Annular and Total Solar Eclipses of 2010
NASA Technical Reports Server (NTRS)
Espenak, Fred; Anderson, J.
2008-01-01
While most NASA eclipse bulletins cover a single eclipse, this publication presents predictions for two solar eclipses during 2010. This has required a different organization of the material into the following sections. Section 1 -- Eclipse Predictions: The section consists of a general discussion about the eclipse path maps, Besselian elements, shadow contacts, eclipse path tables, local circumstances tables, and the lunar limb profile. Section 2 -- Annular Solar Eclipse of 2010 Ja n 15: The section covers predictions and weather prospects for the annular eclipse. Section 3 -- Total Solar Eclipse of 2010 Jul 11: The se ction covers predictions and weather prospects for the total eclipse. Section 4 -- Observing Eclipses: The section provides information on eye safety, solar filters, eclipse photography, and making contact timings from the path limits. Section 5 -- Eclipse Resources: The final section contains a number of resources including information on the IAU Working Group on Eclipses, the Solar Eclipse Mailing List, the NASA eclipse bulletins on the Internet, Web sites for the two 2010 eclipses, and a summary identifying the algorithms, ephemerides, and paramete rs used in the eclipse predictions.
Total Solar Eclipse of 2008 August 01
NASA Technical Reports Server (NTRS)
Espenak, F.; Anderson, J.
2007-01-01
On 2008 August 01, a total eclipse of the Sun is visible from within a narrow corridor that traverses half the Earth. The path of the Moon's umbral shadow begins in northern Canada and extends across Greenland, the Arctic, central Russia, Mongolia, and China. A partial eclipse is seen within the much broader path of the Moon's penumbral shadow, which includes northeastern North America, most of Europe and Asia. Detailed predictions for this event are presented and include besselian elements, geographic coordinates of the path of totality, physical ephemeris of the umbra, topocentric limb profile corrections, local circumstances for 308 cities, maps of the eclipse path, weather prospects, the lunar limb profile and the sky during totality. Information on safe eclipse viewing and eclipse photography is included.
Total solar eclipse of 3 November 1994
NASA Technical Reports Server (NTRS)
Espenak, Fred; Anderson, Jay
1993-01-01
A total eclipse of the Sun will be visible from the southern half of the Western Hemisphere on 3 November 1994. The path of the Moon's shadow passes through Peru, Chile, Bolivia, Paraguay, and Brazil. Detailed predictions for this event are presented and include tables of geographic coordinates of the path of totality, local circumstances for hundreds of cities, maps of the path of total and partial eclipse, weather prospects, and the lunar limb profile.
Annular Solar Eclipse of 10 May 1994
NASA Technical Reports Server (NTRS)
Espenak, Fred; Anderson, Jay
1993-01-01
An annular eclipse of the Sun will be widely visible from the Western Hemisphere on 10 May 1994. The path of the Moon's shadow passes through Mexico, the United States of America, maritime Canada, the North Atlantic, the Azores and Morocco. Detailed predictions for this event are presented and include tables of geographic coordinates of the annular path, local circumstances for hundreds of cities, maps of the path of annular and partial eclipse, weather prospects, and the lunar limb profile.
Total Solar Eclipse of 2006 March 29
NASA Technical Reports Server (NTRS)
Espenak, F.; Anderson, J.
2004-01-01
On 2006 March 29, a total eclipse of the Sun will be visible from within a narrow corridor which traverses half the Earth. The path of the Moon's umbral shadow begins in Brazil and extends across the Atlantic, northern Africa, and central Asia where it ends at sunset in western Mongolia. A partial eclipse will be seen within the much broader path of the Moon's penumbral shadow, which includes the northern two thirds of Africa, Europe, and central Asia.Detailed predictions for this event are presented and include besselian elements, geographic coordinates of the path of totality, physical ephemeris of the umbra, topocentric limb profile corrections, local circumstances for approximately 350 cities, maps of the eclipse path, weather prospects, the lunar limb profile, and the sky during totality. Information on safe eclipse viewing and eclipse photography is included.
Total Solar Eclipse of 2002 December 04
NASA Technical Reports Server (NTRS)
Espenak, Fred; Anderson, Jay
2001-01-01
On 2002 December 04, a total eclipse of the Sun will be visible from within a narrow corridor which traverses the Southern Hemisphere. The path of the Moon's umbral shadow begins in the South Atlantic, crosses southern Africa and the Indian Ocean, and ends at sunset in southern Australia. A partial eclipse will be seen within the much broader path of the Moon's penumbral shadow, which includes the southern two thirds of Africa, Antarctica, Indian Ocean and Australia. Detailed predictions for this event are presented and include besselian elements, geographic coordinates of the path of totality, physical ephemeris of the umbra, topocentric limb profile corrections, local circumstances for approximately 400 cities, maps of the eclipse path, weather prospects, the lunar limb profile and the sky during totality. Information on safe eclipse viewing and eclipse photography is included.
Total Solar Eclipse of 1997 March 9
NASA Technical Reports Server (NTRS)
Espenak, Fred; Anderson, Jay
1995-01-01
A total eclipse of the Sun will be visible from Asia and the Pacific Ocean on 1997 March 9. The path of the Moon's umbral shadow begins in eastern Kazakhstan and travels through Mongolia and eastern Siberia, where it swings northward to end at sunset in the Arctic Ocean. A partial eclipse will be seen within the much broader path of the Moon's penumbral shadow, which includes eastern Asia, the northern Pacific, and the northwest corner of North America. Detailed predictions for this event are presented and include besselian elements, geographic coordinates of the path of totality, physical ephemeris of the umbra, topocentric limb profile corrections, local circumstances for 280 cities, maps of the eclipse path, weather prospects, the lunar limb profile, and the sky during totality. Tips and suggestions are also given on how to safely view and photograph the eclipse.
Total Solar Eclipse of 2001 June 21
NASA Technical Reports Server (NTRS)
Espenak, Fred; Anderson, Jay
1999-01-01
On 2001 June 21, a total eclipse of the Sun will be visible from within a narrow corridor which traverses the Southern Hemisphere. The path of the Moon's umbral shadow begins in the South Atlantic, crosses southern Africa and Madagascar, and ends at sunset in the Indian Ocean. A partial eclipse will be seen within the much broader path of the Moon's penumbral shadow, which includes eastern South America and the southern two thirds of Africa. Detailed predictions for this event are presented and include besselian elements, geographic coordinates of the path of totality, physical ephemeris of the umbra, topocentric limb profile corrections, local circumstances for approximately 350 cities, maps of the eclipse path, weather prospects, the lunar limb profile and the sky during totality. Tips and suggestions are also given on how to safely view and photograph the eclipse.
Total Solar Eclipse of 1999 August 11
NASA Technical Reports Server (NTRS)
Espenak, Fred; Anderson, Jay
1997-01-01
On 1999 August 11, a total eclipse of the Sun will be visible from within a narrow corridor which traverses the Eastern Hemisphere. The path of the Moon's umbral shadow begins in the Atlantic and crosses central Europe, the Middle East, and India, where it ends at sunset in the Bay of Bengal. A partial eclipse will be seen within the much broader path of the Moon's penumbral shadow, which includes northeastern North America, all of Europe, northern Africa, and the western half of Asia. Detailed predictions for this event are presented and include besselian elements, geographic coordinates of the path of totality, physical ephemeris of the umbra, topocentric limb profile corrections, local circumstances for approximately 1400 cities, maps of the eclipse path, weather prospects, the lunar limb profile, and the sky during totality. Tips and suggestions are also given on how to safely view and photograph the eclipse.
Total solar eclipse of 1995 October 24
NASA Technical Reports Server (NTRS)
Espenak, Fred; Anderson, Jay
1994-01-01
A total eclipse of the sun will be visible from Asia and the Pacific Ocean on 24 Oct. 1995. The path of the moon's shadow begins in the Middle East and sweeps across India, Southeast Asia, and the waters of the Indonesian archipelago before ending at sunset in the Pacific. Detailed predictions for this event are presented and include besselian elements, geographic coordinates of the path of totality, physical ephemeris of the umbra, topocentric limb profile corrections, local circumstances for 400 cities, maps of the eclipse path, weather prospects, the lunar limb profile, and the sky during totality.
Comparisons of Measurements and Modeling of Solar Eclipse Effects on VLF Transmissions
NASA Astrophysics Data System (ADS)
Eccles, J. V.; Rice, D. D.; Sojka, J. J.; Marshall, R. A.; Drob, D. P.; Decena, J. C.
2017-12-01
The solar eclipse of 2017 August 21 provides an excellent opportunity to examine Very Low Frequency (VLF) radio signal propagation through the path of the solar eclipse between Navy VLF transmitters and several VLF receivers. The VLF transmitters available for this study radio signal propagation study are NLK in Jim Creek, Washington (24.8 kHz, 192 kW, 48.20N, 121.90W), NML in LaMour, North Dakota (25.2 kHz, 500 kW 46.37N, 93.34W), and NAA in Cutler, Maine (24.0 kHz, 1000 kW, 44.65N, 67.29W). These VLF transmitters provide propagation paths to three VLF receivers at Utah State University (41.75N, 111.76W), Bear Lake Observatory (41.95N, 111.39W), Salt Lake City (40.76N, 111.89W) and one receiver in Boulder, Colorado (40.02N, 105.27W). The solar eclipse shadow will cross all propagations paths during the day and will modify the D region electron density within the solar shadow. The week prior to the solar eclipse will be used to generate a diurnal baseline of VLF single strength for each transmitter-receiver pair. These will be compared to the day of the solar eclipse to identify VLF propagation differences through the solar eclipse shawdow. Additionally, the electron density effects of the week prior and of the solar eclipse day will be modeled using the Data-Driven D Region (DDDR) model [Eccles et al., 2005] with a detailed eclipse solar flux mask. The Long-Wave Propagation Code and the HASEL RF ray-tracing code will be used to generate VLF signal strength for each measured propagation path through the days prior and the solar eclipse day. Model-measurement comparisons will be presented and the D region electron density effects of the solar eclipse will be examined. The DDDR is a time-dependent D region model, which makes it very suitable for the solar eclipse effects on the electron density for the altitude range of 36 to 130 km. Eccles J. V., R. D. Hunsucker, D. Rice, J. J. Sojka (2005), Space weather effects on midlatitude HF propagation paths: Observations and a data-driven D region model, Space Weather, 3, S01002, doi:10.1029/2004SW000094.
Observation of the total solar eclipse on 21 June 2001 in Zambia
NASA Astrophysics Data System (ADS)
Takahashi, Noritsugu; Yumoto, Kiyohumi; Ichimoto, Kiyoshi
2002-04-01
On 21 June 2001, path of totality in Angola, Zambia, Zimbabwe, Mozambique, and Madagascar in Africa. The Japan Scientific Observation Team, consisting primarily of the members of the Solar Eclipse Subcommittee of the Committee for International Collaboration in Astronomy of the Science Council of JAPAN, visited Lusaka in Zambia to observe the total solar eclipse. Blessed with fine weather, the observation was successful. The outline of the influence of solar eclipse on the terrestrial magnetism, polarization of the flash spectrum, and other observation data, as well as the way educational activities were carried out, are reported.
Mapping the 2017 Eclipse: Education, Navigation, Inspiration
NASA Astrophysics Data System (ADS)
Zeiler, M.
2015-12-01
Eclipse maps are a unique vessel of knowledge. At a glance, they communicate the essential knowledge of where and when to successfully view a total eclipse of the sun. An eclipse map also provides detailed knowledge of eclipse circumstances superimposed on the highway system for optimal navigation, especially in the event that weather forces relocation. Eclipse maps are also a vital planning tool for solar physicists and astrophotographers capturing high-resolution imagery of the solar corona. Michael Zeiler will speak to the role of eclipse maps in educating the American public and inspiring people to make the effort to reach the path of totality for the sight of a lifetime. Michael will review the role of eclipse maps in astronomical research and discuss a project under development, the 2017 Eclipse Atlas for smartphones, tablets, and desktop computers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habte, Aron M; Roberts, Billy J; Kutchenreiter, Mark C
The National Renewable Energy Laboratory (NREL) and collaborators have created a clear-sky probability analysis to help guide viewers of the August 21, 2017, total solar eclipse, the first continent-spanning eclipse in nearly 100 years in the United States. Using cloud and solar data from NREL's National Solar Radiation Database (NSRDB), the analysis provides cloudless sky probabilities specific to the date and time of the eclipse. Although this paper is not intended to be an eclipse weather forecast, the detailed maps can help guide eclipse enthusiasts to likely optimal viewing locations. Additionally, high-resolution data are presented for the centerline of themore » path of totality, representing the likelihood for cloudless skies and atmospheric clarity. The NSRDB provides industry, academia, and other stakeholders with high-resolution solar irradiance data to support feasibility analyses for photovoltaic and concentrating solar power generation projects.« less
Plans to Observe the 2017 Total Solar Eclipse from near the Path Edges
NASA Astrophysics Data System (ADS)
Waring Dunham, David; Nugent, Richard; Guhl, Konrad; Bode, Hans-Joachim
2015-08-01
The August 21st, 2017 solar eclipse provides a good opportunity, to time the totality contacts, other Baily’s bead phenomena, and observe other dynamic edge phenomena, from locations near the edges of the path of totality. A good network of roads and generally favorable weather prospects means that more observers will likely be able to deploy more equipment than during most previous eclipses. The value of contact and Baily’s bead timings of total solar eclipses, for determining solar diameter and intensity variations, was described in an earlier presentation in Focus Meeting 13. This presentation will concentrate on how observations of different types that have been used during past eclipses can be made by different observers, to obtain better information about the accuracy of the different types of observations for determining the mean solar diameter, and the systematic differences between them. A problem has been that the few observers who have attempted recording Baily’s beads from path edge locations have wanted to use the latest technology, to try to record the observations better, rather than try to make the observations in the same ways that were used for many past eclipses. Several observers trying different techniques at the same location, and doing that at several locations at different places along the path, is needed. Past techniques that we would like to compare include direct visual observation (but keeping eye safety in mind); visual observation of telescopically projected images; direct filtered video telescopic observations; and recording the flash spectrum. There are several towns that straddle the path edges. The International Occultation Timing Association would like to mobilize people in those towns to observe the eclipse from many places, to say whether or not the eclipse happened, and if it did, time it. A suitable cell phone app could be designed to report observations, including the observer’s location, as was attempted for an occultation of Regulus by the asteroid Erigone in the northeastern USA in 2014, but which unfortunately was clouded out everywhere.
Atmospheric Responses from Radiosonde Observations of the 2017 Total Solar Eclipse
NASA Astrophysics Data System (ADS)
Fowler, J.
2017-12-01
The Atmospheric Responses from Radiosonde Observations project during the August 21st, 2017 Total Solar Eclipse was to observe the atmospheric response under the shadow of the Moon using both research and operational earth science instruments run primarily by undergraduate students not formally trained in atmospheric science. During the eclipse, approximately 15 teams across the path of totality launched radiosonde balloon platforms in very rapid, serial sonde deployment. Our strategy was to combine a dense ground observation network with multiple radiosonde sites, located within and along the margins of the path of totality. This can demonstrate how dense observation networks leveraged among various programs can "fill the gaps" in data sparse regions allowing research ideas and questions that previously could not be approached with courser resolution data and improving the scientific understanding and prediction of geophysical and hazardous phenomenon. The core scientific objectives are (1) to make high-resolution surface and upper air observations in several sites along the eclipse path (2) to quantitatively study atmospheric responses to the rapid disappearance of the Sun across the United States, and (3) to assess the performance of high-resolution weather forecasting models in simulating the observed response. Such a scientific campaign, especially unique during a total solar eclipse, provides a rare but life-altering opportunity to attract and enable next-generation of observational scientists. It was an ideal "laboratory" for graduate, undergraduate, citizen scientists and k-12 students and staff to learn, explore and research in STEM.
The Citizen CATE Experiment: Techniques to Determine Totality Coverage and Clouded Data Removal.
NASA Astrophysics Data System (ADS)
McKay, Myles A.; Ursache, Andrei; Penn, Matthew; Citizen CATE Experiment 2017 Team
2018-01-01
August 21, 2017, the Citizen Continental-America Telescopic Eclipse(CATE) Experiment observed the 2017 total solar eclipse using a network of 68 identical telescopes and camera systems along the path of totality. The result from the observation was over 90% of all sites collected totality data on the day of the eclipse. Since the volunteers had to remove the solar filter manually, there is an uncertainty between the time of totality and data acquired during totality. Some sites also experienced cloudy weather which obscured the eclipse in some of the exposures but had small breaks in the clouds during the observation, collecting clear totality data. Before we can process and analyze the eclipse data, we must carefully determine which frames cover the time of totality for each site and remove exposures with clouds blocking the FOV. In this poster, we will discuss the techniques we used to determine the extent of totality from each location using the logged GPS data and the removal of totality exposure with clouds.
Coordinated weather balloon solar radiation measurements during a solar eclipse.
Harrison, R G; Marlton, G J; Williams, P D; Nicoll, K A
2016-09-28
Solar eclipses provide a rapidly changing solar radiation environment. These changes can be studied using simple photodiode sensors, if the radiation reaching the sensors is unaffected by cloud. Transporting the sensors aloft using standard meteorological instrument packages modified to carry extra sensors, provides one promising but hitherto unexploited possibility for making solar eclipse radiation measurements. For the 20 March 2015 solar eclipse, a coordinated campaign of balloon-carried solar radiation measurements was undertaken from Reading (51.44°N, 0.94°W), Lerwick (60.15°N, 1.13°W) and Reykjavik (64.13°N, 21.90°W), straddling the path of the eclipse. The balloons reached sufficient altitude at the eclipse time for eclipse-induced variations in solar radiation and solar limb darkening to be measured above cloud. Because the sensor platforms were free to swing, techniques have been evaluated to correct the measurements for their changing orientation. In the swing-averaged technique, the mean value across a set of swings was used to approximate the radiation falling on a horizontal surface; in the swing-maximum technique, the direct beam was estimated by assuming that the maximum solar radiation during a swing occurs when the photodiode sensing surface becomes normal to the direction of the solar beam. Both approaches, essentially independent, give values that agree with theoretical expectations for the eclipse-induced radiation changes.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. © 2016 The Authors.
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-06-01
Editors note:This week were in Boulder, Colorado at the47th meeting of the AAS Solar Physics Division (SPD). Follow along to catch some of the latest news from the field of solar physics!Yesterdayspress conference was titled Preparing for the 2017 Great American Eclipse. Four speakers highlighted both outreach and research projects that are planned for the eclipse that will cross the continental United States on August 21st next year.Eclipse from High AltitudeFirst up, Angela Des Jardins (Montana Space Grant Consortium) introduced us to the nationwide Eclipse Ballooning Project.An eclipse as seen from the ISS. Being up high gives you a very different perspective on eclipses! [NASA]The last total solar eclipse in the continental United States was in 1979, and people were told to stay inside and watch from their TVs! For the next total solar eclipse in the US, we want the opposite: for everyone to be outdoors and in the path of totality to watch (with eclipse glasses lets be safe)! This eclipse is a fantastic educational opportunity, and a way to reach an enormous audience.And what better way to experience the eclipse than to be involved? The Eclipse Ballooning Project is involving more than 50 student teams from 30 states to fly high-altitude balloons at 20 locations along the total eclipse path. These balloons will send live videos and images from the edge of space to the NASA website.Why? Being someplace high up provides an entirely different view for an eclipse! Instead of looking up to watch the Moon slide in front of the Sun, you can look down to watch the Moons shadow race across the Earths surface at thousands of miles per hour. This unique perspective is rare, and has certainly never been covered live. This will be an awesome addition to other coverage of the eclipse!At Maximum TotalityThe next speaker, Gordon Emslie, described the outreach efforts planned at his institution, Western Kentucky University (WKU). The location where the eclipse totality will last the longest 2 minutes and 40 seconds is the small town of Hopkinsville, KY. WKU is located a little over an hour away, and both locations are prepared for a large influx of people on eclipse day!Partial solar eclipse as viewed by the space-based Solar Dynamics Observatory. [NASA/SDO]WKU is located just off the centerline of eclipse path, which has some advantages: this provides better viewing of some of the chromospheric features of the Sun during the eclipse, like priminences and solar loops. WKU is setting up a variety of educational and public outreach activities at their football stadium and the WKU farm, and they encourage you to come visit for the eclipse!In addition, they are participating in a nationwide experiment called Citizen CATE, short for the Continental American Telescopic Eclipse. This project will use 60 telescopes spanning the 2500 mile path of totality to record continuous data of the eclipse as it travels across the US. The result will be data of a remarkable 90 minutes of totality, revealing the activity of the solar corona and providing an extended view of the eclipse as has never been seen before.Science During the EclipseNext up was Shadia Habbal (University of Hawaii), who is a co-leader of the AAS 2017 Eclipse Task Force. In addition to her education and outreach efforts associated with the eclipse, however, Habbal is a solar eclipse researcher. She and her collaborators are known as the Solar Wind Sherpas, due to the fact that they hand-carry their science equipment around the world for solar eclipses!Solar corona during a 2008 eclipse, with color overlay indicating emission from highly ionized iron lines. [Habbal et al. 2010]The primary science done during solar eclipses is the study of the solar corona, the region that extends from the solar surface out to several solar radii. This region is too faint to observe normally, but when the light from the Suns disk is blocked out, we can examine it.Unfortunately, the space telescopes that observe the Sun all have relatively narrow fields of view. But during an eclipse, we can gain the larger context for the corona with ground-based observations, with the Moon conveniently blocking the light from the Suns disk! The cover photo is a spectacular example of this.Observations of the corona during eclipses can provide information on both enormous events, like coronal mass ejections, and faint dynamical features, like plasma instabilities and expanding loops. In addition, we can learn about the plasma properties by examining emission from highly charged ions. The upcoming eclipse should provide a great opportunity to do some coronal science!A Unique OpportunityThe final press-conference speaker for the meeting was Jay Pasachoff (Williams College and Caltech), a veteran solar eclipse observer who was able to speak to what we could expect if we make it into the path of totality next year.Path of totality across the continental US for the August 2017 eclipse. [Fred Espenak/NASA GSFC]Pasachoff pointed out that there are nearly 12 million people located within the band of totality. There are probably another 200 million within a days drive! He strongly encouraged anyone able to make it to the path of totality to do so, pointing out that the experience in person is completely unlike the experience of watching a video. The process of watching the world around you go dark, he says, is something that simply isnt captured when you watch an eclipse on TV.If you plan to travel for the eclipse, Pasachoffs recommendation is to aim for the northwest end of the path of totality, rather than the southeast end surprisingly, weather statistics suggest you have a better chance of not getting clouded out in the northwest.We now have a year left to educate everyone likely to view the eclipse on when and how to view it safely! Accordingly, Pasachoff concluded the conference by providing a series of links on where to find more information:eclipses.infototalsolareclipse.orgGreatAmericanEclipse.comeclipsophile.com
Solar diameter measurements from eclipses as a solar variability proxy
NASA Astrophysics Data System (ADS)
Dunham, David W.; Sofia, Sabatino; Guhl, Konrad; Herald, David
The widths of total solar eclipse paths depends on the diameter of the Sun, so if observations are obtained near both the northern and southern limits of the eclipse path, in principle, the angular diameter of the Sun can be measured. Concerted efforts have been made to obtain contact timings from locations near total solar eclipse path edges since the mid 19th century, and Edmund Halley organized a rather successful first effort in 1715. Members of IOTA have been making increasingly sophisticated observations of the Baily's bead phenomena near central solar eclipse path edges since 1970.
The National Eclipse Weather Experiment: an assessment of citizen scientist weather observations
2016-01-01
The National Eclipse Weather Experiment (NEWEx) was a citizen science project designed to assess the effects of the 20 March 2015 partial solar eclipse on the weather over the United Kingdom (UK). NEWEx had two principal objectives: to provide a spatial network of meteorological observations across the UK to aid the investigation of eclipse-induced weather changes, and to develop a nationwide public engagement activity-based participation of citizen scientists. In total, NEWEx collected 15 606 observations of air temperature, cloudiness and wind speed and direction from 309 locations across the UK, over a 3 h window spanning the eclipse period. The headline results were processed in near real time, immediately published online, and featured in UK national press articles on the day of the eclipse. Here, we describe the technical development of NEWEx and how the observations provided by the citizen scientists were analysed. By comparing the results of the NEWEx analyses with results from other investigations of the same eclipse using different observational networks, including measurements from the University of Reading’s Atmospheric Observatory, we demonstrate that NEWEx provided a fair representation of the change in the UK meteorological conditions throughout the eclipse. Despite the simplicity of the approach adopted, robust reductions in both temperature and wind speed during the eclipse were observed. This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’. PMID:27550767
Coordinated weather balloon solar radiation measurements during a solar eclipse
2016-01-01
Solar eclipses provide a rapidly changing solar radiation environment. These changes can be studied using simple photodiode sensors, if the radiation reaching the sensors is unaffected by cloud. Transporting the sensors aloft using standard meteorological instrument packages modified to carry extra sensors, provides one promising but hitherto unexploited possibility for making solar eclipse radiation measurements. For the 20 March 2015 solar eclipse, a coordinated campaign of balloon-carried solar radiation measurements was undertaken from Reading (51.44°N, 0.94°W), Lerwick (60.15°N, 1.13°W) and Reykjavik (64.13°N, 21.90°W), straddling the path of the eclipse. The balloons reached sufficient altitude at the eclipse time for eclipse-induced variations in solar radiation and solar limb darkening to be measured above cloud. Because the sensor platforms were free to swing, techniques have been evaluated to correct the measurements for their changing orientation. In the swing-averaged technique, the mean value across a set of swings was used to approximate the radiation falling on a horizontal surface; in the swing-maximum technique, the direct beam was estimated by assuming that the maximum solar radiation during a swing occurs when the photodiode sensing surface becomes normal to the direction of the solar beam. Both approaches, essentially independent, give values that agree with theoretical expectations for the eclipse-induced radiation changes. This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’. PMID:27550757
Fifty year canon of solar eclipses: 1986 - 2035
NASA Technical Reports Server (NTRS)
Espenak, Fred
1987-01-01
A complete catalog is presented, listing the general characteristics of every solar eclipse from 1901 through 2100. To complement this catalog, a detailed set of cylindrical projection world maps shows the umbral paths of every solar eclipse over the 200 year interval. Focusing in on the next 50 years, accurate geodetic path coordinates and local circumstances for the 71 central eclipses from 1987 through 2035 are tabulated. Finally, the geodetic paths of the umbral and penumbral shadows of all 109 solar eclipses in this period are plotted on orthographic projection maps of the Earth. Appendices are included which discuss eclipse geometry, eclipse frequency and occurrence, modern eclipse prediction and time determination. Finally, code for a simple Fortran program is given to predict the occurrence and characteristics of solar eclipses.
NASA Astrophysics Data System (ADS)
Bleacher, L.; Jones, A. P.; Wasser, M. L.; Petro, N. E.; Wright, E. T.; Ladd, D.; Keller, J. W.
2017-12-01
2017 presented an amazing opportunity to engage the public in learning about lunar and space science, the motions of the Earth-Moon-Sun system, and NASA's fleet of space missions, beginning with the 2017 total solar eclipse on 21 August and continuing with International Observe the Moon Night (InOMN) on 28 October. On 21 August 2017, everyone in the continental United States had the opportunity to witness a solar eclipse, weather permitting, in total or partial form. The path of totality, in which the Sun was completely obscured from view by the Moon, stretched from Oregon to South Carolina. The Education and Communication Team of NASA's Lunar Reconnaissance Orbiter (LRO) worked to highlight the Moon, the "central player" in the total solar eclipse, in a variety of ways for the public. Efforts included collaborating with Minor League Baseball teams to host eclipse-viewing events along the path of totality, communicating the Moon's role in the eclipse through public engagement products, communicating about InOMN as an experiential opportunity beyond the eclipse, and more. InOMN is an annual event, during which everyone on Earth is invited to observe and learn about the Moon and its connection to planetary science, and to share personal and community connections we all have to the Moon [2, 3, 4 and references therein]. For viewers across the United States, the total solar eclipse of 21 August provided an exciting opportunity to watch a New Moon cross in front of the Sun, casting the viewer in shadow and providing amazing views of the solar corona. The public observed the Moon in a different part of its orbit, when reflected sunlight revealed a fascinating lunar landscape - and extended their excitement for space science - by participating in InOMN on 28 October. With InOMN taking place barely two months after the total solar eclipse, it offered an opportunity to sustain and grow public interest in lunar and space science generated by the eclipse. We will report on the results of our efforts to engage the public with these two events, and make recommendations for extending and sustaining the engagement of the public in preparation for the 2024 total solar eclipse.
MISR Watches Motion of the Moon's Shadow During Total Solar Eclipse
2017-09-19
On Aug. 21, 2017, a total solar eclipse swept across the United States -- the first such eclipse in the contiguous 48 states since 1979, and the first cross-country eclipse since 1918. A partial eclipse was visible in all 50 states, and initial estimates suggest that upwards of 20 million people observed the Moon completely obscuring the Sun in the 70-mile-wide (113-kilometer-wide) path of totality. While viewing a total solar eclipse from the ground is an amazing experience, satellites orbiting Earth see the eclipse from a unique perspective. As the Moon's shadow passed through the United States, the Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard NASA's Terra satellite was capturing images of eastern Wyoming and western Nebraska from its altitude of 438 miles (705 kilometers) above the surface. MISR gathers images on a strip about 249 miles (400 kilometers) wide directly below the path of the satellite. Incredibly, given that the shadow of the Moon took only 90 minutes to cross the entire United States, and Terra itself moves at a brisk 16,700 miles per hour from north to south, MISR happened to be in exactly the right place at the right time to capture totality. From the ground, the moment of totality appears suddenly, sweeping over the sky in just a few seconds. "I was unprepared for just how dark it actually was," says Mika Tosca, a researcher who works with MISR data and who observed the eclipse in Nebraska. "The streetlights even turned on. Everything fell silent, and I swear the temperature dropped." From the vantage point of space, however, it’s possible to see the entire shadow of the Moon, with the completely dark, circular umbra and the more diffuse penumbra. MISR contains nine cameras oriented at different angles, viewing forward, downward, and backward along the flight path, resulting in an approximate seven-minute interval for all nine cameras to image a single location on Earth's surface. This animation combines these nine images into a movie showing the motion of the Moon's shadow during this seven-minute period. In the first image, captured by the camera pointing farthest ahead of the satellite, totality has not quite begun in the area seen by MISR. From the second camera onward, totality sweeps across the image area from west to east, beginning just west of the town of Jay Em, Wyoming, and proceeding about halfway across the MISR swath to the town of Alliance, Nebraska. The motion of the lunar shadow in different pairs of images leads to estimates of the local ground speed ranging between 1,480 and 1,820 miles per hour (2,382 and 2,929 kilometers per hour). The spread in values is a measure of the uncertainty of the estimate. At this location, the predicted speed of the eclipse calculated from lunar orbital motion is about 1,658 miles per hour (2,668 kilometers per hour), which falls in the middle of the range estimated from the MISR images. Tosca's observation that the temperature dropped during the eclipse is a well-known phenomenon. The GLOBE Observer, a phone application dedicated to citizen science and sponsored by NASA, encouraged eclipse-goers to record the local air temperature at regular intervals. Data collected by nearby observers in the path of totality show that, on average, temperatures dropped by 9.3 degrees Fahrenheit (5.2 degrees Celsius) during the eclipse. This compares to an average of 5.4 degrees Fahrenheit drop measured at several Nebraska Mesonet weather stations within the path of totality. The decrease in the amount of sunlight reaching Earth affected more than temperatures. Areas that get a large portion of their power from solar energy were naturally concerned about shortages during the eclipse -- the state of California, though not in the path of totality, estimated that 6,000 megawatts of solar power would be lost during the eclipse. An animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA21957
Total Solar Eclipse: “Through The Eyes of NASA,” Part 4
2017-08-21
During the eclipse, 14 states across the U.S. were in the path of totality and experienced more than two minutes of darkness in the middle of the day – with a partial eclipse viewable all across North America. The broadcast – Eclipse Across America: Through the Eyes of NASA – covered locations along the path of totality, from Oregon to South Carolina including public reactions from all ages. The eclipse’s long path over land provided a unique opportunity to study the Sun, Earth, Moon and their interaction.
Total Solar Eclipse: “Through The Eyes of NASA,” Part 3
2017-08-21
During the eclipse, 14 states across the U.S. were in the path of totality and experienced more than two minutes of darkness in the middle of the day – with a partial eclipse viewable all across North America. The broadcast – Eclipse Across America: Through the Eyes of NASA – covered locations along the path of totality, from Oregon to South Carolina including public reactions from all ages. The eclipse’s long path over land provided a unique opportunity to study the Sun, Earth, Moon and their interaction.
NASA Videofile of Solar Eclipse from Jefferson City, Missouri
2017-08-21
During the eclipse, 14 states across the U.S. were in the path of totality and experienced more than two minutes of darkness in the middle of the day – with a partial eclipse viewable all across North America. The broadcast – Eclipse Across America: Through the Eyes of NASA – covered locations along the path of totality, from Oregon to South Carolina including public reactions from all ages. During this event, NASA Glenn Research Center celebrates the eclipse at the capital eclipse event in Jefferson City, MO
Investigating the Impact of a Solar Eclipse on Atmospheric Radiation
NASA Astrophysics Data System (ADS)
Fender, Josh; Morse, Justin; Ringler, John; Galovich, Cynthia; Kuehn, Charles A.; Semak, Matthew
2018-06-01
We present a project that measured atmospheric muon flux as a function of altitude during a total solar eclipse. An auxiliary goal was to design and build a cost-effective muon detection device that is simple enough for those with minimal training to build. The detector is part of a self-contained autonomous payload that is carried to altitude aboard a weather balloon. The detection system consists of three Geiger counters connected to a coincidence circuit. This system, along with internal and external temperature sensors and an altimeter, are controlled by an onboard Arduino Mega microcontroller. An internal frame was constructed to house and protect the payload components using modular 3D-printed parts. The payload was launched during the 2017 solar eclipse from Guernsey, Wyoming, along the path of totality. Initial data analysis indicates that line-of-sight blockage of the sun due to a total eclipse produces a negligible difference in muon flux when compared to the results of previous daytime flights. The successful performance of the payload, its low overall cost, and its ease of use suggest that this project would be well-suited for individuals or groups such as high school or undergraduate science students to reproduce and enhance.
Geospatial Analysis of Low-frequency Radio Signals Collected During the 2017 Solar Eclipse
NASA Astrophysics Data System (ADS)
Liles, W. C.; Nelson, J.; Kerby, K. C.; Lukes, L.; Henry, J.; Oputa, J.; Lemaster, G.
2017-12-01
The total solar eclipse of 2017, with a path that crosses the continental United States, offers a unique opportunity to gather geospatially diverse data. The EclipseMob project has been designed to crowdsource this data by building a network of citizen scientists across the country. The project focuses on gathering low-frequency radio wave data before, during, and after the eclipse. WWVB, a 60 KHz transmitter in Ft. Collins, CO operated by the National Institutes of Standard and Technology, will provide the transmit signal that will be observed by project participants. Participating citizen scientists are building simple antennas and receivers designed by the EclipseMob team and provided to participants in the form of "receiver kits." The EclipseMob receiver downsamples the 60 KHz signal to 18 KHz and supplies the downsampled signal to the audio jack of a smartphone. A dedicated app is used to collect data and upload it to the EclipseMob server. By studying the variations in WWVB amplitude observed during the eclipse at over 150 locations across the country, we aim to understand how the ionization of the D layer of the ionosphere is impacted by the eclipse as a function of both time and space (location). The diverse locations of the EclipseMob participants will provide data from a wide variety of propagation paths - some crossing the path of the total eclipse, and some remaining on the same side of the eclipse path as the transmitter. Our initial data analysis will involve identifying characteristics that define geospatial relationships in the behavior of observed WWVB signal amplitudes.
CATE 2016 Indonesia: Optics and Focus Strategy
NASA Astrophysics Data System (ADS)
McKay, M. A.; Jenson, L.; Kovac, S. A.; Bosh, R.; Mitchell, A. M.; Hare, H. S.; Watson, Z.; Penn, M. J.
2016-12-01
The 2017 solar eclipse will be a natural phenomenon that will sweep across the United State would provide an excellent opportunity to observe and study the solar corona. The Citizens Continental Astronomical Telescopic Eclipse (CATE) Experiment directed my Matt Penn, intends to take advantage of this scientific opportunity by organizing 60 sites along the path of totality from Oregon to South Carolina to observe the eclipse and make a 90 min continuous video of the solar corona. The preliminary observation was done with the 2016 eclipse in Indonesia, with 5 sites along the path of totality. The sites were provided with an 80mm diameter Telescope with a 480mm focal length with an extension tube, Celestron equatorial mount, a CMOS camera, a Dell dual processor running Windows, GPS and an Arduino box, more details will be provided. I observed at the furthest east site in Ternate, Indonesia, with Dr. Donald Walter. The day of the eclipse we had clouds but still had a successful observation. The observation was successful with 4 out of the 5 sites collected eclipse data, due to weather the other site was not able to observe. The data was then collected and processed over the summer. To prepare for the observation in 2017, the 60 sites will be provided with the equipment, software and training. The groups will then practice by doing solar and lunar observations, where they will follow an almost identical procedure for the eclipse to do their observations. These test will increase our chances to have a successful observation among all sites. The focus will play a crucial role in this observation to provide a high quality image. Currently, a new focusing method using an image derivative method to provide quantitative feedback to the user is being developed. Finally, a Graphical User Interface is also being developed using the codes produces from the summer 2016 data analysis, to process the images from each site with minimal effort and produce quality scientific images. This work was made possible through the NSO Training for the 2017 Citizen CATE Experiment funded by NASA (NASA NNX16AB92A).
Fifty year canon of solar eclipses: 1986-2035
NASA Technical Reports Server (NTRS)
Espenak, Fred
1986-01-01
A reference of moderately detailed eclipse predictions and maps for use by the professional astronomical community is provided. The general characteristics of every solar eclipse and a detailed set of cylindrical project world maps which show the umbral paths of every solar eclipse from 1901 to 2100 are presented. The geodetic path coordinates and local circumstance on the center line, and a series of orthographic projection maps which show the regions of visibility of both partial and central phases for every eclipse from 1986 through 2035 are also provided.
Resource Letter OSE-1: Observing Solar Eclipses
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.; Fraknoi, Andrew
2017-07-01
This Resource Letter provides a guide to the available literature, listing selected books, articles, and online resources about scientific, cultural, and practical issues related to observing solar eclipses. It is timely, given that a total solar eclipse will cross the continental United States on August 21, 2017. The next total solar eclipse path crossing the U.S. and Canada will be on April 8, 2024. In 2023, the path of annularity of an annular eclipse will cross Mexico, the United States, and Canada, with partial phases visible throughout those countries.
Penman, John; Jónsson, Trausti; Bigg, Grant R.; Björnsson, Halldór; Sjúrðarson, Sølvi; Hansen, Mads A.; Cappelen, John; Bryant, Robert G.
2016-01-01
Here, we analyse high-frequency (1 min) surface air temperature, mean sea-level pressure (MSLP), wind speed and direction and cloud-cover data acquired during the solar eclipse of 20 March 2015 from 76 UK Met Office weather stations, and compare the results with those from 30 weather stations in the Faroe Islands and 148 stations in Iceland. There was a statistically significant mean UK temperature drop of 0.83±0.63°C, which occurred over 39 min on average, and the minimum temperature lagged the peak of the eclipse by about 10 min. For a subset of 14 (16) relatively clear (cloudy) stations, the mean temperature drop was 0.91±0.78 (0.31±0.40)°C but the mean temperature drops for relatively calm and windy stations were almost identical. Mean wind speed dropped significantly by 9% on average during the first half of the eclipse. There was no discernible effect of the eclipse on the wind-direction or MSLP time series, and therefore we can discount any localized eclipse cyclone effect over Britain during this event. Similar changes in air temperature and wind speed are observed for Iceland, where conditions were generally clearer, but here too there was no evidence of an eclipse cyclone; in the Faroes, there was a much more muted meteorological signature. This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’. PMID:27550769
Chasing the shadows, a trip to spice island
NASA Astrophysics Data System (ADS)
Yamani, A.; Soegijoko, W.; Baskoro, A. A.; Satyaningsih, R.; Simatupang, F. M.; Maulana, F.; Suherli, J.; Syamara, R.; Canas, L.; Stevenson, T.; Oktariani, F.; Santosa, I.; Ariadi, F.; Carvalho, N.; Soegijoko, K.
2016-11-01
The 2016 Total Solar Eclipse provided us an opportunity to introduce astronomy to a much wider audience. The path of totality crossed the Indonesia from Sumatra to the Maluku Islands and ended its journey in the Pacific Ocean. Its path crossed over 4 major islands, 12 provinces and many cities. Most of the cities have minimum exposure to astronomy. langitselatan travelled to observe the eclipse and to do astronomy outreach at the eastern most island under the eclipse path. We chose Maba, a small village in East Halmahera, North Maluku as our site to observe the eclipse as well as conduct a workshop for teachers and students. The aim of the workshop is to introduce astronomy taking advantage of the eclipse as well as raise awareness and curiosity among students. In this paper, we will share a short report regarding the whole trip and event in Maba.
Total solar eclipse effects on VLF signals: Observations and modeling
NASA Astrophysics Data System (ADS)
Clilverd, Mark A.; Rodger, Craig J.; Thomson, Neil R.; Lichtenberger, János; Steinbach, Péter; Cannon, Paul; Angling, Matthew J.
During the total solar eclipse observed in Europe on August 11, 1999, measurements were made of the amplitude and phase of four VLF transmitters in the frequency range 16-24 kHz. Five receiver sites were set up, and significant variations in phase and amplitude are reported for 17 paths, more than any previously during an eclipse. Distances from transmitter to receiver ranged from 90 to 14,510 km, although the majority were <2000 km. Typically, positive amplitude changes were observed throughout the whole eclipse period on path lengths <2000 km, while negative amplitude changes were observed on paths >10,000 km. Negative phase changes were observed on most paths, independent of path length. Although there was significant variation from path to path, the typical changes observed were ~3 dB and ~50°. The changes observed were modeled using the Long Wave Propagation Capability waveguide code. Maximum eclipse effects occurred when the Wait inverse scale height parameter β was 0.5 km-1 and the effective ionospheric height parameter H' was 79 km, compared with β=0.43km-1 and H'=71km for normal daytime conditions. The resulting changes in modeled amplitude and phase show good agreement with the majority of the observations. The modeling undertaken provides an interpretation of why previous estimates of height change during eclipses have shown such a range of values. A D region gas-chemistry model was compared with electron concentration estimates inferred from the observations made during the solar eclipse. Quiet-day H' and β parameters were used to define the initial ionospheric profile. The gas-chemistry model was then driven only by eclipse-related solar radiation levels. The calculated electron concentration values at 77 km altitude throughout the period of the solar eclipse show good agreement with the values determined from observations at all times, which suggests that a linear variation in electron production rate with solar ionizing radiation is reasonable. At times of minimum electron concentration the chemical model predicts that the D region profile would be parameterized by the same β and H' as the LWPC model values, and rocket profiles, during totality and can be considered a validation of the chemical processes defined within the model.
Boise State's Idaho Eclipse Outreach Program
NASA Astrophysics Data System (ADS)
Davis, Karan; Jackson, Brian
2017-10-01
The 2017 total solar eclipse is an unprecedented opportunity for astronomical education throughout the continental United States. With the path of totality passing through 14 states, from Oregon to South Carolina, the United States is expecting visitors from all around the world. Due to the likelihood of clear skies, Idaho was a popular destination for eclipse-chasers. In spite of considerable enthusiasm and interest by the general population, the resources for STEM outreach in the rural Pacific Northwest are very limited. In order to help prepare Idaho for the eclipse, we put together a crowdfunding campaign through the university and raised over $10,000. Donors received eclipse shades as well as information about the eclipse specific to Idaho. Idaho expects 500,000 visitors, which could present a problem for the many small, rural towns scattered across the path of totality. In order to help prepare and equip the public for the solar eclipse, we conducted a series of site visits to towns in and near the path of totality throughout Idaho. To maximize the impact of this effort, the program included several partnerships with local educational and community organizations and a focus on the sizable refugee and low-income populations in Idaho, with considerable attendance at most events.
[Survey of ocular injury by solar eclipse 2009].
Obana, Akira; Takahashi, Jun; Ohnishi, Kouji; Shinohara, Hideo; Matsuo, Atsushi; Saito, Izumi; Ohkawa, Takuya; Ono, Tomoko
2011-07-01
Incidence of ocular injury caused by the solar eclipse of 2009 has been investigated using the questionnaire of the Japan Committee of the International Year of Astronomy 2009. The questionnaire was available to the public on the website. Answers were obtained from 14 people (12 men, 2 women), aged from sixteen to fifty-four. All had looked at the sun either with the naked eye or through some shading device (plastic sheet, plastic bag, compact disc, etc.) the safty of which is unknown. Reported symptoms included a sense of incongruity, heat, pain, central scotoma or visual disturbance, classified into four periods of duration. Three people with transient symptoms watched the eclipse with the naked eye for one minute in cloudy weather. Three people with symptoms lasting for one day and three people with symptoms lasting for one week had watched it with the naked eye and some shading device for 10 minutes in cloudy weather. Five people with symptoms lasting for more than one week watched the eclipse with the naked eye and through some sort of device in fine or slightly cloudy weather. Three people consulted their ophthalmologist. Those who reported adverse symptoms did not comply with the instructions for safe watching of the eclipse and the duration of the symptoms depended on the weather and the type of device used.
Addressing Students' Misconceptions about Eclipses
ERIC Educational Resources Information Center
Slater, Timothy F.; Gelderman, Richard
2017-01-01
The upcoming Aug. 21, 2017, total solar eclipse, with its 70-mile wide path of totality stretching across much of North America, provides us with a unique opportunity to teach students about eclipses. One might naturally assume that students have little difficulty understanding the nature of eclipses. After all, the notion that eclipses occur when…
Effects of vernal equinox solar eclipse on temperature and wind direction in Switzerland
NASA Astrophysics Data System (ADS)
Eugster, Werner; Emmel, Carmen; Wolf, Sebastian; Buchmann, Nina; McFadden, Joseph P.; Whiteman, Charles David
2017-12-01
The vernal equinox total solar eclipse of 20 March 2015 produced a maximum occultation of 65.8-70.1 % over Switzerland during the morning hours (09:22 to 11:48 CET). Skies were generally clear over the Swiss Alps due to a persistent high-pressure band between the UK and Russia associated with a rather weak pressure gradient over the continent. To assess the effects of penumbral shading on near-surface meteorology across Switzerland, air temperature data measured at 10 min intervals at 184 MeteoSwiss weather stations were used. Wind speed and direction data were available from 165 of these stations. Additionally, six Swiss FluxNet eddy covariance flux (ECF) sites provided turbulent measurements at 20 Hz resolution. During maximum occultation, the temperature drop was up to 5.8 K at a mountain site where cold air can pool in a topographic depression. The bootstrapped average of the maximum temperature drops of all 184 MeteoSwiss sites during the solar eclipse was 1.51 ± 0.02 K (mean ± SE). A detailed comparison with literature values since 1834 showed a temperature decrease of 2.6 ± 1.7 K (average of all reports), with extreme values up to 11 K. On fair weather days under weak larger-scale pressure gradients, local thermo-topographic wind systems develop that are driven by small-scale pressure and temperature gradients. At one ECF site, the penumbral shading delayed the morning transition from down-valley to up-valley wind conditions. At another site, it prevented this transition from occurring at all. Data from the 165 MeteoSwiss sites measuring wind direction did not show a consistent pattern of wind direction response to the passing of the penumbral shadow. These results suggest that the local topographic setting had an important influence on the temperature drop and the wind flow patterns during the eclipse. A significant cyclonic effect of the passing penumbral shadow was found in the elevation range ≈ 1700-2700 m a. s. l., but not at lower elevations of the Swiss Plateau. This contrasts with an earlier theory that the anticyclonic outflow should reach as far as ≈ 2400 km from the center of the eclipse, which would have included all of Switzerland during the 2015 eclipse. Thus, measurable effects of penumbral shading on the local wind system could be even found at ≈ 2000 km from the path of the eclipse (that is, Switzerland during the 2015 eclipse), and our results tend to lend support to a newer theory that the anticyclonic cold-air outflow from the center of the eclipse only extends ≈ 1600 km outwards, with cyclonic flow beyond that distance.
NASA Astrophysics Data System (ADS)
Caspi, Amir; Tsang, Constantine; DeForest, Craig; Seaton, Daniel B.; Bryans, Paul; Tomczyk, Steven; Burkepile, Joan; Judge, Phil; DeLuca, Edward E.; Golub, Leon; Gallagher, Peter T.; Zhukov, Andrei; West, Matthew; Durda, Daniel D.; Steffl, Andrew J.
2017-08-01
Total solar eclipses present rare opportunities to study the complex solar corona, down to altitudes of just a few percent of a solar radius above the surface, using ground-based and airborne observatories that would otherwise be dominated by the intense solar disk and high sky brightness. Studying the corona is critical to gaining a better understanding of physical processes that occur on other stars and astrophysical objects, as well as understanding the dominant driver of space weather that affects human assets at Earth and elsewhere. For example, it is still poorly understood how the corona is heated to temperatures of 1-2 MK globally and up to 5-10 MK above active regions, while the underlying chromosphere is 100 times cooler; numerous theories abound, but are difficult to constrain due to the limited sensitivities and cadences of prior measurements. The origins and stability of coronal fans, and the extent of their reach to the middle and outer corona, are also not well known, limited in large part by sensitivities and fields of view of existing observations.Airborne observations during the eclipse provide unique advantages; by flying in the stratosphere at altitudes of 50 kft or higher, they avoid all weather, the seeing quality is enormously improved, and additional wavelengths such as near-IR also become available due to significantly reduced water absorption. For an eclipse, an airborne observatory can also follow the shadow, increasing the total observing time by 50% or more.We present the first results from airborne observations of the 2017 Great American Total Solar Eclipse using two of NASA's WB-57 research aircraft, each equipped with two 8.7" telescopes feeding high-sensitivity visible (green-line) and near-IR (3-5 µm) cameras operating at high cadence (30 Hz) with ~3 arcsec/pixel platescale and ±3 R_sun fields of view. The aircraft will fly along the eclipse path, separated by ~90 km, to observe a summed ~8 minutes of totality in both visible and NIR, enabling groundbreaking studies of high-speed wave motions and nanojets in the lower corona, the structure and extent of coronal fans, and constraints on a potential primordial dust ring around the Sun.
NASA Astrophysics Data System (ADS)
Caspi, A.; Tsang, C.; DeForest, C. E.; Seaton, D. B.; Bryans, P.; Burkepile, J.; Casey, T. A.; Collier, J.; Darrow, D.; DeLuca, E.; Durda, D. D.; Gallagher, P.; Golub, L.; Judge, P. G.; Laurent, G. T.; Lewis, J.; Mallini, C.; Parent, T.; Propp, T.; Steffl, A.; Tomczyk, S.; Warner, J.; West, M. J.; Wiseman, J.; Zhukov, A.
2017-12-01
Total solar eclipses present rare opportunities to study the complex solar corona, down to altitudes of just a few percent of a solar radius above the surface, using ground-based and airborne observatories that would otherwise be dominated by the intense solar disk and high sky brightness. Studying the corona is critical to gaining a better understanding of physical processes that occur on other stars and astrophysical objects, as well as understanding the dominant driver of space weather that affects human assets at Earth and elsewhere. For example, it is still poorly understood how the corona is heated to temperatures of 1-2 MK globally and up to 5-10 MK above active regions, while the underlying chromosphere is 100 times cooler; numerous theories abound, but are difficult to constrain due to the limited sensitivities and cadences of prior measurements. The origins and stability of coronal fans, and the extent of their reach to the middle and outer corona, are also not well known, limited in large part by sensitivities and fields of view of existing observations. Airborne observations during the eclipse provide unique advantages; by flying in the stratosphere at altitudes of 50 kft or higher, they avoid all weather, the seeing quality is enormously improved, and additional wavelengths such as near- IR also become available due to significantly reduced water absorption. For an eclipse, an airborne observatory can also follow the shadow, increasing the total observing time by 50% or more. We present results of solar coronal measurements from airborne observations of the 2017 Great American Total Solar Eclipse using two of NASA's WB-57 high-altitude research aircraft, each equipped with two 8.7" telescopes feeding high-sensitivity visible (green-line) and medium-wave IR (3-5 μm) cameras operating at high cadence (30 Hz) with 3 arcsec/pixel platescale and ±3 R_sun fields of view. The aircraft flew along the eclipse path, separated by 110 km, to observe a summed 7.5 minutes of totality in both visible and NIR, enabling groundbreaking studies of high-speed wave motions and nanojets in the lower corona, the structure and extent of coronal fans, and constraints on a potential primordial dust ring around the Sun. We review the mission, and the results of analysis on the visible and IR coronal measurements.
2017 Total Solar Eclipse Across America Promo
2017-08-10
On Monday, August 21, 2017, all of North America will be treated to an eclipse of the sun. Anyone within the path of totality can see one of nature’s most awe inspiring sights - a total solar eclipse.
Determining the Edges of the Path of Totality on August 21, 2017
NASA Astrophysics Data System (ADS)
Dunham, David W.; Maley, Paul D.; Kok, Jan; Bruenjes, Fred
2018-01-01
The International Occultation Timing Association (IOTA) attempted a citizen-science project to determine the locations of the edges of the path of totality, similar to what was done visually in New York City during the 1925 eclipse. With ubiquitous smart phones, we asked observers to record the eclipse, preferably with clip-on 8x telephoto lenses. The limits are not sharp since the solar intensity drops off gradually at the path edges. We hoped to determine how accurately the path edges could be determined, and the width of their “fuzziness”. But it was not possible to find any astronomers who weren’t also going to the center, who might otherwise help organize some path edge observations. In 1925, people were less concerned about the possibility of suffering eye damage from quick glimpses at the eclipse. In 2017, several were concerned about damage to their cell phones, although our tests showed this was not a problem for the two minutes desired. The only successes were at Minden, Nebraska where high school students set up 15 stations across the southern limit and recorded the eclipse with iPads, and near Wheatland, Wyoming, where Jan Kok set up 21 pre-pointed smart phones with 8x lenses that he was able to program, to record the eclipse during the critical two minutes. We found that the dynamic range of the smart phone recordings could not distinguish between the corona, and the Baily’s beads around the contacts, so useful times of the duration of “totality” could not be determined. A few IOTA observers recorded Baily’s beads telescopically at a few locations near the eclipse limits. An especially good color recording of Baily’s beads was made by Fred Bruenjes from only 1.3 km inside the southern limit. We hope that similar recordings with accurate time stamping can be obtained at a few locations near both limits of future eclipses. Even better might be recordings of the flash spectrum near both limits, to measure the transition from absorption lines in the photosphere to emission lines of the chomosphere.
On the Importance of Solar Eclipse Geometry in the Interpretation of Ionospheric Observations
NASA Astrophysics Data System (ADS)
Stankov, S.; Verhulst, T. G. W.
2017-12-01
A reliable interpretation of solar eclipse effects on the geospace environment, and on the ionosphere in particular, necessitates a careful consideration of the so-called eclipse geometry. A solar eclipse is a relatively rare astronomical phenomenon, which geometry is rather complex, specific for each event, and fast changing in time. The standard, most popular way to look at the eclipse geometry is via the two-dimensional representation (map) of the solar obscuration on the Earth's surface, in which the path of eclipse totality is drawn together with isolines of the gradually-decreasing eclipse magnitude farther away from this path. Such "surface maps" are widely used to readily explain some of the solar eclipse effects including, for example, the well-known decrease in total ionisation (due to the substantial decrease in solar irradiation), usually presented by the popular and easy to understand ionospheric characteristic of Total Electron Content (TEC). However, many other effects, especially those taking place at higher altitudes, cannot be explained in this fashion. Instead, a complete, four-dimensional (4D) description of the umbra (and penumbra), would be required. This presentation will address the issue of eclipse geometry effects on various ionospheric observations carried out during the total solar eclipse of August 21, 2017. In particular, GPS-based TEC and ionosonde measurements will be analysed and the eclipse effects on the ionosphere will be interpreted with respect to the actual eclipse geometry at ionospheric heights. Whenever possible, a comparison will be made with results from previous events, such as the ones from March 20, 2015 and October 3, 2005.
Portas, Antonio M; Barnard, Luke; Scott, Chris; Harrison, R Giles
2016-09-28
The National Eclipse Weather Experiment (NEWEx) was a citizen science project for atmospheric data collection from the partial solar eclipse of 20 March 20. Its role as a tool for schools outreach is discussed here, in seeking to bridge the gap between self-identification with the role of a scientist and engagement with science, technology, engineering and mathematics subjects. (The science data generated have had other uses beyond this, explored elsewhere.) We describe the design of webforms for weather data collection, and the use of several external partners for the dissemination of the project nationwide. We estimate that up to 3500 pupils and teachers took part in this experiment, through the 127 schools postcodes identified in the data submission. Further analysis revealed that 43.3% of the schools were primary schools and 35.4% were secondary. In total, 96.3% of participants reported themselves as 'captivated' or 'inspired' by NEWEx. We also found that 60% of the schools that took part in the experiment lie within the highest quintiles of engagement with higher education, which emphasizes the need for the scientific community to be creative when using citizen science projects to target hard-to-reach audiences.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. © 2016 The Authors.
New Zealand Astronomy and the 9 September 1885 Total Solar Eclipse
NASA Astrophysics Data System (ADS)
Orchiston, Wayne; Rowe, Glen
The second half of the nineteenth century saw a blossoming of interest in solar eclipses as astronomers tried to establish whether the corona was a solar, lunar or terrestrial phenomenon, and as they investigated the nature of the corona, the chromosphere and prominences. Critical in these investigations were astronomy's newest allies: photography and spectroscopy. Photography was used with great effectiveness throughout the half century, but spectroscopy was first applied during the `Indian eclipse' of 1868. Thereafter, almost every total solar eclipse was subjected to scrutiny, the intensity of which depended upon the duration of the eclipse and the location of its path of totality. The first total solar eclipse visible from New Zealand following European settlement occurred on 9 September 1885, and attracted the attention of professional scientists and amateur astronomers. The centre of the path of totality extended from West Wanganui Inlet on the far northern reaches of the west coast of the South Island to Castle Point on the Wairarapa Coast, and a total eclipse was visible from population centres like Collingwood, Nelson, Picton, Wellington, Otaki, Palmerston North, Wanganui and throughout the Wairarapa. In this chapter we examine this eclipse, in the context of New Zealand astronomy and the international development of solar physics.
2017 Total Eclipse Viewing Tips - Narrated by George Takei
2017-08-09
On Monday, August 21, 2017, all of North America will be treated to an eclipse of the sun. Anyone within the path of totality can see one of nature’s most awe inspiring sights - a total solar eclipse. This video, narrated by actor George Takei, provides a few viewing tips for the public.
First Results from the August 21, 2017, Total Solar Eclipse
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.
2017-08-01
I report on the observations planned and, weather permitting, made from our site in Salem, Oregon, at the August 21, 2017, total solar eclipse. I also give a first report on collaborators' successes, including Megamovie and simultaneous space observations. We also describe our participation in PBS's NOVA on the eclipse that was to be aired on public television on eclipse night. Our eclipse expedition is supported in large part by grants from the Solar Terrestrial Program of the Atmospheric Sciences Division of NSF and by the Committee for Research and Exploration of the National Geographic Society.
NASA Astrophysics Data System (ADS)
Peticolas, L. M.; Yan, D.; Cable, C.; Zevin, D.; Johnson, C.; Bender, M.
2017-12-01
The "Eclipse Megamovie" project aimed to gather scientifically useful photographs of the corona from the public at large during the Aug 21, 2017 total solar eclipse. The project used many different mechanisms for gathering 3 types of volunteers: the over 1,000 trained photographers positioned along the path of totality, members of the public along the path of totality using the Megamovie App, and members of the public who took photographs on their own and then uploaded photographs. In order to interest the public in becoming volunteers to provide photographs for this scientific effort, we drove across the path of totality providing presentations in a town hall fashion. We drove through nine states in week-long trips with a total of six trips. The first week took place in August, 2016 through Oregon. The remaining trips took place February-June, 2017. The tour gained press in each town seeded our recruitment efforts, which then gained momentum via articles and press releases in the Spring and Summer, 2017. By Aug 2, 2017 over 1,000 photographers had signed up to be trained volunteers. This presentation will present information on the tours and their impact in seeding the overall recruitment effort for the Eclipse Megamovie Project.
Preparing for and Observing the 2017 Total Solar Eclipse
NASA Astrophysics Data System (ADS)
Pasachoff, J.
2015-11-01
I discuss ongoing plans and discussions for EPO and scientific observing of the 21 August 2017 total solar eclipse. I discuss aspects of EPO based on my experiences at the 60 solar eclipses I have seen. I share cloud statistics along the eclipse path compiled by Jay Anderson, the foremost eclipse meteorologist. I show some sample observations of composite imagery, of spectra, and of terrestrial temperature changes based on observations of recent eclipses, including 2012 from Australia and 2013 from Gabon. Links to various mapping sites of totality, partial phases, and other eclipse-related information, including that provided by Michael Zeiler, Fred Espenak (retired from NASA) and Xavier Jubier can be found on the website I run for the International Astronomical Union's Working Group on Eclipses at http://www.eclipses.info.
ERIC Educational Resources Information Center
Riddle, Bob
2005-01-01
Eclipses typically occur in pairs twice each year, and the second pair for this year will be this month, starting with an annular solar eclipse on October 3, and two weeks later a partial lunar eclipse on October 17. The path of annularity will travel from the North Atlantic Ocean to Spain, where the annular phase will last for more than four…
The solar eclipse: a natural meteorological experiment
2016-01-01
A solar eclipse provides a well-characterized reduction in solar radiation, of calculable amount and duration. This captivating natural astronomical phenomenon is ideally suited to science outreach activities, but the predictability of the change in solar radiation also provides unusual conditions for assessing the atmospheric response to a known stimulus. Modern automatic observing networks used for weather forecasting and atmospheric research have dense spatial coverage, so the quantitative meteorological responses to an eclipse can now be evaluated with excellent space and time resolution. Numerical models representing the atmosphere at high spatial resolution can also be used to predict eclipse-related changes and interpret the observations. Combining the models with measurements yields the elements of a controlled atmospheric experiment on a regional scale (10–1000 km), which is almost impossible to achieve by other means. This modern approach to ‘eclipse meteorology’ as identified here can ultimately improve weather prediction models and be used to plan for transient reductions in renewable electricity generation. During the 20 March 2015 eclipse, UK electrical energy demand increased by about 3 GWh (11 TJ) or about 4%, alongside reductions in the wind and photovoltaic electrical energy generation of 1.5 GWh (5.5 TJ). This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’. PMID:27550768
Five Millennium Catalog of Solar Eclipses: -1999 to +3000 (2000 BCE to 3000 CE)
NASA Technical Reports Server (NTRS)
Espenak, Fred; Meeus, Jean
2008-01-01
This catalog is a supplement to the "Five Millennium Canon of Solar Eclipses." It includes additional information for each eclipse that could not be included in the original 648-page publication because of size limits. The data tabulated for each eclipse include the catalog number, canon plate number, calendar date, Terrestrial Dynamical Time of greatest eclipse, (Delta)T, lunation number, Saros number, eclipse type, Quincena Lunar Eclipse parameter, gamma, eclipse magnitude, geographic coordinates of greatest eclipse (latitude and longitude), and the circumstances at greatest eclipse (i.e., Sun altitude and azimuth, path width, and central line duration). The Canon and the Catalog both use the same solar and lunar ephemerides as well as the same values of (Delta)T. This 1-to-1 correspondence between them will enhance the value of each. The researcher may now search, evaluate, and compare eclipses graphically (Canon) or textually (Catalog).
NASA Astrophysics Data System (ADS)
Shahbazi, A.; Park, J.; Kim, S.; Oberg, R.
2017-12-01
As the ionospheric behavior is highly related to the solar activity, the total eclipse passing across the North America on 21 August 2017 is expected to significantly affect the electron density in the ionosphere along the path. Taking advantage of GNSS capability for observing total electron content (TEC), this study demonstrates the impact of the total eclipse not only on the TEC variation during the period of the event but also on GNSS positioning. Oregon Department of Transportation (ODOT) runs a dense real time GNSS network, referred to as Oregon Real-time GNSS network (ORGN). From the dual frequency GPS and GLONASS observations in ORGN, the TEC over the network area can be extracted. We observe the vertical TEC (VTEC) from the ORGN for analyzing the ionospheric condition in the local area affected by the eclipse. To observe the temporal variation, we also observe the slant TEC (STEC) in each ray path and analyze the short term variation in different geometry of each ray path. Although the STEC is dependent quantity upon the changing geometry of a satellite, this approach provides insight to the ionospheric behavior of the total eclipse because the STEC does not involve the projection error, which is generated by VTEC computation. During the period of eclipse, the abnormal variations on VTEC and STEC are expected. The experimental results will be presented in time series plots for selected stations as well as the regional TEC map in Oregon. In addition to the TEC monitoring, we also test the positioning result of ORGN stations through Precise Point Positioning (PPP) and relative positioning. The expected result is that the both positioning results are degraded during the solar eclipse due to the instable ionospheric condition over short time.
Annular and Total Solar Eclipses of 2003
NASA Technical Reports Server (NTRS)
Espenak, Fred; Anderson, Jay
2002-01-01
On Saturday, 2003 May 31, an annular eclipse of the Sun will be visible from a broad corridor that traverses the North Atlantic. The path of the Moon's antumbral shadow begins in northern Scotland, crosses Iceland and central Greenland, and ends at sunrise in Baffin Bay (Canada). A partial eclipse will be seen within the much broader path of the Moon's penumbral shadow, which includes most of Europe, the Middle East, central and northern Asia, and northwestern North America. The trajectory of the Moon's shadow is quite unusual during this event. The shadow axis passes to the far north where it barely grazes Earth's surface. In fact, the northern edge of the antumbra actually misses Earth so that one path limit is defined by the day/night terminator rather than by the shadow's upper edge. As a result, the track of annularity has a peculiar "D" shape that is nearly 1200 kilometers wide. Since the eclipse occurs just three weeks prior to the northern summer solstice, Earth's northern axis is pointed sunwards by 22.8 deg. As seen from the Sun, the antumbral shadow actually passes between the North Pole and the terminator. As a consequence of this extraordinary geometry, the path of annularity runs from east to west rather than the more typical west to east. The event transpires near the Moon's ascending node in Taurus five degrees north of Aldebaran. Since apogee occurs three days earlier (May 28 at 13 UT), the Moon's apparent diameter (29.6 arc-minutes) is still too small to completely cover the Sun (31.6 arc-minutes) resulting in an annular eclipse.
Public Education Plans for the 2017 August 21 Total Solar Eclipse
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.
2016-06-01
A total solar eclipse will cross the continental United States on 2017 August 21, the first such in 99 years and the first whose path of totality on land is entirely in the United States since 1776. People in the rest of the United States-as well as in Canada, Central America, and northern South America-will have a partial solar eclipse. Totality will range up to about 70 km in diameter, and will be visible from a path that extends from Oregon to South Carolina. Cloudiness statistics based on decades on satellite infrared imaging are more favorable for western sites. The sun's diameter will be 80% covered in Miami (south of totality) and New York (north of totality), and 70% covered in Los Angeles (south of totality). For the Working Group on Solar Eclipses of the International Astronomical Union, I maintain a website at http://eclipses.info that provides links to a wide variety of eclipse-related material and to useful websites run by others.Prior to this total eclipse, annular eclipses will cross Africa (from Gabon to Tanzania and Madagascar) and Isle de la Réunion on 2016 September 1, and Chile and Argentina on 2017 February 26, at which time we plan an eclipse workshop in Esquel, Argentina.For the forthcoming 2017 eclipse, we acknowledge grants to JMP and Williams College from the Solar Terrestrial Program of the Atmospheric and Geospace Sciences Division of the National Science Foundation and from the Committee for Research and Exploration of the National Geographic Society.
Building on the US Eclipse Experience in Schools, with the Public, and Beyond the US
NASA Astrophysics Data System (ADS)
Simmons, Mike; Chee, Zoe; Bartolone, Lindsay
2018-01-01
Astronomers Without Borders (AWB) organized several programs for the August 21, 2017 total solar eclipse, both before and after the event, to increase participation, build on the inspiration of the eclipse, share the eclipse experience, and prepare for the eclipse in 2024.AWB focused on preparing institutions that were least likely to receive resources despite extensive nationwide efforts. AWB distributed more than 100,000 donated glasses, to isolated schools, children's cancer hospitals, abused women’s shelters, and other institutions without access to other resource providers.AWB’s Building on the Eclipse Education Program builds on the inspiration of the eclipse for STEM education. The program uses a small, personal spectroscope kit to study sunlight in different scientific fields and includes free classroom activities that meet NGSS standards.A program to collect eclipse observing glasses for schools in developing countries for future eclipses was announced around the time of the eclipse and quickly went viral, with coverage by national and innumerable local media outlets. This effort builds on AWB’s earlier programs for schools in Africa and in South America for past eclipses. Well over one million pairs are expected, as compared to the tens of thousands AWB provided through crowdfunding for previous efforts. Nearly 1000 glasses collection centers were created spontaneously, without a public call. Factors leading to widespread and diverse public participation will be presented.A program calling for first-time eclipse observers to share their experiences addresses a major issue in encouraging people to travel to the path of totality. Expert and eclipse-enthusiast testimony often fails to convince people of the value of the experience of totality as “a few minutes of darkness.” This program will share the disconnect between expectation and experience from first-time “ordinary” observers to encourage others to travel to the path of totality for the total solar eclipse in 2024.Analysis and planned follow-up and expanded programs will also be described.
The Great American Eclipse: Lessons Learned from Public Education
NASA Astrophysics Data System (ADS)
Edson, Shauna Elizabeth; Phoebe Waterman Haas Public Observatory
2018-01-01
The total solar eclipse of 2017 was a high-profile opportunity for nationwide public education. Astronomy experts suddenly became vital sources of information for a lay population whose interest in the eclipse greatly surpassed expectations. At the National Air and Space Museum, we leveraged our relatively accessible location and particularly diverse audience to help thousands of people, from novices to enthusiasts, prepare to view the eclipse safely. The goal was to empower all people so they could experience this unique astronomical event, understand what was happening, and observe the Sun safely. Over the course of two years spent talking with the public about the eclipse, we encountered common misconceptions, worries about safety or liability, and people experiencing confusion or information overload. We developed guidelines for handling these challenges, from correcting misinformation to managing the sudden spike in demand for glasses just before August 21.In particular, we helped people understand the following essential points:- The total phase of the eclipse is only visible from a limited path.- The partial eclipse is visible from a large area outside the path of totality.- The eclipse takes up to three hours from start to finish, providing ample time for viewing.- The Sun can be observed safely using several methods, including but not limited to eclipse glasses.- The eclipse happens because the Moon’s orbit is taking it directly between the Sun and the Earth.- Eclipses do not happen every month because the Moon’s orbit is tilted with respect to the Earth's orbital plane.- Students in schools can safely view the eclipse, with proper protection and supervision, to prevent eye damage and minimize liability.Public education about the eclipse appears to have been successful, as evidenced by the large number of people who saw their first total solar eclipse and the absence of reported eye damage cases. Amidst the excitement, photographs, and stories that emerged from the eclipse, there are valuable lessons that will be useful in helping the public prepare for future eclipses, in 2024 and beyond.
Eclipse Across America on This Week @NASA – August 25, 2017
2017-08-25
The Aug. 21 eclipse across America generated interest and excitement far and wide. Our coverage of the historic eclipse – the first coast-to-coast total solar eclipse for the U.S. in 99 years – was widespread … Anchored from the College of Charleston, in South Carolina – we showed you views of the eclipse that only NASA could. Views from space, from Earth’s atmosphere and from the ground – with expert observation and analysis provided from many of the 14 states around the country, situated along the path of totality. That’s where thousands of people flocked – for the ultimate eclipse experience – total darkness in the middle of the day!
Fifty Year Canon of Lunar Eclipses: 1986-2035
NASA Technical Reports Server (NTRS)
Espenak, Fred
1989-01-01
A complete catalog is presented, listing the general circumstances of every lunar eclipse from 1901 through 2100. To compliment this catalog, a set of figures illustrate the basic Moon-shadow geometry and global visibility for every lunar eclipse over the 200 year interval. Focusing in on the next fifty years, 114 detailed diagrams show the Moon's path through Earth's shadow during every eclipse, including contact times at each phase. The accompanying cylindrical projection maps of Earth show regions of hemispheric visibility for all phases. The appendices discuss eclipse geometry, eclipse frequency and recurrence, enlargement of Earth's shadow, crater timings, eclipse brightness and time determination. Finally, a simple FORTRAN program is provided which can be used to predict the occurrence and general characteristics of lunar eclipses. This work is a companion volume to NASA Reference Publication 1178: Fifty Year Canon of Solar Eclipses: 1986-2035.
Nationwide Eclipse Ballooning Project
NASA Astrophysics Data System (ADS)
Colman Des Jardins, Angela; Berk Knighton, W.; Larimer, Randal; Mayer-Gawlik, Shane; Fowler, Jennifer; Harmon, Christina; Koehler, Christopher; Guzik, Gregory; Flaten, James; Nolby, Caitlin; Granger, Douglas; Stewart, Michael
2016-05-01
The purpose of the Nationwide Eclipse Ballooning Project is to make the most of the 2017 rare eclipse event in four main areas: public engagement, workforce development, partnership development, and science. The Project is focused on two efforts, both student-led: online live video of the eclipse from the edge of space and the study of the atmospheric response to the eclipse. These efforts, however, involving more than 60 teams across the US, are challenging in many ways. Therefore, the Project is leveraging the NASA Space Grant and NOAA atmospheric science communities to make it a success. The first and primary topic of this poster is the NASA Space Grant supported online live video effort. College and high school students on 48 teams from 31 states will conduct high altitude balloon flights from 15-20 locations across the 8/21/2017 total eclipse path, sending live video and images from near space to a national website. Video and images of a total solar eclipse from near space are fascinating and rare. It’s never been done live and certainly not in a network of coverage across a continent. In addition to the live video to the web, these teams are engaged in several other science experiments as secondary payloads. We also briefly highlight the eclipse atmospheric science effort, where about a dozen teams will launch over one hundred radiosondes from across the 2017 path, recording an unprecedented atmospheric data sample. Collected data will include temperature, density, wind, humidity, and ozone measurements.
Atmospheric Science Data Center
2013-04-19
... June 10, 2002 the Moon obscured the central portion of the solar disk in a phenomenon known as an annular solar eclipse. Partial phases of ... to obscure about 75 percent of the solar disk. The two scenes are geolocated to adjacent paths within World Reference System-2. ...
NASA Astrophysics Data System (ADS)
Datta-Barua, S.; Gachancipa, J. N.; Deshpande, K.; Herrera, J. A.; Lehmacher, G. A.; Su, Y.; Gyuk, G.; Bust, G. S.; Hampton, D. L.
2017-12-01
High concentration of free electrons in the ionosphere can cause fluctuations in incoming electromagnetic waves, such as those from the different Global Navigation Satellite Systems (GNSS). The behavior of the ionosphere depends on time and location, and it is highly influenced by solar activity. The purpose of this study is to determine the impact of a total solar eclipse on the local ionosphere in terms of ionospheric scintillations, and on the global ionosphere in terms of TEC (Total Electron Content). The studied eclipse occurred on 21 August 2017 across the continental United States. During the eclipse, we expected to see a decrease in the scintillation strength, as well as in the TEC values. As a broader impact part of our recently funded NSF proposal, we temporarily deployed two GNSS receivers on the eclipse's totality path. One GNSS receiver was placed in Clemson, SC. This is a multi-frequency GNSS receiver (NovAtel GPStation-6) capable of measuring high and low rate scintillation data as well as TEC values from four different GNSS systems. We had the receiver operating before, during, and after the solar eclipse to enable the comparison between eclipse and non-eclipse periods. A twin receiver collected data at Daytona Beach, FL during the same time, where an 85% partial solar eclipse was observed. Additionally, we set up a ground receiver onsite in the path of totality in Perryville, Missouri, from which the Adler Planetarium of Chicago launched a high-altitude balloon to capture a 360-degree video of the eclipse from the stratosphere. By analyzing the collected data, this study looks at the effects of partial and total solar eclipse periods on high rate GNSS scintillation data at mid-latitudes, which had not been explored in detail. This study also explores the impact of solar eclipses on signals from different satellite constellations (GPS, GLONASS, and Galileo). Throughout the eclipse, the scintillation values did not appear to have dramatic changes. However, we observed lower scintillation activity on several satellites from different constellations. For example, between 16 UTC and 22 UTC, there was a slight drop in the S4 scintillation Index (amplitude) values, reaching a local minimum during the time of eclipse totality ( 18:30 UTC). Regarding the Total Electron Content (TEC), which measures the quantity of electrons in the ionosphere, there was a more drastic decrease in the values throughout the partial and total solar eclipse. Additionally, σφ (sigma-phi) values for phase scintillation showed the similar behavior compared to previous few days. This reveals that the solar eclipse did not have a major effect on the phase scintillation. In any case, the totality path was entirely in mid-latitude regions, where phase scintillations are expected to be lower compared to high latitudes.
Performance of Nickel-Cadmium Batteries on the GOES I-K Series of Weather Satellites
NASA Technical Reports Server (NTRS)
Singhal, Sat P.; Rao, Gopalakrishna M.; Alsbach, Walter G.
1997-01-01
The US National Oceanic and Atmospheric Administration (NOAA) operates the Geostationary Operational Environmental Satellite (GOES) spacecraft (among others) to support weather forecasting, severe storm tracking, and meteorological research by the National Weather Service (NWS). The latest in the GOES series consists of 5 spacecraft (originally named GOES I-M), three of which are in orbit and two more in development. Each of five spacecraft carry two Nickel-Cadmium batteries, with batteries designed and manufactured by Space Systems Loral (SS/L) and cells manufactured by Gates Aerospace Batteries (sold to SAFT in 1993). The battery, which consists of 28 cells with a 12 Ah capacity, provides the spacecraft power needs during the ascent phase and during the semi-annual eclipse seasons lasting for approximately 45 days each. The maximum duration eclipses are 72 minutes long which result in a 60 percent depth of discharge (DOD) of the batteries. This paper provides a description of the batteries, reconditioning setup, DOD profile during a typical eclipse season, and flight performance from the 3 launched spacecraft (now GOES 8, 9, and 10) in orbit.
Performance of Nickel-Cadmium Batteries on the GOES 1-K Series of Weather Satellites
NASA Technical Reports Server (NTRS)
Singhal, Sat P.; Alsbach, Walter G.; Rao, Gopalakrishna M.
1998-01-01
The US National Oceanic and Atmospheric Administration (NOAA) operates the Geostationary Operational Environmental Satellite (GOES) spacecraft (among others) to support weather forecasting, severe storm tracking, and meteorological research by the National Weather Service (NWS). The latest in the GOES series consists of five spacecraft (originally named GOES 1-M), three of which are in orbit and and two more in development. Each of the five spacecraft carries two Nickel-Cadmium battery, with batteries designed by Space Systems Loral (SS/L) and cells manufactured by Gates Aerospace Batteries (sold to SAFT in 1993). The battery, which consists of 28 cells with a 12 Ah capacity, provides the spacecraft power needs during the ascent phase and during the semi-annual eclipse seasons lasting for approximately 45 days each. The maximum duration eclipses are 72 minutes long which result in a 60 percent depth of discharge (DOD) of the batteries. This paper provides a description of the batteries, reconditioning setup, DOD profile during a typical eclipse season, and flight performance from the three launched spacecraft (now GOES 8, 9, and 10) in orbit.
Observing the 2017 Total Solar Eclipse from the Pisgah Astronomical Research Institute
NASA Astrophysics Data System (ADS)
Kirwan, Sean Matthew; Cline, J. Donald; Krochmal, Mark; Donald Cline, Mark Krochmal
2017-01-01
The Pisgah Astronomical Research Institute (PARI) is located directly under the path of totality of next year’s solar eclipse and possesses two 26m radio telescopes capable of interferometry at simultaneously at 2.3 GHz and 8.4 GHZ. PARI is preparing these radio telescopes for use by the astronomical community to observe solar eclipse. We will present the status of PARI’s radio telescopes and information on access for the eclipse. We will also present the status and availability of several optical telescopes.
The August 21, 2017 American total solar eclipse through the eyes of GPS
NASA Astrophysics Data System (ADS)
Kundu, Bhaskar; Panda, Dibyashakti; Gahalaut, Vineet K.; Catherine, J. K.
2018-04-01
We explored spatio-temporal variation in Total Electron Contents (TEC) in the ionosphere caused by the recent August 21, 2017 total solar eclipse, which was observed over the United States of America. The path of total solar eclipse passes through the continental parts of the United States of America, starting in the northwestern state of Oregon and ending in the southeastern state of South Carolina, approximately covering 4000 km length. Across this length EarthScope Plate Boundary Observatory (PBO) has been operating a dense cGPS/GNSS networks. During the course of passage of the solar eclipse, the sudden decline in solar radiation by temporarily obscuration by the Moon caused a drop of ˜6-9 × 1016 electrons/m2in the ionosphere with time-delay at the cGPS sites. The significant drop in TEC at cGPS sites captured the average migration velocity of shadow along the eclipse path (0.74 km/s), from which we estimated the Moon's orbital velocity (˜1 km/s). Further, this event also caused some marginal increase in TEC during the eclipse in the Earth's ionosphere in the magnetically conjugate region at the tip of South America and Antarctica, consistent with the model predictions of SAMI3 by Naval Research Laboratory.
NASA Astrophysics Data System (ADS)
Riebeek Kohl, H.; Weaver, K.; Overoye, D.; Martin, A.; Andersen, T.
2017-12-01
How cool was the eclipse? NASA GLOBE Observer challenged citizen scientists across North America to answer that question by observing temperature and cloud changes throughout the August 2017 Total Solar Eclipse. The experiment was meant to chart the impact of changes in solar energy at Earth's surface across all regions that experienced the eclipse, both partial and total. Citizen scientists reported air temperature every 5-10 minutes from first contact to last contact through the free GLOBE Observer app. They also reported cloud cover and cloud type every 15-30 minutes or as changes happened as a proxy for changes in the atmosphere. No data were collected during totality, as we wanted citizen scientists to focus on the eclipse at that time. To recruit citizen scientists, members of the GLOBE Observer Team participated in six large outreach events across the path of totality. We also encouraged participation outside the path of totality though partnerships with informal education institutions and direct communication to the public through NASA communication channels. This presentation will report statistics on citizen science participation and lessons learned about citizen science as an outreach tool. Did participation in the experiment enhance a person's eclipse experience? Did citizen scientists find enough value in the experiment to continue to participate in GLOBE Observer, a long-term citizen science program, after the eclipse? We will also present early results of observed temperature and cloud changes.
What If It Rains on Your Eclipse? Planning Ahead for August 2017
NASA Astrophysics Data System (ADS)
Bartlett, Jennifer L.; Keohane, J.
2010-01-01
It was a dark and rainy morning, not far out of Shanghai, when we saw the 2009 July 22 total solar eclipse. Many of the Americans puttering around their equipment that morning, in hopes that the sky would clear enough to catch some of event they had traveled around the world to view, were already planning ahead for 2017 August 21, when a narrow strip of the United States will experience up to 2 minutes and 45 seconds of totality. For most people, a total solar eclipse is once in a lifetime event steeped in legend. If you are situated along this privileged corridor, you will have a wonderful opportunity for public outreach. But what if it rains? Historically, August is mostly sunny at the location of greatest eclipse, near Makanda, Illinois. Even with such favorable circumstances, having a rain plan will ensure you make the most of the occasion. First, the flexibility to relocate your program to take advantage of the most favorable weather would be ideal. If that is not a realistic option, include some protective gear with your equipment so that you can set up despite misty or drizzling conditions. Second, monitoring changing light levels and temperatures should be possible even under cloudy skies. Third, for some sites, changes in wildlife behavior may also be noticeable. If the weather is clear, such projects could enhance your program during the partial phases of the eclipse and provide enrichment materials for those unable to attend. While 2017 may still seem in the distant future to all but eclipse fanatics, some creativity and advance brainstorming will ensure that your outreach program shines during the event, even if the Sun does not cooperate. S. Bell (2009, pc.), HMNAO, provided the eclipse predictions. Additional information is available via USNO Eclipse Portal (http://www.eclipse.org.uk/eclbin/query_usno.cgi).
Initial Results of Interdisciplinary Science Enabled by Eclipse 2017: NASA Perspective
NASA Astrophysics Data System (ADS)
Guhathakurta, M.
2017-12-01
The exceptionally long path over land of the August 21st total and partial solar eclipse provided an unprecedented opportunity for cross disciplinary studies of the sun, moon, Earth, and their interactions. NASA supported research using ground-based measurements, balloons and planes that "chased" the eclipse as well as data taken from a vast array of orbiting spacecraft, all of which helped scientists take continuous measurements of the sun and the effects of the eclipse on the ionosphere and Earth for relatively long periods of time. This talk will summarize some of the initial findings from these research.
2017-08-21
From the Kennedy Space Center Visitor Complex, guests joined Americans from coast to coast following the solar eclipse. Although a partial eclipse on Florida's Space Coast, young and old alike found many ways to watch the rare astronomical event. As the Moon passed between Earth and the midafternoon Sun, a shadow moved across the landscape. The 70-mile-wide totality path, or "umbral cone" -- where the entire Sun will vanish behind the Moon -- stretched across 14 states, from Oregon to South Carolina.
Outreach activities in anticipation of the 2016 solar eclipse in Sorong
NASA Astrophysics Data System (ADS)
Putra Raharja, Endra; Pramudya, Yudhiakto
2016-11-01
Sorong is located outside the narrow path of total solar eclipse on March 9th, 2016. The predicted obscuration of the sun was 94.2%. The public outreach to anticipate the solar eclipse was intended to educate students in junior and senior high school in Sorong Regency. Some of them are located in the remote area where the educational materials are difficult to find. The public outreach is unique, since it was run by the local person who is student of physics education. The student has both the ability to explain the solar eclipse phenomenon and able to adapt to knowledge level of students. The materials that were given to the schools are brochure and the eclipse glasses. Beside solar eclipse lectures in class, the pinhole workshop and observation practice were held. The limited materials and resources were faced during the public outreach. However, the enthusiasm was shown by the students and teachers. At least one of the schools held the solar eclipse observation on the day of the eclipse.
Strategies for the public communication of eclipses
NASA Astrophysics Data System (ADS)
Bretones, P. S.
2015-03-01
Eclipses are among the celestial events that draw the attention of the public. This paper discusses strategies for using eclipses as public communication opportunities in the media. It discusses the impact of articles written by the author and analysis of published material for 25 observed eclipses over the last 30 years by mass media in the state of São Paulo, Brazil. On each occasion, a standard article was posted on the Internet and sent to newspapers, radio and TV with information, such as: date, time and local circumstances; type of the eclipse; area of visibility; explanation; diagram of the phenomenon, and the Moon's path through Earth's shadow; eclipses in history; techniques of observation; getting photographs; place and event for public observation. Over the years, direct contact was maintained with the media and jounralists by the press offices of the institutions.
2017-08-21
From the Kennedy Space Center Visitor Complex, guests joined Americans from coast to coast following the solar eclipse. Speaking at the event was astronaut John-David Bartoe. Although a partial eclipse on Florida's Space Coast, young and old alike found many ways to watch the rare astronomical event. As the Moon passed between Earth and the midafternoon Sun, a shadow moved across the landscape. The 70-mile-wide totality path, or "umbral cone" -- where the entire Sun will vanish behind the Moon -- stretched across 14 states, from Oregon to South Carolina.
The Effects of Barycentric and Asymmetric Transverse Velocities on Eclipse and Transit Times
NASA Astrophysics Data System (ADS)
Conroy, Kyle E.; Prša, Andrej; Horvat, Martin; Stassun, Keivan G.
2018-02-01
It has long been recognized that the finite speed of light can affect the observed time of an event. For example, as a source moves radially toward or away from an observer, the path length and therefore the light travel time to the observer decreases or increases, causing the event to appear earlier or later than otherwise expected, respectively. This light travel time effect has been applied to transits and eclipses for a variety of purposes, including studies of eclipse timing variations and transit timing variations that reveal the presence of additional bodies in the system. Here we highlight another non-relativistic effect on eclipse or transit times arising from the finite speed of light—caused by an asymmetry in the transverse velocity of the two eclipsing objects, relative to the observer. This asymmetry can be due to a non-unity mass ratio or to the presence of external barycentric motion. Although usually constant, this barycentric and asymmetric transverse velocity (BATV) effect can vary between sequential eclipses if either the path length between the two objects or the barycentric transverse velocity varies in time. We discuss this BATV effect and estimate its magnitude for both time-dependent and time-independent cases. For the time-dependent cases, we consider binaries that experience a change in orbital inclination, eccentric systems with and without apsidal motion, and hierarchical triple systems. We also consider the time-independent case which, by affecting the primary and secondary eclipses differently, can influence the inferred system parameters, such as the orbital eccentricity.
Astronomy in Denver: Centenary of the 1918 total solar eclipse across Denver
NASA Astrophysics Data System (ADS)
Stencel, Robert E.
2018-06-01
Totality during the 2017 August 21 solar eclipse (Saros 145) traveled along a path across the United States similar to that which occurred for the eclipse on 1918 June 8 (Saros 126), but with a less west-northerly track. This placed Denver and its then new Chamberlin Observatory in the path of totality. Denver University astronomy Professor Herbert Howe offered use of the Chamberlin Observatory 20-inch f/15 refractor, with its Clark doublet lens and Saegmueller mounting, in service of eclipse-related research. In preparation for the eclipse, Professor Howe and assistants had spent the last three months of 1917, refurbishing mechanical aspects of the telescope. Edwin Frost, then Director of Yerkes Observatory expressed interest and made a reconnaissance visit to the area in September 1917, reporting results in the Feb. 1918 issue of Popular Astronomy ( http://adsabs.harvard.edu/abs/1918PA.....26R.103F ). Frank Schlesinger, then director of Allegheny Observatory, asked if he might attach a special camera for star photography to the telescope at the eclipse, to test displacement of stars, in order to test a prediction of relativity theory. Among the additional visiting astronomical luminaries present on that June day in 1918 were Annie J. Cannon (Harvard), John Duncan (Wellesley), Herbert R. Morgan (U.S. Naval Observatory) and Robert Trumpler (Berkeley). To learn the results of all this eclipse preparedness, you will need to attend my talk in order to get “the rest of the story” or visit our twitter feed at: https://twitter.com/Chamberlin_Obs .
NASA Astrophysics Data System (ADS)
Pal, Sujay; Chakrabarti, Sandip K.; Mondal, Sushanta K.
2012-07-01
During the total solar eclipse of 2009, a week-long campaign was conducted in the Indian sub-continent to study the low-latitude D-region ionosphere using the very low frequency (VLF) signal from the Indian Navy transmitter (call sign: VTX3) operating at 18.2 kHz. It was observed that in several places, the signal amplitude is enhanced while in other places the amplitude is reduced. We simulated the observational results using the well known Long Wavelength Propagation Capability (LWPC) code. As a first order approximation, the ionospheric parameters were assumed to vary according to the degree of solar obscuration on the way to the receivers. This automatically brought in non-uniformity of the ionospheric parameters along the propagation paths. We find that an assumption of 4 km increase of lower ionospheric height for places going through totality in the propagation path simulate the observations very well at Kathmandu and Raiganj. We find an increase of the height parameter by h'=+3.0 km for the VTX-Malda path and h'=+1.8 km for the VTX-Kolkata path. We also present, as an example, the altitude variation of electron number density throughout the eclipse time at Raiganj.
Solar Eclipse Education and Outreach Activities at APSU
NASA Astrophysics Data System (ADS)
Smith, J. Allyn; Buckner, Spencer L.; Adams, Mitzi; Meisch, Karen; Sudbrink, Don; Wright, Amy; Adams, Angela; Fagan, Ben
2018-01-01
The path of totality for the 21 August 2017 total solar eclipse passed directly over the APSU campus in north-central Tennessee. We discuss our public outreach and education efforts, both on campus and in the community, and present results and lessons learned from this event. We reached nearly 20,000 people via our efforts and hosted nearly 3000 viewers on campus on eclipse day. We also present our science activities and early results from those. On the whole, this event could be viewed as a large success for the university and the region, and the experiences will guide us in our efforts as we plan future eclipse activities.
On the detection and attribution of gravity waves generated by the 20 March 2015 solar eclipse.
Marlton, G J; Williams, P D; Nicoll, K A
2016-09-28
Internal gravity waves are generated as adjustment radiation whenever a sudden change in forcing causes the atmosphere to depart from its large-scale balanced state. Such a forcing anomaly occurs during a solar eclipse, when the Moon's shadow cools part of the Earth's surface. The resulting atmospheric gravity waves are associated with pressure and temperature perturbations, which in principle are detectable both at the surface and aloft. In this study, surface pressure and temperature data from two UK sites at Reading and Lerwick are examined for eclipse-driven gravity wave perturbations during the 20 March 2015 solar eclipse over northwest Europe. Radiosonde wind data from the same two sites are also analysed using a moving parcel analysis method, to determine the periodicities of the waves aloft. On this occasion, the perturbations both at the surface and aloft are found not to be confidently attributable to eclipse-driven gravity waves. We conclude that the complex synoptic weather conditions over the UK at the time of this particular eclipse helped to mask any eclipse-driven gravity waves.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. © 2016 The Authors.
Eclipse Across America: Through the Eyes of NASA
NASA Astrophysics Data System (ADS)
Young, C. Alex; Heliophysics Education Consortium
2018-01-01
Monday, August 21, 2017, marked the first total solar eclipse to cross the continental United States coast-to-coast in almost a century. NASA scientists and educators, working alongside many partners, were spread across the entire country, both inside and outside the path of totality. Like many other organizations, NASA prepared for this eclipse for several years. The August 21 eclipse was NASA's biggest media event in recent history, and was made possible by the work of thousands of volunteers, collaborators and NASA employees. The agency supported science, outreach, and media communications activities along the path of totality and across the country. This culminated in a 3 ½-hour broadcast from Charleston, SC, showcasing the sights and sounds of the eclipse – starting with the view from a plane off the coast of Oregon and ending with images from the International Space Station as the Moon's inner shadow left the US East Coast. Along the way, NASA shared experiments and research from different groups of scientists, including 11 NASA-supported studies, 50+ high-altitude balloon launches, and 12 NASA and partner space-based assets. This talk shares the timeline of this momentous event from NASA's perspective, describing outreach successes and providing a glimpse at some of the science results available and yet to come.
Solar Diameter Measurements from Eclipses as a Solar Variability Proxy
NASA Astrophysics Data System (ADS)
Waring Dunham, David; Sofia, Sabatino; Guhl, Konrad; Herald, David Russell
2015-08-01
Since thermal relaxation times for the Sun are thousands of years, small variations of the Solar intensity are proportional to small variations of the Solar diameter on decadal time scales. In a combination between observations and theory, reliable values of the relation constant W are known, that allow transformation of historical variations of radius into variations of the solar luminosity. During the past 45 years, members of the International Occultation Timing Association (IOTA) have observed 20 annular and total solar eclipses from locations near the path edges. Baily’s beads, whose occurrence and duration are considerably prolonged as seen from path edge locations, were first timed visually, mostly using projection techniques, but since about 1980, they have been timed mainly from analysis of video recordings. The edge locations have the advantage that most of the beads are defined by the same features in the lunar polar regions that cause the phenomena at each eclipse. Some of the best-observed modern eclipses can be used to assess the accuracy of the results, which are limited mainly by the intensity drop at the Sun’s edge, and the consequent uncertainty in defining the edge. In addition, direct visual contact timings made near the path edges during earlier eclipses, back to 1715, have been found in the literature, and analyzed. Although the observations seem to show small variations, they are only a little larger than the assessed accuracies. The results can be improved with a consistent re-analysis of the observations using the much more accurate lunar profile data that is now available from the Japanese Kaguya and NASA’s LRO lunar orbiter observations. Also, IOTA has plans to observe future eclipses with a variety of techniques that were used in the past, to better assess the accuracies of the different observational methods that have been used, and determine any systematic differences between them.
Two Commemorative Expeditions to Celebrate the Return to Totality
NASA Astrophysics Data System (ADS)
Thompson, Kristen; English, Tom
2018-01-01
Throughout history, total solar eclipses have generated excitement across the scientific community, as they provide a unique opportunity to study the Sun’s corona. Occurrences of such events have prompted many American astronomy programs to organize expeditions aimed at studying and photographing the eclipse. Only two observing stations from any of the major 19th and early 20th century eclipse expeditions were once again found in the path of totality of the 21 August 2017 Great American Eclipse. These stations, one in Newberry, SC and the other in Winnsboro, SC, were located in the shadow of the 28 May 1900 eclipse that passed through the southeastern United States from New Orleans to Norfolk. To celebrate this unique opportunity, we organized two expeditions that travelled to these towns to commemorate their return to totality. In this talk, I will describe the circumstances of the 1900 solar eclipse, our modern expeditions, and our effort to bring this eclipse history to life for the community.
CATE 2016 Indonesia: Science goals and student training for 2017
NASA Astrophysics Data System (ADS)
Penn, M. J.; McKay, M. A.; Kovac, S. A.; Jensen, L.; Hare, H. S.; Mitchell, A. M.; Bosh, R.; Watson, Z.; Baer, R.; Pierce, M.; Gelderman, R.; Walter, D. K.
2016-12-01
The Citizen Continental-America Telescopic Eclipse (CATE) Experiment for 2017 is being developed at the National Solar Observatory in partnership with universities, schools, astronomy clubs, and corporations. The CATE experiment will use more than 60 identical telescopes equipped with digital cameras from Oregon to South Carolina to image the solar corona. The project will then splice these images together to show the corona during a 90-minute period, revealing for the first time the plasma dynamics of the inner solar corona. The goals for the CATE experiment range from providing an authentic STEM research experience for students and lifelong learners, to making state-of-the-art solar coronal observations of the plasma dynamics of coronal polar plumes, to increasing the US scientific literacy. Private funds are being raised for the CATE equipment, and so the telescopes will stay with the volunteers after the eclipse and be used in follow-on citizen science astronomy projects. The 2017 eclipse will be viewed by hundreds of millions of people. Four sets of undergraduate students in the path of the 2017 eclipse have become local experts for the eclipse and trainers for the CATE volunteers. These students traveled to the 2016 March eclipse in Indonesia and collected observations with prototype CATE telescopes; science results from these 2016 observations will be discussed. Training videos for use in 2017 were developed and tested on volunteers. Finally several high school groups along the path of totality have been engaged in the CATE project and will participate in the eclipse data collection. This work was supported by the NSO "Training for the 2017 Citizen CATE Experiment" funded by NASA (NASA NNX16AB92A). The National Solar Observatory is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the NSF.
On the detection and attribution of gravity waves generated by the 20 March 2015 solar eclipse
2016-01-01
Internal gravity waves are generated as adjustment radiation whenever a sudden change in forcing causes the atmosphere to depart from its large-scale balanced state. Such a forcing anomaly occurs during a solar eclipse, when the Moon’s shadow cools part of the Earth’s surface. The resulting atmospheric gravity waves are associated with pressure and temperature perturbations, which in principle are detectable both at the surface and aloft. In this study, surface pressure and temperature data from two UK sites at Reading and Lerwick are examined for eclipse-driven gravity wave perturbations during the 20 March 2015 solar eclipse over northwest Europe. Radiosonde wind data from the same two sites are also analysed using a moving parcel analysis method, to determine the periodicities of the waves aloft. On this occasion, the perturbations both at the surface and aloft are found not to be confidently attributable to eclipse-driven gravity waves. We conclude that the complex synoptic weather conditions over the UK at the time of this particular eclipse helped to mask any eclipse-driven gravity waves. This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’. PMID:27550763
2017-08-21
From the Kennedy Space Center Visitor Complex, guests joined Americans from coast to coast following the solar eclipse. Guest speakers were, astronaut John-David Bartoe, left, and communicator Jeff Lucas. Although a partial eclipse on Florida's Space Coast, young and old alike found many ways to watch the rare astronomical event. As the Moon passed between Earth and the midafternoon Sun, a shadow moved across the landscape. The 70-mile-wide totality path, or "umbral cone" -- where the entire Sun will vanish behind the Moon -- stretched across 14 states, from Oregon to South Carolina.
2017-06-11
Sylvester Dorsey III, avionics lead for the Europa Deorbit Stage Team in Marshall's Engineering Directorate, is joined during Marshall's eclipse-viewing event by his three children, from left, Sylvester IV, Sidney and Sakari. Though Huntsville was south of the path of totality, the Dorseys were among those awestruck by the natural phenomenon. The Huntsville area experienced 97 percent occultation, nearly a complete blocking out of the sun by the orbit of Earth's moon. The next opportunity to view a solar eclipse in the eastern and central United States will occur in April 2024.
Determination of variations of the solar radius from solar eclipse observations
NASA Technical Reports Server (NTRS)
Sofia, S.; Dunham, D. W.; Fiala, A. D.
1980-01-01
This paper describes the method to determine the solar radius and its variations from observations made during total solar eclipses. In particular, the procedure to correct the spherical moon predictions for the effects of lunar mountains and valleys on the width and location of the path of totality is addressed in detail. The errors affecting this technique are addressed, a summary of the results of its application to three solar eclipses are presented, and the implications of the results on the constancy of the solar constant are described.
NASA Astrophysics Data System (ADS)
Semper, R.; Higdon, R.
2017-12-01
The 2017 total solar eclipse provided unique opportunity to provide public outreach about astronomy, heliophysics, and scientific discovery. The Navigating the Path of Totality project was designed to produce eclipse related educational resources including live video feeds and distribute them to museums, schools, libraries and the public through online and broadcast media. Using special telescope video camera setups, five feeds were produced including a live one hour English program and in parallel a live one hour Spanish program from Casper, WY with a cutaway to Madras, OR, complete (C1-C4) telescope only feeds from both Madras, OR and Casper, Wy, and a complete (C1-C4) telescope only feed with live musical sonification and accompaniment by the Kronos Quartet. Images from the live feeds were made available on the NASA Website, NASA TV, Exploratorium website, Exploratorium Solar Eclipse mobile app, local television and in museums, libraries and schools worldwide. Associated educational video material including images from the 2016 total eclipse from Micronesia was produced and disseminated. In this talk we will discuss the evaluation results including an examination of the effectiveness of the digital strategy of many mobile channels and mobile apps using different analytics including IBM Watson social media analytics services. We will also present the lessons learned from the project.
Getting a Feel for Eclipses: A Tactile Discovery of an Awe-inspiring Celestial Event
NASA Astrophysics Data System (ADS)
Runyon, C. R.; Hall, C.; Hurd, D.; Minafra, J.; Williams, M. N.; Quinn, K.
2017-12-01
Solar eclipses provide a unique viewing opportunity for people across the world. August 21, 2017 was no exception. From Oregon to South Carolina, viewers were able to witness this remarkable phenomenon as the Moon comes between the Sun and Earth, casting a shadow on Earth. From a personal social / emotional standpoint seeing a total solar eclipse is indescribable and unforgettable. For the sighted, such an event is experienced through a combination of multiple senses, not just sight. For those people who are Blind / visually impaired (B/VI), the experience is different. While they may sense changes in the intensity of the sunlight, temperature, and animal noises, they are unable to "see" what is happening. How might this remarkable experience be brought to life for the B/VI? The NASA Solar System Exploration Research Virtual Institute Center for Lunar and Asteroid Surface Science (SSERVI CLASS) education/public engagement team developed a tactile book to do just this. The tactile book, Getting a Feel for Eclipses, provides users who are B/VI a means to see and experience the total solar eclipse through their fingertips. The unique, hand-made, tactile graphics are created from various textured materials such that each feature is readily identified. A QR code associated with the book provides access to digital content describing each tactile. Through this delivery mechanism, users who are B/VI, or even sighted may access the content with any smart device. Distributed to Schools for the Blind, national organizations for the Blind, Libraries, Museums and Science Centers across the country, the book helped bring a rare event to life for thousands of people who may not have otherwise been able to experience the eclipse. We look forward to 2024 when the U.S. will once again host the "path of totality." Until then, Getting a Feel for Eclipses will continue to serve as a guide to those interested, and an updated eclipse path map will continue to make the book pertinent.
Report of the IAU Working Group on Solar Eclipses
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.
2015-08-01
The Working Group on Solar Eclipses coordinates scientists and information in the study of the Sun and the heliosphere at solar eclipses. Our Website at http://eclipses.info has a wide variety of information, including links to maps and other websites dealing with solar eclipses, as well as information on how to observe the partial-phases of solar eclipses safely and why it is interesting for not only scientists but also for the public to observe eclipses and to see how we work to uncover the mysteries of the sun's upper atmosphere. In the last triennium, there were total eclipses in Australia and the Pacific in 2012; in an arc across Africa from Gabon to Uganda and Kenya in 2013; and in the Arctic, including Svalbard and the Faeroes plus many airplanes aloft, in 2015. In the coming triennium, there will be total solar eclipses in Indonesia and the Pacific in 2016 and then, on 21 August 2017, a total solar eclipse that will sweep across the Continental United States from northwest to southeast. Mapping websites, all linked to http://eclipses.info, include Fred Espenak's http://EclipseWise.com; Michael Zeiler's http://GreatAmericanEclipse.com and http://eclipse-maps.com; Xavier Jubier's http://xjubier.free.fr; and (with weather and cloudiness analysis) Jay Anderson's http://eclipser.ca. Members of the Working Group, chaired by Jay Pasachoff (U.S.), include Iraida Kim (Russia), Kiroki Kurokawa (Japan), Jagdev Singh (India), Vojtech Rusin (Slovakia), Zhongquan Qu (China), Fred Espenak (U.S.), Jay Anderson (Canada), Glenn Schneider (U.S.), Michael Gill (U.K.), Xavier Jubier (France), Michael Zeiler (U.S.), and Bill Kramer (U.S.).
NASA Astrophysics Data System (ADS)
Gaines, E. E.; Imhof, W. L.; Voss, H. D.; Reagan, J. B.
1983-07-01
During the solar eclipse of 26 February 1979, the P78-1 satellite passed near Red Lake, Ontario, at an altitude of about 600 km. On two consecutive orbits spanning the time of total eclipse, energetic electrons were measured with two silicon solid state detector spectrometers having excellent energy and angular resolution. Significant fluxes of precipitating electrons were observed near the path of totality. Comparisons of flux intensities and energy spectra with those measured from a Nike Orion and two Nike Tomahawk rockets launched near Red Lake before and during total eclipse give good agreement and indicate that the electron precipitation was relatively uniform for more than an hour and over a broad geographical area.
The (Almost) Unseen Total Eclipse of 1831
NASA Astrophysics Data System (ADS)
Bartky, Ian R.
2008-03-01
The total eclipse of August 1831 began at sunrise in Australia, swept across the western South Pacific Ocean, and ended at sunset in the central South Pacific. As a result of the eclipse's path over mostly uninhabited ocean, the region's sparse European (British) population, and near-useless local predictions of the event at Hobart and Sydney in almanacs sold to the general public, almost no one witnessed its passage. In an attempt to document the eclipse, journals of naive observers - those having no access to a prediction - were examined. Thus far, the sole record is in the Pitcairn Island Register Book. Considering the Pitcairners' extreme isolation and the rather modest partial eclipse that occurred there, the entry is a surprising one; however, it can be explained in terms of events associated with their initial removal to Tahiti in March 1831 followed by their return home in June. Further, an authoritative means to identify any issues associated with eclipse predictions compiled for private-sector almanacs came in 1833 when sweeping changes in the British Nautical Almanac's section on eclipses were instituted.
NASA Astrophysics Data System (ADS)
McInerney, Joseph M.; Marsh, Daniel R.; Liu, Han-Li; Solomon, Stanley C.; Conley, Andrew J.; Drob, Douglas P.
2018-05-01
We performed simulations of the atmosphere-ionosphere response to the solar eclipse of 21 August 2017 using the Whole Atmosphere Community Climate Model-eXtended (WACCM-X v. 2.0) with a fully interactive ionosphere and thermosphere. Eclipse simulations show temperature changes in the path of totality up to -3 K near the surface, -1 K at the stratopause, ±4 K in the mesosphere, and -40 K in the thermosphere. In the F region ionosphere, electron density is depleted by about 55%. Both the temperature and electron density exhibit global effects in the hours following the eclipse. There are also significant effects on stratosphere-mesosphere chemistry, including an increase in ozone by nearly a factor of 2 at 65 km. Dynamical impacts of the eclipse in the lower atmosphere appear to propagate to the upper atmosphere. This study provides insight into coupled eclipse effects through the entire atmosphere from the surface through the ionosphere.
The Astrophysics of the Solar Corona at the August 21, 2017, American Total Solar Eclipse
NASA Astrophysics Data System (ADS)
Pasachoff, Jay
2017-01-01
The first total solar eclipse to cross the United States from coast to coast in 99 years will occur on August 21, 2017, with a 70-mile-wide path of totality from Oregon to South Carolina, with cloudiness statistics more favorable in the northwest than in the southeast. I will discuss a series of observations of the solar corona made during recent solar eclipses and related spacecraft observations. I will further discuss plans for using the 2017 eclipse for furthering our studies of the heating of the solar corona to millions of kelvins, of the dynamics of coronal mass ejections and polar plumes, and of the response of the corona to the solar magnetic field. I will conclude by discussing public-education plans for the eclipse, during which the whole U.S., Mexico, Central America, and Canada will enjoy a partial eclipse. My work at solar eclipses has recently been supported by the NSF and the Committee for Research and Exploration of the National Geographic Society, and I thank them both for research grants for our scientific studies of the 2017 total eclipse, including AGS-1602461 from the NSF and 987816 from National Geographic.
2017-02-21
Several times a day for a few days the Earth completely blocked the Sun for about an hour due to NASA's Solar Dynamics Observatory's orbital path (Feb. 15, 2017). The edge of the Earth is not crisp, but kind of fuzzy due to Earth's atmosphere. This frame from a video shows the ending of one such eclipse over -- just seven minutes. The sun is shown in a wavelength of extreme ultraviolet light. These eclipses re-occur about every six months. The Moon blocks SDO's view of the sun on occasion as well. Movies are available at http://photojournal.jpl.nasa.gov/catalog/PIA21461
2017-08-21
A partial eclipse on Florida's Space Coast, the rare astronomical event was photographed from the top of the Vehicle Assembly Building, as the Moon passed between Earth and the midafternoon Sun. The Moon's shadow moved across the landscape from Oregon to South Carolina. The 70-mile-wide totality path, or "umbral cone" -- where the entire Sun will vanish behind the Moon -- stretched across 14 states, from Oregon to South Carolina.
NASA Astrophysics Data System (ADS)
Basak, T.; Hobara, Y.
2015-12-01
A major part of the path of the annular solar eclipse of May 20, 2012 (magnitude 0.9439) was over southern Japan. The D-region ionospheric changes associated with that eclipse, led to several degree of observable perturbations of sub-ionospheric very low frequency (VLF) radio signal. The University of Electro-Communications (UEC) operates VLF observation network over Japan. The solar eclipse associated signal changes were recorded in several receiving stations (Rx) simultaneously for the VLF signals coming from NWC/19.8kHz, JJI/22.2kHz, JJY/40.0kHz, NLK/24.8kHz and other VLF transmitters (Tx). These temporal dependences of VLF signal perturbation have been analyzed and the spatio-temporal characteristics of respective sub-ionospheric perturbations has already been studied by earlier workers using 2D-Finite Difference Time Domain method of simulation. In this work, we determine the spatial scale, depth and temporal dependence of lower ionospheric perturbation in consistence with umbral and penumbral motion. We considered the 2-parameter D-region ionospheric model with exponential electron density profile. To model the solar obscuration effect over it, we assumed a generalized space-time dependent 2-dimensional elliptical Gaussian distribution for ionospheric parameters, such as, effective reflection height (h') and sharpness factor (β). The depth (△hmax, △βmax), center of shadow (lato(t), lono(t)) and spatial scale (σlat,lon) of that Gaussian distribution are used as model parameters. In the vicinity of the eclipse zone, we compute the VLF signal perturbations using Long Wave Propagation Capability (LWPC) code for several signal propagation paths. The propagation path characteristics, such as, ground and water conductivity and geomagnetic effect on ionosphere are considered from standard LWPC prescriptions. The model parameters are tuned to set an optimum agreement between our computation and observed positive and negative type of VLF perturbations. Thus, appropriate set of parameters lead us to the possible determination of spatial scale, depth and temporal dependence of eclipse associated D-region electron density perturbation solely from the VLF-network observations coupled with theoretical modeling.
Atmospheric boundary layer effects induced by the 20 March 2015 solar eclipse
NASA Astrophysics Data System (ADS)
Gray, Suzanne L.; Harrison, R. Giles
2016-04-01
The British Isles benefits from dense meteorological observation networks, enabling insights into the still-unresolved effects of solar eclipse events on the near-surface wind field. The near-surface effects of the solar eclipse of 20 March 2015 are derived through comparison of output from the Met Office's operational weather forecast model (which is ignorant of the eclipse) with data from two meteorological networks: the Met Office's land surface station (MIDAS) network and a roadside measurement network operated by Vaisala. Synoptic-evolution relative calculations reveal the cooling and increase in relative humidity almost universally attributed to eclipse events. In addition, a slackening of wind speeds by up to about 2 knots in already weak winds and backing in wind direction of about 20 degrees under clear skies across middle England are attributed to the eclipse event. The slackening of wind speed is consistent with the previously reported boundary layer stabilisation during eclipse events. Wind direction changes have previously been attributed to a large-scale `eclipse-induced cold-cored cyclone', mountain slope flows, and changes in the strength of sea breezes. A new explanation is proposed here by analogy with nocturnal wind changes at sunset and shown to predict direction changes consistent with those observed.
Ionospheric wave signature of the American solar eclipse on 21 August 2017 in Europe
NASA Astrophysics Data System (ADS)
Verhulst, Tobias G. W.; Stankov, Stanimir M.
2018-05-01
A total solar eclipse occurred on 21 August 2017, with the path of totality starting over the North Pacific Ocean, crossing North-America and ending over the Mid-Atlantic Ocean slightly North of the equator. As a result, a partial solar eclipse was observed as far away as the Western Europe. The ionospheric observatory in Dourbes, Belgium, was right on the edge of the partial eclipse and was exposed for a very short period of only few minutes just before the local sunset. High-resolution ionospheric measurements were carried out at the observatory with collocated digital ionosonde and GNSS receivers. The data analysis revealed a clear wave-like pattern in the ionosphere that can be seen arriving before the local onset of the eclipse. The paper details the analysis and provides a possible explanation of the observed phenomenon.
March 7, 1970 solar eclipse investigation
NASA Technical Reports Server (NTRS)
Accardo, C. A.
1972-01-01
Studies from rockets directed toward establishing the solar X-ray fluxes during the 7 March 1970 total eclipse over the North American continent are reported. A map of the eclipse path is presented. The measured absorption profiles for the residual X-rays are useful in establishing their contribution to the D and E region ionization during the eclipse. The studies were performed with two Nike-Apache payloads launched over Wallops Island, Virginia. In addition to three X-ray detectors in the 1 to 8A, 8 to 20A and 44 to 60A bands, there was included in the payloads two additional experiments. These were an electric field experiment and an epithermal photoelectron experiment. The X-ray instrumentation, payload description, flight circumstances and finally, the X-ray results obtained are described. The various computer codes employed for the purpose of reducing the telemetered data as well as the eclipse codes are included.
Observations of a probable change in the solar radius between 1715 and 1979
NASA Technical Reports Server (NTRS)
Dunham, D. W.; Sofia, S.; Fiala, A. D.; Muller, P. M.; Herald, D.
1980-01-01
A decrease in the solar radius is determined using the technique of Dunham and Dunham (1973), in which timed observations are made just inside the path edges. When the method is applied to the solar eclipses of 1715, 1976, and 1979, the solar radius for 1715 is 0.34 + or - 0.2 arc second larger than the recent values, with no significant change between 1976 and 1979. The duration of totality is examined as a function of distance from the edges of the path. Corrections to the radius of the sun derived from observations of the 1976 and 1979 eclipses by the International Occultation Timing Association are also presented.
Eclipse-induced wind changes over the British Isles on the 20 March 2015
2016-01-01
The British Isles benefits from dense meteorological observation networks, enabling insights into the still-unresolved effects of solar eclipse events on the near-surface wind field. The near-surface effects of the solar eclipse of 20 March 2015 are derived through comparison of output from the Met Office’s operational weather forecast model (which is ignorant of the eclipse) with data from two meteorological networks: the Met Office’s land surface station (MIDAS) network and a roadside measurement network operated by Vaisala. Synoptic-evolution relative calculations reveal the cooling and increase in relative humidity almost universally attributed to eclipse events. In addition, a slackening of wind speeds by up to about 2 knots in already weak winds and backing in wind direction of about 20° under clear skies across middle England are attributed to the eclipse event. The slackening of wind speed is consistent with the previously reported boundary layer stabilization during eclipse events. Wind direction changes have previously been attributed to a large-scale ‘eclipse-induced cold-cored cyclone’, mountain slope flows, and changes in the strength of sea breezes. A new explanation is proposed here by analogy with nocturnal wind changes at sunset and shown to predict direction changes consistent with those observed. This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’. PMID:27550759
NASA Astrophysics Data System (ADS)
Marková, E.; Bělík, M.; Křivský, L.; Druckmüller, M.
2010-12-01
This work is focused on primary processing of the solar eclipse observations of July 22, 2009. As part of the "Shadow-tracking expedition" project several expeditions were organized to observe the phenomenon. Unfortunately, bad weather conditions prevented a successful observation in the China region. Pre-processing was carried out from images taken at Envetak Atoll in Marshall Islands. From the isophot evolution a corona flattening was found, and from the processed fine structure images a parameter called "source area radius", used mainly for calculations in models of the coronal magnetic fields, was determined. Both of these parameters supplement the data obtained during the previous eclipses, and the first conclusions on the state of the corona during an eclipse are deduced.
Implementation of Bessel's method for solar eclipses prediction in the WRF-ARW model
NASA Astrophysics Data System (ADS)
Montornes, Alex; Codina, Bernat; Zack, John W.; Sola, Yolanda
2016-05-01
Solar eclipses are predictable astronomical events that abruptly reduce the incoming solar radiation into the Earth's atmosphere, which frequently results in non-negligible changes in meteorological fields. The meteorological impacts of these events have been analyzed in many studies since the late 1960s. The recent growth in the solar energy industry has greatly increased the interest in providing more detail in the modeling of solar radiation variations in numerical weather prediction (NWP) models for the use in solar resource assessment and forecasting applications. The significant impact of the recent partial and total solar eclipses that occurred in the USA (23 October 2014) and Europe (20 March 2015) on solar power generation have provided additional motivation and interest for including these astronomical events in the current solar parameterizations.Although some studies added solar eclipse episodes within NWP codes in the 1990s and 2000s, they used eclipse parameterizations designed for a particular case study. In contrast to these earlier implementations, this paper documents a new package for the Weather Research and Forecasting-Advanced Research WRF (WRF-ARW) model that can simulate any partial, total or hybrid solar eclipse for the period 1950 to 2050 and is also extensible to a longer period. The algorithm analytically computes the trajectory of the Moon's shadow and the degree of obscuration of the solar disk at each grid point of the domain based on Bessel's method and the Five Millennium Catalog of Solar Eclipses provided by NASA, with a negligible computational time. Then, the incoming radiation is modified accordingly at each grid point of the domain.This contribution is divided in three parts. First, the implementation of Bessel's method is validated for solar eclipses in the period 1950-2050, by comparing the shadow trajectory with values provided by NASA. Latitude and longitude are determined with a bias lower than 5 x 10-3 degrees (i.e., ~ 550 m at the Equator) and are slightly overestimated and underestimated, respectively. The second part includes a validation of the simulated global horizontal irradiance (GHI) for four total solar eclipses with measurements from the Baseline Surface Radiation Network (BSRN). The results show an improvement in mean absolute error (MAE) from 77 to 90 % under cloudless skies. Lower agreement between modeled and measured GHI is observed under cloudy conditions because the effect of clouds is not included in the simulations for a better analysis of the eclipse outcomes. Finally, an introductory discussion of eclipse-induced perturbations in the surface meteorological fields (e.g., temperature, wind speed) is provided by comparing the WRF-eclipse outcomes with control simulations.
Citizen CATE: Evaluating Outcomes of a Solar Eclipse Citizen Science Project
NASA Astrophysics Data System (ADS)
Penn, M. J.; Haden, C.
2017-12-01
On August 21, 2017, a total solar eclipse will be visible along a path of totality from Oregon to South Carolina. The Citizen Continental-America Telescopic Eclipse Experiment (CATE) will use scientists, students and volunteers to take images of the solar corona using 68 identical telescopes, software and instrument packages along the 2,500-mile path of totality. CATE partners include National Solar Observatory scientists, university faculty and students, high school students, and professional and amateur astronomers. NASA funded CATE educational components including training undergraduates and volunteers on solar imaging software and equipment. The National Science Foundation and corporations including DayStar, MathWorks, Celestron and ColorMaker funded equipment. Undergraduates participated in summer research experiences to build their capacity for gathering eclipse data, and subsequently trained volunteers across the U.S. Aligned to NASA education goals, CATE goals range from providing an authentic research experience for students and lifelong learners, to making state-of-the-art solar coronal observations, to increasing scientific literacy of the public. While project investigators are examining the wealth of scientific data that will come from CATE, evaluators are examining impacts on participants. Through mixed methods, evaluators are examining outcomes related to changes in volunteers' knowledge, skills and attitudes. Additionally, the study will examine how citizen science astronomy using CATE equipment will continue after the eclipse to sustain project impacts. Preliminary findings for undergraduates indicate that they are gaining knowledge and skills related to studying solar coronal phenomena, conducting rigorous scientific research, and interfacing with the public to conduct outreach. Preliminary findings for citizen scientists indicate a high level of engagement in the research, and that they are gaining new knowledge and skills related to solar science and eclipses. Volunteers also reported learning a great deal about safety while observing the Sun. This evaluation study will add to the body of knowledge about the effectiveness and utility of citizen science programs. Findings will be updated with data collected during and immediately after the eclipse events.
Public Education and Outreach for Observing Solar Eclipses and Transits
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.
2015-08-01
The general public is often very interested in observing solar eclipses, with widespread attention from newspapers and other sources often available only days before the events. Recently, the 2012 eclipse's partial phases in Australia and the 2015 eclipse's partial phases throughout Europe as well as western Asia and northern Africa, were widely viewed. The 21 August 2017 eclipse, whose totality will sweep across the Continental United States from northwest to southeast, will have partial phases visible throughout the U.S., Canada, Mexico, Central America, and into South America. The 2019 and 2020 partial phases of total eclipses will be visible throughout South America, and partial phases from annular eclipses will be visible from other parts of the world. The 9 May 2016 transit of Mercury will be best visible from the Western Hemisphere, Europe, and Africa. Many myths and misunderstandings exist about the safety of observing partial phases, and it is our responsibility as astronomers and educators to transmit accurate information and to attempt the widest possible distribution of such information. The Working Group on Public Education at Eclipses and Transits, formerly of Commission 46 on Education and Development and now of New Commission 11, tries to coordinate the distribution of information. In collaboration with the Solar Division's Working Group on Solar Eclipses, their website at http://eclipses.info is a one-stop shop for accurate information on how to observe eclipses, why it is interesting to do so, where they will be visible (with links to online maps and weather statistics), and how encouraging students to observe eclipses can be inspirational for them, perhaps even leading them to realize that the Universe can be understood and therefore renewing the strength of their studies. Links to information about transits of Mercury and Venus are also included.
Books and Other Resources for Education about the August 21, 2017, Solar Eclipse
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.; Fraknoi, Andrew; Kentrianakis, Michael
2017-06-01
As part of our work to reach and educate the 300+ million Americans of all ages about observing the August 21 solar eclipse, especially by being outdoors in the path of totality but also for those who will see only partial phases, we have compiled annotated lists of books, pamphlets, travel guides, websites, and other information useful for teachers, students, and the general public and made them available on the web, at conferences, and through webinars. Our list includes new eclipse books by David Barron, Anthony Aveni, Frank Close, Tyler Nordgren, John Dvorak, Michael Bakich, and others. We list websites accessible to the general public including those of the International Astronomical Union Working Group on Eclipses (http://eclipses.info, which has links to all the sites listed below); the AAS Eclipse 2017 Task Force (http://eclipse2017.aas.org); NASA Heliophysics (http://eclipse.nasa.gov); Fred Espenak (the updated successor to his authoritative "NASA website": http://EclipseWise.com); Michael Zeiler (http://GreatAmericanEclipse.com); Xavier Jubier (http://xjubier.free.fr/en/site_pages/solar_eclipses/); Jay Anderson (meteorology: http://eclipsophile.com); NASA's Eyes (http://eyes.nasa.gov/eyes-on-eclipse.html and its related app); the Astronomical Society of the Pacific (http://www.astrosociety.org/eclipse); Dan McGlaun (http://eclipse2017.org/); Bill Kramer (http://eclipse-chasers.com). Specialized guides include Dennis Schatz and Andrew Fraknoi's Solar Science for teachers (from the National Science Teachers Association:http://www.nsta.org/publications/press/extras/files/solarscience/SolarScienceInsert.pdf), and a printing with expanded eclipse coverage of Jay Pasachoff's, Peterson Field Guide to the Stars and Planets (14th printing of the fourth edition, 2016: http://solarcorona.com).A version of our joint list is to be published in the July issue of the American Journal of Physics as a Resource Letter on Eclipses, adding to JMP's 2010, "Resource Letter SP-1 on Solar Physics," AJP, 78, September, 890-901.
NASA Astrophysics Data System (ADS)
Chizek Frouard, Malynda R.; Towne, Linda; Kaplan, George H.
2017-01-01
In anticipation of the 2017 August 21 total solar eclipse over the continental United States, the history of U.S. Naval Observatory eclipse observations illustrates the changes in science, technology, and policy over the past 148 years.USNO eclipse observations began in 1869, when staff traveled to Des Moines, Iowa and the Bering Strait to look for intra-mercurial planets and to observe the solar corona. During the golden age of eclipse expeditions, the USNO officially participated in a dozen expeditions between 1869 and 1929. Seven of these expeditions were to US locations: 1869 in Iowa; 1878 in Colorado, Wyoming, and Texas; 1880 in California; 1900 in Georgia and North Carolina; 1918 in Oregon; 1923 in California; and 1925 in New York. A total solar eclipse has not traced a path across the width of the continental US since 1918 although several eclipses have passed over parts of the US since then.A few official expeditions occurred later in the 20th century to measure the solar diameter, including a total eclipse in the northwest US in 1979 and an annular eclipse across the southeast in 1984. However, observations began transitioning to mostly personal adventures as individual astronomers arranged unofficial trips.Historians can use the USNO Multi-year Interactive Computer Almanac (MICA) to compute local circumstances for solar eclipses world-wide starting with the annual eclipse of 1800 April 24, which was visible from Alaska. Those looking to make history in 2017 may consult the USNO 2017 August 21 Solar Eclipse Resource page (http://aa.usno.navy.mil/data/docs/Eclipse2017.php).
Stellar background observation during Total Solar Eclipse March 9th 2016
NASA Astrophysics Data System (ADS)
Mumtahana, Farahhati; Timur Jaelani, Anton; Muhamad, Johan; Sutastio, Heri
2016-11-01
We report observation and an early analysis of stellar background from total solar eclipse in Ternate, Indonesia. The eclipse phenomena which occurred on March, 9th 2016 was observed with certain portable instruments in order to obtain the stars behind the Sun in particular field of view and resolution. From our observation site in Ternate city, solar eclipse occurred in the late morning when the weather was unfortunately cloudy. However, during the darkness of totality, we obtained several point source objects between the gaps of the moving clouds and we suspected them as very faint stars due to their appearance in several frames. Those so called stars have been identified and measured with respect to their positions toward the center of the Sun. The main purpose of this research is to revisit strong lensing calculation of the Sun during total solar eclipse by measuring the deflection angle of the background stars as it had been calculated by Einstein and proved by Eddington at a total solar eclipse in 1919. To accomplish this aim, we need to conduct another observation to measure position of the same stars in the next period when those stars appear in the night sky.
NASA Astrophysics Data System (ADS)
Cohen, M. B.; Gross, N. C.; Higginson-Rollins, M. A.; Marshall, R. A.; Gołkowski, M.; Liles, W.; Rodriguez, D.; Rockway, J.
2018-04-01
We present observations from 11 very low frequency (VLF)/low-frequency (LF) receivers across the continental United States during the 21 August 2017 "Great American Solar Eclipse." All receivers detected transmissions from VLF/LF beacons below 50 kHz, while seven also recorded LF beacons above 50 kHz, yielding dozens of individual transmitter-receiver radio links. Our observations show two separable superimposed signatures: (1) a gradual rise and fall in signal levels visible on almost all paths as the eclipse advances and then declines, as VLF attenuation is reduced by the changing ionosphere under an eclipsed Sun, and (2) direct reflective scattering off the narrow 100-km-wide totality spot, observed more uniquely when the transmitter or receiver, if not both, are relatively close to the totality spot.
2017 Total Solar Eclipse Science Briefing
2017-06-21
During a June 21 media briefing from the Newseum in Washington, representatives from NASA, other federal agencies, and science organizations discussed the opportunity for scientific study offered by the total solar eclipse that will cross the U.S. on August 21. Over the course of 100 minutes, 14 states across the United States will experience more than two minutes of darkness in the middle of the day. Additionally, a partial eclipse will be viewable across all of North America. The eclipse will provide a unique opportunity to study the sun, Earth, moon and their interaction because of the eclipse’s long path over land coast to coast. Scientists will be able to take ground-based and airborne observations over a period of an hour and a half to complement the wealth of data and images provided by space assets.
Observing Solar Eclipses in the Developing World
NASA Astrophysics Data System (ADS)
Pasachoff, J. M.
2006-08-01
The paths of totality of total solar eclipses cross the world, with each spot receiving such a view about every 300 years. The areas of the world from which partial eclipses are visible are much wider. For the few days prior to a total eclipse, the attention of a given country is often drawn toward the eclipse, providing a teachable moment that we can use to bring astronomy to the public's attention. Also, it is important to describe how to observe the partial phases of the eclipse safely. Further, it is important to describe to those people in the zone of totality that it is not only safe but also interesting to view totality. Those who are misled by false warnings that overstate the hazards of viewing the eclipse, or that fail to distinguish between safe and unsafe times for naked-eye viewing, may well be skeptical when other health warnings--perhaps about AIDS or malaria prevention or polio inoculations--come from the authorities, meaning that the penalties for misunderstanding the astronomical event can be severe. Through the International Astronomical Union's Working Group on Solar Eclipses and through the I.A.U.'s Program Group on Public Education at the Times of Eclipses, part of the Commission on Education and Development, we make available information to national authorities, to colleagues in the relevant countries, and to others, through our Websites at http://www.eclipses.info and http://www.totalsolareclipse.net and through personal communication. Among our successes at the 29 March 2006 total solar eclipse was the distribution through a colleague in Nigeria of 400,000 eye-protection filters.
NASA Astrophysics Data System (ADS)
Fienberg, R. T.; Speck, A. K.; Habbal, S. R.
2017-12-01
More than three years ahead of the "Great American Eclipse" of August 2017, the American Astronomical Society formed the AAS Solar Eclipse Task Force to function as a think tank, coordinating body, and communication gateway to the vast resources available about the 2017 eclipse and solar eclipses more generally. The task force included professional and amateur astronomers, formal and informal educators, and science journalists; many had experienced total solar eclipses before, and others would experience their first totality in August 2017. The AAS task force secured funding from the AAS Council, the National Science Foundation, and NASA. These resources were used mainly for three purposes: (1) to build a website that contains basic information about solar eclipses, safe viewing practices, and eclipse imaging and video, along with resources for educators and the media and a searchable map of eclipse-related events and activities, with links to other authoritative websites with more detailed information; (2) to solicit, receive, evaluate, and fund proposals for mini-grants to support eclipse-related education and public outreach to underrepresented groups both inside and outside the path of totality; and (3) to organize a series of multidisciplinary workshops across the country to prepare communities for the eclipse and to facilitate collaborations between astronomers, meteorologists, school administrators, and transporation and emergency-management professionals. Most importantly, the AAS Solar Eclipse Task Force focused on developing and disseminating appropriate eclipse safety information. The AAS and NASA jointly developed safety messaging that won the endorsement of the American Academies of Opthalmology and Optometry. In the weeks immediately preceding the eclipse, it became clear that the marketplace was being flooded by counterfeit eclipse glasses and solar viewers, leading to a last minute change in our communication strategy. In this talk, we'll review the task force's activities, take stock of what went right and what went wrong, and consider how to do an even better job preparing the nation for the next two "Great American" solar eclipses: the annular eclipse of October 14, 2023, and the total eclipse of April 8, 2024.
NASA Astrophysics Data System (ADS)
Golub, Leon; Pasachoff, Jay M.
2014-03-01
Preface; Acknowledgments; 1. The Sun; 2. The once and future Sun; 3. What we see: the solar disk; 4. What we don't see; 5. Eclipses; 6. Space missions; 7. Between fire and ice; 8. Space weather; Bibliography; Glossary; Index.
NASA Astrophysics Data System (ADS)
Anggraeni, S.; Diana, S.; Supriatno, B.
2017-09-01
Some group students of plant Physiology course have given task to do free inquiry. They investigated of the nasty behaviour of several legume plants in response to changes in light during the partial solar eclipse that occurred at March 9, 2016. The investigation carried out in UPI Bandung, West Java, Indonesia, which is in the penumbra region of a total solar eclipse with the location coordinates of latitude: -6.86105, longitude: 07.59071, S 6057’ 37.53553 “and E 107035’ 24.29141”. They were measuring the movement of opening leaves every ten minutes at the beginning of the start until the end of the eclipse compared with the behaviour without eclipsing. Influence is expressed by comparing the leaf opening movement (measured in the form of leaf angular) at the time of the eclipse with a normal day. Each group was observed for one plant of the legume, there are: Mimosa pudica, Bauhinia purpurea, Caesalpinia pulcherrima, and Arachis pintoi. The results showed that the changes in leaf angular in plants Mimosa pudica, Caesalpinia pulcherrima, and Arachis pintoi differently significant, except for Bauhinia purpurea. In conclusion, the total solar eclipse in the penumbra area affects the movement of some nasty legume plants. It is recommended to conduct a study of the nasty behaviour of legume plants in the area umbra in the path of a total solar eclipse.
NASA Astrophysics Data System (ADS)
Tayabali Jiwaji, Noorali
2015-08-01
Tanzania will witness a major astronomical spectacle of an annular eclipse on September 1, 2016. The central part of the eclipse will pass through southern Tanzania, crossing national parks and game reserves such as Katavi and the world famous Selous. For the rest of Tanzania and neighbouring countries it will be a memorable event with large of the proportion of the Sun being covered up. The climate in Tanzania during September is cool and dry which will provide ideal viewing conditions. Solar eclipse events attract "eclipse chasers" from around the globe.Scientific interest in measuring the properties of the Sun and the effects of the eclipse on the atmosphere will allow local scientists to partner with leading scientists to gain valuable experience and knowledge.Local population's wonder and interest in eclipses can be exploited through public-private partnerships by encouraging students and local people to travel to the central path or to observe from their backyards. Large number of eclipse glasses can be manufactured cheaply using safe solar filters for supplying to students and general population in Tanzania and neigbouring countries. This will raise science awareness about the wonders of our Universe.When combined with the attraction of Tanzania's treasures in the north and the 16 tonne Mbozi meteorite in southern Tanzania, the touristic potential of this event can be exploited through tour packages and worldwide advertisements during the coming year.
Evaluating the Eclipse: How good was it?
NASA Astrophysics Data System (ADS)
Noel-Storr, Jacob; InsightSTEM Evaluation Team
2018-01-01
We present findings from the evaluation program carried out of education, public outreach, and communication activities around the "Great American Eclipse" of August 21, 2017. We include findings drawn from the experiences of 30 participants in planning activities prior to the eclipse and 31 recipients of mini-grants for eclipse activities supported by the American Astronomical Society through a grant from the National Science Foundation. We synthesize evaluations gathered by these and other volunteering organizations to provide a multi-site picture of experiences and learning outcomes at eclipse-related events - both in the path of totality and in partial eclipse settings. We make use of qualitative and quantitative responses representing over 30,000 individuals who observed (or tried to observe) the eclipse. We will share findings from across the range of programs included in our evaluation network along with specific highlights. We emphasize a reflection on the motivation and activity behind the 2017 eclipse, and how to leverage the lessons learned for future events on this scale (such as the eclipse of April 8, 2024) along with messages relevant to other events connected with astronomical phenomena, or in multi-site settings.This work was supported in part by the National Science Foundation under Grant No. 1564535 awarded to the American Astronomical Society. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation or the American Astronomical Society.
The mid 19th and early 20th Century Pull of a Nearby Eclipse Shadow Path
NASA Astrophysics Data System (ADS)
Bonifácio, Vitor
2012-09-01
The unique observing conditions allowed by total solar eclipses made them a highly desirable target of 19th and early 20th century astronomical expeditions, particularly after 1842. Due to the narrowness of the lunar shadow at the Earth's surface this usually implied traveling to faraway locations with all the subsequent inconveniences, in particular, high costs and complex logistics. A situation that improved as travel became faster, cheaper and more reliable. The possibility to observe an eclipse in one's own country implied no customs, no language barriers, usually shorter travelling distances and the likely support of local and central authorities. The eclipse proximity also provided a strong argument to pressure the government to support the eclipse observation. Sometimes the scientific elite would use such high profile events to rhetorically promote broader goals. In this paper we will analyse the motivation, goals, negotiating strategies and outcomes of the Portuguese eclipse expeditions made between 1860 and 1914. We will focus, in particular, on the observation of the solar eclipses of 22 December 1870 and 17 April 1912. The former allowed the start-up of astrophysical studies in the country while the movie obtained at the latter led Francisco da Costa Lobo to unexpectedly propose a polar flattening of the Moon.
VLF campaign during the total eclipse of July 22nd, 2009: Observational results and interpretations
NASA Astrophysics Data System (ADS)
Chakrabarti, S. K.; Pal, S.; Sasmal, S.; Mondal, S. K.; Ray, S.; Basak, T.; Maji, S. K.; Khadka, B.; Bhowmick, D.; Chowdhury, A. K.
2012-09-01
A Total Solar Eclipse (TSE) provides us with an exciting opportunity to study the VLF propagation effects under a controlled experimental condition where the extreme ultraviolet and the X-rays from the sun are totally blocked by the moon. During the total eclipse of July 22nd, 2009, the Indian Centre for Space Physics conducted a VLF campaign to obtain the signal from a dozen of places in the Indian sub-continent. Six of these locations gave very good and noise-free data. In some of these data, the signal amplitude is found to be higher than that at non-eclipse condition, while in some other places, it is lower. We present the results of our campaign and give an interpretation of the results using the Long Wavelength Propagation Capability (LWPC) code in a perturbed waveguide both for the easterly and westerly propagation paths.
The Citizen CATE Experiment for the 2017 Total Solar Eclipse
NASA Astrophysics Data System (ADS)
Penn, M. J.
2015-12-01
The path of the total solar eclipse of 21 August 2017 passes over about 10 million homes in the USA. Tens of millions more people will travel to the path of totality to view the eclipse first-hand. Using TV and the internet broadcasts, hundreds of millions of people will watch the eclipse, making the event the most viewed astronomical event in the history of mankind. The Citizen Continental-America Telescopic Eclipse (CATE) Experiment for 2017 is being developed at the National Solar Observatory in partnership with universities, schools, astronomy clubs, and corporations. The CATE experiment will use more than 60 identical telescopes equipped with digital cameras positioned from Oregon to South Carolina to image the solar corona. The project will then splice these images together to show the corona during a 90-minute period, revealing for the first time the plasma dynamics of the inner solar corona. The goals for the highly leveraged CATE experiment are diverse and range from providing an authentic STEM research experience for students and lifelong learners, to making state-of-the-art solar coronal observations of the plasma dynamics of coronal polar plumes, to increasing the US scientific literacy. A key goal of this experiment is to donate the telescope and camera system to the volunteer who collects data with it during the total eclipse. The instrument will be then used for a variety of follow-up citizen science projects in astronomy, ranging from solar to cometary to variable star observations. For this reason no government funding is being sought for the equipment costs, but rather private and corporate sources are being developed. The data collected for the 2017 eclipse will be freely available to the scientific, education and amateur astronomy communities. Crowd sourcing the data collection is an essential part of this project, as there are not enough solar physicists in this country to collect these observations. Finally, each site is expected to collect about 10 Gbytes of science data and 10 Gbytes of calibration data, resulting in 1.2 Tbytes of data for the project.
NASA Astrophysics Data System (ADS)
McClelland, Keri; Glazer, Kelsey Samantha; Overduin, James; Miskiewicz, Chris; Eney, Brian; Mouette, Jean
2018-01-01
We describe a student-led project to image two seventh-magnitude stars on either side of the Sun during the solar eclipse of August 21, 2017. Both stars were within one solar radius of the Sun, and according to Einstein’s theory of General Relativity, their positions would have been shifted away from the Sun by 1 arcsec. We observed the eclipse from three different sites along the path of totality (Lexington, South Carolina; Indian Valley, Idaho; Madras, Oregon). All three sites were clear, but the brightness of the solar corona has complicated the analysis. We present preliminary results using our best images from the site in Idaho.
Total Eclipse of the Ballpark: Connecting Space and Sports
NASA Astrophysics Data System (ADS)
Wasser, Molly; Petro, Noah; Jones, Andrea; Bleacher, Lora; Keller, John; Wes Patterson, G.
2018-01-01
The anticipation and excitement surrounding the total solar eclipse of 2017 provided astronomy educators with an incredible platform to share space science with huge audiences. The Public Engagement Team for NASA’s Lunar Reconnaissance Orbiter (LRO) took advantage of this opportunity to share lunar science with the public by highlighting the often-overlooked central player in the eclipse – the Moon. As the sole planetary science representatives on NASA’s Science Mission Directorate eclipse leadership team, the LRO team had limited resources to conduct national public outreach. In order to increase our reach, we found success in partnerships.In early 2017, we began working with Minor League Baseball (MiLB) teams across the path of totality on August eclipse events. These partnerships proved fruitful for both parties. While MiLB is a national organization, each team is deeply rooted in its community. This proved essential as each of our four main MiLB partners handled event logistics, provided facilities, connected NASA Subject Matter Experts (SMEs) with local media, and drew in captive crowds. With this tactic, a handful of NASA representatives were able to reach nearly 30,000 people. In turn, LRO provided engaging educational content relevant to the context, SMEs to guide the eclipse viewing experience, eclipse glasses, and safety information. Our participation drew in an audience who would not typically attend baseball games while we were able to reach individuals who would not normally attend a science event. In addition, the eclipse inspired one team, the Salem-Keizer Volcanoes from Salem, OR, to make baseball history by holding the first ever eclipse delay in professional sports.In this talk, we will present on the benefits of the partnership, offer lessons learned, and suggest ways to get involved for the 2024 eclipse – and all the baseball seasons in between.
Geographically Distributed Citizen Scientist Training for the 2017 Citizen CATE Experiment
NASA Astrophysics Data System (ADS)
Gelderman, Richard; Penn, Matt; Baer, Robert; Isberner, Fred; Pierce, Michael; Walter, Donald K.; Yanamandra-Fisher, Padma; Sheeley, Neil R.
2016-01-01
The solar eclipse of 21 August 2017 will be visible to over a half billion people across the entire North American continent. The roughly 100-mile wide path of totality, stretching from Oregon to South Carolina, will be the destination for tens of millions of people. In the decades since 1979, when the last total solar eclipse was visible from the continental USA, the phenomenon of Internet enabled citizen science has grown to be an accepted mode for science. The Citizen Continental-America Telescopic Eclipse (Citizen CATE) experiment has been funded as one of the three 2017 eclipse related NASA STEM agreements to engage citizen scientists in a unique, cutting-edge solar physics experiment. Teams across the USA will be trained to use standardized refracting telescope and digital imager set-ups to observe the solar corona during the eclipse, acquiring multiple exposures to create one high dynamic range image. After observing during the eclipse, the CATE volunteers will upload the combined image to a cloud-storage site and the CATE team will then work to properly orient and align all the images collected from across the continent to produce a continuous 90-minutes movie. A time-compressed first cut of the entire sequence will be made available to media outlets on the same afternoon of the eclipse, with hope that high quality images will encourage the most accurate coverage of this Great American Eclipse. We discuss overall the project, as well as details of the initial tests of the prototype set-up (including in the Faroe Islands during the March 2015 total solar eclipse) and plans for the future night-time and day-time observing campaigns, and for a handful of observing teams positioned for overlapping observations of the March 2016 total solar eclipse in the South Pacific.
Analysis of Geomagnetic Field Variations during Total Solar Eclipses Using INTERMAGNET Data
NASA Astrophysics Data System (ADS)
KIM, J. H.; Chang, H. Y.
2017-12-01
We investigate variations of the geomagnetic field observed by INTERMAGNET geomagnetic observatories over which the totality path passed during a solar eclipse. We compare results acquired by 6 geomagnetic observatories during the 4 total solar eclipses (11 August 1999, 1 August 2008, 11 July 2010, and 20 March 2015) in terms of geomagnetic and solar ecliptic parameters. These total solar eclipses are the only total solar eclipse during which the umbra of the moon swept an INTERMAGNET geomagnetic observatory and simultaneously variations of the geomagnetic field are recorded. We have confirmed previous studies that increase BY and decreases of BX, BZ and F are conspicuous. Interestingly, we have noted that variations of geomagnetic field components observed during the total solar eclipse at Isla de Pascua Mataveri (Easter Island) in Chile (IPM) in the southern hemisphere show distinct decrease of BY and increases of BX and BZ on the contrary. We have found, however, that variations of BX, BY, BZ and F observed at Hornsund in Norway (HRN) seem to be dominated by other geomagnetic occurrence. In addition, we have attempted to obtain any signatures of influence on the temporal behavior of the variation in the geomagnetic field signal during the solar eclipse by employing the wavelet analysis technique. Finally, we conclude by pointing out that despite apparent success a more sophisticate and reliable algorithm is required before implementing to make quantitative comparisons.
CATE 2016 Indonesia: Image Calibration, Intensity Calibration, and Drift Scan
NASA Astrophysics Data System (ADS)
Hare, H. S.; Kovac, S. A.; Jensen, L.; McKay, M. A.; Bosh, R.; Watson, Z.; Mitchell, A. M.; Penn, M. J.
2016-12-01
The citizen Continental America Telescopic Eclipse (CATE) experiment aims to provide equipment for 60 sites across the path of totality for the United States August 21st, 2017 total solar eclipse. The opportunity to gather ninety minutes of continuous images of the solar corona is unmatched by any other previous eclipse event. In March of 2016, 5 teams were sent to Indonesia to test CATE equipment and procedures on the March 9th, 2016 total solar eclipse. Also, a goal of the trip was practice and gathering data to use in testing data reduction methods. Of the five teams, four collected data. While in Indonesia, each group participated in community outreach in the location of their site. The 2016 eclipse allowed CATE to test the calibration techniques for the 2017 eclipse. Calibration dark current and flat field images were collected to remove variation across the cameras. Drift scan observations provided information to rotationally align the images from each site. These image's intensity values allowed for intensity calibration for each of the sites. A GPS at each site corrected for major computer errors in time measurement of images. Further refinement of these processes is required before the 2017 eclipse. This work was made possible through the NSO Training for the 2017 Citizen CATE Experiment funded by NASA (NASA NNX16AB92A).
20th National Solar Physics Meeting
NASA Astrophysics Data System (ADS)
Dorotovic, Ivan
2010-12-01
These proceedings (ISBN: 978-80-85221-68-8) provide an overview of current research on solar physics, geophysics and space weather in the astronomical, geophysical and space physics institutions in the Slovak Republic and the Czech Republic. Several researchers from other countries participated in the meeting as well. The different parts address: solar interior, solar photosphere, chromosphere, corona, total solar eclipses, space weather, instrumentation. Most of the papers are published in Slovak and Czech, respectively. The proceedings are intended for researchers, graduate and PhD. students, workers of astronomical observatories interested in solar physics, geophysics and space weather.
ASPIRE - Airborne Spectro-Polarization InfraRed Experiment
NASA Astrophysics Data System (ADS)
DeLuca, E.; Cheimets, P.; Golub, L.; Madsen, C. A.; Marquez, V.; Bryans, P.; Judge, P. G.; Lussier, L.; McIntosh, S. W.; Tomczyk, S.
2017-12-01
Direct measurements of coronal magnetic fields are critical for taking the next step in active region and solar wind modeling and for building the next generation of physics-based space-weather models. We are proposing a new airborne instrument to make these key observations. Building on the successful Airborne InfraRed Spectrograph (AIR-Spec) experiment for the 2017 eclipse, we will design and build a spectro-polarimeter to measure coronal magnetic field during the 2019 South Pacific eclipse. The new instrument will use the AIR-Spec optical bench and the proven pointing, tracking, and stabilization optics. A new cryogenic spectro-polarimeter will be built focusing on the strongest emission lines observed during the eclipse. The AIR-Spec IR camera, slit jaw camera and data acquisition system will all be reused. The poster will outline the optical design and the science goals for ASPIRE.
NASA Technical Reports Server (NTRS)
MIittman, David S
2011-01-01
Ensemble is an open architecture for the development, integration, and deployment of mission operations software. Fundamentally, it is an adaptation of the Eclipse Rich Client Platform (RCP), a widespread, stable, and supported framework for component-based application development. By capitalizing on the maturity and availability of the Eclipse RCP, Ensemble offers a low-risk, politically neutral path towards a tighter integration of operations tools. The Ensemble project is a highly successful, ongoing collaboration among NASA Centers. Since 2004, the Ensemble project has supported the development of mission operations software for NASA's Exploration Systems, Science, and Space Operations Directorates.
Space Weather Around the World: An IHY Education Program
NASA Astrophysics Data System (ADS)
Thieman, J. R.; Ng, C.; Hawkins, I.; Lewis, E.; Cline, T.
2007-05-01
Fifty years ago the International Geophysical Year organized a unique and unprecedented program of research that united 60,000 scientists from 66 nations to study global phenomena concerning the Earth and its space environment. In that same spirit, "Space Weather Around the World" is a program to coordinate and facilitate the involvement of NASA heliophysics missions and scientists to inspire and educate a world-wide audience about the International Heliophysical Year (IHY). We will use the popular Sun-Earth Day annual event framework sponsored by the Sun-Earth Connection Education Forum to promote IHY science and the spirit of international collaboration. The theme for the March 2007 Sun-Earth Day: "IHY: Living in the Atmosphere of the Sun" was selected a year ago in anticipation of the IHY celebration. These efforts will be expanded through a series of coordinated programs under the theme "Space Weather Around the World" for Sun-Earth Day 2008. We will produce a live broadcast from China of the total solar eclipse on August 1st 2008 as the central event, highlighting investigations associated with the eclipse by the international heliophysics community. Additional collaborative efforts will include: a Space Weather Media Maker web-tool to allow educators and scientists to create their own multi-media resource to enhance teaching and learning at all levels; Rock-n-Sol, a musical composition by children internationally inspired by space weather and incorporating sonifications of solar data; and Space Weather Action Centers for students to track a solar storm featuring podcasts of multi-cultural perspectives on IHY. The anticipated audience would be millions of people internationally The science and E/PO heliophysics community has an exciting story to tell about IHY, and we look forward to the opportunity to share it globally.
Spirit Movie of Phobos Eclipse, Sol 675
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Spirit Phobos Eclipse Animation
NASA's Mars Exploration Rover Spirit observed the Martian moon Phobos entering the shadow of Mars during the night of the rover's 675th sol (Nov. 27, 2005). The panoramic camera captured 16 images, spaced 10 seconds apart, covering the period from when Phobos was in full sunlight to when it was entirely in shadow. As with our own Moon during lunar eclipses on Earth, even when in the planet's shadow, Phobos was not entirely dark. The small amount of light still visible from Phobos is a kind of 'Mars-shine' -- sunlight reflected through Mars' atmosphere and into the shadowed region. This clip is a sequence of the 16 images showing the eclipse at about 10 times normal speed. It shows the movement of Phobos from left to right as the moon enters the shadow. Scientists are using information about the precise timing of Martian moon eclipses gained from observations such as these to refine calculations about the orbital path of Phobos. The precise position of Phobos will be important to any future spacecraft taking detailed pictures of the moon or landing on its surface.Listening to the solar eclipse with an educational tool for the blind and visually impaired
NASA Astrophysics Data System (ADS)
Bieryla, Allyson; Diaz-Merced, Wanda; Davis, Daniel; Hart, Robert
2018-01-01
The Great American Solar Eclipse took place on August 21, 2017 and swept through 14 of the United States. This was a highly publicized event and much of the world took notice. We live in a time where everything is accessible via the internet as it is happening. Many people, even those outside of the eclipse path, wanted to experience the event in real-time. We built a device, using an Arduino compatible microcontroller, that converts sunlight to sound so that the blind and visually impaired community could experience the eclipse live with the rest of the world. The device has a high dynamic range light sensor and an audio output that connects to a webcam and a computer. The event was successfully streamed to YouTube from Jackson Hole, Wyoming and people from all around the world connected to listen as the sun was temporarily dimmed by the eclipse of the moon. This device is inexpensive to reproduce (< $40 per device) and can be used as a teaching tool in a lab or classroom setting. Students can learn to build and write code for these devices as well. This is a tool with great potential for human development.
First results of eclipse induced pressure and turbulence changes in South Carolina
NASA Astrophysics Data System (ADS)
Hiscox, A.; McCombs, A. G.; Stewart, M. J.
2017-12-01
Total solar eclipses supply both visual captivation and a controlled meteorological experiment by reason of a sudden decrease in radiation from the Sun. This presentation will provide first results from a field experiment focused on the atmospheric surface layer changes before, during, and after a total solar eclipse. A suite of instruments including radiosondes, aerosol lidar, sonic anemometers, and microbarographs will be deployed one mile from the total eclipse centerline outside Columbia, South Carolina. The results should not only confirm the commonly expected changes in sensible weather, but also provide insight into the generation and propagation of internal gravity waves. These waves propagate and transfer both energy and momentum vertically to and from the upper levels of the atmosphere. Early scientific results are expected to provide IGW vertical propagation speeds from succesive radiosonde measurements, while triangulated surface pressure measurements will provide timing of wave activity. Other anticipated results to be presented are changes in turbulence turbulence stationarity and pressure pertubations. Finally, the sucess of a major outreach event held in tandem with the scientific experiement will be discussed.
NASA Astrophysics Data System (ADS)
Nelli, Narendra Reddy; Choudhary, Raj Kumar; Rao, Kusuma
The UTLS region, a transition region between the troposphere and the stratosphere is of concern to climate scientists as its temperature variations are crucial in determining the water vapour and the other trace gases transport between the two regions, which inturn determine the radiative warming and cooling of the troposphere and the stratosphere. To examine, the temperature variations from surface to lower stratosphere,a major experiment facility was set up for upper air and surface measurements during the Annular Solar Eclipse (ASE) of January 15, 2010 at Tirunelveli (8.72 N, 77.81 E) located in 94% eclipse path in the southern peninsular India. The instruments,namely, 1. high resolution GPS radiosonde system, 2. an instrumented 15 m high Mini Boundary Layer Mast, 3. an instrumented 1 m high Near Surface Mast (NSM), radiation and other ground sensors were operated during the period 14-19 Jan, 2010. The ASE of January 15, 2010 was unique being the longest in duration (9 min, 15.3 sec) among the similar ones that occurred in the past. The major inference from an analysis of surface and upper air measurements is the occurrence of troposphere cooling during the eclipse with the peak cooling of 5 K at 15 km height with respect to no-eclispe conditions. Also, intense warming in the stratosphere is observed with the peak warming of 7 K at 19 km height.Cooling of the Troposphere as the eclipse advanced and the revival to its normal temperature is clearly captured in upper air measurements. The downward vertical velocities observed at 100 hPa in NCEP Re-analyses, consistent with the tropospheric cooling during the ASE window, may be causing the stratospheric warming. Partly, these vertical velocities could be induced by the mesoscale circulation associated with the mesoscale convective system that prevailed parallel to the eclipse path as described in METEOSAT imageries of brightness temperatures from IR channel. Further analysis is being carried out to quantify the variations in turbulent parameters during ASE window using the high resolution GPS Radiosonde data.
Risk-Hedged Approach for Re-Routing Air Traffic Under Weather Uncertainty
NASA Technical Reports Server (NTRS)
Sadovsky, Alexander V.; Bilimoria, Karl D.
2016-01-01
This presentation corresponds to: our paper explores a new risk-hedged approach for re-routing air traffic around forecast convective weather. In this work, flying through a more likely weather instantiation is considered to pose a higher level of risk. Current operational practice strategically plans re-routes to avoid only the most likely (highest risk) weather instantiation, and then tactically makes any necessary adjustments as the weather evolves. The risk-hedged approach strategically plans re-routes by minimizing the risk-adjusted path length, incorporating multiple possible weather instantiations with associated likelihoods (risks). The resulting model is transparent and is readily analyzed for realism and treated with well-understood shortest-path algorithms. Risk-hedged re-routes are computed for some example weather instantiations. The main result is that in some scenarios, relative to an operational-practice proxy solution, the risk-hedged solution provides the benefits of lower risk as well as shorter path length. In other scenarios, the benefits of the risk-hedged solution are ambiguous, because the solution is characterized by a tradeoff between risk and path length. The risk-hedged solution can be executed in those scenarios where it provides a clear benefit over current operational practice.
STEREO-IMPACT E/PO at NASA's Sun-Earth Day Event: Participation in Total Eclipse 2006 Webcast
NASA Astrophysics Data System (ADS)
Craig, N.; Peticolas, L. M.; Mendez, B. J.; Luhmann, J. G.; Higdon, R.
2006-05-01
The Solar Terrestrial Relations Observatory (STEREO) is planned for launch in late Summer 2006. STEREO will study the Sun with two spacecraft in orbit around the Sun moving on opposite sides of Earth. The primary science goal is to understand the nature of Coronal Mass Ejections (CMEs). This presentation will focus on one of the informal education efforts of our E/PO program for the IMPACT instrument suite aboard STEREO. We will share our participation in NASA's Sun-Earth Day event which is scheduled to coincide with a total solar eclipse in March and is titled In a Different Light. We will show how this live eclipse Webcast, which reaches thousands of science center attendees, can inspire the public to observe, understand and be part of the Sun-Earth-Moon system. We will present video clips of STEREO-IMPACT team members Janet Luhmann and Nahide Craig participating in the Exploratorium's live Webcast of the 2006 solar eclipse on location from Side, Turkey, and the experiences and remarks of the other STEREO scientist from the path of totality from Africa.
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.; Babcock, B. A.; Davis, A. B.; Demianski, M.; Lucas, R.; Lu, M.; Dantowitz, R.; Rusin, V.; Saniga, M.; Seaton, D. B.; Gaintatzis, P.; Voulgaris, A.; Seiradakis, J. H.; Gary, D. E.; Shaik, S. B.
2014-01-01
Our studies of the solar chromosphere and corona at the 2012 and 2013 eclipses shortly after cycle maximum 24 (2011/2012) of solar activity (see: http://www.swpc.noaa.gov/SolarCycle/) involved radio observations of the 2012 annular eclipse with the Jansky Very Large Array, optical observations of the 2012 total eclipse from Australia, optical observations of the 2013 annular eclipse from Tennant Creek, Australia, and the 3 November 2013 total solar eclipse from Gabon. Our observations are coordinated with those from solar spacecraft: Solar Dynamics Observatory AIA and HMI, Hinode XRT and SOT, SOHO LASCO and EIT, PROBA2 SWAP, and STEREO SECCHI. Our 2012 totality observations include a CME whose motion was observed with a 37-minute interval. We include first results from the expedition to Gabon for the 3 November 2013 eclipse, a summary of eclipse results from along the path of totality across Africa, and a summary of the concomitant spacecraft observations. The Williams College 2012 expeditions were supported in part by NSF grant AGS-1047726 from Solar Terrestrial Research/NSF AGS, and by the Rob Spring Fund and Science Center funds at Williams. The JVLA is supported by the NSF. The Williams College 2013 total-eclipse expedition was supported in part by grant 9327-13 from the Committee for Research and Exploration of the National Geographic Society. ML was also supported in part by a Grant-In-Aid of Research from the National Academy of Sciences, administered by Sigma Xi, The Scientific Research Society (Grant ID: G20120315159311). VR and MS acknowledge support for 2012 from projects VEGA 2/0003/13 and NGS-3139-12 of the National Geographic Society. We are grateful to K. Shiota (Japan) for kindly providing us with some of his 2012 eclipse coronal images. We thank Alec Engell (Montana State U) for assistance on site, and Terry Cuttle (Queensland Amateur Astronomers) for help with site arrangements. We thank Aram Friedman (Ansible Technologies), Michael Kentrianakis, and Nicholas Weber (Dexter Southfield School) for collaboration on imaging at the Australian total eclipse.
Go Dark Charleston 2017: Preparing the Lowcountry of Charleston, SC for a Unique Celestial Event
NASA Astrophysics Data System (ADS)
Hall, C.; Runyon, C. R.; Royle, M. L.
2017-12-01
The August 2017 total solar eclipse will cross the United States, from Oregon to South Carolina, for the first time in almost 100 years. This awe-inspiring event occurs when the moon crosses between the Sun and the Earth, casting a shadow on Earth. Charleston, SC is the final point in this path before the eclipse heads offshore. As such, it provides an opportunity for Charlestonians to witness the grand finale of such an extraordinary celestial event. In collaboration, the Lowcountry Hall of Science and Math (LHSM) and the SC NASA Space Grant Consortium (SCSG) are working with entities across the state to help raise awareness among the general public to the uniqueness of this total solar eclipse. The team is delivering content-rich, hands-on professional development statewide to formal and informal educators, park rangers and city/county government personnel to ensure an understanding behind why we have eclipses as well as safety when viewing eclipses. Our team is working with community organizations, such as sports teams (i.e., Charleston Riverdogs Baseball, Charleston Battery Soccer), museums, aquariums, state and national parks, etc. to bring NASA scientists, engineers and educators together to deliver exciting community demonstrations before, during and after the day of the eclipse. The LHSM, working directly with the Aquarium and Charlestowne Landing State Park, are capturing animal behavior, specifically marine birds and wolves, during the eclipse. In addition, the team is working directly with College of Charleston undergraduates and two local high schools to launch high-altitude balloons to capture video and pictures, as well as, perform science experiments focusing on the eclipse. And finally, the LHSM through SCSG funding, is determining and documenting the extent of knowledge and cultural misconceptions surrounding solar eclipses within the greater Charleston community. In our session, the team will share the outcomes of these varied endeavors.
First Report on the 2016 March 9 Total Solar Eclipse Observations
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.
2016-06-01
Totality swept across Indonesia and into the Pacific on 2016 March 9, lasting up to 2 min 45 s on Ternate in the Spice Islands (Malukus). I provide a first report on our observations. Our scientific goal is to follow changes in the corona over the solar-activity cycle, now past its 2012 and 2014 double peak, and to measure temporal changes in the corona on the scale of minutes or hours by comparing eclipse observations made at several sites along the path. I also discuss the near-simultaneous coronal observations made with SOHO/LASCO, SDO/AIA, STEREO/SECCHI, PROBA2/SWAP, and Hinode XRT.For the forthcoming 2017 eclipse, we acknowledge grants to JMP and Williams College from the Solar Terrestrial Program of the Atmospheric and Geospace Sciences Division of the National Science Foundation and from the Committee for Research and Exploration of the National Geographic Society.
Ionospheric effects over Europe during the solar eclipse on 20 March 2015
NASA Astrophysics Data System (ADS)
Hoque, Mainul; Jakowski, Norbert; Berdermann, Jens
2017-04-01
A total solar eclipse occurred on March 20, 2015 moving from the North-West Europe towards the North-East. Due to strong solar radiation changes dynamic processes were initiated in the atmosphere and ionosphere causing a measurable impact e.g. on the temperature and ionization during the eclipse. We analyzed the 20 March 2015 solar eclipse effects on the ionospheric structure over Europe using multi-sensor observations such as vertical sounding (VS) and Global Positioning System (GPS) measurements. Whereas the VS measurements are used to provide peak electron density information at the ionospheric F2, F1 and E layers over selected ionosonde stations, a dense network of GPS stations is used to provide high spatial resolution of the total electron content (TEC) estimates over Europe. We reconstructed the TEC maps with 5 minutes time resolution and thus investigated the original TEC maps and differential TEC maps obtained by subtracting 27 days medians from the actual TEC map values on 20 March 2015. By combining VS and GPS measurements the equivalent slab thickness has been estimated over several ionosonde stations to get information how the shape of the vertical electron density profile changes during the eclipse. The analysis of the solar eclipse on 20 March 2015 presented here will contribute to understand the ionospheric response on solar eclipses occurring at different latitudes. The observations indicate that a number of competitive processes initiated by an eclipse are often enhanced by dynamic forces associated with large scale geophysical conditions not directly impacted by the solar eclipse. Our TEC estimation shows that the total ionization reduces up to 60% (after bias correction 40%) as a function of obscuration. Since the 20 March 2015 eclipse occurred during the negative phase of a severe geomagnetic storm on 17 March 2015, the observed TEC depletion is higher than those reported earlier for 1999 and 2005 eclipses. Thus, a negative bias of up to 20% was observed over Northern Europe already before the eclipse occurred. Moreover, the eclipse path of the solar eclipse in 2015 is traced at higher latitudes compared with eclipses observed in the years 1999 and 2005. The ionospheric response to the obscuration function is delayed up to 40 minutes decreasing with growing distance from the totality zone and increasing with altitude. The increasing delay with altitude is in agreement with earlier findings for other eclipses. The equivalent slab thickness was found to increase by approximately 80 -100 km during the solar eclipse on 20 March 2015 showing evidence for a pronounced loss in the bottomside ionosphere causing a delayed depletion of the topside ionosphere.
NASA Astrophysics Data System (ADS)
Nandy, Dibyendu; Bhowmik, Prantika; Yeates, Anthony R.; Panda, Suman; Tarafder, Rajashik; Dash, Soumyaranjan
2018-01-01
On 2017 August 21, a total solar eclipse swept across the contiguous United States, providing excellent opportunities for diagnostics of the Sun’s corona. The Sun’s coronal structure is notoriously difficult to observe except during solar eclipses; thus, theoretical models must be relied upon for inferring the underlying magnetic structure of the Sun’s outer atmosphere. These models are necessary for understanding the role of magnetic fields in the heating of the corona to a million degrees and the generation of severe space weather. Here we present a methodology for predicting the structure of the coronal field based on model forward runs of a solar surface flux transport model, whose predicted surface field is utilized to extrapolate future coronal magnetic field structures. This prescription was applied to the 2017 August 21 solar eclipse. A post-eclipse analysis shows good agreement between model simulated and observed coronal structures and their locations on the limb. We demonstrate that slow changes in the Sun’s surface magnetic field distribution driven by long-term flux emergence and its evolution governs large-scale coronal structures with a (plausibly cycle-phase dependent) dynamical memory timescale on the order of a few solar rotations, opening up the possibility for large-scale, global corona predictions at least a month in advance.
NASA Astrophysics Data System (ADS)
Lumsden, N. A.; Lukes, L.; Nelson, J.; Liles, W. C.; Kerby, K. C.; Crowov, F.; Rockway, J.
2015-12-01
The first experiments to study the effects of a solar eclipse on radio wave propagation were done in 1912 utilizing Low Frequency (LF; 30 - 300 kHz) radio waves at a handful of sites across Europe before any theory of the ionosphere had been confirmed and even before the word "ionosphere" existed. In the 1920s, a large cooperative experiment was promoted in the U.S. by Scientific American magazine. They collected over 2000 reports of AM broadcast stations from throughout the U.S. Unfortunately, many of the submissions were unusable because they lacked critical information such as date, time or location. We propose to use the 2017 solar eclipse over the continental U.S. to conduct the first wide-area LF propagation study. To perform this study, we plan to crowdsource the collection of the data by engaging student groups, citizens, and the scientific community. The tools for the different collection stations will consist of a simple homemade antenna, a simple receiver to convert the radio frequency (RF) signals to audio frequencies and a smart phone app. By using the time, date and location features of the smart phone, the problems experienced in the Scientific American experiment will be minimized. By crowdsourcing the observation sites, a number of different short, medium and long-paths studies can be obtained as the total eclipse crosses the continental U.S. The transmitter for this experiment will be WWVB located near Fort Collins, Colorado on 60.000 kHz. This is a U.S. frequency standard that is operated by NIST and transmits time codes. A second frequency, 55.500 kHz transmitted by a LF station in Dixon, CA is also being considered for this experiment. We will present an overall strategy for recruiting participants/crowdsourcing the RF collections during the 2017 total solar eclipse. Preliminary coverage calculations will be presented for WWVB and Dixon, as well as path loss calculations that can be expected during the solar eclipse condition. We will also present the 2016 plan to pilot/refine the design of the RF collection system (e.g., antenna, app) with multiple teams to help ensure project success during the eclipse. Also, we wish to solicit input from AGU attendees on how to increase participation and improve the experiment. Lastly, we will announce social media, website, and standards-based curriculum resources.
NASA Astrophysics Data System (ADS)
Phanikumar, D. V.; Kwak, Y.-S.; Patra, A. K.; Maurya, A. K.; Singh, Rajesh; Park, S.-M.
2014-09-01
In this paper, we analyze VLF signals received at Busan to study the the D-region changes linked with the solar eclipse event of 22 July 2009 for very short (∼390 km) transmitter-receiver great circle path (TRGCP) during local noon time 00:36-03:13 UT (09:36-12:13 KST). The eclipse crossed south of Busan with a maximum obscuration of ∼84%. Observations clearly show a reduction of ∼6.2 dB in the VLF signal strength at the time of maximum solar obscuration (84% at 01:53 UT) as compared to those observed on the control days. Estimated values of change in Wait ionospheric parameters: reflection height (h‧) in km and inverse scale height parameter (β) in km-1 from Long Wave Propagation Capability (LWPC) model during the maximum eclipse phase as compared to unperturbed ionosphere are 7 km and 0.055 km-1, respectively. Moreover, the D-region electron density estimated from model computation shows 95% depletion in electron density at the height of ∼71 km. The reflection height is found to increase by ∼7 km in the D-region during the eclipse as compared to those on the control days, implying a depletion in the Lyman-α flux by a factor of ∼7. The present observations are discussed in the light of current understanding on the solar eclipse induced D-region dynamics.
2017 Solar Eclipse in Hopkinsville, KY: E/PO Feedback from Two Venues
NASA Astrophysics Data System (ADS)
Dowling, Timothy E.; Consolmagno, Guy
2017-10-01
Hopkinsville, Kentucky was the largest town in the region of maximum totality for the 21 August 2017 Solar Eclipse, and transformed itself into “Eclipseville” with extensive media attention. Here we give 2 on-the-ground reports on education and public outreach (E/PO) activities from Hopkinsville. One of us (TD) partnered with the Kentucky Division of Emergency Management (KYEM) and was in the Hopkinsville VIP area, and the other (GC) led a series of E/PO events at the Hopkinsville Church of Ss. Peter & Paul, which were nationally advertised in diocesan newspapers. In addition, both of us were interviewed extensively by local and national media before the event. Pre-event planning by KYEM extended for over a year, and culminated in a 6-hour, 12 July 2017 Tabletop Exercise (TTX) run by FEMA. This face-to-face workshop drew over 250 participants, including Kentucky’s Lt. Governor, health and public safety officials at the state-level and from the 21 Kentucky counties in the path of totality, mayors and convention-bureau officials from the affected KY towns, the KY National Guard, the U.S. Depts. of Health and Human Services, Homeland Security, and Transportation, the National Weather Service, the U.S. Coast Guard for riverboat traffic, the U.S. Forest Service, the American Red Cross, representatives from ATT, Verizon and Sprint, and representatives from local universities—it was the largest TTX in Kentucky’s history. Here, we report on E/PO feedback we assembled from the VIP and parochial sites, including the most frequently asked questions, which types of answers seemed to be most effective, and how actual events compared with the large-crowd preparations and planning.
A Coral Sea Rehearsal for the Eclipse Megamovie
NASA Astrophysics Data System (ADS)
Hudson, H. S.; Davey, A. R.; Ireland, J.; Jones, L.; Mcintosh, S. W.; Paglierani, R.; Pasachoff, J. M.; Peticolas, L. M.; Russell, R. M.; Suarez Sola, F. I.; Sutherland, L.; Thompson, M. J.
2012-12-01
The "Eclipse on the Coral Sea" - 13/14 November 2012 (GMT/Australia) - will have happened already. Our intention is to have used this opportunity as a trial run for the eclipse in 2017, which features 1.5 hours of totality across the whole width of the continental US. Conceived first and foremost as an education and public outreach activity, the plan is to engage the public in solar science and technology by providing a way for them to include images they have taken of the solar eclipse, into a movie representation of coronal evolution in time. This project will assimilate as much eclipse photography as possible from the public. The resulting movie(s) will cover all ranges of expertise, and at the basic smartphone or hand-held digital camera level, we expect to have obtained a huge number of images in the case of good weather conditions. The capability of modern digital technology to handle such a data flow is new. The basic purpose of this and the 2017 Megamovie observations is to explore this capability and its ability to engage people from many different communities in the solar science, astronomy, mathematics, and technology. The movie in 2017, especially, may also have important science impact because of the uniqueness of the corona as seen under eclipse conditions. In this presentation we will describe our smartphone application development (see the "Transit of Venus" app for a role model here). We will also summarize data acquisition via both the app and more traditional web interfaces. Although for the Coral Sea eclipse event we don't expect to have a movie product by the time of the AGU, for the 2017 event we do intend to assemble the heterogenous data into beautiful movies within a short space of time after the eclipse. These movies may have relatively low resolution but would extend to the base of the corona. We encourage participation in the 2012 observations, noting that no total eclipse, prior to 2017, will occur in a region with good infrastructure for extended observations. The National Center for Atmospheric Research is sponsored by the National Science Foundation. The Megamovie project is supported by NSF grant AGS-1247226, and JMP's eclipse work about the eclipses of 2012 is supported by NSF grant AGS-1047726.
NASA Astrophysics Data System (ADS)
Kumar, K. Vijay; Maurya, Ajeet K.; Kumar, Sanjay; Singh, Rajesh
2016-11-01
In the present contribution we investigate the variation in the Global Positioning System (GPS) derived ionospheric Total Electron Content (TEC) over Equatorial Ionization Anomaly (EIA) region on the rare occasional astronomical phenomenon of total solar eclipse of 22 July 2009. The aim is to study and identify the wave like structure enumerated due to solar eclipse induced gravity waves in the F-region ionosphere altitude. The work is aimed to understand features of horizontal and vertical variation of atmospheric gravity waves (AGWs) properties over the Equatorial Ionization Anomaly (EIA) region in Indian low latitude region. The ionospheric observations is from the site of Allahabad (lat 25.4° N; lon. 81.9° E; dip 38.6° N) located at the fringe of eclipse totality path. The estimated vertical electron density profile from FORMOSAT-3/COSMIC GPS-RO satellite, considering all the satellite line of sight around the time of eclipse totality shows maximum depletion of 43%. The fast fourier transform and wavelet transform of GPS DTEC data from Allahabad station (Allahabad: lat 25.4 N; lon. 81.9 E) shows the presence of periodic waves of ∼20 to 45 min and ∼70 to 90 min period at F-region altitude. The shorter period correspond to the sunrise time morning terminator and longer period can be associated with solar eclipse generated AGWs. The most important result obtained is that our results along with previous result for wave like signatures in D-region ionosphere from Allahabad station show that AGWs generated by sunrise time terminator have similarity in the D and F region of the ionosphere but solar eclipse induced AGWs show higher period in the F-region compared to D-region ionosphere.
NASA Astrophysics Data System (ADS)
Petrov, L.
2017-12-01
Processing satellite altimetry data requires the computation of path delayin the neutral atmosphere that is used for correcting ranges. The path delayis computed using numerical weather models and the accuracy of its computationdepends on the accuracy of numerical weather models. Accuracy of numerical modelsof numerical weather models over Antarctica and Greenland where there is a very sparse network of ground stations, is not well known. I used the dataset of GPS RO L1 data, computed predicted path delay for ROobservations using the numerical whether model GEOS-FPIT, formed the differences with observed path delay and used these differences for computationof the corrections to the a priori refractivity profile. These profiles wereused for computing corrections to the a priori zenith path delay. The systematic patter of these corrections are used for de-biasing of the the satellite altimetry results and for characterization of the systematic errorscaused by mismodeling atmosphere.
NASA Astrophysics Data System (ADS)
Guzik, T. G.
2017-12-01
On August 21, 2017 approximately 55 teams across the path of totality of the eclipse across America will use sounding balloon platforms to transmit, in real-time from an altitude of 90,000 feet, HD video of the moon's shadow as it crosses the U.S. from Oregon to South Carolina. This unprecedented activity was originally organized by the Montana Space Grant Consortium in order to 1) use the rare total eclipse event to captivate the imagination of students and encourage the development of new ballooning teams across the United States, 2) provide an inexpensive high bandwidth data telemetry system for real-time video streaming, and 3) establish the basic infrastructure at multiple institutions enabling advanced "new generation" student ballooning projects following the eclipse event. A ballooning leadership group consisting of Space Grant Consortia in Montana, Colorado, Louisiana, and Minnesota was established to support further development and testing of the systems, as well as to assist in training the ballooning teams. This presentation will describe the high bandwidth telemetry system used for the never before attempted live streaming of HD video from the edge of space, the results of this highly collaborative science campaign stretching from coast-to-coast, potential uses of the data telemetry system for other student science projects, and lessons learned that can be applied to the 2024 total solar eclipse.
How Cool was the Eclipse? Atmospheric Measurements and Citizen Science via NASA's GLOBE Observer
NASA Astrophysics Data System (ADS)
Weaver, K. L. K.; Riebeek Kohl, H.
2017-12-01
The solar eclipse of 2017 presented an extraordinary opportunity to engage the public in shared science activity across the entire United States. While a natural focus of the eclipse was on astronomy and heliophysics, there was also an opening for excellent connections to Earth science. Because of the excitement of the event, many people gathered for long periods before and after totality, a perfect opportunity for observations and data collection to explore the impact of the eclipse on the atmosphere. The data was collected via NASA's GLOBE Observer app, a subset of the Global Learning and Observations to Benefit the Environment Program, a citizen science project which has been active for more than 20 years training teachers to collect many different types of environmental science data with their students. GLOBE Observer expands that audience to citizen scientists who might not be connected to a school, but are still interested in collecting data. In addition to the clouds observations that are normally part of GLOBE Observer, a special temporary protocol was added for the eclipse to include air temperature. Both types of measurements were collected at regular intervals for several hours before and after the point of maximum eclipse. By crowdsourcing data from all across the United States, on and off the path of totality, the hope was to be able to see patterns that wouldn't be apparent with fewer data points. In particular, there are few sources of detailed cloud data from the ground, including cloud type as well as overall cloud cover, especially as collected during a unique natural experiment such as an eclipse. This presentation will report preliminary results of the GLOBE Observer eclipse citizen science project, including participation totals and impact, data site distribution, as well as early analyses of both temperature and cloud data.
Spirit View of Phobos Eclipse, Sol 675
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Annotated Spirit View of Phobos Eclipse, Sol 675 NASA's Mars Exploration Rover Spirit observed the Martian moon Phobos entering the shadow of Mars during the night of the rover's 675th sol (Nov. 27, 2005). The panoramic camera captured 16 images, spaced 10 seconds apart, covering the period from when Phobos was in full sunlight to when it was entirely in shadow. As with our own Moon during lunar eclipses on Earth, even when in the planet's shadow, Phobos was not entirely dark. The small amount of light still visible from Phobos is a kind of 'Mars-shine' -- sunlight reflected through Mars' atmosphere and into the shadowed region. This view is a time-lapse composite of images taken 20 seconds apart, showing the movement of Phobos from left to right. (At 10 seconds apart, the images of the moon overlap each other.) Scientists are using information about the precise timing of Martian moon eclipses gained from observations such as these to refine calculations about the orbital path of Phobos. The precise position of Phobos will be important to any future spacecraft taking detailed pictures of the moon or landing on its surface.Research of propagation the high frequency signals during total solar eclipses
NASA Astrophysics Data System (ADS)
Ryabova, Mariya; Ivanov, Vladimir; Ivanov, Dmitrii; Riabova, Natalia; Elsukov, Aleksei
Vertical-oblique sounding methods are special importance for the study; they provide data on the electron concentration. In panoramic sounders, the mean frequencies of sounding signals vary consequently in the range of apriori uncertainty of the conditions of their reflection from the ionosphere. The aim of this work is the experimental study of the variations in the MUFs along one-hop HF lines during the total solar eclipses, and their application for the estimation of the effective recombination coefficient. To solve the above problem, experiments were carried out with the use of a chirp sounder manufactured at the Volga State University of Technology. The main advantages of chirp sounder are connected with the use of continuous chirps, which allow for the use of methods of optimal reception when deciphering in a frequency region, which provides for a signal-to-noise ratio acceptable for obtaining reliable results. We carried out experiments on oblique chirp sounding of the ionosphere during the total solar eclipse of March 29, 2006, and on the reference days of March 28 and 30, 2006, as well as during the total solar eclipse of August 1, 2008, and the reference days of July 31 and August 2, 2008. The ionosonde transmitters were located in Great Britain (the town of Inskip), Cyprus, and Irkutsk, and the receiver was located in Yoshkar-Ola. The maximal phases of the eclipse of March 29 at the target sounding point (TSP) were 0.89 for Cyprus-Yoshkar-Ola (observed at 11:15 UT) and 0.49 for Inskip-Yoshkar-Ola (observed at 11:03 UT); for the eclipse of August 1, 1 for Irkutsk-Yoshkar-Ola (observed at 11:36 UT). Based on the primary data (ionograms), the secondary data were determined in automatic mode. In particular, diurnal variations in the MUF of the 1F2 and 2F2 modes were calculated for the eclipse periods and the reference days along different radio paths. Variation in the MUF on the reference days required the use of a smoothing procedure, which was carried out using the IRI international ionospheric model. Based on the obtained data on the profile of the electron concentration for the TSP along a path, ionograms of oblique sounding were synthesized. This allowed for model adaptations and, as a result, smoothed diurnal variations in the MUF for the reference days, as well as for an estimation of the difference frequencies. The data obtained allows for the estimation of the effective recombination coefficient in the ionospheric F layer with the use of the ionospheric balance equation. Calculations have shown that the effective recombination coefficient of the ionospheric F region increases by 24% at an increase in the maximum eclipse phase from 0.49 to 1.0. The authors gratefully acknowledge financial support from the Russian Foundation for Basic Research (grants 13-07-00371-a, 13-02-00524-a, 13-07-97041).
Educational and Public Outreach Strategies in Anticipation of the 2017 U.S. Total Solar Eclipse
NASA Astrophysics Data System (ADS)
Fulco, C.
2015-12-01
Those who have experienced a total solar eclipse will travel to every corner of the Earth to observe one, such is its spectacular nature. So it is fortunate indeed to have this remarkable event come to the U.S. in less than two years, with its path of totality from Oregon to South Carolina within a day's drive for most of the nation's population. The date of the 21 August 2017 "Great American Eclipse" is rapidly approaching, and with focus on science literacy in U.S. schools greater than ever, educational and public outreach (EPO) must begin in earnest to maximize the scientific and educational benefits from this rare event. As every location in the U.S. will observe at least a partial eclipse, having EPO strategies in place ensures that the greatest number of students and other observers throughout the country will: a) be aware of and prepared for this event, b) observe (and record) it safely and knowledgeably, and c) gain an increased awareness of the natural world. The need for teachers to promote scientific literacy through curriculum is critical for this event. Despite an increased presence of technology in the classroom, more rigorous educational learning standards and virtually instantaneous access to information, data show that science illiteracy in U.S. schools and in the general population is still widespread. In addition, much fear, ignorance and confusion continue to surround eclipses. Many school districts plan to keep students indoors during the eclipse, while the media can be expected to instruct the public to do the same, thus depriving would-be observers of an unforgettable and most likely a once-in-a-lifetime experience. It would be a tragedy on many levels if this eclipse were not viewed, recorded and remembered live and outdoors--not indoors watching on media--by as many persons as possible. Proper EPO strategies performed with ample lead time can ensure that the 2017 U.S. Total Solar Eclipse will be a success from coast-to-coast, and with it, a heightened level of scientific awareness among the educational community and general public alike. (photo: Total Solar Eclipse over Patagonia; copyright 2010 CNF)
Solar radius change between 1925 and 1979
NASA Technical Reports Server (NTRS)
Sofia, S.; Dunham, D. W.; Dunham, J. B.; Fiala, A. D.
1983-01-01
From an analysis of numerous reports from different locations on the duration of totality of the solar eclipses on January 24, 1925, and February 26, 1979, it is found that the solar radius at the earlier date was 0.5 arcsec (or 375 km) larger than at the later date. The correction to the standard solar radius found for each eclipse is different when different subsets of the observations are used (for example, edge of path of totality timings compared with central timings). This is seen as suggesting the existence of systematic inaccuracies in our knowledge of the lunar figure. The differences between the corrections for both eclipses, however, are very similar for all subsets considered, indicating that changes of the solar size may be reliably inferred despite the existence of the lunar figure errors so long as there is proper consideration of the distribution of the observations. These results are regarded as strong evidence in support of the occurrence of solar radius changes on shorter than evolutionary time scales.
Eclipse 2017: Through the Eyes of NASA
NASA Astrophysics Data System (ADS)
Mayo, Louis; NASA Heliophysics Education Consortium
2017-10-01
The August 21, 2017 total solar eclipse across America was, by all accounts, the biggest science education program ever carried out by NASA, significantly larger than the Curiosity Mars landing and the New Horizons Pluto flyby. Initial accounting estimates over two billion people reached and website hits exceeding five billion. The NASA Science Mission Directorate spent over two years planning and developing this enormous public education program, establishing over 30 official NASA sites along the path of totality, providing imagery from 11 NASA space assets, two high altitude aircraft, and over 50 high altitude balloons. In addition, a special four focal plane ground based solar telescope was developed in partnership with Lunt Solar Systems that observed and processed the eclipse in 6K resolution. NASA EDGE and NASA TV broadcasts during the entirity of totality across the country reached hundreds of millions, world wide.This talk will discuss NASA's strategy, results, and lessons learned; and preview some of the big events we plan to feature in the near future.
Changes in surface solar UV irradiances and total ozone during the solar eclipse of August 11, 1999
NASA Astrophysics Data System (ADS)
Zerefos, C. S.; Balis, D. S.; Meleti, C.; Bais, A. F.; Tourpali, K.; Kourtidis, K.; Vanicek, K.; Cappellani, F.; Kaminski, U.; Colombo, T.; Stübi, R.; Manea, L.; Formenti, P.; Andreae, M. O.
2000-11-01
During the solar eclipse of August 11, 1999, intensive measurements of UV solar irradiance and total ozone were performed at a number of observatories located near the path of the Moon's shadow. At the Laboratory of Atmospheric Physics (LAP) of the Aristotle University of Thessaloniki, Greece, global and direct spectra of UV solar irradiances (285-365 nm) were recorded with a double monochromator, and erythemal irradiances were measured with broadband pyranometers. In addition, higher-frequency measurements of global and direct irradiances at six UV wavelengths were performed with a single Brewer spectrophotometer. Total ozone measurements were also performed with Dobson and Brewer spectrophotometers at Hradec Kralove (Czech Republic), Ispra (Italy), Sestola (Italy), Hohenpeissenberg (Germany), Bucharest (Romania), Arosa (Switzerland), and Thessaloniki (Greece). From the spectral UV measurements the limb darkening effect of the solar disk was tentatively quantified from differences of measured solar spectral irradiances at the peak of the eclipse (near to limb conditions) and before the eclipse. Two blackbody curves were fit to the preeclipse and peak eclipse spectra, which have shown a difference in effective temperatures of about 165°K between the limb and the whole of the solar disk. The limb darkening effect is larger at the shorter UV wavelengths. The ratio of the diffuse to direct solar irradiances during the eclipse shows that the diffuse component is reduced much less compared to the decline of the direct solar irradiance at the shorter wavelengths. Moreover, a 20-min oscillation of erythemal UV-B solar irradiance was observed before and after the time of the eclipse maximum under clear skies, indicating a possible 20-min fluctuation in total ozone, presumably caused by the eclipse-induced gravity waves. This work also shows that routine total ozone measurements with a Brewer or a Dobson spectrophotometer should be used with caution during a solar eclipse. This is because the diffuse light increases by more than 30% with respect to the direct solar radiation, increasing more at the shorter wavelength side of the UV spectrum. This plausible mechanism introduces an artificial decrease in total ozone during solar eclipse of more than 30 Dobson units (DU), which is confirmed by all Brewer and Dobson measurements. Changes in total ozone cited earlier in the refereed literature have not been confirmed in the present study.
SU-E-T-455: Impact of Different Independent Dose Verification Software Programs for Secondary Check
DOE Office of Scientific and Technical Information (OSTI.GOV)
Itano, M; Yamazaki, T; Kosaka, M
2015-06-15
Purpose: There have been many reports for different dose calculation algorithms for treatment planning system (TPS). Independent dose verification program (IndpPro) is essential to verify clinical plans from the TPS. However, the accuracy of different independent dose verification programs was not evident. We conducted a multi-institutional study to reveal the impact of different IndpPros using different TPSs. Methods: Three institutes participated in this study. They used two different IndpPros (RADCALC and Simple MU Analysis (SMU), which implemented the Clarkson algorithm. RADCALC needed the input of radiological path length (RPL) computed by the TPSs (Eclipse or Pinnacle3). SMU used CT imagesmore » to compute the RPL independently from TPS). An ion-chamber measurement in water-equivalent phantom was performed to evaluate the accuracy of two IndpPros and the TPS in each institute. Next, the accuracy of dose calculation using the two IndpPros compared to TPS was assessed in clinical plan. Results: The accuracy of IndpPros and the TPSs in the homogenous phantom was +/−1% variation to the measurement. 1543 treatment fields were collected from the patients treated in the institutes. The RADCALC showed better accuracy (0.9 ± 2.2 %) than the SMU (1.7 ± 2.1 %). However, the accuracy was dependent on the TPS (Eclipse: 0.5%, Pinnacle3: 1.0%). The accuracy of RADCALC with Eclipse was similar to that of SMU in one of the institute. Conclusion: Depending on independent dose verification program, the accuracy shows systematic dose accuracy variation even though the measurement comparison showed a similar variation. The variation was affected by radiological path length calculation. IndpPro with Pinnacle3 has different variation because Pinnacle3 computed the RPL using physical density. Eclipse and SMU uses electron density, though.« less
Eclipse Science Results from the Airborne Infrared Spectrometer (AIR-Spec)
NASA Astrophysics Data System (ADS)
Samra, J.; Cheimets, P.; DeLuca, E.; Golub, L.; Judge, P. G.; Lussier, L.; Madsen, C. A.; Marquez, V.; Tomczyk, S.; Vira, A.
2017-12-01
We present the first science results from the commissioning flight of the Airborne Infrared Spectrometer (AIR-Spec), an innovative solar spectrometer that will observe the 2017 solar eclipse from the NSF/NCAR High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER). During the eclipse, AIR-Spec will image five magnetically sensitive coronal emission lines between 1.4 and 4 microns to determine whether they may be useful probes of coronal magnetism. The instrument will measure emission line intensity, FWHM, and Doppler shift from an altitude of over 14 km, above local weather and most of the absorbing water vapor. Instrumentation includes an image stabilization system, feed telescope, grating spectrometer, infrared camera, and visible slit-jaw imager. Results from the 2017 eclipse are presented in the context of the mission's science goals. AIR-Spec will identify line strengths as a function of position in the solar corona and search for the high frequency waves that are candidates for heating and acceleration of the solar wind. The instrument will also identify large scale flows in the corona, particularly in polar coronal holes. Three of the five lines are expected to be strong in coronal hole plasmas because they are excited in part by scattered photospheric light. Line profile analysis will probe the origins of the fast and slow solar wind. Finally, the AIR-Spec measurements will complement ground based eclipse observations to provide detailed plasma diagnostics throughout the corona. AIR-Spec will measure infrared emission of ions observed in the visible from the ground, giving insight into plasma heating and acceleration at radial distances inaccessible to existing or planned spectrometers.
The last total Eclipse of teh Millenium in Turkey
NASA Astrophysics Data System (ADS)
Ozguch, A.; Atac, T.; Altas, L.
1998-09-01
The last total solar eclipse of the millenium will be observed from Turkey which bridges two components and has been the cradle of so many past civilisations. Wouldn't you like to witness this magnificient event in the mystic ambiance of central Anatolia which offers its guests Turkish hospitality and a lot of hystorical examples of paganism, Christianity and Islam. Among the countries from which the eclipse will be visible , Turkey seems to be one of the most suitable countries in terms of its climate and observational facilities. Kandilli Observatory and the Earthquake Research Institute has arranged field work on the eclipse path to determine the suitable points for the observations. The shadow of the moon will be first seen from the Black Sea coast at 14:20 L.T. It will then pass through central Anatolia and will leave Turkey form south-east at 14:42 L.T. Official observational sites are given in the following table. These sites will have catering, toilet, and guidance facilities. Osmanchik 40.98D North 34.82D East Turhal 40.40D North 36.10D East Sivas 39.75D North 37.03D East Elazig 38.68D North 39.23D East Diyarbakir 37.92D North 40.23D East Batman 37.87 North 41.12D East
Nationwide network of total solar eclipse high altitude balloon flights
NASA Astrophysics Data System (ADS)
Des Jardins, A. C.
2017-12-01
Three years ago we envisioned tapping into the strength of the National Space Grant Program to make the most of a rare astronomical event to engage the general public through education and to create meaningful long-lasting partnerships with other private and public entities. We believe strongly in giving student participants career-making opportunities through the use of the most cutting edge tools, resources, and communication. The NASA Space Grant network was in a unique position to engage the public in the eclipse in an awe-inspiring and educational way at a surprisingly small cost. In addition to public engagement, the multidisciplinary project presented an in-depth hands-on learning opportunity for the thousands of student participants. The project used a network of high altitude ballooning teams positioned along the path of totality from Oregon to South Carolina to conduct coordinated collaborative activities during the eclipse. These activities included 1) capturing and streaming live video of the eclipse from near space, 2) partnering with NASA Ames on a space biology experiment, and 3) conducting high-resolution atmospheric radiosonde measurements. This presentation will summarize the challenges, results, lessons learned, and professional evaluation from developing, training, and coordinating the collaboration. Details of the live streaming HD video and radiosonde activities are described in separate submissions to this session.
Update on the Citizen CATE Experiment: Indonesia to 2017
NASA Astrophysics Data System (ADS)
McKay, Myles; Penn, Matt; Baer, Robert; Bosh, Robert; Garrison, David; Gelderman, Richard; Hare, Honor; Isberner, Fred; Jensen, Logan; Kovac, Sarah; Mitchell, Adriana; Pierce, Michael; Thompson, Patricia; Ursache, Andrei; Varsik, John R.; Walter, Donald K.; Watson, Zachary; Young, David T.; Citizen CATE Team
2017-01-01
The Citizen Continental-America Telescopic Eclipse (CATE) Experiment is a team of students, citizen scientists and professional astronomers who will operate 60 identical telescopes distributed across the country in the path of totality from Oregon to South Carolina during the 21 August 2017 solar eclipse. The project goal is to produce a 90-minute time sequence of calibrated white light images of the solar corona. This unprecedented, continuous, temporal coverage during totality will allow us to address questions related to the dynamics in the inner 2.5 Rsun of the corona.Field testing of the equipment began with one setup located on the Faroe Islands during the March 2015 total solar eclipse. Here we report on the more recent March 2016 eclipse where five CATE teams were sent to Indonesia. This group included university undergraduate students, their faculty mentors and other professional scientists. CATE completed a successful field testing of multiple sites near the equator that were distributed over 20 degrees in longitude. We conclude our discussion with how the experience gained over the past two years is being put to use as we prepare for the full implementation of the CATE Network in August 2017.This work was supported in part by funding from NASA SMD grant NNX16AB92A and the NSF REU program through AST-1460743.
Effects of Weather on Tourism and its Moderation
NASA Astrophysics Data System (ADS)
Park, J. H.; Kim, S.; Lee, D. K.
2016-12-01
Tourism is weather sensitive industry (Gómez Martín, 2005). As climate change has been intensifying, the concerns about negative effects of weather on tourism also have been increasing. This study attempted to find ways that mitigate the negative effects from weather on tourism, by analyzing a path of the effects of weather on intention to revisit and its moderation. The data of the study were collected by a self-recording online questionnaire survey of South Korean domestic tourists during August 2015, and 2,412 samples were gathered. A path model of effects of weather on intention to revisit that including moderating effects from physical attraction satisfaction and service satisfaction was ran. Season was controlled in the path model. The model fit was adequate (CMIN/DF=2.372(p=.000), CFI=.974, RMSEA=.024, SRMR=0.040), and the Model Comparison, which assumes that the base model to be correct with season constrained model, showed that there was a seasonal differences in the model ( DF=24, CMIN=32.430, P=.117). By the analysis, it was figured out that weather and weather expectation affected weather satisfaction, and the weather satisfaction affected intention to revisit (spring/fall: .167**, summer: .104**, and winter: .114**). Meanwhile physical attraction satisfaction (.200**), and service satisfaction (.210**) of tourism positively moderated weather satisfaction in summer, and weather satisfaction positively moderated physical attraction (.238**) satisfaction and service satisfaction (.339**). In other words, in summer, dissatisfaction from hot weather was moderated by satisfaction from physical attractions and services, and in spring/fall, comfort weather conditions promoted tourists to accept tourism experience and be satisfied from attractions and services positively. Based on the result, it was expected that if industries focus on offering the good attractions and services based on weather conditions, there would be positive effects to alleviate tourists' discomfort from weather in climate change.
Astr 101 Students' Attitudes Towards Essays On Transits, Eclipses And Occultations
NASA Astrophysics Data System (ADS)
D'Cruz, Noella L.
2012-05-01
Joliet Junior College, Joliet, IL offers a one semester introductory astronomy course each semester. We teach over 110 primarily non-science major students each semester. We use proven active learning strategies such lecture tutorials, think-pair-share questions and small group discussions to help these students develop and retain a good understanding of astrophysical concepts. Occasionally, we offer projects that allow students to explore course topics beyond the classroom. We hope that such projects will increase students' interest in astronomy. We also hope that these assignments will help students to improve their critical thinking and writing skills. In Spring 12, we are offering three short individual essay assignments in our face-to-face sections. The essays focus on transits, eclipses and occultations to highlight the 2012 transit of Venus. For the first essay, students will find images of transit and occultation events using the Astronomy Picture of the Day website and describe their chosen events. In addition, students will predict how variations in certain physical and orbital parameters would alter their particular events. The second essay involves transits, eclipses and occultations observed by spacecraft. Students will describe their transit event, their spacecraft's mission, orbital path, how the orbital path was achieved, etc. The third essay deals with transiting exoplanets. Students will choose at least two exoplanets from an exoplanet database, one of which has been discovered through the transit method. This essay will enable students to learn about detecting exoplanets and how they compare with our solar system. Details of the essay assignments and students' reactions to them will be presented at the meeting.
Where were you when the sun went out?
NASA Astrophysics Data System (ADS)
1999-11-01
The total solar eclipse of 1999 will no doubt have left an impression on millions of people. Members of the Editorial Board for Physics Education share some of their feelings and memories of the event. Simon Carson writes: My children and I were at home in Driffield, East Yorkshire, on said day. Out we went in the back garden with our big refracting telescope and eight-year-old James's Early Learning Centre telescope (plastic, cheap and jolly good for the price!) and our special glasses. Come the witching hour, we trained our telescopes, with white card behind them, on the Sun. Gradually we saw the Moon's shadow edge across the Sun. As James said, `It went cold and dark and the picture on the card looked like a thin glowing line'. It was surprisingly impressive given the distance from totality. The most remarkable effect was the drop in temperature and the fact that our bright sunny mid-morning in August became more like a chilly autumn dusk. Katharine, age 6, remembers performing cartwheels in the dark! Bob Kibble writes: My partner Jean, and I, holidayed in Trier, Germany, just outside the path of totality. On the big day we awoke to rain and clouds, as did most of central Europe. The trusty motorbike, laden with a picnic and photographic gear, took us south into France. We stopped just outside Metz at a service station along with dozens of like-minded but damp and dismal onlookers. Cloud cover was layered with darker rain-bearing cloud drifting at the lowest level. Mobile phone links confirmed that it was raining in Paris, Dijon and Munich. We decided to settle for the event - at least there was a shop and `facilities'. We were joined by a group of bikers, two of whom had travelled 480 km from Denmark that very morning. The shifting cloud cover offered tantalising glimpses of the partial phase as the light level fell. There was nothing we could do but put our faith in the weather. Now you see it, now you don't. As darkness fell and the temperature likewise the strangest thing happened. Just as totality approached the cloud above seemed to thin out, enabling us to see the whole event. We watched in amazement as the last thin bright patch disappeared. There were cheers, horns sounding and applause as the full spectacle was revealed before us - two full minutes of totality. I took photographs through a 600 mm mirror lens, cursing the instability of my flimsy tripod but able to see prominences in some detail. Despite my forward planning the 36 exposure film ran out just as last contact appeared. The excitement of the event prevented any serious, logical and measured photography. I just fired away. As soon as last contact had passed, the clouds reformed and neither Sun nor Moon were seen again until later that afternoon. We had witnessed what is apparently known as the `Red Sea effect' and is caused by the localized cooling due to the umbral shadow `punching' a hole in the cloud cover. The event left us speechless, moved and tearful. Words seemed so inadequate. I had given a number of presentations leading up to this event but nothing could have prepared me for the experience of totality. Darkness came upon us so quickly that we were taken by surprise. Looking up above our heads meant that few of us had noticed the horizon. Friends who were not so lucky with the weather remarked on the beauty of the illuminated horizon. For us it was the nearest thing to a miracle we had ever seen. Roll on 2001! Helen Reynolds writes: My memory of the eclipse will be of lying in a field on a cliff in France staring out to sea. No-one prepares you for the moment of totality; the hairs on the back of your neck literally stand on end. This is not normal. The speed with which darkness falls is frightening. It is inconceivable that minutes ago there was 95%+ coverage of the Sun - the Moon seemed to have no effect and then, suddenly in all senses of the word, darkness literally falls from the sky. The sounds are unreal and the colours are nothing you have seen before. The calls and cries of the children are muted, cameras click but the sound is dulled. There seem to be bands of colours falling from the sky onto the horizon, pinks and a hint of that colour we call indigo. For once you do not try to work out why this is happening; there is so little time to soak up the moment before it is gone. The fastest two minutes of my life to date. Jill Membrey writes: I have to admit to a somewhat disappointing Eclipse experience! I had made the decision early on to travel down to Plymouth from Bristol, so as to be in the path of totality and share the event `at home' with my mother. The morning of 11 August dawned bright and we were eager with anticipation, but sadly the cloud thickened and deepened as the morning progressed. By 11 am the cloud cover was so thick that there was no indication of the Sun's position at all, let alone any of the phases. We had to resort to the television screen to find out what was actually going on. It was also difficult to tell whether the darkness was due to the normal Plymouth weather or to some other factor. However, by 11.12 it was sufficiently dark outside for us to trigger the security light when we went into the garden! I was quite amazed at how quickly the sky lightened afterwards, although we still never got a glimpse of the Sun. In fact I never saw any sunshine until I returned to Bristol that evening, and then heard my husband gloat over his experience of the (almost) total eclipse witnessed between the broken clouds over his office. Just typical! I knew I should have stayed in Bristol... Jonathan Allday writes: I went with my wife Carolyn on a package tour to Paris to see the eclipse. On the day itself we were taken by coach to a park just outside Rheims to see the totality. Apparently our tour company shifted 6000 people that day. As we were making our way to the park the clouds would open occasionally to give us a view of the partial phase. The traffic was heavy and we were far from sure that we would make it in time. I was fretting and weighing up trying to convince the driver to stop at any point to let us out at the moment of totality. However, we made it and the park was a wonderful vantage point. I will never forget the quiet that came over this huge park with thousands of people in it as totality came. I remember looking across the lake and seeing camera flashes going off as the darkness descended. Periodic announcements over the PA system kept track of what was happening and sensibly gave warnings about how to view the eclipse. I had sworn that I would not take any pictures, figuring that by the time I had sorted out exposures the eclipse would be over. As it turned out the clouds were light so that the totality could be viewed through them and picture taking was easy. Consequently I was lying on my back staring through the camera lens and firing off photographs when the orange tinted shadow edge arrived over the hills. I missed it. Totality itself was glimpsed along with the corona through hazy clouds but that was a wonderful sight. Conclusions - next time I want to see it with no clouds. Liz Whitelegg writes: I'd been preparing for eclipse day for a whole 12 months by reading articles and going to talks about the eclipse, buying the special glasses at the ASE annual meeting, talking to eclipse experts etc. I even secured accommodation in some `friends' holiday home in Cornwall by lending a hand in the restoration process the year before! Having spent the very same week in Cornwall in '98 when it was hot and sunny all week, I was convinced that the heavens would shine on us and we'd get a spectacular totality. However, it was not to be. The weather forecast was for cloud cover and showers - but the day before the event was lovely and sunny, so who believes in weather forecasts anyway? But as we scanned the sky on awakening on 11 August, it seems the Met Office had got it right for once. We stuck to our plan anyway and caught the local train from St Ives to Lelant in order to climb to the highest point for miles around - Trencrom hill where (on a clear day) there was a good view of the north and south Cornish coasts. We were not alone, however. Hundreds of others had the same idea and it was pretty crowded up there. As we waited on the crowed hill top the weather got wetter and wetter, and I wasn't very impressed with the New Age contingent who chanted and drummed to encourage the clouds to retreat - their `music' sounded more like a rain dance to me! The only comfort was the sight of the Radio 1 roadshow revellers, who were down the road at Marazion, getting a soaking too - the wonders of modern technology enabled us to watch them on top of the hill on a miniature TV! Well, it did get very dark and it was strange to see the flashes of hundreds of cameras going off all over the surrounding countryside. But I must admit that as I got soaked to the skin (I discovered that my rainproof jacket isn't!) and as the rain turned to hail as the temperature fell, I wondered what all the fuss was about. I was very glad to return to our friends' cottage and dry off. The real the highlight of the day was watching the latest Austin Powers film at the local cinema - so you can tell that the eclipse was a pretty disappointing experience! Norman Fancey writes: I was on a camp site in Austria just inside the boundary of totality. As a physicist, I was familiar with the theory and knew what to expect. Nevertheless, even in the period leading up to the total eclipse, I found the slowly increasing section being eaten out of the Sun's disc to be most interesting and the few seconds of totality and almost complete darkness to be an experience I will never forget. My previous reading about eclipses did not prepare me for the beautiful colours reflected from the clouds near to the line of sight to the Sun for the few minutes on either side of the few seconds of complete darkness. Philip Britton writes: What do I remember most about the eclipse? We were near Salzburg, on the School Venture Scout Expedition. The boys experienced the eclipse at altitude, passing between mountain huts, so it got very cold. Thin cloud made for good observation. With no artificial light it was certainly dark. But above all I remember teenage boys being impressed by something!
Report about the Solar Eclipse on August 11, 1999
NASA Astrophysics Data System (ADS)
1999-08-01
This webpage provides information about the total eclipse on Wednesday, August 11, 1999, as it was seen by ESO staff, mostly at or near the ESO Headquarters in Garching (Bavaria, Germany). The zone of totality was about 108 km wide and the ESO HQ were located only 8 km south of the line of maximum totality. The duration of the phase of totality was about 2 min 17 sec. The weather was quite troublesome in this geographical area. Heavy clouds moved across the sky during the entire event, but there were also some holes in between. Consequently, sites that were only a few kilometres from each other had very different viewing conditions. Some photos and spectra of the eclipsed Sun are displayed below, with short texts about the circumstances under which they were made. Please note that reproduction of pictures on this webpage is only permitted, if the author is mentioned as source. Information made available before the eclipse is available here. Eclipse Impressions at the ESO HQ Photo by Eddy Pomaroli Preparing for the Eclipse Photo: Eddy Pomaroli [JEG: 400 x 239 pix - 116k] [JPEG: 800 x 477 pix - 481k] [JPEG: 3000 x 1789 pix - 3.9M] Photo by Eddy Pomaroli During the 1st Partial Phase Photo: Eddy Pomaroli [JPEG: 400 x 275 pix - 135k] [JPEG: 800 x 549 pix - 434k] [JPEG: 2908 x 1997 pix - 5.9M] Photo by Hamid Mehrgan Heavy Clouds Above Digital Photo: Hamid Mehrgan [JPEG: 400 x 320 pix - 140k] [JPEG: 800 x 640 pix - 540k] [JPEG: 1280 x 1024 pix - 631k] Photo by Olaf Iwert Totality Approaching Digital Photo: Olaf Iwert [JPEG: 400 x 320 pix - 149k] [JPEG: 800 x 640 pix - 380k] [JPEG: 1280 x 1024 pix - 536k] Photo by Olaf Iwert Beginning of Totality Digital Photo: Olaf Iwert [JPEG: 400 x 236 pix - 86k] [JPEG: 800 x 471 pix - 184k] [JPEG: 1280 x 753 pix - 217k] Photo by Olaf Iwert A Happy Eclipse Watcher Digital Photo: Olaf Iwert [JPEG: 400 x 311 pix - 144k] [JPEG: 800 x 622 pix - 333k] [JPEG: 1280 x 995 pix - 644k] ESO HQ Eclipse Video Clip [MPEG-version] ESO HQ Eclipse Video Clip (2425 frames/01:37 min) [MPEG Video; 160x120 pix; 2.2M] [MPEG Video; 320x240 pix; 4.4Mb] [RealMedia; streaming; 33kps] [RealMedia; streaming; 200kps] This Video Clip was prepared from a "reportage" of the event at the ESO HQ that was transmitted in real-time to ESO-Chile via ESO's satellite link. It begins with some sequences of the first partial phase and the eclipse watchers. Clouds move over and the landscape darkens as the phase of totality approaches. The Sun is again visible at the very moment this phase ends. Some further sequences from the second partial phase follow. Produced by Herbert Zodet. Dire Forecasts The weather predictions in the days before the eclipse were not good for Munich and surroundings. A heavy front with rain and thick clouds that completely covered the sky moved across Bavaria the day before and the meteorologists predicted a 20% chance of seeing anything at all. On August 10, it seemed that the chances were best in France and in the western parts of Germany, and much less close to the Alps. This changed to the opposite during the night before the eclipse. Now the main concern in Munich was a weather front approaching from the west - would it reach this area before the eclipse? The better chances were then further east, nearer the Austrian border. Many people travelled back and forth along the German highways, many of which quickly became heavily congested. Preparations About 500 persons, mostly ESO staff with their families and friends, were present at the ESO HQ in the morning of August 11. Prior to the eclipse, they received information about the various aspects of solar eclipses and about the specific conditions of this one in the auditorium. Protective glasses were handed out and it was the idea that they would then follow the eclipse from outside. In view of the pessimistic weather forecasts, TV sets had been set up in two large rooms, but in the end most chose to watch the eclipse from the terasse in front of the cafeteria and from the area south of the building. Several telescopes were set up among the trees and on the adjoining field (just harvested). Clouds and Holes It was an unusual solar eclipse experience. Heavy clouds were passing by with sudden rainshowers, but fortunately there were also some holes with blue sky in between. While much of the first partial phase was visible through these, some really heavy clouds moved in a few minutes before the total phase, when the light had begun to fade. They drifted slowly - too slowly! - towards the east and the corona was never seen from the ESO HQ site. From here, the view towards the eclipsed Sun only cleared at the very instant of the second "diamond ring" phenomenon. This was beautiful, however, and evidently took most of the photographers by surprise, so very few, if any, photos were made of this memorable moment. Temperature Curve by Benoit Pirenne Temperature Curve on August 11 [JPEG: 646 x 395 pix - 35k] Measured by Benoit Pirenne - see also his meteorological webpage Nevertheless, the entire experience was fantastic - there were all the expected effects, the darkness, the cool air, the wind and the silence. It was very impressive indeed! And it was certainly a unique day in ESO history! Carolyn Collins Petersen from "Sky & Telescope" participated in the conference at ESO in the days before and watched the eclipse from the "Bürgerplatz" in Garching, about 1.5 km south of the ESO HQ. She managed to see part of the totality phase and filed some dramatic reports at the S&T Eclipse Expedition website. They describe very well the feelings of those in this area! Eclipse Photos Several members of the ESO staff went elsewhere and had more luck with the weather, especially at the moment of totality. Below are some of their impressive pictures. Eclipse Photo by Philippe Duhoux First "Diamond Ring" [JPEG: 400 x 292 pix - 34k] [JPEG: 800 x 583 pix - 144k] [JPEG: 2531 x 1846 pix - 1.3M] Eclipse Photo by Philippe Duhoux Totality [JPEG: 400 x 306 pix - 49k] [JPEG: 800 x 612 pix - 262k] [JPEG: 3039 x 1846 pix - 3.6M] Eclipse Photo by Philippe Duhoux Second "Diamond Ring" [JPEG: 400 x 301 pix - 34k] [JPEG: 800 x 601 pix - 163k] [JPEG: 2905 x 2181 pix - 2.0M] The Corona (Philippe Duhoux) "For the observation of the eclipse, I chose a field on a hill offering a wide view towards the western horizon and located about 10 kilometers north west of Garching." "While the partial phase was mostly cloudy, the sky went clear 3 minutes before the totality and remained so for about 15 minutes. Enough to enjoy the event!" "The images were taken on Agfa CT100 colour slide film with an Olympus OM-20 at the focus of a Maksutov telescope (f = 1000 mm, f/D = 10). The exposure times were automatically set by the camera. During the partial phase, I used an off-axis mask of 40 mm diameter with a mylar filter ND = 3.6, which I removed for the diamond rings and the corona." Note in particular the strong, detached protuberances to the right of the rim, particularly noticeable in the last photo. Eclipse Photo by Cyril Cavadore Totality [JPEG: 400 x 360 pix - 45k] [JPEG: 800 x 719 pix - 144k] [JPEG: 908 x 816 pix - 207k] The Corona (Cyril Cavadore) "We (C.Cavadore from ESO and L. Bernasconi and B. Gaillard from Obs. de la Cote d'Azur) took this photo in France at Vouzier (Champagne-Ardennes), between Reims and Nancy. A large blue opening developed in the sky at 10 o'clock and we decided to set up the telescope and the camera at that time. During the partial phase, a lot of clouds passed over, making it hard to focus properly. Nevertheless, 5 min before totality, a deep blue sky opened above us, allowing us to watch it and to take this picture. 5-10 Minutes after the totality, the sky was almost overcast up to the 4th contact". "The image was taken with a 2x2K (14 µm pixels) Thomson "homemade" CCD camera mounted on a CN212 Takahashi (200 mm diameter telescope) with a 1/10.000 neutral filter. The acquisition software set exposure time (2 sec) and took images in a complete automated way, allowing us to observe the eclipse by naked eye or with binoculars. To get as many images as possible during totality, we use binning 2x2 to reduce the readout time to 19 sec. Afterward, one of the best image was flat-fielded and processed with a special algorithm that modelled a fit the continuous component of the corona and then subtracted from the original image. The remaining details were enhanced by unsharp masking and added to the original image. Finally, gaussian histogram equalization was applied". Eclipse Photo by Eddy Pomaroli Second "Diamond Ring" [JPEG: 400 x 438 pix - 129k] [JPEG: 731 x 800 pix - 277k] [JPEG: 1940 x 2123 pix - 2.3M] Diamond Ring at ESO HQ (Eddy Pomaroli) "Despite the clouds, we saw the second "diamond ring" from the ESO HQ. In a sense, we were quite lucky, since the clouds were very heavy during the total phase and we might easily have missed it all!". "I used an old Minolta SRT-101 camera and a teleobjective (450 mm; f/8). The exposure was 1/125 sec on Kodak Elite 100 (pushed to 200 ASA). I had the feeling that the Sun would become visible and had the camera pointed, by good luck in the correct direction, as soon as the cloud moved away". Eclipse Photo by Roland Reiss First Partial Phase [JPEG: 400 x 330 pix - 94k] [JPEG: 800 x 660 pix - 492k] [JPEG: 3000 x 2475 pix - 4.5M] End of First Partial Phase (Roland Reiss) "I observed the eclipse from my home in Garching. The clouds kept moving and this was the last photo I was able to obtain during the first partial phase, before they blocked everything". "The photo is interesting, because it shows two more images of the eclipsed Sun, below the overexposed central part. In one of them, the remaining, narrow crescent is particularly well visible. They are caused by reflections in the camera. I used a Minolta camera and a Fuji colour slide film". Eclipse Spectra Some ESO people went a step further and obtained spectra of the Sun at the time of the eclipse. Eclipse Spectrum by Roland Reiss Coronal Spectrum [JPEG: 400 x 273 pix - 94k] [JPEG: 800 x 546 pix - 492k] [JPEG: 3000 x 2046 pix - 4.5M] Coronal Spectrum (CAOS Group) The Club of Amateurs in Optical Spectroscopy (with Carlos Guirao Sanchez, Gerardo Avila and Jesus Rodriguez) obtained a spectrum of the solar corona from a site in Garching, about 2 km south of the ESO HQ. "This is a plot of the spectrum and the corresponding CCD image that we took during the total eclipse. The main coronal lines are well visible and have been identified in the figure. Note in particular one at 6374 Angstrom that was first ascribed to the mysterious substance "Coronium". We now know that it is emitted by iron atoms that have lost nine electrons (Fe X)". The equipment was: * Telescope: Schmidt Cassegrain F/6.3; Diameter: 250 mm * FIASCO Spectrograph: Fibre: 135 micron core diameter F = 100 mm collimator, f = 80 mm camera; Grating: 1300 gr/mm blazed at 500 nm; SBIG ST8E CCD camera; Exposure time was 20 sec. Eclipse Spectrum by Bob Fosbury Chromospheric Spectrum [JPEG: 120 x 549 pix - 20k] Chromospheric and Coronal Spectra (Bob Fosbury) "The 11 August 1999 total solar eclipse was seen from a small farm complex called Wolfersberg in open fields some 20km ESE of the centre of Munich. It was chosen to be within the 2min band of totality but likely to be relatively unpopulated". "There were intermittent views of the Sun between first and second contact with quite a heavy rainshower which stopped 9min before totality. A large clear patch of sky revealed a perfect view of the Sun just 2min before second contact and it remained clear for at least half an hour after third contact". "The principal project was to photograph the spectrum of the chromosphere during totality using a transmission grating in front of a moderate telephoto lens. The desire to do this was stimulated by a view of the 1976 eclipse in Australia when I held the same grating up to the eclipsed Sun and was thrilled by the view of the emission line spectrum. The trick now was to get the exposure right!". "A sequence of 13 H-alpha images was combined into a looping movie. The exposure times were different, but some attempt has been made to equalise the intensities. The last two frames show the low chromosphere and then the photosphere emerging at 3rd contact. The [FeX] coronal line can be seen on the left in the middle of the sequence. I used a Hasselblad camera and Agfa slide film (RSX II 100)".
EDITORIAL: `Il sole - no si move'
NASA Astrophysics Data System (ADS)
Kibble, Bob
1999-05-01
The Sun may not have moved for Galileo but it is certain that this coming August the Sun will have moved millions of folk towards a thin strip of land about 100 km wide stretching from Cornwall to the Indian Ocean. If you have yet to book your place for the biggest live show of this millennium year there are still places in hotels and campsites. The April edition of the UK camping and caravaning club magazine included at least four sites in Cornwall alone with vacancies. I am told that the difference between seeing a 98% eclipse and totality is considerably greater than 2%. The message appears to be - try to get to the line. However, a popular misconception among lay folk seems to be that you will only be able to see the event in Cornwall. As you will read in this issue the partial event will be visible from virtually the whole of Europe. Anyone who has tried to holiday in Cornwall or Devon will tell you how congested the roads become in any ordinary August. The best advice for this year is either to travel to the south west by bicycle or attack the totality path as it crosses Europe. Access will be much easier. For my part I have booked a hotel in Trier, Germany, about 20 km north of the totality path. An early breakfast on the 11th should leave enough time to motorcycle down to see the shadow. Of course, the whole business is weather dependent. With the chance of a clear sky in Cornwall, Devon and most of western Europe being about 50% on the date in question, forward planning depends on whether you are a `half empty' or a `half full' person. It is worth keeping this fact in mind especially if you drag an expectant family hundreds of miles through traffic just to watch the clouds drift by. Take a colouring book and a board game just in case. Of course, the chance of a clear sky increases to about 90% across Turkey but there are reasons why such a trip might not be so wise in the current political climate. In this special issue readers will find plenty to interest them about the eclipse event but also much of additional interest about the physics of the Sun. Seek out Richard Harrison's article for an up-to-the-minute report on the information gathered from the SOHO mission. Clare Parnell from St Andrews takes readers on an excursion into the Sun's interior, revealing a structure beyond what meets the eye. For those planning an eclipse excursion Gerry Bond offers his wisdom about how to make the most of the event. A second view is offered from Francisco Diego, whose research interest focuses on the solar corona. In his article you will read an almost spiritual account of the magic of witnessing a total solar eclipse. For those looking for ideas to use with students David Sang introduces us to two substantial curriculum resource packs published jointly by PPARC and the ASE. For those with a more practical bent there are guidelines to help you to create a millennium sundial to adorn your home or place of work and an article from Australia that supports our understanding of longitude and time. I should also point out that our reviews section has a distinctly solar flavour for this special issue. There will be much more to read about the Sun and the eclipse in the coming months. Teacher journals, commemorative booklets, T-shirts, badges and videos all sporting Eclipse '99 messages are already on the market. The most observed eclipse in history is about to happen and there is no doubt in my mind that on the crest of this wave will ride future aspirations of many pupils and students. The wave will pass and enthusiasm might fade, supernova-like, into history, but for a few years there will be a heightened sensitivity in the public domain about space, the sky and astronomy. I wouldn't be surprised if applications to degrees in astrophysics might increase in number, as perhaps will the sale of filters and the membership of local astronomical societies. One route to astrophysics is of course via physics at school. Can we hope that 11 August might mark a date for a revival of interest in physics? Perhaps we can. And if not, then we can always make a sundial.
NASA Astrophysics Data System (ADS)
Liles, W. C.; Lukes, L.; Nelson, J.; Henry, J.; Oputa, J.; Kerby-Patel, K. C.
2017-12-01
Early experiments to study the effects of a solar eclipse on radio wave propagation were done with either a limited number of sites before any theory of the ionosphere had been confirmed or involved collecting data that proved to be unusable because submissions were missing critical information such as date, time or location. This study used the 2017 solar eclipse over the continental U.S. to conduct the first wide-area (across the U.S.) low-frequency (LF) propagation study. The data collection process was crowdsourced through the engagement of students/educators, citizens, ham radio enthusiasts, and the scientific community. In order to accomplish data collection by geographically dispersed citizen scientists, the EclipseMob team designed and shared a low cost, low tool/skill DIY receiver system to collect LF data that leveraged existing cell phone technology and made the experiment more accessible to students and people with no prior experience constructing electronic systems. To support engagement, in addition to web guides (eclipsemob..org), EclipseMob supplied 150 DIY kits and provided build/Q&A webinars and events. For the experiment, participants constructed a simple receiver system consisting of a homemade antenna, a simple homemade receiver to convert the radio frequency (RF) signals to audio frequencies, and a smart phone app. Before, during, and after the eclipse, participants used their receiver systems to record transmitter signal data from WWVB located near Fort Collins, Colorado on 60.000 kHz (a U.S. frequency standard that is operated by NIST and transmits time codes). A second frequency, 55.500 kHz transmitted by a LF station in Dixon, CA was also used. By using the time, date and location features of the smart phone, the problems experienced in earlier experiments could be minimized. By crowdsourcing the observation sites across the U.S., data from a number of different short, medium and long- paths could be obtained as the total eclipse crossed the continental U.S. Here we will report out on lessons learned about organizing and leading a nation-wide citizen science experiment during the 2017 total solar eclipse and preliminary results from the analysis of low frequency signals and geospatial patterns.
NOAA's weather forecasts go hyper-local with next-generation weather
model NOAA HOME WEATHER OCEANS FISHERIES CHARTING SATELLITES CLIMATE RESEARCH COASTS CAREERS with next-generation weather model New model will help forecasters predict a storm's path, timing and intensity better than ever September 30, 2014 This is a comparison of two weather forecast models looking
NASA Astrophysics Data System (ADS)
Pang, K. D.; Yau, K. K.
2000-12-01
Like returns of Halley's comet the Olympic games occur periodically, though not as regularly in antiquity. Dates were also imprecise due to the chaotic calendars in use. Reported sightings of comets and eclipses can be used with game dates to help fix ancient events. However some reported darkening of the sun, e.g., after Julius Caesar's murder in 44 BC, was due to volcanic eruptions. A red comet, visible in daylight, first appeared during the games that year. It was also seen from China and Korea (Pang, Sciences 31, 30). Phlegon's ``Olympiads" (2nd century) says that Christ's crucifixion was in the 4th year of the 202nd Olympiad (AD 29-33), when a total solar eclipse occurred in the 6th hour. Only the Nov. 24, AD 29 eclipse over Asia Minor can match that, and Joel's prophecy (Acts 2, 14-21) that ``the sun will be turned to darkness and moon to blood." However it conflicts with ``the first day of Passover," as recorded by Mathew, Mark and Luke, i.e., full moon in early spring. Humphreys and Waddington (Nature 306, 743) have suggested meteorological darkening and the April 3, AD 33 lunar eclipse instead. Schaefer has questioned the eclipse's visibility from Jerusalem (31.46N, 35.14E). The six computations he cited gave dissimilar answers due to the imprecise rates of the secular lunar acceleration, and lengthening of the day used (Q.Jl.R.astr.Soc. 31, 53). Lunar laser ranging has since fixed the former at -26"/cen2. Analysis of ancient Chinese solar eclipse records, e.g., the April 21, 899 BC and April 4, AD 368 ``double dawns" over Zheng, has given us a delta T (in sec) = 30t2, where t is centuries before 1800 (Pang, Yau and Chou, in ``Dynamics of Ice Age Earth: A Modern Perspective," 1998). Our computations show that the moon rose over Jerusalem, with 1/3 still in the umbra and the rest in penumbra. Holdover meteorological darkening with long absorption air mass could have help reddened the moon also. Finally the first ``eclipse season" (the Aug. 21 lunar, and Sept. 6 solar, eclipses) were recorded in China in 776 BC, the year of the first Olympiad. A total solar eclipse (August 1, 2008) will occur during the 29th modern Olympiad (July 25-Aug. 10), with its path of totality ending in a spectacular ``double sunset" over Zheng, China (34.5N, 110E).
NASA Astrophysics Data System (ADS)
Sun, Yang-Yi; Liu, Jann-Yenq; Lin, Charles Chien-Hung; Lin, Chi-Yen; Shen, Ming-Hsueh; Chen, Chieh-Hung; Chen, Chia-Hung; Chou, Min-Yang
2018-01-01
A moon shadow of the total solar eclipse swept through the continent of United States (CONUS) from west to east on 21 August 2017. Massive total electron content (integration of electron density from 0 km to 20,200 km altitude) observations from 2,255 ground-based Global Navigation Satellite System receivers show that the moon shadow ship generates a great ionospheric bow wave front which extends 1,500 km away from the totality path covering the entire CONUS. The bow wave front consists of the acoustic shock wave due to the supersonic/near-supersonic moon shadow ship and the significant plasma recombination due to the reduction in solar irradiation within the shadow area. The deep bow wave trough (-0.02 total electron content unit (1 TECU = 1016 el m-2) area) nearly coincides with the 100% obscuration moving along the totality path over the CONUS through the entire eclipse period. The supersonic moon shadow ship induces a bow wave crest in front of the ship ( 80% obscuration). It is the first time to find the acoustic shock wave-formed bow wave trough and crest near the totality.
The Guilford-Carleton Eclipse Expedition of 1900
NASA Astrophysics Data System (ADS)
English, Thomas R., III
2006-12-01
The solar eclipse of 1900 May 28 provided an opportunity for American astronomers to make observations from home soil, as the shadow tracked across the southeastern United States from New Orleans to Norfolk. Eclipse parties were scattered throughout the southern states, including large-scale scientific teams traveling to sites in Georgia and North Carolina. These major operations, staffed by groups from Yerkes, Princeton, USNO, and Lick, featured multiple observing programs and all the modern techniques they could manage. In addition to the major astrophysical endeavors, there were many smaller parties in the field in 1900 that resembled the more casual eclipse expeditions that were characteristic of a few decades before. In these efforts, relatively small groups of observers used modest instruments and made mostly visual observations, and the expedition was as much a social event as it was a scientific venture. One such group was the party from Carleton College and Guilford College that observed from a fruit farm in Southern Pines, NC. At the turn of the century, the Goodsell Observatory at Carleton College in Minnesota was an important regional astronomical facility that had provided weather and time data for over 20 years, and was the site of publication of Popular Astronomy, a widely circulated astronomical journal. At Guilford College, on the other hand, the astronomy course was taught by the school’s Treasurer, and there were no significant astronomical facilities. The presentation will explain how these two schools came to combine efforts to study the 1900 solar eclipse, and will summarize the events of the trip and the observations made. This research was supported in part by the Herbert C. Pollock Award of the Dudley Observatory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-04-01
Expanding training opportunities in the weatherization of buildings will accelerate learning and provide a direct path for many Americans to find jobs in the clean energy field. The National Weatherization Training Portal (NWTP), which is now in the final stages of testing, features multi-media, interactive, self-paced training modules.
NEWS: Eye safety and the solar eclipse
NASA Astrophysics Data System (ADS)
LeConte, David
1999-05-01
Total eclipses of the Sun are amongst nature's most magnificent spectacles, and offer the opportunity for an exceptional educational experience. Many people never see one in their lifetime, but it has been estimated that this August's eclipse will be seen by more people than any other. It would be a sadly lost opportunity if they were denied the experience because they fear a danger that is easily avoided. The dangers of eye damage are real and precautions need to be taken. Staring at the bright solar photosphere can cause temporary or permanent retinal damage. Since the retina has no pain receptors the observer can be unaware that the eye is being `cooked', and the damage may only become apparent several hours later. However, when the photosphere is completely blocked by the Moon during the brief period of totality (two minutes or less), it is quite safe to look directly. In fact, you will not otherwise see anything at all. It is a complex message to get across to the public, and especially to children, that protection is required during the partial phases but not during totality, and that those outside the path of totality require protection for the whole eclipse. The National Eclipse Group was established by PPARC in 1997 to coordinate educational activities, issue public information and give authoritative advice for the 1999 eclipse. It has published a Solar Eclipse Safety Code, which is available on the national eclipse web site (mentioned above). It advises that the safest way to view the Sun is indirectly, by projecting an image of the Sun with a `pinhole', mirror, binoculars or telescope. Most people, however, will wish to observe the eclipse directly. Sunglasses, photographic film, crossed polarizers, smoked glass and similar filters must not be used. The Safety Code states that the Sun may be viewed directly only through special filters made specifically for solar viewing. Such eclipse viewers are typically made of aluminized polyester film (often generically referred to as `aluminized Mylar') or polymer. Users should ensure that they are marked as having been supplied specifically for direct viewing of the Sun and carry the `CE' mark. To be awarded CE certification, the viewers must be tested in the visual, infrared and ultraviolet by Approved Bodies appointed by the Secretary of State for Trade and Industry, and they must pass a standard based on a specification prepared by Dr B Ralph Chou, University of Waterloo, Canada (see http://sunearth.gsfc.nasa.gov/eclipse/safety2.html). Any method of solar eclipse observation, whether direct or indirect, is not without its hazards. Severe eye damage can be caused, for example, by looking through a pinhole, rather than at the projected image, and will certainly result from looking through any optical instrument. Eclipse viewers should be placed over the eyes before looking up at the Sun and not removed until after looking away. Whatever method is used, children must be clearly instructed and closely supervised. Eclipse viewers are probably not appropriate for very young children. Descriptions of observing methods are in the activities packs for primary and secondary schools prepared by the Association for Astronomy Education and are available from CLEAPSS Schools Science Service and the National Eclipse Line (0345 600444).
Changes in the D region associated with three recent solar eclipses in the South Pacific region
NASA Astrophysics Data System (ADS)
Kumar, Sushil; Kumar, Abhikesh; Maurya, Ajeet K.; Singh, Rajesh
2016-06-01
We estimate D region changes due to 22 July 2009 total solar eclipse (SE), 13-14 November 2012 total SE, and 9-10 May 2013 annular SE, using VLF navigational transmitters signal observations at Suva, Fiji. The North West Cape (NWC) signal (19.8 kHz) showed an amplitude and phase decrease of 0.70 dB and 23° during November SE and 2.0 dB and 90° during May SE. The modeling using Long Wave Propagation Capability code for NWC-Suva path during November and May SEs showed an increase in average D region reflection height (H') and sharpness factor (β) by 0.6 and 0.5 km and 0.012 and 0.015 km-1, respectively. The July total SE for JJI-Suva path showed an increase in H' of 1.5 km and a decrease in β of 0.055 km-1. The decrease in the electron density calculated using SE time H' and β is maximum for July total SE and minimum for May annular SE. The effective recombination coefficient estimated from the decay and recovery of signal phase associated with May annular SE was higher (27%) than normal daytime value 5.0 × 10-7 cm-3 s-1 and varied between 1.47 × 10-6 and 1.15 × 10-7 cm-3 s-1 in the altitude 70 to 80 km. Morlet wavelet analysis of signals amplitude shows strong wave-like signatures (WLS) associated with three SEs with period ranging 24-66 min, but the intensity and duration of WLS show no clear dependence on SE magnitude and type. Apart from the cooling spot, the eclipse shadow can also generate WLS associated with atmospheric gravity waves.
NASA Astrophysics Data System (ADS)
Chakraborty, Suman; Chakrabarti, Sandip Kumar; Palit, Sourav; Ray, Suman
2016-07-01
One of the major sources of ionospheric perturbations is variations in solar Extreme Ultraviolet (EUV) radiation flux. Solar eclipse is a phenomenon which is capable of producing significant effects on the physical and chemical properties of the ionospheric plasma. During a solar eclipse, the solar radiation flux reduces considerably for a limited period of time over specific locations on the Earth. This induces certain changes within the ionosphere or more precisely, in the D-region which can be studied with the observation of Very Low Frequency (VLF) radio signal modulations. The parameters which mainly govern the ion-chemistry, such as the recombination coefficients are poorly known till date. Solar eclipse provides us with an excellent opportunity to study these parameters as its time of occurrence is known beforehand and thus we can equip ourselves accordingly. In the present study we considered the Total Solar Eclipse (TSE) that occurred on 22nd July, 2009 within the Indian subcontinent. Indian Centre for Space Physics (ICSP) conducted a week long campaign during the eclipse and data were recorded from dozens of places within India and abroad. Both positive and negative changes in VLF signal amplitude were observed. In this paper, data for a propagation path between Indian Navy VLF transmitter named VTX3 and a pair of receivers in India, namely Malda and Kolkata are used. We start with calculating the obscuration function for these two places to find the variations in ionization flux within the period of the eclipse. After this, we incorporated the D region ion chemistry model to find the equilibrium ion density over the region and employ the LWPC code to find the VLF signal amplitude. We varied the values of recombination coefficients to achieve desired accuracy in our results. In doing so, we achieved two goals: First, we have been able to reproduce the trend of variation in VLF signal amplitude (both positive and negative) at both the receiving locations purely from theoretical modeling and second, our knowledge of some of the D-region ion chemistry parameters is now improved considerably.
NASA Astrophysics Data System (ADS)
Buxner, Sanlyn; Jones, Andrea; Bleacher, Lora; Shaner, Andy; Wenger, Matthew; Bakerman, Maya; Joseph, Emily; Day, Brian; White, Vivian; InOMN Coordinating Committee
2017-01-01
2017 marks the eighth International Observe the Moon Night (InOMN), which will be held on July 15, 2017. We will present findings from the first seven years, including the most recent figures from the October 2016 event, and provide an overview of the 2017 events which will support the Great American Eclipse which occurs about five weeks later, on August 21, 2017.InOMN is an annual worldwide public event that encourages observation, appreciation, and understanding of our Moon and its connection to NASA planetary science and exploration. This year InOMN’s event will support broad efforts to promote the eclipse by providing resources to help InOMN hosts highlight lunar science that will influence the eclipse, such as the topography of the Moon, which affects the edges of the eclipse path and the location and duration of Baily’s beads. The InOMN team will host webinars to discuss the Moon, lunar science, and lunar and solar eclipses.Each year, thousands of visitors take part in hundreds of events across the world. In the first seven years (2010 to 2016) over 3,700 events were registered worldwide and hosted by a variety of institutions including astronomy clubs, observatories, schools, and universities and held at a variety of public and private institutions all over the world including museums, planetaria, schools, universities, observatories, parks, and private businesses and homes. Evaluation of InOMN reveals that events are raising visitors’ awareness of lunar science and exploration, providing audiences with information about lunar science and exploration, and inspiring visitors to want to learn more about the Moon and providing connections to opportunities to do so.InOMN is sponsored by NASA's Lunar Reconnaissance Orbiter, NASA's Solar System Exploration Research Virtual Institute (SSERVI), and the Lunar and Planetary Institute. Learn more and register to host an event at http://observethemoonnight.org/.
1988-10-28
analysis effort can start. This analysis work will be done in the spring of 1989, and the Defense Commission is to be ready with its report at the end...production processes, electronic equipment and weapons promptly. JPRS-WER-88-061 28 October 1988 21 MILITARY The project JF 90 will eclipse all of the...by the numerical superiority of a potential enemy, his attack-oriented military doc- trine and equipment , and his continually improving all-weather
Air Mass Considerations in Fog Optical Modeling.
1981-02-01
Other microphysical quantities whi.-h are frequently used include the mean radius, the mode radius, and the liquid water content. All these quantities...Commerce .a~ il -’ ecommunications and Commander nr1~nAdministration Ja) Arm~y Comined Arms Center *,Y nn-l t n elecommunication Sciences, & Fort !-eav...Forecasting Selected Weather Variables (Emphasizinq Remote Means )," ASL-TR-O001, January 1978. 73. Heaps, Melvin G., "The 1979 Solar Eclipse and Validation
NASA Astrophysics Data System (ADS)
Tsang, C.; Caspi, A.; DeForest, C. E.; Durda, D. D.; Steffl, A.; Lewis, J.; Wiseman, J.; Collier, J.; Mallini, C.; Propp, T.; Warner, J.
2017-12-01
The Great American Eclipse of 2017 provided an excellent opportunity for heliophysics research on the solar corona and dynamics that encompassed a large number of research groups and projects, including projects flown in the air and in space. Two NASA WB-57F Canberra high altitude research aircraft were launched from NASA's Johnson Space Center, Ellington Field into the eclipse path. At an altitude of 50,000ft, and outfitted with visible and near-infrared cameras, these aircraft provided increased duration of observations during eclipse totality, and much sharper images than possible on the ground. Although the primary mission goal was to study heliophysics, planetary science was also conducted to observe the planet Mercury and to search for Vulcanoids. Mercury is extremely challenging to study from Earth. The 2017 eclipse provided a rare opportunity to observe Mercury under ideal astronomical conditions. Only a handful of near-IR thermal images of Mercury exist, but IR images provide critical surface property (composition, albedo, porosity) information, essential to interpreting lower resolution IR spectra. Critically, no thermal image of Mercury currently exists. By observing the nightside surface during the 2017 Great American Eclipse, we aimed to measure the diurnal temperature as a function of local time (longitude) and attempted to deduce the surface thermal inertia integrated down to a few-cm depth below the surface. Vulcanoids are a hypothesized family of asteroids left over from the formation of the solar system, in the dynamically stable orbits between the Sun and Mercury at 15-45 Rs (4-12° solar elongation). Close proximity to the Sun, plus their small theoretical sizes, make Vulcanoid searches rare and difficult. The 2017 eclipse was a rare opportunity to search for Vulcanoids. If discovered these unique, highly refractory and primordial bodies would have a significant impact on our understanding of solar system formation. Only a handful of deep searches have been conducted. Our observations will only be the second time ever a search for Vulcanoids will have been conducted in the NIR. In this presentation, I will review our NASA flight program, and focus on the planetary science observations that came from the Great American Eclipse of 2017.
In recent years, a new class of enclosed, closed-path gas analyzers suitable for eddy covariance applications has come to market, designed to combine the advantages of traditional closed-path systems (small density corrections, good performance in poor weather) and open-path syst...
NASA Technical Reports Server (NTRS)
Ng, Hok K.; Grabbe, Shon; Mukherjee, Avijit
2010-01-01
The optimization of traffic flows in congested airspace with varying convective weather is a challenging problem. One approach is to generate shortest routes between origins and destinations while meeting airspace capacity constraint in the presence of uncertainties, such as weather and airspace demand. This study focuses on development of an optimal flight path search algorithm that optimizes national airspace system throughput and efficiency in the presence of uncertainties. The algorithm is based on dynamic programming and utilizes the predicted probability that an aircraft will deviate around convective weather. It is shown that the running time of the algorithm increases linearly with the total number of links between all stages. The optimal routes minimize a combination of fuel cost and expected cost of route deviation due to convective weather. They are considered as alternatives to the set of coded departure routes which are predefined by FAA to reroute pre-departure flights around weather or air traffic constraints. A formula, which calculates predicted probability of deviation from a given flight path, is also derived. The predicted probability of deviation is calculated for all path candidates. Routes with the best probability are selected as optimal. The predicted probability of deviation serves as a computable measure of reliability in pre-departure rerouting. The algorithm can also be extended to automatically adjust its design parameters to satisfy the desired level of reliability.
STRUCTURE AND DYNAMICS OF THE 2012 NOVEMBER 13/14 ECLIPSE WHITE-LIGHT CORONA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasachoff, J. M.; Rušin, V.; Saniga, M.
2015-02-20
Continuing our series of observations of coronal motion and dynamics over the solar-activity cycle, we observed from sites in Queensland, Australia, during the 2012 November 13 (UT)/14 (local time) total solar eclipse. The corona took the low-ellipticity shape typical of solar maximum (flattening index ε = 0.01), a change from the composite coronal images we observed and analyzed in this journal and elsewhere for the 2006 and 2008-2010 eclipses. After crossing the northeast Australian coast, the path of totality was over the ocean, so further totality was seen only by shipborne observers. Our results include velocities of a coronal massmore » ejection (CME; during the 36 minutes of passage from the Queensland coast to a ship north of New Zealand, we measured 413 km s{sup –1}) and we analyze its dynamics. We discuss the shapes and positions of several types of coronal features seen on our higher-resolution composite Queensland coronal images, including many helmet streamers, very faint bright and dark loops at the bases of helmet streamers, voids, and radially oriented thin streamers. We compare our eclipse observations with models of the magnetic field, confirming the validity of the predictions, and relate the eclipse phenomenology seen with the near-simultaneous images from NASA's Solar Dynamics Observatory (SDO/AIA), NASA's Extreme Ultraviolet Imager on Solar Terrestrial Relations Observatory, ESA/Royal Observatory of Belgium's Sun Watcher with Active Pixels and Image Processing (SWAP) on PROBA2, and Naval Research Laboratory's Large Angle and Spectrometric Coronagraph Experiment on ESA's Solar and Heliospheric Observatory. For example, the southeastern CME is related to the solar flare whose origin we trace with a SWAP series of images.« less
The profile algorithm for microwave delay estimation from water vapor radiometer data
NASA Technical Reports Server (NTRS)
Robinson, Steven E.
1988-01-01
A new algorithm has been developed for the estimation of tropospheric microwave path delays from water vapor radiometer (WVR) data, which does not require site and weather dependent empirical parameters to produce accuracy better than 0.3 cm of delay. Instead of taking the conventional linear approach, the new algorithm first uses the observables with an emission model to determine an approximate form of the vertical water vapor distribution, which is then explicitly integrated to estimate wet path delays in a second step. The intrinsic accuracy of this algorithm, excluding uncertainties caused by the radiometers and the emission model, has been examined for two channel WVR data using path delays and corresponding simulated observables computed from archived radiosonde data. It is found that annual rms errors for a wide range of sites average 0.18 cm in the absence of clouds, 0.22 cm in cloudy weather, and 0.19 cm overall. In clear weather, the new algorithm's accuracy is comparable to the best that can be obtained from conventional linear algorithms, while in cloudy weather it offers a 35 percent improvement.
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] 'Mars-shine' Composite NASA's Mars Exploration Rover Spirit continues to take advantage of favorable solar power conditions to conduct occasional nighttime astronomical observations from the summit region of 'Husband Hill.' Spirit has been observing the martian moons Phobos and Deimos to learn more about their orbits and surface properties. This has included observing eclipses. On Earth, a solar eclipse occurs when the Moon's orbit takes it exactly between the Sun and Earth, casting parts of Earth into shadow. A lunar eclipse occurs when the Earth is exactly between the Sun and the Moon, casting the Moon into shadow and often giving it a ghostly orange-reddish color. This color is created by sunlight reflected through Earth's atmosphere into the shadowed region. The primary difference between terrestrial and martian eclipses is that Mars' moons are too small to completely block the Sun from view during solar eclipses. Recently, Spirit observed a 'lunar' eclipse on Mars. Phobos, the larger of the two martian moons, was photographed while slipping into the shadow of Mars. Jim Bell, the astronomer in charge of the rover's panoramic camera (Pancam), suggested calling it a 'Phobal' eclipse rather than a lunar eclipse as a way of identifying which of the dozens of moons in our solar system was being cast into shadow. With the help of the Jet Propulsion Laboratory's navigation team, the Pancam team planned instructions to Spirit for acquiring the views shown here of Phobos as it entered into a lunar eclipse on the evening of the rover's 639th martian day, or sol (Oct. 20, 2005) on Mars. This image is a time-lapse composite of eight Pancam images of Phobos moving across the martian sky. The entire eclipse lasted more than 26 minutes, but Spirit was able to observe only in the first 15 minutes. During the time closest to the shadow crossing, Spirit's cameras were programmed to take images every 10 seconds. In the first three images, Phobos was in sunlight, moving toward the upper right. After a 100-second delay while Spirit's computer processed the first three images, the rover then took the fourth image, showing Phobos just starting to enter the darkness of the martian shadow. At that point, an observer sitting on Phobos and looking back toward the Sun would have seen a spectacular sunset! In the fifth image, Phobos appeared like a crescent, almost completely shrouded in darkness. In the last three images, Phobos had slipped entirely into the shadow of Mars. However, as with our own Moon during lunar eclipses on Earth, it was not entirely dark. The small amount of light still visible from Phobos is a kind of 'Mars-shine' -- sunlight reflected through Mars' atmosphere and into the shadowed region. Rover scientists took some images later in the sequence to try to figure out if this 'Mars-shine' made Phobos colorful while in eclipse, but they'll need more time to complete the analysis because the signal levels are so low. Meanwhile, they will use the information on the timing of the eclipse to refine the orbital path of Phobos. The precise position of Phobos will be important to any future spacecraft taking detailed pictures of the moon or landing on its surface. In the near future it might be possible for one of the rovers to take images of a 'Deimal' eclipse to learn more about Mars' other enigmatic satellite, Deimos, as well.Three Dimensional Lightning Launch Commit Criteria Visualization Tool
NASA Technical Reports Server (NTRS)
Bauman, William H., III
2014-01-01
Lightning occurrence too close to a NASA LSP or future SLS program launch vehicle in flight would have disastrous results. The sensitive electronics on the vehicle could be damaged to the point of causing an anomalous flight path and ultimate destruction of the vehicle and payload.According to 45th Weather Squadron (45 WS) Lightning Launch Commit Criteria (LLCC), a vehicle cannot launch if lightning is within 10 NM of its pre-determined flight path. The 45 WS Launch Weather Officers (LWOs) evaluate this LLCC for their launch customers to ensure the safety of the vehicle in flight. Currently, the LWOs conduct a subjective analysis of the distance between lightning and the flight path using data from different display systems. A 3-D display in which the lightning data and flight path are together would greatly reduce the ambiguity in evaluating this LLCC. It would give the LWOs and launch directors more confidence in whether a GO or NO GO for launch should be issued. When lightning appears close to the path, the LWOs likely err on the side of conservatism and deem the lightning to be within 10 NM. This would cause a costly delay or scrub. If the LWOs can determine with a strong level of certainty that the lightning is beyond 10 NM, launch availability would increase without compromising safety of the vehicle, payload or, in the future, astronauts.The AMU was tasked to conduct a market research of commercial, government, and open source software that might be able to ingest and display the 3-D lightning data from the KSC Lightning Mapping Array (LMA), the 45th Space Wing Weather Surveillance Radar (WSR), the National Weather Service in Melbourne Weather Surveillance Radar 1988 Doppler (WSR-88D), and the vehicle flight path data so that all can be visualized together. To accomplish this, the AMU conducted Internet searches for potential software candidates and interviewed software developers.None of the available off-the-shelf software had a 3-D capability that could display all of the data in a single visualization. The AMU determined there are two viable software packages that could satisfy the 45 WS requirement with further development and recommends the KSC Weather Office follow-up with both organizations to request development costs.
Towards a More Accurate Solar Power Forecast By Improving NWP Model Physics
NASA Astrophysics Data System (ADS)
Köhler, C.; Lee, D.; Steiner, A.; Ritter, B.
2014-12-01
The growing importance and successive expansion of renewable energies raise new challenges for decision makers, transmission system operators, scientists and many more. In this interdisciplinary field, the role of Numerical Weather Prediction (NWP) is to reduce the uncertainties associated with the large share of weather-dependent power sources. Precise power forecast, well-timed energy trading on the stock market, and electrical grid stability can be maintained. The research project EWeLiNE is a collaboration of the German Weather Service (DWD), the Fraunhofer Institute (IWES) and three German transmission system operators (TSOs). Together, wind and photovoltaic (PV) power forecasts shall be improved by combining optimized NWP and enhanced power forecast models. The conducted work focuses on the identification of critical weather situations and the associated errors in the German regional NWP model COSMO-DE. Not only the representation of the model cloud characteristics, but also special events like Sahara dust over Germany and the solar eclipse in 2015 are treated and their effect on solar power accounted for. An overview of the EWeLiNE project and results of the ongoing research will be presented.
Two Eclipses, a Theory, and a World War
NASA Astrophysics Data System (ADS)
Batten, Alan H.
2015-01-01
Both the beginning and ending of World War I were signalled by total solar eclipses at which attempts were made to measure the deflection, predicted by Albert Einstein, of starlight passing close to the Sun. An American team led by W. W. Campbell and a German team led by E. F. Freundlich travelled to Russia to observe the eclipse of 1914 August 21. The Americans were foiled by the weather, and the Germans were interned as enemy aliens, so no successful measurements were made. British astronomers, led by A. S. Eddington, mounted two expeditions to observe the eclipse of 1919 May 29, one to Brazil, the other, with Eddington personally in charge, to an island off the west coast of Africa. The results, presented with much fanfare, appeared to constitute a spectacular confirmation of general relativity, although much debate surrounded the observations and their interpretation in later decades. The stories of Freundlich and Eddington intertwine not only with controversial questions about how best to make and to reduce the observations, but also with attitudes toward the war, notably the extreme anti-German sentiment that pervaded the countries of the western alliance, contrasted with the Quaker pacifism of Eddington himself; and also with differing attitudes to relativity among European and American astronomers. Eddington later played a role in bringing Freundlich to the United Kingdom after the rise of Hitler and the Nazis. Ironically, in later life, Freundlich became increasingly sceptical of general relativity and proposed a theory of proton-proton interaction to account for the cosmological red-shifts.
K. Novick; J. Walker; W.S. Chan; A. Schmidt; C. Sobek; J.M. Vose
2013-01-01
A new class of enclosed path gas analyzers suitable for eddy covariance applications combines the advantages of traditional closed-path systems (small density corrections, good performance in poor weather) and open-path systems (good spectral response, low power requirements), and permits estimates of instantaneous gas mixing ratio. Here, the extent to which these...
2016-05-11
new physically -based prediction models for all-weather path attenuation estimation at Ka, V and W band from multi- channel microwave radiometric data...of new physically -based prediction models for all-weather path attenuation estimation at Ka, V and W band from multi- channel microwave radiometric...the medium behavior at these frequency bands from both a physical and a statistical point of view (e.g., [5]-[7]). However, these campaigns are
Ep7_Total Eclipse over America
2017-08-18
>> Houston, we have a podcast. Welcome to the official podcast of the nasa johnson space center, episode 7: total eclipse over america. I m gary jordan and i ll be your host today. So this is the podcast where we bring in the experts-- nasa scientists, engineers, astronauts-- all to tell you the coolest stuff about nasa. So today we re talking about eclipses with mark matney. He s a space debris scientist here at the nasa johnson space center in houston texas, and he also has degrees in astronomy and space physics, and is an avid eclipse aficionado. We had a great discussion about what an eclipse is, some of the history of eclipses, and some of the science that we ve learned and continue to learn from them. This is an exciting conversation, especially because on august 21, 2017, a total solar eclipse will sweep across america. Mark and i talked about where the eclipse will pass through and how you ll be able to see it. They don t happen very often-- the last time a total solar eclipse happened over the states was back in 1991, and we won t see another until 2024. Anyway, we ll get into all that good stuff during this episode. So with no further delay, let s go light speed and jump right ahead to our talk with dr. Mark matney. Enjoy. [ Music ] >> t minus five seconds and counting. Mark. [ Indistinct radio chatter ] >> houston, we have a podcast. [ Music ] >> all right, well, mark, thank you for coming on the podcast today. Perfect timing, because very soon we re going to have a total solar eclipse that s going to pass over the united states. And so i think this is a good chance for us to sit down and talk about eclipses. And you went above and beyond for this one, mark, because you have a lot of different things. I mean, we re talking a lot of science, we re talking a long and detailed history of eclipses. You know, this is not just a, ooh, look at that. Pretty eclipse. No, nasa s going all out for this-- is that fair to say? >> Well, i think this is-- i mean, eclipses have been part of human history as far back as we can record. People have been fascinated, scared, terrified by eclipses. >> Oh, sure. >> And a lot of important scientific discoveries have been driven by eclipses. I think today-- we re doing some science today, but much of the important science was done in the past. But this kind of links us in some sort of way to those early scientists who were trying to puzzle out the mysteries of the universe by using this amazing sight in the sky. So we have some science that s going on, we have some citizen science that s going on, and there s going to be a whole lot of people traveling to see this eclipse. In fact, i was reading that this eclipse is the first cross continent eclipse across the united states since the interstate system was built. >> Oh, wow. >> And so we might see one of the largest migrations of americans in a short period of time that we ve ever seen. [ Laughter ] because there s going to be a lot of people, perhaps tens of millions of people, traveling to see this eclipse. >> That s very true, and they re all going to be, i mean, closer to that nice, thin line-- we re talking about that path of totality, and we ll get into that really shortly, but you know, let s go and start at the very beginning, right? So we re talking about a total solar eclipse-- this is great-- passing over the united states. But what is that? What is a total solar eclipse? >> So a total eclipse is when the disk of the sun is completely covered by the moon. So the moon s size is maybe slightly larger than the sun, so we can get complete coverage. This particular eclipse is going to be about two and a half minutes of totality. Some eclipses are as high as seven minutes. Some of them are just a few seconds. >> And it s just the way things are aligning? >> Well, it turns out that the moon is actually not on a perfectly circular orbit. It s in a slightly elliptical orbit. So sometimes it s a little closer, and sometimes it s a little farther. >> Oh, i see. >> And so [ indistinct ] a little farther, it doesn t quite cover the surface of the sun. And what you end up with is a narrow ring all around. That s called an annular eclipse. And if the moon s a little larger-- in other words, a little closer, it appears a little larger in the sky, you get a total eclipse. And sometimes we actually have what s called a hybrid eclipse where you get an annular eclipse, but the mountains on the moon make it so it s actually a broken ring in the sky. It s so close, because actually, the mountains peeking up cover part of that sun ring. >> So can you see some of the sun peeking through those alleys, i guess? >> That s right, yes. >> Oh, interesting. >> And then that one, turns out if you could get higher in the altitude, in a balloon or plane, you might see a total eclipse in those kinds. But that s a special kind of eclipse that s actually quite rare. >> Wow. >> And then we also have a partial eclipse, and that s what-- it turns out this eclipse is interesting-- as far as i can tell, anyone in any of the 50 united states-- weather permitting-- should be able to see a partial eclipse, including alaska and hawaii. The partial eclipse is where the disk of the moon covers part of the sun but doesn t actually get to-- it s off to one side. >> Okay. >> And so you-- we re going to get a pretty good partial eclipse here from houston, but i think everybody, like i said, somewhere in the united states, one of the 50 states, should be able to see a partial eclipse. >> That ll be cool. >> So by the way, it s august 21st-- we didn t say the date. >> Yeah, so august 21st. And this will come out august 18th, so this ll be like-- >> oh, okay-- perfect. >> This ll be right next to it, yeah, absolutely. So a partial eclipse-- is there-- how-- is there a way that is very apparent to observe that? Like, will the sky get a little bit darker, or-- >> it depends on the percentage. When it s like about 50%, it s hard to notice. But once you get on to 60, 70, 80, 90%, the sky takes on an unusual color. And in fact, that s one of the things i m going to recommend eclipse observers-- just kind of note how the sky changes color, because it s a very interesting phenomenon. >> Yeah. >> But unless it s really-- in ancient times, people did not even notice a partial eclipse unless it was like 80, 90% because they started to see the sun dim, and they would look up at the sun and see there was no longer a disk in the sky. >> Wow. Okay, so from here in houston, what are we expecting percentage-wise? >> Well, i tried-- it s about somewhere around 70%. I don t know the exact area, but there s several tables. Also, that s another thing, is where you are, where the maximum eclipse changes on the clock. So there are computer resources where you can look and put in your location or your city and find out when the maximum eclipse is and how much. >> Oh, okay. Very cool. That s a lot of good stuff. All right, so that s 70%. We ll be able to see-- >> something like 70, yeah. >> A somewhat noticeable change in the sky, then, at least here from houston. That s really cool. So yeah, you said total versus partial. This is the solar eclipse, though, right? >> Right. >> This is when the moon is going in between the earth and the sun. >> Right. >> Like you said, they re relatively the same size in the sky, just based on distance and size, and so it only blocks off this tiny little strip of shadow that s going to go across the united states. And it goes-- you said it happens quite often, but just i guess at different parts of the world. >> Correct. >> It just so happens that it s going to line up this time going from coast to coast. >> And sometimes it s an annular, and sometimes-- but it turns out we get from three to five eclipses, solar eclipses, every year. >> Oh, okay. >> Which is actually kind of surprising. >> We meaning the earth. >> Someone on the earth, in other words, can see an eclipse. We actually have fewer-- there s another kind of eclipse called a lunar eclipse, and the lunar eclipse is when the earth gets between the moon and the sun. >> Right. >> And so as the moon moves into the shadow, it starts to turn dark, and sometimes has an interesting red color. >> Yeah. >> It turns out there are actually fewer of those than solar eclipses. >> Really? >> But because a whole hemisphere can see it, they re much-- you can see them much more often than solar eclipses. >> Oh, that-- okay. >> Because you re looking up in the sky and seeing the moon eclipse, so anybody on that side of the earth can see it-- weather permitting, of course. >> Wow. Why is it that color, though? >> Well, that s an interesting phenomenon. As you know, the sky is blue from the scattering of particles in the atmosphere-- it scatters the blue light. But the red is transmitted just like we see in a red sunset. Well, the earth s atmosphere actually refracts the red light, and so if you were standing on the moon during a lunar eclipse, the earth, of course, would block the sun, but you would see this red ring around the earth, which is the atmosphere refracting the light of the sun. >> So that s the red ring of the earth refracting off the surface of the moon? >> No, no, it s-- the light is coming through the atmosphere and refracting slightly to your position on the moon. >> Oh. >> So you would see this narrow, narrow red glowing ring around the earth. >> Oh, wow. >> So it s-- but of course, no one s ever seen that. >> Yeah. >> Maybe someday when we have a base on the moon. >> Oh, and so wait-- okay, so this is assuming that-- yeah, you re assuming that you are an observer on the moon. >> You re an astronaut standing on the moon, right. >> I see, and there s a red ring. So what about the lunar eclipse-- the perception from the earth? Doesn t a lunar eclipse-- the moon looks a little orange? >> Yeah, it s orange-ish, sometimes. It actually depends on-- it depends on what s happening in the atmosphere. >> Oh, okay. >> For instance, i saw an eclipse in 1982. We were expecting the red moon, but in fact, the moon looked charcoal gray. And that was right after the el chichon volcano in mexico erupted. And so the dust from the volcano had changed the dust in the atmosphere, so we didn t get much red. >> Oh. >> So it actually-- you never know what you re going to see when you see a lunar eclipse, but they re often red. And again, that s the red light that is bent by the earth s atmosphere and shines on the moon. >> Yeah, and it s reflecting-- interesting. So it s all entirely about perception, then, it s about the-- so you re a person on the earth, and this is what you perceive from the perspective of earth. If you were outside floating millions of miles away just observing it from afar, it would just look like the earth and the moon-- the moon wouldn t look a certain color. >> Well, you could see the color, because it s lit up with that color. Let me-- let s change it around. Let s say you were on the moon looking at the earth during a solar eclipse. And we have some photographs from the iss of previous eclipses, and you actually see a-- you can actually see the dark shadow. You can t see the sharp edge of the shadow, but you see this fuzzy black thing on the surface of the earth. And so you would see-- but instead of being the whole earth swallowed up, you just see this black fuzzy spot moving across the earth from space. >> Interesting. >> So hopefully-- it depends on where the iss will be at the time of the eclipse, but hopefully they ll be able to photograph it from-- they probably will not be in the eclipse path, but they could look down on the earth and see the shadow, hopefully, of the eclipse. >> Yeah, i think-- i think they are predicting that the iss is going to be somewhere over canada but will have a nice view of the states whenever it s actually the solar eclipse. >> It would be very, very coincidental if we happened to fly through the shadow, because the shadow is very narrow. It could happen, but i mean-- >> the odds are against us. >> The odds are against us. So a lunar eclipse happens at the full moon. >> Okay. >> When, of course, the sun is on the other side of the earth and the moon is-- if you re standing on the earth, the sun is behind you, because it s nighttime, and you see the-- and a solar eclipse happens at a new moon, when the moon is-- you can t really see it in the sky, because you re seeing the dark side of the moon. >> So you ll never see a crescent moon in a lunar eclipse? >> No, no, it s definitely a full moon, so as full as it gets. Another thing is lunar and solar eclipses are often paired, because that tilt of the moon s orbit, the point when it crosses the earth-sun orbit plane, is on both sides. And so usually we get an accompanying lunar eclipse with a solar eclipse. And in fact, the accompanying lunar eclipse for this eclipse is on august 7th, and will be visible from europe, africa, asia, and australia. >> Oh, okay. Well, there you go. >> Or was visible, i guess. >> August 7th, yeah. I guess-- aw. >> You want me to say that again? [ Laughter ] >> if we could go back in time okay, so i mean, that s kind of from the perspective of earth, right? We ve got solar eclipses, and when the moon is in between us here on earth and the sun, and then the opposite for the lunar eclipse. In general, if you had to give like a general overview, where else in the universe do eclipses happen? >> Everywhere. >> How about that. >> Anywhere where you have bodies moving around, one will often eclipse the view of another. But usually, what you-- you won t get to see the amazing sight on earth, because it s very rare that the object eclipsing looks in the sky the same size as the sun. >> Oh. >> So we know, for instance, there are eclipses caused by jupiter s moons as it orbits jupiter, and you can see the shadow on the surface of jupiter-- or the clouds, actually, of jupiter. >> Right. >> And in fact, there was a fellow named ole r mer-- if i m pronouncing correctly-- back in the 1600s that first detected the finite speed of light by looking at the timing of those eclipses on jupiter. So that s one of those science things that eclipses have allowed us to do. >> That s amazing-- just by looking at shadows across the universe, you can get all this crazy science. >> And sometimes-- i know we ve done occultations of stars, where a planet moves between us and the starlight of a star, and by measuring that star, we ve seen, like-- we ve found the rings of uranus, as the star would twinkle or would blink out just before uranus crossed the star. >> Oh. >> So you can actually do things like look for difficult to see rings, or also, as the light comes through the atmosphere, sometimes you can see the absorption of different chemicals in the atmosphere of the planet. >> And then understand the composition of the planet itself. >> Exactly. >> That s amazing. >> Let me add one thing we hadn t talked about. >> Yeah, sure. >> I found an interesting statistic, and it said that if you picked a random spot on the earth and you just stayed right there, you would see a solar eclipse about once every 375 years, on average. >> Okay, so you should move a little bit. >> Yeah, well-- you re not following. [ Laughter ] so during a normal person s long lifetime-- say, 70 years-- we re looking at a 20-25% chance that you would sometime in your lifetime see an eclipse, a total eclipse of the sun. So yes, it s rare, but not totally unknown. >> Yeah. >> So i just know that one never comes by my house, so i have to go chase it down. [ Laughter ] >> well, that s the great thing, is we have nasa-- we folks at nasa are actually looking at this stuff and making predictions. We know exactly where it s going to be on august 21st. >> That s correct, that s right. >> Yeah, so that kind of will help you see it a little bit, too. [ Laughter ] i think one of my favorites, though, when it comes to eclipses across the universe, is kepler, right? So if you think about-- you said occultations as one of them. That s when something passes in front of a star and changes the light that we re receiving. >> Right. >> That s how we are detecting planets outside of our solar system, correct? >> That s correct, yeah. The kepler mission is looking at a large group of stars and monitoring them constantly. And it has very, very sensitive instruments, so they can look at very small dips in the light as a planet-- a previously unknown planet-- transits the face of that star. And we ve been able-- and when they see them repeating, they can work out the relative sizes of the planets and their period, and work out where they are in orbit around that star. And we ve seen-- i don t know what the count is-- a thousand? >> Yeah, yeah. We keep finding more and more. >> There s a bunch of them. So this is actually one of the most interesting discoveries, i think, astronomers have made in the last several years, is that our galaxy is full of stars with planets. And it s pretty exciting-- it s kind of star trek stuff. >> It is! Especially just recently, the discovery of the trappist-1 system. >> Yes, indeed. >> And those-- we re talking about earth-like planets, and some of which are in what we like to call the goldilocks zone, right? >> That s right. >> And that s-- you know, water doesn t freeze, it doesn t-- >> that s right, it s not too hot, not too cold. >> Not too cold, right, and liquid water can exist. And that s conditions for life, and it s very exciting. >> It is. >> That s what we re looking for, right-- life outside of the universe. >> And i ll also mention we also have transits here, just like what we see with kepler, of the planets mercury and venus, which are inside the orbit of earth. And we recently had a venus transit visible from the us. >> Yeah, 2012, right?? >> That s right, i think it was 2012. And i ve also seen mercury transits as well. Those have an interesting history, because scientists in the 18th century were trying-- they d figured out the relative distance to the different planets, but they didn t know an absolute distance. And they were actually going to use different observers on the earth to measure the transit of venus to try and get an absolute scale. And so that was the cutting edge science in the 18th century. >> Wow. [ Laughter ] >> but so that s another point where transits and eclipses have been an important part of the history of science. >> Amazing. I mean, that s kind of a big theme here, right, especially for eclipses, is the science that we can get from observing these phenomena. >> That s right. >> So i mean, from here on the ground, what are some of the things that we can learn-- and i guess in the instance of a solar eclipse, but you know, eclipses in general-- what are some of the things that we can learn from studying these? >> Well, let s kind of go through some of the discoveries that were made with eclipses. >> Sure. >> So from ecl-- we all look up at the sun and see a bright disk. That s called the photosphere. It s very, very bright, and we ll talk about that a little bit. That s the part we re familiar with. It s about 10,000 degrees fahrenheit-- it s nice and hot. But during eclipses, astronomers notice some red layer-- a thin red layer around the sun. And that s known as the chromosphere. And that was discovered by eclipses, and it turns out chromosphere is due to emissions from atomic hydrogen in the sun s atmosphere. >> Okay. >> And so if you-- the soho spacecraft sometimes show-- i mean-- the soho spacecraft show-- is constantly monitoring the sun. And one of its instruments is a hydrogen alpha filter, and you can see what that chromosphere looks like. It s a very thin layer of the sun, again, that we discovered by looking at eclipses. The next section-- oh, by the way, some scientists-- in 1868, there was a new instrument that was developed called the spectroscope. And the spectroscope splits light into its component colors. And they had discovered that there were specific lines, almost like a fingerprint, that defined-- that were unique to each chemical, to each chemical element. >> Okay. >> And so there were-- some scientists were very excited to use the spectroscope to look at the eclipse. And in the chromosphere, they saw some lines from an element that they had never seen before. And they couldn t figure out what it was. So one of the scientists named it after the greek word for the sun-- helios. They named it helium. >> Oh! [ Laughter ] >> and it was several decades before helium was finally isolated and studied on the earth, but it was first discovered in the sun s atmosphere. >> How about that. That s-- is it called spectroscopy? >> Spectroscopy, yeah. They use a spectroscope for spectroscopy. >> Yeah, yeah, and studying the-- i guess there s little gaps in the light, and they look like gaps in the-- >> sometimes there s bright lines, sometimes there s dark lines. >> Okay. >> It depends on the situation. But the point is these lines are like a fingerprint. And that s how we understand the components of stars millions of lightyears away. We can-- >> so you said photosphere, and then you discovered the chromosphere, right? >> Chromosphere. >> So what s the difference between those? >> Well, the chromosphere is actually a very thin layer-- it s actually-- starts as cooler than the photosphere, and then it heats up again. >> Ooh. >> Solar astronomers are always trying to figure out the exact details, but what gets interesting is when you look up at the eclipse when it s total eclipse, there s what looks like a halo, or a garland, or a crown around it, and that s called the corona. So the chromosphere s a transition between the hot photosphere and the much hotter corona. And the corona is up to-- it s more than 100 times hotter than the photosphere. It s very, very hot. >> Wow. >> And that s, like i said, this halo that you see around the sun. That is actually very important-- to monitor that part of the sun-- in predicting solar storms. >> Oh. >> And solar storms affect things like satellites and our communication and our power systems. And so there are solar astronomers who are constantly monitoring the sun looking for these types of solar storms. But the corona was discovered by looking at eclipses. >> Wow. >> And in fact, it s so important that we ve launched satellites that create artificial eclipses. They put a little obstacle in the way so that we can monitor the chromosphere-- i m sorry, the corona-- at all times. >> So i guess, are they hard to predict, solar storms? >> They re getting better at it. The big thing is they need to be able to see on the far side of the sun. So we ve actually launched a couple of spacecraft called stereo, and they re now on the far side of the sun-- not totally-- they re part way around the earth s orbit, but they can see the other parts of the sun, and we can see storms developing as the sun rotates around. The sun actually rotates, also. >> Wow. So what happens if-- say there s an instance, if there s a solar storm, and it does disrupt satellite communications coverage, whatever it is. What can we expect if that were to happen? Are you talking about cell phones? Are you talking about-- what would happen here on earth? >> Well, one of the worst things we re worried about is a really, really big solar storm which could knock out power grids in certain areas. >> Wow. >> And so you could actually have power outages. >> That s heavy. >> But usually satellites, they put them in safe mode. But it can damage satellites. And as you know, telecommunications is a multi-million dollar business. >> Right. >> So there s a lot of interest in solar storms. >> But they have a safe mode to-- >> yep, that s right. >> That s amazing, okay. So they just put it in there if they see something bad coming. >> It s still dangerous, but they can put it in a safer mode. [ Laughter ] one other thing that was observed during eclipses is there s sometimes these little arcs-- they re not little-- they re bigger than the earth, but these little arcs of plasma jutting off the sun. And you ve probably seen pictures of them. They look like arches or flames coming off the sun. >> Yeah. >> They re called prominences, and they re plasma in the strong magnetic field of the sun moving through the atmosphere. And they re really quite spectacular. >> Yeah, i ve seen some images and videos of them-- they really are. It s amazing. >> Again, those were discovered by eclipses. And i ll tell you another set of experiments. It turned out that by the mid 1800s, scientists had started working out the mathematics of planets, and had noticed when a planet gets perturbed and sort of gets nudged a little bit, they said, well, that must mean another planet that s tugging on it with its gravity. And that s how neptune was discovered. They saw the perturbation in the motion of uranus. And they noticed that there was a slight perturbation in the orbit of mercury. So scientists began speculating that that was due to another planet even closer in to the sun, which they nicknamed vulcan. So what happened was they then sent-- in the 1860s and 1870s, scientists deployed around the world for some eclipses to try and look for vulcan. And they didn t find anything, which puzzled them. They looked at multiple eclipses, multiple times-- no vulcan. But in 1915, albert einstein began publishing-- began communicating his work on the general theory of relativity. And einstein had postulated that gravity is caused by the bending of spacetime. And one of his-- one of his-- one of the predictions of his theory was that you would see this perturbation of the orbit of mercury. So he explained that with his general theory of relativity. But another prediction was that this bending of spacetime would actually bend light. So he showed why there wasn t a vulcan, but then he said, if you look at an eclipse of the sun, and look at the light of stars very, very close to the disk of the sun, you should be able to see the light bent in a way that it displaces the apparent position of the star. In 1919, arthur eddington, the british astronomer, deployed for an eclipse out on an island in the atlantic ocean. And they actually measured this slight change in the apparent position of the stars. And it was a huge event, because when einstein postulated his theory of general relativity, it was crazy. It was overturning newton. And here they actually-- his prediction turned true, and that s sort of what propelled einstein into his fame, was that discovery. So that was perhaps the most important scientific discovery ever during an eclipse, was showing how the light of stars is bent by the presence of the mass of the sun. >> And that-- so it was just the mass of the sun. >> That's right. >> And there was no vulcan. >> No vulcan. [ Laughter ] although, there are two eclipse stories related, sort of quasi-related to the same thing there. >> But everything comes together, right? That s why we re-- like, going back to the general theme here, a lot of science to learn from eclipses. >> A lot of science. Let me talk about a couple things that are going on with the science this time around. >> Okay. >> We have one group that s going to have a series of telescopic cameras set up along the eclipse path. And they re going to try and take video of the inner corona, which is very difficult to see except during the eclipse. And the idea is one camera will record a little segment of the inner corona, and the next camera will record the next segment, and they can stitch them together and have a rather extended video of the corona. >> Oh. >> So for scientists who study the interaction of the corona. Another one is some other scientists are going to be studying the polarization. Some light is polarized in different directions that tells us information about the magnetic fields and other things. But they re going to be looking at the spectrum and the polarization of the-- again, the inner corona, which is difficult to measure in other ways, because it s difficult to get so close-- to measure such dim phenomena so close to the disk of the sun. >> And this is-- going back, i m sorry-- you might ve already addressed this, but these are nasa telescopes, or these are others? >> It s a variety of-- nasa s cooperating on some of these, and some of them are universities, and some of them are amateur. So it s actually a whole team of different kinds of people. >> Wow, okay. >> Nasa s helping to coordinate some of these. >> Yeah, all working together, okay. Cool. >> We ve got another group that are actually going to repeat the general theory of relativity experiment with some more modern digital equipment with more sensitive cameras to look for some very dim stars, again, to try and fine tune those measurements to see how close einstein got to the prediction. >> Wow. >> And then, we also have some radio enthusiasts who are-- during the daylight, the sun ionizes gas in the upper atmosphere and we have an ionosphere. And it, both enhances and sometimes interferes with radio communications. So these scientists are going to look at how the ionosphere changes as the sun gets eclipsed, and the sunlight starts to drop off, and then go back up again. So, they re going to observe how the ionosphere changes. >> Interesting. >> So lots of interesting experiments. And of course-- and many of these are by these amatuer citizen scientists, which is kind of a fun thing, too. >> Yeah, absolutely. So, we re measuring the earth s atmosphere, we re measuring a lot of about the sun. >> Mm-hmm. >> I know out of here, the wb-57, those high altitude planes, they re going to be flying above most of the atmosphere, about 90% of it, and they re going to take a look at the sun and study the sun s corona. >> Yeah, a bit. >> And measure how energy goes through the sun s atmosphere, but then also take a look at mercury. >> Oh, that s right. >> Yeah. >> I wanted to tell you, when you see the eclipse you will see a number of planets visible in the sky. >> Oh. >> So, if you get a chance, you ll see stars. Venus is off to the west, mars is even closer. It s-- venus is about 35 degrees to the west, mars is about 10 degrees to the west, mercury s about 10 degrees to the east, and jupiter s way over on the other side of the sky at 60 degrees to the east. And the star, regulus, which is a bright star, will be about 5 degrees to the east of the sun, so you can see if you can see that. >> And this will happen during totality, right? >> During totality, because the stars will come out. >> Wow, amazing. So you ll be able to see all of these, and you re talking about from the perspective if you re looking up and-- the sun-- >> right. >> Once it goes to totality-- and we can get to safety in a minute, but i do know, once it gets to totality you can take off your glasses for about that two minutes, right? >> That s right. Yeah. >> And then, that s when you ll be able to see all those different parts. >> Yes. >> That s really cool. >> Yeah, that s it. Let s talk a little about the history, because there s some interesting history, of course. >> Sure, yeah. >> The most famous story, which is probably legendary, but the story about a chinese astronomer, or possibly two chinese astronomers, named xi he, who was hired by the king. He was the high astronomer, the head astronomer. >> Mm-hmm. >> To make predictions about primarily with astrology to make sure that nothing bad was going to happen to the king. Well, apparently there was a solar eclipse he did not predict. >> Oh. >> And apparently, he had had a little too much to drink and he wasn t on the job when the time came. >> Oh. >> And the chinese actually thought, and a lot of ancient cultures thought, that something bad was happening. The chinese thought a dragon was swallowing the sun, and they would bang on pots and pans to scare the dragon away. And that s actually still practiced in many parts of the world, the bang on pots and pans. >> Yeah, they don t know the-- like, the science behind this total solar eclipse, so they re-- >> that s right. >> Yeah, right, go ahead. >> I think part of this tradition is passed on. >> Yeah, tradition, yeah. >> Well, unfortunately, this poor chinese astronomer that didn t do his job, he got executed. >> Oh. >> So, fortunately, we don t hold our scientists to this same level there. >> I m very thankful of that. >> Yes. >> I m sure we are. Yeah. >> But, lots of ancient people were scared of eclipses because they thought they-- i mean, it s a very amazing thing to happen in the sky and they were worried about it. It s warning of some tragedy. >> Mm-hmm. >> So early scientists in multiple cultures-- the mayans, the babylonians, the chinese-- studied eclipses and tried to understand and predict when they would occur. It turned out there was a greek by the name of thales who predicted an eclipse in 585 b.c. And this was recorded and the greek historian, herodotus, there was a big battle going on between two countries. There were the medes and the lydians, in what s now turkey. >> Hmm. >> And there was a war going on and they had lined up for battle. And they were about to do battle and suddenly there was a solar eclipse. >> Oh. >> Os, needless to say, the two generals met in the middle of the field and said, maybe we ought not to fight today. And so they drew up a peace treaty and those two countries never fought again. So just a-- >> all right. So an example of solar eclipse saving lives. >> That s right. Indeed, indeed. And so, but what happened was, a lot of these-- as people began to learn to write things down-- the babylonians on clay tablets, and the chinese court records, and the greek historians-- people began to pull together this information to understand how to predict eclipses and understand how the cycles occur. And that helped the-- that sort of spawned the whole science of astronomy. How do you-- how d the mathematics occur on these objects. >> Hmm. >> And one of the things they discovered was called the saros cycle, and this actually-- edmond halley named it the saros cycle. They didn t-- they had different names in ancient times. But what they discovered was that an eclipse will recur approximately every 6,585.3 days, which is 18 years, 11 days, and 8 hours. So it turns out that the eclipse we re about to have is part of a saros cycle that occurred-- the last one was in europe in august 11, 1999, and the next one will be in asia and the pacific one september 2nd, 2035. And it looks almost exactly the same except shifted by 8 hours around the other, 123 degrees in longitude. >> Oh. >> So these repeating cycles were how the ancients were able to predict eclipses. >> How about that. Wow. >> And it s just all the different cycles of the sun and the moon add up to this repeating cycle of eclipses. >> Interesting. >> Another thing that science that was done in ancient times was the greeks looked up at a lunar eclipse-- when we re talking about how the moon moves into the shadow of the earth. And what they discovered is when the moon is near the horizon and eclipsed the shadow of the earth is not a line, if the earth were flat. It s still round. So the greeks realized that the earth must be a sphere based on-- based on the shadow of the earth on the moon under an eclipse. >> Oh, wow. >> So that was the first scientific discovery that the earth was indeed a sphere. >> Back in the mayan-- wow, okay. >> Back in the greek times, that was. >> Oh, that was greek times. >> Yeah, it was. >> Okay, okay. Interesting. Wow! >> There s a lot of interesting history associated with eclipses. >> Absolutely. >> That-- so we ve learned a lot through history. I mean, we re talking about, yeah, the shape of the earth. We re talking about-- it stopped a battle. >> Nature of the sun, yeah. >> The nature of the sun. >> Yup. The earliest eclipse that was-- that, as far as we know, was recorded, that chinese eclipse was probably about 2000 b.c. And there was maybe the one in 2137 b.c. But, the one we re sure about was there was an eclipse recorded in the town of ugerit, or ugarit, on-- in what is now, i believe, syria. >> Hmm. >> It was may 3rd, 1375 b.c. It was recorded that the sun grew dark. >> Oh. >> So there s a number of those recorded in ancient texts and tablets. >> Okay. So, wait, so the chinese one was not recorded? It was just-- >> well, just know it s actually probably semi legendary. We re not sure. >> Got it, okay. >> But this is the one we know for sure we can date the eclipse. >> Yeah. >> And actually-- oh, that was what i was going to tell you, is we have a number of these dated eclipses-- eclipse of thales, we talked about. >> Mm-hmm. >> Eclipse in ugarit. And what happens if you just run-- if you just take your computer models and putting gravity and everything and just run the sun and moon backwards in time, it turns out the eclipse is in the wrong place. So, from that, what we ve learned is that the earth rotation very, very gradually starting to slow down. >> Hmm. >> Starting to, it s been a long time. It s mainly due to the tidal effects of the moon. It s actually dragging the earth slightly down. So it s actually in those several thousand years the earth has slowed down a little bit, a fraction of an-- a fraction of a rotation. >> Oh. >> But, keep in mind, we re talking about-- we re talking about 800,000 rotations or something like that since those times. And so, we ve-- the earth s rotation has changed just a little bit in those times. But, that s another discovery we ve made that you need that long time scale to see this very gradual slowing down of the earth s rotation. >> So, over that long period of time, you said a fraction of a day, is it like an hour? Couple of hours? >> A couple of hours i think, yeah. >> Wow. >> But, and recently, some scientists have gone back and looked at chinese records, and again, been able to fine tune that. So that s a-- that s using ancient records to fine tune some modern science, so. >> All right. Cool. Okay, so let s go to this eclipse coming up on the 21st. >> All right, do you want to talk about safety or what to expect? >> All of it. Let s do it. >> All right. All right, let s talk about-- >> however you want to start. >> Let s talk about safety a little bit. >> Okay, safety. >> Okay, everybody has heard, don t look at an eclipse, you ll go blind, right? We ve all heard that. >> Yeah. >> And i remember as a boy, puzzling and puzzling over that. What is it about an eclipse that makes it so dangerous? >> Mm-hmm. >> Well, it turns out, you don t want to stare at the sun ever. It s bad for your eyes. Your eyes are not designed to be-- handle direct sunlight for any length of time. >> I feel like it s a good general rule. >> It s a good general rule. And when our kids go outside, we say, now, kids, don t look at the sun, you ll go blind. It s true, you don t want them looking at the sun. >> Yeah, yeah. >> The reason why-- the eclipse is not any different. It s just you're more likely to stare at the sun during an eclipse because you want to see what s happening. >> Oh. >> So, this really-- there s people that think there is some sort of mysterious rays coming off the sun. The only thing is just the sun like we're normally familiar with, you just don t want to stare at it. Okay. >> Okay. >> All right, so that s the first thing. So any time the bright disk, that photosphere of the sun, any time the bright disk is visible, even just a little sliver, you really don t want to look at the sun with your unaided eye. It s dangerous. You want to keep your eye for a long -- your eyes for a long time, right? >> Yeah, i would hope so. >> But we have special-- nowadays, we have special eclipse glasses that you can get in museums and different places. >> Yeah. >> That are-- it s perfectly safe to put those on and look. By the way, don t do what i did. I was checking my eclipse glasses the other day. I looked up at the sun, i said, yeah. And i pulled the eclipse glasses off before i stopped looking at the sun, so then i had a bright blob. Just for a second, i had a bright blob in my eyes for a little while. So be careful with them. They re often made of aluminized mylar and they look-- they re kind of silvery. >> Okay. >> And also, don t put any pinholes or anything in them. That-- you want to-- you want to keep them like they are. >> Keep them-- so what are the special eclipse glasses? They have-- they re just like really intense sunglasses? Is that kind of what i think? >> Yeah, it s kind of super sunglasses. >> Okay. >> Which here s the thing, you want to avoid any homemade glasses. >> Oh. >> Don t put on multiple sunglasses or something. Don t use smoked glass, or photographic film, or neutral density filters, or anything like that. You re not sure there s enough there to block the light to make it safe. >> Okay. >> So stick with the-- with the-- with the kind that you can get. They re not very expensive and you can-- you can get them online and other places. >> Okay. >> One exception is number 14 welder s glass is safe, because that s designed also for very bright. Like the welders use. >> Oh, okay. >> All right, so that s okay. And the-- and even more important part is don t look at the sun-- don t look at the bright disk of the sun with any instruments, with telescopes or binoculars without proper filters on them, because those things actually magnify the strength of the sun. >> Ooh. They ll your-- >> and just like when i was a boy, i used to use the magnifying glass on the ants, you know? That could do that to your eye, so you need to be very, very careful. >> Yeah. >> So i would avoid-- i would avoid those, unless you have properly designed equipment. Now, don t like take your binoculars and put your sunglasses at the eyepiece, because it s so intense it could burn right through your special glasses. So there s-- be very, very careful unless you know what you re doing with binoculars and telescopes. Don t even use those. >> Right, and that s, again, that s only a two minute eclipse. >> It s only a two and a half minute at the most. >> Yeah. >> So, that s-- that little window of time during totality, after the moon has completely covered the disk of the sun-- >> mm-hmm. >> --That is the only time you can look safely without glasses. >> Okay. >> And it-- and the brightness of the-- of the eclipsed sun and the corona-- it s like the brightness of a full moon, so there s no dangerous rays. You just don t want to be staring at the sun when the sun re-emerges. So, okay. So, just good rules of thumb. >> So, when you re looking at it-- say you have the glasses on. >> Mm-hmm. >> Is there a specific amount of time that we can say is safe to have the glasses on and be looking at the moon about to cover the sun? >> Well, what s going to happen-- >> you don t want to stare at it for hours. >> No, no. Well, what you re probably looking for is as the sun-- as the very last piece of the sun starts to disappear, you ll see actually little dots that form, and those are called baily s beads. >> Hmm. >> And it s an interesting phenomena of what-- it has to do with the different brightnesses on the edge of the sun, and also the mountains on the moon. >> Mm-hmm. >> When those disappear, that s the time you can take your glasses off and-- so you don t want to be-- because that s actually tiny little pieces of the photosphere of the sun. >> Right. >> Oh, there s the other way-- if you don t have the glasses, there s some other ways you can look at-- and it s-- by the way, if you re seeing a partial eclipse, you just want to use the glasses. You don t want to look at the sun directly. >> Will you be able to see the moon partially covering the sun with the glasses? >> Yes, it ll look like a cookie with a bite taken out of it. >> How about that. That s cool. >> That s pretty cool. One method you probably heard of is a pinhole projector, and it s very easy to make. You need some opaque material, like cardboard, and you make a pinhole, and then you project onto like a white sheet of paper an image of the sun. A pinhole acts like a lens. And i think it s important, don t actually look through the pinhole with your eye. It s not intended to look inside. It s a projector. It s a little projector. >> You look at the paper. >> You look at the paper and you ll see a little image of the sun with that. And you can see the progress of the eclipse. Another method i used to do when i was in high school, is if you take a very small mirror or a large mirror with a piece of paper with a circular hole cut out, and you can reflect the image on the sun-- of the sun onto a shaded wall, and you can watch the eclipse that way. >> Oh. >> And i tell the story, i was in-- i was in history class when there was an eclipse of the sun when i was in high school, and i asked the teacher, i said, is it okay if i put this in the window and we can watch the eclipse during class time? The teacher said, okay. So we put it in the window and it put an image of the sun during the eclipse up on the ceiling. We just went along with class and you could watch the progress of the eclipse. >> All right. >> So those are-- so the mirror, there s the projector, or your glasses are the three ways to watch the eclipse. And then, the only time, again, to watch the sun-- watch the eclipse unaided is during totality, that little short period of time. >> Okay, and totality is by far the most narrow section of the u.s. >> That s right. >> So you really have to be in that spot and we-- you can go to the website eclipse2017.nasa.gov and find out exactly where that s going to be passing through. >> That s right. And it starts-- i think i started this, but it comes on the west coast. >> Oh, right. >> It arrives in oregon, it goes across oregon, idaho, wyoming, nebraska, missouri, kentucky, tennessee, south carolina. It s a nice path that goes right through the middle of the united states. >> All right. >> And it s a relatively narrow-- relatively narrow path and, of course, it s actually moving. It s a round shadow that s moving across the surface of the earth. >> Mm-hmm. >> And if you re actually anywhere in that band you will see a total eclipse. The closer you are to the center, the longer it will last. Up to a max of two and a half minutes. >> All right. >> The other thing though is the weather. >> Oh, yeah. >> Yeah. So, it turns out that what eclipse aficionados like to do is they ll look at the historical weather at that point in the u.s. At that time of year and it turns out some of the areas are more likely to have-- to have clouds than others. So it turns out, eastern oregon is a really good place. They tend to have nice clear weather at that time of year. >> Okay. >> Wyoming, nebraska, missouri, all the way to tennessee, tend to be pretty cloud free at that time of year. And then, there s another-- as it goes over the appalachians, they tend to be cloudier. And then the little section of south carolina will also have, hopefully, less clouds than other places. But again, you never know. It;s the weather. >> Yeah. Oh, yeah. >> All you can do is roll the dice and figure-- and hope that you re lucky, because if-- there have been many eclipses that people have gone-- scientists have gone specific trips to see and it s been interfered-- the weather interferes. >> Yeah, that s just-- yeah, poor luck. But that s based on data of this day over time at this place. >> That s right. How often has it been cloudy on this day at this place. >> Yeah, and so you re really rolling the dice, but playing the odds. But those based on statistical data are better off than others. >> Right. >> Very cool. Is there any particular spot during the path of totality that may be would be better? Like, for example, is it better to go to like a state park and be away from city lights or anything? Or is being in the city just as fine? >> It s just as fine. >> Okay. >> It doesn t get totality dark during an eclipse. >> Okay. >> It gets dark, but i don t think that s-- i don t think that part of it is particularly important. >> Okay. >> The main thing, it s actually much more practical, you want to be somewhere where you re close to restrooms. >> Okay. >> The eclipse itself lasts three hours and there may be a lot of traffic, so the ability to get around maybe limited. >> Ooh, yeah. >> So, just very practical things-- are you close to food> are you close to supplies? Things like that. >> Mm-hmm. >> So let s talk a little bit about what to expect. >> Yeah. >> As i said, there may be a lot of heavy traffic so you want to get to where you want to go early. >> Okay. >> And bring things that you re going to need-- your glasses-- your eclipse glasses, a camera if you re going to bring a camera, chairs, sunscreen, water, food, toilet paper, anything that you think you might need while you re on the road. >> Wow, yeah. >> I once had to evacuate here in houston during hurricane rita, and it s maybe a little bit like that and may be stuck on the road with heavy traffic if you re not careful. >> Wow! Are you talking about people stopping on the highway just to-- >> no, just talking about large numbers of people moving to see the eclipse. >> To see-- to be in the path of totality. >> If you re traveling-- for instance, i m going to be in the carolinas. >> Mm-hmm. >> And every eclipse watched on the atlantic coast is going to be headed for south carolina. >> Yeah. >> So the interstates are going to be pretty full. >> Wow. >> So just allow plenty of time. The total eclipse-- i mean, the entire eclipse lasts about three hours, so it s about an hour and a half leading up to totality and an hour and a half until the moon completely uncovers the sun. >> Okay, okay. >> But again, i-- and one of the things i thought was interesting was the eclipse veterans gave some very sage advice. They said, if this is your first eclipse, don t try to photograph it. Don t try to take telephotos of it. You ll be so worried about your camera, you ll miss the spectacular nature of the eclipse. So i think that s good advice. And so, if you re a veteran eclipse guy and you want to-- and you want to make photographs of things, that s fine. >> Yeah. >> Let the professionals do it. Just enjoy the experience. >> Yeah. >> I think that s a good idea. >> I m sure there s going to be plenty of imagery coming out from all over the u.s. >> Oh, there will. I bet there s going to be lots of selfies with people with the moon and the eclipsed sun behind them. But that s fine. >> Do you think selfies will come out, at least during totality? Maybe when it s dark enough it ll be okay. >> You may need a flash on yourself. >> Oh, okay. A flash on yourself, okay. >> A couple of suggestions to do, so a little citizen science you can do. >> Okay. >> One of them is, notice how the sky colors change. >> Hmm. >> They re very unusual colors that you don t normally see, so that s an interesting thing. Also, when there s a tree casting shadows, there are lots of little tiny holes between the leaves that act like pinhole cameras. So sometimes you can see little crescent suns during the partial eclipse on the ground. So you can look for that. It s kind of fun to take pictures of that. >> Oh, that s really cool. >> Does the temperature change? Does it feel cooler during the eclipse? Does the wind pick up or calm down during the eclipse? Just some kind of scientific things you can observe. >> Just is there-- are there things that we know of that-- what atmospheric changes in the earth? Like-- >> it will-- it does change the heating of the earth from the sun. >> Oh, it does? >> Yeah, and you will feel colder. And people actually have noticed it feels considerably cooler, which will be pleasant probably on august 21st, especially in south carolina. So just things to notice. Again, the other thing is as totality approaches observers have sometimes noticed what s called shadow bands, and these are alternating light and dark bands that quickly move across the ground, especially where you have light colored surfaces. >> Hmm. >> They occur just before totality and after totality. They re-- actually, we don t fully understand how they work. They probably have something to do with the atmosphere, the same reason the stars twinkle. But if you can see them-- sometimes they re seen, and sometimes they re not. Something to look for. >> Hmm. >> Another thing to observe is right a s the totality is beginning, there s just a tiny little sliver of the sun, and it looks very much like a diamond ring in the sky, and it s called the diamond ring effect. And that s definitely when the diamond ring occurs at the end of the eclipse. So the baily s beads-- that s the time to put your sunglasses-- your special eclipse glasses back on. >> Oh, okay. >> But, as the eclipse is about to happen you ll see the diamond ring effect, and then the diamond will go away, the baily s beads will go away, and then you ll see the full totality. And again, you can take your eclipse glasses off during totality, but be ready to put them back on. >> Yeah. >> And another thing you can look around is take a moment-- while you re enjoying the eclipse, take a moment to observe people around you. See how people react to it. >> Yeah. >> The expressions on their face. Another thing, is sometimes animals behave strangely during eclipses. >> Chicken shave been known to roost, birds behave differently. Even wasps and bees sometimes behave strangely. >> Wow. >> Cows, insect-- dogs, insects, anything you can think of that s close by, just for fun, observe and see if you notice anything. >> It is a strange and rare phenomenon to them. >> It is strange and they re confused by it. >> Yeah, yeah. >> And by the way, after totality, the whole sequence will reverse it. So you have all those sequence of things, the partial eclipse, the diamond ring, the baily s beads. >> Mm-hmm. >> And that will reverse as the moon uncovers the sun. >> Wow. Amazing. >> So if you miss this eclipse, or the weather doesn t cooperate, we have another chance in 7 years from now. >> All right. >> In 2024, there will be an eclipse that will move through texas and up through new england, and it will be another total eclipse of the sun. So we have two in a very short period of time, but it s been a long time since we ve had an eclipse. >> All right, yeah. >> So, we re due. We re due. We get two-- so, two chances, and my wife said, well, why don t we just go to the one in 7 years? And i said, well, we don t know what our lives are going to be like in 7 years. >> Yeah. >> So i said, carpe eclipsum. Seize the eclipse. So this is your chance. >> Fantastic. Yeah, no, i mean, i m-- if anything, why not both, right? >> Well, why not? We can try both. I may become an eclipse junkie, i guess. >> Yeah, yeah. No, i mean, it s so cool. And the fact that we re able to predict them, and we can go and-- we have a bunch of best practices on how you can observe the eclipse, the best that you can possibly do it. >> Yeah. >> I know, going back, just one quick thing. Well, you said early. Arrive to your destination early. >> Yeah, if you can, yes. >> How early are you-- are you talking about like days, or day, or hours? >> Well, it s difficult to arrive days early now, because virtually every hotel is booked along the eclipse path. >> Oh. >> We re going to be some distance away from the eclipse, so we re going to have to start early. The eclipse is maximum in south carolina about 2:30, so i figure if we get off at 8:00 in the morning that gives us about 6 hours to get there. And that may or may not be enough time. We ll just have to do the best we can. That was just where we-- i m staying with relatives, so that s-- >> okay. >> But, a lot of people i know have their hotel rooms booked in the-- at-- underneath the eclipse, so they can just step outside and watch it. >> Yeah, that s the-- oh, i wish i planned ahead there. That would ve been nice just get a nice, like, resort or something and just lay by the pool, watch the eclipse go by. That d be pretty cool. >> Actually, what i had originally planned-- i ve been planning for this eclipse since i was in graduate school many, many years ago. >> Wow. >> And i noticed that it would actually go through grand teton national park. And i thought, that s what i ll do. I ll go to the grand tetons and see the eclipse. But it turns out, the weather s not so-- it s a higher probability of clouds there, so i backed away from that. >> Wow. >> Good luck to those of you that-- the tetons. But that would be a beautiful photograph, actually, to see the eclipse over the grand tetons. >> Oh, absolutely. Let s keep our fingers crossed for that good weather all across the board. >> Hopefully it ll be clear all across the united states. >> Yeah. >> And everybody will be able to enjoy the eclipse. >> That would be fantastic. Well, i think that s all the time we have, unless you have one more story. But-- anything? >> I have other stories, but-- there are lots of good stories. >> Well, hey, yeah. Actually, we have a website and if you stay tuned until after the music here, we ll tell you where you can go and check out some more info on the eclipse and learn a little bit more about the history, the science, and all kinds of cool stuff, including the citizen science that mark was talking about here and how you can-- what you can do to observe some phenomena about this eclipse. So stay tuned for after the music there. Mark, thank you so much for coming on the podcast today. >> You re welcome. >> I feel like that was-- i m not going to say everything about the eclipse, because like you said, there s definitely more. But that s the-- i feel like i have a good understanding about eclipses and the science that goes behind it. So there s a lot about eclipses and a lot that we can learn just from shadows, and it s just amazing that there s so much behind it. So thanks for coming on the podcast and talking all about it. And everyone, i hope you enjoy the eclipse on the august 21st. So thanks again, mark. >> Thank you. [ Music ] >> houston, go ahead. >> I m on the space shuttle. >> Roger, zero-g and i feel fine. >> Shuttle has cleared the tower. >> We came in peace for all mankind. >> It s actually a huge honor to break the record like this. >> Not because they are easy, but because they are hard. >> Houston, welcome to space. >> Hey, thanks for sticking around. So, once again, this monday, august 21st, a total solar eclipse will sweep across america. If you want to know all the information that we have, if this podcast was not enough for you, go to eclipse2017.nasa.gov. You can find out all the science of eclipses, even more than we talked about with mark matney today, where it will be, and then how to safely view it from the ground. Just be sure to make sure that you check the glasses and make sure that they are nasa certified. After talking with mark matney after the show, we found out that the shadow itself is going to be 68 miles wide, and then that shadow travels faster than 1,000 miles per hour. So, he went back and he was trying to find the width of the shadow. It s actually a little bit smaller than you would imagine, but how fast it travels-- i mean, we re talking about some of those planes that are going to be following the shadow and studying it, they re only going to get only a few extra minutes out of it because the shadow s traveling so fast. But, if you think about it, it s the moon going around the earth, so it s probably going to be a little bit faster than you would think. Anyway, you can find out more about the eclipse by following us on social media. Obviously, our nasa accounts will be talking about this, but also here at the nasa johnson space center you can follow our accounts there. We ll be talking about it. If you follow international space station you can see some of the imagery. You ll get from there 250 miles above the earth. And then also, aries astral materials research, you ll find them on multiple accounts and you can talk-- they will be talking mostly about the science of eclipses, and they are also based here in the johnson space center. All of these are on either facebook, twitter, and instagram. If you want to join the conversation for-- and maybe submit some pictures that you are taking from wherever you re going to be observing the eclipse, and then also sort of see what everyone else is doing, the official hashtag for this event is #eclipse2017. Just use that on your favorite platform and share your experience and maybe ask a couple questions in case all of the information we told you today and anything you can t find on the website we can still answer even more questions that you have. So this podcast was recorded on july 19th, 2017. Thanks to alex perryman, john stoll, and tracy calhoun. And thanks again to dr. Mark matney for coming on the show. We ll be back next week.
NASA Astrophysics Data System (ADS)
Cosans, C.; Moore, J.; Harman, C. J.
2017-12-01
Located in the deeply weathered Piedmont in Maryland, Pond Branch has a rich legacy of hydrological and geochemical research dating back to the first geochemical mass balance study published in 1970. More recently, geophysical investigations including seismic and electrical resistivity tomography have characterized the subsurface at Pond Branch and contributed to new hypotheses about critical zone evolution. Heterogeneity in electrical resistivity in the shallow subsurface may suggest disparate flow paths for recharge, with some regions with low hydraulic conductivity generating perched flow, while other hillslope sections recharge to the much deeper regolith boundary. These shallow and deep flow paths are hypothesized to be somewhat hydrologically and chemically connected, with the spatially and temporally discontinuous connections resulting in different hydraulic responses to recharge and different concentrations of weathering solutes. To test this hypothesis, we combined modeling and field approaches. We modeled weathering solutes along the hypothesized flow paths using PFLOTRAN. We measured hydrologic gradients in the hillslopes and riparian zone using piezometer water levels. We collected geochemical data including major ions and silica. Weathering solute concentrations were measured directly in the precipitation, hillslope springs, and the riparian zone for comparison to modeled concentration values. End member mixing methods were used to determine contributions of precipitation, hillslopes, and riparian zone to the stream. Combining geophysical, geochemical, and hydrological methods may offer insights into the source of stream water and controls on chemical weathering. Previous hypotheses that Piedmont critical zone architecture results from a balance of erosion, soil, and weathering front advance rates cannot account for the inverted regolith structure observed through seismic investigations at Pond Branch. Recent alternative hypotheses including weathering along tectonically-induced fractures and weathering front advance have been proposed, but additional data are needed to test them. Developing a thorough, nuanced understanding of the geochemical and hydrological behavior of Pond Branch may help test and refine hypotheses for Piedmont critical zone evolution.
Introducing Triquetrum, A Possible Future for Kepler and Ptolemy II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brooks, Christopher; Billings, Jay Jay
Triquetrum is an open platform for managing and executing scientific workflows that is under development as an Eclipse project. Both Triquetrum and Kepler use Ptolemy II as their execution engine. Triquetrum presents opportunities and risks for the Kepler community. The opportunities include a possibly larger community for interaction and a path for Kepler to move from Kepler's one-off ant-based build environment towards a more common OSGi-based environment and a way to maintain a stable Ptolemy II core. The risks include the fact that Triquetrum is a fork of Ptolemy II that would result in package name changes and other possiblemore » changes. In addition, Triquetrum is licensed under the Eclipse Public License v1.0, which includes a patent clause that could conflict with the University of California patent clause. This paper describes these opportunities and risks.« less
NASA Astrophysics Data System (ADS)
Chakraborty, Suman; Palit, Sourav; Ray, Suman; Chakrabarti, Sandip K.
2016-02-01
The variation in the solar Extreme Ultraviolet (EUV) radiation flux by any measure is the most dominant natural source to produce perturbations or modulations in the ionospheric chemical and plasma properties. A solar eclipse, though a very rare phenomenon, is similarly bound to produce a significant short time effect on the local ionospheric properties. The influence of the ionizing solar flux reduction during a solar eclipse on the lower ionosphere or, more precisely, the D-region, can be studied with the observation of Very Low Frequency (VLF) radio wave signal modulation. The interpretation of such an effect on VLF signals requires a knowledge of the D-region ion chemistry, which is not well studied till date. Dominant parameters which govern the ion chemistry, such as the recombination coefficients, are poorly known. The occurrence of events such as a solar eclipse provides us with an excellent opportunity to investigate the accuracy of our knowledge of the chemical condition in this part of Earth's atmosphere and the properties which control the ionospheric stability under such disturbances. In this paper, using existing knowledge of the lower ionospheric chemical and physical properties we carry out an interpretation of the effects obtained during the total solar eclipse of 22 of July 2009 on the VLF signal. Data obtained from a week long campaign conducted by the Indian Centre for Space Physics (ICSP) over the Indian subcontinent has been used for this purpose. Both positive and negative amplitude changes during the eclipse were observed along various receiver locations. In this paper, data for a propagation path between a Indian Navy VLF transmitter named VTX3 and a pair of receivers in India are used. We start from the observed solar flux during the eclipse and calculate the ionization during the whole time span over most of the influenced region in a range of height. We incorporate a D-region ion-chemistry model to find the equilibrium ion density over the region and employ the LWPC code to find the VLF signal amplitude. To tackle the uncertainty in the values of the recombination coefficients we explore a range of values in the chemical evolution model. We achieve two goals by this exercise: First, we have been able to reproduce the trends, if not the exact signal variation, of the VLF signal modulations during a solar eclipse at two different receiving stations with sufficient accuracy purely from theoretical modeling, and second our knowledge of some of the D-region ion-chemistry parameters is now improved.
Notes from the Stanford Sun-Weather Workshop, 11-15 August 1980.
1980-12-01
34open". 4. The baseball seam model is consistent with eclipse pictures of the corona 5. Coronal holes are generally found near the center of the "open...olar wind and the Earth’s magnetosphere (from the announcement of the advanced sumner institute of reference 23.3). -3- 8/11/80 c. If one integrates...the original result. 2. MEV proton streams which are associated with some sector boundaries select an interesting subset of events, Wilcox, 1979b 3
The 2017 solar eclipse and Majorana & Allais gravity anomalies
NASA Astrophysics Data System (ADS)
Munera, Hector A.
2017-01-01
Two little known anomalies hint to phenomena beyond current theory. Majorana effect: around 1920 in a series of well-designed experiments with a chemical laboratory balance, Quirino Majorana found in Italy that mercury (Hg) and lead (Pb) might shield terrestrial gravity. Majorana experiments were never repeated by the international scientific community. Instead his results were dismissed on theoretical claims: a) unobserved heating of earth by absorption of gravity, and b) unobserved cyclic lunar perturbation of solar gravity at earth’s surface. However, Majorana critics missed the crucial fact that shielding is not mere absorption, but also scattering, and that atomic number Z of matter in the moon is much lower than Z=80 (Hg) and Z=82 (Pb). From the June 30/1954 solar eclipse onwards, high-quality mechanical gravimeters were used to search for Majorana shielding by the moon. Results are positive, provided that shielding is interpreted as scattering rather than absorption of gravity by moon (H. A. Munera, Physics Essays 24, 428-434, 2011). Allais effect: during the same 1954 eclipse (partial in Paris) Maurice Allais had in operation a sensitive paraconical pendulum for a very different purpose. Surprisingly, the pendulum was perturbed by the eclipse, condition repeated once again in a 1959 solar eclipse, also partial in Paris. During the past sixty years, paraconical, torsion and Foucault pendula, and other mechanical devices, have been used to (dis)confirm Allais effect, but the results are not conclusive thus far. A book edited by this author (Should the laws of gravitation be revised? Apeiron 2011) describes some of those observations. Various unexpected effects, some of them torsional, appear both near the optical shadow, and far away. The Sun-Moon-Earth alignment in a solar eclipse allows detection on the terrestrial surface of the dark matter flow scattered on moon’s surface (flow not hitting earth in other geometries). Rotation of moon may induce torsional effects on scattered dark matter. Scattered gravity may be detected with mechanical gravimeters and torsinds located inside and outside the optical shadow path in USA, Canada and Mexico.
NASA Technical Reports Server (NTRS)
Johnson, Walter W.; Lachter, Joel; Brandt, Summer; Koteskey, Robert; Dao, Arik-Quang; Kraut, Josh; Ligda, Sarah; Battiste, Vernol
2012-01-01
In todays terminal operations, controller workload increases and throughput decreases when fixed standard terminal arrival routes (STARs) are impacted by storms. To circumvent this operational constraint, Prete, Krozel, Mitchell, Kim and Zou (2008) proposed to use automation to dynamically adapt arrival and departure routing based on weather predictions. The present study examined this proposal in the context of a NextGen trajectory-based operation concept, focusing on the acceptability and its effect on the controllers ability to manage traffic flows. Six controllers and twelve transport pilots participated in a human-in-the-loop simulation of arrival operations into Louisville International Airport with interval management requirements. Three types of routing structures were used: Static STARs (similar to current routing, which require the trajectories of individual aircraft to be modified to avoid the weather), Dynamic routing (automated adaptive routing around weather), and Dynamic Adjusted routing (automated adaptive routing around weather with aircraft entry time adjusted to account for differences in route length). Spacing Responsibility, whether responsibility for interval management resided with the controllers (as today), or resided with the pilot (who used a flight deck based automated spacing algorithm), was also manipulated. Dynamic routing as a whole was rated superior to static routing, especially by pilots, both in terms of workload reduction and flight path safety. A downside of using dynamic routing was that the paths flown in the dynamic conditions tended to be somewhat longer than the paths flown in the static condition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Croll, Bryce; Albert, Loic; Lafreniere, David
We present detections of the near-infrared thermal emission of three hot Jupiters and one brown dwarf using the Wide-field Infrared Camera (WIRCam) on the Canada-France-Hawaii Telescope (CFHT). These include Ks-band secondary eclipse detections of the hot Jupiters WASP-3b and Qatar-1b and the brown dwarf KELT-1b. We also report Y-band, K {sub CONT}-band, and two new and one reanalyzed Ks-band detections of the thermal emission of the hot Jupiter WASP-12b. We present a new reduction pipeline for CFHT/WIRCam data, which is optimized for high precision photometry. We also describe novel techniques for constraining systematic errors in ground-based near-infrared photometry, so asmore » to return reliable secondary eclipse depths and uncertainties. We discuss the noise properties of our ground-based photometry for wavelengths spanning the near-infrared (the YJHK bands), for faint and bright stars, and for the same object on several occasions. For the hot Jupiters WASP-3b and WASP-12b we demonstrate the repeatability of our eclipse depth measurements in the Ks band; we therefore place stringent limits on the systematics of ground-based, near-infrared photometry, and also rule out violent weather changes in the deep, high pressure atmospheres of these two hot Jupiters at the epochs of our observations.« less
Sky Brightness During Eclipses: A Compendium from the Literature
1974-08-05
86 25. Absolute Values of Luminance of the Terrain and the Sky 88 26. Sky Brightness From Film No. 1 89 27. Sky Brightness From Film No. 2 89 28...these twilight equivalents when dust is present in the r.tmosphere are also difficult. Both involve the passage of light through long path lengths...purposes." Ilford-Selo, HP-3 isopan film with a sensitivity of 800 H & D was used. The measurement of the photographs was performed by means of a
A new astronomical dating of Odysseus return to Ithaca.
NASA Astrophysics Data System (ADS)
Papamarinopoulos, St. P.; Preka-Papadema, P.; Antonopoulos, P.; Mitropetrou, H.; Tsironi, A.; Mitropetros, P.
The annular solar eclipse, of 30 October 1207 B.C. (Julian Day-JD 1280869), calculated by NASA together with the analysis of the weather's and the environment's description (long nights, plants, animals and peoples' habits) and the astronomical data (guiding constellations and Venus in the east horizon) mentioned by Homer in the epic, constitute an autumn return of Odysseus to Ithaca five days before the above characterized day. The latter offers a precise astronomical dating of the event and dates the legendary Trojan War's end as well.
1979-04-18
up to 25 miles . Despite the generally cold weather (temperatures as low as -40C), snowy conditions and nature of temporary installations, the...Identification Tim (UT.) AJoggJfj Ftt. Time Is!M) Porynoterl 19 February amSL-a 20Z3 66 7200 * Atmospheric Tmperature; 0 4inds. 10-60 10) 23 February 045...02 1759:58 66 7200 0 Atmospheric Tomplmllturg; * Winds. (10-60 kw) 24 February CMSL-03 1SS1 56 7200 * Amspheric Teeature; 0 Winds. OC-60 ks) 24
NASA Astrophysics Data System (ADS)
Holbrook, Jarita
2018-01-01
Black Suns: An Astrophysics Adventure is a documentary film focusing on the annular and total solar eclipses of 2012. We made a different kind of astronomy documentary showing the human aspects rather than just focusing on pretty astronomy pictures. The film combines personal stories with science. Our heroes are Hakeem Oluseyi and Alphonse Sterling, who valiantly travel to study the solar corona during total solar eclipses. The goals of the film included presenting three dimensional scientists, to show their paths to becoming astrophysicists, and to show them as they collect data and work as scientists. Drama and tension surround taking data during the small window of time during totality. The Black Suns was filmed in Tokyo, Cairns, Tucson, and Melbourne Florida. Uniquely, the film began through a Kickstarter campaign to fund travel and filming in Tokyo. Many American Astronomical Society members donated to the film! Black Suns won the Jury Prize at the 2017 Art of Brooklyn Film Festival. Black Suns will be screening in full on ???.
NASA Astrophysics Data System (ADS)
Jensen, L.; Kovac, S. A.; Hare, H. S.; Mitchell, A. M.; McKay, M. A.; Bosh, R.; Watson, Z.; Penn, M.
2016-12-01
An area of the solar corona from 1 out to approximately 2.5 solar radii is currently poorly sampled in astronomy. This is largely due to difficulties inherent in observing the sun from space and from the ground. Specifically focusing on ground based observations, the main problem is scattered light in the Earth's atmosphere and in the telescopes themselves. A total solar eclipse solves this problem by blocking the light from the photosphere of the sun before it enters the atmosphere, reducing the scattered light in the atmosphere by a factor of 10,000. However, using a total solar eclipse introduces another challenge due to the small window of time it provides. At any given location in 2017, the totality will last for only about 2.5 minutes and such a small data set limits the studies that can be done on the inner corona. The Citizen Continental-America Telescopic Eclipse Experiment plans to overcome this issue by taking advantage of America's infrastructure and using 60 identical telescopes to collect continuous data of the solar eclipse as the shadow travels from Oregon to South Carolina. By splicing these data together 90 minutes of one-of-a-kind data can be collected, revealing the dynamics of the inner corona as never seen before. For the 2016 Indonesian total solar eclipse the CATE project collected data using 5 sites along the eclipse path. These data were then used to develop processing programs to use on future data. These processes included site-to-site image registration as well as normalized radial graded filtering of the images. Programs were also developed to begin performing studies on the data including overlapping CATE and LASCO space telescope data for a total coronal image as well as thread tracing routines to quantify direction in the coronal filaments. This work was made possible through the National Solar Observatory Research Experiences for Undergraduates (REU) Program, which is funded by the National Science Foundation (NSF). The NSO Training for 2017 Citizen CATE Experiment, funded by NASA (NASA NNX16AB92A), also provided support for this project. The National Solar Observatory is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the NSF.
NASA Astrophysics Data System (ADS)
Uijlenhoet, R.; de Vos, L. W.; Leijnse, H.; Overeem, A.; Raupach, T. H.; Berne, A.
2017-12-01
For the purpose of urban rainfall monitoring high resolution rainfall measurements are desirable. Typically C-band radar can provide rainfall intensities at km grid cells every 5 minutes. Opportunistic sensing with commercial microwave links yields rainfall intensities over link paths within cities. Additionally, recent developments have made it possible to obtain large amounts of urban in situ measurements from weather amateurs in near real-time. With a known high resolution simulated rainfall event the accuracy of these three techniques is evaluated, taking into account their respective existing layouts and sampling methods. Under ideal measurement conditions, the weather station networks proves to be most promising. For accurate estimation with radar, an appropriate choice for Z-R relationship is vital. Though both the microwave links and the weather station networks are quite dense, both techniques will underestimate rainfall if not at least one link path / station captures the high intensity rainfall peak. The accuracy of each technique improves when considering rainfall at larger scales, especially by increasing time intervals, with the steepest improvements found in microwave links.
Lighting Condition Analysis for Mars Moon Phobos
NASA Technical Reports Server (NTRS)
Li, Zu Qun; Crues, Edwin Z.; Bielski, Paul; De Carufel, Guy
2016-01-01
A manned mission to Phobos may be an important precursor and catalyst for the human exploration of Mars, as it will fully demonstrate the technologies for a successful Mars mission. A comprehensive understanding of Phobos' environment such as lighting condition and gravitational acceleration are essential to the mission success. The lighting condition is one of many critical factors for landing zone selection, vehicle power subsystem design, and surface mobility vehicle path planning. Due to the orbital characteristic of Phobos, the lighting condition will change dramatically from one Martian season to another. This study uses high fidelity computer simulation to investigate the lighting conditions, specifically the solar radiation flux over the surface, on Phobos. Ephemeris data from the Jet Propulsion Laboratory (JPL) DE405 model was used to model the state of the Sun, the Earth, and Mars. An occultation model was developed to simulate Phobos' self-shadowing and its solar eclipses by Mars. The propagated Phobos' state was compared with data from JPL's Horizon system to ensure the accuracy of the result. Results for Phobos lighting condition over one Martian year are presented in this paper, which include length of solar eclipse, average solar radiation intensity, surface exposure time, total maximum solar energy, and total surface solar energy (constrained by incident angle). The results show that Phobos' solar eclipse time changes throughout the Martian year with the maximum eclipse time occurring during the Martian spring and fall equinox and no solar eclipse during the Martian summer and winter solstice. Solar radiation intensity is close to minimum at the summer solstice and close to maximum at the winter solstice. Total surface exposure time is longer near the north pole and around the anti- Mars point. Total maximum solar energy is larger around the anti-Mars point. Total surface solar energy is higher around the anti-Mars point near the equator. The results from this study and others like it will be important in determining landing site selection, vehicle system design and mission operations for the human exploration of Phobos and subsequently Mars.
Limb Sensing, on the Path to Better Weather Forecasting.
NASA Astrophysics Data System (ADS)
Gordley, L. L.; Marshall, B. T.; Lachance, R. L.; Fritts, D. C.; Fisher, J.
2017-12-01
Earth limb observations from orbiting sensors have a rich history. The cold space background, long optical paths, and limb geometry provide formidable advantages for calibration, sensitivity and retrieval of vertically well-resolved geophysical parameters. The measurement of limb ray refraction now provides temperature and pressure profiles unburdened by requirements of spectral calibration or gas concentration knowledge, leading to reliable long-term trends. This talk discusses those advantages and our relevant achievements with data from the SOFIE instrument on the AIM satellite. We then describe a path to advances in calibration, sensitivity, profile fidelity, and synergy between limb sensors and nadir sounders. These advances also include small-sat compatible size, elimination of on-board calibration systems and simple static designs, dramatically reducing risk, complexity and cost. Finally, we show how these advances, made possible by modern ADCS, FPA and GPS capabilities, will lead to improvements in weather forecasting and climate observation.
Forthcoming Occultations of Astrometric Radio Sources by Planets
NASA Technical Reports Server (NTRS)
L'vov, Victor; Malkin, Zinovy; Tsekmeister, Svetlana
2010-01-01
Astrometric observations of radio source occultations by solar system bodies may be of large interest for testing gravity theories, dynamical astronomy, and planetary physics. In this paper, we present an updated list of the occultations of astrometric radio sources by planets expected in the coming years. Such events, like solar eclipses, generally speaking can only be observed in a limited region. A map of the shadow path is provided for the events that will occurr in regions with several VLBI stations and hence will be the most interesting for radio astronomy experiments.
NASA Astrophysics Data System (ADS)
Kumar, S.; Kumar, A.
2015-12-01
Sub-ionospheric VLF signals from the NWC (19.8 kHz), NPM (21.4 kHz) and NLK (24.8 kHz) MSK VLF transmitters are monitored at Suva, Fiji, with a time resolution of 0.1s using GPS based timing and SoftPAL VLF system. Here one minute averaged amplitude and phase data have been used for analysis. We present perturbations in VLF propagation and D-region changes associated with 13 November 2012 total solar eclipse (SE) and 9-10 May 2013 annular SE using VLF observations at Suva, Fiji. During 13-14 November 2012 total SE, the totality shadow intercepted NWC-Suva path and NWC signal amplitude and phase decreased by about 0.70 dB and 23°, respectively. NPM signal amplitude during 9-10 May 2013 SE decreased by about 2.0 dB. The amplitude perturbation of ~1.8 dB on NLK signal was measured from the unperturbed level associated with 9-10 May 2013 SE. The decrease in the amplitude at the site can be understood in terms of destructive interference of modes converted at the discontinuity created by the eclipse intercepting the different Transmitter-receiver great circle paths (TRGCPs) and changes in the propagation conditions along TRGCPs. The decrease in the amplitude and phase of NWC signal for 13-14 November 2012 SE has been modeled using Long Wave Propagation Capability code to estimate the changes in D-region reflection height (H') and sharpness factor (β) which shows that H' and β were increased by 0.95 km and 0.01 km-1, respectively. The phase changes on NWC signal associated with 9-10 May 2013 SE have been used to estimate the recombination coefficient value, for 75 km height where electron density reduction due to SE was about 40%. The changes in the D-region parameters and the electron density are due to sudden decrease of the photo-ionization creating nighttime like conditions in the D-region ionosphere.
Pre-Venus-Transit Dark Lunar Eclipse Reveals a Very Large Volcanic Eruption in 1761
NASA Astrophysics Data System (ADS)
Pang, Kevin
2009-01-01
Kepler's third law states Sun-planet distances in AU. International observations of the solar parallax during the 1761/1769 Venus transits gave us the first AU in miles. Benjamin Franklin promoted American participation in the project. While serving as Ambassador to France he observed that a "dry fog” from the 1783 Laki eruption in Iceland had obscured the Sun, and led to a cold summer and winter. Using Benjamin Franklin's method I analyzed photometric observations of the dark lunar eclipse made just before the 1761 Venus transit, ice core, tree ring, and Chinese weather data, and conclude that a very large previously unknown volcanic eruption in early 1761 had cooled the world climate. Observers worldwide found the 18 May 1761 totally eclipsed Moon very dark or invisible, e.g., Wargentin could not see the Moon for 38 minutes even with a 2-ft telescope (Phil. Trans. 52, 208, 1761-1762). Since the totally eclipsed Moon is illuminated only by sunlight refracted by the Earth's atmosphere, the obscuration must have been very severe. Ice cores from Greenland and Antarctica have large sulfuric acid contents in 1761-1762, precipitated from the global volcanic acid cloud (Zeilinski, J. Geophys. Res. 102, 26625, 1997). Frost-damaged rings in American bristlecone pines confirm that 1761 was very cold (LaMarche, Nature 307, 121, 1984). Contemporary Chinese chronicles report that heavy sustained snow fell from the Tropic of Cancer to the Yellow River. Wells and rivers froze, e.g., Taihu "Great Lake” and nearby Yangtze tributaries were not navigable. Innumerable trees, birds and livestock perished, etc. All observations are consistent with the above conclusion. Finally Benjamin Franklin's criteria for a climate-altering volcanic eruption are still universally used. Moreover his legacy continues to inspire climate researchers. See Pang, Eos 74, no. 43, 106, 1993; and as cited in "Earth in Balance,” Al Gore, p. 379, 1993.
Modelling Solar Energetic Particle Events Using the iPATH Model
NASA Astrophysics Data System (ADS)
Li, G.; Hu, J.; Ao, X.; Zank, G. P.; Verkhoglyadova, O. P.
2016-12-01
Solar Energetic Particles (SEPs) is the No. 1 space weather hazard. Understanding how particles are energized and propagated in these events is of practical concerns to the manned space missions. In particular, both the radial evolution and the longitudinal extent of a gradual solarenergetic particle (SEP) event are central topics for space weather forecasting. In this talk, I discuss the improved Particle Acceleration and Transport in the Heliosphere (iPATH) model. The iPATH model consists of three parts: (1) an updated ZEUS3D V3.5 MHD module that models thebackground solar wind and the initiation of a CME in a 2D domain; (2) an updated shock acceleration module where we investigate particle acceleration at different longitudinal locations along the surface of a CME-driven shock. Accelerated particle spectrum are obtained at the shock under the diffusive shock acceleration mechanism. Shock parameters and particle distributions are recorded and used as inputs for the later part. (3) an updated transport module where we follow the transport of accelerated particles from the shock to any destinations (Earth and/or Mars, e.g.) using a Monte-Carlo method. Both pitch angle scattering due to MHD turbulence and perpendicular diffusion across magnetic field are included. Our iPATH model is therefore intrinsically 2D in nature. The model is capable of generating time intensity profiles and instantaneous particle spectra atvarious locations and can greatly improve our current space weather forecasting capability.
Exploring the Architectural Tradespace of Severe Weather Monitoring Nanosatellite Constellations
NASA Astrophysics Data System (ADS)
Hitomi, N.; Selva, D.; Blackwell, W. J.
2014-12-01
MicroMAS-1, a 3U nanosatellite developed by MIT/LL, MIT/SSL, and University of Massachusetts, was launched on July 13, 2014 and is scheduled for deployment from the International Space Station in September. The development of MicroMAS motivates an architectural analysis of a constellation of nanosatellites with the goal of drastically reducing the cost of observing severe storms compared with current monolithic missions such as the Precision and All-Weather Temperature and Humidity (PATH) mission from the NASA Decadal Survey. Our goal is to evolve the instrument capability on weather monitoring nanosatellites to achieve higher performance and better satisfy stakeholder needs. Clear definitions of performance requirements are critical in the conceptual design phase when much of the project's lifecycle cost and performance will be fixed. Ability to perform trade studies and optimization of performance needs with instrument capability will enable design teams to focus on key technologies that will introduce high value and high return on investment. In this work, we approach the significant trades and trends of constellations for monitoring severe storms by applying our rule-based decision support tool. We examine a subset of stakeholder groups listed in the OSCAR online database (e.g., weather, climate) that would benefit from severe storm weather data and their respective observation requirements (e.g. spatial resolution, accuracy). We use ten parameters in our analysis, including atmospheric temperature, humidity, and precipitation. We compare the performance and cost of thousands of different possible constellations. The constellations support hyperspectral sounders that cover different portions of the millimeter-wave spectrum (50-60 GHz, 118GHz, 183GHz) in different orbits, and the performance results are compared against those of the monolithic PATH mission. Our preliminary results indicate that constellations using the hyperspectral millimeter wave sounders can better satisfy stakeholder needs compared to the PATH mission. Well-architected constellations have increased coverage, improved horizontal resolution from lower orbits, and improved temporal resolution. Furthermore, this improved performance can be achieved at a lower cost than what is estimated for the PATH mission.
David Levy's Guide to Eclipses, Transits, and Occultations
NASA Astrophysics Data System (ADS)
Levy, David H.
2010-08-01
Introduction; Part I. The Magic and History of Eclipses: 1. Shakespeare, King Lear, and the Great Eclipse of 1605; 2. Three centuries later: Einstein, relativity, and the solar eclipse of 1919; 3. What causes solar and lunar eclipses; Part II. Observing Solar Eclipses: 4. Safety considerations; 5. What to expect during a partial eclipse; 6. Annular eclipses and what to see in them; 7. Total eclipse of the Sun: introduction to the magic; 8. The onset: temperature drop, Baily's Beads, Diamond Ring; 9. Totality: Corona, Prominences, Chromosphere, and surrounding area; 10. Photographing and imaging a solar eclipse; Part III. Observing Lunar Eclipses: 11. Don't forget the penumbral eclipses!; 12. Partial lunar eclipses; 13. Total lunar eclipses; 14. Photographing and imaging lunar eclipses; Part IV. Occultations: 15. When the Moon occults a star; Part V. Transits: 16. When planets cross the Sun; Part VI. My Favorite Eclipses: 17. A personal canon of eclipses, occultations, and transits I have seen; Appendices; Index.
Global Weather Prediction and High-End Computing at NASA
NASA Technical Reports Server (NTRS)
Lin, Shian-Jiann; Atlas, Robert; Yeh, Kao-San
2003-01-01
We demonstrate current capabilities of the NASA finite-volume General Circulation Model an high-resolution global weather prediction, and discuss its development path in the foreseeable future. This model can be regarded as a prototype of a future NASA Earth modeling system intended to unify development activities cutting across various disciplines within the NASA Earth Science Enterprise.
Total solar eclipse education for young generation at Palangkaraya, Central Kalimantan
NASA Astrophysics Data System (ADS)
Fatima, S.; Widyanita; Fahriyah, H.; Rhodiyah, A. K.; Satrya, C. D.; Hilmi, M.; Ramadhania, G. E.; Naufal, L.; Mulki, F. A. M.; Herdiwijaya, D.
2016-11-01
The path of Total Solar Eclipse (TSE) on March 9th 2016 passed through several cities in Indonesia and one of them is Palangkaraya, Central Kalimantan. The TSE natural phenomenon provided a special moment and gave unforgettable and lifelong experiences for children who live in Palangkaraya. Some miss-information and a bad impression can be felt by children who do not understand about TSE that causes momentary darkness during totality phase. Therefore we designed a children education programs about the TSE that as follow: (1) socialization about TSE, (2) Popular astronomy seminar, (3) How to observe the Sun? (4) writing competition about TSE and (5) TSE observation. The events were held on March 8th - 9th 2016. More than 200 representatives of elementary school students and teachers throughout Palangkaraya have actively participated. The keynote speaker was an Indonesian expert astronomer with help from alumni of astronomy olympiad in order to provide inspiration for the participants, especially to the students. We conclude that students as young generation of the nation may have more motivation to work in science by direct learning from natural phenomena.
Narrow field electromagnetic sensor system and method
McEwan, Thomas E.
1996-01-01
A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments.
Narrow field electromagnetic sensor system and method
McEwan, T.E.
1996-11-19
A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments. 12 figs.
American Solar Eclipses 2017 & 2024
NASA Astrophysics Data System (ADS)
DiCanzio, Albert
2016-06-01
This research focuses on harnessing the statistical capacity of many available concurrent observers to advance scientific knowledge. By analogy to some Galilean measurement-experiments in which he used minimal instrumentation, this researcher will address the question: How might an individual observer, with a suitably chosen common metric and with widely available, reasonably affordable equipment, contribute to new knowledge from observing the solar eclipse of 2017? Each observer would report data to an institutional sponsor who would analyze these data statistically toward new knowledge about some question currently unsettled in astronomy or in the target field connected with the question which the chosen metric is targeted to address. A subordinate question will be discussed: As a tradeoff between “best question to answer” and “easiest question for observers’ data to answer”, is there an event property and related target question that, with high potential utility and low cost, would be measurable by an observer positioned in the path of totality with minimal or inexpensive equipment and training? (And that, as a statistical sample point, might contribute to new knowledge?) In dialog with the audience, the presenter will suggest some measurables; e.g., solar flares, ground shadow bands, atmospheric metrics, coronal structure, etc., correlated or not with certain other dependent variables. The independent variable would be time in the intervention interval from eclipse contacts 1 -- 4. By the aforementioned analogy, the presenter will review as examples some measurement-experiments conducted or suggested by Galileo; e.g., pendulum laws, Jovian satellite eclipse times, geokinesis as later seen in Bessel's parallactic measurement, and Michelson's measurement of light speed. Because criteria of metrics-determination would naturally include existence of a data-collection-analysis method, this presentation requires dialogue with a critical mass of audience members who would participate in the consideration of the research objective and of candidate institutional sponsors as a function of candidate target questions.
NASA Technical Reports Server (NTRS)
Minnis, Patrick; Smith, William L., Jr.; Bedka, Kristopher M.; Nguyen, Louis; Palikonda, Rabindra; Hong, Gang; Trepte, Qing Z.; Chee, Thad; Scarino, Benjamin; Spangenberg, Douglas A.;
2014-01-01
Cloud properties determined from satellite imager radiances provide a valuable source of information for nowcasting and weather forecasting. In recent years, it has been shown that assimilation of cloud top temperature, optical depth, and total water path can increase the accuracies of weather analyses and forecasts. Aircraft icing conditions can be accurately diagnosed in near--real time (NRT) retrievals of cloud effective particle size, phase, and water path, providing valuable data for pilots. NRT retrievals of surface skin temperature can also be assimilated in numerical weather prediction models to provide more accurate representations of solar heating and longwave cooling at the surface, where convective initiation. These and other applications are being exploited more frequently as the value of NRT cloud data become recognized. At NASA Langley, cloud properties and surface skin temperature are being retrieved in near--real time globally from both geostationary (GEO) and low--earth orbiting (LEO) satellite imagers for weather model assimilation and nowcasting for hazards such as aircraft icing. Cloud data from GEO satellites over North America are disseminated through NCEP, while those data and global LEO and GEO retrievals are disseminated from a Langley website. This paper presents an overview of the various available datasets, provides examples of their application, and discusses the use of the various datasets downstream. Future challenges and areas of improvement are also presented.
NASA Astrophysics Data System (ADS)
Minnis, P.; Smith, W., Jr.; Bedka, K. M.; Nguyen, L.; Palikonda, R.; Hong, G.; Trepte, Q.; Chee, T.; Scarino, B. R.; Spangenberg, D.; Sun-Mack, S.; Fleeger, C.; Ayers, J. K.; Chang, F. L.; Heck, P. W.
2014-12-01
Cloud properties determined from satellite imager radiances provide a valuable source of information for nowcasting and weather forecasting. In recent years, it has been shown that assimilation of cloud top temperature, optical depth, and total water path can increase the accuracies of weather analyses and forecasts. Aircraft icing conditions can be accurately diagnosed in near-real time (NRT) retrievals of cloud effective particle size, phase, and water path, providing valuable data for pilots. NRT retrievals of surface skin temperature can also be assimilated in numerical weather prediction models to provide more accurate representations of solar heating and longwave cooling at the surface, where convective initiation. These and other applications are being exploited more frequently as the value of NRT cloud data become recognized. At NASA Langley, cloud properties and surface skin temperature are being retrieved in near-real time globally from both geostationary (GEO) and low-earth orbiting (LEO) satellite imagers for weather model assimilation and nowcasting for hazards such as aircraft icing. Cloud data from GEO satellites over North America are disseminated through NCEP, while those data and global LEO and GEO retrievals are disseminated from a Langley website. This paper presents an overview of the various available datasets, provides examples of their application, and discusses the use of the various datasets downstream. Future challenges and areas of improvement are also presented.
Low energy secondary cosmic ray flux (gamma rays) monitoring and its constrains
NASA Astrophysics Data System (ADS)
Raghav, Anil; Bhaskar, Ankush; Yadav, Virendra; Bijewar, Nitinkumar
2015-02-01
Temporal variation of secondary cosmic rays (SCR) flux was measured during the full and new moon and days close to them at Department of Physics, University of Mumbai, Mumbai (Geomagnetic latitude: 10.6 °N), India. The measurements were done by using NaI (Tl) scintillation detector with energy threshold of 200 keV. The SCR flux showed sudden enhancement for approximately about 2 hour during few days out of all observations. The maximum enhancement in SCR flux is about 200 % as compared to the diurnal trend of SCR temporal variations. Weather parameters (temperature and relative humidity) were continuously monitored during all observations. The influences of geomagnetic field, interplanetary parameters and tidal effect on SCR flux have been considered. Summed spectra corresponding to enhancement duration indicates appearance of atmospheric radioactivity which shows single gamma ray line. Detail investigation revealed the presence of radioactive Ar41. Present study indicates origin of Ar41 could be due to anthropogenic source or due to gravitational tidal forces. This measurements point out limitations on low energy SCR flux monitoring. This study will help many researchers in measurements of SCR flux during eclipses and to find unknown mechanism behind decrease/increase in SCR flux during solar/lunar eclipse.
NASA Astrophysics Data System (ADS)
Kaminski, Jacek W.; Struzewska, Joanna; Markowicz, Krzysztof; Jefimow, Maciej
2015-04-01
In the scope of the iAREA projects (Impact of absorbing aerosols on radiative forcing in the European Arctic - http://www.igf.fuw.edu.pl/iAREA) a field campaign was undertaken in March and April 2014 on Spitzbergen. Analysis of measurements was supported by the GEM-AQ model simulations. The GEM-AQ model is a chemical weather model. The core of the model is based on a weather prediction model with environmental processes (chemistry and aerosols) implanted on-line and are interactive (i.e. providing feedback of chemistry on radiation and dynamics). Numerical experiments were performed with the computational grid resolution of ˜15 km. The emission inventory developed by NILU in the ECLIPSE project was used. Preliminary analysis revealed small but systematic overestimation of modelled AOD and background BC levels. We will present the analysis of the vertical distribution of different aerosol species and its contribution to AOD for two stations on Svalbard. Also, changes of modelled chemical composition of aerosols with altitude will be analyzed.
NASA Astrophysics Data System (ADS)
Washington, K.; West, A. J.; Hartmann, J.; Amann, T.; Hosono, T.; Ide, K.
2017-12-01
While analyzing geochemical archives and carbon cycle modelling can further our understanding of the role of silicate weathering as a sink in the long-term carbon cycle, it is necessary to study modern weathering processes to inform these efforts. A recent compilation of data from rivers draining basaltic catchments estimates that rock weathering in active volcanic fields (AVFs) consumes atmospheric CO2 approximately three times faster than in inactive volcanic fields (IVFs), suggesting that the eruption and subsequent weathering of large igneous provinces likely played a major role in the carbon cycle in the geologic past [1]. The study demonstrates a significant correlation between catchment mean annual temperature (MAT) and atmospheric CO2 consumption rate for IVFs. However CO2 consumption due to weathering of AVFs is not correlated with MAT as the relationship is complicated by variability in hydrothermal fluxes, reactive surface area, and groundwater flow paths. To investigate the controls on weathering processes in AVFs, we present data for dissolved and solid weathering products from Mount Aso Caldera, Japan. Aso Caldera is an ideal site for studying the how the chemistry of rivers draining an AVF is impacted by high-temperature water/rock interactions, volcanic ash weathering, and varied groundwater flow paths and residence times. Samples were collected over five field seasons from two rivers and their tributaries, cold groundwater springs, and thermal springs. These samples capture the region's temperature and precipitation seasonality. Solid samples of unaltered volcanic rocks, hydrothermally-altered materials, volcanic ash, a soil profile, and suspended and bedload river sediments were also collected. The hydrochemistry of dissolved phases were analyzed at the University of Hamburg, while the mineralogy and geochemical compositions of solid phases were analyzed at the Natural History Museum of Los Angeles. This work will be discussed in the context of volcanic activity and associated silicate weathering in the geologic past. [1] Li, G., J. Hartmann, L. A. Derry, A. J. West, C.-F. You, X. Long, T. Zhan, L. Li, G. Li, and W. Qiu (2016), Temperature dependence of basalt weathering, Earth Planet. Sci. Lett., 443, 59-69.
Assessing the weather monitoring capabilities of cellular microwave link networks
NASA Astrophysics Data System (ADS)
Fencl, Martin; Vrzba, Miroslav; Rieckermann, Jörg; Bareš, Vojtěch
2016-04-01
Using of microwave links for rainfall monitoring was suggested already by (Atlas and Ulbrich, 1977). However, this technique attracted broader attention of scientific community only in the recent decade, with the extensive growth of cellular microwave link (CML) networks, which form the backbone of today's cellular telecommunication infrastructure. Several studies have already shown that CMLs can be conveniently used as weather sensors and have potential to provide near-ground path-integrated observations of rainfall but also humidity or fog. However, although research is still focusing on algorithms to improve the weather sensing capabilities (Fencl et al., 2015), it is not clear how to convince cellular operators to provide the power levels of their network. One step in this direction is to show in which regions or municipalities the networks are sufficiently dense to provide/develop good services. In this contribution we suggest a standardized approach to evaluate CML networks in terms of rainfall observation and to identify suitable regions for CML rainfall monitoring. We estimate precision of single CML based on its sensitivity to rainfall, i.e. as a function of frequency, polarization and path length. Capability of a network to capture rainfall spatial patterns is estimated from the CML coverage and path lengths considering that single CML provides path-integrated rain rates. We also search for suitable predictors for regions where no network topologies are available. We test our approach on several European networks and discuss the results. Our results show that CMLs are very dense in urban areas (> 1 CML/km2), but less in rural areas (< 0.02 CML/km2). We found a strong correlation between a population and CML network density (e.g. R2 = 0.97 in Czech Republic), thus population could be a simple proxy to identify suitable regions for CML weather monitoring. To enable a simple and efficient assessment of the CML monitoring potential for any region worldwide, we are currently integrating our approach into open source online tool. In summary, our results demonstrate that CML represent promising environmental observation network, suitable especially for urban rainfall monitoring. The developed approach integrated into an open source online tool can be conveniently used e.g. by local operators or authorities to evaluate the suitability of their region for CML weather monitoring and estimate the credible spatial-resolution of a CML weather monitoring product. Atlas, D. and Ulbrich, C. W. (1977) Path- and Area-Integrated Rainfall Measurement by Microwave Attenuation in the 1-3 cm Band. Journal of Applied Meteorology, 16(12), 1322-1331. Fencl, M., Rieckermann, J., Sýkora, P., Stránský, D., and Bareš, V. (2015) Commercial microwave links instead of rain gauges: fiction or reality? Water Science & Technology, 71(1), 31. Acknowledgements to Czech Science Foundation project No. 14-22978S and Czech Technical University in Prague project No. SGS15/050/OHK1/1T/11.
Five Millennium Catalog of Lunar Eclipses: -1999 to +3000 (2000 BCE to 3000 CE)
NASA Technical Reports Server (NTRS)
Espenak, Fred; Meeus, Jean
2009-01-01
This catalog is a supplement to the "FiveMillenniumCanonofLunarEclipses." It includes additional information for each eclipse that could not be included in the original publication because of size limits. The data tabulated for each eclipse include the catalog number, canon plate number, calendar date, Terrestrial Dynamical Time of greatest eclipse, (Delta)T, lunation number, Saros number, eclipse type, Quincena Solar Eclipse parameter, gamma, penumbral and umbral eclipse magnitudes, durations of penumbral, partial and total eclipse phases, and geographic coordinates of greatest eclipse (latitude and longitude). The Canon and the Catalog both use the same solar and lunar ephemerides as well as the same values of (Delta)T. This 1-to-1 correspondence between them will enhance the value of each. The researcher may now search, evaluate, and compare eclipses graphically (Canon) or textually (Catalog).
Five Millennium Catalog of Solar Eclipses: -1999 to +3000 (2000 BCE to 3000 CE)-Revised
NASA Technical Reports Server (NTRS)
Espenak, Fred; Meeus, Jean
2009-01-01
This catalog is a supplement to the "Five Millennium Canon of Lunar Eclipses. "It includes additional information for each eclipse that could not be included in the original publication because of size limits. The data tabulated for each eclipse include the catalog number, canon plate number, calendar date, Terrestrial Dynamical Time of greatest eclipse, (Delta)T, lunation number, Saros number, eclipse type, Quincena Solar Eclipse parameter, gamma, penumbral and umbral eclipse magnitudes, durations of penumbral, partial and total eclipse phases, and geographic coordinates of greatest eclipse(latitude and longitude). The Canon and the Catalog both use the same solar and lunar ephemerides as well as the same values of (Delta)T. This 1-to-1 correspondence between them will enhance the value of each. The researcher may now search, evaluate, and compare eclipses graphically (Canon) or textually (Catalog).
NASA Astrophysics Data System (ADS)
Pang, K. D.
2006-12-01
Observations of the 1761 and 1769 transits of Venus were crucial to the early development of American geoscience. Accurate longitude measurements were needed for that, the Mason-Dixon survey, the 1804-1806 Lewis and Clark expedition to Oregon, and the westward expansion of the new republic [Woolf, "The Transits of Venus: A Study of 18th Century Science," Princeton, 1959]. As founder of the American Philosophical Society Benjamin Franklin promoted the transit observations, and procured a large telescope for the Philadelphia group. While serving as ambassador to France he observed that a "dry fog" from the 1783 Laki eruption in Iceland had obscured the Sun, and suggested that as a cause of the unseasonably cold weather of that summer and winter. Although the longitude, solar parallax and Sun-Earth distance measurements have long since been improved on, observations of the dark lunar eclipse just before the June 6, 1761 transit are still valuable for identifying a very large volcanic eruption that spring, using Benjamin Franklin's method. Many observers worldwide, while making a final check on their clock/longitude, found the May 18, 1761 totally eclipsed Moon very dark or even invisible, e.g., Wargentin (Stockholm Observatory) could not see the Moon for 38 minutes even with a 2-ft telescope [Phil. Trans. 52, 208, 1761-1762]. Whereas the totally eclipsed Moon is illuminated only by sunlight refracted by the Earth's atmosphere, I conclude that it was severely obscured, thus meeting Benjamin Franklin's first condition. Ice cores from Greenland and Antarctica show a large sulfuric acid peak at 1762 [Crowley, Geophys. Res. Lett. 20, 209, 1993; and Karlof, J. Geophys. Res. 105, D10, 12471, 2000], also satisfying Benjamin Franklin's second condition that the obscuration be due to a "dry fog" (sulfuric acid mist). The weather of 1761-1762 was indeed very cold, as recorded in chronicles, and frost-damaged rings of North American bristlecone pines [LaMarche and Hirschboeck, Nature 307, 121, 1984]. Annual weather reviews in imperial, provincial and county histories in China have been examined. Unseasonable cold are classified by their degree of severity: (1) Late (April-June) or early (July-Sept.) killing frosts; (2) Bitter cold/heavy snowfall; and (3) Heavy sustained snowfall, bitter cold with frozen wells, lakes and rivers. The latter cases were often widespread and multi-year, with the coast icebound also. The weather of 1761-1762 was a "3." Heavy sustained snow fell over many sites from the Tropic of Cancer to the Yellow River. In the north wells and rivers froze. Taihu (Great Lake near Shanghai) and nearby rivers froze over and were not navigable. Innumerable trees, birds and livestock perished, etc. Whereas all three of Benjamin Franklin's conditions have been met I conclude that a very large volcanic eruption early in 1761 had a major impact on the Earth's climate. Its location is unknown, but was probably low- or mid-latitude, as sulfuric acid from the volcanic cloud settled onto both poles. Finally Benjamin Franklin's criteria for a climate-altering volcanic eruption are still universally used (the appearance of brilliant red twilight displays have since been added). Moreover his legacy continues to inspire climate researchers. See, for example, "Climatic Impact of the mid-15th-Century Kuwae Caldera Formation...," Pang, Eos 74, No. 43, 106, 1993; and as cited in "Earth in Balance," Al Gore, p. 379, Penguin, 1993. See also "Constantinople's Volcanic Twilight," Lynn Simarski, Aramco World 47, No. 6, 8-13, 1996.
Design of an advanced flight planning system
NASA Technical Reports Server (NTRS)
Sorensen, J. A.; Goka, T.
1985-01-01
The demand for both fuel conservation and four-dimensional traffic management require that the preflight planning process be designed to account for advances in airborne flight management and weather forecasting. The steps and issues in designing such an advanced flight planning system are presented. Focus is placed on the different optimization options for generating the three-dimensional reference path. For the cruise phase, one can use predefined jet routes, direct routes based on a network of evenly spaced grid points, or a network where the grid points are existing navaid locations. Each choice has its own problem in determining an optimum solution. Finding the reference path is further complicated by choice of cruise altitude levels, use of a time-varying weather field, and requiring a fixed time-of-arrival (four-dimensional problem).
Five Millennium Canon of Solar Eclipses: -1999 to +3000 (2000 BCE to 3000 CE)
NASA Technical Reports Server (NTRS)
Espenak, Fred; Meeus, Jean
2006-01-01
During 5,000-year period from -1999 to +3000 (2000BCE to 3000CE), Earth will experience 11,898 eclipses of the Sun. The statistical distribution of eclipse types for this interval is as follows: 4,200 partial eclipses, 3956 annular eclipses, 3173 total eclipses,and 569 hybrid eclipses. Detailed global maps for each of the 11,898 eclipses delineate the geographic regions of visibility for both the penumbral (partial) and umbral or antumbral (total, annular, or hybrid) phases of every event. Modern political borders are plotted to assist in the determination of eclipse visibility. The uncertainty in Earth's rotational period expressed in the parameter (delta)T and its impact on the geographic visibility of eclipses in the past and future is discussed.
Analysis of Multi-Flight Common Routes for Traffic Flow Management
NASA Technical Reports Server (NTRS)
Sheth, Kapil; Clymer, Alexis; Morando, Alex; Shih, Fu-Tai
2016-01-01
When severe convective weather requires rerouting aircraft, FAA traffic managers employ severe weather avoidance plans (e.g., Playbook routes, Coded Departure Routes, etc.) These routes provide pilots with safe paths around weather-affected regions, and provide controllers with predictable, and often well-established flight plans. However, they often introduce large deviations to the nominal flight plans, which may not be necessary as weather conditions change. If and when the imposed traffic management initiatives (TMIs) become stale, updated shorter path flight trajectories may be found en route, providing significant time-savings to the affected flights. Multiple Flight Common Routes (MFCR) is a concept that allows multiple flights that are within a specified proximity or region, to receive updated shorter flight plans in an operationally efficient manner. MFCR is believed to provide benefits to the National Airspace System (NAS) by allowing traffic managers to update several flight plans of en route aircraft simultaneously, reducing operational workload within the TMUs of all affected ARTCCs. This paper will explore some aspects of the MFCR concept by analyzing multiple flights that have been selected for rerouting by the NAS Constraint Evaluation and Notification Tool (NASCENT). Various methods of grouping aircraft with common or similar routes will be presented, along with a comparison of the efficacy of these methods.
NASA Astrophysics Data System (ADS)
Croll, Bryce; Albert, Loic; Jayawardhana, Ray; Cushing, Michael; Moutou, Claire; Lafreniere, David; Johnson, John Asher; Bonomo, Aldo S.; Deleuil, Magali; Fortney, Jonathan
2015-03-01
We present detections of the near-infrared thermal emission of three hot Jupiters and one brown dwarf using the Wide-field Infrared Camera (WIRCam) on the Canada-France-Hawaii Telescope (CFHT). These include Ks-band secondary eclipse detections of the hot Jupiters WASP-3b and Qatar-1b and the brown dwarf KELT-1b. We also report Y-band, K CONT-band, and two new and one reanalyzed Ks-band detections of the thermal emission of the hot Jupiter WASP-12b. We present a new reduction pipeline for CFHT/WIRCam data, which is optimized for high precision photometry. We also describe novel techniques for constraining systematic errors in ground-based near-infrared photometry, so as to return reliable secondary eclipse depths and uncertainties. We discuss the noise properties of our ground-based photometry for wavelengths spanning the near-infrared (the YJHK bands), for faint and bright stars, and for the same object on several occasions. For the hot Jupiters WASP-3b and WASP-12b we demonstrate the repeatability of our eclipse depth measurements in the Ks band; we therefore place stringent limits on the systematics of ground-based, near-infrared photometry, and also rule out violent weather changes in the deep, high pressure atmospheres of these two hot Jupiters at the epochs of our observations. Based on observations obtained with WIRCam, a joint project of Canada-France-Hawaii Telescope (CFHT), Taiwan, Korea, Canada, France, at the CFHT, which is operated by the National Research Council (NRC) of Canada, the Institute National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.
An Airborne Infrared Spectrometer for Solar Eclipse Observations
NASA Astrophysics Data System (ADS)
Samra, Jenna; DeLuca, Edward E.; Golub, Leon; Cheimets, Peter; Philip, Judge
2016-05-01
The airborne infrared spectrometer (AIR-Spec) is an innovative solar spectrometer that will observe the 2017 solar eclipse from the NSF/NCAR High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER). AIR-Spec will image five infrared coronal emission lines to determine whether they may be useful probes of coronal magnetism.The solar magnetic field provides the free energy that controls coronal heating, structure, and dynamics. Energy stored in coronal magnetic fields is released in flares and coronal mass ejections and ultimately drives space weather. Therefore, direct coronal field measurements have significant potential to enhance understanding of coronal dynamics and improve solar forecasting models. Of particular interest are observations of field lines in the transitional region between closed and open flux systems, providing important information on the origin of the slow solar wind.While current instruments routinely observe only the photospheric and chromospheric magnetic fields, AIR-Spec will take a step toward the direct observation of coronal fields by measuring plasma emission in the infrared at high spatial and spectral resolution. During the total solar eclipse of 2017, AIR-Spec will observe five magnetically sensitive coronal emission lines between 1.4 and 4 µm from the HIAPER Gulfstream V at an altitude above 14.9 km. The instrument will measure emission line intensity, width, and Doppler shift, map the spatial distribution of infrared emitting plasma, and search for waves in the emission line velocities.AIR-Spec consists of an optical system (feed telescope, grating spectrometer, and infrared detector) and an image stabilization system, which uses a fast steering mirror to correct the line-of-sight for platform perturbations. To ensure that the instrument meets its research goals, both systems are undergoing extensive performance modeling and testing. These results are shown with reference to the science requirements.
There's An App For That: Planning Ahead for the Solar Eclipse in August 2017
NASA Astrophysics Data System (ADS)
Chizek Frouard, Malynda R.; Lesniak, Michael V.; Bell, Steve
2017-01-01
With the total solar eclipse of 2017 August 21 over the continental United States approaching, the U.S. Naval Observatory (USNO) on-line Solar Eclipse Computer can now be accessed via an Android application, available on Google Play.Over the course of the eclipse, as viewed from a specific site, several events may be visible: the beginning and ending of the eclipse (first and fourth contacts), the beginning and ending of totality (second and third contacts), the moment of maximum eclipse, sunrise, or sunset. For each of these events, the USNO Solar Eclipse 2017 Android application reports the time, Sun's altitude and azimuth, and the event's position and vertex angles. The app also lists the duration of the total phase, the duration of the eclipse, the magnitude of the eclipse, and the percent of the Sun obscured for a particular eclipse site.All of the data available in the app comes from the flexible USNO Solar Eclipse Computer Application Programming Interface (API), which produces JavaScript Object Notation (JSON) that can be incorporated into third-party Web sites or custom applications. Additional information is available in the on-line documentation (http://aa.usno.navy.mil/data/docs/api.php).For those who prefer using a traditional data input form, the local circumstances can still be requested at http://aa.usno.navy.mil/data/docs/SolarEclipses.php.In addition the 2017 August 21 Solar Eclipse Resource page (http://aa.usno.navy.mil/data/docs/Eclipse2017.php) consolidates all of the USNO resources for this event, including a Google Map view of the eclipse track designed by Her Majesty's Nautical Almanac Office (HMNAO).Looking further ahead, a 2024 April 8 Solar Eclipse Resource page (http://aa.usno.navy.mil/data/docs/Eclipse2024.php) is also available.
AWE: Aviation Weather Data Visualization Environment
NASA Technical Reports Server (NTRS)
Spirkovska, Lilly; Lodha, Suresh K.; Norvig, Peter (Technical Monitor)
2000-01-01
Weather is one of the major causes of aviation accidents. General aviation (GA) flights account for 92% of all the aviation accidents, In spite of all the official and unofficial sources of weather visualization tools available to pilots, there is an urgent need for visualizing several weather related data tailored for general aviation pilots. Our system, Aviation Weather Data Visualization Environment AWE), presents graphical displays of meteorological observations, terminal area forecasts, and winds aloft forecasts onto a cartographic grid specific to the pilot's area of interest. Decisions regarding the graphical display and design are made based on careful consideration of user needs. Integral visual display of these elements of weather reports is designed for the use of GA pilots as a weather briefing and route selection tool. AWE provides linking of the weather information to the flight's path and schedule. The pilot can interact with the system to obtain aviation-specific weather for the entire area or for his specific route to explore what-if scenarios and make "go/no-go" decisions. The system, as evaluated by some pilots at NASA Ames Research Center, was found to be useful.
Effects of Climate on Co-evolution of Weathering Profiles and Hillscapes
NASA Astrophysics Data System (ADS)
Anderson, R. S.; Rajaram, H.; Anderson, S. P.
2017-12-01
Considerable debate revolves around the relative importance of rock type, tectonics, and climate in creating the architecture of the critical zone. It has recently been proposed that differences in the depths and patterns of weathering between landscapes in Colorado's Front Range and South Carolina's piedmont can be attributed to the state of stress in the rock imposed by the magnitude and orientation the regional stresses with respect to the ridgelines (St. Claire et al., 2016). We argue for the importance of the climate, and in particular, in temperate regions, the amount of recharge. We employ numerical models of hillslope evolution between bounding erosional channels, in which the degree of rock weathering governs the rate of transformation of rock to soil. As the water table drapes between the stream channels, fresh rock is brought into the weathering zone at a rate governed by the rate of incision of the channels. We track the chemical weathering of rock, represented by alteration of feldspar to clays, which in turn requires calculation of the concentration of reactive species in the water along hydrologic flow paths. We present results from analytic solutions to the flow field in which travel times can be efficiently assessed. Below the water table, flow paths are hyperbolic, taking on considerable lateral components as they veer toward the bounding channels that serve as drains to the hillslope. We find that if water is far from equilibrium with respect to weatherable minerals at the water table, as occurs in wet, slowly-eroding landscapes, deep weathering can occur well below the water table to levels approximating the base of the bounding channels. In dry climates, on the other hand, the weathering zone is limited to a shallow surface - parallel layer. These models capture the essence of the observed differences in depth to fresh rock in both wet and dry climates without appeal to the state of stress in the rock.
1-D DSMC simulation of Io's atmospheric collapse and reformation during and after eclipse
NASA Astrophysics Data System (ADS)
Moore, C. H.; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.; Stewart, B.
2009-06-01
A one-dimensional Direct Simulation Monte Carlo (DSMC) model is used to examine the effects of a non-condensable species on Io's sulfur dioxide sublimation atmosphere during eclipse and just after egress. Since the vapor pressure of SO 2 is extremely sensitive to temperature, the frost-supported dayside sublimation atmosphere had generally been expected to collapse during eclipse as the surface temperature dropped. For a pure SO 2 atmosphere, however, it was found that during the first 10 min of eclipse, essentially no change in the atmospheric properties occurs at altitudes above ˜100 km due to the finite ballistic/acoustic time. Hence immediately after ingress the auroral emission morphology above 100 km should resemble that of the immediate pre-eclipse state. Furthermore, the collapse dynamics are found to be greatly altered by the presence of even a small amount of a non-condensable species which forms a diffusion layer near the surface that prevents rapid collapse. It is found that after 10 min essentially no collapse has occurred at altitudes above ˜20 km when a nominal mole fraction of non-condensable gas is present. Collapse near the surface occurs relatively quickly until a static diffusion layer many mean free paths thick of the non-condensable gas builds up which then retards further collapse of the SO 2 atmosphere. For example, for an initial surface temperature of 110 K and 35% non-condensable mole-fraction, the ratio of the SO 2 column density to the initial column density was found to be 0.73 after 10 min, 0.50 after 30 min, and 0.18 at the end of eclipse. However, real gas species (SO, O 2) may not be perfectly non-condensable at Io's surface temperatures. If the gas species was even weakly condensable (non-zero sticking/reaction coefficient) then the effect of the diffusion layer on the dynamics was dramatically reduced. In fact, if the sticking coefficient of the non-condensable exceeds ˜0.25, the collapse dynamics are effectively the same as if there were no non-condensable present. This sensitivity results because the loss of non-condensable to the surface reduces the effective diffusion layer size, and the formation of an effective diffusion layer requires that the layer be stationary; this does not occur if the surface is a sink. Upon egress, vertical stratification of the condensable and non-condensable species occurs, with the non-condensable species being lifted (or pushed) to higher altitudes by the sublimating SO 2 after the sublimating atmosphere becomes collisional. Stratification should affect the morphology and intensity of auroral glows shortly after egress.
Fisher information and steric effect: study of the internal rotation barrier of ethane.
Esquivel, Rodolfo O; Liu, Shubin; Angulo, Juan Carlos; Dehesa, Jesús S; Antolín, Juan; Molina-Espíritu, Moyocoyani
2011-05-05
On the basis of a density-based quantification of the steric effect [Liu, S. B. J. Chem. Phys.2007, 126, 244103], the origin of the internal rotation barrier between the eclipsed and staggered conformers of ethane is systematically investigated in this work from an information-theoretical point of view by using the Fisher information measure in conjugated spaces. Two kinds of computational approaches are considered in this work: adiabatic (with optimal structure) and vertical (with fixed geometry). The analyses are performed systematically by following, in each case, the conformeric path by changing the dihedral angle from 0 to 180° . This is calculated at the HF, MP2, B3LYP, and CCSD(T) levels of theory and with several basis sets. Selected descriptors of the densities are utilized to support the observations. Our results show that in the adiabatic case the eclipsed conformer possesses a larger steric repulsion than the staggered conformer, but in the vertical cases the staggered conformer retains a larger steric repulsion. Our results verify the plausibility for defining and computing the steric effect in the post-Hartree-Fock level of theory according to the scheme proposed by Liu.
NASA's SDO Catches a Double Photobomb
2017-12-08
On Sept. 13, 2015, as NASA’s Solar Dynamics Observatory, or SDO, kept up its constant watch on the sun, its view was photobombed not once, but twice. Just as the moon came into SDO’s field of view on a path to cross the sun, Earth entered the picture, blocking SDO’s view completely. When SDO's view of the sun emerged from Earth’s shadow, the moon was just completing its journey across the sun’s face. Though SDO sees dozens of Earth eclipses and several lunar transits each year, this is the first time ever that the two have coincided. This alignment of the sun, moon and Earth also resulted in a partial solar eclipse on Sept. 13, visible only from parts of Africa and Antarctica. Read more: www.nasa.gov/feature/goddard/nasas-sdo-catches-a-double-p... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Solar Eclipse Computer API: Planning Ahead for August 2017
NASA Astrophysics Data System (ADS)
Bartlett, Jennifer L.; Chizek Frouard, Malynda; Lesniak, Michael V.; Bell, Steve
2016-01-01
With the total solar eclipse of 2017 August 21 over the continental United States approaching, the U.S. Naval Observatory (USNO) on-line Solar Eclipse Computer can now be accessed via an application programming interface (API). This flexible interface returns local circumstances for any solar eclipse in JavaScript Object Notation (JSON) that can be incorporated into third-party Web sites or applications. For a given year, it can also return a list of solar eclipses that can be used to build a more specific request for local circumstances. Over the course of a particular eclipse as viewed from a specific site, several events may be visible: the beginning and ending of the eclipse (first and fourth contacts), the beginning and ending of totality (second and third contacts), the moment of maximum eclipse, sunrise, or sunset. For each of these events, the USNO Solar Eclipse Computer reports the time, Sun's altitude and azimuth, and the event's position and vertex angles. The computer also reports the duration of the total phase, the duration of the eclipse, the magnitude of the eclipse, and the percent of the Sun obscured for a particular eclipse site. On-line documentation for using the API-enabled Solar Eclipse Computer, including sample calls, is available (http://aa.usno.navy.mil/data/docs/api.php). The same Web page also describes how to reach the Complete Sun and Moon Data for One Day, Phases of the Moon, Day and Night Across the Earth, and Apparent Disk of a Solar System Object services using API calls.For those who prefer using a traditional data input form, local circumstances can still be requested that way at http://aa.usno.navy.mil/data/docs/SolarEclipses.php. In addition, the 2017 August 21 Solar Eclipse Resource page (http://aa.usno.navy.mil/data/docs/Eclipse2017.php) consolidates all of the USNO resources for this event, including a Google Map view of the eclipse track designed by Her Majesty's Nautical Almanac Office (HMNAO). Looking further ahead, a 2024 April 8 Solar Eclipse Resource page (http://aa.usno.navy.mil/data/docs/Eclipse2024.php) is also available.
On-line Eclipse Resources from the U.S. Naval Observatory: Planning Ahead for April 2024
NASA Astrophysics Data System (ADS)
Fredericks, Amy C.; Bartlett, J. L.; Bell, S.; Stapleton, J. C.
2014-01-01
On 8 April 2024, “…night from mid-day…” (Archilochus, 648 BCE) will appear to fortunate observers along a narrow band, approximately 115 mi (185 km) wide, that crosses fifteen states from Texas to Maine. In response to growing interest in the two total solar eclipses that will sweep the continental United States in the next 11 years, the U.S. Naval Observatory has developed an on-line resource center with direct links to 2024-specific services: the 2024 April 8 Total Solar Eclipse page (http://aa.usno.navy.mil/data/docs/Eclipse2024.php). The Solar Eclipse Computer (http://aa.usno.navy.mil/data/docs/SolarEclipses.php) calculates tables of local circumstances for events visible throughout the world. A similar service is available for lunar eclipses, Lunar Eclipse Computer (http://aa.usno.navy.mil/data/docs/LunarEclipse.php). The USNO Eclipse Portal (http://astro.ukho.gov.uk/eclbin/query_usno.cgi) provides diagrams and animations showing the global circumstances for events visible throughout the world and local circumstances for events visible at selected locations. The Web site, which includes both solar and lunar eclipses, is a joint effort with Her Majesty’s Nautical Almanac Office. The Eclipses of the Sun and Moon page (http://aa.usno.navy.mil/data/docs/UpcomingEclipses.php) links to electronic copies of the visibility maps from The Astronomical Almanac. The Eclipse Reference List (http://aa.usno.navy.mil/faq/docs/eclipse_ref.php) is a representative survey of the available literature for those interested in delving into these phenomena, either technically or historically. As exciting as the 2024 total solar eclipse, another spectacular event will precede it; a total solar eclipse will cross a different swath of the continent on August 21, 2017. The U.S. Naval Observatory has a resource center for that event as well (http://aa.usno.navy.mil/data/docs/Eclipse2017.php) . If your plans for 2024 are not yet made, visit the 2024 April 8 Total Solar Eclipse page to prepare for up to 4 minutes 31 seconds of “unexampled beauty, grandeur, and impressiveness” (Newcomb 1890) and of darkness.
A new algorithm for microwave delay estimation from water vapor radiometer data
NASA Technical Reports Server (NTRS)
Robinson, S. E.
1986-01-01
A new algorithm has been developed for the estimation of tropospheric microwave path delays from water vapor radiometer (WVR) data, which does not require site and weather dependent empirical parameters to produce high accuracy. Instead of taking the conventional linear approach, the new algorithm first uses the observables with an emission model to determine an approximate form of the vertical water vapor distribution which is then explicitly integrated to estimate wet path delays, in a second step. The intrinsic accuracy of this algorithm has been examined for two channel WVR data using path delays and stimulated observables computed from archived radiosonde data. It is found that annual RMS errors for a wide range of sites are in the range from 1.3 mm to 2.3 mm, in the absence of clouds. This is comparable to the best overall accuracy obtainable from conventional linear algorithms, which must be tailored to site and weather conditions using large radiosonde data bases. The new algorithm's accuracy and flexibility are indications that it may be a good candidate for almost all WVR data interpretation.
Physical and chemical controls on the critical zone
Anderson, S.P.; Von Blanckenburg, F.; White, A.F.
2007-01-01
Geochemists have long recognized a correlation between rates of physical denudation and chemical weathering. What underlies this correlation? The Critical Zone can be considered as a feed-through reactor. Downward advance of the weathering front brings unweathered rock into the reactor. Fluids are supplied through precipitation. The reactor is stirred at the top by biological and physical processes. The balance between advance of the weathering front by mechanical and chemical processes and mass loss by denudation fixes the thickness of the Critical Zone reactor. The internal structure of this reactor is controlled by physical processes that create surface area, determine flow paths, and set the residence time of material in the Critical Zone. All of these impact chemical weathering flux.
Coronal Dynamics at Recent Total Solar Eclipses
NASA Astrophysics Data System (ADS)
Pasachoff, J. M.; Lu, M.; Davis, A. B.; Demianski, M.; Rusin, V.; Saniga, M.; Seaton, D. B.; Lucas, R.; Babcock, B. A.; Dantowitz, R.; Gaintatzis, P.; Seeger, C. H.; Malamut, C.; Steele, A.
2014-12-01
Our composite images of the solar corona based on extensive imaging at the total solar eclipses of 2010 (Easter Island), 2012 (Australia), and 2013 (Gabon) reveal several coronal mass ejections and other changes in coronal streamers and in polar plumes. Our resultant spatial resolution is finer than that available in imaging from spacecraft, including that from SOHO/LASCO or STEREO. We trace the eruptions back to their footpoints on the sun using imaging from SDO and SWAP, and follow them upwards through the corona, measuring velocities. The high-resolution computer compositing by Miloslav Druckmüller and Hana Druckmüllerová (2010 and 2013) and Pavlos Gaintatzis (2012) allows comparison of our images with those taken at intervals of minutes or hours along the totality path. Williams College's 2013 eclipse expedition was supported in part by grant 9327-13 from National Geographic Society/Committee for Research and Exploration. Our work on the 2012 eclipse is supported in part by grant AGS-1047726 from Solar Terrestrial Research/NSF AGS. V.R. and M.S. were partially supported by the VEGA grant agency project 2/0098/10 and 2/0003/13 (Slovak Academy of Sciences) and Grant 0139-12 from NG/CRE, and Hana Druckmüllerová by grant 205/09/1469 of the Czech Science Foundation. M.L. was supported by Sigma Xi. C.M. was a Keck Northeast Astronomy Consortium Summer Fellow, supported at Williams College by REU/NSF grant AST-1005024. Partial support was provided by U.S. Department of Defense's ASSURE program. J.M.P. thanks Caltech's Planetary Sciences Department for hospitality. Support for D.B.S. and SWAP came from PRODEX grant C90345 managed by ESA in collaboration with the Belgian Federal Science Policy Office (BELSPO) in support of the PROBA2/SWAP mission, and from the EC's Seventh Framework Programme (FP7/2007-2013) under grant 218816 (SOTERIA project, www.soteria-space.eu). SWAP is a project of the Centre Spatial de Liège and the Royal Observatory of Belgium funded by BELSPO.
Trade Space Specification Tool (TSST) for Rapid Mission Architecture (Version 1.2)
NASA Technical Reports Server (NTRS)
Wang, Yeou-Fang; Schrock, Mitchell; Borden, Chester S.; Moeller, Robert C.
2013-01-01
Trade Space Specification Tool (TSST) is designed to capture quickly ideas in the early spacecraft and mission architecture design and categorize them into trade space dimensions and options for later analysis. It is implemented as an Eclipse RCP Application, which can be run as a standalone program. Users rapidly create concept items with single clicks on a graphical canvas, and can organize and create linkages between the ideas using drag-and-drop actions within the same graphical view. Various views such as a trade view, rules view, and architecture view are provided to help users to visualize the trade space. This software can identify, explore, and assess aspects of the mission trade space, as well as capture and organize linkages/dependencies between trade space components. The tool supports a user-in-the-loop preliminary logical examination and filtering of trade space options to help identify which paths in the trade space are feasible (and preferred) and what analyses need to be done later with executable models. This tool provides multiple user views of the trade space to guide the analyst/team to facilitate interpretation and communication of the trade space components and linkages, identify gaps in combining and selecting trade space options, and guide user decision-making for which combinations of architectural options should be pursued for further evaluation. This software provides an environment to capture mission trade space elements rapidly and assist users for their architecture analysis. This is primarily focused on mission and spacecraft architecture design, rather than general-purpose design application. In addition, it provides more flexibility to create concepts and organize the ideas. The software is developed as an Eclipse plug-in and potentially can be integrated with other Eclipse-based tools.
Enhanced Weather Radar (EWxR) System
NASA Technical Reports Server (NTRS)
Kronfeld, Kevin M. (Technical Monitor)
2003-01-01
An airborne weather radar system, the Enhanced Weather Radar (EWxR), with enhanced on-board weather radar data processing was developed and tested. The system features additional weather data that is uplinked from ground-based sources, specialized data processing, and limited automatic radar control to search for hazardous weather. National Weather Service (NWS) ground-based Next Generation Radar (NEXRAD) information is used by the EWxR system to augment the on-board weather radar information. The system will simultaneously display NEXRAD and on-board weather radar information in a split-view format. The on-board weather radar includes an automated or hands-free storm-finding feature that optimizes the radar returns by automatically adjusting the tilt and range settings for the current altitude above the terrain and searches for storm cells near the atmospheric 0-degree isotherm. A rule-based decision aid was developed to automatically characterize cells as hazardous, possibly-hazardous, or non-hazardous based upon attributes of that cell. Cell attributes are determined based on data from the on-board radar and from ground-based radars. A flight path impact prediction algorithm was developed to help pilots to avoid hazardous weather along their flight plan and their mission. During development the system was tested on the NASA B757 aircraft and final tests were conducted on the Rockwell Collins Sabreliner.
Outreach to Scientists and to the Public about the Scientific Value of Solar Eclipses
NASA Astrophysics Data System (ADS)
Pasachoff, J.
2017-12-01
The Great American Eclipse of August 21, 2017, provided an unprecedented opportunity for outreach among American audiences on a giant scale in the age of social media. Professonal scientists and other educators, however, were not exempt from ignorance of the remaining scientific value of observing solar eclipses, often mistakenly thinking that space satellites or mountaintop observatories could make artificial eclipses as good as natural ones, which they can't. Further, as Chair of the Working Group on Eclipses of the International Astronomical Union and as a frequent observer of solar eclipses in other countries, I felt an obligation to provide at-least-equal hospitality in our country. Here I discuss our welcome to and interaction with eclipse scientists from Greece, Slovakia, Australia, Bulgaria, Iran, China, and Japan and their participation in the eclipse observations. I describe my own outreach about the still-vital solar-eclipse observations through my August 2017 articles in Nature Astronomy and Scientific American as well as through book reviews in Nature and Phi Beta Kappa's Key Reporter and co-authorship of a Resource Letter on Observing Solar Eclipses in the July issue og the American Journal of Physics. I describe my eclipse-day Academic Minute on National Public Radio via WAMC and on http://365daysofastronomy.org, a website started during the International Year of Astronomy. I discuss my blog post on lecturing to pre-school through elementary-school students for the National Geographic Society's Education Blog. I show my Op-Ed pre-eclipse in the Washington Post. I discuss our eclipse-night broadcast of an eclipse program on PBS's NOVA, and its preparation over many months, back as far and farther than the February 26, 2017, annular solar eclipse observed from Argentinian Patagonia, with images from prior eclipses including 2013 in Gabon and 2015 in Svalbard. My work at the 2017 total solar eclipse was supported in large part with grants from the Committee for Research and Exploration of the National Geographic Society and from the Solar Terrestrial Program of the Division of Atmospheric and Geospace Sciences of the National Science Foundation.
Space Weather - Current Capabilities, Future Requirements, and the Path to Improved Forecasting
NASA Astrophysics Data System (ADS)
Mann, Ian
2016-07-01
We present an overview of Space Weather activities and future opportunities including assessments of current status and capabilities, knowledge gaps, and future directions in relation to both observations and modeling. The review includes input from the scientific community including from SCOSTEP scientific discipline representatives (SDRs), COSPAR Main Scientific Organizers (MSOs), and SCOSTEP/VarSITI leaders. The presentation also draws on results from the recent activities related to the production of the COSPAR-ILWS Space Weather Roadmap "Understanding Space Weather to Shield Society" [Schrijver et al., Advances in Space Research 55, 2745 (2015) http://dx.doi.org/10.1016/j.asr.2015.03.023], from the activities related to the United Nations (UN) Committee on the Peaceful Uses of Outer Space (COPUOS) actions in relation to the Long-term Sustainability of Outer Space (LTS), and most recently from the newly formed and ongoing efforts of the UN COPUOS Expert Group on Space Weather.
Design and Flight Performance of NOAA-K Spacecraft Batteries
NASA Technical Reports Server (NTRS)
Rao, Gopalakrishna M.; Chetty, P. R. K.; Spitzer, Tom; Chilelli, P.
1999-01-01
The US National Oceanic and Atmospheric Administration (NOAA) operates the Polar Operational Environmental Satellite (POES) spacecraft (among others) to support weather forecasting, severe storm tracking, and meteorological research by the National Weather Service (NWS). The latest in the POES series of spacecraft, named as NOAA-KLMNN, is in orbit and four more are in various phases of development. The NOAA-K spacecraft was launched on May 13, 1998. Each of these spacecraft carry three Nickel-Cadmium batteries designed and manufactured by Lockheed Martin. The battery, which consists of seventeen 40 Ah cells manufactured by SAFT, provides the spacecraft power during the ascent phase, orbital eclipse and when the power demand is in excess of the solar array capability. The NOAA-K satellite is in a 98 degree inclination, 7:30AM ascending node orbit. In this orbit the satellite experiences earth occultation only 25% of the year. This paper provides a brief overview of the power subsystem, followed by the battery design and qualification, the cell life cycle test data, and the performance during launch and in orbit.
Design and Flight Performance of NOAA-K Spacecraft Batteries
NASA Technical Reports Server (NTRS)
Rao, Gopalakrishna M.; Chetty, P. R. K.; Spitzer, Tom; Chilelli, P.
1998-01-01
The US National Oceanic and Atmospheric Administration (NOAA) operates the Polar Operational Environmental Satellite (POES) spacecraft (among others) to support weather forecasting, severe storm tracking, and meteorological research by the National Weather Service (NWS). The latest in the POES series of spacecraft, named as NOAA-KLMNN', one is in orbit and four more are in various phases of development. The NOAA-K spacecraft was launched on May 13, 1998. Each of these spacecraft carry three Nickel-Cadmium batteries designed and manufactured by Lockheed Martin. The battery, which consists of seventeen 40 Ah cells manufactured by SAFT, provides the spacecraft power during the ascent phase, orbital eclipse and when the power demand is in excess of the solar array capability. The NOAA-K satellite is in a 98 degree inclination, 7:30AM ascending node orbit. In this orbit the satellite experiences earth occultation only 25% of the year. This paper provides a brief overview of the power subsystem, followed by the battery design and qualification, the cell life cycle test data, and the performance during launch and in orbit.
Walking: How to Get Started and Stay Motivated
... for various types of weather. If you walk outdoors when it's dark, wear bright colors or reflective ... your course carefully. If you'll be walking outdoors, avoid paths with cracked sidewalks, potholes, low-hanging ...
European light dosimeter network (ELDONET): 1998 data
NASA Astrophysics Data System (ADS)
Häder, D.-P.; Lebert, M.; Colombetti, G.; Figueroa, F.
2001-03-01
The European light dosimeter network of over 40 stations has been established in Europe and other continents equipped with three-channel filter dosimeters to measure solar radiation in three channels, UV-B (280-315 nm), UV-A (315-400 nm) and photosynthetically active radiation (PAR). The recorded data have been evaluated, and the monthly doses in all three channels show a strong latitudinal dependence from northern Sweden to the Canary Islands. There are a few remarkable exceptions such as the data recorded at the high mountain station on the Zugspitze (German Alps) and unequal doses at stations at comparable latitudes which indicate the impact of local weather conditions and mean sunshine hours. While generally peak values are recorded in the months of June and July, the UV-B maxima are shifted later into the year, which is due to the antagonistic functions of decreasing solar angles and increasing transparency of the atmosphere as the total column ozone decreases in the second half of the year for the Northern Hemisphere. This is supported by comparison with modelled total column ozone and satellite-based measurements. Also the ratios of UV-B:UV-A and UV-B:PAR as well as UV-A:PAR peak during the summer months, with the exception of the northernmost station at Abisko (north Sweden) where the UV-A:PAR ratio peaks in the winter months which is due to the specific photoclimatic conditions north of the polar circle. The penetration of solar radiation into the water column was found to strongly depend on the transparency of the water column. In Gran Canaria more than 10% of the surface UV-B penetrated to 4-5 m depth. The path of the solar eclipse on 11 August 1999 could be followed in several stations with different degrees of occlusion of the sun disk.
Satellite observations of surface temperature during the March 2015 total solar eclipse.
Good, Elizabeth
2016-09-28
The behaviour of remotely sensed land surface temperatures (LSTs) from the spinning-enhanced visible and infrared imager (SEVIRI) during the total solar eclipse of 20 March 2015 is analysed over Europe. LST is found to drop by up to several degrees Celcius during the eclipse, with the minimum LST occurring just after the eclipse mid-point (median=+1.5 min). The drop in LST is typically larger than the drop in near-surface air temperatures reported elsewhere, and correlates with solar obscuration (r=-0.47; larger obscuration = larger LST drop), eclipse duration (r=-0.62; longer duration = larger LST drop) and time (r=+0.37; earlier eclipse = larger LST drop). Locally, the LST drop is also correlated with vegetation (up to r=+0.6), with smaller LST drops occurring over more vegetated surfaces. The LSTs at locations near the coast and at higher elevation are also less affected by the eclipse. This study covers the largest area and uses the most observations of eclipse-induced surface temperature drops to date, and is the first full characterization of satellite LST during an eclipse (known to the author). The methods described could be applied to Geostationary Operational Environmental Satellite (GOES) LST data over North America during the August 2017 total solar eclipse.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. © 2016 The Author(s).
Eclipses and dust formation by WC9 type Wolf-Rayet stars
NASA Astrophysics Data System (ADS)
Williams, P. M.
2014-12-01
Visual photometry of 16 WC8-9 dust-making Wolf-Rayet (WR) stars during 2001-2009 was extracted from the All-Sky Automated Survey All Star Catalogue (ASAS-3) to search for eclipses attributable to extinction by dust formed in clumps in our line of sight. Data for a comparable number of dust-free WC6-9 stars were also examined to help characterize the data set. Frequent eclipses were observed from WR 104, and several from WR 106, extending the 1994-2001 studies by Kato et al., but not supporting their phasing the variations in WR 104 with its `pinwheel' rotation period. Only four other stars showed eclipses, WR 50 (one of the dust-free stars), WR 69, WR 95 and WR 117, and there may have been an eclipse by WR 121, which had shown two eclipses in the past. No dust eclipses were shown by the `historic' eclipsers WR 103 and WR 113. The atmospheric eclipses of the latter were observed but the suggestion by David-Uraz et al. that dust may be partly responsible for these is not supported. Despite its frequent eclipses, there is no evidence in the infrared images of WR 104 for dust made in its eclipses, demonstrating that any dust formed in this process is not a significant contributor to its circumstellar dust cloud and suggesting that the same applies to the other stars showing fewer eclipses.
Public outreach and education during the 2016 total solar eclipse in Palu and Malang
NASA Astrophysics Data System (ADS)
Rachmadian, A. P.; Kunjaya, C.; Wahono, W.; Anugrah, A. A.
2016-11-01
MAGIC (Ma Chung Galactic Club) of Ma Chung University, Malang, is one of the amateur astronomers club who did public outreach and education during the Total Solar Eclipse March 9, 2016. The motivation for doing this was the bad experience during Total Solar Eclipse 1983. At that time the Indonesian government forbid the people to observe the Total Solar Eclipse in a way to avoid blindness. We try to fix this misunderstanding by educating people the safe way to enjoy the partial and total solar eclipse. MAGIC team was divided into two teams, one team went to Palu and did the solar eclipse related education in six high schools before and during the eclipse. The other team did the observation on Ma Chung University campus, Malang, to accompany people who want to see the partial solar eclipse through filtered telescopes. The sky during the solar eclipse was clear both in Malang and Palu. People were very excited and satisfied with the solar eclipse, and their interest to astronomy is increased.
The X-ray eclipse of the LMC binary CAL 87
NASA Technical Reports Server (NTRS)
Schmidtke, P. C.; Mcgrath, T. K.; Cowley, A. P.; Frattare, L. M.
1993-01-01
ROSAT-PSPC observations of the LMC eclipsing binary CAL 87 show a short-duration, shallow X-ray eclipse which coincides in phase with the primary optical minimum. Characteristics of the eclipse suggest the X-ray emitting region is only partially occulted. Similarities with the eclipse of the accretion-disk corona in X 1822-37 are discussed. However, no temperature variation through eclipse is found for CAL 87. A revised orbital period, combining published data and recent optical photometry, is given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conroy, Kyle E.; Stassun, Keivan G.; Prša, Andrej
2014-02-01
We present a catalog of precise eclipse times and analysis of third-body signals among 1279 close binaries in the latest Kepler Eclipsing Binary Catalog. For these short-period binaries, Kepler's 30 minute exposure time causes significant smearing of light curves. In addition, common astrophysical phenomena such as chromospheric activity, as well as imperfections in the light curve detrending process, can create systematic artifacts that may produce fictitious signals in the eclipse timings. We present a method to measure precise eclipse times in the presence of distorted light curves, such as in contact and near-contact binaries which exhibit continuously changing light levelsmore » in and out of eclipse. We identify 236 systems for which we find a timing variation signal compatible with the presence of a third body. These are modeled for the light travel time effect and the basic properties of the third body are derived. This study complements J. A. Orosz et al. (in preparation), which focuses on eclipse timing variations of longer period binaries with flat out-of-eclipse regions. Together, these two papers provide comprehensive eclipse timings for all binaries in the Kepler Eclipsing Binary Catalog, as an ongoing resource freely accessible online to the community.« less
NASA Astrophysics Data System (ADS)
Zhang, Jia; Qian, Sheng-Bang; He, Jian-Duo
2017-02-01
Four candidates of eclipsing multiples, based on new extraneous eclipses found on Kepler binary light curves, are presented and studied. KIC 7622486 is a double eclipsing binary candidate with orbital periods of 2.2799960 d and 40.246503 d. The two binary systems do not eclipse each other in the line of sight, but there is mutual gravitational influence between them which leads to the small but definite eccentricity of 0.0035(0.0022) associated with the short 2.2799960 d period orbit. KIC 7668648 is a hierarchical quadruple system candidate, with two sets of solid 203 ± 5 d period extraneous eclipses and another independent set of extraneous eclipses. A clear and credible extraneous eclipse is found on the binary light curve of KIC 7670485 which makes it a triple system candidate. Two sets of extraneous eclipses with periods of about 390 d and 220 d are found on KIC 8938628 binary curves, which not only confirm the previous conclusion of the 388.5 ± 0.3 triple system, but also indicate new additional objects that make KIC 8938628 a hierarchical quadruple system candidate. The results from these four candidates will contribute to the field of eclipsing multiples.
Poster 16: Eclipse-induced changes of Titan's meteorology at equinox
NASA Astrophysics Data System (ADS)
Tokano, Tetsuya
2016-06-01
Titan experiences solar eclipses by Saturn on ˜20 consecutive orbits around equinox for durations of up to ˜6 hours. The impact of these eclipses on Titan's surface, lower atmosphere and middle atmosphere is investigated by a global climate model. When an eclipse commences, the surface temperature on the subsaturnian side drops by up to 0.3 K, so that the diurnal maximum surface temperature remains lower than on the antisaturnian side, which is never eclipsed. By contrast, the tropospheric air temperature does not abruptly decrease during the eclipses because of the large thermal inertia, but the diurnal mean temperature slightly decreases. The surface wind at low latitudes becomes less gusty in the presence of eclipse due to damping of turbulence. The troposphere outside the planetary boundary layer is not sensitive to eclipses. In most parts of the stratosphere and mesosphere the temperature decreases by up to 2 K due to eclipses, but there are also layers, which experience relative warming due to thermal contraction of the underlying layers. The temperature in the middle atmosphere rapidly recovers after the end of the eclipse season. Eclipse-induced cooling and warming changes the zonal wind speed by a few m/s due to thermal wind adjustment to changing latitudinal temperature gradients.
A concept for a fuel efficient flight planning aid for general aviation
NASA Technical Reports Server (NTRS)
Collins, B. P.; Haines, A. L.; Wales, C. J.
1982-01-01
A core equation for estimation of fuel burn from path profile data was developed. This equation was used as a necessary ingredient in a dynamic program to define a fuel efficient flight path. The resultant algorithm is oriented toward use by general aviation. The pilot provides a description of the desired ground track, standard aircraft parameters, and weather at selected waypoints. The algorithm then derives the fuel efficient altitudes and velocities at the waypoints.
Space-time variability of raindrop size distributions along a 2.2 km microwave link path
NASA Astrophysics Data System (ADS)
van Leth, Tommy; Uijlenhoet, Remko; Overeem, Aart; Leijnse, Hidde; Berne, Alexis
2017-04-01
The Wageningen Urban Rainfall Experiment (WURex14-15) was dedicated to address several errors and uncertainties associated with quantitative precipitation estimates from microwave links. The core of the experiment consisted of three co-located microwave links installed between two major buildings on the Wageningen University campus, approximately 2.2 km apart: a 38 GHz commercial microwave link, provided by T-Mobile NL, and 26 GHz and 38 GHz (dual-polarization) research microwave links from RAL. Transmitting and receiving antennas were attached to masts installed on the roofs of the two buildings, about 30 m above the ground. This setup was complemented with a Scintec infrared Large-Aperture Scintillometer, installed over the same path, an automatic rain gauge, as well as 5 Parsivel optical disdrometers positioned at several locations along the path. Temporal sampling of the received signals was performed at a rate of 20 Hz. The setup was being monitored by time-lapse cameras to assess the state of the antennas as well as the atmosphere. Finally, data were available from the KNMI weather radars and an automated weather station situated just outside Wageningen. The experiment has been active between August 2014 and December 2015. We present preliminary results regarding the space-time variability of raindrop size distributions from the Parsivel disdrometers along the 2.2 km microwave link path.
Ms. Hisako Koyama: From Amateur Astronomer to Long-Term Solar Observer
NASA Astrophysics Data System (ADS)
Knipp, Delores; Liu, Huixin; Hayakawa, Hisashi
2017-10-01
The path to science for a girl of any nationality born in the early twentieth century was formidable-to-nonexistent. Yet paths were forged by a few. We present the little-known story of one of Japan's premier solar observers and her contribution to the world's understanding of sunspots and space weather cycles. Ms. Hisako Koyama, born in Tokyo in 1916, became a passionate amateur astronomer, a dedicated solar observer, and a long-serving staff member of the National Museum of Nature and Science, Tokyo. As a writer for amateur astronomy journals she advised many on the details and joys of sky viewing. She created a consistent, extended record of sunspots. Her multidecade archive of sunspot drawings is one of the "backbones" for the recent international recalibration of the sunspot record that provides insight into space weather reaching back to the early 1600s. We detail her contributions to the citizens of Japan as an ambassador of astronomy and her international contribution to understanding the symmetries and asymmetries of the solar cycle. We comment on the value of her continuous record of sunspots and on her tenacity in promoting a science that links to space weather.
Eclipse Soundscapes Project: Making the August 21, 2017 Total Solar Eclipse Accessible to Everyone
NASA Astrophysics Data System (ADS)
Winter, H. D., III
2017-12-01
The Eclipse Soundscapes Project delivered a multisensory experience that allowed the blind and visually impaired to engage with the August 21, 2017 total solar eclipse along with their sighted peers in a way that would not have been possible otherwise. The project, from the Smithsonian Astrophysical Observatory and NASA's Heliophysics Education Consortium, includes illustrative audio descriptions of the eclipse in real time, recordings of the changing environmental sounds during the eclipse, and an interactive "rumble map" app that allows users to experience the eclipse through touch and sound. The Eclipse Soundscapes Project is working with organizations such as the National Parks Service (NPS), Science Friday, and Brigham Young University and by WGBH's National Center for Accessible Media (NCAM) to bring the awe and wonder of the total solar eclipse and other astronomical phenomena to a segment of the population that has been excluded from and astronomy and astrophysics for far too long, while engaging all learners in new and exciting ways.
Operational Space Weather Activities in the US
NASA Astrophysics Data System (ADS)
Berger, Thomas; Singer, Howard; Onsager, Terrance; Viereck, Rodney; Murtagh, William; Rutledge, Robert
2016-07-01
We review the current activities in the civil operational space weather forecasting enterprise of the United States. The NOAA/Space Weather Prediction Center is the nation's official source of space weather watches, warnings, and alerts, working with partners in the Air Force as well as international operational forecast services to provide predictions, data, and products on a large variety of space weather phenomena and impacts. In October 2015, the White House Office of Science and Technology Policy released the National Space Weather Strategy (NSWS) and associated Space Weather Action Plan (SWAP) that define how the nation will better forecast, mitigate, and respond to an extreme space weather event. The SWAP defines actions involving multiple federal agencies and mandates coordination and collaboration with academia, the private sector, and international bodies to, among other things, develop and sustain an operational space weather observing system; develop and deploy new models of space weather impacts to critical infrastructure systems; define new mechanisms for the transition of research models to operations and to ensure that the research community is supported for, and has access to, operational model upgrade paths; and to enhance fundamental understanding of space weather through support of research models and observations. The SWAP will guide significant aspects of space weather operational and research activities for the next decade, with opportunities to revisit the strategy in the coming years through the auspices of the National Science and Technology Council.
Educating the Public about the 2017 Total Solar Eclipse
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.
2017-01-01
On behalf of the International Astronomical Union's Working Group on Solar Eclipses, I have long worked to bring knowledge about eclipses and how to observe the safely to the people of the various countries from which partial, annular, or total solar eclipses are visible. In 2017, we have first a chance to educate the people of South America on the occasion of the February 26 annular eclipse through southern Chile and Argentina that is partial throughout almost the entire continent (and an eclipse workshop will be held February 22-24 in Esquel, Argentina: http://sion.frm.utn.edu.ar/WDEAII) and then a chance to educate the 300 million people of the United States and others in adjacent countries as far south as northern South America about the glories of totality and how to observe partial phases. Our website, a compendium of links to information about maps, safe observing, science, and more is at http://eclipses.info. We link to important mapping sites at EclipseWise.com, GreatAmericanEclipse.com, and http://xjubier.free.fr/en/site_pages/solar_eclipses/xSE_GoogleMap3.php?Ecl=+20170821&Acc=2&Umb=1&Lmt=1&Mag=1&Max=1, and information about cloudiness statistics at http://eclipsophile.com, as well as simulation sites at https://svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=4314 and http://eyes.jpl.nasa.gov. The American Astronomical Society's task force on the 2017 eclipse has a website at http://eclipse.aas.org. We are working to disseminate accurate information about how and why to observe the total solar eclipse, trying among other things to head off common misinformation about the hazards of looking at the sun at eclipses or otherwise. About 12 million Americans live within the 70-mile-wide band of totality, and we encourage others to travel into it, trying to make clear the difference between even a 99% partial eclipse and a total eclipse, with its glorious Baily's beads, diamond rings, and totality that on this occasion lasts between 2 minutes and 2 minutes 40 seconds on the centerline. Our research on the 2017 total solar eclipse is supported by grants from the Committee for Research and Exploration of the National Geographic Society and from the Solar Terrestrial Program of the Atmospheric and Geospace Sciences Division of the National Science Foundation.
Eclipsing the Light...Fantastic! Teaching Science.
ERIC Educational Resources Information Center
Leyden, Michael B.
1995-01-01
Features the concepts of optics and geometry of eclipses. Presents the "eclipse rule," suggesting classroom activities in which students derive this rule. Includes some triangles activities for outdoors that illustrate eclipsing and sighting phenomena. (ET)
Bringing the Great American Solar Eclipse to West Virginia
NASA Astrophysics Data System (ADS)
Keesee, A. M.; Williamson, K.; Robertson-Honecker, J.
2017-12-01
West Virginia experienced up to 90% coverage during the Great American Solar Eclipse on August 21st. To reach the greatest number of West Virginians, we targeted educators and the 4-H program to provide those community leaders with the tools to help students learn about and safely view the eclipse. We developed a website that consolodated relevant eclipse activities, fact sheets, and outreach videos to train educators and others in the public about the science of the eclipse and how to view a partial eclipse safely. The 4-H Summer Experiement used at all 4-H summer camps and events was designed to focus on the eclipse. We distributed over 20,000 custom designed eclipse glasses. These were distributed to teachers through an online request system and to 4-H members involved in summer activities. We hosted a pre-eclipse event on the campus of West Virginia University for the public to learn about the science of the eclipse, relevant research being conducted at the university, and provide tips for safe viewing. Student volunteers were available on campus during the day of the eclipse to hand out glasses and answer questions. We will present the results of our outreach and events as well as lessons learned for the 2024 eclipse. Support for this project was provided by the WVU Department of Physics and Astronomy, WVU Extension, the WV Space Grant Consortium, a WVU internal grant, the Green Bank Observatory, and individual supporters of a crowdfunding campaign.
NASA Technical Reports Server (NTRS)
Plumlee, G. S.; Ridley, W. I.; Debraal, J. D.; Reed, M. H.
1993-01-01
Chemical reaction path calculations were used to model the minerals that might have formed at or near the Martian surface as a result of volcano or meteorite impact driven hydrothermal systems; weathering at the Martian surface during an early warm, wet climate; and near-zero or sub-zero C brine-regolith reactions in the current cold climate. Although the chemical reaction path calculations carried out do not define the exact mineralogical evolution of the Martian surface over time, they do place valuable geochemical constraints on the types of minerals that formed from an aqueous phase under various surficial and geochemically complex conditions.
The role of soil weathering and hydrology in regulating chemical fluxes from catchments (Invited)
NASA Astrophysics Data System (ADS)
Maher, K.; Chamberlain, C. P.
2010-12-01
Catchment-scale chemical fluxes have been linked to a number of different parameters that describe the conditions at the Earth’s surface, including runoff, temperature, rock type, vegetation, and the rate of tectonic uplift. However, many of the relationships relating chemical denudation to surface processes and conditions, while based on established theoretical principles, are largely empirical and derived solely from modern observations. Thus, an enhanced mechanistic basis for linking global solute fluxes to both surface processes and climate may improve our confidence in extrapolating modern solute fluxes to past and future conditions. One approach is to link observations from detailed soil-based studies with catchment-scale properties. For example, a number of recent studies of chemical weathering at the soil-profile scale have reinforced the importance of hydrologic processes in controlling chemical weathering rates. An analysis of data from granitic soils shows that weathering rates decrease with increasing fluid residence times and decreasing flow rates—over moderate fluid residence times, from 5 days to 10 years, transport-controlled weathering explains the orders of magnitude variation in weathering rates to a better extent than soil age. However, the importance of transport-controlled weathering is difficult to discern at the catchment scale because of the range of flow rates and fluid residence times captured by a single discharge or solute flux measurement. To assess the importance of transport-controlled weathering on catchment scale chemical fluxes, we present a model that links the chemical flux to the extent of reaction between the soil waters and the solids, or the fluid residence time. Different approaches for describing the distribution of fluid residence times within a catchment are then compared with the observed Si fluxes for a limited number of catchments. This model predicts high solute fluxes in regions with high run-off, relief, and long flow paths suggesting that the particular hydrologic setting of a landscape will be the underlying control on the chemical fluxes. As such, we reinterpret the large chemical fluxes that are observed in active mountain belts, like the Himalaya, to be primarily controlled by the long reactive flow paths created by the steep terrain coupled with high amounts of precipitation.
Safi, Kamran; Kranstauber, Bart; Weinzierl, Rolf P.; Griffin, Larry; Reese, Eileen C.; Cabot, David; Cruz, Sebastian; Proaño, Carolina; Takekawa, John Y.; Newman, Scott H.; Waldenström, Jonas; Bengtsson, Daniel; Kays, Roland; Wikelski, Martin; Bohrer, Gil
2013-01-01
Background: Understanding how environmental conditions, especially wind, influence birds' flight speeds is a prerequisite for understanding many important aspects of bird flight, including optimal migration strategies, navigation, and compensation for wind drift. Recent developments in tracking technology and the increased availability of data on large-scale weather patterns have made it possible to use path annotation to link the location of animals to environmental conditions such as wind speed and direction. However, there are various measures available for describing not only wind conditions but also the bird's flight direction and ground speed, and it is unclear which is best for determining the amount of wind support (the length of the wind vector in a bird’s flight direction) and the influence of cross-winds (the length of the wind vector perpendicular to a bird’s direction) throughout a bird's journey.Results: We compared relationships between cross-wind, wind support and bird movements, using path annotation derived from two different global weather reanalysis datasets and three different measures of direction and speed calculation for 288 individuals of nine bird species. Wind was a strong predictor of bird ground speed, explaining 10-66% of the variance, depending on species. Models using data from different weather sources gave qualitatively similar results; however, determining flight direction and speed from successive locations, even at short (15 min intervals), was inferior to using instantaneous GPS-based measures of speed and direction. Use of successive location data significantly underestimated the birds' ground and airspeed, and also resulted in mistaken associations between cross-winds, wind support, and their interactive effects, in relation to the birds' onward flight.Conclusions: Wind has strong effects on bird flight, and combining GPS technology with path annotation of weather variables allows us to quantify these effects for understanding flight behaviour. The potentially strong influence of scaling effects must be considered and implemented in developing sampling regimes and data analysis.
Safi, Kamran; Kranstauber, Bart; Weinzierl, Rolf; Griffin, Larry; Rees, Eileen C; Cabot, David; Cruz, Sebastian; Proaño, Carolina; Takekawa, John Y; Newman, Scott H; Waldenström, Jonas; Bengtsson, Daniel; Kays, Roland; Wikelski, Martin; Bohrer, Gil
2013-01-01
Understanding how environmental conditions, especially wind, influence birds' flight speeds is a prerequisite for understanding many important aspects of bird flight, including optimal migration strategies, navigation, and compensation for wind drift. Recent developments in tracking technology and the increased availability of data on large-scale weather patterns have made it possible to use path annotation to link the location of animals to environmental conditions such as wind speed and direction. However, there are various measures available for describing not only wind conditions but also the bird's flight direction and ground speed, and it is unclear which is best for determining the amount of wind support (the length of the wind vector in a bird's flight direction) and the influence of cross-winds (the length of the wind vector perpendicular to a bird's direction) throughout a bird's journey. We compared relationships between cross-wind, wind support and bird movements, using path annotation derived from two different global weather reanalysis datasets and three different measures of direction and speed calculation for 288 individuals of nine bird species. Wind was a strong predictor of bird ground speed, explaining 10-66% of the variance, depending on species. Models using data from different weather sources gave qualitatively similar results; however, determining flight direction and speed from successive locations, even at short (15 min intervals), was inferior to using instantaneous GPS-based measures of speed and direction. Use of successive location data significantly underestimated the birds' ground and airspeed, and also resulted in mistaken associations between cross-winds, wind support, and their interactive effects, in relation to the birds' onward flight. Wind has strong effects on bird flight, and combining GPS technology with path annotation of weather variables allows us to quantify these effects for understanding flight behaviour. The potentially strong influence of scaling effects must be considered and implemented in developing sampling regimes and data analysis.
NASA Technical Reports Server (NTRS)
Serke, David J.; King, Michael Christopher; Hansen, Reid; Reehorst, Andrew L.
2016-01-01
National Aeronautics and Space Administration (NASA) and the National Center for Atmospheric Research (NCAR) have developed an icing remote sensing technology that has demonstrated skill at detecting and classifying icing hazards in a vertical column above an instrumented ground station. This technology has recently been extended to provide volumetric coverage surrounding an airport. Building on the existing vertical pointing system, the new method for providing volumetric coverage utilizes a vertical pointing cloud radar, a multi-frequency microwave radiometer with azimuth and elevation pointing, and a NEXRAD radar. The new terminal area icing remote sensing system processes the data streams from these instruments to derive temperature, liquid water content, and cloud droplet size for each examined point in space. These data are then combined to ultimately provide icing hazard classification along defined approach paths into an airport. To date, statistical comparisons of the vertical profiling technology have been made to Pilot Reports and Icing Forecast Products. With the extension into relatively large area coverage and the output of microphysical properties in addition to icing severity, the use of these comparators is not appropriate and a more rigorous assessment is required. NASA conducted a field campaign during the early months of 2015 to develop a database to enable the assessment of the new terminal area icing remote sensing system and further refinement of terminal area icing weather information technologies in general. In addition to the ground-based remote sensors listed earlier, in-situ icing environment measurements by weather balloons were performed to produce a comprehensive comparison database. Balloon data gathered consisted of temperature, humidity, pressure, super-cooled liquid water content, and 3-D position with time. Comparison data plots of weather balloon and remote measurements, weather balloon flight paths, bulk comparisons of integrated liquid water content and icing cloud extent agreement, and terminal-area hazard displays are presented. Discussions of agreement quality and paths for future development are also included.
The Solar Eclipse Predictions of Chiljeongsam-Oepyeon in Early Choseon
NASA Astrophysics Data System (ADS)
Ahn, Young Sook; Lee, Yong Sam
2004-12-01
The history books of East Asia about astronomical phenomena have the more records of the solar eclipse frequently than any other ones. It is because traditionally, the solar eclipse meaned the fate of dynasty and the king's rule. The Sun, the biggest thing in the heaven symbolized the king, and the solar eclipse foresaw that the king had the problem in private including the body, and the country might suffer from difficulties in a great scale. So the king and all of the ministers used to gather to hold a ceremony named Gusikrye which solar eclipse may pass safely. Consequently, kings always had concernments on collecting informations of solar eclipse. Inspite of importance of solar eclipse predictions, but at the beginning of the Choseon, the predictions of the solar eclipse didn't fit. King Sejong compiled the Chiljeongsan-naepion and the Chiljeongsan-oepyeon to calculate the celestial phenomena including the solar eclipse. By the publications of these two books, the calendar making system of Choseon was firmly established. The Chiljeongsan-oepyeon adopted Huihui calendar of Arabia. The Solar eclipse predictions of Chiljeongsan-oepyeon were relative correct compared to modern method in early Choseon dynasty.
Satellite observations of surface temperature during the March 2015 total solar eclipse
2016-01-01
The behaviour of remotely sensed land surface temperatures (LSTs) from the spinning-enhanced visible and infrared imager (SEVIRI) during the total solar eclipse of 20 March 2015 is analysed over Europe. LST is found to drop by up to several degrees Celcius during the eclipse, with the minimum LST occurring just after the eclipse mid-point (median=+1.5 min). The drop in LST is typically larger than the drop in near-surface air temperatures reported elsewhere, and correlates with solar obscuration (r=−0.47; larger obscuration = larger LST drop), eclipse duration (r=−0.62; longer duration = larger LST drop) and time (r=+0.37; earlier eclipse = larger LST drop). Locally, the LST drop is also correlated with vegetation (up to r=+0.6), with smaller LST drops occurring over more vegetated surfaces. The LSTs at locations near the coast and at higher elevation are also less affected by the eclipse. This study covers the largest area and uses the most observations of eclipse-induced surface temperature drops to date, and is the first full characterization of satellite LST during an eclipse (known to the author). The methods described could be applied to Geostationary Operational Environmental Satellite (GOES) LST data over North America during the August 2017 total solar eclipse. This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’. PMID:27550764
NASA Astrophysics Data System (ADS)
Brunier, Serge; Luminet, Jean-Pierre
2000-12-01
Stargazers who may have missed the last total solar eclipse of the 20th century this past summer have just been given another chance to observe this "once in a lifetime" occurrence. Inside Glorious Eclipses they will find startling images and rich personal accounts that fully capture this event and other recent eclipses. The book will also insure that readers will not miss another eclipse in the next 60 years! Specially designed in a beautiful, large format, the volume portrays eclipses of all kinds--lunar, solar, and those occurring elsewhere in the Solar System and beyond. Brunier and Luminet have gathered together all aspects of eclipses, and carefully selected a host of lavish images. The authors detail the history of eclipses, the celestial mechanics involved, their observation, and scientific interest. Personal accounts of recent eclipses are also included as well as all relevant information about forthcoming eclipses up to 2060. Complete with NASA maps and data, Glorious Eclipses is the ultimate source for all those interested in these remarkable (and rare) celestial events. Serge Brunier is chief editor of the journal Ciel et Espace, a photo-journalist, and the author of many nonfiction books aimed at both specialists and the general public. Jean-Pierre Luminet is an astrophysicist at the Paris-Meudon Observatory and director of research at the Centre pour la Recherche Scientifique. He is the author of many popular astronomy books, including Black Holes (Cambridge University Press, 1992).
Symbolism and discovery: eclipses in art.
Blatchford, Ian
2016-09-28
There is a fascinating tradition of depicting solar eclipses in Western art, although these representations have changed over time. Eclipses have often been an important feature of Christian iconography, but valued as much for their biblical significance as for the splendour of the physical event. However, as Western culture passed through the Renaissance and Enlightenment the depictions of eclipses came to reflect new astronomical knowledge and a thirst for rational learning well beyond the confines of the church and other elites. Artists also played a surprisingly important role in helping scientists in the nineteenth century understand and record the full phenomena of an eclipse, even as the advent of photography also came to solve a number of scientific puzzles. In the most recent century, artists have responded to eclipses with symbolism, abstraction and playfulness.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. © 2016 The Author(s).
Spectral irradiance curve calculations for any type of solar eclipse
NASA Technical Reports Server (NTRS)
Deepak, A.; Merrill, J. E.
1974-01-01
A simple procedure is described for calculating the eclipse function (EF), alpha, and hence the spectral irradiance curve (SIC), (1-alpha), for any type of solar eclipse: namely, the occultation (partial/total) eclipse and the transit (partial/annular) eclipse. The SIC (or the EF) gives the variation of the amount (or the loss) of solar radiation of a given wavelength reaching a distant observer for various positions of the moon across the sun. The scheme is based on the theory of light curves of eclipsing binaries, the results of which are tabulated in Merrill's Tables, and is valid for all wavelengths for which the solar limb-darkening obeys the cosine law: J = sub c (1 - X + X cost gamma). As an example of computing the SIC for an occultation eclipse which may be total, the calculations for the March 7, 1970, eclipse are described in detail.
Freeth, Tony
2014-01-01
The ancient Greek astronomical calculating machine, known as the Antikythera Mechanism, predicted eclipses, based on the 223-lunar month Saros cycle. Eclipses are indicated on a four-turn spiral Saros Dial by glyphs, which describe type and time of eclipse and include alphabetical index letters, referring to solar eclipse inscriptions. These include Index Letter Groups, describing shared eclipse characteristics. The grouping and ordering of the index letters, the organization of the inscriptions and the eclipse times have previously been unsolved. A new reading and interpretation of data from the back plate of the Antikythera Mechanism, including the glyphs, the index letters and the eclipse inscriptions, has resulted in substantial changes to previously published work. Based on these new readings, two arithmetical models are presented here that explain the complete eclipse prediction scheme. The first model solves the glyph distribution, the grouping and anomalous ordering of the index letters and the structure of the inscriptions. It also implies the existence of lost lunar eclipse inscriptions. The second model closely matches the glyph times and explains the four-turn spiral of the Saros Dial. Together, these models imply a surprisingly early epoch for the Antikythera Mechanism. The ancient Greeks built a machine that can predict, for many years ahead, not only eclipses but also a remarkable array of their characteristics, such as directions of obscuration, magnitude, colour, angular diameter of the Moon, relationship with the Moon's node and eclipse time. It was not entirely accurate, but it was an astonishing achievement for its era.
Freeth, Tony
2014-01-01
The ancient Greek astronomical calculating machine, known as the Antikythera Mechanism, predicted eclipses, based on the 223-lunar month Saros cycle. Eclipses are indicated on a four-turn spiral Saros Dial by glyphs, which describe type and time of eclipse and include alphabetical index letters, referring to solar eclipse inscriptions. These include Index Letter Groups, describing shared eclipse characteristics. The grouping and ordering of the index letters, the organization of the inscriptions and the eclipse times have previously been unsolved. A new reading and interpretation of data from the back plate of the Antikythera Mechanism, including the glyphs, the index letters and the eclipse inscriptions, has resulted in substantial changes to previously published work. Based on these new readings, two arithmetical models are presented here that explain the complete eclipse prediction scheme. The first model solves the glyph distribution, the grouping and anomalous ordering of the index letters and the structure of the inscriptions. It also implies the existence of lost lunar eclipse inscriptions. The second model closely matches the glyph times and explains the four-turn spiral of the Saros Dial. Together, these models imply a surprisingly early epoch for the Antikythera Mechanism. The ancient Greeks built a machine that can predict, for many years ahead, not only eclipses but also a remarkable array of their characteristics, such as directions of obscuration, magnitude, colour, angular diameter of the Moon, relationship with the Moon’s node and eclipse time. It was not entirely accurate, but it was an astonishing achievement for its era. PMID:25075747
Cognitive aspects of ancient Maya eclipse theory.
NASA Astrophysics Data System (ADS)
Closs, M. P.
This paper is concerned with determining the nature of eclipse phenomena as it was perceived by the ancient Maya. It approaches the problem by considering the linguistic information pertaining to eclipses and by exploring the traditional beliefs associated with the occurrence of eclipses among the postconquest Maya. These data yield a model of a native eclipse theory which is compatible with hieroglyphic and iconographic materials pertaining to the ancient Maya.
Notable Images of the 2017 Total Solar Eclipse
NASA Astrophysics Data System (ADS)
Wilson, Teresa; Dahiwale, Aishwarya; Nemiroff, Robert; Bonnell, Jerry
2018-01-01
The "Great American Eclipse" – the total solar eclipse visible across the USA on 21 August 2017 – resulted in some notable eclipse images and videos high in educational and scientific value. Some of the images that were selected to appear on the Astronomy Picture of the Day (APOD) website are shown in high resolution accompanied by educational descriptions. The questions of whether this eclipse was the most viewed and the most photographed event of any type in human history will be discussed. People are invited to come by and share their own eclipse images and stories.
Correlation of S-Band Weather Radar Reflectivity and ACTS Propagation Data in Florida
NASA Technical Reports Server (NTRS)
Wolfe, Eric E.; Flikkema, Paul G.; Henning, Rudolf E.
1997-01-01
Previous work has shown that Ka-band attenuation due to rainfall and corresponding S-band reflectivity are highly correlated. This paper reports on work whose goal is to determine the feasibility of estimation and, by extension, prediction of one parameter from the other using the Florida ACTS propagation terminal (APT) and the nearby WSR-88D S-band Doppler weather radar facility operated by the National Weather Service. This work is distinguished from previous efforts in this area by (1) the use of a single-polarized radar, preventing estimation of the drop size distribution (e.g., with dual polarization) and (2) the fact that the radar and APT sites are not co-located. Our approach consists of locating the radar volume elements along the satellite slant path and then, from measured reflectivity, estimating the specific attenuation for each associated path segment. The sum of these contributions yields an estimation of the millimeter-wave attenuation on the space-ground link. Seven days of data from both systems are analyzed using this procedure. The results indicate that definite correlation of S-band reflectivity and Ka-band attenuation exists even under the restriciton of this experiment. Based on these results, it appears possible to estimate Ka-band attenuation using widely available operational weather radar data. Conversely, it may be possible to augment current radar reflectivity data and coverage with low-cost attenuation or sky temperature data to improve the estimation of rain rates.
The extraneous eclipses on binary light curves: KIC 5255552, KIC 10091110, and KIC 11495766
NASA Astrophysics Data System (ADS)
Zhang, J.; Qian, S. B.; Wang, S. M.; Sun, L. L.; Wu, Y.; Jiang, L. Q.
2018-03-01
Aims: We aim to find more eclipsing multiple systems and obtain their parameters, thus increasing our understanding of multiple systems. Methods: The extraneous eclipses on the Kepler binary light curves indicating extraneous bodies were searched. The binary light curves were analyzed using the binary model, and the extraneous eclipses were studied on their periodicity and shape changes. Results: Three binaries with extraneous eclipses on the binary light curves were found and studied based on the Kepler observations. The object KIC 5255552 is an eclipsing triple system with a fast changing inner binary and an outer companion uncovered by three groups of extraneous eclipses of 862.1(±0.1) d period. The KIC 10091110 is suggested to be a double eclipsing binary system with several possible extraordinary coincidences: the two binaries share similar extremely small mass ratios (0.060(13) and 0.0564(18)), similar mean primary densities (0.3264(42) ρ⊙ and 0.3019(28) ρ⊙), and, most notably, the ratio of the two binaries' periods is very close to integer 2 (8.5303353/4.2185174 = 2.022). The KIC 11495766 is a probable triple system with a 120.73 d period binary and (at least) one non-eclipse companion. Furthermore, very close to it in the celestial sphere, there is a blended background stellar binary of 8.3404432 d period. A first list of 25 eclipsing multiple candidates is presented, with the hope that it will be beneficial for study of eclipsing multiples.
Scott, C J; Bradford, J; Bell, S A; Wilkinson, J; Barnard, L; Smith, D; Tudor, S
2016-09-28
The total solar eclipse that occurred over the Arctic region on 20 March 2015 was seen as a partial eclipse over much of Europe. Observations of this eclipse were used to investigate the high time resolution (1 min) decay and recovery of the Earth's ionospheric E-region above the ionospheric monitoring station in Chilton, UK. At the altitude of this region (100 km), the maximum phase of the eclipse was 88.88% obscuration of the photosphere occurring at 9:29:41.5 UT. In comparison, the ionospheric response revealed a maximum obscuration of 66% (leaving a fraction, Φ, of uneclipsed radiation of 34±4%) occurring at 9:29 UT. The eclipse was re-created using data from the Solar Dynamics Observatory to estimate the fraction of radiation incident on the Earth's atmosphere throughout the eclipse from nine different emission wavelengths in the extreme ultraviolet (EUV) and X-ray spectrum. These emissions, having varying spatial distributions, were each obscured differently during the eclipse. Those wavelengths associated with coronal emissions (94, 211 and 335 Å) most closely reproduced the time varying fraction of unobscured radiation observed in the ionosphere. These results could enable historic ionospheric eclipse measurements to be interpreted in terms of the distribution of EUV and X-ray emissions on the solar disc.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. © 2016 The Author(s).
78 FR 49908 - Airworthiness Directives; Eclipse Aerospace, Inc. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-16
... Airworthiness Directives; Eclipse Aerospace, Inc. Airplanes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for all Eclipse Aerospace... Eclipse Aerospace, Inc., 26 East Palatine Road, Wheeling, Illinois 60090; telephone: (877) 373-7978...
Campaign Photometry During The 2010 Eclipse Of Epsilon Aurigae
NASA Astrophysics Data System (ADS)
Hopkins, Jeff; Stencel, R. E.
2011-01-01
Epsilon Aurigae is a long period (27.1 years) eclipsing binary star system with an eclipse that lasts nearly 2 years, but with severe ambiguities about component masses and shape. The current eclipse began on schedule in August of 2009. During the previous, 1982-1984 eclipse, an International Campaign was formed to coordinate a detailed study of the system. While that Campaign was deemed successful, the evolutionary status of the star system remained unclear. Epsilon Aurigae has been observed nearly continuously since the 1982 eclipse. The current Campaign was officially started in 2006. In addition to a Yahoo forum we have a dedicated web site and more than 18 online newsletters reporting photometry, spectroscopy, interferometry and polarimetry data. High quality UBVRIJH band photometric data since before the start of the current eclipse has been submitted. We explore the color differences among the light curves in terms of eclipse phases and archival data. At least one new model of the star system has been proposed since the current Campaign began: a low mass but very high luminosity F star plus a B star surrounded by a debris disk. The current eclipse and in particular the interferometry and spectroscopic data have caused new thoughts on defining eclipsing variable star contact points and phases of an eclipse. Second contact may not be the same point as start of totality and third contact may not be the same point as the start of egress and end of totality. In addition, the much awaited mid-eclipse brightening may or may not have appeared. This paper identifies the current Campaign contributors and the photometric data. This work was supported in part by the bequest of William Herschel Womble in support of astronomy at the University of Denver, by NSF grant 1016678 to the University of Denver.
Solar Eclipses and the International Year of Astronomy
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.
2009-05-01
Solar eclipses capture the attention of millions of people in the countries from which they are visible and provide a major opportunity for public education, in addition to the scientific research and student training that they provide. The 2009 International Year of Astronomy began with an annular eclipse visible from Indonesia on 26 January, with partial phases visible also in other parts of southeast Asia. On 22 July, a major and unusually long total solar eclipse will begin at dawn in India and travel across China, with almost six minutes of totality visible near Shanghai and somewhat more visible from Japanese islands and from ships at sea in the Pacific. Partial phases will be visible from most of eastern Asia, from mid-Sumatra and Borneo northward to mid-Siberia. Eclipse activities include many scientific expeditions and much ecotourism to Shanghai, Hangzhou, and vicinity. My review article on "Eclipses as an Astrophysical Laboratory" will appear in Nature as part of their IYA coverage. Our planetarium presented teacher workshops and we made a film about solar research. Several new books about the corona or eclipses are appearing or have appeared. Many articles are appearing in astronomy magazines and other outlets. Eclipse interviews are appearing on the Planetary Society's podcast "365 Days of Astronomy" and on National Geographic Radio. Information about the eclipse and safe observation of the partial phases are available at http://www.eclipses.info, the Website of the International Astronomical Union's Working Group on Solar Eclipses and of its Program Group on Public Education at the Times of Eclipses of its Commission on Education and Development. The Williams College Expedition to the 2009 Eclipse in the mountains near Hangzhou, China, is supported in part by a grant from the Committee for Research and Exploration of the National Geographic Society. E/PO workshops were supported by NASA.
The eclipse of the Sun from 20 May 2015
NASA Astrophysics Data System (ADS)
Tiron, S. D.
2015-04-01
The interview of the Radio Moldova with astronomer about the coming Eclipse of the Sun, included the following topics: 1) The circumstances of the Total eclipse 2) The circumstances of the Partial Eclipse in the Republic of Moldova 3) Protection of eyes during Observations
Suppression of the Polar Tongue of Ionization During the 21 August 2017 Solar Eclipse
NASA Astrophysics Data System (ADS)
Dang, Tong; Lei, Jiuhou; Wang, Wenbin; Burns, Alan; Zhang, Binzheng; Zhang, Shun-Rong
2018-04-01
It has long been recognized that during solar eclipses, the ionosphere-thermosphere system changes greatly within the eclipse shadow, due to the rapid reduction of solar irradiation. However, the concept that a solar eclipse impacts polar ionosphere behavior and dynamics as well as magnetosphere-ionosphere coupling has not been appreciated. In this study, we investigate the potential impact of the 21 August 2017 solar eclipse on the polar tongue of ionization (TOI) using a high-resolution, coupled ionosphere-thermosphere-electrodynamics model. The reduction of electron densities by the eclipse in the middle latitude TOI source region leads to a suppressed TOI in the polar region. The TOI suppression occurred when the solar eclipse moved into the afternoon sector. The Global Positioning System total electron content observations show similar tendency of polar region total electron content suppression. This study reveals that a solar eclipse occurring at middle latitudes may have significant influences on the polar ionosphere and magnetosphere-ionosphere coupling.
The 1982 ultraviolet eclipse of the symbiotic binary AR Pav
NASA Technical Reports Server (NTRS)
Hutchings, J. B.; Cowley, A. P.; Ake, T. B.; Imhoff, C. L.
1983-01-01
Observations with the International Ultraviolet Explorer (IUE) of the symbiotic binary AR Pav through its 1982 eclipse show that the hot star is not eclipsed. The hot star is associated with an extended region of continuum emission which is partially eclipsed. The eclipsed radiation is hotter near to its center, with a maximum temperature of about 9000 K. The uneclipsed flux is hotter than this. UV emission lines are not measurably eclipsed and presumably arise in a much larger region than the continuum. These data provide new constraints on models of the system but also are apparently in contradiction to those based on ground-based data.
Early Science Results from the Williams College Eclipse Expedition
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.; Person, Michael J.; Dantowitz, Ron; Lockwood, Christian A.; Nagle-McNaughton, Tim; Meadors, Erin N.; Perez, Cielo C.; Marti, Connor J.; Yu, Ross; Rosseau, Brendan; Daly, Declan M.; Ide, Charles A.; Davis, Allen B.; Lu, Muzhou; Sliski, David; Seiradakis, John; Voulgaris, Aris; Rusin, Vojtech; Peñaloza-Murillo, Marcos A.; Roman, Michael; Seaton, Daniel B.; Steele, Amy; Lee, Duane M.; Freeman, Marcus J.
2018-01-01
We describe our first cut of data reduction on a wide variety of observations of the solar corona and of the effect of the penumbra and umbra on the terrestrial atmosphere, carried out from our eclipse site on the campus of Willamette University in Salem, Oregon. Our team of faculty, undergraduate students, graduate students, and other colleagues observed the eclipse, taking images and spectra with a variety of sensors and telescopes. Equipment included frame-transfer cameras observing at 3 Hz in 0.3 nm filters at the coronal green and red lines to measure the power spectrum of oscillations in coronal loops or elsewhere in the lower corona; 3 spectrographs; a variety of telescopes and telephotos for white-light imaging; a double Lyot system tuned at Fe XIV 530.3 nm (FWHM 0.4 nm) and Fe X 637.4 nm (FWHM 0.5 nm); and a weather station to record changes in the terrestrial atmosphere. We are comparing our observations with predictions based on the previous mapping of the photospheric magnetic field, and preparing wide-field complete coronal imaging incorporating NOAA/NASA GOES-16 SUVI and NRL/NASA/LASCO for the corona outside our own images (which extend, given the completely clear skies we had, at least 4 solar radii), and NASA SDO/AIA and NOAA/NASA GOES-16 SUVI for the solar disk. One of our early composites appeared as Astronomy Picture of the Day for September 27: https://apod.nasa.gov/apod/ap170927.htmlOur expedition was supported in large part by grants from the Committee for Research and Exploration of the National Geographic Society and from the Solar Terrestrial Program of the Atmospheric and Geospace Sciences Division of the National Science Foundation, with additional student support from the STP/AGS of NSF, the NASA Massachusetts Space Grant Consortium, the Sigma Xi honorary scientific society, the Clare Booth Luce Foundation studentship and the Freeman Foote Expeditionary Fund at Williams College, other Williams College funds, and U. Pennsylvania funds.
The 2012 Total Eclipse Expeditions in Queensland
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.; Babcock, B. A.; Lu, M.; Dantowitz, R.; Lucas, R.; Seiradakis, J. H.; Voulgaris, A.; Gaintatzis, P.; Steele, A.; Sterling, A. C.; Rusin, V.; Saniga, M.
2013-07-01
A total eclipse swept across Queensland and other sites in northeastern Australia on the early morning of 14 November 2012, local time. We mounted equipment to observe coronal images and spectra during the approximately 2 minutes of totality, the former for comparison with spacecraft images and to fill in the doughnut of imaging not well covered with space coronagraphs. Matching weather statistics, viewing was spotty, and our best observations were from a last-minute inland site on the Tablelands, with some observations from a helicopter at 9000 feet altitude over our original viewing site at Miallo. Only glimpses of the corona were visible at our Port Douglas and Trinity Beach, Cairns, locations, with totality obscured from our sites at Newell and Miallo, though some holes in the clouds provided coronal views from Palm Cove and elsewhere along the coast. Preliminary analysis of the spectra again shows Fe XIV stronger than Fe X, as in 2010 but not earlier, a sign of solar maximum, as was the coronal shape. An intriguing CME is discernible in the SE. Acknowledgments: We thank Terry Cuttle, Aram Friedman, Michael Kentrianakis, and Nicholas Weber for assistance and collaboration in Australia and Wendy Carlos for image processing. Our expedition was supported in part by NSF grant AGS-1047726 from Solar Terrestrial Research of the Atmospheric and Geospace Sciences Division, and by the Rob Spring Fund and Science Center funds at Williams College. ML was also supported in part by a Grant-In-Aid of Research from the National Academy of Sciences, administered by Sigma Xi, The Scientific Research Society (Grant ID: G20120315159311). VR and MS acknowledge support from projects VEGA 2/0003/13 and NGS-3139-12 of the National Geographic Society. We are grateful to K. Shiota (Japan) for kindly providing us with some of his 2012 eclipse coronal images.
NASA Astrophysics Data System (ADS)
Fraknoi, Andrew; Schatz, Dennis; Dusenbery, Paul; Duncan, Douglas; Holland, Anne; Laconte, Keliann
2018-01-01
With support from the Moore Foundation, Google, the Research Corporation, and NASA, we were able to distribute about 2.1 million eclipse glasses and an extensive booklet of eclipse information and outreach suggestions to 7,100 public libraries throughout the nation. It appears that this project was the single largest program to provide glasses and eclipse information to the public in the U.S. The project using (and significantly enlarged) the existing STARNet network of libraries set up and maintained by the Space Science Institute. We were able to get glasses to a diverse set of institutions, including urban, rural, Native American, small town and large city libraries. In this poster, we will summarize the history of the project, the various components and how they worked together, and the results of a post survey of the librarians, which provided numbers, photographs, and impressions from the many libraries and their patrons. A map of the libraries involved is at www.starnetlibraries.org/2017eclipse/. The booklet of information that was sent to help train librarians in eclipse science and eclipse outreach can still be downloaded free at: http://www.starnetlibraries.org/EclipseGuide/.”
Alignment and Calibration of an Airborne Infrared Spectrometer
NASA Astrophysics Data System (ADS)
Vira, A.
2017-12-01
The airborne infrared spectrometer (AIR-Spec) will measure the coronal plasma emission lines in the infrared at high spatial and spectral resolution. These results will enhance our understanding of the coronal dynamics and improve solar forecasting models. To measure the infrared coronal emission lines, the airborne system will fly on the NSF/NCAR High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER) during the total solar eclipse in August 2017. The flight path was calculated to maximize the observation time. A detailed analysis of our flight path will be reported. The optical system consists of a fast steering mirror, telescope, grating spectrometer, and slit-jaw imager. Light from the sun is directed into the f/15 telescope by a fast steering mirror. The telescope focuses the light on the slitjaw and the remaining light enters the grating spectrometer through the slit. The poster will include a discussion of the alignment procedures for the telescope and spectrograph. All of the spectrometer optics are cooled to cryogenic temperatures, which complicates the alignment process. After the telescope and spectrometer are aligned independently, the telescope needs to be precisely aligned to the spectrometer. Several alignment methods were used to ensure that the telescope is focused at the slitjaw and normal to the spectrometer. In addition to the optical alignment, there are a few calibrations to complete: 1) flat field, 2) spectral, and 3) radiometric. The flat field gives us a measure of the pixel to pixel variations. The spectral calibration is used to determine the conversion factor between wavelength and pixel. The radiometric calibration is used to map the camera output to radiance. All these calibrations are necessary for processing our data from the solar eclipse. We will report on our methods and results for the optical alignment and calibration for AIR-Spec. AIR-Spec is supported by NSF and Smithsonian Institution through the Major Research Instrumentation program. This work is supported by the NSF-REU solar physics program at SAO, grant number AGS-1560313.
Measuring Solar Coronal Magnetism during the Total Solar Eclipse of 2017
NASA Astrophysics Data System (ADS)
Gibson, K. L.; Tomczyk, S.
2017-12-01
The total solar eclipse on August 21, 2017 provided a notable opportunity to measure the solar corona at specific emission wavelengths to gain information about coronal magnetic fields. Solar magnetic fields are intimately related to the generation of space weather and its effects on the earth, and the infrared imaging and polarization information collected on coronal emission lines here will enhance the scientific value of several other ongoing experiments, as well as benefit the astrophysics and upper atmosphere communities. Coronal measurements were collected during the 2 minute and 24 second totality period from Casper Mountain, WY. Computer-controlled telescopes automatically inserted four different narrow band pass filters to capture images in the visible range on a 4D PolCam, and in the infrared range on the FLIR 8501c camera. Each band pass filter selects a specific wavelength range that corresponds to a known coronal emission line possessing magnetic sensitivity. The 4D PolCam incorporated a novel grid of linear polarizers precisely aligned with the micron scale pixels. This allowed for direct measurement of the degree of linear polarization in a very small instrument with no external moving parts as is typically required. The FLIR offers short exposure times to freeze motion and output accurate thermal measurements. This allowed a new observation of the sun's corona using thermo infrared technology.
78 FR 30243 - Airworthiness Directives; Eclipse Aerospace, Inc. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-22
... Airworthiness Directives; Eclipse Aerospace, Inc. Airplanes AGENCY: Federal Aviation Administration (FAA), DOT... (AD) for all Eclipse Aerospace, Inc. Model EA500 airplanes equipped with Avio, Avio with ETT, or Avio... identified in this proposed AD, contact Eclipse Aerospace, Inc. 26 East Palatine Road, Wheeling, Illinois...
Effects of the March 2015 solar eclipse on near-surface atmospheric electricity.
Bennett, A J
2016-09-28
Measurements of atmospheric electrical and standard meteorological parameters were made at coastal and inland sites in southern England during the 20 March 2015 partial solar eclipse. Clear evidence of a reduction in air temperature resulting from the eclipse was found at both locations, despite one of them being overcast during the entire eclipse. The reduction in temperature was expected to affect the near-surface electric field (potential gradient (PG)) through a reduction in turbulent transfer of space charge. No such effect could be unambiguously confirmed, however, with variability in PG and air-Earth current during the eclipse being comparable to pre- and post-eclipse conditions. The already low solar radiation for this latitude, season and time of day was likely to have contributed to the reduced effect of the eclipse on atmospheric electricity through boundary layer stability. The absence of a reduction in mean PG shortly after time of maximum solar obscuration, as observed during eclipses at lower geomagnetic latitude, implied that there was no significant change in atmospheric ionization from cosmic rays above background variability. This finding was suggested to be due to the relative importance of cosmic rays of solar and galactic origin at geomagnetic mid-latitudes.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. © 2016 The Author(s).
Solar Eclipses Observed from Antarctica
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.
2013-01-01
Aspects of the solar corona are still best observed during totality of solar eclipses, and other high-resolution observations of coronal active regions can be observed with radio telescopes by differentiation of occultation observations, as we did with the Jansky Very Large Array for the annular solar eclipse of 2012 May 20 in the US. Totality crossing Antarctica included the eclipse of 2003 November 23, and will next occur on 2021 December 4; annularity crossing Antarctica included the eclipse of 2008 February 7, and will next occur on 2014 April 29. Partial phases as high as 87% coverage were visible and were imaged in Antarctica on 2011 November 25, and in addition to partial phases of the total and annular eclipses listed above, partial phases were visible in Antarctica on 2001 July 2011, 2002 December 4, 2004 April 19, 2006 September 22, 2007 September 11, and 2009 January 26, and will be visible on 2015 September 13, 2016 September 1, 2017 February 26, 2018 February 15, and 2020 December 14. On behalf of the Working Group on Solar Eclipses of the IAU, the poster showed the solar eclipses visible from Antarctica and this article shows a subset (see www.eclipses.info for the full set). A variety of investigations of the Sun and of the response of the terrestrial atmosphere and ionosphere to the abrupt solar cutoff can be carried out at the future eclipses, making the Antarctic observations scientifically useful.
Public education in developing countries on the occasions of eclipses
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.
Total solar eclipses will cross southern Africa on June 21, 2001, and on December 4, 2002. Most of Africa will see partial phases. The total phase of the 2001 eclipse will be visible from parts of Angola, Zambia, Zimbabwe, Mozambique and Madagascar. The total phase of the 2002 eclipse will be visible from parts of Angola, Botswana, Zimbabwe, South Africa and Mozambique. Public education must be undertaken to tell the people how to look at the eclipse safely. We can take advantage of having the attention of the people and of news media to teach about not only eclipses but also the rest of astronomy. I am Chair of a "Public Education at Eclipses" subcommission of IAU Commission 46 on the Teaching of Astronomy, and we are able to advise educators and others about materials, procedures and information releases.
Solar Eclipse Effect on Shelter Air Temperature
NASA Technical Reports Server (NTRS)
Segal, M.; Turner, R. W.; Prusa, J.; Bitzer, R. J.; Finley, S. V.
1996-01-01
Decreases in shelter temperature during eclipse events were quantified on the basis of observations, numerical model simulations, and complementary conceptual evaluations. Observations for the annular eclipse on 10 May 1994 over the United States are presented, and these provide insights into the temporal and spatial changes in the shelter temperature. The observations indicated near-surface temperature drops of as much as 6 C. Numerical model simulations for this eclipse event, which provide a complementary evaluation of the spatial and temporal patterns of the temperature drops, predict similar decreases. Interrelationships between the temperature drop, degree of solar irradiance reduction, and timing of the peak eclipse are also evaluated for late spring, summer, and winter sun conditions. These simulations suggest that for total eclipses the drops in shelter temperature in midlatitudes can be as high as 7 C for a spring morning eclipse.
Mohanty, Sanjay K; Saiers, James E; Ryan, Joseph N
2015-08-04
In subsurface soils, colloids are mobilized by infiltrating rainwater, but the source of colloids and the process by which colloids are generated between rainfalls are not clear. We examined the effect of drying duration and the spatial variation of soil permeability on the mobilization of in situ colloids in intact soil cores (fractured and heavily weathered saprolite) during dry-wet cycles. Measuring water flux at multiple sampling ports at the core base, we found that water drained through flow paths of different permeability. The duration of antecedent drying cycles affected the amount of mobilized colloids, particularly in high-flux ports that received water from soil regions with a large number of macro- and mesopores. In these ports, the amount of mobilized colloids increased with increased drying duration up to 2.5 days. For drying durations greater than 2.5 days, the amount of mobilized colloids decreased. In contrast, increasing drying duration had a limited effect on colloid mobilization in low-flux ports, which presumably received water from soil regions with fewer macro- and mesopores. On the basis of these results, we attribute this dependence of colloid mobilization upon drying duration to colloid generation from dry pore walls and distribution of colloids in flow paths, which appear to be sensitive to the moisture content of soil after drying and flow path permeability. The results are useful for improving the understanding of colloid mobilization during fluctuating weather conditions.
75 FR 45075 - Airworthiness Directives; Eclipse Aerospace, Inc. Model EA500 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-02
... Airworthiness Directives; Eclipse Aerospace, Inc. Model EA500 Airplanes AGENCY: Federal Aviation Administration... in the Federal Register on July 9, 2010 (75 FR 39472), and applies to certain Eclipse Aerospace, Inc... Federal holidays. For service information identified in this proposed AD, contact Eclipse Aerospace, Inc...
The Totality App — General Lessons and Future Eclipses
NASA Astrophysics Data System (ADS)
Bennett, Jeffrey
2018-06-01
With the excitement around the 2017 eclipse, I worked with an app development company to create the Totality app, which featured eclipse predictions from the code of Xavier Jubier. We have since updated the app for future eclipses, including a Spanish version given the upcoming eclipses in Chile/Argentina. I will briefly discuss the current app, the process through which we developed it, and relevant lessons learned along the way that may be useful to others interested in developing apps for astronomy education.
A spectroscopic investigation of the eclipsing binary Epsilon Aurigae
NASA Technical Reports Server (NTRS)
Balachandran, Suchitra
1991-01-01
The objectives were to examine, in detail, the spectra of the eclipsing binary Epsilon Aurigae taken with the IUE satellite telescope during the 1982 to 1984 eclipse. All of the low resolution spectra were analyzed and UV light curves are presented. The primary findings are as follows: (1) a constant eclipse depth from 1600 A to longer wavelengths and a sharp drop in the eclipse depth from 1600 to 1200 A; (2) the absence of large amplitude fluctuations in the UV as expected from a Cepheid primary; and (3) equal ingress and egress times in contradiction to that interpreted from visible light curves. The effects of these findings on the eclipse geometry are being studied.
Eclipses in Australian Aboriginal Astronomy
NASA Astrophysics Data System (ADS)
Hamacher, Duane W.; Norris, Ray P.
2011-07-01
We explore about fifty different Australian Aboriginal accounts of lunar and solar eclipses to determine how Aboriginal groups understood this phenomenon. We summarize the literature on Aboriginal references to eclipses. We show that many Aboriginal groups viewed eclipses negatively, frequently associating them with bad omens, evil magic, disease, blood and death. In many communities, elders or medicine men claimed to be able to control or avert eclipses by magical means, solidifying their roles as providers and protectors within their communities. We also show that some Aboriginal groups seem to have understood the motions of the Sun-Earth-Moon system, the connection between the lunar phases and tides, and acknowledged that solar eclipses were caused by the Moon blocking the Sun.
KEPLER ECLIPSING BINARIES WITH STELLAR COMPANIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gies, D. R.; Matson, R. A.; Guo, Z.
2015-12-15
Many short-period binary stars have distant orbiting companions that have played a role in driving the binary components into close separation. Indirect detection of a tertiary star is possible by measuring apparent changes in eclipse times of eclipsing binaries as the binary orbits the common center of mass. Here we present an analysis of the eclipse timings of 41 eclipsing binaries observed throughout the NASA Kepler mission of long duration and precise photometry. This subset of binaries is characterized by relatively deep and frequent eclipses of both stellar components. We present preliminary orbital elements for seven probable triple stars amongmore » this sample, and we discuss apparent period changes in seven additional eclipsing binaries that may be related to motion about a tertiary in a long period orbit. The results will be used in ongoing investigations of the spectra and light curves of these binaries for further evidence of the presence of third stars.« less
NASA Astrophysics Data System (ADS)
Kjurkchieva, Diana P.; Vasileva, Doroteya L.
2018-02-01
We determined the orbits and stellar parameters of three eccentric eclipsing binaries by light curve solutions of their Kepler data. KIC 8111622 and KIC 10518735 undergo total eclipses while KIC 8196180 reveals partial eclipses. The target components are G and K stars, excluding the primary of KIC 8196180 which is early F star. KIC 8196180 reveals well-visible tidally-induced feature at periastron, i.e. it is an eclipsing heartbeat star. The characteristics of the observed periastron feature (shape, width and amplitude) confirm the theoretical predictions. There are additional out-of-eclipse variations of KIC 8196180 with the orbital period which may be explained by spot activity of synchronously rotating component. Besides worse visible periastron feature KIC 811162 exhibits small-amplitude light variations whose period is around 2.3 times shorter than the orbital one. These oscillations were attributed to spot(s) on asynchronously rotating component.
Fall 2011 Eclipse Season Begins
2017-12-08
The Fall 2011 eclipse season started on September 11. Here is an AIA 171 image from 0657 UT with the first eclipse! SDO has eclipse seasons twice a year near each equinox. For three weeks near midnight Las Cruces time (about 0700 UT) our orbit has the Earth pass between SDO and the Sun. These eclipses can last up to 72 minutes in the middle of an eclipse season. The current eclipse season started on September 11 and lasts until October 4. To read more about SDO go to: sdo.gsfc.nasa.gov/ Credit: NASA/GSFC/SDO NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
What are the Perspectives of Indonesian Students to Japanese Ritual during Solar Eclipse?
NASA Astrophysics Data System (ADS)
Haristiani, N.; Rusli, A.; Wiryani, A. S.; Nandiyanto, A. B. D.; Purnamasari, A.; Sucahya, T. N.; Permatasari, N.
2018-02-01
In this globalization era, many people still believe the myths about solar eclipse. The myths about solar eclipse are different between one country or are to another. In this context, the aim of this study was to investigate the perspective of Indonesian students in viewing how the Japanese people face their believing myths in solar eclipse. This research also investigated the student belief on several mythical stories in Indonesia, their understanding of the Islamic view, and their knowledge based on science concept relating to the solar eclipse phenomenon. To understand the Indonesian students’ perspective about the solar eclipse myths in Japanese, we took a survey to Indonesian students which are studying Japanese culture and language. Based on the results, the Indonesian student think that there is no significant difference between Indonesian and Japanese people in facing the solar eclipse.
High-speed photometry of the eclipsing dwarf nova OY Carinae
NASA Technical Reports Server (NTRS)
Cook, M. C.
1985-01-01
High-speed photometry of the eclipsing dwarf nova OY Car in the quiescent state is presented. OY Car becomes highly reddened during eclipse, with minimum flux colours inconsistent with optically thick emission in the U and B bandpasses. Mass ratios in the range 6.5 to 12 are required to reconcile the eclipse structure with theoretical gas stream trajectories. Primary eclipse timings reveal a significant decrease in the orbital period and the duration of primary eclipse indicates the presence of a luminous ring about the white dwarf. The hotspot eclipse reveals a hotspot which is elongated along the rim of the accretion disc, with optical emission being non-uniformly distributed along the rim. The location of the hotspot in the accretion disc implies a disc radius larger than that of an inviscid disc, with variation in the position of the hotspot being consistent with a fixed stream trajectory.
Eclipse 2017: Through the eyes of NASA
NASA Astrophysics Data System (ADS)
Mayo, Louis; NASA/GSFC Heliophysics Education Consortium
2016-10-01
The August 21, 2017 eclipse will be the first time a total solar eclipse has traversed the Continental US since June 8th, 1918. Anticipation y for energy for this eclipse is off the charts. Over 500 million in North America alone will catch the eclipse in either partial or total phase. Parts of South America, Africa, and Europe will see a partial eclipse as well. NASA is planning to take full advantage of this unique celestial event as an education and public engagement opportunity by leveraging its extensive networks of partners, numerous social media platforms, broadcast media, and its significant unique space assets and people to bring the eclipse to America and the world as only NASA can. This talk will outline NASA's education plans in some detail replicating our many Big Events successes including the 2012 Transit of Venus and the MSL/Curiosity landing and show how scientists and the public can get involved.
The 2017 Total Solar Eclipse: Through the Eyes of NASA
NASA Astrophysics Data System (ADS)
Young, C. Alex; Mayo, Louis; Ng, Carolyn; Cline, Troy; Lewis, Elaine; Reed, Shannon; Debebe, Asidesach; Stephenson, Bryan; Odenwald, Sten; Hill, Steele; Wright, Ernest
2017-01-01
The August 21, 2017 eclipse will be the first time a total solar eclipse has traversed the Continental US since June 8th, 1918. Anticipation and energy for this eclipse is off the charts! Over 500 million in North America alone will catch the eclipse in either partial or total phase. Parts of South America, Africa, and Europe will see a partial eclipse as well. NASA is planning to take full advantage of this unique celestial event as an education and public engagement opportunity by leveraging its extensive networks of partners, numerous social media platforms, broadcast media, and its significant unique space assets and people to bring the eclipse to America and the world as only NASA can.This talk will outline NASA’s education plans in some detail replicating our many Big Events successes including the 2012 Transit of Venus and the MSL/Curiosity landing and show how scientists and the public can get involved.
Solar Eclipse Engagement and Outreach in Madras and Warm Springs, Oregon
NASA Astrophysics Data System (ADS)
Kirk, M. S.; Pesnell, W. D.; Ahern, S.; Boyle, M.; Gonzales, T.; Leone, C.
2017-12-01
The Central Oregon towns of Madras and Warm Springs were in an ideal location to observe the total solar eclipse of 2017. In anticipation of this event, we embarked on a yearlong partnership to engage and excite these communities. We developed educational events for all students in the school district, grades K-12, as well as two evening keynote addresses during an eclipse week in May. This eclipse week provided resources, learning opportunities, and safety information for all students and families prior to the end of the school year. With the collaboration of graphic design students at Oregon State University, we produced static educational displays as an introduction to the Museum at Warm Springs' exhibit featuring eclipse art. The weekend before the eclipse, we gave away 15,000 pairs of solar viewing glasses to the local community and manned a science booth at the Oregon Solarfest to engage the arriving eclipse tourists. These efforts culminated on Monday, August 21st with tens of thousands of people viewing eclipse totality in Madras and Warm Springs.
Sipocz, Brigitta; Hegedüs, Ramón; Kriska, György; Horváth, Gábor
2008-12-01
Using 180 degrees field-of-view (full-sky) imaging polarimetry, we measured the spatiotemporal change of the polarization of skylight during the total solar eclipse on 29 March 2006 in Turkey. We present our observations here on the temporal variation of the celestial patterns of the degree p and angle alpha of linear polarization of the eclipsed sky measured in the red (650 nm), green (550 nm), and blue (450 nm) parts of the spectrum. We also report on the temporal and spectral change of the positions of neutral (unpolarized, p = 0) points, and points with local minima or maxima of p of the eclipsed sky. Our results are compared with the observations performed by the same polarimetric technique during the total solar eclipse on 11 August 1999 in Hungary. Practically the same characteristics of celestial polarization were encountered during both eclipses. This shows that the observed polarization phenomena of the eclipsed sky may be general.
The D-Region Ionospheric Response to the 2017 Solar Eclipse
NASA Astrophysics Data System (ADS)
Cohen, M.; McCormick, J.; Gross, N. C.; Higginson-Rollins, M. A.
2017-12-01
VLF/LF radio remote sensing (0.5-500 kHz) is an effective means for quantifying the D-region ionosphere (60-90 km altitude). Disturbances in the ionospheric electron density induce changes in the propagation of VLF/LF signals, so a network of transmitters and receivers can effectively "image" a disturbed region. VLF/LF signals can all be detected from 100s-1000s of km away. We utilize Georgia Tech's network of highly-sensitive VLF/LF receivers to quantify the lower ionospheric response to the "Great American Eclipse". Nine of these were deployed and operational across the Continental US, Alaska and Puerto Rico all operated successfully. Each receiver synchronously recorded the full radio spectrum between 0.5-470 kHz. The included figure shows the eclipse track at 80 km altitude with a green swath. The nine operational receivers are shown with blue stars, and operational VLF/LF transmitters in dark red. Gray lines are shown for each great-circle path linking a VLF/LF transmitter to a receiver. This constellation forms a dense spider's-web grid of radio links, with which we can effectively image the disturbed patch of the D-region ionosphere as it moves across the country. In addition, shown in yellow are NDGPS transmitters which lie between 285-325 kHz. The red dots are the 230,000 geolocated lightning strokes during the 90-mintue eclipse pass, each of which emitted an intense VLF/LF impulse. These are also detected by our receivers. We present our observations and comparison with a theoretical model, using a combination of three techniques established by a series of three 2017 journal papers: (1) Polarization measurements of VLF/LF transmitter signals, (2) Lightning-generated VLF sferics detected 1000s of km away, and (3) NDGPS beacons near 300 kHz for shorter-range sounding of a small patch of the ionosphere. We find evidence of large scale ionospheric changes which affect the D-region over the entire continental region with a slowly-varying signal perturbation. At some sites close to the totality zone, however, we have evidence of forward scattering from the shadow of the moon, which effectively is a patch of nighttime surrounded by daytime, that can only be observed in a narrower region around the totality zone. Implications of these results for D-region ionospheric dynamics are discussed.
Bradford, J.; Bell, S. A.; Wilkinson, J.; Smith, D.; Tudor, S.
2016-01-01
The total solar eclipse that occurred over the Arctic region on 20 March 2015 was seen as a partial eclipse over much of Europe. Observations of this eclipse were used to investigate the high time resolution (1 min) decay and recovery of the Earth’s ionospheric E-region above the ionospheric monitoring station in Chilton, UK. At the altitude of this region (100 km), the maximum phase of the eclipse was 88.88% obscuration of the photosphere occurring at 9:29:41.5 UT. In comparison, the ionospheric response revealed a maximum obscuration of 66% (leaving a fraction, Φ, of uneclipsed radiation of 34±4%) occurring at 9:29 UT. The eclipse was re-created using data from the Solar Dynamics Observatory to estimate the fraction of radiation incident on the Earth’s atmosphere throughout the eclipse from nine different emission wavelengths in the extreme ultraviolet (EUV) and X-ray spectrum. These emissions, having varying spatial distributions, were each obscured differently during the eclipse. Those wavelengths associated with coronal emissions (94, 211 and 335 Å) most closely reproduced the time varying fraction of unobscured radiation observed in the ionosphere. These results could enable historic ionospheric eclipse measurements to be interpreted in terms of the distribution of EUV and X-ray emissions on the solar disc. This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’. PMID:27550766
Student artistry sparks eclipse excitement on Maui: NSO/DKIST EPO for the 2016 Partial Solar Eclipse
NASA Astrophysics Data System (ADS)
Schad, Thomas A.; Penn, Matthew J.; Armstrong, James
2016-05-01
Local creativity and artistry is a powerful resource that enhances education programs and helps us generate excitement for science within our communities. In celebration of the 2016 Solar Eclipse, the National Solar Observatory (NSO) and its Daniel K Inouye Solar Telescope (DKIST) project were pleased to engage with students across Maui County, Hawai`i, via the 2016 Maui Eclipse Art Contest. With the help of the Maui Economic Development Board and the University of Hawai'is Institute for Astronomy, we solicited art entries from all K-12 schools in Maui County approximately 6 months prior to the eclipse. Along with divisional prizes, a grand prize was selected by a panel of local judges, which was subsequently printed on 25,000 solar eclipse viewing glasses and distributed to all Maui students. We found that the impact of a locally-sourced glasses design cannot be understated. Overall, the success of this program relied upon reaching out to individual teachers, supplying educational flyers to all schools, and visiting classrooms. On the day of the eclipse, all of the art entries were prominently displayed during a community eclipse viewing event at Kalama Beach Park in Kihei, HI, that was co-hosted by NSO and the Maui Science Center. This eclipse art contest was integral to making local connections to help promote science education on Maui, and we suggest that it could be adapted to the solar community's EPO activities for the upcoming 2017 Great American Solar Eclipse.
NASA Astrophysics Data System (ADS)
Duncan, D. K.
2016-12-01
On Aug. 21, 2017 a Total Eclipse of the Sun will cross the US. For the first time in 40 years every state will have at least 80% of the sun covered by the moon, and lucky people from Oregon to South Carolina will see the beauty of the total eclipse and remember it all their lives. It is as difficult to convey the impression of a total eclilpse as it is to convey what the Grand Canyon is like. Words cannot do it justice. It looks like the end of the world as the flames of solar prominances rise from the edge of the "black hole" of the eclipsed sun, and silver streamers of the sun's corona stretch across the sky. People scream, applaud, or cry. Animals do strange things. At a total eclipse in the Galapagos dozens of whales and dolphins surfaced at the time of the total elcipse, surrounded our boat, and after the eclipse swam away. At a partial eclipse, even a 99% eclipse, those spectacular aspects are not seen, so it is a good idea to make plans to go to where the eclipse is total. This session will use examples from 10 total eclipses the author has viewed and made available to the public, since March 7, 1970, to suggest practical preparations for the evnt. Advice will be given on how and where to see the eclipse yourself, and how to help the public, teachers, and students where you live enjoy the spectacle and raise their interest in science. It is hoped that by the time of the AGU meeting "Kits" of educational materials and safe eclipse-watching glasses will be available to AGU members. This will be discussed. A Public Service Announcement suitable for use on television, the Internet, or in schools should also be available.
Line Identifications in the Far Ultraviolet Spectrum of the Eclipsing Binary System 31 Cygni
NASA Astrophysics Data System (ADS)
Hagen Bauer, Wendy; Bennett, P. D.
2011-05-01
The eclipsing binary system 31 Cygni (K4 Ib + B3 V) was observed at several phases with the Far Ultraviolet Spectrosocopic Explorer (FUSE) satellite. During total eclipse, a rich emission spectrum was observed, produced by scattering of hot star photons in the extended wind of the K supergiant. The system was observed during deep chromospheric eclipse, and 2.5 months after total eclipse ended. We present an atlas of line identifications in these spectra. During total eclipse, emission features from C II , C III, N I, N II, N III, O I, Si II, P II, P III, S II, S III, Ar I, Cr III, Fe II, Fe III, and Ni II were detected. The strongest emission features arise from N II. These lines appear strongly in absorption during chromospheric eclipse, and even 2.5 months after total eclipse, the absorption bottoms out on the underlying emission seen during total eclipse. The second strongest features in the emission spectrum arise from Fe III. Any chromospheric Fe III absorption is buried within strong chromospheric absorption from other species, mainly Fe II. The emission profiles of most of the doubly-ionized species are red-shifted relative to the systemic velocity, with asymmetric profiles with a steeper long-wavelength edge. Emission profiles from singly-ionized species tend to be more symmetric and centered near the systemic velocity. In deep chromospheric eclipse, absorption features are seen from neutral and singly-ionized species, arising from lower levels up to 3 eV. Many strong chromospheric features are doubled in the observation obtained during egress from eclipse. The 31 Cygni spectrum taken 2.5 months after total eclipse ended ws compared to single-star B spectra from the FUSE archives. There was still some additional chromospheric absorption from strong low-excitation Fe II, O I and Ar I.
NASA Astrophysics Data System (ADS)
Ilić, L.; Kuzmanoski, M.; Kolarž, P.; Nina, A.; Srećković, V.; Mijić, Z.; Bajčetić, J.; Andrić, M.
2018-06-01
Measurements of atmospheric parameters were carried out during the partial solar eclipse (51% coverage of solar disc) observed in Belgrade on 20 March 2015. The measured parameters included height of the planetary boundary layer (PBL), meteorological parameters, solar radiation, surface ozone and air ions, as well as Very Low Frequency (VLF, 3-30 kHz) and Low Frequency (LF, 30-300 kHz) signals to detect low-ionospheric plasma perturbations. The observed decrease of global solar and UV-B radiation was 48%, similar to the solar disc coverage. Meteorological parameters showed similar behavior at two measurement sites, with different elevations and different measurement heights. Air temperature change due to solar eclipse was more pronounced at the lower measurement height, showing a decrease of 2.6 °C, with 15-min time delay relative to the eclipse maximum. However, at the other site temperature did not decrease; its morning increase ceased with the start of the eclipse, and continued after the eclipse maximum. Relative humidity at both sites remained almost constant until the eclipse maximum and then decreased as the temperature increased. The wind speed decreased and reached minimum 35 min after the last contact. The eclipse-induced decrease of PBL height was about 200 m, with minimum reached 20 min after the eclipse maximum. Although dependent on UV radiation, surface ozone concentration did not show the expected decrease, possibly due to less significant influence of photochemical reactions at the measurement site and decline of PBL height. Air-ion concentration decreased during the solar eclipse, with minimum almost coinciding with the eclipse maximum. Additionally, the referential Line-of-Sight (LOS) radio link was set in the area of Belgrade, using the carrier frequency of 3 GHz. Perturbation of the receiving signal level (RSL) was observed on March 20, probably induced by the solar eclipse. Eclipse-related perturbations in ionospheric D-region were detected based on the VLF/LF signal variations, as a consequence of Lyα radiation decrease.
The Critical Role of the Research Community in Space Weather Planning and Execution
NASA Astrophysics Data System (ADS)
Robinson, Robert M.; Behnke, Richard A.; Moretto, Therese
2018-03-01
The explosion of interest in space weather in the last 25 years has been due to a confluence of efforts all over the globe, motivated by the recognition that events on the Sun and the consequent conditions in interplanetary space and Earth's magnetosphere, ionosphere, and thermosphere can have serious impacts on vital technological systems. The fundamental research conducted at universities, government laboratories, and in the private sector has led to tremendous improvements in the ability to forecast space weather events and predict their impacts on human technology and health. The mobilization of the research community that made this progress possible was the result of a series of actions taken by the National Science Foundation (NSF) to build a national program aimed at space weather. The path forward for space weather is to build on those successes through continued involvement of the research community and support for programs aimed at strengthening basic research and education in academia, the private sector, and government laboratories. Investments in space weather are most effective when applied at the intersection of research and applications. Thus, to achieve the goals set forth originally by the National Space Weather Program, the research community must be fully engaged in the planning, implementation, and execution of space weather activities, currently being coordinated by the Space Weather Operations, Research, and Mitigation Subcommittee under the National Science and Technology Council.
Risk factors for death or injury in tornadoes: An epidemiologic approach
NASA Astrophysics Data System (ADS)
Brenner, Sue Anne; Noji, Eric K.
On August 28, 1990, between 3:15 and 3:45 P.M., a tornado beat a path of destruction through the Will County, Illinois, towns of Plainfield, Crest Hill, and Joliet [National Weather Service, 1991]. The parent severe thunderstorm formed on the Illinois-Wisconsin border and moved southeastward across northeast Illinois. Over its 4-hour lifetime it produced several other less damaging tornadoes, as well as large hail and strong straight line winds. The Plainfield tornado was rated as an F-5 tornado, with a path length of 16.5 mi (0.62 mi = 1 km) and path width of 700 yd (1.09 yd = 1 m). No tornado warning was issued by the National Weather Service. It was the worst tornado in Illinois in more than 20 years and one of the most violent in U.S. history. The tornado severed electrical power to 65,000 homes and businesses, cut off phone service to 10,000 residences, and caused more than $200 million worth of damage. When the tornado hit, few people were in a protected area such as the basement or inner area of a house. As a result of the storm's impact, 302 people were injured, including 80 persons who were hospitalized and survived and 28 who died.
Reardon, Blase; Lundy, Chris
2004-01-01
The annual spring opening of the Going-to-the-Sun Road in Glacier National Park presents a unique avalanche forecasting challenge. The highway traverses dozens of avalanche paths mid-track in a 23-kilometer section that crosses the Continental Divide. Workers removing seasonal snow and avalanche debris are exposed to paths that can produce avalanches of destructive class 4. The starting zones for most slide paths are within proposed Wilderness, and explosive testing or control are not currently used. Spring weather along the Divide is highly variable; rain-on-snow events are common, storms can bring several feet of new snow as late as June, and temperature swings can be dramatic. Natural avalanches - dry and wet slab, dry and wet loose, and glide avalanches - present a wide range of hazards and forecasting issues. This paper summarizes the forecasting program instituted in 2002 for the annual snow removal operations. It focuses on tools and techniques for forecasting natural wet snow avalanches by incorporating two case studies, including a widespread climax wet slab cycle in 2003. We examine weather and snowpack conditions conducive to wet snow avalanches, indicators for instability, and suggest a conceptual model for wet snow stability in a northern intermountain snow climate.
Helios-1 Faraday rotation experiment - Results and interpretations of the solar occultations in 1975
NASA Technical Reports Server (NTRS)
Volland, H.; Bird, M. K.; Levy, G. S.; Stelzried, C. T.; Seidel, B. L.
1977-01-01
The first of two solar occultations of the satellite Helios-1 in 1975 occurred in April when the satellite's ray path approached the west limb of the sun to a minimum distance of 1.63 solar radii. The second occultation took place in late August/early September when Helios-1 was totally eclipsed by the photosphere. Measurements of the polarization angle of the linearly polarized telemetry signal were performed with automatic tracking polarimeters at the 64 m Goldstone Tracking Station in California and also at the 100 m radio telescope in Effelsberg, West Germany. The coronal Faraday rotation as a function of the solar offset for both occultations is shown in graphs. The theoretical significance of the observations is investigated.
Lunar eclipses: Probing the atmosphere of an inhabited planet
NASA Astrophysics Data System (ADS)
García Muñoz, A.
2013-04-01
The Moon's brightness during a lunar eclipse is indicative of the composition, cloudiness and aerosol loading of the Earth's atmosphere. The idea of using lunar eclipse observations to characterize the Earth's atmosphere is not new, but the interest raised by the prospects of discovering Earth-like exoplanets transiting their host stars has brought renewed attention to the method. We review some recent efforts made in the prediction and interpretation of lunar eclipses. We also comment on the contribution of the lunar eclipse theory to the refractive theory of planetary transits.
Moon eclipse from 21 december 2010 in Romania
NASA Astrophysics Data System (ADS)
Gaina, Alex; Haus, Marian; Conovici, Matei; Vasiliu, Dan
2010-12-01
The authors discuss the Total Moon's eclipse from 21 december 2010, their circumstances for Romania and Central Europe. One notes that the informations from the NASA eclipses website do not inform correctly about the observability of the initial penumbral phase (P1-U1) of the eclipse. The same reffer to the Anuarul Astronomic Roman, published by the Institutul Astronomic Roman for 2010. By contrary the web site by Fred Espenac informed correctly the astronomical community. The Moon setted before the begining of the penumbral phase of the eclipse.
NASA Technical Reports Server (NTRS)
Mercer, R. D.
1973-01-01
The scientific and engineering findings are presented of the feasibility study for the use of a YF-12 aircraft as a scientific instrument platform for observing the 1970 solar eclipse. Included in the report is the computer program documentation of the solar eclipse determination; summary data on SR-71A type aircraft capabilities and limitations as an observing platform for solar eclipses; and the recordings of an informal conference on observations of solar eclipses using SR-71A type aircraft.
The 2017 Solar Eclipse Community Impacts through Public Library Engagement
NASA Astrophysics Data System (ADS)
Dusenbery, P.; Holland, A.; LaConte, K.; Mosshammer, G.; Harold, J. B.; Fraknoi, A.; Schatz, D.; Duncan, D. K.
2017-12-01
More than two million pairs of eclipse glasses were distributed free through public libraries in the U.S. for the solar eclipse of the Sun taking place on August 21, 2017. About 7,000 organizations, including public library branches, bookmobiles, tribal libraries, library consortia, and state libraries took part in the celestial event of the century. Many organizations received a package of free safe-viewing glasses, plus a 24-page information booklet about eclipse viewing and suggested program ideas. An educational video was also produced on how best to do public outreach programs about the eclipse. The project was supported, in part, by the Gordon and Betty Moore Foundation, with additional help from Google, NASA, the Research Corporation, and the National Science Foundation (NSF). The program was managed through the Space Science Institute's National Center for Interactive Learning as part of its STAR Library Network (STAR_Net). Resources developed by STAR_Net for this event included an Eclipse Resource Center; a newsletter for participating libraries to learn about eclipses and how to implement an effective and safe eclipse program; eclipse program activities on its STEM Activity Clearinghouse; webinars; and connections to subject matter experts from NASA's and the American Astronomical Society's volunteer networks. This presentation will provide an overview of the extensive collaboration that made this program possible as well as highlight the national impact that public libraries made in their communities.
Is an eclipse described in the Odyssey?
Baikouzis, Constantino; Magnasco, Marcelo O
2008-07-01
Plutarch and Heraclitus believed a certain passage in the 20th book of the Odyssey ("Theoclymenus's prophecy") to be a poetic description of a total solar eclipse. In the late 1920s, Schoch and Neugebauer computed that the solar eclipse of 16 April 1178 B.C.E. was total over the Ionian Islands and was the only suitable eclipse in more than a century to agree with classical estimates of the decade-earlier sack of Troy around 1192-1184 B.C.E. However, much skepticism remains about whether the verses refer to this, or any, eclipse. To contribute to the issue independently of the disputed eclipse reference, we analyze other astronomical references in the Epic, without assuming the existence of an eclipse, and search for dates matching the astronomical phenomena we believe they describe. We use three overt astronomical references in the epic: to Boötes and the Pleiades, Venus, and the New Moon; we supplement them with a conjectural identification of Hermes's trip to Ogygia as relating to the motion of planet Mercury. Performing an exhaustive search of all possible dates in the span 1250-1115 B.C., we looked to match these phenomena in the order and manner that the text describes. In that period, a single date closely matches our references: 16 April 1178 B.C.E. We speculate that these references, plus the disputed eclipse reference, may refer to that specific eclipse.
CATE 2016 Indonesia: Camera, Software, and User Interface
NASA Astrophysics Data System (ADS)
Kovac, S. A.; Jensen, L.; Hare, H. S.; Mitchell, A. M.; McKay, M. A.; Bosh, R.; Watson, Z.; Penn, M.
2016-12-01
The Citizen Continental-America Telescopic Eclipse (Citizen CATE) Experiment will use a fleet of 60 identical telescopes across the United States to image the inner solar corona during the 2017 total solar eclipse. For a proof of concept, five sites were hosted along the path of totality during the 2016 total solar eclipse in Indonesia. Tanjung Pandan, Belitung, Indonesia was the first site to experience totality. This site had the best seeing conditions and focus, resulting in the highest quality images. This site proved that the equipment that is going to be used is capable of recording high quality images of the solar corona. Because 60 sites will be funded, each set up needs to be cost effective. This requires us to use an inexpensive camera, which consequently has a small dynamic range. To compensate for the corona's intensity drop off factor of 1,000, images are taken at seven frames per second, at exposures 0.4ms, 1.3ms, 4.0ms, 13ms, 40ms, 130ms, and 400ms. Using MatLab software, we are able to capture a high dynamic range with an Arduino that controls the 2448 x 2048 CMOS camera. A major component of this project is to train average citizens to use the software, meaning it needs to be as user friendly as possible. The CATE team is currently working with MathWorks to create a graphic user interface (GUI) that will make data collection run smoothly. This interface will include tabs for alignment, focus, calibration data, drift data, GPS, totality, and a quick look function. This work was made possible through the National Solar Observatory Research Experiences for Undergraduates (REU) Program, which is funded by the National Science Foundation (NSF). The NSO Training for 2017 Citizen CATE Experiment, funded by NASA (NASA NNX16AB92A), also provided support for this project. The National Solar Observatory is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the NSF.
NASA Technical Reports Server (NTRS)
Meneghini, Robert; Liao, Liang
2013-01-01
As shown by Takahashi et al., multiple path attenuation estimates over the field of view of an airborne or spaceborne weather radar are feasible for off-nadir incidence angles. This follows from the fact that the surface reference technique, which provides path attenuation estimates, can be applied to each radar range gate that intersects the surface. This study builds on this result by showing that three of the modified Hitschfeld-Bordan estimates for the attenuation-corrected radar reflectivity factor can be generalized to the case where multiple path attenuation estimates are available, thereby providing a correction to the effects of nonuniform beamfilling. A simple simulation is presented showing some strengths and weaknesses of the approach.
Configuring Eclipse for GMAT Builds: Instructions for Windows Users, Rev. 0.3
NASA Technical Reports Server (NTRS)
Conway, Darrel J.
2007-01-01
This document provides instructions about how to configure the Eclipse IDE to build GMAT on Windows based PCs. The current instructions are preliminary; the Windows builds using Eclipse are currently a bit crude. These instructions are intended to give you enough information to get Eclipse setup to build wxWidgets based executables in general, and GMAT in particular.
NASA Technical Reports Server (NTRS)
Patterson, Joseph
1993-01-01
The status report covering the period from 1 June 1992 to 31 May 1993 is included. Areas of research include: (1) eclipsing cataclysmic variables; (2) deep eclipses in H0928+501; (3) YY Draconis, the Whirling Dervish; and (4) new x ray pulsar candidates from HEAO-1.
Confirming Variability in the Secondary Eclipse Depth of the Rocky Super-Earth 55 Cancri e
NASA Astrophysics Data System (ADS)
Tamburo, Patrick; Mandell, Avi; Deming, Drake; Garhart, Emily
2017-01-01
We present a reanalysis of Spitzer transit and secondary eclipse observations of the rocky super Earth 55 Cancri e using Pixel Level Decorrelation (Deming et al. 2015). Secondary eclipses of this planet were found to be significantly variable by Demory et al. (2016), implying a changing brightness temperature which could be evidence of volcanic activity due to tidal forces. If genuine, this result would represent the first evidence for such a process outside of bodies in our own solar system, and would further expand our understanding of the huge variety of planetary systems that can develop in our universe. Spitzer eclipse observations, however, are subject to strong systematic effects which can heavily impact the retrieved eclipse model. A reanalysis of this result with an independent method is therefore needed to confirm eclipse depth variability. We tentatively confirm variability, finding a shallower increase in eclipse depth over the course of observations compared to Demory et al. (2015).
The 1st of April 2470 BC Total Solar Eclipse Seen by the Prophet Ibraheem
NASA Astrophysics Data System (ADS)
Yousef, S. M.
The Holy Quran describes a phenomenon seen by young Abraham that can only fit a solar eclipse. Two criteria were given for this particular eclipse; first only one planet was seen as soon as it got dark and second no corona was seen. In order to justify the first selection rule, examinations of solar and planetary longitudes for total solar eclipses passing over Babel were carried out. Only the eclipse of the 1st of April 2470 BC meets this condition, as it was only Venus that was seen at that eclipse. The second selection rule was also naturally fulfilled, as Babel happened to be on the border of the totality zone hence no corona was seen, however all the time the moon glistened as Baily's beads. There is no doubt that the prophet Abraham witnessed the 1st of April total solar eclipse that passed over Babel. This will put him about 470 years backward than it was previously anticipated.
Modeling the Effects of Asynchronous Rotation on Secondary Eclipse Timings in HW VIr Binaries
NASA Astrophysics Data System (ADS)
Clancy, Padraig
2018-01-01
HW Vir binaries are post common envelope binaries consisting of a hot subdwarf and red dwarf, with light curves dominated by primary eclipses, a strong reflection effect, and secondary eclipses. They have orbital periods ranging from a few hours to half a day and are generally thought to be tidally locked; most studies assume both synchronous rotation and zero eccentricity when modeling HW Vir light curves and radial velocities. Their stable eclipse timings are frequently used in O-C studies to look for the presence of circumbinary objects, measure evolutionary changes in the orbital period, and even constrain the component masses through Roemer delay measurements of the secondary eclipse. While most systems are probably tidally locked or close to it, even slightly asynchronous rotation could theoretically shift the orbital phase of the reflection effect. Here we investigate how asynchronous rotation might affect measurements of secondary eclipse timings by generating thousands of synthetic light curves with a range of reflection effect phases, fitting eclipse timings, and creating O-C diagrams.
Preparing for Eclipse 2017 on This Week @NASA – August 11, 2017
2017-08-11
The Aug. 21 total solar eclipse across America is generating a lot of interest – and a lot of questions. You’ll find answers to many of your eclipse questions at NASA’s Eclipse 2017 website -- eclipse2017.nasa.gov. The site is full of information to help you prepare for this rare celestial event – including eclipse-related activities, events, viewing safety tips, and other resources. Then, on the day of the eclipse, you can see the event “Through the Eyes of NASA” – during a special NASA TV broadcast that includes coast-to-coast coverage from the ground, from the air and from space. Coverage begins with a special pre-show at noon eastern – followed by in-depth coverage at 1pm. You can also watch on Aug. 21 at www.nasa.gov/eclipselive. Also, TDRS-M Update, Webb’s Sunshield Layers Installed, RS-25 Engine Testing Rolls On, and Chief Technologist Visits Industry Partner!
HF Band Observations and Modeling of the 2017 Eclipse
NASA Astrophysics Data System (ADS)
Earle, G. D.; Kordella, L.; Han, X.; Moses, M. L.; Sweeney, D.; McGwier, R. W.; Lloyd, W.; Ruohoniemi, J. M.
2017-12-01
A nationwide network of observatories has been created to study the effects of the 2017 eclipse on the F-region of the ionosphere. These include the SuperDARN HF radars in Oregon and Kansas, software defined radios in Oregon, Kansas, and South Carolina, and scintillation receivers placed northward of the central eclipse line across the continent. In this talk we will present data obtained by these systems during the eclipse, and interpret these data using a ray-tracing numerical code in conjunction with the SAMI-3 first principles model. Comparisons to results from the CORS network of GPS-TEC receivers will be made, and the F-region density and altitude perturbations observed during the eclipse will be contrasted with ionosonde data from an eclipse that occurred over the United Kingdom in 1999.
Constructing 'Black Sun': the Documentary Film of the 2012 Eclipses
NASA Astrophysics Data System (ADS)
Holbrook, Jarita
2014-06-01
2012 offered an opportunity that was not to be missed: two solar eclipses. Drs Alphonse Sterling and Hakeem Oluseyi began doing collaborative research during total solar eclipses in 2006 in Ghana. Since then they have continued to do eclipse observation when funds and whether permitted. As a filmmaker, the opportunity to film Sterling and Oluseyi during the 2012 eclipses in Tokyo and Cairns fulfilled the goal of showing the excitement of time-sensitive research, the lives of astrophysicists, and diversity within the astronomy community. As an astrophysicist who did not specialize in solar astrophysics, it was an opportunity for me both to learn and to solidify for the audience what we know about the sun and the importance of eclipse observation. Clips of the film will be included.
Preparing a Nation for the Eclipse of a Generation -
NASA Astrophysics Data System (ADS)
Speck, Angela; Habbal, Shadia; Tresch Fienberg, Richard; Kentrianakis, Michael; Fraknoi, Andrew; Nordgren, Tyler; Penn, Matthew; Pasachoff, Jay M.; Bakich, Michael; Winter, Henry; Gay, Pamela; Motta, Mario
2018-01-01
On August 21st 2017, there was a total solar eclipse visible from a vast swath of the US.In preparation for that event, the American Astronomical society created a taskforce charged with planning for the eclipse for the entire nation. The preparations included interfacing with the public, the media, non-profit organizations and governmental organizations. Preliminary data suggests that nearly 90% of American adults watched the eclipse either directly or via live streams. Moreover, there were no major problems associated with the event, in spite of valiant attempts from, e.g. imprope solar viewing materials. The eclipse offered opportunities for many scientific experiments within and ebyond astronomy. Here we present on the work of the taskforce, and the lessons learned as well as lesser known science experiments undertaken during the eclipse.
Ionospheric modifications detected by a dense network of single frequency GNSS receivers
NASA Astrophysics Data System (ADS)
Mrak, S.; Semeter, J. L.
2017-12-01
It has been predicted that the region of totality during a total solar eclipse can launch atmospheric gravity waves with large enough amplitude to cause traveling ionospheric disturbances (TIDs). We report initial results from a remote sensing campaign involving a dense hybrid network of single- and dual-frequency GNSS receivers deployed underneath the 21 August 2017 solar eclipse. The campaign took place in central Missouri, involving 84 Trimble dual-frequency receivers, complemented by 2 additional 50 Hz dual-frequency receivers and 15 single-frequency receivers, together constructing 100 receivers with average mutual separation of less than 25 km and with a time resolution of 1 second or better. The initial results show a crescent shaped enhancement bulge in front of region of totality, extending all the way from Canada to Gulf of Mexico. In addition, in the path of totality is noticed a great depletion region, followed by a pair of transverse waves propagating in west-east direction. In the following months, we will explore the transition region carried by the totality by a virtue of hyper dense network of GNSS receivers with 1 second resolution. In addition to TEC data decomposition we will explore effects of the totality on the raw measurements (phase, code and signal intensity), and to the navigation solution which is likely to be effected by a different propagation conditions with respect to other days.
The Optical Gravitational Lensing Experiment. Eclipsing Binary Stars in the Large Magellanic Cloud
NASA Astrophysics Data System (ADS)
Wyrzykowski, L.; Udalski, A.; Kubiak, M.; Szymanski, M.; Zebrun, K.; Soszynski, I.; Wozniak, P. R.; Pietrzynski, G.; Szewczyk, O.
2003-03-01
We present the catalog of 2580 eclipsing binary stars detected in 4.6 square degree area of the central parts of the Large Magellanic Cloud. The photometric data were collected during the second phase of the OGLE microlensing search from 1997 to 2000. The eclipsing objects were selected with the automatic search algorithm based on an artificial neural network. Basic statistics of eclipsing stars are presented. Also, the list of 36 candidates of detached eclipsing binaries for spectroscopic study and for precise LMC distance determination is provided. The full catalog is accessible from the OGLE Internet archive.
2017-08-21
NASA employees and contractors use protective glasses to view a partial solar eclipse from NASA Headquarters Monday, Aug. 21, 2017 in Washington. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Gwen Pitman)
2017-08-22
NASA employees and contractors use protective glasses to view a partial solar eclipse from NASA Headquarters Tuesday, Aug. 22, 2017 in Washington. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Gwen Pitman)
Solar Eclipse from NASA Goddard
2017-08-21
View of the partial solar eclipse from NASA's Goddard Space Flight Center in Greenbelt, Md on Monday, August 21, 2017. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Credit: NASA/Goddard/Rebecca Roth
2017-08-21
Robert Lightfoot, acting NASA administrator and Thomas Zurbuchen NASA AA for the science mission directorate view a partial eclipse solar eclipse Monday, August 21, 2017, from onboard a NASA Armstrong Flight Research Center’s Gulfstream III 35,000 feet above the Oregon Coast. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. Photo Credit: (NASA/Carla Thomas)
2017-08-21
This composite image of nine pictures shows the progression of a partial solar eclipse near Banner, Wyoming on Monday, Aug. 21, 2017. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Joel Kowsky)
In the Shadow of the Moon, What Type of Solar Eclipse Will We See?
ERIC Educational Resources Information Center
Brown, Todd; Brown, Katrina
2017-01-01
Solar eclipses occur several times a year, but most people will be lucky if they see one total solar eclipse in their lifetime. There are two upcoming total solar eclipses that can be seen from different parts of the United States (August 21, 2017 and April 8, 2024), and they provide teachers with an amazing opportunity to engage students with a…
Lessons from Distributing Eclipse Glasses: Planning Ahead for April 2024
NASA Astrophysics Data System (ADS)
Bartlett, Jennifer Lynn; Wilson, Teresa; Chizek Frouard, Malynda R.; Phlips, Alan
2018-01-01
In preparation for the 2017 August 21 total solar eclipse across the continental United States, a multifaceted effort encouraged safe public observation of this spectacular event. However, we experienced mixed results distributing free ISO 12312-2 compliant eclipse glasses.On the positive side, we successfully dispensed several hundred in Virginia through in-school programs about the eclipse. We created a 2017-eclipse information sheet to accompany a safe-viewing handout. To facilitate sending glasses home in student backpacks, we wrapped each pair in a double-sided flyer and sealed the bundle in an individual envelope. We also passed out glasses during evening and weekend activities at a planetarium. Religious, business, and educational groups were all excited to receive them as were co-workers, family, and friends.On the negative side, planetarium staff declined to give eclipse glasses to students without a parent due to safety and liability concerns. Then, a day camp returned 200 pairs less than 72 hours before the event for the same reasons. However, we also received several requests from groups that had waited until too late to be accommodated easily.During the week before the eclipse, demand for eclipse glasses in New York, Michigan, Indiana, Illinois, Wisconsin, Minnesota, South Dakota, Nebraska, and Missouri was less than anticipated. While many people were well prepared, the recalls and reported counterfeiting made others suspicious. Concurrently, vendors were offering their remaining stock for $1–10 each.The experiences of the 2017 total solar eclipse, both good and bad, will not completely fade before preparations for 2024 begin. We look forward enthusiastically to sharing that event with as many people as possible and hope that the overall distribution of eclipse glasses goes more smoothly.We thank the AAS for providing 1,000+ of the eclipse glasses we shared, which were donated to them by Google to promote the Eclipse Megamovie project; Rainbow Symphony was the manufacturer. The authors supplemented these with a few personal purchases. AAS, NASA, NSF, American Academies of Ophthalmology and Optometry, and the American Optometric Association jointly disseminated the safe-viewing handout.
Solar Eclipse-Induced Changes in the Ionosphere over the Continental US
NASA Astrophysics Data System (ADS)
Erickson, P. J.; Zhang, S.; Goncharenko, L. P.; Coster, A. J.; Hysell, D. L.; Sulzer, M. P.; Vierinen, J.
2017-12-01
For the first time in 26 years, a total solar eclipse occurred over the continental United States on 21 August 2017, between 16:00-20:00 UT. We report on American solar eclipse observations of the upper atmosphere, conducted by a team led by MIT Haystack Observatory. Efforts measured ionospheric and thermospheric eclipse perturbations. Although eclipse effects have been studied for more than 50 years, recent major sensitivity and resolution advances using radio-based techniques are providing new information on the eclipse ionosphere-thermosphere-mesosphere (ITM) system response. Our study was focused on quantifying eclipse effects on (1) traveling ionospheric disturbances (TIDs) and atmospheric gravity waves (AGWs); (2) spatial ionospheric variations associated with the eclipse; and (3) altitudinal and temporal ionospheric profile variations. We present selected early findings on ITM eclipse response including a dense global network of 6000 GNSS total electron content (TEC) receivers (100 million measurements per day; 1x1 degree spatial grid) and the Millstone Hill and Arecibo incoherent scatter radars. TEC depletions of up to 60% in magnitude were associated with the eclipse umbra and penumbra and consistently trailed the eclipse totality center. TEC enhancements associated with prominent orographic features were observed in the western US due to complex interactions as the lower atmosphere cooled in response to decreasing EUV energy inputs. Strong TIDs in the form of bow waves, stern waves, and a stern wake were observed in TEC data. Altitude-resolved plasma parameter profiles from Millstone Hill saw a nearly 50% decrease in F region electron density in vertical profiles, accompanied by a corresponding 200-250 K decrease in electron temperature. Wide field Millstone Hill radar scans showed similar decreases in electron density to the southwest, maximizing along the line of closest approach to totality. Data is available to the research community through the MIT Haystack Madrigal system. Alongside a summary of observations, we will also present preliminary quantitative comparisons with several ongoing modeling efforts.
NASA Astrophysics Data System (ADS)
Jin, Chichuan; Ponti, Gabriele; Haberl, Frank; Smith, Randall; Valencic, Lynne
2018-07-01
AX J1745.6-2901 is an eclipsing low-mass X-ray binary in the Galactic Centre (GC). It shows significant X-ray excess emission during the eclipse phase, and its eclipse light curve shows an asymmetric shape. We use archival XMM-Newton and Chandra observations to study the origin of these peculiar X-ray eclipsing phenomena. We find that the shape of the observed X-ray eclipse light curves depends on both photon energy and the shape of the source extraction region, and also shows differences between the two instruments. By performing detailed simulations for the time-dependent X-ray dust-scattering halo, as well as directly modelling the observed eclipse and non-eclipse halo profiles of AX J1745.6-2901, we obtained solid evidence that its peculiar eclipse phenomena are indeed caused by the X-ray dust scattering in multiple foreground dust layers along the line of sight (LOS). The apparent dependence on the instruments is caused by different instrumental point spread functions. Our results can be used to assess the influence of dust-scattering in other eclipsing X-ray sources, and raise the importance of considering the timing effects of dust-scattering halo when studying the variability of other X-ray sources in the GC, such as Sgr A⋆. Moreover, our study of halo eclipse reinforces the existence of a dust layer local to AX J1745.6-2901 as reported by Jin et al. (2017), as well as identifying another dust layer within a few hundred parsecs to the Earth, containing up to several tens of percent LOS dust, which is likely to be associated with the molecular clouds in the Solar neighbourhood. The remaining LOS dust is likely to be associated with the molecular clouds located in the Galactic disc in-between.
Communications Link Characterization Experiment (CLCE), volume 3
NASA Technical Reports Server (NTRS)
1977-01-01
The results of data which were acquired, reduced and analyzed as of June 1977, from the Communications Link Characterization Experiment while utilizing the Communications Link Characterization Experiment while utilizing the Communications Technology Satellite is presented. The long term yearly and worst month propagation data from both stations are presented for the defined yearly period and the test results of the Goddard Television Experiment are described. The data for the continuing path length analysis are updated. Progress on the continuing analysis of utilizing the weather radars for attenuation prediction is given and the concept of the weather radar ratio is presented.
Radiometers Optimize Local Weather Prediction
NASA Technical Reports Server (NTRS)
2010-01-01
Radiometrics Corporation, headquartered in Boulder, Colorado, engaged in Small Business Innovation Research (SBIR) agreements with Glenn Research Center that resulted in a pencil-beam radiometer designed to detect supercooled liquid along flight paths -- a prime indicator of dangerous icing conditions. The company has brought to market a modular radiometer that resulted from the SBIR work. Radiometrics' radiometers are used around the world as key tools for detecting icing conditions near airports and for the prediction of weather conditions like fog and convective storms, which are known to produce hail, strong winds, flash floods, and tornadoes. They are also employed for oceanographic research and soil moisture studies.
NASA Technical Reports Server (NTRS)
1993-01-01
A Huntsville meteorologist of Baron Services, Inc. has formed a commercial weather advisory service. Weather information is based on data from Marshall Space Flight Center (MSFC) collected from antennas in Alabama and Tennessee. Bob Baron refines and enhances MSFC's real time display software. Computer data is changed to audio data for radio transmission, received by clients through an antenna and decoded by computer for display. Using his service, clients can monitor the approach of significant storms and schedule operations accordingly. Utilities and emergency management officials are able to plot a storm's path. A recent agreement with two other companies will promote continued development and marketing.
Solar Eclipse: Concept of “Science” and “Language” Literacy
NASA Astrophysics Data System (ADS)
Haristiani, N.; Zaen, R.; Nandiyanto, A. B. D.; Rusmana, A. N.; Azis, F.; Danuwijaya, A. A.; Abdullah, A. G.
2018-02-01
The purpose of this study was to evaluate the concept of science and language literacy of solar eclipse. The study was conducted through a survey to 250 students with different ages (from 17 to 23 years old), grades, and majors in Universitas Pendidikan Indonesia. The survey was completed with a questionnaire consisting of 41 questions. In the case of the language literacy, experimental results showed that various expressions in facing the solar eclipse phenomenon are found. Relating to the science literacy, most students have good science understanding to the solar eclipse phenomenon. In conclusion, the understanding about the solar eclipse is affected by formal science education and religion understanding that they have been accepted since their childhood. These factors have also influenced the belief of Indonesian people to the solar eclipse myth and the way of expressions a language literacy.
SPECIAL SEMINAR - The NOTTE experiment, or how to become a Total Solar Eclipse chaser
None
2017-12-09
The NOTTE experiment (Neutrino Oscillations with Telescope during Total Eclipse) aims at searching for visible photons emitted through a possible radiative decay of solar neutrinos. The experiment and the expeditions organized by a group of physicists and astrophysicists from INFN and INAF Bologna hunting for Total Solar Eclipses from 1998 to 2006 wil be described. The results of observations performed during total solar eclipse expeditions in 2001 (Zambia) and 2006 (Sahara desert, Libya) are presented and a beautiful photo gallery will be shown. Other peculiar observations that can be made during a solar eclipse are also illustrated. The seminar will be followed by a brief presentation of future camps for solar eclipse chasers and scientists organized in 2008 in Russia, Kazakhstan, China and Mongolia, in 2009 in Shanghai and on the Easter Island in 2010.
NASA Astrophysics Data System (ADS)
Takahashi, N.; Agata, H.; Maeda, K.; Okyudo, M..; Yamazaki, Y.
A total solar eclipse was observed on 2001 June 21 in Angola, Zambia, and Zimbabwe in Africa. For the purpose of promotion of science education using a solar eclipse as an educational project, the whole image and an enlarged image of the Sun, that showed the process of an eclipse and how things went in the observation area, were broadcast to the world through the Internet (Live Eclipse). Such images were distributed to four primary schools in Hiroshima and the Science and Technology Museum in Tokyo to give a remote lecture through computers. To find the effectiveness of the lecture, the learning effect on the participating children was examined two times before and after the remote lecture on the solar eclipse.
The Unique Scientific Assets of Multi-Wavelength Total Solar Eclipse Observations
NASA Astrophysics Data System (ADS)
Habbal, S. R.; Druckmuller, M.; Ding, A.
2017-12-01
Total solar eclipses continue to yield new discoveries regarding the dynamics and thermodynamics of the corona, due to the radial span of the field of view available during totality, starting from the solar surface out to several solar radii, and due to the diagnostic potential provided by coronal emission lines. Scientific highlights from past eclipse observations as well as from the 21 August 2017 eclipse, now spanning a solar cycle, will be presented. These include white light and spectral line imaging as well as imaging spectrometry. Emphasis will be placed on the unique insights into the origin of dynamic structures captured in eclipse images, and the temperature distribution in the corona derived from these eclipse observations. Implications of these results for the general problem of coronal heating, as well as for the next generation of space instrumentation will be discussed.
Analysis of ionospheric irregularities during total solar eclipse 2016 based on GNSS observation
NASA Astrophysics Data System (ADS)
Husin, A.; Jiyo; Anggarani, S.; Ekawati, S.; Dear, V.
2016-11-01
A total solar eclipse occurred over Indonesia in the morning hours on 9 March 2016. Ionisations in the ionosphere which is associated with the solar radiation during the total eclipse provided a good opportunity to study the ionospheric irregularities. Using global navigation satellite system (GNSS) data taken from dual-frequency receivers in Manado, we investigated and analysed the total electron content (TEC) perturbations with a time resolution of 60 s to reveal ionospheric irregularities during total eclipse. Result showed that TEC conditions based on IPP were decreased during solar eclipse on March 9, comparing with the neighbour day. The maximum percentage deviation (DTEC) from the average value during eclipse period, 00:00 - 02:40 UT reach -41.5%. The duration of maximum decrement in TEC occurs were around 2-30 minutes after the maximum obscuration.
Statistical analysis of geomagnetic field variations during solar eclipses
NASA Astrophysics Data System (ADS)
Kim, Jung-Hee; Chang, Heon-Young
2018-04-01
We investigate the geomagnetic field variations recorded by INTERMAGNET geomagnetic observatories, which are observed while the Moon's umbra or penumbra passed over them during a solar eclipse event. Though it is generally considered that the geomagnetic field can be modulated during solar eclipses, the effect of the solar eclipse on the observed geomagnetic field has proved subtle to be detected. Instead of exploring the geomagnetic field as a case study, we analyze 207 geomagnetic manifestations acquired by 100 geomagnetic observatories during 39 solar eclipses occurring from 1991 to 2016. As a result of examining a pattern of the geomagnetic field variation on average, we confirm that the effect can be seen over an interval of 180 min centered at the time of maximum eclipse on a site of a geomagnetic observatory. That is, demonstrate an increase in the Y component of the geomagnetic field and decreases in the X component and the total strength of the geomagnetic field. We also find that the effect can be overwhelmed, depending more sensitively on the level of daily geomagnetic events than on the level of solar activity and/or the phase of solar cycle. We have demonstrated it by dividing the whole data set into subsets based on parameters of the geomagnetic field, solar activity, and solar eclipses. It is suggested, therefore, that an evidence of the solar eclipse effect can be revealed even at the solar maximum, as long as the day of the solar eclipse is magnetically quiet.
Heliophysics at total solar eclipses
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.
2017-08-01
Observations during total solar eclipses have revealed many secrets about the solar corona, from its discovery in the 17th century to the measurement of its million-kelvin temperature in the 19th and 20th centuries, to details about its dynamics and its role in the solar-activity cycle in the 21st century. Today's heliophysicists benefit from continued instrumental and theoretical advances, but a solar eclipse still provides a unique occasion to study coronal science. In fact, the region of the corona best observed from the ground at total solar eclipses is not available for view from any space coronagraphs. In addition, eclipse views boast of much higher quality than those obtained with ground-based coronagraphs. On 21 August 2017, the first total solar eclipse visible solely from what is now United States territory since long before George Washington's presidency will occur. This event, which will cross coast-to-coast for the first time in 99 years, will provide an opportunity not only for massive expeditions with state-of-the-art ground-based equipment, but also for observations from aloft in aeroplanes and balloons. This set of eclipse observations will again complement space observations, this time near the minimum of the solar activity cycle. This review explores the past decade of solar eclipse studies, including advances in our understanding of the corona and its coronal mass ejections as well as terrestrial effects. We also discuss some additional bonus effects of eclipse observations, such as recreating the original verification of the general theory of relativity.
Is an eclipse described in the Odyssey?
Baikouzis, Constantino; Magnasco, Marcelo O.
2008-01-01
Plutarch and Heraclitus believed a certain passage in the 20th book of the Odyssey (“Theoclymenus's prophecy”) to be a poetic description of a total solar eclipse. In the late 1920s, Schoch and Neugebauer computed that the solar eclipse of 16 April 1178 B.C.E. was total over the Ionian Islands and was the only suitable eclipse in more than a century to agree with classical estimates of the decade-earlier sack of Troy around 1192–1184 B.C.E. However, much skepticism remains about whether the verses refer to this, or any, eclipse. To contribute to the issue independently of the disputed eclipse reference, we analyze other astronomical references in the Epic, without assuming the existence of an eclipse, and search for dates matching the astronomical phenomena we believe they describe. We use three overt astronomical references in the epic: to Boötes and the Pleiades, Venus, and the New Moon; we supplement them with a conjectural identification of Hermes's trip to Ogygia as relating to the motion of planet Mercury. Performing an exhaustive search of all possible dates in the span 1250–1115 B.C., we looked to match these phenomena in the order and manner that the text describes. In that period, a single date closely matches our references: 16 April 1178 B.C.E. We speculate that these references, plus the disputed eclipse reference, may refer to that specific eclipse. PMID:18577587
NASA Astrophysics Data System (ADS)
Srivastava, Vineet K.; Kumar, Jai; Kulshrestha, Shivali; Srivastava, Ashutosh; Bhaskar, M. K.; Kushvah, Badam Singh; Shiggavi, Prakash; Vallado, David A.
2015-05-01
A solar eclipse occurs when the Sun, Moon and Earth are aligned in such a way that shadow of the Moon falls on the Earth. The Moon's shadow also falls on the Earth orbiting spacecraft. In this case, the alignment of the Sun, Moon, and spacecraft is similar to that of the Sun, Moon, and Earth but this phenomenon is often referred as a lunar eclipse falling on the spacecraft. Lunar eclipse is not as regular in terms of times of occurrence, duration, and depth as the Earth shadow eclipse and number of its occurrence per orbital location per year ranges from zero to four with an average of two per year; a spacecraft may experience two to three lunar eclipses within a twenty-four hour period [2]. These lunar eclipses can cause severe spacecraft operational problems. This paper describes two lunar shadow eclipse prediction models using a projection map approach and a line of intersection method by extending the Earth shadow eclipse models described by Srivastava et al. [10,11] for the Earth orbiting spacecraft. The attractive feature of both models is that they are much easier to implement. Both mathematical models have been simulated for two Indian low Earth orbiting spacecrafts: Oceansat-2, Saral-1, and two geostationary spacecrafts: GSAT-10, INSAT-4CR. Results obtained by the models compare well with lunar shadow model given by Escobal and Robertson [12], and high fidelity commercial software package, Systems Tool Kit (STK) of AGI.
Will We Soon Have a Geostationary Microwave Sounder and What Can We Do with It?
NASA Technical Reports Server (NTRS)
Lambrigtsen, Bjorn
2008-01-01
This slide presentation reviews the Geostationary Microwave Sounder (GEO/MW). GEO/MW applications include weather forecasting, hurricane diagnostics, rain, tropospheric wind profiling, and climate research. The presentation also includes information on prototype development, system tests, the notational PATH mission, and data products.
A1540-53, an eclipsing X-ray binary pulsator
NASA Technical Reports Server (NTRS)
Becker, R. H.; Swank, J. H.; Boldt, E. A.; Holt, S. S.; Serlemitsos, P. J.; Pravdo, S. H.; Saba, J. R.
1977-01-01
An eclipsing X-ray binary pulsator consistent with the location of A1540-53 has been observed. The source pulse period was 528.93 + or - 0.10 s. The binary nature is confirmed by a Doppler curve for the pulsation period. The eclipse angle of 30.5 + or - 3 deg and the 4-hour transition to and from eclipse suggest an early-type giant or supergiant primary star.
Massive eclipsing binary candidates
NASA Technical Reports Server (NTRS)
Garrison, R. F.; Schild, R. E.; Hiltner, W. A.
1983-01-01
New UBV data are provided for 63 southern OB stars which are either identified in the survey by Garrison, Hiltner, and Schild as having double lines or are known from Wood et al. to be eclipsing binaries. Twenty of the stars are known eclipsing variables. Four stars, not previously known as eclipsing, have both spectroscopic evidence of duplicity and significant photometric variations. Several additional stars have a marginally significant spread in V magnitude.
2017-08-21
The Moon is seen passing in front of the Sun during a solar eclipse from Ross Lake, Northern Cascades National Park, Washington on Monday, Aug. 21, 2017. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Bill Ingalls)
2017-08-21
The Sun is seen as it rises behind Jack Mountain head of the solar eclipse, Monday, Aug. 21, 2017, Ross Lake, Northern Cascades National Park, Washington. A total solar eclipse will sweep across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Bill Ingalls)
2017-08-21
This composite image shows the progression of a partial solar eclipse over Ross Lake, in Northern Cascades National Park, Washington on Monday, Aug. 21, 2017. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Bill Ingalls)
EE Cep observations requested for upcoming eclipse
NASA Astrophysics Data System (ADS)
Waagen, Elizabeth O.
2014-07-01
The AAVSO requests observations for the upcoming eclipse of EE Cephei, a long-period eclipsing variable. EE Cep has a period of 2,050 days, and shows strong variations in the eclipse light curve from one event to the next. Observations are needed to study the morphology of the upcoming eclipse, which will be used to better understand the shape of the eclipsing disk and how it precesses. Mid-eclipse is predicted to be August 23, 2014, but the early stages of the eclipse may begin as much as a month earlier. EE Cep is being observed by a number of amateur and professional astronomers using multiple telescopes at multiple wavelengths. Among these is a collaboration (see https://sites.google.com/site/eecep2014campaign/) headed by Cezary Galan at the Nicolaus Copernicus Astronomical Center in Poland; several individual AAVSO observers are already participating in this effort. The AAVSO is not currently a partner in that campaign, but all data submitted to the AAVSO will be publicly available. The AAVSO strongly encourages observers to begin following this star now, and to continue observations into October 2014 at least. Finder charts with sequence may be created using the AAVSO Variable Star Plotter (http://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details and observations.
NASA Astrophysics Data System (ADS)
Dai, Fei; Winn, Joshua N.; Berta-Thompson, Zachory; Sanchis-Ojeda, Roberto; Albrecht, Simon
2018-04-01
The light curve of an eclipsing system shows anomalies whenever the eclipsing body passes in front of active regions on the eclipsed star. In some cases, the pattern of anomalies can be used to determine the obliquity Ψ of the eclipsed star. Here we present a method for detecting and analyzing these patterns, based on a statistical test for correlations between the anomalies observed in a sequence of eclipses. Compared to previous methods, ours makes fewer assumptions and is easier to automate. We apply it to a sample of 64 stars with transiting planets and 24 eclipsing binaries for which precise space-based data are available, and for which there was either some indication of flux anomalies or a previously reported obliquity measurement. We were able to determine obliquities for 10 stars with hot Jupiters. In particular we found Ψ ≲ 10° for Kepler-45, which is only the second M dwarf with a measured obliquity. The other eight cases are G and K stars with low obliquities. Among the eclipsing binaries, we were able to determine obliquities in eight cases, all of which are consistent with zero. Our results also reveal some common patterns of stellar activity for magnetically active G and K stars, including persistently active longitudes.
Discovery of Eclipses from the Accreting Millisecond X-Ray Pulsar Swift J1749.4-2807
NASA Technical Reports Server (NTRS)
Markwardt, C. B.; Stromhmayer, T. E.
2010-01-01
We report the discovery of X-ray eclipses in the recently discovered accreting millisecond X-ray pulsar SWIFT J1749.4-2807. This is the first detection of X-ray eclipses in a system of this type and should enable a precise neutron star mass measurement once the companion star is identified and studied. We present a combined pulse and eclipse timing solution that enables tight constraints on the orbital parameters and inclination and shows that the companion mass is in the range 0.6-0.8 solar mass for a likely range of neutron star masses, and that it is larger than a main-sequence star of the same mass. We observed two individual eclipse egresses and a single ingress. Our timing model shows that the eclipse features are symmetric about the time of 90 longitude from the ascending node, as expected. Our eclipse timing solution gives an eclipse duration (from the mid-points of ingress to egress) of 2172+/-13 s. This represents 6.85% of the 8.82 hr orbital period. This system also presents a potential measurement of "Shapiro" delay due to general relativity; through this technique alone, we set an upper limit to the companion mass of 2.2 Solar mass .
NASA Astrophysics Data System (ADS)
Jensen, Logan; Citizen CATE Experiment 2017 Team
2018-01-01
The Citizen Continental America Telescopic Eclipse (CATE) Experiment was designed to fill in the current data gap for the solar corona from approximately 1 to 2.5 solar radii. Using the total solar eclipse, the project took advantage of the unique opportunity to study this region of the corona from 68 identical sites across the United States. Before the 2017 eclipse, image reduction pipelines and advanced processing techniques were researched and implemented using data that had been collected from the 2016 Indonesian eclipse as a test set. This would speed up the turnaround from data to science after the 2017 eclipse.When processing the 2016 eclipse data, cirrus clouds became apparent moving across the field of view. These would interfere with future processing goals for the data such as coronal filament tracing and polar plume measurements. As the clouds moved across the field they did not completely obscure any part of the image, instead they produced variable, moving absorption across the CATE field of view. This had the effect of creating a noisy signal for each pixel. A noise reduction procedure based on a Kalman filter was developed to effectively remove the clouds from the data. Initial results from the 2016 eclipse data are presented.
Period changes of the long-period cataclysmic binary EX Draconis
NASA Astrophysics Data System (ADS)
Pilarčík, L.; Wolf, M.; Dubovský, P. A.; Hornoch, K.; Kotková, L.
2012-03-01
The cataclysmic variable star EX Dra is a relatively faint but frequently investigated eclipsing dwarf nova. In total 35 new eclipses were measured photometrically as part of our long-term monitoring of interesting eclipsing systems. Using published and new mid-eclipse times obtained between 2004 and 2011 we constructed the observed-minus-calculated diagram. The current data present 21 years of period modulation with a semi-amplitude of 2.5 min. The eclipse timings show significant deviations from the best sinusoidal fit, which indicates that this ephemeris is not a complete description of the data. The fractional period change is roughly ΔP/P = 3 × 10-6.
NASA Astrophysics Data System (ADS)
Kjurkchieva, Diana; Vasileva, Doroteya
2018-01-01
We determined the orbits and stellar parameters of three eccentric eclipsing binaries by light curve solutions of their Kepler data. KIC 10992733 and KIC 5632781 undergo total eclipses while KIC 10026136 reveals partial eclipses. The components of the targets are G and K stars. KIC 10992733 exhibited variations which were attributed to variable visibility of spot(s) on asynchronously rotating component. KIC 5632781 and KIC 1002613 reveal tidally-induced features at periastron, i.e. they might be considered as eclipsing heartbeat stars. The characteristics of the periastron features (shape, width and amplitude) confirm the theoretical predictions.
VizieR Online Data Catalog: OGLE eclipsing binaries in LMC (Wyrzykowski+, 2003)
NASA Astrophysics Data System (ADS)
Wyrzykowski, L.; Udalski, A.; Kubiak, M.; Szymanski, M.; Zebrun, K.; Soszynski, I.; Wozniak, P. R.; Pietrzynski, G.; Szewczyk, O.
2003-09-01
We present the catalog of 2580 eclipsing binary stars detected in 4.6 square degree area of the central parts of the Large Magellanic Cloud. The photometric data were collected during the second phase of the OGLE microlensing search from 1997 to 2000. The eclipsing objects were selected with the automatic search algorithm based on an artificial neural network. Basic statistics of eclipsing stars are presented. Also, the list of 36 candidates of detached eclipsing binaries for spectroscopic study and for precise LMC distance determination is provided. The full catalog is accessible from the OGLE Internet archive. (2 data files).
GMRT discovery of PSR J1544+4937: An eclipsing black-widow pulsar identified with a Fermi-LAT source
Bhattacharyya, B.; Roy, J.; Ray, P. S.; ...
2013-07-29
Using the Giant Metrewave Radio Telescope, we performed deep observations to search for radio pulsations in the directions of unidentified Fermi-Large Area Telescope γ-ray sources. We report the discovery of an eclipsing black-widow millisecond pulsar, PSR J1544+4937, identified with the uncataloged γ-ray source FERMI J1544.2+4941. This 2.16 ms pulsar is in a 2.9 hr compact circular orbit with a very low mass companion (Mc > 0.017M ⊙). At 322 MHz this pulsar is found to be eclipsing for 13% of its orbit, whereas at 607 MHz the pulsar is detected throughout the low-frequency eclipse phase. Variations in the eclipse ingressmore » phase are observed, indicating a clumpy and variable eclipsing medium. Moreover, additional short-duration absorption events are observed around the eclipse boundaries. Finally, using the radio timing ephemeris we were able to detect γ-ray pulsations from this pulsar, confirming it as the source powering the γ-ray emission.« less
Initial Results of HamSCI Ham Radio 21 August 2017 Eclipse Ionospheric Experiments
NASA Astrophysics Data System (ADS)
Frissell, N. A.; Gerrard, A. J.; Vega, J. S.; Katz, J. D.; West, M. L.; Gunning, S. W.; Moses, M. L.; Miller, E. S.; Erickson, P. J.; Huba, J.; Silver, H. W.; Ceglia, F.; Smith, P.; Williams, R.; Shovkoplyas, A.; Earle, G. D.; Gerzoff, R.; Gladstone, P.; Reyer, S. E.; Ackermann, J. R.; Bern, D.; Rose, S. W.
2017-12-01
On 21 August 2017, a total solar eclipse will cause the shadow of the moon to traverse the United States from Oregon to South Carolina in just over 90 minutes. The sudden absence of sunlight due to the eclipse, especially solar UV and x-rays, provides an impulse function to the upper atmosphere that modifies the neutral dynamics, plasma concentrations, and related properties. Despite more than 60 years of research, questions remain regarding eclipse-induced ionospheric impacts. Ham radio operators' advanced technical skills and inherent interest in ionospheric science make the amateur radio community ideal for contributing to and and participating in large-scale ionospheric sounding experiments. We present initial results from three amateur radio experiments designed to study the 2017 total solar eclipse: the Solar Eclipse QSO Party (SEQP), the HF Wideband Recording Experiment, and the Eclipse Frequency Measurement Test (FMT). These experiments are coordinated by HamSCI, the Ham Radio Science Citizen Investigation, a citizen science organization that connects the amateur radio community to the professional space science research community for mutual benefit.
GMRT DISCOVERY OF PSR J1544+4937: AN ECLIPSING BLACK-WIDOW PULSAR IDENTIFIED WITH A FERMI-LAT SOURCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharyya, B.; Roy, J.; Gupta, Y.
2013-08-10
Using the Giant Metrewave Radio Telescope, we performed deep observations to search for radio pulsations in the directions of unidentified Fermi-Large Area Telescope {gamma}-ray sources. We report the discovery of an eclipsing black-widow millisecond pulsar, PSR J1544+4937, identified with the uncataloged {gamma}-ray source FERMI J1544.2+4941. This 2.16 ms pulsar is in a 2.9 hr compact circular orbit with a very low mass companion (M{sub c} > 0.017M{sub Sun }). At 322 MHz this pulsar is found to be eclipsing for 13% of its orbit, whereas at 607 MHz the pulsar is detected throughout the low-frequency eclipse phase. Variations in themore » eclipse ingress phase are observed, indicating a clumpy and variable eclipsing medium. Moreover, additional short-duration absorption events are observed around the eclipse boundaries. Using the radio timing ephemeris we were able to detect {gamma}-ray pulsations from this pulsar, confirming it as the source powering the {gamma}-ray emission.« less
Modeling Amateur Radio Soundings of the Ionospheric Response to the 2017 Great American Eclipse
NASA Astrophysics Data System (ADS)
Frissell, N. A.; Katz, J. D.; Gunning, S. W.; Vega, J. S.; Gerrard, A. J.; Earle, G. D.; Moses, M. L.; West, M. L.; Huba, J. D.; Erickson, P. J.; Miller, E. S.; Gerzoff, R. B.; Liles, W.; Silver, H. W.
2018-05-01
On 21 August 2017, a total solar eclipse traversed the continental United States and caused large-scale changes in ionospheric densities. These were detected as changes in medium- and high-frequency radio propagation by the Solar Eclipse QSO Party citizen science experiment organized by the Ham Radio Science Citizen Investigation (hamsci.org). This is the first eclipse-ionospheric study to make use of measurements from a citizen-operated, global-scale HF propagation network and develop tools for comparison to a physics-based model ionosphere. Eclipse effects were observed ±0.3 hr on 1.8 MHz, ±0.75 hr on 3.5 and 7 MHz, and ±1 hr on 14 MHz and are consistent with eclipse-induced ionospheric densities. Observations were simulated using the PHaRLAP raytracing toolkit in conjunction with the eclipsed SAMI3 ionospheric model. Model results suggest 1.8, 3.5, and 7 MHz refracted at h≥125 km altitude with elevation angles θ≥22°, while 14 MHz signals refracted at h < 125 km with elevation angles θ < 10°.
NASA Astrophysics Data System (ADS)
Fuller-Rowell, Tim; Araujo-Pradere, Eduardo; Minter, Cliff; Codrescu, Mihail; Spencer, Paul; Robertson, Doug; Jacobson, Abram R.
2006-12-01
The potential of data assimilation for operational numerical weather forecasting has been appreciated for many years. For space weather it is a new path that we are just beginning to explore. With the emergence of satellite constellations and the networks of ground-based observations, sufficient data sources are now available to make the application of data assimilation techniques a viable option. The first space weather product at Space Environment Center (SEC) utilizing data assimilation techniques, US-TEC, was launched as a test operational product in November 2004. US-TEC characterizes the ionospheric total electron content (TEC) over the continental United States (CONUS) every 15 min with about a 15-min latency. US-TEC is based on a Kalman filter data assimilation scheme driven by a ground-based network of real-time GPS stations. The product includes a map of the vertical TEC, an estimate of the uncertainty in the map, and the departure of the TEC from a 10-day average at that particular universal time. In addition, data files are provided for vertical TEC and the line-of-sight electron content to all GPS satellites in view over the CONUS at that time. The information can be used to improve single-frequency GPS positioning by providing more accurate corrections for the ionospheric signal delay, or it can be used to initialize rapid integer ambiguity resolution schemes for dual-frequency GPS systems. Validation of US-TEC indicates an accuracy of the line-of-sight electron content of between 2 and 3 TEC units (1 TECU = 1016 el m-2), equivalent to less than 50 cm signal delay at L1 frequencies, which promises value for GPS users. This is the first step along a path that will likely lead to major improvement in space weather forecasting, paralleling the advances achieved in meteorological weather forecasting.
Envelopes in eclipsing binary stars
NASA Technical Reports Server (NTRS)
Huang, S.
1972-01-01
Theoretical research on eclipsing binaries is presented. The specific areas of investigation are the following: (1) the relevance of envelopes to the study of the light curves of eclipsing binaries, (2) the disk envelope, and (3) the spherical envelope.
A1540-53, an eclipsing X-ray binary pulsator
NASA Technical Reports Server (NTRS)
Becker, R. H.; Swank, J. H.; Boldt, E. A.; Holt, S. S.; Pravdo, S. H.; Saba, J. R.; Serlemitsos, P. J.
1977-01-01
An eclipsing X-ray binary pulsator consistent with the location of A1540-53 was observed. The source pulse period was 528.93 plus or minus 0.10 seconds. The binary nature is confirmed by a Doppler curve for the pulsation period. The eclipse angle of 30.5 deg plus or minus 3 deg and the 4 h transition to and from eclipse suggest an early type, giant or supergiant, primary star.
2017-08-21
The Moon is seen passing in front of the Sun at the point of the maximum of the partial solar eclipse near Banner, Wyoming on Monday, Aug. 21, 2017. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Joel Kowsky)
A Photometric Study of the Eclipsing Binary Star PY Boötis
NASA Astrophysics Data System (ADS)
Michaels, E. J.
2016-12-01
Presented here are the first precision multi-band CCD photometry of the eclipsing binary star PY Boötis. Best-fit stellar models were determined by analyzing the light curves with the Wilson-Devinney program. Asymmetries in the light curves were interpreted as resulting from magnetic activity which required spots to be included in the model. The resulting model is consistent with a W-type contact eclipsing binary having total eclipses.
2017-08-21
The Moon is seen as it starts passing in front of the Sun during a solar eclipse from Ross Lake, Northern Cascades National Park, Washington on Monday, Aug. 21, 2017. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Bill Ingalls)
Eclipse cooling of selected lunar features
NASA Technical Reports Server (NTRS)
Shorthill, R. W.; Saari, J. M.; Baird, F. E.; Lecompte, J. R.
1970-01-01
Thermal measurements were made in the 10 to 12 micron band of the lunar surface during the total eclipse of December19, 1964. A normalized differential thermal contour map is included, showing the location of the thermal anomalies or hot spots on the disk and the eclipse cooling curves of 400 sites, of which more than 300 were hot spots. The eclipse cooling data is compared to a particulate thermophysical model of the soil.
VizieR Online Data Catalog: Kepler Mission. VII. Eclipsing binaries in DR3 (Kirk+, 2016)
NASA Astrophysics Data System (ADS)
Kirk, B.; Conroy, K.; Prsa, A.; Abdul-Masih, M.; Kochoska, A.; Matijevic, G.; Hambleton, K.; Barclay, T.; Bloemen, S.; Boyajian, T.; Doyle, L. R.; Fulton, B. J.; Hoekstra, A. J.; Jek, K.; Kane, S. R.; Kostov, V.; Latham, D.; Mazeh, T.; Orosz, J. A.; Pepper, J.; Quarles, B.; Ragozzine, D.; Shporer, A.; Southworth, J.; Stassun, K.; Thompson, S. E.; Welsh, W. F.; Agol, E.; Derekas, A.; Devor, J.; Fischer, D.; Green, G.; Gropp, J.; Jacobs, T.; Johnston, C.; Lacourse, D. M.; Saetre, K.; Schwengeler, H.; Toczyski, J.; Werner, G.; Garrett, M.; Gore, J.; Martinez, A. O.; Spitzer, I.; Stevick, J.; Thomadis, P. C.; Vrijmoet, E. H.; Yenawine, M.; Batalha, N.; Borucki, W.
2016-07-01
The Kepler Eclipsing Binary Catalog lists the stellar parameters from the Kepler Input Catalog (KIC) augmented by: primary and secondary eclipse depth, eclipse width, separation of eclipse, ephemeris, morphological classification parameter, and principal parameters determined by geometric analysis of the phased light curve. The previous release of the Catalog (Paper II; Slawson et al. 2011, cat. J/AJ/142/160) contained 2165 objects, through the second Kepler data release (Q0-Q2). In this release, 2878 objects are identified and analyzed from the entire data set of the primary Kepler mission (Q0-Q17). The online version of the Catalog is currently maintained at http://keplerEBs.villanova.edu/. A static version of the online Catalog associated with this paper is maintained at MAST https://archive.stsci.edu/kepler/eclipsing_binaries.html. (10 data files).
Monitoring a photovoltaic system during the partial solar eclipse of August 2017
NASA Astrophysics Data System (ADS)
Kurinec, Santosh K.; Kucer, Michal; Schlein, Bill
2018-05-01
The power output of a 4.85 kW residential photovoltaic (PV) system located in Rochester, NY is monitored during the partial solar eclipse of August 21, 2017. The data is compared with the data on a day before and on the same day, a year ago. The area of exposed solar disk is measured using astrophotography every 16 s of the eclipse. Global solar irradiance is estimated using the eclipse shading, time of the day, location coordinates, atmospheric conditions and panel orientation. A sharp decline, as expected in the energy produced is observed at the time of the peak of the eclipse. The observed data of the PV energy produced is related with the model calculations taking into account solar eclipse coverage and cloudiness conditions. The paper provides a cohesive approach of irradiance calculations and obtaining anticipated PV performance.
Fall 2011 Eclipse Season Begins
2011-09-13
The Fall 2011 eclipse season started on September 11, 2011. Here is an AIA 304 image from 0658 UT. SDO has eclipse seasons twice a year near each equinox. For three weeks near midnight Las Cruces time (about 0700 UT) our orbit has the Earth pass between SDO and the Sun. These eclipses can last up to 72 minutes in the middle of an eclipse season. The current eclipse season started on September 11 and lasts until October 4. To read more about SDO go to: sdo.gsfc.nasa.gov/ Credit: NASA/GSFC/SDO NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
SPECIAL SEMINAR - The NOTTE experiment, or how to become a Total Solar Eclipse chaser
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2011-02-08
The NOTTE experiment (Neutrino Oscillations with Telescope during Total Eclipse) aims at searching for visible photons emitted through a possible radiative decay of solar neutrinos. The experiment and the expeditions organized by a group of physicists and astrophysicists from INFN and INAF Bologna hunting for Total Solar Eclipses from 1998 to 2006 wil be described. The results of observations performed during total solar eclipse expeditions in 2001 (Zambia) and 2006 (Sahara desert, Libya) are presented and a beautiful photo gallery will be shown. Other peculiar observations that can be made during a solar eclipse are also illustrated. The seminar willmore » be followed by a brief presentation of future camps for solar eclipse chasers and scientists organized in 2008 in Russia, Kazakhstan, China and Mongolia, in 2009 in Shanghai and on the Easter Island in 2010.« less
NASA Technical Reports Server (NTRS)
Trauger, John T.
2005-01-01
Eclipse is a proposed NASA Discovery mission to perform a sensitive imaging survey of nearby planetary systems, including a survey for jovian-sized planets orbiting Sun-like stars to distances of 15 pc. We outline the science objectives of the Eclipse mission and review recent developments in the key enabling technologies. Eclipse is a space telescope concept for high-contrast visible-wavelength imaging and spectrophotometry. Its design incorporates a telescope with an unobscured aperture of 1.8 meters, a coronographic camera for suppression of diffracted light, and precise active wavefront correction for the suppression of scattered background light. For reference, Eclipse is designed to reduce the diffracted and scattered starlight between 0.33 and 1.5 arcseconds from the star by three orders of magnitude compared to any HST instrument. The Eclipse mission provides precursor science exploration and technology experience in support of NASA's Terrestrial Planet Finder (TPF) program.
NASA Technical Reports Server (NTRS)
Fry, C. D.; Rawlins, L.; Krause, L. H.; Suggs, R. M.; McTernan, J. K.; Adams, M. L.; Gallagher, D. L.; Anderson, Scott; Allsbrooks, Robert IV
2017-01-01
August 21, 2017 provided a unique opportunity to investigate the effects of the total solar eclipse on high frequency (HF) radio propagation and ionospheric variability. In Marshall Space Flight Center's partnership with the US Space and Rocket Center (USSRC) and Austin Peay State University (APSU), we engaged students and citizen scientists in an investigation of the eclipse effects on the mid-latitude ionosphere. Activities included implementing and configuring software, monitoring the HF Amateur Radio frequency bands and collecting radio transmission data on days before, the day of, and days after the eclipse to build a continuous record of changing propagation conditions as the moon's shadow marched across the United States. Post-eclipse radio propagation analysis provided insights into ionospheric variability due to the eclipse. We report on results, interpretation, and conclusions of these investigations.
Positive lightning and severe weather
NASA Astrophysics Data System (ADS)
Price, C.; Murphy, B.
2003-04-01
In recent years researchers have noticed that severe weather (tornados, hail and damaging winds) are closely related to the amount of positive lightning occurring in thunderstorms. On 4 July 1999, a severe derecho (wind storm) caused extensive damage to forested regions along the United States/Canada border, west of Lake Superior. There were 665,000 acres of forest destroyed in the Boundary Waters Canoe Area Wilderness (BWCAW) in Minnesota and Quetico Provincial Park in Canada, with approximately 12.5 million trees blown down. This storm resulted in additional severe weather before and after the occurrence of the derecho, with continuous cloud-to-ground (CG) lightning occurring for more than 34 hours during its path across North America. At the time of the derecho the percentage of positive cloud-to-ground (+CG) lightning measured by the Canadian Lightning Detection Network (CLDN) was greater than 70% for more than three hours, with peak values reaching 97% positive CG lightning. Such high ratios of +CG are rare, and may be useful indicators for short-term forecasts of severe weather.
2014-04-15
NOAA's GOES-13 satellite saw a large pesky front, one that stretched from Maine to Louisiana on April 13 at 16:15 UTC/12:15 p.m. EDT to April 16 at 12:15 p.m. EDT. This weather pattern did not bode well for people who wanted to see the lunar eclipse on April 15. The GOES-13 satellite images and animations are created at NASA/NOAA's GOES Project at the NASA Goddard Space Flight Center, Greenbelt, Md. Credit: NOAA/NASA GOES Project NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
Hirakawa, E. T.; Ezzedine, S. M.
2017-12-01
Recorded motions from underground chemical explosions are complicated by long duration seismic coda as well as motion in the tangential direction. The inability to distinguish the origins of these complexities as either source or path effects comprises a limitation to effective monitoring of underground chemical explosions. With numerical models, it is possible to conduct rigorous sensitivity analyses for chemical explosive sources and their resulting ground motions under the influence of many attributes, including but not limited to complex velocity structure, topography, and non-linear source characteristics. Previously we found that topography can cause significant scattering in the direct wave but leads to relatively little motion in the coda. Here, we aim to investigate the contribution from the low-velocity weathered layer that exists in the shallow subsurface apart from and in combination with surface topography. We use SW4, an anelastic anisotropic fourth order finite difference code to simulate chemical explosive source in a 1D velocity structure consisting of a single weathered layer over a half space. A range of velocity magnitudes are used for the upper weathered layer with the velocities always being lower than that of the granitic underlaying layer. We find that for lower weathered layer velocities, the wave train is highly dispersed and causes a large percentage of energy to be contained in the coda in relation to the entire time series. The percentage of energy contained in the coda grows with distance from the source but saturates at a certain distance that depends on weathered layer velocity and thickness. The saturation onset distance increases with decreasing layer thickness and increasing velocity of the upper layer. Measurements of relative coda energy and coda saturation onset distance from real recordings can provide an additional constraint on the properties of the weathered layer in remote sites as well as test sites like the Nevada National Security Site (NNSS). The results of this modeling study will aid in distinguishing source effects from path effects to the recorded motions in experiments such as the Source Physics Experiment (SPE). This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Constraints on the atmospheric circulation and variability of the eccentric hot Jupiter XO-3b
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Ian; Knutson, Heather A.; Cowan, Nicolas B.
We report secondary eclipse photometry of the hot Jupiter XO-3b in the 4.5 μm band taken with the Infrared Array Camera on the Spitzer Space Telescope. We measure individual eclipse depths and center of eclipse times for a total of 12 secondary eclipses. We fit these data simultaneously with two transits observed in the same band in order to obtain a global best-fit secondary eclipse depth of 0.1580% ± 0.0036% and a center of eclipse phase of 0.67004 ± 0.00013. We assess the relative magnitude of variations in the dayside brightness of the planet by measuring the size of themore » residuals during ingress and egress from fitting the combined eclipse light curve with a uniform disk model and place an upper limit of 0.05%. The new secondary eclipse observations extend the total baseline from one and a half years to nearly three years, allowing us to place an upper limit on the periastron precession rate of 2.9 × 10{sup –3} deg day{sup –1}— the tightest constraint to date on the periastron precession rate of a hot Jupiter. We use the new transit observations to calculate improved estimates for the system properties, including an updated orbital ephemeris. We also use the large number of secondary eclipses to obtain the most stringent limits to date on the orbit-to-orbit variability of an eccentric hot Jupiter and demonstrate the consistency of multiple-epoch Spitzer observations.« less
Repeatability and Accuracy of Exoplanet Eclipse Depths Measured with Post-cryogenic Spitzer
NASA Astrophysics Data System (ADS)
Ingalls, James G.; Krick, J. E.; Carey, S. J.; Stauffer, John R.; Lowrance, Patrick J.; Grillmair, Carl J.; Buzasi, Derek; Deming, Drake; Diamond-Lowe, Hannah; Evans, Thomas M.; Morello, G.; Stevenson, Kevin B.; Wong, Ian; Capak, Peter; Glaccum, William; Laine, Seppo; Surace, Jason; Storrie-Lombardi, Lisa
2016-08-01
We examine the repeatability, reliability, and accuracy of differential exoplanet eclipse depth measurements made using the InfraRed Array Camera (IRAC) on the Spitzer Space Telescope during the post-cryogenic mission. We have re-analyzed an existing 4.5 μm data set, consisting of 10 observations of the XO-3b system during secondary eclipse, using seven different techniques for removing correlated noise. We find that, on average, for a given technique, the eclipse depth estimate is repeatable from epoch to epoch to within 156 parts per million (ppm). Most techniques derive eclipse depths that do not vary by more than a factor 3 of the photon noise limit. All methods but one accurately assess their own errors: for these methods, the individual measurement uncertainties are comparable to the scatter in eclipse depths over the 10 epoch sample. To assess the accuracy of the techniques as well as to clarify the difference between instrumental and other sources of measurement error, we have also analyzed a simulated data set of 10 visits to XO-3b, for which the eclipse depth is known. We find that three of the methods (BLISS mapping, Pixel Level Decorrelation, and Independent Component Analysis) obtain results that are within three times the photon limit of the true eclipse depth. When averaged over the 10 epoch ensemble, 5 out of 7 techniques come within 60 ppm of the true value. Spitzer exoplanet data, if obtained following current best practices and reduced using methods such as those described here, can measure repeatable and accurate single eclipse depths, with close to photon-limited results.
Are atmospheric updrafts a key to unlocking climate forcing and sensitivity?
Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel; ...
2016-10-20
Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud–aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climate and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vs in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of the scale dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less
Are atmospheric updrafts a key to unlocking climate forcing and sensitivity?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel
Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud–aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climate and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vs in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of the scale dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less
NASA Technical Reports Server (NTRS)
Bean, T. A.; Bowhill, S. A.
1973-01-01
Partial-reflection data collected for the eclipse of July 10, 1972 as well as for July 9 and 11, 1972, are analyzed to determine eclipse effects on D-region electron densities. The partial-reflection experiment was set up to collect data using an on-line PDP-15 computer and DECtape storage. The electron-density profiles show good agreement with results from other eclipses. The partial-reflection programs were changed after the eclipse data collection to improve the operation of the partial-reflection system. These changes were mainly due to expanded computer hardware and have simplified the operations of the system considerably.
Impact Results From the Astronomers Without Borders Building on the Eclipse Education Program
NASA Astrophysics Data System (ADS)
Bartolone, L. M.; Simmons, M.; Nelson, A.; Kruse, B.
2017-12-01
Astronomers Without Borders "Building on the Eclipse Education Program" was its first to move beyond outreach, exploring how to impact science identity, attitudes towards STEM and inspire audiences to explore careers in STEM. Inspired by the eclipse, educators and scientists were brought together in an online community to support one another in learning about the Sun and light after audiences were inspired by the Total Solar Eclipse. The program also collected and analyzed data on participating groups in an attempt to have more information about audiences for the next total solar eclipse to cross the United States in 2024. Although we anticipate the program will be ongoing, preliminary results will be presented.
2017-08-21
The Moon is seen passing in front of the Sun during a total solar eclipse on Monday, August 21, 2017 from onboard a NASA Gulfstream III aircraft flying 25,000 feet above the Oregon coast. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Carla Thomas)
Total Eclipse From Onboard NASA's G-III Research Aircraft
2017-09-13
As the 2017 solar eclipse approaches and enters totality, NASA Armstrong staff and NASA senior management share their excitement and first-hand experience from aboard NASA’s Armstrong Flight Research Center Gulfstream III aircraft. The G-III aircraft flew at 35,000 feet above the coast of Oregon during the 2017 total solar eclipse, capturing some of the very first views of the 2017 total solar eclipse as it made its way across the United States.
The early-type multiple system QZ Carinae
NASA Astrophysics Data System (ADS)
Mayer, P.; Lorenz, R.; Drechsel, H.; Abseim, A.
2001-02-01
We present an analysis of the early-type quadruple system QZ Car, consisting of an eclipsing and a non-eclipsing binary. The spectroscopic investigation is based on new high dispersion echelle and CAT/CES spectra of H and He lines. The elements for the orbit of the non-eclipsing pair could be refined. Lines of the brighter component of the eclipsing binary were detected in near-quadrature spectra, while signatures of the fainter component could be identified in only few spectra. Lines of the primary component of the non-eclipsing pair and of both components of the eclipsing pair were found to be variable in position and strength; in particular, the He ii 4686 emission line of the brighter eclipsing component is strongly variable. An ephemeris for the eclipsing binary QZ Car valid at present was derived Prim. Min. = hel. JD 2448687.16 + 5fd9991 * E. The relative orbit of the two binary constituents of the multiple system is discussed. In contrast to earlier investigations we found radial velocity changes of the systemic velocities of both binaries, which were used - together with an O-C analysis of the expected light-time effect - to derive approximate parameters of the mutual orbit of the two pairs. It is shown that this orbit and the distance to QZ Car can be further refined by minima timing and interferometry. Based on observations collected at the European Southern Observatory, La Silla, Chile.
Eclipsing binary stars with a δ Scuti component
NASA Astrophysics Data System (ADS)
Kahraman Aliçavuş, F.; Soydugan, E.; Smalley, B.; Kubát, J.
2017-09-01
Eclipsing binaries with a δ Sct component are powerful tools to derive the fundamental parameters and probe the internal structure of stars. In this study, spectral analysis of six primary δ Sct components in eclipsing binaries has been performed. Values of Teff, v sin I, and metallicity for the stars have been derived from medium-resolution spectroscopy. Additionally, a revised list of δ Sct stars in eclipsing binaries is presented. In this list, we have only given the δ Sct stars in eclipsing binaries to show the effects of the secondary components and tidal-locking on the pulsations of primary δ Sct components. The stellar pulsation, atmospheric and fundamental parameters (e.g. mass, radius) of 92 δ Sct stars in eclipsing binaries have been gathered. Comparison of the properties of single and eclipsing binary member δ Sct stars has been made. We find that single δ Sct stars pulsate in longer periods and with higher amplitudes than the primary δ Sct components in eclipsing binaries. The v sin I of δ Sct components is found to be significantly lower than that of single δ Sct stars. Relationships between the pulsation periods, amplitudes and stellar parameters in our list have been examined. Significant correlations between the pulsation periods and the orbital periods, Teff, log g, radius, mass ratio, v sin I and the filling factor have been found.
Discovery of deep eclipses in the cataclysmic variable IPHAS J051814.33+294113.0
NASA Astrophysics Data System (ADS)
Kozhevnikov, V. P.
2018-06-01
Performing the photometric observations of the cataclysmic variable IPHAS J051814.33+294113.0, we discovered very deep eclipses. The observations were obtained over 14 nights, had a total duration of 56 hours and covered one year. The large time span, during which we observed the eclipses, allowed us to measure the orbital period in IPHAS J051814.33+294113.0 with high precision, P_{orb}=0.20603098± 0.00000025 d. The prominent parts of the eclipses lasted 0.1± 0.01 phases or 30± 3 min. The depth of the eclipses was variable in the range 1.8-2.9 mag. The average eclipse depth was equal to 2.42± 0.06 mag. The prominent parts of the eclipses revealed a smooth and symmetric shape. We derived the eclipse ephemeris, which, according to the precision of the orbital period, has a formal validity time of 500 years. This ephemeris can be useful for future investigations of the long-term period changes. During the latter four observational nights in 2017 January, we observed the sharp brightness decrease of IPHAS J051814.33+294113.0 by 2.3 mag. This brightness decrease imitated the end of the dwarf nova outburst. However, the long-term light curve of IPHAS J051814.33+294113.0 obtained in the course of the Catalina Sky Survey during 8 years showed no dwarf nova outbursts. From this we conclude that IPHAS J051814.33+294113.0 is a novalike variable. Moreover, the sharp brightness decrease, which we observed in IPHAS J051814.33+294113.0, suggests that this novalike variable belongs to the VY Scl-subtype. Due to very deep eclipses, IPHAS J051814.33+294113.0 is suitable to study the accretion disc structure using eclipse mapping techniques. Because this novalike variable has the long orbital period, it is of interest to determine the masses of the stellar components from radial velocity measurements. Then, our precise eclipse ephemeris can be useful to the phasing of spectroscopic data.
Observations of the eclipsing binary b Persei
NASA Astrophysics Data System (ADS)
Templeton, Matthew R.
2015-01-01
Dr. Robert Zavala (USNO-Flagstaff) et al. request V time-series observations of the bright variable star b Persei 7-21 January 2015 UT, in hopes of catching a predicted eclipse on January 15. This is a follow-up to the February 2013 campaign announced in Alert Notice 476, and will be used as a photometric comparison for upcoming interferometric observations with the Navy Precision Optical Interferometer (NPOI) in Arizona. b Per (V=4.598, B-V=0.054) is ideal for photoelectric photometers or DSLR cameras. Telescopic CCD observers may observe by stopping down larger apertures. Comparison and check stars assigned by PI: Comp: SAO 24412, V=4.285, B-V = -0.013; Check: SAO 24512, V=5.19, B-V = -0.05. From the PI: "[W]e wanted to try and involve AAVSO observers in a follow up to our successful detection of the b Persei eclipse of Feb 2013, AAVSO Alert Notice 476 and Special Notice 333. Our goal now is to get good time resolution photometry as the third star passes in front of the close ellipsoidal binary. The potential for multiple eclipses exists. The close binary has a 1.5 day orbital period, and the eclipsing C component requires about 4 days to pass across the close binary pair. The primary eclipse depth is 0.15 magnitude. Photometry to 0.02 or 0.03 mags would be fine to detect this eclipse. Eclipse prediction date (JD 2457033.79 = 2015 01 11 UT, ~+/- 1 day) is based on one orbital period from the 2013 eclipse." More information is available at PI's b Persei eclipse web page: http://inside.warren-wilson.edu/~dcollins/bPersei/. Finder charts with sequence may be created using the AAVSO Variable Star Plotter (https://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details and information on the targets.
ERIC Educational Resources Information Center
Fisher, Diane; Phillips, Tony
2004-01-01
On a gray, breezy day last September, thousands of people got in their cars and reluctantly left home. U.S. east coast highways were thick with traffic. Schools were closed. Businesses shut down. When powerful Hurricane Isabel arrived some 38 hours later, nearly everyone in the storm's path had fled to safety. Days later Vice Admiral Lautenbacher,…
Detection of the Secondary Eclipse of Exoplanet HAT P-11b
NASA Technical Reports Server (NTRS)
Barry, R. K.; Deming, L. D.; Bakos, G.; Harrington, J.; Madhusudhan, N.; Noyes, R.; Seager, S.
2010-01-01
We have successfully conducted secondary eclipse observations of exoplanet HAT-P-11b using the Spitzer Space Telescope. HAT-P-11b was, until very recently, the smallest transiting extrasolar planet yet found and one of only two known exo-Neptunes. We observed the system at 3.6 microns for a period of 22 hours centered on the anticipated secondary eclipse time, to detect the eclipse and determine its phase. Having detected the secondary eclipse, we are at present making a more focused series of observations in both the 3.6 and 4.5 micron bands to fully characterize it. HAT-P-11b has a period of 4.8878 days, radius of 0.422 RJ, mass of 0.081 MJ and semi-major axis 0.053 AU. Measurements of the secondary eclipse will serve to clarify two key issues; 1) the planetary brightness temperature and the nature of its atmosphere, and 2) the eccentricity of its orbit, with implications for its dynamical evolution. A precise determination of the orbit phase for the secondary eclipse will also be of great utility for Kepler observations of this system at visible wavelengths.
Accuracy of lunar eclipse observations made by Jesuit astronomers in China.
NASA Astrophysics Data System (ADS)
Fatoohi, L. J.; Stephenson, F. R.
1996-02-01
The Jesuit astronomers observed numerous lunar eclipses at Beijing and summaries of their observations - made between 1644 and 1785 - are preserved. The various lunar eclipse measurements that the Jesuits made are compared with the results of present-day computation.
2017-06-11
Former Spacelab 1 Mission scientist Rick Chappell views the August 21, 2017 solar eclipse with his wife. Chappell, a former associate director for science at Marshall and now a physics professor at Vanderbilt University in Nashville, joined a throng of Marshall personnel to marvel at the eclipse.
GK Dra: a delta Scuti Star in a New Eclipsing System Discovered by Hipparcos
NASA Astrophysics Data System (ADS)
Dallaporta, Sergio; Tomov, Toma; Zwitter, Tomaz; Munari, Ulisse
2002-09-01
GK Dra has been discovered by the Hipparcos mission as a 17 days eclipsing binary. We present here the first ground-based study of this star, based on extensive BV photoelectric photometry. We found a period of 9.974 days, equal depth primary and secondary eclipse (m=0.35 mag), no color variation in eclipse, and one of the components being a Sct star with an amplitude of 0.04 mag and a period of about 2.7 hours.
Determination of the Io heat flow. 1: Eclipse observations
NASA Technical Reports Server (NTRS)
Sinton, W. M.; Kaminski, C.
1983-01-01
The thermal emission from Io during eclipse by Jupiter yields data from which the total thermal flux from the volcanoes on the satellite surface can be estimated. Thermal infrared observations in spectral bands between 3.5 and 30 microns of five Io eclipse reappearances and one eclipse disappearance are reported and discussed. The thermal emission of the volcanoes which occurs almost all of the time was determined from the Io heat flux data. The thermal observations of Io are discussed with respect to previous thermophysical theories.
The influence of weather on Golden Eagle migration in northwestern Montana
Yates, R.E.; McClelland, B.R.; Mcclelland, P.T.; Key, C.H.; Bennetts, R.E.
2001-01-01
We analyzed the influence of 17 weather factors on migrating Golden Eagles (Aquila chrysaetos) near the Continental Divide in Glacier National Park, Montana, U.S.A. Local weather measurements were recorded at automated stations on the flanks of two peaks within the migration path. During a total of 506 hr of observation, the yearly number of Golden Eagles in autumn counts (1994-96) averaged 1973; spring counts (1995 and 1996) averaged 605 eagles. Mean passage rates (eagles/hr) were 16.5 in autumn and 8.2 in spring. Maximum rates were 137 in autumn and 67 in spring. Using generalized linear modeling, we tested for the effects of weather factors on the number of eagles counted. In the autumn model, the number of eagles increased with increasing air temperature, rising barometric pressure, decreasing relative humidity, and interactions among those factors. In the spring model, the number of eagles increased with increasing wind speed, barometric pressure, and the interaction between these factors. Our data suggest that a complex interaction among weather factors influenced the number of eagles passing on a given day. We hypothesize that in complex landscapes with high topographic relief, such as Glacier National Park, numerous weather factors produce different daily combinations to which migrating eagles respond opportunistically. ?? 2001 The Raptor Research Foundation, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mace, R.E.
1993-02-01
Numerical models are useful tools for developing an understanding of ground-water flow in sparsely characterized low-permeability aquifers. Finite-difference, cross-sectional models of Cretaceous chalk and marl formations near the Superconducting Super Collider (SSC) were constructed using MODFLOW to evaluate ground-water circulation paths and travel times. Weathered and fractured zones with enhanced permeability were included to assess the effect these features had on flow paths and times. Pump tests, slug tests, packer tests, core tests, and estimates were used to define hydraulic properties for model input. The model was calibrated with water-level data from monitor wells and from wire-line piezometers near amore » test shaft excavated by the SSC project. A ratio of vertical-to-horizontal permeability of 0.0085 was estimated through model calibration. A chalk-to-marl permeability ratio of 18 was needed to reproduce artesian head in a well completed in chalk beneath marl. Hydraulic head distributions and ground-water flow paths reflected local, intermediate, and regional flow systems with recharge beneath upland surface-water divides and discharge in valleys. Most of the flow (99%) occurred in the weathered zone, with average residence times of 5 to 10 years. Residence time in unweathered chalk bedrock was substantially longer, at an average of 1.7 Ma. As expected, the model demonstrated that deep and rapid ground-water circulation might occur in fracture zones. Particle paths calculated using MODPATH showed that ground-water travel times from recharge areas to the SSC subsurface facilities might be 20 to 60 years where flow is through fracture zones.« less
Properties OF M31. V. 298 eclipsing binaries from PAndromeda
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, C.-H.; Koppenhoefer, J.; Seitz, S.
2014-12-10
The goal of this work is to conduct a photometric study of eclipsing binaries in M31. We apply a modified box-fitting algorithm to search for eclipsing binary candidates and determine their period. We classify these candidates into detached, semi-detached, and contact systems using the Fourier decomposition method. We cross-match the position of our detached candidates with the photometry from Local Group Survey and select 13 candidates brighter than 20.5 mag in V. The relative physical parameters of these detached candidates are further characterized with the Detached Eclipsing Binary Light curve fitter (DEBiL) by Devor. We will follow up the detachedmore » eclipsing binaries spectroscopically and determine the distance to M31.« less
An ultraviolet investigation of the unusual eclipsing binary system FF AQR
NASA Technical Reports Server (NTRS)
Dorren, J. D.; Guinan, E. F.; Sion, E. M.
1982-01-01
A series of seven low dispersion IUE exposures in ultraviolet and wavelength regions obtained on December 6, 1981 during the eclipse of the subdwarf, during egress, and out of eclipse is analyzed. These observations and the binary phase at which they were made are shown on a schematic representation of the V-band light curve obtained in 1975. The depth in V is 0.15 mag. The circles are IUE V magnitudes from FES measures obtained during the observing run. They indicate an eclipse depth some 0.05 mag lower than expected, possibly due to difficulties with the color term in the FES calibration. The eclipse depths of Dworetsky in U, B and V were assumed in the calculations.
Interacting Winds in Eclipsing Symbiotic Systems - The Case Study of EG Andromedae
NASA Astrophysics Data System (ADS)
Calabrò, Emanuele
2014-03-01
We report the mathematical representation of the so called eccentric eclipse model, whose numerical solutions can be used to obtain the physical parameters of a quiescent eclipsing symbiotic system. Indeed the nebular region produced by the collision of the stellar winds should be shifted to the orbital axis because of the orbital motion of the system. This mechanism is not negligible, and it led us to modify the classical concept of an eclipse. The orbital elements obtained from spectroscopy and photometry of the symbiotic EG Andromedae were used to test the eccentric eclipse model. Consistent values for the unknown orbital elements of this symbiotic were obtained. The physical parameters are in agreement with those obtained by means of other simulations for this system.
Response of Cassava canopy to mid-day pseudo sunrise induced by solar eclipse.
Latha, R; Murthy, B S
2013-07-01
Variations in CO(2) concentration over a cassava canopy were measured during a solar eclipse at Thiruvananthapuram, India. The analysis presented attempts to differentiate between the eclipse effect and the possible effect of thick clouds, taking CO(2) as a proxy for photosynthesis. CO(2) and water vapor were measured at a rate of 10 Hz, and radiation at 1 Hz, together with other meteorological parameters. A rapid reduction in CO(2) observed post-peak eclipse, due apparently to intense photosynthesis, appears similar to what happens at daybreak/post-sunrise. The increase in CO(2) (4 ppm) during peak eclipse, with radiation levels falling below the photosynthesis cut-off for cassava, indicates domination of respiration due to the light-limiting conditions.
Data Collection During the Great American Eclipse
NASA Astrophysics Data System (ADS)
Vernier, Dave
2017-12-01
I am lucky enough (and old enough) to have seen three total eclipses. About a year ago, I became aware of the total eclipse that was coming to the United States on August 21, 2017. Because I knew how exciting a total eclipse can be, I spent a lot of time encouraging people to travel to the zone of totality if they possibly could. I also encouraged teachers to turn this event into a STEM lesson by taking data. We asked teachers to join us in collecting data during the eclipse and to share it. The people collecting these data were either teachers or former teachers (like me). Many times, the sensors were mounted with duct tape and rubber bands, but we got some great data!
Response of Cassava canopy to mid-day pseudo sunrise induced by solar eclipse
NASA Astrophysics Data System (ADS)
Latha, R.; Murthy, B. S.
2013-07-01
Variations in CO2 concentration over a cassava canopy were measured during a solar eclipse at Thiruvananthapuram, India. The analysis presented attempts to differentiate between the eclipse effect and the possible effect of thick clouds, taking CO2 as a proxy for photosynthesis. CO2 and water vapor were measured at a rate of 10 Hz, and radiation at 1 Hz, together with other meteorological parameters. A rapid reduction in CO2 observed post-peak eclipse, due apparently to intense photosynthesis, appears similar to what happens at daybreak/post-sunrise. The increase in CO2 (4 ppm) during peak eclipse, with radiation levels falling below the photosynthesis cut-off for cassava, indicates domination of respiration due to the light-limiting conditions.
Reliability of the totality of the eclipse in AD 628 in Nihongi
NASA Astrophysics Data System (ADS)
Tanikawa, Kiyotaka; Soma, Mitsuru
It is generally accepted that the solar eclipse on April 10, 628 (the second day, the third month, the thirty-sixth year of Empress Suiko) recorded in Nihongi is not total but partial though it is written as a total eclipse. We argue for the record appealing to the contemporary total or near total eclipses in Chinese history books and Japanese occultation observation. If the value of the tidal term in the lunar longitude (the coefficient of T2 term) is different from the present value by about -2"/cy-2, then there disappears an apparent contradiction of ΔT around AD 600 derived from lunar and solar eclipses. Grazing occultation data are found to be useful.
ISAAC Photometric Comparison of ECLIPSE Jitter and the ORAC-DR Equivalent Recipe for ISAAC
NASA Astrophysics Data System (ADS)
Currie, M. J.
2005-12-01
Motivated by a request from astronomers demanding accurate and consistent infrared photometry, I compare the photometry and quality of mosaics generated by the ECLIPSE jitter task and the ORAC-DR JITTER_SELF_FLAT recipe in two fields. The current (v4.9.0) ECLIPSE produces photometry a few percent fainter than ORAC-DR; the systematic trend with magnitude seen in v4.4.1 is now removed. Random errors arising from poor flat-fielding are not resolved. ECLIPSE generates noisier mosaics; ORAC-DR has poorer bias removal in crowded fields and defaults to larger mosaics. ORAC-DR runs a few times slower than ECLIPSE, but its recipe development is measured in weeks, not years.
Crowd-Sourced Radio Science at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Fry, C. D.; McTernan, J. K.; Suggs, R. M.; Rawlins, L.; Krause, L. H.; Gallagher, D. L.; Adams, M. L.
2018-01-01
August 21, 2017 provided a unique opportunity to investigate the effects of the total solar eclipse on high frequency (HF) radio propagation and ionospheric variability. In Marshall Space Flight Center's partnership with the US Space and Rocket Center (USSRC) and Austin Peay State University (APSU), we engaged citizen scientists and students in an investigation of the effects of an eclipse on the mid-latitude ionosphere. Activities included fieldwork and station-based data collection of HF Amateur Radio frequency bands and VLF radio waves before, during, and after the eclipse to build a continuous record of changing propagation conditions as the moon's shadow marched across the United States. Post-eclipse radio propagation analysis provided insights into ionospheric variability due to the eclipse.
NASA in Silicon Valley Uses Eclipses to Study Our Galaxy
2017-08-11
The August 2017 total solar eclipse seen across the United States was an epic event. However, scientists and researchers at NASA's Ames Research Center use different types of eclipses every day to learn about the mysteries of our sun and our galaxy!
Implications of the Secondary Eclipse of Exoplanet HAT-P-11b
NASA Technical Reports Server (NTRS)
Barry, Richard K.; Deming, L. D.; Bakos, G.; Harrington, J.; Madhusudhan, N.; Noyes, R.; Seager, S.
2010-01-01
We observed exoplanet HAT-P-11b and have successfully detected its secondary eclipse. We conducted observations using the Spitzer Space Telescope in the post-cryo mission at 3.6 microns for a period of 22 hours centered on the anticipated secondary eclipse time, to detect the eclipse and determine its phase. Having detected the secondary eclipse, we are at present making a more focused series of observations in both the 3.6 and 4.5 micron bands to fully characterize it. HAT-P-11b is one of only two known exo-Neptunes and has a period of 4.8878 days, radius of 0.422 RJ, mass of 0.081 MJ and semi-major axis 0.053 AU. Measurements of the secondary eclipse will serve to clarify two key issues; 1) the planetary brightness temperature and the nature of its atmosphere, and 2) the eccentricity of its orbit, with implications for its dynamical evolution. We discuss implications of these observations.
V380 Dra: New short-period totally eclipsing active binary
NASA Astrophysics Data System (ADS)
Özdarcan, O.
2014-02-01
In this study, first complete and standard BVR light curves and photometric analysis of the eclipsing binary system V380 Dra are presented. Photometric analysis result indicates that the system has components which are cool main sequence stars. In light and color curves, remarkable asymmetry is observed, especially after secondary minimum, which is believed to be a result of chromospheric activity in one or both components. O-C diagram of available small number of eclipse times, together with new eclipse timings in this work, exhibits no significant variation. Preliminary light curve solution shows that the secondary minimum is total eclipse. By using the advantage of total eclipse and mass-luminosity relation, it is found that the system has a possible mass ratio of q = 0.81. First estimation of masses and radii of primary and secondary components are M1 = 0.77 M⊙,M2 = 0.62 M⊙ and R1 = 0.93 R⊙,R2 = 0.77 R⊙, respectively.
Eclipse SteerTech liquid lenslet beam steering technology
NASA Astrophysics Data System (ADS)
Westfall, Raymond T.; Rogers, Stanley; Shannon, Kenneth C., III
2007-09-01
Eclipse SteerTech TM transmissive fluid state electrowetting technology has successfully demonstrated the ability to control the shape and position of a fluid lenslet. In its final form, the technology will incorporate a dual fluid lenslet approach capable of operating in extremely high acceleration environments. The beam steering system works on the principle of electro-wetting. A substrate is covered with a closely spaced array of, independently addressable, transparent, electrically conductive pixels utilizing Eclipse's proprietary EclipseTEC TM technology. By activating and deactivating selected EclipseTEC TM pixels in the proper sequence, the shape and position of fluid lenslets or arrays of lenslets can be dynamically changed at will. The position and shape of individual fluid lenslets may be accurately controlled on any flat, simply curved, or complex curved, transparent or reflective surface. The smaller the pixels the better control of the position and shape of the fluid lenslets. Information on the successful testing of the Eclipse SteerTech TM lenslet and discussion of its use in a de-centered lenslet array will be presented.
Solar Coronal Jets Extending to High Altitudes Observed during the 2017 August 21 Total Eclipse
NASA Astrophysics Data System (ADS)
Hanaoka, Yoichiro; Hasuo, Ryuichi; Hirose, Tsukasa; Ikeda, Akiko C.; Ishibashi, Tsutomu; Manago, Norihiro; Masuda, Yukio; Morita, Sakuhiro; Nakazawa, Jun; Ohgoe, Osamu; Sakai, Yoshiaki; Sasaki, Kazuhiro; Takahashi, Koichi; Toi, Toshiyuki
2018-06-01
Coronal jets, which extend from the solar surface to beyond 2 R ⊙, were observed in the polar coronal hole regions during the total solar eclipse on 2017 August 21. In a time-series of white-light images of the corona spanning 70 minutes taken with our multi-site observations of this eclipse, six jets were found as narrow structures upwardly ejected with an apparent speed of about 450 km s‑1 in polar plumes. On the other hand, extreme-ultraviolet (EUV) images taken with the Atmospheric Image Assembly of the Solar Dynamics Observatory show that all of the eclipse jets were preceded by EUV jets. Conversely, all the EUV jets whose brightnesses are comparable to ordinary soft X-ray jets and that occurred in the polar regions near the eclipse period, were observed as eclipse jets. These results suggest that ordinary polar jets generally reach high altitudes and escape from the Sun as part of the solar wind.
Time Series Observations of the 2015 Eclipse of b Persei (not beta Persei) (Abstract)
NASA Astrophysics Data System (ADS)
Collins, D. F.
2016-06-01
(Abstract only) The bright (V = 4.6) ellipsoidal variable b Persei consists of a close non-eclipsing binary pair that shows a nearly sinusoidal light curve with a ~1.5 day period. This system also contains a third star that orbits the binary pair every 702 days. AAVSO observers recently detected the first ever optical eclipse of A-B binary pair by the third star as a series of snapshots (D. Collins, R. Zavala, J. Sanborn - AAVSO Spring Meeting, 2013); abstract published in Collins, JAAVSO, 41, 2, 391 (2013); b Per mis-printed as b Per therein. A follow-up eclipse campaign in mid-January 2015 recorded time-series observations. These new time-series observations clearly show multiple ingress and egress of each component of the binary system by the third star over the eclipse duration of 2 to 3 days. A simulation of the eclipse was created. Orbital and some astrophysical parameters were adjusted within constraints to give a reasonable fit to the observed light curve.
An Atlas of Far-ultraviolet Spectra of the Zeta Aurigae Binary 31 Cygni with Line Identifications
NASA Astrophysics Data System (ADS)
Hagen Bauer, Wendy; Bennett, Philip D.
2014-04-01
The ζ Aurigae system 31 Cygni (K4 Ib + B4 V) was observed by the FUSE satellite during total eclipse and at three phases during chromospheric eclipse. We present the coadded, calibrated spectra and atlases with line identifications. During total eclipse, emission from high ionization states (e.g., Fe III and Cr III) shows asymmetric profiles redshifted from the systemic velocity, while emission from lower ionization states (e.g., Fe II and O I) appears more symmetric and is centered closer to the systemic velocity. Absorption from neutral and singly ionized elements is detected during chromospheric eclipse. Late in chromospheric eclipse, absorption from the K star wind is detected at a terminal velocity of ~80 km s-1. These atlases will be useful for interpreting the far-UV spectra of other ζ Aur systems, as the observed FUSE spectra of 32 Cyg, KQ Pup, and VV Cep during chromospheric eclipse resemble that of 31 Cyg.
NASA Technical Reports Server (NTRS)
Carey, Lawrence D.; Schultz, Christopher J.; Schultz, Elise V.; Petersen, Walter A.; Gatlin, Patrick N.; Knupp, Kevin R.; Molthan, Andrew L.; Darden, Christopher B.
2011-01-01
An historic tornado and severe weather outbreak devastated much of the southeastern United States between 25 and 28 April 2011. On 27 April 2011, northern Alabama was particularly hard hit by a large number of tornadoes, including several that reached EF-4 and EF-5 on the Enhanced Fujita damage scale. In northern Alabama alone, there were approximately 100 fatalities and hundreds of more people who were injured or lost their homes during the havoc caused by these violent tornadic storms. Two long-track and violent (EF-4 and EF-5) tornadoes occurred within range of the University of Alabama in Huntsville (UAHuntsville) Advanced Radar for Meteorological and Operational Research (ARMOR, C-band dual-polarimetric). A unique capability of dual-polarimetric radar is the near-real time identification of lofted debris associated with ongoing tornadoes on the ground. The focus of this paper is to analyze the dual-polarimetric radar-inferred tornado debris signatures and identify the associated debris paths of the long-track EF-4 and EF-5 tornadoes near ARMOR. The relative locations of the debris and damage paths for each tornado will be ascertained by careful comparison of the ARMOR analysis with NASA MODIS (Moderate Resolution Imaging Spectroradiometer) and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) satellite imagery of the tornado damage scenes and the National Weather Service tornado damage surveys. With the ongoing upgrade of the WSR-88D (Weather Surveillance Radar - 1988 Doppler) operational network to dual-polarimetry and a similar process having already taken place or ongoing for many private sector radars, dual-polarimetric radar signatures of tornado debris promise the potential to assist in the situational awareness of government and private sector forecasters and emergency managers during tornadic events. As such, a companion abstract (Schultz et al.) also submitted to this conference explores "The use of dual-polarimetric tornadic debris signatures in an operational setting."
NASA Technical Reports Server (NTRS)
Carey, Lawrence D.; Schultz, Chrstopher J.; Schultz, Elise V.; Petersen, Walter A.; Gatlin, Patrick N.; Knupp, Kevin R.; Molthan, Andrew L.; Jedlovec, Gary J.; Darden, Christopher B.
2012-01-01
An historic tornado and severe weather outbreak devastated much of the southeastern United States between 25 and 28 April 2011. On 27 April 2011, northern Alabama was particularly hard hit by a large number of tornadoes, including several that reached EF-4 and EF-5 on the Enhanced Fujita damage scale. In northern Alabama alone, there were approximately 100 fatalities and hundreds of more people who were injured or lost their homes during the havoc caused by these violent tornadic storms. Two long-track and violent (EF-4 and EF-5) tornadoes occurred within range of the University of Alabama in Huntsville (UAHuntsville) Advanced Radar for Meteorological and Operational Research (ARMOR, C-band dual-polarimetric). A unique capability of dual-polarimetric radar is the near-real time identification of lofted debris associated with ongoing tornadoes on the ground. The focus of this paper is to analyze the dual-polarimetric radar-inferred tornado debris signatures and identify the associated debris paths of the long-track EF-4 and EF-5 tornadoes near ARMOR. The relative locations of the debris and damage paths for each tornado will be ascertained by careful comparison of the ARMOR analysis with NASA MODIS (Moderate Resolution Imaging Spectroradiometer) and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) satellite imagery of the tornado damage scenes and the National Weather Service tornado damage surveys. With the ongoing upgrade of the WSR-88D (Weather Surveillance Radar 1988 Doppler) operational network to dual-polarimetry and a similar process having already taken place or ongoing for many private sector radars, dual-polarimetric radar signatures of tornado debris promise the potential to assist in the situational awareness of government and private sector forecasters and emergency managers during tornadic events. As such, a companion abstract (Schultz et al.) also submitted to this conference explores The use of dual-polarimetric tornadic debris signatures in an operational setting.
Safety assessment of continuous glass filaments used in eclipse.
Swauger, J E; Foy, J W
2000-11-01
Eclipse is a cigarette that produces smoke by primarily heating, rather than burning, tobacco. The Eclipse heat source assembly employs a continuous filament glass mat jacket to insulate the heat source. The glass mat insulator is composed of continuous glass filaments and a binder. The purpose of this article is to address the potential toxicological significance of the continuous glass filaments under the conditions of intended use. Transfer data and the unique physical characteristics of the filaments demonstrate that significant exposure of the smoker will not occur. The available environmental survey data clearly demonstrate that Eclipse smokers are extremely unlikely to be exposed to continuous glass filaments at a level that represents a biologically significant increase over background exposure to glass fibers. The chemical composition of the continuous glass filaments used in Eclipse is generally similar to C-glass fiber compositions such as MMVF 11 that have failed to produce either tumors or fibrosis in chronic inhalation studies conducted in rats. In vitro dissolution data demonstrate that the continuous glass filaments used in Eclipse are more soluble than biologically active fibers such as rock wool (MMVF 21) or asbestos. However, the continuous glass filaments used in Eclipse were not as soluble in simulated extracellular lung fluid as representative C-glass fibers (MMVF 10 and MMVF 11). In brief, exposure of Eclipse smokers to continuous glass filaments is extremely unlikely to occur at a level that may be construed to be of biological significance.
Lateral weathering gradients in glaciated catchments
NASA Astrophysics Data System (ADS)
McGuire, K. J.; Bailey, S. W.; Ross, D. S.; Strahm, B. D.; Schreiber, M. E.
2016-12-01
Mineral dissolution and the distribution of weathering products are fundamental processes that drive development and habitability of the Earth's critical zone; yet, the spatial configuration of these processes in some systems is not well understood. Feedbacks between hydrologic flows and weathering fluxes are necessary to understanding how the critical zone develops. In upland glaciated catchments of the northeastern USA, primary mineral dissolution and the distribution of weathering products are spatially distinct and predictable over short distances. Hillslopes, where shallow soils force lateral hydrologic fluxes through accumulated organic matter, produce downslope gradients in mineral depletion, weathering product accumulation, soil development, and solute chemistry. We propose that linked gradients in hydrologic flow paths, soil depth, and vegetation lead to predictable differences in the location and extent of mineral dissolution in regolith (soil, subsoil, and rock fragments) and bedrock, and that headwater catchments within the upland glaciated northeast show a common architecture across hillslopes as a result. Examples of these patterns and processes will be illustrated using observations from the Hubbard Brook Experimental Forest in New Hampshire where laterally distinct soils with strong morphological and biogeochemical gradients have been documented. Patterns in mineral depletion and product accumulation are essential in predicting how ecosystems will respond to stresses, disturbance, and management.
Migrating Dari Clustergen Flite Text-to-Speech Voice from Desktop to Android
2014-09-01
Fig. 2 Android SDK Manager included in Eclipse ........................................................................7 Fig. 3 Android C Compiler...9 Android Flite Engine project imported to Eclipse .............................................................15 Fig. 10 Main page of the...17 Fig. 13 Building “libttsflite.so” in Eclipse using NDK ...............................................................18 Fig. 14
ERIC Educational Resources Information Center
Hurst, Anna; Plummer, Julia; Gurton, Suzanne; Schatz, Dennis
2017-01-01
On August 21, 2017, sky gazers all across North America will experience a total solar eclipse, arguably the most breathtaking of all astronomical phenomena. The August eclipse is an ideal astronomical event to observe with young children because it allows them to observe a powerful and easily accessible astronomical phenomenon. Observing…
VizieR Online Data Catalog: Parameters of 529 Kepler eclipsing binaries (Kjurkchieva+, 2017)
NASA Astrophysics Data System (ADS)
Kjurkchieva, D.; Vasileva, D.; Atanasova, T.
2017-11-01
We reviewed the Kepler eclipsing binary catalog (Prsa et al. 2011, Cat. J/AJ/141/83; Slawson et al. 2011, Cat. J/AJ/142/160; Matijevic et al. 2012) to search for detached eclipsing binaries with eccentric orbits. (5 data files).
A possible additional body in eclipsing binary system HS 2231+2441
NASA Astrophysics Data System (ADS)
Vidmachenko, A. P.; Shliakhetska, Ya. O.; Romanyuk, Ya. O.
2016-12-01
Analysis of the light curves of eclipsing binary systems HS 2231+2441, obtained with the 36-cm telescope, is made. In processing the photometric data on eclipses by method of timing, obtained evidence for the existence of a third body in the system.
Monitoring HD 148703 during upcoming eclipses
NASA Astrophysics Data System (ADS)
Waagen, Elizabeth O.
2017-06-01
Dr. Milena Ratajczak (University of Wrocław) has requested AAVSO observers' assistance in monitoring the very bright (V = 4.23) and very unusual eclipsing binary HD 148703 (HR 6143, N Sco) during its infrequent primary and secondary eclipses scheduled for 2017 June 11 and June 14, respectively. Dr. Ratajczak writes: "[HD 148703] N Sco is a B-type detached eclipsing binary, which turned out to be an exceptionally interesting object to study when we realised its orbital period is 223 days and time between eclipses is only 3.5 days. Such configuration makes it an extremely eccentric system, probably the most eccentric from any objects of that class ever studied...Since the object is very bright, it's difficult to use professional photometric telescopes due to saturation issues. That is why we kindly invite amateur astronomers to join the campaign. Data taken during times of eclipses (photometry) and time between eclipses (radial velocities from spectroscopy) which occur next week are crucial to cover in order to determine orbital and stellar parameters of system's components. Data taken over that time will be of very high value for us." The next primary eclipse time of minimum is on 2017 June 11 (UT 00:41:45), and the secondary on June 14 (UT 09:17:34). Each eclipse lasts about 20 hours. The amplitude of the primary eclipse is 0.15 magnitude, and the secondary 0.35 mag. PEP V and DSLR V photometry is requested. (CCD V is welcome if saturation can be avoided.) Beginning immediately, one to a few snapshots each night are requested to establish an out-of-eclipse baseline for each observer; they should continue for a few nights after the secondary eclipse has occurred.Time series photometry is requested beginning 12 hours before each time of minimum and continuing until 12 hours after. Precision to 0.01 mag or better per single observation is needed. Exposures should be as long as possible without saturating; don't make very short exposures simply for the purpose of gathering more data points. B or Ic data would also be useful; B is preferred to Ic. If imaging in more than one filter, please make five V observations for each B or Ic.Visual observations are also welcome. For spectroscopy now through June 20, resolution of at least a few thousands is needed. Coordinates: RA = 16 31 22.93 Dec = -34 42 15.7 (2000.0). Finder charts may be created and data from the AAVSO International Database may be viewed, plotted, or downloaded (www.aavso.org).
Paper Moon: Simulating a Total Solar Eclipse
ERIC Educational Resources Information Center
Madden, Sean P.; Downing, James P.; Comstock, Jocelyne M.
2006-01-01
This article describes a classroom activity in which a solar eclipse is simulated and a mathematical model is developed to explain the data. Students use manipulative devices and graphing calculators to carry out the experiment and then compare their results to those collected in Koolymilka, Australia, during the 2002 eclipse.
2017 Solar Eclipse, Ames Research Center
2017-08-21
Taking a break from his duties at the Ames Vertical Gun Range to look up at the eclipse over Ames Research Center in Mountain View Adam Parrish not only views but wears, on his forehead, the image of the 2017 Solar eclipse at 09:20:56 on August 21, 2017.
2017-06-11
Former Spacelab 1 mission scientist Rick Chappell addresses Marshall team members during the Aug. 21 eclipse-watching event in Activities Building 4316. Chappell, a former associate director for science at Marshall and now a physics professor at Vanderbilt University in Nashville, joined a throng of Marshall personnel to marvel at the eclipse.
The Astronomical Almanac Online - Welcome
(incl. eclipses) Time-Scales and Coordinate Systems Sun Moon Planets Natural Satellites Dwarf Planets version contains precise ephemerides of the Sun, Moon, planets, and satellites, data for eclipses and : Phenomena (incl. eclipses) Section B: Time-Scales and Coordinate Systems Section C: Sun Section D: Moon
A Smoothed Eclipse Model for Solar Electric Propulsion Trajectory Optimization
NASA Technical Reports Server (NTRS)
Aziz, Jonathan D.; Scheeres, Daniel J.; Parker, Jeffrey S.; Englander, Jacob A.
2017-01-01
Solar electric propulsion (SEP) is the dominant design option for employing low-thrust propulsion on a space mission. Spacecraft solar arrays power the SEP system but are subject to blackout periods during solar eclipse conditions. Discontinuity in power available to the spacecraft must be accounted for in trajectory optimization, but gradient-based methods require a differentiable power model. This work presents a power model that smooths the eclipse transition from total eclipse to total sunlight with a logistic function. Example trajectories are computed with differential dynamic programming, a second-order gradient-based method.
The first eclipsing binary catalogue from the MOA-II data base
NASA Astrophysics Data System (ADS)
Li, M. C. A.; Rattenbury, N. J.; Bond, I. A.; Sumi, T.; Bennett, D. P.; Koshimoto, N.; Abe, F.; Asakura, Y.; Barry, R.; Bhattacharya, A.; Donachie, M.; Evans, P.; Freeman, M.; Fukui, A.; Hirao, Y.; Itow, Y.; Ling, C. H.; Masuda, K.; Matsubara, Y.; Muraki, Y.; Nagakane, M.; Ohnishi, K.; Saito, To.; Sharan, A.; Sullivan, D. J.; Suzuki, D.; Tristram, P. J.; Yonehara, A.
2017-09-01
We present the first catalogue of eclipsing binaries in two MOA (Microlensing Observations in Astrophysics) fields towards the Galactic bulge, in which over 8000 candidates, mostly contact and semidetached binaries of periods <1 d, were identified. In this paper, the light curves of a small number of interesting candidates, including eccentric binaries, binaries with noteworthy phase modulations and eclipsing RS Canum Venaticorum type stars, are shown as examples. In addition, we identified three triple object candidates by detecting the light-travel-time effect in their eclipse time variation curves.
Lightcurve Analysis for Two Near-Earth Asteroids Eclipsed by the Earth's Shadow
NASA Astrophysics Data System (ADS)
Birtwhistle, Peter
2018-07-01
Photometry was obtained from Great Shefford Observatory of near-Earth asteroids 2012 XE54 in 2012 and 2016 VA in 2016 during close approaches. A superfast rotation period has been determined for 2012 XE54 and H-G magnitude system coefficients have been estimated for 2016 VA. While under observation, 2012 XE54 underwent a deep penumbral eclipse by the Earth's shadow and 2016 VA also experienced a total eclipse by the Earth's shadow. The dimming due to the eclipses is modeled taking into account solar limb darkening.
FUSE Observations of the Bright, Eclipsing Nova-like Cataclysmic Variable, UX UMa (FUSE 2000)
NASA Technical Reports Server (NTRS)
Long, Knox; Froning, Cynthia
2004-01-01
This was a project to study the disk and wind of the eclipsing nova-like variable UX UMa, in order to better define the wind geometry of the system, including the nature of the transition region between the disk photosphere and the supersonic wind. We proposed to use phase resolved spectroscopy of the system, taking advantage of the fact that UX UMa is an eclipsing system, to isolate different regions of the wind and to use a Monte Carlo radiative transfer code to simulate the spectra through the eclipse.
NASA Astrophysics Data System (ADS)
Sastradipradja, D.; Dwivany, F. M.; Swandjaja, L.
2016-11-01
Viewing astronomy objects from space is superior to that from Earth due to the absence of terrestrial atmospheric disturbances. Since decades ago, there has been an idea of building gigantic spaceships to live in, i.e., low earth orbit (LEO) settlement. In the context of solar eclipse, the presuming space settlements will accommodate future solar eclipse chasers (amateur or professional astronomers) to observe solar eclipse from space. Not only for scientific purpose, human personal observation from space is also needed for getting aesthetical mental impression. Furthermore, since space science indirectly aids solar eclipse observation, we will discuss the related history and development of Indonesian space experiments. Space science is an essential knowledge to be mastered by all nations.
Acoustic Gravity Waves in the Ionosphere and Thermosphere During the 2017 Solar Eclipse
NASA Astrophysics Data System (ADS)
Lin, C. Y. T.; Deng, Y.
2017-12-01
During the 2017 solar eclipse, as the sudden cavity of solar radiation created by the lunar shadow moves across the United States on August 21, 2017, decreases in local IT temperature and density are expected. The average velocity of the total solar eclipse across the United States is 700 m/s. The forefront and wake of the lunar shadow are expected to induce acoustic gravity waves according to previous studies of atmosphere waves induced by traveling wave packets moving at different velocities. Meanwhile, moving toward the cross-track direction of the obscuration footprint, weaker transitions will likely create mesoscale to large-scale traveling disturbances. We will use the Global Ionosphere Thermosphere Model, a global circulation model solving for non-hydrostatic equations, with high-resolution settings to investigate the IT responses related to the acoustic-gravity wave perturbations during the 2017 solar eclipse. The simulation will be performed with a sub-degree resolution in longitude and latitude for 3 hours when the atmosphere of the North America sector is mostly obscured. The observable differences between the eclipsed and non-eclipsed scenarios will be examined in detail and be interpreted as consequences from the solar eclipse. We will investigate the evolution of waves during the event and establish a theoretical baseline for further comparisons with observations.
Variable Emittance Electrochromic Devices for Satellite Thermal Control
NASA Astrophysics Data System (ADS)
Demiryont, Hulya; Shannon, Kenneth C.
2007-01-01
An all-solid-state electrochromic device (ECD) was designed for electronic variable emissivity (VE) control. In this paper, a low weight (5g/m2) electrochromic thermal control device, the EclipseVEECD™, is detailed as a viable thermal control system for spacecraft outer surface temperatures. Discussion includes the technology's performance, satellite applications, and preparations for space based testing. This EclipseVEECD™ system comprises substrate/mirror electrode/active element/IR transparent electrode layers. This system tunes and modulates reflection/emittance from 5 μm to 15 μm region. Average reflectance/emittance modulation of the system from the 400 K to 250 K region is about 75%, while at room temperature (9.5 micron) reflectance/emittance is around 90%. Activation voltage of the EclipseVEECD™ is around ±1 Volt. The EclipseVEECD™ can be used as a smart thermal modulator for the thermal control of satellites and spacecraft by monitoring and adjusting the amount of energy emitted from the outer surfaces. The functionality of the EclipseVEECD™ was successfully demonstrated in vacuum using a multi-purpose heat dissipation/absorption test module, the EclipseHEAT™. The EclipseHEAT™ has been successfully flight checked and integrated onto the United States Naval Alchemy MidSTAR satellite, scheduled to launch December 2006.
Measuring the Number of M Dwarfs per M Dwarf Using Kepler Eclipsing Binaries
NASA Astrophysics Data System (ADS)
Shan, Yutong; Johnson, John A.; Morton, Timothy D.
2015-11-01
We measure the binarity of detached M dwarfs in the Kepler field with orbital periods in the range of 1-90 days. Kepler’s photometric precision and nearly continuous monitoring of stellar targets over time baselines ranging from 3 months to 4 years make its detection efficiency for eclipsing binaries nearly complete over this period range and for all radius ratios. Our investigation employs a statistical framework akin to that used for inferring planetary occurrence rates from planetary transits. The obvious simplification is that eclipsing binaries have a vastly improved detection efficiency that is limited chiefly by their geometric probabilities to eclipse. For the M-dwarf sample observed by the Kepler Mission, the fractional incidence of eclipsing binaries implies that there are {0.11}-0.04+0.02 close stellar companions per apparently single M dwarf. Our measured binarity is higher than previous inferences of the occurrence rate of close binaries via radial velocity techniques, at roughly the 2σ level. This study represents the first use of eclipsing binary detections from a high quality transiting planet mission to infer binary statistics. Application of this statistical framework to the eclipsing binaries discovered by future transit surveys will establish better constraints on short-period M+M binary rate, as well as binarity measurements for stars of other spectral types.
Girl Scout Stars: Engaging Girl Scouts in the 2017 Total Eclipse
NASA Astrophysics Data System (ADS)
Harman, P. K.
2017-12-01
Reaching for the Stars: NASA Science for Girl Scouts (Girl Scout Stars) engages Girl Scouts in observing the 2017 eclipse. Three councils are host-sponsors of Girl Scout Total Eclipse Destinations,. Total Eclipse of the Heartland, sponsored by Girl Scouts of Southern Illinois, begins with planetarium, and science center visits in St. Louis, and transits to Carbondale for the eclipse. The Great Eclipse Adventure, sponsored by the Girl Scouts of the Missouri Heartland, features hands-on science activities led by Astronomy and Physics faculty and grad students at University of Missouri, Columbia, MO, and observing the eclipse at a camp nearby. Eyes to the Sky: A Once in a Lifetime Destination, by the Girl Scouts of South Carolina - Mountains to Midlands, visits a Challenger Center, a planetarium, and observatory, and culminates at Camp MaBak, Marietta, SC. Girl Scout Destinations are travel adventures, for individual girls ages 11 and older, that are inspiring, life-changing experiences. Destinations are determined via an application and review process by Girls Scouts of the USA. Girl Scout Stars also developed an Eclipse Activity Guide and kit box of materials, distributed the materials to 91 Girl Scout Councils, and delivered webinar training to councils. The eclipse materials enrich the girls' summer camp experiences with activities that promote understanding the Sun-Earth-Moon relationship, the solar system and safe eclipse viewing; and that feature science practices. Examples of the reach of the kit boxes are Girl Scouts of Montana and Wyoming Total Eclipse Event in Casper, WY, and the Girl Scouts of Northern California summer camps featuring the activities. In Girl Scouting, girls discover their skills, talents and what they care about; connect with other Girl Scouts and people in their community; and take action to change the world. This is called the Girl Scout Leadership Experience. With girl-led, hands on activities where girls can team up and work together - they successfully achieve the five leadership outcomes: Strong sense of self, positive values, challenge seeking, healthy relationships, and community problem solving. When girls exhibit these attitudes and skills, they become responsible, productive, caring, and engaged citizens. Successes in this context will be presented. Funded by NASA:NNX16AB90A.
Wedi, Nils P
2014-06-28
The steady path of doubling the global horizontal resolution approximately every 8 years in numerical weather prediction (NWP) at the European Centre for Medium Range Weather Forecasts may be substantially altered with emerging novel computing architectures. It coincides with the need to appropriately address and determine forecast uncertainty with increasing resolution, in particular, when convective-scale motions start to be resolved. Blunt increases in the model resolution will quickly become unaffordable and may not lead to improved NWP forecasts. Consequently, there is a need to accordingly adjust proven numerical techniques. An informed decision on the modelling strategy for harnessing exascale, massively parallel computing power thus also requires a deeper understanding of the sensitivity to uncertainty--for each part of the model--and ultimately a deeper understanding of multi-scale interactions in the atmosphere and their numerical realization in ultra-high-resolution NWP and climate simulations. This paper explores opportunities for substantial increases in the forecast efficiency by judicious adjustment of the formal accuracy or relative resolution in the spectral and physical space. One path is to reduce the formal accuracy by which the spectral transforms are computed. The other pathway explores the importance of the ratio used for the horizontal resolution in gridpoint space versus wavenumbers in spectral space. This is relevant for both high-resolution simulations as well as ensemble-based uncertainty estimation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Obituary: Alan D. Fiala (1942-2010)
NASA Astrophysics Data System (ADS)
Kaplan, George
2011-12-01
Dr. Alan Dale Fiala, astronomer and expert on solar eclipses, died on May 26, 2010 in Arlington, Virginia, of respiratory failure after a brief illness. He was 67. Fiala had been a staff astronomer at the U.S. Naval Observatory in Washington, D.C., for his entire professional career, where he rose from a position as a summer intern to become the Chief of the Nautical Almanac Office, responsible for annual publications for astronomy and navigation that are used the world over. He retired from the observatory in 2000. Although a childhood case of polio affected his mobility for the rest of his life, he seldom let his physical constraints limit his activities, which were many and varied. Alan Fiala was born in Beatrice, Nebraska on November 9, 1942, the middle son of Emil A. ("John") and Lora Marie Fiala. Fiala's father was a postal clerk and Civil Service examiner. Fiala expressed interest in astronomy at a very young age. He contracted polio when he was 9. He graduated from Beatrice High School in 1960 with a straight-A average and went on to study at Carleton College. He received his B.A. summa cum laude after three years, in 1963, with a major in astronomy and minors in physics and mathematics. He was elected to Phi Beta Kappa, Sigma Xi, and Pi Mu Epsilon (mathematics). In 1962, Alan Fiala obtained a job as a summer intern at the Naval Observatory in Washington, working in the Nautical Almanac Office (NAO). He entered the graduate program at Yale University and continued to work summers at the observatory. He received his Ph.D. in 1968, under Gerald Clemence. His dissertation was titled "Determination of the Mass of Jupiter from a Study of the Motion of 57 Mnemosyne." After receiving his doctorate, Fiala became a permanent member of the Naval Observatory staff. Computers were just being introduced there and he participated in the automation of many procedures used to prepare the annual publications of the Nautical Almanac Office. One of his first assignments was to prepare a visual identification chart of the navigational stars to be used for backup navigation on Apollo 8 and several subsequent space missions. In 1973, Alan Fiala was assigned to take over and modernize the prediction of solar and lunar eclipses. He developed software for calculating eclipse phenomena and generating eclipse maps that is still the basis of the computations at the observatory almost four decades later. As one of the world's experts on eclipse calculations, he was the lead author of the chapter on eclipse calculations in the 1992 Explanatory Supplement to the Astronomical Almanac, and was also the co-author of Canon of Lunar Eclipses 1500 B.C-A.D. 3000 with Bao-Lin Liu, the foremost Chinese expert. In 1979, Alan Fiala began a collaborative effort with two other colleagues, supported by NSF and NASA, to observe solar eclipses in order to detect possible long-term variations in the solar diameter. Fiala pioneered the use of portable video cameras to record the disappearance and reappearance of the Sun from behind the Moon's limb during an eclipse, as viewed from the edges of the central eclipse paths. He was the leader or co-organizer of expeditions to ten solar eclipses around the world and was the co-author of several articles on this project. In 1996, Alan Fiala was appointed Chief of the Nautical Almanac Office. The office, which dates from 1849, is responsible for four annual publications that set the international standard for accuracy for positional astronomy and celestial navigation. Fiala made great progress in modernizing and standardizing the production process for the publications. He also began revision of the scientific basis of the books while adding complementary information on the Internet. Fiala was Chief of NAO during its sesquicentennial and, with Steven J. Dick, co-edited the Proceedings of the Nautical Almanac Office Sesquicentennial Symposium. Alan Fiala received numerous awards during his career at the Observatory, including the Captain James Melville Gilliss Award for service. Minor planet 3695 Fiala was named in his honor on the occasion of his retirement in 2000. Alan Fiala was elected to the International Astronomical Union in 1976. He was also a member of the American Astronomical Society, Institute of Navigation, and several other professional societies. He served as the chair of the AAS Division on Dynamical Astronomy during its 25th year. Alan Fiala had many interests outside of astronomy, including sports car racing. He started as a member of a racing team and continued as a volunteer official in technical inspection for the Sports Car Club of America. He was generous with his time, serving as a leader of citizens groups in Northern Virginia and a national organization for people with post-polio syndrome. Other interests included genealogy, gardening, photography, cooking, travel, languages, literature, and the arts. He was also a master beekeeper. Fiala is survived by his two brothers, John and Kent. He was buried in Odell, Nebraska, not far from his childhood home. Fiala will be remembered fondly by his many friends and colleagues, who will miss his good humor and his meticulous approach to any subject he wished to master. Fiala's life was an inspiration to many, and he left behind a valuable legacy of work not just for astronomy, but also for the many organizations to which he donated his time.
NASA Astrophysics Data System (ADS)
Zeng, Xianjiang; Xia, Min; Ge, Yinghui; Guo, Wenping; Yang, Kecheng
2018-03-01
In this paper, we explore the horizontal extinction characteristics under different weather conditions on the ocean surface with on-site experiments on the Bo-hai and Huang-hai Seas in the summer of 2016. An experimental lidar system is designed to collect the on-site experimental data. By aiming at the inhomogeneity and uncertainty of the horizontal aerosol in practice, a joint retrieval method is proposed to retrieve the aerosol extinction coefficients (AEC) from the raw data along the optical path. The retrieval results of both the simulated and the real signals demonstrate that the joint retrieval method is practical. Finally, the sequence observation results of the on-site experiments under different weather conditions are reported and analyzed. These results can provide the attenuation information to analyze the atmospheric aerosol characteristics on the ocean surface.
Early Paths and Trails to Conestoga Roads. Student Activity Book [And] Teacher's Edition.
ERIC Educational Resources Information Center
Pelow, Randall; And Others
This social studies unit traces the development of the American road system beginning with early Indian footpaths and continuing through horse trails, wagon roads, all-weather highways, and the first national road. The role played by the Conestoga wagon is emphasized as well as the physical, economic, and political factors involved in road…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaulme, P.; McKeever, J.; Rawls, M. L.
2013-04-10
Red giant stars are proving to be an incredible source of information for testing models of stellar evolution, as asteroseismology has opened up a window into their interiors. Such insights are a direct result of the unprecedented data from space missions CoRoT and Kepler as well as recent theoretical advances. Eclipsing binaries are also fundamental astrophysical objects, and when coupled with asteroseismology, binaries provide two independent methods to obtain masses and radii and exciting opportunities to develop highly constrained stellar models. The possibility of discovering pulsating red giants in eclipsing binary systems is therefore an important goal that could potentiallymore » offer very robust characterization of these systems. Until recently, only one case has been discovered with Kepler. We cross-correlate the detected red giant and eclipsing-binary catalogs from Kepler data to find possible candidate systems. Light-curve modeling and mean properties measured from asteroseismology are combined to yield specific measurements of periods, masses, radii, temperatures, eclipse timing variations, core rotation rates, and red giant evolutionary state. After using three different techniques to eliminate false positives, out of the 70 systems common to the red giant and eclipsing-binary catalogs we find 13 strong candidates (12 previously unknown) to be eclipsing binaries, one to be a non-eclipsing binary with tidally induced oscillations, and 10 more to be hierarchical triple systems, all of which include a pulsating red giant. The systems span a range of orbital eccentricities, periods, and spectral types F, G, K, and M for the companion of the red giant. One case even suggests an eclipsing binary composed of two red giant stars and another of a red giant with a {delta}-Scuti star. The discovery of multiple pulsating red giants in eclipsing binaries provides an exciting test bed for precise astrophysical modeling, and follow-up spectroscopic observations of many of the candidate systems are encouraged. The resulting highly constrained stellar parameters will allow, for example, the exploration of how binary tidal interactions affect pulsations when compared to the single-star case.« less
Ionospheric response over Europe during the solar eclipse of March 20, 2015
NASA Astrophysics Data System (ADS)
Hoque, Mohammed Mainul; Wenzel, Daniela; Jakowski, Norbert; Gerzen, Tatjana; Berdermann, Jens; Wilken, Volker; Kriegel, Martin; Sato, Hiroatsu; Borries, Claudia; Minkwitz, David
2016-10-01
The solar eclipse on March 20, 2015 was a fascinating event for people in Northern Europe. From a scientific point of view, the solar eclipse can be considered as an in situ experiment on the Earth's upper atmosphere with a well-defined switching off and on of solar irradiation. Due to the strong changes in solar radiation during the eclipse, dynamic processes were initiated in the atmosphere and ionosphere causing a measurable impact, for example, on temperature and ionization. We analyzed the behavior of total ionospheric ionization over Europe by reconstructing total electron content (TEC) maps and differential TEC maps. Investigating the large depletion zone around the shadow spot, we found a TEC reduction of up to 6 TEC units, i.e., the total plasma depletion reached up to about 50%. However, the March 20, 2015 eclipse occurred during the recovery phase of a strong geomagnetic storm and the ionosphere was still perturbed and depleted. Therefore, the unusual high depletion is due to the negative bias of up to 20% already observed over Northern Europe before the eclipse occurred. After removing the negative storm effect, the eclipse-induced depletion amounts to about 30%, which is in agreement with previous observations. During the solar eclipse, ionospheric plasma redistribution processes significantly affected the shape of the electron density profile, which is seen in the equivalent slab thickness derived by combining vertical incidence sounding (VS) and TEC measurements. We found enhanced slab thickness values revealing, on the one hand, an increased width of the ionosphere around the maximum phase and, on the other, evidence for delayed depletion of the topside ionosphere. Additionally, we investigated very low frequency (VLF) signal strength measurements and found immediate amplitude changes due to ionization loss at the lower ionosphere during the eclipse time. We found that the magnitude of TEC depletion is linearly dependent on the Sun's obscuration function. By modelling TEC depletion and knowing the Sun's obscuration function in advance, Global Navigation Satellite System (GNSS) operators may improve the broadcast ionospheric correction during a solar eclipse day.
Solar eclipses at high latitudes: ionospheric effects in the lower ionosphere
NASA Astrophysics Data System (ADS)
Cherniakov, S.
2017-12-01
The partial reflection facility of the Polar Geophysical Institute (the Tumanny observatory, 69.0N, 35.7E) has observed behavior of the high-latitude lower ionosphere during the 20 March 2015 total solar eclipse. There were several effects during the eclipse. At the heights of 60-80 km the ionosphere has shown the effect of a "short night", but at the higher altitudes local enhanced electron concentration had a wave-like form. Data received by the riometer of the Tumanny observatory have also shown wave-like behavior. The behavior can be explained by influence of acoustic-gravity waves which originated after cooling of the atmosphere during the lunar shadow supersonic movement, and transport processes during the eclipse. During the 21 August 2017 solar eclipse there was a substorm at the high latitudes. But after the end of the substorm in the region of the Tumanny observatory the observed amplitudes of the reflected waves had wave effects which could be connected with the coming waves from the region of the eclipse. The wave features were also shown in the behavior of the total electron content (TEC) of the lower ionosphere. During several solar eclipses it was implemented observations of lower ionosphere behavior by the partial reflection facility of the Tumanny observatory. The consideration of the lower ionosphere TEC had revealed common features in the TEC behavior during the eclipses. The photochemical theory of processes in the lower ionosphere is very complicated and up to now it is not completely developed. Therefore introduction of the effective coefficients determining the total speed of several important reactions has been widely adopted when modeling the D-region of the ionosphere. However, experimental opportunities for obtaining effective recombination coefficients are rather limited. One of the methods to estimate effective recombination coefficients uses the phenomenon of a solar eclipse. During solar eclipses at the partial reflection facility of the Tumanny observatory observations were carried out. It gave possibility to obtain the behavior of the electron concentration in time at the selected heights. Using the obtained experimental profiles, the effective recombination coefficients at the D-region heights of the ionosphere have been evaluated.
The Great American Eclipse Glasses Debacle of 2017
NASA Astrophysics Data System (ADS)
Tresch Fienberg, Richard; AAS Solar Eclipse Task Force
2018-01-01
In 2014, looking ahead to the “Great American” solar eclipse of 21 August 2017, the American Astronomical Society established the AAS Solar Eclipse Task Force to help prepare the public for a safe and enjoyable experience. We worked with NASA and several associations of eye-care professionals to come up a safety message that we could all stand behind. The gist of it was that it is perfectly safe to view totality without protection, but when any part of the Sun’s bright face is exposed, you must view through eclipse glasses or handheld viewers that meet the ISO 12312-2 international safety standard for filters for direct viewing of the Sun. We compiled a list of manufacturers whose products we knew to meet the standard (because we examined their test data) and posted it on our website. These manufacturers were all based in the US or Europe. A few weeks before the eclipse, reports surfaced of viewers purchased on Amazon.com labeled “Made in China” or that were obvious knock-offs of US manufacturers’ products. Amazon responded by suspending virtually all sales of eclipse viewers and recalling many of units already sold and shipped. Millions of people who’d bought eclipse glasses online, whether from legitimate sources or from bad actors, were unsure whether they could trust their purchases. We had to change our safety messaging: it was no longer sufficient to tell people to look for the ISO 12312-2 label, because that was being printed on Chinese-made glasses that hadn’t actually been shown to meet the standard. Instead, the only way to know that you had safe viewers was to know that you got them from a legitimate source — which meant we had to expand the list on our website to include every legitimate seller we could identify. Doing so required a monumental effort under intense time pressure. Thankfully there were few reports of eye injuries following the eclipse, but apparently many people who otherwise would have viewed the eclipse chose to skip it rather than risk observing through possibly unsafe filters. Could this unfortunate situation have been avoided? How can we prevent it from happening at future eclipses?
Plasma flux and gravity waves in the midlatitude ionosphere during the solar eclipse of 20 May 2012
NASA Astrophysics Data System (ADS)
Chen, Gang; Wu, Chen; Huang, Xueqin; Zhao, Zhengyu; Zhong, Dingkun; Qi, Hao; Huang, Liang; Qiao, Lei; Wang, Jin
2015-04-01
The solar eclipse effects on the ionosphere are very complex. Except for the ionization decay due to the decrease of the photochemical process, the couplings of matter and energy between the ionosphere and the regions above and below will introduce much more disturbances. Five ionosondes in the Northeast Asia were used to record the midlatitude ionospheric responses to the solar eclipse of 20 May 2012. The latitude dependence of the eclipse lag was studied first. The foF2 response to the eclipse became slower with increased latitude. The response of the ionosphere at the different latitudes with the same eclipse obscuration differed from each other greatly. The plasma flux from the protonsphere was possibly produced by the rapid temperature drop in the lunar shadow to make up the ionization loss. The greater downward plasma flux was generated at higher latitude with larger dip angle and delayed the ionospheric response later. The waves in the foEs and the plasma frequency at the fixed height in the F layer are studied by the time period analytic method. The gravity waves of 43-51 min center period during and after the solar eclipse were found over Jeju and I-Cheon. The northward group velocity component of the gravity waves was estimated as ~108.7 m/s. The vertical group velocities between 100 and 150 km height over the two stations were calculated as ~5 and ~4.3 m/s upward respectively, indicating that the eclipse-induced gravity waves propagated from below the ionosphere.
Confirming Variability in the Secondary Eclipse Depth of the Super-Earth 55 Cancri e
NASA Astrophysics Data System (ADS)
Tamburo, P.; Mandell, A.; Deming, D.; Garhart, E.
2018-05-01
We present a reanalysis of five transit and eight eclipse observations of the ultrashort-period super-Earth 55 Cancri e observed using the Spitzer Space Telescope during 2011–2013. We use pixel-level decorrelation to derive accurate transit and eclipse depths from the Spitzer data, and we perform an extensive error analysis. We focus on determining possible variability in the eclipse data, as was reported in Demory et al. From the transit data, we determine updated orbital parameters, yielding T 0 = 2,455,733.0037 ± 0.0002, P = 0.7365454 ± 0.0000003 days, i = 83.5 ± 1.°3, and R p = 1.89 ± 0.05 R ⊕. Our transit results are consistent with a constant depth, and we conclude that they are not variable. We find a significant amount of variability between the eight eclipse observations and confirm agreement with Demory et al. through a correlation analysis. We convert the eclipse measurements to brightness temperatures, and generate and discuss several heuristic models that explain the evolution of the planet’s eclipse depth versus time. The eclipses are best modeled by a year-to-year variability model, but variability on shorter timescales cannot be ruled out. The derived range of brightness temperatures can be achieved by a dark planet with inefficient heat redistribution intermittently covered over a large fraction of the substellar hemisphere by reflective grains, possibly indicating volcanic activity or cloud variability. This time-variable system should be observable with future space missions, both planned (JWST) and proposed (i.e., ARIEL).
Petrov, Vjacheslav M; Girichev, Georgiy V; Oberhammer, Heinz; Petrova, Valentina N; Giricheva, Nina I; Bardina, Anna V; Ivanov, Sergey N
2008-04-03
The molecular structure and conformational properties of para-methylbenzene sulfonamide (4-MBSA) and ortho-methylbenzene sulfonamide (2-MBSA) have been studied by gas electron diffraction (GED) and quantum chemical methods (B3LYP/6-311+G** and MP2/6-31G**). Quantum chemical calculations predict the existence of two conformers for 4-MBSA with the S-N bond perpendicular to the benzene plane and the NH2 group either eclipsing or staggering the S-O bonds of the SO2 group. Both conformers possess CS symmetry. The eclipsed form is predicted to be favored by DeltaE = 0.63 kcal/mol (B3LYP) or 1.00 kcal/mol (MP2). According to the calculations, the S-N bond in 2-MBSA can possess planar direction opposite the methyl group (phi(C2C1SN) = 180 degrees ) or nonplanar direction (phi(C2C1SN) approximately 60 degrees ). In both cases, the NH2 group can adopt eclipsed or staggered orientation, resulting in a total of four stable conformers. The nonplanar eclipsed conformer (C1 symmetry) and the planar eclipsed form (CS symmetry) are predicted to be favored. According to the GED analysis, the saturated vapor over solid 4-MBSA at T = 151(3) degrees C consists as mixture of the eclipsed (78(19) %) and staggered (22(19) %) forms. The saturated vapor over solid 2-MBSA at T = 157(3) degrees C consists as a mixture of the nonplanar eclipsed (69(11) %) and planar eclipsed (31(11) %) forms.
Anderson, S J; Ling, P M
2008-08-01
To explore viral marketing strategies for Eclipse cigarettes used by the RJ Reynolds Company (Winston-Salem, North Carolina, USA). Analysis of previously secret tobacco industry documents and multimedia materials. The failure of RJ Reynolds' (RJR) 1988 "smokeless" cigarette, Premier, was in part due to widespread bad word of mouth about the product's flavour, quality and difficulty of use. In 1994 RJR introduced an updated version of Premier, the ostensibly "reduced risk" Eclipse cigarette. RJR developed viral marketing channels to promote Eclipse using (1) exploratory interviews to motivate consumers to spread the word about Eclipse prior to market release, (2) promotional videos featuring positive feedback from test group participants to portray majority consensus among triers, (3) "Tupperware"-like parties for Eclipse where participants received samples to pass around in their social circles and (4) the Eclipse website's bulletin board as a forum for potential users to discuss the brand in their own words. These strategies targeted the brand's likeliest adopters, recruited informal and credible representatives of the product unaffiliated with RJR, and controlled the information spread about the product. Viral marketing techniques may be particularly useful to promote new tobacco products such as Eclipse that have limited appeal and need a highly motivated audience of early adopters and acceptors. Such techniques help evade the mass rejection that could follow mass promotion, circumvent marketing restrictions, and allow tobacco companies to benefit from health claims made by consumers. Cigarette manufacturers must be held accountable for perceived health benefits encouraged by all promotional activities including viral marketing.
2017-06-11
Marshall Space Flight Center employees view the August 21, 2017 solar eclipse at the center’s activities building. The Huntsville area experienced 97 percent occultation, nearly a complete blocking out of the sun by the orbit of Earth's moon. The next opportunity to view a solar eclipse in the eastern and central United States will occur in April 2024.
2017-08-21
A total solar eclipse is seen on Monday, August 21, 2017 from onboard a NASA Armstrong Flight Research Center’s Gulfstream III 25,000 feet above the Oregon coast. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. Photo Credit: (NASA/Carla Thomas)
Project Report ECLIPSE: European Citizenship Learning Program for Secondary Education
ERIC Educational Resources Information Center
Bombardelli, Olga
2014-01-01
This paper reports on a European project, the Comenius ECLIPSE project (European Citizenship Learning in a Programme for Secondary Education) developed by six European partners coordinated by the University of Trento in the years 2011-2014. ECLIPSE (co-financed by the EACEA--Education, Audiovisual and Culture Executive Agency) aims at developing,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, Erin L.; Mamajek, Eric E.; Pecaut, Mark J.
2014-12-10
We investigate the nature of the unusual eclipsing star OGLE LMC-ECL-11893 (OGLE J05172127-6900558) in the Large Magellanic Cloud recently reported by Dong et al. The eclipse period for this star is 468 days, and the eclipses exhibit a minimum of ∼1.4 mag, preceded by a plateau of ∼0.8 mag. Spectra and optical/IR photometry are consistent with the eclipsed star being a lightly reddened B9III star of inferred age ∼150 Myr and mass ∼4 M {sub ☉}. The disk appears to have an outer radius of ∼0.2 AU with predicted temperatures of ∼1100-1400 K. We model the eclipses as being duemore » to either a transiting geometrically thin dust disk or gaseous accretion disk around a secondary object; the debris disk produces a better fit. We speculate on the origin of such a dense circumstellar dust disk structure orbiting a relatively old low-mass companion, and on the similarities of this system to the previously discovered EE Cep.« less
Broderick, J W; Fender, R P; Breton, R P; Stewart, A J; Rowlinson, A; Swinbank, J D; Hessels, J W T; Staley, T D; van der Horst, A J; Bell, M E; Carbone, D; Cendes, Y; Corbel, S; Eislöffel, J; Falcke, H; Grießmeier, J-M; Hassall, T E; Jonker, P; Kramer, M; Kuniyoshi, M; Law, C J; Markoff, S; Molenaar, G J; Pietka, M; Scheers, L H A; Serylak, M; Stappers, B W; Ter Veen, S; van Leeuwen, J; Wijers, R A M J; Wijnands, R; Wise, M W; Zarka, P
2016-07-01
The eclipses of certain types of binary millisecond pulsars (i.e. 'black widows' and 'redbacks') are often studied using high-time-resolution, 'beamformed' radio observations. However, they may also be detected in images generated from interferometric data. As part of a larger imaging project to characterize the variable and transient sky at radio frequencies <200 MHz, we have blindly detected the redback system PSR J2215+5135 as a variable source of interest with the Low-Frequency Array (LOFAR). Using observations with cadences of two weeks - six months, we find preliminary evidence that the eclipse duration is frequency dependent (∝ν -0.4 ), such that the pulsar is eclipsed for longer at lower frequencies, in broad agreement with beamformed studies of other similar sources. Furthermore, the detection of the eclipses in imaging data suggests an eclipsing medium that absorbs the pulsed emission, rather than scattering it. Our study is also a demonstration of the prospects of finding pulsars in wide-field imaging surveys with the current generation of low-frequency radio telescopes.
Suzaku Observation of the Dwarf Nova V893 Scorpii: The Discovery of a Partial X-Ray Eclipse
NASA Technical Reports Server (NTRS)
Mukai, Koji; Zietsman, E.; Still, M.
2008-01-01
V893 Sco is an eclipsing dwarf nova that had attracted little attention from X-ray astronomers until it was proposed as the identification of an RXTE all-sky slew survey (XSS) source. Here we report on the po inted X-ray observations of this object using Suzaku. We confirm V893 Sco to be X-ray bright, whose spectrum is highly absorbed for a dwar f nova. We have also discovered a partial X-ray eclipse in V893 Sco. This is the first time that a partial eclipse is seen in Xray light c urves of a dwarf nova. We have successfully modeled the gross features of the optical and X-ray eclipse light curves using a boundary layer geometry of the X-ray emission region. Future observations may lead to confirmation of this basic picture, and allow us to place tight co nstraints on the size of the X-ray emission region. The partial X-ray eclipse therefore should make V893 Sco a key object in understanding the physics of accretion in quiescent dwarf nova.
2000-01-20
Traveling west to east, the full moon, viewed from Merritt Island, Fla., at 10:35 p.m. EST, moves into the Earth's shadow during a lunar eclipse. Eclipses occur when the Sun, Earth and Moon line up. They are rare because the Moon usually passes above or below the imaginary line connecting Earth and the Sun. The Earth casts a shadow that the Moon can pass through -when it does, it is called a lunar eclipse. They can only occur when the moon is "full." During a total lunar eclipse the Moon takes on a dark red color because it is being lighted slightly by sunlight passing through the Earth's atmosphere and this light has the blue component preferentially scattered out (this is also why the sky appears blue from the surface of the Earth), leaving faint reddish light to illuminate the Moon during the eclipse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levitan, David; Groot, Paul J.; Prince, Thomas A.
2014-04-20
We report on PTF1 J191905.19+481506.2, a newly discovered, partially eclipsing, outbursting AM CVn system found in the Palomar Transient Factory synoptic survey. This is only the second known eclipsing AM CVn system. We use high-speed photometric observations and phase-resolved spectroscopy to establish an orbital period of 22.4559(3) minutes. We also present a long-term light curve and report on the normal and super-outbursts regularly seen in this system, including a super-outburst recurrence time of 36.8(4) days. We use the presence of the eclipse to place upper and lower limits on the inclination of the system and discuss the number of knownmore » eclipsing AM CVn systems versus what would be expected.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groot, Paul J., E-mail: pgroot@astro.ru.nl
In eclipsing binaries the stellar rotation of the two components will cause a rotational Doppler beaming during eclipse ingress and egress when only part of the eclipsed component is covered. For eclipsing binaries with fast spinning components this photometric analog of the well-known spectroscopic Rossiter-McLaughlin effect can exceed the strength of the orbital effect. Example light curves are shown for a detached double white dwarf binary, a massive O-star binary and a transiting exoplanet case, similar to WASP-33b. Inclusion of the rotational Doppler beaming in eclipsing systems is a prerequisite for deriving the correct stellar parameters from fitting high-quality photometricmore » light curves and can be used to determine stellar obliquities as well as, e.g., an independent measure of the rotational velocity in those systems that may be expected to be fully synchronized.« less
G-III Aircraft from NASA Armstrong Provides Live TV Coverage of Solar Eclipse Across America
2017-08-13
For the first time in 99 years, a total solar eclipse will cross the entire nation Monday, Aug. 21. A total solar eclipse occurs when the sun is completely obscured by the moon. The lunar shadow enters the United States near Lincoln City, Oregon, at 9:05 a.m. PDT. Totality, where the moon completely covers the sun, begins in Lincoln City around 10:16 a.m. PDT. During totality, there will be up to two and a half minutes of darkness. The G-III aircraft was modified with upgraded windows and communications equipment to enable high-definition video to be streamed to NASA TV during the eclipse enabling citizen science. The aircraft will be flying at 25,000 feet over the coast of Oregon, near Lincoln City during the eclipse on August 21, 2017.
2017 Total Solar Eclipse - ISS Transit - (NHQ201708210203)
2017-08-21
2017 Total Solar Eclipse - ISS Transit - (NHQ201708210203) In this video captured at 1,500 frames per second with a high-speed camera, the International Space Station, with a crew of six onboard, is seen in silhouette as it transits the sun at roughly five miles per second during a partial solar eclipse, Monday, Aug. 21, 2017 near Banner, Wyoming. Onboard as part of Expedition 52 are: NASA astronauts Peggy Whitson, Jack Fischer, and Randy Bresnik; Russian cosmonauts Fyodor Yurchikhin and Sergey Ryazanskiy; and ESA (European Space Agency) astronaut Paolo Nespoli. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Joel Kowsky)
Deep reconditioning of batteries during DSCS 3 flight operations
NASA Technical Reports Server (NTRS)
Thierfelder, H. E.; Stearns, R. J.; Jones, P. W.
1985-01-01
Deep reconditioning of batteries is defined as discharge below the 1.0 volt/cell level to a value of about 1.0 volt/battery. This type of reconditioning was investigated for use on the Defense Satellite Communications System (DSCS) spacecraft, and has been used during the first year of orbital operation. Prior to launch of the spacecraft, the deep reconditioning was used during the battery life test, which has now complete fourteen eclipse periods. Reconditioning was performed prior to each eclipse period of the life test, and is scheduled to be used prior to each eclipse period in orbit. The battery data for discharge and recharge is presented for one of the life test reconditioning cycles, and for each of the three batteries during the reconditioning cycles between eclipse period no.1 and eclipse period no.2 in Earth orbit.
GOES-R Space Weather Data: Achieving User Ready Products
NASA Astrophysics Data System (ADS)
Rowland, W. F.; Tilton, M.; Redmon, R. J.; Goodman, S. J.; Comerford, M.
2017-12-01
Forecasters and the science community will rely on improved Space Weather products from the next generation of Geostationary Operational Environmental Satellite (GOES-R Series) for decades to come. Many issues must be successfully addressed in order to produce useful products. The instruments themselves and their basic scientific measurements (Level 1b data, i.e. L1b) must be calibrated and validated. Algorithms must be created to transform L1b into the specific environmental parameters that are of interest to forecasters and the community (Level 2+, i.e. L2+). In the case of Space Weather data, because the L2+ products are not generated within the core GOES-R Ground Segment, a separate system had to be developed in order to implement the L2+ products. Finally, the products must be made available to real time and retrospective users, as well as preserved for future generations. We give an overview of the path to production of the GOES-R Space Weather products, and the role of the National Centers for Environmental Information (NCEI) in this process.
Spitzer secondary eclipses of Qatar-1b
NASA Astrophysics Data System (ADS)
Garhart, Emily; Deming, Drake; Mandell, Avi; Knutson, Heather; Fortney, Jonathan J.
2018-02-01
Aims: Previous secondary eclipse observations of the hot Jupiter Qatar-1b in the Ks band suggest that it may have an unusually high day side temperature, indicative of minimal heat redistribution. There have also been indications that the orbit may be slightly eccentric, possibly forced by another planet in the system. We investigate the day side temperature and orbital eccentricity using secondary eclipse observations with Spitzer. Methods: We observed the secondary eclipse with Spitzer/IRAC in subarray mode, in both 3.6 and 4.5 μm wavelengths. We used pixel-level decorrelation to correct for Spitzer's intra-pixel sensitivity variations and thereby obtain accurate eclipse depths and central phases. Results: Our 3.6 μm eclipse depth is 0.149 ± 0.051% and the 4.5 μm depth is 0.273 ± 0.049%. Fitting a blackbody planet to our data and two recent Ks band eclipse depths indicates a brightness temperature of 1506 ± 71 K. Comparison to model atmospheres for the planet indicates that its degree of longitudinal heat redistribution is intermediate between fully uniform and day-side only. The day side temperature of the planet is unlikely to be as high (1885 K) as indicated by the ground-based eclipses in the Ks band, unless the planet's emergent spectrum deviates strongly from model atmosphere predictions. The average central phase for our Spitzer eclipses is 0.4984 ± 0.0017, yielding e cos ω = -0.0028 ± 0.0027. Our results are consistent with a circular orbit, and we constrain e cos ω much more strongly than has been possible with previous observations. Tables of the lightcurve data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A55
New Light Curves and Analysis of the Overcontact Binaries PP Lac and DK Sge
NASA Astrophysics Data System (ADS)
Sanders, S. J.; Hargis, J. R.; Bradstreet, D. H.
2004-12-01
As a by-product of the ongoing work with the Catalog and AtLas of Eclipsing Binaries database (CALEB; Bradstreet et al. 2004), several hundred eclipsing binary systems have been identified that have either unpublished or poor quality light curves. We present new V & Rc light curves for the overcontact systems PP Lac and DK Sge, both chosen because their deep eclipses (peak-to-peak amplitudes of nearly 0.7 mag) help constrain the light curve modelling. Data were obtained using the 41-cm telescope at the Eastern University Observatory equipped with an SBIG ST-10XME CCD. PP Lac (P= 0.40116 d) is a W-type contact binary with only one previously published light curve (Dumont & Maraziti 1990), but the data are sparse and almost non-existent at primary eclipse. Modelling of these data gave varying results; the published mass ratios differ by nearly 0.3. Our data confirms the noted differing eclipse depths but we find the primary eclipse to be total. We present a new light curve solution using Binary Maker 3 (Bradstreet & Steelman 2002) and Wilson-Devinney, finding the mass ratio to be well-constrained by the duration of total eclipse. A period study will be presented using previously existing and newly derived times of minimum light. DK Sge (P=0.62182 d) appears to be an A-type contact binary with no published light curve. The eclipses are partial, with the primary eclipse being deeper by about 0.08 mag. The maxima show evidence of a slight asymmetry, although the light curve appears to be repeatable over the 1 month of observations. We present the first light curve solution using Binary Maker 3 and Wilson-Devinney, but have limited mass ratio constraints due to the absence of radial velocity data. A period study will be presented using previously existing and newly derived times of minimum light.
Living matter: the "lunar eclipse" phenomena.
Korpan, Nikolai N
2010-01-01
The present investigations describe a unique phenomenon, namely the phenomenon of the "lunar eclipse", which has been observed and discovered by the author in living substance during the freeze-thawing processes in vivo using temperatures of various intensities and its cryosurgical response in animal experiment. Similar phenomena author has observed in nature, namely the total lunar eclipse and total solar eclipse. In this experimental study 76 animals (mongrel dogs) were investigated. A disc cryogenic probe was placed on the pancreas after the laparotomy. For cryosurgical exposure a temperature range of -40 degrees C, -80 degrees C, -120 degrees C and -180 degrees C was selected in contact with pancreas parenchyma. The freeze-thaw cycle was monitored by intraoperative ultrasound before, during and after cryosurgery. Each cryolesion was observed for one hour after thawing intraoperatively. Immediately after freezing, during the thawing process, the snow-white pancreas parenchyma, frozen hard to an ice block and resembling a full moon with a sharp demarcation line, gradually assumed a ruby-red shade and a hemispherical shape as it grew in size depend on reconstruction vascular circulation from the periphery to the center. This snow-white cryogenic lesion dissolved in the same manner in all animal tissues. The "lunar eclipse" phenomenon contributes to a fundamental understanding of the mechanisms of biological tissue damage during low temperature exposure in cryoscience and cryomedicine. Properties of the pancreas parenchyma response during the phenomenon of the "lunar eclipse" provide important insights into the mechanisms of damage and the formation of cryogenic lesion immediately after thawing in cryosurgery. Vascular changes and circulatory stagnation are commonly considered to be the main mechanism of biological tissue injury during low temperature exposure. The phenomenon of the "lunar eclipse" suggests that cryosurgery is the first surgical technique to use anti-angiogenesis with an immediately following cryoaponecrosis and cryoapoptosis in the treatment of malignant tumor. Both the "lunar eclipse" in vivo as well as the similar phenomena, namely the total moon and total solar lunar eclipses, are is part of living nature.
NASA Astrophysics Data System (ADS)
Peticolas, L. M.; Hudson, H. S.; Martinez Oliveros, J. C.; Johnson, C.; Zevin, D.; Krista, L. D.; Bender, M.; Mcintosh, S. W.; Konerding, D.; Koh, J.; Pasachoff, J.; Lorimore, B.; Jiang, G.; Storksdieck, M.; Yan, D.; Shore, L.; Fraknoi, A.; Filippenko, A.
2016-12-01
Since 2011, a team of solar scientists, eclipse chasers, education and outreach professionals, and film makers have been working to explore the possibility of gathering images from the public during the 2017 eclipse across the United States, to be used for scientific research, education, and enhancing the public's experience of the eclipse. After years of testing the initial ideas, engaging new organizations, and exploring new technologies, our team has developed a blueprint for this project. There are three main goals for this effort: 1. to learn more about the dynamic non-equilibrium processes in the corona and lower atmosphere of the Sun, 2. to educate the public about space physics, 3. provide different levels of engagement opportunities for an interested public, and 4. to understand how these various levels of engagement with a major scientific phenomena allow people to develop deeper personal connections to Science, Technology, Engineering, and Mathematics (STEM). We will meet these goals by training 1000 volunteers to take scientifically valid images and donate the images to this project, while also allowing the general public to share their images as well. During the Aug 21, 2017 eclipse, we will analyze these images in real-time to produce public-generated movies showing the corona of the Sun during totality from thousands of people. These movies will be disseminated in near real-time (on the order of 10s of minutes) to other eclipse programs, news organizations, and to the general public. Meanwhile, images collected during and after the eclipse will be available to scientists and the public for research purposes. To further engage the public, video clips, film, and a documentary will be produced prior and after the event. A science education research team will work alongside the team to understand how the project supports deeper connections to the eclipse experience.
2017-08-21
This composite image of seven pictures shows the progression of a partial solar eclipse near from Ross Lake, Northern Cascades National Park, Washington on Monday, Aug. 21, 2017. The second to the last frame shows the International Space Station, with a crew of six onboard, in silhouette as it transits the Sun at roughly five miles per second. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Bill Ingalls)
EFFECTS OF TOTAL SOLAR ECLIPSE ON MENTAL PATIENTS—A CLINICOBIOCHEMICAL CORRELATION
Boral, G. C.; Mishra, D. C.; Pal, S. K.; Ghosh, K. K.
1981-01-01
SUMMARY Thirteen treated psychotic cases comprising of eight schizophrenic, four M.D.P. (manic type) and one M. D. P. (depressive type), who were clinically symptom free, were studied in respect of their hormones and behavioural abnormalities under effect of total solar eclipse. Of the hormones studied viz., T2, T4, TSH, Cortisol and prolactin, it is prolactin which showed an increase in titre associated with behavioural abnormalities in concerned patients during and immediately after the total solar eclipse. Deflection in both prolactin and behaviour gradually seemed to normalise over the post eclipse period. PMID:22064835
The Great American Eclipse of 2017: An Outreach Opportunity and Challenge
NASA Astrophysics Data System (ADS)
Fraknoi, A.; Schatz, D.; Shore, L.
2015-11-01
This paper consists of notes for, and from, a standing-room only Special Interest Group discussion at the 2014 ASP Meeting regarding the total eclipse of the Sun visible from the U.S. in 2017. There was a great deal of interest in organizing in advance for this total eclipse, and there was considerable discussion of the kinds of efforts and partnerships that may be needed at the national and local levels. People who read this summary and are interested in helping with national eclipse education and outreach efforts can contact the first author.
The Optical Gravitational Lensing Experiment. Eclipsing Binary Stars in the Small Magellanic Cloud
NASA Astrophysics Data System (ADS)
Wyrzykowski, L.; Udalski, A.; Kubiak, M.; Szymanski, M. K.; Zebrun, K.; Soszynski, I.; Wozniak, P. R.; Pietrzynski, G.; Szewczyk, O.
2004-03-01
We present new version of the OGLE-II catalog of eclipsing binary stars detected in the Small Magellanic Cloud, based on Difference Image Analysis catalog of variable stars in the Magellanic Clouds containing data collected from 1997 to 2000. We found 1351 eclipsing binary stars in the central 2.4 square degree area of the SMC. 455 stars are newly discovered objects, not found in the previous release of the catalog. The eclipsing objects were selected with the automatic search algorithm based on the artificial neural network. The full catalog is accessible from the OGLE Internet archive.
First results from the Citizen CATE Experiment from August 2017
NASA Astrophysics Data System (ADS)
Penn, Matthew; Citizen CATE Experiment 2017 Team
2018-01-01
The Citizen Continental-America Telescopic Eclipse Experiment deployed 68 identical telescope/detector systems across the path of totality for the August 2017 solar eclipse. The sites were located from Oregon to South Carolina, and while at any one site the solar corona was observed for just 2 minutes, the combined data set reveals evolution of the corona for 93 minutes of time. CATE aims to measure the acceleration of the fast solar wind in polar plumes, which is currently unknown as the inner solar corona is not observed from space and difficult to observe at high signal to noise from the ground. With radial velocities ranging from 1 to 100 km/s, density enhancements in the wind in the polar plumes should be observed to move across the CATE field of view in about 1 hour.On 21 Aug 2017, the CATE network had fantastic luck, collecting data from more than 56 of the 68 sites, and excellent data was collected at the first and last sites, maximizing the time coverage. Several of the volunteers from 27 universities, 22 high schools and 19 amateur astronomers uploaded one high-dynamic range image on eclipse day and an initial movie of the coronal evolution has been made (https://citizencate.org ). Polar plumes are observed in the CATE data to the edge of the field above both north and south polar coronal holes. Slow evolution of low-lying coronal loops is seen, and large-scale motions are visible in a coronal streamer on the south-east solar limb. An ejection event is observed in the southern coronal hole, but with just 1% of the data analyzed so far, the signal to noise ratio is currently not sufficient to track steady solar wind flows.CATE was funded with a collaboration of federal, corporate and private groups. CATE training was funded by NASA, and CATE equipment was funded by Daystar, Mathworks, Celestron, colorMaker, NSF and a dozen smaller donors. The funding was organized so that all 68 CATE groups are keeping their equipment, and CATE is now seeking other types of citizen science projects in astronomy. Please bring your project ideas to the talk!
NASA Astrophysics Data System (ADS)
Hong, Kyeongsoo; Koo, Jae-Rim; Lee, Jae Woo; Kim, Seung-Lee; Lee, Chung-Uk; Park, Jang-Ho; Kim, Hyoun-Woo; Lee, Dong-Joo; Kim, Dong-Jin; Han, Cheongho
2018-05-01
We report the results of photometric observations for doubly eclipsing binaries OGLE-LMC-ECL-15674 and OGLE-LMC-ECL-22159, both of which are composed of two pairs (designated A&B) of a detached eclipsing binary located in the Large Magellanic Cloud. The light curves were obtained by high-cadence time-series photometry using the Korea Microlensing Telescope Network 1.6 m telescopes located at three southern sites (CTIO, SAAO, and SSO) between 2016 September and 2017 January. The orbital periods were determined to be 1.433 and 1.387 days for components A and B of OGLE-LMC-ECL-15674, respectively, and 2.988 and 3.408 days for OGLE-LMC-ECL-22159A and B, respectively. Our light curve solutions indicate that the significant changes in the eclipse depths of OGLE-LMC-ECL-15674A and B were caused by variations in their inclination angles. The eclipse timing diagrams of the A and B components of OGLE-LMC-ECL-15674 and OGLE-LMC-ECL-22159 were analyzed using 28, 44, 28, and 26 new times of minimum light, respectively. The apsidal motion period of OGLE-LMC-ECL-15674B was estimated by detailed analysis of eclipse timings for the first time. The detached eclipsing binary OGLE-LMC-ECL-15674B shows a fast apsidal period of 21.5 ± 0.1 years.
How Accurately Can We Predict Eclipses for Algol? (Poster abstract)
NASA Astrophysics Data System (ADS)
Turner, D.
2016-06-01
(Abstract only) beta Persei, or Algol, is a very well known eclipsing binary system consisting of a late B-type dwarf that is regularly eclipsed by a GK subgiant every 2.867 days. Eclipses, which last about 8 hours, are regular enough that predictions for times of minima are published in various places, Sky & Telescope magazine and The Observer's Handbook, for example. But eclipse minimum lasts for less than a half hour, whereas subtle mistakes in the current ephemeris for the star can result in predictions that are off by a few hours or more. The Algol system is fairly complex, with the Algol A and Algol B eclipsing system also orbited by Algol C with an orbital period of nearly 2 years. Added to that are complex long-term O-C variations with a periodicity of almost two centuries that, although suggested by Hoffmeister to be spurious, fit the type of light travel time variations expected for a fourth star also belonging to the system. The AB sub-system also undergoes mass transfer events that add complexities to its O-C behavior. Is it actually possible to predict precise times of eclipse minima for Algol months in advance given such complications, or is it better to encourage ongoing observations of the star so that O-C variations can be tracked in real time?
Evaluating the climate and air quality impacts of short-lived pollutants
NASA Astrophysics Data System (ADS)
Stohl, A.; Aamaas, B.; Amann, M.; Baker, L. H.; Bellouin, N.; Berntsen, T. K.; Boucher, O.; Cherian, R.; Collins, W.; Daskalakis, N.; Dusinska, M.; Eckhardt, S.; Fuglestvedt, J. S.; Harju, M.; Heyes, C.; Hodnebrog, Ø.; Hao, J.; Im, U.; Kanakidou, M.; Klimont, Z.; Kupiainen, K.; Law, K. S.; Lund, M. T.; Maas, R.; MacIntosh, C. R.; Myhre, G.; Myriokefalitakis, S.; Olivié, D.; Quaas, J.; Quennehen, B.; Raut, J.-C.; Rumbold, S. T.; Samset, B. H.; Schulz, M.; Seland, Ø.; Shine, K. P.; Skeie, R. B.; Wang, S.; Yttri, K. E.; Zhu, T.
2015-06-01
This paper presents a summary of the work done within the European Union's Seventh Framework Programme project ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants). ECLIPSE had a unique systematic concept for designing a realistic and effective mitigation scenario for short-lived climate pollutants (SLCPs: methane, aerosols and ozone, and their precursor species) and quantifying its climate and air quality impacts, and this paper presents the results in the context of this overarching strategy. The first step in ECLIPSE was to create a new emission inventory based on current legislation (CLE) for the recent past and until 2050. Substantial progress compared to previous work was made by including previously unaccounted types of sources such as flaring of gas associated with oil production, and wick lamps. These emission data were used for present-day reference simulations with four advanced Earth system models (ESMs) and six chemistry transport models (CTMs). The model simulations were compared with a variety of ground-based and satellite observational data sets from Asia, Europe and the Arctic. It was found that the models still underestimate the measured seasonality of aerosols in the Arctic but to a lesser extent than in previous studies. Problems likely related to the emissions were identified for Northern Russia and India, in particular. To estimate the climate impacts of SLCPs, ECLIPSE followed two paths of research: the first path calculated radiative forcing (RF) values for a large matrix of SLCP species emissions, for different seasons and regions independently. Based on these RF calculations, the Global Temperature change Potential metric for a time horizon of 20 years (GTP20) was calculated for each SLCP emission type. This climate metric was then used in an integrated assessment model to identify all emission mitigation measures with a beneficial air quality and short-term (20 year) climate impact. These measures together defined a SLCP mitigation (MIT) scenario. Compared to CLE, the MIT scenario would reduce global methane (CH4) and black carbon emissions by about 50 and 80%, respectively. For CH4, measures on shale gas production, waste management and coal mines were most important. For non-CH4 SLCPs, elimination of high emitting vehicles and wick lamps, as well as reducing emissions from gas flaring, coal and biomass stoves, agricultural waste, solvents and diesel engines were most important. These measures lead to large reductions in calculated surface concentrations of ozone and particulate matter. We estimate that in the EU the loss of statistical life expectancy due to air pollution was 7.5 months in 2010, which will be reduced to 5.2 months by 2030 in the CLE scenario. The MIT scenario would reduce this value by another 0.9 to 4.3 months. Substantially larger reductions due to the mitigation are found for China (1.8 months) and India (11-12 months). The climate metrics cannot fully quantify the climate response. Therefore, a second research path was taken. Transient climate ensemble simulations with these ESMs were run for the CLE and MIT scenarios, to determine the climate impacts of the mitigation. In these simulations, the CLE scenario resulted in a surface temperature increase of 0.70±0.14 K between the years 2006 and 2050. For the decade 2041-2050, the warming was reduced by 0.22±0.07 K in the MIT scenario, and this result was in almost exact agreement with the response calculated based on the emission metrics (reduced warming of 0.22±0.09 K). The metrics calculations suggest that non-CH4 SLCPs contribute ∼22% to this response and CH4 78%. This could not be fully confirmed by the transient simulations, which attributed about 90% of the temperature response to CH4 reductions. Attribution of the observed temperature response to non-CH4 SLCP emission reductions and black carbon (BC) specifically is hampered in the transient simulations by small forcing and co-emitted species of the emission basket chosen. Nevertheless, an important conclusion is that our mitigation basket as a whole would lead to clear benefits for both air quality and climate. The climate response from BC reductions in our study is smaller than reported previously, largely because our study is one of the first to use fully coupled climate models, where unforced variability and sea-ice responses may counteract the impacts of small emission reductions. The temperature responses to the mitigation were generally stronger over the continents than over the oceans, and with a warming reduction of 0.44 K (0.39-0.49) largest over the Arctic. Our calculations suggest particularly beneficial climate responses in Southern Europe, where the surface warming was reduced by about 0.3 K and precipitation rates were increased by about 15 (6-21) mm yr-1 (more than 4% of total precipitation) from spring to autumn. Thus, the mitigation could help to alleviate expected future drought and water shortages in the Mediterranean area. We also report other important results of the ECLIPSE project.
Evaluating the climate and air quality impacts of short-lived pollutants
NASA Astrophysics Data System (ADS)
Stohl, A.; Aamaas, B.; Amann, M.; Baker, L. H.; Bellouin, N.; Berntsen, T. K.; Boucher, O.; Cherian, R.; Collins, W.; Daskalakis, N.; Dusinska, M.; Eckhardt, S.; Fuglestvedt, J. S.; Harju, M.; Heyes, C.; Hodnebrog, Ø.; Hao, J.; Im, U.; Kanakidou, M.; Klimont, Z.; Kupiainen, K.; Law, K. S.; Lund, M. T.; Maas, R.; MacIntosh, C. R.; Myhre, G.; Myriokefalitakis, S.; Olivié, D.; Quaas, J.; Quennehen, B.; Raut, J.-C.; Rumbold, S. T.; Samset, B. H.; Schulz, M.; Seland, Ø.; Shine, K. P.; Skeie, R. B.; Wang, S.; Yttri, K. E.; Zhu, T.
2015-09-01
This paper presents a summary of the work done within the European Union's Seventh Framework Programme project ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants). ECLIPSE had a unique systematic concept for designing a realistic and effective mitigation scenario for short-lived climate pollutants (SLCPs; methane, aerosols and ozone, and their precursor species) and quantifying its climate and air quality impacts, and this paper presents the results in the context of this overarching strategy. The first step in ECLIPSE was to create a new emission inventory based on current legislation (CLE) for the recent past and until 2050. Substantial progress compared to previous work was made by including previously unaccounted types of sources such as flaring of gas associated with oil production, and wick lamps. These emission data were used for present-day reference simulations with four advanced Earth system models (ESMs) and six chemistry transport models (CTMs). The model simulations were compared with a variety of ground-based and satellite observational data sets from Asia, Europe and the Arctic. It was found that the models still underestimate the measured seasonality of aerosols in the Arctic but to a lesser extent than in previous studies. Problems likely related to the emissions were identified for northern Russia and India, in particular. To estimate the climate impacts of SLCPs, ECLIPSE followed two paths of research: the first path calculated radiative forcing (RF) values for a large matrix of SLCP species emissions, for different seasons and regions independently. Based on these RF calculations, the Global Temperature change Potential metric for a time horizon of 20 years (GTP20) was calculated for each SLCP emission type. This climate metric was then used in an integrated assessment model to identify all emission mitigation measures with a beneficial air quality and short-term (20-year) climate impact. These measures together defined a SLCP mitigation (MIT) scenario. Compared to CLE, the MIT scenario would reduce global methane (CH4) and black carbon (BC) emissions by about 50 and 80 %, respectively. For CH4, measures on shale gas production, waste management and coal mines were most important. For non-CH4 SLCPs, elimination of high-emitting vehicles and wick lamps, as well as reducing emissions from gas flaring, coal and biomass stoves, agricultural waste, solvents and diesel engines were most important. These measures lead to large reductions in calculated surface concentrations of ozone and particulate matter. We estimate that in the EU, the loss of statistical life expectancy due to air pollution was 7.5 months in 2010, which will be reduced to 5.2 months by 2030 in the CLE scenario. The MIT scenario would reduce this value by another 0.9 to 4.3 months. Substantially larger reductions due to the mitigation are found for China (1.8 months) and India (11-12 months). The climate metrics cannot fully quantify the climate response. Therefore, a second research path was taken. Transient climate ensemble simulations with the four ESMs were run for the CLE and MIT scenarios, to determine the climate impacts of the mitigation. In these simulations, the CLE scenario resulted in a surface temperature increase of 0.70 ± 0.14 K between the years 2006 and 2050. For the decade 2041-2050, the warming was reduced by 0.22 ± 0.07 K in the MIT scenario, and this result was in almost exact agreement with the response calculated based on the emission metrics (reduced warming of 0.22 ± 0.09 K). The metrics calculations suggest that non-CH4 SLCPs contribute ~ 22 % to this response and CH4 78 %. This could not be fully confirmed by the transient simulations, which attributed about 90 % of the temperature response to CH4 reductions. Attribution of the observed temperature response to non-CH4 SLCP emission reductions and BC specifically is hampered in the transient simulations by small forcing and co-emitted species of the emission basket chosen. Nevertheless, an important conclusion is that our mitigation basket as a whole would lead to clear benefits for both air quality and climate. The climate response from BC reductions in our study is smaller than reported previously, possibly because our study is one of the first to use fully coupled climate models, where unforced variability and sea ice responses cause relatively strong temperature fluctuations that may counteract (and, thus, mask) the impacts of small emission reductions. The temperature responses to the mitigation were generally stronger over the continents than over the oceans, and with a warming reduction of 0.44 K (0.39-0.49) K the largest over the Arctic. Our calculations suggest particularly beneficial climate responses in southern Europe, where surface warming was reduced by about 0.3 K and precipitation rates were increased by about 15 (6-21) mm yr-1 (more than 4 % of total precipitation) from spring to autumn. Thus, the mitigation could help to alleviate expected future drought and water shortages in the Mediterranean area. We also report other important results of the ECLIPSE project.
ERIC Educational Resources Information Center
Fulco, Charles
2017-01-01
The 2017 Total Solar Eclipse (TSE2017) will occur on August 21 in the continental United States, bringing totality to this area for the first time since 1979. The Moon's umbra will traverse from Oregon to South Carolina in about 90 minutes, bringing an eerie darkness to 14 states coast-to-coast and a partial eclipse to every part of the country…
Period analysis of the eclipsing binary AI Dra
NASA Astrophysics Data System (ADS)
Zasche, P.; Uhlář, R.; Svoboda, P.
2010-03-01
The eclipsing binary system AI Dra reveals changes of its orbital period. These variations could be described as a result of orbiting the eclipsing pair around a common center of mass with two unseen companions with the periods about 18 and 43 years together with a steady period increase. Fourteen new minima observations were carried out by the authors.
2017-06-11
Marshall Space Flight Center employee, Phillip Domen, safely views the August 21, 2017 solar eclipse with his homemade viewing box. The Huntsville area experienced 97 percent occultation, nearly a complete blocking out of the sun by the orbit of Earth's moon. The next opportunity to view a solar eclipse in the eastern and central United States will occur in April 2024.
Get Ready for the Great American Eclipse!
ERIC Educational Resources Information Center
Fulco, Charles
2017-01-01
This year marks 38 years since any part of the continental United States was darkened by the Moon's umbral shadow. During this "eclipse drought," no U.S. residents except those on Hawaii's Big Island in 1991 have had the opportunity to observe totality without traveling abroad. The 2017 Total Solar Eclipse (TSE2017, August 21, 2017) is…
Countdown to the Great American Eclipse
ERIC Educational Resources Information Center
Fulco, Charles
2017-01-01
The Great American Total Solar Eclipse (TSE2017) will occur on August 21 this year--the first total solar eclipse in the continental United States since 1979. For many reasons, this is a scientific and educational milestone event of the highest magnitude that should not be missed by any teacher and student whether or not their school is in session…
Learning about Phases of the Moon and Eclipses: A Guide for Teachers and Curriculum Developers
ERIC Educational Resources Information Center
Kavanagh, Claudine; Agan, Lori; Sneider, Cary
2005-01-01
"National Science Education Standards" (1996), published by the National Research Council, recommends that students learn to explain Moon phases and eclipses by the time they graduate from eighth grade. It is clear from the research literature, however, that misconceptions about Moon phases and eclipses are widespread and resistant to change, even…
NASA Astrophysics Data System (ADS)
Fry, C. D.; Adams, M.; Gallagher, D. L.; Habash Krause, L.; Rawlins, L.; Suggs, R. M.; Anderson, S. C.
2017-12-01
August 21, 2017 provided a unique opportunity to investigate the effects of the total solar eclipse on high frequency (HF) radio propagation and ionospheric variability. In Marshall Space Flight Center's partnership with the US Space and Rocket Center (USSRC) and Austin Peay State University (APSU), we engaged students and citizen scientists in an investigation of the eclipse effects on the mid-latitude ionosphere. The Amateur Radio community has developed several automated receiving and reporting networks that draw from widely-distributed, automated and manual radio stations to build a near-real time, global picture of changing radio propagation conditions. We used these networks and employed HF radio propagation modeling in our investigation. A Ham Radio Science Citizen Investigation (HamSCI) collaboration with the American Radio Relay League (ARRL) ensured that many thousands of amateur radio operators would be "on the air" communicating on eclipse day, promising an extremely large quantity of data would be collected. Activities included implementing and configuring software, monitoring the HF Amateur Radio frequency bands and collecting radio transmission data on days before, the day of, and days after the eclipse to build a continuous record of changing propagation conditions as the moon's shadow marched across the United States. Our expectations were the D-Region ionosphere would be most impacted by the eclipse, enabling over-the-horizon radio propagation on lower HF frequencies (3.5 and 7 MHz) that are typically closed during the middle of the day. Post-eclipse radio propagation analysis provided insights into ionospheric variability due to the eclipse. We report on results, interpretation, and conclusions of these investigations.
Evaluation of six TPS algorithms in computing entrance and exit doses.
Tan, Yun I; Metwaly, Mohamed; Glegg, Martin; Baggarley, Shaun; Elliott, Alex
2014-05-08
Entrance and exit doses are commonly measured in in vivo dosimetry for comparison with expected values, usually generated by the treatment planning system (TPS), to verify accuracy of treatment delivery. This report aims to evaluate the accuracy of six TPS algorithms in computing entrance and exit doses for a 6 MV beam. The algorithms tested were: pencil beam convolution (Eclipse PBC), analytical anisotropic algorithm (Eclipse AAA), AcurosXB (Eclipse AXB), FFT convolution (XiO Convolution), multigrid superposition (XiO Superposition), and Monte Carlo photon (Monaco MC). Measurements with ionization chamber (IC) and diode detector in water phantoms were used as a reference. Comparisons were done in terms of central axis point dose, 1D relative profiles, and 2D absolute gamma analysis. Entrance doses computed by all TPS algorithms agreed to within 2% of the measured values. Exit doses computed by XiO Convolution, XiO Superposition, Eclipse AXB, and Monaco MC agreed with the IC measured doses to within 2%-3%. Meanwhile, Eclipse PBC and Eclipse AAA computed exit doses were higher than the IC measured doses by up to 5.3% and 4.8%, respectively. Both algorithms assume that full backscatter exists even at the exit level, leading to an overestimation of exit doses. Despite good agreements at the central axis for Eclipse AXB and Monaco MC, 1D relative comparisons showed profiles mismatched at depths beyond 11.5 cm. Overall, the 2D absolute gamma (3%/3 mm) pass rates were better for Monaco MC, while Eclipse AXB failed mostly at the outer 20% of the field area. The findings of this study serve as a useful baseline for the implementation of entrance and exit in vivo dosimetry in clinical departments utilizing any of these six common TPS algorithms for reference comparison.
Anderson, S J; Ling, P M
2010-01-01
Objective To explore viral marketing strategies for Eclipse cigarettes used by the RJ Reynolds Company (Winston-Salem, North Carolina, USA). Methods Analysis of previously secret tobacco industry documents and multimedia materials. Results The failure of RJ Reynolds’ (RJR) 1988 “smokeless” cigarette, Premier, was in part due to widespread bad word of mouth about the product’s flavour, quality and difficulty of use. In 1994 RJR introduced an updated version of Premier, the ostensibly “reduced risk” Eclipse cigarette. RJR developed viral marketing channels to promote Eclipse using (1) exploratory interviews to motivate consumers to spread the word about Eclipse prior to market release, (2) promotional videos featuring positive feedback from test group participants to portray majority consensus among triers, (3) “Tupperware”-like parties for Eclipse where participants received samples to pass around in their social circles and (4) the Eclipse website’s bulletin board as a forum for potential users to discuss the brand in their own words. These strategies targeted the brand’s likeliest adopters, recruited informal and credible representatives of the product unaffiliated with RJR, and controlled the information spread about the product. Conclusions Viral marketing techniques may be particularly useful to promote new tobacco products such as Eclipse that have limited appeal and need a highly motivated audience of early adopters and acceptors. Such techniques help evade the mass rejection that could follow mass promotion, circumvent marketing restrictions, and allow tobacco companies to benefit from health claims made by consumers. Cigarette manufacturers must be held accountable for perceived health benefits encouraged by all promotional activities including viral marketing. PMID:18332064
Eclipse 2017: Partnering with NASA MSFC to Inspire Students
NASA Technical Reports Server (NTRS)
Fry, Craig " Ghee"
2017-01-01
NASA's Marshall Space Flight Center (MSFC) is partnering with the U.S. Space and Rocket Center (USSRC), and Austin Peay State University (APSU) to engage citizen scientists, engineers, and students in science investigations during the 2017 American Solar Eclipse. Investigations will support the Citizen Continental America Telescopic Eclipse (CATE), Ham Radio Science Citizen Investigation(HamSCI), and Interactive NASA Space Physics Ionosphere Radio Experiments (INSPIRE). All planned activities will engage Space Campers and local high school students in the application of the scientific method as they seek to explore a wide range of observations during the eclipse. Where planned experiments touch on current scientific questions, the camper/students will be acting as citizen scientists, participating with researchers from APSU and MSFC. Participants will test their expectations and after the eclipse, share their results, experiences, and conclusions to younger Space Campers at the US Space & Rocket Center.
2000-01-20
Traveling west to east, the full moon, viewed from Merritt Island, Fla., at 10:18 p.m. EST, begins moving into the Earth's shadow, at the start of a lunar eclipse. Eclipses occur when the Sun, Earth and Moon line up. They are rare because the Moon usually passes above or below the imaginary line connecting Earth and the Sun. The Earth casts a shadow that the Moon can pass through -when it does, it is called a lunar eclipse. They can only occur when the moon is "full." During a total lunar eclipse the Moon takes on a dark red color because it is being lighted slightly by sunlight passing through the Earth's atmosphere and this light has the blue component preferentially scattered out (this is also why the sky appears blue from the surface of the Earth), leaving faint reddish light to illuminate the Moon during the eclipse
2000-01-20
Viewed from Merritt Island, Fla., at 11:25 p.m. EST, the full moon, traveling west to east, is nearly completely in the Earth's shadow, producing a lunar eclipse. Eclipses occur when the Sun, Earth and Moon line up. They are rare because the Moon usually passes above or below the imaginary line connecting Earth and the Sun. The Earth casts a shadow that the Moon can pass through -when it does, it is called a lunar eclipse. They can only occur when the moon is "full." During a total lunar eclipse the Moon takes on a dark red color because it is being lighted slightly by sunlight passing through the Earth's atmosphere and this light has the blue component preferentially scattered out (this is also why the sky appears blue from the surface of the Earth), leaving faint reddish light to illuminate the Moon during the eclipse