the Palomar Transient Factory

    NASA Astrophysics Data System (ADS)

    van Roestel, J.; Kupfer, T.; Ruiz-Carmona, R.; Groot, P. J.; Prince, T. A.; Burdge, K.; Laher, R.; Shupe, D. L.; Bellm, E.

    2018-04-01

    We report on the discovery and analysis of 36 new eclipsing EL CVn-type binaries, consisting of a core helium-composition pre-white dwarf (pre-He-WD) and an early-type main-sequence companion. This more than doubles the known population of these systems. We have used supervised machine learning methods to search 0.8 million light curves from the Palomar Transient Factory (PTF), combined with Sloan Digital Sky Survey (SDSS), Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) and Two-Micron All-Sky Survey (2MASS) colours. The new systems range in orbital periods from 0.46 to 3.8 d and in apparent brightness from ˜14 to 16 mag in the PTF R or g΄ filters. For 12 of the systems, we obtained radial velocity curves with the Intermediate Dispersion Spectrograph at the Isaac Newton Telescope. We modelled the light curves, radial velocity curves and spectral energy distributions to determine the system parameters. The radii (0.3-0.7 R⊙) and effective temperatures (8000-17 000 K) of the pre-He-WDs are consistent with stellar evolution models, but the masses (0.12-0.28 M⊙) show more variance than models have predicted. This study shows that using machine learning techniques on large synoptic survey data is a powerful way to discover substantial samples of binary systems in short-lived evolutionary stages.

  6. Period Variations in the Close Binary BM UMa

    NASA Astrophysics Data System (ADS)

    Virnina, Natalia A.; Panko, Elena; Sergienko, O. G.; Murnikov, Boris A.; Gubin, E. G.; Klabukova, A. V.; Movchan, A. I.

    2010-12-01

    We present the results of analysing of the light curve and O-C variations in the eclipsing system BM UMa, based on V-band observations which cover the period from JD 2454933 to 2454961 using two robotic remotely-controlled telescopes of Tzec Maun Observatory (USA) along with observations made with the RK-600 telescope of Odessa Astronomical Observatory. The full light curve displays a total primary eclipse with a duration 0.06 of the period, or 24 minutes, and a partial secondary eclipse, with both maxima of equal magnitude. For our obesrvations, we determined the statistically optimal values of the initial epoch of T0 = 2454944.2814 ± 0.0001 and orbital period of P = 0.d271226± 0.000002. The depths of primary and secondary minima are nearly equal, 0.m838 ± 0.006 and 0.m748 ± 0.006, respectively. The physical parameters of the system were calculated using the Wilson-Devinney code, appended with the Monte Carlo search algorithm. The result establishes BM UMa as a contact system (fillout factor 10.7%) with parameters: mass ratio 0.538 ± 0.001, inclination 86.°815 ± 0.005, and temperatures of components 4700 ± 20 K and 4510 ± 10 K. The more massive component is larger and cooler. The 72 archival and 11 newly-obtained times of light minimum cover the interval 1961-2010 and allowed us to exclude possible systematic period variations in BM UMa and to determine an initial epoch of HJD 2447927.382 and orbital period of P = 0.d2712209± 0.0000006.

  7. Absolute Properties of the Low-Mass Eclipsing Binary CM Draconis

    NASA Astrophysics Data System (ADS)

    Morales, Juan Carlos; Ribas, Ignasi; Jordi, Carme; Torres, Guillermo; Gallardo, José; Guinan, Edward F.; Charbonneau, David; Wolf, Marek; Latham, David W.; Anglada-Escudé, Guillem; Bradstreet, David H.; Everett, Mark E.; O'Donovan, Francis T.; Mandushev, Georgi; Mathieu, Robert D.

    2009-02-01

    Spectroscopic and eclipsing binary systems offer the best means for determining accurate physical properties of stars, including their masses and radii. The data available for low-mass stars have yielded firm evidence that stellar structure models predict smaller radii and higher effective temperatures than observed, but the number of systems with detailed analyses is still small. In this paper, we present a complete reanalysis of one of such eclipsing systems, CM Dra, composed of two dM4.5 stars. New and existing light curves as well as a radial velocity curve are modeled to measure the physical properties of both components. The masses and radii determined for the components of CM Dra are M 1 = 0.2310 ± 0.0009 M sun, M 2 = 0.2141 ± 0.0010M sun, R 1 = 0.2534 ± 0.0019 R sun, and R 2 = 0.2396 ± 0.0015 R sun. With relative uncertainties well below the 1% level, these values constitute the most accurate properties to date for fully convective stars. This makes CM Dra a valuable benchmark for testing theoretical models. In comparing our measurements with theory, we confirm the discrepancies previously reported for other low-mass eclipsing binaries. These discrepancies seem likely to be due to the effects of magnetic activity. We find that the orbit of this system is slightly eccentric, and we have made use of eclipse timings spanning three decades to infer the apsidal motion and other related properties.

  8. Variable Stars Observed in the Galactic Disk by AST3-1 from Dome A, Antarctica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lingzhi; Ma, Bin; Hu, Yi

    AST3-1 is the second-generation wide-field optical photometric telescope dedicated to time-domain astronomy at Dome A, Antarctica. Here, we present the results of an i -band images survey from AST3-1 toward one Galactic disk field. Based on time-series photometry of 92,583 stars, 560 variable stars were detected with i magnitude ≤16.5 mag during eight days of observations; 339 of these are previously unknown variables. We tentatively classify the 560 variables as 285 eclipsing binaries (EW, EB, and EA), 27 pulsating variable stars ( δ Scuti, γ Doradus, δ Cephei variable, and RR Lyrae stars), and 248 other types of variables (unclassifiedmore » periodic, multiperiodic, and aperiodic variable stars). Of the eclipsing binaries, 34 show O’Connell effects. One of the aperiodic variables shows a plateau light curve and another variable shows a secondary maximum after peak brightness. We also detected a complex binary system with an RS CVn-like light-curve morphology; this object is being followed-up spectroscopically using the Gemini South telescope.« less

  9. A POSSIBLE SIGNATURE OF LENSE-THIRRING PRECESSION IN DIPPING AND ECLIPSING NEUTRON-STAR LOW-MASS X-RAY BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Homan, Jeroen, E-mail: jeroen@space.mit.edu

    2012-12-01

    Relativistic Lense-Thirring precession of a tilted inner accretion disk around a compact object has been proposed as a mechanism for low-frequency ({approx}0.01-70 Hz) quasi-periodic oscillations (QPOs) in the light curves of X-ray binaries. A substantial misalignment angle ({approx}15 Degree-Sign -20 Degree-Sign ) between the inner-disk rotation axis and the compact-object spin axis is required for the effects of this precession to produce observable modulations in the X-ray light curve. A consequence of this misalignment is that in high-inclination X-ray binaries the precessing inner disk will quasi-periodically intercept our line of sight to the compact object. In the case of neutron-starmore » systems, this should have a significant observational effect, since a large fraction of the accretion energy is released on or near the neutron-star surface. In this Letter, I suggest that this specific effect of Lense-Thirring precession may already have been observed as {approx}1 Hz QPOs in several dipping/eclipsing neutron-star X-ray binaries.« less

  10. False Positives in Exoplanet Detection

    NASA Astrophysics Data System (ADS)

    Leuquire, Jacob; Kasper, David; Jang-Condell, Hannah; Kar, Aman; Sorber, Rebecca; Suhaimi, Afiq; KELT (Kilodegree Extremely Little Telescope)

    2018-06-01

    Our team at the University of Wyoming uses a 0.6 m telescope at RBO (Red Buttes Observatory) to help confirm results on potential exoplanet candidates from low resolution, wide field surveys shared by the KELT (Kilodegree Extremely Little Telescope) team. False positives are common in this work. We carry out transit photometry, and this method comes with special types of false positives. The most common false positive seen at the confirmation level is an EB (eclipsing binary). Low resolution images are great in detecting multiple sources for photometric dips in light curves, but they lack the precision to decipher single targets at an accurate level. For example, target star KC18C030621 needed RBO’s photometric precision to determine there was a nearby EB causing exoplanet type light curves. Identifying false positives with our telescope is important work because it helps eliminate the waste of time taken by more expensive telescopes trying to rule out negative candidate stars. It also furthers the identification of other types of photometric events, like eclipsing binaries, so they can be studied on their own.

  11. A recent time of minimum for and atmospheric-eclipse in the ultraviolet spectrum of the Wolf-Rayet eclipsing binary V444 Cygni

    NASA Technical Reports Server (NTRS)

    Eaton, J. E.; Cherepashchuk, A. M.; Khaliullin, K. F.

    1982-01-01

    The 1200-1900 angstrom region and fine error sensor observations in the optical for V444 Cyg were continuously observed. More than half of a primary minimum and almost a complete secondary minimum were observed. It is found that the time of minimum for the secondary eclipse is consistent with that for primary eclipse, and the ultraviolet times of minimum are consistent with the optical ones. The spectrum shows a considerable amount of phase dependence. The general shaps and depths of the light curves for the FES signal and the 1565-1900 angstrom continuum are similar to those for the blue continuum. The FES, however, detected an atmospheric eclipse in line absorption at about the phase the NIV absorption was strongest. It is suggested that there is a source of continuum absorption shortward of 1460 angstrom which exists throughout a large part of the extended atmosphere and which, by implication, must redden considerably the ultraviolet continuua of WN stars. A fairly high degree of ionization for the inner part of the WN star a atmosphere is implied.

  12. Tracing WR wind structures by using the orbiting companion in the 29d WC8d + O8-9IV binary CV Ser

    NASA Astrophysics Data System (ADS)

    David-Uraz, Alexandre; Moffat, Anthony F. J.; Chené, André Nicolas; Lange, Nicholas

    2011-01-01

    We have obtained continuous, high-precision, broadband visible photometry from the MOST satellite of CV Ser over more than a full orbit in order to link the small-scale light-curve variations to extinction due to wind structures in the WR component, thus permitting us to trace these structures. The light-curve presented unexpected characteristics, in particular eclipses with a varying depth. Parallel optical spectroscopy from the Mont Megantic Observatory and Dominion Astrophysical Observatory was obtained to refine the orbital and wind-collision parameters, as well as to reveal line emission from clumps.

  13. X-RAY SPECTROSCOPY OF THE HIGH-MASS X-RAY BINARY PULSAR CENTAURUS X-3 OVER ITS BINARY ORBIT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naik, Sachindra; Ali, Zulfikar; Paul, Biswajit, E-mail: snaik@prl.res.in

    2011-08-20

    We present a comprehensive spectral analysis of the high-mass X-ray binary (HMXB) pulsar Centaurus X-3 with the Suzaku observatory covering nearly one orbital period. The light curve shows the presence of extended dips which are rarely seen in HMXBs. These dips are seen up to as high as {approx}40 keV. The pulsar spectra during the eclipse, out-of-eclipse, and dips are found to be well described by a partial covering power-law model with high-energy cutoff and three Gaussian functions for 6.4 keV, 6.7 keV, and 6.97 keV iron emission lines. The dips in the light curve can be explained by themore » presence of an additional absorption component with high column density and covering fraction, the values of which are not significant during the rest of the orbital phases. The iron line parameters during the dips and eclipse are significantly different compared to those during the rest of the observation. During the dips, the iron line intensities are found to be lesser by a factor of 2-3 with a significant increase in the line equivalent widths. However, the continuum flux at the corresponding orbital phase is estimated to be lesser by more than an order of magnitude. Similarities in the changes in the iron line flux and equivalent widths during the dips and eclipse segments suggest that the dipping activity in Cen X-3 is caused by an obscuration of the neutron star by dense matter, probably structures in the outer region of the accretion disk, as in the case of dipping low-mass X-ray binaries.« less

  14. An eclipsing post common-envelope system consisting of a pulsating hot subdwarf B star and a brown dwarf companion

    NASA Astrophysics Data System (ADS)

    Schaffenroth, V.; Barlow, B. N.; Drechsel, H.; Dunlap, B. H.

    2015-04-01

    Hot subdwarf B stars (sdBs) are evolved, core helium-burning objects located on the extreme horizontal branch. Their formation history is still puzzling because the sdB progenitors must lose nearly all of their hydrogen envelope during the red-giant phase. About half of the known sdBs are in close binaries with periods from 1.2 h to a few days, which implies that they experienced a common-envelope phase. Eclipsing hot subdwarf binaries (also called HW Virginis systems) are rare but important objects for determining fundamental stellar parameters. Even more significant and uncommon are those binaries containing a pulsating sdB, since the mass can be determined independently by asteroseismology. Here we present a first analysis of the eclipsing hot subdwarf binary V2008-1753. The light curve shows a total eclipse, a prominent reflection effect, and low-amplitude pulsations with periods from 150 to 180 s. An analysis of the light- and radial velocity curves indicates a mass ratio close to q = 0.146, an radial velocity semi-amplitude of K = 54.6 km s-1, and an inclination of i = 86.8°. Combining these results with our spectroscopic determination of the surface gravity, log g = 5.83, the best-fitting model yields an sdB mass of 0.47 M⊙ and a companion mass of 69 MJup. Because the latter mass is below the hydrogen-burning limit, V2008-1753 represents the first HW Vir system that is known to consist of a pulsating sdB and a brown dwarf companion. Consequently, it holds strong potential for better constraining models of sdB binary evolution and asteroseismology.

  15. A Comparison of BLISS and PLD on Low-SNR WASP-29b Spitzer Observations

    NASA Astrophysics Data System (ADS)

    Challener, Ryan; Harrington, Joseph; Cubillos, Patricio E.; Blecic, Jasmina; Deming, Drake; Hellier, Coel

    2018-01-01

    We present an analysis of Spitzer secondary eclipse observations of exoplanet WASP-29b. WASP-29b is a Saturn-sized, short-period exoplanet with mass 0.24 ± 0.02 Jupiter masses and radius 0.84 ± 0.06 Jupiter radii (Hellier et al., 2010). We measure eclipse depths and midpoints using our Photometry for Orbits, Eclipses, and Transits (POET) code, which does photometry and light-curve modeling with a BiLinearly Interpolated Subpixel Sensitivity (BLISS) map, and our Zen Eliminates Noise (ZEN) code, which takes POET photometry and applies Pixel-Level Decorrelation (PLD). BLISS creates a physical map of pixel gain variations, and is thereby independent of any astrophysical effects. PLD takes a mathematical approach, using relative variations in pixel values near the target to eliminate position-correlated noise. The results are consistent between the methods, except in one outlier observation where neither model could effectively remove correlated noise in the light curve. Using the eclipse timings, along with previous transit observations and radial velocity data, we further refine the orbit of WASP-29b, and, when excluding the outlier, determine an eccentricity between 0.037 and 0.056. We performed atmospheric retrieval with our Bayesian Atmospheric Radiative Transfer (BART) code but find that, when the outlier is discarded, the planet is consistent with a blackbody, and molecular abundances cannot be constrained. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G.

  16. Rapid Light-curve Changes and Probable Flip-flop Activity of the W UMa-type Binary V410 Aur

    NASA Astrophysics Data System (ADS)

    Luo, Xia; Wang, Kun; Zhang, Xiaobin; Deng, Licai; Luo, Yangping; Luo, Changqing

    2017-09-01

    New photometric observations of a W UMa system, V410 Aur, were carried out over 10 nights from 2014 December 19 to 2015 February 8, from which four sets of light curves were obtained. The light curves show many unusual behavioral features, including changing occultation depths, transit minima, and asymmetric maxima. The four sets of light curves have been separately analyzed with the Wilson-Devinney method. The results suggest a totally eclipsing contact configuration for the system. Over a surprisingly short time span of only 52 days, the dominant spot distortion phase jumped twice between phases 0.0 and 0.5. The light-curve variations can be interpreted by the presence of two cool spots on the massive component. Based on our analysis, it is further suggested that the peculiar behavioral patterns are probably caused by the presence of two permanent, active large spots separated in longitude by about 180°, whose locations remain almost unchanged throughout. Our study demonstrates that the system has been undergoing typical flip-flop activity. We therefore conclude that V410 Aur is a W UMa-type system exhibiting flip-flop activity.

  17. UBV Photometry of Selected Eclipsing Binaries in the Magellanic Clouds.

    NASA Astrophysics Data System (ADS)

    Davidge, Timothy John

    1987-12-01

    UBV photoelectric observations of five eclipsing binaries in the Magellanic Clouds are presented and discussed in detail. The systems studied are HV162O and HV1669 in the Small Magellanic Cloud and HV2241, HV2765, and HV5943 in the Large Magellanic Cloud. Classification spectra indicate that the components of these systems are of spectral type late O or early B. The systems are located in moderately crowded areas. Therefore, CCD observations were used to construct models of the star fields around the variables. These were used to correct the photoelectric measurements for contamination. Light curve solutions were found with the Wilson -Devinney program. A two dimensional search of parameter space involving the mass ratio and the surface potential of the secondary component was employed. This procedure was tested by numerical simulation and was found to predict the light curve elements, including the mass ratios, within their estimated uncertainties. It appears likely that none of the systems are in contact, a surprising result considering the high frequency of early type contact binaries in the solar neighborhood. The light curve solutions were then used to compute the absolute dimensions of the components. Only one system, HV2241, has a radial velocity curve, allowing its absolute dimensions to be well established. Less accurate absolute dimensions were calculated for the remaining systems using photometric information. The components were then placed on H-R diagrams and compared with theoretical models of stellar evolution. The positions of the components on these diagrams appear to support the existence of convective core overshooting. The evolutionary status of the systems was also discussed. The system with the most accurately determined absolute dimensions, HV2241, appears to have undergone, or is nearing the end of, Case A mass transfer. Two other systems, HV1620 and HV1669, may also be involved in mass transfer. Finally, the use of eclipsing binaries as distance indicators was investigated. The distance modulus of the LMC was computed in two ways. One approach used the absolute dimensions found with the radial velocity data while the other employed the method of photometric parallaxes. The latter technique was also used to calculate the distance modulus of the SMC.

  18. High-Resolution Infrared Spectroscopic Observations of the Upper Scorpius Eclipsing Binary EPIC 203868608

    NASA Astrophysics Data System (ADS)

    Johnson, Marshall C.; Mace, Gregory N.; Kim, Hwihyun; Kaplan, Kyle; McLane, Jacob; Sokal, Kimberly R.

    2017-06-01

    EPIC 203868608 is a source in the ~10 Myr old Upper Scorpius OB association. Using K2 photometry and ground-based follow-up observations, David et al. (2016) found that it consists of two brown dwarfs with a tertiary object at a projected separation of ~20 AU; the former objects appear to be a double-lined eclipsing binary with a period of 4.5 days. This is one of only two known eclipsing SB2s where both components are below the hydrogen-burning limit. We present additional follow-up observations of this system from the IGRINS high-resolution near-infrared spectrograph at McDonald Observatory. Our measured radial velocities do not follow the orbital solution presented by David et al. (2016). Instead, our combined IGRINS plus literature radial velocity dataset appears to indicate a period significantly different than that of the eclipsing binary obvious from the K2 light curve. We will discuss possible scenarios to account for the conflicting observations of this system.

  19. A model of V356 Sagittarii. [eclipsing binary star

    NASA Technical Reports Server (NTRS)

    Wilson, R. E.; Caldwell, C. N.

    1978-01-01

    It is pointed out that V356 Sgr is an abnormal member of the Algol class of binaries. According to Popper (1955), the primary component is of spectral type B3V and is rotating rapidly, while the secondary is of type A2II and is rotating at least approximately in synchronism with the orbital motion. The system is either semidetached or quite near to being semidetached. The main anomalies are related to the ratio of eclipse depths, the very small reflection effect of the light curves, differences between the duration of the primary and the secondary eclipse, and the unusual characteristics of the primary eclipse. It is concluded that the lack of agreement between theory and observation can be due only to an important attribute of the binary which has not yet been incorporated into the theory. The peculiarities can most reasonably be explained in terms of a geometrically and optically thick disk which surrounds the primary component.

  20. Data Mining the Ogle-II I-band Database for Eclipsing Binary Stars

    NASA Astrophysics Data System (ADS)

    Ciocca, M.

    2013-08-01

    The OGLE I-band database is a searchable database of quality photometric data available to the public. During Phase 2 of the experiment, known as "OGLE-II", I-band observations were made over a period of approximately 1,000 days, resulting in over 1010 measurements of more than 40 million stars. This was accomplished by using a filter with a passband near the standard Cousins Ic. The database of these observations is fully searchable using the mysql database engine, and provides the magnitude measurements and their uncertainties. In this work, a program of data mining the OGLE I-band database was performed, resulting in the discovery of 42 previously unreported eclipsing binaries. Using the software package Peranso (Vanmuster 2011) to analyze the light curves obtained from OGLE-II, the eclipsing types, the epochs and the periods of these eclipsing variables were determined, to one part in 106. A preliminary attempt to model the physical parameters of these binaries was also performed, using the Binary Maker 3 software (Bradstreet and Steelman 2004).

  1. Keck spectroscopy of millisecond pulsar J2215+5135: a moderate-M

    DOE PAGES

    Romani, Roger W.; Graham, Melissa L.; Filippenko, Alexei V.; ...

    2015-08-07

    We present Keck spectroscopic measurements of the millisecond pulsar binary J2215+5135. These data indicate a neutron-star (NS) massmore » $${M}_{\\mathrm{NS}}=1.6\\;{M}_{\\odot }$$, much less than previously estimated. The pulsar heats the companion face to $${T}_{D}\\approx 9000$$ K; the large heating efficiency may be mediated by the intrabinary shock dominating the X-ray light curve. At the best-fit inclination i = 88 $$^o\\atop{.}$$ 8, the pulsar should be eclipsed. Here, we find weak evidence for such eclipses in the pulsed gamma-rays; an improved radio ephemeris allows use of up to five times more Fermi-Large Area Telescope gamma-ray photons for a definitive test of this picture. If confirmed, the gamma-ray eclipse provides a novel probe of the dense companion wind and the pulsar magnetosphere.« less

  2. EE Cep Winks in Full Color (Abstract)

    NASA Astrophysics Data System (ADS)

    Walker, G.

    2015-06-01

    (Abstract only) We observe the long period (5.6 years) Eclipsing Binary Variable Star EE Cep during its 2014 eclipse. It was observed on every clear night from the Maria Mitchell Observatory as well as remote sites for a total of 25 nights. Each night consisted of a detailed time series in BVRI looking for short term variations for a total of >10,000 observations. The data was transformed to the Standard System. In addition, a time series was captured during the night of the eclipse. This data provides an alternate method to determine Time of Minimum than traditionally performed. The TOM varied with color. Several strong correlations are seen between colors substantiating the detection of variations on a time scale of hours. The long term light curve shows five interesting and different Phases with different characteristics.

  3. The Cluster AgeS Experiment (CASE). Variable Stars in the Field of the Globular Cluster M22

    NASA Astrophysics Data System (ADS)

    Rozyczka, M.; Thompson, I. B.; Pych, W.; Narloch, W.; Poleski, R.; Schwarzenberg-Czerny, A.

    2017-09-01

    The field of the globular cluster M22 (NGC 6656) was monitored between 2000 and 2008 in a search for variable stars. BV light curves were obtained for 359 periodic, likely periodic, and long-term variables, 238 of which are new detections. 39 newly detected variables, and 63 previously known ones are members or likely members of the cluster, including 20 SX Phe, 10 RRab and 16 RRc type pulsators, one BL Her type pulsator, 21 contact binaries, and 9 detached or semi-detached eclipsing binaries. The most interesting among the identified objects are V112 - a bright multimode SX Phe pulsator, V125 - a β Lyr type binary on the blue horizontal branch, V129 - a blue/yellow straggler with a W UMa-like light curve, located halfway between the extreme horizontal branch and red giant branch, and V134 - an extreme horizontal branch object with P=2.33 d and a nearly sinusoidal light curve. All four of them are proper motion members of the cluster. Among nonmembers, a P=2.83 d detached eclipsing binary hosting a δ Sct type pulsator was found, and a peculiar P=0.93 d binary with ellipsoidal modulation and narrow minimum in the middle of one of the descending shoulders of the sinusoid. We also collected substantial new data for previously known variables. In particular we revise the statistics of the occurrence of the Blazhko effect in RR Lyr type variables of M22.

  4. VizieR Online Data Catalog: Light curves of AV Hya and DZ Cas (Yang+, 2012)

    NASA Astrophysics Data System (ADS)

    Yang, Y.-G.; Li, L.-H.; Dai, H.-F.

    2013-10-01

    BVR photometry of AV Hya and DZ Cas was acquired with the 60cm telescope at the Xinglong stations (XLs) of the National Astronomical Observatories of China (NAOC). The standard Johnson-Cousins UBVRI filters were used. Photometric observations of AV Hya were obtained on 2009 January 1, 6, and 9. another two eclipsing times of AV Hya were observed on 2008 December 17 and 2011 September 5 using the 85cm telescope at the Xinglong station of NAOC. DZ Cas was observed from 2011 September 29 to October 2. Additionally, two eclipsing times of DZ Cas were obtained on 2004 December 4 and 6 using the 1.0m telescope of the Yunnan Astronomical Observatory (YNAO), and on 2009 November 4 with the 1.0m telescope at the Weihai observatory (WHO) of Shandong University in China. For AV Hya, we collected a total of 130 light minimum times which cover the time span 1944-2011 (Table 3). For DZ Cas, the 93 collected eclipsing times come from 1934 up to 2012, with a long gap between 1981 and 1990. (5 data files).

  5. The All Sky Automated Survey. Catalog of Variable Stars. IV. 18^h-24^h Quarter of the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Pojmanski, G.; Maciejewski, G.

    2005-03-01

    In this paper we present the fourth part of the photometric data from the 9 arcdeg x 9 arcdeg ASAS camera monitoring the whole southern hemisphere in V-band. Preliminary list (based on observations obtained since January 2001) of variable stars located between RA 18^h and 24^h is released. 10311 stars brighter than V=15 mag were found to be variable (1641 eclipsing, 1116 regularly pulsating, 938 Mira-type and 6616 other stars). Light curves have been classified using the automated algorithm taking into account periods, amplitudes, Fourier coefficients of the light curves, 2MASS colors and IRAS infrared fluxes. Basic photometric properties are presented in the tables and some examples of thumbnail light curves are printed for reference. All photometric data are available over the Internet at http://www.astrouw.edu.pl/~gp/asas/asas.html or http://archive.princeton.edu/~asas

  6. Magnetic Activity and Period Variation Studies of the Short-period Eclipsing Binaries. II. V1101 Her, AD Phe, and NSV 455 (J011636.15-394955.7)

    NASA Astrophysics Data System (ADS)

    Pi, Qing-feng; Zhang, Li-yun; Bi, Shao-lan; Han, Xianming L.; Wang, Dai-mei; Lu, Hong-peng

    2017-12-01

    In this paper, we present new BVRI light curves of short-period contact eclipsing binaries V1101 Her and AD Phe from our observations carried out from 2014 to 2015 using the SARA KP and SARA CT telescopes. There is an eclipsing binary located at α(2000) = 01h16m36.ˢ15 and δ(2000) = -39°49‧55.″7 in the field of view of AD Phe. We derived an updated ephemeris and found there a cyclic variation overlaying a continuous period increase (V1101 Her) and decrease (AD Phe). This kind of cyclic variation may be attributed to the light time effect via the presence of the third body or magnetic activity cycle. The orbital period increase suggests that V1101 Her is undergoing a mass-transfer from the primary to the secondary component (dM 1/dt = 2.64(±0.11) × 10-6 M ⊙ yr-1) with the third body (P 3 = 13.9(±1.9) years), or 2.81(±0.07) × 10-6 M ⊙ yr-1 for an increase andmagnetic cycle (12.4(±0.5) years). The long-term period decrease suggests that AD Phe is undergoing a mass-transfer from the secondary component to the primary component at a rate of -8.04(±0.09) × 10-8 M ⊙ yr-1 for a period decrease and the third body (P 3 = 56.2(±0.8) years), or -7.11(±0.04) × 10-8 M ⊙ yr-1 for a decrease and magnetic cycle (50.3(±0.5) years). We determined their orbital and geometrical parameters. For AD Phe, we simultaneously analyzed our BVRI light curves and the spectroscopic observations obtained by Duerbeck & Rucinski. The spectral type of V1101 Her was classified as G0 ± 2V by LAMOST stellar spectra survey. The asymmetry of the R-band light curve of AD Phe obtained by McFarlane & Hilditch in 1987 is explained by a cool spot on the primary component.

  7. Inferring heat recirculation and albedo for exoplanetary atmospheres: Comparing optical phase curves and secondary eclipse data

    NASA Astrophysics Data System (ADS)

    von Paris, P.; Gratier, P.; Bordé, P.; Selsis, F.

    2016-03-01

    Context. Basic atmospheric properties, such as albedo and heat redistribution between day- and nightsides, have been inferred for a number of planets using observations of secondary eclipses and thermal phase curves. Optical phase curves have not yet been used to constrain these atmospheric properties consistently. Aims: We model previously published phase curves of CoRoT-1b, TrES-2b, and HAT-P-7b, and infer albedos and recirculation efficiencies. These are then compared to previous estimates based on secondary eclipse data. Methods: We use a physically consistent model to construct optical phase curves. This model takes Lambertian reflection, thermal emission, ellipsoidal variations, and Doppler boosting, into account. Results: CoRoT-1b shows a non-negligible scattering albedo (0.11 < AS < 0.3 at 95% confidence) as well as small day-night temperature contrasts, which are indicative of moderate to high re-distribution of energy between dayside and nightside. These values are contrary to previous secondary eclipse and phase curve analyses. In the case of HAT-P-7b, model results suggest a relatively high scattering albedo (AS ≈ 0.3). This confirms previous phase curve analysis; however, it is in slight contradiction to values inferred from secondary eclipse data. For TrES-2b, both approaches yield very similar estimates of albedo and heat recirculation. Discrepancies between recirculation and albedo values as inferred from secondary eclipse and optical phase curve analyses might be interpreted as a hint that optical and IR observations probe different atmospheric layers, hence temperatures.

  8. The evolution of eccentricity in the eclipsing binary system AS Camelopardalis

    NASA Astrophysics Data System (ADS)

    Kozyreva, Valentina; Kusakin, Anatoly; Bogomazov, Alexey

    2018-01-01

    In 2002, 2004 and 2017 we conducted high precision CCD photometry observations of the eclipsing binary system AS Cam. By analysis of the light curves from1967 to 2017 (our data + data from the literature) we obtained photometric elements of the system and found a change in the system’s orbital eccentricity of Δe = 0.03±0.01. This change can indicate that there is a third companion in the system in a highly inclined orbit with respect to the orbital plane of the central binary, and its gravitational influence may cause the discrepancy between observed and theoretical apsidal motion rates of AS Cam.

  9. Campaign Photometry During The 2010 Eclipse Of Epsilon Aurigae

    NASA Astrophysics Data System (ADS)

    Hopkins, Jeff; Stencel, R. E.

    2011-01-01

    Epsilon Aurigae is a long period (27.1 years) eclipsing binary star system with an eclipse that lasts nearly 2 years, but with severe ambiguities about component masses and shape. The current eclipse began on schedule in August of 2009. During the previous, 1982-1984 eclipse, an International Campaign was formed to coordinate a detailed study of the system. While that Campaign was deemed successful, the evolutionary status of the star system remained unclear. Epsilon Aurigae has been observed nearly continuously since the 1982 eclipse. The current Campaign was officially started in 2006. In addition to a Yahoo forum we have a dedicated web site and more than 18 online newsletters reporting photometry, spectroscopy, interferometry and polarimetry data. High quality UBVRIJH band photometric data since before the start of the current eclipse has been submitted. We explore the color differences among the light curves in terms of eclipse phases and archival data. At least one new model of the star system has been proposed since the current Campaign began: a low mass but very high luminosity F star plus a B star surrounded by a debris disk. The current eclipse and in particular the interferometry and spectroscopic data have caused new thoughts on defining eclipsing variable star contact points and phases of an eclipse. Second contact may not be the same point as start of totality and third contact may not be the same point as the start of egress and end of totality. In addition, the much awaited mid-eclipse brightening may or may not have appeared. This paper identifies the current Campaign contributors and the photometric data. This work was supported in part by the bequest of William Herschel Womble in support of astronomy at the University of Denver, by NSF grant 1016678 to the University of Denver.

  10. On the mass of the compact object in the black hole binary A0620-00

    NASA Technical Reports Server (NTRS)

    Haswell, Carole A.; Robinson, Edward L.; Horne, Keith; Stiening, Rae F.; Abbott, Timothy M. C.

    1993-01-01

    Multicolor orbital light curves of the black hole candidate binary A0620-00 are presented. The light curves exhibit ellipsoidal variations and a grazing eclipse of the mass donor companion star by the accretion disk. Synthetic light curves were generated using realistic mass donor star fluxes and an isothermal blackbody disk. For mass ratios of q = M sub 1/M sub 2 = 5.0, 10.6, and 15.0 systematic searches were executed in parameter space for synthetic light curves that fit the observations. For each mass ratio, acceptable fits were found only for a small range of orbital inclinations. It is argued that the mass ratio is unlikely to exceed q = 10.6, and an upper limit of 0.8 solar masses is placed on the mass of the companion star. These constraints imply 4.16 +/- 0.1 to 5.55 +/- 0.15 solar masses. The lower limit on M sub 1 is more than 4-sigma above the mass of a maximally rotating neutron star, and constitutes further strong evidence in favor of a black hole primary in this system.

  11. Physical Properties and Evolution of the Eclipsing Binary System XZ Canis Minoris

    NASA Astrophysics Data System (ADS)

    Poochaum, R.; Komonjinda, S.; Soonthornthum, B.; Rattanasoon, S.

    2010-07-01

    This research aims to study the eclipse binary system so that its physical properties and evolution can be determined and used as an example to teach high school astronomy. The study of an eclipsing binary system XZ Canis Minoris (XZ CMi) was done at Sirindhorn Observatory, Chiang Mai University using a 0.5-meter reflecting telescope with CCD photometric system (2184×1417 pixel) in B V and R bands of UVB System. The data obtained were used to construct the light curve for each wavelength band and to compute the times of its light minima. New elements were derived using observations with linear to all available minima. As a result, linear ephemeris is HDJmin I = .578 808 948+/-0.000 000 121+2450 515.321 26+/-0.001 07 E, and the new orbital period of XZ CMi is 0.578 808 948+/-0.000 000 121 day. The values obtained were used with the previously published times of minima to get O-C curve of XZ CMi. The result revealed that the orbital period of XZ CMi is continuously decreased at a rate of 0.007 31+/-0.000 57 sec/year. This result indicates that the binary stars are moving closer continuously. From the O-C residuals, there is significant change to indicate the existence of the third body or magnetic activity cycle on the star. However, further analysis of the physical properties of XZ CMi is required.

  12. LUMINOSITY DISCREPANCY IN THE EQUAL-MASS, PRE-MAIN-SEQUENCE ECLIPSING BINARY PAR 1802: NON-COEVALITY OR TIDAL HEATING?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomez Maqueo Chew, Yilen; Stassun, Keivan G.; Hebb, Leslie

    Parenago 1802, a member of the {approx}1 Myr Orion Nebula Cluster, is a double-lined, detached eclipsing binary in a 4.674 day orbit, with equal-mass components (M{sub 2}/M{sub 1} = 0.985 {+-} 0.029). Here we present extensive VI{sub C} JHK{sub S} light curves (LCs) spanning {approx}15 yr, as well as a Keck/High Resolution Echelle Spectrometer (HIRES) optical spectrum. The LCs evince a third light source that is variable with a period of 0.73 days, and is also manifested in the high-resolution spectrum, strongly indicating the presence of a third star in the system, probably a rapidly rotating Classical T Tauri star.more » We incorporate this third light into our radial velocity and LC modeling of the eclipsing pair, measuring accurate masses (M{sub 1} = 0.391 {+-} 0.032 and M{sub 2} = 0.385 {+-} 0.032 M{sub Sun }), radii (R{sub 1} = 1.73 {+-} 0.02 and R{sub 2} = 1.62 {+-} 0.02 R{sub Sun }), and temperature ratio (T{sub eff,1}/T{sub eff,2} = 1.0924 {+-} 0.0017). Thus, the radii of the eclipsing stars differ by 6.9% {+-} 0.8%, the temperatures differ by 9.2% {+-} 0.2%, and consequently the luminosities differ by 62% {+-} 3%, despite having masses equal to within 3%. This could be indicative of an age difference of {approx}3 Multiplication-Sign 10{sup 5} yr between the two eclipsing stars, perhaps a vestige of the binary formation history. We find that the eclipsing pair is in an orbit that has not yet fully circularized, e = 0.0166 {+-} 0.003. In addition, we measure the rotation rate of the eclipsing stars to be 4.629 {+-} 0.006 days; they rotate slightly faster than their 4.674 day orbit. The non-zero eccentricity and super-synchronous rotation suggest that the eclipsing pair should be tidally interacting, so we calculate the tidal history of the system according to different tidal evolution theories. We find that tidal heating effects can explain the observed luminosity difference of the eclipsing pair, providing an alternative to the previously suggested age difference.« less

  13. Light Curve and Orbital Period Analysis of VX Lac

    NASA Astrophysics Data System (ADS)

    Yılmaz, M.; Nelson, R. H.; Şenavcı, H. V.; İzci, D.; Özavcı, İ.; Gümüş, D.

    2017-04-01

    In this study, we performed simultaneously light curve and radial velocity, and also period analyses of the eclipsing binary system VX Lac. Four color (BVRI) light curves of the system were analysed using the W-D code. The results imply that VX Lac is a classic Algol-type binary with a mass ratio of q=0.27, of which the less massive secondary component fills its Roche lobe. The orbital period behaviour of the system was analysed by assuming the light time effect (LITE) from a third body. The O-C analysis yielded a mass transfer rate of dM/dt=1.86×10-8M⊙yr-1 and the minimal mass of the third body to be M3=0.31M⊙. The residuals from mass transfer and the third body were also analysed because another cyclic variation is seen in O-C diagram. This periodic variation was examined under the hypotheses of stellar magnetic activity and fourth body.

  14. The Results of Observations of Mutual Phenomena of the Galilean Satellites of Jupiter in 2009 and 2015 IN Nikolaev Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Pomazan, A.; Maigurova, N.; Kryuchkovskiy, V.

    The Earth and Jupiter once in 6 years have simultaneous passage of the ecliptic plane due to their orbital movement around the Sun. This makes it possible to observe the mutual occultations and eclipses in the Galilean satellites of Jupiter. We took part in the observational campaigns of the mutual phenomena in 2009 and 2014-15. The observations were made with a B/W CCD camera WAT-902H at the telescope MCT (D = 0.115 m, F = 2.0 m) of the Nikolaev Astronomical Observatory. The light curves of mutual phenomena in the satellites of Jupiter were obtained as a result of processing photometric observations. The exact moments of maximum phases and the amplitudes of the light variation have been determined from the analysis of the light curves. The data sets for the light curves have been sent in the IMCCE (Institute de Mecanique et de calcul des ephemerides, France) that coordinates the PHEMU campaigns.

  15. Light-curve Instabilities of β Lyrae Observed by the BRITE Satellites

    NASA Astrophysics Data System (ADS)

    Rucinski, Slavek M.; Pigulski, Andrzej; Popowicz, Adam; Kuschnig, Rainer; Kozłowski, Szymon; Moffat, Anthony F. J.; Pavlovski, Krešimir; Handler, Gerald; Pablo, H.; Wade, G. A.; Weiss, Werner W.; Zwintz, Konstanze

    2018-07-01

    Photometric instabilities of β Lyrae (β Lyr) were observed in 2016 by two red-filter BRITE satellites over more than 10 revolutions of the binary, with ∼100 minute sampling. Analysis of the time series shows that flares or fading events take place typically three to five times per binary orbit. The amplitudes of the disturbances (relative to the mean light curve, in units of the maximum out-of-eclipse light flux, f.u.) are characterized by a Gaussian distribution with σ = 0.0130 ± 0.0004 f.u. Most of the disturbances appear to be random, with a tendency to remain for one or a few orbital revolutions, sometimes changing from brightening to fading or the reverse. Phases just preceding the center of the deeper eclipse showed the most scatter while phases around the secondary eclipse were the quietest. This implies that the invisible companion is the most likely source of the instabilities. Wavelet transform analysis showed the domination of the variability scales at phase intervals 0.05–0.3 (0.65–4 days), with the shorter (longer) scales dominating in numbers (variability power) in this range. The series can be well described as a stochastic Gaussian process with the signal at short timescales showing a slightly stronger correlation than red noise. The signal decorrelation timescale, τ = (0.068 ± 0.018) in phase or (0.88 ± 0.23) days, appears to follow the same dependence on the accretor mass as that observed for active galactic nucleus and quasi-stellar object masses five to nine orders of magnitude larger than the β Lyr torus-hidden component.

  16. Photometric observations and orbital period variations of HS 0705 + 6700 and NY Vir

    NASA Astrophysics Data System (ADS)

    Çamurdan, C. M.; Zengin Çamurdan, D.; İbanoǧlu, C.

    2012-04-01

    We present photometric observations of two post-common-envelope stars, NY Vir (=PG 1336-018) and HS 0705 + 6700. The V band CCD observation of NY Vir was performed by a 40 cm telescope at Ege University Observatory and the R band observations of HS 0705 + 6700 were performed by 100 cm telescope at TÜBİTAK National Observatory. The new light curves were analyzed by the WD code and the physical parameters of stars were determined. We obtained new mid-eclipse timings for HS 0705 + 6700 and combined them with those previously published data. The analysis of the O-C residuals yields a period of about 8.06 ± 0.28 yr and an amplitude of 98.5 s for the system HS 0705 + 6700, which is attributed to the third star physically bounded to the evolved eclipsing pair. A mass function of 1.2 × 10 -4 M⊙ for the third star is obtained. The existence of a third star is also confirmed by the light curve analysis, indicating light contribution of about 0.043 at phase 0.25 in R-bandpass of the eclipsing pair. Using mass-luminosity relationship of the low mass stars we estimate a mass of 0.12 M⊙ with an orbital inclination of about 20°. The O-C residuals obtained for the system NY Vir were represented by a downward parabola which indicates orbital period decrease in the system. Using the coefficient of quadratic term we calculate a rate of orbital period decrease of about dP/ dt = -4.09 × 10 -8days yr -1. The period decrease we have measured in NY Vir may be explained by angular momentum loss from the binary system.

  17. The Effect of Starspots on Accurate Radius Determination of the Low-Mass Double-Lined Eclipsing Binary Gu Boo

    NASA Astrophysics Data System (ADS)

    Windmiller, G.; Orosz, J. A.; Etzel, P. B.

    2010-04-01

    GU Boo is one of only a relatively small number of well-studied double-lined eclipsing binaries that contain low-mass stars. López-Morales & Ribas present a comprehensive analysis of multi-color light and radial velocity curves for this system. The GU Boo light curves presented by López-Morales & Ribas had substantial asymmetries, which were attributed to large spots. In spite of the asymmetry, López-Morales & Ribas derived masses and radii accurate to sime2%. We obtained additional photometry of GU Boo using both a CCD and a single-channel photometer and modeled the light curves with the ELC software to determine if the large spots in the light curves give rise to systematic errors at the few percent level. We also modeled the original light curves from the work of López-Morales & Ribas using models with and without spots. We derived a radius of the primary of 0.6329 ± 0.0026 R sun, 0.6413 ± 0.0049 R sun, and 0.6373 ± 0.0029 R sun from the CCD, photoelectric, and López-Morales & Ribas data, respectively. Each of these measurements agrees with the value reported by López-Morales & Ribas (R 1 = 0.623 ± 0.016 R sun) at the level of ≈2%. In addition, the spread in these values is ≈1%-2% from the mean. For the secondary, we derive radii of 0.6074 ± 0.0035 R sun, 0.5944 ± 0.0069 R sun, and 0.5976 ± 0.0059 R sun from the three respective data sets. The López-Morales & Ribas value is R 2 = 0.620 ± 0.020 R sun, which is ≈2%-3% larger than each of the three values we found. The spread in these values is ≈2% from the mean. The systematic difference between our three determinations of the secondary radius and that of López-Morales & Ribas might be attributed to differences in the modeling process and codes used. Our own fits suggest that, for GU Boo at least, using accurate spot modeling of a single set of multi-color light curves results in radii determinations accurate at the ≈2% level.

  18. THE EFFECT OF STARSPOTS ON ACCURATE RADIUS DETERMINATION OF THE LOW-MASS DOUBLE-LINED ECLIPSING BINARY GU Boo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Windmiller, G.; Orosz, J. A.; Etzel, P. B., E-mail: windmill@rohan.sdsu.ed, E-mail: orosz@sciences.sdsu.ed, E-mail: etzel@sciences.sdsu.ed

    2010-04-01

    GU Boo is one of only a relatively small number of well-studied double-lined eclipsing binaries that contain low-mass stars. Lopez-Morales and Ribas present a comprehensive analysis of multi-color light and radial velocity curves for this system. The GU Boo light curves presented by Lopez-Morales and Ribas had substantial asymmetries, which were attributed to large spots. In spite of the asymmetry, Lopez-Morales and Ribas derived masses and radii accurate to {approx_equal}2%. We obtained additional photometry of GU Boo using both a CCD and a single-channel photometer and modeled the light curves with the ELC software to determine if the large spotsmore » in the light curves give rise to systematic errors at the few percent level. We also modeled the original light curves from the work of Lopez-Morales and Ribas using models with and without spots. We derived a radius of the primary of 0.6329 +- 0.0026 R{sub sun}, 0.6413 +- 0.0049 R{sub sun}, and 0.6373 +- 0.0029 R{sub sun} from the CCD, photoelectric, and Lopez-Morales and Ribas data, respectively. Each of these measurements agrees with the value reported by Lopez-Morales and Ribas (R{sub 1} = 0.623 +- 0.016 R{sub sun}) at the level of {approx}2%. In addition, the spread in these values is {approx}1%-2% from the mean. For the secondary, we derive radii of 0.6074 +- 0.0035 R{sub sun}, 0.5944 +- 0.0069 R{sub sun}, and 0.5976 +- 0.0059 R{sub sun} from the three respective data sets. The Lopez-Morales and Ribas value is R{sub 2} = 0.620 +- 0.020 R{sub sun}, which is {approx}2%-3% larger than each of the three values we found. The spread in these values is {approx}2% from the mean. The systematic difference between our three determinations of the secondary radius and that of Lopez-Morales and Ribas might be attributed to differences in the modeling process and codes used. Our own fits suggest that, for GU Boo at least, using accurate spot modeling of a single set of multi-color light curves results in radii determinations accurate at the {approx}2% level.« less

  19. WW Geminorum: An Early B-type Eclipsing Binary Evolving into the Contact Phase

    NASA Astrophysics Data System (ADS)

    Yang, Y.-G.; Yang, Y.; Dai, H.-F.; Yin, X.-G.

    2014-11-01

    WW Gem is a B-type eclipsing binary with a period of 1.2378 days. The CCD photometry of this binary was performed in 2013 December using the 85 cm telescope at the Xinglong Stations of the National Astronomical Observatories of China. Using the updated W-D program, the photometric model was deduced from the VRI light curves. The results imply that WW Gem is a near-contact eclipsing binary whose primary component almost fills its Roche lobe. The photometric mass ratio is q ph = 0.48(± 0.05). All collected times of minimum light, including two new ones, were used for the period studies. The orbital period changes of WW Gem could be described by an upward parabola, possibly overlaid by a light-time orbit with a period of P mod = 7.41(± 0.04) yr and a semi-amplitude of A = 0.0079 days(± 0.0005 days), respectively. This kind of cyclic oscillation may be attributed to the light-travel time effect via the third body. The long-term period increases at a rate of dP/dt = +3.47(±0.04) × 10-8 day yr-1, which may be explained by the conserved mass transfer from the less massive component to the more massive one. With mass transfer, the massive binary WW Gem may be evolving into a contact binary.

  20. The massive binary CPD - 41° 7742. II. Optical light curve and X-ray observations

    NASA Astrophysics Data System (ADS)

    Sana, H.; Antokhina, E.; Royer, P.; Manfroid, J.; Gosset, E.; Rauw, G.; Vreux, J.-M.

    2005-10-01

    In the first paper of this series, we presented a detailed high-resolution spectroscopic study of CPD - 41° 7742, deriving for the first time an orbital solution for both components of the system. In this second paper, we focus on the analysis of the optical light curve and on recent XMM-Newton X-ray observations. In the optical, the system presents two eclipses, yielding an inclination i˜77°. Combining the constraints from the photometry with the results of our previous work, we derive the absolute parameters of the system. We confirm that the two components of CPD - 41° 7742 are main sequence stars (O9 V + B1-1.5 V) with masses (M_1˜18 M⊙ and M_2˜10 M⊙) and respective radii (R_1˜7.5 R⊙ and R_2˜5.4 R⊙) close to the typical values expected for such stars. We also report an unprecedented set of X-ray observations that almost uniformly cover the 2.44-day orbital cycle. The X-ray emission from CPD - 41° 7742 is well described by a two-temperature thermal plasma model with energies close to 0.6 and 1.0 keV, thus slightly harder than typical early-type emission. The X-ray light curve shows clear signs of variability. The emission level is higher when the primary is in front of the secondary. During the high emission state, the system shows a drop of its X-ray emission that almost exactly matches the optical eclipse. We interpret the main features of the X-ray light curve as the signature of a wind-photosphere interaction, in which the overwhelming primary O9 star wind crashes into the secondary surface. Alternatively the light curve could result from a wind-wind interaction zone located near the secondary star surface. As a support to our interpretation, we provide a phenomenological geometric model that qualitatively reproduces the observed modulations of the X-ray emission.

  1. A Vanishing Star Revisited

    NASA Astrophysics Data System (ADS)

    1999-07-01

    VLT Observations of an Unusual Stellar System Reinhold Häfner of the Munich University Observatory (Germany) is a happy astronomer. In 1988, when he was working at a telescope at the ESO La Silla observatory, he came across a strange star that suddenly vanished off the computer screen. He had to wait for more than a decade to get the full explanation of this unusual event. On June 10-11, 1999, he observed the same star with the first VLT 8.2-m Unit Telescope (ANTU) and the FORS1 astronomical instrument at Paranal [1]. With the vast power of this new research facility, he was now able to determine the physical properties of a very strange stellar system in which two planet-size stars orbit each other. One is an exceedingly hot white dwarf star , weighing half as much as the Sun, but only twice as big as the Earth. The other is a much cooler and less massive red dwarf star , one-and-a-half times the size of planet Jupiter. Once every three hours, the hot star disappears behind the other, as seen from the Earth. For a few minutes, the brightness of the system drops by a factor of more than 250 and it "vanishes" from view in telescopes smaller than the VLT. A variable star named NN Serpentis ESO PR Photo 30a/99 ESO PR Photo 30a/99 [Preview - JPEG: 400 x 468 pix - 152k] [Normal - JPEG: 800 x 936 pix - 576k] [High-Res - JPEG: 2304 x 2695 pix - 4.4M] Caption to ESO PR Photo 30a/99 : The sky field around the 17-mag variable stellar system NN Serpentis , as seen in a 5 sec exposure through a V(isual) filter with VLT ANTU and FORS1. It was obtained just before the observation of an eclipse of this unsual object and served to centre the telescope on the corresponding sky position. The field shown here measures 4.5 x 4.5 armin 2 (1365 x 1365 pix 2 ; 0.20 arcsec/pix). The field is somewhat larger than that shown in Photo 30b/99 and has the same orientation to allow comparison: North is about 20° anticlockwise from the top and East is 90° clockwise from that direction. The unsual star in question is designated NN Serpentis , or just NN Ser . As the name indicates, it is located in the constellation of Serpens (The Serpent), about 12° north of the celestial equator. A double letter, here "NN", is used to denote variable stars [2]. It is a rather faint object of magnitude 17, about 25,000 times fainter than what can be perceived with the unaided eye. The distance is about 600 light-years (180 pc). In July 1988, Reinhold Häfner performed observations of NN Ser (at that time still known by its earlier name PG 1550+131 ) with the Danish 1.54-m telescope at La Silla. He was surprised, but also very pleased to discover that it underwent a very deep eclipse every 187 minutes. Within less than 2 minutes, the brightness dropped by a factor of more than 100 (5 magnitudes). During the next 9 minutes, the star completely disappeared from view - it was too faint to be observed with this telescope. It then again reappeared and the entire event was over after just 11 minutes. Why eclipses are so important for stellar studies An eclipse occurs when one of the stars in a binary stellar system moves in front of the other, as seen by the observer. The effect is similar to what happens during a solar eclipse when the Moon moves in front of the Sun. In both cases, the eclipse may be partial or total , depending on whether or not the eclipsed star (or the Sun) is completely hidden from view. The occurence of eclipses in stellar systems, as seen from the Earth, depends on the spatial orientation of the orbital plane and the sizes of the two stars. Two eclipses take place during one orbital revolution, but they may not both be observable. The physical properties of the two stars in a binary system (e.g., the sizes of the stars, the size and shape of the orbit, the distribution of the light on the surfaces of the stars, their temperatures etc.) can be determined from the measured "light-curve" of the system (a plot of brightness vrs. time). The stars are always too close to each other to be seen as anything but a point of light. The light-curve thus describes the way the total brightness of the two stars changes during one orbital revolution, including the variation of the combined light of the two components as they cover each other during the eclipses. Already in 1988, it was concluded that the eclipse observed in NN Ser must be caused by a bright and hot star (a white dwarf ) being hidden by another body, most probably a red dwarf star . Because of the dramatic effect, this object soon became known as the "Vanishing Star" , cf. ESO Press Release 09/88 (8 December 1988). Critical information missing for NN Ser One particularly critical piece of information is needed for a light-curve study to succeed, that is whether the eclipse is "total" or "partial" . If during the eclipse one star is entirely hidden by the other, we only see the light of the star in front. In that case, the measured amount of light does not change during the phase of totality. The light-curve is "flat" at the bottom of the minimum and the measured brightness indicates the intrinsic luminosity of the eclipsing star. Moreover, for a given orbit, the duration of the totality is proportional to the size of that star. This crucial information was not available for NN Ser . The brightness at minimum was simply too faint to allow any measurements of the system with available telescopes during this phase. For this reason, the properties of the eclipsing star could only be guessed. Reaching for the bottom The new VLT observations have overcome this. Thanks to the powerful combination of the 8.2-m ANTU telescope and the multi-mode FORS1 instrument, it was possible to measure the complete lightcurve of NN Ser , also during the darkest phase of the eclipse. This extreme observation demanded most careful preparation. Since there is very little light available, the longest possible integration time must be used in order to collect a sufficient number of photons and to achieve a reasonable photometric accuracy. However, the eclipse only lasts a few minutes and it would only be possible to exposure and read-out a few, normal exposures from the CCD camera, not enough to fully characterize the light curve at minimum. Reinhold Häfner decided to use another method. By having the telescope perform a controlled change of position on the sky ("drift") during the exposure, the light from NN Ser before, during and after the eclipse will not be registered on the same spot of the camera detector, but rather along a line. He carefully chose a direction in which this line would not cross those of other stars in the neighbourhood of NN Ser . This was ensured by rotating FORS1 to a predetermined position angle. The drift rate was fixed as one pixel (0.20 arcsec) per 3 seconds of time, a compromise between the necessary integration time and desired time resolution that would give the best chance to document the exact shape of the light-curve . In theory, this would then allow the measurement of the intensity along the recorded trail of NN Ser and hence its brightness at any given time during the eclipse. But how deep would the eclipse be? Would the resulting exposure on each pixel at minimum light be long enough to register a measurable signal? Seeing the light from the cool star! ESO PR Photo 30b/99 ESO PR Photo 30b/99 [Preview - JPEG: 400 x 464 pix - 156k] [Normal - JPEG: 800 x 927 pix - 584k] [High-Res - JPEG: 2292 x 2662 pix - 4.1M] ESO PR Photo 30c/99 ESO PR Photo 30c/99 [Preview - JPEG: 472 x 400 pix - 48k] [Normal - JPEG: 943 x 800 pix - 96k] Caption to ESO PR Photo 30b/99 : 18.5-min "drift" exposure with VLT ANTU and FORS1 of the sky field around the variable stellar system NN Ser (indicated with an arrow). The telescope moved 1 pixel (0.20 arcsec) every 3 seconds so that the images of the stars in the field are trailed from left to right. After some minutes, the very deep eclipse of NN Ser begins when the brightness drops dramatically during the first partial phase. The star is clearly visible at a constant level all through the total phase at minimum light. It then brightens during the second partial phase and is back to the former level after approximately 10.5 min. The FORS1 instrument was rotated by about 70° to ensure that the trail of NN Ser would not overlap those of the neighbouring stellar images during this special exposure. The field shown measures 2.7 x 2.7 armin 2 and may be compared with that shown in Photo 30a/99; it has the same orientation. Caption to ESO PR Photo 30c/99 : The light-curve of the variable stellar system NN Ser , as extracted from the drift exposure shown in Photo 30b/99 . The count rate is proportional to the brightness of the object; it is about 18,000 counts/pix outside the eclipse and decreases to about 70 counts during the total eclipse (since the full range of the eclipse is shown here, this low level is almost indistinguishable from 0 in this figure). Various properties of the two stars in the NN Ser system may be determined from the shape of the light-curve. The fact that the light-curve is "flat" at the bottom is a clear sign that the eclipse is total , i.e. the hot white dwarf star is completely hidden behind the cool red dwarf star. As ESO PR Photo 30b/99 shows, ANTU and FORS1 did manage this difficult observation! Aided by an excellent seeing of 0.5 arcsec, i.e. a good concentration of the light on each pixel, the recorded signal from NN Ser - although very faint - is well measurable at all times during the eclipse . In the mean, about 70 counts/pixel were registered at the minimum, down from about 18,000 outside the eclipse ( Photo 30c/99 ). The ratio is then about 250, corresponding to just over 6 magnitudes. The measured magnitude during eclipse is 23.0 in the V-band (green-yellow; wavelength 550 nm). Of even greater importance is the fact that the light-curve is found to be perfectly flat at the bottom, i.e. the eclipse is most certainly total . The white dwarf star is therefore being completely hidden as it moves behind the cooler and larger star, and we see only the latter during the eclipse. As explained above, this then allows to determine many of its properties. For instance, the fact that the light-curve has no obvious "soft shoulders" at the beginning and end of the total phase indicates that the white dwarf abruptly disappears from view. Thus the faint star cannot have a very extended atmosphere, otherwise the brightness change would have been more gradual. The total phase was found to last 7 m 37 s and each of the partial phases only 1 m 26 s. This shows that the orbit must be nearly perpendicular to the plane of the sky. This angle is referred to as the orbital inclination ; for NN Ser , it must be in the interval between 84° - 90°. A preliminary analysis indicates that the diameter of the cool star is between 200,000 and 245,000 km, i.e. about 1.5 times that of planet Jupiter. The white dwarf is even smaller; its diameter is between 25,000 and 31,000 km, or about twice the size of the Earth. The distance between the two stars is 660,000 km, or half the size of the Sun. Thus NN Ser is really a very small system - it would easily fit into our central star! The surface temperatures are widely different, about 55,000 and 2,800 degrees, respectively. By adding to this analysis earlier measurements of the orbital velocity of the white dwarf star, it is possible to estimate the mass of the cool star as between 0.10 and 0.14 solar masses. The white dwarf is significantly heavier, about 0.57 solar masses. Stellar objects with masses below approx. 0.08 solar mass are believed to be brown dwarfs , i.e. "still-born" stars in which nuclear fusion did not ignite. Since the mass of the cool star in NN Ser is near this limit, could it perhaps be such an object? A spectrum of the cool star ESO PR Photo 30d/99 ESO PR Photo 30d/99 [Preview - JPEG: 480 x 400 pix - 60k] [Normal - JPEG: 960 x 800 pix - 136k] Caption to ESO PR Photo 30d/99 : The spectrum of the cool dwarf star in the variable stellar system NN Ser . The 5 min exposure was obtained during the total phase of the eclipse, when the magnitude of the system was V = 23.0. Several TiO bands are clearly visible in this slightly smoothed tracing. A few deep and narrow "absorption" features are residuals from sky subtraction. The original resolution is 0.55 nm/pix. A spectral type of M6 or later is deduced for NN Ser . The spectrum of a more nearby (and hence much brighter) M6.5 dwarf star (temperature approx. 2600 degrees) is shown below for comparison. The VLT has already delivered the answer: it turns out to be no . The cool component of NN Ser may be a very small and faint object, but it is a real star that harbours nuclear processes in its interior. The temperature is on the high side for a brown dwarf, but the definite proof can only be obtained from the spectrum. ANTU and FORS1 were able to obtain a spectrum of NN Ser during the total eclipse, i.e. at a time when the visual magnitude was 23.0, cf. Photo 30d/99 . The exposure had to be limited to 5 min only, in order to ensure that there would be no contamination by extra light from the much brighter white dwarf companion star, as this is the case during the partial phases of the eclipse. Despite the difficult circumstances, it was possible to record a faint spectrum in the 600 - 900 nm (red - near-IR) wavelength interval. Although it is quite noisy, several molecular bands of TiO (titanium oxide) are well visible; VO (vanadium oxide) bands may also be present. They allow the classification of the spectrum as that of a very-late-type star, of spectral type M6 or later . This is in reasonable agreement with the mentioned temperature around 2800 degrees. In any case, this spectrum is quite unlike that of a brown dwarf, thus confirming that the cool companion star in NN Ser is a normal hydrogen-burning red dwarf star . NN Ser: a "missing link" in stellar theory The binary system NN Ser is now in an evolutionary stage that is referred to as the pre-cataclysmic phase. It will be followed by the cataclysmic phase , during which a gas stream will flow from the larger star to the smaller one. This phenomenon is characterized by frequent and abrupt increase in brightness. While many stars are known that are now in that unstable phase, only a few stars have ever been found to be in the preceding, transitory phase. Of these, NN Ser is the only one that has such a deep eclipse and for which it has now become possible to determine quite well the properties of the two components. NN Ser thus represents a most welcome example of a "missing link" in the theory of stellar evolution. It is therefore of great interest to perform further observations of such a rare object. They will include attempts to obtain more spectra to define the spectral type of the cool star very accurately. This will allow a critical check of current theories of atmospheres and evolutionary computations for the smallest and lightest stars. But for now, Reinhold Häfner looks forward to further nights at Paranal with the ESO astronomers there. "We worked together in a wonderful way during these demanding observations", he said, "and without their great support all of this would have been next to impossible!" Notes [1] These observations were carried out during "guaranteed observing time", allocated to the three German institutes that built the FORS instrument. More details about this instrument and related issues are available in ESO Press Release 14/98. [2] Astronomers designate variable stars according to the constellation in which they are seen in the sky and the order in which they are recognized as having variable brightness. For historical reasons, the first variable star in a given constellation (that is not already known by a greek letter, e.g. "Delta Cephei") is designated as "R" (e.g. "R Coronae Borealis"), the second as "S", etc. until "Z". Then follow "RR", "RS",..."RZ", "SS"..."SZ" until "ZZ" and only then from the beginning of the alphabet, "AA"..."AZ", "BA".. etc. until "QZ". How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../ ). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  2. Chandra Observations of the Eclipsing Wolf-Rayet Binary CQ CepOver a Full Orbital Cycle

    NASA Astrophysics Data System (ADS)

    Skinner, Steve L.; Guedel, Manuel; Schmutz, Werner; Zhekov, Svetozar

    2018-06-01

    We present results of Chandra X-ray observations and simultaneous optical light curves of the short-period (1.64 d) eclipsing WN6+O9 binary system CQ Cep obtained in 2013 and 2017 covering a full binary orbit. Our primary objective was to compare the observed X-ray properties with colliding wind shock theory, which predicts that the hottest shock plasma (T > 20 MK) will form on or near the line-of-centers between the stars. Thus, X-ray variability is expected during eclipses when the hottest plasma is occulted. The X-ray spectrum is strikingly similar to apparently single WN6 stars such as WR 134 and spectral lines reveal plasma over a broad range of temperatures T ~ 4 - 40 MK. Both primary and secondary optical eclipses were clearly detected and provide an accurate orbital period determination (P = 1.6412 d). The X-ray emission remained remarkably steady throughout the orbit and statistical tests give a low probability of variability. The lack of significant X-ray variabililty during eclipses indicates that the X-ray emission is not confined along the line-of-centers but is extended on larger spatial scales, contrary to colliding wind predictions.

  3. REFLECTED LIGHT CURVES, SPHERICAL AND BOND ALBEDOS OF JUPITER- AND SATURN-LIKE EXOPLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyudina, Ulyana; Kopparla, Pushkar; Ingersoll, Andrew P.

    Reflected light curves observed for exoplanets indicate that a few of them host bright clouds. We estimate how the light curve and total stellar heating of a planet depends on forward and backward scattering in the clouds based on Pioneer and Cassini spacecraft images of Jupiter and Saturn. We fit analytical functions to the local reflected brightnesses of Jupiter and Saturn depending on the planet’s phase. These observations cover broadbands at 0.59–0.72 and 0.39–0.5 μ m, and narrowbands at 0.938 (atmospheric window), 0.889 (CH4 absorption band), and 0.24–0.28 μ m. We simulate the images of the planets with a ray-tracingmore » model, and disk-integrate them to produce the full-orbit light curves. For Jupiter, we also fit the modeled light curves to the observed full-disk brightness. We derive spherical albedos for Jupiter and Saturn, and for planets with Lambertian and Rayleigh-scattering atmospheres. Jupiter-like atmospheres can produce light curves that are a factor of two fainter at half-phase than the Lambertian planet, given the same geometric albedo at transit. The spherical albedo is typically lower than for a Lambertian planet by up to a factor of ∼1.5. The Lambertian assumption will underestimate the absorption of the stellar light and the equilibrium temperature of the planetary atmosphere. We also compare our light curves with the light curves of solid bodies: the moons Enceladus and Callisto. Their strong backscattering peak within a few degrees of opposition (secondary eclipse) can lead to an even stronger underestimate of the stellar heating.« less

  4. Einstein observations of selected close binaries and shell stars

    NASA Technical Reports Server (NTRS)

    Guinan, E. F.; Koch, R. H.; Plavec, M. J.

    1984-01-01

    Several evolved close binaries and shell stars were observed with the IPC aboard the HEAO 2 Einstein Observatory. No eclipsing target was detected, and only two of the shell binaries were detected. It is argued that there is no substantial difference in L(X) for eclipsing and non-eclipsing binaries. The close binary and shell star CX Dra was detected as a moderately strong source, and the best interpretation is that the X-ray flux arises primarily from the corona of the cool member of the binary at about the level of Algol-like or RS CVn-type sources. The residual visible-band light curve of this binary has been modeled so as to conform as well as possible with this interpretation. HD 51480 was detected as a weak source. Substantial background information from IUE and ground scanner measurements are given for this binary. The positions and flux values of several accidentally detected sources are given.

  5. HAT-P-16b: A Bayesian Atmospheric Retrieval

    NASA Astrophysics Data System (ADS)

    McIntyre, Kathleen; Harrington, Joseph; Blecic, Jasmina; Cubillos, Patricio; Challener, Ryan; Bakos, Gaspar

    2017-10-01

    HAT-P-16b is a hot (equilibrium temperature 1626 ± 40 K, assuming zero Bond albedo and efficient energy redistribution), 4.19 ± 0.09 Jupiter-mass exoplanet orbiting an F8 star every 2.775960 ± 0.000003 days (Buchhave et al 2010). We observed two secondary eclipses of HAT-P-16b using the 3.6 μm and 4.5 μm channels of the Spitzer Space Telescope's Infrared Array Camera (program ID 60003). We applied our Photometry for Orbits, Eclipses, and Transits (POET) code to produce normalized eclipse light curves, and our Bayesian Atmospheric Radiative Transfer (BART) code to constrain the temperature-pressure profiles and atmospheric molecular abundances of the planet. Spitzer is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G.

  6. A YOUNG ECLIPSING BINARY AND ITS LUMINOUS NEIGHBORS IN THE EMBEDDED STAR CLUSTER Sh 2-252E

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lester, Kathryn V.; Gies, Douglas R.; Guo, Zhao, E-mail: lester@chara.gsu.edu, E-mail: gies@chara.gsu.edu, E-mail: guo@chara.gsu.edu

    We present a photometric and light curve analysis of an eccentric eclipsing binary in the K2 Campaign 0 field, which resides in Sh 2-252E, a young star cluster embedded in an H ii region. We describe a spectroscopic investigation of the three brightest stars in the crowded aperture to identify which is the binary system. We find that none of these stars are components of the eclipsing binary system, which must be one of the fainter nearby stars. These bright cluster members all have remarkable spectra: Sh 2-252a (EPIC 202062176) is a B0.5 V star with razor sharp absorption lines, Sh 2-252b is amore » Herbig A0 star with disk-like emission lines, and Sh 2-252c is a pre-main-sequence star with very red color.« less

  7. Survey for δ Sct components in eclipsing binaries and new correlations between pulsation frequency and fundamental stellar characteristics

    NASA Astrophysics Data System (ADS)

    Liakos, A.; Niarchos, P.; Soydugan, E.; Zasche, P.

    2012-05-01

    CCD observations of 68 eclipsing binary systems, candidates for containing δ Scuti components, were obtained. Their light curves are analysed using the PERIOD04 software for possible pulsational behaviour. For the systems QY Aql, CZ Aqr, TY Cap, WY Cet, UW Cyg, HL Dra, HZ Dra, AU Lac, CL Lyn and IO UMa, complete light curves were observed due to the detection of a pulsating component. All of them, except QY Aql and IO UMa, are analysed with modern astronomical softwares in order to determine their geometrical and pulsational characteristics. Spectroscopic observations of WY Cet and UW Cyg were used to estimate the spectral class of their primary components, while for HZ Dra radial velocities of its primary were measured. O - C diagram analysis was performed for the cases showing peculiar orbital period variations, namely CZ Aqr, TY Cap, WY Cet and UW Cyg, with the aim of obtaining a comprehensive picture of these systems. An updated catalogue of 74 close binaries including a δ Scuti companion is presented. Moreover, a connection between orbital and pulsation periods, as well as a correlation between evolutionary status and dominant pulsation frequency for these systems, is discussed.

  8. Starspots on WASP-107 and pulsations of WASP-118

    NASA Astrophysics Data System (ADS)

    Močnik, T.; Hellier, C.; Anderson, D. R.; Clark, B. J. M.; Southworth, J.

    2017-08-01

    By analysing the K2 short-cadence photometry, we detect starspot occultation events in the light curve of WASP-107, the host star of a warm-Saturn exoplanet. WASP-107 also shows a rotational modulation with a period of 17.5 ± 1.4 d. Given that the rotational period is nearly three times the planet's orbital period, one would expect in an aligned system to see starspot occultation events to recur every three transits. The absence of such occultation recurrences suggests a misaligned orbit unless the starspots' lifetimes are shorter than the star's rotational period. We also find stellar variability resembling γ Doradus pulsations in the light curve of WASP-118, which hosts an inflated hot Jupiter. The variability is multiperiodic with a variable semi-amplitude of ˜200 ppm. In addition to these findings, we use the K2 data to refine the parameters of both systems and report non-detections of transit-timing variations, secondary eclipses and any additional transiting planets. We used the upper limits on the secondary-eclipse depths to estimate upper limits on the planetary geometric albedos of 0.7 for WASP-107b and 0.2 for WASP-118b.

  9. SPIDERMAN: an open-source code to model phase curves and secondary eclipses

    NASA Astrophysics Data System (ADS)

    Louden, Tom; Kreidberg, Laura

    2018-06-01

    We present SPIDERMAN (Secondary eclipse and Phase curve Integrator for 2D tempERature MAppiNg), a fast code for calculating exoplanet phase curves and secondary eclipses with arbitrary surface brightness distributions in two dimensions. Using a geometrical algorithm, the code solves exactly the area of sections of the disc of the planet that are occulted by the star. The code is written in C with a user-friendly Python interface, and is optimized to run quickly, with no loss in numerical precision. Approximately 1000 models can be generated per second in typical use, making Markov Chain Monte Carlo analyses practicable. The modular nature of the code allows easy comparison of the effect of multiple different brightness distributions for the data set. As a test case, we apply the code to archival data on the phase curve of WASP-43b using a physically motivated analytical model for the two-dimensional brightness map. The model provides a good fit to the data; however, it overpredicts the temperature of the nightside. We speculate that this could be due to the presence of clouds on the nightside of the planet, or additional reflected light from the dayside. When testing a simple cloud model, we find that the best-fitting model has a geometric albedo of 0.32 ± 0.02 and does not require a hot nightside. We also test for variation of the map parameters as a function of wavelength and find no statistically significant correlations. SPIDERMAN is available for download at https://github.com/tomlouden/spiderman.

  10. Record-Breaking Eclipsing Binary

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    A new record holder exists for the longest-period eclipsing binary star system: TYC-2505-672-1. This intriguing system contains a primary star that is eclipsed by its companion once every 69 years with each eclipse lasting several years!120 Years of ObservationsIn a recent study, a team of scientists led by Joseph Rodriguez (Vanderbilt University) characterizes the components of TYC-2505-672-1. This binary star system consists of an M-type red giant star that undergoes a ~3.45-year-long, near-total eclipse with a period of ~69.1 years. This period is more than double that of the previous longest-period eclipsing binary!Rodriguez and collaborators combined photometric observations of TYC-2505-672-1 by the Kilodegree Extremely Little Telescope (KELT) with a variety of archival data, including observations by the American Association of Variable Star Observers (AAVSO) network and historical data from the Digital Access to a Sky Century @ Harvard (DASCH) program.In the 120 years spanned by these observations, two eclipses are detected: one in 1942-1945 and one in 2011-2015. The authors use the observations to analyze the components of the system and attempt to better understand what causes its unusual light curve.Characterizing an Unusual SystemObservations of TYC-2505-672-1 plotted from 1890 to 2015 reveal two eclipses. (The blue KELT observations during the eclipse show upper limits only.) [Rodriguez et al. 2016]By modeling the systems emission, Rodriguez and collaborators establish that TYC-2505-672-1 consists of a 3600-K primary star thats the M giant orbited by a small, hot, dim companion thats a toasty 8000 K. But if the companion is small, why does the eclipse last several years?The authors argue that the best model of TYC-2505-672-1 is one in which the small companion star is surrounded by a large, opaque circumstellar disk. Rodriguez and collaborators suggest that the companion could be a former red giant whose atmosphere was stripped from it, leaving behind the small, hot core shrouded by a large, cool disk of stripped gas. The large size of the disk causes the eclipse of the primary to last for years, as viewed from Earth.The authors estimate the properties such a disk would need to produce the observed light curve. They find that if the companion were surrounded by a disk several AU in diameter, it could orbit at a distance of ~20-30 AU from the primary and reproduce the emission we see.The next eclipse of TYC-2505-672-1 will begin in April 2080. We neednt wait until then to gather more information about this system, however! Radial velocity measurements will help establish the masses of the two components, and high-cadence UV observations could reveal more about the evolutionary state of the system. Studying this extreme binary provides an excellent opportunity to learn more about the environments in late-life star systems.CitationJoseph E. Rodriguez et al 2016 AJ 151 123. doi:10.3847/0004-6256/151/5/123

  11. Constraints on the atmospheric circulation and variability of the eccentric hot Jupiter XO-3b

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Ian; Knutson, Heather A.; Cowan, Nicolas B.

    We report secondary eclipse photometry of the hot Jupiter XO-3b in the 4.5 μm band taken with the Infrared Array Camera on the Spitzer Space Telescope. We measure individual eclipse depths and center of eclipse times for a total of 12 secondary eclipses. We fit these data simultaneously with two transits observed in the same band in order to obtain a global best-fit secondary eclipse depth of 0.1580% ± 0.0036% and a center of eclipse phase of 0.67004 ± 0.00013. We assess the relative magnitude of variations in the dayside brightness of the planet by measuring the size of themore » residuals during ingress and egress from fitting the combined eclipse light curve with a uniform disk model and place an upper limit of 0.05%. The new secondary eclipse observations extend the total baseline from one and a half years to nearly three years, allowing us to place an upper limit on the periastron precession rate of 2.9 × 10{sup –3} deg day{sup –1}— the tightest constraint to date on the periastron precession rate of a hot Jupiter. We use the new transit observations to calculate improved estimates for the system properties, including an updated orbital ephemeris. We also use the large number of secondary eclipses to obtain the most stringent limits to date on the orbit-to-orbit variability of an eccentric hot Jupiter and demonstrate the consistency of multiple-epoch Spitzer observations.« less

  12. CHANGING PHASES OF ALIEN WORLDS: PROBING ATMOSPHERES OF KEPLER PLANETS WITH HIGH-PRECISION PHOTOMETRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esteves, Lisa J.; Mooij, Ernst J. W. De; Jayawardhana, Ray, E-mail: esteves@astro.utoronto.ca, E-mail: demooij@astro.utoronto.ca, E-mail: rayjay@yorku.ca

    We present a comprehensive analysis of planetary phase variations, including possible planetary light offsets, using eighteen quarters of data from the Kepler space telescope. Our analysis found fourteen systems with significant detections in each of the phase curve components: planet’s phase function, secondary eclipse, Doppler boosting, and ellipsoidal variations. We model the full phase curve simultaneously, including primary and secondary transits, and derive albedos, day- and night-side temperatures and planet masses. Most planets manifest low optical geometric albedos (< 0.25), with the exception of Kepler-10b, Kepler-91b, and KOI-13b. We find that KOI-13b, with a small eccentricity of 0.0006 ± 0.0001,more » is the only planet for which an eccentric orbit is favored. We detect a third harmonic for HAT-P-7b for the first time, and confirm the third harmonic for KOI-13b reported in Esteves et al.: both could be due to their spin–orbit misalignments. For six planets, we report a planetary brightness peak offset from the substellar point: of those, the hottest two (Kepler-76b and HAT-P-7b) exhibit pre-eclipse shifts or on the evening-side, while the cooler four (Kepler-7b, Kepler-8b, Kepler-12b, and Kepler-41b) peak post-eclipse or on the morning-side. Our findings dramatically increase the number of Kepler planets with detected planetary light offsets, and provide the first evidence in the Kepler data for a correlation between the peak offset direction and the planet’s temperature. Such a correlation could arise if thermal emission dominates light from hotter planets that harbor hot spots shifted toward the evening-side, as theoretically predicted, while reflected light dominates cooler planets with clouds on the planet’s morning-side.« less

  13. Physical Nature and Orbital Behavior of the Eclipsing System UZ Leonis

    NASA Astrophysics Data System (ADS)

    Lee, Jae Woo; Park, Jang-Ho

    2018-03-01

    New CCD photometric observations of UZ Leo were obtained between 2012 February and 2013 April, and on 2017 February. Its physical properties were derived from detailed analyses of our light curves and existing radial velocities. The results indicate that this system is a totally eclipsing A-subtype overcontact binary with both a high fill-out factor of 76% and a third light source contributing 12% light in the B bandpass, 10% in V, and 7% in R. The light residuals between observations and theoretical models are satisfactorily fitted by adopting a magnetic cool spot on the more massive primary star. Including our 12 measurements, a total of 172 eclipse times were used for ephemeris computations. We found that the orbital period of UZ Leo has varied due to a periodic oscillation superposed on an upward parabolic variation. The observed period increase at a rate of +3.49× {10}-7 day yr‑1 can be plausibly explained by some combination of non-conservative mass transfer from the secondary to the primary component and angular momentum loss due to magnetic braking. The period and semi-amplitude of the oscillation are about 139 years and 0.0225 days, respectively, which is interpreted as a light-time effect due to a third component with a mass of {M}3\\sin {i}3=0.30 {M}ȯ . Because the third lights of 7%–12% indicate that the circumbinary object is very overluminous for its mass, it would possibly match a white dwarf, rather than an M-type main sequence.

  14. PLANETARY CONSTRUCTION ZONES IN OCCULTATION: DISCOVERY OF AN EXTRASOLAR RING SYSTEM TRANSITING A YOUNG SUN-LIKE STAR AND FUTURE PROSPECTS FOR DETECTING ECLIPSES BY CIRCUMSECONDARY AND CIRCUMPLANETARY DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamajek, Eric E.; Quillen, Alice C.; Pecaut, Mark J.

    2012-03-15

    The large relative sizes of circumstellar and circumplanetary disks imply that they might be seen in eclipse in stellar light curves. We estimate that a survey of {approx}10{sup 4} young ({approx}10 million year old) post-accretion pre-main-sequence stars monitored for {approx}10 years should yield at least a few deep eclipses from circumplanetary disks and disks surrounding low-mass companion stars. We present photometric and spectroscopic data for a pre-main-sequence K5 star (1SWASP J140747.93-394542.6 = ASAS J140748-3945.7), a newly discovered {approx}0.9 M{sub Sun} member of the {approx}16 Myr old Upper Centaurus-Lupus subgroup of Sco-Cen at a kinematic distance of 128 {+-} 13 pc.more » This star exhibited a remarkably long, deep, and complex eclipse event centered on 2007 April 29 (as discovered in Super Wide Angle Search for Planets (SuperWASP) photometry, and with portions of the dimming confirmed by All Sky Automated Survey (ASAS) data). At least five multi-day dimming events of >0.5 mag are identified, with a >3.3 mag deep eclipse bracketed by two pairs of {approx}1 mag eclipses symmetrically occurring {+-}12 days and {+-}26 days before and after. Hence, significant dimming of the star was taking place on and off over at least a {approx}54 day period in 2007, and a strong >1 mag dimming event occurring over a {approx}12 day span. We place a firm lower limit on the period of 850 days (i.e., the orbital radius of the eclipser must be >1.7 AU and orbital velocity must be <22 km s{sup -1}). The shape of the light curve is similar to the lopsided eclipses of the Be star EE Cep. We suspect that this new star is being eclipsed by a low-mass object orbited by a dense inner disk, further girded by at least three dusty rings of optical depths near unity. Between these rings are at least two annuli of near-zero optical depth (i.e., gaps), possibly cleared out by planets or moons, depending on the nature of the secondary. For possible periods in the range 2.33-200 yr, the estimated total ring mass is {approx}8-0.4 M{sub Moon} (if the rings have optical opacity similar to Saturn's rings), and the edge of the outermost detected ring has orbital radius {approx}0.4-0.09 AU. In the new era of time-domain astronomy opened by surveys like SuperWASP, ASAS, etc., and soon to be revolutionized by Large Synoptic Survey Telescope, discovering and characterizing eclipses by circumplanetary and circumsecondary disks will provide us with observational constraints on the conditions that spawn satellite systems around gas giant planets and planetary systems around stars.« less

  15. Participación científica del Nodo La Plata en el Proyecto VVV

    NASA Astrophysics Data System (ADS)

    Baume, G.; Fernández Lajús, E.; Feinstein, C.; Gamen, R.; Fariña, C.

    We present here the main research lines related to the survey Vista Variables in the Vía Láctea (VVV) being carried out at "Node La Plata". These lines involve the study of stellar clusters and eclipsing systems. In this frame- work raises the following studies: a) An preliminar analysis of a group of embedded stellar clusters located in the fourth Galactic quadrant by estimat- ing their fundamental parameters using VVV data supplemented with data from other published catalogs. b) The provided methodology for the deter- mination of the eclipsing binary stars parameters for those ones detected in the survey from their light curves, including also extrasolar planets transits. FULL TEXT IN SPANISH

  16. A New Binary Star System of EW Type in Draco: GSC 03905-01870

    NASA Astrophysics Data System (ADS)

    Barquin, S.

    2018-05-01

    Discovery of a new binary star system (GSC 03905-01870 = USNO-B1.0 1431-0327922 = UCAC4 716-059522) in the Draco constellation is presented. It was discovered during a search for previously unreported eclipsing binary stars through the ASAS-SN database. The shape of the light curve and its characteristics (period of 0.428988+-0.000001 d, amplitude of 0.34+-0.02 V Mag, primary minimum epoch HJD 2457994.2756+-0.0002) indicates that the new variable star is an eclipsing binary of W Ursae Majoris type. I registered this variable star in The International Variable Star Index (VSX), its AAVSO UID is 000-BMP-891.

  17. PHYSICS OF ECLIPSING BINARIES. II. TOWARD THE INCREASED MODEL FIDELITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prša, A.; Conroy, K. E.; Horvat, M.

    The precision of photometric and spectroscopic observations has been systematically improved in the last decade, mostly thanks to space-borne photometric missions and ground-based spectrographs dedicated to finding exoplanets. The field of eclipsing binary stars strongly benefited from this development. Eclipsing binaries serve as critical tools for determining fundamental stellar properties (masses, radii, temperatures, and luminosities), yet the models are not capable of reproducing observed data well, either because of the missing physics or because of insufficient precision. This led to a predicament where radiative and dynamical effects, insofar buried in noise, started showing up routinely in the data, but weremore » not accounted for in the models. PHOEBE (PHysics Of Eclipsing BinariEs; http://phoebe-project.org) is an open source modeling code for computing theoretical light and radial velocity curves that addresses both problems by incorporating missing physics and by increasing the computational fidelity. In particular, we discuss triangulation as a superior surface discretization algorithm, meshing of rotating single stars, light travel time effects, advanced phase computation, volume conservation in eccentric orbits, and improved computation of local intensity across the stellar surfaces that includes the photon-weighted mode, the enhanced limb darkening treatment, the better reflection treatment, and Doppler boosting. Here we present the concepts on which PHOEBE is built and proofs of concept that demonstrate the increased model fidelity.« less

  18. Kottamia 74-inch telescope discovery of the new eclipsing binary KAO-EGYPT J225702.44+523222.1.: First CCD photometry and light curve analysis

    NASA Astrophysics Data System (ADS)

    Shokry, A.; Darwish, M. S.; Saad, S. M.; Eldepsy, M.; Zead, I.

    2017-08-01

    We present the first multicolor CCD photometry for the newly discovered binary system KAO-EGYPT J225702.44+523222.1. New times of light minimum and new ephemeris were obtained. The VR I light curves were analyzed using WD code, the difference in maximum light at phase 0.25 is modeled with a cool spot on the secondary component. The solution show that the system is A-subtype, overcontact binary with fill-out factor = 42% and low mass ratio, q = 0.275. The two components of spectral types K0 and K1 and the primary component is the massive one. The position of both components on the M-L and M-R relations revealed that the primary component is a main sequence star while the secondary is an evolved component.

  19. A Detailed Survey of Pulsating Variables in Five Globular Clusters (Abstract)

    NASA Astrophysics Data System (ADS)

    Murphy, B. W.

    2016-12-01

    (Abstract only) Globular clusters are ideal laboratories for conducting a stellar census. Of particular interest are pulsating variables, which provide astronomers with a tool to probe the properties of the stars and the cluster. We observed each of five globular clusters hundreds to thousands of times over a time span ranging from 2 to 4 years in B, V, and I filters using the SARA 0.6-meter telescope located at Cerro Tololo Interamerican Observatory and the 0.9-meter telescope located at Kitt Peak, Arizona. The images were analyzed using difference image analysis to identify and produce light curves of all variables found in each cluster. In total we identified 377 variables with 140 of these being newly discovered increasing the number of known variables stars in these clusters by 60%. Of the total we have identified 319 RR Lyrae variables (193 RR0, 18 RR01, 101 RR1, 7 RR2), 9 SX Phe stars, 5 Cepheid variables, 11 eclipsing variables, and 33 long period variables. For IC4499 we identified 64 RR0, 18 RR01, 14 RR1, 4 RR2, 1 SX Phe, 1 eclipsing binary, and 2 long period variables. For NGC4833 we identified 10 RR0, 7 RR1, 3 RR2, 6 SX Phe, 5 eclipsing binaries, and 9 long period variables. For NGC6171 (M107) we identified 14 RR0, 7 RR1, and 1 SX Phe. For NGC6402 (M14) we identified 55 RR0, 57 RR1, 1 RR2, 1 SX Phe, 6 Cepheids, 1 eclipsing binary, and 15 long period variables. For NGC6584 we identified 50 RR0, 16 RR1, 4 eclipsing binaries, and 7 long period variables. From our extensive data set we were able to obtain sufficient temporal and complete phase coverage of the RR Lyrae variables. This has allowed us not only to properly classify each of the RR Lyrae variables but also to use Fourier decomposition of the B, V, and I light curves to further analyze the properties of the variable stars and hence the physical properties of each globular cluster.

  20. Highlights of Odessa Branch of AN in 2017

    NASA Astrophysics Data System (ADS)

    Andronov, I. L.

    2017-12-01

    An annual report with a list of publications. Our group works on the variable star research within the international campaign "Inter-Longitude Astronomy" (ILA) based on temporarily working groups in collaboration with Poland, Slovakia, Korea, USA and other countries. A recent self-review on highlights was published in 2017. Our group continues the scientific school of Prof. Vladymir P. Tsesevich (1907 - 1983). Another project we participate is "AstroInformatics". The unprecedented photo-polarimetric monitoring of a group of AM Her - type magnetic cataclysmic variable stars was carried out since 1989 (photometry in our group - since 1978). A photometric monitoring of the intermediate polars (MU Cam, V1343 Her, V2306 Cyg et al.) was continued to study rotational evolution of magnetic white dwarfs. The super-low luminosity state was discovered in the outbursting intermediate polar = magnetic dwarf nova DO Dra. Previously typical low state was some times interrupted by outbursts, which are narrower than usual dwarf nova outbursts. Once there were detected TPO - "Transient Periodic Oscillations". The orbital and quasi-periodic variability was recently studied. Such super-low states are characteristic for nova-like variables (e.g. MV Lyr, TT Ari) or intermediate polars, but unusual for the dwarf novae. The electronic "Catalogue of Characteristics and Atlas of the Light Curves of Newly-Discovered Eclipsing Binary Stars" was compiled and is being prepared for publication. The software NAV ("New Algol Variable") with specially developed algorithms was used. It allows to determine the begin and end of the eclipses even in EB and EW - type stars, whereas the current classification (GCVS, VSX) claims that the begin and end of eclipses only in the EA - type objects. The further improvements of the NAV algorithm were comparatively studied. The "Wall-Supported Polynomial" (WSP) algoritms were implemented in the software MAVKA for statistically optimal modeling of flat eclipses and exoplanet transitions. MAVKA was used for studies of effects of the mass transfer and presence of the third components in close binary stellar systems and analysis of the poorly studied eclipsing binary 2MASS J20355082+5242136. Atlas of the Light Curves and Phase Plane Portraits of Selected Long-Period Variables was compiled.

  1. VizieR Online Data Catalog: BVIc light curves of SZ Cam (Tamajo+, 2012)

    NASA Astrophysics Data System (ADS)

    Tamajo, E.; Munari, U.; Siviero, A.; Tomasella, L.; Dallaporta, S.

    2012-01-01

    We present a spectroscopic and photometric analysis of the multiple system and early-type eclipsing binary SZ Cam (O9 IV + B0.5 V), which consists of an eclipsing SB2 pair of orbital period P=2.7-days in a long orbit (~55yrs) around a non-eclipsing SB1 pair of orbital period P=2.8-days. We have reconstructed the spectra of the individual components of SZ Cam from the observed composite spectra using the technique of spectral disentangling. We used them together with extensive and accurate BV IC CCD photometry to obtain an orbital solution. Our photometry revealed the presence of a beta Cep variable in the SZ Cam hierarchical system, probably located within the non-eclipsing SB1 pair. The pulsation period is 0.33265+/-0.00005-days and the observed total amplitude in the B band is 0.0105+/-0.0005mag. NLTE analysis of the disentangled spectra provided atmospheric parameters for all three components, consistent with those derived from orbital solution. (1 data file).

  2. LUT observations of the mass-transferring binary AI Dra

    NASA Astrophysics Data System (ADS)

    Liao, Wenping; Qian, Shengbang; Li, Linjia; Zhou, Xiao; Zhao, Ergang; Liu, Nianping

    2016-06-01

    Complete UV band light curve of the eclipsing binary AI Dra was observed with the Lunar-based Ultraviolet Telescope (LUT) in October 2014. It is very useful to adopt this continuous and uninterrupted light curve to determine physical and orbital parameters of the binary system. Photometric solutions of the spot model are obtained by using the W-D (Wilson and Devinney) method. It is confirmed that AI Dra is a semi-detached binary with secondary component filling its critical Roche lobe, which indicates that a mass transfer from the secondary component to the primary one should happen. Orbital period analysis based on all available eclipse times suggests a secular period increase and two cyclic variations. The secular period increase was interpreted by mass transfer from the secondary component to the primary one at a rate of 4.12 ×10^{-8}M_{⊙}/yr, which is in agreement with the photometric solutions. Two cyclic oscillations were due to light travel-time effect (LTTE) via the presence of two cool stellar companions in a near 2:1 mean-motion resonance. Both photometric solutions and orbital period analysis confirm that AI Dra is a mass-transferring binary, the massive primary is filling 69 % of its critical Roche lobe. After the primary evolves to fill the critical Roche lobe, the mass transfer will be reversed and the binary will evolve into a contact configuration.

  3. First analysis of eight Algol-type binaries: EI Aur, XY Dra, BP Dra, DD Her, VX Lac, WX Lib, RZ Lyn, and TY Tri

    NASA Astrophysics Data System (ADS)

    Zasche, P.

    2016-01-01

    The available photometry from the online databases were used for the first light curve analysis of eight eclipsing binary systems EI Aur, XY Dra, BP Dra, DD Her, VX Lac, WX Lib, RZ Lyn, and TY Tri. All these stars are of Algol-type, having the detached components and the orbital periods from 0.92 to 6.8 days. For the systems EI Aur and BP Dra the large amount of the third light was detected during the light curve solution. Moreover, 468 new times of minima for these binaries were derived, trying to identify the period variations. For the systems XY Dra and VX Lac the third bodies were detected with the periods 17.7, and 49.3 years, respectively.

  4. HD 143 418 - An Interacting Binary with a Subsynchronously Rotating Primary

    NASA Astrophysics Data System (ADS)

    Mikulášek, Z.; Zverko, J.; Žižňovský, J.; Krtička, J.; Iliev, I. Kh.; Kudryavtsev, D. O.; Gráf, T.; Zejda, M.

    2010-12-01

    HD 143418 is a non-eclipsing double-lined close binary with orbital period Porb=2.282520 d. The photometrically and spectroscopically dominant primary component is a normal A5V star in the middle of its stay on the main sequence with extremely slow, subsynchronous rotation (Prot being about 14 days!). Its photometric monitoring since 1982 revealed orbitally modulated variations with changing form and amplitude. The advanced principal component analysis (APCA) disentangling extract-ed a steady part of light curves obviously caused by the ellipticity of the primary. Seasonal components of the light curves may be related to an expected incidence of circumstellar matter ejected from the tidally spinning up primary component. A possible scenario of the synchronisation process is also briefly discussed.

  5. SS 433: Total Coverage of 162-Day Precession Phase in Four Years

    NASA Technical Reports Server (NTRS)

    Band, David L.

    1997-01-01

    The observations prior to AO-4 covered a number of precession phases, leaving a gap at phase 0.8. In addition, ASCA and previous observations of SS 433 did not observe the spectrum above approx. 10 keV, and consequently the continuum underlying the spectral lines was poorly constrained. Therefore RXTE observations were scheduled for April 1997 to extend the observed spectrum to higher energies; these observations were planned to sample the X-ray lightcurve during the 13.08 day binary period, concentrating on the eclipse of the compact object which emits the jets. We proposed and were awarded ASCA observations simultaneous with the RXTE observations; the purpose of the ASCA observations was to provide greater spectral resolution at the low end of the spectrum observed by RXTE, and to complete the phase coverage of SS 433. As a result of scheduling difficulties early in the mission the RXTE observations were confined to a much shorter time range than originally planned, April 18-91 1997. Optical observations of SS 433 were performed at a number of observatories. The ASCA observations occurred from April 18 13:10 (UT) to April 21 13:20 (UT) for a total effective exposure of 120 ks. The continuum X-ray light curve shows that the ASCA observations started shortly before the ingress into the X-ray partial eclipse, and ended approximately at the time of the egress. Light curves were also obtained for the prominent Fe emission lines in the blue-shifted frame (approaching jet), red-shifted frame (receding jet), and the stationary frame (fluorescent line from the ambient matter). Through the eclipse mapping technique using the light curves, the parameters of the jet emission model were constrained, showing that the kinetic power in the jet exceeds 104? erg s-l. If the energy source is gravitational accretion, as is commonly believed, the derived l;inetic power implies extremely supercritical accretion even for a black; hole with 10M. These results will be described more fully in a major presentation of all the ASCA observations of SS 433.

  6. Campaign for a New Eclipsing Cepheid

    NASA Astrophysics Data System (ADS)

    Henden, Arne; Welch, Doug; Terrell, Dirk

    2007-06-01

    ASAS 182611+1212.6, discovered by Pojmanski et al. during the ASAS survey, independently discovered by Antipin at al. on Moscow archive plates, and found in the NSVS (Wozniak et al. 2004, AJ 127, 2436), was initially classified as a typical Type II Cepheid with a period of 4.1523 days. However, scatter in the light curve indicated possible multiperiodic behavior. After 3 years of CCD observations by Antipin, the system was seen to exhibit eclipses of period 51.38 days and amplitude about 0.3 mag (primary) and possibly about 0.2 mag (secondary). This is the first known glactic eclipsing binary Cepheid. The AAVSO is conducting a campaign to study this star via high-precision, multicolor photometry obtained over several eclipse cycles. Observers are requested to obtain multicolor photometry with a S/N=100 or better on every image. Time resolution of one hour is adequate, so cycling through the filters need not be rushed. Apply transformation coefficients when possible. For calculating ephemerides, the pulsational maximum occurred on HJD 2453196.529 with a period of 4.1523 days; the eclipse primary minimum occurred on HJD 2453571.36 with a period of 51.38 days. The next primary eclipse will occur around July 9, but these eclipses are several days wide. A finding chart may be found at http://www.aavso.org/observing/charts/vsp (enter ASAS182612 for its name, or use the coordinates) with suitable comparison stars marked. Report/upload observations to the AAVSO.

  7. WW Geminorum: An early B-type eclipsing binary evolving into the contact phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Y.-G.; Dai, H.-F.; Yin, X.-G.

    2014-11-01

    WW Gem is a B-type eclipsing binary with a period of 1.2378 days. The CCD photometry of this binary was performed in 2013 December using the 85 cm telescope at the Xinglong Stations of the National Astronomical Observatories of China. Using the updated W-D program, the photometric model was deduced from the VRI light curves. The results imply that WW Gem is a near-contact eclipsing binary whose primary component almost fills its Roche lobe. The photometric mass ratio is q {sub ph} = 0.48(± 0.05). All collected times of minimum light, including two new ones, were used for the periodmore » studies. The orbital period changes of WW Gem could be described by an upward parabola, possibly overlaid by a light-time orbit with a period of P {sub mod} = 7.41(± 0.04) yr and a semi-amplitude of A = 0.0079 days(± 0.0005 days), respectively. This kind of cyclic oscillation may be attributed to the light-travel time effect via the third body. The long-term period increases at a rate of dP/dt = +3.47(±0.04) × 10{sup –8} day yr{sup –1}, which may be explained by the conserved mass transfer from the less massive component to the more massive one. With mass transfer, the massive binary WW Gem may be evolving into a contact binary.« less

  8. First Precision Photometric Observations and Analyses of The Totally Eclipsing, Solar Type Binary, V573 Pegasi

    NASA Astrophysics Data System (ADS)

    Samec, Ronald G.; Caton, Daniel B.; Faulkner, Danny R.

    2018-06-01

    CCD, VRI light curves of V573 Peg were taken in 26,27 September and 2, 4 and 6 October, 2017 at the Dark Sky Observatory in North Carolina with the 0.81-m reflector of Appalachian State University by D. Caton. V573 Peg was discovered by the SAVS survey which classified it as a V= 0.51 amplitude, EW variable. They included a rough spectrum identifying the binary was about a type G, although the period would indicate it is an F-type contact binary. Five times of minimum light were calculated, two primary eclipses and three secondary, from our present observations:HJD I = 2458023.6420±0.0012, 2458028.6522±0.0021,HJD II = 2458022.5991±0.0011, 2458023.8510±0.0010 and 2458028.8608±0.0005,The following linear and quadratic ephemerides were determined from all available times of minimum light.JD Hel MinI = 2456876.49437±0.00078d + 0.41745021±0. 00000017 × E, -JD Hel MinI = 2456876.49580±0.00023d + 0. 417448601±0.000000083× E - 0.000000000274±0.000000000012 X E2A 14-year period study (24 times of minimum light) revealed that the orbital period decreasing with a high level of confidence, possibly due to magnetic braking. The mass ratio is found to be somewhat extreme, M2/M1=0.2629±0.0006.Its Roche Lobe fill-out is 25%. The solution had no need of spots. The temperature difference of the components is about ~130 K, with the secondary as the hotter star, so it is a W-type W UMa Binary. The inclination is 80.4±0.1° . The secondary eclipse shows a time of constant light with an eclipse duration of 24 minutes. More details of our results will be given at the meeting.

  9. Orbital period changes in RW CrA, DX Vel and V0646 Cen

    NASA Astrophysics Data System (ADS)

    Volkov, I. M.; Chochol, D.; Grygar, J.; Mašek, M.; Juryšek, J.

    2017-06-01

    We aim to determine the absolute parameters of the components of southern Algol-type binaries with deep eclipses RW CrA, DX Vel, V0646 Cen and interpret their orbital period changes. The data analysis is based on a high quality Walraven photoelectric photometry, obtained in the 1960-70s, our recent CCD photometry, ASAS (Pojmanski, 2002), and Hipparcos (Perryman et al., 1997) photometry of the objects. Their light curves were analyzed using the PHOEBE program with fixed effective temperatures of the primary components, found from disentangling the Walraven (B-U) and (V-B) colour indices. We found the absolute parameters of the components of all three objects. All reliable observed times of minimum light were used to construct and analyze the Eclipse Time Variation (ETV) diagrams. We interpreted the ETV diagrams of the detached binary RW CrA and the semi-detached binary DX Vel by a LIght-Time Effect (LITE), estimated parameters of their orbits and masses of their third bodies. We suggest a long term variation of the inclination angle of both eclipsing binaries, caused by a non-coplanar orientation of their third body orbits. We interpreted the detected orbital period increase in the semi-detached binary V0646 Cen by a mass transfer from the less to more massive component with the rate M⊙ = 6.08×10-9 M⊙/yr.

  10. ORBITAL SOLUTIONS AND ABSOLUTE ELEMENTS OF THE ECLIPSING BINARY EE AQUARII

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wronka, Marissa Diehl; Gold, Caitlin; Sowell, James R.

    2010-04-15

    EE Aqr is a 7.9 mag Algol variable with a 12 hr orbital period. The Wilson-Devinney program is used to simultaneously solve 11 previously published light curves together with two existing radial velocity curves. The resulting masses are M {sub 1} = 2.24 {+-} 0.13 M {sub sun} and M {sub 2} = 0.72 {+-} 0.04 M {sub sun}, and the radii are R {sub 1} = 1.76 {+-} 0.03 R {sub sun} and R {sub 2} = 1.10 {+-} 0.02 R {sub sun}. The system has the lower-mass component completely filling its Roche lobe. Its distance from Hipparcos observationsmore » is 112 {+-} 10 pc. An improved ephemeris is derived, and no deviations in the period over time were seen. Light and velocity curve parameters, orbital elements, and absolute dimensions are presented, plus a comparison is made with previous solutions.« less

  11. Ultraviolet light curves of beta Lyrae: Comparison of OAO A-2, IUE, and Voyager Observations

    NASA Technical Reports Server (NTRS)

    Kondo, Yoji; Mccluskey, George E.; Silvis, Jeffery M. S.; Polidan, Ronald S.; Mccluskey, Carolina P. S.; Eaton, Joel A.

    1994-01-01

    The six-band ultraviolet light curves of beta Lyrae obtained with the Orbiting Astronomical Observatory (OAO) A-2 in 1970 exhibited a very unusual behavior. The secondary minimum deepened at shorter wavelength, indicating that one was not observing light variations caused primarily by the eclipses of two stars having a roughly Planckian energy distribution. It was then suggested that the light variations were caused by a viewing angle effect of an optically thick, ellipsoidal circumbinary gas cloud. Since 1978 beta Lyrae has been observed with the International Ultraviolet Explorer (IUE) satellite. We have constructed ultraviolet light curves from the IUE archival data for comparison with the OAO A-2 results. We find that they are in substantial agreement with each other. The Voyager ultraviolet spectrometer was also used to observe this binary during a period covered by IUE observations. The Voyager results agree with those of the two other satellite observatories at wavelengths longer than about 1350 A. However, in the wavelength region shorter than the Lyman-alpha line at 1216 A, the light curves at 1085 and 965 A show virtually no light variation except an apparent flaring near phase 0.7, which is also in evidence at longer wavelengths. We suggest that the optically thick circumbinary gas cloud, which envelops the two stars completely, assumes a roughly spherical shape when observed at these shorter wavelengths.

  12. New O-C Observations for 150 Algols: Insight to the Origins of Period Shifts

    NASA Astrophysics Data System (ADS)

    Hoffman, D. I.; Harrison, T. E.; McNamara, B. J.; Vestrand, W. T.

    2005-12-01

    Many eclipsing binaries of type Algol, RS CVn, and W UMa have observed orbital period shifts. Of these, many show both increasing and decreasing period shifts. Two leading explanations for these shifts are third body effects and magnetic activity changing the oblateness of the secondary, though neither one can explain all of the observed period oscillations. The first-generation Robotic Optical Transient Search Experiment (ROTSE-I) based in Los Alamos, NM, was primarily designed to look for the optical counterparts to gamma-ray bursts as well as searching for other optical transients not detected in gamma-rays. The telescope, consisting of four 200mm camera lenses, can image the entire northern sky twice in a night, which is a very useful tool in monitoring relatively bright eclipsing binaries for period shifts. The public data release from ROTSE-I, the Northern Sky Variability Survey (NSVS), spans one year of data stating in April, 1999. O-C data for 150 eclipsing binaries are presented using the NSVS data. We revisit work by Borkovits and Hegedüs on some third body candidates in several eclipsing binary systems using recent AAVSO and NSVS data. Some unusual light curves of eclipsing binaries produced from NSVS data is presented and discussed.

  13. Dayside atmospheric structure of HD209458b from Spitzer eclipses

    NASA Astrophysics Data System (ADS)

    Reinhard, Matthew; Harrington, Joseph; Challener, Ryan; Cubillos, Patricio; Blecic, Jasmina

    2017-10-01

    HD209458b is a hot Jupiter with a radius of 1.26 ± 0.08 Jupiter radii (Richardson et al, 2006) and a mass of 0.64 ± 0.09 Jupiter masses (Snellen et al, 2010). The planet orbits a G0 type star with an orbital period of 3.52472 ± 2.81699e-05 days, and a relatively low eccentricity of 0.0082 +0.0078/-0.0082 (Wang and Ford 2013). We report the analysis of observations of HD209458b during eclipse, taken in the 3.6 and 4.5 micron channels by the Spitzer Space Telescope's Infrared Array Camera (Program 90186). We produce a photometric light curve of the eclipses in both channels, using our Photometry for Orbits Eclipses and Transits (POET) code, and calculate the brightness temperatures and eclipse depths. We also present best estimates of the atmospheric parameters of HD209458b using our Bayesian Atmospheric Radiative Transfer (BART) code. These are some preliminary results of what will be an analysis of all available Spitzer data for HD209458b. Spitzer is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This work was supported by NASA Planetary Atmospheres grant NX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G.

  14. Worldwide photometry of the January 1989 Tau Persei eclipse

    NASA Technical Reports Server (NTRS)

    Hall, Douglas S.; Curott, David R.; Barksdale, William S.; Diethelm-Sutter, Roger; Ells, Jack

    1991-01-01

    New UBV photoelectric photometry of Tau Persei obtained at 19 different observatories during its recent January 1989 eclipse is presented. Mideclipse occurred at JD 2 447 542.31 + or - 0.01. The resulting light curve, though not complete at all phases, is solved for the elements with the help of two quantities derived from spectroscopy: the eclipse is 84 percent total at mideclipse, and the ratio of the radii is 0.135 + or - 0.01. Radii relative to the semimajor axis are 0.0236 for the G5 giant and 0.0032 for the A2 star. With a reasonable total mass assumed, the absolute radii say the A2 star could be luminosity class V or somewhat evolved and the G5 star is between III and II but could be closer to II. The G5 giant is brighter than the A2 star by 1.72 mag in V and the color excess in B - V is 0.06 mag, both quantities consistent (within uncertainties) with earlier estimates of Ake (1986). The eclipse duration, from first to fourth contact, is 2.09 day. The orbital inclination is 88.74 deg, consistent with what McAlister derived from speckle interferometry. Because of the large (e = 0.73) eccentricity, there is no secondary eclipse at all.

  15. Searching for transits in the WTS with the difference imaging light curves

    NASA Astrophysics Data System (ADS)

    Zendejas Dominguez, Jesus

    2013-12-01

    The search for exo-planets is currently one of the most exiting and active topics in astronomy. Small and rocky planets are particularly the subject of intense research, since if they are suitably located from their host star, they may be warm and potentially habitable worlds. On the other hand, the discovery of giant planets in short-period orbits provides important constraints on models that describe planet formation and orbital migration theories. Several projects are dedicated to discover and characterize planets outside of our solar system. Among them, the Wide-Field Camera Transit Survey (WTS) is a pioneer program aimed to search for extra-solar planets, that stands out for its particular aims and methodology. The WTS has been in operation since August 2007 with observations from the United Kingdom Infrared Telescope, and represents the first survey that searches for transiting planets in the near-infrared wavelengths; hence the WTS is designed to discover planets around M-dwarfs. The survey was originally assigned about 200 nights, observing four fields that were selected seasonally (RA = 03, 07, 17 and 19h) during a year. The images from the survey are processed by a data reduction pipeline, which uses aperture photometry to construct the light curves. For the most complete field (19h-1145 epochs) in the survey, we produce an alternative set of light curves by using the method of difference imaging, which is a photometric technique that has shown important advantages when used in crowded fields. A quantitative comparison between the photometric precision achieved with both methods is carried out in this work. We remove systematic effects using the sysrem algorithm, scale the error bars on the light curves, and perform a comparison of the corrected light curves. The results show that the aperture photometry light curves provide slightly better precision for objects with J < 16. However, difference photometry light curves present a significant improvement for fainter stars. In order to detect transits in the WTS light curves, we use a modified version of the box-fitting algorithm. The implementation on the detection algorithm performs a trapezoid-fit to the folded light curve. We show that the new fit is able to produce more accurate results than the box-fit model. We describe a set of selection criteria to search for transit candidates that include a parameter calculated by our detection algorithm: the V-shape parameter, which has proven to be useful to automatically identify and remove eclipsing binaries from the survey. The criteria are optimized using Monte-Carlo simulations of artificial transit signals that are injected into the real WTS light curves and subsequently analyzed by our detection algorithm. We separately optimize the selection criteria for two different sets of light curves, one for F-G-K stars, and another for M-dwarfs. In order to search for transiting planet candidates, the optimized selection criteria are applied to the aperture photometry and difference imaging light curves. In this way, the best 200 transit candidates from a sample of ~ 475 000 sources are automatically selected. A visual inspection of the folded light curves of these detections is carried out to eliminate clear false-positives or false-detections. Subsequently, several analysis steps are performed on the 18 best detections, which allow us to classify these objects as transiting planet and eclipsing binary candidates. We report one planet candidate orbiting a late G-type star, which is proposed for photometric follow-up. The independent analysis on the M-dwarf sample provides no planet candidates around these stars. Therefore, the null detection hypothesis and upper limits on the occurrence rate of giant planets around M-dwarfs with J < 17 mag presented in a prior study are confirmed. In this work, we extended the search for transiting planets to stars with J < 18 mag, which enables us to impose a more strict upper limit of 1.1 % on the occurrence rate of short-period giant planets around M-dwarfs, which is significantly lower than other limit published so far. The lack of Hot Jupiters around M-dwarfs play an important role in the existing theories of planet formation and orbital migration of exo-planets around low-mass stars. The dearth of gas-giant planets in short-period orbit detections around M stars indicates that it is not necessary to invoke the disk instability formation mechanism, coupled with an orbital migration process to explain the presence of such planets around low-mass stars. The much reduced efficiency of the core-accretion model to form Jupiters around cool stars seems to be in agreement with the current null result. However, our upper limit value, the lowest reported sofar, is still higher than the detection rates of short-period gas-giant planets around hotter stars. Therefore, we cannot yet reach any firm conclusion about Jovian planet formation models around low-mass and cool main-sequence stars, since there are currently not sufficient observational evidences to support the argument that Hot Jupiters are less common around M-dwarfs than around Sun-like stars. The way to improve this situation is to monitor larger samples of M-stars. For example, an extended analysis of the remaining three WTS fields and currently running M-dwarf transit surveys (like Pan-Planets and PTF/M-dwarfs projects, which are monitoring up to 100 000 objects) may reduce this upper limit. Current and future space missions like Kepler and GAIA could also help to either set stricter upper limits or finally detect Hot Jupiters around low-mass stars. In the last part of this thesis, we present other applications of the difference imaging light curves. We report the detection of five faint extremely-short-period eclipsing binary systems with periods shorter than 0.23 d, as well as two candidates and one confirmed M-dwarf/M-dwarf eclipsing binaries. The etections and results presented in this work demonstrate the benefits of using the difference imaging light curves, especially when going to fainter magnitudes.

  16. WR 20a Is an Eclipsing Binary: Accurate Determination of Parameters for an Extremely Massive Wolf-Rayet System

    NASA Astrophysics Data System (ADS)

    Bonanos, A. Z.; Stanek, K. Z.; Udalski, A.; Wyrzykowski, L.; Żebruń, K.; Kubiak, M.; Szymański, M. K.; Szewczyk, O.; Pietrzyński, G.; Soszyński, I.

    2004-08-01

    We present a high-precision I-band light curve for the Wolf-Rayet binary WR 20a, obtained as a subproject of the Optical Gravitational Lensing Experiment. Rauw et al. have recently presented spectroscopy for this system, strongly suggesting extremely large minimum masses of 70.7+/-4.0 and 68.8+/-3.8 Msolar for the component stars of the system, with the exact values depending strongly on the period of the system. We detect deep eclipses of about 0.4 mag in the light curve of WR 20a, confirming and refining the suspected period of P=3.686 days and deriving an inclination angle of i=74.5d+/-2.0d. Using these photometric data and the radial velocity data of Rauw et al., we derive the masses for the two components of WR 20a to be 83.0+/-5.0 and 82.0+/-5.0 Msolar. Therefore, WR 20a is confirmed to consist of two extremely massive stars and to be the most massive binary known with an accurate mass determination. Based on observations obtained with the 1.3 m Warsaw telescope at Las Campanas Observatory, which is operated by the Carnegie Institute of Washington.

  17. THREE NEW ECLIPSING WHITE-DWARF-M-DWARF BINARIES DISCOVERED IN A SEARCH FOR TRANSITING PLANETS AROUND M-DWARFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Law, Nicholas M.; Kraus, Adam L.; Street, Rachel

    2012-10-01

    We present three new eclipsing white-dwarf/M-dwarf binary systems discovered during a search for transiting planets around M-dwarfs. Unlike most known eclipsing systems of this type, the optical and infrared emission is dominated by the M-dwarf components, and the systems have optical colors and discovery light curves consistent with being Jupiter-radius transiting planets around early M-dwarfs. We detail the PTF/M-dwarf transiting planet survey, part of the Palomar Transient Factory (PTF). We present a graphics processing unit (GPU)-based box-least-squares search for transits that runs approximately 8 Multiplication-Sign faster than similar algorithms implemented on general purpose systems. For the discovered systems, we decomposemore » low-resolution spectra of the systems into white-dwarf and M-dwarf components, and use radial velocity measurements and cooling models to estimate masses and radii for the white dwarfs. The systems are compact, with periods between 0.35 and 0.45 days and semimajor axes of approximately 2 R{sub Sun} (0.01 AU). The M-dwarfs have masses of approximately 0.35 M{sub Sun }, and the white dwarfs have hydrogen-rich atmospheres with temperatures of around 8000 K and have masses of approximately 0.5 M{sub Sun }. We use the Robo-AO laser guide star adaptive optics system to tentatively identify one of the objects as a triple system. We also use high-cadence photometry to put an upper limit on the white-dwarf radius of 0.025 R{sub Sun} (95% confidence) in one of the systems. Accounting for our detection efficiency and geometric factors, we estimate that 0.08%{sub -0.05%}{sup +0.10%} (90% confidence) of M-dwarfs are in these short-period, post-common-envelope white-dwarf/M-dwarf binaries where the optical light is dominated by the M-dwarf. The lack of detections at shorter periods, despite near-100% detection efficiency for such systems, suggests that binaries including these relatively low-temperature white dwarfs are preferentially found at relatively large orbital radii. Similar eclipsing binary systems can have arbitrarily small eclipse depths in red bands and generate plausible small-planet-transit light curves. As such, these systems are a source of false positives for M-dwarf transiting planet searches. We present several ways to rapidly distinguish these binaries from transiting planet systems.« less

  18. Hubble Space Telescope Eclipse Observations of the Nova Like Cataclysmic Variable UX Ursae Majoris

    NASA Technical Reports Server (NTRS)

    Knigge, Christian; Long, Knox S.; Wade, Richard A.; Baptista, Raymundo; Horne, Keith; Hubeny, Ivan; Rutten, Rene G. M.

    1998-01-01

    We present and analyze Hubble Space Telescope observations of the eclipsing nova-like cataclysmic variable UX UMa obtained with the Faint Object Spectrograph. Two eclipses each were observed with the G160L grating (covering the ultraviolet waveband) in 1994 August and with the PRISM (covering the near-ultraviolet to near-infrared) in November of the same year. The system was about 50% brighter in November than in August, which, if due to a change in the accretion rate, indicates a fairly substantial increase in Mass accretion by about 50%. The eclipse light curves are qualitatively consistent with the gradual occultation of an accretion disk with a radially decreasing temperature distribution. The light curves also exhibit asymmetries about mideclipse that are likely due to a bright spot at the disk edge. Bright-spot spectra have been constructed by differencing the mean spectra observed at pre- and posteclipse orbital phases. These difference spectra contain ultraviolet absorption lines and show the Balmer jump in emission. This suggests that part of the bright spot may be optically thin in the continuum and vertically extended enough to veil the inner disk and/or the outflow from UX UMa in some spectral lines. Model disk spectra constructed as ensembles of stellar atmospheres provide poor descriptions of the observed posteclipse spectra, despite the fact that UX UMa's light should be dominated by the disk at this time. Suitably scaled single temperature model stellar atmospheres with T(sub eff) approximately equals 12,500-14,500 K actually provide a better match to both the ultraviolet and optical posteclipse spectra. Evidently, great care must be taken in attempts to derive accretion rates from comparisons of disk models to observations. One way to reconcile disk models with the observed posteclipse spectra is to postulate the presence of a significant amount of optically thin material in the system. Such an optically thin component might be associated with the transition region ("chromosphere") between the disk photosphere and the fast wind from the system whose presence has been suggested by Knigge and Drew. In any event, the wind/ chromosphere is likely to be the region in which many, if not most, of the UV lines are formed. This is clear from the plethora of emission lines that appear in the mideclipse spectra, some of which appear as absorption features in spectra taken at out-of-eclipse orbital phases.

  19. KIC 9451096: Magnetic Activity, Flares and Differential Rotation

    NASA Astrophysics Data System (ADS)

    Özdarcan, O.; Yoldaş, E.; Dal, H. A.

    2018-04-01

    We present a spectroscopic and photometric analysis of KIC 9451096. The combined spectroscopic and photometric modelling shows that the system is a detached eclipsing binary in a circular orbit and composed of F5V + K2V components. Subtracting the best-fitting light curve model from the whole long cadence data reveals additional low (mmag) amplitude light variations in time and occasional flares, suggesting a low, but still remarkable level of magnetic spot activity on the K2V component. Analyzing the rotational modulation of the light curve residuals enables us to estimate the differential rotation coefficient of the K2V component as k = 0.069 ± 0.008, which is 3 times weaker compared with the solar value of k = 0.19, assuming a solar type differential rotation. We find the stellar flare activity frequency for the K2V component as 0.000368411 h-1 indicating a low magnetic activity level.

  20. LIMB-DARKENING COEFFICIENTS FOR ECLIPSING WHITE DWARFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gianninas, A.; Strickland, B. D.; Kilic, Mukremin

    2013-03-20

    We present extensive calculations of linear and nonlinear limb-darkening coefficients as well as complete intensity profiles appropriate for modeling the light-curves of eclipsing white dwarfs. We compute limb-darkening coefficients in the Johnson-Kron-Cousins UBVRI photometric system as well as the Large Synoptic Survey Telescope (LSST) ugrizy system using the most up to date model atmospheres available. In all, we provide the coefficients for seven different limb-darkening laws. We describe the variations of these coefficients as a function of the atmospheric parameters, including the effects of convection at low effective temperatures. Finally, we discuss the importance of having readily available limb-darkening coefficientsmore » in the context of present and future photometric surveys like the LSST, Palomar Transient Factory, and the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS). The LSST, for example, may find {approx}10{sup 5} eclipsing white dwarfs. The limb-darkening calculations presented here will be an essential part of the detailed analysis of all of these systems.« less

  1. Photometric study and orbital period analysis of the W UMa type contact binary VZ Psc

    NASA Astrophysics Data System (ADS)

    Ma, S.; Li, K.; Li, Q.-C.; Gao, H.-Y.

    2018-02-01

    VZ Psc is a W-type contact binary system with a short period of 0.26125897 days. B, V, Rc and Ic light curves of the eclipsing binary system were obtained by using the 1.0 m reflecting telescope at Weihai Observatory of Shandong University. By collecting 136 times of minimum light, we studied the orbital period change of VZ Psc. A sinusoidal variation was discovered in the O - C diagram, and the amplitude of 0.d0023 and the period of 17.7 year were obtained. This can be caused by Applegate mechanism or light-time effect. Both the mechanisms are suited according to our investigation, but we prefer the latter that the light-time effect due to the presence of a third body results in the cyclic variation. By using the W-D program, we analyzed the four color light curves. Because of the asymmetric light curves and the possible third body, we used the spot mode of W-D program with and without L3. We found that a hot spot on the primary component with the third light leads to the best result. A very high filling factor of 94.4% ± 2.8% and orbit inclination of 53.2° were obtained.

  2. How I Learned to Stop Worrying and Love Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Moe, Maxwell Cassady

    Relatively massive B-type stars with closely orbiting stellar companions can evolve to produce Type Ia supernovae, X-ray binaries, millisecond pulsars, mergers of neutron stars, gamma ray bursts, and sources of gravitational waves. However, the formation mechanism, intrinsic frequency, and evolutionary processes of B-type binaries are poorly understood. As of 2012, the binary statistics of massive stars had not been measured at low metallicities, extreme mass ratios, or intermediate orbital periods. This thesis utilizes large data sets of eclipsing binaries to measure the physical properties of B-type binaries in these previously unexplored portions of the parameter space. The updated binary statistics provide invaluable insight into the formation of massive stars and binaries as well as reliable initial conditions for population synthesis studies of binary star evolution. We first compare the properties of B-type eclipsing binaries in our Milky Way Galaxy and the nearby Magellanic Cloud Galaxies. We model the eclipsing binary light curves and perform detailed Monte Carlo simulations to recover the intrinsic properties and distributions of the close binary population. We find the frequency, period distribution, and mass-ratio distribution of close B-type binaries do not significantly depend on metallicity or environment. These results indicate the formation of massive binaries are relatively insensitive to their chemical abundances or immediate surroundings. Second, we search for low-mass eclipsing companions to massive B-type stars in the Large Magellanic Cloud Galaxy. In addition to finding such extreme mass-ratio binaries, we serendipitously discover a new class of eclipsing binaries. Each system comprises a massive B-type star that is fully formed and a nascent low-mass companion that is still contracting toward its normal phase of evolution. The large low-mass secondaries discernibly reflect much of the light they intercept from the hot B-type stars, thereby producing sinusoidal variations in perceived brightness as they orbit. These nascent eclipsing binaries are embedded in the hearts of star-forming emission nebulae, and therefore provide a unique snapshot into the formation and evolution of massive binaries and stellar nurseries. We next examine a large sample of B-type eclipsing binaries with intermediate orbital periods. To achieve such a task, we develop an automated pipeline to classify the eclipsing binaries, measure their physical properties from the observed light curves, and recover the intrinsic binary statistics by correcting for selection effects. We find the population of massive binaries at intermediate separations differ from those orbiting in close proximity. Close massive binaries favor small eccentricities and have correlated component masses, demonstrating they coevolved via competitive accretion during their formation in the circumbinary disk. Meanwhile, B-type binaries at slightly wider separations are born with large eccentricities and are weighted toward extreme mass ratios, indicating the components formed relatively independently and subsequently evolved to their current configurations via dynamical interactions. By using eclipsing binaries as accurate age indicators, we also reveal that the binary orbital eccentricities and the line-of-sight dust extinctions are anticorrelated with respect to time. These empirical relations provide robust constraints for tidal evolution in massive binaries and the evolution of the dust content in their surrounding environments. Finally, we compile observations of early-type binaries identified via spectroscopy, eclipses, long-baseline interferometry, adaptive optics, lucky imaging, high-contrast photometry, and common proper motion. We combine the samples from the various surveys and correct for their respective selection effects to determine a comprehensive nature of the intrinsic binary statistics of massive stars. We find the probability distributions of primary mass, secondary mass, orbital period, and orbital eccentricity are all interrelated. These updated multiplicity statistics imply a greater frequency of low-mass X-ray binaries, millisecond pulsars, and Type Ia supernovae than previously predicted.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Chien-Hsiu, E-mail: leech@naoj.org

    Eclipsing binaries offer a unique opportunity to determine basic stellar properties. With the advent of wide-field camera and all-sky time-domain surveys, thousands of eclipsing binaries have been charted via light curve classification, yet their fundamental properties remain unexplored mainly due to the extensive efforts needed for spectroscopic follow-ups. In this paper, we present the discovery of a short-period ( P  = 0.313 day), double-lined M-dwarf eclipsing binary, CSSJ114804.3+255132/SDSSJ114804.35+255132.6, by cross-matching binary light curves from the Catalina Sky Survey and spectroscopically classified M dwarfs from the Sloan Digital Sky Survey. We obtain follow-up spectra using the Gemini telescope, enabling us to determinemore » the mass, radius, and temperature of the primary and secondary component to be M {sub 1} = 0.47 ± 0.03(statistic) ± 0.03(systematic) M {sub ⊙}, M {sub 2} = 0.46 ± 0.03(statistic) ± 0.03(systematic) M {sub ⊙}, R {sub 1} = 0.52 ± 0.08(statistic) ± 0.07(systematic) R {sub ⊙}, R {sub 2} =0.60 ± 0.08(statistic) ± 0.08(systematic) R {sub ⊙}, T {sub 1} = 3560 ± 100 K, and T {sub 2} = 3040 ± 100 K, respectively. The systematic error was estimated using the difference between eccentric and non-eccentric fits. Our analysis also indicates that there is definitively third-light contamination (66%) in the CSS photometry. The secondary star seems inflated, probably due to tidal locking of the close secondary companion, which is common for very short-period binary systems. Future spectroscopic observations with high resolution will narrow down the uncertainties of stellar parameters for both components, rendering this system as a benchmark for studying fundamental properties of M dwarfs.« less

  4. Orbital Solutions and Absolute Elements of the Eclipsing Binary YY Ceti

    NASA Astrophysics Data System (ADS)

    Williamon, Richard M.; Sowell, James R.

    2012-05-01

    YY Cet is a 10.5 mag semidetached variable with a 19 hr orbital period. The Wilson-Devinney program is used to simultaneously solve two new sets of UBV light curves together with preexisting photometry and single-line radial velocity measurements . The system has the lower-mass component completely filling its Roche lobe. The resulting masses are M1 = 1.78 ± 0.19 M⊙ and M2 = 0.92 ± 0.10 M⊙, and the radii are R1 = 2.08 ± 0.08 R⊙ and R2 = 1.62 ± 0.06 R⊙. Its computed distance is 534 ± 28 pc. Light- and velocity-curve parameters, orbital elements, and absolute dimensions are presented. A study of published TOM observations indicates that the period changed around 1999.

  5. Revision of the Phenomenological Characteristics of the Algol-Type Stars Using the Nav Algorithm

    NASA Astrophysics Data System (ADS)

    Tkachenko, M. G.; Andronov, I. L.; Chinarova, L. L.

    Phenomenological characteristics of the sample of the Algol-type stars are revised using a recently developed NAV ("New Algol Variable") algorithm (2012Ap.....55..536A, 2012arXiv 1212.6707A) and compared to that obtained using common methods of Trigonometric Polynomial Fit (TP) or local Algebraic Polynomial (A) fit of a fixed or (alternately) statistically optimal degree (1994OAP.....7...49A, 2003ASPC..292..391A). The computer program NAV is introduced, which allows to determine the best fit with 7 "linear" and 5 "nonlinear" parameters and their error estimates. The number of parameters is much smaller than for the TP fit (typically 20-40, depending on the width of the eclipse, and is much smaller (5-20) for the W UMa and β Lyrae-type stars. This causes more smooth approximation taking into account the reflection and ellipsoidal effects (TP2) and generally different shapes of the primary and secondary eclipses. An application of the method to two-color CCD photometry to the recently discovered eclipsing variable 2MASS J18024395 + 4003309 = VSX J180243.9 +400331 (2015JASS...32..101A) allowed to make estimates of the physical parameters of the binary system based on the phenomenological parameters of the light curve. The phenomenological parameters of the light curves were determined for the sample of newly discovered EA and EW-type stars (VSX J223429.3+552903, VSX J223421.4+553013, VSX J223416.2+553424, USNO-B1.0 1347-0483658, UCAC3-191-085589, VSX J180755.6+074711= UCAC3 196-166827). Despite we have used original observations published by the discoverers, the accuracy estimates of the period using the NAV method are typically better than the original ones.

  6. μ Eridani from MOST and from the ground: an orbit, the SPB component's fundamental parameters and the SPB frequencies

    NASA Astrophysics Data System (ADS)

    Jerzykiewicz, M.; Lehmann, H.; Niemczura, E.; Molenda-Żakowicz, J.; Dymitrov, W.; Fagas, M.; Guenther, D. B.; Hartmann, M.; Hrudková, M.; Kamiński, K.; Moffat, A. F. J.; Kuschnig, R.; Leto, G.; Matthews, J. M.; Rowe, J. F.; Ruciński, S. M.; Sasselov, D.; Weiss, W. W.

    2013-06-01

    MOST time series photometry of μ Eri, an SB1 eclipsing binary with a rapidly rotating SPB primary, is reported and analysed. The analysis yields a number of sinusoidal terms, mainly due to the intrinsic variation of the primary, and the eclipse light curve. New radial-velocity observations are presented and used to compute parameters of a spectroscopic orbit. Frequency analysis of the radial-velocity residuals from the spectroscopic orbital solution fails to uncover periodic variations with amplitudes greater than 2 km s-1. A Rossiter-McLaughlin anomaly is detected from observations covering ingress. From archival photometric indices and the revised Hipparcos parallax, we derive the primary's effective temperature, surface gravity, bolometric correction and the luminosity. An analysis of a high signal-to-noise spectrogram yields the effective temperature and surface gravity in good agreement with the photometric values. From the same spectrogram, we determine the abundance of He, C, N, O, Ne, Mg, Al, Si, P, S, Cl and Fe. The eclipse light curve is solved by means of EBOP. For a range of mass of the primary, a value of mean density, very nearly independent of assumed mass, is computed from the parameters of the system. Contrary to a recent report, this value is approximately equal to the mean density obtained from the star's effective temperature and luminosity. Despite limited frequency resolution of the MOST data, we were able to recover the closely spaced SPB frequency quadruplet discovered from the ground in 2002-2004. The other two SPB terms seen from the ground were also recovered. Moreover, our analysis of the MOST data adds 15 low-amplitude SPB terms with frequencies ranging from 0.109 to 2.786 d-1.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brewer, Lauren N.; Sandquist, Eric L.; Jeffries, Mark W. Jr.

    As part of our study of the old (∼2.5 Gyr) open cluster NGC 6819 in the Kepler field, we present photometric (Kepler and ground-based BVR{sub C}I{sub C}) and spectroscopic observations of the detached eclipsing binary WOCS 24009 (Auner 665; KIC 5023948) with a short orbital period of 3.6 days. WOCS 24009 is a triple-lined system, and we verify that the brightest star is physically orbiting the eclipsing binary using radial velocities and eclipse timing variations. The eclipsing binary components have masses M{sub B} = 1.090 ± 0.010 M{sub ⊙} and M{sub C} = 1.075 ± 0.013 M{sub ⊙}, and radii R{sub B} = 1.099 ± 0.006 ± 0.005 R{sub ⊙} and R{sub C} = 1.069 ± 0.006 ± 0.013 R{submore » ⊙}. The bright non-eclipsing star resides at the cluster turnoff, and ultimately its mass will directly constrain the turnoff mass: our preliminary determination is M{sub A} = 1.251 ± 0.057 M{sub ⊙}. A careful examination of the light curves indicates that the fainter star in the eclipsing binary undergoes a very brief period of total eclipse, which enables us to precisely decompose the light of the three stars and place them in the color–magnitude diagram (CMD). We also present improved analysis of two previously discussed detached eclipsing stars in NGC 6819 (WOCS 40007 and WOCS 23009) en route to a combined determination of the cluster’s distance modulus (m − M){sub V} = 12.38 ± 0.04. Because this paper significantly increases the number of measured stars in the cluster, we can better constrain the age of the CMD to be 2.21 ± 0.10 ± 0.20 Gyr. Additionally, using all measured eclipsing binary star masses and radii, we constrain the age to 2.38 ± 0.05 ± 0.22 Gyr. The quoted uncertainties are estimates of measurement and systematic uncertainties (due to model physics differences and metal content), respectively.« less

  8. Hot subdwarfs in (eclipsing) binaries with brown dwarf or low-mass main-sequence companions

    NASA Astrophysics Data System (ADS)

    Schaffenroth, Veronika; Geier, Stephan; Heber, Uli

    2014-09-01

    The formation of hot subdwarf stars (sdBs), which are core helium-burning stars located on the extended horizontal branch, is not yet understood. Many of the known hot subdwarf stars reside in close binary systems with short orbital periods of between a few hours and a few days, with either M-star or white-dwarf companions. Common-envelope ejection is the most probable formation channel. Among these, eclipsing systems are of special importance because it is possible to constrain the parameters of both components tightly by combining spectroscopic and light-curve analyses. They are called HW Virginis systems. Soker (1998) proposed that planetary or brown-dwarf companions could cause the mass loss necessary to form an sdB. Substellar objects with masses greater than >10 M_J were predicted to survive the common-envelope phase and end up in a close orbit around the stellar remnant, while planets with lower masses would entirely evaporate. This raises the question if planets can affect stellar evolution. Here we report on newly discovered eclipsing or not eclipsing hot subdwarf binaries with brown-dwarf or low-mass main-sequence companions and their spectral and photometric analysis to determine the fundamental parameters of both components.

  9. Photometric Study of the near-contact short period Algol system, AK Canis Minoris

    NASA Astrophysics Data System (ADS)

    Samec, Ronald G.; McDermith, Richard J.; Gray, Jamison D.; Carrigan, Brian

    1995-05-01

    As a part of our departments new undergraduate research program, we are surveying the eccentric eclipsing binary (EEB) candidates of Hegedus (1988). AK CMi is listed as a system with a displaced secondary. The observations were taken 10 to 15 February 1994, inclusive, at Lowell Obsevatory, Flagstaff, Arizona. A thermoelectrically cooled EMI 6256S ( S-13 cathode) PMT was used in conjunction with the 0.78 m National Undergraduate Research Observatory reflector. Two precision epochs of minimicrons light were determined from the observations made during primary and secondary eclipses. They are: Min I = 2449396.7032(5) and Min II = 2449395.8546(3). Targeting the last twenty-three years of data, we calculated improved linear and quadratic ephemerides. The quadratic term, -1.0(2)E-10, suggests that AK CMi is undergoing a continuous period decrease. This may be due to magnetic braking arising from the fast rotating solar-type secondary component. There is little evidence from the present light curves that AK CMi has a eccentric orbit. Assymetries near secondary minima possibly induced by an intermittent gas stream may be responsible for the classification of AK CMi as an EEB. The light curve solution reveals that AK CMi is a short period Algol with an A spectral-type primary component and an early K-type secondary. We calculated mass ratio of 0.5 and a secondary component fillout of 90% showing that AK CMi is a near contact binary.

  10. Observations and Analysis of the F-type Near-Contact Binary, NSVS 1054 1123

    NASA Astrophysics Data System (ADS)

    Caton, Daniel Bruce; Samec, Ronald G.; Faulkner, Danny R.

    2018-01-01

    NSVS 1054 1123 is a F2±2 type (T~ 6750K) eclipsing binary. It was observed in April and May, 2015 at the Appalachian State University’s Dark Sky Observatory in North Carolina with the 32-inch telescope. Six times of minimum light were determined from our present observations, which include two primary eclipses and four secondary eclipses:HJD Min I = 2457113.9330 ±0. 0.0002, 24 57147.8761 ±0.0001,HJD Min II = 2457117.80391 ±0.0006, 2457136.8600 ±0. 0007, 2457148.77040 ±0.0004, 2457151.7468 ±0.0002In addition, six observations at minima were introduced as low weighted times of minimum light taken from archived NSVS Data.The following quadratic ephemerides was determined from all available times of minimum light:JD Hel Min I=2457147.87646±0.00049d + 0 .5954966±0.0000065 X E -0.0000000017± 0.0000000007 X E2A period decrease may indicate that the binary is undergoing magnetic braking and is approaching its contact configuration. A BVRcIc simultaneous (preliminary) Wilson-Devinney Program (W-D) solution indicates that the system has a mass ratio of 0.5828±0.0004, and a component temperature difference of 2350 K. The large DT in the components verify that the binary is not in contact. A Binary Maker fitted hot spot altered slightly but was not eliminated in the WD Synthetic Light Curve Computations. It remains on the larger component at the equator on the correct (following) side for a stream spot directed from the secondary component (as dictated by the Coriolis effect). This could indicate that the components are near filling their respective Roche Lobes. The fill-out of our model is -0.036 for the primary component and -0.048 for the secondary component. The inclination is ~79 degrees, not enough for the system to undergo a total eclipse.Additional and more detailed information is given in this report.

  11. VizieR Online Data Catalog: BVRI light curves of GR Boo (Wang+, 2017)

    NASA Astrophysics Data System (ADS)

    Wang, D.; Zhang, L.; Han, X. L.; Lu, H.

    2017-11-01

    We observed the eclipsing binary GR Boo on May 12, 22 and 24 in 2015 using the SARA 90-cm telescope located at Kitt Peak National Observatory, Arizona, USA. This telescope was equipped with an ARC CCD camera with a resolution of 2048x2048pixels but used at 2x2 binning, resulting in 1024x1024pixels. We used the Bessel BVRI filters. (1 data file).

  12. FIRST PRECISION LIGHT CURVE ANALYSIS OF THE NEGLECTED EXTREME MASS RATIO SOLAR-TYPE BINARY HR BOOTIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samec, Ronald G.; Benkendorf, Barry; Dignan, James B.

    2015-04-15

    HR Bootis is a neglected binary that is found to be a solar-type (G2V) extreme mass ratio binary (EMRB). It was discovered by Hanley and Shapley in 1940. Surprisingly, little has been published in the intervening years. In 1999 it was characterized by a 0.31587 day orbital period. Since that time it has been observed by various observers who have determined ∼20 timings of minimum light over the past ∼15,000 orbits. Our observations in 2012 represent the first precision curves in the BVR{sub c}I{sub c} Johnson–Cousins wavelength bands. The light curves have rather low amplitudes, averaging some 0.5 magnitudes, yetmore » they exhibit total eclipses, which is typical of the rare group of solar-type EMRBs. An improved linear ephemeris was computed along with a quadratic ephemeris showing a decaying orbit, which indicates magnetic breaking may be occurring. The light curve solution reveals that HR Boo is a contact system with a somewhat low 21% Roche-lobe fill-out but a mass ratio of q = 4.09 (0.2444), which defines it as an EMRB. Two spots, both hot, were allowed to iterate to fit the light curve asymmetries. Their radii are 32° and 16°. Both are high-latitude polar spots indicative of strong magnetic activity. The shallow contact yet nearly equal component temperatures makes it an unusual addition to this group.« less

  13. The PHESAT95 catalogue of observations of the mutual events of the Saturnian satellites

    NASA Astrophysics Data System (ADS)

    Thuillot, W.; Arlot, J.-E.; Ruatti, C.; Berthier, J.; Blanco, C.; Colas, F.; Czech, W.; Damani, M.; D'Ambrosio, V.; Descamps, P.; Dourneau, G.; Emelianov, N.; Foglia, S.; Helmer, G.; Irsmambetova, T. R.; James, N.; Laques, P.; Lecacheux, J.; Le Campion, J.-F.; Ledoux, C.; Le Floch, J.-C.; Oprescu, G.; Rapaport, M.; Riccioli, R.; Starosta, B.; Tejfel, V. G.; Trunkovsky, E. M.; Viateau, B.; Veiga, C. H.; Vu, D. T.

    2001-05-01

    In 1994-1996 the Sun and the Earth passed through the equatorial plane of Saturn and therefore through the orbital planes of its main satellites. During this period, phenomena involving seven of these satellites were observed. Light curves of eclipses by Saturn and of mutual eclipses and occultations were recorded by the observers of the international campaign PHESAT95 organized by the Institut de mécanique céleste, Paris, France. Herein, we report 66 observations of 43 mutual events from 16 sites. For each observation, information is given about the telescope, the receptor, the site and the observational conditions. This paper gathers together all these data and gives a first estimate of the precision providing accurate astrometric data useful for the development of dynamical models.

  14. Photometric Study of Fourteen Low-mass Binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korda, D.; Zasche, P.; Wolf, M.

    2017-07-01

    New CCD photometric observations of fourteen short-period low-mass eclipsing binaries (LMBs) in the photometric filters I, R, and V were used for a light curve analysis. A discrepancy remains between observed radii and those derived from the theoretical modeling for LMBs, in general. Mass calibration of all observed LMBs was performed using only the photometric indices. The light curve modeling of these selected systems was completed, yielding the new derived masses and radii for both components. We compared these systems with the compilation of other known double-lined LMB systems with uncertainties of masses and radii less then 5%, which includesmore » 66 components of binaries where both spectroscopy and photometry were combined together. All of our systems are circular short-period binaries, and for some of them, the photospheric spots were also used. A purely photometric study of the light curves without spectroscopy seems unable to achieve high enough precision and accuracy in the masses and radii to act as meaningful test of the M–R relation for low-mass stars.« less

  15. BRITE-Constellation reveals evidence for pulsations in the enigmatic binary η Carinae

    NASA Astrophysics Data System (ADS)

    Richardson, Noel D.; Pablo, Herbert; Sterken, Christiaan; Pigulski, Andrzej; Koenigsberger, Gloria; Moffat, Anthony F. J.; Madura, Thomas I.; Hamaguchi, Kenji; Corcoran, Michael F.; Damineli, Augusto; Gull, Theodore R.; Hillier, D. John; Weigelt, Gerd; Handler, Gerald; Popowicz, Adam; Wade, Gregg A.; Weiss, Werner W.; Zwintz, Konstanze

    2018-04-01

    η Car is a massive, eccentric binary with a rich observational history. We obtained the first high-cadence, high-precision light curves with the BRITE-Constellation nanosatellites over 6 months in 2016 and 6 months in 2017. The light curve is contaminated by several sources including the Homunculus nebula and neighbouring stars, including the eclipsing binary CPD -59°2628. However, we found two coherent oscillations in the light curve. These may represent pulsations that are not yet understood but we postulate that they are related to tidally excited oscillations of η Car's primary star, and would be similar to those detected in lower mass eccentric binaries. In particular, one frequency was previously detected by van Genderen et al. and Sterken et al. through the time period of 1974-1995 through timing measurements of photometric maxima. Thus, this frequency seems to have been detected for nearly four decades, indicating that it has been stable in frequency over this time span. These pulsations could help provide the first direct constraints on the fundamental parameters of the primary star if confirmed and refined with future observations.

  16. Eclipse SteerTech liquid lenslet beam steering technology

    NASA Astrophysics Data System (ADS)

    Westfall, Raymond T.; Rogers, Stanley; Shannon, Kenneth C., III

    2007-09-01

    Eclipse SteerTech TM transmissive fluid state electrowetting technology has successfully demonstrated the ability to control the shape and position of a fluid lenslet. In its final form, the technology will incorporate a dual fluid lenslet approach capable of operating in extremely high acceleration environments. The beam steering system works on the principle of electro-wetting. A substrate is covered with a closely spaced array of, independently addressable, transparent, electrically conductive pixels utilizing Eclipse's proprietary EclipseTEC TM technology. By activating and deactivating selected EclipseTEC TM pixels in the proper sequence, the shape and position of fluid lenslets or arrays of lenslets can be dynamically changed at will. The position and shape of individual fluid lenslets may be accurately controlled on any flat, simply curved, or complex curved, transparent or reflective surface. The smaller the pixels the better control of the position and shape of the fluid lenslets. Information on the successful testing of the Eclipse SteerTech TM lenslet and discussion of its use in a de-centered lenslet array will be presented.

  17. Multiple color light curves and period changes investigation of the contact binary HV Aqr

    NASA Astrophysics Data System (ADS)

    Li, K.; Qian, S.-B.

    2013-07-01

    New V, R and I light curves of the short period binary system, HV Aqr, are presented. Photometric solutions were derived using the Wilson-Devinney code. Our new determined light curves do not show O'Connell effect. The nearly symmetry and complete eclipses of the light curves of HV Aqr enable us to determine high-precision photometric parameters of the binary system. The new solutions suggest that HV Aqr is a low mass ratio (q=0.1455) deep contact binary with a contact degree of f=55.9%. Based on all available times of light minimum, we analyzed the long-term period changes of HV Aqr. A secular decrease rate of dP/dt=8.84(±0.18)×10-8 days yr-1 was determined. The continuous period decrease can be explained by the mass transfer from the primary component to the secondary and angular momentum loss via magnetic stellar wind. A conservative mass transfer rate of dM1/dt=1.81×10-8M⊙ yr-1 and angular momentum loss rate at dJ/dt=5.96×1045 g cm2 s-1 yr-1 were derived. As the orbital period decreases, the contact degree of HV Aqr will become deeper and finally it will evolve into a single rapid-rotation star.

  18. A multiwavelength investigation of the massive eclipsing binary Cygnus OB2 #5

    NASA Astrophysics Data System (ADS)

    Linder, N.; Rauw, G.; Manfroid, J.; Damerdji, Y.; De Becker, M.; Eenens, P.; Royer, P.; Vreux, J.-M.

    2009-02-01

    Context: The properties of the early-type binary Cyg OB2 #5 have been debated for many years and spectroscopic and photometric investigations yielded conflicting results. Aims: We have attempted to constrain the physical properties of the binary by collecting new optical and X-ray observations. Methods: The optical light curves obtained with narrow-band continuum and line-bearing filters are analysed and compared. Optical spectra are used to map the location of the He ii λ 4686 and Hα line-emission regions in velocity space. New XMM-Newton as well as archive X-ray spectra are analysed to search for variability and constrain the properties of the hot plasma in this system. Results: We find that the orbital period of the system slowly changes though we are unable to discriminate between several possible explanations of this trend. The best fit solution of the continuum light curve reveals a contact configuration with the secondary star being significantly brighter and hotter on its leading side facing the primary. The mean temperature of the secondary star turns out to be only slightly lower than that of the primary, whilst the bolometric luminosity ratio is found to be 3.1. The solution of the light curve yields a distance of 925 ± 25 pc much lower than the usually assumed distance of the Cyg OB2 association. Whilst we confirm the existence of episodes of higher X-ray fluxes, the data reveal no phase-locked modulation with the 6.6 day period of the eclipsing binary nor any clear relation between the X-ray flux and the 6.7 yr radio cycle. Conclusions: The bright region of the secondary star is probably heated by energy transfer in a common envelope in this contact binary system as well as by the collision with the primary's wind. The existence of a common photosphere probably also explains the odd mass-luminosity relation of the stars in this system. Most of the X-ray, non-thermal radio, and possibly γ-ray emission of Cyg OB2 #5 is likely to arise from the interaction of the combined wind of the eclipsing binary with at least one additional star of this multiple system. Based on observations collected at the Observatoire de Haute Provence (France), the Observatorio Astronómico Nacional of San Pedro Mártir (Mexico) and XMM-Newton, an ESA science mission with instruments and contributions funded by ESA member states and the USA (NASA). Light curves of Cyg OB2 #5 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/495/231

  19. Photometric investigation of a very short period W UMa-type binary - Does CE Leonis have a large superluminous area?

    NASA Technical Reports Server (NTRS)

    Samec, Ronald G.; Su, Wen; Terrell, Dirk; Hube, Douglas P.

    1993-01-01

    A complete photometric analysis of BVRI Johnson-Cousins photometry of the high northern latitude galactic variable, CE Leo is presented. These observations were taken at Kitt Peak National Observatory on May 31, 1989-June 7, 1989. Three new precise epochs of minimum light were determined and a linear and a quadratic ephemeris were computed from these and previous data covering 28 years of observation. The light curves reveal that the system undergoes a brief 20 min totality in the primary eclipse, indicating that CE Leo is a W UMa W-type binary. A systemic velocity of about -40 km/s was determined. Standard magnitudes were found and a simultaneous solution of the B, V, R, I light curves was computed using the new Wilson-Devinney synthetic light curve code which has the capability of automatically adjusting star spots. The solution indicates that the system consists of two early K-type dwarfs in marginal contact with a fill-out factor less than 3 percent. Evidence for the presence of a large (45 deg radius) superluminous area on the cooler component is given.

  20. Absolute Properties of the Eclipsing Binary Star BF Draconis

    NASA Astrophysics Data System (ADS)

    Lacy, Claud H. Sandberg; Torres, Guillermo; Fekel, Francis C.; Sabby, Jeffrey A.; Claret, Antonio

    2012-06-01

    BF Dra is now known to be an eccentric double-lined F6+F6 binary star with relatively deep (0.7 mag) partial eclipses. Previous studies of the system are improved with 7494 differential photometric observations from the URSA WebScope and 9700 from the NFO WebScope, 106 high-resolution spectroscopic observations from the Tennessee State University 2 m automatic spectroscopic telescope and the 1 m coudé-feed spectrometer at Kitt Peak National Observatory, and 31 accurate radial velocities from the CfA. Very accurate (better than 0.6%) masses and radii are determined from analysis of the two new light curves and four radial velocity curves. Theoretical models match the absolute properties of the stars at an age of about 2.72 Gyr and [Fe/H] = -0.17, and tidal theory correctly confirms that the orbit should still be eccentric. Our observations of BF Dra constrain the convective core overshooting parameter to be larger than about 0.13 Hp . We find, however, that standard tidal theory is unable to match the observed slow rotation rates of the components' surface layers.

  1. Average Albedos of Close-in Super-Earths and Super-Neptunes from Statistical Analysis of Long-cadence Kepler Secondary Eclipse Data

    NASA Astrophysics Data System (ADS)

    Sheets, Holly A.; Deming, Drake

    2017-10-01

    We present the results of our work to determine the average albedo for small, close-in planets in the Kepler candidate catalog. We have adapted our method of averaging short-cadence light curves of multiple Kepler planet candidates to long-cadence data, in order to detect an average albedo for the group of candidates. Long-cadence data exist for many more candidates than the short-cadence data, and so we separate the candidates into smaller radius bins than in our previous work: 1-2 {R}\\oplus , 2-4 {R}\\oplus , and 4-6 {R}\\oplus . We find that, on average, all three groups appear darker than suggested by the short-cadence results, but not as dark as many hot Jupiters. The average geometric albedos for the three groups are 0.11 ± 0.06, 0.05 ± 0.04, and 0.23 ± 0.11, respectively, for the case where heat is uniformly distributed about the planet. If heat redistribution is inefficient, the albedos are even lower, since there will be a greater thermal contribution to the total light from the planet. We confirm that newly identified false-positive Kepler Object of Interest (KOI) 1662.01 is indeed an eclipsing binary at twice the period listed in the planet candidate catalog. We also newly identify planet candidate KOI 4351.01 as an eclipsing binary, and we report a secondary eclipse measurement for Kepler-4b (KOI 7.01) of ˜7.50 ppm at a phase of ˜0.7, indicating that the planet is on an eccentric orbit.

  2. The Clusters AgeS Experiment (CASE). Variable stars in the field of the globular cluster NGC 362

    NASA Astrophysics Data System (ADS)

    Rozyczka, M.; Thompson, I. B.; Narloch, W.; Pych, W.; Schwarzenberg-Czerny, A.

    2016-09-01

    The field of the globular cluster NGC 362 was monitored between 1997 and 2015 in a search for variable stars. BV light curves were obtained for 151 periodic or likely periodic variable stars, over a hundred of which are new detections. Twelve newly detected variable stars are proper-motion members of the cluster: two SX Phe and two RR Lyr pulsators, one contact binary, three detached or semi-detached eclipsing binaries, and four spotted variable stars. The most interesting objects among these are the binary blue straggler V20 with an asymmetric light curve, and the 8.1 d semidetached binary V24 located on the red giant branch of NGC 362, which is a Chandra X-ray source. We also provide substantial new data for 24 previously known variable stars.

  3. The Late-type Eclipsing Binaries in the Large Magellanic Cloud: Catalog of Fundamental Physical Parameters

    NASA Astrophysics Data System (ADS)

    Graczyk, Dariusz; Pietrzyński, Grzegorz; Thompson, Ian B.; Gieren, Wolfgang; Pilecki, Bogumił; Konorski, Piotr; Villanova, Sandro; Górski, Marek; Suchomska, Ksenia; Karczmarek, Paulina; Stepień, Kazimierz; Storm, Jesper; Taormina, Mónica; Kołaczkowski, Zbigniew; Wielgórski, Piotr; Narloch, Weronika; Zgirski, Bartłomiej; Gallenne, Alexandre; Ostrowski, Jakub; Smolec, Radosław; Udalski, Andrzej; Soszyński, Igor; Kervella, Pierre; Nardetto, Nicolas; Szymański, Michał K.; Wyrzykowski, Łukasz; Ulaczyk, Krzysztof; Poleski, Radosław; Pietrukowicz, Paweł; Kozłowski, Szymon; Skowron, Jan; Mróz, Przemysław

    2018-06-01

    We present a determination of the precise fundamental physical parameters of 20 detached, double-lined, eclipsing binary stars in the Large Magellanic Cloud (LMC) containing G- or early K-type giant stars. Eleven are new systems; the remaining nine are systems already analyzed by our team for which we present updated parameters. The catalog results from our long-term survey of eclipsing binaries in the Magellanic Clouds suitable for high-precision determination of distances (the Araucaria Project). The V-band brightnesses of the systems range from 15.4 to 17.7 mag, and their orbital periods range from 49 to 773 days. Six systems have favorable geometry showing total eclipses. The absolute dimensions of all eclipsing binary components are calculated with a precision of better than 3%, and all systems are suitable for a precise distance determination. The measured stellar masses are in the range 1.4 to 4.6 M ⊙, and comparison with the MESA isochrones gives ages between 0.1 and 2.1 Gyr. The systems show an age–metallicity relation with no evolution of metallicity for systems older than 0.6 Gyr, followed by a rise to a metallicity maximum at age 0.5 Gyr and then a slow metallicity decrease until 0.1 Gyr. Two systems have components with very different masses: OGLE LMC-ECL-05430 and OGLE LMC-ECL-18365. Neither system can be fitted by a single stellar evolution isochrone, explained by a past mass transfer scenario in the case of ECL-18365 and a gravitational capture or hierarchical binary merger scenario in the case of ECL-05430. The longest-period system, OGLE LMC SC9_230659, shows a surprising apsidal motion that shifts the apparent position of the eclipses. This is a clear sign of a physical companion to the system; however, neither investigation of the spectra nor light-curve analysis indicates a third-light contribution larger than 2%–3%. In one spectrum of OGLE LMC-ECL-12669, we noted a peculiar dimming of one of the components by 65% well outside of the eclipses. We interpret this observation as arising from an extremely rare occultation event, as a foreground Galactic object covers only one component of an extragalactic eclipsing binary.

  4. New Variable Stars in the KP2001 Catalog from the Data Base of the Northern Sky Variability Survey

    NASA Astrophysics Data System (ADS)

    Petrosyan, G. V.

    2018-03-01

    The optical variability of stars in the KP2001 catalog is studied. Monitor data from the automatic Northern Sky Variability Survey (NSVS) are used for this purpose. Of the 257 objects that were studied, 5 are Mira Ceti variables (mirids), 33 are semiregular (SR), and 108 are irregular variables (Ir). The light curves of the other objects show no noticeable signs of variability. For the first time, 11 stars are assigned to the semiregular and 105 stars to the irregular variables. Of the irregular variables, the light curves of two, No. 8 and No. 194, are distinct and are similar to the curves for eclipsing variables. The periods and amplitudes of the mirids and semiregular variables are determined using the "VStar" program package from AAVSO. The absolute stellar magnitudes M K and distances are also estimated, along with the mass loss for the mirids. The behavior of stars from KP2001 in 2MASS and WISE color diagrams is examined.

  5. The Three-body System δ Circini

    NASA Astrophysics Data System (ADS)

    Mayer, Pavel; Harmanec, Petr; Sana, Hugues; Le Bouquin, Jean-Baptiste

    2014-12-01

    Delta Cir is known as an O7.5 III eclipsing and spectroscopic binary with an eccentric orbit. Penny et al. discovered the presence of a third component in the IUE spectra. The eclipsing binary and the third body revolve around a common center of gravity with a period of 1644 days in an eccentric orbit with a semimajor axis of 10 AU. We demonstrate the presence of apsidal-line rotation with a period of ≈141 yr, which is considerably longer than its theoretically predicted value, based on the published radii of the binary components derived from the Hipparchos H p light curve. However, our new solution of the same light curve resulted in smaller radii and better agreement between the observed and predicted period of the apsidal-line advance. There are indications that the third body is a binary. The object was resolved by VLTI using the PIONIER combiner; in 2012 June, the separation was 3.78 mas with magnitude difference in the H region 1.ͫ75. This result means that (assuming a distance of 770 pc) the inclination of the long orbit is 87.°7. Based on data products from observations made with ESO Telescopes at the La Silla Paranal Observatory under programs ID 65.N-0577, 67.B-0504, 074D-0300, 178.D-0361, 182.D-0356, 083.D-0589, 185.D-0056, 086.D-0997, and 087D-0946.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, A. B.; Fu, J. N.; Zhang, Y. P.

    Time-series, multi-color photometry and high-resolution spectra of the short-period eclipsing binary V Tri were obtained through observation. The completely covered light and radial velocity (RV) curves of the binary system are presented. All times of light minima derived from both photoelectric and CCD photometry were used to calculate the orbital period and new ephemerides of the eclipsing system. The analysis of the O − C diagram reveals that the orbital period is 0.58520481 days, decreasing at a rate of dP / dt  = −7.80 × 10{sup −8} day yr{sup −1}. The mass transfer between the two components and the light-time-travel effect due tomore » a third body could be used to explain the period decrease. However, a semi-detached configuration with the lower-mass component filling and the primary nearly filling each of their Roche lobes was derived from the synthesis of the light and RV curves by using the 2015 version of the Wilson–Devinney code. We consider the period decrease to be the nonconservative mass transfer from the secondary component to the primary and the mass loss of the system, which was thought to be an EB type, while it should be an EA type (semi-detached Algol-type) from our study. The masses, radii, and luminosities of the primary and secondary are 1.60 ± 0.07 M {sub ⊙}, 1.64 ± 0.02 R {sub ⊙}, and 14.14 ± 0.73 L {sub ⊙} and 0.74 ± 0.02 M {sub ⊙}, 1.23 ± 0.02 R {sub ⊙}, and 1.65 ± 0.05 L {sub ⊙}, respectively.« less

  7. Discovery of deep eclipses in the cataclysmic variable IPHAS J051814.33+294113.0

    NASA Astrophysics Data System (ADS)

    Kozhevnikov, V. P.

    2018-06-01

    Performing the photometric observations of the cataclysmic variable IPHAS J051814.33+294113.0, we discovered very deep eclipses. The observations were obtained over 14 nights, had a total duration of 56 hours and covered one year. The large time span, during which we observed the eclipses, allowed us to measure the orbital period in IPHAS J051814.33+294113.0 with high precision, P_{orb}=0.20603098± 0.00000025 d. The prominent parts of the eclipses lasted 0.1± 0.01 phases or 30± 3 min. The depth of the eclipses was variable in the range 1.8-2.9 mag. The average eclipse depth was equal to 2.42± 0.06 mag. The prominent parts of the eclipses revealed a smooth and symmetric shape. We derived the eclipse ephemeris, which, according to the precision of the orbital period, has a formal validity time of 500 years. This ephemeris can be useful for future investigations of the long-term period changes. During the latter four observational nights in 2017 January, we observed the sharp brightness decrease of IPHAS J051814.33+294113.0 by 2.3 mag. This brightness decrease imitated the end of the dwarf nova outburst. However, the long-term light curve of IPHAS J051814.33+294113.0 obtained in the course of the Catalina Sky Survey during 8 years showed no dwarf nova outbursts. From this we conclude that IPHAS J051814.33+294113.0 is a novalike variable. Moreover, the sharp brightness decrease, which we observed in IPHAS J051814.33+294113.0, suggests that this novalike variable belongs to the VY Scl-subtype. Due to very deep eclipses, IPHAS J051814.33+294113.0 is suitable to study the accretion disc structure using eclipse mapping techniques. Because this novalike variable has the long orbital period, it is of interest to determine the masses of the stellar components from radial velocity measurements. Then, our precise eclipse ephemeris can be useful to the phasing of spectroscopic data.

  8. A1540-53, an eclipsing X-ray binary pulsator

    NASA Technical Reports Server (NTRS)

    Becker, R. H.; Swank, J. H.; Boldt, E. A.; Holt, S. S.; Serlemitsos, P. J.; Pravdo, S. H.; Saba, J. R.

    1977-01-01

    An eclipsing X-ray binary pulsator consistent with the location of A1540-53 has been observed. The source pulse period was 528.93 + or - 0.10 s. The binary nature is confirmed by a Doppler curve for the pulsation period. The eclipse angle of 30.5 + or - 3 deg and the 4-hour transition to and from eclipse suggest an early-type giant or supergiant primary star.

  9. The O-type eclipsing contact binary LY Aurigae - member of a quadruple system

    NASA Astrophysics Data System (ADS)

    Mayer, Pavel; Drechsel, Horst; Harmanec, Petr; Yang, Stephenson; Šlechta, Miroslav

    2013-11-01

    The eclipsing binary LY Aur (O9 II + O9 III) belongs to the rare class of early-type contact systems. We obtained 23 new spectra at the Ondřejov and Dominion Astrophysical Observatories, which were analysed with four older Calar Alto and one ELODIE archive spectra. A new result of this study is that the visual companion of LY Aur - the spectral lines of which are clearly seen in our spectra - is also an SB1 binary having an orbital period of 20.46d, an eccentric orbit, and a radial velocity semi-amplitude of 33 km s-1. The Hα line blend contains an emission component, which shows dependence on the orbital phase of the eclipsing system, with the strongest emission around the secondary eclipse. Revised elements of the eclipsing binary and the orbital solution of the companion binary are determined from our set of spectra and new light-curve solutions of the eclipsing pair. The mass of the primary of 25.5 M⊙ agrees well with its spectral type, whereas the secondary mass of 14 M⊙ is smaller than expected. From an O-C analysis of the minimum times of LY Aur that span more than 40 years, we found that the orbital period is decreasing, indicating the presence of interaction processes. The system is likely in a phase of non-conservative mass exchange. Based on spectral observations collected at the German-Spanish Observatory, Calar Alto, Spain; Dominion Astrophysical Observatory, Canada; Ondřejov Observatory, Czech Republic, and an archival Haute Provence Observatory ELODIE spectrum.

  10. Tidal Synchronization and Differential Rotation of Kepler Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Lurie, John C.; Vyhmeister, Karl; Hawley, Suzanne L.; Adilia, Jamel; Chen, Andrea; Davenport, James R. A.; Jurić, Mario; Puig-Holzman, Michael; Weisenburger, Kolby L.

    2017-12-01

    Few observational constraints exist for the tidal synchronization rate of late-type stars, despite its fundamental role in binary evolution. We visually inspected the light curves of 2278 eclipsing binaries (EBs) from the Kepler Eclipsing Binary Catalog to identify those with starspot modulations, as well as other types of out-of-eclipse variability. We report rotation periods for 816 EBs with starspot modulations, and find that 79% of EBs with orbital periods of less than 10 days are synchronized. However, a population of short-period EBs exists, with rotation periods typically 13% slower than synchronous, which we attribute to the differential rotation of high-latitude starspots. At 10 days, there is a transition from predominantly circular, synchronized EBs to predominantly eccentric, pseudosynchronized EBs. This transition period is in good agreement with the predicted and observed circularization period for Milky Way field binaries. At orbital periods greater than about 30 days, the amount of tidal synchronization decreases. We also report 12 previously unidentified candidate δ Scuti and γ Doradus pulsators, as well as a candidate RS CVn system with an evolved primary that exhibits starspot occultations. For short-period contact binaries, we observe a period-color relation and compare it to previous studies. As a whole, these results represent the largest homogeneous study of tidal synchronization of late-type stars.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Y.-G.; Dai, H.-F.; Zhang, X.-B.

    We present new photometry for the eclipsing binary V1241 Tau, which was obtained on six nights between 2011 December and 2012 January using the 85 cm telescope at the Xinglong station of the National Astronomical Observatories of China. By using the updated Wilson-Devinney code, photometric models with third lights were deduced from two sets of light curves. The result implies that V1241 Tau is an Algol-type near-contact binary (NCB), whose mass ratio and filling-out of the primary are q = 0.545 ({+-} 0.003) and f{sub 1} = 82.4% ({+-} 0.2%), respectively. Based on all available times of minimum light spanningmore » over 80 yr, the O - C curve of V1241 Tau appears to show a quasi-sinusoidal oscillation, i.e., a light-time orbit. The modulated period and amplitude are P{sub mod} = 47.4 ({+-} 1.7) yr and A = 0.0087 ({+-} 0.0005) days, respectively. This kind of period variation may be more likely attributed to the light-time effect via a presence of an unseen third body. From an analysis of 23 Algol-type NCBs with EB-type light curves, we determine that the fill-out for the primary f{sub 1} will increase as the orbital period P decreases. With angular momentum loss, the orbit of the binary will shrink, which causes f{sub 1} to increase. The primary component finally fills its Roche lobe, and the binary evolves into contact configuration. Therefore, this kind of Algol-type NCB with EB-type light curves, such as V1241 Tau, may be a progenitor of the A-type W UMa binary.« less

  12. Multiband Photometric and Spectroscopic Analysis of HV Cnc

    NASA Astrophysics Data System (ADS)

    Gökay, G.; Gürol, B.; Derman, E.

    2013-11-01

    In this paper, radial velocity and VI- and JHKS - (Two Micron All Sky Survey) band photometric data of the detached system HV Cnc have been analyzed. The primary component of HV Cnc, which is a member of the M67 cluster, is suspected to be either a blue straggler or turn-off star. The system is a single-lined spectroscopic binary and its light curve shows a total eclipse. Spectroscopic observations of the system revealed the third component, which shows contribution to the total light of the system. Light curve and radial velocity data have been analyzed using the Wilson-Devinney (W-D) code and JHKS filter definitions computed for the W-D code in this work. Our analysis shows that the mass and radius of the primary and secondary components are 1.31 M ⊙, 0.52 M ⊙, 1.87 R ⊙, and 0.48 R ⊙, respectively. All results are compared with previously published literature values and discussed.

  13. MULTIBAND PHOTOMETRIC AND SPECTROSCOPIC ANALYSIS OF HV Cnc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gökay, G.; Gürol, B.; Derman, E., E-mail: ggokay@science.ankara.edu.tr

    2013-11-01

    In this paper, radial velocity and VI- and JHK{sub S} - (Two Micron All Sky Survey) band photometric data of the detached system HV Cnc have been analyzed. The primary component of HV Cnc, which is a member of the M67 cluster, is suspected to be either a blue straggler or turn-off star. The system is a single-lined spectroscopic binary and its light curve shows a total eclipse. Spectroscopic observations of the system revealed the third component, which shows contribution to the total light of the system. Light curve and radial velocity data have been analyzed using the Wilson-Devinney (W-D)more » code and JHK{sub S} filter definitions computed for the W-D code in this work. Our analysis shows that the mass and radius of the primary and secondary components are 1.31 M {sub ☉}, 0.52 M {sub ☉}, 1.87 R {sub ☉}, and 0.48 R {sub ☉}, respectively. All results are compared with previously published literature values and discussed.« less

  14. Data Validation in the Kepler Science Operations Center Pipeline

    NASA Technical Reports Server (NTRS)

    Wu, Hayley; Twicken, Joseph D.; Tenenbaum, Peter; Clarke, Bruce D.; Li, Jie; Quintana, Elisa V.; Allen, Christopher; Chandrasekaran, Hema; Jenkins, Jon M.; Caldwell, Douglas A.; hide

    2010-01-01

    We present an overview of the Data Validation (DV) software component and its context within the Kepler Science Operations Center (SOC) pipeline and overall Kepler Science mission. The SOC pipeline performs a transiting planet search on the corrected light curves for over 150,000 targets across the focal plane array. We discuss the DV strategy for automated validation of Threshold Crossing Events (TCEs) generated in the transiting planet search. For each TCE, a transiting planet model is fitted to the target light curve. A multiple planet search is conducted by repeating the transiting planet search on the residual light curve after the model flux has been removed; if an additional detection occurs, a planet model is fitted to the new TCE. A suite of automated tests are performed after all planet candidates have been identified. We describe a centroid motion test to determine the significance of the motion of the target photocenter during transit and to estimate the coordinates of the transit source within the photometric aperture; a series of eclipsing binary discrimination tests on the parameters of the planet model fits to all transits and the sequences of odd and even transits; and a statistical bootstrap to assess the likelihood that the TCE would have been generated purely by chance given the target light curve with all transits removed. Keywords: photometry, data validation, Kepler, Earth-size planets

  15. Results from the Rothney Astrophysical Observatory Variable Star Search Program: Background, Procedure, and Results from RAO Field 1

    NASA Astrophysics Data System (ADS)

    Williams, Michael D.; Milone, E. F.

    2013-12-01

    We describe a variable star search program and present the fully reduced results of a search in a 19 square degree (4.4 × 4.4) field centered on J2000 RA = 22:03:24, DEC= +18:54:32. The search was carried out with the Baker-Nunn Patrol Camera located at the Rothney Astrophysical Observatory in the foothills of the Canadian Rockies. A total of 26,271 stars were detected in the field, over a range of about 11-15 (instrumental) magnitudes. Our image processing made use of the IRAF version of the DAOPHOT aperture photometry routine and we used the ANOVA method to search for periodic variations in the light curves. We formally detected periodic variability in 35 stars, that we tentatively classify according to light curve characteristics: 6 EA (Algol), 5 EB (?? Lyrae), 19 EW (W UMa), and 5 RR (RR Lyrae) stars. Eleven of the detected variable stars have been reported previously in the literature. The eclipsing binary light curves have been analyzed with a package of light curve modeling programs and 25 have yielded converged solutions. Ten of these are of systems that are detached, 3 semi-detached, 10 overcontact, and 2 are of systems that appear to be in marginal contact. We discuss these results as well as the advantages and disadvantages of the instrument and of the program.

  16. Eclipsing the Light...Fantastic! Teaching Science.

    ERIC Educational Resources Information Center

    Leyden, Michael B.

    1995-01-01

    Features the concepts of optics and geometry of eclipses. Presents the "eclipse rule," suggesting classroom activities in which students derive this rule. Includes some triangles activities for outdoors that illustrate eclipsing and sighting phenomena. (ET)

  17. A1540-53, an eclipsing X-ray binary pulsator

    NASA Technical Reports Server (NTRS)

    Becker, R. H.; Swank, J. H.; Boldt, E. A.; Holt, S. S.; Pravdo, S. H.; Saba, J. R.; Serlemitsos, P. J.

    1977-01-01

    An eclipsing X-ray binary pulsator consistent with the location of A1540-53 was observed. The source pulse period was 528.93 plus or minus 0.10 seconds. The binary nature is confirmed by a Doppler curve for the pulsation period. The eclipse angle of 30.5 deg plus or minus 3 deg and the 4 h transition to and from eclipse suggest an early type, giant or supergiant, primary star.

  18. Eclipse cooling of selected lunar features

    NASA Technical Reports Server (NTRS)

    Shorthill, R. W.; Saari, J. M.; Baird, F. E.; Lecompte, J. R.

    1970-01-01

    Thermal measurements were made in the 10 to 12 micron band of the lunar surface during the total eclipse of December19, 1964. A normalized differential thermal contour map is included, showing the location of the thermal anomalies or hot spots on the disk and the eclipse cooling curves of 400 sites, of which more than 300 were hot spots. The eclipse cooling data is compared to a particulate thermophysical model of the soil.

  19. Analysis of the IUE spectra of the strongly interacting binary beta Lyrae

    NASA Technical Reports Server (NTRS)

    Mccluskey, George E., Jr.

    1993-01-01

    The six-band ultraviolet light curves of beta Lyrae obtained with the Orbiting Astronomical Observatory A-2 in 1970 exhibited a very unusual behavior. The secondary minimum deepened at shorter wavelength, indicating that one was not observing light variations caused primarily by the eclipses of two stars having a roughly Planckian energy distribution. It was then suggested that the light variations were caused by a viewing angle effect of an optically-thick, ellipsoidal circumbinary gas cloud. Since 1978 beta Lyrae has been observed with the International Ultraviolet Explorer (IUE) satellite. We have constructed ultraviolet light curves from the IUE archival data for comparison with the OAO-A2 results. We find that they are in substantial agreement with each other. The Voyager ultraviolet spectrometer was also used to observe this binary during a period covered by IUE observations. The Voyager results agree with those of the two other satellite observatories at wavelengths longer than about 1350 A. However, in the wavelength region shorter than the Lyman-alpha line at 1216 A, the light curves at 1085 A and 965 A show virtually no light variation except an apparent flaring near phase 0.7, which is also in evidence at longer wavelengths. We suggest that the optically-thick circumbinary gas cloud, which envelops the two stars completely, assumes a roughly spherical shape when observed at these shorter wavelengths.

  20. An EUV Study of the Eclipsing M-Dwarf Binary System YY GEM

    NASA Technical Reports Server (NTRS)

    Drake, Jeremy

    2000-01-01

    EUVE, SW, MW and LW spectra have been reduced and line fluxes measured. The Deep Survey data has been analyzed and light curves have been derived. The spectra around the HE II 304 region show some evidence of emission from the bright A companion star, Castor. Preliminary results for the metallicity of the corona of YY Gem were derived from the EUVE spectra and photometry and were presented at the AAS HEAD meeting; results are being finalized for publication in a referred journal.

  1. RED GIANTS IN ECLIPSING BINARY AND MULTIPLE-STAR SYSTEMS: MODELING AND ASTEROSEISMIC ANALYSIS OF 70 CANDIDATES FROM KEPLER DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaulme, P.; McKeever, J.; Rawls, M. L.

    2013-04-10

    Red giant stars are proving to be an incredible source of information for testing models of stellar evolution, as asteroseismology has opened up a window into their interiors. Such insights are a direct result of the unprecedented data from space missions CoRoT and Kepler as well as recent theoretical advances. Eclipsing binaries are also fundamental astrophysical objects, and when coupled with asteroseismology, binaries provide two independent methods to obtain masses and radii and exciting opportunities to develop highly constrained stellar models. The possibility of discovering pulsating red giants in eclipsing binary systems is therefore an important goal that could potentiallymore » offer very robust characterization of these systems. Until recently, only one case has been discovered with Kepler. We cross-correlate the detected red giant and eclipsing-binary catalogs from Kepler data to find possible candidate systems. Light-curve modeling and mean properties measured from asteroseismology are combined to yield specific measurements of periods, masses, radii, temperatures, eclipse timing variations, core rotation rates, and red giant evolutionary state. After using three different techniques to eliminate false positives, out of the 70 systems common to the red giant and eclipsing-binary catalogs we find 13 strong candidates (12 previously unknown) to be eclipsing binaries, one to be a non-eclipsing binary with tidally induced oscillations, and 10 more to be hierarchical triple systems, all of which include a pulsating red giant. The systems span a range of orbital eccentricities, periods, and spectral types F, G, K, and M for the companion of the red giant. One case even suggests an eclipsing binary composed of two red giant stars and another of a red giant with a {delta}-Scuti star. The discovery of multiple pulsating red giants in eclipsing binaries provides an exciting test bed for precise astrophysical modeling, and follow-up spectroscopic observations of many of the candidate systems are encouraged. The resulting highly constrained stellar parameters will allow, for example, the exploration of how binary tidal interactions affect pulsations when compared to the single-star case.« less

  2. Observations and light curve solutions of a selection of shallow-contact W UMa binaries

    NASA Astrophysics Data System (ADS)

    Kjurkchieva, Diana P.; Popov, Velimir A.; Vasileva, Doroteya L.; Petrov, Nikola I.

    2018-07-01

    Photometric observations in Sloan g‧ and i‧ bands of the W UMa binaries V0951 Per, CSS J062803.2+571604, CSS J222157.2+275308, CSS J075135.6+382028, V0338 Dra, NSVS 2256852, NSVS 4666412, V1355 Tau, NSVS 4808227, NSVS 4726498, CSS J075350.1+264830 and HL Lyn are presented. The light curve solutions revealed that these binaries have overcontact configurations with small fillout factors (within 0.1-0.2). Seven of them undergo total eclipses and their photometric mass ratios should be accepted with confidence. The temperature differences of the components of CSS J062803.2+571604 and NSVS 2256852 exceed 1100 K which is unusual for overcontact binaries. We suspect that NSVS 2256852 is a probable candidate for merger due to its small mass ratio of q = 0.16 and to the registered decreasing of the orbital period.

  3. K2-137 b: an Earth-sized planet in a 4.3-h orbit around an M-dwarf

    NASA Astrophysics Data System (ADS)

    Smith, A. M. S.; Cabrera, J.; Csizmadia, Sz; Dai, F.; Gandolfi, D.; Hirano, T.; Winn, J. N.; Albrecht, S.; Alonso, R.; Antoniciello, G.; Barragán, O.; Deeg, H.; Eigmüller, Ph; Endl, M.; Erikson, A.; Fridlund, M.; Fukui, A.; Grziwa, S.; Guenther, E. W.; Hatzes, A. P.; Hidalgo, D.; Howard, A. W.; Isaacson, H.; Korth, J.; Kuzuhara, M.; Livingston, J.; Narita, N.; Nespral, D.; Nowak, G.; Palle, E.; Pätzold, M.; Persson, C. M.; Petigura, E.; Prieto-Arranz, J.; Rauer, H.; Ribas, I.; Van Eylen, V.

    2018-03-01

    We report the discovery in K2's Campaign 10 of a transiting terrestrial planet in an ultra-short-period orbit around an M3-dwarf. K2-137 b completes an orbit in only 4.3 h, the second shortest orbital period of any known planet, just 4 min longer than that of KOI 1843.03, which also orbits an M-dwarf. Using a combination of archival images, adaptive optics imaging, radial velocity measurements, and light-curve modelling, we show that no plausible eclipsing binary scenario can explain the K2 light curve, and thus confirm the planetary nature of the system. The planet, whose radius we determine to be 0.89 ± 0.09 R⊕, and which must have an iron mass fraction greater than 0.45, orbits a star of mass 0.463 ± 0.052 M⊙ and radius 0.442 ± 0.044 R⊙.

  4. Ultraviolet photometry from the Orbiting Astronomical Observatory. XXXIX - The structure of the eclipsing Wolf-Rayet binary V444 Cygni as derived from light curves between 2460 A and 3. 5 microns

    NASA Technical Reports Server (NTRS)

    Cherepashchuk, A. M.; Khaliullin, Kh. F.; Eaton, J. A.

    1984-01-01

    The WN5 component of V444 Cyg is characterized on the basis of light curves constructed using 1971 OAO observations at 425, 332, 298, and 246 nm and the broadband data at 2.2 and 3.5 microns of Hartmann (1978). Data and calculation results are presented in tables and graphs and discussed. Parameters estimated include core radius 2.9 solar radii, surface temperature 90,000 K, surface electron density 9 x 10 to the 12th/cu cm, surface outflow velocity 400 km/s, and terminal velocity (at about 10 solar radii) 2500 km/s, suggesting that the flow is He. These results are found to agree with the model of Wolf-Rayet atmospheres proposed by Beals (1929, 1944).

  5. The All Sky Automated Survey. The Catalog of Variable Stars. II. 6^h-12^h Quarter of the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Pojmanski, G.

    2003-12-01

    This paper describes the second part of the photometric data from the 9 arcdeg times 9 arcdeg ASAS camera monitoring the whole southern hemisphere in the V-band. Preliminary list of variable stars based on observations obtained since January 2001 is presented. Over 2800000 stars brighter than V=15 mag on 18000 frames were analyzed and 11357 were found to be variable (2685 eclipsing, 907 regularly pulsating, 521 Mira and 7244 other, mostly SR, IRR and LPV stars). Periodic light curves have been classified using the automated algorithm, which now takes into account IRAS infrared fluxes. Basic photometric properties are presented in the tables and some examples of thumbnail light curves are printed for reference. All photometric data are available over the INTERNET at http://www.astrouw.edu.pl/~gp/asas/asas.html or http://archive.princeton.edu/~asas.

  6. The All Sky Automated Survey. Catalog of Variable Stars. III. 12h-18h Quarter of the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Pojmanski, G.; Maciejewski, G.

    2004-06-01

    This paper describes the third part of the photometric data from the 9 arcdeg x 9arcdeg ASAS camera monitoring the whole southern hemisphere in V-band. Preliminary list of variable stars based on observations obtained since January 2001 is presented. Over 3200000 stars brighter than V=15 mag on 18000 frames were analyzed and 10453 were found to be variable (1718 eclipsing, 731 regularly pulsating, 849 Mira and 7155 other stars). Light curves have been classified using the improved automated algorithm, which now takes into account 2MASS colors and IRAS infrared fluxes. Basic photometric properties are presented in the tables and some examples of thumbnail light curves are printed for reference. All photometric data are available over the INTERNET at http://www.astrouw.edu.pl/\\gp/asas/asas.html or http://archive.princeton.edu/\\asas.

  7. Four New Binary Stars in the Field of CL Aurigae. II

    NASA Astrophysics Data System (ADS)

    Kim, Chun-Hwey; Lee, Jae Woo; Duck, Hyun Kim; Andronov, Ivan L.

    2010-12-01

    We report on a discovery of four new variable stars (USNO-B1.0 1234-0103195, 1235- 0097170, 1236-0100293 and 1236-0100092) in the field of CL Aur. The stars are classified as eclipsing binary stars with orbital periods of 0.5137413(23) (EW type), 0.8698365(26) (EA) and 4.0055842(40) (EA with a significant orbital eccentricity), respectively. The fourth star (USNO-B1.0 1236-0100092) showed only one partial ascending branch of the light curves, although 22 nights were covered at the 61-cm telescope at the Sobaeksan Optical Astronomy Observatory (SOAO) in Korea. Fourteen minima timings for these stars are published separately. In an addition to the original discovery paper (Kim et al. 2010), we discuss methodological problems and present results of mathematical modeling of the light curves using other methods, i.e. trigonometric polynomial fits and the newly developed fit "NAV" ("New Algol Variable").

  8. A PSF-based approach to Kepler/K2 data - II. Exoplanet candidates in Praesepe (M 44)

    NASA Astrophysics Data System (ADS)

    Libralato, M.; Nardiello, D.; Bedin, L. R.; Borsato, L.; Granata, V.; Malavolta, L.; Piotto, G.; Ochner, P.; Cunial, A.; Nascimbeni, V.

    2016-12-01

    In this work, we keep pushing K2 data to a high photometric precision, close to that of the Kepler main mission, using a point-spread function (PSF)-based, neighbour-subtraction technique, which also overcome the dilution effects in crowded environments. We analyse the open cluster M 44 (NGC 2632), observed during the K2 Campaign 5, and extract light curves of stars imaged on module 14, where most of the cluster lies. We present two candidate exoplanets hosted by cluster members and five by field stars. As a by-product of our investigation, we find 1680 eclipsing binaries and variable stars, 1071 of which are new discoveries. Among them, we report the presence of a heartbeat binary star. Together with this work, we release to the community a catalogue with the variable stars and the candidate exoplanets found, as well as all our raw and detrended light curves.

  9. Investigation of the new cataclysmic variable 1RXS J180834.7+101041

    NASA Astrophysics Data System (ADS)

    Yakin, D. G.; Suleimanov, V. F.; Borisov, N. V.; Shimanskii, V. V.; Bikmaev, I. F.

    2011-12-01

    We present the results of our photometric and spectroscopic studies of the new eclipsing cataclysmic variable star 1RXS J180834.7+101041. Its spectrum exhibits double-peaked hydrogen and helium emission lines. The Doppler maps constructed from hydrogen lines show a nonuniform distribution of emission in the disk similar to that observed in IP Peg. This suggests that the object can be a cataclysmic variable with tidal density waves in the disk. We have determined the component masses ( M WD = 0.8 ± 0.22 M ⊙ and M RD = 0.14 ± 0.02 M ⊙) and the binary inclination ( i = 78° ± 1.5°) based on well-known relations between parameters for cataclysmic variable stars. We have modeled the binary light curves and showed that the model of a disk with two spots is capable of explaining the main observed features of the light curves.

  10. A NEW CLASS OF NASCENT ECLIPSING BINARIES WITH EXTREME MASS RATIOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moe, Maxwell; Stefano, Rosanne Di, E-mail: mmoe@cfa.harvard.edu

    2015-03-10

    Early B-type main-sequence (MS) stars (M {sub 1} ≈ 5-16 M {sub ☉}) with closely orbiting low-mass stellar companions (q = M {sub 2}/M {sub 1} < 0.25) can evolve to produce Type Ia supernovae, low-mass X-ray binaries, and millisecond pulsars. However, the formation mechanism and intrinsic frequency of such close extreme mass-ratio binaries have been debated, especially considering none have hitherto been detected. Utilizing observations of the Large Magellanic Cloud galaxy conducted by the Optical Gravitational Lensing Experiment, we have discovered a new class of eclipsing binaries in which a luminous B-type MS star irradiates a closely orbiting low-massmore » pre-MS companion that has not yet fully formed. The primordial pre-MS companions have large radii and discernibly reflect much of the light they intercept from the B-type MS primaries (ΔI {sub refl} ≈ 0.02-0.14 mag). For the 18 definitive MS + pre-MS eclipsing binaries in our sample with good model fits to the observed light-curves, we measure short orbital periods P = 3.0-8.5 days, young ages τ ≈ 0.6-8 Myr, and small secondary masses M {sub 2} ≈ 0.8-2.4 M {sub ☉} (q ≈ 0.07-0.36). The majority of these nascent eclipsing binaries are still associated with stellar nurseries, e.g., the system with the deepest eclipse ΔI {sub 1} = 2.8 mag and youngest age τ = 0.6 ± 0.4 Myr is embedded in the bright H II region 30 Doradus. After correcting for selection effects, we find that (2.0 ± 0.6)% of B-type MS stars have companions with short orbital periods P = 3.0-8.5 days and extreme mass ratios q ≈ 0.06-0.25. This is ≈10 times greater than that observed for solar-type MS primaries. We discuss how these new eclipsing binaries provide invaluable insights, diagnostics, and challenges for the formation and evolution of stars, binaries, and H II regions.« less

  11. Time-resolved multicolour photometry of bright B-type variable stars in Scorpius

    NASA Astrophysics Data System (ADS)

    Handler, G.; Schwarzenberg-Czerny, A.

    2013-09-01

    Context. The first two of a total of six nano-satellites that will constitute the BRITE-Constellation space photometry mission have recently been launched successfully. Aims: In preparation for this project, we carried out time-resolved colour photometry in a field that is an excellent candidate for BRITE measurements from space. Methods: We acquired 117 h of Strömgren uvy data during 19 nights. Our targets comprised the β Cephei stars κ and λ Sco, the eclipsing binary μ1 Sco, and the variable super/hypergiant ζ1 Sco. Results: For κ Sco, a photometric mode identification in combination with results from the spectroscopic literature suggests a dominant (l,m) = (1, -1) β Cephei-type pulsation mode of the primary star. The longer period of the star may be a rotational variation or a g-mode pulsation. For λ Sco, we recover the known dominant β Cephei pulsation, a longer-period variation, and observed part of an eclipse. Lack of ultraviolet data precludes mode identification for this star. We noticed that the spectroscopic orbital ephemeris of the closer pair in this triple system is inconsistent with eclipse timings and propose a refined value for the orbital period of the closer pair of 5.95189 ± 0.00003 d. We also argue that the components of the λ Sco system are some 30% more massive than previously thought. The binary light curve solution of μ1 Sco requires inclusion of the irradiation effect to explain the u light curve, and the system could show additional low amplitude variations on top of the orbital light changes. ζ1 Sco shows long-term variability on a time scale of at least two weeks that we prefer to interpret in terms of a variable wind or strange mode pulsations. Based on observations carried out at the South African Astronomical ObservatoryReduced time series for all stars are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/557/A1

  12. A Review of Correlated Noise in Exoplanet Light Curves

    NASA Astrophysics Data System (ADS)

    Cubillos, Patricio; Harrington, J.; Blecic, J.; Hardy, R. A.; Hardin, M.

    2013-10-01

    A number of the occultation light curves of exoplanets exhibit time-correlated residuals (a.k.a. correlated or red noise) in their model fits. The correlated noise might arise from inaccurate models or unaccounted astrophysical or telescope systematics. A correct assessment of the correlated noise is important to determine true signal-to-noise ratios of a planet's physical parameters. Yet, there are no in-depth statistical studies in the literature for some of the techniques currently used (RMS-vs-bin size plot, prayer beads, and wavelet-based modeling). We subjected these correlated-noise assessment techniques to basic tests on synthetic data sets to characterize their features and limitations. Initial results indicate, for example, that, sometimes the RMS-vs-bin size plots present artifacts when the bin size is similar to the observation duration. Further, the prayer beads doesn't correctly increase the uncertainties to compensate for the lack of accuracy if there is correlated noise. We have applied these techniques to several Spitzer secondary-eclipse hot-Jupiter light curves and discuss their implications. This work was supported in part by NASA planetary atmospheres grant NNX13AF38G and Astrophysics Data Analysis Program NNX12AI69G.

  13. Photometric and Spectroscopic Analysis for the Determination of Physical Parameters of an Eclipsing Binary Star System

    NASA Astrophysics Data System (ADS)

    Reid, Piper

    2013-01-01

    A binary star system is a pair of stars that are bound together by gravity. Most of the stars that we see in the night sky are members of multiple star systems. A system of stars where one star passes in front of the other (as observed from Earth) on a periodic basis is called an eclipsing binary. Eclipsing binaries can have very short rotational periods and in all cases these pairs of stars are so far away that they can only be resolved from Earth as a single point of light. The interaction of the two stars serves to produce physical phenomena that can be observed and used to study stellar properties. By careful data collection and analysis is it possible for an amateur astronomer using commercial, low cost equipment (including a home built spectroscope) to gather photometric (brightness versus time) and spectroscopic (brightness versus wavelength) data, analyze the data, and calculate the physical properties of a binary star system? Using a CCD camera, tracking mount and telescope photometric data of BB Pegasi was collected and a light curve produced. 57 Cygni was also studied using a spectroscope, tracking mount and telescope to prove that Doppler shift of Hydrogen Balmer absorption lines can be used to determine radial velocity. The orbital period, orbital velocity, radius of each star, separation of the two stars and mass of each star was calculated for the eclipsing binary BB Pegasi using photometric and spectroscopic data and Kepler’s 3rd Law. These data were then compared to published data. By careful use of consumer grade astronomical equipment it is possible for an amateur astronomer to determine an array of physical parameters of a distant binary star system from a suburban setting.

  14. BVRcIc Study of the Short Period Solar Type, Near Contact Binary, NSVS 10083189

    NASA Astrophysics Data System (ADS)

    Samec, R. G.; Olsen, A.; Caton, D. B.; Faulkner, D. R.; Hill, R. L.

    2017-12-01

    The first precision BVRcIc light curves of NSVS 10083189 were taken on eight nights in 2015 at Dark Sky Observatory in North Carolina with the 0.81-m reflector of Appalachian State University and on one night on the SARA 1-m reflector at Kitt Peak National Observatory in remote mode. It is an F8V eclipsing binary with a short period of 0.4542238 (2) d. Seven times of minimum light were calculated. In addition, seven observations at minima were determined from archived NSVS Data. A statistically significant negative quadratic ephemeris was calculated. A light curve analysis with the Wilson-Devinney program led to a semidetached-near contact configuration (larger component filling its critical lobe and the secondary just under filing). This may indicate that NSVS 10083189 is near the end of its Detached to Contact Binary Channel. Our synthetic light curve solution gave a mass ratio of 0.58, with component temperatures of 6250 and 4573 K. A 15° radius cool spot with a T-factor of 0.85 was determined on the primary star. Thus, magnetic braking may be its main process acting in the orbital evolution. The fill-out of the secondary star has apparently reached 99%.

  15. THE FIRST PHOTOMETRIC INVESTIGATION OF THE NEGLECTED W-UMa-TYPE BINARY STAR UZ CMi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, S.-B.; Li, K.; Liao, W.-P.

    2013-04-15

    UZ CMi was a W-UMa-type binary star found more than 80 years ago. However, it has been neglected in photometric investigations. Here, the first complete light curves in the B, V, R, and I bands are presented and analyzed using the Wilson and Devinney method. It is discovered that UZ CMi is a contact binary (f = 38.4({+-} 2.3)%) with a mass ratio of 0.45. The derived orbital inclination (i = 87 Degree-Sign ) indicates that it is a total eclipsing binary, which suggests that the determined parameters are reliable. By using 17 new eclipse times together with those collectedmore » from the literature, we found that the general trend of the observed-calculated (O - C) curve shows an upward parabolic variation that corresponds to a long-term increase in the orbital period at a rate of P-dot = +4.1 x 10{sup -8} days yr{sup -1}. The continuous increase may be caused by a mass transfer from the less massive component to the more massive one. This suggests that UZ CMi is in the thermal relaxation oscillation controlled stage of the evolutionary scheme proposed by Qian. UZ CMi will oscillate around a critical mass ratio and the contact configuration cannot be broken. After the upward parabolic change was removed, the (O - C){sub 2} curve of the photoelectric and charge-coupled device data revealed a cyclic variation with a small amplitude of 0.0026 days and a period of 21.1 yr. The cyclic change was analyzed for the light-travel time effect via the presence of an extremely cool stellar companion.« less

  16. Lunar Eclipse

    NASA Image and Video Library

    2003-11-09

    In this lunar eclipse viewed from Merritt Island, Fla., the full moon takes on a dark red color because it is being lighted slightly by sunlight passing through the Earth's atmosphere. This light has the blue component preferentially scattered out (this is also why the sky appears blue from the surface of the Earth), leaving faint reddish light to illuminate the Moon. Eclipses occur when the Sun, Earth and Moon line up. They are rare because the Moon usually passes above or below the imaginary line connecting Earth and the Sun. The Earth casts a shadow that the Moon can pass through - when it does, it is called a lunar eclipse.

  17. A Detailed Study of the Variable Stars in Five Galactic Globular Clusters: IC4499, NGC4833, NGC6171 (M107), NGC6402 (M14), and NGC6584

    NASA Astrophysics Data System (ADS)

    Murphy, Brian W.; Darragh, Andrew; Hettinger, Paul; Hibshman, Adam; Johnson, Elliott W.; Liu, Z. J.; Pajkos, Michael A.; Stephenson, Hunter R.; Vondersaar, John R.; Conroy, Kyle E.; McCombs, Thayne A.; Reinhardt, Erik D.; Toddy, Joseph

    2015-08-01

    We present the results of an extensive study intended to search for and properly classify the variable stars in five galactic globular clusters. Each of the five clusters was observed hundreds to thousands of times over a time span ranging from 2 to 4 years using the SARA 0.6m located at Cerro Tololo Interamerican Observatory. The images were analyzed using the image subtract method of Alard (2000) to identify and produce light curves of all variables found in each cluster. In total we identified 373 variables with 140 of these being newly discovered increasing the number of known variables stars in these clusters by 60%. Of the total we have identified 312 RR Lyrae variables (187 RR0, 18 RR01, 99 RR1, 8 RR2), 9 SX Phe stars, 6 Cepheid variables, 11 eclipsing variables, and 35 long period variables. For IC4499 we identified 64 RR0, 18 RR01, 14 RR1, 4 RR2, 1 SX Phe, 1 eclipsing binary, and 2 long period variables. For NGC4833 we identified 10 RR0, 7 RR1, 2 RR2, 6 SX Phe, 5 eclipsing binaries, and 9 long period variables. For NGC6171 (M107) we identified 13 RR0, 7 RR1, and 1 SX Phe. For NGC6402 (M14) we identified 52 RR0, 56 RR1, 1 RR2, 1 SX Phe, 6 Cepheids, 1 eclipsing binary, and 15 long period variables. For NGC6584 we identified 48 RR0, 15 RR1, 1 RR2, 5 eclipsing binaries, and 9 long period variables. Using the RR Lyrae variables we found the mean V magnitude of the horizontal branch to be VHB = ⟨V ⟩RR = 17.63, 15.51, 15.72, 17.13, and 16.37 magnitudes for IC4499, NGC4833, NGC6171 (M107), NGC6402 (M14), and NGC6584, respectively. From our extensive data set we were able to obtain sufficient temporal and complete phase coverage of the RR Lyrae variables. This has allowed us not only to properly classify each of the RR Lyrae variables but also to use Fourier decomposition of the light curves to further analyze the properties of the variable stars and hence physical properties of each clusters. In this poster we will give the temperature, radius, stellar mass, metallicity, and helium abundance of the set of RR Lyrae variable stars found in each of the five globular clusters.

  18. The SW Sextantis-type star 2MASS J01074282+4845188: an unusual bright accretion disk with non-steady emission and a hot white dwarf

    NASA Astrophysics Data System (ADS)

    Khruzina, T.; Dimitrov, D.; Kjurkchieva, D.

    2013-03-01

    Context. Cataclysmic variables (CVs) present a short evolutional stage of binary systems. The nova-like stars are rare objects, especially those with eclipses (only several tens). But precisely these allow to determine the global parameters of their configurations and to learn more about the late stage of stellar evolution. Aims: The light curve solution allows one to determine the global parameters of the newly discovered nova-like eclipsing star 2MASS J01074282+4845188 and to estimate the contribution of the different light sources. Methods: We present new photometric and spectral observations of 2MASS J01074282+4845188. To obtain a light curve solution we used a model of a nova-like star whose emission sources are a white dwarf surrounded by an accretion disk, a secondary star filling its Roche lobe, a hot spot and a hot line. The obtained global parameters are compared with those of the eclipsing nova-like UX UMa. Results: 2MASS J01074282+4845188 shows the deepest permanent eclipse among the known nova-like stars. It is reproduced by covering the very bright accretion disk by the secondary component. The luminosity of the disk is much bigger than that of the rest light sources. The determined high temperature of the disk is typical for that observed during the outbursts of CVs. The primary of 2MASS J01074282+4845188 is one of the hottest white dwarfs in CVs. The temperature of 5090 K of its secondary is also quite high and more appropriate for a long-period SW Sex star. It might be explained by the intense heating from the hot white dwarf and the hot accretion disk of the target. Conclusions: The high mass accretion rate Ṁ = 8 × 10-9 M⊙ yr-1, the broad and single-peaked Hα emission profile, and the presence of an S-wave are sure signs for the SW Sex classification of 2MASS J01074282+4845188. The obtained flat temperature distribution along the disk radius as well as the deviation of the energy distribution from the black-body law are evidence of the non-steady emission of the disk. It can be attributed to the low viscosity of the disk matter due to its unusual high temperature. The close values of the disk temperature and the parameter αg of 2MASS J01074282+4845188 and those of the cataclysmic stars at eruptions might be considered as an additional argument for the permanent active state of nova-like stars. Based on data collected with telescopes at Rozhen National Astronomical Observatory.

  19. KIC 6048106: an Algol-type eclipsing system with long-term magnetic activity and hybrid pulsations - I. Binary modelling

    NASA Astrophysics Data System (ADS)

    Samadi Ghadim, A.; Lampens, P.; Jassur, M.

    2018-03-01

    The A-F-type stars and pulsators (δ Scuti-γ Dor) are in a critical regime where they experience a transition from radiative to convective transport of energy in their envelopes. Such stars can pulsate in both gravity and acoustic modes. Hence, the knowledge of their fundamental parameters along with their observed pulsation characteristics can help in improving the stellar models. When residing in a binary system, these pulsators provide more accurate and less model-dependent stellar parameters than in the case of their single counterparts. We present a light-curve model for the eclipsing system KIC 6048106 based on the Kepler photometry and the code PHOEBE. We aim to obtain accurate physical parameters and tough constraints for the stellar modelling of this intermediate-mass hybrid pulsator. We performed a separate modelling of three light-curve segments which show a distinct behaviour due to a difference in activity. We also analysed the Kepler Eclipse Time Variations (ETVs). KIC 6048106 is an Algol-type binary with F5-K5 components, a near-circular orbit and a 1.56-d period undergoing variations of the order of Δ P/P˜eq 3.60× 10^{-7} in 287 ± 7 d. The primary component is a main-sequence star with M1 = 1.55 ± 0.11 M⊙, R1 = 1.57 ± 0.12 R⊙. The secondary is a much cooler subgiant with M2 = 0.33 ± 0.07 M⊙, R2 = 1.77 ± 0.16 R⊙. Many small near-polar spots are active on its surface. The second quadrature phase shows a brightness modulation on a time-scale 290 ± 7 d, in good agreement with the ETV modulation. This study reveals a stable binary configuration along with clear evidence of a long-term activity of the secondary star.

  20. KSC-00pp0092

    NASA Image and Video Library

    2000-01-20

    Traveling west to east, the full moon, viewed from Merritt Island, Fla., at 10:35 p.m. EST, moves into the Earth's shadow during a lunar eclipse. Eclipses occur when the Sun, Earth and Moon line up. They are rare because the Moon usually passes above or below the imaginary line connecting Earth and the Sun. The Earth casts a shadow that the Moon can pass through -when it does, it is called a lunar eclipse. They can only occur when the moon is "full." During a total lunar eclipse the Moon takes on a dark red color because it is being lighted slightly by sunlight passing through the Earth's atmosphere and this light has the blue component preferentially scattered out (this is also why the sky appears blue from the surface of the Earth), leaving faint reddish light to illuminate the Moon during the eclipse

  1. Observations of hot stars and eclipsing binaries with FRESIP

    NASA Technical Reports Server (NTRS)

    Gies, Douglas R.

    1994-01-01

    The FRESIP project offers an unprecedented opportunity to study pulsations in hot stars (which vary on time scales of a day) over a several year period. The photometric data will determine what frequencies are present, how or if the amplitudes change with time, and whether there is a connection between pulsation and mass loss episodes. It would initiate a new field of asteroseismology studies of hot star interiors. A search should be made for selected hot stars for inclusion in the list of project targets. Many of the primary solar mass targets will be eclipsing binaries, and I present estimates of their frequency and typical light curves. The photometric data combined with follow up spectroscopy and interferometric observations will provide fundamental data on these stars. The data will provide definitive information on the mass ratio distribution of solar-mass binaries (including the incidence of brown dwarf companions) and on the incidence of planets in binary systems.

  2. The occurrence of planets and other substellar bodies around white dwarfs using K2

    NASA Astrophysics Data System (ADS)

    van Sluijs, L.; Van Eylen, V.

    2018-03-01

    The majority of stars both host planetary systems and evolve into a white dwarf (WD). To understand their post-main-sequence planetary system evolution, we present a search for transiting/eclipsing planets and other substellar bodies (SBs) around WDs using a sample of 1148 WDs observed by K2. Using transit injections, we estimate the completeness of our search. We place constraints on the occurrence of planets and SBs around WDs as a function of planet radius and orbital period. For short-period (P < 40 d) small objects, from asteroid-sized to 1.5 R⊕, these are the strongest constraints known to date. We further constrain the occurrence of hot Jupiters ( < 1.5 per cent), habitable zone Earth-sized planets ( < 28 per cent), and disintegrating short-period planets ( ˜ 12 per cent). We blindly recovered all previously known eclipsing objects, providing confidence in our analysis, and make all light curves publicly available.

  3. High-precision photometry by telescope defocussing - VI. WASP-24, WASP-25 and WASP-26

    NASA Astrophysics Data System (ADS)

    Southworth, John; Hinse, T. C.; Burgdorf, M.; Calchi Novati, S.; Dominik, M.; Galianni, P.; Gerner, T.; Giannini, E.; Gu, S.-H.; Hundertmark, M.; Jørgensen, U. G.; Juncher, D.; Kerins, E.; Mancini, L.; Rabus, M.; Ricci, D.; Schäfer, S.; Skottfelt, J.; Tregloan-Reed, J.; Wang, X.-B.; Wertz, O.; Alsubai, K. A.; Andersen, J. M.; Bozza, V.; Bramich, D. M.; Browne, P.; Ciceri, S.; D'Ago, G.; Damerdji, Y.; Diehl, C.; Dodds, P.; Elyiv, A.; Fang, X.-S.; Finet, F.; Figuera Jaimes, R.; Hardis, S.; Harpsøe, K.; Jessen-Hansen, J.; Kains, N.; Kjeldsen, H.; Korhonen, H.; Liebig, C.; Lund, M. N.; Lundkvist, M.; Mathiasen, M.; Penny, M. T.; Popovas, A.; Prof., S.; Rahvar, S.; Sahu, K.; Scarpetta, G.; Schmidt, R. W.; Schönebeck, F.; Snodgrass, C.; Street, R. A.; Surdej, J.; Tsapras, Y.; Vilela, C.

    2014-10-01

    We present time series photometric observations of 13 transits in the planetary systems WASP-24, WASP-25 and WASP-26. All three systems have orbital obliquity measurements, WASP-24 and WASP-26 have been observed with Spitzer, and WASP-25 was previously comparatively neglected. Our light curves were obtained using the telescope-defocussing method and have scatters of 0.5-1.2 mmag relative to their best-fitting geometric models. We use these data to measure the physical properties and orbital ephemerides of the systems to high precision, finding that our improved measurements are in good agreement with previous studies. High-resolution Lucky Imaging observations of all three targets show no evidence for faint stars close enough to contaminate our photometry. We confirm the eclipsing nature of the star closest to WASP-24 and present the detection of a detached eclipsing binary within 4.25 arcmin of WASP-26.

  4. A possible third component in the eclipsing binary system HS 2231+2441

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.; Romanyuk, Ya. O.; Shliahetskaya, Ya. O.

    2016-05-01

    We used a differential photometry method in which we compared the flow of program star and standard one. Observations of the 21 nights in the period from July 26 to December 2, 2015 are used for processing. The accuracy of determining for each measurement is in the range 0,003...0,009 m for different nights. On the basis of obtained data were created corresponding light curves. Next, we calculate the time difference between the centers of transits. Its time dependence showed the presence of a possible periodic change in the deflection of the middle transit time from the calculated average value. This may indicate the presence of a third object in the eclipsing binary system. It has been found that the periodic variation of the orbital period can be explained by the gravitational influence of a third companion on the central binary system with an orbital period of about 97±10 d.

  5. KSC-00pp0095

    NASA Image and Video Library

    2000-01-20

    In this lunar eclipse viewed from Merritt Island, Fla., at 11:55 p.m., the full moon takes on a dark red color because it is being lighted slightly by sunlight passing through the Earth's atmosphere. This light has the blue component preferentially scattered out (this is also why the sky appears blue from the surface of the Earth), leaving faint reddish light to illuminate the Moon during the eclipse. Eclipses occur when the Sun, Earth and Moon line up. They are rare because the Moon usually passes above or below the imaginary line connecting Earth and the Sun. The Earth casts a shadow that the Moon can pass through -when it does, it is called a lunar eclipse

  6. KSC-00pp0096

    NASA Image and Video Library

    2000-01-20

    In this lunar eclipse viewed from Merritt Island, Fla., at midnight, the full moon takes on a dark red color because it is being lighted slightly by sunlight passing through the Earth's atmosphere. This light has the blue component preferentially scattered out (this is also why the sky appears blue from the surface of the Earth), leaving faint reddish light to illuminate the Moon during the eclipse. Eclipses occur when the Sun, Earth and Moon line up. They are rare because the Moon usually passes above or below the imaginary line connecting Earth and the Sun. The Earth casts a shadow that the Moon can pass through -when it does, it is called a lunar eclipse

  7. Preliminary elements of the low mass ratio and moderate fill-out factor VSX J045718.3+405643 (GSC 02898-02901)

    NASA Astrophysics Data System (ADS)

    Acerbi, F.; Martignoni, M.; Barani, C.

    2018-05-01

    We present the results of our investigation of the geometrical parameters of the W UMa-type binary system VSX J045718.3+405643 (short name VSX J0457) based on new CCD B, V and Ic light curves. Our observations were carried out during six nights in November and December 2016 using the 0.25 m telescope of the Stazione Astronomica Betelgeuse in Magnago, Northern Italy. Six new times of minima and light elements have been determined and the observed light curves were analysed using the Wilson-Devinney code. The output model reveals that the system is a contact binary of A-Subtype of the W Ursae Majoris systems with a mass ratio of q ∼ 0.26 and a degree of contact factor f ∼ 32%. The primary component is hotter than the secondary by 95 K, this suggests us that the system is under thermal contact. The high orbital inclination (i = 82°.2) implies that VSX J0457 is a total eclipsing binary system and the photometric parameters here obtained are quite reliable. The absolute physical parameters of the two components in VSX J0457 are estimated. Based on these estimated parameters the evolutionary state of the system components is investigated and discussed. Combining our photometric solution with the 3-D correlation obtained for contact binaries by Gazeas (2009) we derive the masses and radii of the components of this eclipsing system as M1 = 1.44M⊙, M2 = 0.38M⊙, R1 = 1.55R⊙ and R2 = 0.87R⊙. The distance to VSX J0457 was calculated as 147 pc from this analysis, taking into account interstellar extinction.

  8. Modeling Kepler Transit Light Curves as False Positives: Rejection of Blend Scenarios for Kepler-9, and Validation of Kepler-9 d, a Super-Earth-Size Planet in a Multiple System

    NASA Technical Reports Server (NTRS)

    Torres, Guillermo; Fressin, Francois; Batalha, Natalie M.; Borucki, William J.; Brown, Timothy M.; Bryson, Stephen T.; Buchhave, Lars A.; Charbonneau, David; Ciardi, David R.; Dunham, Edward W.; hide

    2011-01-01

    Light curves from the Kepler Mission contain valuable information on the nature of the phenomena producing the transit-like signals. To assist in exploring the possibility that they are due to an astrophysical false positive we describe a procedure (BLENDER) to model the photometry in terms of a blend rather than a planet orbiting a star. A blend may consist of a background or foreground eclipsing binary (or star-planet pair) whose eclipses are attenuated by the light of the candidate and possibly other stars within the photometric aperture. We apply BLENDER to the case of Kepler-9 (KIC 3323887), a target harboring two previously confirmed Saturn-size planets (Kepler-9 b and Kepler-9 c) showing transit timing variations, and an additional shallower signal with a 1.59 day period suggesting the presence of a super-Earth-size planet. Using BLENDER together with constraints from other follow-up observations we are able to rule out all blends for the two deeper signals and provide independent validation of their planetary nature. For the shallower signal, we rule out a large fraction of the false positives that might mimic the transits. The false alarm rate for remaining blends depends in part (and inversely) on the unknown frequency of small-size planets. Based on several realistic estimates of this frequency, we conclude with very high confidence that this small signal is due to a super-Earth-size planet (Kepler-9 d) in a multiple system, rather than a false positive. The radius is determined to be 1.64(exp)(sub-14),R, and current spectroscopic observations are as yet insufficient to establish its mass.

  9. THE NEW ECLIPSING CV MASTER OTJ192328.22+612413.5—A POSSIBLE SW SEXTANTIS STAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, M. R.; Callanan, P.; Bouanane, S.

    2016-07-01

    We present optical photometry and spectroscopy of the new eclipsing cataclysmic variable MASTER OTJ192328.22+612413.5, discovered by the MASTER team. We find the orbital period to be P = 0.16764612(5) day/4.023507(1) hr. The depth of the eclipse (2.9 ± 0.1 mag) suggests that the system is nearly edge on, and modeling of the system confirms the inclination to be between 81.°3 and 83.°6. The brightness outside the eclipse varies between observations, with a change of 1.6 ± 0.1 mag. Spectroscopy reveals double-peaked Balmer emission lines. By using spectral features matching a late M-type companion, we bound the distance to be 750more » ± 250 pc, depending on the companion’s spectral type. The source displays 2 mag brightness changes on timescales of days. The amplitude of these changes, along with the spectrum at the faint state, suggest that the system is possibly a dwarf nova. The lack of any high-excitation He ii lines suggests that this system is not magnetically dominated. The light curve in both quiescence and outburst resembles that of Lanning 386, implying MASTER OTJ192328.22+612413.5 is a possible cross between a dwarf nova and a SW Sextantis star.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostov, Veselin B.; Orosz, Jerome A.; Welsh, William F.

    We report the discovery of a new Kepler transiting circumbinary planet (CBP). This latest addition to the still-small family of CBPs defies the current trend of known short-period planets orbiting near the stability limit of binary stars. Unlike the previous discoveries, the planet revolving around the eclipsing binary system Kepler-1647 has a very long orbital period (∼1100 days) and was at conjunction only twice during the Kepler mission lifetime. Due to the singular configuration of the system, Kepler-1647b is not only the longest-period transiting CBP at the time of writing, but also one of the longest-period transiting planets. With amore » radius of 1.06 ± 0.01 R {sub Jup}, it is also the largest CBP to date. The planet produced three transits in the light curve of Kepler-1647 (one of them during an eclipse, creating a syzygy) and measurably perturbed the times of the stellar eclipses, allowing us to measure its mass, 1.52 ± 0.65 M {sub Jup}. The planet revolves around an 11-day period eclipsing binary consisting of two solar-mass stars on a slightly inclined, mildly eccentric ( e {sub bin} = 0.16), spin-synchronized orbit. Despite having an orbital period three times longer than Earth’s, Kepler-1647b is in the conservative habitable zone of the binary star throughout its orbit.« less

  11. Kepler-1647b: The Largest and Longest-period Kepler Transiting Circumbinary Planet

    NASA Astrophysics Data System (ADS)

    Kostov, Veselin B.; Orosz, Jerome A.; Welsh, William F.; Doyle, Laurance R.; Fabrycky, Daniel C.; Haghighipour, Nader; Quarles, Billy; Short, Donald R.; Cochran, William D.; Endl, Michael; Ford, Eric B.; Gregorio, Joao; Hinse, Tobias C.; Isaacson, Howard; Jenkins, Jon M.; Jensen, Eric L. N.; Kane, Stephen; Kull, Ilya; Latham, David W.; Lissauer, Jack J.; Marcy, Geoffrey W.; Mazeh, Tsevi; Müller, Tobias W. A.; Pepper, Joshua; Quinn, Samuel N.; Ragozzine, Darin; Shporer, Avi; Steffen, Jason H.; Torres, Guillermo; Windmiller, Gur; Borucki, William J.

    2016-08-01

    We report the discovery of a new Kepler transiting circumbinary planet (CBP). This latest addition to the still-small family of CBPs defies the current trend of known short-period planets orbiting near the stability limit of binary stars. Unlike the previous discoveries, the planet revolving around the eclipsing binary system Kepler-1647 has a very long orbital period (˜1100 days) and was at conjunction only twice during the Kepler mission lifetime. Due to the singular configuration of the system, Kepler-1647b is not only the longest-period transiting CBP at the time of writing, but also one of the longest-period transiting planets. With a radius of 1.06 ± 0.01 R Jup, it is also the largest CBP to date. The planet produced three transits in the light curve of Kepler-1647 (one of them during an eclipse, creating a syzygy) and measurably perturbed the times of the stellar eclipses, allowing us to measure its mass, 1.52 ± 0.65 M Jup. The planet revolves around an 11-day period eclipsing binary consisting of two solar-mass stars on a slightly inclined, mildly eccentric (e bin = 0.16), spin-synchronized orbit. Despite having an orbital period three times longer than Earth’s, Kepler-1647b is in the conservative habitable zone of the binary star throughout its orbit.

  12. Double cyclic variations in orbital period of the eclipsing cataclysmic variable EX Dra

    NASA Astrophysics Data System (ADS)

    Han, Zhong-tao; Qian, Sheng-bang; Voloshina, Irina; Zhu, Li-Ying

    2017-06-01

    EX Dra is a long-period eclipsing dwarf nova with ˜2-3 mag amplitude outbursts. This star has been monitored photometrically from November, 2009 to March, 2016 and 29 new mid-eclipse times were obtained. By using new data together with the published data, the best fit to the O-C curve indicate that the orbital period of EX Dra have an upward parabolic change while undergoing double-cyclic variations with the periods of 21.4 and 3.99 years, respectively. The upward parabolic change reveals a long-term increase at a rate of \\dot{P}= {+7.46}×10^{-11} s s^{-1}. The evolutionary theory of cataclysmic variables (CVs) predicts that, as a CV evolves, the orbital period should be decreasing rather than increasing. Secular increase can be explained as the mass transfer between the secondary and primary or may be just an observed part of a longer cyclic change. Most plausible explanation for the double-cyclic variations is a pair of light travel-time effect via the presence of two companions. Their masses are determined to be MAsin i'A=29.3(±0.6) M_{Jup} and MBsin i'B=50.8(±0.2) M_{Jup}. When the two companions are coplanar to the orbital plane of the central eclipsing pair, their masses would match to brown dwarfs.

  13. The Photometric Evolution of the Classical Nova V723 Cassiopeia from 2006 through 2016

    NASA Astrophysics Data System (ADS)

    Hamilton-Drager, Catrina M.; Lane, Ryan I.; Recine, Kristen A.; Ljungquist, Lindsey S.; Grant, Jacob A.; Shrader, Katherine; Frymark, Derek G.; Dornbush, Eric M.; Richey-Yowell, Tyler; Boyle, Robert J.; Schwarz, Greg J.; Page, Kim L.

    2018-02-01

    We present photometric data of the classical nova, V723 Cas (Nova Cas 1995), over a span of 10 years (2006 through 2016) taken with the 0.9 m telescope at Lowell Observatory, operated as the National Undergraduate Research Observatory (NURO) on Anderson Mesa near Flagstaff, Arizona. A photometric analysis of the data produced light curves in the optical bands (Bessel B, V, and R filters). The data analyzed here reveal an asymmetric light curve (steep rise to maximum, followed by a slow decline to minimum), the overall structure of which exhibits pronounced evolution including a decrease in magnitude from year to year, at the rate of ∼0.15 mag yr‑1. We model these data with an irradiated secondary and an accretion disk with a hot spot using the eclipsing binary modeling program Nightfall. We find that we can model reasonably well each season of observation by changing very few parameters. The longitude of the hot spot on the disk and the brightness of the irradiated spot on the companion are largely responsible for the majority of the observed changes in the light curve shape and amplitude until 2009. After that, a decrease in the temperature of the white dwarf is required to model the observed light curves. This is supported by Swift/X-Ray Telescope observations, which indicate that nuclear fusion has ceased, and that V723 Cas is no longer detectable in the X-ray.

  14. The Quadruple-lined, Doubly Eclipsing System V482 Persei

    NASA Astrophysics Data System (ADS)

    Torres, Guillermo; Sandberg Lacy, Claud H.; Fekel, Francis C.; Wolf, Marek; Muterspaugh, Matthew W.

    2017-09-01

    We report spectroscopic and differential photometric observations of the A-type system V482 Per, which reveal it to be a rare hierarchical quadruple system containing two eclipsing binaries. One binary has the previously known orbital period of 2.4 days and a circular orbit, and the other a period of 6 days, a slightly eccentric orbit (e = 0.11), and shallow eclipses only 2.3% deep. The two binaries revolve around their common center of mass in a highly elongated orbit (e = 0.85) with a period of 16.67 yr. Radial velocities are measured for all components from our quadruple-lined spectra and are combined with the light curves and measurements of times of minimum light for the 2.4 day binary to solve for the elements of the inner and outer orbits simultaneously. The line-of-sight inclination angles of the three orbits are similar, suggesting they may be close to coplanar. The available observations appear to indicate that the 6 day binary experiences significant retrograde apsidal motion in the amount of about 60 deg per century. We derive absolute masses for the four stars good to better than 1.5%, along with radii with formal errors of 1.1% and 3.5% for the 2.4 day binary and ˜9% for the 6 day binary. A comparison of these and other physical properties with current stellar evolution models gives excellent agreement for a metallicity of [{Fe}/{{H}}]=-0.15 and an age of 360 Myr.

  15. KSC-00pp0091

    NASA Image and Video Library

    2000-01-20

    Traveling west to east, the full moon, viewed from Merritt Island, Fla., at 10:18 p.m. EST, begins moving into the Earth's shadow, at the start of a lunar eclipse. Eclipses occur when the Sun, Earth and Moon line up. They are rare because the Moon usually passes above or below the imaginary line connecting Earth and the Sun. The Earth casts a shadow that the Moon can pass through -when it does, it is called a lunar eclipse. They can only occur when the moon is "full." During a total lunar eclipse the Moon takes on a dark red color because it is being lighted slightly by sunlight passing through the Earth's atmosphere and this light has the blue component preferentially scattered out (this is also why the sky appears blue from the surface of the Earth), leaving faint reddish light to illuminate the Moon during the eclipse

  16. KSC-00pp0094

    NASA Image and Video Library

    2000-01-20

    Viewed from Merritt Island, Fla., at 11:25 p.m. EST, the full moon, traveling west to east, is nearly completely in the Earth's shadow, producing a lunar eclipse. Eclipses occur when the Sun, Earth and Moon line up. They are rare because the Moon usually passes above or below the imaginary line connecting Earth and the Sun. The Earth casts a shadow that the Moon can pass through -when it does, it is called a lunar eclipse. They can only occur when the moon is "full." During a total lunar eclipse the Moon takes on a dark red color because it is being lighted slightly by sunlight passing through the Earth's atmosphere and this light has the blue component preferentially scattered out (this is also why the sky appears blue from the surface of the Earth), leaving faint reddish light to illuminate the Moon during the eclipse

  17. KSC-00pp0093

    NASA Image and Video Library

    2000-01-20

    Viewed from Merritt Island, Fla., at 10:59 p.m. EST, the full moon, traveling west to east, is three-quarters of the way into the Earth's shadow during a lunar eclipse. Eclipses occur when the Sun, Earth and Moon line up. They are rare because the Moon usually passes above or below the imaginary line connecting Earth and the Sun. The Earth casts a shadow that the Moon can pass through -when it does, it is called a lunar eclipse. They can only occur when the moon is "full." During a total lunar eclipse the Moon takes on a dark red color because it is being lighted slightly by sunlight passing through the Earth's atmosphere and this light has the blue component preferentially scattered out (this is also why the sky appears blue from the surface of the Earth), leaving faint reddish light to illuminate the Moon during the eclipse

  18. New inclination changing eclipsing binaries in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Juryšek, J.; Zasche, P.; Wolf, M.; Vraštil, J.; Vokrouhlický, D.; Skarka, M.; Liška, J.; Janík, J.; Zejda, M.; Kurfürst, P.; Paunzen, E.

    2018-01-01

    Context. Multiple stellar systems are unique laboratories for astrophysics. Analysis of their orbital dynamics, if well characterized from their observations, may reveal invaluable information about the physical properties of the participating stars. Unfortunately, there are only a few known and well described multiple systems, this is even more so for systems located outside the Milky Way galaxy. A particularly interesting situation occurs when the inner binary in a compact triple system is eclipsing. This is because the stellar interaction, typically resulting in precession of orbital planes, may be observable as a variation of depth of the eclipses on a long timescale. Aims: We aim to present a novel method to determine compact triples using publicly available photometric data from large surveys. Here we apply it to eclipsing binaries (EBs) in Magellanic Clouds from OGLE III database. Our tool consists of identifying the cases where the orbital plane of EB evolves in accord with expectations from the interaction with a third star. Methods: We analyzed light curves (LCs) of 26121 LMC and 6138 SMC EBs with the goal to identify those for which the orbital inclination varies in time. Archival LCs of the selected systems, when complemented by our own observations with Danish 1.54-m telescope, were thoroughly analyzed using the PHOEBE program. This provided physical parameters of components of each system. Time dependence of the EB's inclination was described using the theory of orbital-plane precession. By observing the parameter-dependence of the precession rate, we were able to constrain the third companion mass and its orbital period around EB. Results: We identified 58 candidates of new compact triples in Magellanic Clouds. This is the largest published sample of such systems so far. Eight of them were analyzed thoroughly and physical parameters of inner binary were determined together with an estimation of basic characteristics of the third star. Prior to our work, only one such system was well characterized outside the Milky Way galaxy. Therefore, we increased this sample in a significant way. These data may provide important clues about stellar formation mechanisms for objects with different metalicity than found in our galactic neighborhood. Full Table 4 and the light curves are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A46

  19. Eclipsing binaries and fast rotators in the Kepler sample. Characterization via radial velocity analysis from Calar Alto

    NASA Astrophysics Data System (ADS)

    Lillo-Box, J.; Barrado, D.; Mancini, L.; Henning, Th.; Figueira, P.; Ciceri, S.; Santos, N.

    2015-04-01

    Context. The Kepler mission has searched for planetary transits in more than two hundred thousand stars by obtaining very accurate photometric data over a long period of time. Among the thousands of detected candidates, the planetary nature of around 15% has been established or validated by different techniques. But additional data are needed to characterize the rest of the candidates and reject other possible configurations. Aims: We started a follow-up program to validate, confirm, and characterize some of the planet candidates. In this paper we present the radial velocity analysis of those that present large variations, which are compatible with being eclipsing binaries. We also study those showing high rotational velocities, which prevents us from reaching the necessary precision to detect planetary-like objects. Methods: We present new radial velocity results for 13 Kepler objects of interest (KOIs) obtained with the CAFE spectrograph at the Calar Alto Observatory and analyze their high-spatial resolution (lucky) images obtained with AstraLux and the Kepler light curves of some interesting cases. Results: We have found five spectroscopic and eclipsing binaries (group A). Among them, the case of KOI-3853 is of particular interest. This system is a new example of the so-called heartbeat stars, showing dynamic tidal distortions in the Kepler light curve. We have also detected duration and depth variations of the eclipse. We suggest possible scenarios to explain such an effect, including the presence of a third substellar body possibly detected in our radial velocity analysis. We also provide upper mass limits to the transiting companions of six other KOIs with high rotational velocities (group B). This property prevents the radial velocity method from achieving the necessary precision to detect planetary-like masses. Finally, we analyze the large radial velocity variations of two other KOIs, which are incompatible with the presence of planetary-mass objects (group C).These objects are likely to be stellar binaries. However, a longer timespan is needed to complete their characterization. Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, jointly operated by the Max-Planck Institut fur Astronomie (Heidelberg) and the Instituto de Astrofísica de Andalucía (IAA-CSIC, Granada).Appendix A is available in electronic form at http://www.aanda.org

  20. Spectroscopic observations of the detached binary PG 1413 + 015

    NASA Technical Reports Server (NTRS)

    Fulbright, Michael S.; Liebert, James; Bergeron, P.; Green, Richard

    1993-01-01

    We present improved estimates of the stellar parameters of the eclipsing, precataclysmic binary system PG 1413 + 015 (GH Vir), which has an orbital period of only 8h16m. Model atmosphere fits a Balmer line profiles yield T(eff) = 48,800 +/- 1200 K and log g = 7.70 +/- 0.11 for the DAO white dwarf primary star, from which a mass of 0.51 +/- 0.04 solar mass is inferred using evolutionary models. An ultraviolet spectrum obtained with the IUE Observatory has a slope consistent with this temperature and the assumption of no interstellar extinction. A red CCD spectrum of the secondary star during the 12-minute total eclipse indicates a spectral type of M3 V-M5 V. Reanalysis of the eclipse light curve leads to an inferred radius of 0.15 solar radius and a mass of 0.10 solar mass for the secondary, the latter being marginally consistent with the spectral type. Reprocessing on the facing side of the secondary produces phase-dependent Balmer line emission and detectable variations in the continuum from 6500-9000 A. The observed levels of reprocessing are consistent with expectations based on the above stellar parameters.

  1. A Comprehensive K2 and Ground-based Study of CRTS J035905.9+175034, an Eclipsing SU UMa System with a Large Mass Ratio

    NASA Astrophysics Data System (ADS)

    Littlefield, Colin; Garnavich, Peter; Kennedy, Mark; Szkody, Paula; Dai, Zhibin

    2018-06-01

    CRTS J035905.9+175034 is the first eclipsing SU UMa system for which a superoutburst has been observed by Kepler in the short-cadence mode. The light curve contains one superoutburst, eight normal outbursts (including a precursor to the superoutburst), and several minioutbursts that are present before—but not after—the superoutburst. The superoutburst began with a precursor normal outburst, and shortly after the peak of the precursor, the system developed large-amplitude superhumps that achieved their maximum amplitude after just three superhump cycles. The period excess of the initial superhump period relative to the orbital period implies a mass ratio of 0.281 ± 0.015, placing it marginally above most theoretical predictions of the highest-possible mass ratio for superhump formation. In addition, our analysis of the variations in eclipse width and depth, as well as the hot spot amplitudes, generally provides substantiation of the thermal-tidal instability model. The K2 data, in conjunction with our ground-based time-resolved spectroscopy and photometry from 2014 to 2016, allows us to determine many of the fundamental parameters of this system.

  2. Changes in surface solar UV irradiances and total ozone during the solar eclipse of August 11, 1999

    NASA Astrophysics Data System (ADS)

    Zerefos, C. S.; Balis, D. S.; Meleti, C.; Bais, A. F.; Tourpali, K.; Kourtidis, K.; Vanicek, K.; Cappellani, F.; Kaminski, U.; Colombo, T.; Stübi, R.; Manea, L.; Formenti, P.; Andreae, M. O.

    2000-11-01

    During the solar eclipse of August 11, 1999, intensive measurements of UV solar irradiance and total ozone were performed at a number of observatories located near the path of the Moon's shadow. At the Laboratory of Atmospheric Physics (LAP) of the Aristotle University of Thessaloniki, Greece, global and direct spectra of UV solar irradiances (285-365 nm) were recorded with a double monochromator, and erythemal irradiances were measured with broadband pyranometers. In addition, higher-frequency measurements of global and direct irradiances at six UV wavelengths were performed with a single Brewer spectrophotometer. Total ozone measurements were also performed with Dobson and Brewer spectrophotometers at Hradec Kralove (Czech Republic), Ispra (Italy), Sestola (Italy), Hohenpeissenberg (Germany), Bucharest (Romania), Arosa (Switzerland), and Thessaloniki (Greece). From the spectral UV measurements the limb darkening effect of the solar disk was tentatively quantified from differences of measured solar spectral irradiances at the peak of the eclipse (near to limb conditions) and before the eclipse. Two blackbody curves were fit to the preeclipse and peak eclipse spectra, which have shown a difference in effective temperatures of about 165°K between the limb and the whole of the solar disk. The limb darkening effect is larger at the shorter UV wavelengths. The ratio of the diffuse to direct solar irradiances during the eclipse shows that the diffuse component is reduced much less compared to the decline of the direct solar irradiance at the shorter wavelengths. Moreover, a 20-min oscillation of erythemal UV-B solar irradiance was observed before and after the time of the eclipse maximum under clear skies, indicating a possible 20-min fluctuation in total ozone, presumably caused by the eclipse-induced gravity waves. This work also shows that routine total ozone measurements with a Brewer or a Dobson spectrophotometer should be used with caution during a solar eclipse. This is because the diffuse light increases by more than 30% with respect to the direct solar radiation, increasing more at the shorter wavelength side of the UV spectrum. This plausible mechanism introduces an artificial decrease in total ozone during solar eclipse of more than 30 Dobson units (DU), which is confirmed by all Brewer and Dobson measurements. Changes in total ozone cited earlier in the refereed literature have not been confirmed in the present study.

  3. Systematics-insensitive Periodic Signal Search with K2

    NASA Astrophysics Data System (ADS)

    Angus, Ruth; Foreman-Mackey, Daniel; Johnson, John A.

    2016-02-01

    From pulsating stars to transiting exoplanets, the search for periodic signals in K2 data, Kepler’s two-wheeled extension, is relevant to a long list of scientific goals. Systematics affecting K2 light curves due to the decreased spacecraft pointing precision inhibit the easy extraction of periodic signals from the data. We here develop a method for producing periodograms of K2 light curves that are insensitive to pointing-induced systematics; the Systematics-insensitive Periodogram (SIP). Traditional sine-fitting periodograms use a generative model to find the frequency of a sinusoid that best describes the data. We extend this principle by including systematic trends, based on a set of “eigen light curves,” following Foreman-Mackey et al., in our generative model as well as a sum of sine and cosine functions over a grid of frequencies. Using this method we are able to produce periodograms with vastly reduced systematic features. The quality of the resulting periodograms are such that we can recover acoustic oscillations in giant stars and measure stellar rotation periods without the need for any detrending. The algorithm is also applicable to the detection of other periodic phenomena such as variable stars, eclipsing binaries and short-period exoplanet candidates. The SIP code is available at https://github.com/RuthAngus/SIPK2.

  4. A Case Study in High Contrast Coronagraph for Planet Discovery: The Eclipse Concept and Support Laboratory Experience

    NASA Technical Reports Server (NTRS)

    Trauger, John T.

    2005-01-01

    Eclipse is a proposed NASA Discovery mission to perform a sensitive imaging survey of nearby planetary systems, including a survey for jovian-sized planets orbiting Sun-like stars to distances of 15 pc. We outline the science objectives of the Eclipse mission and review recent developments in the key enabling technologies. Eclipse is a space telescope concept for high-contrast visible-wavelength imaging and spectrophotometry. Its design incorporates a telescope with an unobscured aperture of 1.8 meters, a coronographic camera for suppression of diffracted light, and precise active wavefront correction for the suppression of scattered background light. For reference, Eclipse is designed to reduce the diffracted and scattered starlight between 0.33 and 1.5 arcseconds from the star by three orders of magnitude compared to any HST instrument. The Eclipse mission provides precursor science exploration and technology experience in support of NASA's Terrestrial Planet Finder (TPF) program.

  5. Main-belt Asteroids in the K2 Uranus Field

    NASA Astrophysics Data System (ADS)

    Molnár, L.; Pál, A.; Sárneczky, K.; Szabó, R.; Vinkó, J.; Szabó, Gy. M.; Kiss, Cs.; Hanyecz, O.; Marton, G.; Kiss, L. L.

    2018-02-01

    We present the K2 light curves of a large sample of untargeted main-belt asteroids (MBAs) detected with the Kepler Space Telescope. The asteroids were observed within the Uranus superstamp, a relatively large, continuous field with a low stellar background designed to cover the planet Uranus and its moons during Campaign 8 of the K2 mission. The superstamp offered the possibility of obtaining precise, uninterrupted light curves of a large number of MBAs and thus determining unambiguous rotation rates for them. We obtained photometry for 608 MBAs, and were able to determine or estimate rotation rates for 90 targets, of which 86 had no known values before. In an additional 16 targets we detected incomplete cycles and/or eclipse-like events. We found the median rotation rate to be significantly longer than that of the ground-based observations, indicating that the latter are biased toward shorter rotation rates. Our study highlights the need and benefits of further continuous photometry of asteroids.

  6. BINARY CENTRAL STARS OF PLANETARY NEBULAE DISCOVERED THROUGH PHOTOMETRIC VARIABILITY. IV. THE CENTRAL STARS OF HaTr 4 AND Hf 2-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hillwig, Todd C.; Schaub, S. C.; Bond, Howard E.

    We explore the photometrically variable central stars of the planetary nebulae HaTr 4 and Hf 2-2. Both have been classified as close binary star systems previously based on their light curves alone. Here, we present additional arguments and data confirming the identification of both as close binaries with an irradiated cool companion to the hot central star. We include updated light curves, orbital periods, and preliminary binary modeling for both systems. We also identify for the first time the central star of HaTr 4 as an eclipsing binary. Neither system has been well studied in the past, but we utilizemore » the small amount of existing data to limit possible binary parameters, including system inclination. These parameters are then compared to nebular parameters to further our knowledge of the relationship between binary central stars of planetary nebulae and nebular shaping and ejection.« less

  7. Mystery of a Dimming White Dwarf

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-12-01

    In the wake of the recent media attention over an enigmatic, dimming star, another intriguing object has been discovered: J1529+2928, a white dwarf that periodically dims. This mystery, however, may have a simple solution with interesting consequences for future surveys of white dwarfs.Unexpected VariabilityJ1529+2928 is an isolated white dwarf that appears to have a mass of slightly more than the Sun. But rather than radiating steadily, J1529+2928 dims once every 38 minutes almost as though it were being eclipsed.The team that discovered these variations, led by Mukremin Kilic (University of Oklahoma), used telescopes at the Apache Point Observatory and the McDonald Observatory to obtain follow-up photometric data of J1529+2928 spread across 66 days. The team also took spectra of the white dwarf with the Gemini North telescope.Kilic and collaborators then began, one by one, to rule out possible causes of this objects variability.Eliminating OptionsThe period of the variability is too long for J1529+2928 to be a pulsating white dwarf with luminosity variation caused by gravity-wave pulsations.The variability cant be due to an eclipse by a stellar or brown-dwarf companion, because there isnt any variation in J1529+2928s radial velocity.Its not due to the orbit of a solid-body planetary object; such a transit would be too short to explain observations.It cant be due to the orbit of a disintegrated planet; this wouldnt explain the light curves observed in different filters plus the light curve doesnt change over the 66-day span.Spotty SurfaceTop and middle two panels: light curves from three different nights observing J1529+2928s periodic dimming. Bottom panel: The Fourier transform shows a peak at 37.7 cycles/day (and another, smaller peak at its first harmonic). [Kilic et al. 2015]So what explanation is left? The authors suggest that J1529+2928s variability is likely caused by a starspot on the white dwarfs surface that rotates into and out of our view. Estimates show that the observed light curves could be created by a starspot at about 10,000K (compared to the white dwarfs effective temperature of ~11,900K), covering 14% of the surface area at an inclination of 90.The formation of such a starspot would almost certainly require the presence of magnetic fields. Interestingly, J1529+2928 doesnt have a strong magnetic field; from its spectra, the team can constrain its field strength to be less than 70 kG.Given that up to 15% of white dwarfs are thought to have kG magnetic fields, eclipse-like events such as this one might in fact be common for white dwarfs. If so, then many similar events will likely be observed with future surveys of transients like Keplers ongoing K2 mission, which is expected to image another several hundred white dwarfs, or the upcoming Large Synoptic Survey Telescope, which will image 13 million white dwarfs.CitationMukremin Kilic et al 2015 ApJ 814 L31. doi:10.1088/2041-8205/814/2/L31

  8. Photometric investigation of the totally eclipsing contact binary V12 in the intermediate-age open cluster NGC 7789

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, S.-B.; Wang, J.-J.; Liu, L.

    2015-02-01

    NGC 7789 is an intermediate-age open cluster with an age similar to the mean age of contact binary stars. V12 is a bright W UMa-type binary star with an orbital period of 0.3917 days. The first complete light curves of V12 in the V, R, and I bands are presented and analyzed with the Wilson–Devinney (W-D) method. The results show that V12 is an intermediate-contact binary (f=43.0(±2.2)%) with a mass ratio of 3.848, and it is a W-type contact binary where the less massive component is slightly hotter than the more massive one. The asymmetry of the light curves ismore » explained by the presence of a dark spot on the more massive component. The derived orbital inclination (i=83{sub .}{sup ∘}6) indicates that it is a totally eclipsing binary, which suggests that the determined parameters are reliable. The orbital period may show a long-term increase at a rate of P-dot =+2.48(±0.17)×10{sup −6} days yr{sup −1} that reveals a rapid mass transfer from the less massive component to the more massive one. However, more observations are needed to confirm this conclusion. The presence of an intermediate-contact binary in an intermediate-age open cluster may suggest that some contact binaries have a very short pre-contact timescale. The presence of a third body and/or stellar collision may help to shorten the pre-contact evolution.« less

  9. The Monitor project: searching for occultations in young open clusters

    NASA Astrophysics Data System (ADS)

    Aigrain, S.; Hodgkin, S.; Irwin, J.; Hebb, L.; Irwin, M.; Favata, F.; Moraux, E.; Pont, F.

    2007-02-01

    The Monitor project is a photometric monitoring survey of nine young (1-200Myr) clusters in the solar neighbourhood to search for eclipses by very low mass stars and brown dwarfs and for planetary transits in the light curves of cluster members. It began in the autumn of 2004 and uses several 2- to 4-m telescopes worldwide. We aim to calibrate the relation between age, mass, radius and where possible luminosity, from the K dwarf to the planet regime, in an age range where constraints on evolutionary models are currently very scarce. Any detection of an exoplanet in one of our youngest targets (<~10Myr) would also provide important constraints on planet formation and migration time-scales and their relation to protoplanetary disc lifetimes. Finally, we will use the light curves of cluster members to study rotation and flaring in low-mass pre-main-sequence stars. The present paper details the motivation, science goals and observing strategy of the survey. We present a method to estimate the sensitivity and number of detections expected in each cluster, using a simple semi-analytic approach which takes into account the characteristics of the cluster and photometric observations, using (tunable) best-guess assumptions for the incidence and parameter distribution of putative companions, and we incorporate the limits imposed by radial velocity follow-up from medium and large telescopes. We use these calculations to show that the survey as a whole can be expected to detect over 100 young low and very low mass eclipsing binaries, and ~3 transiting planets with radial velocity signatures detectable with currently available facilities.

  10. A Coordinated X-Ray and Optical Campaign of the Nearest Massive Eclipsing Binary, δ Orionis Aa. III. Analysis of Optical Photometric (MOST) and Spectroscopic (Ground-based) Variations

    NASA Astrophysics Data System (ADS)

    Pablo, Herbert; Richardson, Noel D.; Moffat, Anthony F. J.; Corcoran, Michael; Shenar, Tomer; Benvenuto, Omar; Fuller, Jim; Nazé, Yaël; Hoffman, Jennifer L.; Miroshnichenko, Anatoly; Maíz Apellániz, Jesús; Evans, Nancy; Eversberg, Thomas; Gayley, Ken; Gull, Ted; Hamaguchi, Kenji; Hamann, Wolf-Rainer; Henrichs, Huib; Hole, Tabetha; Ignace, Richard; Iping, Rosina; Lauer, Jennifer; Leutenegger, Maurice; Lomax, Jamie; Nichols, Joy; Oskinova, Lida; Owocki, Stan; Pollock, Andy; Russell, Christopher M. P.; Waldron, Wayne; Buil, Christian; Garrel, Thierry; Graham, Keith; Heathcote, Bernard; Lemoult, Thierry; Li, Dong; Mauclaire, Benjamin; Potter, Mike; Ribeiro, Jose; Matthews, Jaymie; Cameron, Chris; Guenther, David; Kuschnig, Rainer; Rowe, Jason; Rucinski, Slavek; Sasselov, Dimitar; Weiss, Werner

    2015-08-01

    We report on both high-precision photometry from the Microvariability and Oscillations of Stars (MOST) space telescope and ground-based spectroscopy of the triple system δ Ori A, consisting of a binary O9.5II+early-B (Aa1 and Aa2) with P = 5.7 days, and a more distant tertiary (O9 IV P\\gt 400 years). This data was collected in concert with X-ray spectroscopy from the Chandra X-ray Observatory. Thanks to continuous coverage for three weeks, the MOST light curve reveals clear eclipses between Aa1 and Aa2 for the first time in non-phased data. From the spectroscopy, we have a well-constrained radial velocity (RV) curve of Aa1. While we are unable to recover RV variations of the secondary star, we are able to constrain several fundamental parameters of this system and determine an approximate mass of the primary using apsidal motion. We also detected second order modulations at 12 separate frequencies with spacings indicative of tidally influenced oscillations. These spacings have never been seen in a massive binary, making this system one of only a handful of such binaries that show evidence for tidally induced pulsations.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, L.-Y.; Zhou, X.; Qian, S.-B.

    A complete light curve of the neglected eclipsing binary Algol V548 Cygni in the UV band was obtained with the Lunar-based Ultraviolet Telescope in 2014 May. Photometric solutions are obtained using the Wilson–Devinney method. It is found that solutions with and without third light are quite different. The mass ratio without third light is determined to be q = 0.307, while that derived with third light is q = 0.606. It is shown that V548 Cygni is a semi-detached binary where the secondary component is filling the critical Roche lobe. An analysis of all available eclipse times suggests that there are three cyclic variationsmore » in the O–C diagram that are interpreted by the light travel-time effect via the presence of three additional stellar companions. This is in agreement with the presence of a large quantity of third light in the system. The masses of these companions are estimated as m sin i′ ∼ 1.09, 0.20, and 0.52 M{sub ⊙}. They are orbiting the central binary with orbital periods of about 5.5, 23.3, and 69.9 years, i.e., in 1:4:12 resonance orbit. Their orbital separations are about 4.5, 13.2, and 26.4 au, respectively. Our photometric solutions suggest that they contribute about 32.4% to the total light of the multiple system. No obvious long-term changes in the orbital period were found, indicating that the contributions of the mass transfer and the mass loss due to magnetic braking to the period variations are comparable. The detection of three possible additional stellar components orbiting a typical Algol in a multiple system make V548 Cygni a very interesting binary to study in the future.« less

  12. A matched filter method for ground-based sub-noise detection of terrestrial extrasolar planets in eclipsing binaries: application to CM Draconis.

    PubMed

    Jenkins, J M; Doyle, L R; Cullers, D K

    1996-02-01

    The photometric detection of extrasolar planets by transits in eclipsing binary systems can be significantly improved by cross-correlating the observational light curves with synthetic models of possible planetary transit features, essentially a matched filter approach. We demonstrate the utility and application of this transit detection algorithm for ground-based detections of terrestrial-sized (Earth-to-Neptune radii) extrasolar planets in the dwarf M-star eclipsing binary system CM Draconis. Preliminary photometric observational data of this system demonstrate that the observational noise is well characterized as white and Gaussian at the observational time steps required for precision photometric measurements. Depending on planet formation scenarios, terrestrial-sized planets may form quite close to this low-luminosity system. We demonstrate, for example, that planets as small as 1.4 Earth radii with periods on the order of a few months in the CM Draconis system could be detected at the 99.9% confidence level in less than a year using 1-m class telescopes from the ground. This result contradicts commonly held assumptions limiting present ground-based efforts to, at best, detections of gas giant planets after several years of observation. This method can be readily extended to a number of other larger star systems with the utilization of larger telescopes and longer observing times. Its extension to spacecraft observations should also allow the determination of the presence of terrestrial-sized planets in nearly 100 other known eclipsing binary systems.

  13. A matched filter method for ground-based sub-noise detection of terrestrial extrasolar planets in eclipsing binaries: application to CM Draconis

    NASA Technical Reports Server (NTRS)

    Jenkins, J. M.; Doyle, L. R.; Cullers, D. K.

    1996-01-01

    The photometric detection of extrasolar planets by transits in eclipsing binary systems can be significantly improved by cross-correlating the observational light curves with synthetic models of possible planetary transit features, essentially a matched filter approach. We demonstrate the utility and application of this transit detection algorithm for ground-based detections of terrestrial-sized (Earth-to-Neptune radii) extrasolar planets in the dwarf M-star eclipsing binary system CM Draconis. Preliminary photometric observational data of this system demonstrate that the observational noise is well characterized as white and Gaussian at the observational time steps required for precision photometric measurements. Depending on planet formation scenarios, terrestrial-sized planets may form quite close to this low-luminosity system. We demonstrate, for example, that planets as small as 1.4 Earth radii with periods on the order of a few months in the CM Draconis system could be detected at the 99.9% confidence level in less than a year using 1-m class telescopes from the ground. This result contradicts commonly held assumptions limiting present ground-based efforts to, at best, detections of gas giant planets after several years of observation. This method can be readily extended to a number of other larger star systems with the utilization of larger telescopes and longer observing times. Its extension to spacecraft observations should also allow the determination of the presence of terrestrial-sized planets in nearly 100 other known eclipsing binary systems.

  14. Photometry of the three eclipsing novalike variables EC 21178-5417, GS Pav and V345 Pav

    NASA Astrophysics Data System (ADS)

    Bruch, Albert

    2017-10-01

    As part of a project to better characterize comparatively bright, yet little studied cataclysmic variables time resolved photometry of the three eclipsing novalike variables EC 21178-5417, GS Pav und V345 Pav is presented. Previously known orbital periods are significantly improved and long-term ephemeris are derived. Variations of eclipse profiles, occurring on time scales of days to weeks, are analyzed. Out of eclipse the light curves are characterized by low scale flickering superposed on more gradual variations with amplitudes limited to a few tenths of a magnitude and profiles which at least in EC 21178-5417 and GS Pav roughly follow the same pattern in all observed cycles. Additionally, signs for variations on the time scale of some tens of minutes are seen in GS Pav, most clearly in two subsequent nights when in the first of these a signal with a period of 15.7 min was observed over several hours. In the second night variations with twice this period were seen. While no additional insight could be gained on quasi periodic oscillations (QPOs) and dwarf nova oscillations in EC 21178-5417, previously detected by Warner et al. (2003), and while such oscillations could not be found in V345 Pav, stacked power spectra of GS Pav clearly reveal the presence of QPOs over time intervals of several hours with periods varying between 200 s and 500 s in that system.

  15. One Hundred Thousand Eyes: Analysis of Kepler Archival Data

    NASA Astrophysics Data System (ADS)

    Fischer, Debra

    We are using a powerful resource, more than 100,000 eyes of users on the successful Planet Hunters Web project, who will identify the best follow-up science targets for this ADAP proposal among the Kepler public archive light curves. Planet Hunters is a Citizen Science program with a user base of more than 50,000 individuals who have already contributed the 24/7 cumulative equivalent of 200 human years assessing Kepler data. They independently identified most of the Kepler candidates with radii greater than 3-4 REARTH and they detected ten transiting planet candidates that were missed by the Kepler pipeline algorithms, including two circumbinary transiting planet candidates. These detections have provided important feedback for the Kepler algorithms about possible leaks where candidates might be lost. Our scientific follow up program will use Planet Hunter classifications of archival data from the Kepler Mission to: "Detect and model new transiting planets: for radii greater than 3 4 REARTH and orbital periods longer than one year, the Planet Hunters should be quite competitive with automated pipelines that require at least 3 transits for a detection and fill in the parameter space for Neptune-size planets over a wide range of orbital periods. For stars where a single transit can be modeled as a long period planet, we will establish a watch list for future transits. We will carry out checks for false positives (pixel centroiding analysis, AO observations, Doppler measurements where appropriate). "Analyze the completeness statistics for Kepler transits and independently determine a corrected planet occurrence rate as a function of planet radius and orbital period. This will be done by injecting synthetic transits into real Kepler light curves and calculating the efficiency with which the transits are detected by Planet Hunters. "Model the full spectroscopic and photometric orbital solutions for a set of ~60 detached eclipsing binary systems with low mass K and M dwarf components- quadrupling the number of fully characterized eclipsing systems with low-mass stars. We will revise the spectral synthesis modeling code, SME, to handle double line spectroscopic binaries (including velocity offets and relative intensity as free parameters). Our data, coupled with the sparse data currently available on late-type stellar radii, will allow us to explore the long-standing discrepancy between theory and observation in the sense that directly determined radii exceed theory predictions by ~10%. As such, host star radii are often the limiting factor in extracting the planetary radii from Kepler transiting systems since model approaches appear currently flawed. Thus, an empirical calibration to radius relationships for low-mass stars will be fundamentally enabling for the Kepler mission. "Carry out a search for transiting circumbinary planets; Planet Hunters has already detected two of four known eclipsing binary systems with transiting planets. "Develop a guest scientist program so that the larger community can tap into Planet Hunters with special programs. "Further develop our in-house software analysis tools for modeling light curves, analyzing pixel centroid offsets and measuring Doppler shifts in eclipsing binaries; we will make these programs available in the public domain (Astrophysics Source Code Library).

  16. MOST Observations of σ Ori E: Challenging the Centrifugal Breakout Narrative

    NASA Astrophysics Data System (ADS)

    Townsend, R. H. D.; Rivinius, Th.; Rowe, J. F.; Moffat, A. F. J.; Matthews, J. M.; Bohlender, D.; Neiner, C.; Telting, J. H.; Guenther, D. B.; Kallinger, T.; Kuschnig, R.; Rucinski, S. M.; Sasselov, D.; Weiss, W. W.

    2013-05-01

    We present results from three weeks' photometric monitoring of the magnetic helium-strong star σ Ori E using the Microvariability and Oscillations of Stars microsatellite. The star's light curve is dominated by twice-per-rotation eclipse-like dimmings arising when magnetospheric clouds transit across and occult the stellar disk. However, no evidence is found for any abrupt centrifugal breakout of plasma from the magnetosphere, either in the residual flux or in the depths of the light minima. Motivated by this finding we compare the observationally inferred magnetospheric mass against that predicted by a breakout analysis. The large discrepancy between the values leads us to argue that centrifugal breakout does not play a significant role in establishing the magnetospheric mass budget of σ Ori E.

  17. Probing the mysteries of the X-ray binary 4U 1210-64 with ASM, PCA, MAXI, BAT, and Suzaku

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coley, Joel B.; Corbet, Robin H. D.; Mukai, Koji

    2014-10-01

    4U 1210-64 has been postulated to be a high-mass X-ray binary powered by the Be mechanism. X-ray observations with Suzaku, the ISS Monitor of All-sky X-ray Image (MAXI), and the Rossi X-ray Timing Explorer Proportional Counter Array (PCA) and All Sky Monitor (ASM) provide detailed temporal and spectral information on this poorly understood source. Long-term ASM and MAXI observations show distinct high and low states and the presence of a 6.7101 ± 0.0005 day modulation, interpreted as the orbital period. Folded light curves reveal a sharp dip, interpreted as an eclipse. To determine the nature of the mass donor, themore » predicted eclipse half-angle was calculated as a function of inclination angle for several stellar spectral types. The eclipse half-angle is not consistent with a mass donor of spectral type B5 V; however, stars with spectral types B0 V or B0-5 III are possible. The best-fit spectral model consists of a power law with index Γ = 1.85{sub −0.05}{sup +0.04} and a high-energy cutoff at 5.5 ± 0.2 keV modified by an absorber that fully covers the source as well as partially covering absorption. Emission lines from S XVI Kα, Fe Kα, Fe XXV Kα, and Fe XXVI Kα were observed in the Suzaku spectra. Out of eclipse, the Fe Kα line flux was strongly correlated with unabsorbed continuum flux, indicating that the Fe I emission is the result of fluorescence of cold dense material near the compact object. The Fe I feature is not detected during eclipse, further supporting an origin close to the compact object.« less

  18. The EB Factory: Fundamental Stellar Astrophysics with Eclipsing Binary Stars Discovered by Kepler

    NASA Astrophysics Data System (ADS)

    Stassun, Keivan

    Eclipsing binaries (EBs) are key laboratories for determining the fundamental properties of stars. EBs are therefore foundational objects for constraining stellar evolution models, which in turn are central to determinations of stellar mass functions, of exoplanet properties, and many other areas. The primary goal of this proposal is to mine the Kepler mission light curves for: (1) EBs that include a subgiant star, from which precise ages can be derived and which can thus serve as critically needed age benchmarks; and within these, (2) long-period EBs that include low-mass M stars or brown dwarfs, which are increa-singly becoming the focus of exoplanet searches, but for which there are the fewest available fundamental mass- radius-age benchmarks. A secondary goal of this proposal is to develop an end-to-end computational pipeline -- the Kepler EB Factory -- that allows automatic processing of Kepler light curves for EBs, from period finding, to object classification, to determination of EB physical properties for the most scientifically interesting EBs, and finally to accurate modeling of these EBs for detailed tests and benchmarking of theoretical stellar evolution models. We will integrate the most successful algorithms into a single, cohesive workflow environment, and apply this 'Kepler EB Factory' to the full public Kepler dataset to find and characterize new "benchmark grade" EBs, and will disseminate both the enhanced data products from this pipeline and the pipeline itself to the broader NASA science community. The proposed work responds directly to two of the defined Research Areas of the NASA Astrophysics Data Analysis Program (ADAP), specifically Research Area #2 (Stellar Astrophysics) and Research Area #9 (Astrophysical Databases). To be clear, our primary goal is the fundamental stellar astrophysics that will be enabled by the discovery and analysis of relatively rare, benchmark-grade EBs in the Kepler dataset. At the same time, to enable this goal will require bringing a suite of extant and new custom algorithms to bear on the Kepler data, and thus our development of the Kepler EB Factory represents a value-added product that will allow the widest scientific impact of the in-formation locked within the vast reservoir of the Kepler light curves.

  19. BEER ANALYSIS OF KEPLER AND CoRoT LIGHT CURVES. I. DISCOVERY OF KEPLER-76b: A HOT JUPITER WITH EVIDENCE FOR SUPERROTATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faigler, S.; Tal-Or, L.; Mazeh, T.

    We present the first case in which the BEER algorithm identified a hot Jupiter in the Kepler light curve, and its reality was confirmed by orbital solutions based on follow-up spectroscopy. The companion Kepler-76b was identified by the BEER algorithm, which detected the BEaming (sometimes called Doppler boosting) effect together with the Ellipsoidal and Reflection/emission modulations (BEER), at an orbital period of 1.54 days, suggesting a planetary companion orbiting the 13.3 mag F star. Further investigation revealed that this star appeared in the Kepler eclipsing binary catalog with estimated primary and secondary eclipse depths of 5 Multiplication-Sign 10{sup -3} andmore » 1 Multiplication-Sign 10{sup -4}, respectively. Spectroscopic radial velocity follow-up observations with Tillinghast Reflector Echelle Spectrograph and SOPHIE confirmed Kepler-76b as a transiting 2.0 {+-} 0.26 M{sub Jup} hot Jupiter. The mass of a transiting planet can be estimated from either the beaming or the ellipsoidal amplitude. The ellipsoidal-based mass estimate of Kepler-76b is consistent with the spectroscopically measured mass while the beaming-based estimate is significantly inflated. We explain this apparent discrepancy as evidence for the superrotation phenomenon, which involves eastward displacement of the hottest atmospheric spot of a tidally locked planet by an equatorial superrotating jet stream. This phenomenon was previously observed only for HD 189733b in the infrared. We show that a phase shift of 10. Degree-Sign 3 {+-} 2. Degree-Sign 0 of the planet reflection/emission modulation, due to superrotation, explains the apparently inflated beaming modulation, resolving the ellipsoidal/beaming amplitude discrepancy. Kepler-76b is one of very few confirmed planets in the Kepler light curves that show BEER modulations and the first to show superrotation evidence in the Kepler band. Its discovery illustrates for the first time the ability of the BEER algorithm to detect short-period planets and brown dwarfs.« less

  20. Mass ratio from Doppler beaming and Rømer delay versus ellipsoidal modulation in the Kepler data of KOI-74

    NASA Astrophysics Data System (ADS)

    Bloemen, S.; Marsh, T. R.; Degroote, P.; Østensen, R. H.; Pápics, P. I.; Aerts, C.; Koester, D.; Gänsicke, B. T.; Breedt, E.; Lombaert, R.; Pyrzas, S.; Copperwheat, C. M.; Exter, K.; Raskin, G.; Van Winckel, H.; Prins, S.; Pessemier, W.; Frémat, Y.; Hensberge, H.; Jorissen, A.; Van Eck, S.

    2012-05-01

    We present a light-curve analysis and radial velocity study of KOI-74, an eclipsing A star + white dwarf binary with a 5.2-d orbit. Aside from new spectroscopy covering the orbit of the system, we used 212 d of publicly available Kepler observations and present the first complete light-curve fitting to these data, modelling the eclipses and transits, ellipsoidal modulation, reflection and Doppler beaming. Markov chain Monte Carlo simulations are used to determine the system parameters and uncertainty estimates. Our results are in agreement with earlier studies, except that we find an inclination of 87°.0 ± 0°.4, which is significantly lower than the previously published value. The altered inclination leads to different values for the relative radii of the two stars and therefore also the mass ratio deduced from the ellipsoidal modulations seen in this system. We find that the mass ratio derived from the radial velocity amplitude (q= 0.104 ± 0.004) disagrees with that derived from the ellipsoidal modulation (q= 0.052 ± 0.004 assuming corotation). This was found before, but with our smaller inclination, the discrepancy is even larger than previously reported. Accounting for the rapid rotation of the A-star, instead of assuming corotation with the binary orbit, is found to increase the discrepancy even further by lowering the mass ratio to q= 0.047 ± 0.004. These results indicate that one has to be extremely careful in using the amplitude of an ellipsoidal modulation signal in a close binary to determine the mass ratio, when a proof of corotation is not firmly established. The same problem could arise whenever an ellipsoidal modulation amplitude is used to derive the mass of a planet orbiting a host star that is not in corotation with the planet's orbit. The radial velocities that can be inferred from the detected Doppler beaming in the light curve are found to be in agreement with our spectroscopic radial velocity determination. We also report the first measurement of Rømer delay in a light curve of a compact binary. This delay amounts to -56 ± 17 s and is consistent with the mass ratio derived from the radial velocity amplitude. The firm establishment of this mass ratio at q= 0.104 ± 0.004 leaves little doubt that the companion of KOI-74 is a low-mass white dwarf.

  1. Observations and analysis of the contact binary H 235 in the open cluster NGC 752

    NASA Astrophysics Data System (ADS)

    Milone, E. F.; Stagg, C. R.; Sugars, B. A.; McVean, J. R.; Schiller, S. J.; Kallrath, J.; Bradstreet, D. H.

    1995-01-01

    The short-period variable star Heinemann 235 in the open cluster NGC 752 has been identified as a contact binary with a variable period of about 0 d 4118. BVRI light curves and radial velocity curves have been obtained and analyzed with enhanced versions of the Wilson-Devinney light curve program. We find that the system is best modeled as an A-type W UMa system, with a contact parameter of 0.21 +/- 0.11. The masses of the components are found to be 1.18 +/- 0.17 and 0.24 +/- 0.04 solar mass, with bolometric magnitudes of 3.60 +/- 0.10 and 5.21 +/- 0.13, for the hotter (6500 K, assumed) and cooler (6421 K) components, respectively, with Delta T=79 +/- 25 K. The distance to the binary is established at 381 +/- 17 pc. H235 becomes one of a relatively small number of open-cluster contact systems with detailed light curve analysis for which an age may be estimated. If it is coeval with the cluster, and with the detached eclipsing and double-lined spectroscopic binary H219 (DS And), H235 is approximately 1.8 Gyr old, and may provide a fiducial point for the evolution of contact systems. There is, however, evidence for dynamical evolution of the cluster and the likelihood of weak interactions over the age of the binary precludes the determination of its initial state with certainty.

  2. MUCHFUSS - Massive Unseen Companions to Hot Faint Underluminous Stars from SDSS

    NASA Astrophysics Data System (ADS)

    Geier, S.; Schaffenroth, V.; Hirsch, H.; Tillich, A.; Heber, U.; Maxted, P. F. L.; Østensen, R. H.; Barlow, B. N.; O'Toole, S. J.; Kupfer, T.; Marsh, T.; Gänsicke, B.; Napiwotzki, R.; Cordes, O.; Müller, S.; Classen, L.; Ziegerer, E.; Drechsel, H.

    2012-06-01

    The project Massive Unseen Companions to Hot Faint Underluminous Stars from SDSS (MUCHFUSS) aims at finding hot subdwarf stars with massive compact companions (white dwarfs with masses M>1.0 M⊙, neutron stars or black holes). The existence of such systems is predicted by binary evolution calculations and some candidate systems have been found. We identified ≃1100 hot subdwarf stars from the Sloan Digital Sky Survey (SDSS). Stars with high velocities have been reobserved and individual SDSS spectra have been analysed. About 70 radial velocity variable subdwarfs have been selected as good candidates for follow-up time resolved spectroscopy to derive orbital parameters and photometric follow-up to search for features like eclipses in the light curves. Up to now we found nine close binary sdBs with short orbital periods ranging from ≃0.07 d to 1.5 d. Two of them are eclipsing binaries with companions that are most likely of substellar nature.

  3. UV spectroscopy of Z Chamaeleontis. I - Time dependent dips in superoutburst

    NASA Technical Reports Server (NTRS)

    Harlaftis, E. T.; Hassall, B. J. M.; Naylor, T.; Charles, P. A.; Sonneborn, G.

    1992-01-01

    Extensive IUE observations of the dwarf nova Z Cha during the 1987 April superoutburst and IUE-Exosat observations during the 1985 July superoutburst are presented. The UV light curve shows two dips when folded on the orbital period. One dip, at orbital phase 0.8 becomes shallower as the superoutburst progresses and can be associated with decreasing mass transfer rate from the secondary star. The other dip, at orbital phase 0.15, appears after the development of the superhump and some days after the occurrence of the largest dip at phase 0.8. The continuum flux distribution during superoutbursts is fainter and redder than in low-inclination dwarf novae during superoutbursts. This is interpreted in terms of the extended vertical disk structure which occults the hot inner parts of the disk with the development of a 'cool' bulge on the edge of the disk at orbital phase 0.75. Details of the behaviour of the UV emission lines during eclipse and away from eclipse are discussed.

  4. Surface activity and oscillation amplitudes of red giants in eclipsing binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaulme, P.; Jackiewicz, J.; Appourchaux, T.

    2014-04-10

    Among the 19 red-giant stars belonging to eclipsing binary systems that have been identified in Kepler data, 15 display solar-like oscillations. We study whether the absence of mode detection in the remaining 4 is an observational bias or possibly evidence of mode damping that originates from tidal interactions. A careful analysis of the corresponding Kepler light curves shows that modes with amplitudes that are usually observed in red giants would have been detected if they were present. We observe that mode depletion is strongly associated with short-period systems, in which stellar radii account for 16%-24% of the semi-major axis, andmore » where red-giant surface activity is detected. We suggest that when the rotational and orbital periods synchronize in close binaries, the red-giant component is spun up, so that a dynamo mechanism starts and generates a magnetic field, leading to observable stellar activity. Pressure modes would then be damped as acoustic waves dissipate in these fields.« less

  5. The Orbit and Position of the X-ray Pulsar XTE J1855-026: An Eclipsing Supergiant System

    NASA Technical Reports Server (NTRS)

    Corbet, Robin H. D.; Mukai, Koji; White, Nicholas E. (Technical Monitor)

    2002-01-01

    A pulse timing orbit has been obtained for the X-ray binary XTEJ1855-026 using observations made with the Proportional Counter Array on board the Rossi X-ray Timing Explorer. The mass function obtained of approximately 16 solar mass together with the detection of an extended near-total eclipse confirm that the primary star is supergiant as predicted. The orbital eccentricity is found to be very low with a best fit value of 0.04 +/- 0.02. The orbital period is also refined to be 6.0724 +/- 0.0009 days using an improved and extended light curve obtained with RXTE's All Sky Monitor. Observations with the ASCA satellite provide an improved source location of R.A.= 18 hr 55 min 31.3 sec, decl.= -02 deg 36 min 24.0 sec (2000) with an estimated systematic uncertainty of less than 12 min. A serendipitous new source, AX J1855.4-0232, was also discovered during the ASCA observations.

  6. Star-spot distributions and chromospheric activity on the RS CVn type eclipsing binary SV Cam

    NASA Astrophysics Data System (ADS)

    Şenavcı, H. V.; Bahar, E.; Montes, D.; Zola, S.; Hussain, G. A. J.; Frasca, A.; Işık, E.; Yörükoǧlu, O.

    2018-06-01

    Using a time series of high-resolution spectra and high-quality multi-colour photometry, we reconstruct surface maps of the primary component of the RS CVn type rapidly rotating eclipsing binary, SV Cam (F9V + K4V). We measure a mass ratio, q, of 0.641(2) using our highest quality spectra and obtain surface brightness maps of the primary component, which exhibit predominantly high-latitude spots located between 60° - 70° latitudes with a mean filling factor of ˜35%. This is also indicated by the R-band light curve inversion, subjected to rigourous numerical tests. The spectral subtraction of the Hα line reveals strong activity of the secondary component. The excess Hα absorption detected near the secondary minimum hints to the presence of cool material partially obscuring the primary star. The flux ratios of Ca II IRT excess emission indicate that the contribution of chromospheric plage regions associated with star-spots is dominant, even during the passage of the filament-like absorption feature.

  7. V850 Cyg: An eclipsing binary with a giant γ Dor pulsator

    NASA Astrophysics Data System (ADS)

    Çakırlı, Ö.; Ibanoglu, C.; Sipahi, E.; Akan, M. C.

    2017-04-01

    We present new spectroscopic observations of the double-lined eclipsing binary V850 Cyg. The long-cadence photometric observations obtained by Kepler were analysed and combined with the analysis of radial velocities for deriving the absolute parameters of the components. Masses and radii were determined as Mp=1.601 ± 0.076 M⊙ and Rp=4.239 ± 0.076 R⊙, Ms=0.851 ± 0.053 M⊙ and Rs=5.054 ± 0.087 R⊙ for the components of V850 Cyg. We estimate an interstellar reddening of 0.28 ± 0.12 mag and a distance of 1040 ± 160 pc for the system. The measured rotational velocity of the secondary appears to lower than that of synchronize rotation. However its spectral lines are too weak to be measured the rotational velocity with reasonable accuracy. We have extracted the synthetic light curve from the observations and excluded the data within the eclipses for the frequency analysis. We obtained at least nine frequencies in the γ Dor regime. It seems that the primary component oscillates with a dominant period of about 1.152549 ± 0.000009 days. We also compare pulsational properties of the primary star of V850 Cyg with the γ Dor type pulsating components in other binaries.

  8. Citizen Sky, Solving the Mystery of epsilon Aurigae

    NASA Astrophysics Data System (ADS)

    Turner, Rebecca; Price, A.; Kloppenborg, B.; Henden, A.

    2010-01-01

    Citizen Sky is a multi-year, NSF funded citizen science project involving the bright star eps Aur. The project was conceived by the IYA 2009 working group on Research Experiences for Students, Teachers, and Citizen-Scientists. Citizen Sky goes beyond simple observing to include a major data analysis component. The goal is to introduce the participant to the full scientific process from background research to paper writing for a peer-reviewed journal. It begins with a 10 Star Training Program of several types of binary and transient variable stars that are easy to observe from suburban locations with the naked eye. Participants then move on to monitoring the rare and mysterious 2009-2011 eclipse (already underway) of epsilon Aurigae. This object undergoes eclipses only every 27.1 years and each eclipse lasts nearly two years. The star is bright enough to be seen with the naked eye from most urban areas. Training will be provided in observing techniques as well as basic data analysis of photometric and visual datasets (light curve and period analysis). The project also involves two public workshops, one on observing (already held in August of 2009) and one on data analysis and scientific paper writing (to be held in 2010.) This project has been made possible by the National Science Foundation.

  9. On a possible additional component in an eclipsing binary system HS 2231 + 2441

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.; Romanyuk, Ya. O.; Shliahetskaya, Ya. O.

    2016-05-01

    Timing method based on the registration period of variations of a periodic process, associated with the star. The study of stellar eclipsing binary system for a long time allows a series of several transits, depending on the orbital period of the satellite smaller. We present a photometric study of system of the type HW Vir HS 2231 + 2441. Photometric data processing was performed using C-MuniWin Version 1.2.30 program. The accuracy of values for each observation point is in the range 0,003...0,009m for different nights. The calculated ephemeris determined from the light curve by fitting of arc of minimums to the nuclei of primary and secondary eclipses. The amplitude of the periodic changes of minimums moments that arise from the orbital motion of a close pair of stars around the barycenter of the triple system, is less than 0.0008 days (1.15 minutes). It was found that the periodic variation of the orbital period can be explained by the gravitational influence of a third companion on the central binary system with an orbital period of about 97±10d. Periodogram analysis of the observational data series indicate also on the periodicity with values of 48±5d and 195±15d, but with substantially less reliably

  10. 2MASS J0516288+260738: Discovery of the first eclipsing late K + Brown dwarf binary system?

    NASA Astrophysics Data System (ADS)

    Schuh, S. L.; Handler, G.; Drechsel, H.; Hauschildt, P.; Dreizler, S.; Medupe, R.; Karl, C.; Napiwotzki, R.; Kim, S.-L.; Park, B.-G.; Wood, M. A.; Paparó, M.; Szeidl, B.; Virághalmy, G.; Zsuffa, D.; Hashimoto, O.; Kinugasa, K.; Taguchi, H.; Kambe, E.; Leibowitz, E.; Ibbetson, P.; Lipkin, Y.; Nagel, T.; Göhler, E.; Pretorius, M. L.

    2003-11-01

    We report the discovery of a new eclipsing system less than one arcminute south of the pulsating DB white dwarf KUV 05134+2605. The object could be identified with the point source 2MASS J0516288+260738 published by the Two Micron All Sky Survey. We present and discuss the first light curves as well as some additional colour and spectral information. The eclipse period of the system is 1.29 d, and, assuming this to be identical to the orbital period, the best light curve solution yields a mass ratio of m2/m1=0.11, a radius ratio of r2/r1~ 1 and an inclination of 74o. The spectral anaylsis results in a Teff=4200 K for the primary. On this basis, we suggest that the new system probably consists of a late K + Brown dwarf (which would imply a system considerably younger than ~0.01 Gyr to have r2/r1~ 1), and outline possible future observations. This paper uses observations made at the Bohyunsan Optical Astronomy Observatory of Korea Astronomy Observatory, at the South African Astronomical Observatory (SAAO), at the 0.9 m telescope at Kitt Peak National Observatory recommissioned by the Southeastern Association for Research in Astronomy (SARA), at Gunma Astronomical Observatory established by Gunma prefecture, Japan, at the Florence and George Wise Observatory, operated by the Tel-Aviv University, Israel and at Piszkésteto, the mountain station of Konkoly Observatory of the Hungarian Academy of Science, Hungary. This publication makes use of data products from the Two Micron All Sky Survey, a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center / California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. The Digitized Sky Survey was produced at the Space Telescope Science Institute under US Government grant NAG W-2166. The images of these surveys are based on photographic data obtained using the Oschin Schmidt Telescope on Palomar Mountain and the UK Schmidt Telescope. The plates were processed into the present compressed digital form with the permission of these institutions.

  11. The Eclipse of the Sun from 29 March 2006

    NASA Astrophysics Data System (ADS)

    Coca, Sergiu; Gaina, Alex; Stefanco, Alex

    The internet post include: The curve of the temperature during the day of the Eclipse of the Sun from 29 march 2006, Few photographs of the eclipse made in Chisinau (The Republic of Moldova)(47 Deg.03 Min. N.L., 28 Deg. 46 Min. E.L.). A miscellaneous photo of the comet Halle -Bopp made by FED-5B (No. 101962, manufactured in 1979) is presented also. For translation of the texts from Russian to 10 languages use: http://www.translate.ru/text.asp?lang=ru

  12. A Light-curve Analysis of Gamma-Ray Nova V959 Mon: Distance and White Dwarf Mass

    NASA Astrophysics Data System (ADS)

    Hachisu, Izumi; Kato, Mariko

    2018-05-01

    V959 Mon is a nova detected in gamma-rays. It was discovered optically about 50 days after the gamma-ray detection owing to its proximity to the Sun. The nova’s speed class is unknown because of the lack of the earlier half of its optical light curve and a short supersoft X-ray phase due to eclipse by the disk rim. Using the universal decline law and time-stretching method, we analyzed the data on V959 Mon and obtained nova parameters. We estimated the distance modulus in the V band to be (m ‑ M) V = 13.15 ± 0.3 for the reddening of E(B ‑ V) = 0.38 ± 0.01 by directly comparing it with novae of a similar type—LV Vul, V1668 Cyg, IV Cep, and V1065 Cen. The distance to V959 Mon is 2.5 ± 0.5 kpc. If we assume that the early phase of the light curve of V959 Mon is the same as that of time-stretched light curves of LV Vul, our model fitting of the light curve suggests that the white dwarf (WD) mass is 0.9–1.15 M ⊙, which is consistent with a neon nova identification. At the time of gamma-ray detection the photosphere of the nova envelope extends to 5–8 R ⊙ (about two or three times the binary separation) and the wind mass-loss rate is (3{--}4)× {10}-5 {M}ȯ yr‑1. The period of hard X-ray emission is consistent with the time of appearance of the companion star from the nova envelope. The short supersoft X-ray turnoff time is consistent with the epoch when the WD photosphere shrank to behind the rising disk rim, which occurred 500 days before nuclear burning turned off.

  13. Raspberry Pi Eclipse Experiments

    NASA Astrophysics Data System (ADS)

    Chizek Frouard, Malynda

    2018-01-01

    The 21 August 2017 solar eclipse was an excellent opportunity for electronics and science enthusiasts to collect data during a fascinating phenomenon. With my recent personal interest in Raspberry Pis, I thought measuring how much the temperature and illuminance changes during a total solar eclipse would be fun and informational.Previous observations of total solar eclipses have remarked on the temperature drop during totality. Illuminance (ambient light) varies over 7 orders of magnitude from day to night and is highly dependent on relative positions of Sun, Earth, and Moon. I wondered whether totality was really as dark as night.Using a Raspberry Pi Zero W, a Pimoroni Enviro pHAT, and a portable USB charger, I collected environmental temperature; CPU temperature (because the environmental temperature sensor sat very near the CPU on the Raspberry Pi); barometric pressure; ambient light; R, G, and B colors; and x, y, and z acceleration (for marking times when I moved the sensor) data at a ~15 second cadence starting at about 5 am until 1:30 pm from my eclipse observation site in Glendo, WY. Totality occurred from 11:45 to 11:47 am, lasting about 2 minutes and 30 seconds.The Raspberry Pi recorded a >20 degree F drop in temperature during the eclipse, and the illuminance during totality was equivalent to twilight measurements earlier in the day. A limitation in the ambient light sensor prevented accurate measurements of broad daylight and most of the partial phase of the eclipse, but an alternate ambient light sensor combined with the Raspberry Pi setup would make this a cost-efficient set-up for illuminance studies.I will present data from the ambient light sensor, temperature sensor, and color sensor, noting caveats from my experiments, lessons learned for next time, and suggestions for anyone who wants to perform similar experiments for themselves or with a classroom.

  14. Spin–Orbit Misalignment and Precession in the Kepler-13Ab Planetary System

    NASA Astrophysics Data System (ADS)

    Herman, Miranda K.; de Mooij, Ernst J. W.; Huang, Chelsea X.; Jayawardhana, Ray

    2018-01-01

    Gravity darkening induced by rapid stellar rotation provides us with a unique opportunity to characterize the spin–orbit misalignment of a planetary system through analysis of its photometric transit. We use the gravity-darkened transit modeling code simuTrans to reproduce the transit light curve of Kepler-13Ab by separately analyzing phase-folded transits for 12 short-cadence Kepler quarters. We verify the temporal change in impact parameter indicative of spin–orbit precession identified by Szabó et al. and Masuda, reporting a rate of change {db}/{dt}=(-4.1+/- 0.2)× {10}-5 day‑1. We further investigate the effect of light dilution on the fitted impact parameter and find that less than 1% of additional light is sufficient to explain the seasonal variation seen in the Kepler quarter data. We then extend our precession analysis to the phase curve data from which we report a rate of change {db}/{dt}=(-3.2+/- 1.3)× {10}-5 day‑1. This value is consistent with that of the transit data at a lower significance and provides the first evidence of spin–orbit precession based solely on the temporal variation of the secondary eclipse.

  15. Photometric Evidence for a Disc-Jet Connection in CH Cygni

    NASA Astrophysics Data System (ADS)

    Sokoloski, J. L.; Kenyon, S. J.

    2001-12-01

    We describe observations of the rapid optical variations of the symbiotic star CH Cygni on 12 nights between 1997 and 1999. The B-band differential light curves reveal an incredible diversity of flickering behavior, from large-amplitude (up to 0.5 mag) variations with a power-law power spectrum, to lower amplitude (0.1 mag) variations with both power-law and non-power-law power spectra, to the complete absence of rapid variations down to a level of mmag. The series of light curves from observations in 1997/1998 exhibit an evolution from smooth, low-amplitude variations, to high-amplitude flickering with power at all measurable time scales. This evolution may be showing us the re-creation of the inner accretion disc after its disruption in association with the jet that was produced in early 1997 (Karovska et al. 1998). We do not find any evidence for quasi-periodic oscillations in the power spectra of individual light curves, and we believe the instances in which flickering completely disappeared coincide with eclipse of the white dwarf and accretion disc. We discuss the implications of our results for magnetic propeller models of this system, as well as compare CH Cygni to other systems where disc-jet connections have been proposed, such as the Galactic microquasar GRS 1915+105. This work was funded in part by NSF grant INT-9902665 to J.L.S.

  16. NO EVIDENCE FOR CLASSICAL CEPHEIDS AND A NEW DWARF GALAXY BEHIND THE GALACTIC DISK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pietrukowicz, P.; Udalski, A.; Szymański, M. K.

    2015-11-10

    Based on data from the ongoing OGLE Galaxy Variability Survey (OGLE GVS), we have verified observed properties of stars detected by the near-infrared VVV survey in a direction near the Galactic plane at longitude l ≈ −27° and recently tentatively classified as classical Cepheids belonging to, hence claimed, a dwarf galaxy at a distance of about 90 kpc from the Galactic Center. Three of four stars are detected in the OGLE GVS I-band images. We show that two of the objects are not variable at all, and the third one with a period of 5.695 days and a nearly sinusoidalmore » light curve of an amplitude of 0.5 mag cannot be a classical Cepheid and is very likely a spotted object. These results together with a very unusual shape of the K{sub s}-band light curve of the fourth star indicate that it is very likely that none of them is a Cepheid and, thus there is no evidence for a background dwarf galaxy. Our observations show that great care must be taken when classifying objects by their low-amplitude close-to-sinusoidal near-infrared light curves, especially with a small number of measurements. We also provide a sample of high-amplitude spotted stars with periods of a few days that can mimic pulsations and even eclipses.« less

  17. Time-Series Photometry of Variable Stars in the Globular Cluster NGC 288

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Joo; Koo, Jae-Rim; Hong, Kyeongsoo; Kim, Seung-Lee; Lee, Jae Woo; Lee, Chung-Uk; Jeon, Young-Beom; Kim, Yun-Hak; Lim, Beomdu; Ryu, Yoon-Hyun; Cha, Sang-Mok; Lee, Yongseok; Kim, Dong-Jin; Park, Byeong-Gon; Kim, Chun-Hwey

    2016-12-01

    We present the results of BV time-series photometry of the globular cluster NGC 288. Observations were carried out to search for variable stars using the Korea Microlensing Telescope Network (KMTNet) 1.6-m telescopes and a 4k pre-science CCD camera during a test observation from August to December, 2014. We found a new SX Phe star and confirmed twelve previously known variable stars in NGC 288. For the semi-regular variable star V1, we newly determined a period of 37.3 days from light curves spanning 137 days. The light-curve solution of the eclipsing binary V10 indicates that the system is probably a detached system. The pulsation properties of nine SX Phe stars were examined by applying multiple frequency analysis to their light curves. We derived a new Period-Luminosity (P-L) relation, < M_{V} rangle = -2.476(±0.300) log P - 0.354(±0.385), from six SX Phe stars showing the fundamental mode. Additionally, the period ratios of three SX Phe stars that probably have a double-radial mode were investigated; P_{FO}/P_{F} = 0.779 for V5, P_{TO}/P_{FO} = 0.685 for V9, P_{SO}/P_{FO} = 0.811 for V11. This paper is the first contribution in a series assessing the detections and properties of variable stars in six southern globular clusters with the KMTNet system.

  18. Planet Hunters, Undergraduate Research, and Detection of Extrasolar Planet Kepler-818 b

    NASA Astrophysics Data System (ADS)

    Baker, David; Crannell, Graham; Duncan, James; Hays, Aryn; Hendrix, Landon

    2017-01-01

    Detection of extrasolar planets provides an excellent research opportunity for undergraduate students. In Spring 2012, we searched for transiting extrasolar planets using Kepler spacecraft data in our Research Experience in Physics course at Austin College. Offered during the regular academic year, these Research Experience courses engage students in the scientific process, including proposal writing, paper submission, peer review, and oral presentations. Since 2004, over 190 undergraduate students have conducted authentic scientific research through Research Experience courses at Austin College.Zooniverse’s citizen science Planet Hunters web site offered an efficient method for rapid analysis of Kepler data. Light curves from over 5000 stars were analyzed, of which 2.3% showed planetary candidates already tagged by the Kepler team. Another 1.5% of the light curves suggested eclipsing binary stars, and 1.6% of the light curves had simulated planets for training purposes.One of the stars with possible planetary transits had not yet been listed as a planetary candidate. We reported possible transits for Kepler ID 4282872, which later was promoted to planetary candidate KOI-1325 in 2012 and confirmed to host extrasolar planet Kepler-818 b in 2016 (Morton et al. 2016). Kepler-818 b is a “hot Neptune” with period 10.04 days, flux decrease during transit ~0.4%, planetary radius 4.69 Earth radii, and semi-major axis 0.089 au.

  19. The nature of EU Pegasi: An Algol-type binary with a δ Scuti-type component

    NASA Astrophysics Data System (ADS)

    Yang, Yuangui; Yuan, Huiyu; Dai, Haifeng; Zhang, Xiliang

    2018-03-01

    The comprehensive photometry and spectroscopy for the neglected eclipsing binary EU Pegasi are presented. We determine its spectral type to be A3V. With the W-D program, the photometric solution was deduced from the four-color light curves. The results imply that EU Peg is a detached binary with a mass ratio of q = 0.3105(± 0.0011), whose components nearly fill their Roche lobes. The low-amplitude pulsation occurs around the secondary eclipse, which may be attributed to the more massive component. Three frequencies are preliminarily explored by the Fourier analysis. The pulsating frequency at f1 = 34.1 c d-1 is a p-mode pulsation. The orbital period may be undergoing a secular decrease, superimposed by a cyclic variation. The period decreases at a rate of dP/dt = -7.34 ± 1.06 d yr-1, which may be attributed to mass loss from the system due to stellar wind. The cyclic oscillation, with Pmod = 31.0 ± 1.4 yr and A = 0.0054 ± 0.0010 d, may be caused by the light-time effect due to the assumed third body. With its evolution, the pulsating binary EU Peg will evolve from the detached configuration to the semi-detached case.

  20. The Clusters AgeS Experiment (CASE). Variable Stars in the Field of the Globular Cluster NGC 3201

    NASA Astrophysics Data System (ADS)

    Kaluzny, J.; Rozyczka, M.; Thompson, I. B.; Narloch, W.; Mazur, B.; Pych, W.; Schwarzenberg-Czerny, A.

    2016-01-01

    The field of the globular cluster NGC 3201 was monitored between 1998 and 2009 in a search for variable stars. BV light curves were obtained for 152 periodic or likely periodic variables, fifty-seven of which are new detections. Thirty-seven newly detected variables are proper motion members of the cluster. Among them we found seven detached or semi-detached eclipsing binaries, four contact binaries, and eight SX Phe pulsators. Four of the eclipsing binaries are located in the turnoff region, one on the lower main sequence and the remaining two slightly above the subgiant branch. Two contact systems are blue stragglers, and another two reside in the turnoff region. In the blue straggler region a total of 266 objects were found, of which 140 are proper motion (PM) members of NGC 3201, and another nineteen are field stars. Seventy-eight of the remaining objects for which we do not have PM data are located within the half-light radius from the center of the cluster, and most of them are likely genuine blue stragglers. Four variable objects in our field of view were found to coincide with X-ray sources: three chromospherically active stars and a quasar at a redshift z≍0.5.

  1. MOST OBSERVATIONS OF {sigma} Ori E: CHALLENGING THE CENTRIFUGAL BREAKOUT NARRATIVE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Townsend, R. H. D.; Rivinius, Th.; Rowe, J. F.

    2013-05-20

    We present results from three weeks' photometric monitoring of the magnetic helium-strong star {sigma} Ori E using the Microvariability and Oscillations of Stars microsatellite. The star's light curve is dominated by twice-per-rotation eclipse-like dimmings arising when magnetospheric clouds transit across and occult the stellar disk. However, no evidence is found for any abrupt centrifugal breakout of plasma from the magnetosphere, either in the residual flux or in the depths of the light minima. Motivated by this finding we compare the observationally inferred magnetospheric mass against that predicted by a breakout analysis. The large discrepancy between the values leads us tomore » argue that centrifugal breakout does not play a significant role in establishing the magnetospheric mass budget of {sigma} Ori E.« less

  2. LBT Discovery of a Yellow Supergiant Eclipsing Binary in the Dwarf Galaxy Holmberg IX

    NASA Astrophysics Data System (ADS)

    Prieto, J. L.; Stanek, K. Z.; Kochanek, C. S.; Weisz, D. R.; Baruffolo, A.; Bechtold, J.; Burwitz, V.; De Santis, C.; Gallozzi, S.; Garnavich, P. M.; Giallongo, E.; Hill, J. M.; Pogge, R. W.; Ragazzoni, R.; Speziali, R.; Thompson, D. J.; Wagner, R. M.

    2008-01-01

    In a variability survey of M81 using the Large Binocular Telescope we have discovered a peculiar eclipsing binary (MV ~ - 7.1) in the field of the dwarf galaxy Holmberg IX. It has a period of 271 days, and the light curve is well fit by an overcontact model in which both stars are overflowing their Roche lobes. It is composed of two yellow supergiants (V - Isimeq 1 mag, Teffsimeq 4800 K), rather than the far more common red or blue supergiants. Such systems must be rare. While we failed to find any similar systems in the literature, we did, however, note a second example. The SMC F0 supergiant R47 is a bright (MV ~ - 7.5) periodic variable whose All Sky Automated Survey (ASAS) light curve is well fit as a contact binary with a 181 day period. We propose that these systems are the progenitors of supernovae like SN 2004et and SN 2006ov, which appeared to have yellow progenitors. The binary interactions (mass transfer, mass loss) limit the size of the supergiant to give it a higher surface temperature than an isolated star at the same core evolutionary stage. We also discuss the possibility of this variable being a long-period Cepheid. Based on data acquired using the Large Binocular Telescope (LBT). The LBT is an international collaboration among institutions in the United States, Italy and Germany. LBT Corporation partners are The University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; The Ohio State University, and The Research Corporation, on behalf of The University of Notre Dame, University of Minnesota, and University of Virginia.

  3. Spectroscopic and photometric study of the eclipsing interacting binary V495 Centauri

    NASA Astrophysics Data System (ADS)

    Rosales Guzmán, J. A.; Mennickent, R. E.; Djurašević, G.; Araya, I.; Curé, M.

    2018-05-01

    Double Periodic Variables (DPV) are among the new enigmas of semidetached eclipsing binaries. These are intermediate-mass binaries characterized by a long photometric period lasting on average 33 times the orbital period. We present a spectroscopic and photometric study of the DPV V495 Cen based on new high-resolution spectra and the ASAS V-band light curve. We have determined an improved orbital period of 33.492 ± 0.002 d and a long period of 1283 d. We find a cool evolved star of M2=0.91± 0.2 M_{⊙}, T2 = 6000 ± 250 K and R2=19.3 ± 0.5 R_{⊙} and a hot companion of M1= 5.76± 0.3 M_{⊙}, T1 = 16960 ± 400 K and R=4.5± 0.2 R_{⊙}. The mid-type B dwarf is surrounded by a concave and geometrically thick disc, of radial extension Rd= 40.2± 1.3 R_{⊙} contributing ˜11 per cent to the total luminosity of the system at the V band. The system is seen under inclination 84.8° ± 0.6° and it is at a distance d = 2092 ± 104.6 pc. The light-curve analysis suggests that the mass transfer stream impacts the external edge of the disc forming a hot region 11 per cent hotter than the surrounding disc material. The persistent V < R asymmetry of the Hα emission suggests the presence of a wind and the detection of a secondary absorption component in He I lines indicates a possible wind origin in the hotspot region.

  4. Spectroscopic and Photometric Analysis of the HW Vir Star PTF1 J011339.09+225739.1

    NASA Astrophysics Data System (ADS)

    Wolz, Maximilian; Kupfer, Thomas; Drechsel, Horst; Heber, Ulrich; Irrgang, Andreas; Hermes, J. J.; Bloemen, Steven; Levitan, David; Dhillon, Vik; Marsh, TomR.

    2018-05-01

    HW Vir systems are rare eclipsing binary systems including a subdwarf B star (sdB) with a faint companion, mostly M-dwarfs. Up to now, 19 HW Vir systems have been published, three of them with substellar companions. We report the spectroscopic as well as photometric observation of the eclipsing sdB binary PTF1 J011339.09+225739.1 (PTF1 J0113) in a close (a=0.722 ± 0.023 R⊙), short period (P = 0.0933731(3)d) orbit. A quantitative spectral analysis of the sdB yields Te.=29280 ± 720 K, log(g)=5.77 ± 0.09 dex, and log(y)=-2.32 ± 0.12. The circular orbital velocity of the sdB of K1=74.2 ± 1.7 km s-1 is derived from the radial velocity curve. Except for the strong reflection effect, no other light contribution of the companion could be detected. The light curves - recorded with ULTRACAM - were analyzed using the Wilson-Devinney code. We find an inclination angle of i=79.88 ± 0.18∘. Because our first attempts to determine q failed, we calculated large grids of synthetic lightcurves for several mass ratios. Because of degeneracy, good solutions for different mass ratios were found - the one at q = 0.24 is consistent with the sdB's canonical mass (MsdB = 0.47 M⊙). Accordingly, the mass of the companion is M2=0.112 ± 0.003 M⊙. The radii of the two components were also derived: RsdB=0.178 ± 0.006 R⊙ and R2 = 0.158 ± 0.009 R⊙. Thus, the results for the secondary are consistent with an M-dwarf as secondary

  5. THE PHOTOMETRIC STUDY OF A NEGLECTED NEAR CONTACT BINARY: BS VULPECULAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, L.-Y.; Qian, S.-B.; Zejda, M.

    2012-08-15

    We present a detailed study of the close eclipsing binary BS Vulpeculae. Although it is relatively bright (V: 10.9-11.6 mag) and belongs to short-periodic variable stars (P = 0.48 days), it is rather neglected. To perform a thorough period analysis, we collected all available photometric observations that span the time interval of 1898-2010. Observations include archive photographic plate measurements and visually determined eclipse minima timings done in 1979-2003, which were later shown to be biased to accommodate the existing linear ephemeris. Applying our own direct period analysis we found a well-defined shortening of the orbital period of dP/dt = -6.70(17)more » Multiplication-Sign 10{sup -11} = -2.11(6) ms yr{sup -1}, which implies a continual mass flow from the primary to the secondary component. Using the 2003 version of the Wilson-Van Hamme code, our new complete BV(IR){sub C} light curves were analyzed and the physical parameters of the system were derived. We found that BS Vul is a near contact binary system with the primary component filling its critical Roche lobe. The luminosity enhancement on the left shoulder of the secondary minimum shown in the light curves can be explained as a result of a persistent hot spot on the secondary due to the mass transfer from the primary component to the secondary one and heating the facing hemisphere of the secondary component, which is consistent with our result of period analysis. With the period decrease, BS Vul will evolve toward the contact phase. It is another good observational example as predicted by the theory of thermal relaxation oscillations.« less

  6. R Aqr observing campaign

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2016-01-01

    Dr. George Wallerstein (University of Washington) has requested AAVSO coverage of the long period/symbiotic variable R Aquarii beginning immediately in support of high resolution spectroscopic observations planned for 2016 January 19 and 21. Several other astronomers, including Drs. Lee Anne Willson (Iowa State University), Ulisse Munari (INAF, Astronomical Observatory of Padua, Italy), and Fred Walter (Stony Brook University) are studying R Aqr closely and additional spectroscopic and other observations are planned for the near future. R Aqr is both a Mira (M) and a symbiotic (ZAND) - it is a close binary system consisting of a hot star and a late-type star (the Mira), both enveloped in nebulosity. As a result, the very interesting light curve shows not only the Mira pulsation but also complex eclipse behavior as the two stars interact. The period of Mira variation is 387.0 days; the eclipse period is 43.6-44 years. The cause of the eclipse is unknown; several theories h! ave been proposed, including a focused accretion stream, a disk or cloud around the secondary, and a triggered mass loss that produces an opaque cloud. Careful investigation of this upcoming event should help to resolve this question. The last eclipse of R Aqr was in 1978. The next eclipse is predicted for 2022, but may be early. The current behavior of R Aqr suggests that the eclipse, which lasts for several years, may either be beginning or its beginning may be imminent. R Aqr was at minimum in early December 2015 at magnitude V=11.4, and is currently at visual magnitude 11.0. During this phase of the approximately 44-year eclipse cycle, at maximum it may be as bright as V 6.0-6.5 but is not expected to become brighter. Beginning immediately, nightly BVRI CCD and DSLR photometry and visual observations are requested. As R Aqr brightens towards maximum and is in range, PEP observations are also requested. Ongoing spectroscopy over the next several years will be interesting to see as the system evolves throughout the eclipse. Finder charts with sequence may be created using the AAVSO Variable Star Plotter (https://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details.

  7. Variability survey of brightest stars in selected OB associations

    NASA Astrophysics Data System (ADS)

    Laur, Jaan; Kolka, Indrek; Eenmäe, Tõnis; Tuvikene, Taavi; Leedjärv, Laurits

    2017-02-01

    Context. The stellar evolution theory of massive stars remains uncalibrated with high-precision photometric observational data mainly due to a small number of luminous stars that are monitored from space. Automated all-sky surveys have revealed numerous variable stars but most of the luminous stars are often overexposed. Targeted campaigns can improve the time base of photometric data for those objects. Aims: The aim of this investigation is to study the variability of luminous stars at different timescales in young open clusters and OB associations. Methods: We monitored 22 open clusters and associations from 2011 to 2013 using a 0.25-m telescope. Variable stars were detected by comparing the overall light-curve scatter with measurement uncertainties. Variability was analysed by the light curve feature extraction tool FATS. Periods of pulsating stars were determined using the discrete Fourier transform code SigSpec. We then classified the variable stars based on their pulsation periods and available spectral information. Results: We obtained light curves for more than 20 000 sources of which 354 were found to be variable. Amongst them we find 80 eclipsing binaries, 31 α Cyg, 13 β Cep, 62 Be, 16 slowly pulsating B, 7 Cepheid, 1 γ Doradus, 3 Wolf-Rayet and 63 late-type variable stars. Up to 55% of these stars are potential new discoveries as they are not present in the Variable Star Index (VSX) database. We find the cluster membership fraction for variable stars to be 13% with an upper limit of 35%. Variable star catalogue (Tables A.1-A.10) and light curves are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A108

  8. Discovery of two eclipsing X-ray binaries in M 51

    NASA Astrophysics Data System (ADS)

    Wang, Song; Soria, Roberto; Urquhart, Ryan; Liu, Jifeng

    2018-07-01

    We discovered eclipses and dips in two luminous (and highly variable) X-ray sources in M 51. One (CXOM51 J132943.3+471135) is an ultraluminous supersoft source, with a thermal spectrum at a temperature of about 0.1 keV and characteristic blackbody radius of about 104 km. The other (CXOM51 J132946.1+471042) has a two-component spectrum with additional thermal-plasma emission; it approached an X-ray luminosity of 1039 erg s-1 during outbursts in 2005 and 2012. From the timing of three eclipses in a series of Chandra observations, we determine the binary period (52.75 ± 0.63 h) and eclipse fraction (22 ± 0.1 per cent) of CXOM51 J132946.1+471042. We also identify a blue optical counterpart in archival Hubble Space Telescope images, consistent with a massive donor star (mass of ˜20-35 M⊙). By combining the X-ray light-curve parameters with the optical constraints on the donor star, we show that the mass ratio in the system must be M_2/M_1 ≳ 18 and therefore the compact object is most likely a neutron star (exceeding its Eddington limit in outburst). The general significance of our result is that we illustrate one method (applicable to high-inclination sources) of identifying luminous neutron star X-ray binaries, in the absence of X-ray pulsations or phase-resolved optical spectroscopy. Finally, we discuss the different X-ray spectral appearance expected from super-Eddington neutron stars and black holes at high viewing angles.

  9. The Light and Period Variations of the Eclipsing Binary BX Draconis

    NASA Astrophysics Data System (ADS)

    Park, Jang-Ho; Lee, Jae Woo; Kim, Seung-Lee; Lee, Chung-Uk; Jeon, Young-Beom

    2013-02-01

    New CCD photometric observations of BX Dra were carried out on 26 nights during the period from 2009 April to 2010 June. The long-term photometric behaviors of the system are obtained from detailed studies of the period and light variations, based on historical data and our new observations. All available light curves display total eclipses at secondary minima and inverse O'Connell effects with Max I fainter than Max II, which were satisfactorily modeled by adding a slightly time-varying hot spot on the primary star. A total of 87 times of minimum lights spanning over ˜74 yr, including our 22 timing measurements, were used for ephemeris computations. A detailed analysis of the O - C diagram disclosed that the orbital period shows an upward parabola in combination with a sinusoidal variation. The continuous increase of period at a rate of +5.65 × 10-7 d yr-1 is consistent with that calculated from the Wilson-Devinney synthesis code. It can be interpreted as a mass transfer from the secondary star to the primary at a rate of 2.74 × 10-7 M⊙ yr-1, which is one of the largest rates between components of the contact system. The most likely explanation of the sinusoidal variation having a period of 30.2 yr and a semiamplitude of 0.0062 d is a light-travel-time effect due to the existence of a circumbinary object. We suggest that BX Dra is probably a triple system, consisting of a primary star with a spectral type of F0, its secondary component of spectral type F1-2, and an unseen circumbinary object with a minimum mass of M3 = 0.23 M⊙.

  10. DASCH ON KU Cyg: A {approx} 5 YEAR DUST ACCRETION EVENT IN {approx} 1900

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang Sumin; Grindlay, Jonathan; Los, Edward

    2011-09-01

    KU Cyg is an eclipsing binary consisting of an F-type star accreting through a large accretion disk from a K5III red giant. Here we present the discovery of a 5 year dip around 1900 found from its 100 year DASCH light curve. It showed a {approx}0.5 mag slow fading from 1899 to 1903 and brightened back around 1904 on a relatively shorter timescale. The light curve shape of the 1899-1904 fading-brightening event differs from the dust production and dispersion process observed in R Coronae Borealis stars, which usually has a faster fading and slower recovery, and for KU Cyg ismore » probably related to the accretion disk surrounding the F star. The slow fading in KU Cyg is probably caused by increases in dust extinction in the disk, and the subsequent quick brightening may be due to the evaporation of dust transported inward through the disk. The extinction excess which caused the fading may arise from increased mass transfer rate in the system or from dust clump ejections from the K giant.« less

  11. Young and Waltzing Binary Stars

    NASA Astrophysics Data System (ADS)

    2001-10-01

    ADONIS Observes Low-mass Eclipsing System in Orion Summary A series of very detailed images of a binary system of two young stars have been combined into a movie . In merely 3 days, the stars swing around each other. As seen from the earth, they pass in front of each other twice during a full revolution, producing eclipses during which their combined brightness diminishes . A careful analysis of the orbital motions has now made it possible to deduce the masses of the two dancing stars . Both turn out to be about as heavy as our Sun. But while the Sun is about 4500 million years old, these two stars are still in their infancy. They are located some 1500 light-years away in the Orion star-forming region and they probably formed just 10 million years ago . This is the first time such an accurate determination of the stellar masses could be achieved for a young binary system of low-mass stars . The new result provides an important piece of information for our current understanding of how young stars evolve. The observations were obtained by a team of astronomers from Italy and ESO [1] using the ADaptive Optics Near Infrared System (ADONIS) on the 3.6-m telescope at the ESO La Silla Observatory. PR Photo 29a/01 : The RXJ 0529.4+0041 system before primary eclipse PR Photo 29b/01 : The RXJ 0529.4+0041 system at mid-primary eclipse PR Photo 29c/01 : The RXJ 0529.4+0041 system after primary eclipse PR Photo 29d/01 : The RXJ 0529.4+0041 system before secondary eclipse PR Photo 29e/01 : The RXJ 0529.4+0041 system at mid-secondary eclipse PR Photo 29f/01 : The RXJ 0529.4+0041 system after secondary eclipse PR Video Clip 06/01 : Video of the RXJ 0529.4+0041 system Binary stars and stellar masses Since some time, astronomers have noted that most stars seem to form in binary or multiple systems. This is quite fortunate, as the study of binary stars is the only way in which it is possible to measure directly one of the most fundamental quantities of a star, its mass. The mass of a star determines its fate . Massive stars (with masses more than 50 times that of the Sun) lead a glorious, but short life. They are hot and very luminous and exhaust their energy supply in just a few million years. At the other end of the scale, low-mass stars like the Sun are more economical with their resources. Being cooler and dimmer, they are able to shine for billions of years [2]. But although the mass determines the fate of a star, it is not a trivial matter to measure this crucial parameter. In fact, it can only be determined directly if the star happens to be gravitationally bound to another star in a binary stellar system. Observations of the orbital motions of the two stars as they circle each other allows to "weigh" them, and also provide other important information, e.g. about their sizes and temperatures. Orbital motions The understanding of orbital motions has a long history in astronomy. The basic laws of Johannes Kepler (1571-1630) are still used to calculate the masses of orbiting objects, in the solar system as well as in binary stellar systems. However, while the observations of the motion of the nine planets and moons have allowed us to measure quite accurately the masses of objects in our vicinity, the information needed to "weigh" the binary stellar systems is not that easy to obtain. As a result, the mass estimates of the stars in binary systems are often rather uncertain. A main problem is that the individual stars in many binary systems can not be visually separated, even in the best telescopes. The information about the orbit may then come from the motions of the stars, if these are revealed by spectroscopic observations of the combined light (such systems are referred to as "spectroscopic binaries"). If absorption lines from both components are present in the spectrum, the measured wavelength of these double lines will shift periodically back and forth. This is the well-known Doppler effect and it directly reflects the changing velocities of the stars, as they move along their orbits and periodically approach and recede from the observer. Such spectroscopic observations therefore allow to measure the orbital velocities of the stars. It is exactly the same technique that is used to study and weigh extra-solar planets orbiting other stars [3]. However, this method has an important limitation. From the spectroscopical observations alone, it is only possible to deduce limits on the masses, as the inclination of orbits to the line-of-sight is usually unknown. The masses derived in this way (for stars as well as for exoplanets) are therefore only lower limits on the actual masses. Eclipsing Binaries However, fortunate observational circumstances sometimes allow to obtain all information about the stellar orbits. If a binary system is viewed (almost exactly) edge-on, the stars may pass in front of each other from time to time. Astronomers refer to this phenomenon as an "eclipse" and speak about an "eclipsing binary". The effect is similar to a "solar" eclipse as seen on the Earth, whenever the Moon passes in front of the Sun. Like the Moon blocks the sunlight, less light is received from the eclipsed star and thus the combined light from the binary system decreases during the eclipse. The way this happens (astronomers speak about the system's "lightcurve") then provides the additional information about the inclination of the orbit that is needed to determine exactly the stellar masses in a "spectroscopic" binary system. Very accurate values for the stellar diameters and the surface temperatures of the two stars can also be deduced. In short, when a full set of observations is available, it is possible to give a comprehensive description of an eclipsing binary system and its components. Eclipsing, spectroscopic binaries thus represent true cornerstones for the determination of stellar masses , and as such they are fundamental for our understanding of stellar evolution . Rather few such systems are known, but they can also be used to check ("calibrate") other, indirect methods to derive stellar parameters. It is on this background that the first discovery of an eclipsing binary system with two young, solar-like stars is of great interest. The Orion Binary Young stars are not so easy to find. One way is to look for their high-energy emission from a hot corona, created by their enhanced magnetic activity. The object RXJ 0529.4+0041 was first discovered in this way by the X-ray satellite ROSAT. Subsequent optical spectroscopy showed this object to be a young, low-mass spectroscopic binary system. And when a team of astronomers [1] used a 91-cm telescope at the Serra La Nave observing station on the slope of the Etna volcano (Sicily) to monitor the light curve, they also discovered that this system undergoes eclipses. All data confirm that RXJ 0529.4+0041 is located in the Orion Nebula at a distance of about 1500 light-years. This is one of the nearest star-forming regions and almost all stars in this area are quite young. Spectroscopic observations soon confirmed that the binary system was no exception. In particular, fairly strong absorption lines of the fragile element Lithium [4] were detected in both of the binary stars. As Lithium is known to be rapidly destroyed in stars, the finding of a relatively high content of this element implies that the stars must indeed be young. They were probably formed no more than 10 million years ago, i.e., in astronomical terms, they are "infant" stars . High-resolution spectroscopic observations, mostly with the CORALIE spectrometer on the Swiss 1.2-m Leonard Euler telescope at the ESO La Silla Observatory , were used to determine the radial velocities of the stars. From these, a first determination of the orbital and stellar parameters was possible. The orbital period turned out to be short. The two stars swing around each other in just 3 days. This also means they must be very close to each other (but still entirely detached from each other) - the detailed analysis showed that the distance between the two components is only 12 solar radii, or a little more than 8 million kilometres. If you would image yourself standing on the surface of the smaller star, the disk of the companion star would extend some 15° in the sky. This is 30 times larger than our view of the Sun! ADONIS observations The short orbital period and the even shorter duration of the eclipses, only 6 hours, posed a real challenge for the observers. They decided to obtain further high-angular resolution observations with the ADaptive Optics Near Infrared System (ADONIS) on the 3.6-m telescope at the ESO La Silla Observatory. Most fortunately, early ADONIS images demonstrated that this binary stellar system has a third companion, sufficiently far away from the two others to be seen as a separate star by ADONIS. This unexpected bonus made it possible to monitor the light changes of the binary system in great detail, by using the third companion as a convenient "reference" star. In December 2000 and January 2001, detailed ADONIS images of the RXJ 0529.4+0041 system were obtained in three near-infrared filters (the J-, H- and K-bands). ADONIS is equipped with the SHARP II camera and eliminates the adverse image-smearing effects of the atmospheric turbulence in real-time by means of a computer-controlled flexible mirror. As expected, the new, extremely sharp images of RXJ 0529.4+0041 greatly improved the achievable photometric precision. In particular, as the image of the third component was perfectly separated from the others, it did not "contaminate" the derived light curve of the eclipsing binary. The movie Primary eclipse Secondary eclipse ESO PR Photo 29a/01 ESO PR Photo 29a/01 [Preview - JPEG: 375 x 400 pix - 87k] [Normal - JPEG: 750 x 800 pix - 240k] ESO PR Photo 29d/01 ESO PR Photo 29d/01 [Preview - JPEG: 375 x 400 pix - 112k] [Normal - JPEG: 750 x 800 pix - 272k] ESO PR Photo 29b/01 ESO PR Photo 29b/01 [Preview - JPEG: 375 x 400 pix - 90k] [Normal - JPEG: 750 x 800 pix - 240k] ESO PR Photo 29e/01 ESO PR Photo 29e/01 [Preview - JPEG: 375 x 400 pix - 112k] [Normal - JPEG: 750 x 800 pix - 280k] ESO PR Photo 29c/01 ESO PR Photo 29c/01 [Preview - JPEG: 375 x 400 pix - 94k] [Normal - JPEG: 750 x 800 pix - 256k] ESO PR Photo 29f/01 ESO PR Photo 29f/01 [Preview - JPEG: 375 x 400 pix - 112k] [Normal - JPEG: 750 x 800 pix - 280k] Caption : Six individual frames from the ADONIS movie of the RXJ 0529.4+0041 eclipsing, binary stellar system, corresponding to the time around the "primary" and "secondary" eclipses, respectively. For a detailed explanation, read the text. ESO PR Video Clip 06/01 [512 x 448 pix MPEG] ESO PR Video Clip 06/01 (150 frames/00:06 min) [MPEG Video; 512 x 448 pix; 871 k] ESO Video Clip 06/01 shows the ADONIS images of the RXJ 0529.4+0041 eclipsing, binary stellar system, as recorded in three near-infrared filters (J, H, and K; to the left), with the observed light-curves (top) and a graphical representation of the system during a full orbit, as it would look like to a nearby observer. More details in the text The ADONIS images have been combined into an instructive movie ( PR Video Clip 06/01 ). The left-hand panel shows the eclipsing binary system (it is the upper right and brighter of the two objects; the light from the two stars merge into a single point of light) and the well visible third component (lower left), as they were recorded by ADONIS in the three different filter bands. As the two stars in the binary system move around each other in their orbits, eclipses occur and the brightness of the binary system clearly changes - it may help to play the movie several times to see this more clearly. For reference, the Universal Time (UT) and the orbital phase (increasing from 0 to 1 during a full revolution) are continuously displayed in the movie. The right-hand panel shows a build-up of the observed light curves for the binary system. It represents the brightness difference between binary system and the third object that shines with constant light. Both the primary, deeper and the secondary, less deep eclipses are well visible. The primary eclipse was observed on December 8, 2000 and is here displayed at phase zero. During this minimum, the brightness of the binary system decreases by about 45% (0.4 magnitudes). The primary eclipse takes place when the smaller component blocks the light from the brighter and hotter star. The orbital motions of the two stars are illustrated by a computer-generated, animated sequence. The secondary eclipse (at phase 0.5) dims the light from the system less; it occurs when the larger and brighter star almost completely (about 90%) hides its smaller companion. The second minimum was recorded on January 12, 2001. None of the eclipses is therefore "total". The stellar parameters A detailed analysis of these high-precision light curves allowed the astronomers to determine the orbits and hence, to perform an extremely accurate measurement of the fundamental stellar parameters for the two young stars of RXJ 0529.4+0041 . The star that is eclipsed during the primary eclipse (the "primary") is the more massive and also the hotter and brighter of the two stars. Its mass is 1.3 times that of our Sun, i.e., about 2.6 10 30 kg [2]. Its diameter is nearly 1.6 times larger than that of our Sun (i.e., about 2.2 million km) and the surface temperature is found to be a little more than 5000 °C, or a few hundred degrees cooler than the Sun. The "secondary" star is slightly lighter than our Sun. Its weight is about 90% of that of the Sun (1.8 10 30 kg) and the diameter is 20% larger (about 1.7 million km), while the surface temperature is 4000 degrees. In fact, these two stars are still so young that most of their energy comes from the contraction process - the first phase during which they are formed from an interstellar cloud by this process is not yet over and they are still getting smaller. It is by this process that collapsing stars heat up enough to start nuclear burning. When infant stars in RXJ 0529.4+0041 eventually reach middle-age, their sizes will most likely also be quite similar to that of the Sun. The significance of RXJ 0529.4+0041 Few systems are known for which such precise determinations of the stellar parameters have ever been possible - and this binary system represents the first case where both the components are such young stars . A detailed comparison of the derived stellar parameters with current models for the evolution of young stars shows fairly good agreement for the primary component. However, there are certain discrepancies in the case of the secondary component, showing that the current models for the early stages of lower-mass stars must still be refined. More information Part of the results described in this press release are described in more detail in a scientific article ( "RXJ 0529.4+0041: a low-mass pre-main sequence eclipsing-spectroscopic binary" by E. Covino et al.) that has been published in the European research journal Astronomy & Astrophysics (Vol. 361, p. 49). Notes [1] The team consists of Elvira Covino (Principal Investigator), Juan M. Alcalá , Rosita Paladino (all Osservatorio Astronomico di Capodimonte, Napoli, Italy), Antonio Frasca , Santo Catalano , Ettore Marilli (all Osservatorio Astrofisico di Catania, Italy) and Michael Sterzik (ESO-Chile). [2] One solar mass corresponds to 1.99 10 30 kg, or about 330,000 times the mass of the Earth. The Sun is about 4500 million years old and its total lifetime is of the order of 12-13,000 million years. It is an interesting thought that if the Sun would have been somewhat heavier, its total lifetime might have been too short for living organisms to develop on the Earth. In fact, the biological evolution that ultimately lead to the emergence of human beings apparently lasted about 4 billion years; this corresponds to the total lifetime of a star that is only about 20 % heavier than the Sun. Note also the current ESO-ESA CERN educational programme on "Life in the Universe". [3] In the case of exoplanets, the planet itself is not visible, but the spectral lines from the star are seen to wobble due to the gravitational influence of the planet, cf. ESO PR 07/01. [4] Several ESO Press Releases concern observations of the element Lithium in stars, e.g., PR 03/99 (in a giant star), PR 08/00 (in a metal-poor star) and PR 10/01 (from a "swallowed" exoplanet).

  12. The Effects of Barycentric and Asymmetric Transverse Velocities on Eclipse and Transit Times

    NASA Astrophysics Data System (ADS)

    Conroy, Kyle E.; Prša, Andrej; Horvat, Martin; Stassun, Keivan G.

    2018-02-01

    It has long been recognized that the finite speed of light can affect the observed time of an event. For example, as a source moves radially toward or away from an observer, the path length and therefore the light travel time to the observer decreases or increases, causing the event to appear earlier or later than otherwise expected, respectively. This light travel time effect has been applied to transits and eclipses for a variety of purposes, including studies of eclipse timing variations and transit timing variations that reveal the presence of additional bodies in the system. Here we highlight another non-relativistic effect on eclipse or transit times arising from the finite speed of light—caused by an asymmetry in the transverse velocity of the two eclipsing objects, relative to the observer. This asymmetry can be due to a non-unity mass ratio or to the presence of external barycentric motion. Although usually constant, this barycentric and asymmetric transverse velocity (BATV) effect can vary between sequential eclipses if either the path length between the two objects or the barycentric transverse velocity varies in time. We discuss this BATV effect and estimate its magnitude for both time-dependent and time-independent cases. For the time-dependent cases, we consider binaries that experience a change in orbital inclination, eccentric systems with and without apsidal motion, and hierarchical triple systems. We also consider the time-independent case which, by affecting the primary and secondary eclipses differently, can influence the inferred system parameters, such as the orbital eccentricity.

  13. The massive multiple system HD 64315

    NASA Astrophysics Data System (ADS)

    Lorenzo, J.; Simón-Díaz, S.; Negueruela, I.; Vilardell, F.; Garcia, M.; Evans, C. J.; Montes, D.

    2017-10-01

    Context. The O6 Vn star HD 64315 is believed to belong to the star-forming region known as NGC 2467, but previous distance estimates do not support this association. Moreover, it has been identified as a spectroscopic binary, but existing data support contradictory values for its orbital period. Aims: We explore the multiple nature of this star with the aim of determining its distance, and understanding its connection to NGC 2467. Methods: A total of 52 high-resolution spectra have been gathered over a decade. We use their analysis, in combination with the photometric data from All Sky Automated Survey and Hipparcos catalogues, to conclude that HD 64315 is composed of at least two spectroscopic binaries, one of which is an eclipsing binary. We have developed our own program to fit four components to the combined line shapes. Once the four radial velocities were derived, we obtained a model to fit the radial-velocity curves using the Spectroscopic Binary Orbit Program (SBOP). We then implemented the radial velocities of the eclipsing binary and the light curves in the Wilson-Devinney code iteratively to derive stellar parameters for its components. We were also able to analyse the non-eclipsing binary, and to derive minimum masses for its components which dominate the system flux. Results: HD 64315 contains two binary systems, one of which is an eclipsing binary. The two binaries are separated by 0.09 arcsec (or 500 AU) if the most likely distance to the system, 5 kpc, is considered. The presence of fainter companions is not excluded by current observations. The non-eclipsing binary (HD 64315 AaAb) has a period of 2.70962901 ± 0.00000021 d. Its components are hotter than those of the eclipsing binary, and dominate the appearance of the system. The eclipsing binary (HD 64315 BaBb) has a shorter period of 1.0189569 ± 0.0000008 d. We derive masses of 14.6 ± 2.3 M⊙ for both components of the BaBb system. They are almost identical; both stars are overfilling their respective Roche lobes, and share a common envelope in an overcontact configuration. The non-eclipsing binary is a detached system composed of two stars with spectral types around O6 V with minimum masses of 10.8 M⊙ and 10.2 M⊙, and likely masses ≈ 30 M⊙. Conclusions: HD 64315 provides a cautionary tale about high-mass star isolation and multiplicity. Its total mass is likely above 90M⊙, but it seems to have formed without an accompanying cluster. It contains one the most massive overcontact binaries known, a likely merger progenitor in a very wide multiple system. Based on observations obtained at the European Southern Observatory under programmes 078.D-0665(A), 082-D.0136 and 093.A-9001(A). Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  14. The Nucleus of Active Asteroid 311P/(2013 P5) PANSTARRS

    NASA Astrophysics Data System (ADS)

    Jewitt, David; Weaver, Harold; Mutchler, Max; Li, Jing; Agarwal, Jessica; Larson, Stephen

    2018-06-01

    The unique inner-belt asteroid 311P/PANSTARRS (formerly P/2013 P5) is notable for its sporadic, comet-like ejection of dust in nine distinct epochs spread over ∼250 days in 2013. This curious behavior has been interpreted as the product of localized, equatorward landsliding from the surface of an asteroid rotating at the brink of instability. We obtained new Hubble Space Telescope observations to directly measure the nucleus and to search for evidence of its rapid rotation. We find a nucleus with mid-light absolute magnitude H V = 19.14 ± 0.02, corresponding to an equal-area circle with radius 190 ± 30 m (assuming geometric albedo p V = 0.29). However, instead of providing photometric evidence for rapid nucleus rotation, our data set a lower limit to the light-curve period, P ≥ 5.4 hr. The dominant feature of the light curve is a V-shaped minimum, ∼0.3 mag deep, which is suggestive of an eclipsing binary. Under this interpretation, the time-series data are consistent with a secondary/primary mass ratio, m s /m p ∼ 1:6, a ratio of separation/primary radius, r/r p ∼ 4 and an orbit period ∼0.8 days. These properties lie within the range of other asteroid binaries that are thought to be formed by rotational breakup. While the light-curve period is long, centripetal dust ejection is still possible if one or both components rotate rapidly (≲2 hr) and have small light-curve variation because of azimuthal symmetry. Indeed, radar observations of asteroids in critical rotation reveal “muffin-shaped” morphologies, which are closely azimuthally symmetric and which show minimal light curves. Our data are consistent with 311P being a close binary in which one or both components rotates near the centripetal limit. The mass loss in 2013 suggests that breakup occurred recently and could even be on-going. A search for fragments that might have been recently ejected beyond the Hill sphere reveals none larger than effective radius r e ∼ 10 m.

  15. Accurate Masses, Radii, and Temperatures for the Eclipsing Binary V2154 Cyg, and Tests of Stellar Evolution Models

    NASA Astrophysics Data System (ADS)

    Bright, Jane; Torres, Guillermo

    2018-01-01

    We report new spectroscopic observations of the F-type triple system V2154 Cyg, in which two of the stars form an eclipsing binary with a period of 2.6306303 ± 0.0000038 days. We combine the results from our spectroscopic analysis with published light curves in the uvby Strömgren passbands to derive the first reported absolute dimensions of the stars in the eclipsing binary. The masses and radii are measured with high accuracy to better than 1.5% precision. For the primary and secondary respectively, we find that the masses are 1.269 ± 0.017 M⊙ and 0.7542 ± 0.0059 M⊙, the radii are 1.477 ± 0.012 R⊙ and 0.7232 ± 0.0091R⊙, and the temperatures are 6770 ± 150 K and 5020 ± 150 K. Current models of stellar evolution agree with the measured properties of the primary, but the secondary is larger than predicted. This may be due to activity in the secondary, as has been shown for other systems with a star of similar mass with this same discrepancy.The SAO REU program is funded by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant AST-1659473, and by the Smithsonian Institution. GT acknowledges partial support for this work from NSF grant AST-1509375.

  16. Atmospheric Retrievals of HAT-P-16b and WASP-11b/HAT-P-10b

    NASA Astrophysics Data System (ADS)

    McIntyre, Kathleen; Harrington, Joseph; Challener, Ryan; Lenius, Maria; Hartman, Joel D.; Bakos, Gaspar A.; Blecic, Jasmina; Cubillos, Patricio E.; Cameron, Andrew

    2018-01-01

    We report Bayesian atmospheric retrievals performed on the exoplanets HAT-P-16b and WASP-11b/HAT-P-10b. HAT-P-16b is a hot (equilibrium temperature 1626 ± 40 K, assuming zero Bond albedo and efficient energy redistribution), 4.19 ± 0.09 Jupiter-mass exoplanet orbiting an F8 star every 2.775960 ± 0.000003 days (Buchhave et al 2010). WASP-11b/HAT-P-10b is a cooler (1020 ± 17 K), 0.487 ± 0.018 Jupiter-mass exoplanet orbiting a K3 star every 3.7224747 ± 0.0000065 days (Bakos et al. 2009, co-discovered by West et al. 2008). We observed secondary eclipses of both planets using the 3.6 μm and 4.5 μm channels of the Spitzer Space Telescope's Infrared Array Camera (program ID 60003). We applied our Photometry for Orbits, Eclipses, and Transits (POET) code to produce normalized eclipse light curves, and our Bayesian Atmospheric Radiative Transfer (BART) code to constrain the temperature-pressure profiles and atmospheric molecular abundances of the two planets. Spitzer is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G.

  17. You're Blocking the Light

    ERIC Educational Resources Information Center

    Riddle, Bob

    2005-01-01

    Eclipses typically occur in pairs twice each year, and the second pair for this year will be this month, starting with an annular solar eclipse on October 3, and two weeks later a partial lunar eclipse on October 17. The path of annularity will travel from the North Atlantic Ocean to Spain, where the annular phase will last for more than four…

  18. Cassini/VIMS observation of an Io post-eclipse brightening event

    USGS Publications Warehouse

    Bellucci, G.; D'Aversa, E.; Formisano, V.; Cruikshank, D.; Nelson, R.M.; Clark, R.N.; Baines, K.H.; Matson, D.; Brown, R.H.; McCord, T.B.; Buratti, B.J.; Nicholson, P.D.

    2004-01-01

    During the Cassini-Jupiter flyby, VIMS observed Io at different phase angles, both in full sunlight and in eclipse. By using the sunlight measurements, we were able to produce phase curves in the visual through all the near infrared wavelengths covered by the VIMS instrument (0.85-5.1 ??m). The phase angle spanned from ???2?? to ???120??. The measurements, done just after Io emerged from Jupiter's shadow, show an increase of about 15% in Io's reflectance with respect to what would be predicted by the phase curve. This behavior is observed at wavelengths >1.2 ??m. Moreover, just after emergence from eclipse an increase of about 25% is observed in the depth of SO2 frost bands at 4.07 and 4.35 ??m. At 0.879

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manzoori, Davood

    Solutions of standard VR light curves for the eclipsing binary RT And were obtained using the PHOEBE program (ver. 0.3a). Absolute parameters of the stellar components were then determined, enabling them to be positioned on the mass-luminosity diagram. Times of minima data ({sup O} - C curve) were analyzed using the method of Kalimeris et al. A cyclic variation in the orbital period and brightness, with timescales of about 11.89 and 12.50 yr were found, respectively. This is associated with a magnetic activity cycle modulating the orbital period of RT And via the Applegate mechanism. To check the consistency ofmore » the Applegate model, we have estimated some related parameters of the RT And system. The calculated parameters were in accordance with those estimated by Applegate for other similar systems, except B, the subsurface magnetic field of which shows a rather high value for RT And.« less

  20. THE BERLIN EXOPLANET SEARCH TELESCOPE II CATALOG OF VARIABLE STARS. I. CHARACTERIZATION OF THREE SOUTHERN TARGET FIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fruth, T.; Cabrera, J.; Csizmadia, Sz.

    2013-11-01

    A photometric survey of three southern target fields with BEST II yielded the detection of 2406 previously unknown variable stars and an additional 617 stars with suspected variability. This study presents a catalog including their coordinates, magnitudes, light curves, ephemerides, amplitudes, and type of variability. In addition, the variability of 17 known objects is confirmed, thus validating the results. The catalog contains a number of known and new variables that are of interest for further astrophysical investigations, in order to, e.g., search for additional bodies in eclipsing binary systems, or to test stellar interior models. Altogether, 209,070 stars were monitoredmore » with BEST II during a total of 128 nights in 2009/2010. The overall variability fraction of 1.2%-1.5% in these target fields is well comparable to similar ground-based photometric surveys. Within the main magnitude range of R in [11, 17], we identify 0.67(3)% of all stars to be eclipsing binaries, which indicates a completeness of about one third for this particular type in comparison to space surveys.« less

  1. The first multi-color photometric study of the short-period contact Eclipsing Binary DE Lyn

    NASA Astrophysics Data System (ADS)

    Hashimoto, Amanda; Zhang, Liyun; Han, Xianming L.; Hongpeng, Lu; Wang, Daimei

    2016-01-01

    We observed the contact eclipsing binary of DE Lyn using SARA 0.9 meter telescope at Kitt Peak National Observatory on February 9, 11, and 27, 2015. In this study, we obtained the first full phase coverage BVRI CCD light curves, analyzed the orbital period variation, and extracted the orbital parameters. We calculated the linear and quadratic ephemeris, and thereby found that DE Lyn has a decreasing orbital period rate of -5.1(±0.4)×10-7 days/year. We believe this decreasing trend is the result of the more massive component (secondary) transferring mass to the less massive component (primary), and we obtained a mass transfer rate of dm/dt = 7.06×10-7M⊙/year. By using the updated Wilson & Devinney program, we found the orbital parameters of DE Lyn, which, in turn, enabled us to calculate the low degree of contact factor as f = 9.02(± 0.01)%. Its degree of contact will continue to increase and will evolve into an over-contact system.

  2. The first multi-color photometric study of the short-period contact eclipsing binary DE Lyn

    NASA Astrophysics Data System (ADS)

    Hashimoto, Amanda; Zhang, Liyun; Han, Xianming L.; Lu, Hongpeng; Wang, Daimei

    2016-05-01

    We observed the contact eclipsing binary of DE Lyn using SARA 0.9 m telescope at Kitt Peak National Observatory on February 9, 11, and 27, 2015. In this study, we obtained the first full phase coverage BVRI CCD light curves, analyzed the orbital period variation, and extracted the orbital parameters. We calculated the linear and quadratic ephemeris, and thereby found that DE Lyn has a decreasing orbital period rate of - 5.1(± 0.4) × 10-7 days/year. We assume this decreasing trend is the result of the more massive component (secondary) transferring mass to the less massive component (primary), and we obtained a mass transfer rate of dm / dt = 7.06 ×10-7M⊙ /year . By using the updated Wilson & Devinney program, we found the orbital parameters of DE Lyn, which, in turn, enabled us to calculate the low degree of contact factor as f = 9.02(± 0.01)%. In the future, its degree of contact will continue to increase and will evolve into an over-contact system.

  3. Absolute parameters of southern detached eclipsing binary: HD 53570

    NASA Astrophysics Data System (ADS)

    Sürgit, D.

    2018-05-01

    In this study, we conducted the first analysis of spectroscopic and photometric observations of the eclipsing binary star HD 53570. Spectroscopic observations of HD 53570 were made at the Sutherland Station of the South African Astronomical Observatory in 2013 and 2014. The radial velocities of the components were determined using the cross-correlation technique. The spectroscopic mass ratio obtained for the system was 1.13 ( ± 0.07). The All Sky Automated Survey V light curve of HD 53570 was analyzed using the Wilson-Devinney code combined with the Monte Carlo search method. The final model showed that HD 53570 has a detached configuration. The mass and radii of the primary and secondary components of HD 53570 were derived as 1.06 ( ± 0.07) M⊙, 1.20 ( ± 0.16) M⊙, and 1.42 ( ± 0.14) R⊙, 2.07 ( ± 0.16) R⊙, respectively. The distance of HD 53570 was computed as 248 ( ± 38) pc considering interstellar extinction. The evolutionary status of the component stars was also investigated using Geneva evolutionary models.

  4. The first orbital parameters and period variation of the short-period eclipsing binary AQ Boo

    NASA Astrophysics Data System (ADS)

    Wang, Shuai; Zhang, Liyun; Pi, Qingfeng; Han, Xianming L.; Zhang, Xiliang; Lu, Hongpeng; Wang, Daimei; Li, TongAn

    2016-10-01

    We obtained the first VRI CCD light curves of the short-period contact eclipsing binary AQ Boo, which was observed on March 22 and April 19 in 2014 at Xinglong station of National Astronomical Observatories, and on January 20, 21 and February 28 in 2015 at Kunming station of Yunnan Observatories of Chinese Academy of Sciences, China. Using our six newly obtained minima and the minima that other authors obtained previously, we revised the ephemeris of AQ Boo. By fitting the O-C (observed minus calculated) values of the minima, the orbital period of AQ Boo shows a decreasing tendency P˙ = - 1.47(0.17) ×10-7 days/year. We interpret the phenomenon by mass transfer from the secondary (more massive) component to the primary (less massive) one. By using the updated Wilson & Devinney program, we also derived the photometric orbital parameters of AQ Boo for the first time. We conclude that AQ Boo is a near contact binary with a low contact factor of 14.43%, and will become an over-contact system as the mass transfer continues.

  5. Eclipsing Binaries from the Kepler Mission

    NASA Technical Reports Server (NTRS)

    Koch, David; Borucki, William; Lissauer, J.; Basri, Gibor; Brown, Timothy; Caldwell, Douglas; Cochran, William; Jenkins, Jon; Dunham, Edward; Gautier, Nick

    2005-01-01

    The Kepler Mission is a photometric space mission that will continuously observe a single 100 sq deg field of view (FOV) of greater than 100,000 stars in the Cygnus-Lyra region for 4 or more years with a precision of 14 ppm (R=12). The primary goal of the mission is to detect Earth-size planets in the habitable zone of solar-like stars. In the process, many eclipsing binaries (EB) will also be detected. Prior to launch, the stellar characteristics will have been detennined for all the stars in the FOV with R<16. As part of the verification process, stars with transits <5% will need to have follow-up radial velocity observations performed to determine the component masses and thereby separate transits caused by stellar companions from those caused by planets. The result will be a rich database on EBs. The community will have access to the archive for uses such as for EB modeling of the high-precision light curves. A guest observer program is also planned for objects not already on the target list.

  6. Physical Properties of the LMC Eclipsing Binary Stars

    NASA Astrophysics Data System (ADS)

    Prsa, Andrej; Devinney, E. J.; Guinan, E. F.; Engle, S. G.; DeGeorge, M.

    2009-01-01

    To date, three independent studies have devised an automatic procedure to analyse and extract the principal parameters of 2581 detached eclipsing binary stars from the OGLE photometric survey of the Large Magellanic Cloud (LMC): Devor (2005), Tamuz et al. (2006), and Prsa et al. (2008). For time efficiency, Devor used a simple model of two spherical, limb-darkened stars without tidal or reflection physics. Tamuz et al.'s approach employs a more realistic EBOP model, which is still limited in handling proximity physics. Our study used a back-propagating neural network that was trained on the light curves computed by a modern Wilson-Devinney code. The three approaches are confronted and correlations in the results are sought that indicate the degree of reliability of the obtained results. A database of solutions consistent across all three studies is presented. We assess the suitability of each method for other morphology types (i.e. semi-detached and overcontact binaries) and we overview the practical limitations of these methods for the upcoming survey data. This research is supported by NFS/RUI Grant No. AST-05-07542, which we gratefully acknowledge.

  7. Cartographie des disques

    NASA Astrophysics Data System (ADS)

    Hameury, Jean-Marie

    2001-01-01

    Two techniques are frequently used to produce images of the accretion disc in an eclipsing binary: eclipse mapping and Doppler tomography. From the light curve, one can deduce the radial distribution of the effective temperature, assuming axial symmetry. On the other hand, from the variation of the line profile one can reconstruct an image in the velocity space, which can be converted into a real image if one knows the kinematics of the system. Deux techniques sont couramment utilisées pour obtenir des images des disques dans les systèmes binaires à éclipses. En utilisant la courbe de lumière, on peut remonter à la distribution radiale de la brillance de surface, en supposant que celle-ci a une symètrie axiale. D'autre part, les profils de raies renseignent sur la distribution de vitesse des régions émissives leur variation temporelle permet de réaliser une image dans l'espace des vitesses, que l'on peut ensuite transformer en carte dans l'espace (x,y) si on connaît la cinématique du système.

  8. High precision ground-based measurements of solar diameter in support of PICARD mission

    NASA Astrophysics Data System (ADS)

    Sigismondi, Costantino

    2011-12-01

    The measurement of the solar diameter is introduced in the wider framework of solar variability and of the influences of the Sun upon the Earth's climate. Ancient eclipses and planetary transits would permit to extend the knowledge of the solar irradiance back to three centuries, through the parameter W=dLogR/dLogL. The method of Baily's beads timing during eclipses is discussed, and a significant improvement with respect to the last 40 years has been obtained by reconstructing the Limb Darkening Function's inflexion point from their light curve and the corresponding lunar valleys' profiles. The case of the Jan 15, 2010 annular eclipse has been studied in detail, as well as the last two transits of Venus. The atlas of Baily's beads, realized with worldwide contributions by IOTA members is presented along with the solar diameter during the eclipse of 2006. The transition between the photographic atlas of the lunar limb (Watts, 1963) and the laser-altimeter map made by the Kaguya lunar probe in 2009 has been followed. The other method for the accurate measurement of the solar diameter alternative to the PICARD / PICARD-sol mission is the drift-scan method used either by the solar astrolabes either by larger telescopes. The observatories of Locarno and Paris have started an observational program of the Sun with this method with encouraging results. For the first time an image motion of the whole Sun has been detected at frequencies of 1/100 Hz. This may start explain the puzzling results of the observational campaigns made in Greenwich and Rome from 1850 to 1955. The meridian line of Santa Maria degli Angeli in Rome is a giant pinhole telescope and it permits to introduce didactically almost all the arguments of classical astrometry here presented. The support to the PICARD mission continues with the analyses of the transit of Venus and the total eclipse of 2012.

  9. A Photometric Variability Survey of Field K and M Dwarf Stars with HATNet

    NASA Astrophysics Data System (ADS)

    Hartman, J. D.; Bakos, G. Á.; Noyes, R. W.; Sipőcz, B.; Kovács, G.; Mazeh, T.; Shporer, A.; Pál, A.

    2011-05-01

    Using light curves from the HATNet survey for transiting extrasolar planets we investigate the optical broadband photometric variability of a sample of 27, 560 field K and M dwarfs selected by color and proper motion (V - K >~ 3.0, μ > 30 mas yr-1, plus additional cuts in J - H versus H - KS and on the reduced proper motion). We search the light curves for periodic variations and for large-amplitude, long-duration flare events. A total of 2120 stars exhibit potential variability, including 95 stars with eclipses and 60 stars with flares. Based on a visual inspection of these light curves and an automated blending classification, we select 1568 stars, including 78 eclipsing binaries (EBs), as secure variable star detections that are not obvious blends. We estimate that a further ~26% of these stars may be blends with fainter variables, though most of these blends are likely to be among the hotter stars in our sample. We find that only 38 of the 1568 stars, including five of the EBs, have previously been identified as variables or are blended with previously identified variables. One of the newly identified EBs is 1RXS J154727.5+450803, a known P = 3.55 day, late M-dwarf SB2 system, for which we derive preliminary estimates for the component masses and radii of M 1 = M 2 = 0.258 ± 0.008 M sun and R 1 = R 2 = 0.289 ± 0.007 R sun. The radii of the component stars are larger than theoretical expectations if the system is older than ~200 Myr. The majority of the variables are heavily spotted BY Dra-type stars for which we determine rotation periods. Using this sample, we investigate the relations between period, color, age, and activity measures, including optical flaring, for K and M dwarfs, finding that many of the well-established relations for F, G, and K dwarfs continue into the M dwarf regime. We find that the fraction of stars that is variable with peak-to-peak amplitudes greater than 0.01 mag increases exponentially with the V - KS color such that approximately half of field dwarfs in the solar neighborhood with M <~ 0.2 M sun are variable at this level. Our data hint at a change in the rotation-activity-age connection for stars with M <~ 0.25 M sun.

  10. A modern study of HD 166734: a massive supergiant system

    NASA Astrophysics Data System (ADS)

    Mahy, L.; Damerdji, Y.; Gosset, E.; Nitschelm, C.; Eenens, P.; Sana, H.; Klotz, A.

    2017-11-01

    Aims: HD 166734 is an eccentric eclipsing binary system composed of two supergiant O-type stars, orbiting with a 34.5-day period. In this rare configuration for such stars, the two objects mainly evolve independently, following single-star evolution so far. This system provides a chance to study the individual parameters of two supergiant massive stars and to derive their real masses. Methods: An intensive monitoring was dedicated to HD 166734. We analyzed mid- and high-resolution optical spectra to constrain the orbital parameters of this system. We also studied its light curve for the first time, obtained in the VRI filters. Finally, we disentangled the spectra of the two stars and modeled them with the CMFGEN atmosphere code in order to determine the individual physical parameters. Results: HD 166734 is a O7.5If+O9I(f) binary. We confirm its orbital period but we revise the other orbital parameters. In comparison to what we found in the literature, the system is more eccentric and, now, the hottest and the most luminous component is also the most massive one. The light curve exhibits only one eclipse and its analysis indicates an inclination of 63.0° ± 2.7°. The photometric analysis provides us with a good estimation of the luminosities of the stars, and therefore their exact positions in the Hertzsprung-Russell diagram. The evolutionary and the spectroscopic masses show good agreement with the dynamical masses of 39.5 M⊙ for the primary and 33.5 M⊙ for the secondary, within the uncertainties. The two components are both enriched in helium and in nitrogen and depleted in carbon. In addition, the primary also shows a depletion in oxygen. Their surface abundances are however not different from those derived from single supergiant stars, yielding, for both components, an evolution similar to that of single stars. Based on observations collected at the European Southern Observatory (La Silla, Chile) with FEROS and TAROT and on data collected at the San Pedro Mártir observatory (Mexico).The reduced spectra and the light curves are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/607/A96

  11. Lighting Condition Analysis for Mars' Moon Phobos

    NASA Technical Reports Server (NTRS)

    Li, Zu Qun; de Carufel, Guy; Crues, Edwin Z.; Bielski, Paul

    2016-01-01

    This study used high fidelity computer simulation to investigate the lighting conditions, specifically the solar radiation flux over the surface, on Phobos. Ephemeris data from the Jet Propulsion Laboratory (JPL) DE405 model was used to model the state of the Sun, Earth, Moon, and Mars. An occultation model was developed to simulate Phobos' self-shadowing and its solar eclipses by Mars. The propagated Phobos state was compared with data from JPL's Horizon system to ensure the accuracy of the result. Results for Phobos lighting conditions over one Martian year are presented, which include the duration of solar eclipses, average solar radiation intensity, surface exposure time, and radiant exposure for both sun tracking and fixed solar arrays. The results show that: Phobos' solar eclipse time varies throughout the Martian year, with longer eclipse durations during the Martian northern spring and fall seasons and no eclipses during the Martian northern summer and winter seasons; solar radiation intensity is close to minimum in late spring and close to maximum in late fall; exposure time per orbit is relatively constant over the surface during the spring and fall but varies with latitude during the summer and winter; and Sun tracking solar arrays generate more energy than a fixed solar array. A usage example of the result is also present in this paper to demonstrate the utility.

  12. V571 Lyr is a Multiple System (Abstract)

    NASA Astrophysics Data System (ADS)

    Billings, G.

    2016-12-01

    (Abstract only) V571 Lyr (GSC 3116-1047) was discovered by the ROTSE survey to be an EA-type eclipsing binary with 1.25-day period. Primary and secondary eclipses are very similar, with depth V = 0.58 magnitude. In 2000, the then-active AAVSO "EB Team" started observing it, to refine the period estimate. A few eclipses were readily found, and a revised period computed. Subsequent eclipses diverged from the revised linear ephemeris by more than the expected amount of error, so observations were continued. Now, more than 100 time-of-minimum observations, over 15 years, clearly show that V571 Lyr is a triple system, with a third-body orbital period of 5.013 ± 0.008 years, and eccentricity of 0.74 ± 0.03. Our orbit fit also yields a period for the close pair, of 1.252 596 66(6) days. After removing the third-body light-time effect, the eclipse-time residuals still show larger than expected scatter, and possibly non-randomness, perhaps due to significant starspots and/or additional bodies in the system. The color of the system is B-V = 0.52 ± 0.01, corresponding to spectral type F7V, and we obtained a spectrum that we classify as F7V ± 2. The mass function computed from the fitted third-body orbit yields a minimum mass of 1.0 ± 0.1 Msolar, corresponding to a spectral range of F9V to G5V for the third star. We assume the two stars of the close pair are very similar, so the remaining light in eclipses (59%) is consistent with total eclipses and 3rd light from a star slightly dimmer than each of the pair.

  13. V773 Cas, QS Aql, AND BR Ind: ECLIPSING BINARIES AS PARTS OF MULTIPLE SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zasche, P.; Juryšek, J.; Nemravová, J.

    2017-01-01

    Eclipsing binaries remain crucial objects for our understanding of the universe. In particular, those that are components of multiple systems can help us solve the problem of the formation of these systems. Analysis of the radial velocities together with the light curve produced for the first time precise physical parameters of the components of the multiple systems V773 Cas, QS Aql, and BR Ind. Their visual orbits were also analyzed, which resulted in slightly improved orbital elements. What is typical for all these systems is that their most dominant source is the third distant component. The system V773 Cas consists of two similarmore » G1-2V stars revolving in a circular orbit and a more distant component of the A3V type. Additionally, the improved value of parallax was calculated to be 17.6 mas. Analysis of QS Aql resulted in the following: the inner eclipsing pair is composed of B6V and F1V stars, and the third component is of about the B6 spectral type. The outer orbit has high eccentricity of about 0.95, and observations near its upcoming periastron passage between the years 2038 and 2040 are of high importance. Also, the parallax of the system was derived to be about 2.89 mas, moving the star much closer to the Sun than originally assumed. The system BR Ind was found to be a quadruple star consisting of two eclipsing K dwarfs orbiting each other with a period of 1.786 days; the distant component is a single-lined spectroscopic binary with an orbital period of about 6 days. Both pairs are moving around each other on their 148 year orbit.« less

  14. An Extreme Analogue of ɛ Aurigae: An M-giant Eclipsed Every 69 Years by a Large Opaque Disk Surrounding a Small Hot Source

    NASA Astrophysics Data System (ADS)

    Rodriguez, Joseph E.; Stassun, Keivan G.; Lund, Michael B.; Siverd, Robert J.; Pepper, Joshua; Tang, Sumin; Kafka, Stella; Gaudi, B. Scott; Conroy, Kyle E.; Beatty, Thomas G.; Stevens, Daniel J.; Shappee, Benjamin J.; Kochanek, Christopher S.

    2016-05-01

    We present TYC 2505-672-1 as a newly discovered and remarkable eclipsing system comprising an M-type red giant that undergoes a ˜3.45 year long, near-total eclipse (depth of ˜4.5 mag) with a very long period of ˜69.1 years. TYC 2505-672-1 is now the longest-period eclipsing binary system yet discovered, more than twice as long as that of the currently longest-period system, ɛ Aurigae. We show from analysis of the light curve including both our own data and historical data spanning more than 120 years and from modeling of the spectral energy distribution, both before and during eclipse, that the red giant primary is orbited by a moderately hot source (Teff ≈ 8000 K) that is itself surrounded by an extended, opaque circumstellar disk. From the measured ratio of luminosities, the radius of the hot companion must be in the range of 0.1-0.5 R⊙ (depending on the assumed radius of the red giant primary), which is an order of magnitude smaller than that for a main sequence A star and 1-2 orders of magnitude larger than that for a white dwarf. The companion is therefore most likely a “stripped red giant” subdwarf-B type star destined to become a He white dwarf. It is, however, somewhat cooler than most sdB stars, implying a very low mass for this “pre-He-WD” star. The opaque disk surrounding this hot source may be a remnant of the stripping of its former hydrogen envelope. However, it is puzzling how this object became stripped, given that it is at present so distant (orbital semimajor axis of ˜24 au) from the current red giant primary star. Extrapolating from our calculated ephemeris, the next eclipse should begin in early UT 2080 April and end in mid UT 2083 September (eclipse center UT 2081 December 24). In the meantime, radial velocity observations would establish the masses of the components, and high-cadence UV observations could potentially reveal oscillations of the hot companion that would further constrain its evolutionary status. In any case, this system is poised to become an exemplar of a very rare class of systems, even more extreme in several respects than the well studied archetype ɛ Aurigae.

  15. Separating the Spectral Components of the Massive Triple Star System Delta Orionis

    NASA Astrophysics Data System (ADS)

    Gies, Douglas

    2013-10-01

    The multiple star system of delta Orionis represents one of the closest examples of a luminous O-star with a strong stellar wind, and it was the target of a recent multi-wavelength campaign to determine the source of the wind X-ray emission. It consists of aclose eclipsing binary with a more distant tertiary, and all the components are massive stars. Investigations of the radial velocity curves of the eclipsing system are made difficult by severe line blending with the spectral lines of the tertiary star, and the resulting mass estimates range by a factor of two. We propose that the solution to this problem is to isolate the flux of the tertiary through high angular resolutionspectroscopy with HST/STIS, and we show how a two visit program of ultraviolet and spatially resolved spectroscopy will provide us with the means to characterize the spectra of all three stars in the triple. This will allow us to reassess a large body of existing optical and UV spectroscopy and determine reliable radial velocity curves for the components in the close binary. By then fitting a new high precision light curve from MOST photometry, we will derive accurate masses, temperatures, radii, and projected rotational velocities for all the components. The inner binary also hasa measured apsidal period, and the new results will form a key test of models of interior structure. The analysis will also provide secure estimates for the geometry and size of the inner binary and the radius of the secondary, the parameters required to analyze the orbital phase variations and sites of origin of the wind X-ray emission documented in a recent Chandra/HETGS program.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikolov, Nikolay; Sainsbury-Martinez, Felix, E-mail: nikolay@astro.ex.ac.uk

    Planetary rotation rates and obliquities provide information regarding the history of planet formation, but have not yet been measured for evolved extrasolar planets. Here we investigate the theoretical and observational perspective of the Rossiter–McLaughlin effect during secondary eclipse (RMse) ingress and egress for transiting exoplanets. Near secondary eclipse, when the planet passes behind the parent star, the star sequentially obscures light from the approaching and receding parts of the rotating planetary surface. The temporal block of light emerging from the approaching (blueshifted) or receding (redshifted) parts of the planet causes a temporal distortion in the planet’s spectral line profiles resultingmore » in an anomaly in the planet’s radial velocity curve. We demonstrate that the shape and the ratio of the ingress-to-egress radial velocity amplitudes depends on the planetary rotational rate, axial tilt, and impact factor (i.e., sky-projected planet spin–orbital alignment). In addition, line asymmetries originating from different layers in the atmosphere of the planet could provide information regarding zonal atmospheric winds and constraints on the hot spot shape for giant irradiated exoplanets. The effect is expected to be most-pronounced at near-infrared wavelengths, where the planet-to-star contrasts are large. We create synthetic near-infrared, high-dispersion spectroscopic data and demonstrate how the sky-projected spin axis orientation and equatorial velocity of the planet can be estimated. We conclude that the RMse effect could be a powerful method to measure exoplanet spins.« less

  17. Eclipse-Like Events on This Week @NASA – August 18, 2017

    NASA Image and Video Library

    2017-08-18

    ena such as the Aug. 21, 2017 solar eclipse can inspire awe, but scientists can also use eclipse-like events to learn more about the universe. For instance, a total eclipse, or an occultation in scientific terms – happens when a celestial body completely blocks light from a star, like our sun. This type of event can help astronomers learn more about an object’s atmosphere, including whether it might be surrounded by rings or other planetary matter. During a similar event, called a transit, variations in light that result when a closer object passes in front of a star, but only blocks a small part of the star, have been used by missions such as our Kepler space telescope, to discover new planets outside our solar system. Also, SpaceX Launches Science, Supplies to Space Station, New Communications Satellite Launched, Cassini Begins Final Five Orbits around Saturn and Spacewalk aboard the Space Station!

  18. A photometric study of the eclipsing binary RX Hercules

    NASA Technical Reports Server (NTRS)

    Jeffreys, K. W.

    1980-01-01

    A new photoelectric light curve of RX Hercules, a binary system with similar components, has been analyzed using Wood's computer model. RX Her, using Popper's spectroscopic mass ratio of q = 0.8472, turned out to be composed of a dimmer AO component and a larger B9.5 component. This detached system, upon analysis of the residuals in secondary minimum, shows some asymmetry during ingress which then disappears just before secondary minimum. The eccentricity e = 0.022 determined in this study is a little larger than previously published values of e = 0.018. In combination with the spectroscopic analysis of Popper, and ubvy data of Olson and Hill and Hilditch new photometric elements for RX Her were found.

  19. Estrellas variables en campos de cúmulos abiertos galácticos detectadas en el relevamiento VVV

    NASA Astrophysics Data System (ADS)

    Palma, T.; Dékany, I.; Clariá, J. J.; Minniti, D.; Alonso-García, J. A.; Ramírez Alegría, S.; Bonatto, C.

    2016-08-01

    The present project constitutes a massive search for variable stars in the field of open clusters projected on highly reddened regions of the galactic disk and bulge. This search is being performed using -, - and -band observations of the near-infrared variability Survey Vista variables in the Via Lactea. We present the first results obtained in four open clusters projected on the Galactic bulge. The new variables discovered in the current work, 182 in total, are classified on the basis of their light curves and their locations in the corresponding color-magnitude diagrams. Among the newly discovered variable stars, Cepheids, RR Lyrae, Scuti, eclipsing binaries and other types have been found.

  20. The Citizen Sky Planetarium Trailer

    NASA Astrophysics Data System (ADS)

    Turner, Rebecca; Price, A.; Wyatt, R.

    2011-05-01

    Citizen Sky is a multi-year, citizen science project focusing on the bright variable star, epsilon Aurigae. We have developed a six-minute video presentation describing eclipsing binary stars, light curves, and the Citizen Sky project. Designed like a short movie trailer, the video can be shown at planetariums before their regular, feature shows or integrated into a longer presentation. The trailer is available in a wide range of formats for viewing on laptops all the way up to state-of-the-art planetariums. The show is narrated by Timothy Ferris and was produced by the Morrison Planetarium and Visualization Studio at the California Academy of Sciences. This project has been made possible by the National Science Foundation.

  1. The Citizen Sky Planetarium Trailer

    NASA Astrophysics Data System (ADS)

    Turner, R.; Price, A.; Wyatt, R.

    2012-06-01

    (Abstract only) Citizen Sky is a multi-year, citizen science project focusing on the bright variable star e Aurigae. We have developed a six-minute video presentation describing eclipsing binary stars, light curves, and the Citizen Sky project. Designed like a short movie trailer, the video can be shown at planetariums before their regular, feature shows or integrated into a longer presentation. The trailer is available in a wide range of formats for viewing on laptops all the way up to state-of-the-art planetariums. The show is narrated by Timothy Ferris and was produced by the Morrison Planetarium and Visualization Studio at the California Academy of Sciences. This project has been made possible by the National Science Foundation.

  2. Impact Results From the Astronomers Without Borders Building on the Eclipse Education Program

    NASA Astrophysics Data System (ADS)

    Bartolone, L. M.; Simmons, M.; Nelson, A.; Kruse, B.

    2017-12-01

    Astronomers Without Borders "Building on the Eclipse Education Program" was its first to move beyond outreach, exploring how to impact science identity, attitudes towards STEM and inspire audiences to explore careers in STEM. Inspired by the eclipse, educators and scientists were brought together in an online community to support one another in learning about the Sun and light after audiences were inspired by the Total Solar Eclipse. The program also collected and analyzed data on participating groups in an attempt to have more information about audiences for the next total solar eclipse to cross the United States in 2024. Although we anticipate the program will be ongoing, preliminary results will be presented.

  3. Dynamics of Large-scale Coronal Structures as Imaged during the 2012 and 2013 Total Solar Eclipses

    NASA Astrophysics Data System (ADS)

    Alzate, Nathalia; Habbal, Shadia R.; Druckmüller, Miloslav; Emmanouilidis, Constantinos; Morgan, Huw

    2017-10-01

    White light images acquired at the peak of solar activity cycle 24, during the total solar eclipses of 2012 November 13 and 2013 November 3, serendipitously captured erupting prominences accompanied by CMEs. Application of state-of-the-art image processing techniques revealed the intricate details of two “atypical” large-scale structures, with strikingly sharp boundaries. By complementing the processed white light eclipse images with processed images from co-temporal Solar Dynamics Observatory/AIA and SOHO/LASCO observations, we show how the shape of these atypical structures matches the shape of faint CME shock fronts, which traversed the inner corona a few hours prior to the eclipse observations. The two events were not associated with any prominence eruption but were triggered by sudden brightening events on the solar surface accompanied by sprays and jets. The discovery of the indelible impact that frequent and innocuous transient events in the low corona can have on large-scale coronal structures was enabled by the radial span of the high-resolution white light eclipse images, starting from the solar surface out to several solar radii, currently unmatched by any coronagraphic instrumentation. These findings raise the interesting question as to whether large-scale coronal structures can ever be considered stationary. They also point to the existence of a much larger number of CMEs that goes undetected from the suite of instrumentation currently observing the Sun.

  4. Lighting Condition Analysis for Mars' Moon Phobos

    NASA Technical Reports Server (NTRS)

    Li, Zu Qun; de Carufel, Guy; Crues, Edwin Z.; Bielski, Paul

    2016-01-01

    This study used high fidelity computer simulation to investigate the lighting conditions, specifically the solar radiation flux over the surface, on Phobos. Ephemeris data from the Jet Propulsion Laboratory (JPL) DE405 model was used to model the state of the Sun, Earth, Moon, and Mars. An occultation model was developed to simulate Phobos' self-shadowing and its solar eclipses by Mars. The propagated Phobos state was compared with data from JPL's Horizon system to ensure the accuracy of the result. Results for Phobos lighting conditions over one Martian year are presented, which include the duration of solar eclipses, average solar radiation intensity, surface exposure time, available energy per unit area for sun tracking arrays, and available energy per unit area for fixed arrays (constrained by incident angle). The results show that: Phobos' solar eclipse time varies throughout the Martian year, with longer eclipse durations during the Martian spring and fall seasons and no eclipses during the Martian summer and winter seasons; solar radiation intensity is close to minimum at the summer solstice and close to maximum at the winter solstice; exposure time per orbit is relatively constant over the surface during the spring and fall but varies with latitude during the summer and winter; and Sun tracking solar arrays generate more energy than a fixed solar array. A usage example of the result is also present in this paper to demonstrate the utility.

  5. Hubble Space Telescope Ultraviolet Light Curves Reveal Interesting Properties of CC Sculptoris and RZ Leonis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szkody, Paula; Mukadam, Anjum S.; Toloza, Odette

    2017-03-01

    Time-tag ultraviolet data obtained on the Hubble Space Telescope in 2013 reveal interesting variability related to the white dwarf spin in the two cataclysmic variables RZ Leo and CC Scl. RZ Leo shows a period at 220 s and its harmonic at 110 s, thus identifying it as a likely Intermediate Polar (IP). The spin signal is not visible in a short single night of ground-based data in 2016, but the shorter exposures in that data set indicate a possible partial eclipse. The much larger UV amplitude of the spin signal in the known IP CC Scl allows the spinmore » of 389 s, previously only seen at outburst, to be visible at quiescence. Spectra created from the peaks and troughs of the spin times indicate a hotter temperature of several thousand degrees during the peak phases, with multiple components contributing to the UV light.« less

  6. Discovery of Three Self-lensing Binaries from Kepler

    NASA Astrophysics Data System (ADS)

    Kawahara, Hajime; Masuda, Kento; MacLeod, Morgan; Latham, David W.; Bieryla, Allyson; Benomar, Othman

    2018-03-01

    We report the discovery of three edge-on binaries with white dwarf (WD) companions that gravitationally magnify (instead of eclipsing) the light of their stellar primaries, as revealed by a systematic search for pulses with long periods in the Kepler photometry. We jointly model the self-lensing light curves and radial-velocity orbits to derive the WD masses, all of which are close to 0.6 solar masses. The orbital periods are long, ranging from 419 to 728 days, and the eccentricities are low, all less than 0.2. These characteristics are reminiscent of the orbits found for many blue stragglers in open clusters and the field, for which stable mass transfer due to Roche-lobe overflow from an evolving primary (now a WD) has been proposed as the formation mechanism. Because the actual masses for our three WD companions have been accurately determined, these self-lensing systems would provide excellent tests for models of interacting binaries.

  7. Absolute and geometric parameters of contact binary BO Arietis

    NASA Astrophysics Data System (ADS)

    Gürol, B.; Gürsoytrak, S. H.; Bradstreet, D. H.

    2015-08-01

    We present the results of our investigation on the geometrical and physical parameters of the W UMa type binary system BO Ari from analyzed CCD (BVRI) light curves and radial velocity data. The photometric data were obtained in 2009 and 2010 at Ankara University Observatory (AUO) and the spectroscopic observations were made in 2007 and 2010 at TUBITAK National Observatory (TUG). These light and radial velocity observations were analyzed simultaneously by using the Wilson-Devinney (2013 revision) code to obtain absolute and geometrical parameters. The system was determined to be an A-type W UMa system. Combining our photometric solution with the spectroscopic data we derived masses and radii of the eclipsing system to be M1 = 0.995M⊙,M2 = 0.189M⊙,R1 = 1.090R⊙ and R2 = 0.515R⊙ . Finally, we discuss the evolutionary status of the system.

  8. Absolute and geometric parameters of contact binary V1918 Cyg

    NASA Astrophysics Data System (ADS)

    Gürol, B.

    2016-08-01

    We present the results of our investigation on the geometrical and physical parameters of the W UMa type binary system V1918 Cyg from analyzed CCD (BVR) light curves and radial velocity data. We used the photometric data published by Yang et al. (2013) and spectroscopic data obtained in 2012 at TUBITAK National Observatory (TUG). The light and radial velocity observations were analyzed simultaneously by using the Wilson-Devinney (2015 revision) code to obtain absolute and geometrical parameters of the system. It is confirmed that the system is an A-type W UMa as indicated by Yang et al. (2013). Combining our spectroscopic data with the photometric solution we derived masses and radii of the eclipsing system as M1 = 1.302M⊙ , M2 = 0.362M⊙ , R1 = 1.362R⊙ and R2 = 0.762R⊙ . Finally, we discuss the evolutionary status of the system.

  9. To the problem of DQ Herculis orbital period variations.

    NASA Astrophysics Data System (ADS)

    Dmitrienko, E. S.

    The eclipses of the primary component by the secondary one in DQ Her (Nova Her 1934) were analyzed using the light curves obtained by photometrical observations in 1982 - 1986. It is suspected that the value O-C is varying with time according to a sinusoidal law with the period of about 5 years and the amplitude ≡3 - 4 min. The secondary minimum is not shown up on the UBVRI-light curves of DQ Her. That is why the two hypotheses - the apsidal motion and the third component in the system - would seem adequate to explain the sinusoidal change of the value "O-C". By assuming that a probable sinusoidal dependence O-C on time occurs due to apsidal motion, it can be a result of deformation of the secondary component shape, since the contribution from the relativistic motion does not exceed 5%. The obtained value of k2 for the models with zero viscosity is (1 - 5)×10-3 that corresponds to a very high concentration of stellar matter toward the centre of the star. Application of models with the viscosity not equal to zero must lead to the increase of the k2 parameter.

  10. SuperWASP J015100.23-100524.2: A SPOTTED SHALLOW-CONTACT BINARY BELOW THE PERIOD LIMIT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, S. B.; Zhang, B.; He, J. J.

    2015-10-15

    SuperWASP J015100.23-100524.2 (hereafter J015100) is an eclipsing binary with an orbital period of 0.d2145 that is below the short-period limit of contact binary stars. Complete light curves of J015100 in B, V, R, and I bands are presented and are analyzed with the Wilson–Devinney method. It has been discovered that J015100 is a shallow-contact binary (f = 14.6(±2.7)%) with a mass ratio of 3.128. It is a W-type contact binary where the less massive component is about 130 K hotter than the more massive one. The asymmetries of light curves are explained as one dark spot on the more massivemore » component. The detection of J015100 as a contact binary below the period limit suggests that contact binaries below this limit are not rapidly destroyed. This shallow-contact system may be formed from a detached short-period binary similar to DV Psc (Sp. = K4/K5; P = 0.d30855) via orbital shrinkage due to angular momentum loss through magnetic stellar wind.« less

  11. The soundtrack of RR Lyrae in omega Cen at high-frequency.

    NASA Astrophysics Data System (ADS)

    Calamida, A.; Randall, S. K.; Monelli, M.; Bono, G.; Buonanno, R.; Strampelli, G.; Catelan, M.; Van Grootel, V.; Alonso, M. L.; Stetson, P. B.; Stellingwerf, R. F.

    We present preliminary Sloan u',g'-band light curves for a sample of known RR Lyrae variables in the Galactic globular cluster omega Cen. Results are based on the partial reduction of multi-band time series photometric data collected during six consecutive nights with the visitor instrument ULTRACAM mounted on the New Technology Telescope (La Silla, ESO). This facility allowed us to simultaneously observe in three different bands (Sloan u',g',r') a field of view of ˜ 6×6 arcminutes. The telescope and the good seeing conditions allowed us to sample the light curves every 15 seconds. We ended up with a data set of ˜ 6,000 images per night per filter, for a total of more than 200,000 images of the selected field. This data set allowed us to detect different kind of variables, such as RR-Lyraes, SX Phoenicis, eclipsing binaries, semi-regulars. More importantly, we were able for the first time to sample at high-frequency cluster RR Lyraes in the u',g'-band and to show in detail the pulsation phases across the dip located along the rising branch of RR-Lyraes. Based on data collected with ULTRACAM@NTT (La Silla, ESO, PID: 087.D-0216)

  12. Effects of Dissociation/Recombination on the Day–Night Temperature Contrasts of Ultra-hot Jupiters

    NASA Astrophysics Data System (ADS)

    Komacek, Thaddeus D.; Tan, Xianyu

    2018-05-01

    Secondary eclipse observations of ultra-hot Jupiters have found evidence that hydrogen is dissociated on their daysides. Additionally, full-phase light curve observations of ultra-hot Jupiters show a smaller day-night emitted flux contrast than that expected from previous theory. Recently, it was proposed by Bell & Cowan (2018) that the heat intake to dissociate hydrogen and heat release due to recombination of dissociated hydrogen can affect the atmospheric circulation of ultra-hot Jupiters. In this work, we add cooling/heating due to dissociation/recombination into the analytic theory of Komacek & Showman (2016) and Zhang & Showman (2017) for the dayside-nightside temperature contrasts of hot Jupiters. We find that at high values of incident stellar flux, the day-night temperature contrast of ultra-hot Jupiters may decrease with increasing incident stellar flux due to dissociation/recombination, the opposite of that expected without including the effects of dissociation/recombination. We propose that a combination of a greater number of full-phase light curve observations of ultra-hot Jupiters and future General Circulation Models that include the effects of dissociation/recombination could determine in detail how the atmospheric circulation of ultra-hot Jupiters differs from that of cooler planets.

  13. Using MOST to reveal the secrets of the mischievous Wolf-Rayet binary CV Ser

    NASA Astrophysics Data System (ADS)

    David-Uraz, Alexandre; Moffat, Anthony F. J.; Chené, André-Nicolas; Rowe, Jason F.; Lange, Nicholas; Guenther, David B.; Kuschnig, Rainer; Matthews, Jaymie M.; Rucinski, Slavek M.; Sasselov, Dimitar; Weiss, Werner W.

    2012-11-01

    The Wolf-Rayet (WR) binary CV Serpentis (= WR113, WC8d + O8-9IV) has been a source of mystery since it was shown that its atmospheric eclipses change with time over decades, in addition to its sporadic dust production. The first high-precision time-dependent photometric observations obtained with the Microvariability and Oscillations of STars (MOST) space telescope in 2009 show two consecutive eclipses over the 29-d orbit, with varying depths. A subsequent MOST run in 2010 showed a seemingly asymmetric eclipse profile. In order to help make sense of these observations, parallel optical spectroscopy was obtained from the Mont Megantic Observatory (2009, 2010) and from the Dominion Astrophysical Observatory (2009). Assuming these depth variations are entirely due to electron scattering in a β-law wind, an unprecedented 62 per cent increase in M⊙ is observed over one orbital period. Alternatively, no change in mass-loss rate would be required if a relatively small fraction of the carbon ions in the wind globally recombined and coaggulated to form carbon dust grains. However, it remains a mystery as to how this could occur. There also seems to be evidence for the presence of corotating interaction regions (CIR) in the WR wind: a CIR-like signature is found in the light curves, implying a potential rotation period for the WR star of 1.6 d. Finally, a new circular orbit is derived, along with constraints for the wind collision.

  14. News From The Erebos Project

    NASA Astrophysics Data System (ADS)

    Schaffenroth, Veronika; Barlow, Brad; Geier, Stephan; Vučković, Maja; Kilkenny, Dave; Schaffenroth, Johannes

    2017-12-01

    Planets and brown dwarfs in close orbits will interact with their host stars, as soon as the stars evolve to become red giants. However, the outcome of those interactions is still unclear. Recently, several brown dwarfs have been discovered orbiting hot subdwarf stars at very short orbital periods of 0.065 - 0.096 d. More than 8% of the close hot subdwarf binaries might have sub-stellar companions. This shows that such companions can significantly affect late stellar evolution and that sdB binaries are ideal objects to study this influence. Thirty-eight new eclipsing sdB binary systems with cool low-mass companions and periods from 0.05 to 0.5 d were discovered based on their light curves by the OGLE project. In the recently published catalog of eclipsing binaries in the Galactic bulge, we discovered 75 more systems. We want to use this unique and homogeneously selected sample to derive the mass distribution of the companions, constrain the fraction of sub-stellar companions and determine the minimum mass needed to strip off the red-giant envelope. We are especially interested in testing models that predict hot Jupiter planets as possible companions. Therefore, we started the EREBOS (Eclipsing Reflection Effect Binaries from the OGLE Survey) project, which aims at analyzing those new HW Vir systems based on a spectroscopic and photometric follow up. For this we were granted an ESO Large Program for ESO-VLT/FORS2. Here we give an update on the the current status of the project and present some preliminary results.

  15. Astroinformatics in the Age of LSST: Analyzing the Summer 2012 Data Release

    NASA Astrophysics Data System (ADS)

    Borne, Kirk D.; De Lee, N. M.; Stassun, K.; Paegert, M.; Cargile, P.; Burger, D.; Bloom, J. S.; Richards, J.

    2013-01-01

    The Large Synoptic Survey Telescope (LSST) will image the visible southern sky every three nights. This multi-band, multi-epoch survey will produce a torrent of data, which traditional methods of object-by-object data analysis will not be able to accommodate. Thus the need for new astroinformatics tools to visualize, simulate, mine, and analyze this quantity of data. The Berkeley Center for Time-Domain Informatics (CTDI) is building the informatics infrastructure for generic light curve classification, including the innovation of new algorithms for feature generation and machine learning. The CTDI portal (http://dotastro.org) contains one of the largest collections of public light curves, with visualization and exploration tools. The group has also published the first calibrated probabilistic classification catalog of 50k variable stars along with a data exploration portal called http://bigmacc.info. Twice a year, the LSST collaboration releases simulated LSST data, in order to aid software development. This poster also showcases a suite of new tools from the Vanderbilt Initiative in Data-instensive Astrophysics (VIDA), designed to take advantage of these large data sets. VIDA's Filtergraph interactive web tool allows one to instantly create an interactive data portal for fast, real-time visualization of large data sets. Filtergraph enables quick selection of interesting objects by easily filtering on many different columns, 2-D and 3-D representations, and on-the-fly arithmetic calculations on the data. It also makes sharing the data and the tool with collaborators very easy. The EB/RRL Factory is a neural-network based variable star classifier, which is designed to quickly identify variable stars in a variety of classes from LSST light curve data (currently tuned to Eclipsing Binaries and RR Lyrae stars), and to provide likelihood-based orbital elements or stellar parameters as appropriate. Finally the LCsimulator software allows one to create simulated light curves of multiple types of variable stars based on an LSST cadence.

  16. Polarization Observations of the Total Solar Eclipse of August 21, 2017

    NASA Astrophysics Data System (ADS)

    Burkepile, J.; Boll, A.; Casini, R.; de Toma, G.; Elmore, D. F.; Gibson, K. L.; Judge, P. G.; Mitchell, A. M.; Penn, M.; Sewell, S. D.; Tomczyk, S.; Yanamandra-Fisher, P. A.

    2017-12-01

    A total solar eclipse offers ideal sky conditions for viewing the solar corona. Light from the corona is composed of three components: the E-corona, made up of spectral emission lines produced by ionized elements in the corona; the K-corona, produced by photospheric light that is Thomson scattered by coronal electrons; and the F-corona, produced by sunlight scattered from dust particles in the near Sun environment and in interplanetary space. Polarized white light observations of the corona provide a way of isolating the K-corona to determine its structure, brightness, and density. This work focuses on broadband white light polarization observations of the corona during the upcoming solar eclipse from three different instruments. We compare coronal polarization brightness observations of the August 21, 2017 total solar eclipse from the NCAR/High Altitude Observatory (HAO) Rosetta Stone experiment using the 4-D Technology PolarCam camera with the two Citizen PACA_CATE17Pol telescopes that will acquire linear polarization observations of the eclipse and the NCAR/HAO K-Cor white light coronagraph observations from the Mauna Loa Solar Observatory in Hawaii. This comparison includes a discussion of the cross-calibration of the different instruments and reports the results of the coronal polarization brightness and electron density of the corona. These observations will be compared with results from previous coronal measurements taken at different phases of the solar cycle. In addition, we report on the performance of the three different polarimeters. The 4-D PolarCam uses a linear polarizer array, PACA_CATE17Pol uses a nematic liquid crystal retarder in a single beam configuration and K-Cor uses a pair of ferroelectric liquid crystal retarders in a dual-beam configuration. The use of the 4-D PolarCam camera in the Rosetta Stone experiment is to demonstrate the technology for acquiring high cadence polarization measurements. The Rosetta Stone experiment is funded through the NASA award NNH16ZDA001N-ISE. The Citizen Science approach to measuring the polarized solar corona during the eclipse is funded through NASA award NNX17AH76G. The NCAR Mauna Loa Solar Observatory is funded by the National Science Foundation.

  17. The Unique Scientific Assets of Multi-Wavelength Total Solar Eclipse Observations

    NASA Astrophysics Data System (ADS)

    Habbal, S. R.; Druckmuller, M.; Ding, A.

    2017-12-01

    Total solar eclipses continue to yield new discoveries regarding the dynamics and thermodynamics of the corona, due to the radial span of the field of view available during totality, starting from the solar surface out to several solar radii, and due to the diagnostic potential provided by coronal emission lines. Scientific highlights from past eclipse observations as well as from the 21 August 2017 eclipse, now spanning a solar cycle, will be presented. These include white light and spectral line imaging as well as imaging spectrometry. Emphasis will be placed on the unique insights into the origin of dynamic structures captured in eclipse images, and the temperature distribution in the corona derived from these eclipse observations. Implications of these results for the general problem of coronal heating, as well as for the next generation of space instrumentation will be discussed.

  18. EPIC 219217635: A Doubly Eclipsing Quadruple System Containing an Evolved Binary

    NASA Astrophysics Data System (ADS)

    Borkovits, T.; Albrecht, S.; Rappaport, S.; Nelson, L.; Vanderburg, A.; Gary, B. L.; Tan, T. G.; Justesen, A. B.; Kristiansen, M. H.; Jacobs, T. L.; LaCourse, D.; Ngo, H.; Wallack, N.; Ruane, G.; Mawet, D.; Howell, S. B.; Tronsgaard, R.

    2018-05-01

    We have discovered a doubly eclipsing, bound, quadruple star system in the field of K2 Campaign 7. EPIC 219217635 is a stellar image with Kp = 12.7 that contains an eclipsing binary (`EB') with PA = 3.59470 d and a second EB with PB = 0.61825 d. We have obtained followup radial-velocity (`RV') spectroscopy observations, adaptive optics imaging, as well as ground-based photometric observations. From our analysis of all the observations, we derive good estimates for a number of the system parameters. We conclude that (1) both binaries are bound in a quadruple star system; (2) a linear trend to the RV curve of binary A is found over a 2-year interval, corresponding to an acceleration, \\dot{γ }= 0.0024 ± 0.0007 cm s-2; (3) small irregular variations are seen in the eclipse-timing variations (`ETVs') detected over the same interval; (4) the orbital separation of the quadruple system is probably in the range of 8-25 AU; and (5) the orbital planes of the two binaries must be inclined with respect to each other by at least 25°. In addition, we find that binary B is evolved, and the cooler and currently less massive star has transferred much of its envelope to the currently more massive star. We have also demonstrated that the system is sufficiently bright that the eclipses can be followed using small ground-based telescopes, and that this system may be profitably studied over the next decade when the outer orbit of the quadruple is expected to manifest itself in the ETV and/or RV curves.

  19. Transit Timing Variation analysis with Kepler light curves of KOI 227 and Kepler 93b

    NASA Astrophysics Data System (ADS)

    Dulz, Shannon; Reed, Mike

    2017-01-01

    By searching for transit signals in approximately 150,000 stars, NASA’s Kepler Space telescope found thousands of exoplanets over its primary mission from 2009 to 2013 (Tenenbaum et al. 2014, ApJS, 211, 6). Yet, a detailed follow-up examination of Kepler light curves may contribute more evidence on system dynamics and planetary atmospheres of these objects. Kepler’s continuous observing of these systems over the mission duration produced light curves of sufficient duration to allow for the search for transit timing variations. Transit timing variations over the course of many orbits may indicate a precessing orbit or the existence of a non-transiting third body such as another exoplanet. Flux contributions of the planet just prior to secondary eclipse may provide a measurement of bond albedo from the day-side of the transiting planet. Any asymmetries of the transit shape may indicate thermal asymmetries which can measure upper atmosphere motion of the planet. These two factors can constrain atmospheric models of close orbiting exoplanets. We first establish our procedure with the well-documented TTV system, KOI 227 (Nesvorny et al. 2014, ApJ, 790, 31). Using the test case of KOI 227, we analyze Kepler-93b for TTVs and day-side flux contributions. Kepler-93b is likely a rocky planet with R = 1.50 ± 0.03 Earth Radii and M = 2.59 ± 2.0 Earth Masses (Marcy et al. 2014, ApJS, 210, 20). This research is funded by a NASA EPSCoR grant.

  20. Hubble Space Telescope observations of the dwarf Nova Z Chamaeleontis through two eruption cycles

    NASA Technical Reports Server (NTRS)

    Robinson, E. L.; Wood, Janet H.; Bless, R. C.; Clemens, J. C.; Dolan, J. F.; Elliot, J. L.; Nelson, M. J.; Percival, J. W.; Taylor, M. J.; Van Citters, G. W.

    1995-01-01

    We have obtained the first high-speed photometry of the eclipsing dwarf nova Z Cha at ultraviolet wavelengths with the Hubble Space Telescope (HST). We observed the eclipse roughly every 4 days over two cycles of the normal eruptions of Z Cha, giving a uniquely complete coverage of its outburst cycle. The accretion disk dominated the ultraviolet light curve of Z Cha at the peak of an eruption; the white dwarf, the bright spot on the edge of the disk, and the boundary layer were all invisible. We were able to obtain an axisymmetric map of the accretion disk at this time only by adopting a flared disk with an opening angle of approximately 8 deg. The run of brightness temperature with radius in the disk at the peak of the eruption was too flat to be consistent with a steady state, optically thick accretion disk. The local rate of mass flow through the disk was approximately 5 x 10(exp -10) solar masses/yr near the center of the disk and approximately 5 x 10(exp -9) solar masses/yr near the outer edge. The white dwarf, the accretion disk, and the boundary layer were all significant contributors to the ultraviolet flux on the descending branches of the eruptions. The temperature of the white dwarf during decline was 18,300 K less than T(sub wd) less than 21,800 K, which is significantly greater than at minimum light. Six days after the maximum of an eruption Z Cha has faded to near minimum light at ultraviolet wavelenghts, but was still approximately 70% brighter at minimum light in the B band. About one-quarter of the excess flux in the B band came from the accretion disk. Thus, the accretion disk faded and became invisible at ultraviolet wavelengths before it faded at optical wavelenghts. The disk did, however, remain optically thick and obscured the lower half of the white dwarf at ultraviolet and possibly at optical wavelenghts for 2 weeks after the eruption ended. By the third week after eruptiuons the eclipse looked like a simple occultation of an unobscured, spherical white dwarf by a dark secondary star. The center of the accretion disk was, therfore, optically thin at ultraviolet wavelenghts and the boundary layer was too faint to be visible.

  1. The EPOCH Project. I. Periodic variable stars in the EROS-2 LMC database

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Won; Protopapas, Pavlos; Bailer-Jones, Coryn A. L.; Byun, Yong-Ik; Chang, Seo-Won; Marquette, Jean-Baptiste; Shin, Min-Su

    2014-06-01

    The EPOCH (EROS-2 periodic variable star classification using machine learning) project aims to detect periodic variable stars in the EROS-2 light curve database. In this paper, we present the first result of the classification of periodic variable stars in the EROS-2 LMC database. To classify these variables, we first built a training set by compiling known variables in the Large Magellanic Cloud area from the OGLE and MACHO surveys. We crossmatched these variables with the EROS-2 sources and extracted 22 variability features from 28 392 light curves of the corresponding EROS-2 sources. We then used the random forest method to classify the EROS-2 sources in the training set. We designed the model to separate not only δ Scuti stars, RR Lyraes, Cepheids, eclipsing binaries, and long-period variables, the superclasses, but also their subclasses, such as RRab, RRc, RRd, and RRe for RR Lyraes, and similarly for the other variable types. The model trained using only the superclasses shows 99% recall and precision, while the model trained on all subclasses shows 87% recall and precision. We applied the trained model to the entire EROS-2 LMC database, which contains about 29 million sources, and found 117 234 periodic variable candidates. Out of these 117 234 periodic variables, 55 285 have not been discovered by either OGLE or MACHO variability studies. This set comprises 1906 δ Scuti stars, 6607 RR Lyraes, 638 Cepheids, 178 Type II Cepheids, 34 562 eclipsing binaries, and 11 394 long-period variables. catalog of these EROS-2 LMC periodic variable stars is available at http://stardb.yonsei.ac.kr and at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/566/A43

  2. Investigating the Orbital Period Valley of Giant Planets in Kepler Data

    NASA Astrophysics Data System (ADS)

    Thomas, Brianna P.; Birkby, Jayne L.

    2016-01-01

    Transit light curves contain a wealth of information about the basic properties of a planet, such as its radius, semi-major axis, and orbital period. For the latter property, there is a distinct lack of planets with periods between 10 to 100 days. This gap could be caused by something as simple as observational bias, or as prominent as planetary formation or migration. Here, we report an investigation into the atmosphere of planets within this orbital period valley, to search for differences that may indicate a different formation mechanism or migration path to those outside of it. We do this by searching for the secondary eclipse of planets in the valley in order to measure their albedos. We determined an optimal target for this: KOI-366 b (P ~ 75 days). However, we find that despite the exquisite precision of Kepler data, it cannot constrain the albedo for this long-orbit planet candidate. We measure a 1σ upper limit on the geometric albedo of Ag,1σ ≤ 2.0. We highlight that additional scatter in the light curve is likely caused by a ~ 2-day pulsation of the giant host star, and that further data is required to measure the secondary eclipse. KOI-366 is one of the best suited of all host stars with long period exoplanet candidates for follow-up due to its relatively bright magnitude (Kp = 11.7 mag), but the full investigation of the reflective properties of long period planets may require space-based observations from future instruments, such as WFIRST, that will be more sensitive to objects further away from their host stars. This work was supported in part by the NSF REU and DoD ASSURE programs under NSF grant no. 1262851 and by the Smithsonian Institution. This work was performed in part under contract with the Jet Propulsion Laboratory (JPL) funded by NASA through the Sagan Fellowship Program executed by the NASA Exoplanet Science Institute.

  3. Atmospheric characterization of five hot Jupiters with the wide field Camera 3 on the Hubble space telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ranjan, Sukrit; Charbonneau, David; Désert, Jean-Michel

    We probe the structure and composition of the atmospheres of five hot Jupiter exoplanets using the Hubble Space Telescope Wide Field Camera 3 (WFC3) instrument. We use the G141 grism (1.1-1.7 μm) to study TrES-2b, TrES-4b, and CoRoT-1b in transit; TrES-3b in secondary eclipse; and WASP-4b in both. This wavelength region includes a predicted absorption feature from water at 1.4 μm, which we expect to be nondegenerate with the other molecules that are likely to be abundant for hydrocarbon-poor (e.g., solar composition) hot Jupiter atmospheres. We divide our wavelength regions into 10 bins. For each bin we produce a spectrophotometricmore » light curve spanning the time of transit or eclipse. We correct these light curves for instrumental systematics without reference to an instrument model. For our transmission spectra, our mean 1σ precision per bin corresponds to variations of 2.1, 2.8, and 3.0 atmospheric scale heights for TrES-2b, TrES-4b, and CoRoT-1b, respectively. We find featureless spectra for these three planets. We are unable to extract a robust transmission spectrum for WASP-4b. For our dayside emission spectra, our mean 1σ precision per bin corresponds to a planet-to-star flux ratio of 1.5 × 10{sup –4} and 2.1 × 10{sup –4} for WASP-4b and TrES-3b, respectively. We combine these estimates with previous broadband measurements and conclude that for both planets isothermal atmospheres are disfavored. We find no signs of features due to water. We confirm that WFC3 is suitable for studies of transiting exoplanets, but in staring mode multivisit campaigns are necessary to place strong constraints on water abundance.« less

  4. Atmospheric Characterization of Five Hot Jupiters with the Wide Field Camera 3 on the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Ranjan, Sukrit; Charbonneau, David; Desert, Jean-Michel; Madhusudhan, Nikku; Deming, Drake; Wilkins, Ashlee; Mandell, Avi M.

    2014-01-01

    We probe the structure and composition of the atmospheres of five hot Jupiter exoplanets using the Hubble Space Telescope Wide Field Camera 3 (WFC3) instrument. We use the G141 grism (1.1-1.7 micrometers) to study TrES-2b, TrES-4b, and CoRoT-1b in transit; TrES-3b in secondary eclipse; and WASP-4b in both. This wavelength region includes a predicted absorption feature from water at 1.4 micrometers, which we expect to be nondegenerate with the other molecules that are likely to be abundant for hydrocarbon-poor (e.g., solar composition) hot Jupiter atmospheres. We divide our wavelength regions into 10 bins. For each bin we produce a spectrophotometric light curve spanning the time of transit or eclipse. We correct these light curves for instrumental systematics without reference to an instrument model. For our transmission spectra, our mean 1s precision per bin corresponds to variations of 2.1, 2.8, and 3.0 atmospheric scale heights for TrES-2b, TrES-4b, and CoRoT-1b, respectively. We find featureless spectra for these three planets. We are unable to extract a robust transmission spectrum for WASP-4b. For our dayside emission spectra, our mean 1 sigma precision per bin corresponds to a planet-to-star flux ratio of 1.5 x 10(exp -4) and 2.1 x 10(exp -4) for WASP-4b and TrES-3b, respectively. We combine these estimates with previous broadband measurements and conclude that for both planets isothermal atmospheres are disfavored. We find no signs of features due to water. We confirm that WFC3 is suitable for studies of transiting exoplanets, but in staring mode multivisit campaigns are necessary to place strong constraints on water abundance.

  5. Response of Cassava canopy to mid-day pseudo sunrise induced by solar eclipse.

    PubMed

    Latha, R; Murthy, B S

    2013-07-01

    Variations in CO(2) concentration over a cassava canopy were measured during a solar eclipse at Thiruvananthapuram, India. The analysis presented attempts to differentiate between the eclipse effect and the possible effect of thick clouds, taking CO(2) as a proxy for photosynthesis. CO(2) and water vapor were measured at a rate of 10 Hz, and radiation at 1 Hz, together with other meteorological parameters. A rapid reduction in CO(2) observed post-peak eclipse, due apparently to intense photosynthesis, appears similar to what happens at daybreak/post-sunrise. The increase in CO(2) (4 ppm) during peak eclipse, with radiation levels falling below the photosynthesis cut-off for cassava, indicates domination of respiration due to the light-limiting conditions.

  6. Response of Cassava canopy to mid-day pseudo sunrise induced by solar eclipse

    NASA Astrophysics Data System (ADS)

    Latha, R.; Murthy, B. S.

    2013-07-01

    Variations in CO2 concentration over a cassava canopy were measured during a solar eclipse at Thiruvananthapuram, India. The analysis presented attempts to differentiate between the eclipse effect and the possible effect of thick clouds, taking CO2 as a proxy for photosynthesis. CO2 and water vapor were measured at a rate of 10 Hz, and radiation at 1 Hz, together with other meteorological parameters. A rapid reduction in CO2 observed post-peak eclipse, due apparently to intense photosynthesis, appears similar to what happens at daybreak/post-sunrise. The increase in CO2 (4 ppm) during peak eclipse, with radiation levels falling below the photosynthesis cut-off for cassava, indicates domination of respiration due to the light-limiting conditions.

  7. Epsilon Aur monitoring during predicted pulsation phase

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.; Templeton, Matthew R.

    2014-09-01

    Dr. Robert Stencel (University of Denver Astronomy Program) has requested that AAVSO observers monitor epsilon Aurigae from now through the end of the observing season. "Studies of the long-term, out-of-eclipse photometry of this enigmatic binary suggest that intervals of coherent pulsation occur at roughly 1/3 of the 27.1-year orbital period. Kloppenborg, et al. noted that stable variation patterns develop at 3,200-day intervals' implying that 'the next span of dates when such events might happen are circa JD ~2457000 (2014 December)'. "These out-of-eclipse light variations often have amplitudes of ~0.1 magnitude in U, and ~0.05 in V, with characteristic timescales of 60-100 days. The AAVSO light curve data to the present may indicate that this coherent phenomenon has begun, but we encourage renewed efforts by observers...to help deduce whether these events are internal to the F star, or externally-driven by tidal interaction with the companion star." Nightly observations or one observation every few days (CCD/PEP/DSLR, VUBR (amplitude too small for visual)) are requested. Finder charts with sequence may be created using the AAVSO Variable Star Plotter (http://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. Epsilon Aur was the subject of major international campaigns and the AAVSO's Citizen Sky project as it went through its 27.1-year eclipse in 2009-2011. Over 700 observers worldwide submitted over 20,000 multicolor observations to the AAVSO International Database for this project. Much information on eps Aur is available from the AAVSO, including material on the Citizen Sky website (http://www.aavso.org/epsilon-aurigae and http://www.citizensky.org/content/star-our-project). The Journal of the AAVSO, Volume 40, No. 2 (2012) was devoted to discussion of and research results from this event. See full Alert Notice for more details and observations.

  8. St. Benedict Sees the Light: Asam's Solar Eclipses as Metaphor

    NASA Astrophysics Data System (ADS)

    Olson, Roberta J. M.; Pasachoff, Jay M.

    During the Baroque period, artists worked in a style - encouraged by the Roman Catholic Church and the Council of Trent - that revealed the divine in natural forms and made religious experiences more accessible. Cosmas Damian Asam, painter and architect, and his brother Egid (Aegid) Quirin Asam, sculptor and stuccatore, were the principal exponents of eighteenth-century, southern-German religious decoration and architecture in the grand manner, the Gesamtkunstwerk. Cosmas Damian's visionary and ecstatic art utilized light, both physical and illusionistic, together with images of meteorological and astronomical phenomena, such as solar and lunar eclipses. This paper focuses on his representations of eclipses and demonstrates how Asam was galvanized by their visual, as well as metaphorical power and that he studied a number of them. He subsequently applied his observations in a series of paintings for the Benedictine order that become increasingly astronomically accurate and spiritually profound. From the evidence presented, especially in three depictions of St. Benedict's vision, the artist harnessed his observations to visualize the literary description of the miraculous event in the Dialogues of St. Gregory the Great, traditionally a difficult scene to illustrate, even for Albrecht Dürer. Asam painted the trio at Einsiedeln, Switzerland (1724-27); Kladruby, the Czech Republic (1725-27), where he captured the solar corona and the "diamond-ring effect"; and Weltenburg, Germany (1735), where he also depicted the diamond-ring effect at a total solar eclipse. We conclude that his visualizations were informed by his personal observations of the solar eclipses on 12 May 1706, 22 May 1724, and 13 May 1733. Asam may have also known the eclipse maps of Edmond Halley and William Whiston that were issued in advance. Astronomers did not start studying eclipses scientifically until the nineteenth century, making Asam's depictions all the more fascinating. So powerful was the image that Asam invented to visualize St. Benedict's vision that it found reflection in the subsequent Bavarian Benedictine visual tradition. Total solar eclipses are among the most spectacular sights in Nature. Therefore, in an age obsessed with revealing the divine through natural idioms and making religious experiences direct - not to mention that light had long functioned as a symbol of divinity in the Christian tradition - it seems fitting that solar eclipses would be interpreted as a metaphor of a divine presence or a miracle.

  9. Roemer Redux: A Virtual Observational Exercise on Jupiter's Moons and the Speed of Light from Project CLEA

    NASA Astrophysics Data System (ADS)

    Dabrowski, Jan Paul; Snyder, G. A.; Marschall, L. A.

    2009-01-01

    Project CLEA announces a new laboratory exercise which allows students to determine the speed of light by timing eclipses of Jupiter's moon Io. The experiment is similar to Ole Roemer's classic 17th Century work which established, for the first time, that light did not travel through space instantaneously. Students view a simulated telescopic view of Jupiter and its satellites, similar to that used in the CLEA exercise, The Revolution of the Moons of Jupiter. After identifying Io, they record the precise time when the moon enters Jupiter's shadow at a date about two months after conjunction. Using the recorded time of this eclipse and the known period of Io, students predict the time of an eclipse near opposition and then record the observed time of that eclipse. The discrepancy between the predicted and observed times, along with the difference in the distance between Earth and Jupiter at the two eclipses yields a value of the speed of light accurate to about 10%. Software provided with the exercise enables students to calculate predicted times and Earth/Jupiter distances, as well as to analyze the time discrepancy and to visualize the logic of the analysis. A student manual, including historical and scientific background of the exercise is provided. Our poster will present examples of the screens and manuals for the exercise and will discuss the limits of accuracy of the method and sources of error. For further information on CLEA exercises, please visit http://www.gettysburg.edu/ marschal/clea/CLEAhome.html This research was sponsored by the National Science Foundation and Gettysburg College.

  10. Observations and Light Curve Solutions of Ultrashort-Period Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Kjurkchieva, Diana P.; Dimitrov, Dinko P.; Ibryamov, Sunay I.; Vasileva, Doroteya L.

    2018-02-01

    Photometric observations in V and I bands and low-dispersion spectra of 10 ultrashort-period binaries (NSVS 2175434, NSVS 2607629, NSVS 5038135, NSVS 8040227, NSVS 9747584, NSVS 4876238, ASAS 071829-0336.7, SWASP 074658.62+224448.5, NSVS 2729229, NSVS 10632802) are presented. One of them, NSVS 2729229, is newly discovered target. The results from modelling and analysis of our observations revealed that (i) eight targets have overcontact configurations with considerable fill-out factor (up to 0.5), while NSVS 4876238 and ASAS 0718-03 have almost contact configurations; (ii) NSVS 4876238 is rare ultrashort-period binary of detached type; (iii) all stellar components are late dwarfs; (iv) the temperature difference of the components of each target does not exceed 400 K; (v) NSVS 2175434 and SWASP 074658.62 + 224448.5 exhibit total eclipses and their parameters could be assumed as well determined; (v) NSVS 2729229 shows emission in the Hα line. Masses, radii, and luminosities of the stellar components were estimated by the empirical relation `period, orbital axis' for short- and ultrashort-period binaries. We found linear relations mass-luminosity and mass-radius for the stellar components of our targets.

  11. An Advanced N -body Model for Interacting Multiple Stellar Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brož, Miroslav

    We construct an advanced model for interacting multiple stellar systems in which we compute all trajectories with a numerical N -body integrator, namely the Bulirsch–Stoer from the SWIFT package. We can then derive various observables: astrometric positions, radial velocities, minima timings (TTVs), eclipse durations, interferometric visibilities, closure phases, synthetic spectra, spectral energy distribution, and even complete light curves. We use a modified version of the Wilson–Devinney code for the latter, in which the instantaneous true phase and inclination of the eclipsing binary are governed by the N -body integration. If all of these types of observations are at one’s disposal,more » a joint χ {sup 2} metric and an optimization algorithm (a simplex or simulated annealing) allow one to search for a global minimum and construct very robust models of stellar systems. At the same time, our N -body model is free from artifacts that may arise if mutual gravitational interactions among all components are not self-consistently accounted for. Finally, we present a number of examples showing dynamical effects that can be studied with our code and we discuss how systematic errors may affect the results (and how to prevent this from happening).« less

  12. Photometric Solutions of Three Eclipsing Binary Stars Observed from Dome A, Antarctica

    NASA Astrophysics Data System (ADS)

    Liu, N.; Fu, J. N.; Zong, W.; Wang, L. Z.; Uddin, S. A.; Zhang, X. B.; Zhang, Y. P.; Cang, T. Q.; Li, G.; Yang, Y.; Yang, G. C.; Mould, J.; Morrell, N.

    2018-04-01

    Based on spectroscopic observations for the eclipsing binaries CSTAR 036162 and CSTAR 055495 with the WiFeS/2.3 m telescope at SSO and CSTAR 057775 with the Mage/Magellan I at LCO in 2017, stellar parameters are derived. More than 100 nights of almost-continuous light curves reduced from the time-series photometric observations by CSTAR at Dome A of Antarctic in i in 2008 and in g and r in 2009, respectively, are applied to find photometric solutions for the three binaries with the Wilson–Devinney code. The results show that CSTAR 036162 is a detached configuration with the mass ratio q = 0.354 ± 0.0009, while CSTAR 055495 is a semi-detached binary system with the unusual q = 0.946 ± 0.0006, which indicates that CSTAR 055495 may be a rare binary system with mass ratio close to one and the secondary component filling its Roche Lobe. This implies that a mass-ratio reversal has just occurred and CSTAR 055495 is in a rapid mass-transfer stage. Finally, CSTAR 057775 is believed to be an A-type W UMa binary with q = 0.301 ± 0.0008 and a fill-out factor of f = 0.742(8).

  13. The Influential Effect of Blending, Bump, Changing Period, and Eclipsing Cepheids on the Leavitt Law

    NASA Astrophysics Data System (ADS)

    García-Varela, A.; Muñoz, J. R.; Sabogal, B. E.; Vargas Domínguez, S.; Martínez, J.

    2016-06-01

    The investigation of the nonlinearity of the Leavitt law (LL) is a topic that began more than seven decades ago, when some of the studies in this field found that the LL has a break at about 10 days. The goal of this work is to investigate a possible statistical cause of this nonlinearity. By applying linear regressions to OGLE-II and OGLE-IV data, we find that to obtain the LL by using linear regression, robust techniques to deal with influential points and/or outliers are needed instead of the ordinary least-squares regression traditionally used. In particular, by using M- and MM-regressions we establish firmly and without doubt the linearity of the LL in the Large Magellanic Cloud, without rejecting or excluding Cepheid data from the analysis. This implies that light curves of Cepheids suggesting blending, bumps, eclipses, or period changes do not affect the LL for this galaxy. For the Small Magellanic Cloud, when including Cepheids of this kind, it is not possible to find an adequate model, probably because of the geometry of the galaxy. In that case, a possible influence of these stars could exist.

  14. The Clusters AgeS Experiment (CASE). Variable Stars in the Field of the Globular Cluster M12

    NASA Astrophysics Data System (ADS)

    Kaluzny, J.; Thompson, I. B.; Narloch, W.; Pych, W.; Rozyczka, M.

    2015-09-01

    The field of the globular cluster M12 (NGC 6218) was monitored between 1995 and 2009 in a search for variable stars. BV light curves were obtained for thirty-six periodic or likely periodic variable stars. Thirty-four of these are new detections. Among the latter we identified twenty proper-motion members of the cluster: six detached or semi-detached eclipsing binaries, five contact binaries, five SX Phe pulsators, and three yellow stragglers. Two of the eclipsing binaries are located in the turnoff region, one on the lower main sequence and the remaining three among the blue stragglers. Two contact systems are blue stragglers, and the remaining three reside in the turnoff region. In the blue straggler region a total of 103 objects were found, of which 42 are proper motion members of M12, and another four are field stars. 55 of the remaining objects are located within two core radii from the center of the cluster, and as such they are likely genuine blue stragglers. We also report the discoveries of a radial color gradient of M12, and the shortest period among contact systems in globular clusters in general.

  15. The Clusters AgeS Experiment (CASE). Variable Stars in the Field of the Globular Cluster NGC 6362

    NASA Astrophysics Data System (ADS)

    Kaluzny, J.; Thompson, I. B.; Rozyczka, M.; Pych, W.; Narloch, W.

    2014-12-01

    The field of the globular cluster NGC 6362 was monitored between 1995 and 2009 in a search for variable stars. BV light curves were obtained for 69 periodic variable stars including 34 known RR Lyr stars, 10 known objects of other types and 25 newly detected variable stars. Among the latter we identified 18 proper-motion members of the cluster: seven detached eclipsing binaries (DEBs), six SX Phe stars, two W UMa binaries, two spotted red giants, and a very interesting eclipsing binary composed of two red giants - the first example of such a system found in a globular cluster. Five of the DEBs are located at the turnoff region, and the remaining two are redward of the lower main sequence. Eighty-four objects from the central 9×9 arcmin2 of the cluster were found in the region of cluster blue stragglers. Of these 70 are proper motion (PM) members of NGC 6362 (including all SX Phe and two W UMa stars), and five are field stars. The remaining nine objects lacking PM information are located at the very core of the cluster, and as such they are likely genuine blue stragglers.

  16. Epsilon Aurigae

    NASA Astrophysics Data System (ADS)

    Turner, Rebecca; Price, A.; Henden, A.

    2009-05-01

    The IYA 2009 working group on Research Experiences for Students, Teachers, and Citizen-Scientists is planning a multi-year project involving the bright star Eps Aur. The project will go beyond simple observing and also include a major data analysis component. The goal is to introduce the participant to the full scientific process from background research to paper writing for a peer-reviewed journal. It begins with a 10 Star Training Program of several types of binary and transient variable stars that are easy to observe from suburban locations with the naked eye. Participants will be trained both in observing and also in basic data analysis of photometric datasets (light curve and period analysis). Eventually it will lead to a capstone project: monitoring the rare and mysterious 2009-2011 eclipse of Epsilon Aurigae. In the summer of IYA 2009, third-magnitude Eps Aur will experience its next eclipse, which occurs every 27.1 years and lasts 714 days, nearly two years. The star is bright enough to be seen with the naked eye from most urban areas. If fully funded, the project will also involve two public workshops on observing and data analysis in the summers of 2009 and 2010, respectively.

  17. Flexible transparent electrode

    NASA Astrophysics Data System (ADS)

    Demiryont, Hulya; Shannon, Kenneth C., III; Moorehead, David; Bratcher, Matthew

    2011-06-01

    This paper presents the properties of the EclipseTECTM transparent conductor. EclipseTECTM is a room temperature deposited nanostructured thin film coating system comprised of metal-oxide semiconductor elements. The system possesses metal-like conductivity and glass-like transparency in the visible region. These highly conductive TEC films exhibit high shielding efficiency (35dB at 1 to 100GHz). EclipseTECTM can be deposited on rigid or flexible substrates. For example, EclipseTECTM deposited on polyethylene terephthalate (PET) is extremely flexible that can be rolled around a 9mm diameter cylinder with little or no reduction in electrical conductivity and that can assume pre-extension states after an applied stress is relieved. The TEC is colorless and has been tailored to have high visible transmittance which matches the eye sensitivity curve and allows the viewing of true background colors through the coating. EclipseTECTM is flexible, durable and can be tailored at the interface for applications such as electron- or hole-injecting OLED electrodes as well as electrodes in flexible displays. Tunable work function and optical design flexibility also make EclipseTECTM well-suited as a candidate for grid electrode replacement in next-generation photovoltaic cells.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, Joseph E.; Stassun, Keivan G.; Lund, Michael B.

    We present TYC 2505-672-1 as a newly discovered and remarkable eclipsing system comprising an M-type red giant that undergoes a ∼3.45 year long, near-total eclipse (depth of ∼4.5 mag) with a very long period of ∼69.1 years. TYC 2505-672-1 is now the longest-period eclipsing binary system yet discovered, more than twice as long as that of the currently longest-period system, ϵ Aurigae. We show from analysis of the light curve including both our own data and historical data spanning more than 120 years and from modeling of the spectral energy distribution, both before and during eclipse, that the red giantmore » primary is orbited by a moderately hot source ( T {sub eff} ≈ 8000 K) that is itself surrounded by an extended, opaque circumstellar disk. From the measured ratio of luminosities, the radius of the hot companion must be in the range of 0.1–0.5 R {sub ⊙} (depending on the assumed radius of the red giant primary), which is an order of magnitude smaller than that for a main sequence A star and 1–2 orders of magnitude larger than that for a white dwarf. The companion is therefore most likely a “stripped red giant” subdwarf-B type star destined to become a He white dwarf. It is, however, somewhat cooler than most sdB stars, implying a very low mass for this “pre-He-WD” star. The opaque disk surrounding this hot source may be a remnant of the stripping of its former hydrogen envelope. However, it is puzzling how this object became stripped, given that it is at present so distant (orbital semimajor axis of ∼24 au) from the current red giant primary star. Extrapolating from our calculated ephemeris, the next eclipse should begin in early UT 2080 April and end in mid UT 2083 September (eclipse center UT 2081 December 24). In the meantime, radial velocity observations would establish the masses of the components, and high-cadence UV observations could potentially reveal oscillations of the hot companion that would further constrain its evolutionary status. In any case, this system is poised to become an exemplar of a very rare class of systems, even more extreme in several respects than the well studied archetype ϵ Aurigae.« less

  19. Ionospheric total electron content measurements from Turkey during the solar eclipse of 29 April 1976

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Artac, E.; Tulunay, Y.K.

    1977-12-31

    Total ionospheric electron content (TEC) has been determined from the measurements of the Faraday rotation of a plane polarized wave that have been returned from the geostationary satellite ATS 6 transmitting at a frequency of 140 MHz. The results of the computations have been presented in the form of diurnal curves in order to investigate the effect of the solar eclipse of 29 April 1976 on the TEC over Ankara longitudes.

  20. Epsilon Aurigae's dark side: A thermal phase curve investigation of the near-eclipse phases

    NASA Astrophysics Data System (ADS)

    Pearson, Richard L.; Stencel, Robert E.; Howell, Steve B.; Hoard, D. W.; Kim, Daryl L.; Russell, Ray W.; Sitko, Michael L.

    2017-06-01

    The epsilon Aurigae disk-eclipsing binary system moves through a primary eclipse that lasts just over two years and occurs every 27.1-years. It comprises of a warm F0Ia-star (around 7750 K) and an opaque, circumstellar disk hiding an internal B-star (with a temperature greater than 15,000 K). We present new infrared observations from Spitzer's Infrared Array Camera (IRAC, at 3.6 and 4.5 microns) and The Aerospace Corporation’s Broadband Array Spectrograph System (BASS, a 116-element prism system spectrograph spanning 3 - 14 microns) in order to extract the thermal signature of the disk. Previous findings indicate a variable temperature of the disk, depending on its location within the system’s orbit: a 550 +\\- 50 K temperature was identified during eclipse phases, while a 1150 +\\- 50 K temperature was found near secondary—or anti-eclipse—phases by Hoard et al. (2010) and Hoard et al. (2012). We use the latest observations in combination with previously published IRAC and BASS data to compile a more complete thermal phase curve (TPC) of the disk across nearly one-third of the system’s orbit. The TPC indicates heating and cooling effects of the disk, pointing to specific ranges of material properties and disk structure. The observations, process, results, and implications will be presented.

  1. CCD Photometry and Roche Modeling of the Eclipsing Deep Low Mass, Overcontact Binary Star System TYC 2058-753-1

    NASA Astrophysics Data System (ADS)

    Alton, K. B.

    2018-06-01

    Abstract TYC 2058-753-1 (NSVS 7903497; ASAS 165139+2255.7) is a W UMa binary system (P = 0.353205 d) which has not been rigorously studied since first being detected nearly 15 years ago by the ROTSE-I telescope. Other than the unfiltered ROTSE-I and monochromatic All Sky Automated Survey (ASAS) survey data, no multi-colored light curves (LC) have been published. Photometric data collected in three bandpasses (B, V, and Ic) at Desert Bloom Observatory in June 2017 produced six times-of-minimum for TYC 2058-753-1 which were used to establish a linear ephemeris from the first directly measured Min I epoch (HJD0). No published radial velocity data are available for this system, however, since this W UMa binary undergoes a very obvious total eclipse, Roche modeling produced a well-constrained photometric value for the mass ratio (qph = 0.103 ± 0.001). This low-mass ratio binary star system also exhibits a high degree of contact (f > 56%). There is a suggestion from the ROTSE-I and ASAS survey data as well as from the new LCs reported herein that maximum light during quadrature (Max I and Max II) is often not equal. As a result, Roche modeling of the TYC 2058-753-1 LCs was investigated with and without surface spots to address this asymmetry as well as a diagonally-aligned flat bottom during Min I that was observed in 2017.

  2. The Palomar Transient Factory Orion Project: Eclipsing Binaries and Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    van Eyken, Julian C.; Ciardi, David R.; Rebull, Luisa M.; Stauffer, John R.; Akeson, Rachel L.; Beichman, Charles A.; Boden, Andrew F.; von Braun, Kaspar; Gelino, Dawn M.; Hoard, D. W.; Howell, Steve B.; Kane, Stephen R.; Plavchan, Peter; Ramírez, Solange V.; Bloom, Joshua S.; Cenko, S. Bradley; Kasliwal, Mansi M.; Kulkarni, Shrinivas R.; Law, Nicholas M.; Nugent, Peter E.; Ofek, Eran O.; Poznanski, Dovi; Quimby, Robert M.; Grillmair, Carl J.; Laher, Russ; Levitan, David; Mattingly, Sean; Surace, Jason A.

    2011-08-01

    The Palomar Transient Factory (PTF) Orion project is one of the experiments within the broader PTF survey, a systematic automated exploration of the sky for optical transients. Taking advantage of the wide (3fdg5 × 2fdg3) field of view available using the PTF camera installed at the Palomar 48 inch telescope, 40 nights were dedicated in 2009 December to 2010 January to perform continuous high-cadence differential photometry on a single field containing the young (7-10 Myr) 25 Ori association. Little is known empirically about the formation of planets at these young ages, and the primary motivation for the project is to search for planets around young stars in this region. The unique data set also provides for much ancillary science. In this first paper, we describe the survey and the data reduction pipeline, and present some initial results from an inspection of the most clearly varying stars relating to two of the ancillary science objectives: detection of eclipsing binaries and young stellar objects. We find 82 new eclipsing binary systems, 9 of which are good candidate 25 Ori or Orion OB1a association members. Of these, two are potential young W UMa type systems. We report on the possible low-mass (M-dwarf primary) eclipsing systems in the sample, which include six of the candidate young systems. Forty-five of the binary systems are close (mainly contact) systems, and one of these shows an orbital period among the shortest known for W UMa binaries, at 0.2156509 ± 0.0000071 days, with flat-bottomed primary eclipses, and a derived distance that appears consistent with membership in the general Orion association. One of the candidate young systems presents an unusual light curve, perhaps representing a semi-detached binary system with an inflated low-mass primary or a star with a warped disk, and may represent an additional young Orion member. Finally, we identify 14 probable new classical T-Tauri stars in our data, along with one previously known (CVSO 35) and one previously reported as a candidate weak-line T-Tauri star (SDSS J052700.12+010136.8).

  3. KIC 4150611: a rare multi-eclipsing quintuple with a hybrid pulsator

    NASA Astrophysics Data System (ADS)

    Hełminiak, K. G.; Ukita, N.; Kambe, E.; Kozłowski, S. K.; Pawłaszek, R.; Maehara, H.; Baranec, C.; Konacki, M.

    2017-06-01

    Aims: We aim to analyse KIC 4150611 (HD 181469) - an interesting, bright quintuple system that includes a hybrid δ Sct/γ Dor pulsator. Four periods of eclipses - 94.2, 8.65, 1.52 and 1.43 d - have been observed by the Kepler satellite, and three point sources (A, B, and C) are seen in high angular resolution images. Methods: From spectroscopic observations made with the HIDES spectrograph attached to the 1.88-m telescope of the Okayama Astrophysical Observatory (OAO), we have calculated for the first time radial velocities (RVs) of the component B - a pair of G-type stars - and combined them with Kepler photometry in order to obtain absolute physical parameters of this pair. We also managed to directly measure RVs of the pulsator, for the first time. Additionally, we modelled the light curves of the 1.52 and 1.43-day pairs, and measured their eclipse timing variations (ETVs). We also performed relative astrometry and photometry of three sources seen on the images taken with the NIRC2 camera of the Keck II telescope. Finally, we compared our results with theoretical isochrones. Results: The brightest component Aa is the hybrid pulsator, transited every 94.2 days by a pair of K/M-type stars (Ab1+Ab2), which themselves form a 1.52-day eclipsing binary. The components Ba and Bb are late G-type stars, forming another eclipsing pair with a 8.65 day period. Their masses and radii are MBa = 0.894 ± 0.010 M⊙, RBa = 0.802 ± 0.044 R⊙ for the primary, and MBb = 0.888 ± 0.010 M⊙, RBb = 0.856 ± 0.038 R⊙ for the secondary. The remaining period of 1.43 days is possibly related to a faint third star C, which itself is most likely a background object. The system's properties are well-represented by a 35 Myr isochrone, basing on which the masses of the pulsator and the 1.52-day pair are MAa = 1.64(6) M⊙, and MAb,tot = 0.90(13) M⊙, respectively. There are also suggestions of additional bodies in the system.

  4. Changes in the Silicate Dust Features of the Symbiotic Star R Aquarii Prior to the Upcoming 2022 Eclipse and Periastron Events

    NASA Astrophysics Data System (ADS)

    Omelian, Eric; Sankrit, Ravi; Helton, Andrew; Gorti, Uma; Wagner, R. Mark

    2018-01-01

    The symbiotic star, R Aquarii (R Aqr) consists of a dusty, pulsating Mira (period 387 days) and a hot white dwarf (WD) that orbit each other with a period of about 44 years. Based on the light curve from ca. 1890 CE onwards, and associated nebular and jet activity, it has been established (with a high degree of confidence) that the WD eclipses the Mira around the time of the periastron passage. One of the phenomena associated with this phase in the orbit is enhanced accretion onto the WD, which in turn energizes the jet outflow. The next eclipse is imminent, and it is estimated that periastron will occur in 2022. Infrared observations of R Aqr have established that the emission consists of a thermal spectrum with an effective temperature of about 2500 K with superposed silicate dust features. These silicate features are known to vary with time, and UKIRT spectra taken within a single Mira phase have shown that some of the variation is correlated with the pulsation of the dust envelope of the AGB star.We have used the FORCAST instrument on SOFIA to observe R Aqr during Cycles 4 and 5 as part of an ongoing monitoring of the system as it goes through eclipse and periastron. Photometry between 6 and 37 μm, and spectra covering the 10 and 18 μm silicate features have shown significant changes in the spectrum compared with earlier data in the same wavelength range obtained by ISO at an epoch closer to apastron. We present our data along with archival data from other IR observatories and use them to characterize the changes in the silicate emission. These data are presented along with model calculations using DUSTY and RADMC-3D that we have used to explore the changes in dust properties that are necessary to explain the differences in the emission profiles. We also present our plans for continued monitoring of R Aqr through the upcoming eclipse, which is required in order to separate the effects of pulsation from the longer-term orbital effects on the dust profiles.

  5. Ginga observations of dipping low mass X ray binaries

    NASA Technical Reports Server (NTRS)

    Smale, Alan P.; Mukai, Koji; Williams, O. Rees; Jones, Mark H.; Parmar, Arvind N.; Corbet, Robin H. D.

    1989-01-01

    Ginga observations of several low mass X ray binaries displaying pronounced dips of variable depth and duration in their X ray light curves are analyzed. The periodic occultation of the central X ray source by azimuthal accretion disk structure is considered. A series of spectra selected by intensity from the dip data from XB1916-053, are presented. The effects of a rapidly changing column density upon the spectral fitting results are modeled. EXO0748-676 was observed in March 1989 for three days. The source was found to be in a bright state with a 1 to 20 keV flux of 8.8 x 10 (exp -10) erg/sqcms. The data include two eclipses, observed with high time resolution.

  6. A Catalog of Visual Double and Multiple Stars With Eclipsing Components

    DTIC Science & Technology

    2009-08-01

    astrometric data were analyzed, resulting in new orbits for eight systems and new times of minimum light for a number of the eclipsing binaries. Some...analyses; one especially productive source is the study of the long- time behav- ior of the period of an EB. As might be expected, the longer the time ...span of conjunction time measurements, or times of min- imum light, the greater the chance of detecting a long-period orbit due to an additional

  7. Low-mass eclipsing binaries in the WFCAM Transit Survey: the persistence of the M-dwarf radius inflation problem

    NASA Astrophysics Data System (ADS)

    Cruz, Patricia; Diaz, Marcos; Birkby, Jayne; Barrado, David; Sipöcz, Brigitta; Hodgkin, Simon

    2018-06-01

    We present the characterization of five new short-period low-mass eclipsing binaries (LMEBs) from the WFCAM Transit Survey. The analysis was performed by using the photometric WFCAM J-mag data and additional low- and intermediate-resolution spectroscopic data to obtain both orbital and physical properties of the studied sample. The light curves and the measured radial velocity curves were modelled simultaneously with the JKTEBOP code, with Markov chain Monte Carlo simulations for the error estimates. The best-model fit have revealed that the investigated detached binaries are in very close orbits, with orbital separations of 2.9 ≤ a ≤ 6.7 R⊙ and short periods of 0.59 ≤ Porb ≤ 1.72 d, approximately. We have derived stellar masses between 0.24 and 0.72 M⊙ and radii ranging from 0.42 to 0.67 R⊙. The great majority of the LMEBs in our sample has an estimated radius far from the predicted values according to evolutionary models. The components with derived masses of M < 0.6 M⊙ present a radius inflation of {˜ }9 per cent or more. This general behaviour follows the trend of inflation for partially radiative stars proposed previously. These systems add to the increasing sample of low-mass stellar radii that are not well-reproduced by stellar models. They further highlight the need to understand the magnetic activity and physical state of small stars. Missions like TESS will provide many such systems to perform high-precision radius measurements to tightly constrain low-mass stellar evolution models.

  8. Heat-cured acrylic resin versus light-activated resin: a patient, professional and technician-based evaluation of mandibular implant-supported overdentures.

    PubMed

    Asal, S A; Al-AlShiekh, H M

    2017-12-01

    Although light-activated resins (Eclipse) have been reported to possess superior physical and mechanical properties compared with the heat-cured acrylic resins (Lucitone-199), a few studies have compared overdentures with a locator attachment constructed from heat-cured acrylic resins with those constructed from light-activated resins. This clinical study was designed to compare the performance of a mandibular implant-supported overdenture constructed from a heat-cured acrylic resin (Lucitone-199) with that of an overdenture constructed from a light-activated resin (Eclipse). Ten participants received two identical mandibular implant-retained overdentures (Lucitone-199 and Eclipse) opposing one maxillary denture in a random order. Each mandibular overdenture was delivered and worn for 6 months, and two weeks of rest was advised between wears to minimize any carryover effects. Three questionnaires were devised. The first questionnaire (patient evaluation) focused on evaluating different aspects of the denture and overall satisfaction. The second questionnaire (professional dentist evaluation) was based on a clinical evaluation of soft tissues, complications, and the applied technique. The third questionnaire (technician evaluation) involved ranking the different manufacturing steps of the denture and overall preferences. The obtained data was statistically analyzed using an independent sample t-test and the Wilcoxon rank-sum test. The clinician and technician preferred the Eclipse dentures because of their technical aspects, whereas the patients preferred the Lucitone-199 dentures for their aesthetic properties. Implant-supported overdentures constructed from a heat-cured acrylic resin showed superior aesthetics and had a better odor compared with those constructed from a light-cured resin.

  9. Off-Nominal Performance of the International Space Station Solar Array Wings Under Orbital Eclipse Lighting Scenarios

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Scheiman, David A.

    2005-01-01

    This paper documents testing and analyses to quantify International Space Station (ISS) Solar Array Wing (SAW) string electrical performance under highly off-nominal, low-temperature-low-intensity (LILT) operating conditions with nonsolar light sources. This work is relevant for assessing feasibility and risks associated with a Sequential Shunt Unit (SSU) remove and replace (R&R) Extravehicular Activity (EVA). During eclipse, SAW strings can be energized by moonlight, EVA suit helmet lights or video camera lights. To quantify SAW performance under these off-nominal conditions, solar cell performance testing was performed using full moon, solar simulator and Video Camera Luminaire (VCL) light sources. Test conditions included 25 to 110 C temperatures and 1- to 0.0001-Sun illumination intensities. Electrical performance data and calculated eclipse lighting intensities were combined to predict SAW current-voltage output for comparison with electrical hazard thresholds. Worst case predictions show there is no connector pin molten metal hazard but crew shock hazard limits are exceeded due to VCL illumination. Assessment uncertainties and limitations are discussed along with operational solutions to mitigate SAW electrical hazards from VCL illumination. Results from a preliminary assessment of SAW arcing are also discussed. The authors recommend further analyses once SSU, R&R, and EVA procedures are better defined.

  10. Lighting Condition Analysis for Mars Moon Phobos

    NASA Technical Reports Server (NTRS)

    Li, Zu Qun; Crues, Edwin Z.; Bielski, Paul; De Carufel, Guy

    2016-01-01

    A manned mission to Phobos may be an important precursor and catalyst for the human exploration of Mars, as it will fully demonstrate the technologies for a successful Mars mission. A comprehensive understanding of Phobos' environment such as lighting condition and gravitational acceleration are essential to the mission success. The lighting condition is one of many critical factors for landing zone selection, vehicle power subsystem design, and surface mobility vehicle path planning. Due to the orbital characteristic of Phobos, the lighting condition will change dramatically from one Martian season to another. This study uses high fidelity computer simulation to investigate the lighting conditions, specifically the solar radiation flux over the surface, on Phobos. Ephemeris data from the Jet Propulsion Laboratory (JPL) DE405 model was used to model the state of the Sun, the Earth, and Mars. An occultation model was developed to simulate Phobos' self-shadowing and its solar eclipses by Mars. The propagated Phobos' state was compared with data from JPL's Horizon system to ensure the accuracy of the result. Results for Phobos lighting condition over one Martian year are presented in this paper, which include length of solar eclipse, average solar radiation intensity, surface exposure time, total maximum solar energy, and total surface solar energy (constrained by incident angle). The results show that Phobos' solar eclipse time changes throughout the Martian year with the maximum eclipse time occurring during the Martian spring and fall equinox and no solar eclipse during the Martian summer and winter solstice. Solar radiation intensity is close to minimum at the summer solstice and close to maximum at the winter solstice. Total surface exposure time is longer near the north pole and around the anti- Mars point. Total maximum solar energy is larger around the anti-Mars point. Total surface solar energy is higher around the anti-Mars point near the equator. The results from this study and others like it will be important in determining landing site selection, vehicle system design and mission operations for the human exploration of Phobos and subsequently Mars.

  11. Solar disc radius determined from observations made during eclipses with bolometric and photometric instruments on board the PICARD satellite

    NASA Astrophysics Data System (ADS)

    Thuillier, G.; Zhu, P.; Shapiro, A. I.; Sofia, S.; Tagirov, R.; van Ruymbeke, M.; Perrin, J.-M.; Sukhodolov, T.; Schmutz, W.

    2017-07-01

    Context. Despite the importance of having an accurate measurement of the solar disc radius, there are large uncertainties of its value due to the use of different measurement techniques and instrument calibration. An item of particular importance is to establish whether the value of the solar disc radius correlates with the solar activity level. Aims: The main goal of this work is to measure the solar disc radius in the near-UV, visible, and near-IR regions of the solar spectrum. Methods: Three instruments on board the PICARD spacecraft, namely the Bolometric Oscillations Sensor (BOS), the PREcision MOnitoring Sensor (PREMOS), and a solar sensor (SES), are used to derive the solar disc radius using the light curves produced when the Sun is occulted by the Moon. Nine eclipses, from 2010 to 2013, resulted in 17 occultations as viewed from the moving satellite. The calculation of the solar disc radius uses a simulation of the light curve taking into account the center-to-limb variation provided by the Non-local thermodynamic Equilibrium Spectral SYnthesis (NESSY) code. Results: We derive individual values for the solar disc radius for each viewed eclipse. Tests for a systematic variation of the radius with the progression of the solar cycle yield no significant results during the three years of measurements within the uncertainty of our measurements. Therefore, we derive a more precise radius value by averaging these values. At one astronomical unit, we obtain 959.79 arcseconds (arcsec) from the bolometric experiment; from PREMOS measurements, we obtain 959.78 arcsec at 782 nm and 959.76 arcsec at 535 nm. We found 960.07 arcsec at 210 nm, which is a higher value than the other determinations given the photons at this wavelength originate from the upper photosphere and lower chromosphere. We also give a detailed comparison of our results with those previously published using measurements from space-based and ground-based instruments using the Moon angular radius reference, and different methods. Conclusions: Our results, which use the Moon as an absolute calibration, clearly show the dependence of the solar disc radius with wavelength in UV, visible and near-IR. Beyond the metrological results, solar disc radius measurements will allow the accuracy of models of the solar atmosphere to be tested. Proposed systematic variations of the solar disc radius during the time of observation would be smaller than the uncertainty of our measurement, which amounts to less than 26 milliarcseconds.

  12. A CHANDRA OBSERVATION OF THE ECLIPSING WOLF-RAYET BINARY CQ Cep

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skinner, Stephen L.; Zhekov, Svetozar A.; Güdel, Manuel

    The short-period (1.64 d) near-contact eclipsing WN6+O9 binary system CQ Cep provides an ideal laboratory for testing the predictions of X-ray colliding wind shock theory at close separation where the winds may not have reached terminal speeds before colliding. We present results of a Chandra X-ray observation of CQ Cep spanning ∼1 day during which a simultaneous Chandra optical light curve was acquired. Our primary objective was to compare the observed X-ray properties with colliding wind shock theory, which predicts that the hottest shock plasma (T ≳ 20 MK) will form on or near the line-of-centers between the stars. The X-raymore » spectrum is strikingly similar to apparently single WN6 stars such as WR 134 and spectral lines reveal plasma over a broad range of temperatures T ∼ 4-40 MK. A deep optical eclipse was seen as the O star passed in front of the Wolf-Rayet star and we determine an orbital period P {sub orb} = 1.6412400 d. Somewhat surprisingly, no significant X-ray variability was detected. This implies that the hottest X-ray plasma is not confined to the region between the stars, at odds with the colliding wind picture and suggesting that other X-ray production mechanisms may be at work. Hydrodynamic simulations that account for such effects as radiative cooling and orbital motion will be needed to determine if the new Chandra results can be reconciled with the colliding wind picture.« less

  13. New variable stars discovered in the fields of three Galactic open clusters using the VVV survey

    NASA Astrophysics Data System (ADS)

    Palma, T.; Minniti, D.; Dékány, I.; Clariá, J. J.; Alonso-García, J.; Gramajo, L. V.; Ramírez Alegría, S.; Bonatto, C.

    2016-11-01

    This project is a massive near-infrared (NIR) search for variable stars in highly reddened and obscured open cluster (OC) fields projected on regions of the Galactic bulge and disk. The search is performed using photometric NIR data in the J-, H- and Ks- bands obtained from the Vista Variables in the Vía Láctea (VVV) Survey. We performed in each cluster field a variability search using Stetson's variability statistics to select the variable candidates. Later, those candidates were subjected to a frequency analysis using the Generalized Lomb-Scargle and the Phase Dispersion Minimization algorithms. The number of independent observations range between 63 and 73. The newly discovered variables in this study, 157 in total in three different known OCs, are classified based on their light curve shapes, periods, amplitudes and their location in the corresponding color-magnitude (J -Ks ,Ks) and color-color (H -Ks , J - H) diagrams. We found 5 possible Cepheid stars which, based on the period-luminosity relation, are very likely type II Cepheids located behind the bulge. Among the newly discovered variables, there are eclipsing binaries, δ Scuti, as well as background RR Lyrae stars. Using the new version of the Wilson & Devinney code as well as the "Physics Of Eclipsing Binaries" (PHOEBE) code, we analyzed some of the best eclipsing binaries we discovered. Our results show that these studied systems turn out to be ranging from detached to double-contact binaries, with low eccentricities and high inclinations of approximately 80°. Their surface temperatures range between 3500 K and 8000 K.

  14. The Orbital and Physical Parameters, and the Distance of the Eclipsing Binary System OGLE-LMC-ECL-25658 in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Elgueta, S. S.; Graczyk, D.; Gieren, W.; Pietrzyński, G.; Thompson, I. B.; Konorski, P.; Pilecki, B.; Villanova, S.; Udalski, A.; Soszyński, I.; Suchomska, K.; Karczmarek, P.; Górski, M.; Wielgórski, P.

    2016-08-01

    We present an analysis of a new detached eclipsing binary, OGLE-LMC-ECL-25658, in the Large Magellanic Cloud (LMC). The system consists of two late G-type giant stars on an eccentric orbit with an orbital period of ˜200 days. The system shows total eclipses and the components have similar temperatures, making it ideal for a precise distance determination. Using multi-color photometric and high resolution spectroscopic data, we have performed an analysis of light and radial velocity curves simultaneously using the Wilson-Devinney code. We derived orbital and physical parameters of the binary with a high precision of \\lt 1%. The masses and surface metallicities of the components are virtually the same and equal to 2.23+/- 0.02 {M}⊙ and [{Fe}/{{H}}]\\=\\-0.63+/- 0.10 dex. However, their radii and rates of rotation show a distinct trace of differential stellar evolution. The distance to the system was calculated using an infrared calibration between V-band surface brightness and (V-K) color, leading to a distance modulus of (m-M)\\=\\18.452+/- 0.023 (statistical) ± 0.046 (systematic). Because OGLE-LMC-ECL-25658 is located relatively far from the LMC barycenter, we applied a geometrical correction for its position in the LMC disk using the van der Marel et al. model of the LMC. The resulting barycenter distance to the galaxy is {d}{{LMC}}\\=\\50.30+/- 0.53 (stat.) kpc, and is in perfect agreement with the earlier result of Pietrzyński et al.

  15. The 2017 Eclipse: Centenary of the Einstein Light Deflection Experiment

    NASA Astrophysics Data System (ADS)

    Kennefick, Daniel

    2017-01-01

    August 21st, 2017 will see a total eclipse of the Sun visible in many parts of the United States. Coincidentally this date marks the centenary of the first observational attempt to test Einstein's General Theory of Relativity by measuring gravitational deflection of light by the Sun. This was attempted by the Kodaikanal Observatory in India during the conjunction of Regulus with the Sun in daylight on August 21st, 1917. The observation was attempted at the urging of the amateur German-British astronomer A. F. Lindemann, with his son, F. A. Lindemann, a well-known physicist, who later played a significant role as Churchill's science advisor during World War II. A century later Regulus will once again be in conjunction with the Sun, but by a remarkable coincidence, this will occur during a solar eclipse! Efforts will be made to measure the star deflection during the eclipse and the experiment is contrasted with the famous expeditions of 1919 which were the first to actually measure the light deflection, since the 1917 effort did not meet with success. Although in recent decades there have been efforts made to suggest that the 1919 eclipse team, led by Arthur Stanley Eddington and Sir Frank Watson Dyson, over-interpreted their results in favor of Einstein this talk will argue that such claims are wrong-headed. A close study of their data analysis reveals that they had good grounds for the decisions they made and this conclusion is reinforced by comparison with a modern re-analysis of the plates by the Greenwich Observatory conducted in 1977.

  16. Derivation of Heliophysical Scientific Data from Amateur Observations of Solar Eclipses

    NASA Astrophysics Data System (ADS)

    Stoev, A. D.; Stoeva, P. V.

    2006-03-01

    The basic scientific aims and observational experiments included in the complex observational program - Total Solar Eclipse '99 - are described in the work. Results from teaching and training students of total solar eclipse (TSE) observation in the Public Astronomical Observatory (PAO) in Stara Zagora and their selection for participation in different observational teams are also discussed. During the final stage, a special system of methods for investigation of the level of pretensions (the level of ambition as to what he/she feels capable of achieving in the context of problem solving/observation) of the students is applied. Results obtained from the observational experiments are interpreted mainly in the following themes: Investigation of the structure of the white-light solar corona and evolution of separate coronal elements during the total phase of the eclipse; Photometry of the white-light solar corona and specific emission lines; Meteorological, actinometrical and optical atmospheric investigations; Astrometry of the Moon during the phase evolution of the eclipse; Biological and behavioral reactions of highly organized colonies (ants and bats) during the eclipse. It is also shown that data processing, observational results and their interpretation, presentation and publishing in specialized and amateur editions is a peak in the independent creative activity of students and amateur astronomers. This enables students from the Astronomy schools at Public Astronomical Observatories and Planetariums (PAOP) to develop creative skills, emotional - volitional personal qualities, orientation towards scientific work, observations and experiments, and build an effective scientific style of thinking.

  17. UV Chromospheric Activity in Cool, Short-Period Contact Binaries

    NASA Technical Reports Server (NTRS)

    Hrivnak, Bruce J.

    2000-01-01

    We have completed our analysis of the IUE spectra of the short-period contact binary OO Aql. OO Aql is a rare W UMa-type eclipsing binary in which the two solar-type stars may have only recently evolved into contact. The binary has an unusually high mass ratio (0.84), and a relatively long orbital period (0.506 d) for its spectral type (mid-G). Twelve ultraviolet spectra of OO Aql were obtained in 1988 with the IUE satellite, including a series of consecutive observations that cover nearly a complete orbital cycle. Chromospheric activity is studied by means of the Mg II h+k emission at 2800 A. The Mg II emission is found to vary, even when the emission is normalized to the adjacent continuum flux. This variation may be correlated with orbital phase in the 1988 observations. It also appears that the normalized Mg H emission varies with time, as seen in spectra obtained at two different epochs in 1988 and when compared with two spectra obtained several years earlier. The level of chromospheric activity in OO Aql is less than that of other W UMa-type binaries of similar colors, but this is attributed to its early stage of contact binary evolution. Ultraviolet light curves were composed from measurements of the ultraviolet continuum in the spectra. These were analyzed along with visible light curves of OO Aql to determine the system parameters. The large wavelength range in the light curves enabled a well-constrained fit to a cool spot in the system. A paper on these results is scheduled for publication in the February 2001 issue of the Astronomical Journal.

  18. The central star candidate of the planetary nebula Sh2-71: photometric and spectroscopic variability

    NASA Astrophysics Data System (ADS)

    Močnik, T.; Lloyd, M.; Pollacco, D.; Street, R. A.

    2015-07-01

    We present the analysis of several newly obtained and archived photometric and spectroscopic data sets of the intriguing and yet poorly understood 13.5 mag central star candidate of the bipolar planetary nebula Sh2-71. Photometric observations confirmed the previously determined quasi-sinusoidal light curve with a period of 68 d and also indicated periodic sharp brightness dips, possibly eclipses, with a period of 17.2 d. In addition, the comparison between U and V light curves revealed that the 68 d brightness variations are accompanied by a variable reddening effect of ΔE(U - V) = 0.38. Spectroscopic data sets demonstrated pronounced variations in spectral profiles of Balmer, helium and singly ionized metal lines and indicated that these variations occur on a time-scale of a few days. The most accurate verification to date revealed that spectral variability is not correlated with the 68 d brightness variations. The mean radial velocity of the observed star was measured to be ˜26 km s-1 with an amplitude of ±40 km s-1. The spectral type was determined to be B8V through spectral comparison with synthetic and standard spectra. The newly proposed model for the central star candidate is a Be binary with a misaligned precessing disc.

  19. Absolute parameters of detached binaries in the southern sky - III: HO Tel

    NASA Astrophysics Data System (ADS)

    Sürgit, D.; Erdem, A.; Engelbrecht, C. A.; van Heerden, H. P.; Manick, R.

    2017-07-01

    We present the first radial velocity analysis of the southern eclipsing binary star HO Tel, based on spectra obtained at the South African Astronomical Observatory in 2013. The orbital solution of this neglected binary gave the quite large spectroscopic mass ratio of 0.921(±0.005). The V light curve from the All Sky Automated Survey (ASAS) and Walraven five-colour (WULBV) photometric light curves (Spoelstra and Van Houten 1972) were solved simultaneously using the Wilson-Devinney code supplemented by the Monte Carlo search method. The final photometric model describes HO Tel as a detached binary star where both component stars fill about three-quarters of their Roche limiting lobes. The masses and radii were found to be 1.88(±0.04) M⊙, 2.28(±0.15) R⊙ and 1.73(±0.04) M⊙, 2.08(±0.16) R⊙ for the primary and secondary components of the system, respectively. The distance to HO Tel was calculated as 282(±30) pc, taking into account interstellar extinction. The evolution case of HO Tel was also examined. Both components of the system are evolved main-sequence stars with an age of approximately 1.1 Gy, when compared to Geneva theoretical evolution models.

  20. Multiband Fourier Analysis and Interstellar Reddening of the Variable Stars in the Globular Cluster NGC 6402 (M14)

    NASA Astrophysics Data System (ADS)

    Weinschenk, Sedrick; Murphy, Brian; Villiger, Nathan J.

    2018-01-01

    We present a detailed study of the variable stars in the globular cluster NGC 6402 (M14). Approximately 1500 B and V band images were collected from July 2016 to August 2017 using the SARA Consortium Jacobus Kaptyen 1-meter telescope located in the Canary Islands. Using difference image analysis, we were able to identify 145 probable variable stars, confirming the 133 previously known variables and adding 12 new variables. The variables consisted of 117 RR Lyrae stars, 18 long period variables, 2 eclipsing variables, 6 Cepheid variables, and 2 SX Phoenix variables. Of the RR Lyrae variables 55 were of fundamental mode RR0 stars, of which 18 exhibited the Blazhko effect, 57 were of 1st overtone RR1, of which 7 appear to exhibit the Blazhko effect, 1 2nd overtone RR2, and 2 double mode variables. We found an average period of 0.59016 days for RR0 stars and 0.30294 days for RR1 stars. Using the multiband light curves of both the RR0 and RR1 variables we found an average E(B-V) of 0.604 with a scatter of 0.15 magnitudes. Using Fourier decomposition of the RR Lyrae light curves we also determined the metallicity and distance of the NGC 6402.

Top